compiler: only build thunk struct type when it is needed
[official-gcc.git] / gcc / postreload.cc
blob41f61d3264825b1f2b53e64c7eb022b1ad3de950
1 /* Perform simple optimizations to clean up the result of reload.
2 Copyright (C) 1987-2022 Free Software Foundation, Inc.
4 This file is part of GCC.
6 GCC is free software; you can redistribute it and/or modify it under
7 the terms of the GNU General Public License as published by the Free
8 Software Foundation; either version 3, or (at your option) any later
9 version.
11 GCC is distributed in the hope that it will be useful, but WITHOUT ANY
12 WARRANTY; without even the implied warranty of MERCHANTABILITY or
13 FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License
14 for more details.
16 You should have received a copy of the GNU General Public License
17 along with GCC; see the file COPYING3. If not see
18 <http://www.gnu.org/licenses/>. */
20 #include "config.h"
21 #include "system.h"
22 #include "coretypes.h"
23 #include "backend.h"
24 #include "target.h"
25 #include "rtl.h"
26 #include "tree.h"
27 #include "predict.h"
28 #include "df.h"
29 #include "memmodel.h"
30 #include "tm_p.h"
31 #include "optabs.h"
32 #include "regs.h"
33 #include "emit-rtl.h"
34 #include "recog.h"
36 #include "cfgrtl.h"
37 #include "cfgbuild.h"
38 #include "cfgcleanup.h"
39 #include "reload.h"
40 #include "cselib.h"
41 #include "tree-pass.h"
42 #include "dbgcnt.h"
43 #include "function-abi.h"
44 #include "rtl-iter.h"
46 static bool reload_cse_simplify (rtx_insn *, rtx);
47 static void reload_cse_regs_1 (void);
48 static int reload_cse_simplify_set (rtx, rtx_insn *);
49 static int reload_cse_simplify_operands (rtx_insn *, rtx);
51 static void reload_combine (void);
52 static void reload_combine_note_use (rtx *, rtx_insn *, int, rtx);
53 static void reload_combine_note_store (rtx, const_rtx, void *);
55 static bool reload_cse_move2add (rtx_insn *);
56 static void move2add_note_store (rtx, const_rtx, void *);
58 /* Call cse / combine like post-reload optimization phases.
59 FIRST is the first instruction. */
61 static void
62 reload_cse_regs (rtx_insn *first ATTRIBUTE_UNUSED)
64 bool moves_converted;
65 reload_cse_regs_1 ();
66 reload_combine ();
67 moves_converted = reload_cse_move2add (first);
68 if (flag_expensive_optimizations)
70 if (moves_converted)
71 reload_combine ();
72 reload_cse_regs_1 ();
76 /* Try to simplify INSN. Return true if the CFG may have changed. */
77 static bool
78 reload_cse_simplify (rtx_insn *insn, rtx testreg)
80 rtx body = PATTERN (insn);
81 basic_block insn_bb = BLOCK_FOR_INSN (insn);
82 unsigned insn_bb_succs = EDGE_COUNT (insn_bb->succs);
84 /* If NO_FUNCTION_CSE has been set by the target, then we should not try
85 to cse function calls. */
86 if (NO_FUNCTION_CSE && CALL_P (insn))
87 return false;
89 /* Remember if this insn has been sp += const_int. */
90 rtx sp_set = set_for_reg_notes (insn);
91 rtx sp_addend = NULL_RTX;
92 if (sp_set
93 && SET_DEST (sp_set) == stack_pointer_rtx
94 && GET_CODE (SET_SRC (sp_set)) == PLUS
95 && XEXP (SET_SRC (sp_set), 0) == stack_pointer_rtx
96 && CONST_INT_P (XEXP (SET_SRC (sp_set), 1)))
97 sp_addend = XEXP (SET_SRC (sp_set), 1);
99 if (GET_CODE (body) == SET)
101 int count = 0;
103 /* Simplify even if we may think it is a no-op.
104 We may think a memory load of a value smaller than WORD_SIZE
105 is redundant because we haven't taken into account possible
106 implicit extension. reload_cse_simplify_set() will bring
107 this out, so it's safer to simplify before we delete. */
108 count += reload_cse_simplify_set (body, insn);
110 if (!count && cselib_redundant_set_p (body))
112 if (check_for_inc_dec (insn))
113 delete_insn_and_edges (insn);
114 /* We're done with this insn. */
115 goto done;
118 if (count > 0)
119 apply_change_group ();
120 else
121 reload_cse_simplify_operands (insn, testreg);
123 else if (GET_CODE (body) == PARALLEL)
125 int i;
126 int count = 0;
127 rtx value = NULL_RTX;
129 /* Registers mentioned in the clobber list for an asm cannot be reused
130 within the body of the asm. Invalidate those registers now so that
131 we don't try to substitute values for them. */
132 if (asm_noperands (body) >= 0)
134 for (i = XVECLEN (body, 0) - 1; i >= 0; --i)
136 rtx part = XVECEXP (body, 0, i);
137 if (GET_CODE (part) == CLOBBER && REG_P (XEXP (part, 0)))
138 cselib_invalidate_rtx (XEXP (part, 0));
142 /* If every action in a PARALLEL is a noop, we can delete
143 the entire PARALLEL. */
144 for (i = XVECLEN (body, 0) - 1; i >= 0; --i)
146 rtx part = XVECEXP (body, 0, i);
147 if (GET_CODE (part) == SET)
149 if (! cselib_redundant_set_p (part))
150 break;
151 if (REG_P (SET_DEST (part))
152 && REG_FUNCTION_VALUE_P (SET_DEST (part)))
154 if (value)
155 break;
156 value = SET_DEST (part);
159 else if (GET_CODE (part) != CLOBBER && GET_CODE (part) != USE)
160 break;
163 if (i < 0)
165 if (check_for_inc_dec (insn))
166 delete_insn_and_edges (insn);
167 /* We're done with this insn. */
168 goto done;
171 /* It's not a no-op, but we can try to simplify it. */
172 for (i = XVECLEN (body, 0) - 1; i >= 0; --i)
173 if (GET_CODE (XVECEXP (body, 0, i)) == SET)
174 count += reload_cse_simplify_set (XVECEXP (body, 0, i), insn);
176 if (count > 0)
177 apply_change_group ();
178 else
179 reload_cse_simplify_operands (insn, testreg);
182 /* If sp += const_int insn is changed into sp = reg;, add REG_EQUAL
183 note so that the stack_adjustments pass can undo it if beneficial. */
184 if (sp_addend
185 && SET_DEST (sp_set) == stack_pointer_rtx
186 && REG_P (SET_SRC (sp_set)))
187 set_dst_reg_note (insn, REG_EQUAL,
188 gen_rtx_PLUS (Pmode, stack_pointer_rtx,
189 sp_addend), stack_pointer_rtx);
191 done:
192 return (EDGE_COUNT (insn_bb->succs) != insn_bb_succs);
195 /* Do a very simple CSE pass over the hard registers.
197 This function detects no-op moves where we happened to assign two
198 different pseudo-registers to the same hard register, and then
199 copied one to the other. Reload will generate a useless
200 instruction copying a register to itself.
202 This function also detects cases where we load a value from memory
203 into two different registers, and (if memory is more expensive than
204 registers) changes it to simply copy the first register into the
205 second register.
207 Another optimization is performed that scans the operands of each
208 instruction to see whether the value is already available in a
209 hard register. It then replaces the operand with the hard register
210 if possible, much like an optional reload would. */
212 static void
213 reload_cse_regs_1 (void)
215 bool cfg_changed = false;
216 basic_block bb;
217 rtx_insn *insn;
218 rtx testreg = gen_rtx_REG (word_mode, LAST_VIRTUAL_REGISTER + 1);
220 cselib_init (CSELIB_RECORD_MEMORY);
221 init_alias_analysis ();
223 FOR_EACH_BB_FN (bb, cfun)
224 FOR_BB_INSNS (bb, insn)
226 if (INSN_P (insn))
227 cfg_changed |= reload_cse_simplify (insn, testreg);
229 cselib_process_insn (insn);
232 /* Clean up. */
233 end_alias_analysis ();
234 cselib_finish ();
235 if (cfg_changed)
236 cleanup_cfg (0);
239 /* Try to simplify a single SET instruction. SET is the set pattern.
240 INSN is the instruction it came from.
241 This function only handles one case: if we set a register to a value
242 which is not a register, we try to find that value in some other register
243 and change the set into a register copy. */
245 static int
246 reload_cse_simplify_set (rtx set, rtx_insn *insn)
248 int did_change = 0;
249 int dreg;
250 rtx src;
251 reg_class_t dclass;
252 int old_cost;
253 cselib_val *val;
254 struct elt_loc_list *l;
255 enum rtx_code extend_op = UNKNOWN;
256 bool speed = optimize_bb_for_speed_p (BLOCK_FOR_INSN (insn));
258 dreg = true_regnum (SET_DEST (set));
259 if (dreg < 0)
260 return 0;
262 src = SET_SRC (set);
263 if (side_effects_p (src) || true_regnum (src) >= 0)
264 return 0;
266 dclass = REGNO_REG_CLASS (dreg);
268 /* When replacing a memory with a register, we need to honor assumptions
269 that combine made wrt the contents of sign bits. We'll do this by
270 generating an extend instruction instead of a reg->reg copy. Thus
271 the destination must be a register that we can widen. */
272 if (MEM_P (src)
273 && (extend_op = load_extend_op (GET_MODE (src))) != UNKNOWN
274 && !REG_P (SET_DEST (set)))
275 return 0;
277 val = cselib_lookup (src, GET_MODE (SET_DEST (set)), 0, VOIDmode);
278 if (! val)
279 return 0;
281 /* If memory loads are cheaper than register copies, don't change them. */
282 if (MEM_P (src))
283 old_cost = memory_move_cost (GET_MODE (src), dclass, true);
284 else if (REG_P (src))
285 old_cost = register_move_cost (GET_MODE (src),
286 REGNO_REG_CLASS (REGNO (src)), dclass);
287 else
288 old_cost = set_src_cost (src, GET_MODE (SET_DEST (set)), speed);
290 for (l = val->locs; l; l = l->next)
292 rtx this_rtx = l->loc;
293 int this_cost;
295 if (CONSTANT_P (this_rtx) && ! references_value_p (this_rtx, 0))
297 if (extend_op != UNKNOWN)
299 wide_int result;
301 if (!CONST_SCALAR_INT_P (this_rtx))
302 continue;
304 switch (extend_op)
306 case ZERO_EXTEND:
307 result = wide_int::from (rtx_mode_t (this_rtx,
308 GET_MODE (src)),
309 BITS_PER_WORD, UNSIGNED);
310 break;
311 case SIGN_EXTEND:
312 result = wide_int::from (rtx_mode_t (this_rtx,
313 GET_MODE (src)),
314 BITS_PER_WORD, SIGNED);
315 break;
316 default:
317 gcc_unreachable ();
319 this_rtx = immed_wide_int_const (result, word_mode);
322 this_cost = set_src_cost (this_rtx, GET_MODE (SET_DEST (set)), speed);
324 else if (REG_P (this_rtx))
326 if (extend_op != UNKNOWN)
328 this_rtx = gen_rtx_fmt_e (extend_op, word_mode, this_rtx);
329 this_cost = set_src_cost (this_rtx, word_mode, speed);
331 else
332 this_cost = register_move_cost (GET_MODE (this_rtx),
333 REGNO_REG_CLASS (REGNO (this_rtx)),
334 dclass);
336 else
337 continue;
339 /* If equal costs, prefer registers over anything else. That
340 tends to lead to smaller instructions on some machines. */
341 if (this_cost < old_cost
342 || (this_cost == old_cost
343 && REG_P (this_rtx)
344 && !REG_P (SET_SRC (set))))
346 if (extend_op != UNKNOWN
347 && REG_CAN_CHANGE_MODE_P (REGNO (SET_DEST (set)),
348 GET_MODE (SET_DEST (set)), word_mode))
350 rtx wide_dest = gen_rtx_REG (word_mode, REGNO (SET_DEST (set)));
351 ORIGINAL_REGNO (wide_dest) = ORIGINAL_REGNO (SET_DEST (set));
352 validate_change (insn, &SET_DEST (set), wide_dest, 1);
355 validate_unshare_change (insn, &SET_SRC (set), this_rtx, 1);
356 old_cost = this_cost, did_change = 1;
360 return did_change;
363 /* Try to replace operands in INSN with equivalent values that are already
364 in registers. This can be viewed as optional reloading.
366 For each non-register operand in the insn, see if any hard regs are
367 known to be equivalent to that operand. Record the alternatives which
368 can accept these hard registers. Among all alternatives, select the
369 ones which are better or equal to the one currently matching, where
370 "better" is in terms of '?' and '!' constraints. Among the remaining
371 alternatives, select the one which replaces most operands with
372 hard registers. */
374 static int
375 reload_cse_simplify_operands (rtx_insn *insn, rtx testreg)
377 int i, j;
379 /* For each operand, all registers that are equivalent to it. */
380 HARD_REG_SET equiv_regs[MAX_RECOG_OPERANDS];
382 const char *constraints[MAX_RECOG_OPERANDS];
384 /* Vector recording how bad an alternative is. */
385 int *alternative_reject;
386 /* Vector recording how many registers can be introduced by choosing
387 this alternative. */
388 int *alternative_nregs;
389 /* Array of vectors recording, for each operand and each alternative,
390 which hard register to substitute, or -1 if the operand should be
391 left as it is. */
392 int *op_alt_regno[MAX_RECOG_OPERANDS];
393 /* Array of alternatives, sorted in order of decreasing desirability. */
394 int *alternative_order;
396 extract_constrain_insn (insn);
398 if (recog_data.n_alternatives == 0 || recog_data.n_operands == 0)
399 return 0;
401 alternative_reject = XALLOCAVEC (int, recog_data.n_alternatives);
402 alternative_nregs = XALLOCAVEC (int, recog_data.n_alternatives);
403 alternative_order = XALLOCAVEC (int, recog_data.n_alternatives);
404 memset (alternative_reject, 0, recog_data.n_alternatives * sizeof (int));
405 memset (alternative_nregs, 0, recog_data.n_alternatives * sizeof (int));
407 /* For each operand, find out which regs are equivalent. */
408 for (i = 0; i < recog_data.n_operands; i++)
410 cselib_val *v;
411 struct elt_loc_list *l;
412 rtx op;
414 CLEAR_HARD_REG_SET (equiv_regs[i]);
416 /* cselib blows up on CODE_LABELs. Trying to fix that doesn't seem
417 right, so avoid the problem here. Similarly NOTE_INSN_DELETED_LABEL.
418 Likewise if we have a constant and the insn pattern doesn't tell us
419 the mode we need. */
420 if (LABEL_P (recog_data.operand[i])
421 || (NOTE_P (recog_data.operand[i])
422 && NOTE_KIND (recog_data.operand[i]) == NOTE_INSN_DELETED_LABEL)
423 || (CONSTANT_P (recog_data.operand[i])
424 && recog_data.operand_mode[i] == VOIDmode))
425 continue;
427 op = recog_data.operand[i];
428 if (MEM_P (op) && load_extend_op (GET_MODE (op)) != UNKNOWN)
430 rtx set = single_set (insn);
432 /* We might have multiple sets, some of which do implicit
433 extension. Punt on this for now. */
434 if (! set)
435 continue;
436 /* If the destination is also a MEM or a STRICT_LOW_PART, no
437 extension applies.
438 Also, if there is an explicit extension, we don't have to
439 worry about an implicit one. */
440 else if (MEM_P (SET_DEST (set))
441 || GET_CODE (SET_DEST (set)) == STRICT_LOW_PART
442 || GET_CODE (SET_SRC (set)) == ZERO_EXTEND
443 || GET_CODE (SET_SRC (set)) == SIGN_EXTEND)
444 ; /* Continue ordinary processing. */
445 /* If the register cannot change mode to word_mode, it follows that
446 it cannot have been used in word_mode. */
447 else if (REG_P (SET_DEST (set))
448 && !REG_CAN_CHANGE_MODE_P (REGNO (SET_DEST (set)),
449 GET_MODE (SET_DEST (set)),
450 word_mode))
451 ; /* Continue ordinary processing. */
452 /* If this is a straight load, make the extension explicit. */
453 else if (REG_P (SET_DEST (set))
454 && recog_data.n_operands == 2
455 && SET_SRC (set) == op
456 && SET_DEST (set) == recog_data.operand[1-i])
458 validate_change (insn, recog_data.operand_loc[i],
459 gen_rtx_fmt_e (load_extend_op (GET_MODE (op)),
460 word_mode, op),
462 validate_change (insn, recog_data.operand_loc[1-i],
463 gen_rtx_REG (word_mode, REGNO (SET_DEST (set))),
465 if (! apply_change_group ())
466 return 0;
467 return reload_cse_simplify_operands (insn, testreg);
469 else
470 /* ??? There might be arithmetic operations with memory that are
471 safe to optimize, but is it worth the trouble? */
472 continue;
475 if (side_effects_p (op))
476 continue;
477 v = cselib_lookup (op, recog_data.operand_mode[i], 0, VOIDmode);
478 if (! v)
479 continue;
481 for (l = v->locs; l; l = l->next)
482 if (REG_P (l->loc))
483 SET_HARD_REG_BIT (equiv_regs[i], REGNO (l->loc));
486 alternative_mask preferred = get_preferred_alternatives (insn);
487 for (i = 0; i < recog_data.n_operands; i++)
489 machine_mode mode;
490 int regno;
491 const char *p;
493 op_alt_regno[i] = XALLOCAVEC (int, recog_data.n_alternatives);
494 for (j = 0; j < recog_data.n_alternatives; j++)
495 op_alt_regno[i][j] = -1;
497 p = constraints[i] = recog_data.constraints[i];
498 mode = recog_data.operand_mode[i];
500 /* Add the reject values for each alternative given by the constraints
501 for this operand. */
502 j = 0;
503 while (*p != '\0')
505 char c = *p++;
506 if (c == ',')
507 j++;
508 else if (c == '?')
509 alternative_reject[j] += 3;
510 else if (c == '!')
511 alternative_reject[j] += 300;
514 /* We won't change operands which are already registers. We
515 also don't want to modify output operands. */
516 regno = true_regnum (recog_data.operand[i]);
517 if (regno >= 0
518 || constraints[i][0] == '='
519 || constraints[i][0] == '+')
520 continue;
522 for (regno = 0; regno < FIRST_PSEUDO_REGISTER; regno++)
524 enum reg_class rclass = NO_REGS;
526 if (! TEST_HARD_REG_BIT (equiv_regs[i], regno))
527 continue;
529 set_mode_and_regno (testreg, mode, regno);
531 /* We found a register equal to this operand. Now look for all
532 alternatives that can accept this register and have not been
533 assigned a register they can use yet. */
534 j = 0;
535 p = constraints[i];
536 for (;;)
538 char c = *p;
540 switch (c)
542 case 'g':
543 rclass = reg_class_subunion[rclass][GENERAL_REGS];
544 break;
546 default:
547 rclass
548 = (reg_class_subunion
549 [rclass]
550 [reg_class_for_constraint (lookup_constraint (p))]);
551 break;
553 case ',': case '\0':
554 /* See if REGNO fits this alternative, and set it up as the
555 replacement register if we don't have one for this
556 alternative yet and the operand being replaced is not
557 a cheap CONST_INT. */
558 if (op_alt_regno[i][j] == -1
559 && TEST_BIT (preferred, j)
560 && reg_fits_class_p (testreg, rclass, 0, mode)
561 && (!CONST_INT_P (recog_data.operand[i])
562 || (set_src_cost (recog_data.operand[i], mode,
563 optimize_bb_for_speed_p
564 (BLOCK_FOR_INSN (insn)))
565 > set_src_cost (testreg, mode,
566 optimize_bb_for_speed_p
567 (BLOCK_FOR_INSN (insn))))))
569 alternative_nregs[j]++;
570 op_alt_regno[i][j] = regno;
572 j++;
573 rclass = NO_REGS;
574 break;
576 p += CONSTRAINT_LEN (c, p);
578 if (c == '\0')
579 break;
584 /* The loop below sets alternative_order[0] but -Wmaybe-uninitialized
585 can't know that. Clear it here to avoid the warning. */
586 alternative_order[0] = 0;
587 gcc_assert (!recog_data.n_alternatives
588 || (which_alternative >= 0
589 && which_alternative < recog_data.n_alternatives));
591 /* Record all alternatives which are better or equal to the currently
592 matching one in the alternative_order array. */
593 for (i = j = 0; i < recog_data.n_alternatives; i++)
594 if (alternative_reject[i] <= alternative_reject[which_alternative])
595 alternative_order[j++] = i;
596 recog_data.n_alternatives = j;
598 /* Sort it. Given a small number of alternatives, a dumb algorithm
599 won't hurt too much. */
600 for (i = 0; i < recog_data.n_alternatives - 1; i++)
602 int best = i;
603 int best_reject = alternative_reject[alternative_order[i]];
604 int best_nregs = alternative_nregs[alternative_order[i]];
606 for (j = i + 1; j < recog_data.n_alternatives; j++)
608 int this_reject = alternative_reject[alternative_order[j]];
609 int this_nregs = alternative_nregs[alternative_order[j]];
611 if (this_reject < best_reject
612 || (this_reject == best_reject && this_nregs > best_nregs))
614 best = j;
615 best_reject = this_reject;
616 best_nregs = this_nregs;
620 std::swap (alternative_order[best], alternative_order[i]);
623 /* Substitute the operands as determined by op_alt_regno for the best
624 alternative. */
625 j = alternative_order[0];
627 for (i = 0; i < recog_data.n_operands; i++)
629 machine_mode mode = recog_data.operand_mode[i];
630 if (op_alt_regno[i][j] == -1)
631 continue;
633 validate_change (insn, recog_data.operand_loc[i],
634 gen_rtx_REG (mode, op_alt_regno[i][j]), 1);
637 for (i = recog_data.n_dups - 1; i >= 0; i--)
639 int op = recog_data.dup_num[i];
640 machine_mode mode = recog_data.operand_mode[op];
642 if (op_alt_regno[op][j] == -1)
643 continue;
645 validate_change (insn, recog_data.dup_loc[i],
646 gen_rtx_REG (mode, op_alt_regno[op][j]), 1);
649 return apply_change_group ();
652 /* If reload couldn't use reg+reg+offset addressing, try to use reg+reg
653 addressing now.
654 This code might also be useful when reload gave up on reg+reg addressing
655 because of clashes between the return register and INDEX_REG_CLASS. */
657 /* The maximum number of uses of a register we can keep track of to
658 replace them with reg+reg addressing. */
659 #define RELOAD_COMBINE_MAX_USES 16
661 /* Describes a recorded use of a register. */
662 struct reg_use
664 /* The insn where a register has been used. */
665 rtx_insn *insn;
666 /* Points to the memory reference enclosing the use, if any, NULL_RTX
667 otherwise. */
668 rtx containing_mem;
669 /* Location of the register within INSN. */
670 rtx *usep;
671 /* The reverse uid of the insn. */
672 int ruid;
675 /* If the register is used in some unknown fashion, USE_INDEX is negative.
676 If it is dead, USE_INDEX is RELOAD_COMBINE_MAX_USES, and STORE_RUID
677 indicates where it is first set or clobbered.
678 Otherwise, USE_INDEX is the index of the last encountered use of the
679 register (which is first among these we have seen since we scan backwards).
680 USE_RUID indicates the first encountered, i.e. last, of these uses.
681 If ALL_OFFSETS_MATCH is true, all encountered uses were inside a PLUS
682 with a constant offset; OFFSET contains this constant in that case.
683 STORE_RUID is always meaningful if we only want to use a value in a
684 register in a different place: it denotes the next insn in the insn
685 stream (i.e. the last encountered) that sets or clobbers the register.
686 REAL_STORE_RUID is similar, but clobbers are ignored when updating it.
687 EXPR is the expression used when storing the register. */
688 static struct
690 struct reg_use reg_use[RELOAD_COMBINE_MAX_USES];
691 rtx offset;
692 int use_index;
693 int store_ruid;
694 int real_store_ruid;
695 int use_ruid;
696 bool all_offsets_match;
697 rtx expr;
698 } reg_state[FIRST_PSEUDO_REGISTER];
700 /* Reverse linear uid. This is increased in reload_combine while scanning
701 the instructions from last to first. It is used to set last_label_ruid
702 and the store_ruid / use_ruid fields in reg_state. */
703 static int reload_combine_ruid;
705 /* The RUID of the last label we encountered in reload_combine. */
706 static int last_label_ruid;
708 /* The RUID of the last jump we encountered in reload_combine. */
709 static int last_jump_ruid;
711 /* The register numbers of the first and last index register. A value of
712 -1 in LAST_INDEX_REG indicates that we've previously computed these
713 values and found no suitable index registers. */
714 static int first_index_reg = -1;
715 static int last_index_reg;
717 #define LABEL_LIVE(LABEL) \
718 (label_live[CODE_LABEL_NUMBER (LABEL) - min_labelno])
720 /* Subroutine of reload_combine_split_ruids, called to fix up a single
721 ruid pointed to by *PRUID if it is higher than SPLIT_RUID. */
723 static inline void
724 reload_combine_split_one_ruid (int *pruid, int split_ruid)
726 if (*pruid > split_ruid)
727 (*pruid)++;
730 /* Called when we insert a new insn in a position we've already passed in
731 the scan. Examine all our state, increasing all ruids that are higher
732 than SPLIT_RUID by one in order to make room for a new insn. */
734 static void
735 reload_combine_split_ruids (int split_ruid)
737 unsigned i;
739 reload_combine_split_one_ruid (&reload_combine_ruid, split_ruid);
740 reload_combine_split_one_ruid (&last_label_ruid, split_ruid);
741 reload_combine_split_one_ruid (&last_jump_ruid, split_ruid);
743 for (i = 0; i < FIRST_PSEUDO_REGISTER; i++)
745 int j, idx = reg_state[i].use_index;
746 reload_combine_split_one_ruid (&reg_state[i].use_ruid, split_ruid);
747 reload_combine_split_one_ruid (&reg_state[i].store_ruid, split_ruid);
748 reload_combine_split_one_ruid (&reg_state[i].real_store_ruid,
749 split_ruid);
750 if (idx < 0)
751 continue;
752 for (j = idx; j < RELOAD_COMBINE_MAX_USES; j++)
754 reload_combine_split_one_ruid (&reg_state[i].reg_use[j].ruid,
755 split_ruid);
760 /* Called when we are about to rescan a previously encountered insn with
761 reload_combine_note_use after modifying some part of it. This clears all
762 information about uses in that particular insn. */
764 static void
765 reload_combine_purge_insn_uses (rtx_insn *insn)
767 unsigned i;
769 for (i = 0; i < FIRST_PSEUDO_REGISTER; i++)
771 int j, k, idx = reg_state[i].use_index;
772 if (idx < 0)
773 continue;
774 j = k = RELOAD_COMBINE_MAX_USES;
775 while (j-- > idx)
777 if (reg_state[i].reg_use[j].insn != insn)
779 k--;
780 if (k != j)
781 reg_state[i].reg_use[k] = reg_state[i].reg_use[j];
784 reg_state[i].use_index = k;
788 /* Called when we need to forget about all uses of REGNO after an insn
789 which is identified by RUID. */
791 static void
792 reload_combine_purge_reg_uses_after_ruid (unsigned regno, int ruid)
794 int j, k, idx = reg_state[regno].use_index;
795 if (idx < 0)
796 return;
797 j = k = RELOAD_COMBINE_MAX_USES;
798 while (j-- > idx)
800 if (reg_state[regno].reg_use[j].ruid >= ruid)
802 k--;
803 if (k != j)
804 reg_state[regno].reg_use[k] = reg_state[regno].reg_use[j];
807 reg_state[regno].use_index = k;
810 /* Find the use of REGNO with the ruid that is highest among those
811 lower than RUID_LIMIT, and return it if it is the only use of this
812 reg in the insn. Return NULL otherwise. */
814 static struct reg_use *
815 reload_combine_closest_single_use (unsigned regno, int ruid_limit)
817 int i, best_ruid = 0;
818 int use_idx = reg_state[regno].use_index;
819 struct reg_use *retval;
821 if (use_idx < 0)
822 return NULL;
823 retval = NULL;
824 for (i = use_idx; i < RELOAD_COMBINE_MAX_USES; i++)
826 struct reg_use *use = reg_state[regno].reg_use + i;
827 int this_ruid = use->ruid;
828 if (this_ruid >= ruid_limit)
829 continue;
830 if (this_ruid > best_ruid)
832 best_ruid = this_ruid;
833 retval = use;
835 else if (this_ruid == best_ruid)
836 retval = NULL;
838 if (last_label_ruid >= best_ruid)
839 return NULL;
840 return retval;
843 /* After we've moved an add insn, fix up any debug insns that occur
844 between the old location of the add and the new location. REG is
845 the destination register of the add insn; REPLACEMENT is the
846 SET_SRC of the add. FROM and TO specify the range in which we
847 should make this change on debug insns. */
849 static void
850 fixup_debug_insns (rtx reg, rtx replacement, rtx_insn *from, rtx_insn *to)
852 rtx_insn *insn;
853 for (insn = from; insn != to; insn = NEXT_INSN (insn))
855 rtx t;
857 if (!DEBUG_BIND_INSN_P (insn))
858 continue;
860 t = INSN_VAR_LOCATION_LOC (insn);
861 t = simplify_replace_rtx (t, reg, replacement);
862 validate_change (insn, &INSN_VAR_LOCATION_LOC (insn), t, 0);
866 /* Subroutine of reload_combine_recognize_const_pattern. Try to replace REG
867 with SRC in the insn described by USE, taking costs into account. Return
868 true if we made the replacement. */
870 static bool
871 try_replace_in_use (struct reg_use *use, rtx reg, rtx src)
873 rtx_insn *use_insn = use->insn;
874 rtx mem = use->containing_mem;
875 bool speed = optimize_bb_for_speed_p (BLOCK_FOR_INSN (use_insn));
877 if (mem != NULL_RTX)
879 addr_space_t as = MEM_ADDR_SPACE (mem);
880 rtx oldaddr = XEXP (mem, 0);
881 rtx newaddr = NULL_RTX;
882 int old_cost = address_cost (oldaddr, GET_MODE (mem), as, speed);
883 int new_cost;
885 newaddr = simplify_replace_rtx (oldaddr, reg, src);
886 if (memory_address_addr_space_p (GET_MODE (mem), newaddr, as))
888 XEXP (mem, 0) = newaddr;
889 new_cost = address_cost (newaddr, GET_MODE (mem), as, speed);
890 XEXP (mem, 0) = oldaddr;
891 if (new_cost <= old_cost
892 && validate_change (use_insn,
893 &XEXP (mem, 0), newaddr, 0))
894 return true;
897 else
899 rtx new_set = single_set (use_insn);
900 if (new_set
901 && REG_P (SET_DEST (new_set))
902 && GET_CODE (SET_SRC (new_set)) == PLUS
903 && REG_P (XEXP (SET_SRC (new_set), 0))
904 && CONSTANT_P (XEXP (SET_SRC (new_set), 1)))
906 rtx new_src;
907 machine_mode mode = GET_MODE (SET_DEST (new_set));
908 int old_cost = set_src_cost (SET_SRC (new_set), mode, speed);
910 gcc_assert (rtx_equal_p (XEXP (SET_SRC (new_set), 0), reg));
911 new_src = simplify_replace_rtx (SET_SRC (new_set), reg, src);
913 if (set_src_cost (new_src, mode, speed) <= old_cost
914 && validate_change (use_insn, &SET_SRC (new_set),
915 new_src, 0))
916 return true;
919 return false;
922 /* Called by reload_combine when scanning INSN. This function tries to detect
923 patterns where a constant is added to a register, and the result is used
924 in an address.
925 Return true if no further processing is needed on INSN; false if it wasn't
926 recognized and should be handled normally. */
928 static bool
929 reload_combine_recognize_const_pattern (rtx_insn *insn)
931 int from_ruid = reload_combine_ruid;
932 rtx set, pat, reg, src, addreg;
933 unsigned int regno;
934 struct reg_use *use;
935 bool must_move_add;
936 rtx_insn *add_moved_after_insn = NULL;
937 int add_moved_after_ruid = 0;
938 int clobbered_regno = -1;
940 set = single_set (insn);
941 if (set == NULL_RTX)
942 return false;
944 reg = SET_DEST (set);
945 src = SET_SRC (set);
946 if (!REG_P (reg)
947 || REG_NREGS (reg) != 1
948 || GET_MODE (reg) != Pmode
949 || reg == stack_pointer_rtx)
950 return false;
952 regno = REGNO (reg);
954 /* We look for a REG1 = REG2 + CONSTANT insn, followed by either
955 uses of REG1 inside an address, or inside another add insn. If
956 possible and profitable, merge the addition into subsequent
957 uses. */
958 if (GET_CODE (src) != PLUS
959 || !REG_P (XEXP (src, 0))
960 || !CONSTANT_P (XEXP (src, 1)))
961 return false;
963 addreg = XEXP (src, 0);
964 must_move_add = rtx_equal_p (reg, addreg);
966 pat = PATTERN (insn);
967 if (must_move_add && set != pat)
969 /* We have to be careful when moving the add; apart from the
970 single_set there may also be clobbers. Recognize one special
971 case, that of one clobber alongside the set (likely a clobber
972 of the CC register). */
973 gcc_assert (GET_CODE (PATTERN (insn)) == PARALLEL);
974 if (XVECLEN (pat, 0) != 2 || XVECEXP (pat, 0, 0) != set
975 || GET_CODE (XVECEXP (pat, 0, 1)) != CLOBBER
976 || !REG_P (XEXP (XVECEXP (pat, 0, 1), 0)))
977 return false;
978 clobbered_regno = REGNO (XEXP (XVECEXP (pat, 0, 1), 0));
983 use = reload_combine_closest_single_use (regno, from_ruid);
985 if (use)
986 /* Start the search for the next use from here. */
987 from_ruid = use->ruid;
989 if (use && GET_MODE (*use->usep) == Pmode)
991 bool delete_add = false;
992 rtx_insn *use_insn = use->insn;
993 int use_ruid = use->ruid;
995 /* Avoid moving the add insn past a jump. */
996 if (must_move_add && use_ruid <= last_jump_ruid)
997 break;
999 /* If the add clobbers another hard reg in parallel, don't move
1000 it past a real set of this hard reg. */
1001 if (must_move_add && clobbered_regno >= 0
1002 && reg_state[clobbered_regno].real_store_ruid >= use_ruid)
1003 break;
1005 gcc_assert (reg_state[regno].store_ruid <= use_ruid);
1006 /* Avoid moving a use of ADDREG past a point where it is stored. */
1007 if (reg_state[REGNO (addreg)].store_ruid > use_ruid)
1008 break;
1010 /* We also must not move the addition past an insn that sets
1011 the same register, unless we can combine two add insns. */
1012 if (must_move_add && reg_state[regno].store_ruid == use_ruid)
1014 if (use->containing_mem == NULL_RTX)
1015 delete_add = true;
1016 else
1017 break;
1020 if (try_replace_in_use (use, reg, src))
1022 reload_combine_purge_insn_uses (use_insn);
1023 reload_combine_note_use (&PATTERN (use_insn), use_insn,
1024 use_ruid, NULL_RTX);
1026 if (delete_add)
1028 fixup_debug_insns (reg, src, insn, use_insn);
1029 delete_insn (insn);
1030 return true;
1032 if (must_move_add)
1034 add_moved_after_insn = use_insn;
1035 add_moved_after_ruid = use_ruid;
1037 continue;
1040 /* If we get here, we couldn't handle this use. */
1041 if (must_move_add)
1042 break;
1044 while (use);
1046 if (!must_move_add || add_moved_after_insn == NULL_RTX)
1047 /* Process the add normally. */
1048 return false;
1050 fixup_debug_insns (reg, src, insn, add_moved_after_insn);
1052 reorder_insns (insn, insn, add_moved_after_insn);
1053 reload_combine_purge_reg_uses_after_ruid (regno, add_moved_after_ruid);
1054 reload_combine_split_ruids (add_moved_after_ruid - 1);
1055 reload_combine_note_use (&PATTERN (insn), insn,
1056 add_moved_after_ruid, NULL_RTX);
1057 reg_state[regno].store_ruid = add_moved_after_ruid;
1059 return true;
1062 /* Called by reload_combine when scanning INSN. Try to detect a pattern we
1063 can handle and improve. Return true if no further processing is needed on
1064 INSN; false if it wasn't recognized and should be handled normally. */
1066 static bool
1067 reload_combine_recognize_pattern (rtx_insn *insn)
1069 rtx set, reg, src;
1071 set = single_set (insn);
1072 if (set == NULL_RTX)
1073 return false;
1075 reg = SET_DEST (set);
1076 src = SET_SRC (set);
1077 if (!REG_P (reg) || REG_NREGS (reg) != 1)
1078 return false;
1080 unsigned int regno = REGNO (reg);
1081 machine_mode mode = GET_MODE (reg);
1083 if (reg_state[regno].use_index < 0
1084 || reg_state[regno].use_index >= RELOAD_COMBINE_MAX_USES)
1085 return false;
1087 for (int i = reg_state[regno].use_index;
1088 i < RELOAD_COMBINE_MAX_USES; i++)
1090 struct reg_use *use = reg_state[regno].reg_use + i;
1091 if (GET_MODE (*use->usep) != mode)
1092 return false;
1093 /* Don't try to adjust (use (REGX)). */
1094 if (GET_CODE (PATTERN (use->insn)) == USE
1095 && &XEXP (PATTERN (use->insn), 0) == use->usep)
1096 return false;
1099 /* Look for (set (REGX) (CONST_INT))
1100 (set (REGX) (PLUS (REGX) (REGY)))
1102 ... (MEM (REGX)) ...
1103 and convert it to
1104 (set (REGZ) (CONST_INT))
1106 ... (MEM (PLUS (REGZ) (REGY)))... .
1108 First, check that we have (set (REGX) (PLUS (REGX) (REGY)))
1109 and that we know all uses of REGX before it dies.
1110 Also, explicitly check that REGX != REGY; our life information
1111 does not yet show whether REGY changes in this insn. */
1113 if (GET_CODE (src) == PLUS
1114 && reg_state[regno].all_offsets_match
1115 && last_index_reg != -1
1116 && REG_P (XEXP (src, 1))
1117 && rtx_equal_p (XEXP (src, 0), reg)
1118 && !rtx_equal_p (XEXP (src, 1), reg)
1119 && last_label_ruid < reg_state[regno].use_ruid)
1121 rtx base = XEXP (src, 1);
1122 rtx_insn *prev = prev_nonnote_nondebug_insn (insn);
1123 rtx prev_set = prev ? single_set (prev) : NULL_RTX;
1124 rtx index_reg = NULL_RTX;
1125 rtx reg_sum = NULL_RTX;
1126 int i;
1128 /* Now we need to set INDEX_REG to an index register (denoted as
1129 REGZ in the illustration above) and REG_SUM to the expression
1130 register+register that we want to use to substitute uses of REG
1131 (typically in MEMs) with. First check REG and BASE for being
1132 index registers; we can use them even if they are not dead. */
1133 if (TEST_HARD_REG_BIT (reg_class_contents[INDEX_REG_CLASS], regno)
1134 || TEST_HARD_REG_BIT (reg_class_contents[INDEX_REG_CLASS],
1135 REGNO (base)))
1137 index_reg = reg;
1138 reg_sum = src;
1140 else
1142 /* Otherwise, look for a free index register. Since we have
1143 checked above that neither REG nor BASE are index registers,
1144 if we find anything at all, it will be different from these
1145 two registers. */
1146 for (i = first_index_reg; i <= last_index_reg; i++)
1148 if (TEST_HARD_REG_BIT (reg_class_contents[INDEX_REG_CLASS], i)
1149 && reg_state[i].use_index == RELOAD_COMBINE_MAX_USES
1150 && reg_state[i].store_ruid <= reg_state[regno].use_ruid
1151 && (crtl->abi->clobbers_full_reg_p (i)
1152 || df_regs_ever_live_p (i))
1153 && (!frame_pointer_needed || i != HARD_FRAME_POINTER_REGNUM)
1154 && !fixed_regs[i] && !global_regs[i]
1155 && hard_regno_nregs (i, GET_MODE (reg)) == 1
1156 && targetm.hard_regno_scratch_ok (i))
1158 index_reg = gen_rtx_REG (GET_MODE (reg), i);
1159 reg_sum = gen_rtx_PLUS (GET_MODE (reg), index_reg, base);
1160 break;
1165 /* Check that PREV_SET is indeed (set (REGX) (CONST_INT)) and that
1166 (REGY), i.e. BASE, is not clobbered before the last use we'll
1167 create. */
1168 if (reg_sum
1169 && prev_set
1170 && CONST_INT_P (SET_SRC (prev_set))
1171 && rtx_equal_p (SET_DEST (prev_set), reg)
1172 && (reg_state[REGNO (base)].store_ruid
1173 <= reg_state[regno].use_ruid))
1175 /* Change destination register and, if necessary, the constant
1176 value in PREV, the constant loading instruction. */
1177 validate_change (prev, &SET_DEST (prev_set), index_reg, 1);
1178 if (reg_state[regno].offset != const0_rtx)
1180 HOST_WIDE_INT c
1181 = trunc_int_for_mode (UINTVAL (SET_SRC (prev_set))
1182 + UINTVAL (reg_state[regno].offset),
1183 GET_MODE (index_reg));
1184 validate_change (prev, &SET_SRC (prev_set), GEN_INT (c), 1);
1187 /* Now for every use of REG that we have recorded, replace REG
1188 with REG_SUM. */
1189 for (i = reg_state[regno].use_index;
1190 i < RELOAD_COMBINE_MAX_USES; i++)
1191 validate_unshare_change (reg_state[regno].reg_use[i].insn,
1192 reg_state[regno].reg_use[i].usep,
1193 /* Each change must have its own
1194 replacement. */
1195 reg_sum, 1);
1197 if (apply_change_group ())
1199 struct reg_use *lowest_ruid = NULL;
1201 /* For every new use of REG_SUM, we have to record the use
1202 of BASE therein, i.e. operand 1. */
1203 for (i = reg_state[regno].use_index;
1204 i < RELOAD_COMBINE_MAX_USES; i++)
1206 struct reg_use *use = reg_state[regno].reg_use + i;
1207 reload_combine_note_use (&XEXP (*use->usep, 1), use->insn,
1208 use->ruid, use->containing_mem);
1209 if (lowest_ruid == NULL || use->ruid < lowest_ruid->ruid)
1210 lowest_ruid = use;
1213 fixup_debug_insns (reg, reg_sum, insn, lowest_ruid->insn);
1215 /* Delete the reg-reg addition. */
1216 delete_insn (insn);
1218 if (reg_state[regno].offset != const0_rtx)
1219 /* Previous REG_EQUIV / REG_EQUAL notes for PREV
1220 are now invalid. */
1221 remove_reg_equal_equiv_notes (prev);
1223 reg_state[regno].use_index = RELOAD_COMBINE_MAX_USES;
1224 return true;
1228 return false;
1231 static void
1232 reload_combine (void)
1234 rtx_insn *insn, *prev;
1235 basic_block bb;
1236 unsigned int r;
1237 int min_labelno, n_labels;
1238 HARD_REG_SET ever_live_at_start, *label_live;
1240 /* To avoid wasting too much time later searching for an index register,
1241 determine the minimum and maximum index register numbers. */
1242 if (INDEX_REG_CLASS == NO_REGS)
1243 last_index_reg = -1;
1244 else if (first_index_reg == -1 && last_index_reg == 0)
1246 for (r = 0; r < FIRST_PSEUDO_REGISTER; r++)
1247 if (TEST_HARD_REG_BIT (reg_class_contents[INDEX_REG_CLASS], r))
1249 if (first_index_reg == -1)
1250 first_index_reg = r;
1252 last_index_reg = r;
1255 /* If no index register is available, we can quit now. Set LAST_INDEX_REG
1256 to -1 so we'll know to quit early the next time we get here. */
1257 if (first_index_reg == -1)
1259 last_index_reg = -1;
1260 return;
1264 /* Set up LABEL_LIVE and EVER_LIVE_AT_START. The register lifetime
1265 information is a bit fuzzy immediately after reload, but it's
1266 still good enough to determine which registers are live at a jump
1267 destination. */
1268 min_labelno = get_first_label_num ();
1269 n_labels = max_label_num () - min_labelno;
1270 label_live = XNEWVEC (HARD_REG_SET, n_labels);
1271 CLEAR_HARD_REG_SET (ever_live_at_start);
1273 FOR_EACH_BB_REVERSE_FN (bb, cfun)
1275 insn = BB_HEAD (bb);
1276 if (LABEL_P (insn))
1278 HARD_REG_SET live;
1279 bitmap live_in = df_get_live_in (bb);
1281 REG_SET_TO_HARD_REG_SET (live, live_in);
1282 compute_use_by_pseudos (&live, live_in);
1283 LABEL_LIVE (insn) = live;
1284 ever_live_at_start |= live;
1288 /* Initialize last_label_ruid, reload_combine_ruid and reg_state. */
1289 last_label_ruid = last_jump_ruid = reload_combine_ruid = 0;
1290 for (r = 0; r < FIRST_PSEUDO_REGISTER; r++)
1292 reg_state[r].store_ruid = 0;
1293 reg_state[r].real_store_ruid = 0;
1294 if (fixed_regs[r])
1295 reg_state[r].use_index = -1;
1296 else
1297 reg_state[r].use_index = RELOAD_COMBINE_MAX_USES;
1300 for (insn = get_last_insn (); insn; insn = prev)
1302 bool control_flow_insn;
1303 rtx note;
1305 prev = PREV_INSN (insn);
1307 /* We cannot do our optimization across labels. Invalidating all the use
1308 information we have would be costly, so we just note where the label
1309 is and then later disable any optimization that would cross it. */
1310 if (LABEL_P (insn))
1311 last_label_ruid = reload_combine_ruid;
1312 else if (BARRIER_P (insn))
1314 /* Crossing a barrier resets all the use information. */
1315 for (r = 0; r < FIRST_PSEUDO_REGISTER; r++)
1316 if (! fixed_regs[r])
1317 reg_state[r].use_index = RELOAD_COMBINE_MAX_USES;
1319 else if (INSN_P (insn) && volatile_insn_p (PATTERN (insn)))
1320 /* Optimizations across insns being marked as volatile must be
1321 prevented. All the usage information is invalidated
1322 here. */
1323 for (r = 0; r < FIRST_PSEUDO_REGISTER; r++)
1324 if (! fixed_regs[r]
1325 && reg_state[r].use_index != RELOAD_COMBINE_MAX_USES)
1326 reg_state[r].use_index = -1;
1328 if (! NONDEBUG_INSN_P (insn))
1329 continue;
1331 reload_combine_ruid++;
1333 control_flow_insn = control_flow_insn_p (insn);
1334 if (control_flow_insn)
1335 last_jump_ruid = reload_combine_ruid;
1337 if (reload_combine_recognize_const_pattern (insn)
1338 || reload_combine_recognize_pattern (insn))
1339 continue;
1341 note_stores (insn, reload_combine_note_store, NULL);
1343 if (CALL_P (insn))
1345 rtx link;
1346 HARD_REG_SET used_regs = insn_callee_abi (insn).full_reg_clobbers ();
1348 for (r = 0; r < FIRST_PSEUDO_REGISTER; r++)
1349 if (TEST_HARD_REG_BIT (used_regs, r))
1351 reg_state[r].use_index = RELOAD_COMBINE_MAX_USES;
1352 reg_state[r].store_ruid = reload_combine_ruid;
1355 for (link = CALL_INSN_FUNCTION_USAGE (insn); link;
1356 link = XEXP (link, 1))
1358 rtx setuse = XEXP (link, 0);
1359 rtx usage_rtx = XEXP (setuse, 0);
1361 if (GET_CODE (setuse) == USE && REG_P (usage_rtx))
1363 unsigned int end_regno = END_REGNO (usage_rtx);
1364 for (unsigned int i = REGNO (usage_rtx); i < end_regno; ++i)
1365 reg_state[i].use_index = -1;
1370 if (control_flow_insn && !ANY_RETURN_P (PATTERN (insn)))
1372 /* Non-spill registers might be used at the call destination in
1373 some unknown fashion, so we have to mark the unknown use. */
1374 HARD_REG_SET *live;
1376 if ((condjump_p (insn) || condjump_in_parallel_p (insn))
1377 && JUMP_LABEL (insn))
1379 if (ANY_RETURN_P (JUMP_LABEL (insn)))
1380 live = NULL;
1381 else
1382 live = &LABEL_LIVE (JUMP_LABEL (insn));
1384 else
1385 live = &ever_live_at_start;
1387 if (live)
1388 for (r = 0; r < FIRST_PSEUDO_REGISTER; r++)
1389 if (TEST_HARD_REG_BIT (*live, r))
1390 reg_state[r].use_index = -1;
1393 reload_combine_note_use (&PATTERN (insn), insn, reload_combine_ruid,
1394 NULL_RTX);
1396 for (note = REG_NOTES (insn); note; note = XEXP (note, 1))
1398 if (REG_NOTE_KIND (note) == REG_INC && REG_P (XEXP (note, 0)))
1400 int regno = REGNO (XEXP (note, 0));
1401 reg_state[regno].store_ruid = reload_combine_ruid;
1402 reg_state[regno].real_store_ruid = reload_combine_ruid;
1403 reg_state[regno].use_index = -1;
1408 free (label_live);
1411 /* Check if DST is a register or a subreg of a register; if it is,
1412 update store_ruid, real_store_ruid and use_index in the reg_state
1413 structure accordingly. Called via note_stores from reload_combine. */
1415 static void
1416 reload_combine_note_store (rtx dst, const_rtx set, void *data ATTRIBUTE_UNUSED)
1418 int regno = 0;
1419 int i;
1420 machine_mode mode = GET_MODE (dst);
1422 if (GET_CODE (dst) == SUBREG)
1424 regno = subreg_regno_offset (REGNO (SUBREG_REG (dst)),
1425 GET_MODE (SUBREG_REG (dst)),
1426 SUBREG_BYTE (dst),
1427 GET_MODE (dst));
1428 dst = SUBREG_REG (dst);
1431 /* Some targets do argument pushes without adding REG_INC notes. */
1433 if (MEM_P (dst))
1435 dst = XEXP (dst, 0);
1436 if (GET_CODE (dst) == PRE_INC || GET_CODE (dst) == POST_INC
1437 || GET_CODE (dst) == PRE_DEC || GET_CODE (dst) == POST_DEC
1438 || GET_CODE (dst) == PRE_MODIFY || GET_CODE (dst) == POST_MODIFY)
1440 unsigned int end_regno = END_REGNO (XEXP (dst, 0));
1441 for (unsigned int i = REGNO (XEXP (dst, 0)); i < end_regno; ++i)
1443 /* We could probably do better, but for now mark the register
1444 as used in an unknown fashion and set/clobbered at this
1445 insn. */
1446 reg_state[i].use_index = -1;
1447 reg_state[i].store_ruid = reload_combine_ruid;
1448 reg_state[i].real_store_ruid = reload_combine_ruid;
1451 else
1452 return;
1455 if (!REG_P (dst))
1456 return;
1457 regno += REGNO (dst);
1459 /* note_stores might have stripped a STRICT_LOW_PART, so we have to be
1460 careful with registers / register parts that are not full words.
1461 Similarly for ZERO_EXTRACT. */
1462 if (GET_CODE (SET_DEST (set)) == ZERO_EXTRACT
1463 || GET_CODE (SET_DEST (set)) == STRICT_LOW_PART)
1465 for (i = end_hard_regno (mode, regno) - 1; i >= regno; i--)
1467 reg_state[i].use_index = -1;
1468 reg_state[i].store_ruid = reload_combine_ruid;
1469 reg_state[i].real_store_ruid = reload_combine_ruid;
1472 else
1474 for (i = end_hard_regno (mode, regno) - 1; i >= regno; i--)
1476 reg_state[i].store_ruid = reload_combine_ruid;
1477 if (GET_CODE (set) == SET)
1478 reg_state[i].real_store_ruid = reload_combine_ruid;
1479 reg_state[i].use_index = RELOAD_COMBINE_MAX_USES;
1484 /* XP points to a piece of rtl that has to be checked for any uses of
1485 registers.
1486 *XP is the pattern of INSN, or a part of it.
1487 Called from reload_combine, and recursively by itself. */
1488 static void
1489 reload_combine_note_use (rtx *xp, rtx_insn *insn, int ruid, rtx containing_mem)
1491 rtx x = *xp;
1492 enum rtx_code code = x->code;
1493 const char *fmt;
1494 int i, j;
1495 rtx offset = const0_rtx; /* For the REG case below. */
1497 switch (code)
1499 case SET:
1500 if (REG_P (SET_DEST (x)))
1502 reload_combine_note_use (&SET_SRC (x), insn, ruid, NULL_RTX);
1503 return;
1505 break;
1507 case USE:
1508 /* If this is the USE of a return value, we can't change it. */
1509 if (REG_P (XEXP (x, 0)) && REG_FUNCTION_VALUE_P (XEXP (x, 0)))
1511 /* Mark the return register as used in an unknown fashion. */
1512 rtx reg = XEXP (x, 0);
1513 unsigned int end_regno = END_REGNO (reg);
1514 for (unsigned int regno = REGNO (reg); regno < end_regno; ++regno)
1515 reg_state[regno].use_index = -1;
1516 return;
1518 break;
1520 case CLOBBER:
1521 if (REG_P (SET_DEST (x)))
1523 /* No spurious CLOBBERs of pseudo registers may remain. */
1524 gcc_assert (REGNO (SET_DEST (x)) < FIRST_PSEUDO_REGISTER);
1525 return;
1527 break;
1529 case PLUS:
1530 /* We are interested in (plus (reg) (const_int)) . */
1531 if (!REG_P (XEXP (x, 0))
1532 || !CONST_INT_P (XEXP (x, 1)))
1533 break;
1534 offset = XEXP (x, 1);
1535 x = XEXP (x, 0);
1536 /* Fall through. */
1537 case REG:
1539 int regno = REGNO (x);
1540 int use_index;
1541 int nregs;
1543 /* No spurious USEs of pseudo registers may remain. */
1544 gcc_assert (regno < FIRST_PSEUDO_REGISTER);
1546 nregs = REG_NREGS (x);
1548 /* We can't substitute into multi-hard-reg uses. */
1549 if (nregs > 1)
1551 while (--nregs >= 0)
1552 reg_state[regno + nregs].use_index = -1;
1553 return;
1556 /* We may be called to update uses in previously seen insns.
1557 Don't add uses beyond the last store we saw. */
1558 if (ruid < reg_state[regno].store_ruid)
1559 return;
1561 /* If this register is already used in some unknown fashion, we
1562 can't do anything.
1563 If we decrement the index from zero to -1, we can't store more
1564 uses, so this register becomes used in an unknown fashion. */
1565 use_index = --reg_state[regno].use_index;
1566 if (use_index < 0)
1567 return;
1569 if (use_index == RELOAD_COMBINE_MAX_USES - 1)
1571 /* This is the first use of this register we have seen since we
1572 marked it as dead. */
1573 reg_state[regno].offset = offset;
1574 reg_state[regno].all_offsets_match = true;
1575 reg_state[regno].use_ruid = ruid;
1577 else
1579 if (reg_state[regno].use_ruid > ruid)
1580 reg_state[regno].use_ruid = ruid;
1582 if (! rtx_equal_p (offset, reg_state[regno].offset))
1583 reg_state[regno].all_offsets_match = false;
1586 reg_state[regno].reg_use[use_index].insn = insn;
1587 reg_state[regno].reg_use[use_index].ruid = ruid;
1588 reg_state[regno].reg_use[use_index].containing_mem = containing_mem;
1589 reg_state[regno].reg_use[use_index].usep = xp;
1590 return;
1593 case MEM:
1594 containing_mem = x;
1595 break;
1597 default:
1598 break;
1601 /* Recursively process the components of X. */
1602 fmt = GET_RTX_FORMAT (code);
1603 for (i = GET_RTX_LENGTH (code) - 1; i >= 0; i--)
1605 if (fmt[i] == 'e')
1606 reload_combine_note_use (&XEXP (x, i), insn, ruid, containing_mem);
1607 else if (fmt[i] == 'E')
1609 for (j = XVECLEN (x, i) - 1; j >= 0; j--)
1610 reload_combine_note_use (&XVECEXP (x, i, j), insn, ruid,
1611 containing_mem);
1616 /* See if we can reduce the cost of a constant by replacing a move
1617 with an add. We track situations in which a register is set to a
1618 constant or to a register plus a constant. */
1619 /* We cannot do our optimization across labels. Invalidating all the
1620 information about register contents we have would be costly, so we
1621 use move2add_last_label_luid to note where the label is and then
1622 later disable any optimization that would cross it.
1623 reg_offset[n] / reg_base_reg[n] / reg_symbol_ref[n] / reg_mode[n]
1624 are only valid if reg_set_luid[n] is greater than
1625 move2add_last_label_luid.
1626 For a set that established a new (potential) base register with
1627 non-constant value, we use move2add_luid from the place where the
1628 setting insn is encountered; registers based off that base then
1629 get the same reg_set_luid. Constants all get
1630 move2add_last_label_luid + 1 as their reg_set_luid. */
1631 static int reg_set_luid[FIRST_PSEUDO_REGISTER];
1633 /* If reg_base_reg[n] is negative, register n has been set to
1634 reg_offset[n] or reg_symbol_ref[n] + reg_offset[n] in mode reg_mode[n].
1635 If reg_base_reg[n] is non-negative, register n has been set to the
1636 sum of reg_offset[n] and the value of register reg_base_reg[n]
1637 before reg_set_luid[n], calculated in mode reg_mode[n] .
1638 For multi-hard-register registers, all but the first one are
1639 recorded as BLKmode in reg_mode. Setting reg_mode to VOIDmode
1640 marks it as invalid. */
1641 static HOST_WIDE_INT reg_offset[FIRST_PSEUDO_REGISTER];
1642 static int reg_base_reg[FIRST_PSEUDO_REGISTER];
1643 static rtx reg_symbol_ref[FIRST_PSEUDO_REGISTER];
1644 static machine_mode reg_mode[FIRST_PSEUDO_REGISTER];
1646 /* move2add_luid is linearly increased while scanning the instructions
1647 from first to last. It is used to set reg_set_luid in
1648 reload_cse_move2add and move2add_note_store. */
1649 static int move2add_luid;
1651 /* move2add_last_label_luid is set whenever a label is found. Labels
1652 invalidate all previously collected reg_offset data. */
1653 static int move2add_last_label_luid;
1655 /* ??? We don't know how zero / sign extension is handled, hence we
1656 can't go from a narrower to a wider mode. */
1657 #define MODES_OK_FOR_MOVE2ADD(OUTMODE, INMODE) \
1658 (GET_MODE_SIZE (OUTMODE) == GET_MODE_SIZE (INMODE) \
1659 || (GET_MODE_SIZE (OUTMODE) <= GET_MODE_SIZE (INMODE) \
1660 && TRULY_NOOP_TRUNCATION_MODES_P (OUTMODE, INMODE)))
1662 /* Record that REG is being set to a value with the mode of REG. */
1664 static void
1665 move2add_record_mode (rtx reg)
1667 int regno, nregs;
1668 machine_mode mode = GET_MODE (reg);
1670 if (GET_CODE (reg) == SUBREG)
1672 regno = subreg_regno (reg);
1673 nregs = subreg_nregs (reg);
1675 else if (REG_P (reg))
1677 regno = REGNO (reg);
1678 nregs = REG_NREGS (reg);
1680 else
1681 gcc_unreachable ();
1682 for (int i = nregs - 1; i > 0; i--)
1683 reg_mode[regno + i] = BLKmode;
1684 reg_mode[regno] = mode;
1687 /* Record that REG is being set to the sum of SYM and OFF. */
1689 static void
1690 move2add_record_sym_value (rtx reg, rtx sym, rtx off)
1692 int regno = REGNO (reg);
1694 move2add_record_mode (reg);
1695 reg_set_luid[regno] = move2add_luid;
1696 reg_base_reg[regno] = -1;
1697 reg_symbol_ref[regno] = sym;
1698 reg_offset[regno] = INTVAL (off);
1701 /* Check if REGNO contains a valid value in MODE. */
1703 static bool
1704 move2add_valid_value_p (int regno, scalar_int_mode mode)
1706 if (reg_set_luid[regno] <= move2add_last_label_luid)
1707 return false;
1709 if (mode != reg_mode[regno])
1711 scalar_int_mode old_mode;
1712 if (!is_a <scalar_int_mode> (reg_mode[regno], &old_mode)
1713 || !MODES_OK_FOR_MOVE2ADD (mode, old_mode)
1714 || !REG_CAN_CHANGE_MODE_P (regno, old_mode, mode))
1715 return false;
1716 /* The value loaded into regno in reg_mode[regno] is also valid in
1717 mode after truncation only if (REG:mode regno) is the lowpart of
1718 (REG:reg_mode[regno] regno). Now, for big endian, the starting
1719 regno of the lowpart might be different. */
1720 poly_int64 s_off = subreg_lowpart_offset (mode, old_mode);
1721 s_off = subreg_regno_offset (regno, old_mode, s_off, mode);
1722 if (maybe_ne (s_off, 0))
1723 /* We could in principle adjust regno, check reg_mode[regno] to be
1724 BLKmode, and return s_off to the caller (vs. -1 for failure),
1725 but we currently have no callers that could make use of this
1726 information. */
1727 return false;
1730 for (int i = end_hard_regno (mode, regno) - 1; i > regno; i--)
1731 if (reg_mode[i] != BLKmode)
1732 return false;
1733 return true;
1736 /* This function is called with INSN that sets REG (of mode MODE)
1737 to (SYM + OFF), while REG is known to already have value (SYM + offset).
1738 This function tries to change INSN into an add instruction
1739 (set (REG) (plus (REG) (OFF - offset))) using the known value.
1740 It also updates the information about REG's known value.
1741 Return true if we made a change. */
1743 static bool
1744 move2add_use_add2_insn (scalar_int_mode mode, rtx reg, rtx sym, rtx off,
1745 rtx_insn *insn)
1747 rtx pat = PATTERN (insn);
1748 rtx src = SET_SRC (pat);
1749 int regno = REGNO (reg);
1750 rtx new_src = gen_int_mode (UINTVAL (off) - reg_offset[regno], mode);
1751 bool speed = optimize_bb_for_speed_p (BLOCK_FOR_INSN (insn));
1752 bool changed = false;
1754 /* (set (reg) (plus (reg) (const_int 0))) is not canonical;
1755 use (set (reg) (reg)) instead.
1756 We don't delete this insn, nor do we convert it into a
1757 note, to avoid losing register notes or the return
1758 value flag. jump2 already knows how to get rid of
1759 no-op moves. */
1760 if (new_src == const0_rtx)
1762 /* If the constants are different, this is a
1763 truncation, that, if turned into (set (reg)
1764 (reg)), would be discarded. Maybe we should
1765 try a truncMN pattern? */
1766 if (INTVAL (off) == reg_offset [regno])
1767 changed = validate_change (insn, &SET_SRC (pat), reg, 0);
1769 else
1771 struct full_rtx_costs oldcst, newcst;
1772 rtx tem = gen_rtx_PLUS (mode, reg, new_src);
1774 get_full_set_rtx_cost (pat, &oldcst);
1775 SET_SRC (pat) = tem;
1776 get_full_set_rtx_cost (pat, &newcst);
1777 SET_SRC (pat) = src;
1779 if (costs_lt_p (&newcst, &oldcst, speed)
1780 && have_add2_insn (reg, new_src))
1781 changed = validate_change (insn, &SET_SRC (pat), tem, 0);
1782 else if (sym == NULL_RTX && mode != BImode)
1784 scalar_int_mode narrow_mode;
1785 FOR_EACH_MODE_UNTIL (narrow_mode, mode)
1787 if (have_insn_for (STRICT_LOW_PART, narrow_mode)
1788 && ((reg_offset[regno] & ~GET_MODE_MASK (narrow_mode))
1789 == (INTVAL (off) & ~GET_MODE_MASK (narrow_mode))))
1791 rtx narrow_reg = gen_lowpart_common (narrow_mode, reg);
1792 rtx narrow_src = gen_int_mode (INTVAL (off),
1793 narrow_mode);
1794 rtx new_set
1795 = gen_rtx_SET (gen_rtx_STRICT_LOW_PART (VOIDmode,
1796 narrow_reg),
1797 narrow_src);
1798 get_full_set_rtx_cost (new_set, &newcst);
1799 if (costs_lt_p (&newcst, &oldcst, speed))
1801 changed = validate_change (insn, &PATTERN (insn),
1802 new_set, 0);
1803 if (changed)
1804 break;
1810 move2add_record_sym_value (reg, sym, off);
1811 return changed;
1815 /* This function is called with INSN that sets REG (of mode MODE) to
1816 (SYM + OFF), but REG doesn't have known value (SYM + offset). This
1817 function tries to find another register which is known to already have
1818 value (SYM + offset) and change INSN into an add instruction
1819 (set (REG) (plus (the found register) (OFF - offset))) if such
1820 a register is found. It also updates the information about
1821 REG's known value.
1822 Return true iff we made a change. */
1824 static bool
1825 move2add_use_add3_insn (scalar_int_mode mode, rtx reg, rtx sym, rtx off,
1826 rtx_insn *insn)
1828 rtx pat = PATTERN (insn);
1829 rtx src = SET_SRC (pat);
1830 int regno = REGNO (reg);
1831 int min_regno = 0;
1832 bool speed = optimize_bb_for_speed_p (BLOCK_FOR_INSN (insn));
1833 int i;
1834 bool changed = false;
1835 struct full_rtx_costs oldcst, newcst, mincst;
1836 rtx plus_expr;
1838 init_costs_to_max (&mincst);
1839 get_full_set_rtx_cost (pat, &oldcst);
1841 plus_expr = gen_rtx_PLUS (GET_MODE (reg), reg, const0_rtx);
1842 SET_SRC (pat) = plus_expr;
1844 for (i = 0; i < FIRST_PSEUDO_REGISTER; i++)
1845 if (move2add_valid_value_p (i, mode)
1846 && reg_base_reg[i] < 0
1847 && reg_symbol_ref[i] != NULL_RTX
1848 && rtx_equal_p (sym, reg_symbol_ref[i]))
1850 rtx new_src = gen_int_mode (UINTVAL (off) - reg_offset[i],
1851 GET_MODE (reg));
1852 /* (set (reg) (plus (reg) (const_int 0))) is not canonical;
1853 use (set (reg) (reg)) instead.
1854 We don't delete this insn, nor do we convert it into a
1855 note, to avoid losing register notes or the return
1856 value flag. jump2 already knows how to get rid of
1857 no-op moves. */
1858 if (new_src == const0_rtx)
1860 init_costs_to_zero (&mincst);
1861 min_regno = i;
1862 break;
1864 else
1866 XEXP (plus_expr, 1) = new_src;
1867 get_full_set_rtx_cost (pat, &newcst);
1869 if (costs_lt_p (&newcst, &mincst, speed))
1871 mincst = newcst;
1872 min_regno = i;
1876 SET_SRC (pat) = src;
1878 if (costs_lt_p (&mincst, &oldcst, speed))
1880 rtx tem;
1882 tem = gen_rtx_REG (GET_MODE (reg), min_regno);
1883 if (i != min_regno)
1885 rtx new_src = gen_int_mode (UINTVAL (off) - reg_offset[min_regno],
1886 GET_MODE (reg));
1887 tem = gen_rtx_PLUS (GET_MODE (reg), tem, new_src);
1889 if (validate_change (insn, &SET_SRC (pat), tem, 0))
1890 changed = true;
1892 reg_set_luid[regno] = move2add_luid;
1893 move2add_record_sym_value (reg, sym, off);
1894 return changed;
1897 /* Convert move insns with constant inputs to additions if they are cheaper.
1898 Return true if any changes were made. */
1899 static bool
1900 reload_cse_move2add (rtx_insn *first)
1902 int i;
1903 rtx_insn *insn;
1904 bool changed = false;
1906 for (i = FIRST_PSEUDO_REGISTER - 1; i >= 0; i--)
1908 reg_set_luid[i] = 0;
1909 reg_offset[i] = 0;
1910 reg_base_reg[i] = 0;
1911 reg_symbol_ref[i] = NULL_RTX;
1912 reg_mode[i] = VOIDmode;
1915 move2add_last_label_luid = 0;
1916 move2add_luid = 2;
1917 for (insn = first; insn; insn = NEXT_INSN (insn), move2add_luid++)
1919 rtx pat, note;
1921 if (LABEL_P (insn))
1923 move2add_last_label_luid = move2add_luid;
1924 /* We're going to increment move2add_luid twice after a
1925 label, so that we can use move2add_last_label_luid + 1 as
1926 the luid for constants. */
1927 move2add_luid++;
1928 continue;
1930 if (! INSN_P (insn))
1931 continue;
1932 pat = PATTERN (insn);
1933 /* For simplicity, we only perform this optimization on
1934 straightforward SETs. */
1935 scalar_int_mode mode;
1936 if (GET_CODE (pat) == SET
1937 && REG_P (SET_DEST (pat))
1938 && is_a <scalar_int_mode> (GET_MODE (SET_DEST (pat)), &mode))
1940 rtx reg = SET_DEST (pat);
1941 int regno = REGNO (reg);
1942 rtx src = SET_SRC (pat);
1944 /* Check if we have valid information on the contents of this
1945 register in the mode of REG. */
1946 if (move2add_valid_value_p (regno, mode)
1947 && dbg_cnt (cse2_move2add))
1949 /* Try to transform (set (REGX) (CONST_INT A))
1951 (set (REGX) (CONST_INT B))
1953 (set (REGX) (CONST_INT A))
1955 (set (REGX) (plus (REGX) (CONST_INT B-A)))
1957 (set (REGX) (CONST_INT A))
1959 (set (STRICT_LOW_PART (REGX)) (CONST_INT B))
1962 if (CONST_INT_P (src)
1963 && reg_base_reg[regno] < 0
1964 && reg_symbol_ref[regno] == NULL_RTX)
1966 changed |= move2add_use_add2_insn (mode, reg, NULL_RTX,
1967 src, insn);
1968 continue;
1971 /* Try to transform (set (REGX) (REGY))
1972 (set (REGX) (PLUS (REGX) (CONST_INT A)))
1974 (set (REGX) (REGY))
1975 (set (REGX) (PLUS (REGX) (CONST_INT B)))
1977 (set (REGX) (REGY))
1978 (set (REGX) (PLUS (REGX) (CONST_INT A)))
1980 (set (REGX) (plus (REGX) (CONST_INT B-A))) */
1981 else if (REG_P (src)
1982 && reg_set_luid[regno] == reg_set_luid[REGNO (src)]
1983 && reg_base_reg[regno] == reg_base_reg[REGNO (src)]
1984 && move2add_valid_value_p (REGNO (src), mode))
1986 rtx_insn *next = next_nonnote_nondebug_insn (insn);
1987 rtx set = NULL_RTX;
1988 if (next)
1989 set = single_set (next);
1990 if (set
1991 && SET_DEST (set) == reg
1992 && GET_CODE (SET_SRC (set)) == PLUS
1993 && XEXP (SET_SRC (set), 0) == reg
1994 && CONST_INT_P (XEXP (SET_SRC (set), 1)))
1996 rtx src3 = XEXP (SET_SRC (set), 1);
1997 unsigned HOST_WIDE_INT added_offset = UINTVAL (src3);
1998 HOST_WIDE_INT base_offset = reg_offset[REGNO (src)];
1999 HOST_WIDE_INT regno_offset = reg_offset[regno];
2000 rtx new_src =
2001 gen_int_mode (added_offset
2002 + base_offset
2003 - regno_offset,
2004 mode);
2005 bool success = false;
2006 bool speed = optimize_bb_for_speed_p (BLOCK_FOR_INSN (insn));
2008 if (new_src == const0_rtx)
2009 /* See above why we create (set (reg) (reg)) here. */
2010 success
2011 = validate_change (next, &SET_SRC (set), reg, 0);
2012 else
2014 rtx old_src = SET_SRC (set);
2015 struct full_rtx_costs oldcst, newcst;
2016 rtx tem = gen_rtx_PLUS (mode, reg, new_src);
2018 get_full_set_rtx_cost (set, &oldcst);
2019 SET_SRC (set) = tem;
2020 get_full_set_src_cost (tem, mode, &newcst);
2021 SET_SRC (set) = old_src;
2022 costs_add_n_insns (&oldcst, 1);
2024 if (costs_lt_p (&newcst, &oldcst, speed)
2025 && have_add2_insn (reg, new_src))
2027 rtx newpat = gen_rtx_SET (reg, tem);
2028 success
2029 = validate_change (next, &PATTERN (next),
2030 newpat, 0);
2033 if (success)
2034 delete_insn (insn);
2035 changed |= success;
2036 insn = next;
2037 move2add_record_mode (reg);
2038 reg_offset[regno]
2039 = trunc_int_for_mode (added_offset + base_offset,
2040 mode);
2041 continue;
2046 /* Try to transform
2047 (set (REGX) (CONST (PLUS (SYMBOL_REF) (CONST_INT A))))
2049 (set (REGY) (CONST (PLUS (SYMBOL_REF) (CONST_INT B))))
2051 (set (REGX) (CONST (PLUS (SYMBOL_REF) (CONST_INT A))))
2053 (set (REGY) (CONST (PLUS (REGX) (CONST_INT B-A)))) */
2054 if ((GET_CODE (src) == SYMBOL_REF
2055 || (GET_CODE (src) == CONST
2056 && GET_CODE (XEXP (src, 0)) == PLUS
2057 && GET_CODE (XEXP (XEXP (src, 0), 0)) == SYMBOL_REF
2058 && CONST_INT_P (XEXP (XEXP (src, 0), 1))))
2059 && dbg_cnt (cse2_move2add))
2061 rtx sym, off;
2063 if (GET_CODE (src) == SYMBOL_REF)
2065 sym = src;
2066 off = const0_rtx;
2068 else
2070 sym = XEXP (XEXP (src, 0), 0);
2071 off = XEXP (XEXP (src, 0), 1);
2074 /* If the reg already contains the value which is sum of
2075 sym and some constant value, we can use an add2 insn. */
2076 if (move2add_valid_value_p (regno, mode)
2077 && reg_base_reg[regno] < 0
2078 && reg_symbol_ref[regno] != NULL_RTX
2079 && rtx_equal_p (sym, reg_symbol_ref[regno]))
2080 changed |= move2add_use_add2_insn (mode, reg, sym, off, insn);
2082 /* Otherwise, we have to find a register whose value is sum
2083 of sym and some constant value. */
2084 else
2085 changed |= move2add_use_add3_insn (mode, reg, sym, off, insn);
2087 continue;
2091 for (note = REG_NOTES (insn); note; note = XEXP (note, 1))
2093 if (REG_NOTE_KIND (note) == REG_INC
2094 && REG_P (XEXP (note, 0)))
2096 /* Reset the information about this register. */
2097 int regno = REGNO (XEXP (note, 0));
2098 if (regno < FIRST_PSEUDO_REGISTER)
2100 move2add_record_mode (XEXP (note, 0));
2101 reg_mode[regno] = VOIDmode;
2106 /* There are no REG_INC notes for SP autoinc. */
2107 subrtx_var_iterator::array_type array;
2108 FOR_EACH_SUBRTX_VAR (iter, array, PATTERN (insn), NONCONST)
2110 rtx mem = *iter;
2111 if (mem
2112 && MEM_P (mem)
2113 && GET_RTX_CLASS (GET_CODE (XEXP (mem, 0))) == RTX_AUTOINC)
2115 if (XEXP (XEXP (mem, 0), 0) == stack_pointer_rtx)
2116 reg_mode[STACK_POINTER_REGNUM] = VOIDmode;
2120 note_stores (insn, move2add_note_store, insn);
2122 /* If INSN is a conditional branch, we try to extract an
2123 implicit set out of it. */
2124 if (any_condjump_p (insn))
2126 rtx cnd = fis_get_condition (insn);
2128 if (cnd != NULL_RTX
2129 && GET_CODE (cnd) == NE
2130 && REG_P (XEXP (cnd, 0))
2131 && !reg_set_p (XEXP (cnd, 0), insn)
2132 /* The following two checks, which are also in
2133 move2add_note_store, are intended to reduce the
2134 number of calls to gen_rtx_SET to avoid memory
2135 allocation if possible. */
2136 && SCALAR_INT_MODE_P (GET_MODE (XEXP (cnd, 0)))
2137 && REG_NREGS (XEXP (cnd, 0)) == 1
2138 && CONST_INT_P (XEXP (cnd, 1)))
2140 rtx implicit_set =
2141 gen_rtx_SET (XEXP (cnd, 0), XEXP (cnd, 1));
2142 move2add_note_store (SET_DEST (implicit_set), implicit_set, insn);
2146 /* If this is a CALL_INSN, all call used registers are stored with
2147 unknown values. */
2148 if (CALL_P (insn))
2150 function_abi callee_abi = insn_callee_abi (insn);
2151 for (i = FIRST_PSEUDO_REGISTER - 1; i >= 0; i--)
2152 if (reg_mode[i] != VOIDmode
2153 && reg_mode[i] != BLKmode
2154 && callee_abi.clobbers_reg_p (reg_mode[i], i))
2155 /* Reset the information about this register. */
2156 reg_mode[i] = VOIDmode;
2159 return changed;
2162 /* SET is a SET or CLOBBER that sets DST. DATA is the insn which
2163 contains SET.
2164 Update reg_set_luid, reg_offset and reg_base_reg accordingly.
2165 Called from reload_cse_move2add via note_stores. */
2167 static void
2168 move2add_note_store (rtx dst, const_rtx set, void *data)
2170 rtx_insn *insn = (rtx_insn *) data;
2171 unsigned int regno = 0;
2172 scalar_int_mode mode;
2174 if (GET_CODE (dst) == SUBREG)
2175 regno = subreg_regno (dst);
2176 else if (REG_P (dst))
2177 regno = REGNO (dst);
2178 else
2179 return;
2181 if (!is_a <scalar_int_mode> (GET_MODE (dst), &mode))
2182 goto invalidate;
2184 if (GET_CODE (set) == SET)
2186 rtx note, sym = NULL_RTX;
2187 rtx off;
2189 note = find_reg_equal_equiv_note (insn);
2190 if (note && GET_CODE (XEXP (note, 0)) == SYMBOL_REF)
2192 sym = XEXP (note, 0);
2193 off = const0_rtx;
2195 else if (note && GET_CODE (XEXP (note, 0)) == CONST
2196 && GET_CODE (XEXP (XEXP (note, 0), 0)) == PLUS
2197 && GET_CODE (XEXP (XEXP (XEXP (note, 0), 0), 0)) == SYMBOL_REF
2198 && CONST_INT_P (XEXP (XEXP (XEXP (note, 0), 0), 1)))
2200 sym = XEXP (XEXP (XEXP (note, 0), 0), 0);
2201 off = XEXP (XEXP (XEXP (note, 0), 0), 1);
2204 if (sym != NULL_RTX)
2206 move2add_record_sym_value (dst, sym, off);
2207 return;
2211 if (GET_CODE (set) == SET
2212 && GET_CODE (SET_DEST (set)) != ZERO_EXTRACT
2213 && GET_CODE (SET_DEST (set)) != STRICT_LOW_PART)
2215 rtx src = SET_SRC (set);
2216 rtx base_reg;
2217 unsigned HOST_WIDE_INT offset;
2218 int base_regno;
2220 switch (GET_CODE (src))
2222 case PLUS:
2223 if (REG_P (XEXP (src, 0)))
2225 base_reg = XEXP (src, 0);
2227 if (CONST_INT_P (XEXP (src, 1)))
2228 offset = UINTVAL (XEXP (src, 1));
2229 else if (REG_P (XEXP (src, 1))
2230 && move2add_valid_value_p (REGNO (XEXP (src, 1)), mode))
2232 if (reg_base_reg[REGNO (XEXP (src, 1))] < 0
2233 && reg_symbol_ref[REGNO (XEXP (src, 1))] == NULL_RTX)
2234 offset = reg_offset[REGNO (XEXP (src, 1))];
2235 /* Maybe the first register is known to be a
2236 constant. */
2237 else if (move2add_valid_value_p (REGNO (base_reg), mode)
2238 && reg_base_reg[REGNO (base_reg)] < 0
2239 && reg_symbol_ref[REGNO (base_reg)] == NULL_RTX)
2241 offset = reg_offset[REGNO (base_reg)];
2242 base_reg = XEXP (src, 1);
2244 else
2245 goto invalidate;
2247 else
2248 goto invalidate;
2250 break;
2253 goto invalidate;
2255 case REG:
2256 base_reg = src;
2257 offset = 0;
2258 break;
2260 case CONST_INT:
2261 /* Start tracking the register as a constant. */
2262 reg_base_reg[regno] = -1;
2263 reg_symbol_ref[regno] = NULL_RTX;
2264 reg_offset[regno] = INTVAL (SET_SRC (set));
2265 /* We assign the same luid to all registers set to constants. */
2266 reg_set_luid[regno] = move2add_last_label_luid + 1;
2267 move2add_record_mode (dst);
2268 return;
2270 default:
2271 goto invalidate;
2274 base_regno = REGNO (base_reg);
2275 /* If information about the base register is not valid, set it
2276 up as a new base register, pretending its value is known
2277 starting from the current insn. */
2278 if (!move2add_valid_value_p (base_regno, mode))
2280 reg_base_reg[base_regno] = base_regno;
2281 reg_symbol_ref[base_regno] = NULL_RTX;
2282 reg_offset[base_regno] = 0;
2283 reg_set_luid[base_regno] = move2add_luid;
2284 gcc_assert (GET_MODE (base_reg) == mode);
2285 move2add_record_mode (base_reg);
2288 /* Copy base information from our base register. */
2289 reg_set_luid[regno] = reg_set_luid[base_regno];
2290 reg_base_reg[regno] = reg_base_reg[base_regno];
2291 reg_symbol_ref[regno] = reg_symbol_ref[base_regno];
2293 /* Compute the sum of the offsets or constants. */
2294 reg_offset[regno]
2295 = trunc_int_for_mode (offset + reg_offset[base_regno], mode);
2297 move2add_record_mode (dst);
2299 else
2301 invalidate:
2302 /* Invalidate the contents of the register. */
2303 move2add_record_mode (dst);
2304 reg_mode[regno] = VOIDmode;
2308 namespace {
2310 const pass_data pass_data_postreload_cse =
2312 RTL_PASS, /* type */
2313 "postreload", /* name */
2314 OPTGROUP_NONE, /* optinfo_flags */
2315 TV_RELOAD_CSE_REGS, /* tv_id */
2316 0, /* properties_required */
2317 0, /* properties_provided */
2318 0, /* properties_destroyed */
2319 0, /* todo_flags_start */
2320 TODO_df_finish, /* todo_flags_finish */
2323 class pass_postreload_cse : public rtl_opt_pass
2325 public:
2326 pass_postreload_cse (gcc::context *ctxt)
2327 : rtl_opt_pass (pass_data_postreload_cse, ctxt)
2330 /* opt_pass methods: */
2331 bool gate (function *) final override
2333 return (optimize > 0 && reload_completed);
2336 unsigned int execute (function *) final override;
2338 }; // class pass_postreload_cse
2340 unsigned int
2341 pass_postreload_cse::execute (function *fun)
2343 if (!dbg_cnt (postreload_cse))
2344 return 0;
2346 /* Do a very simple CSE pass over just the hard registers. */
2347 reload_cse_regs (get_insns ());
2348 /* Reload_cse_regs can eliminate potentially-trapping MEMs.
2349 Remove any EH edges associated with them. */
2350 if (fun->can_throw_non_call_exceptions
2351 && purge_all_dead_edges ())
2352 cleanup_cfg (0);
2354 return 0;
2357 } // anon namespace
2359 rtl_opt_pass *
2360 make_pass_postreload_cse (gcc::context *ctxt)
2362 return new pass_postreload_cse (ctxt);