1 /* Match-and-simplify patterns for shared GENERIC and GIMPLE folding.
2 This file is consumed by genmatch which produces gimple-match.cc
3 and generic-match.cc from it.
5 Copyright (C) 2014-2022 Free Software Foundation, Inc.
6 Contributed by Richard Biener <rguenther@suse.de>
7 and Prathamesh Kulkarni <bilbotheelffriend@gmail.com>
9 This file is part of GCC.
11 GCC is free software; you can redistribute it and/or modify it under
12 the terms of the GNU General Public License as published by the Free
13 Software Foundation; either version 3, or (at your option) any later
16 GCC is distributed in the hope that it will be useful, but WITHOUT ANY
17 WARRANTY; without even the implied warranty of MERCHANTABILITY or
18 FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License
21 You should have received a copy of the GNU General Public License
22 along with GCC; see the file COPYING3. If not see
23 <http://www.gnu.org/licenses/>. */
26 /* Generic tree predicates we inherit. */
28 integer_onep integer_zerop integer_all_onesp integer_minus_onep
29 integer_each_onep integer_truep integer_nonzerop
30 real_zerop real_onep real_minus_onep
32 initializer_each_zero_or_onep
34 tree_expr_nonnegative_p
42 bitmask_inv_cst_vector_p)
45 (define_operator_list tcc_comparison
46 lt le eq ne ge gt unordered ordered unlt unle ungt unge uneq ltgt)
47 (define_operator_list inverted_tcc_comparison
48 ge gt ne eq lt le ordered unordered ge gt le lt ltgt uneq)
49 (define_operator_list inverted_tcc_comparison_with_nans
50 unge ungt ne eq unlt unle ordered unordered ge gt le lt ltgt uneq)
51 (define_operator_list swapped_tcc_comparison
52 gt ge eq ne le lt unordered ordered ungt unge unlt unle uneq ltgt)
53 (define_operator_list simple_comparison lt le eq ne ge gt)
54 (define_operator_list swapped_simple_comparison gt ge eq ne le lt)
56 #include "cfn-operators.pd"
58 /* Define operand lists for math rounding functions {,i,l,ll}FN,
59 where the versions prefixed with "i" return an int, those prefixed with
60 "l" return a long and those prefixed with "ll" return a long long.
62 Also define operand lists:
64 X<FN>F for all float functions, in the order i, l, ll
65 X<FN> for all double functions, in the same order
66 X<FN>L for all long double functions, in the same order. */
67 #define DEFINE_INT_AND_FLOAT_ROUND_FN(FN) \
68 (define_operator_list X##FN##F BUILT_IN_I##FN##F \
71 (define_operator_list X##FN BUILT_IN_I##FN \
74 (define_operator_list X##FN##L BUILT_IN_I##FN##L \
78 DEFINE_INT_AND_FLOAT_ROUND_FN (FLOOR)
79 DEFINE_INT_AND_FLOAT_ROUND_FN (CEIL)
80 DEFINE_INT_AND_FLOAT_ROUND_FN (ROUND)
81 DEFINE_INT_AND_FLOAT_ROUND_FN (RINT)
83 /* Unary operations and their associated IFN_COND_* function. */
84 (define_operator_list UNCOND_UNARY
86 (define_operator_list COND_UNARY
89 /* Binary operations and their associated IFN_COND_* function. */
90 (define_operator_list UNCOND_BINARY
92 mult trunc_div trunc_mod rdiv
95 bit_and bit_ior bit_xor
97 (define_operator_list COND_BINARY
98 IFN_COND_ADD IFN_COND_SUB
99 IFN_COND_MUL IFN_COND_DIV IFN_COND_MOD IFN_COND_RDIV
100 IFN_COND_MIN IFN_COND_MAX
101 IFN_COND_FMIN IFN_COND_FMAX
102 IFN_COND_AND IFN_COND_IOR IFN_COND_XOR
103 IFN_COND_SHL IFN_COND_SHR)
105 /* Same for ternary operations. */
106 (define_operator_list UNCOND_TERNARY
107 IFN_FMA IFN_FMS IFN_FNMA IFN_FNMS)
108 (define_operator_list COND_TERNARY
109 IFN_COND_FMA IFN_COND_FMS IFN_COND_FNMA IFN_COND_FNMS)
111 /* __atomic_fetch_or_*, __atomic_fetch_xor_*, __atomic_xor_fetch_* */
112 (define_operator_list ATOMIC_FETCH_OR_XOR_N
113 BUILT_IN_ATOMIC_FETCH_OR_1 BUILT_IN_ATOMIC_FETCH_OR_2
114 BUILT_IN_ATOMIC_FETCH_OR_4 BUILT_IN_ATOMIC_FETCH_OR_8
115 BUILT_IN_ATOMIC_FETCH_OR_16
116 BUILT_IN_ATOMIC_FETCH_XOR_1 BUILT_IN_ATOMIC_FETCH_XOR_2
117 BUILT_IN_ATOMIC_FETCH_XOR_4 BUILT_IN_ATOMIC_FETCH_XOR_8
118 BUILT_IN_ATOMIC_FETCH_XOR_16
119 BUILT_IN_ATOMIC_XOR_FETCH_1 BUILT_IN_ATOMIC_XOR_FETCH_2
120 BUILT_IN_ATOMIC_XOR_FETCH_4 BUILT_IN_ATOMIC_XOR_FETCH_8
121 BUILT_IN_ATOMIC_XOR_FETCH_16)
122 /* __sync_fetch_and_or_*, __sync_fetch_and_xor_*, __sync_xor_and_fetch_* */
123 (define_operator_list SYNC_FETCH_OR_XOR_N
124 BUILT_IN_SYNC_FETCH_AND_OR_1 BUILT_IN_SYNC_FETCH_AND_OR_2
125 BUILT_IN_SYNC_FETCH_AND_OR_4 BUILT_IN_SYNC_FETCH_AND_OR_8
126 BUILT_IN_SYNC_FETCH_AND_OR_16
127 BUILT_IN_SYNC_FETCH_AND_XOR_1 BUILT_IN_SYNC_FETCH_AND_XOR_2
128 BUILT_IN_SYNC_FETCH_AND_XOR_4 BUILT_IN_SYNC_FETCH_AND_XOR_8
129 BUILT_IN_SYNC_FETCH_AND_XOR_16
130 BUILT_IN_SYNC_XOR_AND_FETCH_1 BUILT_IN_SYNC_XOR_AND_FETCH_2
131 BUILT_IN_SYNC_XOR_AND_FETCH_4 BUILT_IN_SYNC_XOR_AND_FETCH_8
132 BUILT_IN_SYNC_XOR_AND_FETCH_16)
133 /* __atomic_fetch_and_*. */
134 (define_operator_list ATOMIC_FETCH_AND_N
135 BUILT_IN_ATOMIC_FETCH_AND_1 BUILT_IN_ATOMIC_FETCH_AND_2
136 BUILT_IN_ATOMIC_FETCH_AND_4 BUILT_IN_ATOMIC_FETCH_AND_8
137 BUILT_IN_ATOMIC_FETCH_AND_16)
138 /* __sync_fetch_and_and_*. */
139 (define_operator_list SYNC_FETCH_AND_AND_N
140 BUILT_IN_SYNC_FETCH_AND_AND_1 BUILT_IN_SYNC_FETCH_AND_AND_2
141 BUILT_IN_SYNC_FETCH_AND_AND_4 BUILT_IN_SYNC_FETCH_AND_AND_8
142 BUILT_IN_SYNC_FETCH_AND_AND_16)
144 /* With nop_convert? combine convert? and view_convert? in one pattern
145 plus conditionalize on tree_nop_conversion_p conversions. */
146 (match (nop_convert @0)
148 (if (tree_nop_conversion_p (type, TREE_TYPE (@0)))))
149 (match (nop_convert @0)
151 (if (VECTOR_TYPE_P (type) && VECTOR_TYPE_P (TREE_TYPE (@0))
152 && known_eq (TYPE_VECTOR_SUBPARTS (type),
153 TYPE_VECTOR_SUBPARTS (TREE_TYPE (@0)))
154 && tree_nop_conversion_p (TREE_TYPE (type), TREE_TYPE (TREE_TYPE (@0))))))
156 /* Transform likes of (char) ABS_EXPR <(int) x> into (char) ABSU_EXPR <x>
157 ABSU_EXPR returns unsigned absolute value of the operand and the operand
158 of the ABSU_EXPR will have the corresponding signed type. */
159 (simplify (abs (convert @0))
160 (if (ANY_INTEGRAL_TYPE_P (TREE_TYPE (@0))
161 && !TYPE_UNSIGNED (TREE_TYPE (@0))
162 && element_precision (type) > element_precision (TREE_TYPE (@0)))
163 (with { tree utype = unsigned_type_for (TREE_TYPE (@0)); }
164 (convert (absu:utype @0)))))
167 /* Optimize (X + (X >> (prec - 1))) ^ (X >> (prec - 1)) into abs (X). */
169 (bit_xor:c (plus:c @0 (rshift@2 @0 INTEGER_CST@1)) @2)
170 (if (ANY_INTEGRAL_TYPE_P (TREE_TYPE (@0))
171 && !TYPE_UNSIGNED (TREE_TYPE (@0))
172 && wi::to_widest (@1) == element_precision (TREE_TYPE (@0)) - 1)
176 /* Simplifications of operations with one constant operand and
177 simplifications to constants or single values. */
179 (for op (plus pointer_plus minus bit_ior bit_xor)
181 (op @0 integer_zerop)
184 /* 0 +p index -> (type)index */
186 (pointer_plus integer_zerop @1)
187 (non_lvalue (convert @1)))
189 /* ptr - 0 -> (type)ptr */
191 (pointer_diff @0 integer_zerop)
194 /* See if ARG1 is zero and X + ARG1 reduces to X.
195 Likewise if the operands are reversed. */
197 (plus:c @0 real_zerop@1)
198 (if (fold_real_zero_addition_p (type, @0, @1, 0))
201 /* See if ARG1 is zero and X - ARG1 reduces to X. */
203 (minus @0 real_zerop@1)
204 (if (fold_real_zero_addition_p (type, @0, @1, 1))
207 /* Even if the fold_real_zero_addition_p can't simplify X + 0.0
208 into X, we can optimize (X + 0.0) + 0.0 or (X + 0.0) - 0.0
209 or (X - 0.0) + 0.0 into X + 0.0 and (X - 0.0) - 0.0 into X - 0.0
210 if not -frounding-math. For sNaNs the first operation would raise
211 exceptions but turn the result into qNan, so the second operation
212 would not raise it. */
213 (for inner_op (plus minus)
214 (for outer_op (plus minus)
216 (outer_op (inner_op@3 @0 REAL_CST@1) REAL_CST@2)
219 && !HONOR_SIGN_DEPENDENT_ROUNDING (type))
220 (with { bool inner_plus = ((inner_op == PLUS_EXPR)
221 ^ REAL_VALUE_MINUS_ZERO (TREE_REAL_CST (@1)));
223 = ((outer_op == PLUS_EXPR)
224 ^ REAL_VALUE_MINUS_ZERO (TREE_REAL_CST (@2))); }
225 (if (outer_plus && !inner_plus)
230 This is unsafe for certain floats even in non-IEEE formats.
231 In IEEE, it is unsafe because it does wrong for NaNs.
232 PR middle-end/98420: x - x may be -0.0 with FE_DOWNWARD.
233 Also note that operand_equal_p is always false if an operand
237 (if (!FLOAT_TYPE_P (type)
238 || (!tree_expr_maybe_nan_p (@0)
239 && !tree_expr_maybe_infinite_p (@0)
240 && (!HONOR_SIGN_DEPENDENT_ROUNDING (type)
241 || !HONOR_SIGNED_ZEROS (type))))
242 { build_zero_cst (type); }))
244 (pointer_diff @@0 @0)
245 { build_zero_cst (type); })
248 (mult @0 integer_zerop@1)
251 /* -x == x -> x == 0 */
254 (cmp:c @0 (negate @0))
255 (if (ANY_INTEGRAL_TYPE_P (TREE_TYPE (@0))
256 && !TYPE_OVERFLOW_WRAPS (TREE_TYPE(@0)))
257 (cmp @0 { build_zero_cst (TREE_TYPE(@0)); }))))
259 /* Maybe fold x * 0 to 0. The expressions aren't the same
260 when x is NaN, since x * 0 is also NaN. Nor are they the
261 same in modes with signed zeros, since multiplying a
262 negative value by 0 gives -0, not +0. Nor when x is +-Inf,
263 since x * 0 is NaN. */
265 (mult @0 real_zerop@1)
266 (if (!tree_expr_maybe_nan_p (@0)
267 && (!HONOR_NANS (type) || !tree_expr_maybe_infinite_p (@0))
268 && (!HONOR_SIGNED_ZEROS (type) || tree_expr_nonnegative_p (@0)))
271 /* In IEEE floating point, x*1 is not equivalent to x for snans.
272 Likewise for complex arithmetic with signed zeros. */
275 (if (!tree_expr_maybe_signaling_nan_p (@0)
276 && (!HONOR_SIGNED_ZEROS (type)
277 || !COMPLEX_FLOAT_TYPE_P (type)))
280 /* Transform x * -1.0 into -x. */
282 (mult @0 real_minus_onep)
283 (if (!tree_expr_maybe_signaling_nan_p (@0)
284 && (!HONOR_SIGNED_ZEROS (type)
285 || !COMPLEX_FLOAT_TYPE_P (type)))
288 /* Transform x * { 0 or 1, 0 or 1, ... } into x & { 0 or -1, 0 or -1, ...},
289 unless the target has native support for the former but not the latter. */
291 (mult @0 VECTOR_CST@1)
292 (if (initializer_each_zero_or_onep (@1)
293 && !HONOR_SNANS (type)
294 && !HONOR_SIGNED_ZEROS (type))
295 (with { tree itype = FLOAT_TYPE_P (type) ? unsigned_type_for (type) : type; }
297 && (!VECTOR_MODE_P (TYPE_MODE (type))
298 || (VECTOR_MODE_P (TYPE_MODE (itype))
299 && optab_handler (and_optab,
300 TYPE_MODE (itype)) != CODE_FOR_nothing)))
301 (view_convert (bit_and:itype (view_convert @0)
302 (ne @1 { build_zero_cst (type); })))))))
304 (for cmp (gt ge lt le)
305 outp (convert convert negate negate)
306 outn (negate negate convert convert)
307 /* Transform X * (X > 0.0 ? 1.0 : -1.0) into abs(X). */
308 /* Transform X * (X >= 0.0 ? 1.0 : -1.0) into abs(X). */
309 /* Transform X * (X < 0.0 ? 1.0 : -1.0) into -abs(X). */
310 /* Transform X * (X <= 0.0 ? 1.0 : -1.0) into -abs(X). */
312 (mult:c @0 (cond (cmp @0 real_zerop) real_onep@1 real_minus_onep))
313 (if (!tree_expr_maybe_nan_p (@0) && !HONOR_SIGNED_ZEROS (type))
315 /* Transform X * (X > 0.0 ? -1.0 : 1.0) into -abs(X). */
316 /* Transform X * (X >= 0.0 ? -1.0 : 1.0) into -abs(X). */
317 /* Transform X * (X < 0.0 ? -1.0 : 1.0) into abs(X). */
318 /* Transform X * (X <= 0.0 ? -1.0 : 1.0) into abs(X). */
320 (mult:c @0 (cond (cmp @0 real_zerop) real_minus_onep real_onep@1))
321 (if (!tree_expr_maybe_nan_p (@0) && !HONOR_SIGNED_ZEROS (type))
324 /* Transform X * copysign (1.0, X) into abs(X). */
326 (mult:c @0 (COPYSIGN_ALL real_onep @0))
327 (if (!tree_expr_maybe_nan_p (@0) && !HONOR_SIGNED_ZEROS (type))
330 /* Transform X * copysign (1.0, -X) into -abs(X). */
332 (mult:c @0 (COPYSIGN_ALL real_onep (negate @0)))
333 (if (!tree_expr_maybe_nan_p (@0) && !HONOR_SIGNED_ZEROS (type))
336 /* Transform copysign (CST, X) into copysign (ABS(CST), X). */
338 (COPYSIGN_ALL REAL_CST@0 @1)
339 (if (REAL_VALUE_NEGATIVE (TREE_REAL_CST (@0)))
340 (COPYSIGN_ALL (negate @0) @1)))
342 /* (x >= 0 ? x : 0) + (x <= 0 ? -x : 0) -> abs x. */
344 (plus:c (max @0 integer_zerop) (max (negate @0) integer_zerop))
347 /* X * 1, X / 1 -> X. */
348 (for op (mult trunc_div ceil_div floor_div round_div exact_div)
353 /* (A / (1 << B)) -> (A >> B).
354 Only for unsigned A. For signed A, this would not preserve rounding
356 For example: (-1 / ( 1 << B)) != -1 >> B.
357 Also also widening conversions, like:
358 (A / (unsigned long long) (1U << B)) -> (A >> B)
360 (A / (unsigned long long) (1 << B)) -> (A >> B).
361 If the left shift is signed, it can be done only if the upper bits
362 of A starting from shift's type sign bit are zero, as
363 (unsigned long long) (1 << 31) is -2147483648ULL, not 2147483648ULL,
364 so it is valid only if A >> 31 is zero. */
366 (trunc_div (convert?@0 @3) (convert2? (lshift integer_onep@1 @2)))
367 (if ((TYPE_UNSIGNED (type) || tree_expr_nonnegative_p (@0))
368 && (!VECTOR_TYPE_P (type)
369 || target_supports_op_p (type, RSHIFT_EXPR, optab_vector)
370 || target_supports_op_p (type, RSHIFT_EXPR, optab_scalar))
371 && (useless_type_conversion_p (type, TREE_TYPE (@1))
372 || (element_precision (type) >= element_precision (TREE_TYPE (@1))
373 && (TYPE_UNSIGNED (TREE_TYPE (@1))
374 || (element_precision (type)
375 == element_precision (TREE_TYPE (@1)))
376 || (INTEGRAL_TYPE_P (type)
377 && (tree_nonzero_bits (@0)
378 & wi::mask (element_precision (TREE_TYPE (@1)) - 1,
380 element_precision (type))) == 0)))))
381 (if (!VECTOR_TYPE_P (type)
382 && useless_type_conversion_p (TREE_TYPE (@3), TREE_TYPE (@1))
383 && element_precision (TREE_TYPE (@3)) < element_precision (type))
384 (convert (rshift @3 @2))
387 /* Preserve explicit divisions by 0: the C++ front-end wants to detect
388 undefined behavior in constexpr evaluation, and assuming that the division
389 traps enables better optimizations than these anyway. */
390 (for div (trunc_div ceil_div floor_div round_div exact_div)
391 /* 0 / X is always zero. */
393 (div integer_zerop@0 @1)
394 /* But not for 0 / 0 so that we can get the proper warnings and errors. */
395 (if (!integer_zerop (@1))
399 (div @0 integer_minus_onep@1)
400 (if (!TYPE_UNSIGNED (type))
402 /* X / bool_range_Y is X. */
405 (if (INTEGRAL_TYPE_P (type)
406 && ssa_name_has_boolean_range (@1)
407 && !flag_non_call_exceptions)
412 /* But not for 0 / 0 so that we can get the proper warnings and errors.
413 And not for _Fract types where we can't build 1. */
414 (if (!ALL_FRACT_MODE_P (TYPE_MODE (type))
415 && !integer_zerop (@0)
416 && (!flag_non_call_exceptions || tree_expr_nonzero_p (@0)))
417 { build_one_cst (type); }))
418 /* X / abs (X) is X < 0 ? -1 : 1. */
421 (if (INTEGRAL_TYPE_P (type)
422 && TYPE_OVERFLOW_UNDEFINED (type)
423 && !integer_zerop (@0)
424 && (!flag_non_call_exceptions || tree_expr_nonzero_p (@0)))
425 (cond (lt @0 { build_zero_cst (type); })
426 { build_minus_one_cst (type); } { build_one_cst (type); })))
429 (div:C @0 (negate @0))
430 (if ((INTEGRAL_TYPE_P (type) || VECTOR_INTEGER_TYPE_P (type))
431 && TYPE_OVERFLOW_UNDEFINED (type)
432 && !integer_zerop (@0)
433 && (!flag_non_call_exceptions || tree_expr_nonzero_p (@0)))
434 { build_minus_one_cst (type); })))
436 /* For unsigned integral types, FLOOR_DIV_EXPR is the same as
437 TRUNC_DIV_EXPR. Rewrite into the latter in this case. Similarly
438 for MOD instead of DIV. */
439 (for floor_divmod (floor_div floor_mod)
440 trunc_divmod (trunc_div trunc_mod)
443 (if ((INTEGRAL_TYPE_P (type) || VECTOR_INTEGER_TYPE_P (type))
444 && TYPE_UNSIGNED (type))
445 (trunc_divmod @0 @1))))
447 /* 1 / X -> X == 1 for unsigned integer X.
448 1 / X -> X >= -1 && X <= 1 ? X : 0 for signed integer X.
449 But not for 1 / 0 so that we can get proper warnings and errors,
450 and not for 1-bit integers as they are edge cases better handled
453 (trunc_div integer_onep@0 @1)
454 (if (INTEGRAL_TYPE_P (type)
455 && TYPE_PRECISION (type) > 1
456 && !integer_zerop (@1)
457 && (!flag_non_call_exceptions || tree_expr_nonzero_p (@1)))
458 (if (TYPE_UNSIGNED (type))
459 (convert (eq:boolean_type_node @1 { build_one_cst (type); }))
460 (with { tree utype = unsigned_type_for (type); }
461 (cond (le (plus (convert:utype @1) { build_one_cst (utype); })
462 { build_int_cst (utype, 2); })
463 @1 { build_zero_cst (type); })))))
465 /* Combine two successive divisions. Note that combining ceil_div
466 and floor_div is trickier and combining round_div even more so. */
467 (for div (trunc_div exact_div)
469 (div (div@3 @0 INTEGER_CST@1) INTEGER_CST@2)
471 wi::overflow_type overflow;
472 wide_int mul = wi::mul (wi::to_wide (@1), wi::to_wide (@2),
473 TYPE_SIGN (type), &overflow);
475 (if (div == EXACT_DIV_EXPR
476 || optimize_successive_divisions_p (@2, @3))
478 (div @0 { wide_int_to_tree (type, mul); })
479 (if (TYPE_UNSIGNED (type)
480 || mul != wi::min_value (TYPE_PRECISION (type), SIGNED))
481 { build_zero_cst (type); }))))))
483 /* Combine successive multiplications. Similar to above, but handling
484 overflow is different. */
486 (mult (mult @0 INTEGER_CST@1) INTEGER_CST@2)
488 wi::overflow_type overflow;
489 wide_int mul = wi::mul (wi::to_wide (@1), wi::to_wide (@2),
490 TYPE_SIGN (type), &overflow);
492 /* Skip folding on overflow: the only special case is @1 * @2 == -INT_MIN,
493 otherwise undefined overflow implies that @0 must be zero. */
494 (if (!overflow || TYPE_OVERFLOW_WRAPS (type))
495 (mult @0 { wide_int_to_tree (type, mul); }))))
497 /* Similar to above, but there could be an extra add/sub between
498 successive multuiplications. */
500 (mult (plus:s (mult:s@4 @0 INTEGER_CST@1) INTEGER_CST@2) INTEGER_CST@3)
502 bool overflowed = true;
503 wi::overflow_type ovf1, ovf2;
504 wide_int mul = wi::mul (wi::to_wide (@1), wi::to_wide (@3),
505 TYPE_SIGN (type), &ovf1);
506 wide_int add = wi::mul (wi::to_wide (@2), wi::to_wide (@3),
507 TYPE_SIGN (type), &ovf2);
508 if (TYPE_OVERFLOW_UNDEFINED (type))
512 if (ovf1 == wi::OVF_NONE && ovf2 == wi::OVF_NONE
513 && get_global_range_query ()->range_of_expr (vr0, @4)
514 && vr0.kind () == VR_RANGE)
516 wide_int wmin0 = vr0.lower_bound ();
517 wide_int wmax0 = vr0.upper_bound ();
518 wmin0 = wi::mul (wmin0, wi::to_wide (@3), TYPE_SIGN (type), &ovf1);
519 wmax0 = wi::mul (wmax0, wi::to_wide (@3), TYPE_SIGN (type), &ovf2);
520 if (ovf1 == wi::OVF_NONE && ovf2 == wi::OVF_NONE)
522 wi::add (wmin0, add, TYPE_SIGN (type), &ovf1);
523 wi::add (wmax0, add, TYPE_SIGN (type), &ovf2);
524 if (ovf1 == wi::OVF_NONE && ovf2 == wi::OVF_NONE)
533 /* Skip folding on overflow. */
535 (plus (mult @0 { wide_int_to_tree (type, mul); })
536 { wide_int_to_tree (type, add); }))))
538 /* Similar to above, but a multiplication between successive additions. */
540 (plus (mult:s (plus:s @0 INTEGER_CST@1) INTEGER_CST@2) INTEGER_CST@3)
542 bool overflowed = true;
543 wi::overflow_type ovf1;
544 wi::overflow_type ovf2;
545 wide_int mul = wi::mul (wi::to_wide (@1), wi::to_wide (@2),
546 TYPE_SIGN (type), &ovf1);
547 wide_int add = wi::add (mul, wi::to_wide (@3),
548 TYPE_SIGN (type), &ovf2);
549 if (TYPE_OVERFLOW_UNDEFINED (type))
553 if (ovf1 == wi::OVF_NONE && ovf2 == wi::OVF_NONE
554 && get_global_range_query ()->range_of_expr (vr0, @0)
555 && vr0.kind () == VR_RANGE)
557 wide_int wmin0 = vr0.lower_bound ();
558 wide_int wmax0 = vr0.upper_bound ();
559 wmin0 = wi::mul (wmin0, wi::to_wide (@2), TYPE_SIGN (type), &ovf1);
560 wmax0 = wi::mul (wmax0, wi::to_wide (@2), TYPE_SIGN (type), &ovf2);
561 if (ovf1 == wi::OVF_NONE && ovf2 == wi::OVF_NONE)
563 wi::add (wmin0, mul, TYPE_SIGN (type), &ovf1);
564 wi::add (wmax0, mul, TYPE_SIGN (type), &ovf2);
565 if (ovf1 == wi::OVF_NONE && ovf2 == wi::OVF_NONE)
574 /* Skip folding on overflow. */
576 (plus (mult @0 @2) { wide_int_to_tree (type, add); }))))
578 /* Optimize A / A to 1.0 if we don't care about
579 NaNs or Infinities. */
582 (if (FLOAT_TYPE_P (type)
583 && ! HONOR_NANS (type)
584 && ! HONOR_INFINITIES (type))
585 { build_one_cst (type); }))
587 /* Optimize -A / A to -1.0 if we don't care about
588 NaNs or Infinities. */
590 (rdiv:C @0 (negate @0))
591 (if (FLOAT_TYPE_P (type)
592 && ! HONOR_NANS (type)
593 && ! HONOR_INFINITIES (type))
594 { build_minus_one_cst (type); }))
596 /* PR71078: x / abs(x) -> copysign (1.0, x) */
598 (rdiv:C (convert? @0) (convert? (abs @0)))
599 (if (SCALAR_FLOAT_TYPE_P (type)
600 && ! HONOR_NANS (type)
601 && ! HONOR_INFINITIES (type))
603 (if (types_match (type, float_type_node))
604 (BUILT_IN_COPYSIGNF { build_one_cst (type); } (convert @0)))
605 (if (types_match (type, double_type_node))
606 (BUILT_IN_COPYSIGN { build_one_cst (type); } (convert @0)))
607 (if (types_match (type, long_double_type_node))
608 (BUILT_IN_COPYSIGNL { build_one_cst (type); } (convert @0))))))
610 /* In IEEE floating point, x/1 is not equivalent to x for snans. */
613 (if (!tree_expr_maybe_signaling_nan_p (@0))
616 /* In IEEE floating point, x/-1 is not equivalent to -x for snans. */
618 (rdiv @0 real_minus_onep)
619 (if (!tree_expr_maybe_signaling_nan_p (@0))
622 (if (flag_reciprocal_math)
623 /* Convert (A/B)/C to A/(B*C). */
625 (rdiv (rdiv:s @0 @1) @2)
626 (rdiv @0 (mult @1 @2)))
628 /* Canonicalize x / (C1 * y) to (x * C2) / y. */
630 (rdiv @0 (mult:s @1 REAL_CST@2))
632 { tree tem = const_binop (RDIV_EXPR, type, build_one_cst (type), @2); }
634 (rdiv (mult @0 { tem; } ) @1))))
636 /* Convert A/(B/C) to (A/B)*C */
638 (rdiv @0 (rdiv:s @1 @2))
639 (mult (rdiv @0 @1) @2)))
641 /* Simplify x / (- y) to -x / y. */
643 (rdiv @0 (negate @1))
644 (rdiv (negate @0) @1))
646 (if (flag_unsafe_math_optimizations)
647 /* Simplify (C / x op 0.0) to x op 0.0 for C != 0, C != Inf/Nan.
648 Since C / x may underflow to zero, do this only for unsafe math. */
649 (for op (lt le gt ge)
652 (op (rdiv REAL_CST@0 @1) real_zerop@2)
653 (if (!HONOR_SIGNED_ZEROS (@1) && !HONOR_INFINITIES (@1))
655 (if (real_less (&dconst0, TREE_REAL_CST_PTR (@0)))
657 /* For C < 0, use the inverted operator. */
658 (if (real_less (TREE_REAL_CST_PTR (@0), &dconst0))
661 /* Optimize (X & (-A)) / A where A is a power of 2, to X >> log2(A) */
662 (for div (trunc_div ceil_div floor_div round_div exact_div)
664 (div (convert? (bit_and @0 INTEGER_CST@1)) INTEGER_CST@2)
665 (if (integer_pow2p (@2)
666 && tree_int_cst_sgn (@2) > 0
667 && tree_nop_conversion_p (type, TREE_TYPE (@0))
668 && wi::to_wide (@2) + wi::to_wide (@1) == 0)
670 { build_int_cst (integer_type_node,
671 wi::exact_log2 (wi::to_wide (@2))); }))))
673 /* If ARG1 is a constant, we can convert this to a multiply by the
674 reciprocal. This does not have the same rounding properties,
675 so only do this if -freciprocal-math. We can actually
676 always safely do it if ARG1 is a power of two, but it's hard to
677 tell if it is or not in a portable manner. */
678 (for cst (REAL_CST COMPLEX_CST VECTOR_CST)
682 (if (flag_reciprocal_math
685 { tree tem = const_binop (RDIV_EXPR, type, build_one_cst (type), @1); }
687 (mult @0 { tem; } )))
688 (if (cst != COMPLEX_CST)
689 (with { tree inverse = exact_inverse (type, @1); }
691 (mult @0 { inverse; } ))))))))
693 (for mod (ceil_mod floor_mod round_mod trunc_mod)
694 /* 0 % X is always zero. */
696 (mod integer_zerop@0 @1)
697 /* But not for 0 % 0 so that we can get the proper warnings and errors. */
698 (if (!integer_zerop (@1))
700 /* X % 1 is always zero. */
702 (mod @0 integer_onep)
703 { build_zero_cst (type); })
704 /* X % -1 is zero. */
706 (mod @0 integer_minus_onep@1)
707 (if (!TYPE_UNSIGNED (type))
708 { build_zero_cst (type); }))
712 /* But not for 0 % 0 so that we can get the proper warnings and errors. */
713 (if (!integer_zerop (@0))
714 { build_zero_cst (type); }))
715 /* (X % Y) % Y is just X % Y. */
717 (mod (mod@2 @0 @1) @1)
719 /* From extract_muldiv_1: (X * C1) % C2 is zero if C1 is a multiple of C2. */
721 (mod (mult @0 INTEGER_CST@1) INTEGER_CST@2)
722 (if (ANY_INTEGRAL_TYPE_P (type)
723 && TYPE_OVERFLOW_UNDEFINED (type)
724 && wi::multiple_of_p (wi::to_wide (@1), wi::to_wide (@2),
726 { build_zero_cst (type); }))
727 /* For (X % C) == 0, if X is signed and C is power of 2, use unsigned
728 modulo and comparison, since it is simpler and equivalent. */
731 (cmp (mod @0 integer_pow2p@2) integer_zerop@1)
732 (if (!TYPE_UNSIGNED (TREE_TYPE (@0)))
733 (with { tree utype = unsigned_type_for (TREE_TYPE (@0)); }
734 (cmp (mod (convert:utype @0) (convert:utype @2)) (convert:utype @1)))))))
736 /* X % -C is the same as X % C. */
738 (trunc_mod @0 INTEGER_CST@1)
739 (if (TYPE_SIGN (type) == SIGNED
740 && !TREE_OVERFLOW (@1)
741 && wi::neg_p (wi::to_wide (@1))
742 && !TYPE_OVERFLOW_TRAPS (type)
743 /* Avoid this transformation if C is INT_MIN, i.e. C == -C. */
744 && !sign_bit_p (@1, @1))
745 (trunc_mod @0 (negate @1))))
747 /* X % -Y is the same as X % Y. */
749 (trunc_mod @0 (convert? (negate @1)))
750 (if (INTEGRAL_TYPE_P (type)
751 && !TYPE_UNSIGNED (type)
752 && !TYPE_OVERFLOW_TRAPS (type)
753 && tree_nop_conversion_p (type, TREE_TYPE (@1))
754 /* Avoid this transformation if X might be INT_MIN or
755 Y might be -1, because we would then change valid
756 INT_MIN % -(-1) into invalid INT_MIN % -1. */
757 && (expr_not_equal_to (@0, wi::to_wide (TYPE_MIN_VALUE (type)))
758 || expr_not_equal_to (@1, wi::minus_one (TYPE_PRECISION
760 (trunc_mod @0 (convert @1))))
762 /* X - (X / Y) * Y is the same as X % Y. */
764 (minus (convert1? @0) (convert2? (mult:c (trunc_div @@0 @@1) @1)))
765 (if (INTEGRAL_TYPE_P (type) || VECTOR_INTEGER_TYPE_P (type))
766 (convert (trunc_mod @0 @1))))
768 /* x * (1 + y / x) - y -> x - y % x */
770 (minus (mult:cs @0 (plus:s (trunc_div:s @1 @0) integer_onep)) @1)
771 (if (INTEGRAL_TYPE_P (type))
772 (minus @0 (trunc_mod @1 @0))))
774 /* Optimize TRUNC_MOD_EXPR by a power of two into a BIT_AND_EXPR,
775 i.e. "X % C" into "X & (C - 1)", if X and C are positive.
776 Also optimize A % (C << N) where C is a power of 2,
777 to A & ((C << N) - 1).
778 Also optimize "A shift (B % C)", if C is a power of 2, to
779 "A shift (B & (C - 1))". SHIFT operation include "<<" and ">>"
780 and assume (B % C) is nonnegative as shifts negative values would
782 (match (power_of_two_cand @1)
784 (match (power_of_two_cand @1)
785 (lshift INTEGER_CST@1 @2))
786 (for mod (trunc_mod floor_mod)
787 (for shift (lshift rshift)
789 (shift @0 (mod @1 (power_of_two_cand@2 @3)))
790 (if (integer_pow2p (@3) && tree_int_cst_sgn (@3) > 0)
791 (shift @0 (bit_and @1 (minus @2 { build_int_cst (TREE_TYPE (@2),
794 (mod @0 (convert? (power_of_two_cand@1 @2)))
795 (if ((TYPE_UNSIGNED (type) || tree_expr_nonnegative_p (@0))
796 /* Allow any integral conversions of the divisor, except
797 conversion from narrower signed to wider unsigned type
798 where if @1 would be negative power of two, the divisor
799 would not be a power of two. */
800 && INTEGRAL_TYPE_P (type)
801 && INTEGRAL_TYPE_P (TREE_TYPE (@1))
802 && (TYPE_PRECISION (type) <= TYPE_PRECISION (TREE_TYPE (@1))
803 || TYPE_UNSIGNED (TREE_TYPE (@1))
804 || !TYPE_UNSIGNED (type))
805 && integer_pow2p (@2) && tree_int_cst_sgn (@2) > 0)
806 (with { tree utype = TREE_TYPE (@1);
807 if (!TYPE_OVERFLOW_WRAPS (utype))
808 utype = unsigned_type_for (utype); }
809 (bit_and @0 (convert (minus (convert:utype @1)
810 { build_one_cst (utype); })))))))
812 /* Simplify (unsigned t * 2)/2 -> unsigned t & 0x7FFFFFFF. */
814 (trunc_div (mult @0 integer_pow2p@1) @1)
815 (if (INTEGRAL_TYPE_P (TREE_TYPE (@0)) && TYPE_UNSIGNED (TREE_TYPE (@0)))
816 (bit_and @0 { wide_int_to_tree
817 (type, wi::mask (TYPE_PRECISION (type)
818 - wi::exact_log2 (wi::to_wide (@1)),
819 false, TYPE_PRECISION (type))); })))
821 /* Simplify (unsigned t / 2) * 2 -> unsigned t & ~1. */
823 (mult (trunc_div @0 integer_pow2p@1) @1)
824 (if (INTEGRAL_TYPE_P (TREE_TYPE (@0)) && TYPE_UNSIGNED (TREE_TYPE (@0)))
825 (bit_and @0 (negate @1))))
827 /* Simplify (t * 2) / 2) -> t. */
828 (for div (trunc_div ceil_div floor_div round_div exact_div)
830 (div (mult:c @0 @1) @1)
831 (if (ANY_INTEGRAL_TYPE_P (type))
832 (if (TYPE_OVERFLOW_UNDEFINED (type))
837 bool overflowed = true;
838 value_range vr0, vr1;
839 if (INTEGRAL_TYPE_P (type)
840 && get_global_range_query ()->range_of_expr (vr0, @0)
841 && get_global_range_query ()->range_of_expr (vr1, @1)
842 && vr0.kind () == VR_RANGE
843 && vr1.kind () == VR_RANGE)
845 wide_int wmin0 = vr0.lower_bound ();
846 wide_int wmax0 = vr0.upper_bound ();
847 wide_int wmin1 = vr1.lower_bound ();
848 wide_int wmax1 = vr1.upper_bound ();
849 /* If the multiplication can't overflow/wrap around, then
850 it can be optimized too. */
851 wi::overflow_type min_ovf, max_ovf;
852 wi::mul (wmin0, wmin1, TYPE_SIGN (type), &min_ovf);
853 wi::mul (wmax0, wmax1, TYPE_SIGN (type), &max_ovf);
854 if (min_ovf == wi::OVF_NONE && max_ovf == wi::OVF_NONE)
856 wi::mul (wmin0, wmax1, TYPE_SIGN (type), &min_ovf);
857 wi::mul (wmax0, wmin1, TYPE_SIGN (type), &max_ovf);
858 if (min_ovf == wi::OVF_NONE && max_ovf == wi::OVF_NONE)
869 /* Simplify cos(-x) and cos(|x|) -> cos(x). Similarly for cosh. */
874 /* Simplify pow(-x, y) and pow(|x|,y) -> pow(x,y) if y is an even integer. */
877 (pows (op @0) REAL_CST@1)
878 (with { HOST_WIDE_INT n; }
879 (if (real_isinteger (&TREE_REAL_CST (@1), &n) && (n & 1) == 0)
881 /* Likewise for powi. */
884 (pows (op @0) INTEGER_CST@1)
885 (if ((wi::to_wide (@1) & 1) == 0)
887 /* Strip negate and abs from both operands of hypot. */
895 /* copysign(-x, y) and copysign(abs(x), y) -> copysign(x, y). */
896 (for copysigns (COPYSIGN_ALL)
898 (copysigns (op @0) @1)
901 /* abs(x)*abs(x) -> x*x. Should be valid for all types. */
906 /* Convert absu(x)*absu(x) -> x*x. */
908 (mult (absu@1 @0) @1)
909 (mult (convert@2 @0) @2))
911 /* cos(copysign(x, y)) -> cos(x). Similarly for cosh. */
915 (coss (copysigns @0 @1))
918 /* pow(copysign(x, y), z) -> pow(x, z) if z is an even integer. */
922 (pows (copysigns @0 @2) REAL_CST@1)
923 (with { HOST_WIDE_INT n; }
924 (if (real_isinteger (&TREE_REAL_CST (@1), &n) && (n & 1) == 0)
926 /* Likewise for powi. */
930 (pows (copysigns @0 @2) INTEGER_CST@1)
931 (if ((wi::to_wide (@1) & 1) == 0)
936 /* hypot(copysign(x, y), z) -> hypot(x, z). */
938 (hypots (copysigns @0 @1) @2)
940 /* hypot(x, copysign(y, z)) -> hypot(x, y). */
942 (hypots @0 (copysigns @1 @2))
945 /* copysign(x, CST) -> [-]abs (x). */
946 (for copysigns (COPYSIGN_ALL)
948 (copysigns @0 REAL_CST@1)
949 (if (REAL_VALUE_NEGATIVE (TREE_REAL_CST (@1)))
953 /* copysign(copysign(x, y), z) -> copysign(x, z). */
954 (for copysigns (COPYSIGN_ALL)
956 (copysigns (copysigns @0 @1) @2)
959 /* copysign(x,y)*copysign(x,y) -> x*x. */
960 (for copysigns (COPYSIGN_ALL)
962 (mult (copysigns@2 @0 @1) @2)
965 /* ccos(-x) -> ccos(x). Similarly for ccosh. */
966 (for ccoss (CCOS CCOSH)
971 /* cabs(-x) and cos(conj(x)) -> cabs(x). */
972 (for ops (conj negate)
978 /* Fold (a * (1 << b)) into (a << b) */
980 (mult:c @0 (convert? (lshift integer_onep@1 @2)))
981 (if (! FLOAT_TYPE_P (type)
982 && tree_nop_conversion_p (type, TREE_TYPE (@1)))
985 /* Shifts by constants distribute over several binary operations,
986 hence (X << C) + (Y << C) can be simplified to (X + Y) << C. */
989 (op (lshift:s @0 @1) (lshift:s @2 @1))
990 (if (INTEGRAL_TYPE_P (type)
991 && TYPE_OVERFLOW_WRAPS (type)
992 && !TYPE_SATURATING (type))
993 (lshift (op @0 @2) @1))))
995 (for op (bit_and bit_ior bit_xor)
997 (op (lshift:s @0 @1) (lshift:s @2 @1))
998 (if (INTEGRAL_TYPE_P (type))
999 (lshift (op @0 @2) @1)))
1001 (op (rshift:s @0 @1) (rshift:s @2 @1))
1002 (if (INTEGRAL_TYPE_P (type))
1003 (rshift (op @0 @2) @1))))
1005 /* Fold (1 << (C - x)) where C = precision(type) - 1
1006 into ((1 << C) >> x). */
1008 (lshift integer_onep@0 (minus@1 INTEGER_CST@2 @3))
1009 (if (INTEGRAL_TYPE_P (type)
1010 && wi::eq_p (wi::to_wide (@2), TYPE_PRECISION (type) - 1)
1012 (if (TYPE_UNSIGNED (type))
1013 (rshift (lshift @0 @2) @3)
1015 { tree utype = unsigned_type_for (type); }
1016 (convert (rshift (lshift (convert:utype @0) @2) @3))))))
1018 /* Fold ((type)(a<0)) << SIGNBITOFA into ((type)a) & signbit. */
1020 (lshift (convert (lt @0 integer_zerop@1)) INTEGER_CST@2)
1021 (if (TYPE_SIGN (TREE_TYPE (@0)) == SIGNED
1022 && wi::eq_p (wi::to_wide (@2), TYPE_PRECISION (TREE_TYPE (@0)) - 1))
1023 (with { wide_int wone = wi::one (TYPE_PRECISION (type)); }
1024 (bit_and (convert @0)
1025 { wide_int_to_tree (type,
1026 wi::lshift (wone, wi::to_wide (@2))); }))))
1028 /* Fold (-x >> C) into -(x > 0) where C = precision(type) - 1. */
1029 (for cst (INTEGER_CST VECTOR_CST)
1031 (rshift (negate:s @0) cst@1)
1032 (if (!TYPE_UNSIGNED (type)
1033 && TYPE_OVERFLOW_UNDEFINED (type))
1034 (with { tree stype = TREE_TYPE (@1);
1035 tree bt = truth_type_for (type);
1036 tree zeros = build_zero_cst (type);
1037 tree cst = NULL_TREE; }
1039 /* Handle scalar case. */
1040 (if (INTEGRAL_TYPE_P (type)
1041 /* If we apply the rule to the scalar type before vectorization
1042 we will enforce the result of the comparison being a bool
1043 which will require an extra AND on the result that will be
1044 indistinguishable from when the user did actually want 0
1045 or 1 as the result so it can't be removed. */
1046 && canonicalize_math_after_vectorization_p ()
1047 && wi::eq_p (wi::to_wide (@1), TYPE_PRECISION (type) - 1))
1048 (negate (convert (gt @0 { zeros; }))))
1049 /* Handle vector case. */
1050 (if (VECTOR_INTEGER_TYPE_P (type)
1051 /* First check whether the target has the same mode for vector
1052 comparison results as it's operands do. */
1053 && TYPE_MODE (bt) == TYPE_MODE (type)
1054 /* Then check to see if the target is able to expand the comparison
1055 with the given type later on, otherwise we may ICE. */
1056 && expand_vec_cmp_expr_p (type, bt, GT_EXPR)
1057 && (cst = uniform_integer_cst_p (@1)) != NULL
1058 && wi::eq_p (wi::to_wide (cst), element_precision (type) - 1))
1059 (view_convert (gt:bt @0 { zeros; }))))))))
1061 /* Fold (C1/X)*C2 into (C1*C2)/X. */
1063 (mult (rdiv@3 REAL_CST@0 @1) REAL_CST@2)
1064 (if (flag_associative_math
1067 { tree tem = const_binop (MULT_EXPR, type, @0, @2); }
1069 (rdiv { tem; } @1)))))
1071 /* Simplify ~X & X as zero. */
1073 (bit_and:c (convert? @0) (convert? (bit_not @0)))
1074 { build_zero_cst (type); })
1076 /* PR71636: Transform x & ((1U << b) - 1) -> x & ~(~0U << b); */
1078 (bit_and:c @0 (plus:s (lshift:s integer_onep @1) integer_minus_onep))
1079 (if (TYPE_UNSIGNED (type))
1080 (bit_and @0 (bit_not (lshift { build_all_ones_cst (type); } @1)))))
1082 (for bitop (bit_and bit_ior)
1084 /* PR35691: Transform
1085 (x == 0 & y == 0) -> (x | typeof(x)(y)) == 0.
1086 (x != 0 | y != 0) -> (x | typeof(x)(y)) != 0. */
1088 (bitop (cmp @0 integer_zerop@2) (cmp @1 integer_zerop))
1089 (if (INTEGRAL_TYPE_P (TREE_TYPE (@0))
1090 && INTEGRAL_TYPE_P (TREE_TYPE (@1))
1091 && TYPE_PRECISION (TREE_TYPE (@0)) == TYPE_PRECISION (TREE_TYPE (@1)))
1092 (cmp (bit_ior @0 (convert @1)) @2)))
1094 (x == -1 & y == -1) -> (x & typeof(x)(y)) == -1.
1095 (x != -1 | y != -1) -> (x & typeof(x)(y)) != -1. */
1097 (bitop (cmp @0 integer_all_onesp@2) (cmp @1 integer_all_onesp))
1098 (if (INTEGRAL_TYPE_P (TREE_TYPE (@0))
1099 && INTEGRAL_TYPE_P (TREE_TYPE (@1))
1100 && TYPE_PRECISION (TREE_TYPE (@0)) == TYPE_PRECISION (TREE_TYPE (@1)))
1101 (cmp (bit_and @0 (convert @1)) @2))))
1103 /* Fold (A & ~B) - (A & B) into (A ^ B) - B. */
1105 (minus (bit_and:cs @0 (bit_not @1)) (bit_and:cs @0 @1))
1106 (minus (bit_xor @0 @1) @1))
1108 (minus (bit_and:s @0 INTEGER_CST@2) (bit_and:s @0 INTEGER_CST@1))
1109 (if (~wi::to_wide (@2) == wi::to_wide (@1))
1110 (minus (bit_xor @0 @1) @1)))
1112 /* Fold (A & B) - (A & ~B) into B - (A ^ B). */
1114 (minus (bit_and:cs @0 @1) (bit_and:cs @0 (bit_not @1)))
1115 (minus @1 (bit_xor @0 @1)))
1117 /* Simplify (X & ~Y) |^+ (~X & Y) -> X ^ Y. */
1118 (for op (bit_ior bit_xor plus)
1120 (op (bit_and:c @0 (bit_not @1)) (bit_and:c (bit_not @0) @1))
1123 (op:c (bit_and @0 INTEGER_CST@2) (bit_and (bit_not @0) INTEGER_CST@1))
1124 (if (~wi::to_wide (@2) == wi::to_wide (@1))
1127 /* PR53979: Transform ((a ^ b) | a) -> (a | b) */
1129 (bit_ior:c (bit_xor:c @0 @1) @0)
1132 /* (a & ~b) | (a ^ b) --> a ^ b */
1134 (bit_ior:c (bit_and:c @0 (bit_not @1)) (bit_xor:c@2 @0 @1))
1137 /* (a & ~b) ^ ~a --> ~(a & b) */
1139 (bit_xor:c (bit_and:cs @0 (bit_not @1)) (bit_not @0))
1140 (bit_not (bit_and @0 @1)))
1142 /* (~a & b) ^ a --> (a | b) */
1144 (bit_xor:c (bit_and:cs (bit_not @0) @1) @0)
1147 /* (a | b) & ~(a ^ b) --> a & b */
1149 (bit_and:c (bit_ior @0 @1) (bit_not (bit_xor:c @0 @1)))
1152 /* a | ~(a ^ b) --> a | ~b */
1154 (bit_ior:c @0 (bit_not:s (bit_xor:c @0 @1)))
1155 (bit_ior @0 (bit_not @1)))
1157 /* (a | b) | (a &^ b) --> a | b */
1158 (for op (bit_and bit_xor)
1160 (bit_ior:c (bit_ior@2 @0 @1) (op:c @0 @1))
1163 /* (a & b) | ~(a ^ b) --> ~(a ^ b) */
1165 (bit_ior:c (bit_and:c @0 @1) (bit_not@2 (bit_xor @0 @1)))
1168 /* ~(~a & b) --> a | ~b */
1170 (bit_not (bit_and:cs (bit_not @0) @1))
1171 (bit_ior @0 (bit_not @1)))
1173 /* ~(~a | b) --> a & ~b */
1175 (bit_not (bit_ior:cs (bit_not @0) @1))
1176 (bit_and @0 (bit_not @1)))
1178 /* (a ^ b) & ((b ^ c) ^ a) --> (a ^ b) & ~c */
1180 (bit_and:c (bit_xor:c@3 @0 @1) (bit_xor:cs (bit_xor:cs @1 @2) @0))
1181 (bit_and @3 (bit_not @2)))
1183 /* (a ^ b) | ((b ^ c) ^ a) --> (a ^ b) | c */
1185 (bit_ior:c (bit_xor:c@3 @0 @1) (bit_xor:c (bit_xor:c @1 @2) @0))
1188 /* (~X | C) ^ D -> (X | C) ^ (~D ^ C) if (~D ^ C) can be simplified. */
1190 (bit_xor:c (bit_ior:cs (bit_not:s @0) @1) @2)
1191 (bit_xor (bit_ior @0 @1) (bit_xor! (bit_not! @2) @1)))
1193 /* (~X & C) ^ D -> (X & C) ^ (D ^ C) if (D ^ C) can be simplified. */
1195 (bit_xor:c (bit_and:cs (bit_not:s @0) @1) @2)
1196 (bit_xor (bit_and @0 @1) (bit_xor! @2 @1)))
1198 /* Simplify (~X & Y) to X ^ Y if we know that (X & ~Y) is 0. */
1200 (bit_and (bit_not SSA_NAME@0) INTEGER_CST@1)
1201 (if (INTEGRAL_TYPE_P (TREE_TYPE (@0))
1202 && wi::bit_and_not (get_nonzero_bits (@0), wi::to_wide (@1)) == 0)
1205 /* For constants M and N, if M == (1LL << cst) - 1 && (N & M) == M,
1206 ((A & N) + B) & M -> (A + B) & M
1207 Similarly if (N & M) == 0,
1208 ((A | N) + B) & M -> (A + B) & M
1209 and for - instead of + (or unary - instead of +)
1210 and/or ^ instead of |.
1211 If B is constant and (B & M) == 0, fold into A & M. */
1212 (for op (plus minus)
1213 (for bitop (bit_and bit_ior bit_xor)
1215 (bit_and (op:s (bitop:s@0 @3 INTEGER_CST@4) @1) INTEGER_CST@2)
1218 tree utype = fold_bit_and_mask (TREE_TYPE (@0), @2, op, @0, bitop,
1219 @3, @4, @1, ERROR_MARK, NULL_TREE,
1222 (convert (bit_and (op (convert:utype { pmop[0]; })
1223 (convert:utype { pmop[1]; }))
1224 (convert:utype @2))))))
1226 (bit_and (op:s @0 (bitop:s@1 @3 INTEGER_CST@4)) INTEGER_CST@2)
1229 tree utype = fold_bit_and_mask (TREE_TYPE (@0), @2, op, @0, ERROR_MARK,
1230 NULL_TREE, NULL_TREE, @1, bitop, @3,
1233 (convert (bit_and (op (convert:utype { pmop[0]; })
1234 (convert:utype { pmop[1]; }))
1235 (convert:utype @2)))))))
1237 (bit_and (op:s @0 @1) INTEGER_CST@2)
1240 tree utype = fold_bit_and_mask (TREE_TYPE (@0), @2, op, @0, ERROR_MARK,
1241 NULL_TREE, NULL_TREE, @1, ERROR_MARK,
1242 NULL_TREE, NULL_TREE, pmop); }
1244 (convert (bit_and (op (convert:utype { pmop[0]; })
1245 (convert:utype { pmop[1]; }))
1246 (convert:utype @2)))))))
1247 (for bitop (bit_and bit_ior bit_xor)
1249 (bit_and (negate:s (bitop:s@0 @2 INTEGER_CST@3)) INTEGER_CST@1)
1252 tree utype = fold_bit_and_mask (TREE_TYPE (@0), @1, NEGATE_EXPR, @0,
1253 bitop, @2, @3, NULL_TREE, ERROR_MARK,
1254 NULL_TREE, NULL_TREE, pmop); }
1256 (convert (bit_and (negate (convert:utype { pmop[0]; }))
1257 (convert:utype @1)))))))
1259 /* X % Y is smaller than Y. */
1262 (cmp (trunc_mod @0 @1) @1)
1263 (if (TYPE_UNSIGNED (TREE_TYPE (@0)))
1264 { constant_boolean_node (cmp == LT_EXPR, type); })))
1267 (cmp @1 (trunc_mod @0 @1))
1268 (if (TYPE_UNSIGNED (TREE_TYPE (@0)))
1269 { constant_boolean_node (cmp == GT_EXPR, type); })))
1273 (bit_ior @0 integer_all_onesp@1)
1278 (bit_ior @0 integer_zerop)
1283 (bit_and @0 integer_zerop@1)
1289 (for op (bit_ior bit_xor plus)
1291 (op:c (convert? @0) (convert? (bit_not @0)))
1292 (convert { build_all_ones_cst (TREE_TYPE (@0)); })))
1297 { build_zero_cst (type); })
1299 /* Canonicalize X ^ ~0 to ~X. */
1301 (bit_xor @0 integer_all_onesp@1)
1306 (bit_and @0 integer_all_onesp)
1309 /* x & x -> x, x | x -> x */
1310 (for bitop (bit_and bit_ior)
1315 /* x & C -> x if we know that x & ~C == 0. */
1318 (bit_and SSA_NAME@0 INTEGER_CST@1)
1319 (if (INTEGRAL_TYPE_P (TREE_TYPE (@0))
1320 && wi::bit_and_not (get_nonzero_bits (@0), wi::to_wide (@1)) == 0)
1324 /* ~(~X - Y) -> X + Y and ~(~X + Y) -> X - Y. */
1326 (bit_not (minus (bit_not @0) @1))
1329 (bit_not (plus:c (bit_not @0) @1))
1331 /* (~X - ~Y) -> Y - X. */
1333 (minus (bit_not @0) (bit_not @1))
1334 (with { tree utype = unsigned_type_for (type); }
1335 (convert (minus (convert:utype @1) (convert:utype @0)))))
1337 /* ~(X - Y) -> ~X + Y. */
1339 (bit_not (minus:s @0 @1))
1340 (plus (bit_not @0) @1))
1342 (bit_not (plus:s @0 INTEGER_CST@1))
1343 (if ((INTEGRAL_TYPE_P (type)
1344 && TYPE_UNSIGNED (type))
1345 || (!TYPE_OVERFLOW_SANITIZED (type)
1346 && may_negate_without_overflow_p (@1)))
1347 (plus (bit_not @0) { const_unop (NEGATE_EXPR, type, @1); })))
1350 /* ~X + Y -> (Y - X) - 1. */
1352 (plus:c (bit_not @0) @1)
1353 (if (ANY_INTEGRAL_TYPE_P (type)
1354 && TYPE_OVERFLOW_WRAPS (type)
1355 /* -1 - X is folded to ~X, so we'd recurse endlessly. */
1356 && !integer_all_onesp (@1))
1357 (plus (minus @1 @0) { build_minus_one_cst (type); })
1358 (if (INTEGRAL_TYPE_P (type)
1359 && TREE_CODE (@1) == INTEGER_CST
1360 && wi::to_wide (@1) != wi::min_value (TYPE_PRECISION (type),
1362 (minus (plus @1 { build_minus_one_cst (type); }) @0))))
1365 /* ~(X >> Y) -> ~X >> Y if ~X can be simplified. */
1367 (bit_not (rshift:s @0 @1))
1368 (if (!TYPE_UNSIGNED (TREE_TYPE (@0)))
1369 (rshift (bit_not! @0) @1)
1370 /* For logical right shifts, this is possible only if @0 doesn't
1371 have MSB set and the logical right shift is changed into
1372 arithmetic shift. */
1373 (if (!wi::neg_p (tree_nonzero_bits (@0)))
1374 (with { tree stype = signed_type_for (TREE_TYPE (@0)); }
1375 (convert (rshift (bit_not! (convert:stype @0)) @1))))))
1377 /* x + (x & 1) -> (x + 1) & ~1 */
1379 (plus:c @0 (bit_and:s @0 integer_onep@1))
1380 (bit_and (plus @0 @1) (bit_not @1)))
1382 /* x & ~(x & y) -> x & ~y */
1383 /* x | ~(x | y) -> x | ~y */
1384 (for bitop (bit_and bit_ior)
1386 (bitop:c @0 (bit_not (bitop:cs @0 @1)))
1387 (bitop @0 (bit_not @1))))
1389 /* (~x & y) | ~(x | y) -> ~x */
1391 (bit_ior:c (bit_and:c (bit_not@2 @0) @1) (bit_not (bit_ior:c @0 @1)))
1394 /* (x | y) ^ (x | ~y) -> ~x */
1396 (bit_xor:c (bit_ior:c @0 @1) (bit_ior:c @0 (bit_not @1)))
1399 /* (x & y) | ~(x | y) -> ~(x ^ y) */
1401 (bit_ior:c (bit_and:s @0 @1) (bit_not:s (bit_ior:s @0 @1)))
1402 (bit_not (bit_xor @0 @1)))
1404 /* (~x | y) ^ (x ^ y) -> x | ~y */
1406 (bit_xor:c (bit_ior:cs (bit_not @0) @1) (bit_xor:s @0 @1))
1407 (bit_ior @0 (bit_not @1)))
1409 /* (x ^ y) | ~(x | y) -> ~(x & y) */
1411 (bit_ior:c (bit_xor:s @0 @1) (bit_not:s (bit_ior:s @0 @1)))
1412 (bit_not (bit_and @0 @1)))
1414 /* (x | y) & ~x -> y & ~x */
1415 /* (x & y) | ~x -> y | ~x */
1416 (for bitop (bit_and bit_ior)
1417 rbitop (bit_ior bit_and)
1419 (bitop:c (rbitop:c @0 @1) (bit_not@2 @0))
1422 /* (x & y) ^ (x | y) -> x ^ y */
1424 (bit_xor:c (bit_and @0 @1) (bit_ior @0 @1))
1427 /* (x ^ y) ^ (x | y) -> x & y */
1429 (bit_xor:c (bit_xor @0 @1) (bit_ior @0 @1))
1432 /* (x & y) + (x ^ y) -> x | y */
1433 /* (x & y) | (x ^ y) -> x | y */
1434 /* (x & y) ^ (x ^ y) -> x | y */
1435 (for op (plus bit_ior bit_xor)
1437 (op:c (bit_and @0 @1) (bit_xor @0 @1))
1440 /* (x & y) + (x | y) -> x + y */
1442 (plus:c (bit_and @0 @1) (bit_ior @0 @1))
1445 /* (x + y) - (x | y) -> x & y */
1447 (minus (plus @0 @1) (bit_ior @0 @1))
1448 (if (!TYPE_OVERFLOW_SANITIZED (type) && !TYPE_OVERFLOW_TRAPS (type)
1449 && !TYPE_SATURATING (type))
1452 /* (x + y) - (x & y) -> x | y */
1454 (minus (plus @0 @1) (bit_and @0 @1))
1455 (if (!TYPE_OVERFLOW_SANITIZED (type) && !TYPE_OVERFLOW_TRAPS (type)
1456 && !TYPE_SATURATING (type))
1459 /* (x | y) - y -> (x & ~y) */
1461 (minus (bit_ior:cs @0 @1) @1)
1462 (bit_and @0 (bit_not @1)))
1464 /* (x | y) - (x ^ y) -> x & y */
1466 (minus (bit_ior @0 @1) (bit_xor @0 @1))
1469 /* (x | y) - (x & y) -> x ^ y */
1471 (minus (bit_ior @0 @1) (bit_and @0 @1))
1474 /* (x | y) & ~(x & y) -> x ^ y */
1476 (bit_and:c (bit_ior @0 @1) (bit_not (bit_and @0 @1)))
1479 /* (x | y) & (~x ^ y) -> x & y */
1481 (bit_and:c (bit_ior:c @0 @1) (bit_xor:c @1 (bit_not @0)))
1484 /* (~x | y) & (x | ~y) -> ~(x ^ y) */
1486 (bit_and (bit_ior:cs (bit_not @0) @1) (bit_ior:cs @0 (bit_not @1)))
1487 (bit_not (bit_xor @0 @1)))
1489 /* (~x | y) ^ (x | ~y) -> x ^ y */
1491 (bit_xor (bit_ior:c (bit_not @0) @1) (bit_ior:c @0 (bit_not @1)))
1494 /* ((x & y) - (x | y)) - 1 -> ~(x ^ y) */
1496 (plus (nop_convert1? (minus@2 (nop_convert2? (bit_and:c @0 @1))
1497 (nop_convert2? (bit_ior @0 @1))))
1499 (if (!TYPE_OVERFLOW_SANITIZED (type) && !TYPE_OVERFLOW_TRAPS (type)
1500 && !TYPE_SATURATING (type) && !TYPE_OVERFLOW_SANITIZED (TREE_TYPE (@2))
1501 && !TYPE_OVERFLOW_TRAPS (TREE_TYPE (@2))
1502 && !TYPE_SATURATING (TREE_TYPE (@2)))
1503 (bit_not (convert (bit_xor @0 @1)))))
1505 (minus (nop_convert1? (plus@2 (nop_convert2? (bit_and:c @0 @1))
1507 (nop_convert3? (bit_ior @0 @1)))
1508 (if (!TYPE_OVERFLOW_SANITIZED (type) && !TYPE_OVERFLOW_TRAPS (type)
1509 && !TYPE_SATURATING (type) && !TYPE_OVERFLOW_SANITIZED (TREE_TYPE (@2))
1510 && !TYPE_OVERFLOW_TRAPS (TREE_TYPE (@2))
1511 && !TYPE_SATURATING (TREE_TYPE (@2)))
1512 (bit_not (convert (bit_xor @0 @1)))))
1514 (minus (nop_convert1? (bit_and @0 @1))
1515 (nop_convert2? (plus@2 (nop_convert3? (bit_ior:c @0 @1))
1517 (if (!TYPE_OVERFLOW_SANITIZED (type) && !TYPE_OVERFLOW_TRAPS (type)
1518 && !TYPE_SATURATING (type) && !TYPE_OVERFLOW_SANITIZED (TREE_TYPE (@2))
1519 && !TYPE_OVERFLOW_TRAPS (TREE_TYPE (@2))
1520 && !TYPE_SATURATING (TREE_TYPE (@2)))
1521 (bit_not (convert (bit_xor @0 @1)))))
1523 /* ~x & ~y -> ~(x | y)
1524 ~x | ~y -> ~(x & y) */
1525 (for op (bit_and bit_ior)
1526 rop (bit_ior bit_and)
1528 (op (convert1? (bit_not @0)) (convert2? (bit_not @1)))
1529 (if (element_precision (type) <= element_precision (TREE_TYPE (@0))
1530 && element_precision (type) <= element_precision (TREE_TYPE (@1)))
1531 (bit_not (rop (convert @0) (convert @1))))))
1533 /* If we are XORing or adding two BIT_AND_EXPR's, both of which are and'ing
1534 with a constant, and the two constants have no bits in common,
1535 we should treat this as a BIT_IOR_EXPR since this may produce more
1537 (for op (bit_xor plus)
1539 (op (convert1? (bit_and@4 @0 INTEGER_CST@1))
1540 (convert2? (bit_and@5 @2 INTEGER_CST@3)))
1541 (if (tree_nop_conversion_p (type, TREE_TYPE (@0))
1542 && tree_nop_conversion_p (type, TREE_TYPE (@2))
1543 && (wi::to_wide (@1) & wi::to_wide (@3)) == 0)
1544 (bit_ior (convert @4) (convert @5)))))
1546 /* (X | Y) ^ X -> Y & ~ X*/
1548 (bit_xor:c (convert1? (bit_ior:c @@0 @1)) (convert2? @0))
1549 (if (tree_nop_conversion_p (type, TREE_TYPE (@0)))
1550 (convert (bit_and @1 (bit_not @0)))))
1552 /* Convert ~X ^ ~Y to X ^ Y. */
1554 (bit_xor (convert1? (bit_not @0)) (convert2? (bit_not @1)))
1555 (if (element_precision (type) <= element_precision (TREE_TYPE (@0))
1556 && element_precision (type) <= element_precision (TREE_TYPE (@1)))
1557 (bit_xor (convert @0) (convert @1))))
1559 /* Convert ~X ^ C to X ^ ~C. */
1561 (bit_xor (convert? (bit_not @0)) INTEGER_CST@1)
1562 (if (tree_nop_conversion_p (type, TREE_TYPE (@0)))
1563 (bit_xor (convert @0) (bit_not @1))))
1565 /* Fold (X & Y) ^ Y and (X ^ Y) & Y as ~X & Y. */
1566 (for opo (bit_and bit_xor)
1567 opi (bit_xor bit_and)
1569 (opo:c (opi:cs @0 @1) @1)
1570 (bit_and (bit_not @0) @1)))
1572 /* Given a bit-wise operation CODE applied to ARG0 and ARG1, see if both
1573 operands are another bit-wise operation with a common input. If so,
1574 distribute the bit operations to save an operation and possibly two if
1575 constants are involved. For example, convert
1576 (A | B) & (A | C) into A | (B & C)
1577 Further simplification will occur if B and C are constants. */
1578 (for op (bit_and bit_ior bit_xor)
1579 rop (bit_ior bit_and bit_and)
1581 (op (convert? (rop:c @@0 @1)) (convert? (rop:c @0 @2)))
1582 (if (tree_nop_conversion_p (type, TREE_TYPE (@1))
1583 && tree_nop_conversion_p (type, TREE_TYPE (@2)))
1584 (rop (convert @0) (op (convert @1) (convert @2))))))
1586 /* Some simple reassociation for bit operations, also handled in reassoc. */
1587 /* (X & Y) & Y -> X & Y
1588 (X | Y) | Y -> X | Y */
1589 (for op (bit_and bit_ior)
1591 (op:c (convert1?@2 (op:c @0 @@1)) (convert2? @1))
1593 /* (X ^ Y) ^ Y -> X */
1595 (bit_xor:c (convert1? (bit_xor:c @0 @@1)) (convert2? @1))
1597 /* (X & Y) & (X & Z) -> (X & Y) & Z
1598 (X | Y) | (X | Z) -> (X | Y) | Z */
1599 (for op (bit_and bit_ior)
1601 (op (convert1?@3 (op:c@4 @0 @1)) (convert2?@5 (op:c@6 @0 @2)))
1602 (if (tree_nop_conversion_p (type, TREE_TYPE (@1))
1603 && tree_nop_conversion_p (type, TREE_TYPE (@2)))
1604 (if (single_use (@5) && single_use (@6))
1605 (op @3 (convert @2))
1606 (if (single_use (@3) && single_use (@4))
1607 (op (convert @1) @5))))))
1608 /* (X ^ Y) ^ (X ^ Z) -> Y ^ Z */
1610 (bit_xor (convert1? (bit_xor:c @0 @1)) (convert2? (bit_xor:c @0 @2)))
1611 (if (tree_nop_conversion_p (type, TREE_TYPE (@1))
1612 && tree_nop_conversion_p (type, TREE_TYPE (@2)))
1613 (bit_xor (convert @1) (convert @2))))
1615 /* Convert abs (abs (X)) into abs (X).
1616 also absu (absu (X)) into absu (X). */
1622 (absu (convert@2 (absu@1 @0)))
1623 (if (tree_nop_conversion_p (TREE_TYPE (@2), TREE_TYPE (@1)))
1626 /* Convert abs[u] (-X) -> abs[u] (X). */
1635 /* Convert abs[u] (X) where X is nonnegative -> (X). */
1637 (abs tree_expr_nonnegative_p@0)
1641 (absu tree_expr_nonnegative_p@0)
1644 /* Simplify (-(X < 0) | 1) * X into abs (X) or absu(X). */
1646 (mult:c (nop_convert1?
1647 (bit_ior (nop_convert2? (negate (convert? (lt @0 integer_zerop))))
1650 (if (INTEGRAL_TYPE_P (type)
1651 && INTEGRAL_TYPE_P (TREE_TYPE (@0))
1652 && !TYPE_UNSIGNED (TREE_TYPE (@0)))
1653 (if (TYPE_UNSIGNED (type))
1660 /* A few cases of fold-const.cc negate_expr_p predicate. */
1661 (match negate_expr_p
1663 (if ((INTEGRAL_TYPE_P (type)
1664 && TYPE_UNSIGNED (type))
1665 || (!TYPE_OVERFLOW_SANITIZED (type)
1666 && may_negate_without_overflow_p (t)))))
1667 (match negate_expr_p
1669 (match negate_expr_p
1671 (if (!TYPE_OVERFLOW_SANITIZED (type))))
1672 (match negate_expr_p
1674 (if (REAL_VALUE_NEGATIVE (TREE_REAL_CST (t)))))
1675 /* VECTOR_CST handling of non-wrapping types would recurse in unsupported
1677 (match negate_expr_p
1679 (if (FLOAT_TYPE_P (TREE_TYPE (type)) || TYPE_OVERFLOW_WRAPS (type))))
1680 (match negate_expr_p
1682 (if ((ANY_INTEGRAL_TYPE_P (type) && TYPE_OVERFLOW_WRAPS (type))
1683 || (FLOAT_TYPE_P (type)
1684 && !HONOR_SIGN_DEPENDENT_ROUNDING (type)
1685 && !HONOR_SIGNED_ZEROS (type)))))
1687 /* (-A) * (-B) -> A * B */
1689 (mult:c (convert1? (negate @0)) (convert2? negate_expr_p@1))
1690 (if (tree_nop_conversion_p (type, TREE_TYPE (@0))
1691 && tree_nop_conversion_p (type, TREE_TYPE (@1)))
1692 (mult (convert @0) (convert (negate @1)))))
1694 /* -(A + B) -> (-B) - A. */
1696 (negate (plus:c @0 negate_expr_p@1))
1697 (if (!HONOR_SIGN_DEPENDENT_ROUNDING (type)
1698 && !HONOR_SIGNED_ZEROS (type))
1699 (minus (negate @1) @0)))
1701 /* -(A - B) -> B - A. */
1703 (negate (minus @0 @1))
1704 (if ((ANY_INTEGRAL_TYPE_P (type) && !TYPE_OVERFLOW_SANITIZED (type))
1705 || (FLOAT_TYPE_P (type)
1706 && !HONOR_SIGN_DEPENDENT_ROUNDING (type)
1707 && !HONOR_SIGNED_ZEROS (type)))
1710 (negate (pointer_diff @0 @1))
1711 (if (TYPE_OVERFLOW_UNDEFINED (type))
1712 (pointer_diff @1 @0)))
1714 /* A - B -> A + (-B) if B is easily negatable. */
1716 (minus @0 negate_expr_p@1)
1717 (if (!FIXED_POINT_TYPE_P (type))
1718 (plus @0 (negate @1))))
1720 /* Other simplifications of negation (c.f. fold_negate_expr_1). */
1722 (negate (mult:c@0 @1 negate_expr_p@2))
1723 (if (! TYPE_UNSIGNED (type)
1724 && ! HONOR_SIGN_DEPENDENT_ROUNDING (type)
1726 (mult @1 (negate @2))))
1729 (negate (rdiv@0 @1 negate_expr_p@2))
1730 (if (! HONOR_SIGN_DEPENDENT_ROUNDING (type)
1732 (rdiv @1 (negate @2))))
1735 (negate (rdiv@0 negate_expr_p@1 @2))
1736 (if (! HONOR_SIGN_DEPENDENT_ROUNDING (type)
1738 (rdiv (negate @1) @2)))
1740 /* Fold -((int)x >> (prec - 1)) into (unsigned)x >> (prec - 1). */
1742 (negate (convert? (rshift @0 INTEGER_CST@1)))
1743 (if (tree_nop_conversion_p (type, TREE_TYPE (@0))
1744 && wi::to_wide (@1) == element_precision (type) - 1)
1745 (with { tree stype = TREE_TYPE (@0);
1746 tree ntype = TYPE_UNSIGNED (stype) ? signed_type_for (stype)
1747 : unsigned_type_for (stype); }
1748 (if (VECTOR_TYPE_P (type))
1749 (view_convert (rshift (view_convert:ntype @0) @1))
1750 (convert (rshift (convert:ntype @0) @1))))))
1752 /* Try to fold (type) X op CST -> (type) (X op ((type-x) CST))
1754 For bitwise binary operations apply operand conversions to the
1755 binary operation result instead of to the operands. This allows
1756 to combine successive conversions and bitwise binary operations.
1757 We combine the above two cases by using a conditional convert. */
1758 (for bitop (bit_and bit_ior bit_xor)
1760 (bitop (convert@2 @0) (convert?@3 @1))
1761 (if (((TREE_CODE (@1) == INTEGER_CST
1762 && INTEGRAL_TYPE_P (TREE_TYPE (@0))
1763 && (int_fits_type_p (@1, TREE_TYPE (@0))
1764 || tree_nop_conversion_p (TREE_TYPE (@0), type)))
1765 || types_match (@0, @1))
1766 && !POINTER_TYPE_P (TREE_TYPE (@0))
1767 && TREE_CODE (TREE_TYPE (@0)) != OFFSET_TYPE
1768 /* ??? This transform conflicts with fold-const.cc doing
1769 Convert (T)(x & c) into (T)x & (T)c, if c is an integer
1770 constants (if x has signed type, the sign bit cannot be set
1771 in c). This folds extension into the BIT_AND_EXPR.
1772 Restrict it to GIMPLE to avoid endless recursions. */
1773 && (bitop != BIT_AND_EXPR || GIMPLE)
1774 && (/* That's a good idea if the conversion widens the operand, thus
1775 after hoisting the conversion the operation will be narrower.
1776 It is also a good if the conversion is a nop as moves the
1777 conversion to one side; allowing for combining of the conversions. */
1778 TYPE_PRECISION (TREE_TYPE (@0)) < TYPE_PRECISION (type)
1779 /* The conversion check for being a nop can only be done at the gimple
1780 level as fold_binary has some re-association code which can conflict
1781 with this if there is a "constant" which is not a full INTEGER_CST. */
1782 || (GIMPLE && TYPE_PRECISION (TREE_TYPE (@0)) == TYPE_PRECISION (type))
1783 /* It's also a good idea if the conversion is to a non-integer
1785 || GET_MODE_CLASS (TYPE_MODE (type)) != MODE_INT
1786 /* Or if the precision of TO is not the same as the precision
1788 || !type_has_mode_precision_p (type)
1789 /* In GIMPLE, getting rid of 2 conversions for one new results
1792 && TREE_CODE (@1) != INTEGER_CST
1793 && tree_nop_conversion_p (type, TREE_TYPE (@0))
1795 && single_use (@3))))
1796 (convert (bitop @0 (convert @1)))))
1797 /* In GIMPLE, getting rid of 2 conversions for one new results
1800 (convert (bitop:cs@2 (nop_convert:s @0) @1))
1802 && TREE_CODE (@1) != INTEGER_CST
1803 && tree_nop_conversion_p (type, TREE_TYPE (@2))
1804 && types_match (type, @0)
1805 && !POINTER_TYPE_P (TREE_TYPE (@0))
1806 && TREE_CODE (TREE_TYPE (@0)) != OFFSET_TYPE)
1807 (bitop @0 (convert @1)))))
1809 (for bitop (bit_and bit_ior)
1810 rbitop (bit_ior bit_and)
1811 /* (x | y) & x -> x */
1812 /* (x & y) | x -> x */
1814 (bitop:c (rbitop:c @0 @1) @0)
1816 /* (~x | y) & x -> x & y */
1817 /* (~x & y) | x -> x | y */
1819 (bitop:c (rbitop:c (bit_not @0) @1) @0)
1822 /* ((x | y) & z) | x -> (z & y) | x */
1824 (bit_ior:c (bit_and:cs (bit_ior:cs @0 @1) @2) @0)
1825 (bit_ior (bit_and @2 @1) @0))
1827 /* (x | CST1) & CST2 -> (x & CST2) | (CST1 & CST2) */
1829 (bit_and (bit_ior @0 CONSTANT_CLASS_P@1) CONSTANT_CLASS_P@2)
1830 (bit_ior (bit_and @0 @2) (bit_and @1 @2)))
1832 /* Combine successive equal operations with constants. */
1833 (for bitop (bit_and bit_ior bit_xor)
1835 (bitop (bitop @0 CONSTANT_CLASS_P@1) CONSTANT_CLASS_P@2)
1836 (if (!CONSTANT_CLASS_P (@0))
1837 /* This is the canonical form regardless of whether (bitop @1 @2) can be
1838 folded to a constant. */
1839 (bitop @0 (bitop @1 @2))
1840 /* In this case we have three constants and (bitop @0 @1) doesn't fold
1841 to a constant. This can happen if @0 or @1 is a POLY_INT_CST and if
1842 the values involved are such that the operation can't be decided at
1843 compile time. Try folding one of @0 or @1 with @2 to see whether
1844 that combination can be decided at compile time.
1846 Keep the existing form if both folds fail, to avoid endless
1848 (with { tree cst1 = const_binop (bitop, type, @0, @2); }
1850 (bitop @1 { cst1; })
1851 (with { tree cst2 = const_binop (bitop, type, @1, @2); }
1853 (bitop @0 { cst2; }))))))))
1855 /* Try simple folding for X op !X, and X op X with the help
1856 of the truth_valued_p and logical_inverted_value predicates. */
1857 (match truth_valued_p
1859 (if (INTEGRAL_TYPE_P (type) && TYPE_PRECISION (type) == 1)))
1860 (for op (tcc_comparison truth_and truth_andif truth_or truth_orif truth_xor)
1861 (match truth_valued_p
1863 (match truth_valued_p
1866 (match (logical_inverted_value @0)
1868 (match (logical_inverted_value @0)
1869 (bit_not truth_valued_p@0))
1870 (match (logical_inverted_value @0)
1871 (eq @0 integer_zerop))
1872 (match (logical_inverted_value @0)
1873 (ne truth_valued_p@0 integer_truep))
1874 (match (logical_inverted_value @0)
1875 (bit_xor truth_valued_p@0 integer_truep))
1879 (bit_and:c @0 (logical_inverted_value @0))
1880 { build_zero_cst (type); })
1881 /* X | !X and X ^ !X -> 1, , if X is truth-valued. */
1882 (for op (bit_ior bit_xor)
1884 (op:c truth_valued_p@0 (logical_inverted_value @0))
1885 { constant_boolean_node (true, type); }))
1886 /* X ==/!= !X is false/true. */
1889 (op:c truth_valued_p@0 (logical_inverted_value @0))
1890 { constant_boolean_node (op == NE_EXPR ? true : false, type); }))
1894 (bit_not (bit_not @0))
1897 (match zero_one_valued_p
1899 (if (INTEGRAL_TYPE_P (type) && tree_nonzero_bits (@0) == 1)))
1900 (match zero_one_valued_p
1903 /* Transform { 0 or 1 } * { 0 or 1 } into { 0 or 1 } & { 0 or 1 }. */
1905 (mult zero_one_valued_p@0 zero_one_valued_p@1)
1906 (if (INTEGRAL_TYPE_P (type))
1909 /* Transform X & -Y into X * Y when Y is { 0 or 1 }. */
1911 (bit_and:c (convert? (negate zero_one_valued_p@0)) @1)
1912 (if (INTEGRAL_TYPE_P (type)
1913 && INTEGRAL_TYPE_P (TREE_TYPE (@0))
1914 && TREE_CODE (TREE_TYPE (@0)) != BOOLEAN_TYPE
1915 && !TYPE_UNSIGNED (TREE_TYPE (@0)))
1916 (mult (convert @0) @1)))
1918 /* Narrow integer multiplication by a zero_one_valued_p operand.
1919 Multiplication by [0,1] is guaranteed not to overflow. */
1921 (convert (mult@0 zero_one_valued_p@1 INTEGER_CST@2))
1922 (if (INTEGRAL_TYPE_P (type)
1923 && INTEGRAL_TYPE_P (TREE_TYPE (@0))
1924 && TYPE_PRECISION (type) < TYPE_PRECISION (TREE_TYPE (@0)))
1925 (mult (convert @1) (convert @2))))
1927 /* (X << C) != 0 can be simplified to X, when C is zero_one_valued_p.
1928 Check that the shift is well-defined (C is less than TYPE_PRECISION)
1929 as some targets (such as x86's SSE) may return zero for larger C. */
1931 (ne (lshift zero_one_valued_p@0 INTEGER_CST@1) integer_zerop@2)
1932 (if (tree_fits_shwi_p (@1)
1933 && tree_to_shwi (@1) > 0
1934 && tree_to_shwi (@1) < TYPE_PRECISION (TREE_TYPE (@0)))
1937 /* (X << C) == 0 can be simplified to X == 0, when C is zero_one_valued_p.
1938 Check that the shift is well-defined (C is less than TYPE_PRECISION)
1939 as some targets (such as x86's SSE) may return zero for larger C. */
1941 (eq (lshift zero_one_valued_p@0 INTEGER_CST@1) integer_zerop@2)
1942 (if (tree_fits_shwi_p (@1)
1943 && tree_to_shwi (@1) > 0
1944 && tree_to_shwi (@1) < TYPE_PRECISION (TREE_TYPE (@0)))
1947 /* Convert ~ (-A) to A - 1. */
1949 (bit_not (convert? (negate @0)))
1950 (if (element_precision (type) <= element_precision (TREE_TYPE (@0))
1951 || !TYPE_UNSIGNED (TREE_TYPE (@0)))
1952 (convert (minus @0 { build_each_one_cst (TREE_TYPE (@0)); }))))
1954 /* Convert - (~A) to A + 1. */
1956 (negate (nop_convert? (bit_not @0)))
1957 (plus (view_convert @0) { build_each_one_cst (type); }))
1959 /* (a & b) ^ (a == b) -> !(a | b) */
1960 /* (a & b) == (a ^ b) -> !(a | b) */
1961 (for first_op (bit_xor eq)
1962 second_op (eq bit_xor)
1964 (first_op:c (bit_and:c truth_valued_p@0 truth_valued_p@1) (second_op:c @0 @1))
1965 (bit_not (bit_ior @0 @1))))
1967 /* Convert ~ (A - 1) or ~ (A + -1) to -A. */
1969 (bit_not (convert? (minus @0 integer_each_onep)))
1970 (if (element_precision (type) <= element_precision (TREE_TYPE (@0))
1971 || !TYPE_UNSIGNED (TREE_TYPE (@0)))
1972 (convert (negate @0))))
1974 (bit_not (convert? (plus @0 integer_all_onesp)))
1975 (if (element_precision (type) <= element_precision (TREE_TYPE (@0))
1976 || !TYPE_UNSIGNED (TREE_TYPE (@0)))
1977 (convert (negate @0))))
1979 /* Part of convert ~(X ^ Y) to ~X ^ Y or X ^ ~Y if ~X or ~Y simplify. */
1981 (bit_not (convert? (bit_xor @0 INTEGER_CST@1)))
1982 (if (tree_nop_conversion_p (type, TREE_TYPE (@0)))
1983 (convert (bit_xor @0 (bit_not @1)))))
1985 (bit_not (convert? (bit_xor:c (bit_not @0) @1)))
1986 (if (tree_nop_conversion_p (type, TREE_TYPE (@0)))
1987 (convert (bit_xor @0 @1))))
1989 /* Otherwise prefer ~(X ^ Y) to ~X ^ Y as more canonical. */
1991 (bit_xor:c (nop_convert?:s (bit_not:s @0)) @1)
1992 (if (tree_nop_conversion_p (type, TREE_TYPE (@0)))
1993 (bit_not (bit_xor (view_convert @0) @1))))
1995 /* ~(a ^ b) is a == b for truth valued a and b. */
1997 (bit_not (bit_xor:s truth_valued_p@0 truth_valued_p@1))
1998 (if (INTEGRAL_TYPE_P (TREE_TYPE (@0))
1999 && TYPE_PRECISION (TREE_TYPE (@0)) == 1)
2000 (convert (eq @0 @1))))
2002 /* (x & ~m) | (y & m) -> ((x ^ y) & m) ^ x */
2004 (bit_ior:c (bit_and:cs @0 (bit_not @2)) (bit_and:cs @1 @2))
2005 (bit_xor (bit_and (bit_xor @0 @1) @2) @0))
2007 /* Fold A - (A & B) into ~B & A. */
2009 (minus (convert1? @0) (convert2?:s (bit_and:cs @@0 @1)))
2010 (if (tree_nop_conversion_p (type, TREE_TYPE (@0))
2011 && tree_nop_conversion_p (type, TREE_TYPE (@1)))
2012 (convert (bit_and (bit_not @1) @0))))
2014 /* (m1 CMP m2) * d -> (m1 CMP m2) ? d : 0 */
2015 (if (!canonicalize_math_p ())
2016 (for cmp (gt lt ge le)
2018 (mult (convert (cmp @0 @1)) @2)
2019 (cond (cmp @0 @1) @2 { build_zero_cst (type); }))))
2021 /* For integral types with undefined overflow and C != 0 fold
2022 x * C EQ/NE y * C into x EQ/NE y. */
2025 (cmp (mult:c @0 @1) (mult:c @2 @1))
2026 (if (INTEGRAL_TYPE_P (TREE_TYPE (@1))
2027 && TYPE_OVERFLOW_UNDEFINED (TREE_TYPE (@0))
2028 && tree_expr_nonzero_p (@1))
2031 /* For integral types with wrapping overflow and C odd fold
2032 x * C EQ/NE y * C into x EQ/NE y. */
2035 (cmp (mult @0 INTEGER_CST@1) (mult @2 @1))
2036 (if (INTEGRAL_TYPE_P (TREE_TYPE (@1))
2037 && TYPE_OVERFLOW_WRAPS (TREE_TYPE (@0))
2038 && (TREE_INT_CST_LOW (@1) & 1) != 0)
2041 /* For integral types with undefined overflow and C != 0 fold
2042 x * C RELOP y * C into:
2044 x RELOP y for nonnegative C
2045 y RELOP x for negative C */
2046 (for cmp (lt gt le ge)
2048 (cmp (mult:c @0 @1) (mult:c @2 @1))
2049 (if (INTEGRAL_TYPE_P (TREE_TYPE (@1))
2050 && TYPE_OVERFLOW_UNDEFINED (TREE_TYPE (@0)))
2051 (if (tree_expr_nonnegative_p (@1) && tree_expr_nonzero_p (@1))
2053 (if (TREE_CODE (@1) == INTEGER_CST
2054 && wi::neg_p (wi::to_wide (@1), TYPE_SIGN (TREE_TYPE (@1))))
2057 /* (X - 1U) <= INT_MAX-1U into (int) X > 0. */
2061 (cmp (plus @0 integer_minus_onep@1) INTEGER_CST@2)
2062 (if (INTEGRAL_TYPE_P (TREE_TYPE (@0))
2063 && TYPE_UNSIGNED (TREE_TYPE (@0))
2064 && TYPE_PRECISION (TREE_TYPE (@0)) > 1
2065 && (wi::to_wide (@2)
2066 == wi::max_value (TYPE_PRECISION (TREE_TYPE (@0)), SIGNED) - 1))
2067 (with { tree stype = signed_type_for (TREE_TYPE (@0)); }
2068 (icmp (convert:stype @0) { build_int_cst (stype, 0); })))))
2070 /* X / 4 < Y / 4 iff X < Y when the division is known to be exact. */
2071 (for cmp (simple_comparison)
2073 (cmp (convert?@3 (exact_div @0 INTEGER_CST@2)) (convert? (exact_div @1 @2)))
2074 (if (element_precision (@3) >= element_precision (@0)
2075 && types_match (@0, @1))
2076 (if (wi::lt_p (wi::to_wide (@2), 0, TYPE_SIGN (TREE_TYPE (@2))))
2077 (if (!TYPE_UNSIGNED (TREE_TYPE (@3)))
2079 (if (tree_expr_nonzero_p (@0) && tree_expr_nonzero_p (@1))
2082 tree utype = unsigned_type_for (TREE_TYPE (@0));
2084 (cmp (convert:utype @1) (convert:utype @0)))))
2085 (if (wi::gt_p (wi::to_wide (@2), 1, TYPE_SIGN (TREE_TYPE (@2))))
2086 (if (TYPE_UNSIGNED (TREE_TYPE (@0)) || !TYPE_UNSIGNED (TREE_TYPE (@3)))
2090 tree utype = unsigned_type_for (TREE_TYPE (@0));
2092 (cmp (convert:utype @0) (convert:utype @1)))))))))
2094 /* X / C1 op C2 into a simple range test. */
2095 (for cmp (simple_comparison)
2097 (cmp (trunc_div:s @0 INTEGER_CST@1) INTEGER_CST@2)
2098 (if (INTEGRAL_TYPE_P (TREE_TYPE (@0))
2099 && integer_nonzerop (@1)
2100 && !TREE_OVERFLOW (@1)
2101 && !TREE_OVERFLOW (@2))
2102 (with { tree lo, hi; bool neg_overflow;
2103 enum tree_code code = fold_div_compare (cmp, @1, @2, &lo, &hi,
2106 (if (code == LT_EXPR || code == GE_EXPR)
2107 (if (TREE_OVERFLOW (lo))
2108 { build_int_cst (type, (code == LT_EXPR) ^ neg_overflow); }
2109 (if (code == LT_EXPR)
2112 (if (code == LE_EXPR || code == GT_EXPR)
2113 (if (TREE_OVERFLOW (hi))
2114 { build_int_cst (type, (code == LE_EXPR) ^ neg_overflow); }
2115 (if (code == LE_EXPR)
2119 { build_int_cst (type, code == NE_EXPR); })
2120 (if (code == EQ_EXPR && !hi)
2122 (if (code == EQ_EXPR && !lo)
2124 (if (code == NE_EXPR && !hi)
2126 (if (code == NE_EXPR && !lo)
2129 { build_range_check (UNKNOWN_LOCATION, type, @0, code == EQ_EXPR,
2133 tree etype = range_check_type (TREE_TYPE (@0));
2136 hi = fold_convert (etype, hi);
2137 lo = fold_convert (etype, lo);
2138 hi = const_binop (MINUS_EXPR, etype, hi, lo);
2141 (if (etype && hi && !TREE_OVERFLOW (hi))
2142 (if (code == EQ_EXPR)
2143 (le (minus (convert:etype @0) { lo; }) { hi; })
2144 (gt (minus (convert:etype @0) { lo; }) { hi; })))))))))
2146 /* X + Z < Y + Z is the same as X < Y when there is no overflow. */
2147 (for op (lt le ge gt)
2149 (op (plus:c @0 @2) (plus:c @1 @2))
2150 (if (ANY_INTEGRAL_TYPE_P (TREE_TYPE (@0))
2151 && TYPE_OVERFLOW_UNDEFINED (TREE_TYPE (@0)))
2154 /* As a special case, X + C < Y + C is the same as (signed) X < (signed) Y
2155 when C is an unsigned integer constant with only the MSB set, and X and
2156 Y have types of equal or lower integer conversion rank than C's. */
2157 (for op (lt le ge gt)
2159 (op (plus @1 INTEGER_CST@0) (plus @2 @0))
2160 (if (INTEGRAL_TYPE_P (TREE_TYPE (@0))
2161 && TYPE_UNSIGNED (TREE_TYPE (@0))
2162 && wi::only_sign_bit_p (wi::to_wide (@0)))
2163 (with { tree stype = signed_type_for (TREE_TYPE (@0)); }
2164 (op (convert:stype @1) (convert:stype @2))))))
2166 /* For equality and subtraction, this is also true with wrapping overflow. */
2167 (for op (eq ne minus)
2169 (op (plus:c @0 @2) (plus:c @1 @2))
2170 (if (ANY_INTEGRAL_TYPE_P (TREE_TYPE (@0))
2171 && (TYPE_OVERFLOW_UNDEFINED (TREE_TYPE (@0))
2172 || TYPE_OVERFLOW_WRAPS (TREE_TYPE (@0))))
2175 /* X - Z < Y - Z is the same as X < Y when there is no overflow. */
2176 (for op (lt le ge gt)
2178 (op (minus @0 @2) (minus @1 @2))
2179 (if (ANY_INTEGRAL_TYPE_P (TREE_TYPE (@0))
2180 && TYPE_OVERFLOW_UNDEFINED (TREE_TYPE (@0)))
2182 /* For equality and subtraction, this is also true with wrapping overflow. */
2183 (for op (eq ne minus)
2185 (op (minus @0 @2) (minus @1 @2))
2186 (if (ANY_INTEGRAL_TYPE_P (TREE_TYPE (@0))
2187 && (TYPE_OVERFLOW_UNDEFINED (TREE_TYPE (@0))
2188 || TYPE_OVERFLOW_WRAPS (TREE_TYPE (@0))))
2190 /* And for pointers... */
2191 (for op (simple_comparison)
2193 (op (pointer_diff@3 @0 @2) (pointer_diff @1 @2))
2194 (if (!TYPE_OVERFLOW_SANITIZED (TREE_TYPE (@2)))
2197 (minus (pointer_diff@3 @0 @2) (pointer_diff @1 @2))
2198 (if (TYPE_OVERFLOW_UNDEFINED (TREE_TYPE (@3))
2199 && !TYPE_OVERFLOW_SANITIZED (TREE_TYPE (@2)))
2200 (pointer_diff @0 @1)))
2202 /* Z - X < Z - Y is the same as Y < X when there is no overflow. */
2203 (for op (lt le ge gt)
2205 (op (minus @2 @0) (minus @2 @1))
2206 (if (ANY_INTEGRAL_TYPE_P (TREE_TYPE (@0))
2207 && TYPE_OVERFLOW_UNDEFINED (TREE_TYPE (@0)))
2209 /* For equality and subtraction, this is also true with wrapping overflow. */
2210 (for op (eq ne minus)
2212 (op (minus @2 @0) (minus @2 @1))
2213 (if (ANY_INTEGRAL_TYPE_P (TREE_TYPE (@0))
2214 && (TYPE_OVERFLOW_UNDEFINED (TREE_TYPE (@0))
2215 || TYPE_OVERFLOW_WRAPS (TREE_TYPE (@0))))
2217 /* And for pointers... */
2218 (for op (simple_comparison)
2220 (op (pointer_diff@3 @2 @0) (pointer_diff @2 @1))
2221 (if (!TYPE_OVERFLOW_SANITIZED (TREE_TYPE (@2)))
2224 (minus (pointer_diff@3 @2 @0) (pointer_diff @2 @1))
2225 (if (TYPE_OVERFLOW_UNDEFINED (TREE_TYPE (@3))
2226 && !TYPE_OVERFLOW_SANITIZED (TREE_TYPE (@2)))
2227 (pointer_diff @1 @0)))
2229 /* X + Y < Y is the same as X < 0 when there is no overflow. */
2230 (for op (lt le gt ge)
2232 (op:c (plus:c@2 @0 @1) @1)
2233 (if (ANY_INTEGRAL_TYPE_P (TREE_TYPE (@0))
2234 && TYPE_OVERFLOW_UNDEFINED (TREE_TYPE (@0))
2235 && !TYPE_OVERFLOW_SANITIZED (TREE_TYPE (@0))
2236 && (CONSTANT_CLASS_P (@0) || single_use (@2)))
2237 (op @0 { build_zero_cst (TREE_TYPE (@0)); }))))
2238 /* For equality, this is also true with wrapping overflow. */
2241 (op:c (nop_convert?@3 (plus:c@2 @0 (convert1? @1))) (convert2? @1))
2242 (if (ANY_INTEGRAL_TYPE_P (TREE_TYPE (@0))
2243 && (TYPE_OVERFLOW_UNDEFINED (TREE_TYPE (@0))
2244 || TYPE_OVERFLOW_WRAPS (TREE_TYPE (@0)))
2245 && (CONSTANT_CLASS_P (@0) || (single_use (@2) && single_use (@3)))
2246 && tree_nop_conversion_p (TREE_TYPE (@3), TREE_TYPE (@2))
2247 && tree_nop_conversion_p (TREE_TYPE (@3), TREE_TYPE (@1)))
2248 (op @0 { build_zero_cst (TREE_TYPE (@0)); })))
2250 (op:c (nop_convert?@3 (pointer_plus@2 (convert1? @0) @1)) (convert2? @0))
2251 (if (tree_nop_conversion_p (TREE_TYPE (@2), TREE_TYPE (@0))
2252 && tree_nop_conversion_p (TREE_TYPE (@3), TREE_TYPE (@0))
2253 && (CONSTANT_CLASS_P (@1) || (single_use (@2) && single_use (@3))))
2254 (op @1 { build_zero_cst (TREE_TYPE (@1)); }))))
2256 /* X - Y < X is the same as Y > 0 when there is no overflow.
2257 For equality, this is also true with wrapping overflow. */
2258 (for op (simple_comparison)
2260 (op:c @0 (minus@2 @0 @1))
2261 (if (ANY_INTEGRAL_TYPE_P (TREE_TYPE (@0))
2262 && (TYPE_OVERFLOW_UNDEFINED (TREE_TYPE (@0))
2263 || ((op == EQ_EXPR || op == NE_EXPR)
2264 && TYPE_OVERFLOW_WRAPS (TREE_TYPE (@0))))
2265 && (CONSTANT_CLASS_P (@1) || single_use (@2)))
2266 (op @1 { build_zero_cst (TREE_TYPE (@1)); }))))
2269 (X / Y) == 0 -> X < Y if X, Y are unsigned.
2270 (X / Y) != 0 -> X >= Y, if X, Y are unsigned. */
2274 (cmp (trunc_div @0 @1) integer_zerop)
2275 (if (TYPE_UNSIGNED (TREE_TYPE (@0))
2276 /* Complex ==/!= is allowed, but not </>=. */
2277 && TREE_CODE (TREE_TYPE (@0)) != COMPLEX_TYPE
2278 && (VECTOR_TYPE_P (type) || !VECTOR_TYPE_P (TREE_TYPE (@0))))
2281 /* X == C - X can never be true if C is odd. */
2284 (cmp:c (convert? @0) (convert1? (minus INTEGER_CST@1 (convert2? @0))))
2285 (if (TREE_INT_CST_LOW (@1) & 1)
2286 { constant_boolean_node (cmp == NE_EXPR, type); })))
2288 /* Arguments on which one can call get_nonzero_bits to get the bits
2290 (match with_possible_nonzero_bits
2292 (match with_possible_nonzero_bits
2294 (if (INTEGRAL_TYPE_P (TREE_TYPE (@0)) || POINTER_TYPE_P (TREE_TYPE (@0)))))
2295 /* Slightly extended version, do not make it recursive to keep it cheap. */
2296 (match (with_possible_nonzero_bits2 @0)
2297 with_possible_nonzero_bits@0)
2298 (match (with_possible_nonzero_bits2 @0)
2299 (bit_and:c with_possible_nonzero_bits@0 @2))
2301 /* Same for bits that are known to be set, but we do not have
2302 an equivalent to get_nonzero_bits yet. */
2303 (match (with_certain_nonzero_bits2 @0)
2305 (match (with_certain_nonzero_bits2 @0)
2306 (bit_ior @1 INTEGER_CST@0))
2308 /* X == C (or X & Z == Y | C) is impossible if ~nonzero(X) & C != 0. */
2311 (cmp:c (with_possible_nonzero_bits2 @0) (with_certain_nonzero_bits2 @1))
2312 (if (wi::bit_and_not (wi::to_wide (@1), get_nonzero_bits (@0)) != 0)
2313 { constant_boolean_node (cmp == NE_EXPR, type); })))
2315 /* ((X inner_op C0) outer_op C1)
2316 With X being a tree where value_range has reasoned certain bits to always be
2317 zero throughout its computed value range,
2318 inner_op = {|,^}, outer_op = {|,^} and inner_op != outer_op
2319 where zero_mask has 1's for all bits that are sure to be 0 in
2321 if (inner_op == '^') C0 &= ~C1;
2322 if ((C0 & ~zero_mask) == 0) then emit (X outer_op (C0 outer_op C1)
2323 if ((C1 & ~zero_mask) == 0) then emit (X inner_op (C0 outer_op C1)
2325 (for inner_op (bit_ior bit_xor)
2326 outer_op (bit_xor bit_ior)
2329 (inner_op:s @2 INTEGER_CST@0) INTEGER_CST@1)
2333 wide_int zero_mask_not;
2337 if (TREE_CODE (@2) == SSA_NAME)
2338 zero_mask_not = get_nonzero_bits (@2);
2342 if (inner_op == BIT_XOR_EXPR)
2344 C0 = wi::bit_and_not (wi::to_wide (@0), wi::to_wide (@1));
2345 cst_emit = C0 | wi::to_wide (@1);
2349 C0 = wi::to_wide (@0);
2350 cst_emit = C0 ^ wi::to_wide (@1);
2353 (if (!fail && (C0 & zero_mask_not) == 0)
2354 (outer_op @2 { wide_int_to_tree (type, cst_emit); })
2355 (if (!fail && (wi::to_wide (@1) & zero_mask_not) == 0)
2356 (inner_op @2 { wide_int_to_tree (type, cst_emit); }))))))
2358 /* Associate (p +p off1) +p off2 as (p +p (off1 + off2)). */
2360 (pointer_plus (pointer_plus:s @0 @1) @3)
2361 (pointer_plus @0 (plus @1 @3)))
2364 (pointer_plus (convert:s (pointer_plus:s @0 @1)) @3)
2365 (convert:type (pointer_plus @0 (plus @1 @3))))
2372 tem4 = (unsigned long) tem3;
2377 (pointer_plus @0 (convert?@2 (minus@3 (convert @1) (convert @0))))
2378 /* Conditionally look through a sign-changing conversion. */
2379 (if (TYPE_PRECISION (TREE_TYPE (@2)) == TYPE_PRECISION (TREE_TYPE (@3))
2380 && ((GIMPLE && useless_type_conversion_p (type, TREE_TYPE (@1)))
2381 || (GENERIC && type == TREE_TYPE (@1))))
2384 (pointer_plus @0 (convert?@2 (pointer_diff@3 @1 @@0)))
2385 (if (TYPE_PRECISION (TREE_TYPE (@2)) >= TYPE_PRECISION (TREE_TYPE (@3)))
2389 tem = (sizetype) ptr;
2393 and produce the simpler and easier to analyze with respect to alignment
2394 ... = ptr & ~algn; */
2396 (pointer_plus @0 (negate (bit_and (convert @0) INTEGER_CST@1)))
2397 (with { tree algn = wide_int_to_tree (TREE_TYPE (@0), ~wi::to_wide (@1)); }
2398 (bit_and @0 { algn; })))
2400 /* Try folding difference of addresses. */
2402 (minus (convert ADDR_EXPR@0) (convert @1))
2403 (if (tree_nop_conversion_p (type, TREE_TYPE (@0)))
2404 (with { poly_int64 diff; }
2405 (if (ptr_difference_const (@0, @1, &diff))
2406 { build_int_cst_type (type, diff); }))))
2408 (minus (convert @0) (convert ADDR_EXPR@1))
2409 (if (tree_nop_conversion_p (type, TREE_TYPE (@0)))
2410 (with { poly_int64 diff; }
2411 (if (ptr_difference_const (@0, @1, &diff))
2412 { build_int_cst_type (type, diff); }))))
2414 (pointer_diff (convert?@2 ADDR_EXPR@0) (convert1?@3 @1))
2415 (if (tree_nop_conversion_p (TREE_TYPE(@2), TREE_TYPE (@0))
2416 && tree_nop_conversion_p (TREE_TYPE(@3), TREE_TYPE (@1)))
2417 (with { poly_int64 diff; }
2418 (if (ptr_difference_const (@0, @1, &diff))
2419 { build_int_cst_type (type, diff); }))))
2421 (pointer_diff (convert?@2 @0) (convert1?@3 ADDR_EXPR@1))
2422 (if (tree_nop_conversion_p (TREE_TYPE(@2), TREE_TYPE (@0))
2423 && tree_nop_conversion_p (TREE_TYPE(@3), TREE_TYPE (@1)))
2424 (with { poly_int64 diff; }
2425 (if (ptr_difference_const (@0, @1, &diff))
2426 { build_int_cst_type (type, diff); }))))
2428 /* (&a+b) - (&a[1] + c) -> sizeof(a[0]) + (b - c) */
2430 (pointer_diff (pointer_plus ADDR_EXPR@0 @1) (pointer_plus ADDR_EXPR@2 @3))
2431 (with { poly_int64 diff; }
2432 (if (ptr_difference_const (@0, @2, &diff))
2433 (plus { build_int_cst_type (type, diff); } (convert (minus @1 @3))))))
2435 /* (&a+b) !=/== (&a[1] + c) -> sizeof(a[0]) + b !=/== c */
2438 (neeq (pointer_plus ADDR_EXPR@0 @1) (pointer_plus ADDR_EXPR@2 @3))
2439 (with { poly_int64 diff; tree inner_type = TREE_TYPE (@1);}
2440 (if (ptr_difference_const (@0, @2, &diff))
2441 (neeq (plus { build_int_cst_type (inner_type, diff); } @1) @3)))))
2443 /* Canonicalize (T *)(ptr - ptr-cst) to &MEM[ptr + -ptr-cst]. */
2445 (convert (pointer_diff @0 INTEGER_CST@1))
2446 (if (POINTER_TYPE_P (type))
2447 { build_fold_addr_expr_with_type
2448 (build2 (MEM_REF, char_type_node, @0,
2449 wide_int_to_tree (ptr_type_node, wi::neg (wi::to_wide (@1)))),
2452 /* If arg0 is derived from the address of an object or function, we may
2453 be able to fold this expression using the object or function's
2456 (bit_and (convert? @0) INTEGER_CST@1)
2457 (if (POINTER_TYPE_P (TREE_TYPE (@0))
2458 && tree_nop_conversion_p (type, TREE_TYPE (@0)))
2462 unsigned HOST_WIDE_INT bitpos;
2463 get_pointer_alignment_1 (@0, &align, &bitpos);
2465 (if (wi::ltu_p (wi::to_wide (@1), align / BITS_PER_UNIT))
2466 { wide_int_to_tree (type, (wi::to_wide (@1)
2467 & (bitpos / BITS_PER_UNIT))); }))))
2471 (if (INTEGRAL_TYPE_P (type)
2472 && wi::eq_p (wi::to_wide (t), wi::min_value (type)))))
2476 (if (INTEGRAL_TYPE_P (type)
2477 && wi::eq_p (wi::to_wide (t), wi::max_value (type)))))
2479 /* x > y && x != XXX_MIN --> x > y
2480 x > y && x == XXX_MIN --> false . */
2483 (bit_and:c (gt:c@2 @0 @1) (eqne @0 min_value))
2485 (if (eqne == EQ_EXPR)
2486 { constant_boolean_node (false, type); })
2487 (if (eqne == NE_EXPR)
2491 /* x < y && x != XXX_MAX --> x < y
2492 x < y && x == XXX_MAX --> false. */
2495 (bit_and:c (lt:c@2 @0 @1) (eqne @0 max_value))
2497 (if (eqne == EQ_EXPR)
2498 { constant_boolean_node (false, type); })
2499 (if (eqne == NE_EXPR)
2503 /* x <= y && x == XXX_MIN --> x == XXX_MIN. */
2505 (bit_and:c (le:c @0 @1) (eq@2 @0 min_value))
2508 /* x >= y && x == XXX_MAX --> x == XXX_MAX. */
2510 (bit_and:c (ge:c @0 @1) (eq@2 @0 max_value))
2513 /* x > y || x != XXX_MIN --> x != XXX_MIN. */
2515 (bit_ior:c (gt:c @0 @1) (ne@2 @0 min_value))
2518 /* x <= y || x != XXX_MIN --> true. */
2520 (bit_ior:c (le:c @0 @1) (ne @0 min_value))
2521 { constant_boolean_node (true, type); })
2523 /* x <= y || x == XXX_MIN --> x <= y. */
2525 (bit_ior:c (le:c@2 @0 @1) (eq @0 min_value))
2528 /* x < y || x != XXX_MAX --> x != XXX_MAX. */
2530 (bit_ior:c (lt:c @0 @1) (ne@2 @0 max_value))
2533 /* x >= y || x != XXX_MAX --> true
2534 x >= y || x == XXX_MAX --> x >= y. */
2537 (bit_ior:c (ge:c@2 @0 @1) (eqne @0 max_value))
2539 (if (eqne == EQ_EXPR)
2541 (if (eqne == NE_EXPR)
2542 { constant_boolean_node (true, type); }))))
2544 /* y == XXX_MIN || x < y --> x <= y - 1 */
2546 (bit_ior:c (eq:s @1 min_value) (lt:cs @0 @1))
2547 (if (INTEGRAL_TYPE_P (TREE_TYPE (@1))
2548 && TYPE_OVERFLOW_WRAPS (TREE_TYPE (@1)))
2549 (le @0 (minus @1 { build_int_cst (TREE_TYPE (@1), 1); }))))
2551 /* y != XXX_MIN && x >= y --> x > y - 1 */
2553 (bit_and:c (ne:s @1 min_value) (ge:cs @0 @1))
2554 (if (INTEGRAL_TYPE_P (TREE_TYPE (@1))
2555 && TYPE_OVERFLOW_WRAPS (TREE_TYPE (@1)))
2556 (gt @0 (minus @1 { build_int_cst (TREE_TYPE (@1), 1); }))))
2558 /* Convert (X == CST1) && (X OP2 CST2) to a known value
2559 based on CST1 OP2 CST2. Similarly for (X != CST1). */
2562 (for code2 (eq ne lt gt le ge)
2564 (bit_and:c (code1@3 @0 INTEGER_CST@1) (code2@4 @0 INTEGER_CST@2))
2567 int cmp = tree_int_cst_compare (@1, @2);
2571 case EQ_EXPR: val = (cmp == 0); break;
2572 case NE_EXPR: val = (cmp != 0); break;
2573 case LT_EXPR: val = (cmp < 0); break;
2574 case GT_EXPR: val = (cmp > 0); break;
2575 case LE_EXPR: val = (cmp <= 0); break;
2576 case GE_EXPR: val = (cmp >= 0); break;
2577 default: gcc_unreachable ();
2581 (if (code1 == EQ_EXPR && val) @3)
2582 (if (code1 == EQ_EXPR && !val) { constant_boolean_node (false, type); })
2583 (if (code1 == NE_EXPR && !val) @4))))))
2585 /* Convert (X OP1 CST1) && (X OP2 CST2). */
2587 (for code1 (lt le gt ge)
2588 (for code2 (lt le gt ge)
2590 (bit_and (code1:c@3 @0 INTEGER_CST@1) (code2:c@4 @0 INTEGER_CST@2))
2593 int cmp = tree_int_cst_compare (@1, @2);
2596 /* Choose the more restrictive of two < or <= comparisons. */
2597 (if ((code1 == LT_EXPR || code1 == LE_EXPR)
2598 && (code2 == LT_EXPR || code2 == LE_EXPR))
2599 (if ((cmp < 0) || (cmp == 0 && code1 == LT_EXPR))
2602 /* Likewise chose the more restrictive of two > or >= comparisons. */
2603 (if ((code1 == GT_EXPR || code1 == GE_EXPR)
2604 && (code2 == GT_EXPR || code2 == GE_EXPR))
2605 (if ((cmp > 0) || (cmp == 0 && code1 == GT_EXPR))
2608 /* Check for singleton ranges. */
2610 && ((code1 == LE_EXPR && code2 == GE_EXPR)
2611 || (code1 == GE_EXPR && code2 == LE_EXPR)))
2613 /* Check for disjoint ranges. */
2615 && (code1 == LT_EXPR || code1 == LE_EXPR)
2616 && (code2 == GT_EXPR || code2 == GE_EXPR))
2617 { constant_boolean_node (false, type); })
2619 && (code1 == GT_EXPR || code1 == GE_EXPR)
2620 && (code2 == LT_EXPR || code2 == LE_EXPR))
2621 { constant_boolean_node (false, type); })
2624 /* Convert (X == CST1) || (X OP2 CST2) to a known value
2625 based on CST1 OP2 CST2. Similarly for (X != CST1). */
2628 (for code2 (eq ne lt gt le ge)
2630 (bit_ior:c (code1@3 @0 INTEGER_CST@1) (code2@4 @0 INTEGER_CST@2))
2633 int cmp = tree_int_cst_compare (@1, @2);
2637 case EQ_EXPR: val = (cmp == 0); break;
2638 case NE_EXPR: val = (cmp != 0); break;
2639 case LT_EXPR: val = (cmp < 0); break;
2640 case GT_EXPR: val = (cmp > 0); break;
2641 case LE_EXPR: val = (cmp <= 0); break;
2642 case GE_EXPR: val = (cmp >= 0); break;
2643 default: gcc_unreachable ();
2647 (if (code1 == EQ_EXPR && val) @4)
2648 (if (code1 == NE_EXPR && val) { constant_boolean_node (true, type); })
2649 (if (code1 == NE_EXPR && !val) @3))))))
2651 /* Convert (X OP1 CST1) || (X OP2 CST2). */
2653 (for code1 (lt le gt ge)
2654 (for code2 (lt le gt ge)
2656 (bit_ior (code1@3 @0 INTEGER_CST@1) (code2@4 @0 INTEGER_CST@2))
2659 int cmp = tree_int_cst_compare (@1, @2);
2662 /* Choose the more restrictive of two < or <= comparisons. */
2663 (if ((code1 == LT_EXPR || code1 == LE_EXPR)
2664 && (code2 == LT_EXPR || code2 == LE_EXPR))
2665 (if ((cmp < 0) || (cmp == 0 && code1 == LT_EXPR))
2668 /* Likewise chose the more restrictive of two > or >= comparisons. */
2669 (if ((code1 == GT_EXPR || code1 == GE_EXPR)
2670 && (code2 == GT_EXPR || code2 == GE_EXPR))
2671 (if ((cmp > 0) || (cmp == 0 && code1 == GT_EXPR))
2674 /* Check for singleton ranges. */
2676 && ((code1 == LT_EXPR && code2 == GT_EXPR)
2677 || (code1 == GT_EXPR && code2 == LT_EXPR)))
2679 /* Check for disjoint ranges. */
2681 && (code1 == LT_EXPR || code1 == LE_EXPR)
2682 && (code2 == GT_EXPR || code2 == GE_EXPR))
2683 { constant_boolean_node (true, type); })
2685 && (code1 == GT_EXPR || code1 == GE_EXPR)
2686 && (code2 == LT_EXPR || code2 == LE_EXPR))
2687 { constant_boolean_node (true, type); })
2690 /* We can't reassociate at all for saturating types. */
2691 (if (!TYPE_SATURATING (type))
2693 /* Contract negates. */
2694 /* A + (-B) -> A - B */
2696 (plus:c @0 (convert? (negate @1)))
2697 /* Apply STRIP_NOPS on the negate. */
2698 (if (tree_nop_conversion_p (type, TREE_TYPE (@1))
2699 && !TYPE_OVERFLOW_SANITIZED (type))
2703 if (INTEGRAL_TYPE_P (type)
2704 && TYPE_OVERFLOW_WRAPS (type) != TYPE_OVERFLOW_WRAPS (TREE_TYPE (@1)))
2705 t1 = TYPE_OVERFLOW_WRAPS (type) ? type : TREE_TYPE (@1);
2707 (convert (minus (convert:t1 @0) (convert:t1 @1))))))
2708 /* A - (-B) -> A + B */
2710 (minus @0 (convert? (negate @1)))
2711 (if (tree_nop_conversion_p (type, TREE_TYPE (@1))
2712 && !TYPE_OVERFLOW_SANITIZED (type))
2716 if (INTEGRAL_TYPE_P (type)
2717 && TYPE_OVERFLOW_WRAPS (type) != TYPE_OVERFLOW_WRAPS (TREE_TYPE (@1)))
2718 t1 = TYPE_OVERFLOW_WRAPS (type) ? type : TREE_TYPE (@1);
2720 (convert (plus (convert:t1 @0) (convert:t1 @1))))))
2722 Sign-extension is ok except for INT_MIN, which thankfully cannot
2723 happen without overflow. */
2725 (negate (convert (negate @1)))
2726 (if (INTEGRAL_TYPE_P (type)
2727 && (TYPE_PRECISION (type) <= TYPE_PRECISION (TREE_TYPE (@1))
2728 || (!TYPE_UNSIGNED (TREE_TYPE (@1))
2729 && TYPE_OVERFLOW_UNDEFINED (TREE_TYPE (@1))))
2730 && !TYPE_OVERFLOW_SANITIZED (type)
2731 && !TYPE_OVERFLOW_SANITIZED (TREE_TYPE (@1)))
2734 (negate (convert negate_expr_p@1))
2735 (if (SCALAR_FLOAT_TYPE_P (type)
2736 && ((DECIMAL_FLOAT_TYPE_P (type)
2737 == DECIMAL_FLOAT_TYPE_P (TREE_TYPE (@1))
2738 && TYPE_PRECISION (type) >= TYPE_PRECISION (TREE_TYPE (@1)))
2739 || !HONOR_SIGN_DEPENDENT_ROUNDING (type)))
2740 (convert (negate @1))))
2742 (negate (nop_convert? (negate @1)))
2743 (if (!TYPE_OVERFLOW_SANITIZED (type)
2744 && !TYPE_OVERFLOW_SANITIZED (TREE_TYPE (@1)))
2747 /* We can't reassociate floating-point unless -fassociative-math
2748 or fixed-point plus or minus because of saturation to +-Inf. */
2749 (if ((!FLOAT_TYPE_P (type) || flag_associative_math)
2750 && !FIXED_POINT_TYPE_P (type))
2752 /* Match patterns that allow contracting a plus-minus pair
2753 irrespective of overflow issues. */
2754 /* (A +- B) - A -> +- B */
2755 /* (A +- B) -+ B -> A */
2756 /* A - (A +- B) -> -+ B */
2757 /* A +- (B -+ A) -> +- B */
2759 (minus (nop_convert1? (plus:c (nop_convert2? @0) @1)) @0)
2762 (minus (nop_convert1? (minus (nop_convert2? @0) @1)) @0)
2763 (if (!ANY_INTEGRAL_TYPE_P (type)
2764 || TYPE_OVERFLOW_WRAPS (type))
2765 (negate (view_convert @1))
2766 (view_convert (negate @1))))
2768 (plus:c (nop_convert1? (minus @0 (nop_convert2? @1))) @1)
2771 (minus @0 (nop_convert1? (plus:c (nop_convert2? @0) @1)))
2772 (if (!ANY_INTEGRAL_TYPE_P (type)
2773 || TYPE_OVERFLOW_WRAPS (type))
2774 (negate (view_convert @1))
2775 (view_convert (negate @1))))
2777 (minus @0 (nop_convert1? (minus (nop_convert2? @0) @1)))
2779 /* (A +- B) + (C - A) -> C +- B */
2780 /* (A + B) - (A - C) -> B + C */
2781 /* More cases are handled with comparisons. */
2783 (plus:c (plus:c @0 @1) (minus @2 @0))
2786 (plus:c (minus @0 @1) (minus @2 @0))
2789 (plus:c (pointer_diff @0 @1) (pointer_diff @2 @0))
2790 (if (TYPE_OVERFLOW_UNDEFINED (type)
2791 && !TYPE_OVERFLOW_SANITIZED (TREE_TYPE (@0)))
2792 (pointer_diff @2 @1)))
2794 (minus (plus:c @0 @1) (minus @0 @2))
2797 /* (A +- CST1) +- CST2 -> A + CST3
2798 Use view_convert because it is safe for vectors and equivalent for
2800 (for outer_op (plus minus)
2801 (for inner_op (plus minus)
2802 neg_inner_op (minus plus)
2804 (outer_op (nop_convert? (inner_op @0 CONSTANT_CLASS_P@1))
2806 /* If one of the types wraps, use that one. */
2807 (if (!ANY_INTEGRAL_TYPE_P (type) || TYPE_OVERFLOW_WRAPS (type))
2808 /* If all 3 captures are CONSTANT_CLASS_P, punt, as we might recurse
2809 forever if something doesn't simplify into a constant. */
2810 (if (!CONSTANT_CLASS_P (@0))
2811 (if (outer_op == PLUS_EXPR)
2812 (plus (view_convert @0) (inner_op @2 (view_convert @1)))
2813 (minus (view_convert @0) (neg_inner_op @2 (view_convert @1)))))
2814 (if (!ANY_INTEGRAL_TYPE_P (TREE_TYPE (@0))
2815 || TYPE_OVERFLOW_WRAPS (TREE_TYPE (@0)))
2816 (if (outer_op == PLUS_EXPR)
2817 (view_convert (plus @0 (inner_op (view_convert @2) @1)))
2818 (view_convert (minus @0 (neg_inner_op (view_convert @2) @1))))
2819 /* If the constant operation overflows we cannot do the transform
2820 directly as we would introduce undefined overflow, for example
2821 with (a - 1) + INT_MIN. */
2822 (if (types_match (type, @0))
2823 (with { tree cst = const_binop (outer_op == inner_op
2824 ? PLUS_EXPR : MINUS_EXPR,
2826 (if (cst && !TREE_OVERFLOW (cst))
2827 (inner_op @0 { cst; } )
2828 /* X+INT_MAX+1 is X-INT_MIN. */
2829 (if (INTEGRAL_TYPE_P (type) && cst
2830 && wi::to_wide (cst) == wi::min_value (type))
2831 (neg_inner_op @0 { wide_int_to_tree (type, wi::to_wide (cst)); })
2832 /* Last resort, use some unsigned type. */
2833 (with { tree utype = unsigned_type_for (type); }
2835 (view_convert (inner_op
2836 (view_convert:utype @0)
2838 { drop_tree_overflow (cst); }))))))))))))))
2840 /* (CST1 - A) +- CST2 -> CST3 - A */
2841 (for outer_op (plus minus)
2843 (outer_op (nop_convert? (minus CONSTANT_CLASS_P@1 @0)) CONSTANT_CLASS_P@2)
2844 /* If one of the types wraps, use that one. */
2845 (if (!ANY_INTEGRAL_TYPE_P (type) || TYPE_OVERFLOW_WRAPS (type))
2846 /* If all 3 captures are CONSTANT_CLASS_P, punt, as we might recurse
2847 forever if something doesn't simplify into a constant. */
2848 (if (!CONSTANT_CLASS_P (@0))
2849 (minus (outer_op (view_convert @1) @2) (view_convert @0)))
2850 (if (!ANY_INTEGRAL_TYPE_P (TREE_TYPE (@0))
2851 || TYPE_OVERFLOW_WRAPS (TREE_TYPE (@0)))
2852 (view_convert (minus (outer_op @1 (view_convert @2)) @0))
2853 (if (types_match (type, @0))
2854 (with { tree cst = const_binop (outer_op, type, @1, @2); }
2855 (if (cst && !TREE_OVERFLOW (cst))
2856 (minus { cst; } @0))))))))
2858 /* CST1 - (CST2 - A) -> CST3 + A
2859 Use view_convert because it is safe for vectors and equivalent for
2862 (minus CONSTANT_CLASS_P@1 (nop_convert? (minus CONSTANT_CLASS_P@2 @0)))
2863 /* If one of the types wraps, use that one. */
2864 (if (!ANY_INTEGRAL_TYPE_P (type) || TYPE_OVERFLOW_WRAPS (type))
2865 /* If all 3 captures are CONSTANT_CLASS_P, punt, as we might recurse
2866 forever if something doesn't simplify into a constant. */
2867 (if (!CONSTANT_CLASS_P (@0))
2868 (plus (view_convert @0) (minus @1 (view_convert @2))))
2869 (if (!ANY_INTEGRAL_TYPE_P (TREE_TYPE (@0))
2870 || TYPE_OVERFLOW_WRAPS (TREE_TYPE (@0)))
2871 (view_convert (plus @0 (minus (view_convert @1) @2)))
2872 (if (types_match (type, @0))
2873 (with { tree cst = const_binop (MINUS_EXPR, type, @1, @2); }
2874 (if (cst && !TREE_OVERFLOW (cst))
2875 (plus { cst; } @0)))))))
2877 /* ((T)(A)) + CST -> (T)(A + CST) */
2880 (plus (convert:s SSA_NAME@0) INTEGER_CST@1)
2881 (if (TREE_CODE (TREE_TYPE (@0)) == INTEGER_TYPE
2882 && TREE_CODE (type) == INTEGER_TYPE
2883 && TYPE_PRECISION (type) > TYPE_PRECISION (TREE_TYPE (@0))
2884 && int_fits_type_p (@1, TREE_TYPE (@0)))
2885 /* Perform binary operation inside the cast if the constant fits
2886 and (A + CST)'s range does not overflow. */
2889 wi::overflow_type min_ovf = wi::OVF_OVERFLOW,
2890 max_ovf = wi::OVF_OVERFLOW;
2891 tree inner_type = TREE_TYPE (@0);
2894 = wide_int::from (wi::to_wide (@1), TYPE_PRECISION (inner_type),
2895 TYPE_SIGN (inner_type));
2898 if (get_global_range_query ()->range_of_expr (vr, @0)
2899 && vr.kind () == VR_RANGE)
2901 wide_int wmin0 = vr.lower_bound ();
2902 wide_int wmax0 = vr.upper_bound ();
2903 wi::add (wmin0, w1, TYPE_SIGN (inner_type), &min_ovf);
2904 wi::add (wmax0, w1, TYPE_SIGN (inner_type), &max_ovf);
2907 (if (min_ovf == wi::OVF_NONE && max_ovf == wi::OVF_NONE)
2908 (convert (plus @0 { wide_int_to_tree (TREE_TYPE (@0), w1); } )))
2912 /* ((T)(A + CST1)) + CST2 -> (T)(A) + (T)CST1 + CST2 */
2914 (for op (plus minus)
2916 (plus (convert:s (op:s @0 INTEGER_CST@1)) INTEGER_CST@2)
2917 (if (TREE_CODE (TREE_TYPE (@0)) == INTEGER_TYPE
2918 && TREE_CODE (type) == INTEGER_TYPE
2919 && TYPE_PRECISION (type) > TYPE_PRECISION (TREE_TYPE (@0))
2920 && TYPE_OVERFLOW_UNDEFINED (TREE_TYPE (@0))
2921 && !TYPE_OVERFLOW_SANITIZED (TREE_TYPE (@0))
2922 && TYPE_OVERFLOW_WRAPS (type))
2923 (plus (convert @0) (op @2 (convert @1))))))
2926 /* (T)(A) +- (T)(B) -> (T)(A +- B) only when (A +- B) could be simplified
2927 to a simple value. */
2928 (for op (plus minus)
2930 (op (convert @0) (convert @1))
2931 (if (INTEGRAL_TYPE_P (type)
2932 && INTEGRAL_TYPE_P (TREE_TYPE (@0))
2933 && TYPE_PRECISION (type) <= TYPE_PRECISION (TREE_TYPE (@0))
2934 && types_match (TREE_TYPE (@0), TREE_TYPE (@1))
2935 && !TYPE_OVERFLOW_TRAPS (type)
2936 && !TYPE_OVERFLOW_SANITIZED (type))
2937 (convert (op! @0 @1)))))
2941 (plus:c (bit_not @0) @0)
2942 (if (!TYPE_OVERFLOW_TRAPS (type))
2943 { build_all_ones_cst (type); }))
2947 (plus (convert? (bit_not @0)) integer_each_onep)
2948 (if (tree_nop_conversion_p (type, TREE_TYPE (@0)))
2949 (negate (convert @0))))
2953 (minus (convert? (negate @0)) integer_each_onep)
2954 (if (!TYPE_OVERFLOW_TRAPS (type)
2955 && TREE_CODE (type) != COMPLEX_TYPE
2956 && tree_nop_conversion_p (type, TREE_TYPE (@0)))
2957 (bit_not (convert @0))))
2961 (minus integer_all_onesp @0)
2962 (if (TREE_CODE (type) != COMPLEX_TYPE)
2965 /* (T)(P + A) - (T)P -> (T) A */
2967 (minus (convert (plus:c @@0 @1))
2969 (if (element_precision (type) <= element_precision (TREE_TYPE (@1))
2970 /* For integer types, if A has a smaller type
2971 than T the result depends on the possible
2973 E.g. T=size_t, A=(unsigned)429497295, P>0.
2974 However, if an overflow in P + A would cause
2975 undefined behavior, we can assume that there
2977 || (INTEGRAL_TYPE_P (TREE_TYPE (@1))
2978 && TYPE_OVERFLOW_UNDEFINED (TREE_TYPE (@1))))
2981 (minus (convert (pointer_plus @@0 @1))
2983 (if (element_precision (type) <= element_precision (TREE_TYPE (@1))
2984 /* For pointer types, if the conversion of A to the
2985 final type requires a sign- or zero-extension,
2986 then we have to punt - it is not defined which
2988 || (POINTER_TYPE_P (TREE_TYPE (@0))
2989 && TREE_CODE (@1) == INTEGER_CST
2990 && tree_int_cst_sign_bit (@1) == 0))
2993 (pointer_diff (pointer_plus @@0 @1) @0)
2994 /* The second argument of pointer_plus must be interpreted as signed, and
2995 thus sign-extended if necessary. */
2996 (with { tree stype = signed_type_for (TREE_TYPE (@1)); }
2997 /* Use view_convert instead of convert here, as POINTER_PLUS_EXPR
2998 second arg is unsigned even when we need to consider it as signed,
2999 we don't want to diagnose overflow here. */
3000 (convert (view_convert:stype @1))))
3002 /* (T)P - (T)(P + A) -> -(T) A */
3004 (minus (convert? @0)
3005 (convert (plus:c @@0 @1)))
3006 (if (INTEGRAL_TYPE_P (type)
3007 && TYPE_OVERFLOW_UNDEFINED (type)
3008 && element_precision (type) <= element_precision (TREE_TYPE (@1)))
3009 (with { tree utype = unsigned_type_for (type); }
3010 (convert (negate (convert:utype @1))))
3011 (if (element_precision (type) <= element_precision (TREE_TYPE (@1))
3012 /* For integer types, if A has a smaller type
3013 than T the result depends on the possible
3015 E.g. T=size_t, A=(unsigned)429497295, P>0.
3016 However, if an overflow in P + A would cause
3017 undefined behavior, we can assume that there
3019 || (INTEGRAL_TYPE_P (TREE_TYPE (@1))
3020 && TYPE_OVERFLOW_UNDEFINED (TREE_TYPE (@1))))
3021 (negate (convert @1)))))
3024 (convert (pointer_plus @@0 @1)))
3025 (if (INTEGRAL_TYPE_P (type)
3026 && TYPE_OVERFLOW_UNDEFINED (type)
3027 && element_precision (type) <= element_precision (TREE_TYPE (@1)))
3028 (with { tree utype = unsigned_type_for (type); }
3029 (convert (negate (convert:utype @1))))
3030 (if (element_precision (type) <= element_precision (TREE_TYPE (@1))
3031 /* For pointer types, if the conversion of A to the
3032 final type requires a sign- or zero-extension,
3033 then we have to punt - it is not defined which
3035 || (POINTER_TYPE_P (TREE_TYPE (@0))
3036 && TREE_CODE (@1) == INTEGER_CST
3037 && tree_int_cst_sign_bit (@1) == 0))
3038 (negate (convert @1)))))
3040 (pointer_diff @0 (pointer_plus @@0 @1))
3041 /* The second argument of pointer_plus must be interpreted as signed, and
3042 thus sign-extended if necessary. */
3043 (with { tree stype = signed_type_for (TREE_TYPE (@1)); }
3044 /* Use view_convert instead of convert here, as POINTER_PLUS_EXPR
3045 second arg is unsigned even when we need to consider it as signed,
3046 we don't want to diagnose overflow here. */
3047 (negate (convert (view_convert:stype @1)))))
3049 /* (T)(P + A) - (T)(P + B) -> (T)A - (T)B */
3051 (minus (convert (plus:c @@0 @1))
3052 (convert (plus:c @0 @2)))
3053 (if (INTEGRAL_TYPE_P (type)
3054 && TYPE_OVERFLOW_UNDEFINED (type)
3055 && element_precision (type) <= element_precision (TREE_TYPE (@1))
3056 && element_precision (type) <= element_precision (TREE_TYPE (@2)))
3057 (with { tree utype = unsigned_type_for (type); }
3058 (convert (minus (convert:utype @1) (convert:utype @2))))
3059 (if (((element_precision (type) <= element_precision (TREE_TYPE (@1)))
3060 == (element_precision (type) <= element_precision (TREE_TYPE (@2))))
3061 && (element_precision (type) <= element_precision (TREE_TYPE (@1))
3062 /* For integer types, if A has a smaller type
3063 than T the result depends on the possible
3065 E.g. T=size_t, A=(unsigned)429497295, P>0.
3066 However, if an overflow in P + A would cause
3067 undefined behavior, we can assume that there
3069 || (INTEGRAL_TYPE_P (TREE_TYPE (@1))
3070 && INTEGRAL_TYPE_P (TREE_TYPE (@2))
3071 && TYPE_OVERFLOW_UNDEFINED (TREE_TYPE (@1))
3072 && TYPE_OVERFLOW_UNDEFINED (TREE_TYPE (@2)))))
3073 (minus (convert @1) (convert @2)))))
3075 (minus (convert (pointer_plus @@0 @1))
3076 (convert (pointer_plus @0 @2)))
3077 (if (INTEGRAL_TYPE_P (type)
3078 && TYPE_OVERFLOW_UNDEFINED (type)
3079 && element_precision (type) <= element_precision (TREE_TYPE (@1)))
3080 (with { tree utype = unsigned_type_for (type); }
3081 (convert (minus (convert:utype @1) (convert:utype @2))))
3082 (if (element_precision (type) <= element_precision (TREE_TYPE (@1))
3083 /* For pointer types, if the conversion of A to the
3084 final type requires a sign- or zero-extension,
3085 then we have to punt - it is not defined which
3087 || (POINTER_TYPE_P (TREE_TYPE (@0))
3088 && TREE_CODE (@1) == INTEGER_CST
3089 && tree_int_cst_sign_bit (@1) == 0
3090 && TREE_CODE (@2) == INTEGER_CST
3091 && tree_int_cst_sign_bit (@2) == 0))
3092 (minus (convert @1) (convert @2)))))
3094 (pointer_diff (pointer_plus @0 @2) (pointer_plus @1 @2))
3095 (pointer_diff @0 @1))
3097 (pointer_diff (pointer_plus @@0 @1) (pointer_plus @0 @2))
3098 /* The second argument of pointer_plus must be interpreted as signed, and
3099 thus sign-extended if necessary. */
3100 (with { tree stype = signed_type_for (TREE_TYPE (@1)); }
3101 /* Use view_convert instead of convert here, as POINTER_PLUS_EXPR
3102 second arg is unsigned even when we need to consider it as signed,
3103 we don't want to diagnose overflow here. */
3104 (minus (convert (view_convert:stype @1))
3105 (convert (view_convert:stype @2)))))))
3107 /* (A * C) +- (B * C) -> (A+-B) * C and (A * C) +- A -> A * (C+-1).
3108 Modeled after fold_plusminus_mult_expr. */
3109 (if (!TYPE_SATURATING (type)
3110 && (!FLOAT_TYPE_P (type) || flag_associative_math))
3111 (for plusminus (plus minus)
3113 (plusminus (mult:cs@3 @0 @1) (mult:cs@4 @0 @2))
3114 (if (!ANY_INTEGRAL_TYPE_P (type)
3115 || TYPE_OVERFLOW_WRAPS (type)
3116 || (INTEGRAL_TYPE_P (type)
3117 && tree_expr_nonzero_p (@0)
3118 && expr_not_equal_to (@0, wi::minus_one (TYPE_PRECISION (type)))))
3119 (if (single_use (@3) || single_use (@4))
3120 /* If @1 +- @2 is constant require a hard single-use on either
3121 original operand (but not on both). */
3122 (mult (plusminus @1 @2) @0)
3123 (mult! (plusminus @1 @2) @0)
3125 /* We cannot generate constant 1 for fract. */
3126 (if (!ALL_FRACT_MODE_P (TYPE_MODE (type)))
3128 (plusminus @0 (mult:c@3 @0 @2))
3129 (if ((!ANY_INTEGRAL_TYPE_P (type)
3130 || TYPE_OVERFLOW_WRAPS (type)
3131 /* For @0 + @0*@2 this transformation would introduce UB
3132 (where there was none before) for @0 in [-1,0] and @2 max.
3133 For @0 - @0*@2 this transformation would introduce UB
3134 for @0 0 and @2 in [min,min+1] or @0 -1 and @2 min+1. */
3135 || (INTEGRAL_TYPE_P (type)
3136 && ((tree_expr_nonzero_p (@0)
3137 && expr_not_equal_to (@0,
3138 wi::minus_one (TYPE_PRECISION (type))))
3139 || (plusminus == PLUS_EXPR
3140 ? expr_not_equal_to (@2,
3141 wi::max_value (TYPE_PRECISION (type), SIGNED))
3142 /* Let's ignore the @0 -1 and @2 min case. */
3143 : (expr_not_equal_to (@2,
3144 wi::min_value (TYPE_PRECISION (type), SIGNED))
3145 && expr_not_equal_to (@2,
3146 wi::min_value (TYPE_PRECISION (type), SIGNED)
3149 (mult (plusminus { build_one_cst (type); } @2) @0)))
3151 (plusminus (mult:c@3 @0 @2) @0)
3152 (if ((!ANY_INTEGRAL_TYPE_P (type)
3153 || TYPE_OVERFLOW_WRAPS (type)
3154 /* For @0*@2 + @0 this transformation would introduce UB
3155 (where there was none before) for @0 in [-1,0] and @2 max.
3156 For @0*@2 - @0 this transformation would introduce UB
3157 for @0 0 and @2 min. */
3158 || (INTEGRAL_TYPE_P (type)
3159 && ((tree_expr_nonzero_p (@0)
3160 && (plusminus == MINUS_EXPR
3161 || expr_not_equal_to (@0,
3162 wi::minus_one (TYPE_PRECISION (type)))))
3163 || expr_not_equal_to (@2,
3164 (plusminus == PLUS_EXPR
3165 ? wi::max_value (TYPE_PRECISION (type), SIGNED)
3166 : wi::min_value (TYPE_PRECISION (type), SIGNED))))))
3168 (mult (plusminus @2 { build_one_cst (type); }) @0))))))
3171 /* Canonicalize X + (X << C) into X * (1 + (1 << C)) and
3172 (X << C1) + (X << C2) into X * ((1 << C1) + (1 << C2)). */
3174 (plus:c @0 (lshift:s @0 INTEGER_CST@1))
3175 (if (ANY_INTEGRAL_TYPE_P (TREE_TYPE (@0))
3176 && tree_fits_uhwi_p (@1)
3177 && tree_to_uhwi (@1) < element_precision (type)
3178 && (INTEGRAL_TYPE_P (TREE_TYPE (@0))
3179 || optab_handler (smul_optab,
3180 TYPE_MODE (type)) != CODE_FOR_nothing))
3181 (with { tree t = type;
3182 if (!TYPE_OVERFLOW_WRAPS (t)) t = unsigned_type_for (t);
3183 wide_int w = wi::set_bit_in_zero (tree_to_uhwi (@1),
3184 element_precision (type));
3186 tree cst = wide_int_to_tree (VECTOR_TYPE_P (t) ? TREE_TYPE (t)
3188 cst = build_uniform_cst (t, cst); }
3189 (convert (mult (convert:t @0) { cst; })))))
3191 (plus (lshift:s @0 INTEGER_CST@1) (lshift:s @0 INTEGER_CST@2))
3192 (if (ANY_INTEGRAL_TYPE_P (TREE_TYPE (@0))
3193 && tree_fits_uhwi_p (@1)
3194 && tree_to_uhwi (@1) < element_precision (type)
3195 && tree_fits_uhwi_p (@2)
3196 && tree_to_uhwi (@2) < element_precision (type)
3197 && (INTEGRAL_TYPE_P (TREE_TYPE (@0))
3198 || optab_handler (smul_optab,
3199 TYPE_MODE (type)) != CODE_FOR_nothing))
3200 (with { tree t = type;
3201 if (!TYPE_OVERFLOW_WRAPS (t)) t = unsigned_type_for (t);
3202 unsigned int prec = element_precision (type);
3203 wide_int w = wi::set_bit_in_zero (tree_to_uhwi (@1), prec);
3204 w += wi::set_bit_in_zero (tree_to_uhwi (@2), prec);
3205 tree cst = wide_int_to_tree (VECTOR_TYPE_P (t) ? TREE_TYPE (t)
3207 cst = build_uniform_cst (t, cst); }
3208 (convert (mult (convert:t @0) { cst; })))))
3211 /* Canonicalize (X*C1)|(X*C2) and (X*C1)^(X*C2) to (C1+C2)*X when
3212 tree_nonzero_bits allows IOR and XOR to be treated like PLUS.
3213 Likewise, handle (X<<C3) and X as legitimate variants of X*C. */
3214 (for op (bit_ior bit_xor)
3216 (op (mult:s@0 @1 INTEGER_CST@2)
3217 (mult:s@3 @1 INTEGER_CST@4))
3218 (if (INTEGRAL_TYPE_P (type) && TYPE_OVERFLOW_WRAPS (type)
3219 && (tree_nonzero_bits (@0) & tree_nonzero_bits (@3)) == 0)
3221 { wide_int_to_tree (type, wi::to_wide (@2) + wi::to_wide (@4)); })))
3223 (op:c (mult:s@0 @1 INTEGER_CST@2)
3224 (lshift:s@3 @1 INTEGER_CST@4))
3225 (if (INTEGRAL_TYPE_P (type) && TYPE_OVERFLOW_WRAPS (type)
3226 && tree_int_cst_sgn (@4) > 0
3227 && (tree_nonzero_bits (@0) & tree_nonzero_bits (@3)) == 0)
3228 (with { wide_int wone = wi::one (TYPE_PRECISION (type));
3229 wide_int c = wi::add (wi::to_wide (@2),
3230 wi::lshift (wone, wi::to_wide (@4))); }
3231 (mult @1 { wide_int_to_tree (type, c); }))))
3233 (op:c (mult:s@0 @1 INTEGER_CST@2)
3235 (if (INTEGRAL_TYPE_P (type) && TYPE_OVERFLOW_WRAPS (type)
3236 && (tree_nonzero_bits (@0) & tree_nonzero_bits (@1)) == 0)
3238 { wide_int_to_tree (type,
3239 wi::add (wi::to_wide (@2), 1)); })))
3241 (op (lshift:s@0 @1 INTEGER_CST@2)
3242 (lshift:s@3 @1 INTEGER_CST@4))
3243 (if (INTEGRAL_TYPE_P (type)
3244 && tree_int_cst_sgn (@2) > 0
3245 && tree_int_cst_sgn (@4) > 0
3246 && (tree_nonzero_bits (@0) & tree_nonzero_bits (@3)) == 0)
3247 (with { tree t = type;
3248 if (!TYPE_OVERFLOW_WRAPS (t))
3249 t = unsigned_type_for (t);
3250 wide_int wone = wi::one (TYPE_PRECISION (t));
3251 wide_int c = wi::add (wi::lshift (wone, wi::to_wide (@2)),
3252 wi::lshift (wone, wi::to_wide (@4))); }
3253 (convert (mult:t (convert:t @1) { wide_int_to_tree (t,c); })))))
3255 (op:c (lshift:s@0 @1 INTEGER_CST@2)
3257 (if (INTEGRAL_TYPE_P (type)
3258 && tree_int_cst_sgn (@2) > 0
3259 && (tree_nonzero_bits (@0) & tree_nonzero_bits (@1)) == 0)
3260 (with { tree t = type;
3261 if (!TYPE_OVERFLOW_WRAPS (t))
3262 t = unsigned_type_for (t);
3263 wide_int wone = wi::one (TYPE_PRECISION (t));
3264 wide_int c = wi::add (wi::lshift (wone, wi::to_wide (@2)), wone); }
3265 (convert (mult:t (convert:t @1) { wide_int_to_tree (t, c); }))))))
3267 /* Simplifications of MIN_EXPR, MAX_EXPR, fmin() and fmax(). */
3269 (for minmax (min max)
3273 /* For fmin() and fmax(), skip folding when both are sNaN. */
3274 (for minmax (FMIN_ALL FMAX_ALL)
3277 (if (!tree_expr_maybe_signaling_nan_p (@0))
3279 /* min(max(x,y),y) -> y. */
3281 (min:c (max:c @0 @1) @1)
3283 /* max(min(x,y),y) -> y. */
3285 (max:c (min:c @0 @1) @1)
3287 /* max(a,-a) -> abs(a). */
3289 (max:c @0 (negate @0))
3290 (if (TREE_CODE (type) != COMPLEX_TYPE
3291 && (! ANY_INTEGRAL_TYPE_P (type)
3292 || TYPE_OVERFLOW_UNDEFINED (type)))
3294 /* min(a,-a) -> -abs(a). */
3296 (min:c @0 (negate @0))
3297 (if (TREE_CODE (type) != COMPLEX_TYPE
3298 && (! ANY_INTEGRAL_TYPE_P (type)
3299 || TYPE_OVERFLOW_UNDEFINED (type)))
3304 (if (INTEGRAL_TYPE_P (type)
3305 && TYPE_MIN_VALUE (type)
3306 && operand_equal_p (@1, TYPE_MIN_VALUE (type), OEP_ONLY_CONST))
3308 (if (INTEGRAL_TYPE_P (type)
3309 && TYPE_MAX_VALUE (type)
3310 && operand_equal_p (@1, TYPE_MAX_VALUE (type), OEP_ONLY_CONST))
3315 (if (INTEGRAL_TYPE_P (type)
3316 && TYPE_MAX_VALUE (type)
3317 && operand_equal_p (@1, TYPE_MAX_VALUE (type), OEP_ONLY_CONST))
3319 (if (INTEGRAL_TYPE_P (type)
3320 && TYPE_MIN_VALUE (type)
3321 && operand_equal_p (@1, TYPE_MIN_VALUE (type), OEP_ONLY_CONST))
3324 /* max (a, a + CST) -> a + CST where CST is positive. */
3325 /* max (a, a + CST) -> a where CST is negative. */
3327 (max:c @0 (plus@2 @0 INTEGER_CST@1))
3328 (if (TYPE_OVERFLOW_UNDEFINED (TREE_TYPE (@0)))
3329 (if (tree_int_cst_sgn (@1) > 0)
3333 /* min (a, a + CST) -> a where CST is positive. */
3334 /* min (a, a + CST) -> a + CST where CST is negative. */
3336 (min:c @0 (plus@2 @0 INTEGER_CST@1))
3337 (if (TYPE_OVERFLOW_UNDEFINED (TREE_TYPE (@0)))
3338 (if (tree_int_cst_sgn (@1) > 0)
3342 /* Simplify min (&var[off0], &var[off1]) etc. depending on whether
3343 the addresses are known to be less, equal or greater. */
3344 (for minmax (min max)
3347 (minmax (convert1?@2 addr@0) (convert2?@3 addr@1))
3350 poly_int64 off0, off1;
3352 int equal = address_compare (cmp, TREE_TYPE (@2), @0, @1, base0, base1,
3353 off0, off1, GENERIC);
3356 (if (minmax == MIN_EXPR)
3357 (if (known_le (off0, off1))
3359 (if (known_gt (off0, off1))
3361 (if (known_ge (off0, off1))
3363 (if (known_lt (off0, off1))
3366 /* (convert (minmax ((convert (x) c)))) -> minmax (x c) if x is promoted
3367 and the outer convert demotes the expression back to x's type. */
3368 (for minmax (min max)
3370 (convert (minmax@0 (convert @1) INTEGER_CST@2))
3371 (if (INTEGRAL_TYPE_P (type)
3372 && types_match (@1, type) && int_fits_type_p (@2, type)
3373 && TYPE_SIGN (TREE_TYPE (@0)) == TYPE_SIGN (type)
3374 && TYPE_PRECISION (TREE_TYPE (@0)) > TYPE_PRECISION (type))
3375 (minmax @1 (convert @2)))))
3377 (for minmax (FMIN_ALL FMAX_ALL)
3378 /* If either argument is NaN and other one is not sNaN, return the other
3379 one. Avoid the transformation if we get (and honor) a signalling NaN. */
3381 (minmax:c @0 REAL_CST@1)
3382 (if (real_isnan (TREE_REAL_CST_PTR (@1))
3383 && (!HONOR_SNANS (@1) || !TREE_REAL_CST (@1).signalling)
3384 && !tree_expr_maybe_signaling_nan_p (@0))
3386 /* Convert fmin/fmax to MIN_EXPR/MAX_EXPR. C99 requires these
3387 functions to return the numeric arg if the other one is NaN.
3388 MIN and MAX don't honor that, so only transform if -ffinite-math-only
3389 is set. C99 doesn't require -0.0 to be handled, so we don't have to
3390 worry about it either. */
3391 (if (flag_finite_math_only)
3398 /* min (-A, -B) -> -max (A, B) */
3399 (for minmax (min max FMIN_ALL FMAX_ALL)
3400 maxmin (max min FMAX_ALL FMIN_ALL)
3402 (minmax (negate:s@2 @0) (negate:s@3 @1))
3403 (if (FLOAT_TYPE_P (TREE_TYPE (@0))
3404 || (ANY_INTEGRAL_TYPE_P (TREE_TYPE (@0))
3405 && TYPE_OVERFLOW_UNDEFINED (TREE_TYPE (@0))))
3406 (negate (maxmin @0 @1)))))
3407 /* MIN (~X, ~Y) -> ~MAX (X, Y)
3408 MAX (~X, ~Y) -> ~MIN (X, Y) */
3409 (for minmax (min max)
3412 (minmax (bit_not:s@2 @0) (bit_not:s@3 @1))
3413 (bit_not (maxmin @0 @1))))
3415 /* MIN (X, Y) == X -> X <= Y */
3416 (for minmax (min min max max)
3420 (cmp:c (minmax:c @0 @1) @0)
3421 (if (ANY_INTEGRAL_TYPE_P (TREE_TYPE (@0)))
3423 /* MIN (X, 5) == 0 -> X == 0
3424 MIN (X, 5) == 7 -> false */
3427 (cmp (min @0 INTEGER_CST@1) INTEGER_CST@2)
3428 (if (wi::lt_p (wi::to_wide (@1), wi::to_wide (@2),
3429 TYPE_SIGN (TREE_TYPE (@0))))
3430 { constant_boolean_node (cmp == NE_EXPR, type); }
3431 (if (wi::gt_p (wi::to_wide (@1), wi::to_wide (@2),
3432 TYPE_SIGN (TREE_TYPE (@0))))
3436 (cmp (max @0 INTEGER_CST@1) INTEGER_CST@2)
3437 (if (wi::gt_p (wi::to_wide (@1), wi::to_wide (@2),
3438 TYPE_SIGN (TREE_TYPE (@0))))
3439 { constant_boolean_node (cmp == NE_EXPR, type); }
3440 (if (wi::lt_p (wi::to_wide (@1), wi::to_wide (@2),
3441 TYPE_SIGN (TREE_TYPE (@0))))
3443 /* MIN (X, C1) < C2 -> X < C2 || C1 < C2 */
3444 (for minmax (min min max max min min max max )
3445 cmp (lt le gt ge gt ge lt le )
3446 comb (bit_ior bit_ior bit_ior bit_ior bit_and bit_and bit_and bit_and)
3448 (cmp (minmax @0 INTEGER_CST@1) INTEGER_CST@2)
3449 (comb (cmp @0 @2) (cmp @1 @2))))
3451 /* X <= MAX(X, Y) -> true
3452 X > MAX(X, Y) -> false
3453 X >= MIN(X, Y) -> true
3454 X < MIN(X, Y) -> false */
3455 (for minmax (min min max max )
3458 (cmp @0 (minmax:c @0 @1))
3459 { constant_boolean_node (cmp == GE_EXPR || cmp == LE_EXPR, type); } ))
3461 /* Undo fancy ways of writing max/min or other ?: expressions, like
3462 a - ((a - b) & -(a < b)) and a - (a - b) * (a < b) into (a < b) ? b : a.
3463 People normally use ?: and that is what we actually try to optimize. */
3464 /* Transform A + (B-A)*cmp into cmp ? B : A. */
3466 (plus:c @0 (mult:c (minus @1 @0) zero_one_valued_p@2))
3467 (if (INTEGRAL_TYPE_P (type)
3468 && (GIMPLE || !TREE_SIDE_EFFECTS (@1)))
3469 (cond (convert:boolean_type_node @2) @1 @0)))
3470 /* Transform A - (A-B)*cmp into cmp ? B : A. */
3472 (minus @0 (mult:c (minus @0 @1) zero_one_valued_p@2))
3473 (if (INTEGRAL_TYPE_P (type)
3474 && (GIMPLE || !TREE_SIDE_EFFECTS (@1)))
3475 (cond (convert:boolean_type_node @2) @1 @0)))
3476 /* Transform A ^ (A^B)*cmp into cmp ? B : A. */
3478 (bit_xor:c @0 (mult:c (bit_xor:c @0 @1) zero_one_valued_p@2))
3479 (if (INTEGRAL_TYPE_P (type)
3480 && (GIMPLE || !TREE_SIDE_EFFECTS (@1)))
3481 (cond (convert:boolean_type_node @2) @1 @0)))
3483 /* (x <= 0 ? -x : 0) -> max(-x, 0). */
3485 (cond (le @0 integer_zerop@1) (negate@2 @0) integer_zerop@1)
3488 /* Simplifications of shift and rotates. */
3490 (for rotate (lrotate rrotate)
3492 (rotate integer_all_onesp@0 @1)
3495 /* Optimize -1 >> x for arithmetic right shifts. */
3497 (rshift integer_all_onesp@0 @1)
3498 (if (!TYPE_UNSIGNED (type))
3501 /* Optimize (x >> c) << c into x & (-1<<c). */
3503 (lshift (nop_convert? (rshift @0 INTEGER_CST@1)) @1)
3504 (if (wi::ltu_p (wi::to_wide (@1), element_precision (type)))
3505 /* It doesn't matter if the right shift is arithmetic or logical. */
3506 (bit_and (view_convert @0) (lshift { build_minus_one_cst (type); } @1))))
3509 (lshift (convert (convert@2 (rshift @0 INTEGER_CST@1))) @1)
3510 (if (wi::ltu_p (wi::to_wide (@1), element_precision (type))
3511 /* Allow intermediate conversion to integral type with whatever sign, as
3512 long as the low TYPE_PRECISION (type)
3513 - TYPE_PRECISION (TREE_TYPE (@2)) bits are preserved. */
3514 && INTEGRAL_TYPE_P (type)
3515 && INTEGRAL_TYPE_P (TREE_TYPE (@2))
3516 && INTEGRAL_TYPE_P (TREE_TYPE (@0))
3517 && TYPE_PRECISION (type) == TYPE_PRECISION (TREE_TYPE (@0))
3518 && (TYPE_PRECISION (TREE_TYPE (@2)) >= TYPE_PRECISION (type)
3519 || wi::geu_p (wi::to_wide (@1),
3520 TYPE_PRECISION (type)
3521 - TYPE_PRECISION (TREE_TYPE (@2)))))
3522 (bit_and (convert @0) (lshift { build_minus_one_cst (type); } @1))))
3524 /* Optimize (x << c) >> c into x & ((unsigned)-1 >> c) for unsigned
3527 (rshift (lshift @0 INTEGER_CST@1) @1)
3528 (if (TYPE_UNSIGNED (type)
3529 && (wi::ltu_p (wi::to_wide (@1), element_precision (type))))
3530 (bit_and @0 (rshift { build_minus_one_cst (type); } @1))))
3532 /* Optimize x >> x into 0 */
3535 { build_zero_cst (type); })
3537 (for shiftrotate (lrotate rrotate lshift rshift)
3539 (shiftrotate @0 integer_zerop)
3542 (shiftrotate integer_zerop@0 @1)
3544 /* Prefer vector1 << scalar to vector1 << vector2
3545 if vector2 is uniform. */
3546 (for vec (VECTOR_CST CONSTRUCTOR)
3548 (shiftrotate @0 vec@1)
3549 (with { tree tem = uniform_vector_p (@1); }
3551 (shiftrotate @0 { tem; }))))))
3553 /* Simplify X << Y where Y's low width bits are 0 to X, as only valid
3554 Y is 0. Similarly for X >> Y. */
3556 (for shift (lshift rshift)
3558 (shift @0 SSA_NAME@1)
3559 (if (INTEGRAL_TYPE_P (TREE_TYPE (@1)))
3561 int width = ceil_log2 (element_precision (TREE_TYPE (@0)));
3562 int prec = TYPE_PRECISION (TREE_TYPE (@1));
3564 (if ((get_nonzero_bits (@1) & wi::mask (width, false, prec)) == 0)
3568 /* Rewrite an LROTATE_EXPR by a constant into an
3569 RROTATE_EXPR by a new constant. */
3571 (lrotate @0 INTEGER_CST@1)
3572 (rrotate @0 { const_binop (MINUS_EXPR, TREE_TYPE (@1),
3573 build_int_cst (TREE_TYPE (@1),
3574 element_precision (type)), @1); }))
3576 /* Turn (a OP c1) OP c2 into a OP (c1+c2). */
3577 (for op (lrotate rrotate rshift lshift)
3579 (op (op @0 INTEGER_CST@1) INTEGER_CST@2)
3580 (with { unsigned int prec = element_precision (type); }
3581 (if (wi::ge_p (wi::to_wide (@1), 0, TYPE_SIGN (TREE_TYPE (@1)))
3582 && wi::lt_p (wi::to_wide (@1), prec, TYPE_SIGN (TREE_TYPE (@1)))
3583 && wi::ge_p (wi::to_wide (@2), 0, TYPE_SIGN (TREE_TYPE (@2)))
3584 && wi::lt_p (wi::to_wide (@2), prec, TYPE_SIGN (TREE_TYPE (@2))))
3585 (with { unsigned int low = (tree_to_uhwi (@1)
3586 + tree_to_uhwi (@2)); }
3587 /* Deal with a OP (c1 + c2) being undefined but (a OP c1) OP c2
3588 being well defined. */
3590 (if (op == LROTATE_EXPR || op == RROTATE_EXPR)
3591 (op @0 { build_int_cst (TREE_TYPE (@1), low % prec); })
3592 (if (TYPE_UNSIGNED (type) || op == LSHIFT_EXPR)
3593 { build_zero_cst (type); }
3594 (op @0 { build_int_cst (TREE_TYPE (@1), prec - 1); })))
3595 (op @0 { build_int_cst (TREE_TYPE (@1), low); })))))))
3598 /* Simplify (CST << x) & 1 to 0 if CST is even or to x == 0 if it is odd. */
3600 (bit_and (lshift INTEGER_CST@1 @0) integer_onep)
3601 (if ((wi::to_wide (@1) & 1) != 0)
3602 (convert (eq:boolean_type_node @0 { build_zero_cst (TREE_TYPE (@0)); }))
3603 { build_zero_cst (type); }))
3605 /* Simplify ((C << x) & D) != 0 where C and D are power of two constants,
3606 either to false if D is smaller (unsigned comparison) than C, or to
3607 x == log2 (D) - log2 (C). Similarly for right shifts. */
3611 (cmp (bit_and (lshift integer_pow2p@1 @0) integer_pow2p@2) integer_zerop)
3612 (with { int c1 = wi::clz (wi::to_wide (@1));
3613 int c2 = wi::clz (wi::to_wide (@2)); }
3615 { constant_boolean_node (cmp == NE_EXPR ? false : true, type); }
3616 (icmp @0 { build_int_cst (TREE_TYPE (@0), c1 - c2); }))))
3618 (cmp (bit_and (rshift integer_pow2p@1 @0) integer_pow2p@2) integer_zerop)
3619 (if (tree_int_cst_sgn (@1) > 0)
3620 (with { int c1 = wi::clz (wi::to_wide (@1));
3621 int c2 = wi::clz (wi::to_wide (@2)); }
3623 { constant_boolean_node (cmp == NE_EXPR ? false : true, type); }
3624 (icmp @0 { build_int_cst (TREE_TYPE (@0), c2 - c1); }))))))
3626 /* (CST1 << A) == CST2 -> A == ctz (CST2) - ctz (CST1)
3627 (CST1 << A) != CST2 -> A != ctz (CST2) - ctz (CST1)
3631 (cmp (lshift INTEGER_CST@0 @1) INTEGER_CST@2)
3632 (with { int cand = wi::ctz (wi::to_wide (@2)) - wi::ctz (wi::to_wide (@0)); }
3634 || (!integer_zerop (@2)
3635 && wi::lshift (wi::to_wide (@0), cand) != wi::to_wide (@2)))
3636 { constant_boolean_node (cmp == NE_EXPR, type); }
3637 (if (!integer_zerop (@2)
3638 && wi::lshift (wi::to_wide (@0), cand) == wi::to_wide (@2))
3639 (cmp @1 { build_int_cst (TREE_TYPE (@1), cand); }))))))
3641 /* Fold ((X << C1) & C2) cmp C3 into (X & (C2 >> C1)) cmp (C3 >> C1)
3642 ((X >> C1) & C2) cmp C3 into (X & (C2 << C1)) cmp (C3 << C1). */
3645 (cmp (bit_and:s (lshift:s @0 INTEGER_CST@1) INTEGER_CST@2) INTEGER_CST@3)
3646 (if (tree_fits_shwi_p (@1)
3647 && tree_to_shwi (@1) > 0
3648 && tree_to_shwi (@1) < TYPE_PRECISION (TREE_TYPE (@0)))
3649 (if (tree_to_shwi (@1) > wi::ctz (wi::to_wide (@3)))
3650 { constant_boolean_node (cmp == NE_EXPR, type); }
3651 (with { wide_int c1 = wi::to_wide (@1);
3652 wide_int c2 = wi::lrshift (wi::to_wide (@2), c1);
3653 wide_int c3 = wi::lrshift (wi::to_wide (@3), c1); }
3654 (cmp (bit_and @0 { wide_int_to_tree (TREE_TYPE (@0), c2); })
3655 { wide_int_to_tree (TREE_TYPE (@0), c3); })))))
3657 (cmp (bit_and:s (rshift:s @0 INTEGER_CST@1) INTEGER_CST@2) INTEGER_CST@3)
3658 (if (tree_fits_shwi_p (@1)
3659 && tree_to_shwi (@1) > 0
3660 && tree_to_shwi (@1) < TYPE_PRECISION (TREE_TYPE (@0)))
3661 (with { tree t0 = TREE_TYPE (@0);
3662 unsigned int prec = TYPE_PRECISION (t0);
3663 wide_int c1 = wi::to_wide (@1);
3664 wide_int c2 = wi::to_wide (@2);
3665 wide_int c3 = wi::to_wide (@3);
3666 wide_int sb = wi::set_bit_in_zero (prec - 1, prec); }
3667 (if ((c2 & c3) != c3)
3668 { constant_boolean_node (cmp == NE_EXPR, type); }
3669 (if (TYPE_UNSIGNED (t0))
3670 (if ((c3 & wi::arshift (sb, c1 - 1)) != 0)
3671 { constant_boolean_node (cmp == NE_EXPR, type); }
3672 (cmp (bit_and @0 { wide_int_to_tree (t0, c2 << c1); })
3673 { wide_int_to_tree (t0, c3 << c1); }))
3674 (with { wide_int smask = wi::arshift (sb, c1); }
3676 (if ((c2 & smask) == 0)
3677 (cmp (bit_and @0 { wide_int_to_tree (t0, c2 << c1); })
3678 { wide_int_to_tree (t0, c3 << c1); }))
3679 (if ((c3 & smask) == 0)
3680 (cmp (bit_and @0 { wide_int_to_tree (t0, (c2 << c1) | sb); })
3681 { wide_int_to_tree (t0, c3 << c1); }))
3682 (if ((c2 & smask) != (c3 & smask))
3683 { constant_boolean_node (cmp == NE_EXPR, type); })
3684 (cmp (bit_and @0 { wide_int_to_tree (t0, (c2 << c1) | sb); })
3685 { wide_int_to_tree (t0, (c3 << c1) | sb); })))))))))
3687 /* Fold (X << C1) & C2 into (X << C1) & (C2 | ((1 << C1) - 1))
3688 (X >> C1) & C2 into (X >> C1) & (C2 | ~((type) -1 >> C1))
3689 if the new mask might be further optimized. */
3690 (for shift (lshift rshift)
3692 (bit_and (convert?:s@4 (shift:s@5 (convert1?@3 @0) INTEGER_CST@1))
3694 (if (tree_nop_conversion_p (TREE_TYPE (@4), TREE_TYPE (@5))
3695 && TYPE_PRECISION (type) <= HOST_BITS_PER_WIDE_INT
3696 && tree_fits_uhwi_p (@1)
3697 && tree_to_uhwi (@1) > 0
3698 && tree_to_uhwi (@1) < TYPE_PRECISION (type))
3701 unsigned int shiftc = tree_to_uhwi (@1);
3702 unsigned HOST_WIDE_INT mask = TREE_INT_CST_LOW (@2);
3703 unsigned HOST_WIDE_INT newmask, zerobits = 0;
3704 tree shift_type = TREE_TYPE (@3);
3707 if (shift == LSHIFT_EXPR)
3708 zerobits = ((HOST_WIDE_INT_1U << shiftc) - 1);
3709 else if (shift == RSHIFT_EXPR
3710 && type_has_mode_precision_p (shift_type))
3712 prec = TYPE_PRECISION (TREE_TYPE (@3));
3714 /* See if more bits can be proven as zero because of
3717 && TYPE_UNSIGNED (TREE_TYPE (@0)))
3719 tree inner_type = TREE_TYPE (@0);
3720 if (type_has_mode_precision_p (inner_type)
3721 && TYPE_PRECISION (inner_type) < prec)
3723 prec = TYPE_PRECISION (inner_type);
3724 /* See if we can shorten the right shift. */
3726 shift_type = inner_type;
3727 /* Otherwise X >> C1 is all zeros, so we'll optimize
3728 it into (X, 0) later on by making sure zerobits
3732 zerobits = HOST_WIDE_INT_M1U;
3735 zerobits >>= HOST_BITS_PER_WIDE_INT - shiftc;
3736 zerobits <<= prec - shiftc;
3738 /* For arithmetic shift if sign bit could be set, zerobits
3739 can contain actually sign bits, so no transformation is
3740 possible, unless MASK masks them all away. In that
3741 case the shift needs to be converted into logical shift. */
3742 if (!TYPE_UNSIGNED (TREE_TYPE (@3))
3743 && prec == TYPE_PRECISION (TREE_TYPE (@3)))
3745 if ((mask & zerobits) == 0)
3746 shift_type = unsigned_type_for (TREE_TYPE (@3));
3752 /* ((X << 16) & 0xff00) is (X, 0). */
3753 (if ((mask & zerobits) == mask)
3754 { build_int_cst (type, 0); }
3755 (with { newmask = mask | zerobits; }
3756 (if (newmask != mask && (newmask & (newmask + 1)) == 0)
3759 /* Only do the transformation if NEWMASK is some integer
3761 for (prec = BITS_PER_UNIT;
3762 prec < HOST_BITS_PER_WIDE_INT; prec <<= 1)
3763 if (newmask == (HOST_WIDE_INT_1U << prec) - 1)
3766 (if (prec < HOST_BITS_PER_WIDE_INT
3767 || newmask == HOST_WIDE_INT_M1U)
3769 { tree newmaskt = build_int_cst_type (TREE_TYPE (@2), newmask); }
3770 (if (!tree_int_cst_equal (newmaskt, @2))
3771 (if (shift_type != TREE_TYPE (@3))
3772 (bit_and (convert (shift:shift_type (convert @3) @1)) { newmaskt; })
3773 (bit_and @4 { newmaskt; })))))))))))))
3775 /* ((1 << n) & M) != 0 -> n == log2 (M) */
3781 (nop_convert? (lshift integer_onep @0)) integer_pow2p@1) integer_zerop)
3782 (if (INTEGRAL_TYPE_P (TREE_TYPE (@0)))
3783 (icmp @0 { wide_int_to_tree (TREE_TYPE (@0),
3784 wi::exact_log2 (wi::to_wide (@1))); }))))
3786 /* Fold (X {&,^,|} C2) << C1 into (X << C1) {&,^,|} (C2 << C1)
3787 (X {&,^,|} C2) >> C1 into (X >> C1) & (C2 >> C1). */
3788 (for shift (lshift rshift)
3789 (for bit_op (bit_and bit_xor bit_ior)
3791 (shift (convert?:s (bit_op:s @0 INTEGER_CST@2)) INTEGER_CST@1)
3792 (if (tree_nop_conversion_p (type, TREE_TYPE (@0)))
3793 (with { tree mask = int_const_binop (shift, fold_convert (type, @2), @1); }
3795 (bit_op (shift (convert @0) @1) { mask; })))))))
3797 /* ~(~X >> Y) -> X >> Y (for arithmetic shift). */
3799 (bit_not (convert1?:s (rshift:s (convert2?@0 (bit_not @1)) @2)))
3800 (if (!TYPE_UNSIGNED (TREE_TYPE (@0))
3801 && (element_precision (TREE_TYPE (@0))
3802 <= element_precision (TREE_TYPE (@1))
3803 || !TYPE_UNSIGNED (TREE_TYPE (@1))))
3805 { tree shift_type = TREE_TYPE (@0); }
3806 (convert (rshift (convert:shift_type @1) @2)))))
3808 /* ~(~X >>r Y) -> X >>r Y
3809 ~(~X <<r Y) -> X <<r Y */
3810 (for rotate (lrotate rrotate)
3812 (bit_not (convert1?:s (rotate:s (convert2?@0 (bit_not @1)) @2)))
3813 (if ((element_precision (TREE_TYPE (@0))
3814 <= element_precision (TREE_TYPE (@1))
3815 || !TYPE_UNSIGNED (TREE_TYPE (@1)))
3816 && (element_precision (type) <= element_precision (TREE_TYPE (@0))
3817 || !TYPE_UNSIGNED (TREE_TYPE (@0))))
3819 { tree rotate_type = TREE_TYPE (@0); }
3820 (convert (rotate (convert:rotate_type @1) @2))))))
3823 (for rotate (lrotate rrotate)
3824 invrot (rrotate lrotate)
3825 /* (X >>r Y) cmp (Z >>r Y) may simplify to X cmp Y. */
3827 (cmp (rotate @1 @0) (rotate @2 @0))
3829 /* (X >>r C1) cmp C2 may simplify to X cmp C3. */
3831 (cmp (rotate @0 INTEGER_CST@1) INTEGER_CST@2)
3832 (cmp @0 { const_binop (invrot, TREE_TYPE (@0), @2, @1); }))
3833 /* (X >>r Y) cmp C where C is 0 or ~0, may simplify to X cmp C. */
3835 (cmp (rotate @0 @1) INTEGER_CST@2)
3836 (if (integer_zerop (@2) || integer_all_onesp (@2))
3839 /* Narrow a lshift by constant. */
3841 (convert (lshift:s@0 @1 INTEGER_CST@2))
3842 (if (INTEGRAL_TYPE_P (type)
3843 && INTEGRAL_TYPE_P (TREE_TYPE (@0))
3844 && !integer_zerop (@2)
3845 && TYPE_PRECISION (type) <= TYPE_PRECISION (TREE_TYPE (@0)))
3846 (if (TYPE_PRECISION (type) == TYPE_PRECISION (TREE_TYPE (@0))
3847 || wi::ltu_p (wi::to_wide (@2), TYPE_PRECISION (type)))
3848 (lshift (convert @1) @2)
3849 (if (wi::ltu_p (wi::to_wide (@2), TYPE_PRECISION (TREE_TYPE (@0))))
3850 { build_zero_cst (type); }))))
3852 /* Simplifications of conversions. */
3854 /* Basic strip-useless-type-conversions / strip_nops. */
3855 (for cvt (convert view_convert float fix_trunc)
3858 (if ((GIMPLE && useless_type_conversion_p (type, TREE_TYPE (@0)))
3859 || (GENERIC && type == TREE_TYPE (@0)))
3862 /* Contract view-conversions. */
3864 (view_convert (view_convert @0))
3867 /* For integral conversions with the same precision or pointer
3868 conversions use a NOP_EXPR instead. */
3871 (if ((INTEGRAL_TYPE_P (type) || POINTER_TYPE_P (type))
3872 && (INTEGRAL_TYPE_P (TREE_TYPE (@0)) || POINTER_TYPE_P (TREE_TYPE (@0)))
3873 && TYPE_PRECISION (type) == TYPE_PRECISION (TREE_TYPE (@0)))
3876 /* Strip inner integral conversions that do not change precision or size, or
3877 zero-extend while keeping the same size (for bool-to-char). */
3879 (view_convert (convert@0 @1))
3880 (if ((INTEGRAL_TYPE_P (TREE_TYPE (@0)) || POINTER_TYPE_P (TREE_TYPE (@0)))
3881 && (INTEGRAL_TYPE_P (TREE_TYPE (@1)) || POINTER_TYPE_P (TREE_TYPE (@1)))
3882 && TYPE_SIZE (TREE_TYPE (@0)) == TYPE_SIZE (TREE_TYPE (@1))
3883 && (TYPE_PRECISION (TREE_TYPE (@0)) == TYPE_PRECISION (TREE_TYPE (@1))
3884 || (TYPE_PRECISION (TREE_TYPE (@0)) > TYPE_PRECISION (TREE_TYPE (@1))
3885 && TYPE_UNSIGNED (TREE_TYPE (@1)))))
3888 /* Simplify a view-converted empty or single-element constructor. */
3890 (view_convert CONSTRUCTOR@0)
3892 { tree ctor = (TREE_CODE (@0) == SSA_NAME
3893 ? gimple_assign_rhs1 (SSA_NAME_DEF_STMT (@0)) : @0); }
3895 (if (CONSTRUCTOR_NELTS (ctor) == 0)
3896 { build_zero_cst (type); })
3897 (if (CONSTRUCTOR_NELTS (ctor) == 1
3898 && VECTOR_TYPE_P (TREE_TYPE (ctor))
3899 && operand_equal_p (TYPE_SIZE (type),
3900 TYPE_SIZE (TREE_TYPE
3901 (CONSTRUCTOR_ELT (ctor, 0)->value))))
3902 (view_convert { CONSTRUCTOR_ELT (ctor, 0)->value; })))))
3904 /* Re-association barriers around constants and other re-association
3905 barriers can be removed. */
3907 (paren CONSTANT_CLASS_P@0)
3910 (paren (paren@1 @0))
3913 /* Handle cases of two conversions in a row. */
3914 (for ocvt (convert float fix_trunc)
3915 (for icvt (convert float)
3920 tree inside_type = TREE_TYPE (@0);
3921 tree inter_type = TREE_TYPE (@1);
3922 int inside_int = INTEGRAL_TYPE_P (inside_type);
3923 int inside_ptr = POINTER_TYPE_P (inside_type);
3924 int inside_float = FLOAT_TYPE_P (inside_type);
3925 int inside_vec = VECTOR_TYPE_P (inside_type);
3926 unsigned int inside_prec = TYPE_PRECISION (inside_type);
3927 int inside_unsignedp = TYPE_UNSIGNED (inside_type);
3928 int inter_int = INTEGRAL_TYPE_P (inter_type);
3929 int inter_ptr = POINTER_TYPE_P (inter_type);
3930 int inter_float = FLOAT_TYPE_P (inter_type);
3931 int inter_vec = VECTOR_TYPE_P (inter_type);
3932 unsigned int inter_prec = TYPE_PRECISION (inter_type);
3933 int inter_unsignedp = TYPE_UNSIGNED (inter_type);
3934 int final_int = INTEGRAL_TYPE_P (type);
3935 int final_ptr = POINTER_TYPE_P (type);
3936 int final_float = FLOAT_TYPE_P (type);
3937 int final_vec = VECTOR_TYPE_P (type);
3938 unsigned int final_prec = TYPE_PRECISION (type);
3939 int final_unsignedp = TYPE_UNSIGNED (type);
3942 /* In addition to the cases of two conversions in a row
3943 handled below, if we are converting something to its own
3944 type via an object of identical or wider precision, neither
3945 conversion is needed. */
3946 (if (((GIMPLE && useless_type_conversion_p (type, inside_type))
3948 && TYPE_MAIN_VARIANT (type) == TYPE_MAIN_VARIANT (inside_type)))
3949 && (((inter_int || inter_ptr) && final_int)
3950 || (inter_float && final_float))
3951 && inter_prec >= final_prec)
3954 /* Likewise, if the intermediate and initial types are either both
3955 float or both integer, we don't need the middle conversion if the
3956 former is wider than the latter and doesn't change the signedness
3957 (for integers). Avoid this if the final type is a pointer since
3958 then we sometimes need the middle conversion. */
3959 (if (((inter_int && inside_int) || (inter_float && inside_float))
3960 && (final_int || final_float)
3961 && inter_prec >= inside_prec
3962 && (inter_float || inter_unsignedp == inside_unsignedp))
3965 /* If we have a sign-extension of a zero-extended value, we can
3966 replace that by a single zero-extension. Likewise if the
3967 final conversion does not change precision we can drop the
3968 intermediate conversion. */
3969 (if (inside_int && inter_int && final_int
3970 && ((inside_prec < inter_prec && inter_prec < final_prec
3971 && inside_unsignedp && !inter_unsignedp)
3972 || final_prec == inter_prec))
3975 /* Two conversions in a row are not needed unless:
3976 - some conversion is floating-point (overstrict for now), or
3977 - some conversion is a vector (overstrict for now), or
3978 - the intermediate type is narrower than both initial and
3980 - the intermediate type and innermost type differ in signedness,
3981 and the outermost type is wider than the intermediate, or
3982 - the initial type is a pointer type and the precisions of the
3983 intermediate and final types differ, or
3984 - the final type is a pointer type and the precisions of the
3985 initial and intermediate types differ. */
3986 (if (! inside_float && ! inter_float && ! final_float
3987 && ! inside_vec && ! inter_vec && ! final_vec
3988 && (inter_prec >= inside_prec || inter_prec >= final_prec)
3989 && ! (inside_int && inter_int
3990 && inter_unsignedp != inside_unsignedp
3991 && inter_prec < final_prec)
3992 && ((inter_unsignedp && inter_prec > inside_prec)
3993 == (final_unsignedp && final_prec > inter_prec))
3994 && ! (inside_ptr && inter_prec != final_prec)
3995 && ! (final_ptr && inside_prec != inter_prec))
3998 /* A truncation to an unsigned type (a zero-extension) should be
3999 canonicalized as bitwise and of a mask. */
4000 (if (GIMPLE /* PR70366: doing this in GENERIC breaks -Wconversion. */
4001 && final_int && inter_int && inside_int
4002 && final_prec == inside_prec
4003 && final_prec > inter_prec
4005 (convert (bit_and @0 { wide_int_to_tree
4007 wi::mask (inter_prec, false,
4008 TYPE_PRECISION (inside_type))); })))
4010 /* If we are converting an integer to a floating-point that can
4011 represent it exactly and back to an integer, we can skip the
4012 floating-point conversion. */
4013 (if (GIMPLE /* PR66211 */
4014 && inside_int && inter_float && final_int &&
4015 (unsigned) significand_size (TYPE_MODE (inter_type))
4016 >= inside_prec - !inside_unsignedp)
4019 /* (float_type)(integer_type) x -> trunc (x) if the type of x matches
4020 float_type. Only do the transformation if we do not need to preserve
4021 trapping behaviour, so require !flag_trapping_math. */
4024 (float (fix_trunc @0))
4025 (if (!flag_trapping_math
4026 && types_match (type, TREE_TYPE (@0))
4027 && direct_internal_fn_supported_p (IFN_TRUNC, type,
4032 /* If we have a narrowing conversion to an integral type that is fed by a
4033 BIT_AND_EXPR, we might be able to remove the BIT_AND_EXPR if it merely
4034 masks off bits outside the final type (and nothing else). */
4036 (convert (bit_and @0 INTEGER_CST@1))
4037 (if (INTEGRAL_TYPE_P (type)
4038 && INTEGRAL_TYPE_P (TREE_TYPE (@0))
4039 && TYPE_PRECISION (type) <= TYPE_PRECISION (TREE_TYPE (@0))
4040 && operand_equal_p (@1, build_low_bits_mask (TREE_TYPE (@1),
4041 TYPE_PRECISION (type)), 0))
4045 /* (X /[ex] A) * A -> X. */
4047 (mult (convert1? (exact_div @0 @@1)) (convert2? @1))
4050 /* Simplify (A / B) * B + (A % B) -> A. */
4051 (for div (trunc_div ceil_div floor_div round_div)
4052 mod (trunc_mod ceil_mod floor_mod round_mod)
4054 (plus:c (mult:c (div @0 @1) @1) (mod @0 @1))
4057 /* x / y * y == x -> x % y == 0. */
4059 (eq:c (mult:c (trunc_div:s @0 @1) @1) @0)
4060 (if (TREE_CODE (TREE_TYPE (@0)) != COMPLEX_TYPE)
4061 (eq (trunc_mod @0 @1) { build_zero_cst (TREE_TYPE (@0)); })))
4063 /* ((X /[ex] A) +- B) * A --> X +- A * B. */
4064 (for op (plus minus)
4066 (mult (convert1? (op (convert2? (exact_div @0 INTEGER_CST@@1)) INTEGER_CST@2)) @1)
4067 (if (tree_nop_conversion_p (type, TREE_TYPE (@2))
4068 && tree_nop_conversion_p (TREE_TYPE (@0), TREE_TYPE (@2)))
4071 wi::overflow_type overflow;
4072 wide_int mul = wi::mul (wi::to_wide (@1), wi::to_wide (@2),
4073 TYPE_SIGN (type), &overflow);
4075 (if (types_match (type, TREE_TYPE (@2))
4076 && types_match (TREE_TYPE (@0), TREE_TYPE (@2)) && !overflow)
4077 (op @0 { wide_int_to_tree (type, mul); })
4078 (with { tree utype = unsigned_type_for (type); }
4079 (convert (op (convert:utype @0)
4080 (mult (convert:utype @1) (convert:utype @2))))))))))
4082 /* Canonicalization of binary operations. */
4084 /* Convert X + -C into X - C. */
4086 (plus @0 REAL_CST@1)
4087 (if (REAL_VALUE_NEGATIVE (TREE_REAL_CST (@1)))
4088 (with { tree tem = const_unop (NEGATE_EXPR, type, @1); }
4089 (if (!TREE_OVERFLOW (tem) || !flag_trapping_math)
4090 (minus @0 { tem; })))))
4092 /* Convert x+x into x*2. */
4095 (if (SCALAR_FLOAT_TYPE_P (type))
4096 (mult @0 { build_real (type, dconst2); })
4097 (if (INTEGRAL_TYPE_P (type))
4098 (mult @0 { build_int_cst (type, 2); }))))
4102 (minus integer_zerop @1)
4105 (pointer_diff integer_zerop @1)
4106 (negate (convert @1)))
4108 /* (ARG0 - ARG1) is the same as (-ARG1 + ARG0). So check whether
4109 ARG0 is zero and X + ARG0 reduces to X, since that would mean
4110 (-ARG1 + ARG0) reduces to -ARG1. */
4112 (minus real_zerop@0 @1)
4113 (if (fold_real_zero_addition_p (type, @1, @0, 0))
4116 /* Transform x * -1 into -x. */
4118 (mult @0 integer_minus_onep)
4121 /* Reassociate (X * CST) * Y to (X * Y) * CST. This does not introduce
4122 signed overflow for CST != 0 && CST != -1. */
4124 (mult:c (mult:s@3 @0 INTEGER_CST@1) @2)
4125 (if (TREE_CODE (@2) != INTEGER_CST
4127 && !integer_zerop (@1) && !integer_minus_onep (@1))
4128 (mult (mult @0 @2) @1)))
4130 /* True if we can easily extract the real and imaginary parts of a complex
4132 (match compositional_complex
4133 (convert? (complex @0 @1)))
4135 /* COMPLEX_EXPR and REALPART/IMAGPART_EXPR cancellations. */
4137 (complex (realpart @0) (imagpart @0))
4140 (realpart (complex @0 @1))
4143 (imagpart (complex @0 @1))
4146 /* Sometimes we only care about half of a complex expression. */
4148 (realpart (convert?:s (conj:s @0)))
4149 (convert (realpart @0)))
4151 (imagpart (convert?:s (conj:s @0)))
4152 (convert (negate (imagpart @0))))
4153 (for part (realpart imagpart)
4154 (for op (plus minus)
4156 (part (convert?:s@2 (op:s @0 @1)))
4157 (convert (op (part @0) (part @1))))))
4159 (realpart (convert?:s (CEXPI:s @0)))
4162 (imagpart (convert?:s (CEXPI:s @0)))
4165 /* conj(conj(x)) -> x */
4167 (conj (convert? (conj @0)))
4168 (if (tree_nop_conversion_p (TREE_TYPE (@0), type))
4171 /* conj({x,y}) -> {x,-y} */
4173 (conj (convert?:s (complex:s @0 @1)))
4174 (with { tree itype = TREE_TYPE (type); }
4175 (complex (convert:itype @0) (negate (convert:itype @1)))))
4177 /* BSWAP simplifications, transforms checked by gcc.dg/builtin-bswap-8.c. */
4178 (for bswap (BUILT_IN_BSWAP16 BUILT_IN_BSWAP32
4179 BUILT_IN_BSWAP64 BUILT_IN_BSWAP128)
4184 (bswap (bit_not (bswap @0)))
4186 (for bitop (bit_xor bit_ior bit_and)
4188 (bswap (bitop:c (bswap @0) @1))
4189 (bitop @0 (bswap @1))))
4192 (cmp (bswap@2 @0) (bswap @1))
4193 (with { tree ctype = TREE_TYPE (@2); }
4194 (cmp (convert:ctype @0) (convert:ctype @1))))
4196 (cmp (bswap @0) INTEGER_CST@1)
4197 (with { tree ctype = TREE_TYPE (@1); }
4198 (cmp (convert:ctype @0) (bswap! @1)))))
4199 /* (bswap(x) >> C1) & C2 can sometimes be simplified to (x >> C3) & C2. */
4201 (bit_and (convert1? (rshift@0 (convert2? (bswap@4 @1)) INTEGER_CST@2))
4203 (if (BITS_PER_UNIT == 8
4204 && tree_fits_uhwi_p (@2)
4205 && tree_fits_uhwi_p (@3))
4208 unsigned HOST_WIDE_INT prec = TYPE_PRECISION (TREE_TYPE (@4));
4209 unsigned HOST_WIDE_INT bits = tree_to_uhwi (@2);
4210 unsigned HOST_WIDE_INT mask = tree_to_uhwi (@3);
4211 unsigned HOST_WIDE_INT lo = bits & 7;
4212 unsigned HOST_WIDE_INT hi = bits - lo;
4215 && mask < (256u>>lo)
4216 && bits < TYPE_PRECISION (TREE_TYPE(@0)))
4217 (with { unsigned HOST_WIDE_INT ns = (prec - (hi + 8)) + lo; }
4219 (bit_and (convert @1) @3)
4222 tree utype = unsigned_type_for (TREE_TYPE (@1));
4223 tree nst = build_int_cst (integer_type_node, ns);
4225 (bit_and (convert (rshift:utype (convert:utype @1) {nst;})) @3))))))))
4226 /* bswap(x) >> C1 can sometimes be simplified to (T)x >> C2. */
4228 (rshift (convert? (bswap@2 @0)) INTEGER_CST@1)
4229 (if (BITS_PER_UNIT == 8
4230 && CHAR_TYPE_SIZE == 8
4231 && tree_fits_uhwi_p (@1))
4234 unsigned HOST_WIDE_INT prec = TYPE_PRECISION (TREE_TYPE (@2));
4235 unsigned HOST_WIDE_INT bits = tree_to_uhwi (@1);
4236 /* If the bswap was extended before the original shift, this
4237 byte (shift) has the sign of the extension, not the sign of
4238 the original shift. */
4239 tree st = TYPE_PRECISION (type) > prec ? TREE_TYPE (@2) : type;
4241 /* Special case: logical right shift of sign-extended bswap.
4242 (unsigned)(short)bswap16(x)>>12 is (unsigned)((short)x<<8)>>12. */
4243 (if (TYPE_PRECISION (type) > prec
4244 && !TYPE_UNSIGNED (TREE_TYPE (@2))
4245 && TYPE_UNSIGNED (type)
4246 && bits < prec && bits + 8 >= prec)
4247 (with { tree nst = build_int_cst (integer_type_node, prec - 8); }
4248 (rshift (convert (lshift:st (convert:st @0) {nst;})) @1))
4249 (if (bits + 8 == prec)
4250 (if (TYPE_UNSIGNED (st))
4251 (convert (convert:unsigned_char_type_node @0))
4252 (convert (convert:signed_char_type_node @0)))
4253 (if (bits < prec && bits + 8 > prec)
4256 tree nst = build_int_cst (integer_type_node, bits & 7);
4257 tree bt = TYPE_UNSIGNED (st) ? unsigned_char_type_node
4258 : signed_char_type_node;
4260 (convert (rshift:bt (convert:bt @0) {nst;})))))))))
4261 /* bswap(x) & C1 can sometimes be simplified to (x >> C2) & C1. */
4263 (bit_and (convert? (bswap@2 @0)) INTEGER_CST@1)
4264 (if (BITS_PER_UNIT == 8
4265 && tree_fits_uhwi_p (@1)
4266 && tree_to_uhwi (@1) < 256)
4269 unsigned HOST_WIDE_INT prec = TYPE_PRECISION (TREE_TYPE (@2));
4270 tree utype = unsigned_type_for (TREE_TYPE (@0));
4271 tree nst = build_int_cst (integer_type_node, prec - 8);
4273 (bit_and (convert (rshift:utype (convert:utype @0) {nst;})) @1)))))
4276 /* Combine COND_EXPRs and VEC_COND_EXPRs. */
4278 /* Simplify constant conditions.
4279 Only optimize constant conditions when the selected branch
4280 has the same type as the COND_EXPR. This avoids optimizing
4281 away "c ? x : throw", where the throw has a void type.
4282 Note that we cannot throw away the fold-const.cc variant nor
4283 this one as we depend on doing this transform before possibly
4284 A ? B : B -> B triggers and the fold-const.cc one can optimize
4285 0 ? A : B to B even if A has side-effects. Something
4286 genmatch cannot handle. */
4288 (cond INTEGER_CST@0 @1 @2)
4289 (if (integer_zerop (@0))
4290 (if (!VOID_TYPE_P (TREE_TYPE (@2)) || VOID_TYPE_P (type))
4292 (if (!VOID_TYPE_P (TREE_TYPE (@1)) || VOID_TYPE_P (type))
4295 (vec_cond VECTOR_CST@0 @1 @2)
4296 (if (integer_all_onesp (@0))
4298 (if (integer_zerop (@0))
4301 /* Sink unary operations to branches, but only if we do fold both. */
4302 (for op (negate bit_not abs absu)
4304 (op (vec_cond:s @0 @1 @2))
4305 (vec_cond @0 (op! @1) (op! @2))))
4307 /* Sink binary operation to branches, but only if we can fold it. */
4308 (for op (tcc_comparison plus minus mult bit_and bit_ior bit_xor
4309 lshift rshift rdiv trunc_div ceil_div floor_div round_div
4310 trunc_mod ceil_mod floor_mod round_mod min max)
4311 /* (c ? a : b) op (c ? d : e) --> c ? (a op d) : (b op e) */
4313 (op (vec_cond:s @0 @1 @2) (vec_cond:s @0 @3 @4))
4314 (vec_cond @0 (op! @1 @3) (op! @2 @4)))
4316 /* (c ? a : b) op d --> c ? (a op d) : (b op d) */
4318 (op (vec_cond:s @0 @1 @2) @3)
4319 (vec_cond @0 (op! @1 @3) (op! @2 @3)))
4321 (op @3 (vec_cond:s @0 @1 @2))
4322 (vec_cond @0 (op! @3 @1) (op! @3 @2))))
4325 (match (nop_atomic_bit_test_and_p @0 @1 @4)
4326 (bit_and (convert?@4 (ATOMIC_FETCH_OR_XOR_N @2 INTEGER_CST@0 @3))
4329 int ibit = tree_log2 (@0);
4330 int ibit2 = tree_log2 (@1);
4334 && TYPE_PRECISION (type) <= TYPE_PRECISION (TREE_TYPE (@0))))))
4336 (match (nop_atomic_bit_test_and_p @0 @1 @3)
4337 (bit_and (convert?@3 (SYNC_FETCH_OR_XOR_N @2 INTEGER_CST@0))
4340 int ibit = tree_log2 (@0);
4341 int ibit2 = tree_log2 (@1);
4345 && TYPE_PRECISION (type) <= TYPE_PRECISION (TREE_TYPE (@0))))))
4347 (match (nop_atomic_bit_test_and_p @0 @0 @4)
4350 (ATOMIC_FETCH_OR_XOR_N @2 (nop_convert? (lshift@0 integer_onep@5 @6)) @3))
4352 (if (TYPE_PRECISION (type) <= TYPE_PRECISION (TREE_TYPE (@0)))))
4354 (match (nop_atomic_bit_test_and_p @0 @0 @4)
4357 (SYNC_FETCH_OR_XOR_N @2 (nop_convert? (lshift@0 integer_onep@3 @5))))
4359 (if (TYPE_PRECISION (type) <= TYPE_PRECISION (TREE_TYPE (@0)))))
4361 (match (nop_atomic_bit_test_and_p @0 @1 @3)
4362 (bit_and@4 (convert?@3 (ATOMIC_FETCH_AND_N @2 INTEGER_CST@0 @5))
4365 int ibit = wi::exact_log2 (wi::zext (wi::bit_not (wi::to_wide (@0)),
4366 TYPE_PRECISION(type)));
4367 int ibit2 = tree_log2 (@1);
4371 && TYPE_PRECISION (type) <= TYPE_PRECISION (TREE_TYPE (@0))))))
4373 (match (nop_atomic_bit_test_and_p @0 @1 @3)
4375 (convert?@3 (SYNC_FETCH_AND_AND_N @2 INTEGER_CST@0))
4378 int ibit = wi::exact_log2 (wi::zext (wi::bit_not (wi::to_wide (@0)),
4379 TYPE_PRECISION(type)));
4380 int ibit2 = tree_log2 (@1);
4384 && TYPE_PRECISION (type) <= TYPE_PRECISION (TREE_TYPE (@0))))))
4386 (match (nop_atomic_bit_test_and_p @4 @0 @3)
4389 (ATOMIC_FETCH_AND_N @2 (nop_convert?@4 (bit_not (lshift@0 integer_onep@6 @7))) @5))
4391 (if (TYPE_PRECISION (type) <= TYPE_PRECISION (TREE_TYPE (@4)))))
4393 (match (nop_atomic_bit_test_and_p @4 @0 @3)
4396 (SYNC_FETCH_AND_AND_N @2 (nop_convert?@4 (bit_not (lshift@0 integer_onep@6 @7)))))
4398 (if (TYPE_PRECISION (type) <= TYPE_PRECISION (TREE_TYPE (@4)))))
4402 /* (v ? w : 0) ? a : b is just (v & w) ? a : b
4403 Currently disabled after pass lvec because ARM understands
4404 VEC_COND_EXPR<v==w,-1,0> but not a plain v==w fed to BIT_IOR_EXPR. */
4406 (vec_cond (vec_cond:s @0 @3 integer_zerop) @1 @2)
4407 (if (optimize_vectors_before_lowering_p () && types_match (@0, @3))
4408 (vec_cond (bit_and @0 @3) @1 @2)))
4410 (vec_cond (vec_cond:s @0 integer_all_onesp @3) @1 @2)
4411 (if (optimize_vectors_before_lowering_p () && types_match (@0, @3))
4412 (vec_cond (bit_ior @0 @3) @1 @2)))
4414 (vec_cond (vec_cond:s @0 integer_zerop @3) @1 @2)
4415 (if (optimize_vectors_before_lowering_p () && types_match (@0, @3))
4416 (vec_cond (bit_ior @0 (bit_not @3)) @2 @1)))
4418 (vec_cond (vec_cond:s @0 @3 integer_all_onesp) @1 @2)
4419 (if (optimize_vectors_before_lowering_p () && types_match (@0, @3))
4420 (vec_cond (bit_and @0 (bit_not @3)) @2 @1)))
4422 /* c1 ? c2 ? a : b : b --> (c1 & c2) ? a : b */
4424 (vec_cond @0 (vec_cond:s @1 @2 @3) @3)
4425 (if (optimize_vectors_before_lowering_p () && types_match (@0, @1))
4426 (vec_cond (bit_and @0 @1) @2 @3)))
4428 (vec_cond @0 @2 (vec_cond:s @1 @2 @3))
4429 (if (optimize_vectors_before_lowering_p () && types_match (@0, @1))
4430 (vec_cond (bit_ior @0 @1) @2 @3)))
4432 (vec_cond @0 (vec_cond:s @1 @2 @3) @2)
4433 (if (optimize_vectors_before_lowering_p () && types_match (@0, @1))
4434 (vec_cond (bit_ior (bit_not @0) @1) @2 @3)))
4436 (vec_cond @0 @3 (vec_cond:s @1 @2 @3))
4437 (if (optimize_vectors_before_lowering_p () && types_match (@0, @1))
4438 (vec_cond (bit_and (bit_not @0) @1) @2 @3)))
4440 /* Canonicalize mask ? { 0, ... } : { -1, ...} to ~mask if the mask
4441 types are compatible. */
4443 (vec_cond @0 VECTOR_CST@1 VECTOR_CST@2)
4444 (if (VECTOR_BOOLEAN_TYPE_P (type)
4445 && types_match (type, TREE_TYPE (@0)))
4446 (if (integer_zerop (@1) && integer_all_onesp (@2))
4448 (if (integer_all_onesp (@1) && integer_zerop (@2))
4451 /* A few simplifications of "a ? CST1 : CST2". */
4452 /* NOTE: Only do this on gimple as the if-chain-to-switch
4453 optimization depends on the gimple to have if statements in it. */
4456 (cond @0 INTEGER_CST@1 INTEGER_CST@2)
4458 (if (integer_zerop (@2))
4460 /* a ? 1 : 0 -> a if 0 and 1 are integral types. */
4461 (if (integer_onep (@1))
4462 (convert (convert:boolean_type_node @0)))
4463 /* a ? powerof2cst : 0 -> a << (log2(powerof2cst)) */
4464 (if (INTEGRAL_TYPE_P (type) && integer_pow2p (@1))
4466 tree shift = build_int_cst (integer_type_node, tree_log2 (@1));
4468 (lshift (convert (convert:boolean_type_node @0)) { shift; })))
4469 /* a ? -1 : 0 -> -a. No need to check the TYPE_PRECISION not being 1
4470 here as the powerof2cst case above will handle that case correctly. */
4471 (if (INTEGRAL_TYPE_P (type) && integer_all_onesp (@1))
4472 (negate (convert (convert:boolean_type_node @0))))))
4473 (if (integer_zerop (@1))
4475 tree booltrue = constant_boolean_node (true, boolean_type_node);
4478 /* a ? 0 : 1 -> !a. */
4479 (if (integer_onep (@2))
4480 (convert (bit_xor (convert:boolean_type_node @0) { booltrue; } )))
4481 /* a ? powerof2cst : 0 -> (!a) << (log2(powerof2cst)) */
4482 (if (INTEGRAL_TYPE_P (type) && integer_pow2p (@2))
4484 tree shift = build_int_cst (integer_type_node, tree_log2 (@2));
4486 (lshift (convert (bit_xor (convert:boolean_type_node @0) { booltrue; } ))
4488 /* a ? -1 : 0 -> -(!a). No need to check the TYPE_PRECISION not being 1
4489 here as the powerof2cst case above will handle that case correctly. */
4490 (if (INTEGRAL_TYPE_P (type) && integer_all_onesp (@2))
4491 (negate (convert (bit_xor (convert:boolean_type_node @0) { booltrue; } ))))
4500 (convert (cond@0 @1 INTEGER_CST@2 INTEGER_CST@3))
4501 (if (INTEGRAL_TYPE_P (type)
4502 && INTEGRAL_TYPE_P (TREE_TYPE (@0)))
4503 (cond @1 (convert @2) (convert @3))))
4505 /* Simplification moved from fold_cond_expr_with_comparison. It may also
4507 /* This pattern implements two kinds simplification:
4510 (cond (cmp (convert1? x) c1) (convert2? x) c2) -> (minmax (x c)) if:
4511 1) Conversions are type widening from smaller type.
4512 2) Const c1 equals to c2 after canonicalizing comparison.
4513 3) Comparison has tree code LT, LE, GT or GE.
4514 This specific pattern is needed when (cmp (convert x) c) may not
4515 be simplified by comparison patterns because of multiple uses of
4516 x. It also makes sense here because simplifying across multiple
4517 referred var is always benefitial for complicated cases.
4520 (cond (eq (convert1? x) c1) (convert2? x) c2) -> (cond (eq x c1) c1 c2). */
4521 (for cmp (lt le gt ge eq)
4523 (cond (cmp (convert1? @1) INTEGER_CST@3) (convert2? @1) INTEGER_CST@2)
4526 tree from_type = TREE_TYPE (@1);
4527 tree c1_type = TREE_TYPE (@3), c2_type = TREE_TYPE (@2);
4528 enum tree_code code = ERROR_MARK;
4530 if (INTEGRAL_TYPE_P (from_type)
4531 && int_fits_type_p (@2, from_type)
4532 && (types_match (c1_type, from_type)
4533 || (TYPE_PRECISION (c1_type) > TYPE_PRECISION (from_type)
4534 && (TYPE_UNSIGNED (from_type)
4535 || TYPE_SIGN (c1_type) == TYPE_SIGN (from_type))))
4536 && (types_match (c2_type, from_type)
4537 || (TYPE_PRECISION (c2_type) > TYPE_PRECISION (from_type)
4538 && (TYPE_UNSIGNED (from_type)
4539 || TYPE_SIGN (c2_type) == TYPE_SIGN (from_type)))))
4543 if (wi::to_widest (@3) == (wi::to_widest (@2) - 1))
4545 /* X <= Y - 1 equals to X < Y. */
4548 /* X > Y - 1 equals to X >= Y. */
4552 if (wi::to_widest (@3) == (wi::to_widest (@2) + 1))
4554 /* X < Y + 1 equals to X <= Y. */
4557 /* X >= Y + 1 equals to X > Y. */
4561 if (code != ERROR_MARK
4562 || wi::to_widest (@2) == wi::to_widest (@3))
4564 if (cmp == LT_EXPR || cmp == LE_EXPR)
4566 if (cmp == GT_EXPR || cmp == GE_EXPR)
4570 /* Can do A == C1 ? A : C2 -> A == C1 ? C1 : C2? */
4571 else if (int_fits_type_p (@3, from_type))
4575 (if (code == MAX_EXPR)
4576 (convert (max @1 (convert @2)))
4577 (if (code == MIN_EXPR)
4578 (convert (min @1 (convert @2)))
4579 (if (code == EQ_EXPR)
4580 (convert (cond (eq @1 (convert @3))
4581 (convert:from_type @3) (convert:from_type @2)))))))))
4583 /* (cond (cmp (convert? x) c1) (op x c2) c3) -> (op (minmax x c1) c2) if:
4585 1) OP is PLUS or MINUS.
4586 2) CMP is LT, LE, GT or GE.
4587 3) C3 == (C1 op C2), and computation doesn't have undefined behavior.
4589 This pattern also handles special cases like:
4591 A) Operand x is a unsigned to signed type conversion and c1 is
4592 integer zero. In this case,
4593 (signed type)x < 0 <=> x > MAX_VAL(signed type)
4594 (signed type)x >= 0 <=> x <= MAX_VAL(signed type)
4595 B) Const c1 may not equal to (C3 op' C2). In this case we also
4596 check equality for (c1+1) and (c1-1) by adjusting comparison
4599 TODO: Though signed type is handled by this pattern, it cannot be
4600 simplified at the moment because C standard requires additional
4601 type promotion. In order to match&simplify it here, the IR needs
4602 to be cleaned up by other optimizers, i.e, VRP. */
4603 (for op (plus minus)
4604 (for cmp (lt le gt ge)
4606 (cond (cmp (convert? @X) INTEGER_CST@1) (op @X INTEGER_CST@2) INTEGER_CST@3)
4607 (with { tree from_type = TREE_TYPE (@X), to_type = TREE_TYPE (@1); }
4608 (if (types_match (from_type, to_type)
4609 /* Check if it is special case A). */
4610 || (TYPE_UNSIGNED (from_type)
4611 && !TYPE_UNSIGNED (to_type)
4612 && TYPE_PRECISION (from_type) == TYPE_PRECISION (to_type)
4613 && integer_zerop (@1)
4614 && (cmp == LT_EXPR || cmp == GE_EXPR)))
4617 wi::overflow_type overflow = wi::OVF_NONE;
4618 enum tree_code code, cmp_code = cmp;
4620 wide_int c1 = wi::to_wide (@1);
4621 wide_int c2 = wi::to_wide (@2);
4622 wide_int c3 = wi::to_wide (@3);
4623 signop sgn = TYPE_SIGN (from_type);
4625 /* Handle special case A), given x of unsigned type:
4626 ((signed type)x < 0) <=> (x > MAX_VAL(signed type))
4627 ((signed type)x >= 0) <=> (x <= MAX_VAL(signed type)) */
4628 if (!types_match (from_type, to_type))
4630 if (cmp_code == LT_EXPR)
4632 if (cmp_code == GE_EXPR)
4634 c1 = wi::max_value (to_type);
4636 /* To simplify this pattern, we require c3 = (c1 op c2). Here we
4637 compute (c3 op' c2) and check if it equals to c1 with op' being
4638 the inverted operator of op. Make sure overflow doesn't happen
4639 if it is undefined. */
4640 if (op == PLUS_EXPR)
4641 real_c1 = wi::sub (c3, c2, sgn, &overflow);
4643 real_c1 = wi::add (c3, c2, sgn, &overflow);
4646 if (!overflow || !TYPE_OVERFLOW_UNDEFINED (from_type))
4648 /* Check if c1 equals to real_c1. Boundary condition is handled
4649 by adjusting comparison operation if necessary. */
4650 if (!wi::cmp (wi::sub (real_c1, 1, sgn, &overflow), c1, sgn)
4653 /* X <= Y - 1 equals to X < Y. */
4654 if (cmp_code == LE_EXPR)
4656 /* X > Y - 1 equals to X >= Y. */
4657 if (cmp_code == GT_EXPR)
4660 if (!wi::cmp (wi::add (real_c1, 1, sgn, &overflow), c1, sgn)
4663 /* X < Y + 1 equals to X <= Y. */
4664 if (cmp_code == LT_EXPR)
4666 /* X >= Y + 1 equals to X > Y. */
4667 if (cmp_code == GE_EXPR)
4670 if (code != cmp_code || !wi::cmp (real_c1, c1, sgn))
4672 if (cmp_code == LT_EXPR || cmp_code == LE_EXPR)
4674 if (cmp_code == GT_EXPR || cmp_code == GE_EXPR)
4679 (if (code == MAX_EXPR)
4680 (op (max @X { wide_int_to_tree (from_type, real_c1); })
4681 { wide_int_to_tree (from_type, c2); })
4682 (if (code == MIN_EXPR)
4683 (op (min @X { wide_int_to_tree (from_type, real_c1); })
4684 { wide_int_to_tree (from_type, c2); })))))))))
4687 /* A >= B ? A : B -> max (A, B) and friends. The code is still
4688 in fold_cond_expr_with_comparison for GENERIC folding with
4689 some extra constraints. */
4690 (for cmp (eq ne le lt unle unlt ge gt unge ungt uneq ltgt)
4692 (cond (cmp:c (nop_convert1?@c0 @0) (nop_convert2?@c1 @1))
4693 (convert3? @0) (convert4? @1))
4694 (if (!HONOR_SIGNED_ZEROS (type)
4695 && (/* Allow widening conversions of the compare operands as data. */
4696 (INTEGRAL_TYPE_P (type)
4697 && types_match (TREE_TYPE (@c0), TREE_TYPE (@0))
4698 && types_match (TREE_TYPE (@c1), TREE_TYPE (@1))
4699 && TYPE_PRECISION (TREE_TYPE (@0)) <= TYPE_PRECISION (type)
4700 && TYPE_PRECISION (TREE_TYPE (@1)) <= TYPE_PRECISION (type))
4701 /* Or sign conversions for the comparison. */
4702 || (types_match (type, TREE_TYPE (@0))
4703 && types_match (type, TREE_TYPE (@1)))))
4705 (if (cmp == EQ_EXPR)
4706 (if (VECTOR_TYPE_P (type))
4709 (if (cmp == NE_EXPR)
4710 (if (VECTOR_TYPE_P (type))
4713 (if (cmp == LE_EXPR || cmp == UNLE_EXPR || cmp == LT_EXPR || cmp == UNLT_EXPR)
4714 (if (!HONOR_NANS (type))
4715 (if (VECTOR_TYPE_P (type))
4716 (view_convert (min @c0 @c1))
4717 (convert (min @c0 @c1)))))
4718 (if (cmp == GE_EXPR || cmp == UNGE_EXPR || cmp == GT_EXPR || cmp == UNGT_EXPR)
4719 (if (!HONOR_NANS (type))
4720 (if (VECTOR_TYPE_P (type))
4721 (view_convert (max @c0 @c1))
4722 (convert (max @c0 @c1)))))
4723 (if (cmp == UNEQ_EXPR)
4724 (if (!HONOR_NANS (type))
4725 (if (VECTOR_TYPE_P (type))
4728 (if (cmp == LTGT_EXPR)
4729 (if (!HONOR_NANS (type))
4730 (if (VECTOR_TYPE_P (type))
4732 (convert @c0))))))))
4735 /* X != C1 ? -X : C2 simplifies to -X when -C1 == C2. */
4737 (cond (ne @0 INTEGER_CST@1) (negate@3 @0) INTEGER_CST@2)
4738 (if (!TYPE_SATURATING (type)
4739 && (TYPE_OVERFLOW_WRAPS (type)
4740 || !wi::only_sign_bit_p (wi::to_wide (@1)))
4741 && wi::eq_p (wi::neg (wi::to_wide (@1)), wi::to_wide (@2)))
4744 /* X != C1 ? ~X : C2 simplifies to ~X when ~C1 == C2. */
4746 (cond (ne @0 INTEGER_CST@1) (bit_not@3 @0) INTEGER_CST@2)
4747 (if (wi::eq_p (wi::bit_not (wi::to_wide (@1)), wi::to_wide (@2)))
4750 /* (X + 1) > Y ? -X : 1 simplifies to X >= Y ? -X : 1 when
4751 X is unsigned, as when X + 1 overflows, X is -1, so -X == 1. */
4753 (cond (gt (plus @0 integer_onep) @1) (negate @0) integer_onep@2)
4754 (if (TYPE_UNSIGNED (type))
4755 (cond (ge @0 @1) (negate @0) @2)))
4757 (for cnd (cond vec_cond)
4758 /* A ? B : (A ? X : C) -> A ? B : C. */
4760 (cnd @0 (cnd @0 @1 @2) @3)
4763 (cnd @0 @1 (cnd @0 @2 @3))
4765 /* A ? B : (!A ? C : X) -> A ? B : C. */
4766 /* ??? This matches embedded conditions open-coded because genmatch
4767 would generate matching code for conditions in separate stmts only.
4768 The following is still important to merge then and else arm cases
4769 from if-conversion. */
4771 (cnd @0 @1 (cnd @2 @3 @4))
4772 (if (inverse_conditions_p (@0, @2))
4775 (cnd @0 (cnd @1 @2 @3) @4)
4776 (if (inverse_conditions_p (@0, @1))
4779 /* A ? B : B -> B. */
4784 /* !A ? B : C -> A ? C : B. */
4786 (cnd (logical_inverted_value truth_valued_p@0) @1 @2)
4789 /* abs/negative simplifications moved from fold_cond_expr_with_comparison,
4790 Need to handle (A - B) case as fold_cond_expr_with_comparison does.
4791 Need to handle UN* comparisons.
4793 None of these transformations work for modes with signed
4794 zeros. If A is +/-0, the first two transformations will
4795 change the sign of the result (from +0 to -0, or vice
4796 versa). The last four will fix the sign of the result,
4797 even though the original expressions could be positive or
4798 negative, depending on the sign of A.
4800 Note that all these transformations are correct if A is
4801 NaN, since the two alternatives (A and -A) are also NaNs. */
4803 (for cnd (cond vec_cond)
4804 /* A == 0 ? A : -A same as -A */
4807 (cnd (cmp @0 zerop) @0 (negate@1 @0))
4808 (if (!HONOR_SIGNED_ZEROS (type))
4811 (cnd (cmp @0 zerop) zerop (negate@1 @0))
4812 (if (!HONOR_SIGNED_ZEROS (type))
4815 /* A != 0 ? A : -A same as A */
4818 (cnd (cmp @0 zerop) @0 (negate @0))
4819 (if (!HONOR_SIGNED_ZEROS (type))
4822 (cnd (cmp @0 zerop) @0 integer_zerop)
4823 (if (!HONOR_SIGNED_ZEROS (type))
4826 /* A >=/> 0 ? A : -A same as abs (A) */
4829 (cnd (cmp @0 zerop) @0 (negate @0))
4830 (if (!HONOR_SIGNED_ZEROS (type)
4831 && !TYPE_UNSIGNED (type))
4833 /* A <=/< 0 ? A : -A same as -abs (A) */
4836 (cnd (cmp @0 zerop) @0 (negate @0))
4837 (if (!HONOR_SIGNED_ZEROS (type)
4838 && !TYPE_UNSIGNED (type))
4839 (if (ANY_INTEGRAL_TYPE_P (type)
4840 && !TYPE_OVERFLOW_WRAPS (type))
4842 tree utype = unsigned_type_for (type);
4844 (convert (negate (absu:utype @0))))
4845 (negate (abs @0)))))
4849 /* -(type)!A -> (type)A - 1. */
4851 (negate (convert?:s (logical_inverted_value:s @0)))
4852 (if (INTEGRAL_TYPE_P (type)
4853 && TREE_CODE (type) != BOOLEAN_TYPE
4854 && TYPE_PRECISION (type) > 1
4855 && TREE_CODE (@0) == SSA_NAME
4856 && ssa_name_has_boolean_range (@0))
4857 (plus (convert:type @0) { build_all_ones_cst (type); })))
4859 /* A + (B vcmp C ? 1 : 0) -> A - (B vcmp C ? -1 : 0), since vector comparisons
4860 return all -1 or all 0 results. */
4861 /* ??? We could instead convert all instances of the vec_cond to negate,
4862 but that isn't necessarily a win on its own. */
4864 (plus:c @3 (view_convert? (vec_cond:s @0 integer_each_onep@1 integer_zerop@2)))
4865 (if (VECTOR_TYPE_P (type)
4866 && known_eq (TYPE_VECTOR_SUBPARTS (type),
4867 TYPE_VECTOR_SUBPARTS (TREE_TYPE (@1)))
4868 && (TYPE_MODE (TREE_TYPE (type))
4869 == TYPE_MODE (TREE_TYPE (TREE_TYPE (@1)))))
4870 (minus @3 (view_convert (vec_cond @0 (negate @1) @2)))))
4872 /* ... likewise A - (B vcmp C ? 1 : 0) -> A + (B vcmp C ? -1 : 0). */
4874 (minus @3 (view_convert? (vec_cond:s @0 integer_each_onep@1 integer_zerop@2)))
4875 (if (VECTOR_TYPE_P (type)
4876 && known_eq (TYPE_VECTOR_SUBPARTS (type),
4877 TYPE_VECTOR_SUBPARTS (TREE_TYPE (@1)))
4878 && (TYPE_MODE (TREE_TYPE (type))
4879 == TYPE_MODE (TREE_TYPE (TREE_TYPE (@1)))))
4880 (plus @3 (view_convert (vec_cond @0 (negate @1) @2)))))
4883 /* Simplifications of comparisons. */
4885 /* See if we can reduce the magnitude of a constant involved in a
4886 comparison by changing the comparison code. This is a canonicalization
4887 formerly done by maybe_canonicalize_comparison_1. */
4891 (cmp @0 uniform_integer_cst_p@1)
4892 (with { tree cst = uniform_integer_cst_p (@1); }
4893 (if (tree_int_cst_sgn (cst) == -1)
4894 (acmp @0 { build_uniform_cst (TREE_TYPE (@1),
4895 wide_int_to_tree (TREE_TYPE (cst),
4901 (cmp @0 uniform_integer_cst_p@1)
4902 (with { tree cst = uniform_integer_cst_p (@1); }
4903 (if (tree_int_cst_sgn (cst) == 1)
4904 (acmp @0 { build_uniform_cst (TREE_TYPE (@1),
4905 wide_int_to_tree (TREE_TYPE (cst),
4906 wi::to_wide (cst) - 1)); })))))
4908 /* We can simplify a logical negation of a comparison to the
4909 inverted comparison. As we cannot compute an expression
4910 operator using invert_tree_comparison we have to simulate
4911 that with expression code iteration. */
4912 (for cmp (tcc_comparison)
4913 icmp (inverted_tcc_comparison)
4914 ncmp (inverted_tcc_comparison_with_nans)
4915 /* Ideally we'd like to combine the following two patterns
4916 and handle some more cases by using
4917 (logical_inverted_value (cmp @0 @1))
4918 here but for that genmatch would need to "inline" that.
4919 For now implement what forward_propagate_comparison did. */
4921 (bit_not (cmp @0 @1))
4922 (if (VECTOR_TYPE_P (type)
4923 || (INTEGRAL_TYPE_P (type) && TYPE_PRECISION (type) == 1))
4924 /* Comparison inversion may be impossible for trapping math,
4925 invert_tree_comparison will tell us. But we can't use
4926 a computed operator in the replacement tree thus we have
4927 to play the trick below. */
4928 (with { enum tree_code ic = invert_tree_comparison
4929 (cmp, HONOR_NANS (@0)); }
4935 (bit_xor (cmp @0 @1) integer_truep)
4936 (with { enum tree_code ic = invert_tree_comparison
4937 (cmp, HONOR_NANS (@0)); }
4942 /* The following bits are handled by fold_binary_op_with_conditional_arg. */
4944 (ne (cmp@2 @0 @1) integer_zerop)
4945 (if (types_match (type, TREE_TYPE (@2)))
4948 (eq (cmp@2 @0 @1) integer_truep)
4949 (if (types_match (type, TREE_TYPE (@2)))
4952 (ne (cmp@2 @0 @1) integer_truep)
4953 (if (types_match (type, TREE_TYPE (@2)))
4954 (with { enum tree_code ic = invert_tree_comparison
4955 (cmp, HONOR_NANS (@0)); }
4961 (eq (cmp@2 @0 @1) integer_zerop)
4962 (if (types_match (type, TREE_TYPE (@2)))
4963 (with { enum tree_code ic = invert_tree_comparison
4964 (cmp, HONOR_NANS (@0)); }
4970 /* Transform comparisons of the form X - Y CMP 0 to X CMP Y.
4971 ??? The transformation is valid for the other operators if overflow
4972 is undefined for the type, but performing it here badly interacts
4973 with the transformation in fold_cond_expr_with_comparison which
4974 attempts to synthetize ABS_EXPR. */
4976 (for sub (minus pointer_diff)
4978 (cmp (sub@2 @0 @1) integer_zerop)
4979 (if (single_use (@2))
4982 /* Simplify (x < 0) ^ (y < 0) to (x ^ y) < 0 and
4983 (x >= 0) ^ (y >= 0) to (x ^ y) < 0. */
4986 (bit_xor (cmp:s @0 integer_zerop) (cmp:s @1 integer_zerop))
4987 (if (INTEGRAL_TYPE_P (TREE_TYPE (@0))
4988 && !TYPE_UNSIGNED (TREE_TYPE (@0))
4989 && types_match (TREE_TYPE (@0), TREE_TYPE (@1)))
4990 (lt (bit_xor @0 @1) { build_zero_cst (TREE_TYPE (@0)); }))))
4991 /* Simplify (x < 0) ^ (y >= 0) to (x ^ y) >= 0 and
4992 (x >= 0) ^ (y < 0) to (x ^ y) >= 0. */
4994 (bit_xor:c (lt:s @0 integer_zerop) (ge:s @1 integer_zerop))
4995 (if (INTEGRAL_TYPE_P (TREE_TYPE (@0))
4996 && !TYPE_UNSIGNED (TREE_TYPE (@0))
4997 && types_match (TREE_TYPE (@0), TREE_TYPE (@1)))
4998 (ge (bit_xor @0 @1) { build_zero_cst (TREE_TYPE (@0)); })))
5000 /* Transform comparisons of the form X * C1 CMP 0 to X CMP 0 in the
5001 signed arithmetic case. That form is created by the compiler
5002 often enough for folding it to be of value. One example is in
5003 computing loop trip counts after Operator Strength Reduction. */
5004 (for cmp (simple_comparison)
5005 scmp (swapped_simple_comparison)
5007 (cmp (mult@3 @0 INTEGER_CST@1) integer_zerop@2)
5008 /* Handle unfolded multiplication by zero. */
5009 (if (integer_zerop (@1))
5011 (if (ANY_INTEGRAL_TYPE_P (TREE_TYPE (@0))
5012 && TYPE_OVERFLOW_UNDEFINED (TREE_TYPE (@0))
5014 /* If @1 is negative we swap the sense of the comparison. */
5015 (if (tree_int_cst_sgn (@1) < 0)
5019 /* For integral types with undefined overflow fold
5020 x * C1 == C2 into x == C2 / C1 or false.
5021 If overflow wraps and C1 is odd, simplify to x == C2 / C1 in the ring
5025 (cmp (mult @0 INTEGER_CST@1) INTEGER_CST@2)
5026 (if (INTEGRAL_TYPE_P (TREE_TYPE (@0))
5027 && TYPE_OVERFLOW_UNDEFINED (TREE_TYPE (@0))
5028 && wi::to_wide (@1) != 0)
5029 (with { widest_int quot; }
5030 (if (wi::multiple_of_p (wi::to_widest (@2), wi::to_widest (@1),
5031 TYPE_SIGN (TREE_TYPE (@0)), "))
5032 (cmp @0 { wide_int_to_tree (TREE_TYPE (@0), quot); })
5033 { constant_boolean_node (cmp == NE_EXPR, type); }))
5034 (if (INTEGRAL_TYPE_P (TREE_TYPE (@0))
5035 && TYPE_OVERFLOW_WRAPS (TREE_TYPE (@0))
5036 && (wi::bit_and (wi::to_wide (@1), 1) == 1))
5039 tree itype = TREE_TYPE (@0);
5040 int p = TYPE_PRECISION (itype);
5041 wide_int m = wi::one (p + 1) << p;
5042 wide_int a = wide_int::from (wi::to_wide (@1), p + 1, UNSIGNED);
5043 wide_int i = wide_int::from (wi::mod_inv (a, m),
5044 p, TYPE_SIGN (itype));
5045 wide_int_to_tree (itype, wi::mul (i, wi::to_wide (@2)));
5048 /* Simplify comparison of something with itself. For IEEE
5049 floating-point, we can only do some of these simplifications. */
5053 (if (! FLOAT_TYPE_P (TREE_TYPE (@0))
5054 || ! tree_expr_maybe_nan_p (@0))
5055 { constant_boolean_node (true, type); }
5057 /* With -ftrapping-math conversion to EQ loses an exception. */
5058 && (! FLOAT_TYPE_P (TREE_TYPE (@0))
5059 || ! flag_trapping_math))
5065 || ! FLOAT_TYPE_P (TREE_TYPE (@0))
5066 || ! tree_expr_maybe_nan_p (@0))
5067 { constant_boolean_node (false, type); })))
5068 (for cmp (unle unge uneq)
5071 { constant_boolean_node (true, type); }))
5072 (for cmp (unlt ungt)
5078 (if (!flag_trapping_math || !tree_expr_maybe_nan_p (@0))
5079 { constant_boolean_node (false, type); }))
5081 /* x == ~x -> false */
5082 /* x != ~x -> true */
5085 (cmp:c @0 (bit_not @0))
5086 { constant_boolean_node (cmp == NE_EXPR, type); }))
5088 /* Fold ~X op ~Y as Y op X. */
5089 (for cmp (simple_comparison)
5091 (cmp (bit_not@2 @0) (bit_not@3 @1))
5092 (if (single_use (@2) && single_use (@3))
5095 /* Fold ~X op C as X op' ~C, where op' is the swapped comparison. */
5096 (for cmp (simple_comparison)
5097 scmp (swapped_simple_comparison)
5099 (cmp (bit_not@2 @0) CONSTANT_CLASS_P@1)
5100 (if (single_use (@2)
5101 && (TREE_CODE (@1) == INTEGER_CST || TREE_CODE (@1) == VECTOR_CST))
5102 (scmp @0 (bit_not @1)))))
5104 (for cmp (simple_comparison)
5105 /* Fold (double)float1 CMP (double)float2 into float1 CMP float2. */
5107 (cmp (convert@2 @0) (convert? @1))
5108 (if (FLOAT_TYPE_P (TREE_TYPE (@0))
5109 && (DECIMAL_FLOAT_TYPE_P (TREE_TYPE (@2))
5110 == DECIMAL_FLOAT_TYPE_P (TREE_TYPE (@0)))
5111 && (DECIMAL_FLOAT_TYPE_P (TREE_TYPE (@2))
5112 == DECIMAL_FLOAT_TYPE_P (TREE_TYPE (@1))))
5115 tree type1 = TREE_TYPE (@1);
5116 if (TREE_CODE (@1) == REAL_CST && !DECIMAL_FLOAT_TYPE_P (type1))
5118 REAL_VALUE_TYPE orig = TREE_REAL_CST (@1);
5119 if (TYPE_PRECISION (type1) > TYPE_PRECISION (float_type_node)
5120 && exact_real_truncate (TYPE_MODE (float_type_node), &orig))
5121 type1 = float_type_node;
5122 if (TYPE_PRECISION (type1) > TYPE_PRECISION (double_type_node)
5123 && exact_real_truncate (TYPE_MODE (double_type_node), &orig))
5124 type1 = double_type_node;
5127 = (TYPE_PRECISION (TREE_TYPE (@0)) > TYPE_PRECISION (type1)
5128 ? TREE_TYPE (@0) : type1);
5130 (if (TYPE_PRECISION (TREE_TYPE (@2)) > TYPE_PRECISION (newtype))
5131 (cmp (convert:newtype @0) (convert:newtype @1))))))
5135 /* IEEE doesn't distinguish +0 and -0 in comparisons. */
5137 /* a CMP (-0) -> a CMP 0 */
5138 (if (REAL_VALUE_MINUS_ZERO (TREE_REAL_CST (@1)))
5139 (cmp @0 { build_real (TREE_TYPE (@1), dconst0); }))
5140 /* (-0) CMP b -> 0 CMP b. */
5141 (if (TREE_CODE (@0) == REAL_CST
5142 && REAL_VALUE_MINUS_ZERO (TREE_REAL_CST (@0)))
5143 (cmp { build_real (TREE_TYPE (@0), dconst0); } @1))
5144 /* x != NaN is always true, other ops are always false. */
5145 (if (REAL_VALUE_ISNAN (TREE_REAL_CST (@1))
5146 && !tree_expr_signaling_nan_p (@1)
5147 && !tree_expr_maybe_signaling_nan_p (@0))
5148 { constant_boolean_node (cmp == NE_EXPR, type); })
5149 /* NaN != y is always true, other ops are always false. */
5150 (if (TREE_CODE (@0) == REAL_CST
5151 && REAL_VALUE_ISNAN (TREE_REAL_CST (@0))
5152 && !tree_expr_signaling_nan_p (@0)
5153 && !tree_expr_signaling_nan_p (@1))
5154 { constant_boolean_node (cmp == NE_EXPR, type); })
5155 /* Fold comparisons against infinity. */
5156 (if (REAL_VALUE_ISINF (TREE_REAL_CST (@1))
5157 && MODE_HAS_INFINITIES (TYPE_MODE (TREE_TYPE (@1))))
5160 REAL_VALUE_TYPE max;
5161 enum tree_code code = cmp;
5162 bool neg = REAL_VALUE_NEGATIVE (TREE_REAL_CST (@1));
5164 code = swap_tree_comparison (code);
5167 /* x > +Inf is always false, if we ignore NaNs or exceptions. */
5168 (if (code == GT_EXPR
5169 && !(HONOR_NANS (@0) && flag_trapping_math))
5170 { constant_boolean_node (false, type); })
5171 (if (code == LE_EXPR)
5172 /* x <= +Inf is always true, if we don't care about NaNs. */
5173 (if (! HONOR_NANS (@0))
5174 { constant_boolean_node (true, type); }
5175 /* x <= +Inf is the same as x == x, i.e. !isnan(x), but this loses
5176 an "invalid" exception. */
5177 (if (!flag_trapping_math)
5179 /* x == +Inf and x >= +Inf are always equal to x > DBL_MAX, but
5180 for == this introduces an exception for x a NaN. */
5181 (if ((code == EQ_EXPR && !(HONOR_NANS (@0) && flag_trapping_math))
5183 (with { real_maxval (&max, neg, TYPE_MODE (TREE_TYPE (@0))); }
5185 (lt @0 { build_real (TREE_TYPE (@0), max); })
5186 (gt @0 { build_real (TREE_TYPE (@0), max); }))))
5187 /* x < +Inf is always equal to x <= DBL_MAX. */
5188 (if (code == LT_EXPR)
5189 (with { real_maxval (&max, neg, TYPE_MODE (TREE_TYPE (@0))); }
5191 (ge @0 { build_real (TREE_TYPE (@0), max); })
5192 (le @0 { build_real (TREE_TYPE (@0), max); }))))
5193 /* x != +Inf is always equal to !(x > DBL_MAX), but this introduces
5194 an exception for x a NaN so use an unordered comparison. */
5195 (if (code == NE_EXPR)
5196 (with { real_maxval (&max, neg, TYPE_MODE (TREE_TYPE (@0))); }
5197 (if (! HONOR_NANS (@0))
5199 (ge @0 { build_real (TREE_TYPE (@0), max); })
5200 (le @0 { build_real (TREE_TYPE (@0), max); }))
5202 (unge @0 { build_real (TREE_TYPE (@0), max); })
5203 (unle @0 { build_real (TREE_TYPE (@0), max); }))))))))))
5205 /* If this is a comparison of a real constant with a PLUS_EXPR
5206 or a MINUS_EXPR of a real constant, we can convert it into a
5207 comparison with a revised real constant as long as no overflow
5208 occurs when unsafe_math_optimizations are enabled. */
5209 (if (flag_unsafe_math_optimizations)
5210 (for op (plus minus)
5212 (cmp (op @0 REAL_CST@1) REAL_CST@2)
5215 tree tem = const_binop (op == PLUS_EXPR ? MINUS_EXPR : PLUS_EXPR,
5216 TREE_TYPE (@1), @2, @1);
5218 (if (tem && !TREE_OVERFLOW (tem))
5219 (cmp @0 { tem; }))))))
5221 /* Likewise, we can simplify a comparison of a real constant with
5222 a MINUS_EXPR whose first operand is also a real constant, i.e.
5223 (c1 - x) < c2 becomes x > c1-c2. Reordering is allowed on
5224 floating-point types only if -fassociative-math is set. */
5225 (if (flag_associative_math)
5227 (cmp (minus REAL_CST@0 @1) REAL_CST@2)
5228 (with { tree tem = const_binop (MINUS_EXPR, TREE_TYPE (@1), @0, @2); }
5229 (if (tem && !TREE_OVERFLOW (tem))
5230 (cmp { tem; } @1)))))
5232 /* Fold comparisons against built-in math functions. */
5233 (if (flag_unsafe_math_optimizations && ! flag_errno_math)
5236 (cmp (sq @0) REAL_CST@1)
5238 (if (REAL_VALUE_NEGATIVE (TREE_REAL_CST (@1)))
5240 /* sqrt(x) < y is always false, if y is negative. */
5241 (if (cmp == EQ_EXPR || cmp == LT_EXPR || cmp == LE_EXPR)
5242 { constant_boolean_node (false, type); })
5243 /* sqrt(x) > y is always true, if y is negative and we
5244 don't care about NaNs, i.e. negative values of x. */
5245 (if (cmp == NE_EXPR || !HONOR_NANS (@0))
5246 { constant_boolean_node (true, type); })
5247 /* sqrt(x) > y is the same as x >= 0, if y is negative. */
5248 (ge @0 { build_real (TREE_TYPE (@0), dconst0); })))
5249 (if (real_equal (TREE_REAL_CST_PTR (@1), &dconst0))
5251 /* sqrt(x) < 0 is always false. */
5252 (if (cmp == LT_EXPR)
5253 { constant_boolean_node (false, type); })
5254 /* sqrt(x) >= 0 is always true if we don't care about NaNs. */
5255 (if (cmp == GE_EXPR && !HONOR_NANS (@0))
5256 { constant_boolean_node (true, type); })
5257 /* sqrt(x) <= 0 -> x == 0. */
5258 (if (cmp == LE_EXPR)
5260 /* Otherwise sqrt(x) cmp 0 -> x cmp 0. Here cmp can be >=, >,
5261 == or !=. In the last case:
5263 (sqrt(x) != 0) == (NaN != 0) == true == (x != 0)
5265 if x is negative or NaN. Due to -funsafe-math-optimizations,
5266 the results for other x follow from natural arithmetic. */
5268 (if ((cmp == LT_EXPR
5272 && !REAL_VALUE_ISNAN (TREE_REAL_CST (@1))
5273 /* Give up for -frounding-math. */
5274 && !HONOR_SIGN_DEPENDENT_ROUNDING (TREE_TYPE (@0)))
5278 enum tree_code ncmp = cmp;
5279 const real_format *fmt
5280 = REAL_MODE_FORMAT (TYPE_MODE (TREE_TYPE (@0)));
5281 real_arithmetic (&c2, MULT_EXPR,
5282 &TREE_REAL_CST (@1), &TREE_REAL_CST (@1));
5283 real_convert (&c2, fmt, &c2);
5284 /* See PR91734: if c2 is inexact and sqrt(c2) < c (or sqrt(c2) >= c),
5285 then change LT_EXPR into LE_EXPR or GE_EXPR into GT_EXPR. */
5286 if (!REAL_VALUE_ISINF (c2))
5288 tree c3 = fold_const_call (CFN_SQRT, TREE_TYPE (@0),
5289 build_real (TREE_TYPE (@0), c2));
5290 if (c3 == NULL_TREE || TREE_CODE (c3) != REAL_CST)
5292 else if ((cmp == LT_EXPR || cmp == GE_EXPR)
5293 && real_less (&TREE_REAL_CST (c3), &TREE_REAL_CST (@1)))
5294 ncmp = cmp == LT_EXPR ? LE_EXPR : GT_EXPR;
5295 else if ((cmp == LE_EXPR || cmp == GT_EXPR)
5296 && real_less (&TREE_REAL_CST (@1), &TREE_REAL_CST (c3)))
5297 ncmp = cmp == LE_EXPR ? LT_EXPR : GE_EXPR;
5300 /* With rounding to even, sqrt of up to 3 different values
5301 gives the same normal result, so in some cases c2 needs
5303 REAL_VALUE_TYPE c2alt, tow;
5304 if (cmp == LT_EXPR || cmp == GE_EXPR)
5308 real_nextafter (&c2alt, fmt, &c2, &tow);
5309 real_convert (&c2alt, fmt, &c2alt);
5310 if (REAL_VALUE_ISINF (c2alt))
5314 c3 = fold_const_call (CFN_SQRT, TREE_TYPE (@0),
5315 build_real (TREE_TYPE (@0), c2alt));
5316 if (c3 == NULL_TREE || TREE_CODE (c3) != REAL_CST)
5318 else if (real_equal (&TREE_REAL_CST (c3),
5319 &TREE_REAL_CST (@1)))
5325 (if (cmp == GT_EXPR || cmp == GE_EXPR)
5326 (if (REAL_VALUE_ISINF (c2))
5327 /* sqrt(x) > y is x == +Inf, when y is very large. */
5328 (if (HONOR_INFINITIES (@0))
5329 (eq @0 { build_real (TREE_TYPE (@0), c2); })
5330 { constant_boolean_node (false, type); })
5331 /* sqrt(x) > c is the same as x > c*c. */
5332 (if (ncmp != ERROR_MARK)
5333 (if (ncmp == GE_EXPR)
5334 (ge @0 { build_real (TREE_TYPE (@0), c2); })
5335 (gt @0 { build_real (TREE_TYPE (@0), c2); }))))
5336 /* else if (cmp == LT_EXPR || cmp == LE_EXPR) */
5337 (if (REAL_VALUE_ISINF (c2))
5339 /* sqrt(x) < y is always true, when y is a very large
5340 value and we don't care about NaNs or Infinities. */
5341 (if (! HONOR_NANS (@0) && ! HONOR_INFINITIES (@0))
5342 { constant_boolean_node (true, type); })
5343 /* sqrt(x) < y is x != +Inf when y is very large and we
5344 don't care about NaNs. */
5345 (if (! HONOR_NANS (@0))
5346 (ne @0 { build_real (TREE_TYPE (@0), c2); }))
5347 /* sqrt(x) < y is x >= 0 when y is very large and we
5348 don't care about Infinities. */
5349 (if (! HONOR_INFINITIES (@0))
5350 (ge @0 { build_real (TREE_TYPE (@0), dconst0); }))
5351 /* sqrt(x) < y is x >= 0 && x != +Inf, when y is large. */
5354 (ge @0 { build_real (TREE_TYPE (@0), dconst0); })
5355 (ne @0 { build_real (TREE_TYPE (@0), c2); }))))
5356 /* sqrt(x) < c is the same as x < c*c, if we ignore NaNs. */
5357 (if (ncmp != ERROR_MARK && ! HONOR_NANS (@0))
5358 (if (ncmp == LT_EXPR)
5359 (lt @0 { build_real (TREE_TYPE (@0), c2); })
5360 (le @0 { build_real (TREE_TYPE (@0), c2); }))
5361 /* sqrt(x) < c is the same as x >= 0 && x < c*c. */
5362 (if (ncmp != ERROR_MARK && GENERIC)
5363 (if (ncmp == LT_EXPR)
5365 (ge @0 { build_real (TREE_TYPE (@0), dconst0); })
5366 (lt @0 { build_real (TREE_TYPE (@0), c2); }))
5368 (ge @0 { build_real (TREE_TYPE (@0), dconst0); })
5369 (le @0 { build_real (TREE_TYPE (@0), c2); })))))))))))
5370 /* Transform sqrt(x) cmp sqrt(y) -> x cmp y. */
5372 (cmp (sq @0) (sq @1))
5373 (if (! HONOR_NANS (@0))
5376 /* Optimize various special cases of (FTYPE) N CMP (FTYPE) M. */
5377 (for cmp (lt le eq ne ge gt unordered ordered unlt unle ungt unge uneq ltgt)
5378 icmp (lt le eq ne ge gt unordered ordered lt le gt ge eq ne)
5380 (cmp (float@0 @1) (float @2))
5381 (if (SCALAR_FLOAT_TYPE_P (TREE_TYPE (@0))
5382 && ! DECIMAL_FLOAT_TYPE_P (TREE_TYPE (@0)))
5385 format_helper fmt (REAL_MODE_FORMAT (TYPE_MODE (TREE_TYPE (@0))));
5386 tree type1 = TREE_TYPE (@1);
5387 bool type1_signed_p = TYPE_SIGN (type1) == SIGNED;
5388 tree type2 = TREE_TYPE (@2);
5389 bool type2_signed_p = TYPE_SIGN (type2) == SIGNED;
5391 (if (fmt.can_represent_integral_type_p (type1)
5392 && fmt.can_represent_integral_type_p (type2))
5393 (if (cmp == ORDERED_EXPR || cmp == UNORDERED_EXPR)
5394 { constant_boolean_node (cmp == ORDERED_EXPR, type); }
5395 (if (TYPE_PRECISION (type1) > TYPE_PRECISION (type2)
5396 && type1_signed_p >= type2_signed_p)
5397 (icmp @1 (convert @2))
5398 (if (TYPE_PRECISION (type1) < TYPE_PRECISION (type2)
5399 && type1_signed_p <= type2_signed_p)
5400 (icmp (convert:type2 @1) @2)
5401 (if (TYPE_PRECISION (type1) == TYPE_PRECISION (type2)
5402 && type1_signed_p == type2_signed_p)
5403 (icmp @1 @2))))))))))
5405 /* Optimize various special cases of (FTYPE) N CMP CST. */
5406 (for cmp (lt le eq ne ge gt)
5407 icmp (le le eq ne ge ge)
5409 (cmp (float @0) REAL_CST@1)
5410 (if (SCALAR_FLOAT_TYPE_P (TREE_TYPE (@1))
5411 && ! DECIMAL_FLOAT_TYPE_P (TREE_TYPE (@1)))
5414 tree itype = TREE_TYPE (@0);
5415 format_helper fmt (REAL_MODE_FORMAT (TYPE_MODE (TREE_TYPE (@1))));
5416 const REAL_VALUE_TYPE *cst = TREE_REAL_CST_PTR (@1);
5417 /* Be careful to preserve any potential exceptions due to
5418 NaNs. qNaNs are ok in == or != context.
5419 TODO: relax under -fno-trapping-math or
5420 -fno-signaling-nans. */
5422 = real_isnan (cst) && (cst->signalling
5423 || (cmp != EQ_EXPR && cmp != NE_EXPR));
5425 /* TODO: allow non-fitting itype and SNaNs when
5426 -fno-trapping-math. */
5427 (if (fmt.can_represent_integral_type_p (itype) && ! exception_p)
5430 signop isign = TYPE_SIGN (itype);
5431 REAL_VALUE_TYPE imin, imax;
5432 real_from_integer (&imin, fmt, wi::min_value (itype), isign);
5433 real_from_integer (&imax, fmt, wi::max_value (itype), isign);
5435 REAL_VALUE_TYPE icst;
5436 if (cmp == GT_EXPR || cmp == GE_EXPR)
5437 real_ceil (&icst, fmt, cst);
5438 else if (cmp == LT_EXPR || cmp == LE_EXPR)
5439 real_floor (&icst, fmt, cst);
5441 real_trunc (&icst, fmt, cst);
5443 bool cst_int_p = !real_isnan (cst) && real_identical (&icst, cst);
5445 bool overflow_p = false;
5447 = real_to_integer (&icst, &overflow_p, TYPE_PRECISION (itype));
5450 /* Optimize cases when CST is outside of ITYPE's range. */
5451 (if (real_compare (LT_EXPR, cst, &imin))
5452 { constant_boolean_node (cmp == GT_EXPR || cmp == GE_EXPR || cmp == NE_EXPR,
5454 (if (real_compare (GT_EXPR, cst, &imax))
5455 { constant_boolean_node (cmp == LT_EXPR || cmp == LE_EXPR || cmp == NE_EXPR,
5457 /* Remove cast if CST is an integer representable by ITYPE. */
5459 (cmp @0 { gcc_assert (!overflow_p);
5460 wide_int_to_tree (itype, icst_val); })
5462 /* When CST is fractional, optimize
5463 (FTYPE) N == CST -> 0
5464 (FTYPE) N != CST -> 1. */
5465 (if (cmp == EQ_EXPR || cmp == NE_EXPR)
5466 { constant_boolean_node (cmp == NE_EXPR, type); })
5467 /* Otherwise replace with sensible integer constant. */
5470 gcc_checking_assert (!overflow_p);
5472 (icmp @0 { wide_int_to_tree (itype, icst_val); })))))))))
5474 /* Fold A /[ex] B CMP C to A CMP B * C. */
5477 (cmp (exact_div @0 @1) INTEGER_CST@2)
5478 (if (!integer_zerop (@1))
5479 (if (wi::to_wide (@2) == 0)
5481 (if (TREE_CODE (@1) == INTEGER_CST)
5484 wi::overflow_type ovf;
5485 wide_int prod = wi::mul (wi::to_wide (@2), wi::to_wide (@1),
5486 TYPE_SIGN (TREE_TYPE (@1)), &ovf);
5489 { constant_boolean_node (cmp == NE_EXPR, type); }
5490 (cmp @0 { wide_int_to_tree (TREE_TYPE (@0), prod); }))))))))
5491 (for cmp (lt le gt ge)
5493 (cmp (exact_div @0 INTEGER_CST@1) INTEGER_CST@2)
5494 (if (wi::gt_p (wi::to_wide (@1), 0, TYPE_SIGN (TREE_TYPE (@1))))
5497 wi::overflow_type ovf;
5498 wide_int prod = wi::mul (wi::to_wide (@2), wi::to_wide (@1),
5499 TYPE_SIGN (TREE_TYPE (@1)), &ovf);
5502 { constant_boolean_node (wi::lt_p (wi::to_wide (@2), 0,
5503 TYPE_SIGN (TREE_TYPE (@2)))
5504 != (cmp == LT_EXPR || cmp == LE_EXPR), type); }
5505 (cmp @0 { wide_int_to_tree (TREE_TYPE (@0), prod); }))))))
5507 /* Fold (size_t)(A /[ex] B) CMP C to (size_t)A CMP (size_t)B * C or A CMP' 0.
5509 For small C (less than max/B), this is (size_t)A CMP (size_t)B * C.
5510 For large C (more than min/B+2^size), this is also true, with the
5511 multiplication computed modulo 2^size.
5512 For intermediate C, this just tests the sign of A. */
5513 (for cmp (lt le gt ge)
5516 (cmp (convert (exact_div @0 INTEGER_CST@1)) INTEGER_CST@2)
5517 (if (tree_nop_conversion_p (TREE_TYPE (@0), TREE_TYPE (@2))
5518 && TYPE_UNSIGNED (TREE_TYPE (@2)) && !TYPE_UNSIGNED (TREE_TYPE (@0))
5519 && wi::gt_p (wi::to_wide (@1), 0, TYPE_SIGN (TREE_TYPE (@1))))
5522 tree utype = TREE_TYPE (@2);
5523 wide_int denom = wi::to_wide (@1);
5524 wide_int right = wi::to_wide (@2);
5525 wide_int smax = wi::sdiv_trunc (wi::max_value (TREE_TYPE (@0)), denom);
5526 wide_int smin = wi::sdiv_trunc (wi::min_value (TREE_TYPE (@0)), denom);
5527 bool small = wi::leu_p (right, smax);
5528 bool large = wi::geu_p (right, smin);
5530 (if (small || large)
5531 (cmp (convert:utype @0) (mult @2 (convert @1)))
5532 (cmp2 @0 { build_zero_cst (TREE_TYPE (@0)); }))))))
5534 /* Unordered tests if either argument is a NaN. */
5536 (bit_ior (unordered @0 @0) (unordered @1 @1))
5537 (if (types_match (@0, @1))
5540 (bit_and (ordered @0 @0) (ordered @1 @1))
5541 (if (types_match (@0, @1))
5544 (bit_ior:c (unordered @0 @0) (unordered:c@2 @0 @1))
5547 (bit_and:c (ordered @0 @0) (ordered:c@2 @0 @1))
5550 /* Simple range test simplifications. */
5551 /* A < B || A >= B -> true. */
5552 (for test1 (lt le le le ne ge)
5553 test2 (ge gt ge ne eq ne)
5555 (bit_ior:c (test1 @0 @1) (test2 @0 @1))
5556 (if (INTEGRAL_TYPE_P (TREE_TYPE (@0))
5557 || VECTOR_INTEGER_TYPE_P (TREE_TYPE (@0)))
5558 { constant_boolean_node (true, type); })))
5559 /* A < B && A >= B -> false. */
5560 (for test1 (lt lt lt le ne eq)
5561 test2 (ge gt eq gt eq gt)
5563 (bit_and:c (test1 @0 @1) (test2 @0 @1))
5564 (if (INTEGRAL_TYPE_P (TREE_TYPE (@0))
5565 || VECTOR_INTEGER_TYPE_P (TREE_TYPE (@0)))
5566 { constant_boolean_node (false, type); })))
5568 /* A & (2**N - 1) <= 2**K - 1 -> A & (2**N - 2**K) == 0
5569 A & (2**N - 1) > 2**K - 1 -> A & (2**N - 2**K) != 0
5571 Note that comparisons
5572 A & (2**N - 1) < 2**K -> A & (2**N - 2**K) == 0
5573 A & (2**N - 1) >= 2**K -> A & (2**N - 2**K) != 0
5574 will be canonicalized to above so there's no need to
5581 (cmp (bit_and@0 @1 INTEGER_CST@2) INTEGER_CST@3)
5582 (if (INTEGRAL_TYPE_P (TREE_TYPE (@0)))
5585 tree ty = TREE_TYPE (@0);
5586 unsigned prec = TYPE_PRECISION (ty);
5587 wide_int mask = wi::to_wide (@2, prec);
5588 wide_int rhs = wi::to_wide (@3, prec);
5589 signop sgn = TYPE_SIGN (ty);
5591 (if ((mask & (mask + 1)) == 0 && wi::gt_p (rhs, 0, sgn)
5592 && (rhs & (rhs + 1)) == 0 && wi::ge_p (mask, rhs, sgn))
5593 (eqcmp (bit_and @1 { wide_int_to_tree (ty, mask - rhs); })
5594 { build_zero_cst (ty); }))))))
5596 /* -A CMP -B -> B CMP A. */
5597 (for cmp (tcc_comparison)
5598 scmp (swapped_tcc_comparison)
5600 (cmp (negate @0) (negate @1))
5601 (if (FLOAT_TYPE_P (TREE_TYPE (@0))
5602 || (ANY_INTEGRAL_TYPE_P (TREE_TYPE (@0))
5603 && TYPE_OVERFLOW_UNDEFINED (TREE_TYPE (@0))))
5606 (cmp (negate @0) CONSTANT_CLASS_P@1)
5607 (if (FLOAT_TYPE_P (TREE_TYPE (@0))
5608 || (ANY_INTEGRAL_TYPE_P (TREE_TYPE (@0))
5609 && TYPE_OVERFLOW_UNDEFINED (TREE_TYPE (@0))))
5610 (with { tree tem = const_unop (NEGATE_EXPR, TREE_TYPE (@0), @1); }
5611 (if (tem && !TREE_OVERFLOW (tem))
5612 (scmp @0 { tem; }))))))
5614 /* Convert ABS_EXPR<x> == 0 or ABS_EXPR<x> != 0 to x == 0 or x != 0. */
5617 (op (abs @0) zerop@1)
5620 /* From fold_sign_changed_comparison and fold_widened_comparison.
5621 FIXME: the lack of symmetry is disturbing. */
5622 (for cmp (simple_comparison)
5624 (cmp (convert@0 @00) (convert?@1 @10))
5625 (if (INTEGRAL_TYPE_P (TREE_TYPE (@0))
5626 /* Disable this optimization if we're casting a function pointer
5627 type on targets that require function pointer canonicalization. */
5628 && !(targetm.have_canonicalize_funcptr_for_compare ()
5629 && ((POINTER_TYPE_P (TREE_TYPE (@00))
5630 && FUNC_OR_METHOD_TYPE_P (TREE_TYPE (TREE_TYPE (@00))))
5631 || (POINTER_TYPE_P (TREE_TYPE (@10))
5632 && FUNC_OR_METHOD_TYPE_P (TREE_TYPE (TREE_TYPE (@10))))))
5634 (if (TYPE_PRECISION (TREE_TYPE (@00)) == TYPE_PRECISION (TREE_TYPE (@0))
5635 && (TREE_CODE (@10) == INTEGER_CST
5637 && (TYPE_UNSIGNED (TREE_TYPE (@00)) == TYPE_UNSIGNED (TREE_TYPE (@0))
5640 && !POINTER_TYPE_P (TREE_TYPE (@00))
5641 /* (int)bool:32 != (int)uint is not the same as
5642 bool:32 != (bool:32)uint since boolean types only have two valid
5643 values independent of their precision. */
5644 && (TREE_CODE (TREE_TYPE (@00)) != BOOLEAN_TYPE
5645 || TREE_CODE (TREE_TYPE (@10)) == BOOLEAN_TYPE))
5646 /* ??? The special-casing of INTEGER_CST conversion was in the original
5647 code and here to avoid a spurious overflow flag on the resulting
5648 constant which fold_convert produces. */
5649 (if (TREE_CODE (@1) == INTEGER_CST)
5650 (cmp @00 { force_fit_type (TREE_TYPE (@00), wi::to_widest (@1), 0,
5651 TREE_OVERFLOW (@1)); })
5652 (cmp @00 (convert @1)))
5654 (if (TYPE_PRECISION (TREE_TYPE (@0)) > TYPE_PRECISION (TREE_TYPE (@00)))
5655 /* If possible, express the comparison in the shorter mode. */
5656 (if ((cmp == EQ_EXPR || cmp == NE_EXPR
5657 || TYPE_UNSIGNED (TREE_TYPE (@0)) == TYPE_UNSIGNED (TREE_TYPE (@00))
5658 || (!TYPE_UNSIGNED (TREE_TYPE (@0))
5659 && TYPE_UNSIGNED (TREE_TYPE (@00))))
5660 && (types_match (TREE_TYPE (@10), TREE_TYPE (@00))
5661 || ((TYPE_PRECISION (TREE_TYPE (@00))
5662 >= TYPE_PRECISION (TREE_TYPE (@10)))
5663 && (TYPE_UNSIGNED (TREE_TYPE (@00))
5664 == TYPE_UNSIGNED (TREE_TYPE (@10))))
5665 || (TREE_CODE (@10) == INTEGER_CST
5666 && INTEGRAL_TYPE_P (TREE_TYPE (@00))
5667 && int_fits_type_p (@10, TREE_TYPE (@00)))))
5668 (cmp @00 (convert @10))
5669 (if (TREE_CODE (@10) == INTEGER_CST
5670 && INTEGRAL_TYPE_P (TREE_TYPE (@00))
5671 && !int_fits_type_p (@10, TREE_TYPE (@00)))
5674 tree min = lower_bound_in_type (TREE_TYPE (@10), TREE_TYPE (@00));
5675 tree max = upper_bound_in_type (TREE_TYPE (@10), TREE_TYPE (@00));
5676 bool above = integer_nonzerop (const_binop (LT_EXPR, type, max, @10));
5677 bool below = integer_nonzerop (const_binop (LT_EXPR, type, @10, min));
5679 (if (above || below)
5680 (if (cmp == EQ_EXPR || cmp == NE_EXPR)
5681 { constant_boolean_node (cmp == EQ_EXPR ? false : true, type); }
5682 (if (cmp == LT_EXPR || cmp == LE_EXPR)
5683 { constant_boolean_node (above ? true : false, type); }
5684 (if (cmp == GT_EXPR || cmp == GE_EXPR)
5685 { constant_boolean_node (above ? false : true, type); }))))))))))))
5689 /* SSA names are canonicalized to 2nd place. */
5690 (cmp addr@0 SSA_NAME@1)
5692 { poly_int64 off; tree base; }
5693 /* A local variable can never be pointed to by
5694 the default SSA name of an incoming parameter. */
5695 (if (SSA_NAME_IS_DEFAULT_DEF (@1)
5696 && TREE_CODE (SSA_NAME_VAR (@1)) == PARM_DECL
5697 && (base = get_base_address (TREE_OPERAND (@0, 0)))
5698 && TREE_CODE (base) == VAR_DECL
5699 && auto_var_in_fn_p (base, current_function_decl))
5700 (if (cmp == NE_EXPR)
5701 { constant_boolean_node (true, type); }
5702 { constant_boolean_node (false, type); })
5703 /* If the address is based on @1 decide using the offset. */
5704 (if ((base = get_addr_base_and_unit_offset (TREE_OPERAND (@0, 0), &off))
5705 && TREE_CODE (base) == MEM_REF
5706 && TREE_OPERAND (base, 0) == @1)
5707 (with { off += mem_ref_offset (base).force_shwi (); }
5708 (if (known_ne (off, 0))
5709 { constant_boolean_node (cmp == NE_EXPR, type); }
5710 (if (known_eq (off, 0))
5711 { constant_boolean_node (cmp == EQ_EXPR, type); }))))))))
5713 /* Equality compare simplifications from fold_binary */
5716 /* If we have (A | C) == D where C & ~D != 0, convert this into 0.
5717 Similarly for NE_EXPR. */
5719 (cmp (convert?@3 (bit_ior @0 INTEGER_CST@1)) INTEGER_CST@2)
5720 (if (tree_nop_conversion_p (TREE_TYPE (@3), TREE_TYPE (@0))
5721 && wi::bit_and_not (wi::to_wide (@1), wi::to_wide (@2)) != 0)
5722 { constant_boolean_node (cmp == NE_EXPR, type); }))
5724 /* (X ^ Y) == 0 becomes X == Y, and (X ^ Y) != 0 becomes X != Y. */
5726 (cmp (bit_xor @0 @1) integer_zerop)
5729 /* (X ^ Y) == Y becomes X == 0.
5730 Likewise (X ^ Y) == X becomes Y == 0. */
5732 (cmp:c (bit_xor:c @0 @1) @0)
5733 (cmp @1 { build_zero_cst (TREE_TYPE (@1)); }))
5735 /* (X & Y) == X becomes (X & ~Y) == 0. */
5737 (cmp:c (bit_and:c @0 @1) @0)
5738 (cmp (bit_and @0 (bit_not! @1)) { build_zero_cst (TREE_TYPE (@0)); }))
5740 (cmp:c (convert@3 (bit_and (convert@2 @0) INTEGER_CST@1)) (convert @0))
5741 (if (INTEGRAL_TYPE_P (TREE_TYPE (@0))
5742 && INTEGRAL_TYPE_P (TREE_TYPE (@2))
5743 && INTEGRAL_TYPE_P (TREE_TYPE (@3))
5744 && TYPE_PRECISION (TREE_TYPE (@2)) == TYPE_PRECISION (TREE_TYPE (@0))
5745 && TYPE_PRECISION (TREE_TYPE (@3)) > TYPE_PRECISION (TREE_TYPE (@2))
5746 && !wi::neg_p (wi::to_wide (@1)))
5747 (cmp (bit_and @0 (convert (bit_not @1)))
5748 { build_zero_cst (TREE_TYPE (@0)); })))
5750 /* (X | Y) == Y becomes (X & ~Y) == 0. */
5752 (cmp:c (bit_ior:c @0 @1) @1)
5753 (cmp (bit_and @0 (bit_not! @1)) { build_zero_cst (TREE_TYPE (@0)); }))
5755 /* (X ^ C1) op C2 can be rewritten as X op (C1 ^ C2). */
5757 (cmp (convert?@3 (bit_xor @0 INTEGER_CST@1)) INTEGER_CST@2)
5758 (if (tree_nop_conversion_p (TREE_TYPE (@3), TREE_TYPE (@0)))
5759 (cmp @0 (bit_xor @1 (convert @2)))))
5762 (cmp (convert? addr@0) integer_zerop)
5763 (if (tree_single_nonzero_warnv_p (@0, NULL))
5764 { constant_boolean_node (cmp == NE_EXPR, type); }))
5766 /* (X & C) op (Y & C) into (X ^ Y) & C op 0. */
5768 (cmp (bit_and:cs @0 @2) (bit_and:cs @1 @2))
5769 (cmp (bit_and (bit_xor @0 @1) @2) { build_zero_cst (TREE_TYPE (@2)); })))
5771 /* (X < 0) != (Y < 0) into (X ^ Y) < 0.
5772 (X >= 0) != (Y >= 0) into (X ^ Y) < 0.
5773 (X < 0) == (Y < 0) into (X ^ Y) >= 0.
5774 (X >= 0) == (Y >= 0) into (X ^ Y) >= 0. */
5779 (cmp (sgncmp @0 integer_zerop@2) (sgncmp @1 integer_zerop))
5780 (if (ANY_INTEGRAL_TYPE_P (TREE_TYPE (@0))
5781 && !TYPE_UNSIGNED (TREE_TYPE (@0))
5782 && types_match (@0, @1))
5783 (ncmp (bit_xor @0 @1) @2)))))
5784 /* (X < 0) == (Y >= 0) into (X ^ Y) < 0.
5785 (X < 0) != (Y >= 0) into (X ^ Y) >= 0. */
5789 (cmp:c (lt @0 integer_zerop@2) (ge @1 integer_zerop))
5790 (if (ANY_INTEGRAL_TYPE_P (TREE_TYPE (@0))
5791 && !TYPE_UNSIGNED (TREE_TYPE (@0))
5792 && types_match (@0, @1))
5793 (ncmp (bit_xor @0 @1) @2))))
5795 /* If we have (A & C) == C where C is a power of 2, convert this into
5796 (A & C) != 0. Similarly for NE_EXPR. */
5800 (cmp (bit_and@2 @0 integer_pow2p@1) @1)
5801 (icmp @2 { build_zero_cst (TREE_TYPE (@0)); })))
5804 /* From fold_binary_op_with_conditional_arg handle the case of
5805 rewriting (a ? b : c) > d to a ? (b > d) : (c > d) when the
5806 compares simplify. */
5807 (for cmp (simple_comparison)
5809 (cmp:c (cond @0 @1 @2) @3)
5810 /* Do not move possibly trapping operations into the conditional as this
5811 pessimizes code and causes gimplification issues when applied late. */
5812 (if (!FLOAT_TYPE_P (TREE_TYPE (@3))
5813 || !operation_could_trap_p (cmp, true, false, @3))
5814 (cond @0 (cmp! @1 @3) (cmp! @2 @3)))))
5818 /* x < 0 ? ~y : y into (x >> (prec-1)) ^ y. */
5819 /* x >= 0 ? ~y : y into ~((x >> (prec-1)) ^ y). */
5821 (cond (cmp @0 integer_zerop) (bit_not @1) @1)
5822 (if (INTEGRAL_TYPE_P (type)
5823 && INTEGRAL_TYPE_P (TREE_TYPE (@0))
5824 && !TYPE_UNSIGNED (TREE_TYPE (@0))
5825 && TYPE_PRECISION (TREE_TYPE (@0)) == TYPE_PRECISION (type))
5828 tree shifter = build_int_cst (integer_type_node, TYPE_PRECISION (type) - 1);
5830 (if (cmp == LT_EXPR)
5831 (bit_xor (convert (rshift @0 {shifter;})) @1)
5832 (bit_not (bit_xor (convert (rshift @0 {shifter;})) @1))))))
5833 /* x < 0 ? y : ~y into ~((x >> (prec-1)) ^ y). */
5834 /* x >= 0 ? y : ~y into (x >> (prec-1)) ^ y. */
5836 (cond (cmp @0 integer_zerop) @1 (bit_not @1))
5837 (if (INTEGRAL_TYPE_P (type)
5838 && INTEGRAL_TYPE_P (TREE_TYPE (@0))
5839 && !TYPE_UNSIGNED (TREE_TYPE (@0))
5840 && TYPE_PRECISION (TREE_TYPE (@0)) == TYPE_PRECISION (type))
5843 tree shifter = build_int_cst (integer_type_node, TYPE_PRECISION (type) - 1);
5845 (if (cmp == GE_EXPR)
5846 (bit_xor (convert (rshift @0 {shifter;})) @1)
5847 (bit_not (bit_xor (convert (rshift @0 {shifter;})) @1)))))))
5849 /* If we have (A & C) != 0 ? D : 0 where C and D are powers of 2,
5850 convert this into a shift followed by ANDing with D. */
5853 (ne (bit_and @0 integer_pow2p@1) integer_zerop)
5854 INTEGER_CST@2 integer_zerop)
5855 (if (!POINTER_TYPE_P (type) && integer_pow2p (@2))
5857 int shift = (wi::exact_log2 (wi::to_wide (@2))
5858 - wi::exact_log2 (wi::to_wide (@1)));
5862 (lshift (convert @0) { build_int_cst (integer_type_node, shift); }) @2)
5864 (convert (rshift @0 { build_int_cst (integer_type_node, -shift); }))
5867 /* If we have (A & C) != 0 where C is the sign bit of A, convert
5868 this into A < 0. Similarly for (A & C) == 0 into A >= 0. */
5872 (cmp (bit_and (convert?@2 @0) integer_pow2p@1) integer_zerop)
5873 (if (INTEGRAL_TYPE_P (TREE_TYPE (@0))
5874 && type_has_mode_precision_p (TREE_TYPE (@0))
5875 && element_precision (@2) >= element_precision (@0)
5876 && wi::only_sign_bit_p (wi::to_wide (@1), element_precision (@0)))
5877 (with { tree stype = signed_type_for (TREE_TYPE (@0)); }
5878 (ncmp (convert:stype @0) { build_zero_cst (stype); })))))
5880 /* If we have A < 0 ? C : 0 where C is a power of 2, convert
5881 this into a right shift or sign extension followed by ANDing with C. */
5884 (lt @0 integer_zerop)
5885 INTEGER_CST@1 integer_zerop)
5886 (if (integer_pow2p (@1)
5887 && !TYPE_UNSIGNED (TREE_TYPE (@0)))
5889 int shift = element_precision (@0) - wi::exact_log2 (wi::to_wide (@1)) - 1;
5893 (convert (rshift @0 { build_int_cst (integer_type_node, shift); }))
5895 /* Otherwise ctype must be wider than TREE_TYPE (@0) and pure
5896 sign extension followed by AND with C will achieve the effect. */
5897 (bit_and (convert @0) @1)))))
5899 /* When the addresses are not directly of decls compare base and offset.
5900 This implements some remaining parts of fold_comparison address
5901 comparisons but still no complete part of it. Still it is good
5902 enough to make fold_stmt not regress when not dispatching to fold_binary. */
5903 (for cmp (simple_comparison)
5905 (cmp (convert1?@2 addr@0) (convert2? addr@1))
5908 poly_int64 off0, off1;
5910 int equal = address_compare (cmp, TREE_TYPE (@2), @0, @1, base0, base1,
5911 off0, off1, GENERIC);
5915 (if (cmp == EQ_EXPR && (known_eq (off0, off1) || known_ne (off0, off1)))
5916 { constant_boolean_node (known_eq (off0, off1), type); })
5917 (if (cmp == NE_EXPR && (known_eq (off0, off1) || known_ne (off0, off1)))
5918 { constant_boolean_node (known_ne (off0, off1), type); })
5919 (if (cmp == LT_EXPR && (known_lt (off0, off1) || known_ge (off0, off1)))
5920 { constant_boolean_node (known_lt (off0, off1), type); })
5921 (if (cmp == LE_EXPR && (known_le (off0, off1) || known_gt (off0, off1)))
5922 { constant_boolean_node (known_le (off0, off1), type); })
5923 (if (cmp == GE_EXPR && (known_ge (off0, off1) || known_lt (off0, off1)))
5924 { constant_boolean_node (known_ge (off0, off1), type); })
5925 (if (cmp == GT_EXPR && (known_gt (off0, off1) || known_le (off0, off1)))
5926 { constant_boolean_node (known_gt (off0, off1), type); }))
5929 (if (cmp == EQ_EXPR)
5930 { constant_boolean_node (false, type); })
5931 (if (cmp == NE_EXPR)
5932 { constant_boolean_node (true, type); })))))))
5934 /* Simplify pointer equality compares using PTA. */
5938 (if (POINTER_TYPE_P (TREE_TYPE (@0))
5939 && ptrs_compare_unequal (@0, @1))
5940 { constant_boolean_node (neeq != EQ_EXPR, type); })))
5942 /* PR70920: Transform (intptr_t)x eq/ne CST to x eq/ne (typeof x) CST.
5943 and (typeof ptr_cst) x eq/ne ptr_cst to x eq/ne (typeof x) CST.
5944 Disable the transform if either operand is pointer to function.
5945 This broke pr22051-2.c for arm where function pointer
5946 canonicalizaion is not wanted. */
5950 (cmp (convert @0) INTEGER_CST@1)
5951 (if (((POINTER_TYPE_P (TREE_TYPE (@0))
5952 && !FUNC_OR_METHOD_TYPE_P (TREE_TYPE (TREE_TYPE (@0)))
5953 && INTEGRAL_TYPE_P (TREE_TYPE (@1))
5954 /* Don't perform this optimization in GENERIC if @0 has reference
5955 type when sanitizing. See PR101210. */
5957 && TREE_CODE (TREE_TYPE (@0)) == REFERENCE_TYPE
5958 && (flag_sanitize & (SANITIZE_NULL | SANITIZE_ALIGNMENT))))
5959 || (INTEGRAL_TYPE_P (TREE_TYPE (@0))
5960 && POINTER_TYPE_P (TREE_TYPE (@1))
5961 && !FUNC_OR_METHOD_TYPE_P (TREE_TYPE (TREE_TYPE (@1)))))
5962 && TYPE_PRECISION (TREE_TYPE (@0)) == TYPE_PRECISION (TREE_TYPE (@1)))
5963 (cmp @0 (convert @1)))))
5965 /* Non-equality compare simplifications from fold_binary */
5966 (for cmp (lt gt le ge)
5967 /* Comparisons with the highest or lowest possible integer of
5968 the specified precision will have known values. */
5970 (cmp (convert?@2 @0) uniform_integer_cst_p@1)
5971 (if ((INTEGRAL_TYPE_P (TREE_TYPE (@1))
5972 || POINTER_TYPE_P (TREE_TYPE (@1))
5973 || VECTOR_INTEGER_TYPE_P (TREE_TYPE (@1)))
5974 && tree_nop_conversion_p (TREE_TYPE (@2), TREE_TYPE (@0)))
5977 tree cst = uniform_integer_cst_p (@1);
5978 tree arg1_type = TREE_TYPE (cst);
5979 unsigned int prec = TYPE_PRECISION (arg1_type);
5980 wide_int max = wi::max_value (arg1_type);
5981 wide_int signed_max = wi::max_value (prec, SIGNED);
5982 wide_int min = wi::min_value (arg1_type);
5985 (if (wi::to_wide (cst) == max)
5987 (if (cmp == GT_EXPR)
5988 { constant_boolean_node (false, type); })
5989 (if (cmp == GE_EXPR)
5991 (if (cmp == LE_EXPR)
5992 { constant_boolean_node (true, type); })
5993 (if (cmp == LT_EXPR)
5995 (if (wi::to_wide (cst) == min)
5997 (if (cmp == LT_EXPR)
5998 { constant_boolean_node (false, type); })
5999 (if (cmp == LE_EXPR)
6001 (if (cmp == GE_EXPR)
6002 { constant_boolean_node (true, type); })
6003 (if (cmp == GT_EXPR)
6005 (if (wi::to_wide (cst) == max - 1)
6007 (if (cmp == GT_EXPR)
6008 (eq @2 { build_uniform_cst (TREE_TYPE (@1),
6009 wide_int_to_tree (TREE_TYPE (cst),
6012 (if (cmp == LE_EXPR)
6013 (ne @2 { build_uniform_cst (TREE_TYPE (@1),
6014 wide_int_to_tree (TREE_TYPE (cst),
6017 (if (wi::to_wide (cst) == min + 1)
6019 (if (cmp == GE_EXPR)
6020 (ne @2 { build_uniform_cst (TREE_TYPE (@1),
6021 wide_int_to_tree (TREE_TYPE (cst),
6024 (if (cmp == LT_EXPR)
6025 (eq @2 { build_uniform_cst (TREE_TYPE (@1),
6026 wide_int_to_tree (TREE_TYPE (cst),
6029 (if (wi::to_wide (cst) == signed_max
6030 && TYPE_UNSIGNED (arg1_type)
6031 /* We will flip the signedness of the comparison operator
6032 associated with the mode of @1, so the sign bit is
6033 specified by this mode. Check that @1 is the signed
6034 max associated with this sign bit. */
6035 && prec == GET_MODE_PRECISION (SCALAR_INT_TYPE_MODE (arg1_type))
6036 /* signed_type does not work on pointer types. */
6037 && INTEGRAL_TYPE_P (arg1_type))
6038 /* The following case also applies to X < signed_max+1
6039 and X >= signed_max+1 because previous transformations. */
6040 (if (cmp == LE_EXPR || cmp == GT_EXPR)
6041 (with { tree st = signed_type_for (TREE_TYPE (@1)); }
6043 (if (cst == @1 && cmp == LE_EXPR)
6044 (ge (convert:st @0) { build_zero_cst (st); }))
6045 (if (cst == @1 && cmp == GT_EXPR)
6046 (lt (convert:st @0) { build_zero_cst (st); }))
6047 (if (cmp == LE_EXPR)
6048 (ge (view_convert:st @0) { build_zero_cst (st); }))
6049 (if (cmp == GT_EXPR)
6050 (lt (view_convert:st @0) { build_zero_cst (st); })))))))))))
6052 (for cmp (unordered ordered unlt unle ungt unge uneq ltgt)
6053 /* If the second operand is NaN, the result is constant. */
6056 (if (REAL_VALUE_ISNAN (TREE_REAL_CST (@1))
6057 && (cmp != LTGT_EXPR || ! flag_trapping_math))
6058 { constant_boolean_node (cmp == ORDERED_EXPR || cmp == LTGT_EXPR
6059 ? false : true, type); })))
6061 /* Fold UNORDERED if either operand must be NaN, or neither can be. */
6065 (if (tree_expr_nan_p (@0) || tree_expr_nan_p (@1))
6066 { constant_boolean_node (true, type); })
6067 (if (!tree_expr_maybe_nan_p (@0) && !tree_expr_maybe_nan_p (@1))
6068 { constant_boolean_node (false, type); })))
6070 /* Fold ORDERED if either operand must be NaN, or neither can be. */
6074 (if (tree_expr_nan_p (@0) || tree_expr_nan_p (@1))
6075 { constant_boolean_node (false, type); })
6076 (if (!tree_expr_maybe_nan_p (@0) && !tree_expr_maybe_nan_p (@1))
6077 { constant_boolean_node (true, type); })))
6079 /* bool_var != 0 becomes bool_var. */
6081 (ne @0 integer_zerop)
6082 (if (TREE_CODE (TREE_TYPE (@0)) == BOOLEAN_TYPE
6083 && types_match (type, TREE_TYPE (@0)))
6085 /* bool_var == 1 becomes bool_var. */
6087 (eq @0 integer_onep)
6088 (if (TREE_CODE (TREE_TYPE (@0)) == BOOLEAN_TYPE
6089 && types_match (type, TREE_TYPE (@0)))
6092 bool_var == 0 becomes !bool_var or
6093 bool_var != 1 becomes !bool_var
6094 here because that only is good in assignment context as long
6095 as we require a tcc_comparison in GIMPLE_CONDs where we'd
6096 replace if (x == 0) with tem = ~x; if (tem != 0) which is
6097 clearly less optimal and which we'll transform again in forwprop. */
6099 /* Transform comparisons of the form (X & Y) CMP 0 to X CMP2 Z
6100 where ~Y + 1 == pow2 and Z = ~Y. */
6101 (for cst (VECTOR_CST INTEGER_CST)
6105 (cmp (bit_and:c@2 @0 cst@1) integer_zerop)
6106 (with { tree csts = bitmask_inv_cst_vector_p (@1); }
6107 (if (csts && (VECTOR_TYPE_P (TREE_TYPE (@1)) || single_use (@2)))
6108 (with { auto optab = VECTOR_TYPE_P (TREE_TYPE (@1))
6109 ? optab_vector : optab_default;
6110 tree utype = unsigned_type_for (TREE_TYPE (@1)); }
6111 (if (target_supports_op_p (utype, icmp, optab)
6112 || (optimize_vectors_before_lowering_p ()
6113 && (!target_supports_op_p (type, cmp, optab)
6114 || !target_supports_op_p (type, BIT_AND_EXPR, optab))))
6115 (if (TYPE_UNSIGNED (TREE_TYPE (@1)))
6117 (icmp (view_convert:utype @0) { csts; })))))))))
6119 /* When one argument is a constant, overflow detection can be simplified.
6120 Currently restricted to single use so as not to interfere too much with
6121 ADD_OVERFLOW detection in tree-ssa-math-opts.cc.
6122 CONVERT?(CONVERT?(A) + CST) CMP A -> A CMP' CST' */
6123 (for cmp (lt le ge gt)
6126 (cmp:c (convert?@3 (plus@2 (convert?@4 @0) INTEGER_CST@1)) @0)
6127 (if (TYPE_OVERFLOW_WRAPS (TREE_TYPE (@2))
6128 && types_match (TREE_TYPE (@0), TREE_TYPE (@3))
6129 && tree_nop_conversion_p (TREE_TYPE (@4), TREE_TYPE (@0))
6130 && wi::to_wide (@1) != 0
6133 unsigned int prec = TYPE_PRECISION (TREE_TYPE (@0));
6134 signop sign = TYPE_SIGN (TREE_TYPE (@0));
6136 (out @0 { wide_int_to_tree (TREE_TYPE (@0),
6137 wi::max_value (prec, sign)
6138 - wi::to_wide (@1)); })))))
6140 /* To detect overflow in unsigned A - B, A < B is simpler than A - B > A.
6141 However, the detection logic for SUB_OVERFLOW in tree-ssa-math-opts.cc
6142 expects the long form, so we restrict the transformation for now. */
6145 (cmp:c (minus@2 @0 @1) @0)
6146 (if (single_use (@2)
6147 && ANY_INTEGRAL_TYPE_P (TREE_TYPE (@0))
6148 && TYPE_UNSIGNED (TREE_TYPE (@0)))
6151 /* Optimize A - B + -1 >= A into B >= A for unsigned comparisons. */
6154 (cmp:c (plus (minus @0 @1) integer_minus_onep) @0)
6155 (if (ANY_INTEGRAL_TYPE_P (TREE_TYPE (@0))
6156 && TYPE_UNSIGNED (TREE_TYPE (@0)))
6159 /* Testing for overflow is unnecessary if we already know the result. */
6164 (cmp:c (realpart (IFN_SUB_OVERFLOW@2 @0 @1)) @0)
6165 (if (TYPE_UNSIGNED (TREE_TYPE (@0))
6166 && types_match (TREE_TYPE (@0), TREE_TYPE (@1)))
6167 (out (imagpart @2) { build_zero_cst (TREE_TYPE (@0)); }))))
6172 (cmp:c (realpart (IFN_ADD_OVERFLOW:c@2 @0 @1)) @0)
6173 (if (TYPE_UNSIGNED (TREE_TYPE (@0))
6174 && types_match (TREE_TYPE (@0), TREE_TYPE (@1)))
6175 (out (imagpart @2) { build_zero_cst (TREE_TYPE (@0)); }))))
6177 /* For unsigned operands, -1 / B < A checks whether A * B would overflow.
6178 Simplify it to __builtin_mul_overflow (A, B, <unused>). */
6182 (cmp:c (trunc_div:s integer_all_onesp @1) @0)
6183 (if (TYPE_UNSIGNED (TREE_TYPE (@0)) && !VECTOR_TYPE_P (TREE_TYPE (@0)))
6184 (with { tree t = TREE_TYPE (@0), cpx = build_complex_type (t); }
6185 (out (imagpart (IFN_MUL_OVERFLOW:cpx @0 @1)) { build_zero_cst (t); })))))
6187 /* Similarly, for unsigned operands, (((type) A * B) >> prec) != 0 where type
6188 is at least twice as wide as type of A and B, simplify to
6189 __builtin_mul_overflow (A, B, <unused>). */
6192 (cmp (rshift (mult:s (convert@3 @0) (convert @1)) INTEGER_CST@2)
6194 (if (INTEGRAL_TYPE_P (TREE_TYPE (@0))
6195 && INTEGRAL_TYPE_P (TREE_TYPE (@3))
6196 && TYPE_UNSIGNED (TREE_TYPE (@0))
6197 && (TYPE_PRECISION (TREE_TYPE (@3))
6198 >= 2 * TYPE_PRECISION (TREE_TYPE (@0)))
6199 && tree_fits_uhwi_p (@2)
6200 && tree_to_uhwi (@2) == TYPE_PRECISION (TREE_TYPE (@0))
6201 && types_match (@0, @1)
6202 && type_has_mode_precision_p (TREE_TYPE (@0))
6203 && (optab_handler (umulv4_optab, TYPE_MODE (TREE_TYPE (@0)))
6204 != CODE_FOR_nothing))
6205 (with { tree t = TREE_TYPE (@0), cpx = build_complex_type (t); }
6206 (cmp (imagpart (IFN_MUL_OVERFLOW:cpx @0 @1)) { build_zero_cst (t); })))))
6208 /* Demote operands of IFN_{ADD,SUB,MUL}_OVERFLOW. */
6209 (for ovf (IFN_ADD_OVERFLOW IFN_SUB_OVERFLOW IFN_MUL_OVERFLOW)
6211 (ovf (convert@2 @0) @1)
6212 (if (INTEGRAL_TYPE_P (TREE_TYPE (@0))
6213 && INTEGRAL_TYPE_P (TREE_TYPE (@2))
6214 && TYPE_PRECISION (TREE_TYPE (@2)) > TYPE_PRECISION (TREE_TYPE (@0))
6215 && (!TYPE_UNSIGNED (TREE_TYPE (@2)) || TYPE_UNSIGNED (TREE_TYPE (@0))))
6218 (ovf @1 (convert@2 @0))
6219 (if (INTEGRAL_TYPE_P (TREE_TYPE (@0))
6220 && INTEGRAL_TYPE_P (TREE_TYPE (@2))
6221 && TYPE_PRECISION (TREE_TYPE (@2)) > TYPE_PRECISION (TREE_TYPE (@0))
6222 && (!TYPE_UNSIGNED (TREE_TYPE (@2)) || TYPE_UNSIGNED (TREE_TYPE (@0))))
6225 /* Optimize __builtin_mul_overflow_p (x, cst, (utype) 0) if all 3 types
6226 are unsigned to x > (umax / cst). Similarly for signed type, but
6227 in that case it needs to be outside of a range. */
6229 (imagpart (IFN_MUL_OVERFLOW:cs@2 @0 integer_nonzerop@1))
6230 (if (INTEGRAL_TYPE_P (TREE_TYPE (@0))
6231 && TYPE_MAX_VALUE (TREE_TYPE (@0))
6232 && types_match (TREE_TYPE (@0), TREE_TYPE (TREE_TYPE (@2)))
6233 && int_fits_type_p (@1, TREE_TYPE (@0)))
6234 (if (TYPE_UNSIGNED (TREE_TYPE (@0)))
6235 (convert (gt @0 (trunc_div! { TYPE_MAX_VALUE (TREE_TYPE (@0)); } @1)))
6236 (if (TYPE_MIN_VALUE (TREE_TYPE (@0)))
6237 (if (integer_minus_onep (@1))
6238 (convert (eq @0 { TYPE_MIN_VALUE (TREE_TYPE (@0)); }))
6241 tree div = fold_convert (TREE_TYPE (@0), @1);
6242 tree lo = int_const_binop (TRUNC_DIV_EXPR,
6243 TYPE_MIN_VALUE (TREE_TYPE (@0)), div);
6244 tree hi = int_const_binop (TRUNC_DIV_EXPR,
6245 TYPE_MAX_VALUE (TREE_TYPE (@0)), div);
6246 tree etype = range_check_type (TREE_TYPE (@0));
6249 if (wi::neg_p (wi::to_wide (div)))
6251 lo = fold_convert (etype, lo);
6252 hi = fold_convert (etype, hi);
6253 hi = int_const_binop (MINUS_EXPR, hi, lo);
6257 (convert (gt (minus (convert:etype @0) { lo; }) { hi; })))))))))
6259 /* Simplification of math builtins. These rules must all be optimizations
6260 as well as IL simplifications. If there is a possibility that the new
6261 form could be a pessimization, the rule should go in the canonicalization
6262 section that follows this one.
6264 Rules can generally go in this section if they satisfy one of
6267 - the rule describes an identity
6269 - the rule replaces calls with something as simple as addition or
6272 - the rule contains unary calls only and simplifies the surrounding
6273 arithmetic. (The idea here is to exclude non-unary calls in which
6274 one operand is constant and in which the call is known to be cheap
6275 when the operand has that value.) */
6277 (if (flag_unsafe_math_optimizations)
6278 /* Simplify sqrt(x) * sqrt(x) -> x. */
6280 (mult (SQRT_ALL@1 @0) @1)
6281 (if (!tree_expr_maybe_signaling_nan_p (@0))
6284 (for op (plus minus)
6285 /* Simplify (A / C) +- (B / C) -> (A +- B) / C. */
6289 (rdiv (op @0 @2) @1)))
6291 (for cmp (lt le gt ge)
6292 neg_cmp (gt ge lt le)
6293 /* Simplify (x * C1) cmp C2 -> x cmp (C2 / C1), where C1 != 0. */
6295 (cmp (mult @0 REAL_CST@1) REAL_CST@2)
6297 { tree tem = const_binop (RDIV_EXPR, type, @2, @1); }
6299 && !(REAL_VALUE_ISINF (TREE_REAL_CST (tem))
6300 || (real_zerop (tem) && !real_zerop (@1))))
6302 (if (real_less (&dconst0, TREE_REAL_CST_PTR (@1)))
6304 (if (real_less (TREE_REAL_CST_PTR (@1), &dconst0))
6305 (neg_cmp @0 { tem; })))))))
6307 /* Simplify sqrt(x) * sqrt(y) -> sqrt(x*y). */
6308 (for root (SQRT CBRT)
6310 (mult (root:s @0) (root:s @1))
6311 (root (mult @0 @1))))
6313 /* Simplify expN(x) * expN(y) -> expN(x+y). */
6314 (for exps (EXP EXP2 EXP10 POW10)
6316 (mult (exps:s @0) (exps:s @1))
6317 (exps (plus @0 @1))))
6319 /* Simplify a/root(b/c) into a*root(c/b). */
6320 (for root (SQRT CBRT)
6322 (rdiv @0 (root:s (rdiv:s @1 @2)))
6323 (mult @0 (root (rdiv @2 @1)))))
6325 /* Simplify x/expN(y) into x*expN(-y). */
6326 (for exps (EXP EXP2 EXP10 POW10)
6328 (rdiv @0 (exps:s @1))
6329 (mult @0 (exps (negate @1)))))
6331 (for logs (LOG LOG2 LOG10 LOG10)
6332 exps (EXP EXP2 EXP10 POW10)
6333 /* logN(expN(x)) -> x. */
6337 /* expN(logN(x)) -> x. */
6342 /* Optimize logN(func()) for various exponential functions. We
6343 want to determine the value "x" and the power "exponent" in
6344 order to transform logN(x**exponent) into exponent*logN(x). */
6345 (for logs (LOG LOG LOG LOG2 LOG2 LOG2 LOG10 LOG10)
6346 exps (EXP2 EXP10 POW10 EXP EXP10 POW10 EXP EXP2)
6349 (if (SCALAR_FLOAT_TYPE_P (type))
6355 /* Prepare to do logN(exp(exponent)) -> exponent*logN(e). */
6356 x = build_real_truncate (type, dconst_e ());
6359 /* Prepare to do logN(exp2(exponent)) -> exponent*logN(2). */
6360 x = build_real (type, dconst2);
6364 /* Prepare to do logN(exp10(exponent)) -> exponent*logN(10). */
6366 REAL_VALUE_TYPE dconst10;
6367 real_from_integer (&dconst10, VOIDmode, 10, SIGNED);
6368 x = build_real (type, dconst10);
6375 (mult (logs { x; }) @0)))))
6383 (if (SCALAR_FLOAT_TYPE_P (type))
6389 /* Prepare to do logN(sqrt(x)) -> 0.5*logN(x). */
6390 x = build_real (type, dconsthalf);
6393 /* Prepare to do logN(cbrt(x)) -> (1/3)*logN(x). */
6394 x = build_real_truncate (type, dconst_third ());
6400 (mult { x; } (logs @0))))))
6402 /* logN(pow(x,exponent)) -> exponent*logN(x). */
6403 (for logs (LOG LOG2 LOG10)
6407 (mult @1 (logs @0))))
6409 /* pow(C,x) -> exp(log(C)*x) if C > 0,
6410 or if C is a positive power of 2,
6411 pow(C,x) -> exp2(log2(C)*x). */
6419 (pows REAL_CST@0 @1)
6420 (if (real_compare (GT_EXPR, TREE_REAL_CST_PTR (@0), &dconst0)
6421 && real_isfinite (TREE_REAL_CST_PTR (@0))
6422 /* As libmvec doesn't have a vectorized exp2, defer optimizing
6423 the use_exp2 case until after vectorization. It seems actually
6424 beneficial for all constants to postpone this until later,
6425 because exp(log(C)*x), while faster, will have worse precision
6426 and if x folds into a constant too, that is unnecessary
6428 && canonicalize_math_after_vectorization_p ())
6430 const REAL_VALUE_TYPE *const value = TREE_REAL_CST_PTR (@0);
6431 bool use_exp2 = false;
6432 if (targetm.libc_has_function (function_c99_misc, TREE_TYPE (@0))
6433 && value->cl == rvc_normal)
6435 REAL_VALUE_TYPE frac_rvt = *value;
6436 SET_REAL_EXP (&frac_rvt, 1);
6437 if (real_equal (&frac_rvt, &dconst1))
6442 (if (optimize_pow_to_exp (@0, @1))
6443 (exps (mult (logs @0) @1)))
6444 (exp2s (mult (log2s @0) @1)))))))
6447 /* pow(C,x)*expN(y) -> expN(logN(C)*x+y) if C > 0. */
6449 exps (EXP EXP2 EXP10 POW10)
6450 logs (LOG LOG2 LOG10 LOG10)
6452 (mult:c (pows:s REAL_CST@0 @1) (exps:s @2))
6453 (if (real_compare (GT_EXPR, TREE_REAL_CST_PTR (@0), &dconst0)
6454 && real_isfinite (TREE_REAL_CST_PTR (@0)))
6455 (exps (plus (mult (logs @0) @1) @2)))))
6460 exps (EXP EXP2 EXP10 POW10)
6461 /* sqrt(expN(x)) -> expN(x*0.5). */
6464 (exps (mult @0 { build_real (type, dconsthalf); })))
6465 /* cbrt(expN(x)) -> expN(x/3). */
6468 (exps (mult @0 { build_real_truncate (type, dconst_third ()); })))
6469 /* pow(expN(x), y) -> expN(x*y). */
6472 (exps (mult @0 @1))))
6474 /* tan(atan(x)) -> x. */
6481 /* Simplify sin(atan(x)) -> x / sqrt(x*x + 1). */
6485 copysigns (COPYSIGN)
6490 REAL_VALUE_TYPE r_cst;
6491 build_sinatan_real (&r_cst, type);
6492 tree t_cst = build_real (type, r_cst);
6493 tree t_one = build_one_cst (type);
6495 (if (SCALAR_FLOAT_TYPE_P (type))
6496 (cond (lt (abs @0) { t_cst; })
6497 (rdiv @0 (sqrts (plus (mult @0 @0) { t_one; })))
6498 (copysigns { t_one; } @0))))))
6500 /* Simplify cos(atan(x)) -> 1 / sqrt(x*x + 1). */
6504 copysigns (COPYSIGN)
6509 REAL_VALUE_TYPE r_cst;
6510 build_sinatan_real (&r_cst, type);
6511 tree t_cst = build_real (type, r_cst);
6512 tree t_one = build_one_cst (type);
6513 tree t_zero = build_zero_cst (type);
6515 (if (SCALAR_FLOAT_TYPE_P (type))
6516 (cond (lt (abs @0) { t_cst; })
6517 (rdiv { t_one; } (sqrts (plus (mult @0 @0) { t_one; })))
6518 (copysigns { t_zero; } @0))))))
6520 (if (!flag_errno_math)
6521 /* Simplify sinh(atanh(x)) -> x / sqrt((1 - x)*(1 + x)). */
6526 (sinhs (atanhs:s @0))
6527 (with { tree t_one = build_one_cst (type); }
6528 (rdiv @0 (sqrts (mult (minus { t_one; } @0) (plus { t_one; } @0)))))))
6530 /* Simplify cosh(atanh(x)) -> 1 / sqrt((1 - x)*(1 + x)) */
6535 (coshs (atanhs:s @0))
6536 (with { tree t_one = build_one_cst (type); }
6537 (rdiv { t_one; } (sqrts (mult (minus { t_one; } @0) (plus { t_one; } @0))))))))
6539 /* cabs(x+0i) or cabs(0+xi) -> abs(x). */
6541 (CABS (complex:C @0 real_zerop@1))
6544 /* trunc(trunc(x)) -> trunc(x), etc. */
6545 (for fns (TRUNC_ALL FLOOR_ALL CEIL_ALL ROUND_ALL NEARBYINT_ALL RINT_ALL)
6549 /* f(x) -> x if x is integer valued and f does nothing for such values. */
6550 (for fns (TRUNC_ALL FLOOR_ALL CEIL_ALL ROUND_ALL NEARBYINT_ALL RINT_ALL)
6552 (fns integer_valued_real_p@0)
6555 /* hypot(x,0) and hypot(0,x) -> abs(x). */
6557 (HYPOT:c @0 real_zerop@1)
6560 /* pow(1,x) -> 1. */
6562 (POW real_onep@0 @1)
6566 /* copysign(x,x) -> x. */
6567 (COPYSIGN_ALL @0 @0)
6571 /* copysign(x,-x) -> -x. */
6572 (COPYSIGN_ALL @0 (negate@1 @0))
6576 /* copysign(x,y) -> fabs(x) if y is nonnegative. */
6577 (COPYSIGN_ALL @0 tree_expr_nonnegative_p@1)
6580 (for scale (LDEXP SCALBN SCALBLN)
6581 /* ldexp(0, x) -> 0. */
6583 (scale real_zerop@0 @1)
6585 /* ldexp(x, 0) -> x. */
6587 (scale @0 integer_zerop@1)
6589 /* ldexp(x, y) -> x if x is +-Inf or NaN. */
6591 (scale REAL_CST@0 @1)
6592 (if (!real_isfinite (TREE_REAL_CST_PTR (@0)))
6595 /* Canonicalization of sequences of math builtins. These rules represent
6596 IL simplifications but are not necessarily optimizations.
6598 The sincos pass is responsible for picking "optimal" implementations
6599 of math builtins, which may be more complicated and can sometimes go
6600 the other way, e.g. converting pow into a sequence of sqrts.
6601 We only want to do these canonicalizations before the pass has run. */
6603 (if (flag_unsafe_math_optimizations && canonicalize_math_p ())
6604 /* Simplify tan(x) * cos(x) -> sin(x). */
6606 (mult:c (TAN:s @0) (COS:s @0))
6609 /* Simplify x * pow(x,c) -> pow(x,c+1). */
6611 (mult:c @0 (POW:s @0 REAL_CST@1))
6612 (if (!TREE_OVERFLOW (@1))
6613 (POW @0 (plus @1 { build_one_cst (type); }))))
6615 /* Simplify sin(x) / cos(x) -> tan(x). */
6617 (rdiv (SIN:s @0) (COS:s @0))
6620 /* Simplify sinh(x) / cosh(x) -> tanh(x). */
6622 (rdiv (SINH:s @0) (COSH:s @0))
6625 /* Simplify tanh (x) / sinh (x) -> 1.0 / cosh (x). */
6627 (rdiv (TANH:s @0) (SINH:s @0))
6628 (rdiv {build_one_cst (type);} (COSH @0)))
6630 /* Simplify cos(x) / sin(x) -> 1 / tan(x). */
6632 (rdiv (COS:s @0) (SIN:s @0))
6633 (rdiv { build_one_cst (type); } (TAN @0)))
6635 /* Simplify sin(x) / tan(x) -> cos(x). */
6637 (rdiv (SIN:s @0) (TAN:s @0))
6638 (if (! HONOR_NANS (@0)
6639 && ! HONOR_INFINITIES (@0))
6642 /* Simplify tan(x) / sin(x) -> 1.0 / cos(x). */
6644 (rdiv (TAN:s @0) (SIN:s @0))
6645 (if (! HONOR_NANS (@0)
6646 && ! HONOR_INFINITIES (@0))
6647 (rdiv { build_one_cst (type); } (COS @0))))
6649 /* Simplify pow(x,y) * pow(x,z) -> pow(x,y+z). */
6651 (mult (POW:s @0 @1) (POW:s @0 @2))
6652 (POW @0 (plus @1 @2)))
6654 /* Simplify pow(x,y) * pow(z,y) -> pow(x*z,y). */
6656 (mult (POW:s @0 @1) (POW:s @2 @1))
6657 (POW (mult @0 @2) @1))
6659 /* Simplify powi(x,y) * powi(z,y) -> powi(x*z,y). */
6661 (mult (POWI:s @0 @1) (POWI:s @2 @1))
6662 (POWI (mult @0 @2) @1))
6664 /* Simplify pow(x,c) / x -> pow(x,c-1). */
6666 (rdiv (POW:s @0 REAL_CST@1) @0)
6667 (if (!TREE_OVERFLOW (@1))
6668 (POW @0 (minus @1 { build_one_cst (type); }))))
6670 /* Simplify x / pow (y,z) -> x * pow(y,-z). */
6672 (rdiv @0 (POW:s @1 @2))
6673 (mult @0 (POW @1 (negate @2))))
6678 /* sqrt(sqrt(x)) -> pow(x,1/4). */
6681 (pows @0 { build_real (type, dconst_quarter ()); }))
6682 /* sqrt(cbrt(x)) -> pow(x,1/6). */
6685 (pows @0 { build_real_truncate (type, dconst_sixth ()); }))
6686 /* cbrt(sqrt(x)) -> pow(x,1/6). */
6689 (pows @0 { build_real_truncate (type, dconst_sixth ()); }))
6690 /* cbrt(cbrt(x)) -> pow(x,1/9), iff x is nonnegative. */
6692 (cbrts (cbrts tree_expr_nonnegative_p@0))
6693 (pows @0 { build_real_truncate (type, dconst_ninth ()); }))
6694 /* sqrt(pow(x,y)) -> pow(|x|,y*0.5). */
6696 (sqrts (pows @0 @1))
6697 (pows (abs @0) (mult @1 { build_real (type, dconsthalf); })))
6698 /* cbrt(pow(x,y)) -> pow(x,y/3), iff x is nonnegative. */
6700 (cbrts (pows tree_expr_nonnegative_p@0 @1))
6701 (pows @0 (mult @1 { build_real_truncate (type, dconst_third ()); })))
6702 /* pow(sqrt(x),y) -> pow(x,y*0.5). */
6704 (pows (sqrts @0) @1)
6705 (pows @0 (mult @1 { build_real (type, dconsthalf); })))
6706 /* pow(cbrt(x),y) -> pow(x,y/3) iff x is nonnegative. */
6708 (pows (cbrts tree_expr_nonnegative_p@0) @1)
6709 (pows @0 (mult @1 { build_real_truncate (type, dconst_third ()); })))
6710 /* pow(pow(x,y),z) -> pow(x,y*z) iff x is nonnegative. */
6712 (pows (pows tree_expr_nonnegative_p@0 @1) @2)
6713 (pows @0 (mult @1 @2))))
6715 /* cabs(x+xi) -> fabs(x)*sqrt(2). */
6717 (CABS (complex @0 @0))
6718 (mult (abs @0) { build_real_truncate (type, dconst_sqrt2 ()); }))
6720 /* hypot(x,x) -> fabs(x)*sqrt(2). */
6723 (mult (abs @0) { build_real_truncate (type, dconst_sqrt2 ()); }))
6725 /* cexp(x+yi) -> exp(x)*cexpi(y). */
6730 (cexps compositional_complex@0)
6731 (if (targetm.libc_has_function (function_c99_math_complex, TREE_TYPE (@0)))
6733 (mult (exps@1 (realpart @0)) (realpart (cexpis:type@2 (imagpart @0))))
6734 (mult @1 (imagpart @2)))))))
6736 (if (canonicalize_math_p ())
6737 /* floor(x) -> trunc(x) if x is nonnegative. */
6738 (for floors (FLOOR_ALL)
6741 (floors tree_expr_nonnegative_p@0)
6744 (match double_value_p
6746 (if (TYPE_MAIN_VARIANT (TREE_TYPE (@0)) == double_type_node)))
6747 (for froms (BUILT_IN_TRUNCL
6759 /* truncl(extend(x)) -> extend(trunc(x)), etc., if x is a double. */
6760 (if (optimize && canonicalize_math_p ())
6762 (froms (convert double_value_p@0))
6763 (convert (tos @0)))))
6765 (match float_value_p
6767 (if (TYPE_MAIN_VARIANT (TREE_TYPE (@0)) == float_type_node)))
6768 (for froms (BUILT_IN_TRUNCL BUILT_IN_TRUNC
6769 BUILT_IN_FLOORL BUILT_IN_FLOOR
6770 BUILT_IN_CEILL BUILT_IN_CEIL
6771 BUILT_IN_ROUNDL BUILT_IN_ROUND
6772 BUILT_IN_NEARBYINTL BUILT_IN_NEARBYINT
6773 BUILT_IN_RINTL BUILT_IN_RINT)
6774 tos (BUILT_IN_TRUNCF BUILT_IN_TRUNCF
6775 BUILT_IN_FLOORF BUILT_IN_FLOORF
6776 BUILT_IN_CEILF BUILT_IN_CEILF
6777 BUILT_IN_ROUNDF BUILT_IN_ROUNDF
6778 BUILT_IN_NEARBYINTF BUILT_IN_NEARBYINTF
6779 BUILT_IN_RINTF BUILT_IN_RINTF)
6780 /* truncl(extend(x)) and trunc(extend(x)) -> extend(truncf(x)), etc.,
6782 (if (optimize && canonicalize_math_p ()
6783 && targetm.libc_has_function (function_c99_misc, NULL_TREE))
6785 (froms (convert float_value_p@0))
6786 (convert (tos @0)))))
6789 (match float16_value_p
6791 (if (TYPE_MAIN_VARIANT (TREE_TYPE (@0)) == float16_type_node)))
6792 (for froms (BUILT_IN_TRUNCL BUILT_IN_TRUNC BUILT_IN_TRUNCF
6793 BUILT_IN_FLOORL BUILT_IN_FLOOR BUILT_IN_FLOORF
6794 BUILT_IN_CEILL BUILT_IN_CEIL BUILT_IN_CEILF
6795 BUILT_IN_ROUNDEVENL BUILT_IN_ROUNDEVEN BUILT_IN_ROUNDEVENF
6796 BUILT_IN_ROUNDL BUILT_IN_ROUND BUILT_IN_ROUNDF
6797 BUILT_IN_NEARBYINTL BUILT_IN_NEARBYINT BUILT_IN_NEARBYINTF
6798 BUILT_IN_RINTL BUILT_IN_RINT BUILT_IN_RINTF
6799 BUILT_IN_SQRTL BUILT_IN_SQRT BUILT_IN_SQRTF)
6800 tos (IFN_TRUNC IFN_TRUNC IFN_TRUNC
6801 IFN_FLOOR IFN_FLOOR IFN_FLOOR
6802 IFN_CEIL IFN_CEIL IFN_CEIL
6803 IFN_ROUNDEVEN IFN_ROUNDEVEN IFN_ROUNDEVEN
6804 IFN_ROUND IFN_ROUND IFN_ROUND
6805 IFN_NEARBYINT IFN_NEARBYINT IFN_NEARBYINT
6806 IFN_RINT IFN_RINT IFN_RINT
6807 IFN_SQRT IFN_SQRT IFN_SQRT)
6808 /* (_Float16) round ((doube) x) -> __built_in_roundf16 (x), etc.,
6809 if x is a _Float16. */
6811 (convert (froms (convert float16_value_p@0)))
6813 && types_match (type, TREE_TYPE (@0))
6814 && direct_internal_fn_supported_p (as_internal_fn (tos),
6815 type, OPTIMIZE_FOR_BOTH))
6818 /* Simplify (trunc)copysign ((extend)x, (extend)y) to copysignf (x, y),
6819 x,y is float value, similar for _Float16/double. */
6820 (for copysigns (COPYSIGN_ALL)
6822 (convert (copysigns (convert@2 @0) (convert @1)))
6824 && !HONOR_SNANS (@2)
6825 && types_match (type, TREE_TYPE (@0))
6826 && types_match (type, TREE_TYPE (@1))
6827 && TYPE_PRECISION (type) < TYPE_PRECISION (TREE_TYPE (@2))
6828 && direct_internal_fn_supported_p (IFN_COPYSIGN,
6829 type, OPTIMIZE_FOR_BOTH))
6830 (IFN_COPYSIGN @0 @1))))
6832 (for froms (BUILT_IN_FMAF BUILT_IN_FMA BUILT_IN_FMAL)
6833 tos (IFN_FMA IFN_FMA IFN_FMA)
6835 (convert (froms (convert@3 @0) (convert @1) (convert @2)))
6836 (if (flag_unsafe_math_optimizations
6838 && FLOAT_TYPE_P (type)
6839 && FLOAT_TYPE_P (TREE_TYPE (@3))
6840 && types_match (type, TREE_TYPE (@0))
6841 && types_match (type, TREE_TYPE (@1))
6842 && types_match (type, TREE_TYPE (@2))
6843 && TYPE_PRECISION (type) < TYPE_PRECISION (TREE_TYPE (@3))
6844 && direct_internal_fn_supported_p (as_internal_fn (tos),
6845 type, OPTIMIZE_FOR_BOTH))
6848 (for maxmin (max min)
6850 (convert (maxmin (convert@2 @0) (convert @1)))
6852 && FLOAT_TYPE_P (type)
6853 && FLOAT_TYPE_P (TREE_TYPE (@2))
6854 && types_match (type, TREE_TYPE (@0))
6855 && types_match (type, TREE_TYPE (@1))
6856 && element_precision (type) < element_precision (TREE_TYPE (@2)))
6860 (for froms (XFLOORL XCEILL XROUNDL XRINTL)
6861 tos (XFLOOR XCEIL XROUND XRINT)
6862 /* llfloorl(extend(x)) -> llfloor(x), etc., if x is a double. */
6863 (if (optimize && canonicalize_math_p ())
6865 (froms (convert double_value_p@0))
6868 (for froms (XFLOORL XCEILL XROUNDL XRINTL
6869 XFLOOR XCEIL XROUND XRINT)
6870 tos (XFLOORF XCEILF XROUNDF XRINTF)
6871 /* llfloorl(extend(x)) and llfloor(extend(x)) -> llfloorf(x), etc.,
6873 (if (optimize && canonicalize_math_p ())
6875 (froms (convert float_value_p@0))
6878 (if (canonicalize_math_p ())
6879 /* xfloor(x) -> fix_trunc(x) if x is nonnegative. */
6880 (for floors (IFLOOR LFLOOR LLFLOOR)
6882 (floors tree_expr_nonnegative_p@0)
6885 (if (canonicalize_math_p ())
6886 /* xfloor(x) -> fix_trunc(x), etc., if x is integer valued. */
6887 (for fns (IFLOOR LFLOOR LLFLOOR
6889 IROUND LROUND LLROUND)
6891 (fns integer_valued_real_p@0)
6893 (if (!flag_errno_math)
6894 /* xrint(x) -> fix_trunc(x), etc., if x is integer valued. */
6895 (for rints (IRINT LRINT LLRINT)
6897 (rints integer_valued_real_p@0)
6900 (if (canonicalize_math_p ())
6901 (for ifn (IFLOOR ICEIL IROUND IRINT)
6902 lfn (LFLOOR LCEIL LROUND LRINT)
6903 llfn (LLFLOOR LLCEIL LLROUND LLRINT)
6904 /* Canonicalize iround (x) to lround (x) on ILP32 targets where
6905 sizeof (int) == sizeof (long). */
6906 (if (TYPE_PRECISION (integer_type_node)
6907 == TYPE_PRECISION (long_integer_type_node))
6910 (lfn:long_integer_type_node @0)))
6911 /* Canonicalize llround (x) to lround (x) on LP64 targets where
6912 sizeof (long long) == sizeof (long). */
6913 (if (TYPE_PRECISION (long_long_integer_type_node)
6914 == TYPE_PRECISION (long_integer_type_node))
6917 (lfn:long_integer_type_node @0)))))
6919 /* cproj(x) -> x if we're ignoring infinities. */
6922 (if (!HONOR_INFINITIES (type))
6925 /* If the real part is inf and the imag part is known to be
6926 nonnegative, return (inf + 0i). */
6928 (CPROJ (complex REAL_CST@0 tree_expr_nonnegative_p@1))
6929 (if (real_isinf (TREE_REAL_CST_PTR (@0)))
6930 { build_complex_inf (type, false); }))
6932 /* If the imag part is inf, return (inf+I*copysign(0,imag)). */
6934 (CPROJ (complex @0 REAL_CST@1))
6935 (if (real_isinf (TREE_REAL_CST_PTR (@1)))
6936 { build_complex_inf (type, TREE_REAL_CST_PTR (@1)->sign); }))
6942 (pows @0 REAL_CST@1)
6944 const REAL_VALUE_TYPE *value = TREE_REAL_CST_PTR (@1);
6945 REAL_VALUE_TYPE tmp;
6948 /* pow(x,0) -> 1. */
6949 (if (real_equal (value, &dconst0))
6950 { build_real (type, dconst1); })
6951 /* pow(x,1) -> x. */
6952 (if (real_equal (value, &dconst1))
6954 /* pow(x,-1) -> 1/x. */
6955 (if (real_equal (value, &dconstm1))
6956 (rdiv { build_real (type, dconst1); } @0))
6957 /* pow(x,0.5) -> sqrt(x). */
6958 (if (flag_unsafe_math_optimizations
6959 && canonicalize_math_p ()
6960 && real_equal (value, &dconsthalf))
6962 /* pow(x,1/3) -> cbrt(x). */
6963 (if (flag_unsafe_math_optimizations
6964 && canonicalize_math_p ()
6965 && (tmp = real_value_truncate (TYPE_MODE (type), dconst_third ()),
6966 real_equal (value, &tmp)))
6969 /* powi(1,x) -> 1. */
6971 (POWI real_onep@0 @1)
6975 (POWI @0 INTEGER_CST@1)
6977 /* powi(x,0) -> 1. */
6978 (if (wi::to_wide (@1) == 0)
6979 { build_real (type, dconst1); })
6980 /* powi(x,1) -> x. */
6981 (if (wi::to_wide (@1) == 1)
6983 /* powi(x,-1) -> 1/x. */
6984 (if (wi::to_wide (@1) == -1)
6985 (rdiv { build_real (type, dconst1); } @0))))
6987 /* Narrowing of arithmetic and logical operations.
6989 These are conceptually similar to the transformations performed for
6990 the C/C++ front-ends by shorten_binary_op and shorten_compare. Long
6991 term we want to move all that code out of the front-ends into here. */
6993 /* Convert (outertype)((innertype0)a+(innertype1)b)
6994 into ((newtype)a+(newtype)b) where newtype
6995 is the widest mode from all of these. */
6996 (for op (plus minus mult rdiv)
6998 (convert (op:s@0 (convert1?@3 @1) (convert2?@4 @2)))
6999 /* If we have a narrowing conversion of an arithmetic operation where
7000 both operands are widening conversions from the same type as the outer
7001 narrowing conversion. Then convert the innermost operands to a
7002 suitable unsigned type (to avoid introducing undefined behavior),
7003 perform the operation and convert the result to the desired type. */
7004 (if (INTEGRAL_TYPE_P (type)
7007 /* We check for type compatibility between @0 and @1 below,
7008 so there's no need to check that @2/@4 are integral types. */
7009 && INTEGRAL_TYPE_P (TREE_TYPE (@1))
7010 && INTEGRAL_TYPE_P (TREE_TYPE (@3))
7011 /* The precision of the type of each operand must match the
7012 precision of the mode of each operand, similarly for the
7014 && type_has_mode_precision_p (TREE_TYPE (@1))
7015 && type_has_mode_precision_p (TREE_TYPE (@2))
7016 && type_has_mode_precision_p (type)
7017 /* The inner conversion must be a widening conversion. */
7018 && TYPE_PRECISION (TREE_TYPE (@3)) > TYPE_PRECISION (TREE_TYPE (@1))
7019 && types_match (@1, type)
7020 && (types_match (@1, @2)
7021 /* Or the second operand is const integer or converted const
7022 integer from valueize. */
7023 || poly_int_tree_p (@4)))
7024 (if (TYPE_OVERFLOW_WRAPS (TREE_TYPE (@1)))
7025 (op @1 (convert @2))
7026 (with { tree utype = unsigned_type_for (TREE_TYPE (@1)); }
7027 (convert (op (convert:utype @1)
7028 (convert:utype @2)))))
7029 (if (FLOAT_TYPE_P (type)
7030 && DECIMAL_FLOAT_TYPE_P (TREE_TYPE (@0))
7031 == DECIMAL_FLOAT_TYPE_P (type))
7032 (with { tree arg0 = strip_float_extensions (@1);
7033 tree arg1 = strip_float_extensions (@2);
7034 tree itype = TREE_TYPE (@0);
7035 tree ty1 = TREE_TYPE (arg0);
7036 tree ty2 = TREE_TYPE (arg1);
7037 enum tree_code code = TREE_CODE (itype); }
7038 (if (FLOAT_TYPE_P (ty1)
7039 && FLOAT_TYPE_P (ty2))
7040 (with { tree newtype = type;
7041 if (TYPE_MODE (ty1) == SDmode
7042 || TYPE_MODE (ty2) == SDmode
7043 || TYPE_MODE (type) == SDmode)
7044 newtype = dfloat32_type_node;
7045 if (TYPE_MODE (ty1) == DDmode
7046 || TYPE_MODE (ty2) == DDmode
7047 || TYPE_MODE (type) == DDmode)
7048 newtype = dfloat64_type_node;
7049 if (TYPE_MODE (ty1) == TDmode
7050 || TYPE_MODE (ty2) == TDmode
7051 || TYPE_MODE (type) == TDmode)
7052 newtype = dfloat128_type_node; }
7053 (if ((newtype == dfloat32_type_node
7054 || newtype == dfloat64_type_node
7055 || newtype == dfloat128_type_node)
7057 && types_match (newtype, type))
7058 (op (convert:newtype @1) (convert:newtype @2))
7059 (with { if (TYPE_PRECISION (ty1) > TYPE_PRECISION (newtype))
7061 if (TYPE_PRECISION (ty2) > TYPE_PRECISION (newtype))
7063 /* Sometimes this transformation is safe (cannot
7064 change results through affecting double rounding
7065 cases) and sometimes it is not. If NEWTYPE is
7066 wider than TYPE, e.g. (float)((long double)double
7067 + (long double)double) converted to
7068 (float)(double + double), the transformation is
7069 unsafe regardless of the details of the types
7070 involved; double rounding can arise if the result
7071 of NEWTYPE arithmetic is a NEWTYPE value half way
7072 between two representable TYPE values but the
7073 exact value is sufficiently different (in the
7074 right direction) for this difference to be
7075 visible in ITYPE arithmetic. If NEWTYPE is the
7076 same as TYPE, however, the transformation may be
7077 safe depending on the types involved: it is safe
7078 if the ITYPE has strictly more than twice as many
7079 mantissa bits as TYPE, can represent infinities
7080 and NaNs if the TYPE can, and has sufficient
7081 exponent range for the product or ratio of two
7082 values representable in the TYPE to be within the
7083 range of normal values of ITYPE. */
7084 (if (TYPE_PRECISION (newtype) < TYPE_PRECISION (itype)
7085 && (flag_unsafe_math_optimizations
7086 || (TYPE_PRECISION (newtype) == TYPE_PRECISION (type)
7087 && real_can_shorten_arithmetic (TYPE_MODE (itype),
7089 && !excess_precision_type (newtype)))
7090 && !types_match (itype, newtype))
7091 (convert:type (op (convert:newtype @1)
7092 (convert:newtype @2)))
7097 /* This is another case of narrowing, specifically when there's an outer
7098 BIT_AND_EXPR which masks off bits outside the type of the innermost
7099 operands. Like the previous case we have to convert the operands
7100 to unsigned types to avoid introducing undefined behavior for the
7101 arithmetic operation. */
7102 (for op (minus plus)
7104 (bit_and (op:s (convert@2 @0) (convert@3 @1)) INTEGER_CST@4)
7105 (if (INTEGRAL_TYPE_P (type)
7106 /* We check for type compatibility between @0 and @1 below,
7107 so there's no need to check that @1/@3 are integral types. */
7108 && INTEGRAL_TYPE_P (TREE_TYPE (@0))
7109 && INTEGRAL_TYPE_P (TREE_TYPE (@2))
7110 /* The precision of the type of each operand must match the
7111 precision of the mode of each operand, similarly for the
7113 && type_has_mode_precision_p (TREE_TYPE (@0))
7114 && type_has_mode_precision_p (TREE_TYPE (@1))
7115 && type_has_mode_precision_p (type)
7116 /* The inner conversion must be a widening conversion. */
7117 && TYPE_PRECISION (TREE_TYPE (@2)) > TYPE_PRECISION (TREE_TYPE (@0))
7118 && types_match (@0, @1)
7119 && (tree_int_cst_min_precision (@4, TYPE_SIGN (TREE_TYPE (@0)))
7120 <= TYPE_PRECISION (TREE_TYPE (@0)))
7121 && (wi::to_wide (@4)
7122 & wi::mask (TYPE_PRECISION (TREE_TYPE (@0)),
7123 true, TYPE_PRECISION (type))) == 0)
7124 (if (TYPE_OVERFLOW_WRAPS (TREE_TYPE (@0)))
7125 (with { tree ntype = TREE_TYPE (@0); }
7126 (convert (bit_and (op @0 @1) (convert:ntype @4))))
7127 (with { tree utype = unsigned_type_for (TREE_TYPE (@0)); }
7128 (convert (bit_and (op (convert:utype @0) (convert:utype @1))
7129 (convert:utype @4))))))))
7131 /* Transform (@0 < @1 and @0 < @2) to use min,
7132 (@0 > @1 and @0 > @2) to use max */
7133 (for logic (bit_and bit_and bit_and bit_and bit_ior bit_ior bit_ior bit_ior)
7134 op (lt le gt ge lt le gt ge )
7135 ext (min min max max max max min min )
7137 (logic (op:cs @0 @1) (op:cs @0 @2))
7138 (if (INTEGRAL_TYPE_P (TREE_TYPE (@0))
7139 && TREE_CODE (@0) != INTEGER_CST)
7140 (op @0 (ext @1 @2)))))
7143 /* signbit(x) -> 0 if x is nonnegative. */
7144 (SIGNBIT tree_expr_nonnegative_p@0)
7145 { integer_zero_node; })
7148 /* signbit(x) -> x<0 if x doesn't have signed zeros. */
7150 (if (!HONOR_SIGNED_ZEROS (@0))
7151 (convert (lt @0 { build_real (TREE_TYPE (@0), dconst0); }))))
7153 /* Transform comparisons of the form X +- C1 CMP C2 to X CMP C2 -+ C1. */
7155 (for op (plus minus)
7158 (cmp (op@3 @0 INTEGER_CST@1) INTEGER_CST@2)
7159 (if (!TREE_OVERFLOW (@1) && !TREE_OVERFLOW (@2)
7160 && !TYPE_OVERFLOW_SANITIZED (TREE_TYPE (@0))
7161 && !TYPE_OVERFLOW_TRAPS (TREE_TYPE (@0))
7162 && !TYPE_SATURATING (TREE_TYPE (@0)))
7163 (with { tree res = int_const_binop (rop, @2, @1); }
7164 (if (TREE_OVERFLOW (res)
7165 && TYPE_OVERFLOW_UNDEFINED (TREE_TYPE (@0)))
7166 { constant_boolean_node (cmp == NE_EXPR, type); }
7167 (if (single_use (@3))
7168 (cmp @0 { TREE_OVERFLOW (res)
7169 ? drop_tree_overflow (res) : res; }))))))))
7170 (for cmp (lt le gt ge)
7171 (for op (plus minus)
7174 (cmp (op@3 @0 INTEGER_CST@1) INTEGER_CST@2)
7175 (if (!TREE_OVERFLOW (@1) && !TREE_OVERFLOW (@2)
7176 && TYPE_OVERFLOW_UNDEFINED (TREE_TYPE (@0)))
7177 (with { tree res = int_const_binop (rop, @2, @1); }
7178 (if (TREE_OVERFLOW (res))
7180 fold_overflow_warning (("assuming signed overflow does not occur "
7181 "when simplifying conditional to constant"),
7182 WARN_STRICT_OVERFLOW_CONDITIONAL);
7183 bool less = cmp == LE_EXPR || cmp == LT_EXPR;
7184 /* wi::ges_p (@2, 0) should be sufficient for a signed type. */
7185 bool ovf_high = wi::lt_p (wi::to_wide (@1), 0,
7186 TYPE_SIGN (TREE_TYPE (@1)))
7187 != (op == MINUS_EXPR);
7188 constant_boolean_node (less == ovf_high, type);
7190 (if (single_use (@3))
7193 fold_overflow_warning (("assuming signed overflow does not occur "
7194 "when changing X +- C1 cmp C2 to "
7196 WARN_STRICT_OVERFLOW_COMPARISON);
7198 (cmp @0 { res; })))))))))
7200 /* Canonicalizations of BIT_FIELD_REFs. */
7203 (BIT_FIELD_REF (BIT_FIELD_REF @0 @1 @2) @3 @4)
7204 (BIT_FIELD_REF @0 @3 { const_binop (PLUS_EXPR, bitsizetype, @2, @4); }))
7207 (BIT_FIELD_REF (view_convert @0) @1 @2)
7208 (BIT_FIELD_REF @0 @1 @2))
7211 (BIT_FIELD_REF @0 @1 integer_zerop)
7212 (if (tree_int_cst_equal (@1, TYPE_SIZE (TREE_TYPE (@0))))
7216 (BIT_FIELD_REF @0 @1 @2)
7218 (if (TREE_CODE (TREE_TYPE (@0)) == COMPLEX_TYPE
7219 && tree_int_cst_equal (@1, TYPE_SIZE (TREE_TYPE (TREE_TYPE (@0)))))
7221 (if (integer_zerop (@2))
7222 (view_convert (realpart @0)))
7223 (if (tree_int_cst_equal (@2, TYPE_SIZE (TREE_TYPE (TREE_TYPE (@0)))))
7224 (view_convert (imagpart @0)))))
7225 (if (INTEGRAL_TYPE_P (TREE_TYPE (@0))
7226 && INTEGRAL_TYPE_P (type)
7227 /* On GIMPLE this should only apply to register arguments. */
7228 && (! GIMPLE || is_gimple_reg (@0))
7229 /* A bit-field-ref that referenced the full argument can be stripped. */
7230 && ((compare_tree_int (@1, TYPE_PRECISION (TREE_TYPE (@0))) == 0
7231 && integer_zerop (@2))
7232 /* Low-parts can be reduced to integral conversions.
7233 ??? The following doesn't work for PDP endian. */
7234 || (BYTES_BIG_ENDIAN == WORDS_BIG_ENDIAN
7235 /* But only do this after vectorization. */
7236 && canonicalize_math_after_vectorization_p ()
7237 /* Don't even think about BITS_BIG_ENDIAN. */
7238 && TYPE_PRECISION (TREE_TYPE (@0)) % BITS_PER_UNIT == 0
7239 && TYPE_PRECISION (type) % BITS_PER_UNIT == 0
7240 && compare_tree_int (@2, (BYTES_BIG_ENDIAN
7241 ? (TYPE_PRECISION (TREE_TYPE (@0))
7242 - TYPE_PRECISION (type))
7246 /* Simplify vector extracts. */
7249 (BIT_FIELD_REF CONSTRUCTOR@0 @1 @2)
7250 (if (VECTOR_TYPE_P (TREE_TYPE (@0))
7251 && tree_fits_uhwi_p (TYPE_SIZE (type))
7252 && ((tree_to_uhwi (TYPE_SIZE (type))
7253 == tree_to_uhwi (TYPE_SIZE (TREE_TYPE (TREE_TYPE (@0)))))
7254 || (VECTOR_TYPE_P (type)
7255 && (tree_to_uhwi (TYPE_SIZE (TREE_TYPE (type)))
7256 == tree_to_uhwi (TYPE_SIZE (TREE_TYPE (TREE_TYPE (@0))))))))
7259 tree ctor = (TREE_CODE (@0) == SSA_NAME
7260 ? gimple_assign_rhs1 (SSA_NAME_DEF_STMT (@0)) : @0);
7261 tree eltype = TREE_TYPE (TREE_TYPE (ctor));
7262 unsigned HOST_WIDE_INT width = tree_to_uhwi (TYPE_SIZE (eltype));
7263 unsigned HOST_WIDE_INT n = tree_to_uhwi (@1);
7264 unsigned HOST_WIDE_INT idx = tree_to_uhwi (@2);
7267 && (idx % width) == 0
7269 && known_le ((idx + n) / width,
7270 TYPE_VECTOR_SUBPARTS (TREE_TYPE (ctor))))
7275 /* Constructor elements can be subvectors. */
7277 if (CONSTRUCTOR_NELTS (ctor) != 0)
7279 tree cons_elem = TREE_TYPE (CONSTRUCTOR_ELT (ctor, 0)->value);
7280 if (TREE_CODE (cons_elem) == VECTOR_TYPE)
7281 k = TYPE_VECTOR_SUBPARTS (cons_elem);
7283 unsigned HOST_WIDE_INT elt, count, const_k;
7286 /* We keep an exact subset of the constructor elements. */
7287 (if (multiple_p (idx, k, &elt) && multiple_p (n, k, &count))
7288 (if (CONSTRUCTOR_NELTS (ctor) == 0)
7289 { build_zero_cst (type); }
7291 (if (elt < CONSTRUCTOR_NELTS (ctor))
7292 (view_convert { CONSTRUCTOR_ELT (ctor, elt)->value; })
7293 { build_zero_cst (type); })
7294 /* We don't want to emit new CTORs unless the old one goes away.
7295 ??? Eventually allow this if the CTOR ends up constant or
7297 (if (single_use (@0))
7300 vec<constructor_elt, va_gc> *vals;
7301 vec_alloc (vals, count);
7302 bool constant_p = true;
7304 for (unsigned i = 0;
7305 i < count && elt + i < CONSTRUCTOR_NELTS (ctor); ++i)
7307 tree e = CONSTRUCTOR_ELT (ctor, elt + i)->value;
7308 CONSTRUCTOR_APPEND_ELT (vals, NULL_TREE, e);
7309 if (!CONSTANT_CLASS_P (e))
7312 tree evtype = (types_match (TREE_TYPE (type),
7313 TREE_TYPE (TREE_TYPE (ctor)))
7315 : build_vector_type (TREE_TYPE (TREE_TYPE (ctor)),
7317 res = (constant_p ? build_vector_from_ctor (evtype, vals)
7318 : build_constructor (evtype, vals));
7320 (view_convert { res; }))))))
7321 /* The bitfield references a single constructor element. */
7322 (if (k.is_constant (&const_k)
7323 && idx + n <= (idx / const_k + 1) * const_k)
7325 (if (CONSTRUCTOR_NELTS (ctor) <= idx / const_k)
7326 { build_zero_cst (type); })
7328 (view_convert { CONSTRUCTOR_ELT (ctor, idx / const_k)->value; }))
7329 (BIT_FIELD_REF { CONSTRUCTOR_ELT (ctor, idx / const_k)->value; }
7330 @1 { bitsize_int ((idx % const_k) * width); })))))))))
7332 /* Simplify a bit extraction from a bit insertion for the cases with
7333 the inserted element fully covering the extraction or the insertion
7334 not touching the extraction. */
7336 (BIT_FIELD_REF (bit_insert @0 @1 @ipos) @rsize @rpos)
7339 unsigned HOST_WIDE_INT isize;
7340 if (INTEGRAL_TYPE_P (TREE_TYPE (@1)))
7341 isize = TYPE_PRECISION (TREE_TYPE (@1));
7343 isize = tree_to_uhwi (TYPE_SIZE (TREE_TYPE (@1)));
7346 (if (wi::leu_p (wi::to_wide (@ipos), wi::to_wide (@rpos))
7347 && wi::leu_p (wi::to_wide (@rpos) + wi::to_wide (@rsize),
7348 wi::to_wide (@ipos) + isize))
7349 (BIT_FIELD_REF @1 @rsize { wide_int_to_tree (bitsizetype,
7351 - wi::to_wide (@ipos)); }))
7352 (if (wi::geu_p (wi::to_wide (@ipos),
7353 wi::to_wide (@rpos) + wi::to_wide (@rsize))
7354 || wi::geu_p (wi::to_wide (@rpos),
7355 wi::to_wide (@ipos) + isize))
7356 (BIT_FIELD_REF @0 @rsize @rpos)))))
7358 (if (canonicalize_math_after_vectorization_p ())
7361 (fmas:c (negate @0) @1 @2)
7362 (IFN_FNMA @0 @1 @2))
7364 (fmas @0 @1 (negate @2))
7367 (fmas:c (negate @0) @1 (negate @2))
7368 (IFN_FNMS @0 @1 @2))
7370 (negate (fmas@3 @0 @1 @2))
7371 (if (single_use (@3))
7372 (IFN_FNMS @0 @1 @2))))
7375 (IFN_FMS:c (negate @0) @1 @2)
7376 (IFN_FNMS @0 @1 @2))
7378 (IFN_FMS @0 @1 (negate @2))
7381 (IFN_FMS:c (negate @0) @1 (negate @2))
7382 (IFN_FNMA @0 @1 @2))
7384 (negate (IFN_FMS@3 @0 @1 @2))
7385 (if (single_use (@3))
7386 (IFN_FNMA @0 @1 @2)))
7389 (IFN_FNMA:c (negate @0) @1 @2)
7392 (IFN_FNMA @0 @1 (negate @2))
7393 (IFN_FNMS @0 @1 @2))
7395 (IFN_FNMA:c (negate @0) @1 (negate @2))
7398 (negate (IFN_FNMA@3 @0 @1 @2))
7399 (if (single_use (@3))
7400 (IFN_FMS @0 @1 @2)))
7403 (IFN_FNMS:c (negate @0) @1 @2)
7406 (IFN_FNMS @0 @1 (negate @2))
7407 (IFN_FNMA @0 @1 @2))
7409 (IFN_FNMS:c (negate @0) @1 (negate @2))
7412 (negate (IFN_FNMS@3 @0 @1 @2))
7413 (if (single_use (@3))
7414 (IFN_FMA @0 @1 @2))))
7416 /* CLZ simplifications. */
7421 (op (clz:s@2 @0) INTEGER_CST@1)
7422 (if (integer_zerop (@1) && single_use (@2))
7423 /* clz(X) == 0 is (int)X < 0 and clz(X) != 0 is (int)X >= 0. */
7424 (with { tree type0 = TREE_TYPE (@0);
7425 tree stype = signed_type_for (type0);
7426 HOST_WIDE_INT val = 0;
7427 /* Punt on hypothetical weird targets. */
7429 && CLZ_DEFINED_VALUE_AT_ZERO (SCALAR_TYPE_MODE (type0),
7435 (cmp (convert:stype @0) { build_zero_cst (stype); })))
7436 /* clz(X) == (prec-1) is X == 1 and clz(X) != (prec-1) is X != 1. */
7437 (with { bool ok = true;
7438 HOST_WIDE_INT val = 0;
7439 tree type0 = TREE_TYPE (@0);
7440 /* Punt on hypothetical weird targets. */
7442 && CLZ_DEFINED_VALUE_AT_ZERO (SCALAR_TYPE_MODE (type0),
7444 && val == TYPE_PRECISION (type0) - 1)
7447 (if (ok && wi::to_wide (@1) == (TYPE_PRECISION (type0) - 1))
7448 (op @0 { build_one_cst (type0); })))))))
7450 /* CTZ simplifications. */
7452 (for op (ge gt le lt)
7455 /* __builtin_ctz (x) >= C -> (x & ((1 << C) - 1)) == 0. */
7456 (op (ctz:s @0) INTEGER_CST@1)
7457 (with { bool ok = true;
7458 HOST_WIDE_INT val = 0;
7459 if (!tree_fits_shwi_p (@1))
7463 val = tree_to_shwi (@1);
7464 /* Canonicalize to >= or <. */
7465 if (op == GT_EXPR || op == LE_EXPR)
7467 if (val == HOST_WIDE_INT_MAX)
7473 bool zero_res = false;
7474 HOST_WIDE_INT zero_val = 0;
7475 tree type0 = TREE_TYPE (@0);
7476 int prec = TYPE_PRECISION (type0);
7478 && CTZ_DEFINED_VALUE_AT_ZERO (SCALAR_TYPE_MODE (type0),
7483 (if (ok && (!zero_res || zero_val >= val))
7484 { constant_boolean_node (cmp == EQ_EXPR ? true : false, type); })
7486 (if (ok && (!zero_res || zero_val < val))
7487 { constant_boolean_node (cmp == EQ_EXPR ? false : true, type); })
7488 (if (ok && (!zero_res || zero_val < 0 || zero_val >= prec))
7489 (cmp (bit_and @0 { wide_int_to_tree (type0,
7490 wi::mask (val, false, prec)); })
7491 { build_zero_cst (type0); })))))))
7494 /* __builtin_ctz (x) == C -> (x & ((1 << (C + 1)) - 1)) == (1 << C). */
7495 (op (ctz:s @0) INTEGER_CST@1)
7496 (with { bool zero_res = false;
7497 HOST_WIDE_INT zero_val = 0;
7498 tree type0 = TREE_TYPE (@0);
7499 int prec = TYPE_PRECISION (type0);
7501 && CTZ_DEFINED_VALUE_AT_ZERO (SCALAR_TYPE_MODE (type0),
7505 (if (tree_int_cst_sgn (@1) < 0 || wi::to_widest (@1) >= prec)
7506 (if (!zero_res || zero_val != wi::to_widest (@1))
7507 { constant_boolean_node (op == EQ_EXPR ? false : true, type); })
7508 (if (!zero_res || zero_val < 0 || zero_val >= prec)
7509 (op (bit_and @0 { wide_int_to_tree (type0,
7510 wi::mask (tree_to_uhwi (@1) + 1,
7512 { wide_int_to_tree (type0,
7513 wi::shifted_mask (tree_to_uhwi (@1), 1,
7514 false, prec)); })))))))
7516 /* POPCOUNT simplifications. */
7517 /* popcount(X) + popcount(Y) is popcount(X|Y) when X&Y must be zero. */
7519 (plus (POPCOUNT:s @0) (POPCOUNT:s @1))
7520 (if (wi::bit_and (tree_nonzero_bits (@0), tree_nonzero_bits (@1)) == 0)
7521 (POPCOUNT (bit_ior @0 @1))))
7523 /* popcount(X) == 0 is X == 0, and related (in)equalities. */
7524 (for popcount (POPCOUNT)
7525 (for cmp (le eq ne gt)
7528 (cmp (popcount @0) integer_zerop)
7529 (rep @0 { build_zero_cst (TREE_TYPE (@0)); }))))
7531 /* Canonicalize POPCOUNT(x)&1 as PARITY(X). */
7533 (bit_and (POPCOUNT @0) integer_onep)
7536 /* PARITY simplifications. */
7537 /* parity(~X) is parity(X). */
7539 (PARITY (bit_not @0))
7542 /* parity(X)^parity(Y) is parity(X^Y). */
7544 (bit_xor (PARITY:s @0) (PARITY:s @1))
7545 (PARITY (bit_xor @0 @1)))
7547 /* Common POPCOUNT/PARITY simplifications. */
7548 /* popcount(X&C1) is (X>>C2)&1 when C1 == 1<<C2. Same for parity(X&C1). */
7549 (for pfun (POPCOUNT PARITY)
7552 (with { wide_int nz = tree_nonzero_bits (@0); }
7556 (if (wi::popcount (nz) == 1)
7557 (with { tree utype = unsigned_type_for (TREE_TYPE (@0)); }
7558 (convert (rshift:utype (convert:utype @0)
7559 { build_int_cst (integer_type_node,
7560 wi::ctz (nz)); }))))))))
7563 /* 64- and 32-bits branchless implementations of popcount are detected:
7565 int popcount64c (uint64_t x)
7567 x -= (x >> 1) & 0x5555555555555555ULL;
7568 x = (x & 0x3333333333333333ULL) + ((x >> 2) & 0x3333333333333333ULL);
7569 x = (x + (x >> 4)) & 0x0f0f0f0f0f0f0f0fULL;
7570 return (x * 0x0101010101010101ULL) >> 56;
7573 int popcount32c (uint32_t x)
7575 x -= (x >> 1) & 0x55555555;
7576 x = (x & 0x33333333) + ((x >> 2) & 0x33333333);
7577 x = (x + (x >> 4)) & 0x0f0f0f0f;
7578 return (x * 0x01010101) >> 24;
7585 (rshift @8 INTEGER_CST@5)
7587 (bit_and @6 INTEGER_CST@7)
7591 (bit_and (rshift @0 INTEGER_CST@4) INTEGER_CST@11))
7597 /* Check constants and optab. */
7598 (with { unsigned prec = TYPE_PRECISION (type);
7599 int shift = (64 - prec) & 63;
7600 unsigned HOST_WIDE_INT c1
7601 = HOST_WIDE_INT_UC (0x0101010101010101) >> shift;
7602 unsigned HOST_WIDE_INT c2
7603 = HOST_WIDE_INT_UC (0x0F0F0F0F0F0F0F0F) >> shift;
7604 unsigned HOST_WIDE_INT c3
7605 = HOST_WIDE_INT_UC (0x3333333333333333) >> shift;
7606 unsigned HOST_WIDE_INT c4
7607 = HOST_WIDE_INT_UC (0x5555555555555555) >> shift;
7612 && TYPE_UNSIGNED (type)
7613 && integer_onep (@4)
7614 && wi::to_widest (@10) == 2
7615 && wi::to_widest (@5) == 4
7616 && wi::to_widest (@1) == prec - 8
7617 && tree_to_uhwi (@2) == c1
7618 && tree_to_uhwi (@3) == c2
7619 && tree_to_uhwi (@9) == c3
7620 && tree_to_uhwi (@7) == c3
7621 && tree_to_uhwi (@11) == c4)
7622 (if (direct_internal_fn_supported_p (IFN_POPCOUNT, type,
7624 (convert (IFN_POPCOUNT:type @0))
7625 /* Try to do popcount in two halves. PREC must be at least
7626 five bits for this to work without extension before adding. */
7628 tree half_type = NULL_TREE;
7629 opt_machine_mode m = mode_for_size ((prec + 1) / 2, MODE_INT, 1);
7632 && m.require () != TYPE_MODE (type))
7634 half_prec = GET_MODE_PRECISION (as_a <scalar_int_mode> (m));
7635 half_type = build_nonstandard_integer_type (half_prec, 1);
7637 gcc_assert (half_prec > 2);
7639 (if (half_type != NULL_TREE
7640 && direct_internal_fn_supported_p (IFN_POPCOUNT, half_type,
7643 (IFN_POPCOUNT:half_type (convert @0))
7644 (IFN_POPCOUNT:half_type (convert (rshift @0
7645 { build_int_cst (integer_type_node, half_prec); } )))))))))))
7647 /* __builtin_ffs needs to deal on many targets with the possible zero
7648 argument. If we know the argument is always non-zero, __builtin_ctz + 1
7649 should lead to better code. */
7651 (FFS tree_expr_nonzero_p@0)
7652 (if (INTEGRAL_TYPE_P (TREE_TYPE (@0))
7653 && direct_internal_fn_supported_p (IFN_CTZ, TREE_TYPE (@0),
7654 OPTIMIZE_FOR_SPEED))
7655 (with { tree utype = unsigned_type_for (TREE_TYPE (@0)); }
7656 (plus (CTZ:type (convert:utype @0)) { build_one_cst (type); }))))
7659 (for ffs (BUILT_IN_FFS BUILT_IN_FFSL BUILT_IN_FFSLL
7661 /* __builtin_ffs (X) == 0 -> X == 0.
7662 __builtin_ffs (X) == 6 -> (X & 63) == 32. */
7665 (cmp (ffs@2 @0) INTEGER_CST@1)
7666 (with { int prec = TYPE_PRECISION (TREE_TYPE (@0)); }
7668 (if (integer_zerop (@1))
7669 (cmp @0 { build_zero_cst (TREE_TYPE (@0)); }))
7670 (if (tree_int_cst_sgn (@1) < 0 || wi::to_widest (@1) > prec)
7671 { constant_boolean_node (cmp == NE_EXPR ? true : false, type); })
7672 (if (single_use (@2))
7673 (cmp (bit_and @0 { wide_int_to_tree (TREE_TYPE (@0),
7674 wi::mask (tree_to_uhwi (@1),
7676 { wide_int_to_tree (TREE_TYPE (@0),
7677 wi::shifted_mask (tree_to_uhwi (@1) - 1, 1,
7678 false, prec)); }))))))
7680 /* __builtin_ffs (X) > 6 -> X != 0 && (X & 63) == 0. */
7684 bit_op (bit_and bit_ior)
7686 (cmp (ffs@2 @0) INTEGER_CST@1)
7687 (with { int prec = TYPE_PRECISION (TREE_TYPE (@0)); }
7689 (if (integer_zerop (@1))
7690 (cmp2 @0 { build_zero_cst (TREE_TYPE (@0)); }))
7691 (if (tree_int_cst_sgn (@1) < 0)
7692 { constant_boolean_node (cmp == GT_EXPR ? true : false, type); })
7693 (if (wi::to_widest (@1) >= prec)
7694 { constant_boolean_node (cmp == GT_EXPR ? false : true, type); })
7695 (if (wi::to_widest (@1) == prec - 1)
7696 (cmp3 @0 { wide_int_to_tree (TREE_TYPE (@0),
7697 wi::shifted_mask (prec - 1, 1,
7699 (if (single_use (@2))
7700 (bit_op (cmp2 @0 { build_zero_cst (TREE_TYPE (@0)); })
7702 { wide_int_to_tree (TREE_TYPE (@0),
7703 wi::mask (tree_to_uhwi (@1),
7705 { build_zero_cst (TREE_TYPE (@0)); }))))))))
7712 --> r = .COND_FN (cond, a, b)
7716 --> r = .COND_FN (~cond, b, a). */
7718 (for uncond_op (UNCOND_UNARY)
7719 cond_op (COND_UNARY)
7721 (vec_cond @0 (view_convert? (uncond_op@3 @1)) @2)
7722 (with { tree op_type = TREE_TYPE (@3); }
7723 (if (vectorized_internal_fn_supported_p (as_internal_fn (cond_op), op_type)
7724 && is_truth_type_for (op_type, TREE_TYPE (@0)))
7725 (cond_op @0 @1 @2))))
7727 (vec_cond @0 @1 (view_convert? (uncond_op@3 @2)))
7728 (with { tree op_type = TREE_TYPE (@3); }
7729 (if (vectorized_internal_fn_supported_p (as_internal_fn (cond_op), op_type)
7730 && is_truth_type_for (op_type, TREE_TYPE (@0)))
7731 (cond_op (bit_not @0) @2 @1)))))
7740 r = c ? a1 op a2 : b;
7742 if the target can do it in one go. This makes the operation conditional
7743 on c, so could drop potentially-trapping arithmetic, but that's a valid
7744 simplification if the result of the operation isn't needed.
7746 Avoid speculatively generating a stand-alone vector comparison
7747 on targets that might not support them. Any target implementing
7748 conditional internal functions must support the same comparisons
7749 inside and outside a VEC_COND_EXPR. */
7751 (for uncond_op (UNCOND_BINARY)
7752 cond_op (COND_BINARY)
7754 (vec_cond @0 (view_convert? (uncond_op@4 @1 @2)) @3)
7755 (with { tree op_type = TREE_TYPE (@4); }
7756 (if (vectorized_internal_fn_supported_p (as_internal_fn (cond_op), op_type)
7757 && is_truth_type_for (op_type, TREE_TYPE (@0))
7759 (view_convert (cond_op @0 @1 @2 (view_convert:op_type @3))))))
7761 (vec_cond @0 @1 (view_convert? (uncond_op@4 @2 @3)))
7762 (with { tree op_type = TREE_TYPE (@4); }
7763 (if (vectorized_internal_fn_supported_p (as_internal_fn (cond_op), op_type)
7764 && is_truth_type_for (op_type, TREE_TYPE (@0))
7766 (view_convert (cond_op (bit_not @0) @2 @3 (view_convert:op_type @1)))))))
7768 /* Same for ternary operations. */
7769 (for uncond_op (UNCOND_TERNARY)
7770 cond_op (COND_TERNARY)
7772 (vec_cond @0 (view_convert? (uncond_op@5 @1 @2 @3)) @4)
7773 (with { tree op_type = TREE_TYPE (@5); }
7774 (if (vectorized_internal_fn_supported_p (as_internal_fn (cond_op), op_type)
7775 && is_truth_type_for (op_type, TREE_TYPE (@0))
7777 (view_convert (cond_op @0 @1 @2 @3 (view_convert:op_type @4))))))
7779 (vec_cond @0 @1 (view_convert? (uncond_op@5 @2 @3 @4)))
7780 (with { tree op_type = TREE_TYPE (@5); }
7781 (if (vectorized_internal_fn_supported_p (as_internal_fn (cond_op), op_type)
7782 && is_truth_type_for (op_type, TREE_TYPE (@0))
7784 (view_convert (cond_op (bit_not @0) @2 @3 @4
7785 (view_convert:op_type @1)))))))
7788 /* Detect cases in which a VEC_COND_EXPR effectively replaces the
7789 "else" value of an IFN_COND_*. */
7790 (for cond_op (COND_BINARY)
7792 (vec_cond @0 (view_convert? (cond_op @0 @1 @2 @3)) @4)
7793 (with { tree op_type = TREE_TYPE (@3); }
7794 (if (element_precision (type) == element_precision (op_type))
7795 (view_convert (cond_op @0 @1 @2 (view_convert:op_type @4))))))
7797 (vec_cond @0 @1 (view_convert? (cond_op @2 @3 @4 @5)))
7798 (with { tree op_type = TREE_TYPE (@5); }
7799 (if (inverse_conditions_p (@0, @2)
7800 && element_precision (type) == element_precision (op_type))
7801 (view_convert (cond_op @2 @3 @4 (view_convert:op_type @1)))))))
7803 /* Same for ternary operations. */
7804 (for cond_op (COND_TERNARY)
7806 (vec_cond @0 (view_convert? (cond_op @0 @1 @2 @3 @4)) @5)
7807 (with { tree op_type = TREE_TYPE (@4); }
7808 (if (element_precision (type) == element_precision (op_type))
7809 (view_convert (cond_op @0 @1 @2 @3 (view_convert:op_type @5))))))
7811 (vec_cond @0 @1 (view_convert? (cond_op @2 @3 @4 @5 @6)))
7812 (with { tree op_type = TREE_TYPE (@6); }
7813 (if (inverse_conditions_p (@0, @2)
7814 && element_precision (type) == element_precision (op_type))
7815 (view_convert (cond_op @2 @3 @4 @5 (view_convert:op_type @1)))))))
7817 /* Detect simplication for a conditional reduction where
7820 c = mask2 ? d + a : d
7824 c = mask1 && mask2 ? d + b : d. */
7826 (IFN_COND_ADD @0 @1 (vec_cond @2 @3 integer_zerop) @1)
7827 (IFN_COND_ADD (bit_and @0 @2) @1 @3 @1))
7829 /* For pointers @0 and @2 and nonnegative constant offset @1, look for
7832 A: (@0 + @1 < @2) | (@2 + @1 < @0)
7833 B: (@0 + @1 <= @2) | (@2 + @1 <= @0)
7835 If pointers are known not to wrap, B checks whether @1 bytes starting
7836 at @0 and @2 do not overlap, while A tests the same thing for @1 + 1
7837 bytes. A is more efficiently tested as:
7839 A: (sizetype) (@0 + @1 - @2) > @1 * 2
7841 The equivalent expression for B is given by replacing @1 with @1 - 1:
7843 B: (sizetype) (@0 + (@1 - 1) - @2) > (@1 - 1) * 2
7845 @0 and @2 can be swapped in both expressions without changing the result.
7847 The folds rely on sizetype's being unsigned (which is always true)
7848 and on its being the same width as the pointer (which we have to check).
7850 The fold replaces two pointer_plus expressions, two comparisons and
7851 an IOR with a pointer_plus, a pointer_diff, and a comparison, so in
7852 the best case it's a saving of two operations. The A fold retains one
7853 of the original pointer_pluses, so is a win even if both pointer_pluses
7854 are used elsewhere. The B fold is a wash if both pointer_pluses are
7855 used elsewhere, since all we end up doing is replacing a comparison with
7856 a pointer_plus. We do still apply the fold under those circumstances
7857 though, in case applying it to other conditions eventually makes one of the
7858 pointer_pluses dead. */
7859 (for ior (truth_orif truth_or bit_ior)
7862 (ior (cmp:cs (pointer_plus@3 @0 INTEGER_CST@1) @2)
7863 (cmp:cs (pointer_plus@4 @2 @1) @0))
7864 (if (TYPE_OVERFLOW_UNDEFINED (TREE_TYPE (@0))
7865 && TYPE_OVERFLOW_WRAPS (sizetype)
7866 && TYPE_PRECISION (TREE_TYPE (@0)) == TYPE_PRECISION (sizetype))
7867 /* Calculate the rhs constant. */
7868 (with { offset_int off = wi::to_offset (@1) - (cmp == LE_EXPR ? 1 : 0);
7869 offset_int rhs = off * 2; }
7870 /* Always fails for negative values. */
7871 (if (wi::min_precision (rhs, UNSIGNED) <= TYPE_PRECISION (sizetype))
7872 /* Since the order of @0 and @2 doesn't matter, let tree_swap_operands_p
7873 pick a canonical order. This increases the chances of using the
7874 same pointer_plus in multiple checks. */
7875 (with { bool swap_p = tree_swap_operands_p (@0, @2);
7876 tree rhs_tree = wide_int_to_tree (sizetype, rhs); }
7877 (if (cmp == LT_EXPR)
7878 (gt (convert:sizetype
7879 (pointer_diff:ssizetype { swap_p ? @4 : @3; }
7880 { swap_p ? @0 : @2; }))
7882 (gt (convert:sizetype
7883 (pointer_diff:ssizetype
7884 (pointer_plus { swap_p ? @2 : @0; }
7885 { wide_int_to_tree (sizetype, off); })
7886 { swap_p ? @0 : @2; }))
7887 { rhs_tree; })))))))))
7889 /* Fold REDUC (@0 & @1) -> @0[I] & @1[I] if element I is the only nonzero
7891 (for reduc (IFN_REDUC_PLUS IFN_REDUC_IOR IFN_REDUC_XOR)
7892 (simplify (reduc (view_convert? (bit_and @0 VECTOR_CST@1)))
7893 (with { int i = single_nonzero_element (@1); }
7895 (with { tree elt = vector_cst_elt (@1, i);
7896 tree elt_type = TREE_TYPE (elt);
7897 unsigned int elt_bits = tree_to_uhwi (TYPE_SIZE (elt_type));
7898 tree size = bitsize_int (elt_bits);
7899 tree pos = bitsize_int (elt_bits * i); }
7902 (BIT_FIELD_REF:elt_type @0 { size; } { pos; })
7905 /* Fold reduction of a single nonzero element constructor. */
7906 (for reduc (IFN_REDUC_PLUS IFN_REDUC_IOR IFN_REDUC_XOR)
7907 (simplify (reduc (CONSTRUCTOR@0))
7908 (with { tree ctor = (TREE_CODE (@0) == SSA_NAME
7909 ? gimple_assign_rhs1 (SSA_NAME_DEF_STMT (@0)) : @0);
7910 tree elt = ctor_single_nonzero_element (ctor); }
7912 && !HONOR_SNANS (type)
7913 && !HONOR_SIGNED_ZEROS (type))
7916 /* Fold REDUC (@0 op VECTOR_CST) as REDUC (@0) op REDUC (VECTOR_CST). */
7917 (for reduc (IFN_REDUC_PLUS IFN_REDUC_MAX IFN_REDUC_MIN IFN_REDUC_FMAX
7918 IFN_REDUC_FMIN IFN_REDUC_AND IFN_REDUC_IOR IFN_REDUC_XOR)
7919 op (plus max min IFN_FMAX IFN_FMIN bit_and bit_ior bit_xor)
7920 (simplify (reduc (op @0 VECTOR_CST@1))
7921 (op (reduc:type @0) (reduc:type @1))))
7924 (vec_perm @0 @1 VECTOR_CST@2)
7927 tree op0 = @0, op1 = @1, op2 = @2;
7928 machine_mode result_mode = TYPE_MODE (type);
7929 machine_mode op_mode = TYPE_MODE (TREE_TYPE (op0));
7931 /* Build a vector of integers from the tree mask. */
7932 vec_perm_builder builder;
7933 if (!tree_to_vec_perm_builder (&builder, op2))
7936 /* Create a vec_perm_indices for the integer vector. */
7937 poly_uint64 nelts = TYPE_VECTOR_SUBPARTS (type);
7938 bool single_arg = (op0 == op1);
7939 vec_perm_indices sel (builder, single_arg ? 1 : 2, nelts);
7941 (if (sel.series_p (0, 1, 0, 1))
7943 (if (sel.series_p (0, 1, nelts, 1))
7949 if (sel.all_from_input_p (0))
7951 else if (sel.all_from_input_p (1))
7954 sel.rotate_inputs (1);
7956 else if (known_ge (poly_uint64 (sel[0]), nelts))
7958 std::swap (op0, op1);
7959 sel.rotate_inputs (1);
7963 tree cop0 = op0, cop1 = op1;
7964 if (TREE_CODE (op0) == SSA_NAME
7965 && (def = dyn_cast <gassign *> (SSA_NAME_DEF_STMT (op0)))
7966 && gimple_assign_rhs_code (def) == CONSTRUCTOR)
7967 cop0 = gimple_assign_rhs1 (def);
7968 if (TREE_CODE (op1) == SSA_NAME
7969 && (def = dyn_cast <gassign *> (SSA_NAME_DEF_STMT (op1)))
7970 && gimple_assign_rhs_code (def) == CONSTRUCTOR)
7971 cop1 = gimple_assign_rhs1 (def);
7975 (if ((TREE_CODE (cop0) == VECTOR_CST
7976 || TREE_CODE (cop0) == CONSTRUCTOR)
7977 && (TREE_CODE (cop1) == VECTOR_CST
7978 || TREE_CODE (cop1) == CONSTRUCTOR)
7979 && (t = fold_vec_perm (type, cop0, cop1, sel)))
7983 bool changed = (op0 == op1 && !single_arg);
7984 tree ins = NULL_TREE;
7987 /* See if the permutation is performing a single element
7988 insert from a CONSTRUCTOR or constant and use a BIT_INSERT_EXPR
7989 in that case. But only if the vector mode is supported,
7990 otherwise this is invalid GIMPLE. */
7991 if (op_mode != BLKmode
7992 && (TREE_CODE (cop0) == VECTOR_CST
7993 || TREE_CODE (cop0) == CONSTRUCTOR
7994 || TREE_CODE (cop1) == VECTOR_CST
7995 || TREE_CODE (cop1) == CONSTRUCTOR))
7997 bool insert_first_p = sel.series_p (1, 1, nelts + 1, 1);
8000 /* After canonicalizing the first elt to come from the
8001 first vector we only can insert the first elt from
8002 the first vector. */
8004 if ((ins = fold_read_from_vector (cop0, sel[0])))
8007 /* The above can fail for two-element vectors which always
8008 appear to insert the first element, so try inserting
8009 into the second lane as well. For more than two
8010 elements that's wasted time. */
8011 if (!insert_first_p || (!ins && maybe_eq (nelts, 2u)))
8013 unsigned int encoded_nelts = sel.encoding ().encoded_nelts ();
8014 for (at = 0; at < encoded_nelts; ++at)
8015 if (maybe_ne (sel[at], at))
8017 if (at < encoded_nelts
8018 && (known_eq (at + 1, nelts)
8019 || sel.series_p (at + 1, 1, at + 1, 1)))
8021 if (known_lt (poly_uint64 (sel[at]), nelts))
8022 ins = fold_read_from_vector (cop0, sel[at]);
8024 ins = fold_read_from_vector (cop1, sel[at] - nelts);
8029 /* Generate a canonical form of the selector. */
8030 if (!ins && sel.encoding () != builder)
8032 /* Some targets are deficient and fail to expand a single
8033 argument permutation while still allowing an equivalent
8034 2-argument version. */
8036 if (sel.ninputs () == 2
8037 || can_vec_perm_const_p (result_mode, op_mode, sel, false))
8038 op2 = vec_perm_indices_to_tree (TREE_TYPE (op2), sel);
8041 vec_perm_indices sel2 (builder, 2, nelts);
8042 if (can_vec_perm_const_p (result_mode, op_mode, sel2, false))
8043 op2 = vec_perm_indices_to_tree (TREE_TYPE (op2), sel2);
8045 /* Not directly supported with either encoding,
8046 so use the preferred form. */
8047 op2 = vec_perm_indices_to_tree (TREE_TYPE (op2), sel);
8049 if (!operand_equal_p (op2, oldop2, 0))
8054 (bit_insert { op0; } { ins; }
8055 { bitsize_int (at * vector_element_bits (type)); })
8057 (vec_perm { op0; } { op1; } { op2; }))))))))))
8059 /* VEC_PERM_EXPR (v, v, mask) -> v where v contains same element. */
8061 (match vec_same_elem_p
8064 (match vec_same_elem_p
8066 (if (TREE_CODE (@0) == SSA_NAME
8067 && uniform_vector_p (gimple_assign_rhs1 (SSA_NAME_DEF_STMT (@0))))))
8069 (match vec_same_elem_p
8071 (if (uniform_vector_p (@0))))
8075 (vec_perm vec_same_elem_p@0 @0 @1)
8078 /* Push VEC_PERM earlier if that may help FMA perception (PR101895). */
8080 (plus:c (vec_perm:s (mult:c@0 @1 vec_same_elem_p@2) @0 @3) @4)
8081 (if (TREE_CODE (@0) == SSA_NAME && num_imm_uses (@0) == 2)
8082 (plus (mult (vec_perm @1 @1 @3) @2) @4)))
8084 (minus (vec_perm:s (mult:c@0 @1 vec_same_elem_p@2) @0 @3) @4)
8085 (if (TREE_CODE (@0) == SSA_NAME && num_imm_uses (@0) == 2)
8086 (minus (mult (vec_perm @1 @1 @3) @2) @4)))
8089 /* Match count trailing zeroes for simplify_count_trailing_zeroes in fwprop.
8090 The canonical form is array[((x & -x) * C) >> SHIFT] where C is a magic
8091 constant which when multiplied by a power of 2 contains a unique value
8092 in the top 5 or 6 bits. This is then indexed into a table which maps it
8093 to the number of trailing zeroes. */
8094 (match (ctz_table_index @1 @2 @3)
8095 (rshift (mult (bit_and:c (negate @1) @1) INTEGER_CST@2) INTEGER_CST@3))
8097 (match (cond_expr_convert_p @0 @2 @3 @6)
8098 (cond (simple_comparison@6 @0 @1) (convert@4 @2) (convert@5 @3))
8099 (if (INTEGRAL_TYPE_P (type)
8100 && INTEGRAL_TYPE_P (TREE_TYPE (@2))
8101 && INTEGRAL_TYPE_P (TREE_TYPE (@0))
8102 && INTEGRAL_TYPE_P (TREE_TYPE (@3))
8103 && TYPE_PRECISION (type) != TYPE_PRECISION (TREE_TYPE (@0))
8104 && TYPE_PRECISION (TREE_TYPE (@0))
8105 == TYPE_PRECISION (TREE_TYPE (@2))
8106 && TYPE_PRECISION (TREE_TYPE (@0))
8107 == TYPE_PRECISION (TREE_TYPE (@3))
8108 /* For vect_recog_cond_expr_convert_pattern, @2 and @3 can differ in
8109 signess when convert is truncation, but not ok for extension since
8110 it's sign_extend vs zero_extend. */
8111 && (TYPE_PRECISION (TREE_TYPE (@0)) > TYPE_PRECISION (type)
8112 || (TYPE_UNSIGNED (TREE_TYPE (@2))
8113 == TYPE_UNSIGNED (TREE_TYPE (@3))))
8115 && single_use (@5))))
8117 (for bit_op (bit_and bit_ior bit_xor)
8118 (match (bitwise_induction_p @0 @2 @3)
8120 (nop_convert1? (bit_not2?@0 (convert3? (lshift integer_onep@1 @2))))
8123 (match (bitwise_induction_p @0 @2 @3)
8125 (nop_convert1? (bit_xor@0 (convert2? (lshift integer_onep@1 @2)) @3))))
8127 /* n - (((n > C1) ? n : C1) & -C2) -> n & C1 for unsigned case.
8128 n - (((n > C1) ? n : C1) & -C2) -> (n <= C1) ? n : (n & C1) for signed case. */
8130 (minus @0 (bit_and (max @0 INTEGER_CST@1) INTEGER_CST@2))
8131 (with { auto i = wi::neg (wi::to_wide (@2)); }
8132 /* Check if -C2 is a power of 2 and C1 = -C2 - 1. */
8133 (if (wi::popcount (i) == 1
8134 && (wi::to_wide (@1)) == (i - 1))
8135 (if (TYPE_UNSIGNED (TREE_TYPE (@0)))
8137 (cond (le @0 @1) @0 (bit_and @0 @1))))))
8139 /* -x & 1 -> x & 1. */
8141 (bit_and (negate @0) integer_onep@1)