1 /* Expand the basic unary and binary arithmetic operations, for GNU compiler.
2 Copyright (C) 1987-2022 Free Software Foundation, Inc.
4 This file is part of GCC.
6 GCC is free software; you can redistribute it and/or modify it under
7 the terms of the GNU General Public License as published by the Free
8 Software Foundation; either version 3, or (at your option) any later
11 GCC is distributed in the hope that it will be useful, but WITHOUT ANY
12 WARRANTY; without even the implied warranty of MERCHANTABILITY or
13 FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License
16 You should have received a copy of the GNU General Public License
17 along with GCC; see the file COPYING3. If not see
18 <http://www.gnu.org/licenses/>. */
23 #include "coretypes.h"
35 #include "diagnostic-core.h"
36 #include "rtx-vector-builder.h"
38 /* Include insn-config.h before expr.h so that HAVE_conditional_move
39 is properly defined. */
40 #include "stor-layout.h"
45 #include "optabs-tree.h"
47 #include "internal-fn.h"
48 #include "langhooks.h"
50 static void prepare_float_lib_cmp (rtx
, rtx
, enum rtx_code
, rtx
*,
52 static rtx
expand_unop_direct (machine_mode
, optab
, rtx
, rtx
, int);
53 static void emit_libcall_block_1 (rtx_insn
*, rtx
, rtx
, rtx
, bool);
55 static rtx
emit_conditional_move_1 (rtx
, rtx
, rtx
, rtx
, machine_mode
);
57 /* Debug facility for use in GDB. */
58 void debug_optab_libfuncs (void);
60 /* Add a REG_EQUAL note to the last insn in INSNS. TARGET is being set to
61 the result of operation CODE applied to OP0 (and OP1 if it is a binary
62 operation). OP0_MODE is OP0's mode.
64 If the last insn does not set TARGET, don't do anything, but return 1.
66 If the last insn or a previous insn sets TARGET and TARGET is one of OP0
67 or OP1, don't add the REG_EQUAL note but return 0. Our caller can then
68 try again, ensuring that TARGET is not one of the operands. */
71 add_equal_note (rtx_insn
*insns
, rtx target
, enum rtx_code code
, rtx op0
,
72 rtx op1
, machine_mode op0_mode
)
78 gcc_assert (insns
&& INSN_P (insns
) && NEXT_INSN (insns
));
80 if (GET_RTX_CLASS (code
) != RTX_COMM_ARITH
81 && GET_RTX_CLASS (code
) != RTX_BIN_ARITH
82 && GET_RTX_CLASS (code
) != RTX_COMM_COMPARE
83 && GET_RTX_CLASS (code
) != RTX_COMPARE
84 && GET_RTX_CLASS (code
) != RTX_UNARY
)
87 if (GET_CODE (target
) == ZERO_EXTRACT
)
90 for (last_insn
= insns
;
91 NEXT_INSN (last_insn
) != NULL_RTX
;
92 last_insn
= NEXT_INSN (last_insn
))
95 /* If TARGET is in OP0 or OP1, punt. We'd end up with a note referencing
96 a value changing in the insn, so the note would be invalid for CSE. */
97 if (reg_overlap_mentioned_p (target
, op0
)
98 || (op1
&& reg_overlap_mentioned_p (target
, op1
)))
101 && (rtx_equal_p (target
, op0
)
102 || (op1
&& rtx_equal_p (target
, op1
))))
104 /* For MEM target, with MEM = MEM op X, prefer no REG_EQUAL note
105 over expanding it as temp = MEM op X, MEM = temp. If the target
106 supports MEM = MEM op X instructions, it is sometimes too hard
107 to reconstruct that form later, especially if X is also a memory,
108 and due to multiple occurrences of addresses the address might
109 be forced into register unnecessarily.
110 Note that not emitting the REG_EQUIV note might inhibit
111 CSE in some cases. */
112 set
= single_set (last_insn
);
114 && GET_CODE (SET_SRC (set
)) == code
115 && MEM_P (SET_DEST (set
))
116 && (rtx_equal_p (SET_DEST (set
), XEXP (SET_SRC (set
), 0))
117 || (op1
&& rtx_equal_p (SET_DEST (set
),
118 XEXP (SET_SRC (set
), 1)))))
124 set
= set_for_reg_notes (last_insn
);
128 if (! rtx_equal_p (SET_DEST (set
), target
)
129 /* For a STRICT_LOW_PART, the REG_NOTE applies to what is inside it. */
130 && (GET_CODE (SET_DEST (set
)) != STRICT_LOW_PART
131 || ! rtx_equal_p (XEXP (SET_DEST (set
), 0), target
)))
134 if (GET_RTX_CLASS (code
) == RTX_UNARY
)
144 if (op0_mode
!= VOIDmode
&& GET_MODE (target
) != op0_mode
)
146 note
= gen_rtx_fmt_e (code
, op0_mode
, copy_rtx (op0
));
147 if (GET_MODE_UNIT_SIZE (op0_mode
)
148 > GET_MODE_UNIT_SIZE (GET_MODE (target
)))
149 note
= simplify_gen_unary (TRUNCATE
, GET_MODE (target
),
152 note
= simplify_gen_unary (ZERO_EXTEND
, GET_MODE (target
),
158 note
= gen_rtx_fmt_e (code
, GET_MODE (target
), copy_rtx (op0
));
162 note
= gen_rtx_fmt_ee (code
, GET_MODE (target
), copy_rtx (op0
), copy_rtx (op1
));
164 set_unique_reg_note (last_insn
, REG_EQUAL
, note
);
169 /* Given two input operands, OP0 and OP1, determine what the correct from_mode
170 for a widening operation would be. In most cases this would be OP0, but if
171 that's a constant it'll be VOIDmode, which isn't useful. */
174 widened_mode (machine_mode to_mode
, rtx op0
, rtx op1
)
176 machine_mode m0
= GET_MODE (op0
);
177 machine_mode m1
= GET_MODE (op1
);
180 if (m0
== VOIDmode
&& m1
== VOIDmode
)
182 else if (m0
== VOIDmode
|| GET_MODE_UNIT_SIZE (m0
) < GET_MODE_UNIT_SIZE (m1
))
187 if (GET_MODE_UNIT_SIZE (result
) > GET_MODE_UNIT_SIZE (to_mode
))
193 /* Widen OP to MODE and return the rtx for the widened operand. UNSIGNEDP
194 says whether OP is signed or unsigned. NO_EXTEND is nonzero if we need
195 not actually do a sign-extend or zero-extend, but can leave the
196 higher-order bits of the result rtx undefined, for example, in the case
197 of logical operations, but not right shifts. */
200 widen_operand (rtx op
, machine_mode mode
, machine_mode oldmode
,
201 int unsignedp
, int no_extend
)
204 scalar_int_mode int_mode
;
206 /* If we don't have to extend and this is a constant, return it. */
207 if (no_extend
&& GET_MODE (op
) == VOIDmode
)
210 /* If we must extend do so. If OP is a SUBREG for a promoted object, also
211 extend since it will be more efficient to do so unless the signedness of
212 a promoted object differs from our extension. */
214 || !is_a
<scalar_int_mode
> (mode
, &int_mode
)
215 || (GET_CODE (op
) == SUBREG
&& SUBREG_PROMOTED_VAR_P (op
)
216 && SUBREG_CHECK_PROMOTED_SIGN (op
, unsignedp
)))
217 return convert_modes (mode
, oldmode
, op
, unsignedp
);
219 /* If MODE is no wider than a single word, we return a lowpart or paradoxical
221 if (GET_MODE_SIZE (int_mode
) <= UNITS_PER_WORD
)
222 return gen_lowpart (int_mode
, force_reg (GET_MODE (op
), op
));
224 /* Otherwise, get an object of MODE, clobber it, and set the low-order
227 result
= gen_reg_rtx (int_mode
);
228 emit_clobber (result
);
229 emit_move_insn (gen_lowpart (GET_MODE (op
), result
), op
);
233 /* Expand vector widening operations.
235 There are two different classes of operations handled here:
236 1) Operations whose result is wider than all the arguments to the operation.
237 Examples: VEC_UNPACK_HI/LO_EXPR, VEC_WIDEN_MULT_HI/LO_EXPR
238 In this case OP0 and optionally OP1 would be initialized,
239 but WIDE_OP wouldn't (not relevant for this case).
240 2) Operations whose result is of the same size as the last argument to the
241 operation, but wider than all the other arguments to the operation.
242 Examples: WIDEN_SUM_EXPR, VEC_DOT_PROD_EXPR.
243 In the case WIDE_OP, OP0 and optionally OP1 would be initialized.
245 E.g, when called to expand the following operations, this is how
246 the arguments will be initialized:
248 widening-sum 2 oprnd0 - oprnd1
249 widening-dot-product 3 oprnd0 oprnd1 oprnd2
250 widening-mult 2 oprnd0 oprnd1 -
251 type-promotion (vec-unpack) 1 oprnd0 - - */
254 expand_widen_pattern_expr (sepops ops
, rtx op0
, rtx op1
, rtx wide_op
,
255 rtx target
, int unsignedp
)
257 class expand_operand eops
[4];
258 tree oprnd0
, oprnd1
, oprnd2
;
259 machine_mode wmode
= VOIDmode
, tmode0
, tmode1
= VOIDmode
;
260 optab widen_pattern_optab
;
261 enum insn_code icode
;
262 int nops
= TREE_CODE_LENGTH (ops
->code
);
267 oprnd1
= nops
>= 2 ? ops
->op1
: NULL_TREE
;
268 oprnd2
= nops
>= 3 ? ops
->op2
: NULL_TREE
;
270 tmode0
= TYPE_MODE (TREE_TYPE (oprnd0
));
271 if (ops
->code
== VEC_UNPACK_FIX_TRUNC_HI_EXPR
272 || ops
->code
== VEC_UNPACK_FIX_TRUNC_LO_EXPR
)
273 /* The sign is from the result type rather than operand's type
276 = optab_for_tree_code (ops
->code
, ops
->type
, optab_default
);
277 else if ((ops
->code
== VEC_UNPACK_HI_EXPR
278 || ops
->code
== VEC_UNPACK_LO_EXPR
)
279 && VECTOR_BOOLEAN_TYPE_P (ops
->type
)
280 && VECTOR_BOOLEAN_TYPE_P (TREE_TYPE (oprnd0
))
281 && TYPE_MODE (ops
->type
) == TYPE_MODE (TREE_TYPE (oprnd0
))
282 && SCALAR_INT_MODE_P (TYPE_MODE (ops
->type
)))
284 /* For VEC_UNPACK_{LO,HI}_EXPR if the mode of op0 and result is
285 the same scalar mode for VECTOR_BOOLEAN_TYPE_P vectors, use
286 vec_unpacks_sbool_{lo,hi}_optab, so that we can pass in
287 the pattern number of elements in the wider vector. */
289 = (ops
->code
== VEC_UNPACK_HI_EXPR
290 ? vec_unpacks_sbool_hi_optab
: vec_unpacks_sbool_lo_optab
);
293 else if (ops
->code
== DOT_PROD_EXPR
)
295 enum optab_subtype subtype
= optab_default
;
296 signop sign1
= TYPE_SIGN (TREE_TYPE (oprnd0
));
297 signop sign2
= TYPE_SIGN (TREE_TYPE (oprnd1
));
300 else if (sign1
== SIGNED
&& sign2
== UNSIGNED
)
302 subtype
= optab_vector_mixed_sign
;
303 /* Same as optab_vector_mixed_sign but flip the operands. */
304 std::swap (op0
, op1
);
306 else if (sign1
== UNSIGNED
&& sign2
== SIGNED
)
307 subtype
= optab_vector_mixed_sign
;
312 = optab_for_tree_code (ops
->code
, TREE_TYPE (oprnd0
), subtype
);
316 = optab_for_tree_code (ops
->code
, TREE_TYPE (oprnd0
), optab_default
);
317 if (ops
->code
== WIDEN_MULT_PLUS_EXPR
318 || ops
->code
== WIDEN_MULT_MINUS_EXPR
)
319 icode
= find_widening_optab_handler (widen_pattern_optab
,
320 TYPE_MODE (TREE_TYPE (ops
->op2
)),
323 icode
= optab_handler (widen_pattern_optab
, tmode0
);
324 gcc_assert (icode
!= CODE_FOR_nothing
);
327 tmode1
= TYPE_MODE (TREE_TYPE (oprnd1
));
331 op1
= GEN_INT (TYPE_VECTOR_SUBPARTS (TREE_TYPE (oprnd0
)).to_constant ());
335 /* The last operand is of a wider mode than the rest of the operands. */
340 gcc_assert (tmode1
== tmode0
);
342 wmode
= TYPE_MODE (TREE_TYPE (oprnd2
));
346 create_output_operand (&eops
[op
++], target
, TYPE_MODE (ops
->type
));
347 create_convert_operand_from (&eops
[op
++], op0
, tmode0
, unsignedp
);
349 create_convert_operand_from (&eops
[op
++], op1
, tmode1
, unsignedp
);
351 create_convert_operand_from (&eops
[op
++], wide_op
, wmode
, unsignedp
);
352 expand_insn (icode
, op
, eops
);
353 return eops
[0].value
;
356 /* Generate code to perform an operation specified by TERNARY_OPTAB
357 on operands OP0, OP1 and OP2, with result having machine-mode MODE.
359 UNSIGNEDP is for the case where we have to widen the operands
360 to perform the operation. It says to use zero-extension.
362 If TARGET is nonzero, the value
363 is generated there, if it is convenient to do so.
364 In all cases an rtx is returned for the locus of the value;
365 this may or may not be TARGET. */
368 expand_ternary_op (machine_mode mode
, optab ternary_optab
, rtx op0
,
369 rtx op1
, rtx op2
, rtx target
, int unsignedp
)
371 class expand_operand ops
[4];
372 enum insn_code icode
= optab_handler (ternary_optab
, mode
);
374 gcc_assert (optab_handler (ternary_optab
, mode
) != CODE_FOR_nothing
);
376 create_output_operand (&ops
[0], target
, mode
);
377 create_convert_operand_from (&ops
[1], op0
, mode
, unsignedp
);
378 create_convert_operand_from (&ops
[2], op1
, mode
, unsignedp
);
379 create_convert_operand_from (&ops
[3], op2
, mode
, unsignedp
);
380 expand_insn (icode
, 4, ops
);
385 /* Like expand_binop, but return a constant rtx if the result can be
386 calculated at compile time. The arguments and return value are
387 otherwise the same as for expand_binop. */
390 simplify_expand_binop (machine_mode mode
, optab binoptab
,
391 rtx op0
, rtx op1
, rtx target
, int unsignedp
,
392 enum optab_methods methods
)
394 if (CONSTANT_P (op0
) && CONSTANT_P (op1
))
396 rtx x
= simplify_binary_operation (optab_to_code (binoptab
),
402 return expand_binop (mode
, binoptab
, op0
, op1
, target
, unsignedp
, methods
);
405 /* Like simplify_expand_binop, but always put the result in TARGET.
406 Return true if the expansion succeeded. */
409 force_expand_binop (machine_mode mode
, optab binoptab
,
410 rtx op0
, rtx op1
, rtx target
, int unsignedp
,
411 enum optab_methods methods
)
413 rtx x
= simplify_expand_binop (mode
, binoptab
, op0
, op1
,
414 target
, unsignedp
, methods
);
418 emit_move_insn (target
, x
);
422 /* Create a new vector value in VMODE with all elements set to OP. The
423 mode of OP must be the element mode of VMODE. If OP is a constant,
424 then the return value will be a constant. */
427 expand_vector_broadcast (machine_mode vmode
, rtx op
)
432 gcc_checking_assert (VECTOR_MODE_P (vmode
));
434 if (valid_for_const_vector_p (vmode
, op
))
435 return gen_const_vec_duplicate (vmode
, op
);
437 insn_code icode
= optab_handler (vec_duplicate_optab
, vmode
);
438 if (icode
!= CODE_FOR_nothing
)
440 class expand_operand ops
[2];
441 create_output_operand (&ops
[0], NULL_RTX
, vmode
);
442 create_input_operand (&ops
[1], op
, GET_MODE (op
));
443 expand_insn (icode
, 2, ops
);
447 if (!GET_MODE_NUNITS (vmode
).is_constant (&n
))
450 /* ??? If the target doesn't have a vec_init, then we have no easy way
451 of performing this operation. Most of this sort of generic support
452 is hidden away in the vector lowering support in gimple. */
453 icode
= convert_optab_handler (vec_init_optab
, vmode
,
454 GET_MODE_INNER (vmode
));
455 if (icode
== CODE_FOR_nothing
)
458 vec
= rtvec_alloc (n
);
459 for (int i
= 0; i
< n
; ++i
)
460 RTVEC_ELT (vec
, i
) = op
;
461 rtx ret
= gen_reg_rtx (vmode
);
462 emit_insn (GEN_FCN (icode
) (ret
, gen_rtx_PARALLEL (vmode
, vec
)));
467 /* This subroutine of expand_doubleword_shift handles the cases in which
468 the effective shift value is >= BITS_PER_WORD. The arguments and return
469 value are the same as for the parent routine, except that SUPERWORD_OP1
470 is the shift count to use when shifting OUTOF_INPUT into INTO_TARGET.
471 INTO_TARGET may be null if the caller has decided to calculate it. */
474 expand_superword_shift (optab binoptab
, rtx outof_input
, rtx superword_op1
,
475 rtx outof_target
, rtx into_target
,
476 int unsignedp
, enum optab_methods methods
)
478 if (into_target
!= 0)
479 if (!force_expand_binop (word_mode
, binoptab
, outof_input
, superword_op1
,
480 into_target
, unsignedp
, methods
))
483 if (outof_target
!= 0)
485 /* For a signed right shift, we must fill OUTOF_TARGET with copies
486 of the sign bit, otherwise we must fill it with zeros. */
487 if (binoptab
!= ashr_optab
)
488 emit_move_insn (outof_target
, CONST0_RTX (word_mode
));
490 if (!force_expand_binop (word_mode
, binoptab
, outof_input
,
491 gen_int_shift_amount (word_mode
,
493 outof_target
, unsignedp
, methods
))
499 /* This subroutine of expand_doubleword_shift handles the cases in which
500 the effective shift value is < BITS_PER_WORD. The arguments and return
501 value are the same as for the parent routine. */
504 expand_subword_shift (scalar_int_mode op1_mode
, optab binoptab
,
505 rtx outof_input
, rtx into_input
, rtx op1
,
506 rtx outof_target
, rtx into_target
,
507 int unsignedp
, enum optab_methods methods
,
508 unsigned HOST_WIDE_INT shift_mask
)
510 optab reverse_unsigned_shift
, unsigned_shift
;
513 reverse_unsigned_shift
= (binoptab
== ashl_optab
? lshr_optab
: ashl_optab
);
514 unsigned_shift
= (binoptab
== ashl_optab
? ashl_optab
: lshr_optab
);
516 /* The low OP1 bits of INTO_TARGET come from the high bits of OUTOF_INPUT.
517 We therefore need to shift OUTOF_INPUT by (BITS_PER_WORD - OP1) bits in
518 the opposite direction to BINOPTAB. */
519 if (CONSTANT_P (op1
) || shift_mask
>= BITS_PER_WORD
)
521 carries
= outof_input
;
522 tmp
= immed_wide_int_const (wi::shwi (BITS_PER_WORD
,
523 op1_mode
), op1_mode
);
524 tmp
= simplify_expand_binop (op1_mode
, sub_optab
, tmp
, op1
,
529 /* We must avoid shifting by BITS_PER_WORD bits since that is either
530 the same as a zero shift (if shift_mask == BITS_PER_WORD - 1) or
531 has unknown behavior. Do a single shift first, then shift by the
532 remainder. It's OK to use ~OP1 as the remainder if shift counts
533 are truncated to the mode size. */
534 carries
= expand_binop (word_mode
, reverse_unsigned_shift
,
535 outof_input
, const1_rtx
, 0, unsignedp
, methods
);
536 if (shift_mask
== BITS_PER_WORD
- 1)
538 tmp
= immed_wide_int_const
539 (wi::minus_one (GET_MODE_PRECISION (op1_mode
)), op1_mode
);
540 tmp
= simplify_expand_binop (op1_mode
, xor_optab
, op1
, tmp
,
545 tmp
= immed_wide_int_const (wi::shwi (BITS_PER_WORD
- 1,
546 op1_mode
), op1_mode
);
547 tmp
= simplify_expand_binop (op1_mode
, sub_optab
, tmp
, op1
,
551 if (tmp
== 0 || carries
== 0)
553 carries
= expand_binop (word_mode
, reverse_unsigned_shift
,
554 carries
, tmp
, 0, unsignedp
, methods
);
558 /* Shift INTO_INPUT logically by OP1. This is the last use of INTO_INPUT
559 so the result can go directly into INTO_TARGET if convenient. */
560 tmp
= expand_binop (word_mode
, unsigned_shift
, into_input
, op1
,
561 into_target
, unsignedp
, methods
);
565 /* Now OR in the bits carried over from OUTOF_INPUT. */
566 if (!force_expand_binop (word_mode
, ior_optab
, tmp
, carries
,
567 into_target
, unsignedp
, methods
))
570 /* Use a standard word_mode shift for the out-of half. */
571 if (outof_target
!= 0)
572 if (!force_expand_binop (word_mode
, binoptab
, outof_input
, op1
,
573 outof_target
, unsignedp
, methods
))
580 /* Try implementing expand_doubleword_shift using conditional moves.
581 The shift is by < BITS_PER_WORD if (CMP_CODE CMP1 CMP2) is true,
582 otherwise it is by >= BITS_PER_WORD. SUBWORD_OP1 and SUPERWORD_OP1
583 are the shift counts to use in the former and latter case. All other
584 arguments are the same as the parent routine. */
587 expand_doubleword_shift_condmove (scalar_int_mode op1_mode
, optab binoptab
,
588 enum rtx_code cmp_code
, rtx cmp1
, rtx cmp2
,
589 rtx outof_input
, rtx into_input
,
590 rtx subword_op1
, rtx superword_op1
,
591 rtx outof_target
, rtx into_target
,
592 int unsignedp
, enum optab_methods methods
,
593 unsigned HOST_WIDE_INT shift_mask
)
595 rtx outof_superword
, into_superword
;
597 /* Put the superword version of the output into OUTOF_SUPERWORD and
599 outof_superword
= outof_target
!= 0 ? gen_reg_rtx (word_mode
) : 0;
600 if (outof_target
!= 0 && subword_op1
== superword_op1
)
602 /* The value INTO_TARGET >> SUBWORD_OP1, which we later store in
603 OUTOF_TARGET, is the same as the value of INTO_SUPERWORD. */
604 into_superword
= outof_target
;
605 if (!expand_superword_shift (binoptab
, outof_input
, superword_op1
,
606 outof_superword
, 0, unsignedp
, methods
))
611 into_superword
= gen_reg_rtx (word_mode
);
612 if (!expand_superword_shift (binoptab
, outof_input
, superword_op1
,
613 outof_superword
, into_superword
,
618 /* Put the subword version directly in OUTOF_TARGET and INTO_TARGET. */
619 if (!expand_subword_shift (op1_mode
, binoptab
,
620 outof_input
, into_input
, subword_op1
,
621 outof_target
, into_target
,
622 unsignedp
, methods
, shift_mask
))
625 /* Select between them. Do the INTO half first because INTO_SUPERWORD
626 might be the current value of OUTOF_TARGET. */
627 if (!emit_conditional_move (into_target
, { cmp_code
, cmp1
, cmp2
, op1_mode
},
628 into_target
, into_superword
, word_mode
, false))
631 if (outof_target
!= 0)
632 if (!emit_conditional_move (outof_target
,
633 { cmp_code
, cmp1
, cmp2
, op1_mode
},
634 outof_target
, outof_superword
,
641 /* Expand a doubleword shift (ashl, ashr or lshr) using word-mode shifts.
642 OUTOF_INPUT and INTO_INPUT are the two word-sized halves of the first
643 input operand; the shift moves bits in the direction OUTOF_INPUT->
644 INTO_TARGET. OUTOF_TARGET and INTO_TARGET are the equivalent words
645 of the target. OP1 is the shift count and OP1_MODE is its mode.
646 If OP1 is constant, it will have been truncated as appropriate
647 and is known to be nonzero.
649 If SHIFT_MASK is zero, the result of word shifts is undefined when the
650 shift count is outside the range [0, BITS_PER_WORD). This routine must
651 avoid generating such shifts for OP1s in the range [0, BITS_PER_WORD * 2).
653 If SHIFT_MASK is nonzero, all word-mode shift counts are effectively
654 masked by it and shifts in the range [BITS_PER_WORD, SHIFT_MASK) will
655 fill with zeros or sign bits as appropriate.
657 If SHIFT_MASK is BITS_PER_WORD - 1, this routine will synthesize
658 a doubleword shift whose equivalent mask is BITS_PER_WORD * 2 - 1.
659 Doing this preserves semantics required by SHIFT_COUNT_TRUNCATED.
660 In all other cases, shifts by values outside [0, BITS_PER_UNIT * 2)
663 BINOPTAB, UNSIGNEDP and METHODS are as for expand_binop. This function
664 may not use INTO_INPUT after modifying INTO_TARGET, and similarly for
665 OUTOF_INPUT and OUTOF_TARGET. OUTOF_TARGET can be null if the parent
666 function wants to calculate it itself.
668 Return true if the shift could be successfully synthesized. */
671 expand_doubleword_shift (scalar_int_mode op1_mode
, optab binoptab
,
672 rtx outof_input
, rtx into_input
, rtx op1
,
673 rtx outof_target
, rtx into_target
,
674 int unsignedp
, enum optab_methods methods
,
675 unsigned HOST_WIDE_INT shift_mask
)
677 rtx superword_op1
, tmp
, cmp1
, cmp2
;
678 enum rtx_code cmp_code
;
680 /* See if word-mode shifts by BITS_PER_WORD...BITS_PER_WORD * 2 - 1 will
681 fill the result with sign or zero bits as appropriate. If so, the value
682 of OUTOF_TARGET will always be (SHIFT OUTOF_INPUT OP1). Recursively call
683 this routine to calculate INTO_TARGET (which depends on both OUTOF_INPUT
684 and INTO_INPUT), then emit code to set up OUTOF_TARGET.
686 This isn't worthwhile for constant shifts since the optimizers will
687 cope better with in-range shift counts. */
688 if (shift_mask
>= BITS_PER_WORD
690 && !CONSTANT_P (op1
))
692 if (!expand_doubleword_shift (op1_mode
, binoptab
,
693 outof_input
, into_input
, op1
,
695 unsignedp
, methods
, shift_mask
))
697 if (!force_expand_binop (word_mode
, binoptab
, outof_input
, op1
,
698 outof_target
, unsignedp
, methods
))
703 /* Set CMP_CODE, CMP1 and CMP2 so that the rtx (CMP_CODE CMP1 CMP2)
704 is true when the effective shift value is less than BITS_PER_WORD.
705 Set SUPERWORD_OP1 to the shift count that should be used to shift
706 OUTOF_INPUT into INTO_TARGET when the condition is false. */
707 tmp
= immed_wide_int_const (wi::shwi (BITS_PER_WORD
, op1_mode
), op1_mode
);
708 if (!CONSTANT_P (op1
) && shift_mask
== BITS_PER_WORD
- 1)
710 /* Set CMP1 to OP1 & BITS_PER_WORD. The result is zero iff OP1
711 is a subword shift count. */
712 cmp1
= simplify_expand_binop (op1_mode
, and_optab
, op1
, tmp
,
714 cmp2
= CONST0_RTX (op1_mode
);
720 /* Set CMP1 to OP1 - BITS_PER_WORD. */
721 cmp1
= simplify_expand_binop (op1_mode
, sub_optab
, op1
, tmp
,
723 cmp2
= CONST0_RTX (op1_mode
);
725 superword_op1
= cmp1
;
730 /* If we can compute the condition at compile time, pick the
731 appropriate subroutine. */
732 tmp
= simplify_relational_operation (cmp_code
, SImode
, op1_mode
, cmp1
, cmp2
);
733 if (tmp
!= 0 && CONST_INT_P (tmp
))
735 if (tmp
== const0_rtx
)
736 return expand_superword_shift (binoptab
, outof_input
, superword_op1
,
737 outof_target
, into_target
,
740 return expand_subword_shift (op1_mode
, binoptab
,
741 outof_input
, into_input
, op1
,
742 outof_target
, into_target
,
743 unsignedp
, methods
, shift_mask
);
746 /* Try using conditional moves to generate straight-line code. */
747 if (HAVE_conditional_move
)
749 rtx_insn
*start
= get_last_insn ();
750 if (expand_doubleword_shift_condmove (op1_mode
, binoptab
,
751 cmp_code
, cmp1
, cmp2
,
752 outof_input
, into_input
,
754 outof_target
, into_target
,
755 unsignedp
, methods
, shift_mask
))
757 delete_insns_since (start
);
760 /* As a last resort, use branches to select the correct alternative. */
761 rtx_code_label
*subword_label
= gen_label_rtx ();
762 rtx_code_label
*done_label
= gen_label_rtx ();
765 do_compare_rtx_and_jump (cmp1
, cmp2
, cmp_code
, false, op1_mode
,
767 profile_probability::uninitialized ());
770 if (!expand_superword_shift (binoptab
, outof_input
, superword_op1
,
771 outof_target
, into_target
,
775 emit_jump_insn (targetm
.gen_jump (done_label
));
777 emit_label (subword_label
);
779 if (!expand_subword_shift (op1_mode
, binoptab
,
780 outof_input
, into_input
, op1
,
781 outof_target
, into_target
,
782 unsignedp
, methods
, shift_mask
))
785 emit_label (done_label
);
789 /* Subroutine of expand_binop. Perform a double word multiplication of
790 operands OP0 and OP1 both of mode MODE, which is exactly twice as wide
791 as the target's word_mode. This function return NULL_RTX if anything
792 goes wrong, in which case it may have already emitted instructions
793 which need to be deleted.
795 If we want to multiply two two-word values and have normal and widening
796 multiplies of single-word values, we can do this with three smaller
799 The multiplication proceeds as follows:
800 _______________________
801 [__op0_high_|__op0_low__]
802 _______________________
803 * [__op1_high_|__op1_low__]
804 _______________________________________________
805 _______________________
806 (1) [__op0_low__*__op1_low__]
807 _______________________
808 (2a) [__op0_low__*__op1_high_]
809 _______________________
810 (2b) [__op0_high_*__op1_low__]
811 _______________________
812 (3) [__op0_high_*__op1_high_]
815 This gives a 4-word result. Since we are only interested in the
816 lower 2 words, partial result (3) and the upper words of (2a) and
817 (2b) don't need to be calculated. Hence (2a) and (2b) can be
818 calculated using non-widening multiplication.
820 (1), however, needs to be calculated with an unsigned widening
821 multiplication. If this operation is not directly supported we
822 try using a signed widening multiplication and adjust the result.
823 This adjustment works as follows:
825 If both operands are positive then no adjustment is needed.
827 If the operands have different signs, for example op0_low < 0 and
828 op1_low >= 0, the instruction treats the most significant bit of
829 op0_low as a sign bit instead of a bit with significance
830 2**(BITS_PER_WORD-1), i.e. the instruction multiplies op1_low
831 with 2**BITS_PER_WORD - op0_low, and two's complements the
832 result. Conclusion: We need to add op1_low * 2**BITS_PER_WORD to
835 Similarly, if both operands are negative, we need to add
836 (op0_low + op1_low) * 2**BITS_PER_WORD.
838 We use a trick to adjust quickly. We logically shift op0_low right
839 (op1_low) BITS_PER_WORD-1 steps to get 0 or 1, and add this to
840 op0_high (op1_high) before it is used to calculate 2b (2a). If no
841 logical shift exists, we do an arithmetic right shift and subtract
845 expand_doubleword_mult (machine_mode mode
, rtx op0
, rtx op1
, rtx target
,
846 bool umulp
, enum optab_methods methods
)
848 int low
= (WORDS_BIG_ENDIAN
? 1 : 0);
849 int high
= (WORDS_BIG_ENDIAN
? 0 : 1);
850 rtx wordm1
= (umulp
? NULL_RTX
851 : gen_int_shift_amount (word_mode
, BITS_PER_WORD
- 1));
852 rtx product
, adjust
, product_high
, temp
;
854 rtx op0_high
= operand_subword_force (op0
, high
, mode
);
855 rtx op0_low
= operand_subword_force (op0
, low
, mode
);
856 rtx op1_high
= operand_subword_force (op1
, high
, mode
);
857 rtx op1_low
= operand_subword_force (op1
, low
, mode
);
859 /* If we're using an unsigned multiply to directly compute the product
860 of the low-order words of the operands and perform any required
861 adjustments of the operands, we begin by trying two more multiplications
862 and then computing the appropriate sum.
864 We have checked above that the required addition is provided.
865 Full-word addition will normally always succeed, especially if
866 it is provided at all, so we don't worry about its failure. The
867 multiplication may well fail, however, so we do handle that. */
871 /* ??? This could be done with emit_store_flag where available. */
872 temp
= expand_binop (word_mode
, lshr_optab
, op0_low
, wordm1
,
873 NULL_RTX
, 1, methods
);
875 op0_high
= expand_binop (word_mode
, add_optab
, op0_high
, temp
,
876 NULL_RTX
, 0, OPTAB_DIRECT
);
879 temp
= expand_binop (word_mode
, ashr_optab
, op0_low
, wordm1
,
880 NULL_RTX
, 0, methods
);
883 op0_high
= expand_binop (word_mode
, sub_optab
, op0_high
, temp
,
884 NULL_RTX
, 0, OPTAB_DIRECT
);
891 adjust
= expand_binop (word_mode
, smul_optab
, op0_high
, op1_low
,
892 NULL_RTX
, 0, OPTAB_DIRECT
);
896 /* OP0_HIGH should now be dead. */
900 /* ??? This could be done with emit_store_flag where available. */
901 temp
= expand_binop (word_mode
, lshr_optab
, op1_low
, wordm1
,
902 NULL_RTX
, 1, methods
);
904 op1_high
= expand_binop (word_mode
, add_optab
, op1_high
, temp
,
905 NULL_RTX
, 0, OPTAB_DIRECT
);
908 temp
= expand_binop (word_mode
, ashr_optab
, op1_low
, wordm1
,
909 NULL_RTX
, 0, methods
);
912 op1_high
= expand_binop (word_mode
, sub_optab
, op1_high
, temp
,
913 NULL_RTX
, 0, OPTAB_DIRECT
);
920 temp
= expand_binop (word_mode
, smul_optab
, op1_high
, op0_low
,
921 NULL_RTX
, 0, OPTAB_DIRECT
);
925 /* OP1_HIGH should now be dead. */
927 adjust
= expand_binop (word_mode
, add_optab
, adjust
, temp
,
928 NULL_RTX
, 0, OPTAB_DIRECT
);
930 if (target
&& !REG_P (target
))
933 /* *_widen_optab needs to determine operand mode, make sure at least
934 one operand has non-VOID mode. */
935 if (GET_MODE (op0_low
) == VOIDmode
&& GET_MODE (op1_low
) == VOIDmode
)
936 op0_low
= force_reg (word_mode
, op0_low
);
939 product
= expand_binop (mode
, umul_widen_optab
, op0_low
, op1_low
,
940 target
, 1, OPTAB_DIRECT
);
942 product
= expand_binop (mode
, smul_widen_optab
, op0_low
, op1_low
,
943 target
, 1, OPTAB_DIRECT
);
948 product_high
= operand_subword (product
, high
, 1, mode
);
949 adjust
= expand_binop (word_mode
, add_optab
, product_high
, adjust
,
950 NULL_RTX
, 0, OPTAB_DIRECT
);
951 emit_move_insn (product_high
, adjust
);
955 /* Subroutine of expand_binop. Optimize unsigned double-word OP0 % OP1 for
956 constant OP1. If for some bit in [BITS_PER_WORD / 2, BITS_PER_WORD] range
957 (prefer higher bits) ((1w << bit) % OP1) == 1, then the modulo can be
958 computed in word-mode as ((OP0 & (bit - 1)) + ((OP0 >> bit) & (bit - 1))
959 + (OP0 >> (2 * bit))) % OP1. Whether we need to sum 2, 3 or 4 values
960 depends on the bit value, if 2, then carry from the addition needs to be
961 added too, i.e. like:
962 sum += __builtin_add_overflow (low, high, &sum)
964 Optimize signed double-word OP0 % OP1 similarly, just apply some correction
965 factor to the sum before doing unsigned remainder, in the form of
966 sum += (((signed) OP0 >> (2 * BITS_PER_WORD - 1)) & const);
967 then perform unsigned
968 remainder = sum % OP1;
970 remainder += ((signed) OP0 >> (2 * BITS_PER_WORD - 1)) & (1 - OP1); */
973 expand_doubleword_mod (machine_mode mode
, rtx op0
, rtx op1
, bool unsignedp
)
975 if (INTVAL (op1
) <= 1 || (INTVAL (op1
) & 1) == 0)
978 rtx_insn
*last
= get_last_insn ();
979 for (int bit
= BITS_PER_WORD
; bit
>= BITS_PER_WORD
/ 2; bit
--)
981 wide_int w
= wi::shifted_mask (bit
, 1, false, 2 * BITS_PER_WORD
);
982 if (wi::ne_p (wi::umod_trunc (w
, INTVAL (op1
)), 1))
984 rtx sum
= NULL_RTX
, mask
= NULL_RTX
;
985 if (bit
== BITS_PER_WORD
)
987 /* For signed modulo we need to add correction to the sum
988 and that might again overflow. */
991 if (optab_handler (uaddv4_optab
, word_mode
) == CODE_FOR_nothing
)
993 tree wtype
= lang_hooks
.types
.type_for_mode (word_mode
, 1);
994 if (wtype
== NULL_TREE
)
996 tree ctype
= build_complex_type (wtype
);
997 if (TYPE_MODE (ctype
) != GET_MODE_COMPLEX_MODE (word_mode
))
999 machine_mode cmode
= TYPE_MODE (ctype
);
1000 rtx op00
= operand_subword_force (op0
, 0, mode
);
1001 rtx op01
= operand_subword_force (op0
, 1, mode
);
1002 rtx cres
= gen_rtx_CONCAT (cmode
, gen_reg_rtx (word_mode
),
1003 gen_reg_rtx (word_mode
));
1004 tree lhs
= make_tree (ctype
, cres
);
1005 tree arg0
= make_tree (wtype
, op00
);
1006 tree arg1
= make_tree (wtype
, op01
);
1007 expand_addsub_overflow (UNKNOWN_LOCATION
, PLUS_EXPR
, lhs
, arg0
,
1008 arg1
, true, true, true, false, NULL
);
1009 sum
= expand_simple_binop (word_mode
, PLUS
, XEXP (cres
, 0),
1010 XEXP (cres
, 1), NULL_RTX
, 1,
1012 if (sum
== NULL_RTX
)
1017 /* Code below uses GEN_INT, so we need the masks to be representable
1018 in HOST_WIDE_INTs. */
1019 if (bit
>= HOST_BITS_PER_WIDE_INT
)
1021 /* If op0 is e.g. -1 or -2 unsigned, then the 2 additions might
1022 overflow. Consider 64-bit -1ULL for word size 32, if we add
1023 0x7fffffffU + 0x7fffffffU + 3U, it wraps around to 1. */
1024 if (bit
== BITS_PER_WORD
- 1)
1027 int count
= (2 * BITS_PER_WORD
+ bit
- 1) / bit
;
1028 rtx sum_corr
= NULL_RTX
;
1032 /* For signed modulo, compute it as unsigned modulo of
1033 sum with a correction added to it if OP0 is negative,
1034 such that the result can be computed as unsigned
1035 remainder + ((OP1 >> (2 * BITS_PER_WORD - 1)) & (1 - OP1). */
1036 w
= wi::min_value (2 * BITS_PER_WORD
, SIGNED
);
1037 wide_int wmod1
= wi::umod_trunc (w
, INTVAL (op1
));
1038 wide_int wmod2
= wi::smod_trunc (w
, INTVAL (op1
));
1039 /* wmod2 == -wmod1. */
1040 wmod2
= wmod2
+ (INTVAL (op1
) - 1);
1041 if (wi::ne_p (wmod1
, wmod2
))
1043 wide_int wcorr
= wmod2
- wmod1
;
1045 wcorr
= wcorr
+ INTVAL (op1
);
1046 /* Now verify if the count sums can't overflow, and punt
1048 w
= wi::mask (bit
, false, 2 * BITS_PER_WORD
);
1049 w
= w
* (count
- 1);
1050 w
= w
+ wi::mask (2 * BITS_PER_WORD
- (count
- 1) * bit
,
1051 false, 2 * BITS_PER_WORD
);
1053 w
= wi::lrshift (w
, BITS_PER_WORD
);
1054 if (wi::ne_p (w
, 0))
1057 mask
= operand_subword_force (op0
, WORDS_BIG_ENDIAN
? 0 : 1,
1059 mask
= expand_simple_binop (word_mode
, ASHIFTRT
, mask
,
1060 GEN_INT (BITS_PER_WORD
- 1),
1061 NULL_RTX
, 0, OPTAB_DIRECT
);
1062 if (mask
== NULL_RTX
)
1064 sum_corr
= immed_wide_int_const (wcorr
, word_mode
);
1065 sum_corr
= expand_simple_binop (word_mode
, AND
, mask
,
1066 sum_corr
, NULL_RTX
, 1,
1068 if (sum_corr
== NULL_RTX
)
1073 for (int i
= 0; i
< count
; i
++)
1077 v
= expand_simple_binop (mode
, LSHIFTRT
, v
, GEN_INT (i
* bit
),
1078 NULL_RTX
, 1, OPTAB_DIRECT
);
1081 v
= lowpart_subreg (word_mode
, v
, mode
);
1085 v
= expand_simple_binop (word_mode
, AND
, v
,
1086 GEN_INT ((HOST_WIDE_INT_1U
<< bit
)
1091 if (sum
== NULL_RTX
)
1094 sum
= expand_simple_binop (word_mode
, PLUS
, sum
, v
, NULL_RTX
,
1096 if (sum
== NULL_RTX
)
1101 sum
= expand_simple_binop (word_mode
, PLUS
, sum
, sum_corr
,
1102 NULL_RTX
, 1, OPTAB_DIRECT
);
1103 if (sum
== NULL_RTX
)
1107 rtx remainder
= expand_divmod (1, TRUNC_MOD_EXPR
, word_mode
, sum
,
1108 gen_int_mode (INTVAL (op1
), word_mode
),
1109 NULL_RTX
, 1, OPTAB_DIRECT
);
1110 if (remainder
== NULL_RTX
)
1115 if (mask
== NULL_RTX
)
1117 mask
= operand_subword_force (op0
, WORDS_BIG_ENDIAN
? 0 : 1,
1119 mask
= expand_simple_binop (word_mode
, ASHIFTRT
, mask
,
1120 GEN_INT (BITS_PER_WORD
- 1),
1121 NULL_RTX
, 0, OPTAB_DIRECT
);
1122 if (mask
== NULL_RTX
)
1125 mask
= expand_simple_binop (word_mode
, AND
, mask
,
1126 gen_int_mode (1 - INTVAL (op1
),
1128 NULL_RTX
, 1, OPTAB_DIRECT
);
1129 if (mask
== NULL_RTX
)
1131 remainder
= expand_simple_binop (word_mode
, PLUS
, remainder
,
1132 mask
, NULL_RTX
, 1, OPTAB_DIRECT
);
1133 if (remainder
== NULL_RTX
)
1137 remainder
= convert_modes (mode
, word_mode
, remainder
, unsignedp
);
1138 /* Punt if we need any library calls. */
1140 last
= NEXT_INSN (last
);
1142 last
= get_insns ();
1143 for (; last
; last
= NEXT_INSN (last
))
1151 /* Similarly to the above function, but compute both quotient and remainder.
1152 Quotient can be computed from the remainder as:
1153 rem = op0 % op1; // Handled using expand_doubleword_mod
1154 quot = (op0 - rem) * inv; // inv is multiplicative inverse of op1 modulo
1155 // 2 * BITS_PER_WORD
1157 We can also handle cases where op1 is a multiple of power of two constant
1158 and constant handled by expand_doubleword_mod.
1159 op11 = 1 << __builtin_ctz (op1);
1161 rem1 = op0 % op12; // Handled using expand_doubleword_mod
1162 quot1 = (op0 - rem1) * inv; // inv is multiplicative inverse of op12 modulo
1163 // 2 * BITS_PER_WORD
1164 rem = (quot1 % op11) * op12 + rem1;
1165 quot = quot1 / op11; */
1168 expand_doubleword_divmod (machine_mode mode
, rtx op0
, rtx op1
, rtx
*rem
,
1173 /* Negative dividend should have been optimized into positive,
1174 similarly modulo by 1 and modulo by power of two is optimized
1176 if (INTVAL (op1
) <= 1 || pow2p_hwi (INTVAL (op1
)))
1179 rtx op11
= const1_rtx
;
1181 if ((INTVAL (op1
) & 1) == 0)
1183 int bit
= ctz_hwi (INTVAL (op1
));
1184 op11
= GEN_INT (HOST_WIDE_INT_1
<< bit
);
1185 op12
= GEN_INT (INTVAL (op1
) >> bit
);
1188 rtx rem1
= expand_doubleword_mod (mode
, op0
, op12
, unsignedp
);
1189 if (rem1
== NULL_RTX
)
1192 int prec
= 2 * BITS_PER_WORD
;
1193 wide_int a
= wide_int::from (INTVAL (op12
), prec
+ 1, UNSIGNED
);
1194 wide_int b
= wi::shifted_mask (prec
, 1, false, prec
+ 1);
1195 wide_int m
= wide_int::from (wi::mod_inv (a
, b
), prec
, UNSIGNED
);
1196 rtx inv
= immed_wide_int_const (m
, mode
);
1198 rtx_insn
*last
= get_last_insn ();
1199 rtx quot1
= expand_simple_binop (mode
, MINUS
, op0
, rem1
,
1200 NULL_RTX
, unsignedp
, OPTAB_DIRECT
);
1201 if (quot1
== NULL_RTX
)
1204 quot1
= expand_simple_binop (mode
, MULT
, quot1
, inv
,
1205 NULL_RTX
, unsignedp
, OPTAB_DIRECT
);
1206 if (quot1
== NULL_RTX
)
1209 if (op11
!= const1_rtx
)
1211 rtx rem2
= expand_divmod (1, TRUNC_MOD_EXPR
, mode
, quot1
, op11
,
1212 NULL_RTX
, unsignedp
, OPTAB_DIRECT
);
1213 if (rem2
== NULL_RTX
)
1216 rem2
= expand_simple_binop (mode
, MULT
, rem2
, op12
, NULL_RTX
,
1217 unsignedp
, OPTAB_DIRECT
);
1218 if (rem2
== NULL_RTX
)
1221 rem2
= expand_simple_binop (mode
, PLUS
, rem2
, rem1
, NULL_RTX
,
1222 unsignedp
, OPTAB_DIRECT
);
1223 if (rem2
== NULL_RTX
)
1226 rtx quot2
= expand_divmod (0, TRUNC_DIV_EXPR
, mode
, quot1
, op11
,
1227 NULL_RTX
, unsignedp
, OPTAB_DIRECT
);
1228 if (quot2
== NULL_RTX
)
1235 /* Punt if we need any library calls. */
1237 last
= NEXT_INSN (last
);
1239 last
= get_insns ();
1240 for (; last
; last
= NEXT_INSN (last
))
1248 /* Wrapper around expand_binop which takes an rtx code to specify
1249 the operation to perform, not an optab pointer. All other
1250 arguments are the same. */
1252 expand_simple_binop (machine_mode mode
, enum rtx_code code
, rtx op0
,
1253 rtx op1
, rtx target
, int unsignedp
,
1254 enum optab_methods methods
)
1256 optab binop
= code_to_optab (code
);
1259 return expand_binop (mode
, binop
, op0
, op1
, target
, unsignedp
, methods
);
1262 /* Return whether OP0 and OP1 should be swapped when expanding a commutative
1263 binop. Order them according to commutative_operand_precedence and, if
1264 possible, try to put TARGET or a pseudo first. */
1266 swap_commutative_operands_with_target (rtx target
, rtx op0
, rtx op1
)
1268 int op0_prec
= commutative_operand_precedence (op0
);
1269 int op1_prec
= commutative_operand_precedence (op1
);
1271 if (op0_prec
< op1_prec
)
1274 if (op0_prec
> op1_prec
)
1277 /* With equal precedence, both orders are ok, but it is better if the
1278 first operand is TARGET, or if both TARGET and OP0 are pseudos. */
1279 if (target
== 0 || REG_P (target
))
1280 return (REG_P (op1
) && !REG_P (op0
)) || target
== op1
;
1282 return rtx_equal_p (op1
, target
);
1285 /* Return true if BINOPTAB implements a shift operation. */
1288 shift_optab_p (optab binoptab
)
1290 switch (optab_to_code (binoptab
))
1306 /* Return true if BINOPTAB implements a commutative binary operation. */
1309 commutative_optab_p (optab binoptab
)
1311 return (GET_RTX_CLASS (optab_to_code (binoptab
)) == RTX_COMM_ARITH
1312 || binoptab
== smul_widen_optab
1313 || binoptab
== umul_widen_optab
1314 || binoptab
== smul_highpart_optab
1315 || binoptab
== umul_highpart_optab
);
1318 /* X is to be used in mode MODE as operand OPN to BINOPTAB. If we're
1319 optimizing, and if the operand is a constant that costs more than
1320 1 instruction, force the constant into a register and return that
1321 register. Return X otherwise. UNSIGNEDP says whether X is unsigned. */
1324 avoid_expensive_constant (machine_mode mode
, optab binoptab
,
1325 int opn
, rtx x
, bool unsignedp
)
1327 bool speed
= optimize_insn_for_speed_p ();
1329 if (mode
!= VOIDmode
1332 && (rtx_cost (x
, mode
, optab_to_code (binoptab
), opn
, speed
)
1333 > set_src_cost (x
, mode
, speed
)))
1335 if (CONST_INT_P (x
))
1337 HOST_WIDE_INT intval
= trunc_int_for_mode (INTVAL (x
), mode
);
1338 if (intval
!= INTVAL (x
))
1339 x
= GEN_INT (intval
);
1342 x
= convert_modes (mode
, VOIDmode
, x
, unsignedp
);
1343 x
= force_reg (mode
, x
);
1348 /* Helper function for expand_binop: handle the case where there
1349 is an insn ICODE that directly implements the indicated operation.
1350 Returns null if this is not possible. */
1352 expand_binop_directly (enum insn_code icode
, machine_mode mode
, optab binoptab
,
1354 rtx target
, int unsignedp
, enum optab_methods methods
,
1357 machine_mode xmode0
= insn_data
[(int) icode
].operand
[1].mode
;
1358 machine_mode xmode1
= insn_data
[(int) icode
].operand
[2].mode
;
1359 machine_mode mode0
, mode1
, tmp_mode
;
1360 class expand_operand ops
[3];
1363 rtx xop0
= op0
, xop1
= op1
;
1364 bool canonicalize_op1
= false;
1366 /* If it is a commutative operator and the modes would match
1367 if we would swap the operands, we can save the conversions. */
1368 commutative_p
= commutative_optab_p (binoptab
);
1370 && GET_MODE (xop0
) != xmode0
&& GET_MODE (xop1
) != xmode1
1371 && GET_MODE (xop0
) == xmode1
&& GET_MODE (xop1
) == xmode0
)
1372 std::swap (xop0
, xop1
);
1374 /* If we are optimizing, force expensive constants into a register. */
1375 xop0
= avoid_expensive_constant (xmode0
, binoptab
, 0, xop0
, unsignedp
);
1376 if (!shift_optab_p (binoptab
))
1377 xop1
= avoid_expensive_constant (xmode1
, binoptab
, 1, xop1
, unsignedp
);
1379 /* Shifts and rotates often use a different mode for op1 from op0;
1380 for VOIDmode constants we don't know the mode, so force it
1381 to be canonicalized using convert_modes. */
1382 canonicalize_op1
= true;
1384 /* In case the insn wants input operands in modes different from
1385 those of the actual operands, convert the operands. It would
1386 seem that we don't need to convert CONST_INTs, but we do, so
1387 that they're properly zero-extended, sign-extended or truncated
1390 mode0
= GET_MODE (xop0
) != VOIDmode
? GET_MODE (xop0
) : mode
;
1391 if (xmode0
!= VOIDmode
&& xmode0
!= mode0
)
1393 xop0
= convert_modes (xmode0
, mode0
, xop0
, unsignedp
);
1397 mode1
= ((GET_MODE (xop1
) != VOIDmode
|| canonicalize_op1
)
1398 ? GET_MODE (xop1
) : mode
);
1399 if (xmode1
!= VOIDmode
&& xmode1
!= mode1
)
1401 xop1
= convert_modes (xmode1
, mode1
, xop1
, unsignedp
);
1405 /* If operation is commutative,
1406 try to make the first operand a register.
1407 Even better, try to make it the same as the target.
1408 Also try to make the last operand a constant. */
1410 && swap_commutative_operands_with_target (target
, xop0
, xop1
))
1411 std::swap (xop0
, xop1
);
1413 /* Now, if insn's predicates don't allow our operands, put them into
1416 if (binoptab
== vec_pack_trunc_optab
1417 || binoptab
== vec_pack_usat_optab
1418 || binoptab
== vec_pack_ssat_optab
1419 || binoptab
== vec_pack_ufix_trunc_optab
1420 || binoptab
== vec_pack_sfix_trunc_optab
1421 || binoptab
== vec_packu_float_optab
1422 || binoptab
== vec_packs_float_optab
)
1424 /* The mode of the result is different then the mode of the
1426 tmp_mode
= insn_data
[(int) icode
].operand
[0].mode
;
1427 if (VECTOR_MODE_P (mode
)
1428 && maybe_ne (GET_MODE_NUNITS (tmp_mode
), 2 * GET_MODE_NUNITS (mode
)))
1430 delete_insns_since (last
);
1437 create_output_operand (&ops
[0], target
, tmp_mode
);
1438 create_input_operand (&ops
[1], xop0
, mode0
);
1439 create_input_operand (&ops
[2], xop1
, mode1
);
1440 pat
= maybe_gen_insn (icode
, 3, ops
);
1443 /* If PAT is composed of more than one insn, try to add an appropriate
1444 REG_EQUAL note to it. If we can't because TEMP conflicts with an
1445 operand, call expand_binop again, this time without a target. */
1446 if (INSN_P (pat
) && NEXT_INSN (pat
) != NULL_RTX
1447 && ! add_equal_note (pat
, ops
[0].value
,
1448 optab_to_code (binoptab
),
1449 ops
[1].value
, ops
[2].value
, mode0
))
1451 delete_insns_since (last
);
1452 return expand_binop (mode
, binoptab
, op0
, op1
, NULL_RTX
,
1453 unsignedp
, methods
);
1457 return ops
[0].value
;
1459 delete_insns_since (last
);
1463 /* Generate code to perform an operation specified by BINOPTAB
1464 on operands OP0 and OP1, with result having machine-mode MODE.
1466 UNSIGNEDP is for the case where we have to widen the operands
1467 to perform the operation. It says to use zero-extension.
1469 If TARGET is nonzero, the value
1470 is generated there, if it is convenient to do so.
1471 In all cases an rtx is returned for the locus of the value;
1472 this may or may not be TARGET. */
1475 expand_binop (machine_mode mode
, optab binoptab
, rtx op0
, rtx op1
,
1476 rtx target
, int unsignedp
, enum optab_methods methods
)
1478 enum optab_methods next_methods
1479 = (methods
== OPTAB_LIB
|| methods
== OPTAB_LIB_WIDEN
1480 ? OPTAB_WIDEN
: methods
);
1481 enum mode_class mclass
;
1482 enum insn_code icode
;
1483 machine_mode wider_mode
;
1484 scalar_int_mode int_mode
;
1487 rtx_insn
*entry_last
= get_last_insn ();
1490 mclass
= GET_MODE_CLASS (mode
);
1492 /* If subtracting an integer constant, convert this into an addition of
1493 the negated constant. */
1495 if (binoptab
== sub_optab
&& CONST_INT_P (op1
))
1497 op1
= negate_rtx (mode
, op1
);
1498 binoptab
= add_optab
;
1500 /* For shifts, constant invalid op1 might be expanded from different
1501 mode than MODE. As those are invalid, force them to a register
1502 to avoid further problems during expansion. */
1503 else if (CONST_INT_P (op1
)
1504 && shift_optab_p (binoptab
)
1505 && UINTVAL (op1
) >= GET_MODE_BITSIZE (GET_MODE_INNER (mode
)))
1507 op1
= gen_int_mode (INTVAL (op1
), GET_MODE_INNER (mode
));
1508 op1
= force_reg (GET_MODE_INNER (mode
), op1
);
1511 /* Record where to delete back to if we backtrack. */
1512 last
= get_last_insn ();
1514 /* If we can do it with a three-operand insn, do so. */
1516 if (methods
!= OPTAB_MUST_WIDEN
)
1518 if (convert_optab_p (binoptab
))
1520 machine_mode from_mode
= widened_mode (mode
, op0
, op1
);
1521 icode
= find_widening_optab_handler (binoptab
, mode
, from_mode
);
1524 icode
= optab_handler (binoptab
, mode
);
1525 if (icode
!= CODE_FOR_nothing
)
1527 temp
= expand_binop_directly (icode
, mode
, binoptab
, op0
, op1
,
1528 target
, unsignedp
, methods
, last
);
1534 /* If we were trying to rotate, and that didn't work, try rotating
1535 the other direction before falling back to shifts and bitwise-or. */
1536 if (((binoptab
== rotl_optab
1537 && (icode
= optab_handler (rotr_optab
, mode
)) != CODE_FOR_nothing
)
1538 || (binoptab
== rotr_optab
1539 && (icode
= optab_handler (rotl_optab
, mode
)) != CODE_FOR_nothing
))
1540 && is_int_mode (mode
, &int_mode
))
1542 optab otheroptab
= (binoptab
== rotl_optab
? rotr_optab
: rotl_optab
);
1544 unsigned int bits
= GET_MODE_PRECISION (int_mode
);
1546 if (CONST_INT_P (op1
))
1547 newop1
= gen_int_shift_amount (int_mode
, bits
- INTVAL (op1
));
1548 else if (targetm
.shift_truncation_mask (int_mode
) == bits
- 1)
1549 newop1
= negate_rtx (GET_MODE (op1
), op1
);
1551 newop1
= expand_binop (GET_MODE (op1
), sub_optab
,
1552 gen_int_mode (bits
, GET_MODE (op1
)), op1
,
1553 NULL_RTX
, unsignedp
, OPTAB_DIRECT
);
1555 temp
= expand_binop_directly (icode
, int_mode
, otheroptab
, op0
, newop1
,
1556 target
, unsignedp
, methods
, last
);
1561 /* If this is a multiply, see if we can do a widening operation that
1562 takes operands of this mode and makes a wider mode. */
1564 if (binoptab
== smul_optab
1565 && GET_MODE_2XWIDER_MODE (mode
).exists (&wider_mode
)
1566 && (convert_optab_handler ((unsignedp
1568 : smul_widen_optab
),
1569 wider_mode
, mode
) != CODE_FOR_nothing
))
1571 /* *_widen_optab needs to determine operand mode, make sure at least
1572 one operand has non-VOID mode. */
1573 if (GET_MODE (op0
) == VOIDmode
&& GET_MODE (op1
) == VOIDmode
)
1574 op0
= force_reg (mode
, op0
);
1575 temp
= expand_binop (wider_mode
,
1576 unsignedp
? umul_widen_optab
: smul_widen_optab
,
1577 op0
, op1
, NULL_RTX
, unsignedp
, OPTAB_DIRECT
);
1581 if (GET_MODE_CLASS (mode
) == MODE_INT
1582 && TRULY_NOOP_TRUNCATION_MODES_P (mode
, GET_MODE (temp
)))
1583 return gen_lowpart (mode
, temp
);
1585 return convert_to_mode (mode
, temp
, unsignedp
);
1589 /* If this is a vector shift by a scalar, see if we can do a vector
1590 shift by a vector. If so, broadcast the scalar into a vector. */
1591 if (mclass
== MODE_VECTOR_INT
)
1593 optab otheroptab
= unknown_optab
;
1595 if (binoptab
== ashl_optab
)
1596 otheroptab
= vashl_optab
;
1597 else if (binoptab
== ashr_optab
)
1598 otheroptab
= vashr_optab
;
1599 else if (binoptab
== lshr_optab
)
1600 otheroptab
= vlshr_optab
;
1601 else if (binoptab
== rotl_optab
)
1602 otheroptab
= vrotl_optab
;
1603 else if (binoptab
== rotr_optab
)
1604 otheroptab
= vrotr_optab
;
1607 && (icode
= optab_handler (otheroptab
, mode
)) != CODE_FOR_nothing
)
1609 /* The scalar may have been extended to be too wide. Truncate
1610 it back to the proper size to fit in the broadcast vector. */
1611 scalar_mode inner_mode
= GET_MODE_INNER (mode
);
1612 if (!CONST_INT_P (op1
)
1613 && (GET_MODE_BITSIZE (as_a
<scalar_int_mode
> (GET_MODE (op1
)))
1614 > GET_MODE_BITSIZE (inner_mode
)))
1615 op1
= force_reg (inner_mode
,
1616 simplify_gen_unary (TRUNCATE
, inner_mode
, op1
,
1618 rtx vop1
= expand_vector_broadcast (mode
, op1
);
1621 temp
= expand_binop_directly (icode
, mode
, otheroptab
, op0
, vop1
,
1622 target
, unsignedp
, methods
, last
);
1629 /* Look for a wider mode of the same class for which we think we
1630 can open-code the operation. Check for a widening multiply at the
1631 wider mode as well. */
1633 if (CLASS_HAS_WIDER_MODES_P (mclass
)
1634 && methods
!= OPTAB_DIRECT
&& methods
!= OPTAB_LIB
)
1635 FOR_EACH_WIDER_MODE (wider_mode
, mode
)
1637 machine_mode next_mode
;
1638 if (optab_handler (binoptab
, wider_mode
) != CODE_FOR_nothing
1639 || (binoptab
== smul_optab
1640 && GET_MODE_WIDER_MODE (wider_mode
).exists (&next_mode
)
1641 && (find_widening_optab_handler ((unsignedp
1643 : smul_widen_optab
),
1645 != CODE_FOR_nothing
)))
1647 rtx xop0
= op0
, xop1
= op1
;
1650 /* For certain integer operations, we need not actually extend
1651 the narrow operands, as long as we will truncate
1652 the results to the same narrowness. */
1654 if ((binoptab
== ior_optab
|| binoptab
== and_optab
1655 || binoptab
== xor_optab
1656 || binoptab
== add_optab
|| binoptab
== sub_optab
1657 || binoptab
== smul_optab
|| binoptab
== ashl_optab
)
1658 && mclass
== MODE_INT
)
1661 xop0
= avoid_expensive_constant (mode
, binoptab
, 0,
1663 if (binoptab
!= ashl_optab
)
1664 xop1
= avoid_expensive_constant (mode
, binoptab
, 1,
1668 xop0
= widen_operand (xop0
, wider_mode
, mode
, unsignedp
, no_extend
);
1670 /* The second operand of a shift must always be extended. */
1671 xop1
= widen_operand (xop1
, wider_mode
, mode
, unsignedp
,
1672 no_extend
&& binoptab
!= ashl_optab
);
1674 temp
= expand_binop (wider_mode
, binoptab
, xop0
, xop1
, NULL_RTX
,
1675 unsignedp
, OPTAB_DIRECT
);
1678 if (mclass
!= MODE_INT
1679 || !TRULY_NOOP_TRUNCATION_MODES_P (mode
, wider_mode
))
1682 target
= gen_reg_rtx (mode
);
1683 convert_move (target
, temp
, 0);
1687 return gen_lowpart (mode
, temp
);
1690 delete_insns_since (last
);
1694 /* If operation is commutative,
1695 try to make the first operand a register.
1696 Even better, try to make it the same as the target.
1697 Also try to make the last operand a constant. */
1698 if (commutative_optab_p (binoptab
)
1699 && swap_commutative_operands_with_target (target
, op0
, op1
))
1700 std::swap (op0
, op1
);
1702 /* These can be done a word at a time. */
1703 if ((binoptab
== and_optab
|| binoptab
== ior_optab
|| binoptab
== xor_optab
)
1704 && is_int_mode (mode
, &int_mode
)
1705 && GET_MODE_SIZE (int_mode
) > UNITS_PER_WORD
1706 && optab_handler (binoptab
, word_mode
) != CODE_FOR_nothing
)
1711 /* If TARGET is the same as one of the operands, the REG_EQUAL note
1712 won't be accurate, so use a new target. */
1716 || reg_overlap_mentioned_p (target
, op0
)
1717 || reg_overlap_mentioned_p (target
, op1
)
1718 || !valid_multiword_target_p (target
))
1719 target
= gen_reg_rtx (int_mode
);
1723 /* Do the actual arithmetic. */
1724 machine_mode op0_mode
= GET_MODE (op0
);
1725 machine_mode op1_mode
= GET_MODE (op1
);
1726 if (op0_mode
== VOIDmode
)
1727 op0_mode
= int_mode
;
1728 if (op1_mode
== VOIDmode
)
1729 op1_mode
= int_mode
;
1730 for (i
= 0; i
< GET_MODE_BITSIZE (int_mode
) / BITS_PER_WORD
; i
++)
1732 rtx target_piece
= operand_subword (target
, i
, 1, int_mode
);
1733 rtx x
= expand_binop (word_mode
, binoptab
,
1734 operand_subword_force (op0
, i
, op0_mode
),
1735 operand_subword_force (op1
, i
, op1_mode
),
1736 target_piece
, unsignedp
, next_methods
);
1741 if (target_piece
!= x
)
1742 emit_move_insn (target_piece
, x
);
1745 insns
= get_insns ();
1748 if (i
== GET_MODE_BITSIZE (int_mode
) / BITS_PER_WORD
)
1755 /* Synthesize double word shifts from single word shifts. */
1756 if ((binoptab
== lshr_optab
|| binoptab
== ashl_optab
1757 || binoptab
== ashr_optab
)
1758 && is_int_mode (mode
, &int_mode
)
1759 && (CONST_INT_P (op1
) || optimize_insn_for_speed_p ())
1760 && GET_MODE_SIZE (int_mode
) == 2 * UNITS_PER_WORD
1761 && GET_MODE_PRECISION (int_mode
) == GET_MODE_BITSIZE (int_mode
)
1762 && optab_handler (binoptab
, word_mode
) != CODE_FOR_nothing
1763 && optab_handler (ashl_optab
, word_mode
) != CODE_FOR_nothing
1764 && optab_handler (lshr_optab
, word_mode
) != CODE_FOR_nothing
)
1766 unsigned HOST_WIDE_INT shift_mask
, double_shift_mask
;
1767 scalar_int_mode op1_mode
;
1769 double_shift_mask
= targetm
.shift_truncation_mask (int_mode
);
1770 shift_mask
= targetm
.shift_truncation_mask (word_mode
);
1771 op1_mode
= (GET_MODE (op1
) != VOIDmode
1772 ? as_a
<scalar_int_mode
> (GET_MODE (op1
))
1775 /* Apply the truncation to constant shifts. */
1776 if (double_shift_mask
> 0 && CONST_INT_P (op1
))
1777 op1
= gen_int_mode (INTVAL (op1
) & double_shift_mask
, op1_mode
);
1779 if (op1
== CONST0_RTX (op1_mode
))
1782 /* Make sure that this is a combination that expand_doubleword_shift
1783 can handle. See the comments there for details. */
1784 if (double_shift_mask
== 0
1785 || (shift_mask
== BITS_PER_WORD
- 1
1786 && double_shift_mask
== BITS_PER_WORD
* 2 - 1))
1789 rtx into_target
, outof_target
;
1790 rtx into_input
, outof_input
;
1791 int left_shift
, outof_word
;
1793 /* If TARGET is the same as one of the operands, the REG_EQUAL note
1794 won't be accurate, so use a new target. */
1798 || reg_overlap_mentioned_p (target
, op0
)
1799 || reg_overlap_mentioned_p (target
, op1
)
1800 || !valid_multiword_target_p (target
))
1801 target
= gen_reg_rtx (int_mode
);
1805 /* OUTOF_* is the word we are shifting bits away from, and
1806 INTO_* is the word that we are shifting bits towards, thus
1807 they differ depending on the direction of the shift and
1808 WORDS_BIG_ENDIAN. */
1810 left_shift
= binoptab
== ashl_optab
;
1811 outof_word
= left_shift
^ ! WORDS_BIG_ENDIAN
;
1813 outof_target
= operand_subword (target
, outof_word
, 1, int_mode
);
1814 into_target
= operand_subword (target
, 1 - outof_word
, 1, int_mode
);
1816 outof_input
= operand_subword_force (op0
, outof_word
, int_mode
);
1817 into_input
= operand_subword_force (op0
, 1 - outof_word
, int_mode
);
1819 if (expand_doubleword_shift (op1_mode
, binoptab
,
1820 outof_input
, into_input
, op1
,
1821 outof_target
, into_target
,
1822 unsignedp
, next_methods
, shift_mask
))
1824 insns
= get_insns ();
1834 /* Synthesize double word rotates from single word shifts. */
1835 if ((binoptab
== rotl_optab
|| binoptab
== rotr_optab
)
1836 && is_int_mode (mode
, &int_mode
)
1837 && CONST_INT_P (op1
)
1838 && GET_MODE_PRECISION (int_mode
) == 2 * BITS_PER_WORD
1839 && optab_handler (ashl_optab
, word_mode
) != CODE_FOR_nothing
1840 && optab_handler (lshr_optab
, word_mode
) != CODE_FOR_nothing
)
1843 rtx into_target
, outof_target
;
1844 rtx into_input
, outof_input
;
1846 int shift_count
, left_shift
, outof_word
;
1848 /* If TARGET is the same as one of the operands, the REG_EQUAL note
1849 won't be accurate, so use a new target. Do this also if target is not
1850 a REG, first because having a register instead may open optimization
1851 opportunities, and second because if target and op0 happen to be MEMs
1852 designating the same location, we would risk clobbering it too early
1853 in the code sequence we generate below. */
1858 || reg_overlap_mentioned_p (target
, op0
)
1859 || reg_overlap_mentioned_p (target
, op1
)
1860 || !valid_multiword_target_p (target
))
1861 target
= gen_reg_rtx (int_mode
);
1865 shift_count
= INTVAL (op1
);
1867 /* OUTOF_* is the word we are shifting bits away from, and
1868 INTO_* is the word that we are shifting bits towards, thus
1869 they differ depending on the direction of the shift and
1870 WORDS_BIG_ENDIAN. */
1872 left_shift
= (binoptab
== rotl_optab
);
1873 outof_word
= left_shift
^ ! WORDS_BIG_ENDIAN
;
1875 outof_target
= operand_subword (target
, outof_word
, 1, int_mode
);
1876 into_target
= operand_subword (target
, 1 - outof_word
, 1, int_mode
);
1878 outof_input
= operand_subword_force (op0
, outof_word
, int_mode
);
1879 into_input
= operand_subword_force (op0
, 1 - outof_word
, int_mode
);
1881 if (shift_count
== BITS_PER_WORD
)
1883 /* This is just a word swap. */
1884 emit_move_insn (outof_target
, into_input
);
1885 emit_move_insn (into_target
, outof_input
);
1890 rtx into_temp1
, into_temp2
, outof_temp1
, outof_temp2
;
1891 HOST_WIDE_INT first_shift_count
, second_shift_count
;
1892 optab reverse_unsigned_shift
, unsigned_shift
;
1894 reverse_unsigned_shift
= (left_shift
^ (shift_count
< BITS_PER_WORD
)
1895 ? lshr_optab
: ashl_optab
);
1897 unsigned_shift
= (left_shift
^ (shift_count
< BITS_PER_WORD
)
1898 ? ashl_optab
: lshr_optab
);
1900 if (shift_count
> BITS_PER_WORD
)
1902 first_shift_count
= shift_count
- BITS_PER_WORD
;
1903 second_shift_count
= 2 * BITS_PER_WORD
- shift_count
;
1907 first_shift_count
= BITS_PER_WORD
- shift_count
;
1908 second_shift_count
= shift_count
;
1910 rtx first_shift_count_rtx
1911 = gen_int_shift_amount (word_mode
, first_shift_count
);
1912 rtx second_shift_count_rtx
1913 = gen_int_shift_amount (word_mode
, second_shift_count
);
1915 into_temp1
= expand_binop (word_mode
, unsigned_shift
,
1916 outof_input
, first_shift_count_rtx
,
1917 NULL_RTX
, unsignedp
, next_methods
);
1918 into_temp2
= expand_binop (word_mode
, reverse_unsigned_shift
,
1919 into_input
, second_shift_count_rtx
,
1920 NULL_RTX
, unsignedp
, next_methods
);
1922 if (into_temp1
!= 0 && into_temp2
!= 0)
1923 inter
= expand_binop (word_mode
, ior_optab
, into_temp1
, into_temp2
,
1924 into_target
, unsignedp
, next_methods
);
1928 if (inter
!= 0 && inter
!= into_target
)
1929 emit_move_insn (into_target
, inter
);
1931 outof_temp1
= expand_binop (word_mode
, unsigned_shift
,
1932 into_input
, first_shift_count_rtx
,
1933 NULL_RTX
, unsignedp
, next_methods
);
1934 outof_temp2
= expand_binop (word_mode
, reverse_unsigned_shift
,
1935 outof_input
, second_shift_count_rtx
,
1936 NULL_RTX
, unsignedp
, next_methods
);
1938 if (inter
!= 0 && outof_temp1
!= 0 && outof_temp2
!= 0)
1939 inter
= expand_binop (word_mode
, ior_optab
,
1940 outof_temp1
, outof_temp2
,
1941 outof_target
, unsignedp
, next_methods
);
1943 if (inter
!= 0 && inter
!= outof_target
)
1944 emit_move_insn (outof_target
, inter
);
1947 insns
= get_insns ();
1957 /* These can be done a word at a time by propagating carries. */
1958 if ((binoptab
== add_optab
|| binoptab
== sub_optab
)
1959 && is_int_mode (mode
, &int_mode
)
1960 && GET_MODE_SIZE (int_mode
) >= 2 * UNITS_PER_WORD
1961 && optab_handler (binoptab
, word_mode
) != CODE_FOR_nothing
)
1964 optab otheroptab
= binoptab
== add_optab
? sub_optab
: add_optab
;
1965 const unsigned int nwords
= GET_MODE_BITSIZE (int_mode
) / BITS_PER_WORD
;
1966 rtx carry_in
= NULL_RTX
, carry_out
= NULL_RTX
;
1967 rtx xop0
, xop1
, xtarget
;
1969 /* We can handle either a 1 or -1 value for the carry. If STORE_FLAG
1970 value is one of those, use it. Otherwise, use 1 since it is the
1971 one easiest to get. */
1972 #if STORE_FLAG_VALUE == 1 || STORE_FLAG_VALUE == -1
1973 int normalizep
= STORE_FLAG_VALUE
;
1978 /* Prepare the operands. */
1979 xop0
= force_reg (int_mode
, op0
);
1980 xop1
= force_reg (int_mode
, op1
);
1982 xtarget
= gen_reg_rtx (int_mode
);
1984 if (target
== 0 || !REG_P (target
) || !valid_multiword_target_p (target
))
1987 /* Indicate for flow that the entire target reg is being set. */
1989 emit_clobber (xtarget
);
1991 /* Do the actual arithmetic. */
1992 for (i
= 0; i
< nwords
; i
++)
1994 int index
= (WORDS_BIG_ENDIAN
? nwords
- i
- 1 : i
);
1995 rtx target_piece
= operand_subword (xtarget
, index
, 1, int_mode
);
1996 rtx op0_piece
= operand_subword_force (xop0
, index
, int_mode
);
1997 rtx op1_piece
= operand_subword_force (xop1
, index
, int_mode
);
2000 /* Main add/subtract of the input operands. */
2001 x
= expand_binop (word_mode
, binoptab
,
2002 op0_piece
, op1_piece
,
2003 target_piece
, unsignedp
, next_methods
);
2009 /* Store carry from main add/subtract. */
2010 carry_out
= gen_reg_rtx (word_mode
);
2011 carry_out
= emit_store_flag_force (carry_out
,
2012 (binoptab
== add_optab
2015 word_mode
, 1, normalizep
);
2022 /* Add/subtract previous carry to main result. */
2023 newx
= expand_binop (word_mode
,
2024 normalizep
== 1 ? binoptab
: otheroptab
,
2026 NULL_RTX
, 1, next_methods
);
2030 /* Get out carry from adding/subtracting carry in. */
2031 rtx carry_tmp
= gen_reg_rtx (word_mode
);
2032 carry_tmp
= emit_store_flag_force (carry_tmp
,
2033 (binoptab
== add_optab
2036 word_mode
, 1, normalizep
);
2038 /* Logical-ior the two poss. carry together. */
2039 carry_out
= expand_binop (word_mode
, ior_optab
,
2040 carry_out
, carry_tmp
,
2041 carry_out
, 0, next_methods
);
2045 emit_move_insn (target_piece
, newx
);
2049 if (x
!= target_piece
)
2050 emit_move_insn (target_piece
, x
);
2053 carry_in
= carry_out
;
2056 if (i
== GET_MODE_BITSIZE (int_mode
) / (unsigned) BITS_PER_WORD
)
2058 if (optab_handler (mov_optab
, int_mode
) != CODE_FOR_nothing
2059 || ! rtx_equal_p (target
, xtarget
))
2061 rtx_insn
*temp
= emit_move_insn (target
, xtarget
);
2063 set_dst_reg_note (temp
, REG_EQUAL
,
2064 gen_rtx_fmt_ee (optab_to_code (binoptab
),
2065 int_mode
, copy_rtx (xop0
),
2076 delete_insns_since (last
);
2079 /* Attempt to synthesize double word multiplies using a sequence of word
2080 mode multiplications. We first attempt to generate a sequence using a
2081 more efficient unsigned widening multiply, and if that fails we then
2082 try using a signed widening multiply. */
2084 if (binoptab
== smul_optab
2085 && is_int_mode (mode
, &int_mode
)
2086 && GET_MODE_SIZE (int_mode
) == 2 * UNITS_PER_WORD
2087 && optab_handler (smul_optab
, word_mode
) != CODE_FOR_nothing
2088 && optab_handler (add_optab
, word_mode
) != CODE_FOR_nothing
)
2090 rtx product
= NULL_RTX
;
2091 if (convert_optab_handler (umul_widen_optab
, int_mode
, word_mode
)
2092 != CODE_FOR_nothing
)
2094 product
= expand_doubleword_mult (int_mode
, op0
, op1
, target
,
2097 delete_insns_since (last
);
2100 if (product
== NULL_RTX
2101 && (convert_optab_handler (smul_widen_optab
, int_mode
, word_mode
)
2102 != CODE_FOR_nothing
))
2104 product
= expand_doubleword_mult (int_mode
, op0
, op1
, target
,
2107 delete_insns_since (last
);
2110 if (product
!= NULL_RTX
)
2112 if (optab_handler (mov_optab
, int_mode
) != CODE_FOR_nothing
)
2114 rtx_insn
*move
= emit_move_insn (target
? target
: product
,
2116 set_dst_reg_note (move
,
2118 gen_rtx_fmt_ee (MULT
, int_mode
,
2121 target
? target
: product
);
2127 /* Attempt to synthetize double word modulo by constant divisor. */
2128 if ((binoptab
== umod_optab
2129 || binoptab
== smod_optab
2130 || binoptab
== udiv_optab
2131 || binoptab
== sdiv_optab
)
2133 && CONST_INT_P (op1
)
2134 && is_int_mode (mode
, &int_mode
)
2135 && GET_MODE_SIZE (int_mode
) == 2 * UNITS_PER_WORD
2136 && optab_handler ((binoptab
== umod_optab
|| binoptab
== udiv_optab
)
2137 ? udivmod_optab
: sdivmod_optab
,
2138 int_mode
) == CODE_FOR_nothing
2139 && optab_handler (and_optab
, word_mode
) != CODE_FOR_nothing
2140 && optab_handler (add_optab
, word_mode
) != CODE_FOR_nothing
2141 && optimize_insn_for_speed_p ())
2144 if ((binoptab
== umod_optab
|| binoptab
== smod_optab
)
2145 && (INTVAL (op1
) & 1) == 0)
2146 res
= expand_doubleword_mod (int_mode
, op0
, op1
,
2147 binoptab
== umod_optab
);
2150 rtx quot
= expand_doubleword_divmod (int_mode
, op0
, op1
, &res
,
2151 binoptab
== umod_optab
2152 || binoptab
== udiv_optab
);
2153 if (quot
== NULL_RTX
)
2155 else if (binoptab
== udiv_optab
|| binoptab
== sdiv_optab
)
2158 if (res
!= NULL_RTX
)
2160 if (optab_handler (mov_optab
, int_mode
) != CODE_FOR_nothing
)
2162 rtx_insn
*move
= emit_move_insn (target
? target
: res
,
2164 set_dst_reg_note (move
, REG_EQUAL
,
2165 gen_rtx_fmt_ee (optab_to_code (binoptab
),
2166 int_mode
, copy_rtx (op0
), op1
),
2167 target
? target
: res
);
2172 delete_insns_since (last
);
2175 /* It can't be open-coded in this mode.
2176 Use a library call if one is available and caller says that's ok. */
2178 libfunc
= optab_libfunc (binoptab
, mode
);
2180 && (methods
== OPTAB_LIB
|| methods
== OPTAB_LIB_WIDEN
))
2184 machine_mode op1_mode
= mode
;
2189 if (shift_optab_p (binoptab
))
2191 op1_mode
= targetm
.libgcc_shift_count_mode ();
2192 /* Specify unsigned here,
2193 since negative shift counts are meaningless. */
2194 op1x
= convert_to_mode (op1_mode
, op1
, 1);
2197 if (GET_MODE (op0
) != VOIDmode
2198 && GET_MODE (op0
) != mode
)
2199 op0
= convert_to_mode (mode
, op0
, unsignedp
);
2201 /* Pass 1 for NO_QUEUE so we don't lose any increments
2202 if the libcall is cse'd or moved. */
2203 value
= emit_library_call_value (libfunc
,
2204 NULL_RTX
, LCT_CONST
, mode
,
2205 op0
, mode
, op1x
, op1_mode
);
2207 insns
= get_insns ();
2210 bool trapv
= trapv_binoptab_p (binoptab
);
2211 target
= gen_reg_rtx (mode
);
2212 emit_libcall_block_1 (insns
, target
, value
,
2214 : gen_rtx_fmt_ee (optab_to_code (binoptab
),
2215 mode
, op0
, op1
), trapv
);
2220 delete_insns_since (last
);
2222 /* It can't be done in this mode. Can we do it in a wider mode? */
2224 if (! (methods
== OPTAB_WIDEN
|| methods
== OPTAB_LIB_WIDEN
2225 || methods
== OPTAB_MUST_WIDEN
))
2227 /* Caller says, don't even try. */
2228 delete_insns_since (entry_last
);
2232 /* Compute the value of METHODS to pass to recursive calls.
2233 Don't allow widening to be tried recursively. */
2235 methods
= (methods
== OPTAB_LIB_WIDEN
? OPTAB_LIB
: OPTAB_DIRECT
);
2237 /* Look for a wider mode of the same class for which it appears we can do
2240 if (CLASS_HAS_WIDER_MODES_P (mclass
))
2242 /* This code doesn't make sense for conversion optabs, since we
2243 wouldn't then want to extend the operands to be the same size
2245 gcc_assert (!convert_optab_p (binoptab
));
2246 FOR_EACH_WIDER_MODE (wider_mode
, mode
)
2248 if (optab_handler (binoptab
, wider_mode
)
2249 || (methods
== OPTAB_LIB
2250 && optab_libfunc (binoptab
, wider_mode
)))
2252 rtx xop0
= op0
, xop1
= op1
;
2255 /* For certain integer operations, we need not actually extend
2256 the narrow operands, as long as we will truncate
2257 the results to the same narrowness. */
2259 if ((binoptab
== ior_optab
|| binoptab
== and_optab
2260 || binoptab
== xor_optab
2261 || binoptab
== add_optab
|| binoptab
== sub_optab
2262 || binoptab
== smul_optab
|| binoptab
== ashl_optab
)
2263 && mclass
== MODE_INT
)
2266 xop0
= widen_operand (xop0
, wider_mode
, mode
,
2267 unsignedp
, no_extend
);
2269 /* The second operand of a shift must always be extended. */
2270 xop1
= widen_operand (xop1
, wider_mode
, mode
, unsignedp
,
2271 no_extend
&& binoptab
!= ashl_optab
);
2273 temp
= expand_binop (wider_mode
, binoptab
, xop0
, xop1
, NULL_RTX
,
2274 unsignedp
, methods
);
2277 if (mclass
!= MODE_INT
2278 || !TRULY_NOOP_TRUNCATION_MODES_P (mode
, wider_mode
))
2281 target
= gen_reg_rtx (mode
);
2282 convert_move (target
, temp
, 0);
2286 return gen_lowpart (mode
, temp
);
2289 delete_insns_since (last
);
2294 delete_insns_since (entry_last
);
2298 /* Expand a binary operator which has both signed and unsigned forms.
2299 UOPTAB is the optab for unsigned operations, and SOPTAB is for
2302 If we widen unsigned operands, we may use a signed wider operation instead
2303 of an unsigned wider operation, since the result would be the same. */
2306 sign_expand_binop (machine_mode mode
, optab uoptab
, optab soptab
,
2307 rtx op0
, rtx op1
, rtx target
, int unsignedp
,
2308 enum optab_methods methods
)
2311 optab direct_optab
= unsignedp
? uoptab
: soptab
;
2314 /* Do it without widening, if possible. */
2315 temp
= expand_binop (mode
, direct_optab
, op0
, op1
, target
,
2316 unsignedp
, OPTAB_DIRECT
);
2317 if (temp
|| methods
== OPTAB_DIRECT
)
2320 /* Try widening to a signed int. Disable any direct use of any
2321 signed insn in the current mode. */
2322 save_enable
= swap_optab_enable (soptab
, mode
, false);
2324 temp
= expand_binop (mode
, soptab
, op0
, op1
, target
,
2325 unsignedp
, OPTAB_WIDEN
);
2327 /* For unsigned operands, try widening to an unsigned int. */
2328 if (!temp
&& unsignedp
)
2329 temp
= expand_binop (mode
, uoptab
, op0
, op1
, target
,
2330 unsignedp
, OPTAB_WIDEN
);
2331 if (temp
|| methods
== OPTAB_WIDEN
)
2334 /* Use the right width libcall if that exists. */
2335 temp
= expand_binop (mode
, direct_optab
, op0
, op1
, target
,
2336 unsignedp
, OPTAB_LIB
);
2337 if (temp
|| methods
== OPTAB_LIB
)
2340 /* Must widen and use a libcall, use either signed or unsigned. */
2341 temp
= expand_binop (mode
, soptab
, op0
, op1
, target
,
2342 unsignedp
, methods
);
2343 if (!temp
&& unsignedp
)
2344 temp
= expand_binop (mode
, uoptab
, op0
, op1
, target
,
2345 unsignedp
, methods
);
2348 /* Undo the fiddling above. */
2350 swap_optab_enable (soptab
, mode
, true);
2354 /* Generate code to perform an operation specified by UNOPPTAB
2355 on operand OP0, with two results to TARG0 and TARG1.
2356 We assume that the order of the operands for the instruction
2357 is TARG0, TARG1, OP0.
2359 Either TARG0 or TARG1 may be zero, but what that means is that
2360 the result is not actually wanted. We will generate it into
2361 a dummy pseudo-reg and discard it. They may not both be zero.
2363 Returns 1 if this operation can be performed; 0 if not. */
2366 expand_twoval_unop (optab unoptab
, rtx op0
, rtx targ0
, rtx targ1
,
2369 machine_mode mode
= GET_MODE (targ0
? targ0
: targ1
);
2370 enum mode_class mclass
;
2371 machine_mode wider_mode
;
2372 rtx_insn
*entry_last
= get_last_insn ();
2375 mclass
= GET_MODE_CLASS (mode
);
2378 targ0
= gen_reg_rtx (mode
);
2380 targ1
= gen_reg_rtx (mode
);
2382 /* Record where to go back to if we fail. */
2383 last
= get_last_insn ();
2385 if (optab_handler (unoptab
, mode
) != CODE_FOR_nothing
)
2387 class expand_operand ops
[3];
2388 enum insn_code icode
= optab_handler (unoptab
, mode
);
2390 create_fixed_operand (&ops
[0], targ0
);
2391 create_fixed_operand (&ops
[1], targ1
);
2392 create_convert_operand_from (&ops
[2], op0
, mode
, unsignedp
);
2393 if (maybe_expand_insn (icode
, 3, ops
))
2397 /* It can't be done in this mode. Can we do it in a wider mode? */
2399 if (CLASS_HAS_WIDER_MODES_P (mclass
))
2401 FOR_EACH_WIDER_MODE (wider_mode
, mode
)
2403 if (optab_handler (unoptab
, wider_mode
) != CODE_FOR_nothing
)
2405 rtx t0
= gen_reg_rtx (wider_mode
);
2406 rtx t1
= gen_reg_rtx (wider_mode
);
2407 rtx cop0
= convert_modes (wider_mode
, mode
, op0
, unsignedp
);
2409 if (expand_twoval_unop (unoptab
, cop0
, t0
, t1
, unsignedp
))
2411 convert_move (targ0
, t0
, unsignedp
);
2412 convert_move (targ1
, t1
, unsignedp
);
2416 delete_insns_since (last
);
2421 delete_insns_since (entry_last
);
2425 /* Generate code to perform an operation specified by BINOPTAB
2426 on operands OP0 and OP1, with two results to TARG1 and TARG2.
2427 We assume that the order of the operands for the instruction
2428 is TARG0, OP0, OP1, TARG1, which would fit a pattern like
2429 [(set TARG0 (operate OP0 OP1)) (set TARG1 (operate ...))].
2431 Either TARG0 or TARG1 may be zero, but what that means is that
2432 the result is not actually wanted. We will generate it into
2433 a dummy pseudo-reg and discard it. They may not both be zero.
2435 Returns 1 if this operation can be performed; 0 if not. */
2438 expand_twoval_binop (optab binoptab
, rtx op0
, rtx op1
, rtx targ0
, rtx targ1
,
2441 machine_mode mode
= GET_MODE (targ0
? targ0
: targ1
);
2442 enum mode_class mclass
;
2443 machine_mode wider_mode
;
2444 rtx_insn
*entry_last
= get_last_insn ();
2447 mclass
= GET_MODE_CLASS (mode
);
2450 targ0
= gen_reg_rtx (mode
);
2452 targ1
= gen_reg_rtx (mode
);
2454 /* Record where to go back to if we fail. */
2455 last
= get_last_insn ();
2457 if (optab_handler (binoptab
, mode
) != CODE_FOR_nothing
)
2459 class expand_operand ops
[4];
2460 enum insn_code icode
= optab_handler (binoptab
, mode
);
2461 machine_mode mode0
= insn_data
[icode
].operand
[1].mode
;
2462 machine_mode mode1
= insn_data
[icode
].operand
[2].mode
;
2463 rtx xop0
= op0
, xop1
= op1
;
2465 /* If we are optimizing, force expensive constants into a register. */
2466 xop0
= avoid_expensive_constant (mode0
, binoptab
, 0, xop0
, unsignedp
);
2467 xop1
= avoid_expensive_constant (mode1
, binoptab
, 1, xop1
, unsignedp
);
2469 create_fixed_operand (&ops
[0], targ0
);
2470 create_convert_operand_from (&ops
[1], xop0
, mode
, unsignedp
);
2471 create_convert_operand_from (&ops
[2], xop1
, mode
, unsignedp
);
2472 create_fixed_operand (&ops
[3], targ1
);
2473 if (maybe_expand_insn (icode
, 4, ops
))
2475 delete_insns_since (last
);
2478 /* It can't be done in this mode. Can we do it in a wider mode? */
2480 if (CLASS_HAS_WIDER_MODES_P (mclass
))
2482 FOR_EACH_WIDER_MODE (wider_mode
, mode
)
2484 if (optab_handler (binoptab
, wider_mode
) != CODE_FOR_nothing
)
2486 rtx t0
= gen_reg_rtx (wider_mode
);
2487 rtx t1
= gen_reg_rtx (wider_mode
);
2488 rtx cop0
= convert_modes (wider_mode
, mode
, op0
, unsignedp
);
2489 rtx cop1
= convert_modes (wider_mode
, mode
, op1
, unsignedp
);
2491 if (expand_twoval_binop (binoptab
, cop0
, cop1
,
2494 convert_move (targ0
, t0
, unsignedp
);
2495 convert_move (targ1
, t1
, unsignedp
);
2499 delete_insns_since (last
);
2504 delete_insns_since (entry_last
);
2508 /* Expand the two-valued library call indicated by BINOPTAB, but
2509 preserve only one of the values. If TARG0 is non-NULL, the first
2510 value is placed into TARG0; otherwise the second value is placed
2511 into TARG1. Exactly one of TARG0 and TARG1 must be non-NULL. The
2512 value stored into TARG0 or TARG1 is equivalent to (CODE OP0 OP1).
2513 This routine assumes that the value returned by the library call is
2514 as if the return value was of an integral mode twice as wide as the
2515 mode of OP0. Returns 1 if the call was successful. */
2518 expand_twoval_binop_libfunc (optab binoptab
, rtx op0
, rtx op1
,
2519 rtx targ0
, rtx targ1
, enum rtx_code code
)
2522 machine_mode libval_mode
;
2527 /* Exactly one of TARG0 or TARG1 should be non-NULL. */
2528 gcc_assert (!targ0
!= !targ1
);
2530 mode
= GET_MODE (op0
);
2531 libfunc
= optab_libfunc (binoptab
, mode
);
2535 /* The value returned by the library function will have twice as
2536 many bits as the nominal MODE. */
2537 libval_mode
= smallest_int_mode_for_size (2 * GET_MODE_BITSIZE (mode
));
2539 libval
= emit_library_call_value (libfunc
, NULL_RTX
, LCT_CONST
,
2543 /* Get the part of VAL containing the value that we want. */
2544 libval
= simplify_gen_subreg (mode
, libval
, libval_mode
,
2545 targ0
? 0 : GET_MODE_SIZE (mode
));
2546 insns
= get_insns ();
2548 /* Move the into the desired location. */
2549 emit_libcall_block (insns
, targ0
? targ0
: targ1
, libval
,
2550 gen_rtx_fmt_ee (code
, mode
, op0
, op1
));
2556 /* Wrapper around expand_unop which takes an rtx code to specify
2557 the operation to perform, not an optab pointer. All other
2558 arguments are the same. */
2560 expand_simple_unop (machine_mode mode
, enum rtx_code code
, rtx op0
,
2561 rtx target
, int unsignedp
)
2563 optab unop
= code_to_optab (code
);
2566 return expand_unop (mode
, unop
, op0
, target
, unsignedp
);
2572 (clz:wide (zero_extend:wide x)) - ((width wide) - (width narrow)).
2574 A similar operation can be used for clrsb. UNOPTAB says which operation
2575 we are trying to expand. */
2577 widen_leading (scalar_int_mode mode
, rtx op0
, rtx target
, optab unoptab
)
2579 opt_scalar_int_mode wider_mode_iter
;
2580 FOR_EACH_WIDER_MODE (wider_mode_iter
, mode
)
2582 scalar_int_mode wider_mode
= wider_mode_iter
.require ();
2583 if (optab_handler (unoptab
, wider_mode
) != CODE_FOR_nothing
)
2588 last
= get_last_insn ();
2591 target
= gen_reg_rtx (mode
);
2592 xop0
= widen_operand (op0
, wider_mode
, mode
,
2593 unoptab
!= clrsb_optab
, false);
2594 temp
= expand_unop (wider_mode
, unoptab
, xop0
, NULL_RTX
,
2595 unoptab
!= clrsb_optab
);
2598 (wider_mode
, sub_optab
, temp
,
2599 gen_int_mode (GET_MODE_PRECISION (wider_mode
)
2600 - GET_MODE_PRECISION (mode
),
2602 target
, true, OPTAB_DIRECT
);
2604 delete_insns_since (last
);
2612 /* Attempt to emit (clrsb:mode op0) as
2613 (plus:mode (clz:mode (xor:mode op0 (ashr:mode op0 (const_int prec-1))))
2615 if CLZ_DEFINED_VALUE_AT_ZERO (mode, val) is 2 and val is prec,
2617 (clz:mode (ior:mode (xor:mode (ashl:mode op0 (const_int 1))
2618 (ashr:mode op0 (const_int prec-1)))
2623 expand_clrsb_using_clz (scalar_int_mode mode
, rtx op0
, rtx target
)
2625 if (optimize_insn_for_size_p ()
2626 || optab_handler (clz_optab
, mode
) == CODE_FOR_nothing
)
2630 HOST_WIDE_INT val
= 0;
2631 if (CLZ_DEFINED_VALUE_AT_ZERO (mode
, val
) != 2
2632 || val
!= GET_MODE_PRECISION (mode
))
2640 temp2
= expand_binop (mode
, ashl_optab
, op0
, const1_rtx
,
2641 NULL_RTX
, 0, OPTAB_DIRECT
);
2650 rtx temp
= expand_binop (mode
, ashr_optab
, op0
,
2651 GEN_INT (GET_MODE_PRECISION (mode
) - 1),
2652 NULL_RTX
, 0, OPTAB_DIRECT
);
2656 temp
= expand_binop (mode
, xor_optab
, temp2
, temp
, NULL_RTX
, 0,
2663 temp
= expand_binop (mode
, ior_optab
, temp
, const1_rtx
,
2664 NULL_RTX
, 0, OPTAB_DIRECT
);
2668 temp
= expand_unop_direct (mode
, clz_optab
, temp
, val
? NULL_RTX
: target
,
2674 temp
= expand_binop (mode
, add_optab
, temp
, constm1_rtx
,
2675 target
, 0, OPTAB_DIRECT
);
2680 rtx_insn
*seq
= get_insns ();
2683 add_equal_note (seq
, temp
, CLRSB
, op0
, NULL_RTX
, mode
);
2688 /* Try calculating clz of a double-word quantity as two clz's of word-sized
2689 quantities, choosing which based on whether the high word is nonzero. */
2691 expand_doubleword_clz (scalar_int_mode mode
, rtx op0
, rtx target
)
2693 rtx xop0
= force_reg (mode
, op0
);
2694 rtx subhi
= gen_highpart (word_mode
, xop0
);
2695 rtx sublo
= gen_lowpart (word_mode
, xop0
);
2696 rtx_code_label
*hi0_label
= gen_label_rtx ();
2697 rtx_code_label
*after_label
= gen_label_rtx ();
2701 /* If we were not given a target, use a word_mode register, not a
2702 'mode' register. The result will fit, and nobody is expecting
2703 anything bigger (the return type of __builtin_clz* is int). */
2705 target
= gen_reg_rtx (word_mode
);
2707 /* In any case, write to a word_mode scratch in both branches of the
2708 conditional, so we can ensure there is a single move insn setting
2709 'target' to tag a REG_EQUAL note on. */
2710 result
= gen_reg_rtx (word_mode
);
2714 /* If the high word is not equal to zero,
2715 then clz of the full value is clz of the high word. */
2716 emit_cmp_and_jump_insns (subhi
, CONST0_RTX (word_mode
), EQ
, 0,
2717 word_mode
, true, hi0_label
);
2719 temp
= expand_unop_direct (word_mode
, clz_optab
, subhi
, result
, true);
2724 convert_move (result
, temp
, true);
2726 emit_jump_insn (targetm
.gen_jump (after_label
));
2729 /* Else clz of the full value is clz of the low word plus the number
2730 of bits in the high word. */
2731 emit_label (hi0_label
);
2733 temp
= expand_unop_direct (word_mode
, clz_optab
, sublo
, 0, true);
2736 temp
= expand_binop (word_mode
, add_optab
, temp
,
2737 gen_int_mode (GET_MODE_BITSIZE (word_mode
), word_mode
),
2738 result
, true, OPTAB_DIRECT
);
2742 convert_move (result
, temp
, true);
2744 emit_label (after_label
);
2745 convert_move (target
, result
, true);
2750 add_equal_note (seq
, target
, CLZ
, xop0
, NULL_RTX
, mode
);
2759 /* Try calculating popcount of a double-word quantity as two popcount's of
2760 word-sized quantities and summing up the results. */
2762 expand_doubleword_popcount (scalar_int_mode mode
, rtx op0
, rtx target
)
2769 t0
= expand_unop_direct (word_mode
, popcount_optab
,
2770 operand_subword_force (op0
, 0, mode
), NULL_RTX
,
2772 t1
= expand_unop_direct (word_mode
, popcount_optab
,
2773 operand_subword_force (op0
, 1, mode
), NULL_RTX
,
2781 /* If we were not given a target, use a word_mode register, not a
2782 'mode' register. The result will fit, and nobody is expecting
2783 anything bigger (the return type of __builtin_popcount* is int). */
2785 target
= gen_reg_rtx (word_mode
);
2787 t
= expand_binop (word_mode
, add_optab
, t0
, t1
, target
, 0, OPTAB_DIRECT
);
2792 add_equal_note (seq
, t
, POPCOUNT
, op0
, NULL_RTX
, mode
);
2800 (parity:narrow (low (x) ^ high (x))) */
2802 expand_doubleword_parity (scalar_int_mode mode
, rtx op0
, rtx target
)
2804 rtx t
= expand_binop (word_mode
, xor_optab
,
2805 operand_subword_force (op0
, 0, mode
),
2806 operand_subword_force (op0
, 1, mode
),
2807 NULL_RTX
, 0, OPTAB_DIRECT
);
2808 return expand_unop (word_mode
, parity_optab
, t
, target
, true);
2814 (lshiftrt:wide (bswap:wide x) ((width wide) - (width narrow))). */
2816 widen_bswap (scalar_int_mode mode
, rtx op0
, rtx target
)
2820 opt_scalar_int_mode wider_mode_iter
;
2822 FOR_EACH_WIDER_MODE (wider_mode_iter
, mode
)
2823 if (optab_handler (bswap_optab
, wider_mode_iter
.require ())
2824 != CODE_FOR_nothing
)
2827 if (!wider_mode_iter
.exists ())
2830 scalar_int_mode wider_mode
= wider_mode_iter
.require ();
2831 last
= get_last_insn ();
2833 x
= widen_operand (op0
, wider_mode
, mode
, true, true);
2834 x
= expand_unop (wider_mode
, bswap_optab
, x
, NULL_RTX
, true);
2836 gcc_assert (GET_MODE_PRECISION (wider_mode
) == GET_MODE_BITSIZE (wider_mode
)
2837 && GET_MODE_PRECISION (mode
) == GET_MODE_BITSIZE (mode
));
2839 x
= expand_shift (RSHIFT_EXPR
, wider_mode
, x
,
2840 GET_MODE_BITSIZE (wider_mode
)
2841 - GET_MODE_BITSIZE (mode
),
2847 target
= gen_reg_rtx (mode
);
2848 emit_move_insn (target
, gen_lowpart (mode
, x
));
2851 delete_insns_since (last
);
2856 /* Try calculating bswap as two bswaps of two word-sized operands. */
2859 expand_doubleword_bswap (machine_mode mode
, rtx op
, rtx target
)
2863 t1
= expand_unop (word_mode
, bswap_optab
,
2864 operand_subword_force (op
, 0, mode
), NULL_RTX
, true);
2865 t0
= expand_unop (word_mode
, bswap_optab
,
2866 operand_subword_force (op
, 1, mode
), NULL_RTX
, true);
2868 if (target
== 0 || !valid_multiword_target_p (target
))
2869 target
= gen_reg_rtx (mode
);
2871 emit_clobber (target
);
2872 emit_move_insn (operand_subword (target
, 0, 1, mode
), t0
);
2873 emit_move_insn (operand_subword (target
, 1, 1, mode
), t1
);
2878 /* Try calculating (parity x) as (and (popcount x) 1), where
2879 popcount can also be done in a wider mode. */
2881 expand_parity (scalar_int_mode mode
, rtx op0
, rtx target
)
2883 enum mode_class mclass
= GET_MODE_CLASS (mode
);
2884 opt_scalar_int_mode wider_mode_iter
;
2885 FOR_EACH_MODE_FROM (wider_mode_iter
, mode
)
2887 scalar_int_mode wider_mode
= wider_mode_iter
.require ();
2888 if (optab_handler (popcount_optab
, wider_mode
) != CODE_FOR_nothing
)
2893 last
= get_last_insn ();
2895 if (target
== 0 || GET_MODE (target
) != wider_mode
)
2896 target
= gen_reg_rtx (wider_mode
);
2898 xop0
= widen_operand (op0
, wider_mode
, mode
, true, false);
2899 temp
= expand_unop (wider_mode
, popcount_optab
, xop0
, NULL_RTX
,
2902 temp
= expand_binop (wider_mode
, and_optab
, temp
, const1_rtx
,
2903 target
, true, OPTAB_DIRECT
);
2907 if (mclass
!= MODE_INT
2908 || !TRULY_NOOP_TRUNCATION_MODES_P (mode
, wider_mode
))
2909 return convert_to_mode (mode
, temp
, 0);
2911 return gen_lowpart (mode
, temp
);
2914 delete_insns_since (last
);
2920 /* Try calculating ctz(x) as K - clz(x & -x) ,
2921 where K is GET_MODE_PRECISION(mode) - 1.
2923 Both __builtin_ctz and __builtin_clz are undefined at zero, so we
2924 don't have to worry about what the hardware does in that case. (If
2925 the clz instruction produces the usual value at 0, which is K, the
2926 result of this code sequence will be -1; expand_ffs, below, relies
2927 on this. It might be nice to have it be K instead, for consistency
2928 with the (very few) processors that provide a ctz with a defined
2929 value, but that would take one more instruction, and it would be
2930 less convenient for expand_ffs anyway. */
2933 expand_ctz (scalar_int_mode mode
, rtx op0
, rtx target
)
2938 if (optab_handler (clz_optab
, mode
) == CODE_FOR_nothing
)
2943 temp
= expand_unop_direct (mode
, neg_optab
, op0
, NULL_RTX
, true);
2945 temp
= expand_binop (mode
, and_optab
, op0
, temp
, NULL_RTX
,
2946 true, OPTAB_DIRECT
);
2948 temp
= expand_unop_direct (mode
, clz_optab
, temp
, NULL_RTX
, true);
2950 temp
= expand_binop (mode
, sub_optab
,
2951 gen_int_mode (GET_MODE_PRECISION (mode
) - 1, mode
),
2953 true, OPTAB_DIRECT
);
2963 add_equal_note (seq
, temp
, CTZ
, op0
, NULL_RTX
, mode
);
2969 /* Try calculating ffs(x) using ctz(x) if we have that instruction, or
2970 else with the sequence used by expand_clz.
2972 The ffs builtin promises to return zero for a zero value and ctz/clz
2973 may have an undefined value in that case. If they do not give us a
2974 convenient value, we have to generate a test and branch. */
2976 expand_ffs (scalar_int_mode mode
, rtx op0
, rtx target
)
2978 HOST_WIDE_INT val
= 0;
2979 bool defined_at_zero
= false;
2983 if (optab_handler (ctz_optab
, mode
) != CODE_FOR_nothing
)
2987 temp
= expand_unop_direct (mode
, ctz_optab
, op0
, 0, true);
2991 defined_at_zero
= (CTZ_DEFINED_VALUE_AT_ZERO (mode
, val
) == 2);
2993 else if (optab_handler (clz_optab
, mode
) != CODE_FOR_nothing
)
2996 temp
= expand_ctz (mode
, op0
, 0);
3000 if (CLZ_DEFINED_VALUE_AT_ZERO (mode
, val
) == 2)
3002 defined_at_zero
= true;
3003 val
= (GET_MODE_PRECISION (mode
) - 1) - val
;
3009 if (defined_at_zero
&& val
== -1)
3010 /* No correction needed at zero. */;
3013 /* We don't try to do anything clever with the situation found
3014 on some processors (eg Alpha) where ctz(0:mode) ==
3015 bitsize(mode). If someone can think of a way to send N to -1
3016 and leave alone all values in the range 0..N-1 (where N is a
3017 power of two), cheaper than this test-and-branch, please add it.
3019 The test-and-branch is done after the operation itself, in case
3020 the operation sets condition codes that can be recycled for this.
3021 (This is true on i386, for instance.) */
3023 rtx_code_label
*nonzero_label
= gen_label_rtx ();
3024 emit_cmp_and_jump_insns (op0
, CONST0_RTX (mode
), NE
, 0,
3025 mode
, true, nonzero_label
);
3027 convert_move (temp
, GEN_INT (-1), false);
3028 emit_label (nonzero_label
);
3031 /* temp now has a value in the range -1..bitsize-1. ffs is supposed
3032 to produce a value in the range 0..bitsize. */
3033 temp
= expand_binop (mode
, add_optab
, temp
, gen_int_mode (1, mode
),
3034 target
, false, OPTAB_DIRECT
);
3041 add_equal_note (seq
, temp
, FFS
, op0
, NULL_RTX
, mode
);
3050 /* Extract the OMODE lowpart from VAL, which has IMODE. Under certain
3051 conditions, VAL may already be a SUBREG against which we cannot generate
3052 a further SUBREG. In this case, we expect forcing the value into a
3053 register will work around the situation. */
3056 lowpart_subreg_maybe_copy (machine_mode omode
, rtx val
,
3060 ret
= lowpart_subreg (omode
, val
, imode
);
3063 val
= force_reg (imode
, val
);
3064 ret
= lowpart_subreg (omode
, val
, imode
);
3065 gcc_assert (ret
!= NULL
);
3070 /* Expand a floating point absolute value or negation operation via a
3071 logical operation on the sign bit. */
3074 expand_absneg_bit (enum rtx_code code
, scalar_float_mode mode
,
3075 rtx op0
, rtx target
)
3077 const struct real_format
*fmt
;
3078 int bitpos
, word
, nwords
, i
;
3079 scalar_int_mode imode
;
3083 /* The format has to have a simple sign bit. */
3084 fmt
= REAL_MODE_FORMAT (mode
);
3088 bitpos
= fmt
->signbit_rw
;
3092 /* Don't create negative zeros if the format doesn't support them. */
3093 if (code
== NEG
&& !fmt
->has_signed_zero
)
3096 if (GET_MODE_SIZE (mode
) <= UNITS_PER_WORD
)
3098 if (!int_mode_for_mode (mode
).exists (&imode
))
3107 if (FLOAT_WORDS_BIG_ENDIAN
)
3108 word
= (GET_MODE_BITSIZE (mode
) - bitpos
) / BITS_PER_WORD
;
3110 word
= bitpos
/ BITS_PER_WORD
;
3111 bitpos
= bitpos
% BITS_PER_WORD
;
3112 nwords
= (GET_MODE_BITSIZE (mode
) + BITS_PER_WORD
- 1) / BITS_PER_WORD
;
3115 wide_int mask
= wi::set_bit_in_zero (bitpos
, GET_MODE_PRECISION (imode
));
3121 || reg_overlap_mentioned_p (target
, op0
)
3122 || (nwords
> 1 && !valid_multiword_target_p (target
)))
3123 target
= gen_reg_rtx (mode
);
3129 for (i
= 0; i
< nwords
; ++i
)
3131 rtx targ_piece
= operand_subword (target
, i
, 1, mode
);
3132 rtx op0_piece
= operand_subword_force (op0
, i
, mode
);
3136 temp
= expand_binop (imode
, code
== ABS
? and_optab
: xor_optab
,
3138 immed_wide_int_const (mask
, imode
),
3139 targ_piece
, 1, OPTAB_LIB_WIDEN
);
3140 if (temp
!= targ_piece
)
3141 emit_move_insn (targ_piece
, temp
);
3144 emit_move_insn (targ_piece
, op0_piece
);
3147 insns
= get_insns ();
3154 temp
= expand_binop (imode
, code
== ABS
? and_optab
: xor_optab
,
3155 gen_lowpart (imode
, op0
),
3156 immed_wide_int_const (mask
, imode
),
3157 gen_lowpart (imode
, target
), 1, OPTAB_LIB_WIDEN
);
3158 target
= lowpart_subreg_maybe_copy (mode
, temp
, imode
);
3160 set_dst_reg_note (get_last_insn (), REG_EQUAL
,
3161 gen_rtx_fmt_e (code
, mode
, copy_rtx (op0
)),
3168 /* As expand_unop, but will fail rather than attempt the operation in a
3169 different mode or with a libcall. */
3171 expand_unop_direct (machine_mode mode
, optab unoptab
, rtx op0
, rtx target
,
3174 if (optab_handler (unoptab
, mode
) != CODE_FOR_nothing
)
3176 class expand_operand ops
[2];
3177 enum insn_code icode
= optab_handler (unoptab
, mode
);
3178 rtx_insn
*last
= get_last_insn ();
3181 create_output_operand (&ops
[0], target
, mode
);
3182 create_convert_operand_from (&ops
[1], op0
, mode
, unsignedp
);
3183 pat
= maybe_gen_insn (icode
, 2, ops
);
3186 if (INSN_P (pat
) && NEXT_INSN (pat
) != NULL_RTX
3187 && ! add_equal_note (pat
, ops
[0].value
,
3188 optab_to_code (unoptab
),
3189 ops
[1].value
, NULL_RTX
, mode
))
3191 delete_insns_since (last
);
3192 return expand_unop (mode
, unoptab
, op0
, NULL_RTX
, unsignedp
);
3197 return ops
[0].value
;
3203 /* Generate code to perform an operation specified by UNOPTAB
3204 on operand OP0, with result having machine-mode MODE.
3206 UNSIGNEDP is for the case where we have to widen the operands
3207 to perform the operation. It says to use zero-extension.
3209 If TARGET is nonzero, the value
3210 is generated there, if it is convenient to do so.
3211 In all cases an rtx is returned for the locus of the value;
3212 this may or may not be TARGET. */
3215 expand_unop (machine_mode mode
, optab unoptab
, rtx op0
, rtx target
,
3218 enum mode_class mclass
= GET_MODE_CLASS (mode
);
3219 machine_mode wider_mode
;
3220 scalar_int_mode int_mode
;
3221 scalar_float_mode float_mode
;
3225 temp
= expand_unop_direct (mode
, unoptab
, op0
, target
, unsignedp
);
3229 /* It can't be done in this mode. Can we open-code it in a wider mode? */
3231 /* Widening (or narrowing) clz needs special treatment. */
3232 if (unoptab
== clz_optab
)
3234 if (is_a
<scalar_int_mode
> (mode
, &int_mode
))
3236 temp
= widen_leading (int_mode
, op0
, target
, unoptab
);
3240 if (GET_MODE_SIZE (int_mode
) == 2 * UNITS_PER_WORD
3241 && optab_handler (unoptab
, word_mode
) != CODE_FOR_nothing
)
3243 temp
= expand_doubleword_clz (int_mode
, op0
, target
);
3252 if (unoptab
== clrsb_optab
)
3254 if (is_a
<scalar_int_mode
> (mode
, &int_mode
))
3256 temp
= widen_leading (int_mode
, op0
, target
, unoptab
);
3259 temp
= expand_clrsb_using_clz (int_mode
, op0
, target
);
3266 if (unoptab
== popcount_optab
3267 && is_a
<scalar_int_mode
> (mode
, &int_mode
)
3268 && GET_MODE_SIZE (int_mode
) == 2 * UNITS_PER_WORD
3269 && optab_handler (unoptab
, word_mode
) != CODE_FOR_nothing
3270 && optimize_insn_for_speed_p ())
3272 temp
= expand_doubleword_popcount (int_mode
, op0
, target
);
3277 if (unoptab
== parity_optab
3278 && is_a
<scalar_int_mode
> (mode
, &int_mode
)
3279 && GET_MODE_SIZE (int_mode
) == 2 * UNITS_PER_WORD
3280 && (optab_handler (unoptab
, word_mode
) != CODE_FOR_nothing
3281 || optab_handler (popcount_optab
, word_mode
) != CODE_FOR_nothing
)
3282 && optimize_insn_for_speed_p ())
3284 temp
= expand_doubleword_parity (int_mode
, op0
, target
);
3289 /* Widening (or narrowing) bswap needs special treatment. */
3290 if (unoptab
== bswap_optab
)
3292 /* HImode is special because in this mode BSWAP is equivalent to ROTATE
3293 or ROTATERT. First try these directly; if this fails, then try the
3294 obvious pair of shifts with allowed widening, as this will probably
3295 be always more efficient than the other fallback methods. */
3301 if (optab_handler (rotl_optab
, mode
) != CODE_FOR_nothing
)
3303 temp
= expand_binop (mode
, rotl_optab
, op0
,
3304 gen_int_shift_amount (mode
, 8),
3305 target
, unsignedp
, OPTAB_DIRECT
);
3310 if (optab_handler (rotr_optab
, mode
) != CODE_FOR_nothing
)
3312 temp
= expand_binop (mode
, rotr_optab
, op0
,
3313 gen_int_shift_amount (mode
, 8),
3314 target
, unsignedp
, OPTAB_DIRECT
);
3319 last
= get_last_insn ();
3321 temp1
= expand_binop (mode
, ashl_optab
, op0
,
3322 gen_int_shift_amount (mode
, 8), NULL_RTX
,
3323 unsignedp
, OPTAB_WIDEN
);
3324 temp2
= expand_binop (mode
, lshr_optab
, op0
,
3325 gen_int_shift_amount (mode
, 8), NULL_RTX
,
3326 unsignedp
, OPTAB_WIDEN
);
3329 temp
= expand_binop (mode
, ior_optab
, temp1
, temp2
, target
,
3330 unsignedp
, OPTAB_WIDEN
);
3335 delete_insns_since (last
);
3338 if (is_a
<scalar_int_mode
> (mode
, &int_mode
))
3340 temp
= widen_bswap (int_mode
, op0
, target
);
3344 /* We do not provide a 128-bit bswap in libgcc so force the use of
3345 a double bswap for 64-bit targets. */
3346 if (GET_MODE_SIZE (int_mode
) == 2 * UNITS_PER_WORD
3347 && (UNITS_PER_WORD
== 8
3348 || optab_handler (unoptab
, word_mode
) != CODE_FOR_nothing
))
3350 temp
= expand_doubleword_bswap (mode
, op0
, target
);
3359 if (CLASS_HAS_WIDER_MODES_P (mclass
))
3360 FOR_EACH_WIDER_MODE (wider_mode
, mode
)
3362 if (optab_handler (unoptab
, wider_mode
) != CODE_FOR_nothing
)
3365 rtx_insn
*last
= get_last_insn ();
3367 /* For certain operations, we need not actually extend
3368 the narrow operand, as long as we will truncate the
3369 results to the same narrowness. */
3371 xop0
= widen_operand (xop0
, wider_mode
, mode
, unsignedp
,
3372 (unoptab
== neg_optab
3373 || unoptab
== one_cmpl_optab
)
3374 && mclass
== MODE_INT
);
3376 temp
= expand_unop (wider_mode
, unoptab
, xop0
, NULL_RTX
,
3381 if (mclass
!= MODE_INT
3382 || !TRULY_NOOP_TRUNCATION_MODES_P (mode
, wider_mode
))
3385 target
= gen_reg_rtx (mode
);
3386 convert_move (target
, temp
, 0);
3390 return gen_lowpart (mode
, temp
);
3393 delete_insns_since (last
);
3397 /* These can be done a word at a time. */
3398 if (unoptab
== one_cmpl_optab
3399 && is_int_mode (mode
, &int_mode
)
3400 && GET_MODE_SIZE (int_mode
) > UNITS_PER_WORD
3401 && optab_handler (unoptab
, word_mode
) != CODE_FOR_nothing
)
3408 || reg_overlap_mentioned_p (target
, op0
)
3409 || !valid_multiword_target_p (target
))
3410 target
= gen_reg_rtx (int_mode
);
3414 /* Do the actual arithmetic. */
3415 for (i
= 0; i
< GET_MODE_BITSIZE (int_mode
) / BITS_PER_WORD
; i
++)
3417 rtx target_piece
= operand_subword (target
, i
, 1, int_mode
);
3418 rtx x
= expand_unop (word_mode
, unoptab
,
3419 operand_subword_force (op0
, i
, int_mode
),
3420 target_piece
, unsignedp
);
3422 if (target_piece
!= x
)
3423 emit_move_insn (target_piece
, x
);
3426 insns
= get_insns ();
3433 /* Emit ~op0 as op0 ^ -1. */
3434 if (unoptab
== one_cmpl_optab
3435 && (SCALAR_INT_MODE_P (mode
) || GET_MODE_CLASS (mode
) == MODE_VECTOR_INT
)
3436 && optab_handler (xor_optab
, mode
) != CODE_FOR_nothing
)
3438 temp
= expand_binop (mode
, xor_optab
, op0
, CONSTM1_RTX (mode
),
3439 target
, unsignedp
, OPTAB_DIRECT
);
3444 if (optab_to_code (unoptab
) == NEG
)
3446 /* Try negating floating point values by flipping the sign bit. */
3447 if (is_a
<scalar_float_mode
> (mode
, &float_mode
))
3449 temp
= expand_absneg_bit (NEG
, float_mode
, op0
, target
);
3454 /* If there is no negation pattern, and we have no negative zero,
3455 try subtracting from zero. */
3456 if (!HONOR_SIGNED_ZEROS (mode
))
3458 temp
= expand_binop (mode
, (unoptab
== negv_optab
3459 ? subv_optab
: sub_optab
),
3460 CONST0_RTX (mode
), op0
, target
,
3461 unsignedp
, OPTAB_DIRECT
);
3467 /* Try calculating parity (x) as popcount (x) % 2. */
3468 if (unoptab
== parity_optab
&& is_a
<scalar_int_mode
> (mode
, &int_mode
))
3470 temp
= expand_parity (int_mode
, op0
, target
);
3475 /* Try implementing ffs (x) in terms of clz (x). */
3476 if (unoptab
== ffs_optab
&& is_a
<scalar_int_mode
> (mode
, &int_mode
))
3478 temp
= expand_ffs (int_mode
, op0
, target
);
3483 /* Try implementing ctz (x) in terms of clz (x). */
3484 if (unoptab
== ctz_optab
&& is_a
<scalar_int_mode
> (mode
, &int_mode
))
3486 temp
= expand_ctz (int_mode
, op0
, target
);
3492 /* Now try a library call in this mode. */
3493 libfunc
= optab_libfunc (unoptab
, mode
);
3499 machine_mode outmode
= mode
;
3501 /* All of these functions return small values. Thus we choose to
3502 have them return something that isn't a double-word. */
3503 if (unoptab
== ffs_optab
|| unoptab
== clz_optab
|| unoptab
== ctz_optab
3504 || unoptab
== clrsb_optab
|| unoptab
== popcount_optab
3505 || unoptab
== parity_optab
)
3507 = GET_MODE (hard_libcall_value (TYPE_MODE (integer_type_node
),
3508 optab_libfunc (unoptab
, mode
)));
3512 /* Pass 1 for NO_QUEUE so we don't lose any increments
3513 if the libcall is cse'd or moved. */
3514 value
= emit_library_call_value (libfunc
, NULL_RTX
, LCT_CONST
, outmode
,
3516 insns
= get_insns ();
3519 target
= gen_reg_rtx (outmode
);
3520 bool trapv
= trapv_unoptab_p (unoptab
);
3522 eq_value
= NULL_RTX
;
3525 eq_value
= gen_rtx_fmt_e (optab_to_code (unoptab
), mode
, op0
);
3526 if (GET_MODE_UNIT_SIZE (outmode
) < GET_MODE_UNIT_SIZE (mode
))
3527 eq_value
= simplify_gen_unary (TRUNCATE
, outmode
, eq_value
, mode
);
3528 else if (GET_MODE_UNIT_SIZE (outmode
) > GET_MODE_UNIT_SIZE (mode
))
3529 eq_value
= simplify_gen_unary (ZERO_EXTEND
,
3530 outmode
, eq_value
, mode
);
3532 emit_libcall_block_1 (insns
, target
, value
, eq_value
, trapv
);
3537 /* It can't be done in this mode. Can we do it in a wider mode? */
3539 if (CLASS_HAS_WIDER_MODES_P (mclass
))
3541 FOR_EACH_WIDER_MODE (wider_mode
, mode
)
3543 if (optab_handler (unoptab
, wider_mode
) != CODE_FOR_nothing
3544 || optab_libfunc (unoptab
, wider_mode
))
3547 rtx_insn
*last
= get_last_insn ();
3549 /* For certain operations, we need not actually extend
3550 the narrow operand, as long as we will truncate the
3551 results to the same narrowness. */
3552 xop0
= widen_operand (xop0
, wider_mode
, mode
, unsignedp
,
3553 (unoptab
== neg_optab
3554 || unoptab
== one_cmpl_optab
3555 || unoptab
== bswap_optab
)
3556 && mclass
== MODE_INT
);
3558 temp
= expand_unop (wider_mode
, unoptab
, xop0
, NULL_RTX
,
3561 /* If we are generating clz using wider mode, adjust the
3562 result. Similarly for clrsb. */
3563 if ((unoptab
== clz_optab
|| unoptab
== clrsb_optab
)
3566 scalar_int_mode wider_int_mode
3567 = as_a
<scalar_int_mode
> (wider_mode
);
3568 int_mode
= as_a
<scalar_int_mode
> (mode
);
3570 (wider_mode
, sub_optab
, temp
,
3571 gen_int_mode (GET_MODE_PRECISION (wider_int_mode
)
3572 - GET_MODE_PRECISION (int_mode
),
3574 target
, true, OPTAB_DIRECT
);
3577 /* Likewise for bswap. */
3578 if (unoptab
== bswap_optab
&& temp
!= 0)
3580 scalar_int_mode wider_int_mode
3581 = as_a
<scalar_int_mode
> (wider_mode
);
3582 int_mode
= as_a
<scalar_int_mode
> (mode
);
3583 gcc_assert (GET_MODE_PRECISION (wider_int_mode
)
3584 == GET_MODE_BITSIZE (wider_int_mode
)
3585 && GET_MODE_PRECISION (int_mode
)
3586 == GET_MODE_BITSIZE (int_mode
));
3588 temp
= expand_shift (RSHIFT_EXPR
, wider_int_mode
, temp
,
3589 GET_MODE_BITSIZE (wider_int_mode
)
3590 - GET_MODE_BITSIZE (int_mode
),
3596 if (mclass
!= MODE_INT
)
3599 target
= gen_reg_rtx (mode
);
3600 convert_move (target
, temp
, 0);
3604 return gen_lowpart (mode
, temp
);
3607 delete_insns_since (last
);
3612 /* One final attempt at implementing negation via subtraction,
3613 this time allowing widening of the operand. */
3614 if (optab_to_code (unoptab
) == NEG
&& !HONOR_SIGNED_ZEROS (mode
))
3617 temp
= expand_binop (mode
,
3618 unoptab
== negv_optab
? subv_optab
: sub_optab
,
3619 CONST0_RTX (mode
), op0
,
3620 target
, unsignedp
, OPTAB_LIB_WIDEN
);
3628 /* Emit code to compute the absolute value of OP0, with result to
3629 TARGET if convenient. (TARGET may be 0.) The return value says
3630 where the result actually is to be found.
3632 MODE is the mode of the operand; the mode of the result is
3633 different but can be deduced from MODE.
3638 expand_abs_nojump (machine_mode mode
, rtx op0
, rtx target
,
3639 int result_unsignedp
)
3643 if (GET_MODE_CLASS (mode
) != MODE_INT
3645 result_unsignedp
= 1;
3647 /* First try to do it with a special abs instruction. */
3648 temp
= expand_unop (mode
, result_unsignedp
? abs_optab
: absv_optab
,
3653 /* For floating point modes, try clearing the sign bit. */
3654 scalar_float_mode float_mode
;
3655 if (is_a
<scalar_float_mode
> (mode
, &float_mode
))
3657 temp
= expand_absneg_bit (ABS
, float_mode
, op0
, target
);
3662 /* If we have a MAX insn, we can do this as MAX (x, -x). */
3663 if (optab_handler (smax_optab
, mode
) != CODE_FOR_nothing
3664 && !HONOR_SIGNED_ZEROS (mode
))
3666 rtx_insn
*last
= get_last_insn ();
3668 temp
= expand_unop (mode
, result_unsignedp
? neg_optab
: negv_optab
,
3671 temp
= expand_binop (mode
, smax_optab
, op0
, temp
, target
, 0,
3677 delete_insns_since (last
);
3680 /* If this machine has expensive jumps, we can do integer absolute
3681 value of X as (((signed) x >> (W-1)) ^ x) - ((signed) x >> (W-1)),
3682 where W is the width of MODE. */
3684 scalar_int_mode int_mode
;
3685 if (is_int_mode (mode
, &int_mode
)
3686 && BRANCH_COST (optimize_insn_for_speed_p (),
3689 rtx extended
= expand_shift (RSHIFT_EXPR
, int_mode
, op0
,
3690 GET_MODE_PRECISION (int_mode
) - 1,
3693 temp
= expand_binop (int_mode
, xor_optab
, extended
, op0
, target
, 0,
3696 temp
= expand_binop (int_mode
,
3697 result_unsignedp
? sub_optab
: subv_optab
,
3698 temp
, extended
, target
, 0, OPTAB_LIB_WIDEN
);
3708 expand_abs (machine_mode mode
, rtx op0
, rtx target
,
3709 int result_unsignedp
, int safe
)
3712 rtx_code_label
*op1
;
3714 if (GET_MODE_CLASS (mode
) != MODE_INT
3716 result_unsignedp
= 1;
3718 temp
= expand_abs_nojump (mode
, op0
, target
, result_unsignedp
);
3722 /* If that does not win, use conditional jump and negate. */
3724 /* It is safe to use the target if it is the same
3725 as the source if this is also a pseudo register */
3726 if (op0
== target
&& REG_P (op0
)
3727 && REGNO (op0
) >= FIRST_PSEUDO_REGISTER
)
3730 op1
= gen_label_rtx ();
3731 if (target
== 0 || ! safe
3732 || GET_MODE (target
) != mode
3733 || (MEM_P (target
) && MEM_VOLATILE_P (target
))
3735 && REGNO (target
) < FIRST_PSEUDO_REGISTER
))
3736 target
= gen_reg_rtx (mode
);
3738 emit_move_insn (target
, op0
);
3741 do_compare_rtx_and_jump (target
, CONST0_RTX (mode
), GE
, 0, mode
,
3742 NULL_RTX
, NULL
, op1
,
3743 profile_probability::uninitialized ());
3745 op0
= expand_unop (mode
, result_unsignedp
? neg_optab
: negv_optab
,
3748 emit_move_insn (target
, op0
);
3754 /* Emit code to compute the one's complement absolute value of OP0
3755 (if (OP0 < 0) OP0 = ~OP0), with result to TARGET if convenient.
3756 (TARGET may be NULL_RTX.) The return value says where the result
3757 actually is to be found.
3759 MODE is the mode of the operand; the mode of the result is
3760 different but can be deduced from MODE. */
3763 expand_one_cmpl_abs_nojump (machine_mode mode
, rtx op0
, rtx target
)
3767 /* Not applicable for floating point modes. */
3768 if (FLOAT_MODE_P (mode
))
3771 /* If we have a MAX insn, we can do this as MAX (x, ~x). */
3772 if (optab_handler (smax_optab
, mode
) != CODE_FOR_nothing
)
3774 rtx_insn
*last
= get_last_insn ();
3776 temp
= expand_unop (mode
, one_cmpl_optab
, op0
, NULL_RTX
, 0);
3778 temp
= expand_binop (mode
, smax_optab
, op0
, temp
, target
, 0,
3784 delete_insns_since (last
);
3787 /* If this machine has expensive jumps, we can do one's complement
3788 absolute value of X as (((signed) x >> (W-1)) ^ x). */
3790 scalar_int_mode int_mode
;
3791 if (is_int_mode (mode
, &int_mode
)
3792 && BRANCH_COST (optimize_insn_for_speed_p (),
3795 rtx extended
= expand_shift (RSHIFT_EXPR
, int_mode
, op0
,
3796 GET_MODE_PRECISION (int_mode
) - 1,
3799 temp
= expand_binop (int_mode
, xor_optab
, extended
, op0
, target
, 0,
3809 /* A subroutine of expand_copysign, perform the copysign operation using the
3810 abs and neg primitives advertised to exist on the target. The assumption
3811 is that we have a split register file, and leaving op0 in fp registers,
3812 and not playing with subregs so much, will help the register allocator. */
3815 expand_copysign_absneg (scalar_float_mode mode
, rtx op0
, rtx op1
, rtx target
,
3816 int bitpos
, bool op0_is_abs
)
3818 scalar_int_mode imode
;
3819 enum insn_code icode
;
3821 rtx_code_label
*label
;
3826 /* Check if the back end provides an insn that handles signbit for the
3828 icode
= optab_handler (signbit_optab
, mode
);
3829 if (icode
!= CODE_FOR_nothing
)
3831 imode
= as_a
<scalar_int_mode
> (insn_data
[(int) icode
].operand
[0].mode
);
3832 sign
= gen_reg_rtx (imode
);
3833 emit_unop_insn (icode
, sign
, op1
, UNKNOWN
);
3837 if (GET_MODE_SIZE (mode
) <= UNITS_PER_WORD
)
3839 if (!int_mode_for_mode (mode
).exists (&imode
))
3841 op1
= gen_lowpart (imode
, op1
);
3848 if (FLOAT_WORDS_BIG_ENDIAN
)
3849 word
= (GET_MODE_BITSIZE (mode
) - bitpos
) / BITS_PER_WORD
;
3851 word
= bitpos
/ BITS_PER_WORD
;
3852 bitpos
= bitpos
% BITS_PER_WORD
;
3853 op1
= operand_subword_force (op1
, word
, mode
);
3856 wide_int mask
= wi::set_bit_in_zero (bitpos
, GET_MODE_PRECISION (imode
));
3857 sign
= expand_binop (imode
, and_optab
, op1
,
3858 immed_wide_int_const (mask
, imode
),
3859 NULL_RTX
, 1, OPTAB_LIB_WIDEN
);
3864 op0
= expand_unop (mode
, abs_optab
, op0
, target
, 0);
3871 if (target
== NULL_RTX
)
3872 target
= copy_to_reg (op0
);
3874 emit_move_insn (target
, op0
);
3877 label
= gen_label_rtx ();
3878 emit_cmp_and_jump_insns (sign
, const0_rtx
, EQ
, NULL_RTX
, imode
, 1, label
);
3880 if (CONST_DOUBLE_AS_FLOAT_P (op0
))
3881 op0
= simplify_unary_operation (NEG
, mode
, op0
, mode
);
3883 op0
= expand_unop (mode
, neg_optab
, op0
, target
, 0);
3885 emit_move_insn (target
, op0
);
3893 /* A subroutine of expand_copysign, perform the entire copysign operation
3894 with integer bitmasks. BITPOS is the position of the sign bit; OP0_IS_ABS
3895 is true if op0 is known to have its sign bit clear. */
3898 expand_copysign_bit (scalar_float_mode mode
, rtx op0
, rtx op1
, rtx target
,
3899 int bitpos
, bool op0_is_abs
)
3901 scalar_int_mode imode
;
3902 int word
, nwords
, i
;
3906 if (GET_MODE_SIZE (mode
) <= UNITS_PER_WORD
)
3908 if (!int_mode_for_mode (mode
).exists (&imode
))
3917 if (FLOAT_WORDS_BIG_ENDIAN
)
3918 word
= (GET_MODE_BITSIZE (mode
) - bitpos
) / BITS_PER_WORD
;
3920 word
= bitpos
/ BITS_PER_WORD
;
3921 bitpos
= bitpos
% BITS_PER_WORD
;
3922 nwords
= (GET_MODE_BITSIZE (mode
) + BITS_PER_WORD
- 1) / BITS_PER_WORD
;
3925 wide_int mask
= wi::set_bit_in_zero (bitpos
, GET_MODE_PRECISION (imode
));
3930 || reg_overlap_mentioned_p (target
, op0
)
3931 || reg_overlap_mentioned_p (target
, op1
)
3932 || (nwords
> 1 && !valid_multiword_target_p (target
)))
3933 target
= gen_reg_rtx (mode
);
3939 for (i
= 0; i
< nwords
; ++i
)
3941 rtx targ_piece
= operand_subword (target
, i
, 1, mode
);
3942 rtx op0_piece
= operand_subword_force (op0
, i
, mode
);
3948 = expand_binop (imode
, and_optab
, op0_piece
,
3949 immed_wide_int_const (~mask
, imode
),
3950 NULL_RTX
, 1, OPTAB_LIB_WIDEN
);
3951 op1
= expand_binop (imode
, and_optab
,
3952 operand_subword_force (op1
, i
, mode
),
3953 immed_wide_int_const (mask
, imode
),
3954 NULL_RTX
, 1, OPTAB_LIB_WIDEN
);
3956 temp
= expand_binop (imode
, ior_optab
, op0_piece
, op1
,
3957 targ_piece
, 1, OPTAB_LIB_WIDEN
);
3958 if (temp
!= targ_piece
)
3959 emit_move_insn (targ_piece
, temp
);
3962 emit_move_insn (targ_piece
, op0_piece
);
3965 insns
= get_insns ();
3972 op1
= expand_binop (imode
, and_optab
, gen_lowpart (imode
, op1
),
3973 immed_wide_int_const (mask
, imode
),
3974 NULL_RTX
, 1, OPTAB_LIB_WIDEN
);
3976 op0
= gen_lowpart (imode
, op0
);
3978 op0
= expand_binop (imode
, and_optab
, op0
,
3979 immed_wide_int_const (~mask
, imode
),
3980 NULL_RTX
, 1, OPTAB_LIB_WIDEN
);
3982 temp
= expand_binop (imode
, ior_optab
, op0
, op1
,
3983 gen_lowpart (imode
, target
), 1, OPTAB_LIB_WIDEN
);
3984 target
= lowpart_subreg_maybe_copy (mode
, temp
, imode
);
3990 /* Expand the C99 copysign operation. OP0 and OP1 must be the same
3991 scalar floating point mode. Return NULL if we do not know how to
3992 expand the operation inline. */
3995 expand_copysign (rtx op0
, rtx op1
, rtx target
)
3997 scalar_float_mode mode
;
3998 const struct real_format
*fmt
;
4002 mode
= as_a
<scalar_float_mode
> (GET_MODE (op0
));
4003 gcc_assert (GET_MODE (op1
) == mode
);
4005 /* First try to do it with a special instruction. */
4006 temp
= expand_binop (mode
, copysign_optab
, op0
, op1
,
4007 target
, 0, OPTAB_DIRECT
);
4011 fmt
= REAL_MODE_FORMAT (mode
);
4012 if (fmt
== NULL
|| !fmt
->has_signed_zero
)
4016 if (CONST_DOUBLE_AS_FLOAT_P (op0
))
4018 if (real_isneg (CONST_DOUBLE_REAL_VALUE (op0
)))
4019 op0
= simplify_unary_operation (ABS
, mode
, op0
, mode
);
4023 if (fmt
->signbit_ro
>= 0
4024 && (CONST_DOUBLE_AS_FLOAT_P (op0
)
4025 || (optab_handler (neg_optab
, mode
) != CODE_FOR_nothing
4026 && optab_handler (abs_optab
, mode
) != CODE_FOR_nothing
)))
4028 temp
= expand_copysign_absneg (mode
, op0
, op1
, target
,
4029 fmt
->signbit_ro
, op0_is_abs
);
4034 if (fmt
->signbit_rw
< 0)
4036 return expand_copysign_bit (mode
, op0
, op1
, target
,
4037 fmt
->signbit_rw
, op0_is_abs
);
4040 /* Generate an instruction whose insn-code is INSN_CODE,
4041 with two operands: an output TARGET and an input OP0.
4042 TARGET *must* be nonzero, and the output is always stored there.
4043 CODE is an rtx code such that (CODE OP0) is an rtx that describes
4044 the value that is stored into TARGET.
4046 Return false if expansion failed. */
4049 maybe_emit_unop_insn (enum insn_code icode
, rtx target
, rtx op0
,
4052 class expand_operand ops
[2];
4055 create_output_operand (&ops
[0], target
, GET_MODE (target
));
4056 create_input_operand (&ops
[1], op0
, GET_MODE (op0
));
4057 pat
= maybe_gen_insn (icode
, 2, ops
);
4061 if (INSN_P (pat
) && NEXT_INSN (pat
) != NULL_RTX
4063 add_equal_note (pat
, ops
[0].value
, code
, ops
[1].value
, NULL_RTX
,
4068 if (ops
[0].value
!= target
)
4069 emit_move_insn (target
, ops
[0].value
);
4072 /* Generate an instruction whose insn-code is INSN_CODE,
4073 with two operands: an output TARGET and an input OP0.
4074 TARGET *must* be nonzero, and the output is always stored there.
4075 CODE is an rtx code such that (CODE OP0) is an rtx that describes
4076 the value that is stored into TARGET. */
4079 emit_unop_insn (enum insn_code icode
, rtx target
, rtx op0
, enum rtx_code code
)
4081 bool ok
= maybe_emit_unop_insn (icode
, target
, op0
, code
);
4085 struct no_conflict_data
4088 rtx_insn
*first
, *insn
;
4092 /* Called via note_stores by emit_libcall_block. Set P->must_stay if
4093 the currently examined clobber / store has to stay in the list of
4094 insns that constitute the actual libcall block. */
4096 no_conflict_move_test (rtx dest
, const_rtx set
, void *p0
)
4098 struct no_conflict_data
*p
= (struct no_conflict_data
*) p0
;
4100 /* If this inns directly contributes to setting the target, it must stay. */
4101 if (reg_overlap_mentioned_p (p
->target
, dest
))
4102 p
->must_stay
= true;
4103 /* If we haven't committed to keeping any other insns in the list yet,
4104 there is nothing more to check. */
4105 else if (p
->insn
== p
->first
)
4107 /* If this insn sets / clobbers a register that feeds one of the insns
4108 already in the list, this insn has to stay too. */
4109 else if (reg_overlap_mentioned_p (dest
, PATTERN (p
->first
))
4110 || (CALL_P (p
->first
) && (find_reg_fusage (p
->first
, USE
, dest
)))
4111 || reg_used_between_p (dest
, p
->first
, p
->insn
)
4112 /* Likewise if this insn depends on a register set by a previous
4113 insn in the list, or if it sets a result (presumably a hard
4114 register) that is set or clobbered by a previous insn.
4115 N.B. the modified_*_p (SET_DEST...) tests applied to a MEM
4116 SET_DEST perform the former check on the address, and the latter
4117 check on the MEM. */
4118 || (GET_CODE (set
) == SET
4119 && (modified_in_p (SET_SRC (set
), p
->first
)
4120 || modified_in_p (SET_DEST (set
), p
->first
)
4121 || modified_between_p (SET_SRC (set
), p
->first
, p
->insn
)
4122 || modified_between_p (SET_DEST (set
), p
->first
, p
->insn
))))
4123 p
->must_stay
= true;
4127 /* Emit code to make a call to a constant function or a library call.
4129 INSNS is a list containing all insns emitted in the call.
4130 These insns leave the result in RESULT. Our block is to copy RESULT
4131 to TARGET, which is logically equivalent to EQUIV.
4133 We first emit any insns that set a pseudo on the assumption that these are
4134 loading constants into registers; doing so allows them to be safely cse'ed
4135 between blocks. Then we emit all the other insns in the block, followed by
4136 an insn to move RESULT to TARGET. This last insn will have a REQ_EQUAL
4137 note with an operand of EQUIV. */
4140 emit_libcall_block_1 (rtx_insn
*insns
, rtx target
, rtx result
, rtx equiv
,
4141 bool equiv_may_trap
)
4143 rtx final_dest
= target
;
4144 rtx_insn
*next
, *last
, *insn
;
4146 /* If this is a reg with REG_USERVAR_P set, then it could possibly turn
4147 into a MEM later. Protect the libcall block from this change. */
4148 if (! REG_P (target
) || REG_USERVAR_P (target
))
4149 target
= gen_reg_rtx (GET_MODE (target
));
4151 /* If we're using non-call exceptions, a libcall corresponding to an
4152 operation that may trap may also trap. */
4153 /* ??? See the comment in front of make_reg_eh_region_note. */
4154 if (cfun
->can_throw_non_call_exceptions
4155 && (equiv_may_trap
|| may_trap_p (equiv
)))
4157 for (insn
= insns
; insn
; insn
= NEXT_INSN (insn
))
4160 rtx note
= find_reg_note (insn
, REG_EH_REGION
, NULL_RTX
);
4163 int lp_nr
= INTVAL (XEXP (note
, 0));
4164 if (lp_nr
== 0 || lp_nr
== INT_MIN
)
4165 remove_note (insn
, note
);
4171 /* Look for any CALL_INSNs in this sequence, and attach a REG_EH_REGION
4172 reg note to indicate that this call cannot throw or execute a nonlocal
4173 goto (unless there is already a REG_EH_REGION note, in which case
4175 for (insn
= insns
; insn
; insn
= NEXT_INSN (insn
))
4177 make_reg_eh_region_note_nothrow_nononlocal (insn
);
4180 /* First emit all insns that set pseudos. Remove them from the list as
4181 we go. Avoid insns that set pseudos which were referenced in previous
4182 insns. These can be generated by move_by_pieces, for example,
4183 to update an address. Similarly, avoid insns that reference things
4184 set in previous insns. */
4186 for (insn
= insns
; insn
; insn
= next
)
4188 rtx set
= single_set (insn
);
4190 next
= NEXT_INSN (insn
);
4192 if (set
!= 0 && REG_P (SET_DEST (set
))
4193 && REGNO (SET_DEST (set
)) >= FIRST_PSEUDO_REGISTER
)
4195 struct no_conflict_data data
;
4197 data
.target
= const0_rtx
;
4201 note_stores (insn
, no_conflict_move_test
, &data
);
4202 if (! data
.must_stay
)
4204 if (PREV_INSN (insn
))
4205 SET_NEXT_INSN (PREV_INSN (insn
)) = next
;
4210 SET_PREV_INSN (next
) = PREV_INSN (insn
);
4216 /* Some ports use a loop to copy large arguments onto the stack.
4217 Don't move anything outside such a loop. */
4222 /* Write the remaining insns followed by the final copy. */
4223 for (insn
= insns
; insn
; insn
= next
)
4225 next
= NEXT_INSN (insn
);
4230 last
= emit_move_insn (target
, result
);
4232 set_dst_reg_note (last
, REG_EQUAL
, copy_rtx (equiv
), target
);
4234 if (final_dest
!= target
)
4235 emit_move_insn (final_dest
, target
);
4239 emit_libcall_block (rtx_insn
*insns
, rtx target
, rtx result
, rtx equiv
)
4241 emit_libcall_block_1 (insns
, target
, result
, equiv
, false);
4244 /* Nonzero if we can perform a comparison of mode MODE straightforwardly.
4245 PURPOSE describes how this comparison will be used. CODE is the rtx
4246 comparison code we will be using.
4248 ??? Actually, CODE is slightly weaker than that. A target is still
4249 required to implement all of the normal bcc operations, but not
4250 required to implement all (or any) of the unordered bcc operations. */
4253 can_compare_p (enum rtx_code code
, machine_mode mode
,
4254 enum can_compare_purpose purpose
)
4257 test
= gen_rtx_fmt_ee (code
, mode
, const0_rtx
, const0_rtx
);
4260 enum insn_code icode
;
4262 if (purpose
== ccp_jump
4263 && (icode
= optab_handler (cbranch_optab
, mode
)) != CODE_FOR_nothing
4264 && insn_operand_matches (icode
, 0, test
))
4266 if (purpose
== ccp_store_flag
4267 && (icode
= optab_handler (cstore_optab
, mode
)) != CODE_FOR_nothing
4268 && insn_operand_matches (icode
, 1, test
))
4270 if (purpose
== ccp_cmov
4271 && optab_handler (cmov_optab
, mode
) != CODE_FOR_nothing
)
4274 mode
= GET_MODE_WIDER_MODE (mode
).else_void ();
4275 PUT_MODE (test
, mode
);
4277 while (mode
!= VOIDmode
);
4282 /* Return whether RTL code CODE corresponds to an unsigned optab. */
4285 unsigned_optab_p (enum rtx_code code
)
4287 return code
== LTU
|| code
== LEU
|| code
== GTU
|| code
== GEU
;
4290 /* Return whether the backend-emitted comparison for code CODE, comparing
4291 operands of mode VALUE_MODE and producing a result with MASK_MODE, matches
4292 operand OPNO of pattern ICODE. */
4295 insn_predicate_matches_p (enum insn_code icode
, unsigned int opno
,
4296 enum rtx_code code
, machine_mode mask_mode
,
4297 machine_mode value_mode
)
4299 rtx reg1
= alloca_raw_REG (value_mode
, LAST_VIRTUAL_REGISTER
+ 1);
4300 rtx reg2
= alloca_raw_REG (value_mode
, LAST_VIRTUAL_REGISTER
+ 2);
4301 rtx test
= alloca_rtx_fmt_ee (code
, mask_mode
, reg1
, reg2
);
4302 return insn_operand_matches (icode
, opno
, test
);
4305 /* Return whether the backend can emit a vector comparison (vec_cmp/vec_cmpu)
4306 for code CODE, comparing operands of mode VALUE_MODE and producing a result
4310 can_vec_cmp_compare_p (enum rtx_code code
, machine_mode value_mode
,
4311 machine_mode mask_mode
)
4313 enum insn_code icode
4314 = get_vec_cmp_icode (value_mode
, mask_mode
, unsigned_optab_p (code
));
4315 if (icode
== CODE_FOR_nothing
)
4318 return insn_predicate_matches_p (icode
, 1, code
, mask_mode
, value_mode
);
4321 /* Return whether the backend can emit a vector comparison (vcond/vcondu) for
4322 code CODE, comparing operands of mode CMP_OP_MODE and producing a result
4326 can_vcond_compare_p (enum rtx_code code
, machine_mode value_mode
,
4327 machine_mode cmp_op_mode
)
4329 enum insn_code icode
4330 = get_vcond_icode (value_mode
, cmp_op_mode
, unsigned_optab_p (code
));
4331 if (icode
== CODE_FOR_nothing
)
4334 return insn_predicate_matches_p (icode
, 3, code
, value_mode
, cmp_op_mode
);
4337 /* Return whether the backend can emit vector set instructions for inserting
4338 element into vector at variable index position. */
4341 can_vec_set_var_idx_p (machine_mode vec_mode
)
4343 if (!VECTOR_MODE_P (vec_mode
))
4346 machine_mode inner_mode
= GET_MODE_INNER (vec_mode
);
4347 rtx reg1
= alloca_raw_REG (vec_mode
, LAST_VIRTUAL_REGISTER
+ 1);
4348 rtx reg2
= alloca_raw_REG (inner_mode
, LAST_VIRTUAL_REGISTER
+ 2);
4349 rtx reg3
= alloca_raw_REG (VOIDmode
, LAST_VIRTUAL_REGISTER
+ 3);
4351 enum insn_code icode
= optab_handler (vec_set_optab
, vec_mode
);
4353 return icode
!= CODE_FOR_nothing
&& insn_operand_matches (icode
, 0, reg1
)
4354 && insn_operand_matches (icode
, 1, reg2
)
4355 && insn_operand_matches (icode
, 2, reg3
);
4358 /* This function is called when we are going to emit a compare instruction that
4359 compares the values found in X and Y, using the rtl operator COMPARISON.
4361 If they have mode BLKmode, then SIZE specifies the size of both operands.
4363 UNSIGNEDP nonzero says that the operands are unsigned;
4364 this matters if they need to be widened (as given by METHODS).
4366 *PTEST is where the resulting comparison RTX is returned or NULL_RTX
4367 if we failed to produce one.
4369 *PMODE is the mode of the inputs (in case they are const_int).
4371 This function performs all the setup necessary so that the caller only has
4372 to emit a single comparison insn. This setup can involve doing a BLKmode
4373 comparison or emitting a library call to perform the comparison if no insn
4374 is available to handle it.
4375 The values which are passed in through pointers can be modified; the caller
4376 should perform the comparison on the modified values. Constant
4377 comparisons must have already been folded. */
4380 prepare_cmp_insn (rtx x
, rtx y
, enum rtx_code comparison
, rtx size
,
4381 int unsignedp
, enum optab_methods methods
,
4382 rtx
*ptest
, machine_mode
*pmode
)
4384 machine_mode mode
= *pmode
;
4386 machine_mode cmp_mode
;
4387 enum mode_class mclass
;
4389 /* The other methods are not needed. */
4390 gcc_assert (methods
== OPTAB_DIRECT
|| methods
== OPTAB_WIDEN
4391 || methods
== OPTAB_LIB_WIDEN
);
4393 if (CONST_SCALAR_INT_P (y
))
4394 canonicalize_comparison (mode
, &comparison
, &y
);
4396 /* If we are optimizing, force expensive constants into a register. */
4397 if (CONSTANT_P (x
) && optimize
4398 && (rtx_cost (x
, mode
, COMPARE
, 0, optimize_insn_for_speed_p ())
4399 > COSTS_N_INSNS (1))
4400 && can_create_pseudo_p ())
4401 x
= force_reg (mode
, x
);
4403 if (CONSTANT_P (y
) && optimize
4404 && (rtx_cost (y
, mode
, COMPARE
, 1, optimize_insn_for_speed_p ())
4405 > COSTS_N_INSNS (1))
4406 && can_create_pseudo_p ())
4407 y
= force_reg (mode
, y
);
4409 /* Don't let both operands fail to indicate the mode. */
4410 if (GET_MODE (x
) == VOIDmode
&& GET_MODE (y
) == VOIDmode
)
4411 x
= force_reg (mode
, x
);
4412 if (mode
== VOIDmode
)
4413 mode
= GET_MODE (x
) != VOIDmode
? GET_MODE (x
) : GET_MODE (y
);
4415 /* Handle all BLKmode compares. */
4417 if (mode
== BLKmode
)
4419 machine_mode result_mode
;
4420 enum insn_code cmp_code
;
4423 = GEN_INT (MIN (MEM_ALIGN (x
), MEM_ALIGN (y
)) / BITS_PER_UNIT
);
4427 /* Try to use a memory block compare insn - either cmpstr
4428 or cmpmem will do. */
4429 opt_scalar_int_mode cmp_mode_iter
;
4430 FOR_EACH_MODE_IN_CLASS (cmp_mode_iter
, MODE_INT
)
4432 scalar_int_mode cmp_mode
= cmp_mode_iter
.require ();
4433 cmp_code
= direct_optab_handler (cmpmem_optab
, cmp_mode
);
4434 if (cmp_code
== CODE_FOR_nothing
)
4435 cmp_code
= direct_optab_handler (cmpstr_optab
, cmp_mode
);
4436 if (cmp_code
== CODE_FOR_nothing
)
4437 cmp_code
= direct_optab_handler (cmpstrn_optab
, cmp_mode
);
4438 if (cmp_code
== CODE_FOR_nothing
)
4441 /* Must make sure the size fits the insn's mode. */
4442 if (CONST_INT_P (size
)
4443 ? UINTVAL (size
) > GET_MODE_MASK (cmp_mode
)
4444 : (GET_MODE_BITSIZE (as_a
<scalar_int_mode
> (GET_MODE (size
)))
4445 > GET_MODE_BITSIZE (cmp_mode
)))
4448 result_mode
= insn_data
[cmp_code
].operand
[0].mode
;
4449 result
= gen_reg_rtx (result_mode
);
4450 size
= convert_to_mode (cmp_mode
, size
, 1);
4451 emit_insn (GEN_FCN (cmp_code
) (result
, x
, y
, size
, opalign
));
4453 *ptest
= gen_rtx_fmt_ee (comparison
, VOIDmode
, result
, const0_rtx
);
4454 *pmode
= result_mode
;
4458 if (methods
!= OPTAB_LIB
&& methods
!= OPTAB_LIB_WIDEN
)
4461 /* Otherwise call a library function. */
4462 result
= emit_block_comp_via_libcall (x
, y
, size
);
4466 mode
= TYPE_MODE (integer_type_node
);
4467 methods
= OPTAB_LIB_WIDEN
;
4471 /* Don't allow operands to the compare to trap, as that can put the
4472 compare and branch in different basic blocks. */
4473 if (cfun
->can_throw_non_call_exceptions
)
4475 if (!can_create_pseudo_p () && (may_trap_p (x
) || may_trap_p (y
)))
4478 x
= copy_to_reg (x
);
4480 y
= copy_to_reg (y
);
4483 if (GET_MODE_CLASS (mode
) == MODE_CC
)
4485 enum insn_code icode
= optab_handler (cbranch_optab
, CCmode
);
4486 test
= gen_rtx_fmt_ee (comparison
, VOIDmode
, x
, y
);
4487 gcc_assert (icode
!= CODE_FOR_nothing
4488 && insn_operand_matches (icode
, 0, test
));
4493 mclass
= GET_MODE_CLASS (mode
);
4494 test
= gen_rtx_fmt_ee (comparison
, VOIDmode
, x
, y
);
4495 FOR_EACH_MODE_FROM (cmp_mode
, mode
)
4497 enum insn_code icode
;
4498 icode
= optab_handler (cbranch_optab
, cmp_mode
);
4499 if (icode
!= CODE_FOR_nothing
4500 && insn_operand_matches (icode
, 0, test
))
4502 rtx_insn
*last
= get_last_insn ();
4503 rtx op0
= prepare_operand (icode
, x
, 1, mode
, cmp_mode
, unsignedp
);
4504 rtx op1
= prepare_operand (icode
, y
, 2, mode
, cmp_mode
, unsignedp
);
4506 && insn_operand_matches (icode
, 1, op0
)
4507 && insn_operand_matches (icode
, 2, op1
))
4509 XEXP (test
, 0) = op0
;
4510 XEXP (test
, 1) = op1
;
4515 delete_insns_since (last
);
4518 if (methods
== OPTAB_DIRECT
|| !CLASS_HAS_WIDER_MODES_P (mclass
))
4522 if (methods
!= OPTAB_LIB_WIDEN
)
4525 if (SCALAR_FLOAT_MODE_P (mode
))
4527 /* Small trick if UNORDERED isn't implemented by the hardware. */
4528 if (comparison
== UNORDERED
&& rtx_equal_p (x
, y
))
4530 prepare_cmp_insn (x
, y
, UNLT
, NULL_RTX
, unsignedp
, OPTAB_WIDEN
,
4536 prepare_float_lib_cmp (x
, y
, comparison
, ptest
, pmode
);
4541 machine_mode ret_mode
;
4543 /* Handle a libcall just for the mode we are using. */
4544 libfunc
= optab_libfunc (cmp_optab
, mode
);
4545 gcc_assert (libfunc
);
4547 /* If we want unsigned, and this mode has a distinct unsigned
4548 comparison routine, use that. */
4551 rtx ulibfunc
= optab_libfunc (ucmp_optab
, mode
);
4556 ret_mode
= targetm
.libgcc_cmp_return_mode ();
4557 result
= emit_library_call_value (libfunc
, NULL_RTX
, LCT_CONST
,
4558 ret_mode
, x
, mode
, y
, mode
);
4560 /* There are two kinds of comparison routines. Biased routines
4561 return 0/1/2, and unbiased routines return -1/0/1. Other parts
4562 of gcc expect that the comparison operation is equivalent
4563 to the modified comparison. For signed comparisons compare the
4564 result against 1 in the biased case, and zero in the unbiased
4565 case. For unsigned comparisons always compare against 1 after
4566 biasing the unbiased result by adding 1. This gives us a way to
4568 The comparisons in the fixed-point helper library are always
4573 if (!TARGET_LIB_INT_CMP_BIASED
&& !ALL_FIXED_POINT_MODE_P (mode
))
4576 x
= plus_constant (ret_mode
, result
, 1);
4582 prepare_cmp_insn (x
, y
, comparison
, NULL_RTX
, unsignedp
, methods
,
4592 /* Before emitting an insn with code ICODE, make sure that X, which is going
4593 to be used for operand OPNUM of the insn, is converted from mode MODE to
4594 WIDER_MODE (UNSIGNEDP determines whether it is an unsigned conversion), and
4595 that it is accepted by the operand predicate. Return the new value. */
4598 prepare_operand (enum insn_code icode
, rtx x
, int opnum
, machine_mode mode
,
4599 machine_mode wider_mode
, int unsignedp
)
4601 if (mode
!= wider_mode
)
4602 x
= convert_modes (wider_mode
, mode
, x
, unsignedp
);
4604 if (!insn_operand_matches (icode
, opnum
, x
))
4606 machine_mode op_mode
= insn_data
[(int) icode
].operand
[opnum
].mode
;
4607 if (reload_completed
)
4609 if (GET_MODE (x
) != op_mode
&& GET_MODE (x
) != VOIDmode
)
4611 x
= copy_to_mode_reg (op_mode
, x
);
4617 /* Subroutine of emit_cmp_and_jump_insns; this function is called when we know
4618 we can do the branch. */
4621 emit_cmp_and_jump_insn_1 (rtx test
, machine_mode mode
, rtx label
,
4622 profile_probability prob
)
4624 machine_mode optab_mode
;
4625 enum mode_class mclass
;
4626 enum insn_code icode
;
4629 mclass
= GET_MODE_CLASS (mode
);
4630 optab_mode
= (mclass
== MODE_CC
) ? CCmode
: mode
;
4631 icode
= optab_handler (cbranch_optab
, optab_mode
);
4633 gcc_assert (icode
!= CODE_FOR_nothing
);
4634 gcc_assert (insn_operand_matches (icode
, 0, test
));
4635 insn
= emit_jump_insn (GEN_FCN (icode
) (test
, XEXP (test
, 0),
4636 XEXP (test
, 1), label
));
4637 if (prob
.initialized_p ()
4638 && profile_status_for_fn (cfun
) != PROFILE_ABSENT
4641 && any_condjump_p (insn
)
4642 && !find_reg_note (insn
, REG_BR_PROB
, 0))
4643 add_reg_br_prob_note (insn
, prob
);
4646 /* Generate code to compare X with Y so that the condition codes are
4647 set and to jump to LABEL if the condition is true. If X is a
4648 constant and Y is not a constant, then the comparison is swapped to
4649 ensure that the comparison RTL has the canonical form.
4651 UNSIGNEDP nonzero says that X and Y are unsigned; this matters if they
4652 need to be widened. UNSIGNEDP is also used to select the proper
4653 branch condition code.
4655 If X and Y have mode BLKmode, then SIZE specifies the size of both X and Y.
4657 MODE is the mode of the inputs (in case they are const_int).
4659 COMPARISON is the rtl operator to compare with (EQ, NE, GT, etc.).
4660 It will be potentially converted into an unsigned variant based on
4661 UNSIGNEDP to select a proper jump instruction.
4663 PROB is the probability of jumping to LABEL. */
4666 emit_cmp_and_jump_insns (rtx x
, rtx y
, enum rtx_code comparison
, rtx size
,
4667 machine_mode mode
, int unsignedp
, rtx label
,
4668 profile_probability prob
)
4670 rtx op0
= x
, op1
= y
;
4673 /* Swap operands and condition to ensure canonical RTL. */
4674 if (swap_commutative_operands_p (x
, y
)
4675 && can_compare_p (swap_condition (comparison
), mode
, ccp_jump
))
4678 comparison
= swap_condition (comparison
);
4681 /* If OP0 is still a constant, then both X and Y must be constants
4682 or the opposite comparison is not supported. Force X into a register
4683 to create canonical RTL. */
4684 if (CONSTANT_P (op0
))
4685 op0
= force_reg (mode
, op0
);
4688 comparison
= unsigned_condition (comparison
);
4690 prepare_cmp_insn (op0
, op1
, comparison
, size
, unsignedp
, OPTAB_LIB_WIDEN
,
4692 emit_cmp_and_jump_insn_1 (test
, mode
, label
, prob
);
4696 /* Emit a library call comparison between floating point X and Y.
4697 COMPARISON is the rtl operator to compare with (EQ, NE, GT, etc.). */
4700 prepare_float_lib_cmp (rtx x
, rtx y
, enum rtx_code comparison
,
4701 rtx
*ptest
, machine_mode
*pmode
)
4703 enum rtx_code swapped
= swap_condition (comparison
);
4704 enum rtx_code reversed
= reverse_condition_maybe_unordered (comparison
);
4705 machine_mode orig_mode
= GET_MODE (x
);
4707 rtx true_rtx
, false_rtx
;
4708 rtx value
, target
, equiv
;
4711 bool reversed_p
= false;
4712 scalar_int_mode cmp_mode
= targetm
.libgcc_cmp_return_mode ();
4714 FOR_EACH_MODE_FROM (mode
, orig_mode
)
4716 if (code_to_optab (comparison
)
4717 && (libfunc
= optab_libfunc (code_to_optab (comparison
), mode
)))
4720 if (code_to_optab (swapped
)
4721 && (libfunc
= optab_libfunc (code_to_optab (swapped
), mode
)))
4724 comparison
= swapped
;
4728 if (code_to_optab (reversed
)
4729 && (libfunc
= optab_libfunc (code_to_optab (reversed
), mode
)))
4731 comparison
= reversed
;
4737 gcc_assert (mode
!= VOIDmode
);
4739 if (mode
!= orig_mode
)
4741 x
= convert_to_mode (mode
, x
, 0);
4742 y
= convert_to_mode (mode
, y
, 0);
4745 /* Attach a REG_EQUAL note describing the semantics of the libcall to
4746 the RTL. The allows the RTL optimizers to delete the libcall if the
4747 condition can be determined at compile-time. */
4748 if (comparison
== UNORDERED
4749 || FLOAT_LIB_COMPARE_RETURNS_BOOL (mode
, comparison
))
4751 true_rtx
= const_true_rtx
;
4752 false_rtx
= const0_rtx
;
4759 true_rtx
= const0_rtx
;
4760 false_rtx
= const_true_rtx
;
4764 true_rtx
= const_true_rtx
;
4765 false_rtx
= const0_rtx
;
4769 true_rtx
= const1_rtx
;
4770 false_rtx
= const0_rtx
;
4774 true_rtx
= const0_rtx
;
4775 false_rtx
= constm1_rtx
;
4779 true_rtx
= constm1_rtx
;
4780 false_rtx
= const0_rtx
;
4784 true_rtx
= const0_rtx
;
4785 false_rtx
= const1_rtx
;
4793 if (comparison
== UNORDERED
)
4795 rtx temp
= simplify_gen_relational (NE
, cmp_mode
, mode
, x
, x
);
4796 equiv
= simplify_gen_relational (NE
, cmp_mode
, mode
, y
, y
);
4797 equiv
= simplify_gen_ternary (IF_THEN_ELSE
, cmp_mode
, cmp_mode
,
4798 temp
, const_true_rtx
, equiv
);
4802 equiv
= simplify_gen_relational (comparison
, cmp_mode
, mode
, x
, y
);
4803 if (! FLOAT_LIB_COMPARE_RETURNS_BOOL (mode
, comparison
))
4804 equiv
= simplify_gen_ternary (IF_THEN_ELSE
, cmp_mode
, cmp_mode
,
4805 equiv
, true_rtx
, false_rtx
);
4809 value
= emit_library_call_value (libfunc
, NULL_RTX
, LCT_CONST
,
4810 cmp_mode
, x
, mode
, y
, mode
);
4811 insns
= get_insns ();
4814 target
= gen_reg_rtx (cmp_mode
);
4815 emit_libcall_block (insns
, target
, value
, equiv
);
4817 if (comparison
== UNORDERED
4818 || FLOAT_LIB_COMPARE_RETURNS_BOOL (mode
, comparison
)
4820 *ptest
= gen_rtx_fmt_ee (reversed_p
? EQ
: NE
, VOIDmode
, target
, false_rtx
);
4822 *ptest
= gen_rtx_fmt_ee (comparison
, VOIDmode
, target
, const0_rtx
);
4827 /* Generate code to indirectly jump to a location given in the rtx LOC. */
4830 emit_indirect_jump (rtx loc
)
4832 if (!targetm
.have_indirect_jump ())
4833 sorry ("indirect jumps are not available on this target");
4836 class expand_operand ops
[1];
4837 create_address_operand (&ops
[0], loc
);
4838 expand_jump_insn (targetm
.code_for_indirect_jump
, 1, ops
);
4844 /* Emit a conditional move instruction if the machine supports one for that
4845 condition and machine mode.
4847 OP0 and OP1 are the operands that should be compared using CODE. CMODE is
4848 the mode to use should they be constants. If it is VOIDmode, they cannot
4851 OP2 should be stored in TARGET if the comparison is true, otherwise OP3
4852 should be stored there. MODE is the mode to use should they be constants.
4853 If it is VOIDmode, they cannot both be constants.
4855 The result is either TARGET (perhaps modified) or NULL_RTX if the operation
4856 is not supported. */
4859 emit_conditional_move (rtx target
, struct rtx_comparison comp
,
4861 machine_mode mode
, int unsignedp
)
4865 enum insn_code icode
;
4866 enum rtx_code reversed
;
4868 /* If the two source operands are identical, that's just a move. */
4870 if (rtx_equal_p (op2
, op3
))
4873 target
= gen_reg_rtx (mode
);
4875 emit_move_insn (target
, op3
);
4879 /* If one operand is constant, make it the second one. Only do this
4880 if the other operand is not constant as well. */
4882 if (swap_commutative_operands_p (comp
.op0
, comp
.op1
))
4884 std::swap (comp
.op0
, comp
.op1
);
4885 comp
.code
= swap_condition (comp
.code
);
4888 /* get_condition will prefer to generate LT and GT even if the old
4889 comparison was against zero, so undo that canonicalization here since
4890 comparisons against zero are cheaper. */
4892 if (comp
.code
== LT
&& comp
.op1
== const1_rtx
)
4893 comp
.code
= LE
, comp
.op1
= const0_rtx
;
4894 else if (comp
.code
== GT
&& comp
.op1
== constm1_rtx
)
4895 comp
.code
= GE
, comp
.op1
= const0_rtx
;
4897 if (comp
.mode
== VOIDmode
)
4898 comp
.mode
= GET_MODE (comp
.op0
);
4900 enum rtx_code orig_code
= comp
.code
;
4901 bool swapped
= false;
4902 if (swap_commutative_operands_p (op2
, op3
)
4904 reversed_comparison_code_parts (comp
.code
, comp
.op0
, comp
.op1
, NULL
))
4907 std::swap (op2
, op3
);
4908 comp
.code
= reversed
;
4912 if (mode
== VOIDmode
)
4913 mode
= GET_MODE (op2
);
4915 icode
= direct_optab_handler (movcc_optab
, mode
);
4917 if (icode
== CODE_FOR_nothing
)
4921 target
= gen_reg_rtx (mode
);
4923 for (int pass
= 0; ; pass
++)
4925 comp
.code
= unsignedp
? unsigned_condition (comp
.code
) : comp
.code
;
4927 simplify_gen_relational (comp
.code
, VOIDmode
,
4928 comp
.mode
, comp
.op0
, comp
.op1
);
4930 /* We can get const0_rtx or const_true_rtx in some circumstances. Just
4931 punt and let the caller figure out how best to deal with this
4933 if (COMPARISON_P (comparison
))
4935 saved_pending_stack_adjust save
;
4936 save_pending_stack_adjust (&save
);
4937 last
= get_last_insn ();
4938 do_pending_stack_adjust ();
4939 machine_mode cmpmode
= comp
.mode
;
4940 prepare_cmp_insn (XEXP (comparison
, 0), XEXP (comparison
, 1),
4941 GET_CODE (comparison
), NULL_RTX
, unsignedp
,
4942 OPTAB_WIDEN
, &comparison
, &cmpmode
);
4945 rtx res
= emit_conditional_move_1 (target
, comparison
,
4947 if (res
!= NULL_RTX
)
4950 delete_insns_since (last
);
4951 restore_pending_stack_adjust (&save
);
4957 /* If the preferred op2/op3 order is not usable, retry with other
4958 operand order, perhaps it will expand successfully. */
4960 comp
.code
= orig_code
;
4961 else if ((reversed
=
4962 reversed_comparison_code_parts (orig_code
, comp
.op0
, comp
.op1
,
4965 comp
.code
= reversed
;
4968 std::swap (op2
, op3
);
4972 /* Helper function that, in addition to COMPARISON, also tries
4973 the reversed REV_COMPARISON with swapped OP2 and OP3. As opposed
4974 to when we pass the specific constituents of a comparison, no
4975 additional insns are emitted for it. It might still be necessary
4976 to emit more than one insn for the final conditional move, though. */
4979 emit_conditional_move (rtx target
, rtx comparison
, rtx rev_comparison
,
4980 rtx op2
, rtx op3
, machine_mode mode
)
4982 rtx res
= emit_conditional_move_1 (target
, comparison
, op2
, op3
, mode
);
4984 if (res
!= NULL_RTX
)
4987 return emit_conditional_move_1 (target
, rev_comparison
, op3
, op2
, mode
);
4990 /* Helper for emitting a conditional move. */
4993 emit_conditional_move_1 (rtx target
, rtx comparison
,
4994 rtx op2
, rtx op3
, machine_mode mode
)
4996 enum insn_code icode
;
4998 if (comparison
== NULL_RTX
|| !COMPARISON_P (comparison
))
5001 /* If the two source operands are identical, that's just a move.
5002 As the comparison comes in non-canonicalized, we must make
5003 sure not to discard any possible side effects. If there are
5004 side effects, just let the target handle it. */
5005 if (!side_effects_p (comparison
) && rtx_equal_p (op2
, op3
))
5008 target
= gen_reg_rtx (mode
);
5010 emit_move_insn (target
, op3
);
5014 if (mode
== VOIDmode
)
5015 mode
= GET_MODE (op2
);
5017 icode
= direct_optab_handler (movcc_optab
, mode
);
5019 if (icode
== CODE_FOR_nothing
)
5023 target
= gen_reg_rtx (mode
);
5025 class expand_operand ops
[4];
5027 create_output_operand (&ops
[0], target
, mode
);
5028 create_fixed_operand (&ops
[1], comparison
);
5029 create_input_operand (&ops
[2], op2
, mode
);
5030 create_input_operand (&ops
[3], op3
, mode
);
5032 if (maybe_expand_insn (icode
, 4, ops
))
5034 if (ops
[0].value
!= target
)
5035 convert_move (target
, ops
[0].value
, false);
5043 /* Emit a conditional negate or bitwise complement using the
5044 negcc or notcc optabs if available. Return NULL_RTX if such operations
5045 are not available. Otherwise return the RTX holding the result.
5046 TARGET is the desired destination of the result. COMP is the comparison
5047 on which to negate. If COND is true move into TARGET the negation
5048 or bitwise complement of OP1. Otherwise move OP2 into TARGET.
5049 CODE is either NEG or NOT. MODE is the machine mode in which the
5050 operation is performed. */
5053 emit_conditional_neg_or_complement (rtx target
, rtx_code code
,
5054 machine_mode mode
, rtx cond
, rtx op1
,
5057 optab op
= unknown_optab
;
5060 else if (code
== NOT
)
5065 insn_code icode
= direct_optab_handler (op
, mode
);
5067 if (icode
== CODE_FOR_nothing
)
5071 target
= gen_reg_rtx (mode
);
5073 rtx_insn
*last
= get_last_insn ();
5074 class expand_operand ops
[4];
5076 create_output_operand (&ops
[0], target
, mode
);
5077 create_fixed_operand (&ops
[1], cond
);
5078 create_input_operand (&ops
[2], op1
, mode
);
5079 create_input_operand (&ops
[3], op2
, mode
);
5081 if (maybe_expand_insn (icode
, 4, ops
))
5083 if (ops
[0].value
!= target
)
5084 convert_move (target
, ops
[0].value
, false);
5088 delete_insns_since (last
);
5092 /* Emit a conditional addition instruction if the machine supports one for that
5093 condition and machine mode.
5095 OP0 and OP1 are the operands that should be compared using CODE. CMODE is
5096 the mode to use should they be constants. If it is VOIDmode, they cannot
5099 OP2 should be stored in TARGET if the comparison is false, otherwise OP2+OP3
5100 should be stored there. MODE is the mode to use should they be constants.
5101 If it is VOIDmode, they cannot both be constants.
5103 The result is either TARGET (perhaps modified) or NULL_RTX if the operation
5104 is not supported. */
5107 emit_conditional_add (rtx target
, enum rtx_code code
, rtx op0
, rtx op1
,
5108 machine_mode cmode
, rtx op2
, rtx op3
,
5109 machine_mode mode
, int unsignedp
)
5113 enum insn_code icode
;
5115 /* If one operand is constant, make it the second one. Only do this
5116 if the other operand is not constant as well. */
5118 if (swap_commutative_operands_p (op0
, op1
))
5120 std::swap (op0
, op1
);
5121 code
= swap_condition (code
);
5124 /* get_condition will prefer to generate LT and GT even if the old
5125 comparison was against zero, so undo that canonicalization here since
5126 comparisons against zero are cheaper. */
5127 if (code
== LT
&& op1
== const1_rtx
)
5128 code
= LE
, op1
= const0_rtx
;
5129 else if (code
== GT
&& op1
== constm1_rtx
)
5130 code
= GE
, op1
= const0_rtx
;
5132 if (cmode
== VOIDmode
)
5133 cmode
= GET_MODE (op0
);
5135 if (mode
== VOIDmode
)
5136 mode
= GET_MODE (op2
);
5138 icode
= optab_handler (addcc_optab
, mode
);
5140 if (icode
== CODE_FOR_nothing
)
5144 target
= gen_reg_rtx (mode
);
5146 code
= unsignedp
? unsigned_condition (code
) : code
;
5147 comparison
= simplify_gen_relational (code
, VOIDmode
, cmode
, op0
, op1
);
5149 /* We can get const0_rtx or const_true_rtx in some circumstances. Just
5150 return NULL and let the caller figure out how best to deal with this
5152 if (!COMPARISON_P (comparison
))
5155 do_pending_stack_adjust ();
5156 last
= get_last_insn ();
5157 prepare_cmp_insn (XEXP (comparison
, 0), XEXP (comparison
, 1),
5158 GET_CODE (comparison
), NULL_RTX
, unsignedp
, OPTAB_WIDEN
,
5159 &comparison
, &cmode
);
5162 class expand_operand ops
[4];
5164 create_output_operand (&ops
[0], target
, mode
);
5165 create_fixed_operand (&ops
[1], comparison
);
5166 create_input_operand (&ops
[2], op2
, mode
);
5167 create_input_operand (&ops
[3], op3
, mode
);
5168 if (maybe_expand_insn (icode
, 4, ops
))
5170 if (ops
[0].value
!= target
)
5171 convert_move (target
, ops
[0].value
, false);
5175 delete_insns_since (last
);
5179 /* These functions attempt to generate an insn body, rather than
5180 emitting the insn, but if the gen function already emits them, we
5181 make no attempt to turn them back into naked patterns. */
5183 /* Generate and return an insn body to add Y to X. */
5186 gen_add2_insn (rtx x
, rtx y
)
5188 enum insn_code icode
= optab_handler (add_optab
, GET_MODE (x
));
5190 gcc_assert (insn_operand_matches (icode
, 0, x
));
5191 gcc_assert (insn_operand_matches (icode
, 1, x
));
5192 gcc_assert (insn_operand_matches (icode
, 2, y
));
5194 return GEN_FCN (icode
) (x
, x
, y
);
5197 /* Generate and return an insn body to add r1 and c,
5198 storing the result in r0. */
5201 gen_add3_insn (rtx r0
, rtx r1
, rtx c
)
5203 enum insn_code icode
= optab_handler (add_optab
, GET_MODE (r0
));
5205 if (icode
== CODE_FOR_nothing
5206 || !insn_operand_matches (icode
, 0, r0
)
5207 || !insn_operand_matches (icode
, 1, r1
)
5208 || !insn_operand_matches (icode
, 2, c
))
5211 return GEN_FCN (icode
) (r0
, r1
, c
);
5215 have_add2_insn (rtx x
, rtx y
)
5217 enum insn_code icode
;
5219 gcc_assert (GET_MODE (x
) != VOIDmode
);
5221 icode
= optab_handler (add_optab
, GET_MODE (x
));
5223 if (icode
== CODE_FOR_nothing
)
5226 if (!insn_operand_matches (icode
, 0, x
)
5227 || !insn_operand_matches (icode
, 1, x
)
5228 || !insn_operand_matches (icode
, 2, y
))
5234 /* Generate and return an insn body to add Y to X. */
5237 gen_addptr3_insn (rtx x
, rtx y
, rtx z
)
5239 enum insn_code icode
= optab_handler (addptr3_optab
, GET_MODE (x
));
5241 gcc_assert (insn_operand_matches (icode
, 0, x
));
5242 gcc_assert (insn_operand_matches (icode
, 1, y
));
5243 gcc_assert (insn_operand_matches (icode
, 2, z
));
5245 return GEN_FCN (icode
) (x
, y
, z
);
5248 /* Return true if the target implements an addptr pattern and X, Y,
5249 and Z are valid for the pattern predicates. */
5252 have_addptr3_insn (rtx x
, rtx y
, rtx z
)
5254 enum insn_code icode
;
5256 gcc_assert (GET_MODE (x
) != VOIDmode
);
5258 icode
= optab_handler (addptr3_optab
, GET_MODE (x
));
5260 if (icode
== CODE_FOR_nothing
)
5263 if (!insn_operand_matches (icode
, 0, x
)
5264 || !insn_operand_matches (icode
, 1, y
)
5265 || !insn_operand_matches (icode
, 2, z
))
5271 /* Generate and return an insn body to subtract Y from X. */
5274 gen_sub2_insn (rtx x
, rtx y
)
5276 enum insn_code icode
= optab_handler (sub_optab
, GET_MODE (x
));
5278 gcc_assert (insn_operand_matches (icode
, 0, x
));
5279 gcc_assert (insn_operand_matches (icode
, 1, x
));
5280 gcc_assert (insn_operand_matches (icode
, 2, y
));
5282 return GEN_FCN (icode
) (x
, x
, y
);
5285 /* Generate and return an insn body to subtract r1 and c,
5286 storing the result in r0. */
5289 gen_sub3_insn (rtx r0
, rtx r1
, rtx c
)
5291 enum insn_code icode
= optab_handler (sub_optab
, GET_MODE (r0
));
5293 if (icode
== CODE_FOR_nothing
5294 || !insn_operand_matches (icode
, 0, r0
)
5295 || !insn_operand_matches (icode
, 1, r1
)
5296 || !insn_operand_matches (icode
, 2, c
))
5299 return GEN_FCN (icode
) (r0
, r1
, c
);
5303 have_sub2_insn (rtx x
, rtx y
)
5305 enum insn_code icode
;
5307 gcc_assert (GET_MODE (x
) != VOIDmode
);
5309 icode
= optab_handler (sub_optab
, GET_MODE (x
));
5311 if (icode
== CODE_FOR_nothing
)
5314 if (!insn_operand_matches (icode
, 0, x
)
5315 || !insn_operand_matches (icode
, 1, x
)
5316 || !insn_operand_matches (icode
, 2, y
))
5322 /* Generate the body of an insn to extend Y (with mode MFROM)
5323 into X (with mode MTO). Do zero-extension if UNSIGNEDP is nonzero. */
5326 gen_extend_insn (rtx x
, rtx y
, machine_mode mto
,
5327 machine_mode mfrom
, int unsignedp
)
5329 enum insn_code icode
= can_extend_p (mto
, mfrom
, unsignedp
);
5330 return GEN_FCN (icode
) (x
, y
);
5333 /* Generate code to convert FROM to floating point
5334 and store in TO. FROM must be fixed point and not VOIDmode.
5335 UNSIGNEDP nonzero means regard FROM as unsigned.
5336 Normally this is done by correcting the final value
5337 if it is negative. */
5340 expand_float (rtx to
, rtx from
, int unsignedp
)
5342 enum insn_code icode
;
5344 scalar_mode from_mode
, to_mode
;
5345 machine_mode fmode
, imode
;
5346 bool can_do_signed
= false;
5348 /* Crash now, because we won't be able to decide which mode to use. */
5349 gcc_assert (GET_MODE (from
) != VOIDmode
);
5351 /* Look for an insn to do the conversion. Do it in the specified
5352 modes if possible; otherwise convert either input, output or both to
5353 wider mode. If the integer mode is wider than the mode of FROM,
5354 we can do the conversion signed even if the input is unsigned. */
5356 FOR_EACH_MODE_FROM (fmode
, GET_MODE (to
))
5357 FOR_EACH_MODE_FROM (imode
, GET_MODE (from
))
5359 int doing_unsigned
= unsignedp
;
5361 if (fmode
!= GET_MODE (to
)
5362 && (significand_size (fmode
)
5363 < GET_MODE_UNIT_PRECISION (GET_MODE (from
))))
5366 icode
= can_float_p (fmode
, imode
, unsignedp
);
5367 if (icode
== CODE_FOR_nothing
&& unsignedp
)
5369 enum insn_code scode
= can_float_p (fmode
, imode
, 0);
5370 if (scode
!= CODE_FOR_nothing
)
5371 can_do_signed
= true;
5372 if (imode
!= GET_MODE (from
))
5373 icode
= scode
, doing_unsigned
= 0;
5376 if (icode
!= CODE_FOR_nothing
)
5378 if (imode
!= GET_MODE (from
))
5379 from
= convert_to_mode (imode
, from
, unsignedp
);
5381 if (fmode
!= GET_MODE (to
))
5382 target
= gen_reg_rtx (fmode
);
5384 emit_unop_insn (icode
, target
, from
,
5385 doing_unsigned
? UNSIGNED_FLOAT
: FLOAT
);
5388 convert_move (to
, target
, 0);
5393 /* Unsigned integer, and no way to convert directly. Convert as signed,
5394 then unconditionally adjust the result. */
5397 && is_a
<scalar_mode
> (GET_MODE (to
), &to_mode
)
5398 && is_a
<scalar_mode
> (GET_MODE (from
), &from_mode
))
5400 opt_scalar_mode fmode_iter
;
5401 rtx_code_label
*label
= gen_label_rtx ();
5403 REAL_VALUE_TYPE offset
;
5405 /* Look for a usable floating mode FMODE wider than the source and at
5406 least as wide as the target. Using FMODE will avoid rounding woes
5407 with unsigned values greater than the signed maximum value. */
5409 FOR_EACH_MODE_FROM (fmode_iter
, to_mode
)
5411 scalar_mode fmode
= fmode_iter
.require ();
5412 if (GET_MODE_PRECISION (from_mode
) < GET_MODE_BITSIZE (fmode
)
5413 && can_float_p (fmode
, from_mode
, 0) != CODE_FOR_nothing
)
5417 if (!fmode_iter
.exists (&fmode
))
5419 /* There is no such mode. Pretend the target is wide enough. */
5422 /* Avoid double-rounding when TO is narrower than FROM. */
5423 if ((significand_size (fmode
) + 1)
5424 < GET_MODE_PRECISION (from_mode
))
5427 rtx_code_label
*neglabel
= gen_label_rtx ();
5429 /* Don't use TARGET if it isn't a register, is a hard register,
5430 or is the wrong mode. */
5432 || REGNO (target
) < FIRST_PSEUDO_REGISTER
5433 || GET_MODE (target
) != fmode
)
5434 target
= gen_reg_rtx (fmode
);
5437 do_pending_stack_adjust ();
5439 /* Test whether the sign bit is set. */
5440 emit_cmp_and_jump_insns (from
, const0_rtx
, LT
, NULL_RTX
, imode
,
5443 /* The sign bit is not set. Convert as signed. */
5444 expand_float (target
, from
, 0);
5445 emit_jump_insn (targetm
.gen_jump (label
));
5448 /* The sign bit is set.
5449 Convert to a usable (positive signed) value by shifting right
5450 one bit, while remembering if a nonzero bit was shifted
5451 out; i.e., compute (from & 1) | (from >> 1). */
5453 emit_label (neglabel
);
5454 temp
= expand_binop (imode
, and_optab
, from
, const1_rtx
,
5455 NULL_RTX
, 1, OPTAB_LIB_WIDEN
);
5456 temp1
= expand_shift (RSHIFT_EXPR
, imode
, from
, 1, NULL_RTX
, 1);
5457 temp
= expand_binop (imode
, ior_optab
, temp
, temp1
, temp
, 1,
5459 expand_float (target
, temp
, 0);
5461 /* Multiply by 2 to undo the shift above. */
5462 temp
= expand_binop (fmode
, add_optab
, target
, target
,
5463 target
, 0, OPTAB_LIB_WIDEN
);
5465 emit_move_insn (target
, temp
);
5467 do_pending_stack_adjust ();
5473 /* If we are about to do some arithmetic to correct for an
5474 unsigned operand, do it in a pseudo-register. */
5476 if (to_mode
!= fmode
5477 || !REG_P (to
) || REGNO (to
) < FIRST_PSEUDO_REGISTER
)
5478 target
= gen_reg_rtx (fmode
);
5480 /* Convert as signed integer to floating. */
5481 expand_float (target
, from
, 0);
5483 /* If FROM is negative (and therefore TO is negative),
5484 correct its value by 2**bitwidth. */
5486 do_pending_stack_adjust ();
5487 emit_cmp_and_jump_insns (from
, const0_rtx
, GE
, NULL_RTX
, from_mode
,
5491 real_2expN (&offset
, GET_MODE_PRECISION (from_mode
), fmode
);
5492 temp
= expand_binop (fmode
, add_optab
, target
,
5493 const_double_from_real_value (offset
, fmode
),
5494 target
, 0, OPTAB_LIB_WIDEN
);
5496 emit_move_insn (target
, temp
);
5498 do_pending_stack_adjust ();
5503 /* No hardware instruction available; call a library routine. */
5508 convert_optab tab
= unsignedp
? ufloat_optab
: sfloat_optab
;
5510 if (is_narrower_int_mode (GET_MODE (from
), SImode
))
5511 from
= convert_to_mode (SImode
, from
, unsignedp
);
5513 libfunc
= convert_optab_libfunc (tab
, GET_MODE (to
), GET_MODE (from
));
5514 gcc_assert (libfunc
);
5518 value
= emit_library_call_value (libfunc
, NULL_RTX
, LCT_CONST
,
5519 GET_MODE (to
), from
, GET_MODE (from
));
5520 insns
= get_insns ();
5523 emit_libcall_block (insns
, target
, value
,
5524 gen_rtx_fmt_e (unsignedp
? UNSIGNED_FLOAT
: FLOAT
,
5525 GET_MODE (to
), from
));
5530 /* Copy result to requested destination
5531 if we have been computing in a temp location. */
5535 if (GET_MODE (target
) == GET_MODE (to
))
5536 emit_move_insn (to
, target
);
5538 convert_move (to
, target
, 0);
5542 /* Generate code to convert FROM to fixed point and store in TO. FROM
5543 must be floating point. */
5546 expand_fix (rtx to
, rtx from
, int unsignedp
)
5548 enum insn_code icode
;
5550 machine_mode fmode
, imode
;
5551 opt_scalar_mode fmode_iter
;
5552 bool must_trunc
= false;
5554 /* We first try to find a pair of modes, one real and one integer, at
5555 least as wide as FROM and TO, respectively, in which we can open-code
5556 this conversion. If the integer mode is wider than the mode of TO,
5557 we can do the conversion either signed or unsigned. */
5559 FOR_EACH_MODE_FROM (fmode
, GET_MODE (from
))
5560 FOR_EACH_MODE_FROM (imode
, GET_MODE (to
))
5562 int doing_unsigned
= unsignedp
;
5564 icode
= can_fix_p (imode
, fmode
, unsignedp
, &must_trunc
);
5565 if (icode
== CODE_FOR_nothing
&& imode
!= GET_MODE (to
) && unsignedp
)
5566 icode
= can_fix_p (imode
, fmode
, 0, &must_trunc
), doing_unsigned
= 0;
5568 if (icode
!= CODE_FOR_nothing
)
5570 rtx_insn
*last
= get_last_insn ();
5572 if (fmode
!= GET_MODE (from
))
5573 from1
= convert_to_mode (fmode
, from
, 0);
5577 rtx temp
= gen_reg_rtx (GET_MODE (from1
));
5578 from1
= expand_unop (GET_MODE (from1
), ftrunc_optab
, from1
,
5582 if (imode
!= GET_MODE (to
))
5583 target
= gen_reg_rtx (imode
);
5585 if (maybe_emit_unop_insn (icode
, target
, from1
,
5586 doing_unsigned
? UNSIGNED_FIX
: FIX
))
5589 convert_move (to
, target
, unsignedp
);
5592 delete_insns_since (last
);
5596 /* For an unsigned conversion, there is one more way to do it.
5597 If we have a signed conversion, we generate code that compares
5598 the real value to the largest representable positive number. If if
5599 is smaller, the conversion is done normally. Otherwise, subtract
5600 one plus the highest signed number, convert, and add it back.
5602 We only need to check all real modes, since we know we didn't find
5603 anything with a wider integer mode.
5605 This code used to extend FP value into mode wider than the destination.
5606 This is needed for decimal float modes which cannot accurately
5607 represent one plus the highest signed number of the same size, but
5608 not for binary modes. Consider, for instance conversion from SFmode
5611 The hot path through the code is dealing with inputs smaller than 2^63
5612 and doing just the conversion, so there is no bits to lose.
5614 In the other path we know the value is positive in the range 2^63..2^64-1
5615 inclusive. (as for other input overflow happens and result is undefined)
5616 So we know that the most important bit set in mantissa corresponds to
5617 2^63. The subtraction of 2^63 should not generate any rounding as it
5618 simply clears out that bit. The rest is trivial. */
5620 scalar_int_mode to_mode
;
5622 && is_a
<scalar_int_mode
> (GET_MODE (to
), &to_mode
)
5623 && HWI_COMPUTABLE_MODE_P (to_mode
))
5624 FOR_EACH_MODE_FROM (fmode_iter
, as_a
<scalar_mode
> (GET_MODE (from
)))
5626 scalar_mode fmode
= fmode_iter
.require ();
5627 if (CODE_FOR_nothing
!= can_fix_p (to_mode
, fmode
,
5629 && (!DECIMAL_FLOAT_MODE_P (fmode
)
5630 || (GET_MODE_BITSIZE (fmode
) > GET_MODE_PRECISION (to_mode
))))
5633 REAL_VALUE_TYPE offset
;
5635 rtx_code_label
*lab1
, *lab2
;
5638 bitsize
= GET_MODE_PRECISION (to_mode
);
5639 real_2expN (&offset
, bitsize
- 1, fmode
);
5640 limit
= const_double_from_real_value (offset
, fmode
);
5641 lab1
= gen_label_rtx ();
5642 lab2
= gen_label_rtx ();
5644 if (fmode
!= GET_MODE (from
))
5645 from
= convert_to_mode (fmode
, from
, 0);
5647 /* See if we need to do the subtraction. */
5648 do_pending_stack_adjust ();
5649 emit_cmp_and_jump_insns (from
, limit
, GE
, NULL_RTX
,
5650 GET_MODE (from
), 0, lab1
);
5652 /* If not, do the signed "fix" and branch around fixup code. */
5653 expand_fix (to
, from
, 0);
5654 emit_jump_insn (targetm
.gen_jump (lab2
));
5657 /* Otherwise, subtract 2**(N-1), convert to signed number,
5658 then add 2**(N-1). Do the addition using XOR since this
5659 will often generate better code. */
5661 target
= expand_binop (GET_MODE (from
), sub_optab
, from
, limit
,
5662 NULL_RTX
, 0, OPTAB_LIB_WIDEN
);
5663 expand_fix (to
, target
, 0);
5664 target
= expand_binop (to_mode
, xor_optab
, to
,
5666 (HOST_WIDE_INT_1
<< (bitsize
- 1),
5668 to
, 1, OPTAB_LIB_WIDEN
);
5671 emit_move_insn (to
, target
);
5675 if (optab_handler (mov_optab
, to_mode
) != CODE_FOR_nothing
)
5677 /* Make a place for a REG_NOTE and add it. */
5678 insn
= emit_move_insn (to
, to
);
5679 set_dst_reg_note (insn
, REG_EQUAL
,
5680 gen_rtx_fmt_e (UNSIGNED_FIX
, to_mode
,
5689 /* We can't do it with an insn, so use a library call. But first ensure
5690 that the mode of TO is at least as wide as SImode, since those are the
5691 only library calls we know about. */
5693 if (is_narrower_int_mode (GET_MODE (to
), SImode
))
5695 target
= gen_reg_rtx (SImode
);
5697 expand_fix (target
, from
, unsignedp
);
5705 convert_optab tab
= unsignedp
? ufix_optab
: sfix_optab
;
5706 libfunc
= convert_optab_libfunc (tab
, GET_MODE (to
), GET_MODE (from
));
5707 gcc_assert (libfunc
);
5711 value
= emit_library_call_value (libfunc
, NULL_RTX
, LCT_CONST
,
5712 GET_MODE (to
), from
, GET_MODE (from
));
5713 insns
= get_insns ();
5716 emit_libcall_block (insns
, target
, value
,
5717 gen_rtx_fmt_e (unsignedp
? UNSIGNED_FIX
: FIX
,
5718 GET_MODE (to
), from
));
5723 if (GET_MODE (to
) == GET_MODE (target
))
5724 emit_move_insn (to
, target
);
5726 convert_move (to
, target
, 0);
5731 /* Promote integer arguments for a libcall if necessary.
5732 emit_library_call_value cannot do the promotion because it does not
5733 know if it should do a signed or unsigned promotion. This is because
5734 there are no tree types defined for libcalls. */
5737 prepare_libcall_arg (rtx arg
, int uintp
)
5739 scalar_int_mode mode
;
5740 machine_mode arg_mode
;
5741 if (is_a
<scalar_int_mode
> (GET_MODE (arg
), &mode
))
5743 /* If we need to promote the integer function argument we need to do
5744 it here instead of inside emit_library_call_value because in
5745 emit_library_call_value we don't know if we should do a signed or
5746 unsigned promotion. */
5749 arg_mode
= promote_function_mode (NULL_TREE
, mode
,
5750 &unsigned_p
, NULL_TREE
, 0);
5751 if (arg_mode
!= mode
)
5752 return convert_to_mode (arg_mode
, arg
, uintp
);
5757 /* Generate code to convert FROM or TO a fixed-point.
5758 If UINTP is true, either TO or FROM is an unsigned integer.
5759 If SATP is true, we need to saturate the result. */
5762 expand_fixed_convert (rtx to
, rtx from
, int uintp
, int satp
)
5764 machine_mode to_mode
= GET_MODE (to
);
5765 machine_mode from_mode
= GET_MODE (from
);
5767 enum rtx_code this_code
;
5768 enum insn_code code
;
5773 if (to_mode
== from_mode
)
5775 emit_move_insn (to
, from
);
5781 tab
= satp
? satfractuns_optab
: fractuns_optab
;
5782 this_code
= satp
? UNSIGNED_SAT_FRACT
: UNSIGNED_FRACT_CONVERT
;
5786 tab
= satp
? satfract_optab
: fract_optab
;
5787 this_code
= satp
? SAT_FRACT
: FRACT_CONVERT
;
5789 code
= convert_optab_handler (tab
, to_mode
, from_mode
);
5790 if (code
!= CODE_FOR_nothing
)
5792 emit_unop_insn (code
, to
, from
, this_code
);
5796 libfunc
= convert_optab_libfunc (tab
, to_mode
, from_mode
);
5797 gcc_assert (libfunc
);
5799 from
= prepare_libcall_arg (from
, uintp
);
5800 from_mode
= GET_MODE (from
);
5803 value
= emit_library_call_value (libfunc
, NULL_RTX
, LCT_CONST
, to_mode
,
5805 insns
= get_insns ();
5808 emit_libcall_block (insns
, to
, value
,
5809 gen_rtx_fmt_e (optab_to_code (tab
), to_mode
, from
));
5812 /* Generate code to convert FROM to fixed point and store in TO. FROM
5813 must be floating point, TO must be signed. Use the conversion optab
5814 TAB to do the conversion. */
5817 expand_sfix_optab (rtx to
, rtx from
, convert_optab tab
)
5819 enum insn_code icode
;
5821 machine_mode fmode
, imode
;
5823 /* We first try to find a pair of modes, one real and one integer, at
5824 least as wide as FROM and TO, respectively, in which we can open-code
5825 this conversion. If the integer mode is wider than the mode of TO,
5826 we can do the conversion either signed or unsigned. */
5828 FOR_EACH_MODE_FROM (fmode
, GET_MODE (from
))
5829 FOR_EACH_MODE_FROM (imode
, GET_MODE (to
))
5831 icode
= convert_optab_handler (tab
, imode
, fmode
,
5832 insn_optimization_type ());
5833 if (icode
!= CODE_FOR_nothing
)
5835 rtx_insn
*last
= get_last_insn ();
5836 if (fmode
!= GET_MODE (from
))
5837 from
= convert_to_mode (fmode
, from
, 0);
5839 if (imode
!= GET_MODE (to
))
5840 target
= gen_reg_rtx (imode
);
5842 if (!maybe_emit_unop_insn (icode
, target
, from
, UNKNOWN
))
5844 delete_insns_since (last
);
5848 convert_move (to
, target
, 0);
5856 /* Report whether we have an instruction to perform the operation
5857 specified by CODE on operands of mode MODE. */
5859 have_insn_for (enum rtx_code code
, machine_mode mode
)
5861 return (code_to_optab (code
)
5862 && (optab_handler (code_to_optab (code
), mode
)
5863 != CODE_FOR_nothing
));
5866 /* Print information about the current contents of the optabs on
5870 debug_optab_libfuncs (void)
5874 /* Dump the arithmetic optabs. */
5875 for (i
= FIRST_NORM_OPTAB
; i
<= LAST_NORMLIB_OPTAB
; ++i
)
5876 for (j
= 0; j
< NUM_MACHINE_MODES
; ++j
)
5878 rtx l
= optab_libfunc ((optab
) i
, (machine_mode
) j
);
5881 gcc_assert (GET_CODE (l
) == SYMBOL_REF
);
5882 fprintf (stderr
, "%s\t%s:\t%s\n",
5883 GET_RTX_NAME (optab_to_code ((optab
) i
)),
5889 /* Dump the conversion optabs. */
5890 for (i
= FIRST_CONV_OPTAB
; i
<= LAST_CONVLIB_OPTAB
; ++i
)
5891 for (j
= 0; j
< NUM_MACHINE_MODES
; ++j
)
5892 for (k
= 0; k
< NUM_MACHINE_MODES
; ++k
)
5894 rtx l
= convert_optab_libfunc ((optab
) i
, (machine_mode
) j
,
5898 gcc_assert (GET_CODE (l
) == SYMBOL_REF
);
5899 fprintf (stderr
, "%s\t%s\t%s:\t%s\n",
5900 GET_RTX_NAME (optab_to_code ((optab
) i
)),
5908 /* Generate insns to trap with code TCODE if OP1 and OP2 satisfy condition
5909 CODE. Return 0 on failure. */
5912 gen_cond_trap (enum rtx_code code
, rtx op1
, rtx op2
, rtx tcode
)
5914 machine_mode mode
= GET_MODE (op1
);
5915 enum insn_code icode
;
5919 if (mode
== VOIDmode
)
5922 icode
= optab_handler (ctrap_optab
, mode
);
5923 if (icode
== CODE_FOR_nothing
)
5926 /* Some targets only accept a zero trap code. */
5927 if (!insn_operand_matches (icode
, 3, tcode
))
5930 do_pending_stack_adjust ();
5932 prepare_cmp_insn (op1
, op2
, code
, NULL_RTX
, false, OPTAB_DIRECT
,
5937 insn
= GEN_FCN (icode
) (trap_rtx
, XEXP (trap_rtx
, 0), XEXP (trap_rtx
, 1),
5940 /* If that failed, then give up. */
5948 insn
= get_insns ();
5953 /* Return rtx code for TCODE or UNKNOWN. Use UNSIGNEDP to select signed
5954 or unsigned operation code. */
5957 get_rtx_code_1 (enum tree_code tcode
, bool unsignedp
)
5969 code
= unsignedp
? LTU
: LT
;
5972 code
= unsignedp
? LEU
: LE
;
5975 code
= unsignedp
? GTU
: GT
;
5978 code
= unsignedp
? GEU
: GE
;
5981 case UNORDERED_EXPR
:
6021 /* Return rtx code for TCODE. Use UNSIGNEDP to select signed
6022 or unsigned operation code. */
6025 get_rtx_code (enum tree_code tcode
, bool unsignedp
)
6027 enum rtx_code code
= get_rtx_code_1 (tcode
, unsignedp
);
6028 gcc_assert (code
!= UNKNOWN
);
6032 /* Return a comparison rtx of mode CMP_MODE for COND. Use UNSIGNEDP to
6033 select signed or unsigned operators. OPNO holds the index of the
6034 first comparison operand for insn ICODE. Do not generate the
6035 compare instruction itself. */
6038 vector_compare_rtx (machine_mode cmp_mode
, enum tree_code tcode
,
6039 tree t_op0
, tree t_op1
, bool unsignedp
,
6040 enum insn_code icode
, unsigned int opno
)
6042 class expand_operand ops
[2];
6043 rtx rtx_op0
, rtx_op1
;
6044 machine_mode m0
, m1
;
6045 enum rtx_code rcode
= get_rtx_code (tcode
, unsignedp
);
6047 gcc_assert (TREE_CODE_CLASS (tcode
) == tcc_comparison
);
6049 /* Expand operands. For vector types with scalar modes, e.g. where int64x1_t
6050 has mode DImode, this can produce a constant RTX of mode VOIDmode; in such
6051 cases, use the original mode. */
6052 rtx_op0
= expand_expr (t_op0
, NULL_RTX
, TYPE_MODE (TREE_TYPE (t_op0
)),
6054 m0
= GET_MODE (rtx_op0
);
6056 m0
= TYPE_MODE (TREE_TYPE (t_op0
));
6058 rtx_op1
= expand_expr (t_op1
, NULL_RTX
, TYPE_MODE (TREE_TYPE (t_op1
)),
6060 m1
= GET_MODE (rtx_op1
);
6062 m1
= TYPE_MODE (TREE_TYPE (t_op1
));
6064 create_input_operand (&ops
[0], rtx_op0
, m0
);
6065 create_input_operand (&ops
[1], rtx_op1
, m1
);
6066 if (!maybe_legitimize_operands (icode
, opno
, 2, ops
))
6068 return gen_rtx_fmt_ee (rcode
, cmp_mode
, ops
[0].value
, ops
[1].value
);
6071 /* Check if vec_perm mask SEL is a constant equivalent to a shift of
6072 the first vec_perm operand, assuming the second operand (for left shift
6073 first operand) is a constant vector of zeros. Return the shift distance
6074 in bits if so, or NULL_RTX if the vec_perm is not a shift. MODE is the
6075 mode of the value being shifted. SHIFT_OPTAB is vec_shr_optab for right
6076 shift or vec_shl_optab for left shift. */
6078 shift_amt_for_vec_perm_mask (machine_mode mode
, const vec_perm_indices
&sel
,
6081 unsigned int bitsize
= GET_MODE_UNIT_BITSIZE (mode
);
6082 poly_int64 first
= sel
[0];
6083 if (maybe_ge (sel
[0], GET_MODE_NUNITS (mode
)))
6086 if (shift_optab
== vec_shl_optab
)
6089 if (!GET_MODE_NUNITS (mode
).is_constant (&nelt
))
6091 unsigned firstidx
= 0;
6092 for (unsigned int i
= 0; i
< nelt
; i
++)
6094 if (known_eq (sel
[i
], nelt
))
6096 if (i
== 0 || firstidx
)
6101 ? maybe_ne (sel
[i
], nelt
+ i
- firstidx
)
6102 : maybe_ge (sel
[i
], nelt
))
6110 else if (!sel
.series_p (0, 1, first
, 1))
6113 if (!GET_MODE_NUNITS (mode
).is_constant (&nelt
))
6115 for (unsigned int i
= 1; i
< nelt
; i
++)
6117 poly_int64 expected
= i
+ first
;
6118 /* Indices into the second vector are all equivalent. */
6119 if (maybe_lt (sel
[i
], nelt
)
6120 ? maybe_ne (sel
[i
], expected
)
6121 : maybe_lt (expected
, nelt
))
6126 return gen_int_shift_amount (mode
, first
* bitsize
);
6129 /* A subroutine of expand_vec_perm_var for expanding one vec_perm insn. */
6132 expand_vec_perm_1 (enum insn_code icode
, rtx target
,
6133 rtx v0
, rtx v1
, rtx sel
)
6135 machine_mode tmode
= GET_MODE (target
);
6136 machine_mode smode
= GET_MODE (sel
);
6137 class expand_operand ops
[4];
6139 gcc_assert (GET_MODE_CLASS (smode
) == MODE_VECTOR_INT
6140 || related_int_vector_mode (tmode
).require () == smode
);
6141 create_output_operand (&ops
[0], target
, tmode
);
6142 create_input_operand (&ops
[3], sel
, smode
);
6144 /* Make an effort to preserve v0 == v1. The target expander is able to
6145 rely on this to determine if we're permuting a single input operand. */
6146 if (rtx_equal_p (v0
, v1
))
6148 if (!insn_operand_matches (icode
, 1, v0
))
6149 v0
= force_reg (tmode
, v0
);
6150 gcc_checking_assert (insn_operand_matches (icode
, 1, v0
));
6151 gcc_checking_assert (insn_operand_matches (icode
, 2, v0
));
6153 create_fixed_operand (&ops
[1], v0
);
6154 create_fixed_operand (&ops
[2], v0
);
6158 create_input_operand (&ops
[1], v0
, tmode
);
6159 create_input_operand (&ops
[2], v1
, tmode
);
6162 if (maybe_expand_insn (icode
, 4, ops
))
6163 return ops
[0].value
;
6167 /* Implement a permutation of vectors v0 and v1 using the permutation
6168 vector in SEL and return the result. Use TARGET to hold the result
6169 if nonnull and convenient.
6171 MODE is the mode of the vectors being permuted (V0 and V1). SEL_MODE
6172 is the TYPE_MODE associated with SEL, or BLKmode if SEL isn't known
6173 to have a particular mode. */
6176 expand_vec_perm_const (machine_mode mode
, rtx v0
, rtx v1
,
6177 const vec_perm_builder
&sel
, machine_mode sel_mode
,
6180 if (!target
|| !register_operand (target
, mode
))
6181 target
= gen_reg_rtx (mode
);
6183 /* Set QIMODE to a different vector mode with byte elements.
6184 If no such mode, or if MODE already has byte elements, use VOIDmode. */
6185 machine_mode qimode
;
6186 if (!qimode_for_vec_perm (mode
).exists (&qimode
))
6189 rtx_insn
*last
= get_last_insn ();
6191 bool single_arg_p
= rtx_equal_p (v0
, v1
);
6192 /* Always specify two input vectors here and leave the target to handle
6193 cases in which the inputs are equal. Not all backends can cope with
6194 the single-input representation when testing for a double-input
6195 target instruction. */
6196 vec_perm_indices
indices (sel
, 2, GET_MODE_NUNITS (mode
));
6198 /* See if this can be handled with a vec_shr or vec_shl. We only do this
6199 if the second (for vec_shr) or first (for vec_shl) vector is all
6201 insn_code shift_code
= CODE_FOR_nothing
;
6202 insn_code shift_code_qi
= CODE_FOR_nothing
;
6203 optab shift_optab
= unknown_optab
;
6205 if (v1
== CONST0_RTX (GET_MODE (v1
)))
6206 shift_optab
= vec_shr_optab
;
6207 else if (v0
== CONST0_RTX (GET_MODE (v0
)))
6209 shift_optab
= vec_shl_optab
;
6212 if (shift_optab
!= unknown_optab
)
6214 shift_code
= optab_handler (shift_optab
, mode
);
6215 shift_code_qi
= ((qimode
!= VOIDmode
&& qimode
!= mode
)
6216 ? optab_handler (shift_optab
, qimode
)
6217 : CODE_FOR_nothing
);
6219 if (shift_code
!= CODE_FOR_nothing
|| shift_code_qi
!= CODE_FOR_nothing
)
6221 rtx shift_amt
= shift_amt_for_vec_perm_mask (mode
, indices
, shift_optab
);
6224 class expand_operand ops
[3];
6225 if (shift_amt
== const0_rtx
)
6227 if (shift_code
!= CODE_FOR_nothing
)
6229 create_output_operand (&ops
[0], target
, mode
);
6230 create_input_operand (&ops
[1], v2
, mode
);
6231 create_convert_operand_from_type (&ops
[2], shift_amt
, sizetype
);
6232 if (maybe_expand_insn (shift_code
, 3, ops
))
6233 return ops
[0].value
;
6235 if (shift_code_qi
!= CODE_FOR_nothing
)
6237 rtx tmp
= gen_reg_rtx (qimode
);
6238 create_output_operand (&ops
[0], tmp
, qimode
);
6239 create_input_operand (&ops
[1], gen_lowpart (qimode
, v2
), qimode
);
6240 create_convert_operand_from_type (&ops
[2], shift_amt
, sizetype
);
6241 if (maybe_expand_insn (shift_code_qi
, 3, ops
))
6242 return gen_lowpart (mode
, ops
[0].value
);
6247 if (targetm
.vectorize
.vec_perm_const
!= NULL
)
6252 gcc_checking_assert (GET_MODE (v0
) == GET_MODE (v1
));
6253 machine_mode op_mode
= GET_MODE (v0
);
6254 if (targetm
.vectorize
.vec_perm_const (mode
, op_mode
, target
, v0
, v1
,
6259 /* Fall back to a constant byte-based permutation. */
6260 vec_perm_indices qimode_indices
;
6261 rtx target_qi
= NULL_RTX
, v0_qi
= NULL_RTX
, v1_qi
= NULL_RTX
;
6262 if (qimode
!= VOIDmode
)
6264 qimode_indices
.new_expanded_vector (indices
, GET_MODE_UNIT_SIZE (mode
));
6265 target_qi
= gen_reg_rtx (qimode
);
6266 v0_qi
= gen_lowpart (qimode
, v0
);
6267 v1_qi
= gen_lowpart (qimode
, v1
);
6268 if (targetm
.vectorize
.vec_perm_const
!= NULL
6269 && targetm
.vectorize
.vec_perm_const (qimode
, qimode
, target_qi
, v0_qi
,
6270 v1_qi
, qimode_indices
))
6271 return gen_lowpart (mode
, target_qi
);
6274 v0
= force_reg (mode
, v0
);
6277 v1
= force_reg (mode
, v1
);
6279 /* Otherwise expand as a fully variable permuation. */
6281 /* The optabs are only defined for selectors with the same width
6282 as the values being permuted. */
6283 machine_mode required_sel_mode
;
6284 if (!related_int_vector_mode (mode
).exists (&required_sel_mode
))
6286 delete_insns_since (last
);
6290 /* We know that it is semantically valid to treat SEL as having SEL_MODE.
6291 If that isn't the mode we want then we need to prove that using
6292 REQUIRED_SEL_MODE is OK. */
6293 if (sel_mode
!= required_sel_mode
)
6295 if (!selector_fits_mode_p (required_sel_mode
, indices
))
6297 delete_insns_since (last
);
6300 sel_mode
= required_sel_mode
;
6303 insn_code icode
= direct_optab_handler (vec_perm_optab
, mode
);
6304 if (icode
!= CODE_FOR_nothing
)
6306 rtx sel_rtx
= vec_perm_indices_to_rtx (sel_mode
, indices
);
6307 rtx tmp
= expand_vec_perm_1 (icode
, target
, v0
, v1
, sel_rtx
);
6312 if (qimode
!= VOIDmode
6313 && selector_fits_mode_p (qimode
, qimode_indices
))
6315 icode
= direct_optab_handler (vec_perm_optab
, qimode
);
6316 if (icode
!= CODE_FOR_nothing
)
6318 rtx sel_qi
= vec_perm_indices_to_rtx (qimode
, qimode_indices
);
6319 rtx tmp
= expand_vec_perm_1 (icode
, target_qi
, v0_qi
, v1_qi
, sel_qi
);
6321 return gen_lowpart (mode
, tmp
);
6325 delete_insns_since (last
);
6329 /* Implement a permutation of vectors v0 and v1 using the permutation
6330 vector in SEL and return the result. Use TARGET to hold the result
6331 if nonnull and convenient.
6333 MODE is the mode of the vectors being permuted (V0 and V1).
6334 SEL must have the integer equivalent of MODE and is known to be
6335 unsuitable for permutes with a constant permutation vector. */
6338 expand_vec_perm_var (machine_mode mode
, rtx v0
, rtx v1
, rtx sel
, rtx target
)
6340 enum insn_code icode
;
6344 u
= GET_MODE_UNIT_SIZE (mode
);
6346 if (!target
|| GET_MODE (target
) != mode
)
6347 target
= gen_reg_rtx (mode
);
6349 icode
= direct_optab_handler (vec_perm_optab
, mode
);
6350 if (icode
!= CODE_FOR_nothing
)
6352 tmp
= expand_vec_perm_1 (icode
, target
, v0
, v1
, sel
);
6357 /* As a special case to aid several targets, lower the element-based
6358 permutation to a byte-based permutation and try again. */
6359 machine_mode qimode
;
6360 if (!qimode_for_vec_perm (mode
).exists (&qimode
)
6361 || maybe_gt (GET_MODE_NUNITS (qimode
), GET_MODE_MASK (QImode
) + 1))
6363 icode
= direct_optab_handler (vec_perm_optab
, qimode
);
6364 if (icode
== CODE_FOR_nothing
)
6367 /* Multiply each element by its byte size. */
6368 machine_mode selmode
= GET_MODE (sel
);
6370 sel
= expand_simple_binop (selmode
, PLUS
, sel
, sel
,
6371 NULL
, 0, OPTAB_DIRECT
);
6373 sel
= expand_simple_binop (selmode
, ASHIFT
, sel
,
6374 gen_int_shift_amount (selmode
, exact_log2 (u
)),
6375 NULL
, 0, OPTAB_DIRECT
);
6376 gcc_assert (sel
!= NULL
);
6378 /* Broadcast the low byte each element into each of its bytes.
6379 The encoding has U interleaved stepped patterns, one for each
6380 byte of an element. */
6381 vec_perm_builder
const_sel (GET_MODE_SIZE (mode
), u
, 3);
6382 unsigned int low_byte_in_u
= BYTES_BIG_ENDIAN
? u
- 1 : 0;
6383 for (i
= 0; i
< 3; ++i
)
6384 for (unsigned int j
= 0; j
< u
; ++j
)
6385 const_sel
.quick_push (i
* u
+ low_byte_in_u
);
6386 sel
= gen_lowpart (qimode
, sel
);
6387 sel
= expand_vec_perm_const (qimode
, sel
, sel
, const_sel
, qimode
, NULL
);
6388 gcc_assert (sel
!= NULL
);
6390 /* Add the byte offset to each byte element. */
6391 /* Note that the definition of the indicies here is memory ordering,
6392 so there should be no difference between big and little endian. */
6393 rtx_vector_builder
byte_indices (qimode
, u
, 1);
6394 for (i
= 0; i
< u
; ++i
)
6395 byte_indices
.quick_push (GEN_INT (i
));
6396 tmp
= byte_indices
.build ();
6397 sel_qi
= expand_simple_binop (qimode
, PLUS
, sel
, tmp
,
6398 sel
, 0, OPTAB_DIRECT
);
6399 gcc_assert (sel_qi
!= NULL
);
6401 tmp
= mode
!= qimode
? gen_reg_rtx (qimode
) : target
;
6402 tmp
= expand_vec_perm_1 (icode
, tmp
, gen_lowpart (qimode
, v0
),
6403 gen_lowpart (qimode
, v1
), sel_qi
);
6405 tmp
= gen_lowpart (mode
, tmp
);
6409 /* Generate VEC_SERIES_EXPR <OP0, OP1>, returning a value of mode VMODE.
6410 Use TARGET for the result if nonnull and convenient. */
6413 expand_vec_series_expr (machine_mode vmode
, rtx op0
, rtx op1
, rtx target
)
6415 class expand_operand ops
[3];
6416 enum insn_code icode
;
6417 machine_mode emode
= GET_MODE_INNER (vmode
);
6419 icode
= direct_optab_handler (vec_series_optab
, vmode
);
6420 gcc_assert (icode
!= CODE_FOR_nothing
);
6422 create_output_operand (&ops
[0], target
, vmode
);
6423 create_input_operand (&ops
[1], op0
, emode
);
6424 create_input_operand (&ops
[2], op1
, emode
);
6426 expand_insn (icode
, 3, ops
);
6427 return ops
[0].value
;
6430 /* Generate insns for a vector comparison into a mask. */
6433 expand_vec_cmp_expr (tree type
, tree exp
, rtx target
)
6435 class expand_operand ops
[4];
6436 enum insn_code icode
;
6438 machine_mode mask_mode
= TYPE_MODE (type
);
6442 enum tree_code tcode
;
6444 op0a
= TREE_OPERAND (exp
, 0);
6445 op0b
= TREE_OPERAND (exp
, 1);
6446 tcode
= TREE_CODE (exp
);
6448 unsignedp
= TYPE_UNSIGNED (TREE_TYPE (op0a
));
6449 vmode
= TYPE_MODE (TREE_TYPE (op0a
));
6451 icode
= get_vec_cmp_icode (vmode
, mask_mode
, unsignedp
);
6452 if (icode
== CODE_FOR_nothing
)
6454 if (tcode
== EQ_EXPR
|| tcode
== NE_EXPR
)
6455 icode
= get_vec_cmp_eq_icode (vmode
, mask_mode
);
6456 if (icode
== CODE_FOR_nothing
)
6460 comparison
= vector_compare_rtx (mask_mode
, tcode
, op0a
, op0b
,
6461 unsignedp
, icode
, 2);
6462 create_output_operand (&ops
[0], target
, mask_mode
);
6463 create_fixed_operand (&ops
[1], comparison
);
6464 create_fixed_operand (&ops
[2], XEXP (comparison
, 0));
6465 create_fixed_operand (&ops
[3], XEXP (comparison
, 1));
6466 expand_insn (icode
, 4, ops
);
6467 return ops
[0].value
;
6470 /* Expand a highpart multiply. */
6473 expand_mult_highpart (machine_mode mode
, rtx op0
, rtx op1
,
6474 rtx target
, bool uns_p
)
6476 class expand_operand eops
[3];
6477 enum insn_code icode
;
6483 method
= can_mult_highpart_p (mode
, uns_p
);
6489 tab1
= uns_p
? umul_highpart_optab
: smul_highpart_optab
;
6490 return expand_binop (mode
, tab1
, op0
, op1
, target
, uns_p
,
6493 tab1
= uns_p
? vec_widen_umult_even_optab
: vec_widen_smult_even_optab
;
6494 tab2
= uns_p
? vec_widen_umult_odd_optab
: vec_widen_smult_odd_optab
;
6497 tab1
= uns_p
? vec_widen_umult_lo_optab
: vec_widen_smult_lo_optab
;
6498 tab2
= uns_p
? vec_widen_umult_hi_optab
: vec_widen_smult_hi_optab
;
6499 if (BYTES_BIG_ENDIAN
)
6500 std::swap (tab1
, tab2
);
6506 icode
= optab_handler (tab1
, mode
);
6507 wmode
= insn_data
[icode
].operand
[0].mode
;
6508 gcc_checking_assert (known_eq (2 * GET_MODE_NUNITS (wmode
),
6509 GET_MODE_NUNITS (mode
)));
6510 gcc_checking_assert (known_eq (GET_MODE_SIZE (wmode
), GET_MODE_SIZE (mode
)));
6512 create_output_operand (&eops
[0], gen_reg_rtx (wmode
), wmode
);
6513 create_input_operand (&eops
[1], op0
, mode
);
6514 create_input_operand (&eops
[2], op1
, mode
);
6515 expand_insn (icode
, 3, eops
);
6516 m1
= gen_lowpart (mode
, eops
[0].value
);
6518 create_output_operand (&eops
[0], gen_reg_rtx (wmode
), wmode
);
6519 create_input_operand (&eops
[1], op0
, mode
);
6520 create_input_operand (&eops
[2], op1
, mode
);
6521 expand_insn (optab_handler (tab2
, mode
), 3, eops
);
6522 m2
= gen_lowpart (mode
, eops
[0].value
);
6524 vec_perm_builder sel
;
6527 /* The encoding has 2 interleaved stepped patterns. */
6528 sel
.new_vector (GET_MODE_NUNITS (mode
), 2, 3);
6529 for (i
= 0; i
< 6; ++i
)
6530 sel
.quick_push (!BYTES_BIG_ENDIAN
+ (i
& ~1)
6531 + ((i
& 1) ? GET_MODE_NUNITS (mode
) : 0));
6535 /* The encoding has a single interleaved stepped pattern. */
6536 sel
.new_vector (GET_MODE_NUNITS (mode
), 1, 3);
6537 for (i
= 0; i
< 3; ++i
)
6538 sel
.quick_push (2 * i
+ (BYTES_BIG_ENDIAN
? 0 : 1));
6541 return expand_vec_perm_const (mode
, m1
, m2
, sel
, BLKmode
, target
);
6544 /* Helper function to find the MODE_CC set in a sync_compare_and_swap
6548 find_cc_set (rtx x
, const_rtx pat
, void *data
)
6550 if (REG_P (x
) && GET_MODE_CLASS (GET_MODE (x
)) == MODE_CC
6551 && GET_CODE (pat
) == SET
)
6553 rtx
*p_cc_reg
= (rtx
*) data
;
6554 gcc_assert (!*p_cc_reg
);
6559 /* This is a helper function for the other atomic operations. This function
6560 emits a loop that contains SEQ that iterates until a compare-and-swap
6561 operation at the end succeeds. MEM is the memory to be modified. SEQ is
6562 a set of instructions that takes a value from OLD_REG as an input and
6563 produces a value in NEW_REG as an output. Before SEQ, OLD_REG will be
6564 set to the current contents of MEM. After SEQ, a compare-and-swap will
6565 attempt to update MEM with NEW_REG. The function returns true when the
6566 loop was generated successfully. */
6569 expand_compare_and_swap_loop (rtx mem
, rtx old_reg
, rtx new_reg
, rtx seq
)
6571 machine_mode mode
= GET_MODE (mem
);
6572 rtx_code_label
*label
;
6573 rtx cmp_reg
, success
, oldval
;
6575 /* The loop we want to generate looks like
6581 (success, cmp_reg) = compare-and-swap(mem, old_reg, new_reg)
6585 Note that we only do the plain load from memory once. Subsequent
6586 iterations use the value loaded by the compare-and-swap pattern. */
6588 label
= gen_label_rtx ();
6589 cmp_reg
= gen_reg_rtx (mode
);
6591 emit_move_insn (cmp_reg
, mem
);
6593 emit_move_insn (old_reg
, cmp_reg
);
6599 if (!expand_atomic_compare_and_swap (&success
, &oldval
, mem
, old_reg
,
6600 new_reg
, false, MEMMODEL_SYNC_SEQ_CST
,
6604 if (oldval
!= cmp_reg
)
6605 emit_move_insn (cmp_reg
, oldval
);
6607 /* Mark this jump predicted not taken. */
6608 emit_cmp_and_jump_insns (success
, const0_rtx
, EQ
, const0_rtx
,
6609 GET_MODE (success
), 1, label
,
6610 profile_probability::guessed_never ());
6615 /* This function tries to emit an atomic_exchange intruction. VAL is written
6616 to *MEM using memory model MODEL. The previous contents of *MEM are returned,
6617 using TARGET if possible. */
6620 maybe_emit_atomic_exchange (rtx target
, rtx mem
, rtx val
, enum memmodel model
)
6622 machine_mode mode
= GET_MODE (mem
);
6623 enum insn_code icode
;
6625 /* If the target supports the exchange directly, great. */
6626 icode
= direct_optab_handler (atomic_exchange_optab
, mode
);
6627 if (icode
!= CODE_FOR_nothing
)
6629 class expand_operand ops
[4];
6631 create_output_operand (&ops
[0], target
, mode
);
6632 create_fixed_operand (&ops
[1], mem
);
6633 create_input_operand (&ops
[2], val
, mode
);
6634 create_integer_operand (&ops
[3], model
);
6635 if (maybe_expand_insn (icode
, 4, ops
))
6636 return ops
[0].value
;
6642 /* This function tries to implement an atomic exchange operation using
6643 __sync_lock_test_and_set. VAL is written to *MEM using memory model MODEL.
6644 The previous contents of *MEM are returned, using TARGET if possible.
6645 Since this instructionn is an acquire barrier only, stronger memory
6646 models may require additional barriers to be emitted. */
6649 maybe_emit_sync_lock_test_and_set (rtx target
, rtx mem
, rtx val
,
6650 enum memmodel model
)
6652 machine_mode mode
= GET_MODE (mem
);
6653 enum insn_code icode
;
6654 rtx_insn
*last_insn
= get_last_insn ();
6656 icode
= optab_handler (sync_lock_test_and_set_optab
, mode
);
6658 /* Legacy sync_lock_test_and_set is an acquire barrier. If the pattern
6659 exists, and the memory model is stronger than acquire, add a release
6660 barrier before the instruction. */
6662 if (is_mm_seq_cst (model
) || is_mm_release (model
) || is_mm_acq_rel (model
))
6663 expand_mem_thread_fence (model
);
6665 if (icode
!= CODE_FOR_nothing
)
6667 class expand_operand ops
[3];
6668 create_output_operand (&ops
[0], target
, mode
);
6669 create_fixed_operand (&ops
[1], mem
);
6670 create_input_operand (&ops
[2], val
, mode
);
6671 if (maybe_expand_insn (icode
, 3, ops
))
6672 return ops
[0].value
;
6675 /* If an external test-and-set libcall is provided, use that instead of
6676 any external compare-and-swap that we might get from the compare-and-
6677 swap-loop expansion later. */
6678 if (!can_compare_and_swap_p (mode
, false))
6680 rtx libfunc
= optab_libfunc (sync_lock_test_and_set_optab
, mode
);
6681 if (libfunc
!= NULL
)
6685 addr
= convert_memory_address (ptr_mode
, XEXP (mem
, 0));
6686 return emit_library_call_value (libfunc
, NULL_RTX
, LCT_NORMAL
,
6687 mode
, addr
, ptr_mode
,
6692 /* If the test_and_set can't be emitted, eliminate any barrier that might
6693 have been emitted. */
6694 delete_insns_since (last_insn
);
6698 /* This function tries to implement an atomic exchange operation using a
6699 compare_and_swap loop. VAL is written to *MEM. The previous contents of
6700 *MEM are returned, using TARGET if possible. No memory model is required
6701 since a compare_and_swap loop is seq-cst. */
6704 maybe_emit_compare_and_swap_exchange_loop (rtx target
, rtx mem
, rtx val
)
6706 machine_mode mode
= GET_MODE (mem
);
6708 if (can_compare_and_swap_p (mode
, true))
6710 if (!target
|| !register_operand (target
, mode
))
6711 target
= gen_reg_rtx (mode
);
6712 if (expand_compare_and_swap_loop (mem
, target
, val
, NULL_RTX
))
6719 /* This function tries to implement an atomic test-and-set operation
6720 using the atomic_test_and_set instruction pattern. A boolean value
6721 is returned from the operation, using TARGET if possible. */
6724 maybe_emit_atomic_test_and_set (rtx target
, rtx mem
, enum memmodel model
)
6726 machine_mode pat_bool_mode
;
6727 class expand_operand ops
[3];
6729 if (!targetm
.have_atomic_test_and_set ())
6732 /* While we always get QImode from __atomic_test_and_set, we get
6733 other memory modes from __sync_lock_test_and_set. Note that we
6734 use no endian adjustment here. This matches the 4.6 behavior
6735 in the Sparc backend. */
6736 enum insn_code icode
= targetm
.code_for_atomic_test_and_set
;
6737 gcc_checking_assert (insn_data
[icode
].operand
[1].mode
== QImode
);
6738 if (GET_MODE (mem
) != QImode
)
6739 mem
= adjust_address_nv (mem
, QImode
, 0);
6741 pat_bool_mode
= insn_data
[icode
].operand
[0].mode
;
6742 create_output_operand (&ops
[0], target
, pat_bool_mode
);
6743 create_fixed_operand (&ops
[1], mem
);
6744 create_integer_operand (&ops
[2], model
);
6746 if (maybe_expand_insn (icode
, 3, ops
))
6747 return ops
[0].value
;
6751 /* This function expands the legacy _sync_lock test_and_set operation which is
6752 generally an atomic exchange. Some limited targets only allow the
6753 constant 1 to be stored. This is an ACQUIRE operation.
6755 TARGET is an optional place to stick the return value.
6756 MEM is where VAL is stored. */
6759 expand_sync_lock_test_and_set (rtx target
, rtx mem
, rtx val
)
6763 /* Try an atomic_exchange first. */
6764 ret
= maybe_emit_atomic_exchange (target
, mem
, val
, MEMMODEL_SYNC_ACQUIRE
);
6768 ret
= maybe_emit_sync_lock_test_and_set (target
, mem
, val
,
6769 MEMMODEL_SYNC_ACQUIRE
);
6773 ret
= maybe_emit_compare_and_swap_exchange_loop (target
, mem
, val
);
6777 /* If there are no other options, try atomic_test_and_set if the value
6778 being stored is 1. */
6779 if (val
== const1_rtx
)
6780 ret
= maybe_emit_atomic_test_and_set (target
, mem
, MEMMODEL_SYNC_ACQUIRE
);
6785 /* This function expands the atomic test_and_set operation:
6786 atomically store a boolean TRUE into MEM and return the previous value.
6788 MEMMODEL is the memory model variant to use.
6789 TARGET is an optional place to stick the return value. */
6792 expand_atomic_test_and_set (rtx target
, rtx mem
, enum memmodel model
)
6794 machine_mode mode
= GET_MODE (mem
);
6795 rtx ret
, trueval
, subtarget
;
6797 ret
= maybe_emit_atomic_test_and_set (target
, mem
, model
);
6801 /* Be binary compatible with non-default settings of trueval, and different
6802 cpu revisions. E.g. one revision may have atomic-test-and-set, but
6803 another only has atomic-exchange. */
6804 if (targetm
.atomic_test_and_set_trueval
== 1)
6806 trueval
= const1_rtx
;
6807 subtarget
= target
? target
: gen_reg_rtx (mode
);
6811 trueval
= gen_int_mode (targetm
.atomic_test_and_set_trueval
, mode
);
6812 subtarget
= gen_reg_rtx (mode
);
6815 /* Try the atomic-exchange optab... */
6816 ret
= maybe_emit_atomic_exchange (subtarget
, mem
, trueval
, model
);
6818 /* ... then an atomic-compare-and-swap loop ... */
6820 ret
= maybe_emit_compare_and_swap_exchange_loop (subtarget
, mem
, trueval
);
6822 /* ... before trying the vaguely defined legacy lock_test_and_set. */
6824 ret
= maybe_emit_sync_lock_test_and_set (subtarget
, mem
, trueval
, model
);
6826 /* Recall that the legacy lock_test_and_set optab was allowed to do magic
6827 things with the value 1. Thus we try again without trueval. */
6828 if (!ret
&& targetm
.atomic_test_and_set_trueval
!= 1)
6829 ret
= maybe_emit_sync_lock_test_and_set (subtarget
, mem
, const1_rtx
, model
);
6831 /* Failing all else, assume a single threaded environment and simply
6832 perform the operation. */
6835 /* If the result is ignored skip the move to target. */
6836 if (subtarget
!= const0_rtx
)
6837 emit_move_insn (subtarget
, mem
);
6839 emit_move_insn (mem
, trueval
);
6843 /* Recall that have to return a boolean value; rectify if trueval
6844 is not exactly one. */
6845 if (targetm
.atomic_test_and_set_trueval
!= 1)
6846 ret
= emit_store_flag_force (target
, NE
, ret
, const0_rtx
, mode
, 0, 1);
6851 /* This function expands the atomic exchange operation:
6852 atomically store VAL in MEM and return the previous value in MEM.
6854 MEMMODEL is the memory model variant to use.
6855 TARGET is an optional place to stick the return value. */
6858 expand_atomic_exchange (rtx target
, rtx mem
, rtx val
, enum memmodel model
)
6860 machine_mode mode
= GET_MODE (mem
);
6863 /* If loads are not atomic for the required size and we are not called to
6864 provide a __sync builtin, do not do anything so that we stay consistent
6865 with atomic loads of the same size. */
6866 if (!can_atomic_load_p (mode
) && !is_mm_sync (model
))
6869 ret
= maybe_emit_atomic_exchange (target
, mem
, val
, model
);
6871 /* Next try a compare-and-swap loop for the exchange. */
6873 ret
= maybe_emit_compare_and_swap_exchange_loop (target
, mem
, val
);
6878 /* This function expands the atomic compare exchange operation:
6880 *PTARGET_BOOL is an optional place to store the boolean success/failure.
6881 *PTARGET_OVAL is an optional place to store the old value from memory.
6882 Both target parameters may be NULL or const0_rtx to indicate that we do
6883 not care about that return value. Both target parameters are updated on
6884 success to the actual location of the corresponding result.
6886 MEMMODEL is the memory model variant to use.
6888 The return value of the function is true for success. */
6891 expand_atomic_compare_and_swap (rtx
*ptarget_bool
, rtx
*ptarget_oval
,
6892 rtx mem
, rtx expected
, rtx desired
,
6893 bool is_weak
, enum memmodel succ_model
,
6894 enum memmodel fail_model
)
6896 machine_mode mode
= GET_MODE (mem
);
6897 class expand_operand ops
[8];
6898 enum insn_code icode
;
6899 rtx target_oval
, target_bool
= NULL_RTX
;
6902 /* If loads are not atomic for the required size and we are not called to
6903 provide a __sync builtin, do not do anything so that we stay consistent
6904 with atomic loads of the same size. */
6905 if (!can_atomic_load_p (mode
) && !is_mm_sync (succ_model
))
6908 /* Load expected into a register for the compare and swap. */
6909 if (MEM_P (expected
))
6910 expected
= copy_to_reg (expected
);
6912 /* Make sure we always have some place to put the return oldval.
6913 Further, make sure that place is distinct from the input expected,
6914 just in case we need that path down below. */
6915 if (ptarget_oval
&& *ptarget_oval
== const0_rtx
)
6916 ptarget_oval
= NULL
;
6918 if (ptarget_oval
== NULL
6919 || (target_oval
= *ptarget_oval
) == NULL
6920 || reg_overlap_mentioned_p (expected
, target_oval
))
6921 target_oval
= gen_reg_rtx (mode
);
6923 icode
= direct_optab_handler (atomic_compare_and_swap_optab
, mode
);
6924 if (icode
!= CODE_FOR_nothing
)
6926 machine_mode bool_mode
= insn_data
[icode
].operand
[0].mode
;
6928 if (ptarget_bool
&& *ptarget_bool
== const0_rtx
)
6929 ptarget_bool
= NULL
;
6931 /* Make sure we always have a place for the bool operand. */
6932 if (ptarget_bool
== NULL
6933 || (target_bool
= *ptarget_bool
) == NULL
6934 || GET_MODE (target_bool
) != bool_mode
)
6935 target_bool
= gen_reg_rtx (bool_mode
);
6937 /* Emit the compare_and_swap. */
6938 create_output_operand (&ops
[0], target_bool
, bool_mode
);
6939 create_output_operand (&ops
[1], target_oval
, mode
);
6940 create_fixed_operand (&ops
[2], mem
);
6941 create_input_operand (&ops
[3], expected
, mode
);
6942 create_input_operand (&ops
[4], desired
, mode
);
6943 create_integer_operand (&ops
[5], is_weak
);
6944 create_integer_operand (&ops
[6], succ_model
);
6945 create_integer_operand (&ops
[7], fail_model
);
6946 if (maybe_expand_insn (icode
, 8, ops
))
6948 /* Return success/failure. */
6949 target_bool
= ops
[0].value
;
6950 target_oval
= ops
[1].value
;
6955 /* Otherwise fall back to the original __sync_val_compare_and_swap
6956 which is always seq-cst. */
6957 icode
= optab_handler (sync_compare_and_swap_optab
, mode
);
6958 if (icode
!= CODE_FOR_nothing
)
6962 create_output_operand (&ops
[0], target_oval
, mode
);
6963 create_fixed_operand (&ops
[1], mem
);
6964 create_input_operand (&ops
[2], expected
, mode
);
6965 create_input_operand (&ops
[3], desired
, mode
);
6966 if (!maybe_expand_insn (icode
, 4, ops
))
6969 target_oval
= ops
[0].value
;
6971 /* If the caller isn't interested in the boolean return value,
6972 skip the computation of it. */
6973 if (ptarget_bool
== NULL
)
6976 /* Otherwise, work out if the compare-and-swap succeeded. */
6978 if (have_insn_for (COMPARE
, CCmode
))
6979 note_stores (get_last_insn (), find_cc_set
, &cc_reg
);
6982 target_bool
= emit_store_flag_force (target_bool
, EQ
, cc_reg
,
6983 const0_rtx
, VOIDmode
, 0, 1);
6986 goto success_bool_from_val
;
6989 /* Also check for library support for __sync_val_compare_and_swap. */
6990 libfunc
= optab_libfunc (sync_compare_and_swap_optab
, mode
);
6991 if (libfunc
!= NULL
)
6993 rtx addr
= convert_memory_address (ptr_mode
, XEXP (mem
, 0));
6994 rtx target
= emit_library_call_value (libfunc
, NULL_RTX
, LCT_NORMAL
,
6995 mode
, addr
, ptr_mode
,
6996 expected
, mode
, desired
, mode
);
6997 emit_move_insn (target_oval
, target
);
6999 /* Compute the boolean return value only if requested. */
7001 goto success_bool_from_val
;
7009 success_bool_from_val
:
7010 target_bool
= emit_store_flag_force (target_bool
, EQ
, target_oval
,
7011 expected
, VOIDmode
, 1, 1);
7013 /* Make sure that the oval output winds up where the caller asked. */
7015 *ptarget_oval
= target_oval
;
7017 *ptarget_bool
= target_bool
;
7021 /* Generate asm volatile("" : : : "memory") as the memory blockage. */
7024 expand_asm_memory_blockage (void)
7028 asm_op
= gen_rtx_ASM_OPERANDS (VOIDmode
, "", "", 0,
7029 rtvec_alloc (0), rtvec_alloc (0),
7030 rtvec_alloc (0), UNKNOWN_LOCATION
);
7031 MEM_VOLATILE_P (asm_op
) = 1;
7033 clob
= gen_rtx_SCRATCH (VOIDmode
);
7034 clob
= gen_rtx_MEM (BLKmode
, clob
);
7035 clob
= gen_rtx_CLOBBER (VOIDmode
, clob
);
7037 emit_insn (gen_rtx_PARALLEL (VOIDmode
, gen_rtvec (2, asm_op
, clob
)));
7040 /* Do not propagate memory accesses across this point. */
7043 expand_memory_blockage (void)
7045 if (targetm
.have_memory_blockage ())
7046 emit_insn (targetm
.gen_memory_blockage ());
7048 expand_asm_memory_blockage ();
7051 /* Generate asm volatile("" : : : "memory") as a memory blockage, at the
7052 same time clobbering the register set specified by REGS. */
7055 expand_asm_reg_clobber_mem_blockage (HARD_REG_SET regs
)
7057 rtx asm_op
, clob_mem
;
7059 unsigned int num_of_regs
= 0;
7060 for (unsigned int i
= 0; i
< FIRST_PSEUDO_REGISTER
; i
++)
7061 if (TEST_HARD_REG_BIT (regs
, i
))
7064 asm_op
= gen_rtx_ASM_OPERANDS (VOIDmode
, "", "", 0,
7065 rtvec_alloc (0), rtvec_alloc (0),
7066 rtvec_alloc (0), UNKNOWN_LOCATION
);
7067 MEM_VOLATILE_P (asm_op
) = 1;
7069 rtvec v
= rtvec_alloc (num_of_regs
+ 2);
7071 clob_mem
= gen_rtx_SCRATCH (VOIDmode
);
7072 clob_mem
= gen_rtx_MEM (BLKmode
, clob_mem
);
7073 clob_mem
= gen_rtx_CLOBBER (VOIDmode
, clob_mem
);
7075 RTVEC_ELT (v
, 0) = asm_op
;
7076 RTVEC_ELT (v
, 1) = clob_mem
;
7078 if (num_of_regs
> 0)
7081 for (unsigned int i
= 0; i
< FIRST_PSEUDO_REGISTER
; i
++)
7082 if (TEST_HARD_REG_BIT (regs
, i
))
7084 RTVEC_ELT (v
, j
) = gen_rtx_CLOBBER (VOIDmode
, regno_reg_rtx
[i
]);
7087 gcc_assert (j
== (num_of_regs
+ 2));
7090 emit_insn (gen_rtx_PARALLEL (VOIDmode
, v
));
7093 /* This routine will either emit the mem_thread_fence pattern or issue a
7094 sync_synchronize to generate a fence for memory model MEMMODEL. */
7097 expand_mem_thread_fence (enum memmodel model
)
7099 if (is_mm_relaxed (model
))
7101 if (targetm
.have_mem_thread_fence ())
7103 emit_insn (targetm
.gen_mem_thread_fence (GEN_INT (model
)));
7104 expand_memory_blockage ();
7106 else if (targetm
.have_memory_barrier ())
7107 emit_insn (targetm
.gen_memory_barrier ());
7108 else if (synchronize_libfunc
!= NULL_RTX
)
7109 emit_library_call (synchronize_libfunc
, LCT_NORMAL
, VOIDmode
);
7111 expand_memory_blockage ();
7114 /* Emit a signal fence with given memory model. */
7117 expand_mem_signal_fence (enum memmodel model
)
7119 /* No machine barrier is required to implement a signal fence, but
7120 a compiler memory barrier must be issued, except for relaxed MM. */
7121 if (!is_mm_relaxed (model
))
7122 expand_memory_blockage ();
7125 /* This function expands the atomic load operation:
7126 return the atomically loaded value in MEM.
7128 MEMMODEL is the memory model variant to use.
7129 TARGET is an option place to stick the return value. */
7132 expand_atomic_load (rtx target
, rtx mem
, enum memmodel model
)
7134 machine_mode mode
= GET_MODE (mem
);
7135 enum insn_code icode
;
7137 /* If the target supports the load directly, great. */
7138 icode
= direct_optab_handler (atomic_load_optab
, mode
);
7139 if (icode
!= CODE_FOR_nothing
)
7141 class expand_operand ops
[3];
7142 rtx_insn
*last
= get_last_insn ();
7143 if (is_mm_seq_cst (model
))
7144 expand_memory_blockage ();
7146 create_output_operand (&ops
[0], target
, mode
);
7147 create_fixed_operand (&ops
[1], mem
);
7148 create_integer_operand (&ops
[2], model
);
7149 if (maybe_expand_insn (icode
, 3, ops
))
7151 if (!is_mm_relaxed (model
))
7152 expand_memory_blockage ();
7153 return ops
[0].value
;
7155 delete_insns_since (last
);
7158 /* If the size of the object is greater than word size on this target,
7159 then we assume that a load will not be atomic. We could try to
7160 emulate a load with a compare-and-swap operation, but the store that
7161 doing this could result in would be incorrect if this is a volatile
7162 atomic load or targetting read-only-mapped memory. */
7163 if (maybe_gt (GET_MODE_PRECISION (mode
), BITS_PER_WORD
))
7164 /* If there is no atomic load, leave the library call. */
7167 /* Otherwise assume loads are atomic, and emit the proper barriers. */
7168 if (!target
|| target
== const0_rtx
)
7169 target
= gen_reg_rtx (mode
);
7171 /* For SEQ_CST, emit a barrier before the load. */
7172 if (is_mm_seq_cst (model
))
7173 expand_mem_thread_fence (model
);
7175 emit_move_insn (target
, mem
);
7177 /* Emit the appropriate barrier after the load. */
7178 expand_mem_thread_fence (model
);
7183 /* This function expands the atomic store operation:
7184 Atomically store VAL in MEM.
7185 MEMMODEL is the memory model variant to use.
7186 USE_RELEASE is true if __sync_lock_release can be used as a fall back.
7187 function returns const0_rtx if a pattern was emitted. */
7190 expand_atomic_store (rtx mem
, rtx val
, enum memmodel model
, bool use_release
)
7192 machine_mode mode
= GET_MODE (mem
);
7193 enum insn_code icode
;
7194 class expand_operand ops
[3];
7196 /* If the target supports the store directly, great. */
7197 icode
= direct_optab_handler (atomic_store_optab
, mode
);
7198 if (icode
!= CODE_FOR_nothing
)
7200 rtx_insn
*last
= get_last_insn ();
7201 if (!is_mm_relaxed (model
))
7202 expand_memory_blockage ();
7203 create_fixed_operand (&ops
[0], mem
);
7204 create_input_operand (&ops
[1], val
, mode
);
7205 create_integer_operand (&ops
[2], model
);
7206 if (maybe_expand_insn (icode
, 3, ops
))
7208 if (is_mm_seq_cst (model
))
7209 expand_memory_blockage ();
7212 delete_insns_since (last
);
7215 /* If using __sync_lock_release is a viable alternative, try it.
7216 Note that this will not be set to true if we are expanding a generic
7217 __atomic_store_n. */
7220 icode
= direct_optab_handler (sync_lock_release_optab
, mode
);
7221 if (icode
!= CODE_FOR_nothing
)
7223 create_fixed_operand (&ops
[0], mem
);
7224 create_input_operand (&ops
[1], const0_rtx
, mode
);
7225 if (maybe_expand_insn (icode
, 2, ops
))
7227 /* lock_release is only a release barrier. */
7228 if (is_mm_seq_cst (model
))
7229 expand_mem_thread_fence (model
);
7235 /* If the size of the object is greater than word size on this target,
7236 a default store will not be atomic. */
7237 if (maybe_gt (GET_MODE_PRECISION (mode
), BITS_PER_WORD
))
7239 /* If loads are atomic or we are called to provide a __sync builtin,
7240 we can try a atomic_exchange and throw away the result. Otherwise,
7241 don't do anything so that we do not create an inconsistency between
7242 loads and stores. */
7243 if (can_atomic_load_p (mode
) || is_mm_sync (model
))
7245 rtx target
= maybe_emit_atomic_exchange (NULL_RTX
, mem
, val
, model
);
7247 target
= maybe_emit_compare_and_swap_exchange_loop (NULL_RTX
, mem
,
7255 /* Otherwise assume stores are atomic, and emit the proper barriers. */
7256 expand_mem_thread_fence (model
);
7258 emit_move_insn (mem
, val
);
7260 /* For SEQ_CST, also emit a barrier after the store. */
7261 if (is_mm_seq_cst (model
))
7262 expand_mem_thread_fence (model
);
7268 /* Structure containing the pointers and values required to process the
7269 various forms of the atomic_fetch_op and atomic_op_fetch builtins. */
7271 struct atomic_op_functions
7273 direct_optab mem_fetch_before
;
7274 direct_optab mem_fetch_after
;
7275 direct_optab mem_no_result
;
7278 direct_optab no_result
;
7279 enum rtx_code reverse_code
;
7283 /* Fill in structure pointed to by OP with the various optab entries for an
7284 operation of type CODE. */
7287 get_atomic_op_for_code (struct atomic_op_functions
*op
, enum rtx_code code
)
7289 gcc_assert (op
!= NULL
);
7291 /* If SWITCHABLE_TARGET is defined, then subtargets can be switched
7292 in the source code during compilation, and the optab entries are not
7293 computable until runtime. Fill in the values at runtime. */
7297 op
->mem_fetch_before
= atomic_fetch_add_optab
;
7298 op
->mem_fetch_after
= atomic_add_fetch_optab
;
7299 op
->mem_no_result
= atomic_add_optab
;
7300 op
->fetch_before
= sync_old_add_optab
;
7301 op
->fetch_after
= sync_new_add_optab
;
7302 op
->no_result
= sync_add_optab
;
7303 op
->reverse_code
= MINUS
;
7306 op
->mem_fetch_before
= atomic_fetch_sub_optab
;
7307 op
->mem_fetch_after
= atomic_sub_fetch_optab
;
7308 op
->mem_no_result
= atomic_sub_optab
;
7309 op
->fetch_before
= sync_old_sub_optab
;
7310 op
->fetch_after
= sync_new_sub_optab
;
7311 op
->no_result
= sync_sub_optab
;
7312 op
->reverse_code
= PLUS
;
7315 op
->mem_fetch_before
= atomic_fetch_xor_optab
;
7316 op
->mem_fetch_after
= atomic_xor_fetch_optab
;
7317 op
->mem_no_result
= atomic_xor_optab
;
7318 op
->fetch_before
= sync_old_xor_optab
;
7319 op
->fetch_after
= sync_new_xor_optab
;
7320 op
->no_result
= sync_xor_optab
;
7321 op
->reverse_code
= XOR
;
7324 op
->mem_fetch_before
= atomic_fetch_and_optab
;
7325 op
->mem_fetch_after
= atomic_and_fetch_optab
;
7326 op
->mem_no_result
= atomic_and_optab
;
7327 op
->fetch_before
= sync_old_and_optab
;
7328 op
->fetch_after
= sync_new_and_optab
;
7329 op
->no_result
= sync_and_optab
;
7330 op
->reverse_code
= UNKNOWN
;
7333 op
->mem_fetch_before
= atomic_fetch_or_optab
;
7334 op
->mem_fetch_after
= atomic_or_fetch_optab
;
7335 op
->mem_no_result
= atomic_or_optab
;
7336 op
->fetch_before
= sync_old_ior_optab
;
7337 op
->fetch_after
= sync_new_ior_optab
;
7338 op
->no_result
= sync_ior_optab
;
7339 op
->reverse_code
= UNKNOWN
;
7342 op
->mem_fetch_before
= atomic_fetch_nand_optab
;
7343 op
->mem_fetch_after
= atomic_nand_fetch_optab
;
7344 op
->mem_no_result
= atomic_nand_optab
;
7345 op
->fetch_before
= sync_old_nand_optab
;
7346 op
->fetch_after
= sync_new_nand_optab
;
7347 op
->no_result
= sync_nand_optab
;
7348 op
->reverse_code
= UNKNOWN
;
7355 /* See if there is a more optimal way to implement the operation "*MEM CODE VAL"
7356 using memory order MODEL. If AFTER is true the operation needs to return
7357 the value of *MEM after the operation, otherwise the previous value.
7358 TARGET is an optional place to place the result. The result is unused if
7360 Return the result if there is a better sequence, otherwise NULL_RTX. */
7363 maybe_optimize_fetch_op (rtx target
, rtx mem
, rtx val
, enum rtx_code code
,
7364 enum memmodel model
, bool after
)
7366 /* If the value is prefetched, or not used, it may be possible to replace
7367 the sequence with a native exchange operation. */
7368 if (!after
|| target
== const0_rtx
)
7370 /* fetch_and (&x, 0, m) can be replaced with exchange (&x, 0, m). */
7371 if (code
== AND
&& val
== const0_rtx
)
7373 if (target
== const0_rtx
)
7374 target
= gen_reg_rtx (GET_MODE (mem
));
7375 return maybe_emit_atomic_exchange (target
, mem
, val
, model
);
7378 /* fetch_or (&x, -1, m) can be replaced with exchange (&x, -1, m). */
7379 if (code
== IOR
&& val
== constm1_rtx
)
7381 if (target
== const0_rtx
)
7382 target
= gen_reg_rtx (GET_MODE (mem
));
7383 return maybe_emit_atomic_exchange (target
, mem
, val
, model
);
7390 /* Try to emit an instruction for a specific operation varaition.
7391 OPTAB contains the OP functions.
7392 TARGET is an optional place to return the result. const0_rtx means unused.
7393 MEM is the memory location to operate on.
7394 VAL is the value to use in the operation.
7395 USE_MEMMODEL is TRUE if the variation with a memory model should be tried.
7396 MODEL is the memory model, if used.
7397 AFTER is true if the returned result is the value after the operation. */
7400 maybe_emit_op (const struct atomic_op_functions
*optab
, rtx target
, rtx mem
,
7401 rtx val
, bool use_memmodel
, enum memmodel model
, bool after
)
7403 machine_mode mode
= GET_MODE (mem
);
7404 class expand_operand ops
[4];
7405 enum insn_code icode
;
7409 /* Check to see if there is a result returned. */
7410 if (target
== const0_rtx
)
7414 icode
= direct_optab_handler (optab
->mem_no_result
, mode
);
7415 create_integer_operand (&ops
[2], model
);
7420 icode
= direct_optab_handler (optab
->no_result
, mode
);
7424 /* Otherwise, we need to generate a result. */
7429 icode
= direct_optab_handler (after
? optab
->mem_fetch_after
7430 : optab
->mem_fetch_before
, mode
);
7431 create_integer_operand (&ops
[3], model
);
7436 icode
= optab_handler (after
? optab
->fetch_after
7437 : optab
->fetch_before
, mode
);
7440 create_output_operand (&ops
[op_counter
++], target
, mode
);
7442 if (icode
== CODE_FOR_nothing
)
7445 create_fixed_operand (&ops
[op_counter
++], mem
);
7446 /* VAL may have been promoted to a wider mode. Shrink it if so. */
7447 create_convert_operand_to (&ops
[op_counter
++], val
, mode
, true);
7449 if (maybe_expand_insn (icode
, num_ops
, ops
))
7450 return (target
== const0_rtx
? const0_rtx
: ops
[0].value
);
7456 /* This function expands an atomic fetch_OP or OP_fetch operation:
7457 TARGET is an option place to stick the return value. const0_rtx indicates
7458 the result is unused.
7459 atomically fetch MEM, perform the operation with VAL and return it to MEM.
7460 CODE is the operation being performed (OP)
7461 MEMMODEL is the memory model variant to use.
7462 AFTER is true to return the result of the operation (OP_fetch).
7463 AFTER is false to return the value before the operation (fetch_OP).
7465 This function will *only* generate instructions if there is a direct
7466 optab. No compare and swap loops or libcalls will be generated. */
7469 expand_atomic_fetch_op_no_fallback (rtx target
, rtx mem
, rtx val
,
7470 enum rtx_code code
, enum memmodel model
,
7473 machine_mode mode
= GET_MODE (mem
);
7474 struct atomic_op_functions optab
;
7476 bool unused_result
= (target
== const0_rtx
);
7478 get_atomic_op_for_code (&optab
, code
);
7480 /* Check to see if there are any better instructions. */
7481 result
= maybe_optimize_fetch_op (target
, mem
, val
, code
, model
, after
);
7485 /* Check for the case where the result isn't used and try those patterns. */
7488 /* Try the memory model variant first. */
7489 result
= maybe_emit_op (&optab
, target
, mem
, val
, true, model
, true);
7493 /* Next try the old style withuot a memory model. */
7494 result
= maybe_emit_op (&optab
, target
, mem
, val
, false, model
, true);
7498 /* There is no no-result pattern, so try patterns with a result. */
7502 /* Try the __atomic version. */
7503 result
= maybe_emit_op (&optab
, target
, mem
, val
, true, model
, after
);
7507 /* Try the older __sync version. */
7508 result
= maybe_emit_op (&optab
, target
, mem
, val
, false, model
, after
);
7512 /* If the fetch value can be calculated from the other variation of fetch,
7513 try that operation. */
7514 if (after
|| unused_result
|| optab
.reverse_code
!= UNKNOWN
)
7516 /* Try the __atomic version, then the older __sync version. */
7517 result
= maybe_emit_op (&optab
, target
, mem
, val
, true, model
, !after
);
7519 result
= maybe_emit_op (&optab
, target
, mem
, val
, false, model
, !after
);
7523 /* If the result isn't used, no need to do compensation code. */
7527 /* Issue compensation code. Fetch_after == fetch_before OP val.
7528 Fetch_before == after REVERSE_OP val. */
7530 code
= optab
.reverse_code
;
7533 result
= expand_simple_binop (mode
, AND
, result
, val
, NULL_RTX
,
7534 true, OPTAB_LIB_WIDEN
);
7535 result
= expand_simple_unop (mode
, NOT
, result
, target
, true);
7538 result
= expand_simple_binop (mode
, code
, result
, val
, target
,
7539 true, OPTAB_LIB_WIDEN
);
7544 /* No direct opcode can be generated. */
7550 /* This function expands an atomic fetch_OP or OP_fetch operation:
7551 TARGET is an option place to stick the return value. const0_rtx indicates
7552 the result is unused.
7553 atomically fetch MEM, perform the operation with VAL and return it to MEM.
7554 CODE is the operation being performed (OP)
7555 MEMMODEL is the memory model variant to use.
7556 AFTER is true to return the result of the operation (OP_fetch).
7557 AFTER is false to return the value before the operation (fetch_OP). */
7559 expand_atomic_fetch_op (rtx target
, rtx mem
, rtx val
, enum rtx_code code
,
7560 enum memmodel model
, bool after
)
7562 machine_mode mode
= GET_MODE (mem
);
7564 bool unused_result
= (target
== const0_rtx
);
7566 /* If loads are not atomic for the required size and we are not called to
7567 provide a __sync builtin, do not do anything so that we stay consistent
7568 with atomic loads of the same size. */
7569 if (!can_atomic_load_p (mode
) && !is_mm_sync (model
))
7572 result
= expand_atomic_fetch_op_no_fallback (target
, mem
, val
, code
, model
,
7578 /* Add/sub can be implemented by doing the reverse operation with -(val). */
7579 if (code
== PLUS
|| code
== MINUS
)
7582 enum rtx_code reverse
= (code
== PLUS
? MINUS
: PLUS
);
7585 tmp
= expand_simple_unop (mode
, NEG
, val
, NULL_RTX
, true);
7586 result
= expand_atomic_fetch_op_no_fallback (target
, mem
, tmp
, reverse
,
7590 /* PLUS worked so emit the insns and return. */
7597 /* PLUS did not work, so throw away the negation code and continue. */
7601 /* Try the __sync libcalls only if we can't do compare-and-swap inline. */
7602 if (!can_compare_and_swap_p (mode
, false))
7606 enum rtx_code orig_code
= code
;
7607 struct atomic_op_functions optab
;
7609 get_atomic_op_for_code (&optab
, code
);
7610 libfunc
= optab_libfunc (after
? optab
.fetch_after
7611 : optab
.fetch_before
, mode
);
7613 && (after
|| unused_result
|| optab
.reverse_code
!= UNKNOWN
))
7617 code
= optab
.reverse_code
;
7618 libfunc
= optab_libfunc (after
? optab
.fetch_before
7619 : optab
.fetch_after
, mode
);
7621 if (libfunc
!= NULL
)
7623 rtx addr
= convert_memory_address (ptr_mode
, XEXP (mem
, 0));
7624 result
= emit_library_call_value (libfunc
, NULL
, LCT_NORMAL
, mode
,
7625 addr
, ptr_mode
, val
, mode
);
7627 if (!unused_result
&& fixup
)
7628 result
= expand_simple_binop (mode
, code
, result
, val
, target
,
7629 true, OPTAB_LIB_WIDEN
);
7633 /* We need the original code for any further attempts. */
7637 /* If nothing else has succeeded, default to a compare and swap loop. */
7638 if (can_compare_and_swap_p (mode
, true))
7641 rtx t0
= gen_reg_rtx (mode
), t1
;
7645 /* If the result is used, get a register for it. */
7648 if (!target
|| !register_operand (target
, mode
))
7649 target
= gen_reg_rtx (mode
);
7650 /* If fetch_before, copy the value now. */
7652 emit_move_insn (target
, t0
);
7655 target
= const0_rtx
;
7660 t1
= expand_simple_binop (mode
, AND
, t1
, val
, NULL_RTX
,
7661 true, OPTAB_LIB_WIDEN
);
7662 t1
= expand_simple_unop (mode
, code
, t1
, NULL_RTX
, true);
7665 t1
= expand_simple_binop (mode
, code
, t1
, val
, NULL_RTX
, true,
7668 /* For after, copy the value now. */
7669 if (!unused_result
&& after
)
7670 emit_move_insn (target
, t1
);
7671 insn
= get_insns ();
7674 if (t1
!= NULL
&& expand_compare_and_swap_loop (mem
, t0
, t1
, insn
))
7681 /* Return true if OPERAND is suitable for operand number OPNO of
7682 instruction ICODE. */
7685 insn_operand_matches (enum insn_code icode
, unsigned int opno
, rtx operand
)
7687 return (!insn_data
[(int) icode
].operand
[opno
].predicate
7688 || (insn_data
[(int) icode
].operand
[opno
].predicate
7689 (operand
, insn_data
[(int) icode
].operand
[opno
].mode
)));
7692 /* TARGET is a target of a multiword operation that we are going to
7693 implement as a series of word-mode operations. Return true if
7694 TARGET is suitable for this purpose. */
7697 valid_multiword_target_p (rtx target
)
7702 mode
= GET_MODE (target
);
7703 if (!GET_MODE_SIZE (mode
).is_constant (&size
))
7705 for (i
= 0; i
< size
; i
+= UNITS_PER_WORD
)
7706 if (!validate_subreg (word_mode
, mode
, target
, i
))
7711 /* Make OP describe an input operand that has value INTVAL and that has
7712 no inherent mode. This function should only be used for operands that
7713 are always expand-time constants. The backend may request that INTVAL
7714 be copied into a different kind of rtx, but it must specify the mode
7715 of that rtx if so. */
7718 create_integer_operand (class expand_operand
*op
, poly_int64 intval
)
7720 create_expand_operand (op
, EXPAND_INTEGER
,
7721 gen_int_mode (intval
, MAX_MODE_INT
),
7722 VOIDmode
, false, intval
);
7725 /* Like maybe_legitimize_operand, but do not change the code of the
7726 current rtx value. */
7729 maybe_legitimize_operand_same_code (enum insn_code icode
, unsigned int opno
,
7730 class expand_operand
*op
)
7732 /* See if the operand matches in its current form. */
7733 if (insn_operand_matches (icode
, opno
, op
->value
))
7736 /* If the operand is a memory whose address has no side effects,
7737 try forcing the address into a non-virtual pseudo register.
7738 The check for side effects is important because copy_to_mode_reg
7739 cannot handle things like auto-modified addresses. */
7740 if (insn_data
[(int) icode
].operand
[opno
].allows_mem
&& MEM_P (op
->value
))
7745 addr
= XEXP (mem
, 0);
7746 if (!(REG_P (addr
) && REGNO (addr
) > LAST_VIRTUAL_REGISTER
)
7747 && !side_effects_p (addr
))
7752 last
= get_last_insn ();
7753 mode
= get_address_mode (mem
);
7754 mem
= replace_equiv_address (mem
, copy_to_mode_reg (mode
, addr
));
7755 if (insn_operand_matches (icode
, opno
, mem
))
7760 delete_insns_since (last
);
7767 /* Try to make OP match operand OPNO of instruction ICODE. Return true
7768 on success, storing the new operand value back in OP. */
7771 maybe_legitimize_operand (enum insn_code icode
, unsigned int opno
,
7772 class expand_operand
*op
)
7774 machine_mode mode
, imode
, tmode
;
7781 temporary_volatile_ok
v (true);
7782 return maybe_legitimize_operand_same_code (icode
, opno
, op
);
7786 gcc_assert (mode
!= VOIDmode
);
7788 && op
->value
!= const0_rtx
7789 && GET_MODE (op
->value
) == mode
7790 && maybe_legitimize_operand_same_code (icode
, opno
, op
))
7793 op
->value
= gen_reg_rtx (mode
);
7799 gcc_assert (mode
!= VOIDmode
);
7800 gcc_assert (GET_MODE (op
->value
) == VOIDmode
7801 || GET_MODE (op
->value
) == mode
);
7802 if (maybe_legitimize_operand_same_code (icode
, opno
, op
))
7805 op
->value
= copy_to_mode_reg (mode
, op
->value
);
7808 case EXPAND_CONVERT_TO
:
7809 gcc_assert (mode
!= VOIDmode
);
7810 op
->value
= convert_to_mode (mode
, op
->value
, op
->unsigned_p
);
7813 case EXPAND_CONVERT_FROM
:
7814 if (GET_MODE (op
->value
) != VOIDmode
)
7815 mode
= GET_MODE (op
->value
);
7817 /* The caller must tell us what mode this value has. */
7818 gcc_assert (mode
!= VOIDmode
);
7820 imode
= insn_data
[(int) icode
].operand
[opno
].mode
;
7821 tmode
= (VECTOR_MODE_P (imode
) && !VECTOR_MODE_P (mode
)
7822 ? GET_MODE_INNER (imode
) : imode
);
7823 if (tmode
!= VOIDmode
&& tmode
!= mode
)
7825 op
->value
= convert_modes (tmode
, mode
, op
->value
, op
->unsigned_p
);
7828 if (imode
!= VOIDmode
&& imode
!= mode
)
7830 gcc_assert (VECTOR_MODE_P (imode
) && !VECTOR_MODE_P (mode
));
7831 op
->value
= expand_vector_broadcast (imode
, op
->value
);
7836 case EXPAND_ADDRESS
:
7837 op
->value
= convert_memory_address (as_a
<scalar_int_mode
> (mode
),
7841 case EXPAND_INTEGER
:
7842 mode
= insn_data
[(int) icode
].operand
[opno
].mode
;
7843 if (mode
!= VOIDmode
7844 && known_eq (trunc_int_for_mode (op
->int_value
, mode
),
7847 op
->value
= gen_int_mode (op
->int_value
, mode
);
7852 return insn_operand_matches (icode
, opno
, op
->value
);
7855 /* Make OP describe an input operand that should have the same value
7856 as VALUE, after any mode conversion that the target might request.
7857 TYPE is the type of VALUE. */
7860 create_convert_operand_from_type (class expand_operand
*op
,
7861 rtx value
, tree type
)
7863 create_convert_operand_from (op
, value
, TYPE_MODE (type
),
7864 TYPE_UNSIGNED (type
));
7867 /* Return true if the requirements on operands OP1 and OP2 of instruction
7868 ICODE are similar enough for the result of legitimizing OP1 to be
7869 reusable for OP2. OPNO1 and OPNO2 are the operand numbers associated
7870 with OP1 and OP2 respectively. */
7873 can_reuse_operands_p (enum insn_code icode
,
7874 unsigned int opno1
, unsigned int opno2
,
7875 const class expand_operand
*op1
,
7876 const class expand_operand
*op2
)
7878 /* Check requirements that are common to all types. */
7879 if (op1
->type
!= op2
->type
7880 || op1
->mode
!= op2
->mode
7881 || (insn_data
[(int) icode
].operand
[opno1
].mode
7882 != insn_data
[(int) icode
].operand
[opno2
].mode
))
7885 /* Check the requirements for specific types. */
7889 /* Outputs must remain distinct. */
7894 case EXPAND_ADDRESS
:
7895 case EXPAND_INTEGER
:
7898 case EXPAND_CONVERT_TO
:
7899 case EXPAND_CONVERT_FROM
:
7900 return op1
->unsigned_p
== op2
->unsigned_p
;
7905 /* Try to make operands [OPS, OPS + NOPS) match operands [OPNO, OPNO + NOPS)
7906 of instruction ICODE. Return true on success, leaving the new operand
7907 values in the OPS themselves. Emit no code on failure. */
7910 maybe_legitimize_operands (enum insn_code icode
, unsigned int opno
,
7911 unsigned int nops
, class expand_operand
*ops
)
7913 rtx_insn
*last
= get_last_insn ();
7914 rtx
*orig_values
= XALLOCAVEC (rtx
, nops
);
7915 for (unsigned int i
= 0; i
< nops
; i
++)
7917 orig_values
[i
] = ops
[i
].value
;
7919 /* First try reusing the result of an earlier legitimization.
7920 This avoids duplicate rtl and ensures that tied operands
7923 This search is linear, but NOPS is bounded at compile time
7924 to a small number (current a single digit). */
7927 if (can_reuse_operands_p (icode
, opno
+ j
, opno
+ i
, &ops
[j
], &ops
[i
])
7928 && rtx_equal_p (orig_values
[j
], orig_values
[i
])
7930 && insn_operand_matches (icode
, opno
+ i
, ops
[j
].value
))
7932 ops
[i
].value
= copy_rtx (ops
[j
].value
);
7936 /* Otherwise try legitimizing the operand on its own. */
7937 if (j
== i
&& !maybe_legitimize_operand (icode
, opno
+ i
, &ops
[i
]))
7939 delete_insns_since (last
);
7946 /* Try to generate instruction ICODE, using operands [OPS, OPS + NOPS)
7947 as its operands. Return the instruction pattern on success,
7948 and emit any necessary set-up code. Return null and emit no
7952 maybe_gen_insn (enum insn_code icode
, unsigned int nops
,
7953 class expand_operand
*ops
)
7955 gcc_assert (nops
== (unsigned int) insn_data
[(int) icode
].n_generator_args
);
7956 if (!maybe_legitimize_operands (icode
, 0, nops
, ops
))
7962 return GEN_FCN (icode
) (ops
[0].value
);
7964 return GEN_FCN (icode
) (ops
[0].value
, ops
[1].value
);
7966 return GEN_FCN (icode
) (ops
[0].value
, ops
[1].value
, ops
[2].value
);
7968 return GEN_FCN (icode
) (ops
[0].value
, ops
[1].value
, ops
[2].value
,
7971 return GEN_FCN (icode
) (ops
[0].value
, ops
[1].value
, ops
[2].value
,
7972 ops
[3].value
, ops
[4].value
);
7974 return GEN_FCN (icode
) (ops
[0].value
, ops
[1].value
, ops
[2].value
,
7975 ops
[3].value
, ops
[4].value
, ops
[5].value
);
7977 return GEN_FCN (icode
) (ops
[0].value
, ops
[1].value
, ops
[2].value
,
7978 ops
[3].value
, ops
[4].value
, ops
[5].value
,
7981 return GEN_FCN (icode
) (ops
[0].value
, ops
[1].value
, ops
[2].value
,
7982 ops
[3].value
, ops
[4].value
, ops
[5].value
,
7983 ops
[6].value
, ops
[7].value
);
7985 return GEN_FCN (icode
) (ops
[0].value
, ops
[1].value
, ops
[2].value
,
7986 ops
[3].value
, ops
[4].value
, ops
[5].value
,
7987 ops
[6].value
, ops
[7].value
, ops
[8].value
);
7992 /* Try to emit instruction ICODE, using operands [OPS, OPS + NOPS)
7993 as its operands. Return true on success and emit no code on failure. */
7996 maybe_expand_insn (enum insn_code icode
, unsigned int nops
,
7997 class expand_operand
*ops
)
7999 rtx_insn
*pat
= maybe_gen_insn (icode
, nops
, ops
);
8008 /* Like maybe_expand_insn, but for jumps. */
8011 maybe_expand_jump_insn (enum insn_code icode
, unsigned int nops
,
8012 class expand_operand
*ops
)
8014 rtx_insn
*pat
= maybe_gen_insn (icode
, nops
, ops
);
8017 emit_jump_insn (pat
);
8023 /* Emit instruction ICODE, using operands [OPS, OPS + NOPS)
8027 expand_insn (enum insn_code icode
, unsigned int nops
,
8028 class expand_operand
*ops
)
8030 if (!maybe_expand_insn (icode
, nops
, ops
))
8034 /* Like expand_insn, but for jumps. */
8037 expand_jump_insn (enum insn_code icode
, unsigned int nops
,
8038 class expand_operand
*ops
)
8040 if (!maybe_expand_jump_insn (icode
, nops
, ops
))