compiler: only build thunk struct type when it is needed
[official-gcc.git] / gcc / predict.cc
blob1bc7ab944540478d9b1b1fb58b88eecd8a51bac0
1 /* Branch prediction routines for the GNU compiler.
2 Copyright (C) 2000-2022 Free Software Foundation, Inc.
4 This file is part of GCC.
6 GCC is free software; you can redistribute it and/or modify it under
7 the terms of the GNU General Public License as published by the Free
8 Software Foundation; either version 3, or (at your option) any later
9 version.
11 GCC is distributed in the hope that it will be useful, but WITHOUT ANY
12 WARRANTY; without even the implied warranty of MERCHANTABILITY or
13 FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License
14 for more details.
16 You should have received a copy of the GNU General Public License
17 along with GCC; see the file COPYING3. If not see
18 <http://www.gnu.org/licenses/>. */
20 /* References:
22 [1] "Branch Prediction for Free"
23 Ball and Larus; PLDI '93.
24 [2] "Static Branch Frequency and Program Profile Analysis"
25 Wu and Larus; MICRO-27.
26 [3] "Corpus-based Static Branch Prediction"
27 Calder, Grunwald, Lindsay, Martin, Mozer, and Zorn; PLDI '95. */
30 #include "config.h"
31 #include "system.h"
32 #include "coretypes.h"
33 #include "backend.h"
34 #include "rtl.h"
35 #include "tree.h"
36 #include "gimple.h"
37 #include "cfghooks.h"
38 #include "tree-pass.h"
39 #include "ssa.h"
40 #include "memmodel.h"
41 #include "emit-rtl.h"
42 #include "cgraph.h"
43 #include "coverage.h"
44 #include "diagnostic-core.h"
45 #include "gimple-predict.h"
46 #include "fold-const.h"
47 #include "calls.h"
48 #include "cfganal.h"
49 #include "profile.h"
50 #include "sreal.h"
51 #include "cfgloop.h"
52 #include "gimple-iterator.h"
53 #include "tree-cfg.h"
54 #include "tree-ssa-loop-niter.h"
55 #include "tree-ssa-loop.h"
56 #include "tree-scalar-evolution.h"
57 #include "ipa-utils.h"
58 #include "gimple-pretty-print.h"
59 #include "selftest.h"
60 #include "cfgrtl.h"
61 #include "stringpool.h"
62 #include "attribs.h"
64 /* Enum with reasons why a predictor is ignored. */
66 enum predictor_reason
68 REASON_NONE,
69 REASON_IGNORED,
70 REASON_SINGLE_EDGE_DUPLICATE,
71 REASON_EDGE_PAIR_DUPLICATE
74 /* String messages for the aforementioned enum. */
76 static const char *reason_messages[] = {"", " (ignored)",
77 " (single edge duplicate)", " (edge pair duplicate)"};
80 static void combine_predictions_for_insn (rtx_insn *, basic_block);
81 static void dump_prediction (FILE *, enum br_predictor, int, basic_block,
82 enum predictor_reason, edge);
83 static void predict_paths_leading_to (basic_block, enum br_predictor,
84 enum prediction,
85 class loop *in_loop = NULL);
86 static void predict_paths_leading_to_edge (edge, enum br_predictor,
87 enum prediction,
88 class loop *in_loop = NULL);
89 static bool can_predict_insn_p (const rtx_insn *);
90 static HOST_WIDE_INT get_predictor_value (br_predictor, HOST_WIDE_INT);
91 static void determine_unlikely_bbs ();
93 /* Information we hold about each branch predictor.
94 Filled using information from predict.def. */
96 struct predictor_info
98 const char *const name; /* Name used in the debugging dumps. */
99 const int hitrate; /* Expected hitrate used by
100 predict_insn_def call. */
101 const int flags;
104 /* Use given predictor without Dempster-Shaffer theory if it matches
105 using first_match heuristics. */
106 #define PRED_FLAG_FIRST_MATCH 1
108 /* Recompute hitrate in percent to our representation. */
110 #define HITRATE(VAL) ((int) ((VAL) * REG_BR_PROB_BASE + 50) / 100)
112 #define DEF_PREDICTOR(ENUM, NAME, HITRATE, FLAGS) {NAME, HITRATE, FLAGS},
113 static const struct predictor_info predictor_info[]= {
114 #include "predict.def"
116 /* Upper bound on predictors. */
117 {NULL, 0, 0}
119 #undef DEF_PREDICTOR
121 static gcov_type min_count = -1;
123 /* Determine the threshold for hot BB counts. */
125 gcov_type
126 get_hot_bb_threshold ()
128 if (min_count == -1)
130 const int hot_frac = param_hot_bb_count_fraction;
131 const gcov_type min_hot_count
132 = hot_frac
133 ? profile_info->sum_max / hot_frac
134 : (gcov_type)profile_count::max_count;
135 set_hot_bb_threshold (min_hot_count);
136 if (dump_file)
137 fprintf (dump_file, "Setting hotness threshold to %" PRId64 ".\n",
138 min_hot_count);
140 return min_count;
143 /* Set the threshold for hot BB counts. */
145 void
146 set_hot_bb_threshold (gcov_type min)
148 min_count = min;
151 /* Return TRUE if COUNT is considered to be hot in function FUN. */
153 bool
154 maybe_hot_count_p (struct function *fun, profile_count count)
156 if (!count.initialized_p ())
157 return true;
158 if (count.ipa () == profile_count::zero ())
159 return false;
160 if (!count.ipa_p ())
162 struct cgraph_node *node = cgraph_node::get (fun->decl);
163 if (!profile_info || profile_status_for_fn (fun) != PROFILE_READ)
165 if (node->frequency == NODE_FREQUENCY_UNLIKELY_EXECUTED)
166 return false;
167 if (node->frequency == NODE_FREQUENCY_HOT)
168 return true;
170 if (profile_status_for_fn (fun) == PROFILE_ABSENT)
171 return true;
172 if (node->frequency == NODE_FREQUENCY_EXECUTED_ONCE
173 && count < (ENTRY_BLOCK_PTR_FOR_FN (fun)->count.apply_scale (2, 3)))
174 return false;
175 if (count * param_hot_bb_frequency_fraction
176 < ENTRY_BLOCK_PTR_FOR_FN (fun)->count)
177 return false;
178 return true;
180 /* Code executed at most once is not hot. */
181 if (count <= MAX (profile_info ? profile_info->runs : 1, 1))
182 return false;
183 return (count >= get_hot_bb_threshold ());
186 /* Return true if basic block BB of function FUN can be CPU intensive
187 and should thus be optimized for maximum performance. */
189 bool
190 maybe_hot_bb_p (struct function *fun, const_basic_block bb)
192 gcc_checking_assert (fun);
193 return maybe_hot_count_p (fun, bb->count);
196 /* Return true if edge E can be CPU intensive and should thus be optimized
197 for maximum performance. */
199 bool
200 maybe_hot_edge_p (edge e)
202 return maybe_hot_count_p (cfun, e->count ());
205 /* Return true if COUNT is considered to be never executed in function FUN
206 or if function FUN is considered so in the static profile. */
208 static bool
209 probably_never_executed (struct function *fun, profile_count count)
211 gcc_checking_assert (fun);
212 if (count.ipa () == profile_count::zero ())
213 return true;
214 /* Do not trust adjusted counts. This will make us to drop int cold section
215 code with low execution count as a result of inlining. These low counts
216 are not safe even with read profile and may lead us to dropping
217 code which actually gets executed into cold section of binary that is not
218 desirable. */
219 if (count.precise_p () && profile_status_for_fn (fun) == PROFILE_READ)
221 const int unlikely_frac = param_unlikely_bb_count_fraction;
222 if (count * unlikely_frac >= profile_info->runs)
223 return false;
224 return true;
226 if ((!profile_info || profile_status_for_fn (fun) != PROFILE_READ)
227 && (cgraph_node::get (fun->decl)->frequency
228 == NODE_FREQUENCY_UNLIKELY_EXECUTED))
229 return true;
230 return false;
233 /* Return true if basic block BB of function FUN is probably never executed. */
235 bool
236 probably_never_executed_bb_p (struct function *fun, const_basic_block bb)
238 return probably_never_executed (fun, bb->count);
241 /* Return true if edge E is unlikely executed for obvious reasons. */
243 static bool
244 unlikely_executed_edge_p (edge e)
246 return (e->src->count == profile_count::zero ()
247 || e->probability == profile_probability::never ())
248 || (e->flags & (EDGE_EH | EDGE_FAKE));
251 /* Return true if edge E of function FUN is probably never executed. */
253 bool
254 probably_never_executed_edge_p (struct function *fun, edge e)
256 if (unlikely_executed_edge_p (e))
257 return true;
258 return probably_never_executed (fun, e->count ());
261 /* Return true if function FUN should always be optimized for size. */
263 optimize_size_level
264 optimize_function_for_size_p (struct function *fun)
266 if (!fun || !fun->decl)
267 return optimize_size ? OPTIMIZE_SIZE_MAX : OPTIMIZE_SIZE_NO;
268 cgraph_node *n = cgraph_node::get (fun->decl);
269 if (n)
270 return n->optimize_for_size_p ();
271 return OPTIMIZE_SIZE_NO;
274 /* Return true if function FUN should always be optimized for speed. */
276 bool
277 optimize_function_for_speed_p (struct function *fun)
279 return !optimize_function_for_size_p (fun);
282 /* Return the optimization type that should be used for function FUN. */
284 optimization_type
285 function_optimization_type (struct function *fun)
287 return (optimize_function_for_speed_p (fun)
288 ? OPTIMIZE_FOR_SPEED
289 : OPTIMIZE_FOR_SIZE);
292 /* Return TRUE if basic block BB should be optimized for size. */
294 optimize_size_level
295 optimize_bb_for_size_p (const_basic_block bb)
297 enum optimize_size_level ret = optimize_function_for_size_p (cfun);
299 if (bb && ret < OPTIMIZE_SIZE_MAX && bb->count == profile_count::zero ())
300 ret = OPTIMIZE_SIZE_MAX;
301 if (bb && ret < OPTIMIZE_SIZE_BALANCED && !maybe_hot_bb_p (cfun, bb))
302 ret = OPTIMIZE_SIZE_BALANCED;
303 return ret;
306 /* Return TRUE if basic block BB should be optimized for speed. */
308 bool
309 optimize_bb_for_speed_p (const_basic_block bb)
311 return !optimize_bb_for_size_p (bb);
314 /* Return the optimization type that should be used for basic block BB. */
316 optimization_type
317 bb_optimization_type (const_basic_block bb)
319 return (optimize_bb_for_speed_p (bb)
320 ? OPTIMIZE_FOR_SPEED
321 : OPTIMIZE_FOR_SIZE);
324 /* Return TRUE if edge E should be optimized for size. */
326 optimize_size_level
327 optimize_edge_for_size_p (edge e)
329 enum optimize_size_level ret = optimize_function_for_size_p (cfun);
331 if (ret < OPTIMIZE_SIZE_MAX && unlikely_executed_edge_p (e))
332 ret = OPTIMIZE_SIZE_MAX;
333 if (ret < OPTIMIZE_SIZE_BALANCED && !maybe_hot_edge_p (e))
334 ret = OPTIMIZE_SIZE_BALANCED;
335 return ret;
338 /* Return TRUE if edge E should be optimized for speed. */
340 bool
341 optimize_edge_for_speed_p (edge e)
343 return !optimize_edge_for_size_p (e);
346 /* Return TRUE if the current function is optimized for size. */
348 optimize_size_level
349 optimize_insn_for_size_p (void)
351 enum optimize_size_level ret = optimize_function_for_size_p (cfun);
352 if (ret < OPTIMIZE_SIZE_BALANCED && !crtl->maybe_hot_insn_p)
353 ret = OPTIMIZE_SIZE_BALANCED;
354 return ret;
357 /* Return TRUE if the current function is optimized for speed. */
359 bool
360 optimize_insn_for_speed_p (void)
362 return !optimize_insn_for_size_p ();
365 /* Return the optimization type that should be used for the current
366 instruction. */
368 optimization_type
369 insn_optimization_type ()
371 return (optimize_insn_for_speed_p ()
372 ? OPTIMIZE_FOR_SPEED
373 : OPTIMIZE_FOR_SIZE);
376 /* Return TRUE if LOOP should be optimized for size. */
378 optimize_size_level
379 optimize_loop_for_size_p (class loop *loop)
381 return optimize_bb_for_size_p (loop->header);
384 /* Return TRUE if LOOP should be optimized for speed. */
386 bool
387 optimize_loop_for_speed_p (class loop *loop)
389 return optimize_bb_for_speed_p (loop->header);
392 /* Return TRUE if nest rooted at LOOP should be optimized for speed. */
394 bool
395 optimize_loop_nest_for_speed_p (class loop *loop)
397 class loop *l = loop;
398 if (optimize_loop_for_speed_p (loop))
399 return true;
400 l = loop->inner;
401 while (l && l != loop)
403 if (optimize_loop_for_speed_p (l))
404 return true;
405 if (l->inner)
406 l = l->inner;
407 else if (l->next)
408 l = l->next;
409 else
411 while (l != loop && !l->next)
412 l = loop_outer (l);
413 if (l != loop)
414 l = l->next;
417 return false;
420 /* Return TRUE if nest rooted at LOOP should be optimized for size. */
422 optimize_size_level
423 optimize_loop_nest_for_size_p (class loop *loop)
425 enum optimize_size_level ret = optimize_loop_for_size_p (loop);
426 class loop *l = loop;
428 l = loop->inner;
429 while (l && l != loop)
431 if (ret == OPTIMIZE_SIZE_NO)
432 break;
433 ret = MIN (optimize_loop_for_size_p (l), ret);
434 if (l->inner)
435 l = l->inner;
436 else if (l->next)
437 l = l->next;
438 else
440 while (l != loop && !l->next)
441 l = loop_outer (l);
442 if (l != loop)
443 l = l->next;
446 return ret;
449 /* Return true if edge E is likely to be well predictable by branch
450 predictor. */
452 bool
453 predictable_edge_p (edge e)
455 if (!e->probability.initialized_p ())
456 return false;
457 if ((e->probability.to_reg_br_prob_base ()
458 <= param_predictable_branch_outcome * REG_BR_PROB_BASE / 100)
459 || (REG_BR_PROB_BASE - e->probability.to_reg_br_prob_base ()
460 <= param_predictable_branch_outcome * REG_BR_PROB_BASE / 100))
461 return true;
462 return false;
466 /* Set RTL expansion for BB profile. */
468 void
469 rtl_profile_for_bb (basic_block bb)
471 crtl->maybe_hot_insn_p = maybe_hot_bb_p (cfun, bb);
474 /* Set RTL expansion for edge profile. */
476 void
477 rtl_profile_for_edge (edge e)
479 crtl->maybe_hot_insn_p = maybe_hot_edge_p (e);
482 /* Set RTL expansion to default mode (i.e. when profile info is not known). */
483 void
484 default_rtl_profile (void)
486 crtl->maybe_hot_insn_p = true;
489 /* Return true if the one of outgoing edges is already predicted by
490 PREDICTOR. */
492 bool
493 rtl_predicted_by_p (const_basic_block bb, enum br_predictor predictor)
495 rtx note;
496 if (!INSN_P (BB_END (bb)))
497 return false;
498 for (note = REG_NOTES (BB_END (bb)); note; note = XEXP (note, 1))
499 if (REG_NOTE_KIND (note) == REG_BR_PRED
500 && INTVAL (XEXP (XEXP (note, 0), 0)) == (int)predictor)
501 return true;
502 return false;
505 /* Structure representing predictions in tree level. */
507 struct edge_prediction {
508 struct edge_prediction *ep_next;
509 edge ep_edge;
510 enum br_predictor ep_predictor;
511 int ep_probability;
514 /* This map contains for a basic block the list of predictions for the
515 outgoing edges. */
517 static hash_map<const_basic_block, edge_prediction *> *bb_predictions;
519 /* Return true if the one of outgoing edges is already predicted by
520 PREDICTOR. */
522 bool
523 gimple_predicted_by_p (const_basic_block bb, enum br_predictor predictor)
525 struct edge_prediction *i;
526 edge_prediction **preds = bb_predictions->get (bb);
528 if (!preds)
529 return false;
531 for (i = *preds; i; i = i->ep_next)
532 if (i->ep_predictor == predictor)
533 return true;
534 return false;
537 /* Return true if the one of outgoing edges is already predicted by
538 PREDICTOR for edge E predicted as TAKEN. */
540 bool
541 edge_predicted_by_p (edge e, enum br_predictor predictor, bool taken)
543 struct edge_prediction *i;
544 basic_block bb = e->src;
545 edge_prediction **preds = bb_predictions->get (bb);
546 if (!preds)
547 return false;
549 int probability = predictor_info[(int) predictor].hitrate;
551 if (taken != TAKEN)
552 probability = REG_BR_PROB_BASE - probability;
554 for (i = *preds; i; i = i->ep_next)
555 if (i->ep_predictor == predictor
556 && i->ep_edge == e
557 && i->ep_probability == probability)
558 return true;
559 return false;
562 /* Same predicate as above, working on edges. */
563 bool
564 edge_probability_reliable_p (const_edge e)
566 return e->probability.probably_reliable_p ();
569 /* Same predicate as edge_probability_reliable_p, working on notes. */
570 bool
571 br_prob_note_reliable_p (const_rtx note)
573 gcc_assert (REG_NOTE_KIND (note) == REG_BR_PROB);
574 return profile_probability::from_reg_br_prob_note
575 (XINT (note, 0)).probably_reliable_p ();
578 static void
579 predict_insn (rtx_insn *insn, enum br_predictor predictor, int probability)
581 gcc_assert (any_condjump_p (insn));
582 if (!flag_guess_branch_prob)
583 return;
585 add_reg_note (insn, REG_BR_PRED,
586 gen_rtx_CONCAT (VOIDmode,
587 GEN_INT ((int) predictor),
588 GEN_INT ((int) probability)));
591 /* Predict insn by given predictor. */
593 void
594 predict_insn_def (rtx_insn *insn, enum br_predictor predictor,
595 enum prediction taken)
597 int probability = predictor_info[(int) predictor].hitrate;
598 gcc_assert (probability != PROB_UNINITIALIZED);
600 if (taken != TAKEN)
601 probability = REG_BR_PROB_BASE - probability;
603 predict_insn (insn, predictor, probability);
606 /* Predict edge E with given probability if possible. */
608 void
609 rtl_predict_edge (edge e, enum br_predictor predictor, int probability)
611 rtx_insn *last_insn;
612 last_insn = BB_END (e->src);
614 /* We can store the branch prediction information only about
615 conditional jumps. */
616 if (!any_condjump_p (last_insn))
617 return;
619 /* We always store probability of branching. */
620 if (e->flags & EDGE_FALLTHRU)
621 probability = REG_BR_PROB_BASE - probability;
623 predict_insn (last_insn, predictor, probability);
626 /* Predict edge E with the given PROBABILITY. */
627 void
628 gimple_predict_edge (edge e, enum br_predictor predictor, int probability)
630 if (e->src != ENTRY_BLOCK_PTR_FOR_FN (cfun)
631 && EDGE_COUNT (e->src->succs) > 1
632 && flag_guess_branch_prob
633 && optimize)
635 struct edge_prediction *i = XNEW (struct edge_prediction);
636 edge_prediction *&preds = bb_predictions->get_or_insert (e->src);
638 i->ep_next = preds;
639 preds = i;
640 i->ep_probability = probability;
641 i->ep_predictor = predictor;
642 i->ep_edge = e;
646 /* Filter edge predictions PREDS by a function FILTER: if FILTER return false
647 the prediction is removed.
648 DATA are passed to the filter function. */
650 static void
651 filter_predictions (edge_prediction **preds,
652 bool (*filter) (edge_prediction *, void *), void *data)
654 if (!bb_predictions)
655 return;
657 if (preds)
659 struct edge_prediction **prediction = preds;
660 struct edge_prediction *next;
662 while (*prediction)
664 if ((*filter) (*prediction, data))
665 prediction = &((*prediction)->ep_next);
666 else
668 next = (*prediction)->ep_next;
669 free (*prediction);
670 *prediction = next;
676 /* Filter function predicate that returns true for a edge predicate P
677 if its edge is equal to DATA. */
679 static bool
680 not_equal_edge_p (edge_prediction *p, void *data)
682 return p->ep_edge != (edge)data;
685 /* Remove all predictions on given basic block that are attached
686 to edge E. */
687 void
688 remove_predictions_associated_with_edge (edge e)
690 if (!bb_predictions)
691 return;
693 edge_prediction **preds = bb_predictions->get (e->src);
694 filter_predictions (preds, not_equal_edge_p, e);
697 /* Clears the list of predictions stored for BB. */
699 static void
700 clear_bb_predictions (basic_block bb)
702 edge_prediction **preds = bb_predictions->get (bb);
703 struct edge_prediction *pred, *next;
705 if (!preds)
706 return;
708 for (pred = *preds; pred; pred = next)
710 next = pred->ep_next;
711 free (pred);
713 *preds = NULL;
716 /* Return true when we can store prediction on insn INSN.
717 At the moment we represent predictions only on conditional
718 jumps, not at computed jump or other complicated cases. */
719 static bool
720 can_predict_insn_p (const rtx_insn *insn)
722 return (JUMP_P (insn)
723 && any_condjump_p (insn)
724 && EDGE_COUNT (BLOCK_FOR_INSN (insn)->succs) >= 2);
727 /* Predict edge E by given predictor if possible. */
729 void
730 predict_edge_def (edge e, enum br_predictor predictor,
731 enum prediction taken)
733 int probability = predictor_info[(int) predictor].hitrate;
735 if (taken != TAKEN)
736 probability = REG_BR_PROB_BASE - probability;
738 predict_edge (e, predictor, probability);
741 /* Invert all branch predictions or probability notes in the INSN. This needs
742 to be done each time we invert the condition used by the jump. */
744 void
745 invert_br_probabilities (rtx insn)
747 rtx note;
749 for (note = REG_NOTES (insn); note; note = XEXP (note, 1))
750 if (REG_NOTE_KIND (note) == REG_BR_PROB)
751 XINT (note, 0) = profile_probability::from_reg_br_prob_note
752 (XINT (note, 0)).invert ().to_reg_br_prob_note ();
753 else if (REG_NOTE_KIND (note) == REG_BR_PRED)
754 XEXP (XEXP (note, 0), 1)
755 = GEN_INT (REG_BR_PROB_BASE - INTVAL (XEXP (XEXP (note, 0), 1)));
758 /* Dump information about the branch prediction to the output file. */
760 static void
761 dump_prediction (FILE *file, enum br_predictor predictor, int probability,
762 basic_block bb, enum predictor_reason reason = REASON_NONE,
763 edge ep_edge = NULL)
765 edge e = ep_edge;
766 edge_iterator ei;
768 if (!file)
769 return;
771 if (e == NULL)
772 FOR_EACH_EDGE (e, ei, bb->succs)
773 if (! (e->flags & EDGE_FALLTHRU))
774 break;
776 char edge_info_str[128];
777 if (ep_edge)
778 sprintf (edge_info_str, " of edge %d->%d", ep_edge->src->index,
779 ep_edge->dest->index);
780 else
781 edge_info_str[0] = '\0';
783 fprintf (file, " %s heuristics%s%s: %.2f%%",
784 predictor_info[predictor].name,
785 edge_info_str, reason_messages[reason],
786 probability * 100.0 / REG_BR_PROB_BASE);
788 if (bb->count.initialized_p ())
790 fprintf (file, " exec ");
791 bb->count.dump (file);
792 if (e)
794 fprintf (file, " hit ");
795 e->count ().dump (file);
796 fprintf (file, " (%.1f%%)", e->count ().to_gcov_type() * 100.0
797 / bb->count.to_gcov_type ());
801 fprintf (file, "\n");
803 /* Print output that be easily read by analyze_brprob.py script. We are
804 interested only in counts that are read from GCDA files. */
805 if (dump_file && (dump_flags & TDF_DETAILS)
806 && bb->count.precise_p ()
807 && reason == REASON_NONE)
809 fprintf (file, ";;heuristics;%s;%" PRId64 ";%" PRId64 ";%.1f;\n",
810 predictor_info[predictor].name,
811 bb->count.to_gcov_type (), e->count ().to_gcov_type (),
812 probability * 100.0 / REG_BR_PROB_BASE);
816 /* Return true if STMT is known to be unlikely executed. */
818 static bool
819 unlikely_executed_stmt_p (gimple *stmt)
821 if (!is_gimple_call (stmt))
822 return false;
823 /* NORETURN attribute alone is not strong enough: exit() may be quite
824 likely executed once during program run. */
825 if (gimple_call_fntype (stmt)
826 && lookup_attribute ("cold",
827 TYPE_ATTRIBUTES (gimple_call_fntype (stmt)))
828 && !lookup_attribute ("cold", DECL_ATTRIBUTES (current_function_decl)))
829 return true;
830 tree decl = gimple_call_fndecl (stmt);
831 if (!decl)
832 return false;
833 if (lookup_attribute ("cold", DECL_ATTRIBUTES (decl))
834 && !lookup_attribute ("cold", DECL_ATTRIBUTES (current_function_decl)))
835 return true;
837 cgraph_node *n = cgraph_node::get (decl);
838 if (!n)
839 return false;
841 availability avail;
842 n = n->ultimate_alias_target (&avail);
843 if (avail < AVAIL_AVAILABLE)
844 return false;
845 if (!n->analyzed
846 || n->decl == current_function_decl)
847 return false;
848 return n->frequency == NODE_FREQUENCY_UNLIKELY_EXECUTED;
851 /* Return true if BB is unlikely executed. */
853 static bool
854 unlikely_executed_bb_p (basic_block bb)
856 if (bb->count == profile_count::zero ())
857 return true;
858 if (bb == ENTRY_BLOCK_PTR_FOR_FN (cfun) || bb == EXIT_BLOCK_PTR_FOR_FN (cfun))
859 return false;
860 for (gimple_stmt_iterator gsi = gsi_start_bb (bb);
861 !gsi_end_p (gsi); gsi_next (&gsi))
863 if (unlikely_executed_stmt_p (gsi_stmt (gsi)))
864 return true;
865 if (stmt_can_terminate_bb_p (gsi_stmt (gsi)))
866 return false;
868 return false;
871 /* We cannot predict the probabilities of outgoing edges of bb. Set them
872 evenly and hope for the best. If UNLIKELY_EDGES is not null, distribute
873 even probability for all edges not mentioned in the set. These edges
874 are given PROB_VERY_UNLIKELY probability. Similarly for LIKELY_EDGES,
875 if we have exactly one likely edge, make the other edges predicted
876 as not probable. */
878 static void
879 set_even_probabilities (basic_block bb,
880 hash_set<edge> *unlikely_edges = NULL,
881 hash_set<edge_prediction *> *likely_edges = NULL)
883 unsigned nedges = 0, unlikely_count = 0;
884 edge e = NULL;
885 edge_iterator ei;
886 profile_probability all = profile_probability::always ();
888 FOR_EACH_EDGE (e, ei, bb->succs)
889 if (e->probability.initialized_p ())
890 all -= e->probability;
891 else if (!unlikely_executed_edge_p (e))
893 nedges++;
894 if (unlikely_edges != NULL && unlikely_edges->contains (e))
896 all -= profile_probability::very_unlikely ();
897 unlikely_count++;
901 /* Make the distribution even if all edges are unlikely. */
902 unsigned likely_count = likely_edges ? likely_edges->elements () : 0;
903 if (unlikely_count == nedges)
905 unlikely_edges = NULL;
906 unlikely_count = 0;
909 /* If we have one likely edge, then use its probability and distribute
910 remaining probabilities as even. */
911 if (likely_count == 1)
913 FOR_EACH_EDGE (e, ei, bb->succs)
914 if (e->probability.initialized_p ())
916 else if (!unlikely_executed_edge_p (e))
918 edge_prediction *prediction = *likely_edges->begin ();
919 int p = prediction->ep_probability;
920 profile_probability prob
921 = profile_probability::from_reg_br_prob_base (p);
923 if (prediction->ep_edge == e)
924 e->probability = prob;
925 else if (unlikely_edges != NULL && unlikely_edges->contains (e))
926 e->probability = profile_probability::very_unlikely ();
927 else
929 profile_probability remainder = prob.invert ();
930 remainder -= (profile_probability::very_unlikely ()
931 * unlikely_count);
932 int count = nedges - unlikely_count - 1;
933 gcc_assert (count >= 0);
935 e->probability = remainder / count;
938 else
939 e->probability = profile_probability::never ();
941 else
943 /* Make all unlikely edges unlikely and the rest will have even
944 probability. */
945 unsigned scale = nedges - unlikely_count;
946 FOR_EACH_EDGE (e, ei, bb->succs)
947 if (e->probability.initialized_p ())
949 else if (!unlikely_executed_edge_p (e))
951 if (unlikely_edges != NULL && unlikely_edges->contains (e))
952 e->probability = profile_probability::very_unlikely ();
953 else
954 e->probability = all / scale;
956 else
957 e->probability = profile_probability::never ();
961 /* Add REG_BR_PROB note to JUMP with PROB. */
963 void
964 add_reg_br_prob_note (rtx_insn *jump, profile_probability prob)
966 gcc_checking_assert (JUMP_P (jump) && !find_reg_note (jump, REG_BR_PROB, 0));
967 add_int_reg_note (jump, REG_BR_PROB, prob.to_reg_br_prob_note ());
970 /* Combine all REG_BR_PRED notes into single probability and attach REG_BR_PROB
971 note if not already present. Remove now useless REG_BR_PRED notes. */
973 static void
974 combine_predictions_for_insn (rtx_insn *insn, basic_block bb)
976 rtx prob_note;
977 rtx *pnote;
978 rtx note;
979 int best_probability = PROB_EVEN;
980 enum br_predictor best_predictor = END_PREDICTORS;
981 int combined_probability = REG_BR_PROB_BASE / 2;
982 int d;
983 bool first_match = false;
984 bool found = false;
986 if (!can_predict_insn_p (insn))
988 set_even_probabilities (bb);
989 return;
992 prob_note = find_reg_note (insn, REG_BR_PROB, 0);
993 pnote = &REG_NOTES (insn);
994 if (dump_file)
995 fprintf (dump_file, "Predictions for insn %i bb %i\n", INSN_UID (insn),
996 bb->index);
998 /* We implement "first match" heuristics and use probability guessed
999 by predictor with smallest index. */
1000 for (note = REG_NOTES (insn); note; note = XEXP (note, 1))
1001 if (REG_NOTE_KIND (note) == REG_BR_PRED)
1003 enum br_predictor predictor = ((enum br_predictor)
1004 INTVAL (XEXP (XEXP (note, 0), 0)));
1005 int probability = INTVAL (XEXP (XEXP (note, 0), 1));
1007 found = true;
1008 if (best_predictor > predictor
1009 && predictor_info[predictor].flags & PRED_FLAG_FIRST_MATCH)
1010 best_probability = probability, best_predictor = predictor;
1012 d = (combined_probability * probability
1013 + (REG_BR_PROB_BASE - combined_probability)
1014 * (REG_BR_PROB_BASE - probability));
1016 /* Use FP math to avoid overflows of 32bit integers. */
1017 if (d == 0)
1018 /* If one probability is 0% and one 100%, avoid division by zero. */
1019 combined_probability = REG_BR_PROB_BASE / 2;
1020 else
1021 combined_probability = (((double) combined_probability) * probability
1022 * REG_BR_PROB_BASE / d + 0.5);
1025 /* Decide which heuristic to use. In case we didn't match anything,
1026 use no_prediction heuristic, in case we did match, use either
1027 first match or Dempster-Shaffer theory depending on the flags. */
1029 if (best_predictor != END_PREDICTORS)
1030 first_match = true;
1032 if (!found)
1033 dump_prediction (dump_file, PRED_NO_PREDICTION,
1034 combined_probability, bb);
1035 else
1037 if (!first_match)
1038 dump_prediction (dump_file, PRED_DS_THEORY, combined_probability,
1039 bb, !first_match ? REASON_NONE : REASON_IGNORED);
1040 else
1041 dump_prediction (dump_file, PRED_FIRST_MATCH, best_probability,
1042 bb, first_match ? REASON_NONE : REASON_IGNORED);
1045 if (first_match)
1046 combined_probability = best_probability;
1047 dump_prediction (dump_file, PRED_COMBINED, combined_probability, bb);
1049 while (*pnote)
1051 if (REG_NOTE_KIND (*pnote) == REG_BR_PRED)
1053 enum br_predictor predictor = ((enum br_predictor)
1054 INTVAL (XEXP (XEXP (*pnote, 0), 0)));
1055 int probability = INTVAL (XEXP (XEXP (*pnote, 0), 1));
1057 dump_prediction (dump_file, predictor, probability, bb,
1058 (!first_match || best_predictor == predictor)
1059 ? REASON_NONE : REASON_IGNORED);
1060 *pnote = XEXP (*pnote, 1);
1062 else
1063 pnote = &XEXP (*pnote, 1);
1066 if (!prob_note)
1068 profile_probability p
1069 = profile_probability::from_reg_br_prob_base (combined_probability);
1070 add_reg_br_prob_note (insn, p);
1072 /* Save the prediction into CFG in case we are seeing non-degenerated
1073 conditional jump. */
1074 if (!single_succ_p (bb))
1076 BRANCH_EDGE (bb)->probability = p;
1077 FALLTHRU_EDGE (bb)->probability
1078 = BRANCH_EDGE (bb)->probability.invert ();
1081 else if (!single_succ_p (bb))
1083 profile_probability prob = profile_probability::from_reg_br_prob_note
1084 (XINT (prob_note, 0));
1086 BRANCH_EDGE (bb)->probability = prob;
1087 FALLTHRU_EDGE (bb)->probability = prob.invert ();
1089 else
1090 single_succ_edge (bb)->probability = profile_probability::always ();
1093 /* Edge prediction hash traits. */
1095 struct predictor_hash: pointer_hash <edge_prediction>
1098 static inline hashval_t hash (const edge_prediction *);
1099 static inline bool equal (const edge_prediction *, const edge_prediction *);
1102 /* Calculate hash value of an edge prediction P based on predictor and
1103 normalized probability. */
1105 inline hashval_t
1106 predictor_hash::hash (const edge_prediction *p)
1108 inchash::hash hstate;
1109 hstate.add_int (p->ep_predictor);
1111 int prob = p->ep_probability;
1112 if (prob > REG_BR_PROB_BASE / 2)
1113 prob = REG_BR_PROB_BASE - prob;
1115 hstate.add_int (prob);
1117 return hstate.end ();
1120 /* Return true whether edge predictions P1 and P2 use the same predictor and
1121 have equal (or opposed probability). */
1123 inline bool
1124 predictor_hash::equal (const edge_prediction *p1, const edge_prediction *p2)
1126 return (p1->ep_predictor == p2->ep_predictor
1127 && (p1->ep_probability == p2->ep_probability
1128 || p1->ep_probability == REG_BR_PROB_BASE - p2->ep_probability));
1131 struct predictor_hash_traits: predictor_hash,
1132 typed_noop_remove <edge_prediction *> {};
1134 /* Return true if edge prediction P is not in DATA hash set. */
1136 static bool
1137 not_removed_prediction_p (edge_prediction *p, void *data)
1139 hash_set<edge_prediction *> *remove = (hash_set<edge_prediction *> *) data;
1140 return !remove->contains (p);
1143 /* Prune predictions for a basic block BB. Currently we do following
1144 clean-up steps:
1146 1) remove duplicate prediction that is guessed with the same probability
1147 (different than 1/2) to both edge
1148 2) remove duplicates for a prediction that belongs with the same probability
1149 to a single edge
1153 static void
1154 prune_predictions_for_bb (basic_block bb)
1156 edge_prediction **preds = bb_predictions->get (bb);
1158 if (preds)
1160 hash_table <predictor_hash_traits> s (13);
1161 hash_set <edge_prediction *> remove;
1163 /* Step 1: identify predictors that should be removed. */
1164 for (edge_prediction *pred = *preds; pred; pred = pred->ep_next)
1166 edge_prediction *existing = s.find (pred);
1167 if (existing)
1169 if (pred->ep_edge == existing->ep_edge
1170 && pred->ep_probability == existing->ep_probability)
1172 /* Remove a duplicate predictor. */
1173 dump_prediction (dump_file, pred->ep_predictor,
1174 pred->ep_probability, bb,
1175 REASON_SINGLE_EDGE_DUPLICATE, pred->ep_edge);
1177 remove.add (pred);
1179 else if (pred->ep_edge != existing->ep_edge
1180 && pred->ep_probability == existing->ep_probability
1181 && pred->ep_probability != REG_BR_PROB_BASE / 2)
1183 /* Remove both predictors as they predict the same
1184 for both edges. */
1185 dump_prediction (dump_file, existing->ep_predictor,
1186 pred->ep_probability, bb,
1187 REASON_EDGE_PAIR_DUPLICATE,
1188 existing->ep_edge);
1189 dump_prediction (dump_file, pred->ep_predictor,
1190 pred->ep_probability, bb,
1191 REASON_EDGE_PAIR_DUPLICATE,
1192 pred->ep_edge);
1194 remove.add (existing);
1195 remove.add (pred);
1199 edge_prediction **slot2 = s.find_slot (pred, INSERT);
1200 *slot2 = pred;
1203 /* Step 2: Remove predictors. */
1204 filter_predictions (preds, not_removed_prediction_p, &remove);
1208 /* Combine predictions into single probability and store them into CFG.
1209 Remove now useless prediction entries.
1210 If DRY_RUN is set, only produce dumps and do not modify profile. */
1212 static void
1213 combine_predictions_for_bb (basic_block bb, bool dry_run)
1215 int best_probability = PROB_EVEN;
1216 enum br_predictor best_predictor = END_PREDICTORS;
1217 int combined_probability = REG_BR_PROB_BASE / 2;
1218 int d;
1219 bool first_match = false;
1220 bool found = false;
1221 struct edge_prediction *pred;
1222 int nedges = 0;
1223 edge e, first = NULL, second = NULL;
1224 edge_iterator ei;
1225 int nzero = 0;
1226 int nunknown = 0;
1228 FOR_EACH_EDGE (e, ei, bb->succs)
1230 if (!unlikely_executed_edge_p (e))
1232 nedges ++;
1233 if (first && !second)
1234 second = e;
1235 if (!first)
1236 first = e;
1238 else if (!e->probability.initialized_p ())
1239 e->probability = profile_probability::never ();
1240 if (!e->probability.initialized_p ())
1241 nunknown++;
1242 else if (e->probability == profile_probability::never ())
1243 nzero++;
1246 /* When there is no successor or only one choice, prediction is easy.
1248 When we have a basic block with more than 2 successors, the situation
1249 is more complicated as DS theory cannot be used literally.
1250 More precisely, let's assume we predicted edge e1 with probability p1,
1251 thus: m1({b1}) = p1. As we're going to combine more than 2 edges, we
1252 need to find probability of e.g. m1({b2}), which we don't know.
1253 The only approximation is to equally distribute 1-p1 to all edges
1254 different from b1.
1256 According to numbers we've got from SPEC2006 benchark, there's only
1257 one interesting reliable predictor (noreturn call), which can be
1258 handled with a bit easier approach. */
1259 if (nedges != 2)
1261 hash_set<edge> unlikely_edges (4);
1262 hash_set<edge_prediction *> likely_edges (4);
1264 /* Identify all edges that have a probability close to very unlikely.
1265 Doing the approach for very unlikely doesn't worth for doing as
1266 there's no such probability in SPEC2006 benchmark. */
1267 edge_prediction **preds = bb_predictions->get (bb);
1268 if (preds)
1269 for (pred = *preds; pred; pred = pred->ep_next)
1271 if (pred->ep_probability <= PROB_VERY_UNLIKELY
1272 || pred->ep_predictor == PRED_COLD_LABEL)
1273 unlikely_edges.add (pred->ep_edge);
1274 else if (pred->ep_probability >= PROB_VERY_LIKELY
1275 || pred->ep_predictor == PRED_BUILTIN_EXPECT
1276 || pred->ep_predictor == PRED_HOT_LABEL)
1277 likely_edges.add (pred);
1280 /* It can happen that an edge is both in likely_edges and unlikely_edges.
1281 Clear both sets in that situation. */
1282 for (hash_set<edge_prediction *>::iterator it = likely_edges.begin ();
1283 it != likely_edges.end (); ++it)
1284 if (unlikely_edges.contains ((*it)->ep_edge))
1286 likely_edges.empty ();
1287 unlikely_edges.empty ();
1288 break;
1291 if (!dry_run)
1292 set_even_probabilities (bb, &unlikely_edges, &likely_edges);
1293 clear_bb_predictions (bb);
1294 if (dump_file)
1296 fprintf (dump_file, "Predictions for bb %i\n", bb->index);
1297 if (unlikely_edges.is_empty ())
1298 fprintf (dump_file,
1299 "%i edges in bb %i predicted to even probabilities\n",
1300 nedges, bb->index);
1301 else
1303 fprintf (dump_file,
1304 "%i edges in bb %i predicted with some unlikely edges\n",
1305 nedges, bb->index);
1306 FOR_EACH_EDGE (e, ei, bb->succs)
1307 if (!unlikely_executed_edge_p (e))
1308 dump_prediction (dump_file, PRED_COMBINED,
1309 e->probability.to_reg_br_prob_base (), bb, REASON_NONE, e);
1312 return;
1315 if (dump_file)
1316 fprintf (dump_file, "Predictions for bb %i\n", bb->index);
1318 prune_predictions_for_bb (bb);
1320 edge_prediction **preds = bb_predictions->get (bb);
1322 if (preds)
1324 /* We implement "first match" heuristics and use probability guessed
1325 by predictor with smallest index. */
1326 for (pred = *preds; pred; pred = pred->ep_next)
1328 enum br_predictor predictor = pred->ep_predictor;
1329 int probability = pred->ep_probability;
1331 if (pred->ep_edge != first)
1332 probability = REG_BR_PROB_BASE - probability;
1334 found = true;
1335 /* First match heuristics would be widly confused if we predicted
1336 both directions. */
1337 if (best_predictor > predictor
1338 && predictor_info[predictor].flags & PRED_FLAG_FIRST_MATCH)
1340 struct edge_prediction *pred2;
1341 int prob = probability;
1343 for (pred2 = (struct edge_prediction *) *preds;
1344 pred2; pred2 = pred2->ep_next)
1345 if (pred2 != pred && pred2->ep_predictor == pred->ep_predictor)
1347 int probability2 = pred2->ep_probability;
1349 if (pred2->ep_edge != first)
1350 probability2 = REG_BR_PROB_BASE - probability2;
1352 if ((probability < REG_BR_PROB_BASE / 2) !=
1353 (probability2 < REG_BR_PROB_BASE / 2))
1354 break;
1356 /* If the same predictor later gave better result, go for it! */
1357 if ((probability >= REG_BR_PROB_BASE / 2 && (probability2 > probability))
1358 || (probability <= REG_BR_PROB_BASE / 2 && (probability2 < probability)))
1359 prob = probability2;
1361 if (!pred2)
1362 best_probability = prob, best_predictor = predictor;
1365 d = (combined_probability * probability
1366 + (REG_BR_PROB_BASE - combined_probability)
1367 * (REG_BR_PROB_BASE - probability));
1369 /* Use FP math to avoid overflows of 32bit integers. */
1370 if (d == 0)
1371 /* If one probability is 0% and one 100%, avoid division by zero. */
1372 combined_probability = REG_BR_PROB_BASE / 2;
1373 else
1374 combined_probability = (((double) combined_probability)
1375 * probability
1376 * REG_BR_PROB_BASE / d + 0.5);
1380 /* Decide which heuristic to use. In case we didn't match anything,
1381 use no_prediction heuristic, in case we did match, use either
1382 first match or Dempster-Shaffer theory depending on the flags. */
1384 if (best_predictor != END_PREDICTORS)
1385 first_match = true;
1387 if (!found)
1388 dump_prediction (dump_file, PRED_NO_PREDICTION, combined_probability, bb);
1389 else
1391 if (!first_match)
1392 dump_prediction (dump_file, PRED_DS_THEORY, combined_probability, bb,
1393 !first_match ? REASON_NONE : REASON_IGNORED);
1394 else
1395 dump_prediction (dump_file, PRED_FIRST_MATCH, best_probability, bb,
1396 first_match ? REASON_NONE : REASON_IGNORED);
1399 if (first_match)
1400 combined_probability = best_probability;
1401 dump_prediction (dump_file, PRED_COMBINED, combined_probability, bb);
1403 if (preds)
1405 for (pred = (struct edge_prediction *) *preds; pred; pred = pred->ep_next)
1407 enum br_predictor predictor = pred->ep_predictor;
1408 int probability = pred->ep_probability;
1410 dump_prediction (dump_file, predictor, probability, bb,
1411 (!first_match || best_predictor == predictor)
1412 ? REASON_NONE : REASON_IGNORED, pred->ep_edge);
1415 clear_bb_predictions (bb);
1418 /* If we have only one successor which is unknown, we can compute missing
1419 probability. */
1420 if (nunknown == 1)
1422 profile_probability prob = profile_probability::always ();
1423 edge missing = NULL;
1425 FOR_EACH_EDGE (e, ei, bb->succs)
1426 if (e->probability.initialized_p ())
1427 prob -= e->probability;
1428 else if (missing == NULL)
1429 missing = e;
1430 else
1431 gcc_unreachable ();
1432 missing->probability = prob;
1434 /* If nothing is unknown, we have nothing to update. */
1435 else if (!nunknown && nzero != (int)EDGE_COUNT (bb->succs))
1437 else if (!dry_run)
1439 first->probability
1440 = profile_probability::from_reg_br_prob_base (combined_probability);
1441 second->probability = first->probability.invert ();
1445 /* Check if T1 and T2 satisfy the IV_COMPARE condition.
1446 Return the SSA_NAME if the condition satisfies, NULL otherwise.
1448 T1 and T2 should be one of the following cases:
1449 1. T1 is SSA_NAME, T2 is NULL
1450 2. T1 is SSA_NAME, T2 is INTEGER_CST between [-4, 4]
1451 3. T2 is SSA_NAME, T1 is INTEGER_CST between [-4, 4] */
1453 static tree
1454 strips_small_constant (tree t1, tree t2)
1456 tree ret = NULL;
1457 int value = 0;
1459 if (!t1)
1460 return NULL;
1461 else if (TREE_CODE (t1) == SSA_NAME)
1462 ret = t1;
1463 else if (tree_fits_shwi_p (t1))
1464 value = tree_to_shwi (t1);
1465 else
1466 return NULL;
1468 if (!t2)
1469 return ret;
1470 else if (tree_fits_shwi_p (t2))
1471 value = tree_to_shwi (t2);
1472 else if (TREE_CODE (t2) == SSA_NAME)
1474 if (ret)
1475 return NULL;
1476 else
1477 ret = t2;
1480 if (value <= 4 && value >= -4)
1481 return ret;
1482 else
1483 return NULL;
1486 /* Return the SSA_NAME in T or T's operands.
1487 Return NULL if SSA_NAME cannot be found. */
1489 static tree
1490 get_base_value (tree t)
1492 if (TREE_CODE (t) == SSA_NAME)
1493 return t;
1495 if (!BINARY_CLASS_P (t))
1496 return NULL;
1498 switch (TREE_OPERAND_LENGTH (t))
1500 case 1:
1501 return strips_small_constant (TREE_OPERAND (t, 0), NULL);
1502 case 2:
1503 return strips_small_constant (TREE_OPERAND (t, 0),
1504 TREE_OPERAND (t, 1));
1505 default:
1506 return NULL;
1510 /* Check the compare STMT in LOOP. If it compares an induction
1511 variable to a loop invariant, return true, and save
1512 LOOP_INVARIANT, COMPARE_CODE and LOOP_STEP.
1513 Otherwise return false and set LOOP_INVAIANT to NULL. */
1515 static bool
1516 is_comparison_with_loop_invariant_p (gcond *stmt, class loop *loop,
1517 tree *loop_invariant,
1518 enum tree_code *compare_code,
1519 tree *loop_step,
1520 tree *loop_iv_base)
1522 tree op0, op1, bound, base;
1523 affine_iv iv0, iv1;
1524 enum tree_code code;
1525 tree step;
1527 code = gimple_cond_code (stmt);
1528 *loop_invariant = NULL;
1530 switch (code)
1532 case GT_EXPR:
1533 case GE_EXPR:
1534 case NE_EXPR:
1535 case LT_EXPR:
1536 case LE_EXPR:
1537 case EQ_EXPR:
1538 break;
1540 default:
1541 return false;
1544 op0 = gimple_cond_lhs (stmt);
1545 op1 = gimple_cond_rhs (stmt);
1547 if ((TREE_CODE (op0) != SSA_NAME && TREE_CODE (op0) != INTEGER_CST)
1548 || (TREE_CODE (op1) != SSA_NAME && TREE_CODE (op1) != INTEGER_CST))
1549 return false;
1550 if (!simple_iv (loop, loop_containing_stmt (stmt), op0, &iv0, true))
1551 return false;
1552 if (!simple_iv (loop, loop_containing_stmt (stmt), op1, &iv1, true))
1553 return false;
1554 if (TREE_CODE (iv0.step) != INTEGER_CST
1555 || TREE_CODE (iv1.step) != INTEGER_CST)
1556 return false;
1557 if ((integer_zerop (iv0.step) && integer_zerop (iv1.step))
1558 || (!integer_zerop (iv0.step) && !integer_zerop (iv1.step)))
1559 return false;
1561 if (integer_zerop (iv0.step))
1563 if (code != NE_EXPR && code != EQ_EXPR)
1564 code = invert_tree_comparison (code, false);
1565 bound = iv0.base;
1566 base = iv1.base;
1567 if (tree_fits_shwi_p (iv1.step))
1568 step = iv1.step;
1569 else
1570 return false;
1572 else
1574 bound = iv1.base;
1575 base = iv0.base;
1576 if (tree_fits_shwi_p (iv0.step))
1577 step = iv0.step;
1578 else
1579 return false;
1582 if (TREE_CODE (bound) != INTEGER_CST)
1583 bound = get_base_value (bound);
1584 if (!bound)
1585 return false;
1586 if (TREE_CODE (base) != INTEGER_CST)
1587 base = get_base_value (base);
1588 if (!base)
1589 return false;
1591 *loop_invariant = bound;
1592 *compare_code = code;
1593 *loop_step = step;
1594 *loop_iv_base = base;
1595 return true;
1598 /* Compare two SSA_NAMEs: returns TRUE if T1 and T2 are value coherent. */
1600 static bool
1601 expr_coherent_p (tree t1, tree t2)
1603 gimple *stmt;
1604 tree ssa_name_1 = NULL;
1605 tree ssa_name_2 = NULL;
1607 gcc_assert (TREE_CODE (t1) == SSA_NAME || TREE_CODE (t1) == INTEGER_CST);
1608 gcc_assert (TREE_CODE (t2) == SSA_NAME || TREE_CODE (t2) == INTEGER_CST);
1610 if (t1 == t2)
1611 return true;
1613 if (TREE_CODE (t1) == INTEGER_CST && TREE_CODE (t2) == INTEGER_CST)
1614 return true;
1615 if (TREE_CODE (t1) == INTEGER_CST || TREE_CODE (t2) == INTEGER_CST)
1616 return false;
1618 /* Check to see if t1 is expressed/defined with t2. */
1619 stmt = SSA_NAME_DEF_STMT (t1);
1620 gcc_assert (stmt != NULL);
1621 if (is_gimple_assign (stmt))
1623 ssa_name_1 = SINGLE_SSA_TREE_OPERAND (stmt, SSA_OP_USE);
1624 if (ssa_name_1 && ssa_name_1 == t2)
1625 return true;
1628 /* Check to see if t2 is expressed/defined with t1. */
1629 stmt = SSA_NAME_DEF_STMT (t2);
1630 gcc_assert (stmt != NULL);
1631 if (is_gimple_assign (stmt))
1633 ssa_name_2 = SINGLE_SSA_TREE_OPERAND (stmt, SSA_OP_USE);
1634 if (ssa_name_2 && ssa_name_2 == t1)
1635 return true;
1638 /* Compare if t1 and t2's def_stmts are identical. */
1639 if (ssa_name_2 != NULL && ssa_name_1 == ssa_name_2)
1640 return true;
1641 else
1642 return false;
1645 /* Return true if E is predicted by one of loop heuristics. */
1647 static bool
1648 predicted_by_loop_heuristics_p (basic_block bb)
1650 struct edge_prediction *i;
1651 edge_prediction **preds = bb_predictions->get (bb);
1653 if (!preds)
1654 return false;
1656 for (i = *preds; i; i = i->ep_next)
1657 if (i->ep_predictor == PRED_LOOP_ITERATIONS_GUESSED
1658 || i->ep_predictor == PRED_LOOP_ITERATIONS_MAX
1659 || i->ep_predictor == PRED_LOOP_ITERATIONS
1660 || i->ep_predictor == PRED_LOOP_EXIT
1661 || i->ep_predictor == PRED_LOOP_EXIT_WITH_RECURSION
1662 || i->ep_predictor == PRED_LOOP_EXTRA_EXIT)
1663 return true;
1664 return false;
1667 /* Predict branch probability of BB when BB contains a branch that compares
1668 an induction variable in LOOP with LOOP_IV_BASE_VAR to LOOP_BOUND_VAR. The
1669 loop exit is compared using LOOP_BOUND_CODE, with step of LOOP_BOUND_STEP.
1671 E.g.
1672 for (int i = 0; i < bound; i++) {
1673 if (i < bound - 2)
1674 computation_1();
1675 else
1676 computation_2();
1679 In this loop, we will predict the branch inside the loop to be taken. */
1681 static void
1682 predict_iv_comparison (class loop *loop, basic_block bb,
1683 tree loop_bound_var,
1684 tree loop_iv_base_var,
1685 enum tree_code loop_bound_code,
1686 int loop_bound_step)
1688 gimple *stmt;
1689 tree compare_var, compare_base;
1690 enum tree_code compare_code;
1691 tree compare_step_var;
1692 edge then_edge;
1693 edge_iterator ei;
1695 if (predicted_by_loop_heuristics_p (bb))
1696 return;
1698 stmt = last_stmt (bb);
1699 if (!stmt || gimple_code (stmt) != GIMPLE_COND)
1700 return;
1701 if (!is_comparison_with_loop_invariant_p (as_a <gcond *> (stmt),
1702 loop, &compare_var,
1703 &compare_code,
1704 &compare_step_var,
1705 &compare_base))
1706 return;
1708 /* Find the taken edge. */
1709 FOR_EACH_EDGE (then_edge, ei, bb->succs)
1710 if (then_edge->flags & EDGE_TRUE_VALUE)
1711 break;
1713 /* When comparing an IV to a loop invariant, NE is more likely to be
1714 taken while EQ is more likely to be not-taken. */
1715 if (compare_code == NE_EXPR)
1717 predict_edge_def (then_edge, PRED_LOOP_IV_COMPARE_GUESS, TAKEN);
1718 return;
1720 else if (compare_code == EQ_EXPR)
1722 predict_edge_def (then_edge, PRED_LOOP_IV_COMPARE_GUESS, NOT_TAKEN);
1723 return;
1726 if (!expr_coherent_p (loop_iv_base_var, compare_base))
1727 return;
1729 /* If loop bound, base and compare bound are all constants, we can
1730 calculate the probability directly. */
1731 if (tree_fits_shwi_p (loop_bound_var)
1732 && tree_fits_shwi_p (compare_var)
1733 && tree_fits_shwi_p (compare_base))
1735 int probability;
1736 wi::overflow_type overflow;
1737 bool overall_overflow = false;
1738 widest_int compare_count, tem;
1740 /* (loop_bound - base) / compare_step */
1741 tem = wi::sub (wi::to_widest (loop_bound_var),
1742 wi::to_widest (compare_base), SIGNED, &overflow);
1743 overall_overflow |= overflow;
1744 widest_int loop_count = wi::div_trunc (tem,
1745 wi::to_widest (compare_step_var),
1746 SIGNED, &overflow);
1747 overall_overflow |= overflow;
1749 if (!wi::neg_p (wi::to_widest (compare_step_var))
1750 ^ (compare_code == LT_EXPR || compare_code == LE_EXPR))
1752 /* (loop_bound - compare_bound) / compare_step */
1753 tem = wi::sub (wi::to_widest (loop_bound_var),
1754 wi::to_widest (compare_var), SIGNED, &overflow);
1755 overall_overflow |= overflow;
1756 compare_count = wi::div_trunc (tem, wi::to_widest (compare_step_var),
1757 SIGNED, &overflow);
1758 overall_overflow |= overflow;
1760 else
1762 /* (compare_bound - base) / compare_step */
1763 tem = wi::sub (wi::to_widest (compare_var),
1764 wi::to_widest (compare_base), SIGNED, &overflow);
1765 overall_overflow |= overflow;
1766 compare_count = wi::div_trunc (tem, wi::to_widest (compare_step_var),
1767 SIGNED, &overflow);
1768 overall_overflow |= overflow;
1770 if (compare_code == LE_EXPR || compare_code == GE_EXPR)
1771 ++compare_count;
1772 if (loop_bound_code == LE_EXPR || loop_bound_code == GE_EXPR)
1773 ++loop_count;
1774 if (wi::neg_p (compare_count))
1775 compare_count = 0;
1776 if (wi::neg_p (loop_count))
1777 loop_count = 0;
1778 if (loop_count == 0)
1779 probability = 0;
1780 else if (wi::cmps (compare_count, loop_count) == 1)
1781 probability = REG_BR_PROB_BASE;
1782 else
1784 tem = compare_count * REG_BR_PROB_BASE;
1785 tem = wi::udiv_trunc (tem, loop_count);
1786 probability = tem.to_uhwi ();
1789 /* FIXME: The branch prediction seems broken. It has only 20% hitrate. */
1790 if (!overall_overflow)
1791 predict_edge (then_edge, PRED_LOOP_IV_COMPARE, probability);
1793 return;
1796 if (expr_coherent_p (loop_bound_var, compare_var))
1798 if ((loop_bound_code == LT_EXPR || loop_bound_code == LE_EXPR)
1799 && (compare_code == LT_EXPR || compare_code == LE_EXPR))
1800 predict_edge_def (then_edge, PRED_LOOP_IV_COMPARE_GUESS, TAKEN);
1801 else if ((loop_bound_code == GT_EXPR || loop_bound_code == GE_EXPR)
1802 && (compare_code == GT_EXPR || compare_code == GE_EXPR))
1803 predict_edge_def (then_edge, PRED_LOOP_IV_COMPARE_GUESS, TAKEN);
1804 else if (loop_bound_code == NE_EXPR)
1806 /* If the loop backedge condition is "(i != bound)", we do
1807 the comparison based on the step of IV:
1808 * step < 0 : backedge condition is like (i > bound)
1809 * step > 0 : backedge condition is like (i < bound) */
1810 gcc_assert (loop_bound_step != 0);
1811 if (loop_bound_step > 0
1812 && (compare_code == LT_EXPR
1813 || compare_code == LE_EXPR))
1814 predict_edge_def (then_edge, PRED_LOOP_IV_COMPARE_GUESS, TAKEN);
1815 else if (loop_bound_step < 0
1816 && (compare_code == GT_EXPR
1817 || compare_code == GE_EXPR))
1818 predict_edge_def (then_edge, PRED_LOOP_IV_COMPARE_GUESS, TAKEN);
1819 else
1820 predict_edge_def (then_edge, PRED_LOOP_IV_COMPARE_GUESS, NOT_TAKEN);
1822 else
1823 /* The branch is predicted not-taken if loop_bound_code is
1824 opposite with compare_code. */
1825 predict_edge_def (then_edge, PRED_LOOP_IV_COMPARE_GUESS, NOT_TAKEN);
1827 else if (expr_coherent_p (loop_iv_base_var, compare_var))
1829 /* For cases like:
1830 for (i = s; i < h; i++)
1831 if (i > s + 2) ....
1832 The branch should be predicted taken. */
1833 if (loop_bound_step > 0
1834 && (compare_code == GT_EXPR || compare_code == GE_EXPR))
1835 predict_edge_def (then_edge, PRED_LOOP_IV_COMPARE_GUESS, TAKEN);
1836 else if (loop_bound_step < 0
1837 && (compare_code == LT_EXPR || compare_code == LE_EXPR))
1838 predict_edge_def (then_edge, PRED_LOOP_IV_COMPARE_GUESS, TAKEN);
1839 else
1840 predict_edge_def (then_edge, PRED_LOOP_IV_COMPARE_GUESS, NOT_TAKEN);
1844 /* Predict for extra loop exits that will lead to EXIT_EDGE. The extra loop
1845 exits are resulted from short-circuit conditions that will generate an
1846 if_tmp. E.g.:
1848 if (foo() || global > 10)
1849 break;
1851 This will be translated into:
1853 BB3:
1854 loop header...
1855 BB4:
1856 if foo() goto BB6 else goto BB5
1857 BB5:
1858 if global > 10 goto BB6 else goto BB7
1859 BB6:
1860 goto BB7
1861 BB7:
1862 iftmp = (PHI 0(BB5), 1(BB6))
1863 if iftmp == 1 goto BB8 else goto BB3
1864 BB8:
1865 outside of the loop...
1867 The edge BB7->BB8 is loop exit because BB8 is outside of the loop.
1868 From the dataflow, we can infer that BB4->BB6 and BB5->BB6 are also loop
1869 exits. This function takes BB7->BB8 as input, and finds out the extra loop
1870 exits to predict them using PRED_LOOP_EXTRA_EXIT. */
1872 static void
1873 predict_extra_loop_exits (class loop *loop, edge exit_edge)
1875 unsigned i;
1876 bool check_value_one;
1877 gimple *lhs_def_stmt;
1878 gphi *phi_stmt;
1879 tree cmp_rhs, cmp_lhs;
1880 gimple *last;
1881 gcond *cmp_stmt;
1883 last = last_stmt (exit_edge->src);
1884 if (!last)
1885 return;
1886 cmp_stmt = dyn_cast <gcond *> (last);
1887 if (!cmp_stmt)
1888 return;
1890 cmp_rhs = gimple_cond_rhs (cmp_stmt);
1891 cmp_lhs = gimple_cond_lhs (cmp_stmt);
1892 if (!TREE_CONSTANT (cmp_rhs)
1893 || !(integer_zerop (cmp_rhs) || integer_onep (cmp_rhs)))
1894 return;
1895 if (TREE_CODE (cmp_lhs) != SSA_NAME)
1896 return;
1898 /* If check_value_one is true, only the phi_args with value '1' will lead
1899 to loop exit. Otherwise, only the phi_args with value '0' will lead to
1900 loop exit. */
1901 check_value_one = (((integer_onep (cmp_rhs))
1902 ^ (gimple_cond_code (cmp_stmt) == EQ_EXPR))
1903 ^ ((exit_edge->flags & EDGE_TRUE_VALUE) != 0));
1905 lhs_def_stmt = SSA_NAME_DEF_STMT (cmp_lhs);
1906 if (!lhs_def_stmt)
1907 return;
1909 phi_stmt = dyn_cast <gphi *> (lhs_def_stmt);
1910 if (!phi_stmt)
1911 return;
1913 for (i = 0; i < gimple_phi_num_args (phi_stmt); i++)
1915 edge e1;
1916 edge_iterator ei;
1917 tree val = gimple_phi_arg_def (phi_stmt, i);
1918 edge e = gimple_phi_arg_edge (phi_stmt, i);
1920 if (!TREE_CONSTANT (val) || !(integer_zerop (val) || integer_onep (val)))
1921 continue;
1922 if ((check_value_one ^ integer_onep (val)) == 1)
1923 continue;
1924 if (EDGE_COUNT (e->src->succs) != 1)
1926 predict_paths_leading_to_edge (e, PRED_LOOP_EXTRA_EXIT, NOT_TAKEN,
1927 loop);
1928 continue;
1931 FOR_EACH_EDGE (e1, ei, e->src->preds)
1932 predict_paths_leading_to_edge (e1, PRED_LOOP_EXTRA_EXIT, NOT_TAKEN,
1933 loop);
1938 /* Predict edge probabilities by exploiting loop structure. */
1940 static void
1941 predict_loops (void)
1943 basic_block bb;
1944 hash_set <class loop *> with_recursion(10);
1946 FOR_EACH_BB_FN (bb, cfun)
1948 gimple_stmt_iterator gsi;
1949 tree decl;
1951 for (gsi = gsi_start_bb (bb); !gsi_end_p (gsi); gsi_next (&gsi))
1952 if (is_gimple_call (gsi_stmt (gsi))
1953 && (decl = gimple_call_fndecl (gsi_stmt (gsi))) != NULL
1954 && recursive_call_p (current_function_decl, decl))
1956 class loop *loop = bb->loop_father;
1957 while (loop && !with_recursion.add (loop))
1958 loop = loop_outer (loop);
1962 /* Try to predict out blocks in a loop that are not part of a
1963 natural loop. */
1964 for (auto loop : loops_list (cfun, LI_FROM_INNERMOST))
1966 basic_block bb, *bbs;
1967 unsigned j, n_exits = 0;
1968 class tree_niter_desc niter_desc;
1969 edge ex;
1970 class nb_iter_bound *nb_iter;
1971 enum tree_code loop_bound_code = ERROR_MARK;
1972 tree loop_bound_step = NULL;
1973 tree loop_bound_var = NULL;
1974 tree loop_iv_base = NULL;
1975 gcond *stmt = NULL;
1976 bool recursion = with_recursion.contains (loop);
1978 auto_vec<edge> exits = get_loop_exit_edges (loop);
1979 FOR_EACH_VEC_ELT (exits, j, ex)
1980 if (!unlikely_executed_edge_p (ex) && !(ex->flags & EDGE_ABNORMAL_CALL))
1981 n_exits ++;
1982 if (!n_exits)
1983 continue;
1985 if (dump_file && (dump_flags & TDF_DETAILS))
1986 fprintf (dump_file, "Predicting loop %i%s with %i exits.\n",
1987 loop->num, recursion ? " (with recursion)":"", n_exits);
1988 if (dump_file && (dump_flags & TDF_DETAILS)
1989 && max_loop_iterations_int (loop) >= 0)
1991 fprintf (dump_file,
1992 "Loop %d iterates at most %i times.\n", loop->num,
1993 (int)max_loop_iterations_int (loop));
1995 if (dump_file && (dump_flags & TDF_DETAILS)
1996 && likely_max_loop_iterations_int (loop) >= 0)
1998 fprintf (dump_file, "Loop %d likely iterates at most %i times.\n",
1999 loop->num, (int)likely_max_loop_iterations_int (loop));
2002 FOR_EACH_VEC_ELT (exits, j, ex)
2004 tree niter = NULL;
2005 HOST_WIDE_INT nitercst;
2006 int max = param_max_predicted_iterations;
2007 int probability;
2008 enum br_predictor predictor;
2009 widest_int nit;
2011 if (unlikely_executed_edge_p (ex)
2012 || (ex->flags & EDGE_ABNORMAL_CALL))
2013 continue;
2014 /* Loop heuristics do not expect exit conditional to be inside
2015 inner loop. We predict from innermost to outermost loop. */
2016 if (predicted_by_loop_heuristics_p (ex->src))
2018 if (dump_file && (dump_flags & TDF_DETAILS))
2019 fprintf (dump_file, "Skipping exit %i->%i because "
2020 "it is already predicted.\n",
2021 ex->src->index, ex->dest->index);
2022 continue;
2024 predict_extra_loop_exits (loop, ex);
2026 if (number_of_iterations_exit (loop, ex, &niter_desc, false, false))
2027 niter = niter_desc.niter;
2028 if (!niter || TREE_CODE (niter_desc.niter) != INTEGER_CST)
2029 niter = loop_niter_by_eval (loop, ex);
2030 if (dump_file && (dump_flags & TDF_DETAILS)
2031 && TREE_CODE (niter) == INTEGER_CST)
2033 fprintf (dump_file, "Exit %i->%i %d iterates ",
2034 ex->src->index, ex->dest->index,
2035 loop->num);
2036 print_generic_expr (dump_file, niter, TDF_SLIM);
2037 fprintf (dump_file, " times.\n");
2040 if (TREE_CODE (niter) == INTEGER_CST)
2042 if (tree_fits_uhwi_p (niter)
2043 && max
2044 && compare_tree_int (niter, max - 1) == -1)
2045 nitercst = tree_to_uhwi (niter) + 1;
2046 else
2047 nitercst = max;
2048 predictor = PRED_LOOP_ITERATIONS;
2050 /* If we have just one exit and we can derive some information about
2051 the number of iterations of the loop from the statements inside
2052 the loop, use it to predict this exit. */
2053 else if (n_exits == 1
2054 && estimated_stmt_executions (loop, &nit))
2056 if (wi::gtu_p (nit, max))
2057 nitercst = max;
2058 else
2059 nitercst = nit.to_shwi ();
2060 predictor = PRED_LOOP_ITERATIONS_GUESSED;
2062 /* If we have likely upper bound, trust it for very small iteration
2063 counts. Such loops would otherwise get mispredicted by standard
2064 LOOP_EXIT heuristics. */
2065 else if (n_exits == 1
2066 && likely_max_stmt_executions (loop, &nit)
2067 && wi::ltu_p (nit,
2068 RDIV (REG_BR_PROB_BASE,
2069 REG_BR_PROB_BASE
2070 - predictor_info
2071 [recursion
2072 ? PRED_LOOP_EXIT_WITH_RECURSION
2073 : PRED_LOOP_EXIT].hitrate)))
2075 nitercst = nit.to_shwi ();
2076 predictor = PRED_LOOP_ITERATIONS_MAX;
2078 else
2080 if (dump_file && (dump_flags & TDF_DETAILS))
2081 fprintf (dump_file, "Nothing known about exit %i->%i.\n",
2082 ex->src->index, ex->dest->index);
2083 continue;
2086 if (dump_file && (dump_flags & TDF_DETAILS))
2087 fprintf (dump_file, "Recording prediction to %i iterations by %s.\n",
2088 (int)nitercst, predictor_info[predictor].name);
2089 /* If the prediction for number of iterations is zero, do not
2090 predict the exit edges. */
2091 if (nitercst == 0)
2092 continue;
2094 probability = RDIV (REG_BR_PROB_BASE, nitercst);
2095 predict_edge (ex, predictor, probability);
2098 /* Find information about loop bound variables. */
2099 for (nb_iter = loop->bounds; nb_iter;
2100 nb_iter = nb_iter->next)
2101 if (nb_iter->stmt
2102 && gimple_code (nb_iter->stmt) == GIMPLE_COND)
2104 stmt = as_a <gcond *> (nb_iter->stmt);
2105 break;
2107 if (!stmt && last_stmt (loop->header)
2108 && gimple_code (last_stmt (loop->header)) == GIMPLE_COND)
2109 stmt = as_a <gcond *> (last_stmt (loop->header));
2110 if (stmt)
2111 is_comparison_with_loop_invariant_p (stmt, loop,
2112 &loop_bound_var,
2113 &loop_bound_code,
2114 &loop_bound_step,
2115 &loop_iv_base);
2117 bbs = get_loop_body (loop);
2119 for (j = 0; j < loop->num_nodes; j++)
2121 edge e;
2122 edge_iterator ei;
2124 bb = bbs[j];
2126 /* Bypass loop heuristics on continue statement. These
2127 statements construct loops via "non-loop" constructs
2128 in the source language and are better to be handled
2129 separately. */
2130 if (predicted_by_p (bb, PRED_CONTINUE))
2132 if (dump_file && (dump_flags & TDF_DETAILS))
2133 fprintf (dump_file, "BB %i predicted by continue.\n",
2134 bb->index);
2135 continue;
2138 /* If we already used more reliable loop exit predictors, do not
2139 bother with PRED_LOOP_EXIT. */
2140 if (!predicted_by_loop_heuristics_p (bb))
2142 /* For loop with many exits we don't want to predict all exits
2143 with the pretty large probability, because if all exits are
2144 considered in row, the loop would be predicted to iterate
2145 almost never. The code to divide probability by number of
2146 exits is very rough. It should compute the number of exits
2147 taken in each patch through function (not the overall number
2148 of exits that might be a lot higher for loops with wide switch
2149 statements in them) and compute n-th square root.
2151 We limit the minimal probability by 2% to avoid
2152 EDGE_PROBABILITY_RELIABLE from trusting the branch prediction
2153 as this was causing regression in perl benchmark containing such
2154 a wide loop. */
2156 int probability = ((REG_BR_PROB_BASE
2157 - predictor_info
2158 [recursion
2159 ? PRED_LOOP_EXIT_WITH_RECURSION
2160 : PRED_LOOP_EXIT].hitrate)
2161 / n_exits);
2162 if (probability < HITRATE (2))
2163 probability = HITRATE (2);
2164 FOR_EACH_EDGE (e, ei, bb->succs)
2165 if (e->dest->index < NUM_FIXED_BLOCKS
2166 || !flow_bb_inside_loop_p (loop, e->dest))
2168 if (dump_file && (dump_flags & TDF_DETAILS))
2169 fprintf (dump_file,
2170 "Predicting exit %i->%i with prob %i.\n",
2171 e->src->index, e->dest->index, probability);
2172 predict_edge (e,
2173 recursion ? PRED_LOOP_EXIT_WITH_RECURSION
2174 : PRED_LOOP_EXIT, probability);
2177 if (loop_bound_var)
2178 predict_iv_comparison (loop, bb, loop_bound_var, loop_iv_base,
2179 loop_bound_code,
2180 tree_to_shwi (loop_bound_step));
2183 /* In the following code
2184 for (loop1)
2185 if (cond)
2186 for (loop2)
2187 body;
2188 guess that cond is unlikely. */
2189 if (loop_outer (loop)->num)
2191 basic_block bb = NULL;
2192 edge preheader_edge = loop_preheader_edge (loop);
2194 if (single_pred_p (preheader_edge->src)
2195 && single_succ_p (preheader_edge->src))
2196 preheader_edge = single_pred_edge (preheader_edge->src);
2198 gimple *stmt = last_stmt (preheader_edge->src);
2199 /* Pattern match fortran loop preheader:
2200 _16 = BUILTIN_EXPECT (_15, 1, PRED_FORTRAN_LOOP_PREHEADER);
2201 _17 = (logical(kind=4)) _16;
2202 if (_17 != 0)
2203 goto <bb 11>;
2204 else
2205 goto <bb 13>;
2207 Loop guard branch prediction says nothing about duplicated loop
2208 headers produced by fortran frontend and in this case we want
2209 to predict paths leading to this preheader. */
2211 if (stmt
2212 && gimple_code (stmt) == GIMPLE_COND
2213 && gimple_cond_code (stmt) == NE_EXPR
2214 && TREE_CODE (gimple_cond_lhs (stmt)) == SSA_NAME
2215 && integer_zerop (gimple_cond_rhs (stmt)))
2217 gimple *call_stmt = SSA_NAME_DEF_STMT (gimple_cond_lhs (stmt));
2218 if (gimple_code (call_stmt) == GIMPLE_ASSIGN
2219 && CONVERT_EXPR_CODE_P (gimple_assign_rhs_code (call_stmt))
2220 && TREE_CODE (gimple_assign_rhs1 (call_stmt)) == SSA_NAME)
2221 call_stmt = SSA_NAME_DEF_STMT (gimple_assign_rhs1 (call_stmt));
2222 if (gimple_call_internal_p (call_stmt, IFN_BUILTIN_EXPECT)
2223 && TREE_CODE (gimple_call_arg (call_stmt, 2)) == INTEGER_CST
2224 && tree_fits_uhwi_p (gimple_call_arg (call_stmt, 2))
2225 && tree_to_uhwi (gimple_call_arg (call_stmt, 2))
2226 == PRED_FORTRAN_LOOP_PREHEADER)
2227 bb = preheader_edge->src;
2229 if (!bb)
2231 if (!dominated_by_p (CDI_DOMINATORS,
2232 loop_outer (loop)->latch, loop->header))
2233 predict_paths_leading_to_edge (loop_preheader_edge (loop),
2234 recursion
2235 ? PRED_LOOP_GUARD_WITH_RECURSION
2236 : PRED_LOOP_GUARD,
2237 NOT_TAKEN,
2238 loop_outer (loop));
2240 else
2242 if (!dominated_by_p (CDI_DOMINATORS,
2243 loop_outer (loop)->latch, bb))
2244 predict_paths_leading_to (bb,
2245 recursion
2246 ? PRED_LOOP_GUARD_WITH_RECURSION
2247 : PRED_LOOP_GUARD,
2248 NOT_TAKEN,
2249 loop_outer (loop));
2253 /* Free basic blocks from get_loop_body. */
2254 free (bbs);
2258 /* Attempt to predict probabilities of BB outgoing edges using local
2259 properties. */
2260 static void
2261 bb_estimate_probability_locally (basic_block bb)
2263 rtx_insn *last_insn = BB_END (bb);
2264 rtx cond;
2266 if (! can_predict_insn_p (last_insn))
2267 return;
2268 cond = get_condition (last_insn, NULL, false, false);
2269 if (! cond)
2270 return;
2272 /* Try "pointer heuristic."
2273 A comparison ptr == 0 is predicted as false.
2274 Similarly, a comparison ptr1 == ptr2 is predicted as false. */
2275 if (COMPARISON_P (cond)
2276 && ((REG_P (XEXP (cond, 0)) && REG_POINTER (XEXP (cond, 0)))
2277 || (REG_P (XEXP (cond, 1)) && REG_POINTER (XEXP (cond, 1)))))
2279 if (GET_CODE (cond) == EQ)
2280 predict_insn_def (last_insn, PRED_POINTER, NOT_TAKEN);
2281 else if (GET_CODE (cond) == NE)
2282 predict_insn_def (last_insn, PRED_POINTER, TAKEN);
2284 else
2286 /* Try "opcode heuristic."
2287 EQ tests are usually false and NE tests are usually true. Also,
2288 most quantities are positive, so we can make the appropriate guesses
2289 about signed comparisons against zero. */
2290 switch (GET_CODE (cond))
2292 case CONST_INT:
2293 /* Unconditional branch. */
2294 predict_insn_def (last_insn, PRED_UNCONDITIONAL,
2295 cond == const0_rtx ? NOT_TAKEN : TAKEN);
2296 break;
2298 case EQ:
2299 case UNEQ:
2300 /* Floating point comparisons appears to behave in a very
2301 unpredictable way because of special role of = tests in
2302 FP code. */
2303 if (FLOAT_MODE_P (GET_MODE (XEXP (cond, 0))))
2305 /* Comparisons with 0 are often used for booleans and there is
2306 nothing useful to predict about them. */
2307 else if (XEXP (cond, 1) == const0_rtx
2308 || XEXP (cond, 0) == const0_rtx)
2310 else
2311 predict_insn_def (last_insn, PRED_OPCODE_NONEQUAL, NOT_TAKEN);
2312 break;
2314 case NE:
2315 case LTGT:
2316 /* Floating point comparisons appears to behave in a very
2317 unpredictable way because of special role of = tests in
2318 FP code. */
2319 if (FLOAT_MODE_P (GET_MODE (XEXP (cond, 0))))
2321 /* Comparisons with 0 are often used for booleans and there is
2322 nothing useful to predict about them. */
2323 else if (XEXP (cond, 1) == const0_rtx
2324 || XEXP (cond, 0) == const0_rtx)
2326 else
2327 predict_insn_def (last_insn, PRED_OPCODE_NONEQUAL, TAKEN);
2328 break;
2330 case ORDERED:
2331 predict_insn_def (last_insn, PRED_FPOPCODE, TAKEN);
2332 break;
2334 case UNORDERED:
2335 predict_insn_def (last_insn, PRED_FPOPCODE, NOT_TAKEN);
2336 break;
2338 case LE:
2339 case LT:
2340 if (XEXP (cond, 1) == const0_rtx || XEXP (cond, 1) == const1_rtx
2341 || XEXP (cond, 1) == constm1_rtx)
2342 predict_insn_def (last_insn, PRED_OPCODE_POSITIVE, NOT_TAKEN);
2343 break;
2345 case GE:
2346 case GT:
2347 if (XEXP (cond, 1) == const0_rtx || XEXP (cond, 1) == const1_rtx
2348 || XEXP (cond, 1) == constm1_rtx)
2349 predict_insn_def (last_insn, PRED_OPCODE_POSITIVE, TAKEN);
2350 break;
2352 default:
2353 break;
2357 /* Set edge->probability for each successor edge of BB. */
2358 void
2359 guess_outgoing_edge_probabilities (basic_block bb)
2361 bb_estimate_probability_locally (bb);
2362 combine_predictions_for_insn (BB_END (bb), bb);
2365 static tree expr_expected_value (tree, bitmap, enum br_predictor *predictor,
2366 HOST_WIDE_INT *probability);
2368 /* Helper function for expr_expected_value. */
2370 static tree
2371 expr_expected_value_1 (tree type, tree op0, enum tree_code code,
2372 tree op1, bitmap visited, enum br_predictor *predictor,
2373 HOST_WIDE_INT *probability)
2375 gimple *def;
2377 /* Reset returned probability value. */
2378 *probability = -1;
2379 *predictor = PRED_UNCONDITIONAL;
2381 if (get_gimple_rhs_class (code) == GIMPLE_SINGLE_RHS)
2383 if (TREE_CONSTANT (op0))
2384 return op0;
2386 if (code == IMAGPART_EXPR)
2388 if (TREE_CODE (TREE_OPERAND (op0, 0)) == SSA_NAME)
2390 def = SSA_NAME_DEF_STMT (TREE_OPERAND (op0, 0));
2391 if (is_gimple_call (def)
2392 && gimple_call_internal_p (def)
2393 && (gimple_call_internal_fn (def)
2394 == IFN_ATOMIC_COMPARE_EXCHANGE))
2396 /* Assume that any given atomic operation has low contention,
2397 and thus the compare-and-swap operation succeeds. */
2398 *predictor = PRED_COMPARE_AND_SWAP;
2399 return build_one_cst (TREE_TYPE (op0));
2404 if (code != SSA_NAME)
2405 return NULL_TREE;
2407 def = SSA_NAME_DEF_STMT (op0);
2409 /* If we were already here, break the infinite cycle. */
2410 if (!bitmap_set_bit (visited, SSA_NAME_VERSION (op0)))
2411 return NULL;
2413 if (gimple_code (def) == GIMPLE_PHI)
2415 /* All the arguments of the PHI node must have the same constant
2416 length. */
2417 int i, n = gimple_phi_num_args (def);
2418 tree val = NULL, new_val;
2420 for (i = 0; i < n; i++)
2422 tree arg = PHI_ARG_DEF (def, i);
2423 enum br_predictor predictor2;
2425 /* If this PHI has itself as an argument, we cannot
2426 determine the string length of this argument. However,
2427 if we can find an expected constant value for the other
2428 PHI args then we can still be sure that this is
2429 likely a constant. So be optimistic and just
2430 continue with the next argument. */
2431 if (arg == PHI_RESULT (def))
2432 continue;
2434 HOST_WIDE_INT probability2;
2435 new_val = expr_expected_value (arg, visited, &predictor2,
2436 &probability2);
2438 /* It is difficult to combine value predictors. Simply assume
2439 that later predictor is weaker and take its prediction. */
2440 if (*predictor < predictor2)
2442 *predictor = predictor2;
2443 *probability = probability2;
2445 if (!new_val)
2446 return NULL;
2447 if (!val)
2448 val = new_val;
2449 else if (!operand_equal_p (val, new_val, false))
2450 return NULL;
2452 return val;
2454 if (is_gimple_assign (def))
2456 if (gimple_assign_lhs (def) != op0)
2457 return NULL;
2459 return expr_expected_value_1 (TREE_TYPE (gimple_assign_lhs (def)),
2460 gimple_assign_rhs1 (def),
2461 gimple_assign_rhs_code (def),
2462 gimple_assign_rhs2 (def),
2463 visited, predictor, probability);
2466 if (is_gimple_call (def))
2468 tree decl = gimple_call_fndecl (def);
2469 if (!decl)
2471 if (gimple_call_internal_p (def)
2472 && gimple_call_internal_fn (def) == IFN_BUILTIN_EXPECT)
2474 gcc_assert (gimple_call_num_args (def) == 3);
2475 tree val = gimple_call_arg (def, 0);
2476 if (TREE_CONSTANT (val))
2477 return val;
2478 tree val2 = gimple_call_arg (def, 2);
2479 gcc_assert (TREE_CODE (val2) == INTEGER_CST
2480 && tree_fits_uhwi_p (val2)
2481 && tree_to_uhwi (val2) < END_PREDICTORS);
2482 *predictor = (enum br_predictor) tree_to_uhwi (val2);
2483 if (*predictor == PRED_BUILTIN_EXPECT)
2484 *probability
2485 = HITRATE (param_builtin_expect_probability);
2486 return gimple_call_arg (def, 1);
2488 return NULL;
2491 if (DECL_IS_MALLOC (decl) || DECL_IS_OPERATOR_NEW_P (decl))
2493 if (predictor)
2494 *predictor = PRED_MALLOC_NONNULL;
2495 return boolean_true_node;
2498 if (DECL_BUILT_IN_CLASS (decl) == BUILT_IN_NORMAL)
2499 switch (DECL_FUNCTION_CODE (decl))
2501 case BUILT_IN_EXPECT:
2503 tree val;
2504 if (gimple_call_num_args (def) != 2)
2505 return NULL;
2506 val = gimple_call_arg (def, 0);
2507 if (TREE_CONSTANT (val))
2508 return val;
2509 *predictor = PRED_BUILTIN_EXPECT;
2510 *probability
2511 = HITRATE (param_builtin_expect_probability);
2512 return gimple_call_arg (def, 1);
2514 case BUILT_IN_EXPECT_WITH_PROBABILITY:
2516 tree val;
2517 if (gimple_call_num_args (def) != 3)
2518 return NULL;
2519 val = gimple_call_arg (def, 0);
2520 if (TREE_CONSTANT (val))
2521 return val;
2522 /* Compute final probability as:
2523 probability * REG_BR_PROB_BASE. */
2524 tree prob = gimple_call_arg (def, 2);
2525 tree t = TREE_TYPE (prob);
2526 tree base = build_int_cst (integer_type_node,
2527 REG_BR_PROB_BASE);
2528 base = build_real_from_int_cst (t, base);
2529 tree r = fold_build2_initializer_loc (UNKNOWN_LOCATION,
2530 MULT_EXPR, t, prob, base);
2531 if (TREE_CODE (r) != REAL_CST)
2533 error_at (gimple_location (def),
2534 "probability %qE must be "
2535 "constant floating-point expression", prob);
2536 return NULL;
2538 HOST_WIDE_INT probi
2539 = real_to_integer (TREE_REAL_CST_PTR (r));
2540 if (probi >= 0 && probi <= REG_BR_PROB_BASE)
2542 *predictor = PRED_BUILTIN_EXPECT_WITH_PROBABILITY;
2543 *probability = probi;
2545 else
2546 error_at (gimple_location (def),
2547 "probability %qE is outside "
2548 "the range [0.0, 1.0]", prob);
2550 return gimple_call_arg (def, 1);
2553 case BUILT_IN_SYNC_BOOL_COMPARE_AND_SWAP_N:
2554 case BUILT_IN_SYNC_BOOL_COMPARE_AND_SWAP_1:
2555 case BUILT_IN_SYNC_BOOL_COMPARE_AND_SWAP_2:
2556 case BUILT_IN_SYNC_BOOL_COMPARE_AND_SWAP_4:
2557 case BUILT_IN_SYNC_BOOL_COMPARE_AND_SWAP_8:
2558 case BUILT_IN_SYNC_BOOL_COMPARE_AND_SWAP_16:
2559 case BUILT_IN_ATOMIC_COMPARE_EXCHANGE:
2560 case BUILT_IN_ATOMIC_COMPARE_EXCHANGE_N:
2561 case BUILT_IN_ATOMIC_COMPARE_EXCHANGE_1:
2562 case BUILT_IN_ATOMIC_COMPARE_EXCHANGE_2:
2563 case BUILT_IN_ATOMIC_COMPARE_EXCHANGE_4:
2564 case BUILT_IN_ATOMIC_COMPARE_EXCHANGE_8:
2565 case BUILT_IN_ATOMIC_COMPARE_EXCHANGE_16:
2566 /* Assume that any given atomic operation has low contention,
2567 and thus the compare-and-swap operation succeeds. */
2568 *predictor = PRED_COMPARE_AND_SWAP;
2569 return boolean_true_node;
2570 case BUILT_IN_REALLOC:
2571 if (predictor)
2572 *predictor = PRED_MALLOC_NONNULL;
2573 return boolean_true_node;
2574 default:
2575 break;
2579 return NULL;
2582 if (get_gimple_rhs_class (code) == GIMPLE_BINARY_RHS)
2584 tree res;
2585 enum br_predictor predictor2;
2586 HOST_WIDE_INT probability2;
2587 op0 = expr_expected_value (op0, visited, predictor, probability);
2588 if (!op0)
2589 return NULL;
2590 op1 = expr_expected_value (op1, visited, &predictor2, &probability2);
2591 if (!op1)
2592 return NULL;
2593 res = fold_build2 (code, type, op0, op1);
2594 if (TREE_CODE (res) == INTEGER_CST
2595 && TREE_CODE (op0) == INTEGER_CST
2596 && TREE_CODE (op1) == INTEGER_CST)
2598 /* Combine binary predictions. */
2599 if (*probability != -1 || probability2 != -1)
2601 HOST_WIDE_INT p1 = get_predictor_value (*predictor, *probability);
2602 HOST_WIDE_INT p2 = get_predictor_value (predictor2, probability2);
2603 *probability = RDIV (p1 * p2, REG_BR_PROB_BASE);
2606 if (*predictor < predictor2)
2607 *predictor = predictor2;
2609 return res;
2611 return NULL;
2613 if (get_gimple_rhs_class (code) == GIMPLE_UNARY_RHS)
2615 tree res;
2616 op0 = expr_expected_value (op0, visited, predictor, probability);
2617 if (!op0)
2618 return NULL;
2619 res = fold_build1 (code, type, op0);
2620 if (TREE_CONSTANT (res))
2621 return res;
2622 return NULL;
2624 return NULL;
2627 /* Return constant EXPR will likely have at execution time, NULL if unknown.
2628 The function is used by builtin_expect branch predictor so the evidence
2629 must come from this construct and additional possible constant folding.
2631 We may want to implement more involved value guess (such as value range
2632 propagation based prediction), but such tricks shall go to new
2633 implementation. */
2635 static tree
2636 expr_expected_value (tree expr, bitmap visited,
2637 enum br_predictor *predictor,
2638 HOST_WIDE_INT *probability)
2640 enum tree_code code;
2641 tree op0, op1;
2643 if (TREE_CONSTANT (expr))
2645 *predictor = PRED_UNCONDITIONAL;
2646 *probability = -1;
2647 return expr;
2650 extract_ops_from_tree (expr, &code, &op0, &op1);
2651 return expr_expected_value_1 (TREE_TYPE (expr),
2652 op0, code, op1, visited, predictor,
2653 probability);
2657 /* Return probability of a PREDICTOR. If the predictor has variable
2658 probability return passed PROBABILITY. */
2660 static HOST_WIDE_INT
2661 get_predictor_value (br_predictor predictor, HOST_WIDE_INT probability)
2663 switch (predictor)
2665 case PRED_BUILTIN_EXPECT:
2666 case PRED_BUILTIN_EXPECT_WITH_PROBABILITY:
2667 gcc_assert (probability != -1);
2668 return probability;
2669 default:
2670 gcc_assert (probability == -1);
2671 return predictor_info[(int) predictor].hitrate;
2675 /* Predict using opcode of the last statement in basic block. */
2676 static void
2677 tree_predict_by_opcode (basic_block bb)
2679 gimple *stmt = last_stmt (bb);
2680 edge then_edge;
2681 tree op0, op1;
2682 tree type;
2683 tree val;
2684 enum tree_code cmp;
2685 edge_iterator ei;
2686 enum br_predictor predictor;
2687 HOST_WIDE_INT probability;
2689 if (!stmt)
2690 return;
2692 if (gswitch *sw = dyn_cast <gswitch *> (stmt))
2694 tree index = gimple_switch_index (sw);
2695 tree val = expr_expected_value (index, auto_bitmap (),
2696 &predictor, &probability);
2697 if (val && TREE_CODE (val) == INTEGER_CST)
2699 edge e = find_taken_edge_switch_expr (sw, val);
2700 if (predictor == PRED_BUILTIN_EXPECT)
2702 int percent = param_builtin_expect_probability;
2703 gcc_assert (percent >= 0 && percent <= 100);
2704 predict_edge (e, PRED_BUILTIN_EXPECT,
2705 HITRATE (percent));
2707 else
2708 predict_edge_def (e, predictor, TAKEN);
2712 if (gimple_code (stmt) != GIMPLE_COND)
2713 return;
2714 FOR_EACH_EDGE (then_edge, ei, bb->succs)
2715 if (then_edge->flags & EDGE_TRUE_VALUE)
2716 break;
2717 op0 = gimple_cond_lhs (stmt);
2718 op1 = gimple_cond_rhs (stmt);
2719 cmp = gimple_cond_code (stmt);
2720 type = TREE_TYPE (op0);
2721 val = expr_expected_value_1 (boolean_type_node, op0, cmp, op1, auto_bitmap (),
2722 &predictor, &probability);
2723 if (val && TREE_CODE (val) == INTEGER_CST)
2725 HOST_WIDE_INT prob = get_predictor_value (predictor, probability);
2726 if (integer_zerop (val))
2727 prob = REG_BR_PROB_BASE - prob;
2728 predict_edge (then_edge, predictor, prob);
2730 /* Try "pointer heuristic."
2731 A comparison ptr == 0 is predicted as false.
2732 Similarly, a comparison ptr1 == ptr2 is predicted as false. */
2733 if (POINTER_TYPE_P (type))
2735 if (cmp == EQ_EXPR)
2736 predict_edge_def (then_edge, PRED_TREE_POINTER, NOT_TAKEN);
2737 else if (cmp == NE_EXPR)
2738 predict_edge_def (then_edge, PRED_TREE_POINTER, TAKEN);
2740 else
2742 /* Try "opcode heuristic."
2743 EQ tests are usually false and NE tests are usually true. Also,
2744 most quantities are positive, so we can make the appropriate guesses
2745 about signed comparisons against zero. */
2746 switch (cmp)
2748 case EQ_EXPR:
2749 case UNEQ_EXPR:
2750 /* Floating point comparisons appears to behave in a very
2751 unpredictable way because of special role of = tests in
2752 FP code. */
2753 if (FLOAT_TYPE_P (type))
2755 /* Comparisons with 0 are often used for booleans and there is
2756 nothing useful to predict about them. */
2757 else if (integer_zerop (op0) || integer_zerop (op1))
2759 else
2760 predict_edge_def (then_edge, PRED_TREE_OPCODE_NONEQUAL, NOT_TAKEN);
2761 break;
2763 case NE_EXPR:
2764 case LTGT_EXPR:
2765 /* Floating point comparisons appears to behave in a very
2766 unpredictable way because of special role of = tests in
2767 FP code. */
2768 if (FLOAT_TYPE_P (type))
2770 /* Comparisons with 0 are often used for booleans and there is
2771 nothing useful to predict about them. */
2772 else if (integer_zerop (op0)
2773 || integer_zerop (op1))
2775 else
2776 predict_edge_def (then_edge, PRED_TREE_OPCODE_NONEQUAL, TAKEN);
2777 break;
2779 case ORDERED_EXPR:
2780 predict_edge_def (then_edge, PRED_TREE_FPOPCODE, TAKEN);
2781 break;
2783 case UNORDERED_EXPR:
2784 predict_edge_def (then_edge, PRED_TREE_FPOPCODE, NOT_TAKEN);
2785 break;
2787 case LE_EXPR:
2788 case LT_EXPR:
2789 if (integer_zerop (op1)
2790 || integer_onep (op1)
2791 || integer_all_onesp (op1)
2792 || real_zerop (op1)
2793 || real_onep (op1)
2794 || real_minus_onep (op1))
2795 predict_edge_def (then_edge, PRED_TREE_OPCODE_POSITIVE, NOT_TAKEN);
2796 break;
2798 case GE_EXPR:
2799 case GT_EXPR:
2800 if (integer_zerop (op1)
2801 || integer_onep (op1)
2802 || integer_all_onesp (op1)
2803 || real_zerop (op1)
2804 || real_onep (op1)
2805 || real_minus_onep (op1))
2806 predict_edge_def (then_edge, PRED_TREE_OPCODE_POSITIVE, TAKEN);
2807 break;
2809 default:
2810 break;
2814 /* Returns TRUE if the STMT is exit(0) like statement. */
2816 static bool
2817 is_exit_with_zero_arg (const gimple *stmt)
2819 /* This is not exit, _exit or _Exit. */
2820 if (!gimple_call_builtin_p (stmt, BUILT_IN_EXIT)
2821 && !gimple_call_builtin_p (stmt, BUILT_IN__EXIT)
2822 && !gimple_call_builtin_p (stmt, BUILT_IN__EXIT2))
2823 return false;
2825 /* Argument is an interger zero. */
2826 return integer_zerop (gimple_call_arg (stmt, 0));
2829 /* Try to guess whether the value of return means error code. */
2831 static enum br_predictor
2832 return_prediction (tree val, enum prediction *prediction)
2834 /* VOID. */
2835 if (!val)
2836 return PRED_NO_PREDICTION;
2837 /* Different heuristics for pointers and scalars. */
2838 if (POINTER_TYPE_P (TREE_TYPE (val)))
2840 /* NULL is usually not returned. */
2841 if (integer_zerop (val))
2843 *prediction = NOT_TAKEN;
2844 return PRED_NULL_RETURN;
2847 else if (INTEGRAL_TYPE_P (TREE_TYPE (val)))
2849 /* Negative return values are often used to indicate
2850 errors. */
2851 if (TREE_CODE (val) == INTEGER_CST
2852 && tree_int_cst_sgn (val) < 0)
2854 *prediction = NOT_TAKEN;
2855 return PRED_NEGATIVE_RETURN;
2857 /* Constant return values seems to be commonly taken.
2858 Zero/one often represent booleans so exclude them from the
2859 heuristics. */
2860 if (TREE_CONSTANT (val)
2861 && (!integer_zerop (val) && !integer_onep (val)))
2863 *prediction = NOT_TAKEN;
2864 return PRED_CONST_RETURN;
2867 return PRED_NO_PREDICTION;
2870 /* Return zero if phi result could have values other than -1, 0 or 1,
2871 otherwise return a bitmask, with bits 0, 1 and 2 set if -1, 0 and 1
2872 values are used or likely. */
2874 static int
2875 zero_one_minusone (gphi *phi, int limit)
2877 int phi_num_args = gimple_phi_num_args (phi);
2878 int ret = 0;
2879 for (int i = 0; i < phi_num_args; i++)
2881 tree t = PHI_ARG_DEF (phi, i);
2882 if (TREE_CODE (t) != INTEGER_CST)
2883 continue;
2884 wide_int w = wi::to_wide (t);
2885 if (w == -1)
2886 ret |= 1;
2887 else if (w == 0)
2888 ret |= 2;
2889 else if (w == 1)
2890 ret |= 4;
2891 else
2892 return 0;
2894 for (int i = 0; i < phi_num_args; i++)
2896 tree t = PHI_ARG_DEF (phi, i);
2897 if (TREE_CODE (t) == INTEGER_CST)
2898 continue;
2899 if (TREE_CODE (t) != SSA_NAME)
2900 return 0;
2901 gimple *g = SSA_NAME_DEF_STMT (t);
2902 if (gimple_code (g) == GIMPLE_PHI && limit > 0)
2903 if (int r = zero_one_minusone (as_a <gphi *> (g), limit - 1))
2905 ret |= r;
2906 continue;
2908 if (!is_gimple_assign (g))
2909 return 0;
2910 if (gimple_assign_cast_p (g))
2912 tree rhs1 = gimple_assign_rhs1 (g);
2913 if (TREE_CODE (rhs1) != SSA_NAME
2914 || !INTEGRAL_TYPE_P (TREE_TYPE (rhs1))
2915 || TYPE_PRECISION (TREE_TYPE (rhs1)) != 1
2916 || !TYPE_UNSIGNED (TREE_TYPE (rhs1)))
2917 return 0;
2918 ret |= (2 | 4);
2919 continue;
2921 if (TREE_CODE_CLASS (gimple_assign_rhs_code (g)) != tcc_comparison)
2922 return 0;
2923 ret |= (2 | 4);
2925 return ret;
2928 /* Find the basic block with return expression and look up for possible
2929 return value trying to apply RETURN_PREDICTION heuristics. */
2930 static void
2931 apply_return_prediction (void)
2933 greturn *return_stmt = NULL;
2934 tree return_val;
2935 edge e;
2936 gphi *phi;
2937 int phi_num_args, i;
2938 enum br_predictor pred;
2939 enum prediction direction;
2940 edge_iterator ei;
2942 FOR_EACH_EDGE (e, ei, EXIT_BLOCK_PTR_FOR_FN (cfun)->preds)
2944 gimple *last = last_stmt (e->src);
2945 if (last
2946 && gimple_code (last) == GIMPLE_RETURN)
2948 return_stmt = as_a <greturn *> (last);
2949 break;
2952 if (!e)
2953 return;
2954 return_val = gimple_return_retval (return_stmt);
2955 if (!return_val)
2956 return;
2957 if (TREE_CODE (return_val) != SSA_NAME
2958 || !SSA_NAME_DEF_STMT (return_val)
2959 || gimple_code (SSA_NAME_DEF_STMT (return_val)) != GIMPLE_PHI)
2960 return;
2961 phi = as_a <gphi *> (SSA_NAME_DEF_STMT (return_val));
2962 phi_num_args = gimple_phi_num_args (phi);
2963 pred = return_prediction (PHI_ARG_DEF (phi, 0), &direction);
2965 /* Avoid the case where the function returns -1, 0 and 1 values and
2966 nothing else. Those could be qsort etc. comparison functions
2967 where the negative return isn't less probable than positive.
2968 For this require that the function returns at least -1 or 1
2969 or -1 and a boolean value or comparison result, so that functions
2970 returning just -1 and 0 are treated as if -1 represents error value. */
2971 if (INTEGRAL_TYPE_P (TREE_TYPE (return_val))
2972 && !TYPE_UNSIGNED (TREE_TYPE (return_val))
2973 && TYPE_PRECISION (TREE_TYPE (return_val)) > 1)
2974 if (int r = zero_one_minusone (phi, 3))
2975 if ((r & (1 | 4)) == (1 | 4))
2976 return;
2978 /* Avoid the degenerate case where all return values form the function
2979 belongs to same category (ie they are all positive constants)
2980 so we can hardly say something about them. */
2981 for (i = 1; i < phi_num_args; i++)
2982 if (pred != return_prediction (PHI_ARG_DEF (phi, i), &direction))
2983 break;
2984 if (i != phi_num_args)
2985 for (i = 0; i < phi_num_args; i++)
2987 pred = return_prediction (PHI_ARG_DEF (phi, i), &direction);
2988 if (pred != PRED_NO_PREDICTION)
2989 predict_paths_leading_to_edge (gimple_phi_arg_edge (phi, i), pred,
2990 direction);
2994 /* Look for basic block that contains unlikely to happen events
2995 (such as noreturn calls) and mark all paths leading to execution
2996 of this basic blocks as unlikely. */
2998 static void
2999 tree_bb_level_predictions (void)
3001 basic_block bb;
3002 bool has_return_edges = false;
3003 edge e;
3004 edge_iterator ei;
3006 FOR_EACH_EDGE (e, ei, EXIT_BLOCK_PTR_FOR_FN (cfun)->preds)
3007 if (!unlikely_executed_edge_p (e) && !(e->flags & EDGE_ABNORMAL_CALL))
3009 has_return_edges = true;
3010 break;
3013 apply_return_prediction ();
3015 FOR_EACH_BB_FN (bb, cfun)
3017 gimple_stmt_iterator gsi;
3019 for (gsi = gsi_start_bb (bb); !gsi_end_p (gsi); gsi_next (&gsi))
3021 gimple *stmt = gsi_stmt (gsi);
3022 tree decl;
3024 if (is_gimple_call (stmt))
3026 if (gimple_call_noreturn_p (stmt)
3027 && has_return_edges
3028 && !is_exit_with_zero_arg (stmt))
3029 predict_paths_leading_to (bb, PRED_NORETURN,
3030 NOT_TAKEN);
3031 decl = gimple_call_fndecl (stmt);
3032 if (decl
3033 && lookup_attribute ("cold",
3034 DECL_ATTRIBUTES (decl)))
3035 predict_paths_leading_to (bb, PRED_COLD_FUNCTION,
3036 NOT_TAKEN);
3037 if (decl && recursive_call_p (current_function_decl, decl))
3038 predict_paths_leading_to (bb, PRED_RECURSIVE_CALL,
3039 NOT_TAKEN);
3041 else if (gimple_code (stmt) == GIMPLE_PREDICT)
3043 predict_paths_leading_to (bb, gimple_predict_predictor (stmt),
3044 gimple_predict_outcome (stmt));
3045 /* Keep GIMPLE_PREDICT around so early inlining will propagate
3046 hints to callers. */
3052 /* Callback for hash_map::traverse, asserts that the pointer map is
3053 empty. */
3055 bool
3056 assert_is_empty (const_basic_block const &, edge_prediction *const &value,
3057 void *)
3059 gcc_assert (!value);
3060 return true;
3063 /* Predict branch probabilities and estimate profile for basic block BB.
3064 When LOCAL_ONLY is set do not use any global properties of CFG. */
3066 static void
3067 tree_estimate_probability_bb (basic_block bb, bool local_only)
3069 edge e;
3070 edge_iterator ei;
3072 FOR_EACH_EDGE (e, ei, bb->succs)
3074 /* Look for block we are guarding (ie we dominate it,
3075 but it doesn't postdominate us). */
3076 if (e->dest != EXIT_BLOCK_PTR_FOR_FN (cfun) && e->dest != bb
3077 && !local_only
3078 && dominated_by_p (CDI_DOMINATORS, e->dest, e->src)
3079 && !dominated_by_p (CDI_POST_DOMINATORS, e->src, e->dest))
3081 gimple_stmt_iterator bi;
3083 /* The call heuristic claims that a guarded function call
3084 is improbable. This is because such calls are often used
3085 to signal exceptional situations such as printing error
3086 messages. */
3087 for (bi = gsi_start_bb (e->dest); !gsi_end_p (bi);
3088 gsi_next (&bi))
3090 gimple *stmt = gsi_stmt (bi);
3091 if (is_gimple_call (stmt)
3092 && !gimple_inexpensive_call_p (as_a <gcall *> (stmt))
3093 /* Constant and pure calls are hardly used to signalize
3094 something exceptional. */
3095 && gimple_has_side_effects (stmt))
3097 if (gimple_call_fndecl (stmt))
3098 predict_edge_def (e, PRED_CALL, NOT_TAKEN);
3099 else if (virtual_method_call_p (gimple_call_fn (stmt)))
3100 predict_edge_def (e, PRED_POLYMORPHIC_CALL, NOT_TAKEN);
3101 else
3102 predict_edge_def (e, PRED_INDIR_CALL, TAKEN);
3103 break;
3108 tree_predict_by_opcode (bb);
3111 /* Predict branch probabilities and estimate profile of the tree CFG.
3112 This function can be called from the loop optimizers to recompute
3113 the profile information.
3114 If DRY_RUN is set, do not modify CFG and only produce dump files. */
3116 void
3117 tree_estimate_probability (bool dry_run)
3119 basic_block bb;
3121 connect_infinite_loops_to_exit ();
3122 /* We use loop_niter_by_eval, which requires that the loops have
3123 preheaders. */
3124 create_preheaders (CP_SIMPLE_PREHEADERS);
3125 calculate_dominance_info (CDI_POST_DOMINATORS);
3126 /* Decide which edges are known to be unlikely. This improves later
3127 branch prediction. */
3128 determine_unlikely_bbs ();
3130 bb_predictions = new hash_map<const_basic_block, edge_prediction *>;
3131 tree_bb_level_predictions ();
3132 record_loop_exits ();
3134 if (number_of_loops (cfun) > 1)
3135 predict_loops ();
3137 FOR_EACH_BB_FN (bb, cfun)
3138 tree_estimate_probability_bb (bb, false);
3140 FOR_EACH_BB_FN (bb, cfun)
3141 combine_predictions_for_bb (bb, dry_run);
3143 if (flag_checking)
3144 bb_predictions->traverse<void *, assert_is_empty> (NULL);
3146 delete bb_predictions;
3147 bb_predictions = NULL;
3149 if (!dry_run)
3150 estimate_bb_frequencies (false);
3151 free_dominance_info (CDI_POST_DOMINATORS);
3152 remove_fake_exit_edges ();
3155 /* Set edge->probability for each successor edge of BB. */
3156 void
3157 tree_guess_outgoing_edge_probabilities (basic_block bb)
3159 bb_predictions = new hash_map<const_basic_block, edge_prediction *>;
3160 tree_estimate_probability_bb (bb, true);
3161 combine_predictions_for_bb (bb, false);
3162 if (flag_checking)
3163 bb_predictions->traverse<void *, assert_is_empty> (NULL);
3164 delete bb_predictions;
3165 bb_predictions = NULL;
3168 /* Filter function predicate that returns true for a edge predicate P
3169 if its edge is equal to DATA. */
3171 static bool
3172 not_loop_guard_equal_edge_p (edge_prediction *p, void *data)
3174 return p->ep_edge != (edge)data || p->ep_predictor != PRED_LOOP_GUARD;
3177 /* Predict edge E with PRED unless it is already predicted by some predictor
3178 considered equivalent. */
3180 static void
3181 maybe_predict_edge (edge e, enum br_predictor pred, enum prediction taken)
3183 if (edge_predicted_by_p (e, pred, taken))
3184 return;
3185 if (pred == PRED_LOOP_GUARD
3186 && edge_predicted_by_p (e, PRED_LOOP_GUARD_WITH_RECURSION, taken))
3187 return;
3188 /* Consider PRED_LOOP_GUARD_WITH_RECURSION superrior to LOOP_GUARD. */
3189 if (pred == PRED_LOOP_GUARD_WITH_RECURSION)
3191 edge_prediction **preds = bb_predictions->get (e->src);
3192 if (preds)
3193 filter_predictions (preds, not_loop_guard_equal_edge_p, e);
3195 predict_edge_def (e, pred, taken);
3197 /* Predict edges to successors of CUR whose sources are not postdominated by
3198 BB by PRED and recurse to all postdominators. */
3200 static void
3201 predict_paths_for_bb (basic_block cur, basic_block bb,
3202 enum br_predictor pred,
3203 enum prediction taken,
3204 bitmap visited, class loop *in_loop = NULL)
3206 edge e;
3207 edge_iterator ei;
3208 basic_block son;
3210 /* If we exited the loop or CUR is unconditional in the loop, there is
3211 nothing to do. */
3212 if (in_loop
3213 && (!flow_bb_inside_loop_p (in_loop, cur)
3214 || dominated_by_p (CDI_DOMINATORS, in_loop->latch, cur)))
3215 return;
3217 /* We are looking for all edges forming edge cut induced by
3218 set of all blocks postdominated by BB. */
3219 FOR_EACH_EDGE (e, ei, cur->preds)
3220 if (e->src->index >= NUM_FIXED_BLOCKS
3221 && !dominated_by_p (CDI_POST_DOMINATORS, e->src, bb))
3223 edge e2;
3224 edge_iterator ei2;
3225 bool found = false;
3227 /* Ignore fake edges and eh, we predict them as not taken anyway. */
3228 if (unlikely_executed_edge_p (e))
3229 continue;
3230 gcc_assert (bb == cur || dominated_by_p (CDI_POST_DOMINATORS, cur, bb));
3232 /* See if there is an edge from e->src that is not abnormal
3233 and does not lead to BB and does not exit the loop. */
3234 FOR_EACH_EDGE (e2, ei2, e->src->succs)
3235 if (e2 != e
3236 && !unlikely_executed_edge_p (e2)
3237 && !dominated_by_p (CDI_POST_DOMINATORS, e2->dest, bb)
3238 && (!in_loop || !loop_exit_edge_p (in_loop, e2)))
3240 found = true;
3241 break;
3244 /* If there is non-abnormal path leaving e->src, predict edge
3245 using predictor. Otherwise we need to look for paths
3246 leading to e->src.
3248 The second may lead to infinite loop in the case we are predicitng
3249 regions that are only reachable by abnormal edges. We simply
3250 prevent visiting given BB twice. */
3251 if (found)
3252 maybe_predict_edge (e, pred, taken);
3253 else if (bitmap_set_bit (visited, e->src->index))
3254 predict_paths_for_bb (e->src, e->src, pred, taken, visited, in_loop);
3256 for (son = first_dom_son (CDI_POST_DOMINATORS, cur);
3257 son;
3258 son = next_dom_son (CDI_POST_DOMINATORS, son))
3259 predict_paths_for_bb (son, bb, pred, taken, visited, in_loop);
3262 /* Sets branch probabilities according to PREDiction and
3263 FLAGS. */
3265 static void
3266 predict_paths_leading_to (basic_block bb, enum br_predictor pred,
3267 enum prediction taken, class loop *in_loop)
3269 predict_paths_for_bb (bb, bb, pred, taken, auto_bitmap (), in_loop);
3272 /* Like predict_paths_leading_to but take edge instead of basic block. */
3274 static void
3275 predict_paths_leading_to_edge (edge e, enum br_predictor pred,
3276 enum prediction taken, class loop *in_loop)
3278 bool has_nonloop_edge = false;
3279 edge_iterator ei;
3280 edge e2;
3282 basic_block bb = e->src;
3283 FOR_EACH_EDGE (e2, ei, bb->succs)
3284 if (e2->dest != e->src && e2->dest != e->dest
3285 && !unlikely_executed_edge_p (e2)
3286 && !dominated_by_p (CDI_POST_DOMINATORS, e->src, e2->dest))
3288 has_nonloop_edge = true;
3289 break;
3292 if (!has_nonloop_edge)
3293 predict_paths_for_bb (bb, bb, pred, taken, auto_bitmap (), in_loop);
3294 else
3295 maybe_predict_edge (e, pred, taken);
3298 /* This is used to carry information about basic blocks. It is
3299 attached to the AUX field of the standard CFG block. */
3301 class block_info
3303 public:
3304 /* Estimated frequency of execution of basic_block. */
3305 sreal frequency;
3307 /* To keep queue of basic blocks to process. */
3308 basic_block next;
3310 /* Number of predecessors we need to visit first. */
3311 int npredecessors;
3314 /* Similar information for edges. */
3315 class edge_prob_info
3317 public:
3318 /* In case edge is a loopback edge, the probability edge will be reached
3319 in case header is. Estimated number of iterations of the loop can be
3320 then computed as 1 / (1 - back_edge_prob). */
3321 sreal back_edge_prob;
3322 /* True if the edge is a loopback edge in the natural loop. */
3323 unsigned int back_edge:1;
3326 #define BLOCK_INFO(B) ((block_info *) (B)->aux)
3327 #undef EDGE_INFO
3328 #define EDGE_INFO(E) ((edge_prob_info *) (E)->aux)
3330 /* Helper function for estimate_bb_frequencies.
3331 Propagate the frequencies in blocks marked in
3332 TOVISIT, starting in HEAD. */
3334 static void
3335 propagate_freq (basic_block head, bitmap tovisit,
3336 sreal max_cyclic_prob)
3338 basic_block bb;
3339 basic_block last;
3340 unsigned i;
3341 edge e;
3342 basic_block nextbb;
3343 bitmap_iterator bi;
3345 /* For each basic block we need to visit count number of his predecessors
3346 we need to visit first. */
3347 EXECUTE_IF_SET_IN_BITMAP (tovisit, 0, i, bi)
3349 edge_iterator ei;
3350 int count = 0;
3352 bb = BASIC_BLOCK_FOR_FN (cfun, i);
3354 FOR_EACH_EDGE (e, ei, bb->preds)
3356 bool visit = bitmap_bit_p (tovisit, e->src->index);
3358 if (visit && !(e->flags & EDGE_DFS_BACK))
3359 count++;
3360 else if (visit && dump_file && !EDGE_INFO (e)->back_edge)
3361 fprintf (dump_file,
3362 "Irreducible region hit, ignoring edge to %i->%i\n",
3363 e->src->index, bb->index);
3365 BLOCK_INFO (bb)->npredecessors = count;
3366 /* When function never returns, we will never process exit block. */
3367 if (!count && bb == EXIT_BLOCK_PTR_FOR_FN (cfun))
3368 bb->count = profile_count::zero ();
3371 BLOCK_INFO (head)->frequency = 1;
3372 last = head;
3373 for (bb = head; bb; bb = nextbb)
3375 edge_iterator ei;
3376 sreal cyclic_probability = 0;
3377 sreal frequency = 0;
3379 nextbb = BLOCK_INFO (bb)->next;
3380 BLOCK_INFO (bb)->next = NULL;
3382 /* Compute frequency of basic block. */
3383 if (bb != head)
3385 if (flag_checking)
3386 FOR_EACH_EDGE (e, ei, bb->preds)
3387 gcc_assert (!bitmap_bit_p (tovisit, e->src->index)
3388 || (e->flags & EDGE_DFS_BACK));
3390 FOR_EACH_EDGE (e, ei, bb->preds)
3391 if (EDGE_INFO (e)->back_edge)
3392 cyclic_probability += EDGE_INFO (e)->back_edge_prob;
3393 else if (!(e->flags & EDGE_DFS_BACK))
3395 /* FIXME: Graphite is producing edges with no profile. Once
3396 this is fixed, drop this. */
3397 sreal tmp = e->probability.initialized_p () ?
3398 e->probability.to_sreal () : 0;
3399 frequency += tmp * BLOCK_INFO (e->src)->frequency;
3402 if (cyclic_probability == 0)
3404 BLOCK_INFO (bb)->frequency = frequency;
3406 else
3408 if (cyclic_probability > max_cyclic_prob)
3410 if (dump_file)
3411 fprintf (dump_file,
3412 "cyclic probability of bb %i is %f (capped to %f)"
3413 "; turning freq %f",
3414 bb->index, cyclic_probability.to_double (),
3415 max_cyclic_prob.to_double (),
3416 frequency.to_double ());
3418 cyclic_probability = max_cyclic_prob;
3420 else if (dump_file)
3421 fprintf (dump_file,
3422 "cyclic probability of bb %i is %f; turning freq %f",
3423 bb->index, cyclic_probability.to_double (),
3424 frequency.to_double ());
3426 BLOCK_INFO (bb)->frequency = frequency
3427 / (sreal (1) - cyclic_probability);
3428 if (dump_file)
3429 fprintf (dump_file, " to %f\n",
3430 BLOCK_INFO (bb)->frequency.to_double ());
3434 bitmap_clear_bit (tovisit, bb->index);
3436 e = find_edge (bb, head);
3437 if (e)
3439 /* FIXME: Graphite is producing edges with no profile. Once
3440 this is fixed, drop this. */
3441 sreal tmp = e->probability.initialized_p () ?
3442 e->probability.to_sreal () : 0;
3443 EDGE_INFO (e)->back_edge_prob = tmp * BLOCK_INFO (bb)->frequency;
3446 /* Propagate to successor blocks. */
3447 FOR_EACH_EDGE (e, ei, bb->succs)
3448 if (!(e->flags & EDGE_DFS_BACK)
3449 && BLOCK_INFO (e->dest)->npredecessors)
3451 BLOCK_INFO (e->dest)->npredecessors--;
3452 if (!BLOCK_INFO (e->dest)->npredecessors)
3454 if (!nextbb)
3455 nextbb = e->dest;
3456 else
3457 BLOCK_INFO (last)->next = e->dest;
3459 last = e->dest;
3465 /* Estimate frequencies in loops at same nest level. */
3467 static void
3468 estimate_loops_at_level (class loop *first_loop, sreal max_cyclic_prob)
3470 class loop *loop;
3472 for (loop = first_loop; loop; loop = loop->next)
3474 edge e;
3475 basic_block *bbs;
3476 unsigned i;
3477 auto_bitmap tovisit;
3479 estimate_loops_at_level (loop->inner, max_cyclic_prob);
3481 /* Find current loop back edge and mark it. */
3482 e = loop_latch_edge (loop);
3483 EDGE_INFO (e)->back_edge = 1;
3485 bbs = get_loop_body (loop);
3486 for (i = 0; i < loop->num_nodes; i++)
3487 bitmap_set_bit (tovisit, bbs[i]->index);
3488 free (bbs);
3489 propagate_freq (loop->header, tovisit, max_cyclic_prob);
3493 /* Propagates frequencies through structure of loops. */
3495 static void
3496 estimate_loops (void)
3498 auto_bitmap tovisit;
3499 basic_block bb;
3500 sreal max_cyclic_prob = (sreal)1
3501 - (sreal)1 / (param_max_predicted_iterations + 1);
3503 /* Start by estimating the frequencies in the loops. */
3504 if (number_of_loops (cfun) > 1)
3505 estimate_loops_at_level (current_loops->tree_root->inner, max_cyclic_prob);
3507 /* Now propagate the frequencies through all the blocks. */
3508 FOR_ALL_BB_FN (bb, cfun)
3510 bitmap_set_bit (tovisit, bb->index);
3512 propagate_freq (ENTRY_BLOCK_PTR_FOR_FN (cfun), tovisit, max_cyclic_prob);
3515 /* Drop the profile for NODE to guessed, and update its frequency based on
3516 whether it is expected to be hot given the CALL_COUNT. */
3518 static void
3519 drop_profile (struct cgraph_node *node, profile_count call_count)
3521 struct function *fn = DECL_STRUCT_FUNCTION (node->decl);
3522 /* In the case where this was called by another function with a
3523 dropped profile, call_count will be 0. Since there are no
3524 non-zero call counts to this function, we don't know for sure
3525 whether it is hot, and therefore it will be marked normal below. */
3526 bool hot = maybe_hot_count_p (NULL, call_count);
3528 if (dump_file)
3529 fprintf (dump_file,
3530 "Dropping 0 profile for %s. %s based on calls.\n",
3531 node->dump_name (),
3532 hot ? "Function is hot" : "Function is normal");
3533 /* We only expect to miss profiles for functions that are reached
3534 via non-zero call edges in cases where the function may have
3535 been linked from another module or library (COMDATs and extern
3536 templates). See the comments below for handle_missing_profiles.
3537 Also, only warn in cases where the missing counts exceed the
3538 number of training runs. In certain cases with an execv followed
3539 by a no-return call the profile for the no-return call is not
3540 dumped and there can be a mismatch. */
3541 if (!DECL_COMDAT (node->decl) && !DECL_EXTERNAL (node->decl)
3542 && call_count > profile_info->runs)
3544 if (flag_profile_correction)
3546 if (dump_file)
3547 fprintf (dump_file,
3548 "Missing counts for called function %s\n",
3549 node->dump_name ());
3551 else
3552 warning (0, "Missing counts for called function %s",
3553 node->dump_name ());
3556 basic_block bb;
3557 if (opt_for_fn (node->decl, flag_guess_branch_prob))
3559 bool clear_zeros
3560 = !ENTRY_BLOCK_PTR_FOR_FN (fn)->count.nonzero_p ();
3561 FOR_ALL_BB_FN (bb, fn)
3562 if (clear_zeros || !(bb->count == profile_count::zero ()))
3563 bb->count = bb->count.guessed_local ();
3564 fn->cfg->count_max = fn->cfg->count_max.guessed_local ();
3566 else
3568 FOR_ALL_BB_FN (bb, fn)
3569 bb->count = profile_count::uninitialized ();
3570 fn->cfg->count_max = profile_count::uninitialized ();
3573 struct cgraph_edge *e;
3574 for (e = node->callees; e; e = e->next_callee)
3575 e->count = gimple_bb (e->call_stmt)->count;
3576 for (e = node->indirect_calls; e; e = e->next_callee)
3577 e->count = gimple_bb (e->call_stmt)->count;
3578 node->count = ENTRY_BLOCK_PTR_FOR_FN (fn)->count;
3580 profile_status_for_fn (fn)
3581 = (flag_guess_branch_prob ? PROFILE_GUESSED : PROFILE_ABSENT);
3582 node->frequency
3583 = hot ? NODE_FREQUENCY_HOT : NODE_FREQUENCY_NORMAL;
3586 /* In the case of COMDAT routines, multiple object files will contain the same
3587 function and the linker will select one for the binary. In that case
3588 all the other copies from the profile instrument binary will be missing
3589 profile counts. Look for cases where this happened, due to non-zero
3590 call counts going to 0-count functions, and drop the profile to guessed
3591 so that we can use the estimated probabilities and avoid optimizing only
3592 for size.
3594 The other case where the profile may be missing is when the routine
3595 is not going to be emitted to the object file, e.g. for "extern template"
3596 class methods. Those will be marked DECL_EXTERNAL. Emit a warning in
3597 all other cases of non-zero calls to 0-count functions. */
3599 void
3600 handle_missing_profiles (void)
3602 const int unlikely_frac = param_unlikely_bb_count_fraction;
3603 struct cgraph_node *node;
3604 auto_vec<struct cgraph_node *, 64> worklist;
3606 /* See if 0 count function has non-0 count callers. In this case we
3607 lost some profile. Drop its function profile to PROFILE_GUESSED. */
3608 FOR_EACH_DEFINED_FUNCTION (node)
3610 struct cgraph_edge *e;
3611 profile_count call_count = profile_count::zero ();
3612 gcov_type max_tp_first_run = 0;
3613 struct function *fn = DECL_STRUCT_FUNCTION (node->decl);
3615 if (node->count.ipa ().nonzero_p ())
3616 continue;
3617 for (e = node->callers; e; e = e->next_caller)
3618 if (e->count.ipa ().initialized_p () && e->count.ipa () > 0)
3620 call_count = call_count + e->count.ipa ();
3622 if (e->caller->tp_first_run > max_tp_first_run)
3623 max_tp_first_run = e->caller->tp_first_run;
3626 /* If time profile is missing, let assign the maximum that comes from
3627 caller functions. */
3628 if (!node->tp_first_run && max_tp_first_run)
3629 node->tp_first_run = max_tp_first_run + 1;
3631 if (call_count > 0
3632 && fn && fn->cfg
3633 && call_count * unlikely_frac >= profile_info->runs)
3635 drop_profile (node, call_count);
3636 worklist.safe_push (node);
3640 /* Propagate the profile dropping to other 0-count COMDATs that are
3641 potentially called by COMDATs we already dropped the profile on. */
3642 while (worklist.length () > 0)
3644 struct cgraph_edge *e;
3646 node = worklist.pop ();
3647 for (e = node->callees; e; e = e->next_caller)
3649 struct cgraph_node *callee = e->callee;
3650 struct function *fn = DECL_STRUCT_FUNCTION (callee->decl);
3652 if (!(e->count.ipa () == profile_count::zero ())
3653 && callee->count.ipa ().nonzero_p ())
3654 continue;
3655 if ((DECL_COMDAT (callee->decl) || DECL_EXTERNAL (callee->decl))
3656 && fn && fn->cfg
3657 && profile_status_for_fn (fn) == PROFILE_READ)
3659 drop_profile (node, profile_count::zero ());
3660 worklist.safe_push (callee);
3666 /* Convert counts measured by profile driven feedback to frequencies.
3667 Return nonzero iff there was any nonzero execution count. */
3669 bool
3670 update_max_bb_count (void)
3672 profile_count true_count_max = profile_count::uninitialized ();
3673 basic_block bb;
3675 FOR_BB_BETWEEN (bb, ENTRY_BLOCK_PTR_FOR_FN (cfun), NULL, next_bb)
3676 true_count_max = true_count_max.max (bb->count);
3678 cfun->cfg->count_max = true_count_max;
3680 return true_count_max.ipa ().nonzero_p ();
3683 /* Return true if function is likely to be expensive, so there is no point to
3684 optimize performance of prologue, epilogue or do inlining at the expense
3685 of code size growth. THRESHOLD is the limit of number of instructions
3686 function can execute at average to be still considered not expensive. */
3688 bool
3689 expensive_function_p (int threshold)
3691 basic_block bb;
3693 /* If profile was scaled in a way entry block has count 0, then the function
3694 is deifnitly taking a lot of time. */
3695 if (!ENTRY_BLOCK_PTR_FOR_FN (cfun)->count.nonzero_p ())
3696 return true;
3698 profile_count limit = ENTRY_BLOCK_PTR_FOR_FN (cfun)->count * threshold;
3699 profile_count sum = profile_count::zero ();
3700 FOR_EACH_BB_FN (bb, cfun)
3702 rtx_insn *insn;
3704 if (!bb->count.initialized_p ())
3706 if (dump_file)
3707 fprintf (dump_file, "Function is considered expensive because"
3708 " count of bb %i is not initialized\n", bb->index);
3709 return true;
3712 FOR_BB_INSNS (bb, insn)
3713 if (active_insn_p (insn))
3715 sum += bb->count;
3716 if (sum > limit)
3717 return true;
3721 return false;
3724 /* All basic blocks that are reachable only from unlikely basic blocks are
3725 unlikely. */
3727 void
3728 propagate_unlikely_bbs_forward (void)
3730 auto_vec<basic_block, 64> worklist;
3731 basic_block bb;
3732 edge_iterator ei;
3733 edge e;
3735 if (!(ENTRY_BLOCK_PTR_FOR_FN (cfun)->count == profile_count::zero ()))
3737 ENTRY_BLOCK_PTR_FOR_FN (cfun)->aux = (void *)(size_t) 1;
3738 worklist.safe_push (ENTRY_BLOCK_PTR_FOR_FN (cfun));
3740 while (worklist.length () > 0)
3742 bb = worklist.pop ();
3743 FOR_EACH_EDGE (e, ei, bb->succs)
3744 if (!(e->count () == profile_count::zero ())
3745 && !(e->dest->count == profile_count::zero ())
3746 && !e->dest->aux)
3748 e->dest->aux = (void *)(size_t) 1;
3749 worklist.safe_push (e->dest);
3754 FOR_ALL_BB_FN (bb, cfun)
3756 if (!bb->aux)
3758 if (!(bb->count == profile_count::zero ())
3759 && (dump_file && (dump_flags & TDF_DETAILS)))
3760 fprintf (dump_file,
3761 "Basic block %i is marked unlikely by forward prop\n",
3762 bb->index);
3763 bb->count = profile_count::zero ();
3765 else
3766 bb->aux = NULL;
3770 /* Determine basic blocks/edges that are known to be unlikely executed and set
3771 their counters to zero.
3772 This is done with first identifying obviously unlikely BBs/edges and then
3773 propagating in both directions. */
3775 static void
3776 determine_unlikely_bbs ()
3778 basic_block bb;
3779 auto_vec<basic_block, 64> worklist;
3780 edge_iterator ei;
3781 edge e;
3783 FOR_EACH_BB_FN (bb, cfun)
3785 if (!(bb->count == profile_count::zero ())
3786 && unlikely_executed_bb_p (bb))
3788 if (dump_file && (dump_flags & TDF_DETAILS))
3789 fprintf (dump_file, "Basic block %i is locally unlikely\n",
3790 bb->index);
3791 bb->count = profile_count::zero ();
3794 FOR_EACH_EDGE (e, ei, bb->succs)
3795 if (!(e->probability == profile_probability::never ())
3796 && unlikely_executed_edge_p (e))
3798 if (dump_file && (dump_flags & TDF_DETAILS))
3799 fprintf (dump_file, "Edge %i->%i is locally unlikely\n",
3800 bb->index, e->dest->index);
3801 e->probability = profile_probability::never ();
3804 gcc_checking_assert (!bb->aux);
3806 propagate_unlikely_bbs_forward ();
3808 auto_vec<int, 64> nsuccs;
3809 nsuccs.safe_grow_cleared (last_basic_block_for_fn (cfun), true);
3810 FOR_ALL_BB_FN (bb, cfun)
3811 if (!(bb->count == profile_count::zero ())
3812 && bb != EXIT_BLOCK_PTR_FOR_FN (cfun))
3814 nsuccs[bb->index] = 0;
3815 FOR_EACH_EDGE (e, ei, bb->succs)
3816 if (!(e->probability == profile_probability::never ())
3817 && !(e->dest->count == profile_count::zero ()))
3818 nsuccs[bb->index]++;
3819 if (!nsuccs[bb->index])
3820 worklist.safe_push (bb);
3822 while (worklist.length () > 0)
3824 bb = worklist.pop ();
3825 if (bb->count == profile_count::zero ())
3826 continue;
3827 if (bb != ENTRY_BLOCK_PTR_FOR_FN (cfun))
3829 bool found = false;
3830 for (gimple_stmt_iterator gsi = gsi_start_bb (bb);
3831 !gsi_end_p (gsi); gsi_next (&gsi))
3832 if (stmt_can_terminate_bb_p (gsi_stmt (gsi))
3833 /* stmt_can_terminate_bb_p special cases noreturns because it
3834 assumes that fake edges are created. We want to know that
3835 noreturn alone does not imply BB to be unlikely. */
3836 || (is_gimple_call (gsi_stmt (gsi))
3837 && (gimple_call_flags (gsi_stmt (gsi)) & ECF_NORETURN)))
3839 found = true;
3840 break;
3842 if (found)
3843 continue;
3845 if (dump_file && (dump_flags & TDF_DETAILS))
3846 fprintf (dump_file,
3847 "Basic block %i is marked unlikely by backward prop\n",
3848 bb->index);
3849 bb->count = profile_count::zero ();
3850 FOR_EACH_EDGE (e, ei, bb->preds)
3851 if (!(e->probability == profile_probability::never ()))
3853 if (!(e->src->count == profile_count::zero ()))
3855 gcc_checking_assert (nsuccs[e->src->index] > 0);
3856 nsuccs[e->src->index]--;
3857 if (!nsuccs[e->src->index])
3858 worklist.safe_push (e->src);
3862 /* Finally all edges from non-0 regions to 0 are unlikely. */
3863 FOR_ALL_BB_FN (bb, cfun)
3865 if (!(bb->count == profile_count::zero ()))
3866 FOR_EACH_EDGE (e, ei, bb->succs)
3867 if (!(e->probability == profile_probability::never ())
3868 && e->dest->count == profile_count::zero ())
3870 if (dump_file && (dump_flags & TDF_DETAILS))
3871 fprintf (dump_file, "Edge %i->%i is unlikely because "
3872 "it enters unlikely block\n",
3873 bb->index, e->dest->index);
3874 e->probability = profile_probability::never ();
3877 edge other = NULL;
3879 FOR_EACH_EDGE (e, ei, bb->succs)
3880 if (e->probability == profile_probability::never ())
3882 else if (other)
3884 other = NULL;
3885 break;
3887 else
3888 other = e;
3889 if (other
3890 && !(other->probability == profile_probability::always ()))
3892 if (dump_file && (dump_flags & TDF_DETAILS))
3893 fprintf (dump_file, "Edge %i->%i is locally likely\n",
3894 bb->index, other->dest->index);
3895 other->probability = profile_probability::always ();
3898 if (ENTRY_BLOCK_PTR_FOR_FN (cfun)->count == profile_count::zero ())
3899 cgraph_node::get (current_function_decl)->count = profile_count::zero ();
3902 /* Estimate and propagate basic block frequencies using the given branch
3903 probabilities. If FORCE is true, the frequencies are used to estimate
3904 the counts even when there are already non-zero profile counts. */
3906 void
3907 estimate_bb_frequencies (bool force)
3909 basic_block bb;
3910 sreal freq_max;
3912 determine_unlikely_bbs ();
3914 if (force || profile_status_for_fn (cfun) != PROFILE_READ
3915 || !update_max_bb_count ())
3918 mark_dfs_back_edges ();
3920 single_succ_edge (ENTRY_BLOCK_PTR_FOR_FN (cfun))->probability =
3921 profile_probability::always ();
3923 /* Set up block info for each basic block. */
3924 alloc_aux_for_blocks (sizeof (block_info));
3925 alloc_aux_for_edges (sizeof (edge_prob_info));
3926 FOR_BB_BETWEEN (bb, ENTRY_BLOCK_PTR_FOR_FN (cfun), NULL, next_bb)
3928 edge e;
3929 edge_iterator ei;
3931 FOR_EACH_EDGE (e, ei, bb->succs)
3933 /* FIXME: Graphite is producing edges with no profile. Once
3934 this is fixed, drop this. */
3935 if (e->probability.initialized_p ())
3936 EDGE_INFO (e)->back_edge_prob
3937 = e->probability.to_sreal ();
3938 else
3939 /* back_edge_prob = 0.5 */
3940 EDGE_INFO (e)->back_edge_prob = sreal (1, -1);
3944 /* First compute frequencies locally for each loop from innermost
3945 to outermost to examine frequencies for back edges. */
3946 estimate_loops ();
3948 freq_max = 0;
3949 FOR_EACH_BB_FN (bb, cfun)
3950 if (freq_max < BLOCK_INFO (bb)->frequency)
3951 freq_max = BLOCK_INFO (bb)->frequency;
3953 /* Scaling frequencies up to maximal profile count may result in
3954 frequent overflows especially when inlining loops.
3955 Small scalling results in unnecesary precision loss. Stay in
3956 the half of the (exponential) range. */
3957 freq_max = (sreal (1) << (profile_count::n_bits / 2)) / freq_max;
3958 if (freq_max < 16)
3959 freq_max = 16;
3960 profile_count ipa_count = ENTRY_BLOCK_PTR_FOR_FN (cfun)->count.ipa ();
3961 cfun->cfg->count_max = profile_count::uninitialized ();
3962 FOR_BB_BETWEEN (bb, ENTRY_BLOCK_PTR_FOR_FN (cfun), NULL, next_bb)
3964 sreal tmp = BLOCK_INFO (bb)->frequency;
3965 if (tmp >= 1)
3967 gimple_stmt_iterator gsi;
3968 tree decl;
3970 /* Self recursive calls can not have frequency greater than 1
3971 or program will never terminate. This will result in an
3972 inconsistent bb profile but it is better than greatly confusing
3973 IPA cost metrics. */
3974 for (gsi = gsi_start_bb (bb); !gsi_end_p (gsi); gsi_next (&gsi))
3975 if (is_gimple_call (gsi_stmt (gsi))
3976 && (decl = gimple_call_fndecl (gsi_stmt (gsi))) != NULL
3977 && recursive_call_p (current_function_decl, decl))
3979 if (dump_file)
3980 fprintf (dump_file, "Dropping frequency of recursive call"
3981 " in bb %i from %f\n", bb->index,
3982 tmp.to_double ());
3983 tmp = (sreal)9 / (sreal)10;
3984 break;
3987 tmp = tmp * freq_max + sreal (1, -1);
3988 profile_count count = profile_count::from_gcov_type (tmp.to_int ());
3990 /* If we have profile feedback in which this function was never
3991 executed, then preserve this info. */
3992 if (!(bb->count == profile_count::zero ()))
3993 bb->count = count.guessed_local ().combine_with_ipa_count (ipa_count);
3994 cfun->cfg->count_max = cfun->cfg->count_max.max (bb->count);
3997 free_aux_for_blocks ();
3998 free_aux_for_edges ();
4000 compute_function_frequency ();
4003 /* Decide whether function is hot, cold or unlikely executed. */
4004 void
4005 compute_function_frequency (void)
4007 basic_block bb;
4008 struct cgraph_node *node = cgraph_node::get (current_function_decl);
4010 if (DECL_STATIC_CONSTRUCTOR (current_function_decl)
4011 || MAIN_NAME_P (DECL_NAME (current_function_decl)))
4012 node->only_called_at_startup = true;
4013 if (DECL_STATIC_DESTRUCTOR (current_function_decl))
4014 node->only_called_at_exit = true;
4016 if (!ENTRY_BLOCK_PTR_FOR_FN (cfun)->count.ipa_p ())
4018 int flags = flags_from_decl_or_type (current_function_decl);
4019 if (lookup_attribute ("cold", DECL_ATTRIBUTES (current_function_decl))
4020 != NULL)
4021 node->frequency = NODE_FREQUENCY_UNLIKELY_EXECUTED;
4022 else if (lookup_attribute ("hot", DECL_ATTRIBUTES (current_function_decl))
4023 != NULL)
4024 node->frequency = NODE_FREQUENCY_HOT;
4025 else if (flags & ECF_NORETURN)
4026 node->frequency = NODE_FREQUENCY_EXECUTED_ONCE;
4027 else if (MAIN_NAME_P (DECL_NAME (current_function_decl)))
4028 node->frequency = NODE_FREQUENCY_EXECUTED_ONCE;
4029 else if (DECL_STATIC_CONSTRUCTOR (current_function_decl)
4030 || DECL_STATIC_DESTRUCTOR (current_function_decl))
4031 node->frequency = NODE_FREQUENCY_EXECUTED_ONCE;
4032 return;
4035 node->frequency = NODE_FREQUENCY_UNLIKELY_EXECUTED;
4036 warn_function_cold (current_function_decl);
4037 if (ENTRY_BLOCK_PTR_FOR_FN (cfun)->count.ipa() == profile_count::zero ())
4038 return;
4039 FOR_EACH_BB_FN (bb, cfun)
4041 if (maybe_hot_bb_p (cfun, bb))
4043 node->frequency = NODE_FREQUENCY_HOT;
4044 return;
4046 if (!probably_never_executed_bb_p (cfun, bb))
4047 node->frequency = NODE_FREQUENCY_NORMAL;
4051 /* Build PREDICT_EXPR. */
4052 tree
4053 build_predict_expr (enum br_predictor predictor, enum prediction taken)
4055 tree t = build1 (PREDICT_EXPR, void_type_node,
4056 build_int_cst (integer_type_node, predictor));
4057 SET_PREDICT_EXPR_OUTCOME (t, taken);
4058 return t;
4061 const char *
4062 predictor_name (enum br_predictor predictor)
4064 return predictor_info[predictor].name;
4067 /* Predict branch probabilities and estimate profile of the tree CFG. */
4069 namespace {
4071 const pass_data pass_data_profile =
4073 GIMPLE_PASS, /* type */
4074 "profile_estimate", /* name */
4075 OPTGROUP_NONE, /* optinfo_flags */
4076 TV_BRANCH_PROB, /* tv_id */
4077 PROP_cfg, /* properties_required */
4078 0, /* properties_provided */
4079 0, /* properties_destroyed */
4080 0, /* todo_flags_start */
4081 0, /* todo_flags_finish */
4084 class pass_profile : public gimple_opt_pass
4086 public:
4087 pass_profile (gcc::context *ctxt)
4088 : gimple_opt_pass (pass_data_profile, ctxt)
4091 /* opt_pass methods: */
4092 bool gate (function *) final override { return flag_guess_branch_prob; }
4093 unsigned int execute (function *) final override;
4095 }; // class pass_profile
4097 unsigned int
4098 pass_profile::execute (function *fun)
4100 unsigned nb_loops;
4102 if (profile_status_for_fn (cfun) == PROFILE_GUESSED)
4103 return 0;
4105 loop_optimizer_init (LOOPS_NORMAL);
4106 if (dump_file && (dump_flags & TDF_DETAILS))
4107 flow_loops_dump (dump_file, NULL, 0);
4109 nb_loops = number_of_loops (fun);
4110 if (nb_loops > 1)
4111 scev_initialize ();
4113 tree_estimate_probability (false);
4115 if (nb_loops > 1)
4116 scev_finalize ();
4118 loop_optimizer_finalize ();
4119 if (dump_file && (dump_flags & TDF_DETAILS))
4120 gimple_dump_cfg (dump_file, dump_flags);
4121 if (profile_status_for_fn (fun) == PROFILE_ABSENT)
4122 profile_status_for_fn (fun) = PROFILE_GUESSED;
4123 if (dump_file && (dump_flags & TDF_DETAILS))
4125 for (auto loop : loops_list (cfun, LI_FROM_INNERMOST))
4126 if (loop->header->count.initialized_p ())
4127 fprintf (dump_file, "Loop got predicted %d to iterate %i times.\n",
4128 loop->num,
4129 (int)expected_loop_iterations_unbounded (loop));
4131 return 0;
4134 } // anon namespace
4136 gimple_opt_pass *
4137 make_pass_profile (gcc::context *ctxt)
4139 return new pass_profile (ctxt);
4142 /* Return true when PRED predictor should be removed after early
4143 tree passes. Most of the predictors are beneficial to survive
4144 as early inlining can also distribute then into caller's bodies. */
4146 static bool
4147 strip_predictor_early (enum br_predictor pred)
4149 switch (pred)
4151 case PRED_TREE_EARLY_RETURN:
4152 return true;
4153 default:
4154 return false;
4158 /* Get rid of all builtin_expect calls and GIMPLE_PREDICT statements
4159 we no longer need. EARLY is set to true when called from early
4160 optimizations. */
4162 unsigned int
4163 strip_predict_hints (function *fun, bool early)
4165 basic_block bb;
4166 gimple *ass_stmt;
4167 tree var;
4168 bool changed = false;
4170 FOR_EACH_BB_FN (bb, fun)
4172 gimple_stmt_iterator bi;
4173 for (bi = gsi_start_bb (bb); !gsi_end_p (bi);)
4175 gimple *stmt = gsi_stmt (bi);
4177 if (gimple_code (stmt) == GIMPLE_PREDICT)
4179 if (!early
4180 || strip_predictor_early (gimple_predict_predictor (stmt)))
4182 gsi_remove (&bi, true);
4183 changed = true;
4184 continue;
4187 else if (is_gimple_call (stmt))
4189 tree fndecl = gimple_call_fndecl (stmt);
4191 if (!early
4192 && ((fndecl != NULL_TREE
4193 && fndecl_built_in_p (fndecl, BUILT_IN_EXPECT)
4194 && gimple_call_num_args (stmt) == 2)
4195 || (fndecl != NULL_TREE
4196 && fndecl_built_in_p (fndecl,
4197 BUILT_IN_EXPECT_WITH_PROBABILITY)
4198 && gimple_call_num_args (stmt) == 3)
4199 || (gimple_call_internal_p (stmt)
4200 && gimple_call_internal_fn (stmt) == IFN_BUILTIN_EXPECT)))
4202 var = gimple_call_lhs (stmt);
4203 changed = true;
4204 if (var)
4206 ass_stmt
4207 = gimple_build_assign (var, gimple_call_arg (stmt, 0));
4208 gsi_replace (&bi, ass_stmt, true);
4210 else
4212 gsi_remove (&bi, true);
4213 continue;
4217 gsi_next (&bi);
4220 return changed ? TODO_cleanup_cfg : 0;
4223 namespace {
4225 const pass_data pass_data_strip_predict_hints =
4227 GIMPLE_PASS, /* type */
4228 "*strip_predict_hints", /* name */
4229 OPTGROUP_NONE, /* optinfo_flags */
4230 TV_BRANCH_PROB, /* tv_id */
4231 PROP_cfg, /* properties_required */
4232 0, /* properties_provided */
4233 0, /* properties_destroyed */
4234 0, /* todo_flags_start */
4235 0, /* todo_flags_finish */
4238 class pass_strip_predict_hints : public gimple_opt_pass
4240 public:
4241 pass_strip_predict_hints (gcc::context *ctxt)
4242 : gimple_opt_pass (pass_data_strip_predict_hints, ctxt)
4245 /* opt_pass methods: */
4246 opt_pass * clone () final override
4248 return new pass_strip_predict_hints (m_ctxt);
4250 void set_pass_param (unsigned int n, bool param) final override
4252 gcc_assert (n == 0);
4253 early_p = param;
4256 unsigned int execute (function *) final override;
4258 private:
4259 bool early_p;
4261 }; // class pass_strip_predict_hints
4263 unsigned int
4264 pass_strip_predict_hints::execute (function *fun)
4266 return strip_predict_hints (fun, early_p);
4269 } // anon namespace
4271 gimple_opt_pass *
4272 make_pass_strip_predict_hints (gcc::context *ctxt)
4274 return new pass_strip_predict_hints (ctxt);
4277 /* Rebuild function frequencies. Passes are in general expected to
4278 maintain profile by hand, however in some cases this is not possible:
4279 for example when inlining several functions with loops freuqencies might run
4280 out of scale and thus needs to be recomputed. */
4282 void
4283 rebuild_frequencies (void)
4285 timevar_push (TV_REBUILD_FREQUENCIES);
4287 /* When the max bb count in the function is small, there is a higher
4288 chance that there were truncation errors in the integer scaling
4289 of counts by inlining and other optimizations. This could lead
4290 to incorrect classification of code as being cold when it isn't.
4291 In that case, force the estimation of bb counts/frequencies from the
4292 branch probabilities, rather than computing frequencies from counts,
4293 which may also lead to frequencies incorrectly reduced to 0. There
4294 is less precision in the probabilities, so we only do this for small
4295 max counts. */
4296 cfun->cfg->count_max = profile_count::uninitialized ();
4297 basic_block bb;
4298 FOR_BB_BETWEEN (bb, ENTRY_BLOCK_PTR_FOR_FN (cfun), NULL, next_bb)
4299 cfun->cfg->count_max = cfun->cfg->count_max.max (bb->count);
4301 if (profile_status_for_fn (cfun) == PROFILE_GUESSED)
4303 loop_optimizer_init (LOOPS_HAVE_MARKED_IRREDUCIBLE_REGIONS);
4304 connect_infinite_loops_to_exit ();
4305 estimate_bb_frequencies (true);
4306 remove_fake_exit_edges ();
4307 loop_optimizer_finalize ();
4309 else if (profile_status_for_fn (cfun) == PROFILE_READ)
4310 update_max_bb_count ();
4311 else if (profile_status_for_fn (cfun) == PROFILE_ABSENT
4312 && !flag_guess_branch_prob)
4314 else
4315 gcc_unreachable ();
4316 timevar_pop (TV_REBUILD_FREQUENCIES);
4319 /* Perform a dry run of the branch prediction pass and report comparsion of
4320 the predicted and real profile into the dump file. */
4322 void
4323 report_predictor_hitrates (void)
4325 unsigned nb_loops;
4327 loop_optimizer_init (LOOPS_NORMAL);
4328 if (dump_file && (dump_flags & TDF_DETAILS))
4329 flow_loops_dump (dump_file, NULL, 0);
4331 nb_loops = number_of_loops (cfun);
4332 if (nb_loops > 1)
4333 scev_initialize ();
4335 tree_estimate_probability (true);
4337 if (nb_loops > 1)
4338 scev_finalize ();
4340 loop_optimizer_finalize ();
4343 /* Force edge E to be cold.
4344 If IMPOSSIBLE is true, for edge to have count and probability 0 otherwise
4345 keep low probability to represent possible error in a guess. This is used
4346 i.e. in case we predict loop to likely iterate given number of times but
4347 we are not 100% sure.
4349 This function locally updates profile without attempt to keep global
4350 consistency which cannot be reached in full generality without full profile
4351 rebuild from probabilities alone. Doing so is not necessarily a good idea
4352 because frequencies and counts may be more realistic then probabilities.
4354 In some cases (such as for elimination of early exits during full loop
4355 unrolling) the caller can ensure that profile will get consistent
4356 afterwards. */
4358 void
4359 force_edge_cold (edge e, bool impossible)
4361 profile_count count_sum = profile_count::zero ();
4362 profile_probability prob_sum = profile_probability::never ();
4363 edge_iterator ei;
4364 edge e2;
4365 bool uninitialized_exit = false;
4367 /* When branch probability guesses are not known, then do nothing. */
4368 if (!impossible && !e->count ().initialized_p ())
4369 return;
4371 profile_probability goal = (impossible ? profile_probability::never ()
4372 : profile_probability::very_unlikely ());
4374 /* If edge is already improbably or cold, just return. */
4375 if (e->probability <= goal
4376 && (!impossible || e->count () == profile_count::zero ()))
4377 return;
4378 FOR_EACH_EDGE (e2, ei, e->src->succs)
4379 if (e2 != e)
4381 if (e->flags & EDGE_FAKE)
4382 continue;
4383 if (e2->count ().initialized_p ())
4384 count_sum += e2->count ();
4385 if (e2->probability.initialized_p ())
4386 prob_sum += e2->probability;
4387 else
4388 uninitialized_exit = true;
4391 /* If we are not guessing profiles but have some other edges out,
4392 just assume the control flow goes elsewhere. */
4393 if (uninitialized_exit)
4394 e->probability = goal;
4395 /* If there are other edges out of e->src, redistribute probabilitity
4396 there. */
4397 else if (prob_sum > profile_probability::never ())
4399 if (!(e->probability < goal))
4400 e->probability = goal;
4402 profile_probability prob_comp = prob_sum / e->probability.invert ();
4404 if (dump_file && (dump_flags & TDF_DETAILS))
4405 fprintf (dump_file, "Making edge %i->%i %s by redistributing "
4406 "probability to other edges.\n",
4407 e->src->index, e->dest->index,
4408 impossible ? "impossible" : "cold");
4409 FOR_EACH_EDGE (e2, ei, e->src->succs)
4410 if (e2 != e)
4412 e2->probability /= prob_comp;
4414 if (current_ir_type () != IR_GIMPLE
4415 && e->src != ENTRY_BLOCK_PTR_FOR_FN (cfun))
4416 update_br_prob_note (e->src);
4418 /* If all edges out of e->src are unlikely, the basic block itself
4419 is unlikely. */
4420 else
4422 if (prob_sum == profile_probability::never ())
4423 e->probability = profile_probability::always ();
4424 else
4426 if (impossible)
4427 e->probability = profile_probability::never ();
4428 /* If BB has some edges out that are not impossible, we cannot
4429 assume that BB itself is. */
4430 impossible = false;
4432 if (current_ir_type () != IR_GIMPLE
4433 && e->src != ENTRY_BLOCK_PTR_FOR_FN (cfun))
4434 update_br_prob_note (e->src);
4435 if (e->src->count == profile_count::zero ())
4436 return;
4437 if (count_sum == profile_count::zero () && impossible)
4439 bool found = false;
4440 if (e->src == ENTRY_BLOCK_PTR_FOR_FN (cfun))
4442 else if (current_ir_type () == IR_GIMPLE)
4443 for (gimple_stmt_iterator gsi = gsi_start_bb (e->src);
4444 !gsi_end_p (gsi); gsi_next (&gsi))
4446 if (stmt_can_terminate_bb_p (gsi_stmt (gsi)))
4448 found = true;
4449 break;
4452 /* FIXME: Implement RTL path. */
4453 else
4454 found = true;
4455 if (!found)
4457 if (dump_file && (dump_flags & TDF_DETAILS))
4458 fprintf (dump_file,
4459 "Making bb %i impossible and dropping count to 0.\n",
4460 e->src->index);
4461 e->src->count = profile_count::zero ();
4462 FOR_EACH_EDGE (e2, ei, e->src->preds)
4463 force_edge_cold (e2, impossible);
4464 return;
4468 /* If we did not adjusting, the source basic block has no likely edeges
4469 leaving other direction. In that case force that bb cold, too.
4470 This in general is difficult task to do, but handle special case when
4471 BB has only one predecestor. This is common case when we are updating
4472 after loop transforms. */
4473 if (!(prob_sum > profile_probability::never ())
4474 && count_sum == profile_count::zero ()
4475 && single_pred_p (e->src) && e->src->count.to_frequency (cfun)
4476 > (impossible ? 0 : 1))
4478 int old_frequency = e->src->count.to_frequency (cfun);
4479 if (dump_file && (dump_flags & TDF_DETAILS))
4480 fprintf (dump_file, "Making bb %i %s.\n", e->src->index,
4481 impossible ? "impossible" : "cold");
4482 int new_frequency = MIN (e->src->count.to_frequency (cfun),
4483 impossible ? 0 : 1);
4484 if (impossible)
4485 e->src->count = profile_count::zero ();
4486 else
4487 e->src->count = e->count ().apply_scale (new_frequency,
4488 old_frequency);
4489 force_edge_cold (single_pred_edge (e->src), impossible);
4491 else if (dump_file && (dump_flags & TDF_DETAILS)
4492 && maybe_hot_bb_p (cfun, e->src))
4493 fprintf (dump_file, "Giving up on making bb %i %s.\n", e->src->index,
4494 impossible ? "impossible" : "cold");
4498 /* Change E's probability to NEW_E_PROB, redistributing the probabilities
4499 of other outgoing edges proportionally.
4501 Note that this function does not change the profile counts of any
4502 basic blocks. The caller must do that instead, using whatever
4503 information it has about the region that needs updating. */
4505 void
4506 change_edge_frequency (edge e, profile_probability new_e_prob)
4508 profile_probability old_e_prob = e->probability;
4509 profile_probability old_other_prob = old_e_prob.invert ();
4510 profile_probability new_other_prob = new_e_prob.invert ();
4512 e->probability = new_e_prob;
4513 profile_probability cumulative_prob = new_e_prob;
4515 unsigned int num_other = EDGE_COUNT (e->src->succs) - 1;
4516 edge other_e;
4517 edge_iterator ei;
4518 FOR_EACH_EDGE (other_e, ei, e->src->succs)
4519 if (other_e != e)
4521 num_other -= 1;
4522 if (num_other == 0)
4523 /* Ensure that the probabilities add up to 1 without
4524 rounding error. */
4525 other_e->probability = cumulative_prob.invert ();
4526 else
4528 other_e->probability /= old_other_prob;
4529 other_e->probability *= new_other_prob;
4530 cumulative_prob += other_e->probability;
4535 #if CHECKING_P
4537 namespace selftest {
4539 /* Test that value range of predictor values defined in predict.def is
4540 within range (50, 100]. */
4542 struct branch_predictor
4544 const char *name;
4545 int probability;
4548 #define DEF_PREDICTOR(ENUM, NAME, HITRATE, FLAGS) { NAME, HITRATE },
4550 static void
4551 test_prediction_value_range ()
4553 branch_predictor predictors[] = {
4554 #include "predict.def"
4555 { NULL, PROB_UNINITIALIZED }
4558 for (unsigned i = 0; predictors[i].name != NULL; i++)
4560 if (predictors[i].probability == PROB_UNINITIALIZED)
4561 continue;
4563 unsigned p = 100 * predictors[i].probability / REG_BR_PROB_BASE;
4564 ASSERT_TRUE (p >= 50 && p <= 100);
4568 #undef DEF_PREDICTOR
4570 /* Run all of the selfests within this file. */
4572 void
4573 predict_cc_tests ()
4575 test_prediction_value_range ();
4578 } // namespace selftest
4579 #endif /* CHECKING_P. */