compiler: only build thunk struct type when it is needed
[official-gcc.git] / gcc / ira-int.h
blobf42a314fa7f4f4bc75ecbdcaa0118179cb989f18
1 /* Integrated Register Allocator (IRA) intercommunication header file.
2 Copyright (C) 2006-2022 Free Software Foundation, Inc.
3 Contributed by Vladimir Makarov <vmakarov@redhat.com>.
5 This file is part of GCC.
7 GCC is free software; you can redistribute it and/or modify it under
8 the terms of the GNU General Public License as published by the Free
9 Software Foundation; either version 3, or (at your option) any later
10 version.
12 GCC is distributed in the hope that it will be useful, but WITHOUT ANY
13 WARRANTY; without even the implied warranty of MERCHANTABILITY or
14 FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License
15 for more details.
17 You should have received a copy of the GNU General Public License
18 along with GCC; see the file COPYING3. If not see
19 <http://www.gnu.org/licenses/>. */
21 #ifndef GCC_IRA_INT_H
22 #define GCC_IRA_INT_H
24 #include "recog.h"
25 #include "function-abi.h"
27 /* To provide consistency in naming, all IRA external variables,
28 functions, common typedefs start with prefix ira_. */
30 #if CHECKING_P
31 #define ENABLE_IRA_CHECKING
32 #endif
34 #ifdef ENABLE_IRA_CHECKING
35 #define ira_assert(c) gcc_assert (c)
36 #else
37 /* Always define and include C, so that warnings for empty body in an
38 'if' statement and unused variable do not occur. */
39 #define ira_assert(c) ((void)(0 && (c)))
40 #endif
42 /* Compute register frequency from edge frequency FREQ. It is
43 analogous to REG_FREQ_FROM_BB. When optimizing for size, or
44 profile driven feedback is available and the function is never
45 executed, frequency is always equivalent. Otherwise rescale the
46 edge frequency. */
47 #define REG_FREQ_FROM_EDGE_FREQ(freq) \
48 (optimize_function_for_size_p (cfun) \
49 ? REG_FREQ_MAX : (freq * REG_FREQ_MAX / BB_FREQ_MAX) \
50 ? (freq * REG_FREQ_MAX / BB_FREQ_MAX) : 1)
52 /* A modified value of flag `-fira-verbose' used internally. */
53 extern int internal_flag_ira_verbose;
55 /* Dump file of the allocator if it is not NULL. */
56 extern FILE *ira_dump_file;
58 /* Typedefs for pointers to allocno live range, allocno, and copy of
59 allocnos. */
60 typedef struct live_range *live_range_t;
61 typedef struct ira_allocno *ira_allocno_t;
62 typedef struct ira_allocno_pref *ira_pref_t;
63 typedef struct ira_allocno_copy *ira_copy_t;
64 typedef struct ira_object *ira_object_t;
66 /* Definition of vector of allocnos and copies. */
68 /* Typedef for pointer to the subsequent structure. */
69 typedef struct ira_loop_tree_node *ira_loop_tree_node_t;
71 typedef unsigned short move_table[N_REG_CLASSES];
73 /* In general case, IRA is a regional allocator. The regions are
74 nested and form a tree. Currently regions are natural loops. The
75 following structure describes loop tree node (representing basic
76 block or loop). We need such tree because the loop tree from
77 cfgloop.h is not convenient for the optimization: basic blocks are
78 not a part of the tree from cfgloop.h. We also use the nodes for
79 storing additional information about basic blocks/loops for the
80 register allocation purposes. */
81 struct ira_loop_tree_node
83 /* The node represents basic block if children == NULL. */
84 basic_block bb; /* NULL for loop. */
85 /* NULL for BB or for loop tree root if we did not build CFG loop tree. */
86 class loop *loop;
87 /* NEXT/SUBLOOP_NEXT is the next node/loop-node of the same parent.
88 SUBLOOP_NEXT is always NULL for BBs. */
89 ira_loop_tree_node_t subloop_next, next;
90 /* CHILDREN/SUBLOOPS is the first node/loop-node immediately inside
91 the node. They are NULL for BBs. */
92 ira_loop_tree_node_t subloops, children;
93 /* The node immediately containing given node. */
94 ira_loop_tree_node_t parent;
96 /* Loop level in range [0, ira_loop_tree_height). */
97 int level;
99 /* All the following members are defined only for nodes representing
100 loops. */
102 /* The loop number from CFG loop tree. The root number is 0. */
103 int loop_num;
105 /* True if the loop was marked for removal from the register
106 allocation. */
107 bool to_remove_p;
109 /* Allocnos in the loop corresponding to their regnos. If it is
110 NULL the loop does not form a separate register allocation region
111 (e.g. because it has abnormal enter/exit edges and we cannot put
112 code for register shuffling on the edges if a different
113 allocation is used for a pseudo-register on different sides of
114 the edges). Caps are not in the map (remember we can have more
115 one cap with the same regno in a region). */
116 ira_allocno_t *regno_allocno_map;
118 /* True if there is an entry to given loop not from its parent (or
119 grandparent) basic block. For example, it is possible for two
120 adjacent loops inside another loop. */
121 bool entered_from_non_parent_p;
123 /* Maximal register pressure inside loop for given register class
124 (defined only for the pressure classes). */
125 int reg_pressure[N_REG_CLASSES];
127 /* Numbers of allocnos referred or living in the loop node (except
128 for its subloops). */
129 bitmap all_allocnos;
131 /* Numbers of allocnos living at the loop borders. */
132 bitmap border_allocnos;
134 /* Regnos of pseudos modified in the loop node (including its
135 subloops). */
136 bitmap modified_regnos;
138 /* Numbers of copies referred in the corresponding loop. */
139 bitmap local_copies;
142 /* The root of the loop tree corresponding to the all function. */
143 extern ira_loop_tree_node_t ira_loop_tree_root;
145 /* Height of the loop tree. */
146 extern int ira_loop_tree_height;
148 /* All nodes representing basic blocks are referred through the
149 following array. We cannot use basic block member `aux' for this
150 because it is used for insertion of insns on edges. */
151 extern ira_loop_tree_node_t ira_bb_nodes;
153 /* Two access macros to the nodes representing basic blocks. */
154 #if defined ENABLE_IRA_CHECKING && (GCC_VERSION >= 2007)
155 #define IRA_BB_NODE_BY_INDEX(index) __extension__ \
156 (({ ira_loop_tree_node_t _node = (&ira_bb_nodes[index]); \
157 if (_node->children != NULL || _node->loop != NULL || _node->bb == NULL)\
159 fprintf (stderr, \
160 "\n%s: %d: error in %s: it is not a block node\n", \
161 __FILE__, __LINE__, __FUNCTION__); \
162 gcc_unreachable (); \
164 _node; }))
165 #else
166 #define IRA_BB_NODE_BY_INDEX(index) (&ira_bb_nodes[index])
167 #endif
169 #define IRA_BB_NODE(bb) IRA_BB_NODE_BY_INDEX ((bb)->index)
171 /* All nodes representing loops are referred through the following
172 array. */
173 extern ira_loop_tree_node_t ira_loop_nodes;
175 /* Two access macros to the nodes representing loops. */
176 #if defined ENABLE_IRA_CHECKING && (GCC_VERSION >= 2007)
177 #define IRA_LOOP_NODE_BY_INDEX(index) __extension__ \
178 (({ ira_loop_tree_node_t const _node = (&ira_loop_nodes[index]); \
179 if (_node->children == NULL || _node->bb != NULL \
180 || (_node->loop == NULL && current_loops != NULL)) \
182 fprintf (stderr, \
183 "\n%s: %d: error in %s: it is not a loop node\n", \
184 __FILE__, __LINE__, __FUNCTION__); \
185 gcc_unreachable (); \
187 _node; }))
188 #else
189 #define IRA_LOOP_NODE_BY_INDEX(index) (&ira_loop_nodes[index])
190 #endif
192 #define IRA_LOOP_NODE(loop) IRA_LOOP_NODE_BY_INDEX ((loop)->num)
195 /* The structure describes program points where a given allocno lives.
196 If the live ranges of two allocnos are intersected, the allocnos
197 are in conflict. */
198 struct live_range
200 /* Object whose live range is described by given structure. */
201 ira_object_t object;
202 /* Program point range. */
203 int start, finish;
204 /* Next structure describing program points where the allocno
205 lives. */
206 live_range_t next;
207 /* Pointer to structures with the same start/finish. */
208 live_range_t start_next, finish_next;
211 /* Program points are enumerated by numbers from range
212 0..IRA_MAX_POINT-1. There are approximately two times more program
213 points than insns. Program points are places in the program where
214 liveness info can be changed. In most general case (there are more
215 complicated cases too) some program points correspond to places
216 where input operand dies and other ones correspond to places where
217 output operands are born. */
218 extern int ira_max_point;
220 /* Arrays of size IRA_MAX_POINT mapping a program point to the allocno
221 live ranges with given start/finish point. */
222 extern live_range_t *ira_start_point_ranges, *ira_finish_point_ranges;
224 /* A structure representing conflict information for an allocno
225 (or one of its subwords). */
226 struct ira_object
228 /* The allocno associated with this record. */
229 ira_allocno_t allocno;
230 /* Vector of accumulated conflicting conflict_redords with NULL end
231 marker (if OBJECT_CONFLICT_VEC_P is true) or conflict bit vector
232 otherwise. */
233 void *conflicts_array;
234 /* Pointer to structures describing at what program point the
235 object lives. We always maintain the list in such way that *the
236 ranges in the list are not intersected and ordered by decreasing
237 their program points*. */
238 live_range_t live_ranges;
239 /* The subword within ALLOCNO which is represented by this object.
240 Zero means the lowest-order subword (or the entire allocno in case
241 it is not being tracked in subwords). */
242 int subword;
243 /* Allocated size of the conflicts array. */
244 unsigned int conflicts_array_size;
245 /* A unique number for every instance of this structure, which is used
246 to represent it in conflict bit vectors. */
247 int id;
248 /* Before building conflicts, MIN and MAX are initialized to
249 correspondingly minimal and maximal points of the accumulated
250 live ranges. Afterwards, they hold the minimal and maximal ids
251 of other ira_objects that this one can conflict with. */
252 int min, max;
253 /* Initial and accumulated hard registers conflicting with this
254 object and as a consequences cannot be assigned to the allocno.
255 All non-allocatable hard regs and hard regs of register classes
256 different from given allocno one are included in the sets. */
257 HARD_REG_SET conflict_hard_regs, total_conflict_hard_regs;
258 /* Number of accumulated conflicts in the vector of conflicting
259 objects. */
260 int num_accumulated_conflicts;
261 /* TRUE if conflicts are represented by a vector of pointers to
262 ira_object structures. Otherwise, we use a bit vector indexed
263 by conflict ID numbers. */
264 unsigned int conflict_vec_p : 1;
267 /* A structure representing an allocno (allocation entity). Allocno
268 represents a pseudo-register in an allocation region. If
269 pseudo-register does not live in a region but it lives in the
270 nested regions, it is represented in the region by special allocno
271 called *cap*. There may be more one cap representing the same
272 pseudo-register in region. It means that the corresponding
273 pseudo-register lives in more one non-intersected subregion. */
274 struct ira_allocno
276 /* The allocno order number starting with 0. Each allocno has an
277 unique number and the number is never changed for the
278 allocno. */
279 int num;
280 /* Regno for allocno or cap. */
281 int regno;
282 /* Mode of the allocno which is the mode of the corresponding
283 pseudo-register. */
284 ENUM_BITFIELD (machine_mode) mode : 8;
285 /* Widest mode of the allocno which in at least one case could be
286 for paradoxical subregs where wmode > mode. */
287 ENUM_BITFIELD (machine_mode) wmode : 8;
288 /* Register class which should be used for allocation for given
289 allocno. NO_REGS means that we should use memory. */
290 ENUM_BITFIELD (reg_class) aclass : 16;
291 /* A bitmask of the ABIs used by calls that occur while the allocno
292 is live. */
293 unsigned int crossed_calls_abis : NUM_ABI_IDS;
294 /* During the reload, value TRUE means that we should not reassign a
295 hard register to the allocno got memory earlier. It is set up
296 when we removed memory-memory move insn before each iteration of
297 the reload. */
298 unsigned int dont_reassign_p : 1;
299 #ifdef STACK_REGS
300 /* Set to TRUE if allocno can't be assigned to the stack hard
301 register correspondingly in this region and area including the
302 region and all its subregions recursively. */
303 unsigned int no_stack_reg_p : 1, total_no_stack_reg_p : 1;
304 #endif
305 /* TRUE value means that there is no sense to spill the allocno
306 during coloring because the spill will result in additional
307 reloads in reload pass. */
308 unsigned int bad_spill_p : 1;
309 /* TRUE if a hard register or memory has been assigned to the
310 allocno. */
311 unsigned int assigned_p : 1;
312 /* TRUE if conflicts for given allocno are represented by vector of
313 pointers to the conflicting allocnos. Otherwise, we use a bit
314 vector where a bit with given index represents allocno with the
315 same number. */
316 unsigned int conflict_vec_p : 1;
317 /* True if the parent loop has an allocno for the same register and
318 if the parent allocno's assignment might not be valid in this loop.
319 This means that we cannot merge this allocno and the parent allocno
320 together.
322 This is only ever true for non-cap allocnos. */
323 unsigned int might_conflict_with_parent_p : 1;
324 /* Hard register assigned to given allocno. Negative value means
325 that memory was allocated to the allocno. During the reload,
326 spilled allocno has value equal to the corresponding stack slot
327 number (0, ...) - 2. Value -1 is used for allocnos spilled by the
328 reload (at this point pseudo-register has only one allocno) which
329 did not get stack slot yet. */
330 signed int hard_regno : 16;
331 /* Allocnos with the same regno are linked by the following member.
332 Allocnos corresponding to inner loops are first in the list (it
333 corresponds to depth-first traverse of the loops). */
334 ira_allocno_t next_regno_allocno;
335 /* There may be different allocnos with the same regno in different
336 regions. Allocnos are bound to the corresponding loop tree node.
337 Pseudo-register may have only one regular allocno with given loop
338 tree node but more than one cap (see comments above). */
339 ira_loop_tree_node_t loop_tree_node;
340 /* Accumulated usage references of the allocno. Here and below,
341 word 'accumulated' means info for given region and all nested
342 subregions. In this case, 'accumulated' means sum of references
343 of the corresponding pseudo-register in this region and in all
344 nested subregions recursively. */
345 int nrefs;
346 /* Accumulated frequency of usage of the allocno. */
347 int freq;
348 /* Minimal accumulated and updated costs of usage register of the
349 allocno class. */
350 int class_cost, updated_class_cost;
351 /* Minimal accumulated, and updated costs of memory for the allocno.
352 At the allocation start, the original and updated costs are
353 equal. The updated cost may be changed after finishing
354 allocation in a region and starting allocation in a subregion.
355 The change reflects the cost of spill/restore code on the
356 subregion border if we assign memory to the pseudo in the
357 subregion. */
358 int memory_cost, updated_memory_cost;
359 /* Accumulated number of points where the allocno lives and there is
360 excess pressure for its class. Excess pressure for a register
361 class at some point means that there are more allocnos of given
362 register class living at the point than number of hard-registers
363 of the class available for the allocation. */
364 int excess_pressure_points_num;
365 /* Allocno hard reg preferences. */
366 ira_pref_t allocno_prefs;
367 /* Copies to other non-conflicting allocnos. The copies can
368 represent move insn or potential move insn usually because of two
369 operand insn constraints. */
370 ira_copy_t allocno_copies;
371 /* It is a allocno (cap) representing given allocno on upper loop tree
372 level. */
373 ira_allocno_t cap;
374 /* It is a link to allocno (cap) on lower loop level represented by
375 given cap. Null if given allocno is not a cap. */
376 ira_allocno_t cap_member;
377 /* The number of objects tracked in the following array. */
378 int num_objects;
379 /* An array of structures describing conflict information and live
380 ranges for each object associated with the allocno. There may be
381 more than one such object in cases where the allocno represents a
382 multi-word register. */
383 ira_object_t objects[2];
384 /* Accumulated frequency of calls which given allocno
385 intersects. */
386 int call_freq;
387 /* Accumulated number of the intersected calls. */
388 int calls_crossed_num;
389 /* The number of calls across which it is live, but which should not
390 affect register preferences. */
391 int cheap_calls_crossed_num;
392 /* Registers clobbered by intersected calls. */
393 HARD_REG_SET crossed_calls_clobbered_regs;
394 /* Array of usage costs (accumulated and the one updated during
395 coloring) for each hard register of the allocno class. The
396 member value can be NULL if all costs are the same and equal to
397 CLASS_COST. For example, the costs of two different hard
398 registers can be different if one hard register is callee-saved
399 and another one is callee-used and the allocno lives through
400 calls. Another example can be case when for some insn the
401 corresponding pseudo-register value should be put in specific
402 register class (e.g. AREG for x86) which is a strict subset of
403 the allocno class (GENERAL_REGS for x86). We have updated costs
404 to reflect the situation when the usage cost of a hard register
405 is decreased because the allocno is connected to another allocno
406 by a copy and the another allocno has been assigned to the hard
407 register. */
408 int *hard_reg_costs, *updated_hard_reg_costs;
409 /* Array of decreasing costs (accumulated and the one updated during
410 coloring) for allocnos conflicting with given allocno for hard
411 regno of the allocno class. The member value can be NULL if all
412 costs are the same. These costs are used to reflect preferences
413 of other allocnos not assigned yet during assigning to given
414 allocno. */
415 int *conflict_hard_reg_costs, *updated_conflict_hard_reg_costs;
416 /* Different additional data. It is used to decrease size of
417 allocno data footprint. */
418 void *add_data;
422 /* All members of the allocno structures should be accessed only
423 through the following macros. */
424 #define ALLOCNO_NUM(A) ((A)->num)
425 #define ALLOCNO_REGNO(A) ((A)->regno)
426 #define ALLOCNO_REG(A) ((A)->reg)
427 #define ALLOCNO_NEXT_REGNO_ALLOCNO(A) ((A)->next_regno_allocno)
428 #define ALLOCNO_LOOP_TREE_NODE(A) ((A)->loop_tree_node)
429 #define ALLOCNO_CAP(A) ((A)->cap)
430 #define ALLOCNO_CAP_MEMBER(A) ((A)->cap_member)
431 #define ALLOCNO_NREFS(A) ((A)->nrefs)
432 #define ALLOCNO_FREQ(A) ((A)->freq)
433 #define ALLOCNO_MIGHT_CONFLICT_WITH_PARENT_P(A) \
434 ((A)->might_conflict_with_parent_p)
435 #define ALLOCNO_HARD_REGNO(A) ((A)->hard_regno)
436 #define ALLOCNO_CALL_FREQ(A) ((A)->call_freq)
437 #define ALLOCNO_CALLS_CROSSED_NUM(A) ((A)->calls_crossed_num)
438 #define ALLOCNO_CHEAP_CALLS_CROSSED_NUM(A) ((A)->cheap_calls_crossed_num)
439 #define ALLOCNO_CROSSED_CALLS_ABIS(A) ((A)->crossed_calls_abis)
440 #define ALLOCNO_CROSSED_CALLS_CLOBBERED_REGS(A) \
441 ((A)->crossed_calls_clobbered_regs)
442 #define ALLOCNO_MEM_OPTIMIZED_DEST(A) ((A)->mem_optimized_dest)
443 #define ALLOCNO_MEM_OPTIMIZED_DEST_P(A) ((A)->mem_optimized_dest_p)
444 #define ALLOCNO_SOMEWHERE_RENAMED_P(A) ((A)->somewhere_renamed_p)
445 #define ALLOCNO_CHILD_RENAMED_P(A) ((A)->child_renamed_p)
446 #define ALLOCNO_DONT_REASSIGN_P(A) ((A)->dont_reassign_p)
447 #ifdef STACK_REGS
448 #define ALLOCNO_NO_STACK_REG_P(A) ((A)->no_stack_reg_p)
449 #define ALLOCNO_TOTAL_NO_STACK_REG_P(A) ((A)->total_no_stack_reg_p)
450 #endif
451 #define ALLOCNO_BAD_SPILL_P(A) ((A)->bad_spill_p)
452 #define ALLOCNO_ASSIGNED_P(A) ((A)->assigned_p)
453 #define ALLOCNO_MODE(A) ((A)->mode)
454 #define ALLOCNO_WMODE(A) ((A)->wmode)
455 #define ALLOCNO_PREFS(A) ((A)->allocno_prefs)
456 #define ALLOCNO_COPIES(A) ((A)->allocno_copies)
457 #define ALLOCNO_HARD_REG_COSTS(A) ((A)->hard_reg_costs)
458 #define ALLOCNO_UPDATED_HARD_REG_COSTS(A) ((A)->updated_hard_reg_costs)
459 #define ALLOCNO_CONFLICT_HARD_REG_COSTS(A) \
460 ((A)->conflict_hard_reg_costs)
461 #define ALLOCNO_UPDATED_CONFLICT_HARD_REG_COSTS(A) \
462 ((A)->updated_conflict_hard_reg_costs)
463 #define ALLOCNO_CLASS(A) ((A)->aclass)
464 #define ALLOCNO_CLASS_COST(A) ((A)->class_cost)
465 #define ALLOCNO_UPDATED_CLASS_COST(A) ((A)->updated_class_cost)
466 #define ALLOCNO_MEMORY_COST(A) ((A)->memory_cost)
467 #define ALLOCNO_UPDATED_MEMORY_COST(A) ((A)->updated_memory_cost)
468 #define ALLOCNO_EXCESS_PRESSURE_POINTS_NUM(A) \
469 ((A)->excess_pressure_points_num)
470 #define ALLOCNO_OBJECT(A,N) ((A)->objects[N])
471 #define ALLOCNO_NUM_OBJECTS(A) ((A)->num_objects)
472 #define ALLOCNO_ADD_DATA(A) ((A)->add_data)
474 /* Typedef for pointer to the subsequent structure. */
475 typedef struct ira_emit_data *ira_emit_data_t;
477 /* Allocno bound data used for emit pseudo live range split insns and
478 to flattening IR. */
479 struct ira_emit_data
481 /* TRUE if the allocno assigned to memory was a destination of
482 removed move (see ira-emit.cc) at loop exit because the value of
483 the corresponding pseudo-register is not changed inside the
484 loop. */
485 unsigned int mem_optimized_dest_p : 1;
486 /* TRUE if the corresponding pseudo-register has disjoint live
487 ranges and the other allocnos of the pseudo-register except this
488 one changed REG. */
489 unsigned int somewhere_renamed_p : 1;
490 /* TRUE if allocno with the same REGNO in a subregion has been
491 renamed, in other words, got a new pseudo-register. */
492 unsigned int child_renamed_p : 1;
493 /* Final rtx representation of the allocno. */
494 rtx reg;
495 /* Non NULL if we remove restoring value from given allocno to
496 MEM_OPTIMIZED_DEST at loop exit (see ira-emit.cc) because the
497 allocno value is not changed inside the loop. */
498 ira_allocno_t mem_optimized_dest;
501 #define ALLOCNO_EMIT_DATA(a) ((ira_emit_data_t) ALLOCNO_ADD_DATA (a))
503 /* Data used to emit live range split insns and to flattening IR. */
504 extern ira_emit_data_t ira_allocno_emit_data;
506 /* Abbreviation for frequent emit data access. */
507 static inline rtx
508 allocno_emit_reg (ira_allocno_t a)
510 return ALLOCNO_EMIT_DATA (a)->reg;
513 #define OBJECT_ALLOCNO(O) ((O)->allocno)
514 #define OBJECT_SUBWORD(O) ((O)->subword)
515 #define OBJECT_CONFLICT_ARRAY(O) ((O)->conflicts_array)
516 #define OBJECT_CONFLICT_VEC(O) ((ira_object_t *)(O)->conflicts_array)
517 #define OBJECT_CONFLICT_BITVEC(O) ((IRA_INT_TYPE *)(O)->conflicts_array)
518 #define OBJECT_CONFLICT_ARRAY_SIZE(O) ((O)->conflicts_array_size)
519 #define OBJECT_CONFLICT_VEC_P(O) ((O)->conflict_vec_p)
520 #define OBJECT_NUM_CONFLICTS(O) ((O)->num_accumulated_conflicts)
521 #define OBJECT_CONFLICT_HARD_REGS(O) ((O)->conflict_hard_regs)
522 #define OBJECT_TOTAL_CONFLICT_HARD_REGS(O) ((O)->total_conflict_hard_regs)
523 #define OBJECT_MIN(O) ((O)->min)
524 #define OBJECT_MAX(O) ((O)->max)
525 #define OBJECT_CONFLICT_ID(O) ((O)->id)
526 #define OBJECT_LIVE_RANGES(O) ((O)->live_ranges)
528 /* Map regno -> allocnos with given regno (see comments for
529 allocno member `next_regno_allocno'). */
530 extern ira_allocno_t *ira_regno_allocno_map;
532 /* Array of references to all allocnos. The order number of the
533 allocno corresponds to the index in the array. Removed allocnos
534 have NULL element value. */
535 extern ira_allocno_t *ira_allocnos;
537 /* The size of the previous array. */
538 extern int ira_allocnos_num;
540 /* Map a conflict id to its corresponding ira_object structure. */
541 extern ira_object_t *ira_object_id_map;
543 /* The size of the previous array. */
544 extern int ira_objects_num;
546 /* The following structure represents a hard register preference of
547 allocno. The preference represent move insns or potential move
548 insns usually because of two operand insn constraints. One move
549 operand is a hard register. */
550 struct ira_allocno_pref
552 /* The unique order number of the preference node starting with 0. */
553 int num;
554 /* Preferred hard register. */
555 int hard_regno;
556 /* Accumulated execution frequency of insns from which the
557 preference created. */
558 int freq;
559 /* Given allocno. */
560 ira_allocno_t allocno;
561 /* All preferences with the same allocno are linked by the following
562 member. */
563 ira_pref_t next_pref;
566 /* Array of references to all allocno preferences. The order number
567 of the preference corresponds to the index in the array. */
568 extern ira_pref_t *ira_prefs;
570 /* Size of the previous array. */
571 extern int ira_prefs_num;
573 /* The following structure represents a copy of two allocnos. The
574 copies represent move insns or potential move insns usually because
575 of two operand insn constraints. To remove register shuffle, we
576 also create copies between allocno which is output of an insn and
577 allocno becoming dead in the insn. */
578 struct ira_allocno_copy
580 /* The unique order number of the copy node starting with 0. */
581 int num;
582 /* Allocnos connected by the copy. The first allocno should have
583 smaller order number than the second one. */
584 ira_allocno_t first, second;
585 /* Execution frequency of the copy. */
586 int freq;
587 bool constraint_p;
588 /* It is a move insn which is an origin of the copy. The member
589 value for the copy representing two operand insn constraints or
590 for the copy created to remove register shuffle is NULL. In last
591 case the copy frequency is smaller than the corresponding insn
592 execution frequency. */
593 rtx_insn *insn;
594 /* All copies with the same allocno as FIRST are linked by the two
595 following members. */
596 ira_copy_t prev_first_allocno_copy, next_first_allocno_copy;
597 /* All copies with the same allocno as SECOND are linked by the two
598 following members. */
599 ira_copy_t prev_second_allocno_copy, next_second_allocno_copy;
600 /* Region from which given copy is originated. */
601 ira_loop_tree_node_t loop_tree_node;
604 /* Array of references to all copies. The order number of the copy
605 corresponds to the index in the array. Removed copies have NULL
606 element value. */
607 extern ira_copy_t *ira_copies;
609 /* Size of the previous array. */
610 extern int ira_copies_num;
612 /* The following structure describes a stack slot used for spilled
613 pseudo-registers. */
614 class ira_spilled_reg_stack_slot
616 public:
617 /* pseudo-registers assigned to the stack slot. */
618 bitmap_head spilled_regs;
619 /* RTL representation of the stack slot. */
620 rtx mem;
621 /* Size of the stack slot. */
622 poly_uint64_pod width;
625 /* The number of elements in the following array. */
626 extern int ira_spilled_reg_stack_slots_num;
628 /* The following array contains info about spilled pseudo-registers
629 stack slots used in current function so far. */
630 extern class ira_spilled_reg_stack_slot *ira_spilled_reg_stack_slots;
632 /* Correspondingly overall cost of the allocation, cost of the
633 allocnos assigned to hard-registers, cost of the allocnos assigned
634 to memory, cost of loads, stores and register move insns generated
635 for pseudo-register live range splitting (see ira-emit.cc). */
636 extern int64_t ira_overall_cost;
637 extern int64_t ira_reg_cost, ira_mem_cost;
638 extern int64_t ira_load_cost, ira_store_cost, ira_shuffle_cost;
639 extern int ira_move_loops_num, ira_additional_jumps_num;
642 /* This page contains a bitset implementation called 'min/max sets' used to
643 record conflicts in IRA.
644 They are named min/maxs set since we keep track of a minimum and a maximum
645 bit number for each set representing the bounds of valid elements. Otherwise,
646 the implementation resembles sbitmaps in that we store an array of integers
647 whose bits directly represent the members of the set. */
649 /* The type used as elements in the array, and the number of bits in
650 this type. */
652 #define IRA_INT_BITS HOST_BITS_PER_WIDE_INT
653 #define IRA_INT_TYPE HOST_WIDE_INT
655 /* Set, clear or test bit number I in R, a bit vector of elements with
656 minimal index and maximal index equal correspondingly to MIN and
657 MAX. */
658 #if defined ENABLE_IRA_CHECKING && (GCC_VERSION >= 2007)
660 #define SET_MINMAX_SET_BIT(R, I, MIN, MAX) __extension__ \
661 (({ int _min = (MIN), _max = (MAX), _i = (I); \
662 if (_i < _min || _i > _max) \
664 fprintf (stderr, \
665 "\n%s: %d: error in %s: %d not in range [%d,%d]\n", \
666 __FILE__, __LINE__, __FUNCTION__, _i, _min, _max); \
667 gcc_unreachable (); \
669 ((R)[(unsigned) (_i - _min) / IRA_INT_BITS] \
670 |= ((IRA_INT_TYPE) 1 << ((unsigned) (_i - _min) % IRA_INT_BITS))); }))
673 #define CLEAR_MINMAX_SET_BIT(R, I, MIN, MAX) __extension__ \
674 (({ int _min = (MIN), _max = (MAX), _i = (I); \
675 if (_i < _min || _i > _max) \
677 fprintf (stderr, \
678 "\n%s: %d: error in %s: %d not in range [%d,%d]\n", \
679 __FILE__, __LINE__, __FUNCTION__, _i, _min, _max); \
680 gcc_unreachable (); \
682 ((R)[(unsigned) (_i - _min) / IRA_INT_BITS] \
683 &= ~((IRA_INT_TYPE) 1 << ((unsigned) (_i - _min) % IRA_INT_BITS))); }))
685 #define TEST_MINMAX_SET_BIT(R, I, MIN, MAX) __extension__ \
686 (({ int _min = (MIN), _max = (MAX), _i = (I); \
687 if (_i < _min || _i > _max) \
689 fprintf (stderr, \
690 "\n%s: %d: error in %s: %d not in range [%d,%d]\n", \
691 __FILE__, __LINE__, __FUNCTION__, _i, _min, _max); \
692 gcc_unreachable (); \
694 ((R)[(unsigned) (_i - _min) / IRA_INT_BITS] \
695 & ((IRA_INT_TYPE) 1 << ((unsigned) (_i - _min) % IRA_INT_BITS))); }))
697 #else
699 #define SET_MINMAX_SET_BIT(R, I, MIN, MAX) \
700 ((R)[(unsigned) ((I) - (MIN)) / IRA_INT_BITS] \
701 |= ((IRA_INT_TYPE) 1 << ((unsigned) ((I) - (MIN)) % IRA_INT_BITS)))
703 #define CLEAR_MINMAX_SET_BIT(R, I, MIN, MAX) \
704 ((R)[(unsigned) ((I) - (MIN)) / IRA_INT_BITS] \
705 &= ~((IRA_INT_TYPE) 1 << ((unsigned) ((I) - (MIN)) % IRA_INT_BITS)))
707 #define TEST_MINMAX_SET_BIT(R, I, MIN, MAX) \
708 ((R)[(unsigned) ((I) - (MIN)) / IRA_INT_BITS] \
709 & ((IRA_INT_TYPE) 1 << ((unsigned) ((I) - (MIN)) % IRA_INT_BITS)))
711 #endif
713 /* The iterator for min/max sets. */
714 struct minmax_set_iterator {
716 /* Array containing the bit vector. */
717 IRA_INT_TYPE *vec;
719 /* The number of the current element in the vector. */
720 unsigned int word_num;
722 /* The number of bits in the bit vector. */
723 unsigned int nel;
725 /* The current bit index of the bit vector. */
726 unsigned int bit_num;
728 /* Index corresponding to the 1st bit of the bit vector. */
729 int start_val;
731 /* The word of the bit vector currently visited. */
732 unsigned IRA_INT_TYPE word;
735 /* Initialize the iterator I for bit vector VEC containing minimal and
736 maximal values MIN and MAX. */
737 static inline void
738 minmax_set_iter_init (minmax_set_iterator *i, IRA_INT_TYPE *vec, int min,
739 int max)
741 i->vec = vec;
742 i->word_num = 0;
743 i->nel = max < min ? 0 : max - min + 1;
744 i->start_val = min;
745 i->bit_num = 0;
746 i->word = i->nel == 0 ? 0 : vec[0];
749 /* Return TRUE if we have more allocnos to visit, in which case *N is
750 set to the number of the element to be visited. Otherwise, return
751 FALSE. */
752 static inline bool
753 minmax_set_iter_cond (minmax_set_iterator *i, int *n)
755 /* Skip words that are zeros. */
756 for (; i->word == 0; i->word = i->vec[i->word_num])
758 i->word_num++;
759 i->bit_num = i->word_num * IRA_INT_BITS;
761 /* If we have reached the end, break. */
762 if (i->bit_num >= i->nel)
763 return false;
766 /* Skip bits that are zero. */
767 int off = ctz_hwi (i->word);
768 i->bit_num += off;
769 i->word >>= off;
771 *n = (int) i->bit_num + i->start_val;
773 return true;
776 /* Advance to the next element in the set. */
777 static inline void
778 minmax_set_iter_next (minmax_set_iterator *i)
780 i->word >>= 1;
781 i->bit_num++;
784 /* Loop over all elements of a min/max set given by bit vector VEC and
785 their minimal and maximal values MIN and MAX. In each iteration, N
786 is set to the number of next allocno. ITER is an instance of
787 minmax_set_iterator used to iterate over the set. */
788 #define FOR_EACH_BIT_IN_MINMAX_SET(VEC, MIN, MAX, N, ITER) \
789 for (minmax_set_iter_init (&(ITER), (VEC), (MIN), (MAX)); \
790 minmax_set_iter_cond (&(ITER), &(N)); \
791 minmax_set_iter_next (&(ITER)))
793 class target_ira_int {
794 public:
795 ~target_ira_int ();
797 void free_ira_costs ();
798 void free_register_move_costs ();
800 /* Initialized once. It is a maximal possible size of the allocated
801 struct costs. */
802 size_t x_max_struct_costs_size;
804 /* Allocated and initialized once, and used to initialize cost values
805 for each insn. */
806 struct costs *x_init_cost;
808 /* Allocated once, and used for temporary purposes. */
809 struct costs *x_temp_costs;
811 /* Allocated once, and used for the cost calculation. */
812 struct costs *x_op_costs[MAX_RECOG_OPERANDS];
813 struct costs *x_this_op_costs[MAX_RECOG_OPERANDS];
815 /* Hard registers that cannot be used for the register allocator for
816 all functions of the current compilation unit. */
817 HARD_REG_SET x_no_unit_alloc_regs;
819 /* Map: hard regs X modes -> set of hard registers for storing value
820 of given mode starting with given hard register. */
821 HARD_REG_SET (x_ira_reg_mode_hard_regset
822 [FIRST_PSEUDO_REGISTER][NUM_MACHINE_MODES]);
824 /* Maximum cost of moving from a register in one class to a register
825 in another class. Based on TARGET_REGISTER_MOVE_COST. */
826 move_table *x_ira_register_move_cost[MAX_MACHINE_MODE];
828 /* Similar, but here we don't have to move if the first index is a
829 subset of the second so in that case the cost is zero. */
830 move_table *x_ira_may_move_in_cost[MAX_MACHINE_MODE];
832 /* Similar, but here we don't have to move if the first index is a
833 superset of the second so in that case the cost is zero. */
834 move_table *x_ira_may_move_out_cost[MAX_MACHINE_MODE];
836 /* Keep track of the last mode we initialized move costs for. */
837 int x_last_mode_for_init_move_cost;
839 /* Array analog of the macro MEMORY_MOVE_COST but they contain maximal
840 cost not minimal. */
841 short int x_ira_max_memory_move_cost[MAX_MACHINE_MODE][N_REG_CLASSES][2];
843 /* Map class->true if class is a possible allocno class, false
844 otherwise. */
845 bool x_ira_reg_allocno_class_p[N_REG_CLASSES];
847 /* Map class->true if class is a pressure class, false otherwise. */
848 bool x_ira_reg_pressure_class_p[N_REG_CLASSES];
850 /* Array of the number of hard registers of given class which are
851 available for allocation. The order is defined by the hard
852 register numbers. */
853 short x_ira_non_ordered_class_hard_regs[N_REG_CLASSES][FIRST_PSEUDO_REGISTER];
855 /* Index (in ira_class_hard_regs; for given register class and hard
856 register (in general case a hard register can belong to several
857 register classes;. The index is negative for hard registers
858 unavailable for the allocation. */
859 short x_ira_class_hard_reg_index[N_REG_CLASSES][FIRST_PSEUDO_REGISTER];
861 /* Index [CL][M] contains R if R appears somewhere in a register of the form:
863 (reg:M R'), R' not in x_ira_prohibited_class_mode_regs[CL][M]
865 For example, if:
867 - (reg:M 2) is valid and occupies two registers;
868 - register 2 belongs to CL; and
869 - register 3 belongs to the same pressure class as CL
871 then (reg:M 2) contributes to [CL][M] and registers 2 and 3 will be
872 in the set. */
873 HARD_REG_SET x_ira_useful_class_mode_regs[N_REG_CLASSES][NUM_MACHINE_MODES];
875 /* The value is number of elements in the subsequent array. */
876 int x_ira_important_classes_num;
878 /* The array containing all non-empty classes. Such classes is
879 important for calculation of the hard register usage costs. */
880 enum reg_class x_ira_important_classes[N_REG_CLASSES];
882 /* The array containing indexes of important classes in the previous
883 array. The array elements are defined only for important
884 classes. */
885 int x_ira_important_class_nums[N_REG_CLASSES];
887 /* Map class->true if class is an uniform class, false otherwise. */
888 bool x_ira_uniform_class_p[N_REG_CLASSES];
890 /* The biggest important class inside of intersection of the two
891 classes (that is calculated taking only hard registers available
892 for allocation into account;. If the both classes contain no hard
893 registers available for allocation, the value is calculated with
894 taking all hard-registers including fixed ones into account. */
895 enum reg_class x_ira_reg_class_intersect[N_REG_CLASSES][N_REG_CLASSES];
897 /* Classes with end marker LIM_REG_CLASSES which are intersected with
898 given class (the first index). That includes given class itself.
899 This is calculated taking only hard registers available for
900 allocation into account. */
901 enum reg_class x_ira_reg_class_super_classes[N_REG_CLASSES][N_REG_CLASSES];
903 /* The biggest (smallest) important class inside of (covering) union
904 of the two classes (that is calculated taking only hard registers
905 available for allocation into account). If the both classes
906 contain no hard registers available for allocation, the value is
907 calculated with taking all hard-registers including fixed ones
908 into account. In other words, the value is the corresponding
909 reg_class_subunion (reg_class_superunion) value. */
910 enum reg_class x_ira_reg_class_subunion[N_REG_CLASSES][N_REG_CLASSES];
911 enum reg_class x_ira_reg_class_superunion[N_REG_CLASSES][N_REG_CLASSES];
913 /* For each reg class, table listing all the classes contained in it
914 (excluding the class itself. Non-allocatable registers are
915 excluded from the consideration). */
916 enum reg_class x_alloc_reg_class_subclasses[N_REG_CLASSES][N_REG_CLASSES];
918 /* Array whose values are hard regset of hard registers for which
919 move of the hard register in given mode into itself is
920 prohibited. */
921 HARD_REG_SET x_ira_prohibited_mode_move_regs[NUM_MACHINE_MODES];
923 /* Flag of that the above array has been initialized. */
924 bool x_ira_prohibited_mode_move_regs_initialized_p;
927 extern class target_ira_int default_target_ira_int;
928 #if SWITCHABLE_TARGET
929 extern class target_ira_int *this_target_ira_int;
930 #else
931 #define this_target_ira_int (&default_target_ira_int)
932 #endif
934 #define ira_reg_mode_hard_regset \
935 (this_target_ira_int->x_ira_reg_mode_hard_regset)
936 #define ira_register_move_cost \
937 (this_target_ira_int->x_ira_register_move_cost)
938 #define ira_max_memory_move_cost \
939 (this_target_ira_int->x_ira_max_memory_move_cost)
940 #define ira_may_move_in_cost \
941 (this_target_ira_int->x_ira_may_move_in_cost)
942 #define ira_may_move_out_cost \
943 (this_target_ira_int->x_ira_may_move_out_cost)
944 #define ira_reg_allocno_class_p \
945 (this_target_ira_int->x_ira_reg_allocno_class_p)
946 #define ira_reg_pressure_class_p \
947 (this_target_ira_int->x_ira_reg_pressure_class_p)
948 #define ira_non_ordered_class_hard_regs \
949 (this_target_ira_int->x_ira_non_ordered_class_hard_regs)
950 #define ira_class_hard_reg_index \
951 (this_target_ira_int->x_ira_class_hard_reg_index)
952 #define ira_useful_class_mode_regs \
953 (this_target_ira_int->x_ira_useful_class_mode_regs)
954 #define ira_important_classes_num \
955 (this_target_ira_int->x_ira_important_classes_num)
956 #define ira_important_classes \
957 (this_target_ira_int->x_ira_important_classes)
958 #define ira_important_class_nums \
959 (this_target_ira_int->x_ira_important_class_nums)
960 #define ira_uniform_class_p \
961 (this_target_ira_int->x_ira_uniform_class_p)
962 #define ira_reg_class_intersect \
963 (this_target_ira_int->x_ira_reg_class_intersect)
964 #define ira_reg_class_super_classes \
965 (this_target_ira_int->x_ira_reg_class_super_classes)
966 #define ira_reg_class_subunion \
967 (this_target_ira_int->x_ira_reg_class_subunion)
968 #define ira_reg_class_superunion \
969 (this_target_ira_int->x_ira_reg_class_superunion)
970 #define ira_prohibited_mode_move_regs \
971 (this_target_ira_int->x_ira_prohibited_mode_move_regs)
973 /* ira.cc: */
975 extern void *ira_allocate (size_t);
976 extern void ira_free (void *addr);
977 extern bitmap ira_allocate_bitmap (void);
978 extern void ira_free_bitmap (bitmap);
979 extern void ira_print_disposition (FILE *);
980 extern void ira_debug_disposition (void);
981 extern void ira_debug_allocno_classes (void);
982 extern void ira_init_register_move_cost (machine_mode);
983 extern alternative_mask ira_setup_alts (rtx_insn *);
984 extern int ira_get_dup_out_num (int, alternative_mask, bool &);
986 /* ira-build.cc */
988 /* The current loop tree node and its regno allocno map. */
989 extern ira_loop_tree_node_t ira_curr_loop_tree_node;
990 extern ira_allocno_t *ira_curr_regno_allocno_map;
992 extern void ira_debug_pref (ira_pref_t);
993 extern void ira_debug_prefs (void);
994 extern void ira_debug_allocno_prefs (ira_allocno_t);
996 extern void ira_debug_copy (ira_copy_t);
997 extern void debug (ira_allocno_copy &ref);
998 extern void debug (ira_allocno_copy *ptr);
1000 extern void ira_debug_copies (void);
1001 extern void ira_debug_allocno_copies (ira_allocno_t);
1002 extern void debug (ira_allocno &ref);
1003 extern void debug (ira_allocno *ptr);
1005 extern void ira_traverse_loop_tree (bool, ira_loop_tree_node_t,
1006 void (*) (ira_loop_tree_node_t),
1007 void (*) (ira_loop_tree_node_t));
1008 extern ira_allocno_t ira_parent_allocno (ira_allocno_t);
1009 extern ira_allocno_t ira_parent_or_cap_allocno (ira_allocno_t);
1010 extern ira_allocno_t ira_create_allocno (int, bool, ira_loop_tree_node_t);
1011 extern void ira_create_allocno_objects (ira_allocno_t);
1012 extern void ira_set_allocno_class (ira_allocno_t, enum reg_class);
1013 extern bool ira_conflict_vector_profitable_p (ira_object_t, int);
1014 extern void ira_allocate_conflict_vec (ira_object_t, int);
1015 extern void ira_allocate_object_conflicts (ira_object_t, int);
1016 extern void ior_hard_reg_conflicts (ira_allocno_t, const_hard_reg_set);
1017 extern void ira_print_expanded_allocno (ira_allocno_t);
1018 extern void ira_add_live_range_to_object (ira_object_t, int, int);
1019 extern live_range_t ira_create_live_range (ira_object_t, int, int,
1020 live_range_t);
1021 extern live_range_t ira_copy_live_range_list (live_range_t);
1022 extern live_range_t ira_merge_live_ranges (live_range_t, live_range_t);
1023 extern bool ira_live_ranges_intersect_p (live_range_t, live_range_t);
1024 extern void ira_finish_live_range (live_range_t);
1025 extern void ira_finish_live_range_list (live_range_t);
1026 extern void ira_free_allocno_updated_costs (ira_allocno_t);
1027 extern ira_pref_t ira_create_pref (ira_allocno_t, int, int);
1028 extern void ira_add_allocno_pref (ira_allocno_t, int, int);
1029 extern void ira_remove_pref (ira_pref_t);
1030 extern void ira_remove_allocno_prefs (ira_allocno_t);
1031 extern ira_copy_t ira_create_copy (ira_allocno_t, ira_allocno_t,
1032 int, bool, rtx_insn *,
1033 ira_loop_tree_node_t);
1034 extern ira_copy_t ira_add_allocno_copy (ira_allocno_t, ira_allocno_t, int,
1035 bool, rtx_insn *,
1036 ira_loop_tree_node_t);
1038 extern int *ira_allocate_cost_vector (reg_class_t);
1039 extern void ira_free_cost_vector (int *, reg_class_t);
1041 extern void ira_flattening (int, int);
1042 extern bool ira_build (void);
1043 extern void ira_destroy (void);
1045 /* ira-costs.cc */
1046 extern void ira_init_costs_once (void);
1047 extern void ira_init_costs (void);
1048 extern void ira_costs (void);
1049 extern void ira_tune_allocno_costs (void);
1051 /* ira-lives.cc */
1053 extern void ira_rebuild_start_finish_chains (void);
1054 extern void ira_print_live_range_list (FILE *, live_range_t);
1055 extern void debug (live_range &ref);
1056 extern void debug (live_range *ptr);
1057 extern void ira_debug_live_range_list (live_range_t);
1058 extern void ira_debug_allocno_live_ranges (ira_allocno_t);
1059 extern void ira_debug_live_ranges (void);
1060 extern void ira_create_allocno_live_ranges (void);
1061 extern void ira_compress_allocno_live_ranges (void);
1062 extern void ira_finish_allocno_live_ranges (void);
1063 extern void ira_implicitly_set_insn_hard_regs (HARD_REG_SET *,
1064 alternative_mask);
1066 /* ira-conflicts.cc */
1067 extern void ira_debug_conflicts (bool);
1068 extern void ira_build_conflicts (void);
1070 /* ira-color.cc */
1071 extern ira_allocno_t ira_soft_conflict (ira_allocno_t, ira_allocno_t);
1072 extern void ira_debug_hard_regs_forest (void);
1073 extern int ira_loop_edge_freq (ira_loop_tree_node_t, int, bool);
1074 extern void ira_reassign_conflict_allocnos (int);
1075 extern void ira_initiate_assign (void);
1076 extern void ira_finish_assign (void);
1077 extern void ira_color (void);
1079 /* ira-emit.cc */
1080 extern void ira_initiate_emit_data (void);
1081 extern void ira_finish_emit_data (void);
1082 extern void ira_emit (bool);
1086 /* Return true if equivalence of pseudo REGNO is not a lvalue. */
1087 static inline bool
1088 ira_equiv_no_lvalue_p (int regno)
1090 if (regno >= ira_reg_equiv_len)
1091 return false;
1092 return (ira_reg_equiv[regno].constant != NULL_RTX
1093 || ira_reg_equiv[regno].invariant != NULL_RTX
1094 || (ira_reg_equiv[regno].memory != NULL_RTX
1095 && MEM_READONLY_P (ira_reg_equiv[regno].memory)));
1100 /* Initialize register costs for MODE if necessary. */
1101 static inline void
1102 ira_init_register_move_cost_if_necessary (machine_mode mode)
1104 if (ira_register_move_cost[mode] == NULL)
1105 ira_init_register_move_cost (mode);
1110 /* The iterator for all allocnos. */
1111 struct ira_allocno_iterator {
1112 /* The number of the current element in IRA_ALLOCNOS. */
1113 int n;
1116 /* Initialize the iterator I. */
1117 static inline void
1118 ira_allocno_iter_init (ira_allocno_iterator *i)
1120 i->n = 0;
1123 /* Return TRUE if we have more allocnos to visit, in which case *A is
1124 set to the allocno to be visited. Otherwise, return FALSE. */
1125 static inline bool
1126 ira_allocno_iter_cond (ira_allocno_iterator *i, ira_allocno_t *a)
1128 int n;
1130 for (n = i->n; n < ira_allocnos_num; n++)
1131 if (ira_allocnos[n] != NULL)
1133 *a = ira_allocnos[n];
1134 i->n = n + 1;
1135 return true;
1137 return false;
1140 /* Loop over all allocnos. In each iteration, A is set to the next
1141 allocno. ITER is an instance of ira_allocno_iterator used to iterate
1142 the allocnos. */
1143 #define FOR_EACH_ALLOCNO(A, ITER) \
1144 for (ira_allocno_iter_init (&(ITER)); \
1145 ira_allocno_iter_cond (&(ITER), &(A));)
1147 /* The iterator for all objects. */
1148 struct ira_object_iterator {
1149 /* The number of the current element in ira_object_id_map. */
1150 int n;
1153 /* Initialize the iterator I. */
1154 static inline void
1155 ira_object_iter_init (ira_object_iterator *i)
1157 i->n = 0;
1160 /* Return TRUE if we have more objects to visit, in which case *OBJ is
1161 set to the object to be visited. Otherwise, return FALSE. */
1162 static inline bool
1163 ira_object_iter_cond (ira_object_iterator *i, ira_object_t *obj)
1165 int n;
1167 for (n = i->n; n < ira_objects_num; n++)
1168 if (ira_object_id_map[n] != NULL)
1170 *obj = ira_object_id_map[n];
1171 i->n = n + 1;
1172 return true;
1174 return false;
1177 /* Loop over all objects. In each iteration, OBJ is set to the next
1178 object. ITER is an instance of ira_object_iterator used to iterate
1179 the objects. */
1180 #define FOR_EACH_OBJECT(OBJ, ITER) \
1181 for (ira_object_iter_init (&(ITER)); \
1182 ira_object_iter_cond (&(ITER), &(OBJ));)
1184 /* The iterator for objects associated with an allocno. */
1185 struct ira_allocno_object_iterator {
1186 /* The number of the element the allocno's object array. */
1187 int n;
1190 /* Initialize the iterator I. */
1191 static inline void
1192 ira_allocno_object_iter_init (ira_allocno_object_iterator *i)
1194 i->n = 0;
1197 /* Return TRUE if we have more objects to visit in allocno A, in which
1198 case *O is set to the object to be visited. Otherwise, return
1199 FALSE. */
1200 static inline bool
1201 ira_allocno_object_iter_cond (ira_allocno_object_iterator *i, ira_allocno_t a,
1202 ira_object_t *o)
1204 int n = i->n++;
1205 if (n < ALLOCNO_NUM_OBJECTS (a))
1207 *o = ALLOCNO_OBJECT (a, n);
1208 return true;
1210 return false;
1213 /* Loop over all objects associated with allocno A. In each
1214 iteration, O is set to the next object. ITER is an instance of
1215 ira_allocno_object_iterator used to iterate the conflicts. */
1216 #define FOR_EACH_ALLOCNO_OBJECT(A, O, ITER) \
1217 for (ira_allocno_object_iter_init (&(ITER)); \
1218 ira_allocno_object_iter_cond (&(ITER), (A), &(O));)
1221 /* The iterator for prefs. */
1222 struct ira_pref_iterator {
1223 /* The number of the current element in IRA_PREFS. */
1224 int n;
1227 /* Initialize the iterator I. */
1228 static inline void
1229 ira_pref_iter_init (ira_pref_iterator *i)
1231 i->n = 0;
1234 /* Return TRUE if we have more prefs to visit, in which case *PREF is
1235 set to the pref to be visited. Otherwise, return FALSE. */
1236 static inline bool
1237 ira_pref_iter_cond (ira_pref_iterator *i, ira_pref_t *pref)
1239 int n;
1241 for (n = i->n; n < ira_prefs_num; n++)
1242 if (ira_prefs[n] != NULL)
1244 *pref = ira_prefs[n];
1245 i->n = n + 1;
1246 return true;
1248 return false;
1251 /* Loop over all prefs. In each iteration, P is set to the next
1252 pref. ITER is an instance of ira_pref_iterator used to iterate
1253 the prefs. */
1254 #define FOR_EACH_PREF(P, ITER) \
1255 for (ira_pref_iter_init (&(ITER)); \
1256 ira_pref_iter_cond (&(ITER), &(P));)
1259 /* The iterator for copies. */
1260 struct ira_copy_iterator {
1261 /* The number of the current element in IRA_COPIES. */
1262 int n;
1265 /* Initialize the iterator I. */
1266 static inline void
1267 ira_copy_iter_init (ira_copy_iterator *i)
1269 i->n = 0;
1272 /* Return TRUE if we have more copies to visit, in which case *CP is
1273 set to the copy to be visited. Otherwise, return FALSE. */
1274 static inline bool
1275 ira_copy_iter_cond (ira_copy_iterator *i, ira_copy_t *cp)
1277 int n;
1279 for (n = i->n; n < ira_copies_num; n++)
1280 if (ira_copies[n] != NULL)
1282 *cp = ira_copies[n];
1283 i->n = n + 1;
1284 return true;
1286 return false;
1289 /* Loop over all copies. In each iteration, C is set to the next
1290 copy. ITER is an instance of ira_copy_iterator used to iterate
1291 the copies. */
1292 #define FOR_EACH_COPY(C, ITER) \
1293 for (ira_copy_iter_init (&(ITER)); \
1294 ira_copy_iter_cond (&(ITER), &(C));)
1296 /* The iterator for object conflicts. */
1297 struct ira_object_conflict_iterator {
1299 /* TRUE if the conflicts are represented by vector of allocnos. */
1300 bool conflict_vec_p;
1302 /* The conflict vector or conflict bit vector. */
1303 void *vec;
1305 /* The number of the current element in the vector (of type
1306 ira_object_t or IRA_INT_TYPE). */
1307 unsigned int word_num;
1309 /* The bit vector size. It is defined only if
1310 OBJECT_CONFLICT_VEC_P is FALSE. */
1311 unsigned int size;
1313 /* The current bit index of bit vector. It is defined only if
1314 OBJECT_CONFLICT_VEC_P is FALSE. */
1315 unsigned int bit_num;
1317 /* The object id corresponding to the 1st bit of the bit vector. It
1318 is defined only if OBJECT_CONFLICT_VEC_P is FALSE. */
1319 int base_conflict_id;
1321 /* The word of bit vector currently visited. It is defined only if
1322 OBJECT_CONFLICT_VEC_P is FALSE. */
1323 unsigned IRA_INT_TYPE word;
1326 /* Initialize the iterator I with ALLOCNO conflicts. */
1327 static inline void
1328 ira_object_conflict_iter_init (ira_object_conflict_iterator *i,
1329 ira_object_t obj)
1331 i->conflict_vec_p = OBJECT_CONFLICT_VEC_P (obj);
1332 i->vec = OBJECT_CONFLICT_ARRAY (obj);
1333 i->word_num = 0;
1334 if (i->conflict_vec_p)
1335 i->size = i->bit_num = i->base_conflict_id = i->word = 0;
1336 else
1338 if (OBJECT_MIN (obj) > OBJECT_MAX (obj))
1339 i->size = 0;
1340 else
1341 i->size = ((OBJECT_MAX (obj) - OBJECT_MIN (obj)
1342 + IRA_INT_BITS)
1343 / IRA_INT_BITS) * sizeof (IRA_INT_TYPE);
1344 i->bit_num = 0;
1345 i->base_conflict_id = OBJECT_MIN (obj);
1346 i->word = (i->size == 0 ? 0 : ((IRA_INT_TYPE *) i->vec)[0]);
1350 /* Return TRUE if we have more conflicting allocnos to visit, in which
1351 case *A is set to the allocno to be visited. Otherwise, return
1352 FALSE. */
1353 static inline bool
1354 ira_object_conflict_iter_cond (ira_object_conflict_iterator *i,
1355 ira_object_t *pobj)
1357 ira_object_t obj;
1359 if (i->conflict_vec_p)
1361 obj = ((ira_object_t *) i->vec)[i->word_num++];
1362 if (obj == NULL)
1363 return false;
1365 else
1367 unsigned IRA_INT_TYPE word = i->word;
1368 unsigned int bit_num = i->bit_num;
1370 /* Skip words that are zeros. */
1371 for (; word == 0; word = ((IRA_INT_TYPE *) i->vec)[i->word_num])
1373 i->word_num++;
1375 /* If we have reached the end, break. */
1376 if (i->word_num * sizeof (IRA_INT_TYPE) >= i->size)
1377 return false;
1379 bit_num = i->word_num * IRA_INT_BITS;
1382 /* Skip bits that are zero. */
1383 int off = ctz_hwi (word);
1384 bit_num += off;
1385 word >>= off;
1387 obj = ira_object_id_map[bit_num + i->base_conflict_id];
1388 i->bit_num = bit_num + 1;
1389 i->word = word >> 1;
1392 *pobj = obj;
1393 return true;
1396 /* Loop over all objects conflicting with OBJ. In each iteration,
1397 CONF is set to the next conflicting object. ITER is an instance
1398 of ira_object_conflict_iterator used to iterate the conflicts. */
1399 #define FOR_EACH_OBJECT_CONFLICT(OBJ, CONF, ITER) \
1400 for (ira_object_conflict_iter_init (&(ITER), (OBJ)); \
1401 ira_object_conflict_iter_cond (&(ITER), &(CONF));)
1405 /* The function returns TRUE if at least one hard register from ones
1406 starting with HARD_REGNO and containing value of MODE are in set
1407 HARD_REGSET. */
1408 static inline bool
1409 ira_hard_reg_set_intersection_p (int hard_regno, machine_mode mode,
1410 HARD_REG_SET hard_regset)
1412 int i;
1414 gcc_assert (hard_regno >= 0);
1415 for (i = hard_regno_nregs (hard_regno, mode) - 1; i >= 0; i--)
1416 if (TEST_HARD_REG_BIT (hard_regset, hard_regno + i))
1417 return true;
1418 return false;
1421 /* Return number of hard registers in hard register SET. */
1422 static inline int
1423 hard_reg_set_size (HARD_REG_SET set)
1425 int i, size;
1427 for (size = i = 0; i < FIRST_PSEUDO_REGISTER; i++)
1428 if (TEST_HARD_REG_BIT (set, i))
1429 size++;
1430 return size;
1433 /* The function returns TRUE if hard registers starting with
1434 HARD_REGNO and containing value of MODE are fully in set
1435 HARD_REGSET. */
1436 static inline bool
1437 ira_hard_reg_in_set_p (int hard_regno, machine_mode mode,
1438 HARD_REG_SET hard_regset)
1440 int i;
1442 ira_assert (hard_regno >= 0);
1443 for (i = hard_regno_nregs (hard_regno, mode) - 1; i >= 0; i--)
1444 if (!TEST_HARD_REG_BIT (hard_regset, hard_regno + i))
1445 return false;
1446 return true;
1451 /* To save memory we use a lazy approach for allocation and
1452 initialization of the cost vectors. We do this only when it is
1453 really necessary. */
1455 /* Allocate cost vector *VEC for hard registers of ACLASS and
1456 initialize the elements by VAL if it is necessary */
1457 static inline void
1458 ira_allocate_and_set_costs (int **vec, reg_class_t aclass, int val)
1460 int i, *reg_costs;
1461 int len;
1463 if (*vec != NULL)
1464 return;
1465 *vec = reg_costs = ira_allocate_cost_vector (aclass);
1466 len = ira_class_hard_regs_num[(int) aclass];
1467 for (i = 0; i < len; i++)
1468 reg_costs[i] = val;
1471 /* Allocate cost vector *VEC for hard registers of ACLASS and copy
1472 values of vector SRC into the vector if it is necessary */
1473 static inline void
1474 ira_allocate_and_copy_costs (int **vec, enum reg_class aclass, int *src)
1476 int len;
1478 if (*vec != NULL || src == NULL)
1479 return;
1480 *vec = ira_allocate_cost_vector (aclass);
1481 len = ira_class_hard_regs_num[aclass];
1482 memcpy (*vec, src, sizeof (int) * len);
1485 /* Allocate cost vector *VEC for hard registers of ACLASS and add
1486 values of vector SRC into the vector if it is necessary */
1487 static inline void
1488 ira_allocate_and_accumulate_costs (int **vec, enum reg_class aclass, int *src)
1490 int i, len;
1492 if (src == NULL)
1493 return;
1494 len = ira_class_hard_regs_num[aclass];
1495 if (*vec == NULL)
1497 *vec = ira_allocate_cost_vector (aclass);
1498 memset (*vec, 0, sizeof (int) * len);
1500 for (i = 0; i < len; i++)
1501 (*vec)[i] += src[i];
1504 /* Allocate cost vector *VEC for hard registers of ACLASS and copy
1505 values of vector SRC into the vector or initialize it by VAL (if
1506 SRC is null). */
1507 static inline void
1508 ira_allocate_and_set_or_copy_costs (int **vec, enum reg_class aclass,
1509 int val, int *src)
1511 int i, *reg_costs;
1512 int len;
1514 if (*vec != NULL)
1515 return;
1516 *vec = reg_costs = ira_allocate_cost_vector (aclass);
1517 len = ira_class_hard_regs_num[aclass];
1518 if (src != NULL)
1519 memcpy (reg_costs, src, sizeof (int) * len);
1520 else
1522 for (i = 0; i < len; i++)
1523 reg_costs[i] = val;
1527 extern rtx ira_create_new_reg (rtx);
1528 extern int first_moveable_pseudo, last_moveable_pseudo;
1530 /* Return the set of registers that would need a caller save if allocno A
1531 overlapped them. */
1533 inline HARD_REG_SET
1534 ira_need_caller_save_regs (ira_allocno_t a)
1536 return call_clobbers_in_region (ALLOCNO_CROSSED_CALLS_ABIS (a),
1537 ALLOCNO_CROSSED_CALLS_CLOBBERED_REGS (a),
1538 ALLOCNO_MODE (a));
1541 /* Return true if we would need to save allocno A around a call if we
1542 assigned hard register REGNO. */
1544 inline bool
1545 ira_need_caller_save_p (ira_allocno_t a, unsigned int regno)
1547 if (ALLOCNO_CALLS_CROSSED_NUM (a) == 0)
1548 return false;
1549 return call_clobbered_in_region_p (ALLOCNO_CROSSED_CALLS_ABIS (a),
1550 ALLOCNO_CROSSED_CALLS_CLOBBERED_REGS (a),
1551 ALLOCNO_MODE (a), regno);
1554 /* Represents the boundary between an allocno in one loop and its parent
1555 allocno in the enclosing loop. It is usually possible to change a
1556 register's allocation on this boundary; the class provides routines
1557 for calculating the cost of such changes. */
1558 class ira_loop_border_costs
1560 public:
1561 ira_loop_border_costs (ira_allocno_t);
1563 int move_between_loops_cost () const;
1564 int spill_outside_loop_cost () const;
1565 int spill_inside_loop_cost () const;
1567 private:
1568 /* The mode and class of the child allocno. */
1569 machine_mode m_mode;
1570 reg_class m_class;
1572 /* Sums the frequencies of the entry edges and the exit edges. */
1573 int m_entry_freq, m_exit_freq;
1576 /* Return the cost of storing the register on entry to the loop and
1577 loading it back on exit from the loop. This is the cost to use if
1578 the register is spilled within the loop but is successfully allocated
1579 in the parent loop. */
1580 inline int
1581 ira_loop_border_costs::spill_inside_loop_cost () const
1583 return (m_entry_freq * ira_memory_move_cost[m_mode][m_class][0]
1584 + m_exit_freq * ira_memory_move_cost[m_mode][m_class][1]);
1587 /* Return the cost of loading the register on entry to the loop and
1588 storing it back on exit from the loop. This is the cost to use if
1589 the register is successfully allocated within the loop but is spilled
1590 in the parent loop. */
1591 inline int
1592 ira_loop_border_costs::spill_outside_loop_cost () const
1594 return (m_entry_freq * ira_memory_move_cost[m_mode][m_class][1]
1595 + m_exit_freq * ira_memory_move_cost[m_mode][m_class][0]);
1598 /* Return the cost of moving the pseudo register between different hard
1599 registers on entry and exit from the loop. This is the cost to use
1600 if the register is successfully allocated within both this loop and
1601 the parent loop, but the allocations for the loops differ. */
1602 inline int
1603 ira_loop_border_costs::move_between_loops_cost () const
1605 ira_init_register_move_cost_if_necessary (m_mode);
1606 auto move_cost = ira_register_move_cost[m_mode][m_class][m_class];
1607 return move_cost * (m_entry_freq + m_exit_freq);
1610 /* Return true if subloops that contain allocnos for A's register can
1611 use a different assignment from A. ALLOCATED_P is true for the case
1612 in which allocation succeeded for A. EXCLUDE_OLD_RELOAD is true if
1613 we should always return false for non-LRA targets. (This is a hack
1614 and should be removed along with old reload.) */
1615 inline bool
1616 ira_subloop_allocnos_can_differ_p (ira_allocno_t a, bool allocated_p = true,
1617 bool exclude_old_reload = true)
1619 if (exclude_old_reload && !ira_use_lra_p)
1620 return false;
1622 auto regno = ALLOCNO_REGNO (a);
1624 if (pic_offset_table_rtx != NULL
1625 && regno == (int) REGNO (pic_offset_table_rtx))
1626 return false;
1628 ira_assert (regno < ira_reg_equiv_len);
1629 if (ira_equiv_no_lvalue_p (regno))
1630 return false;
1632 /* Avoid overlapping multi-registers. Moves between them might result
1633 in wrong code generation. */
1634 if (allocated_p)
1636 auto pclass = ira_pressure_class_translate[ALLOCNO_CLASS (a)];
1637 if (ira_reg_class_max_nregs[pclass][ALLOCNO_MODE (a)] > 1)
1638 return false;
1641 return true;
1644 /* Return true if we should treat A and SUBLOOP_A as belonging to a
1645 single region. */
1646 inline bool
1647 ira_single_region_allocno_p (ira_allocno_t a, ira_allocno_t subloop_a)
1649 if (flag_ira_region != IRA_REGION_MIXED)
1650 return false;
1652 if (ALLOCNO_MIGHT_CONFLICT_WITH_PARENT_P (subloop_a))
1653 return false;
1655 auto rclass = ALLOCNO_CLASS (a);
1656 auto pclass = ira_pressure_class_translate[rclass];
1657 auto loop_used_regs = ALLOCNO_LOOP_TREE_NODE (a)->reg_pressure[pclass];
1658 return loop_used_regs <= ira_class_hard_regs_num[pclass];
1661 /* Return the set of all hard registers that conflict with A. */
1662 inline HARD_REG_SET
1663 ira_total_conflict_hard_regs (ira_allocno_t a)
1665 auto obj_0 = ALLOCNO_OBJECT (a, 0);
1666 HARD_REG_SET conflicts = OBJECT_TOTAL_CONFLICT_HARD_REGS (obj_0);
1667 for (int i = 1; i < ALLOCNO_NUM_OBJECTS (a); i++)
1668 conflicts |= OBJECT_TOTAL_CONFLICT_HARD_REGS (ALLOCNO_OBJECT (a, i));
1669 return conflicts;
1672 /* Return the cost of saving a caller-saved register before each call
1673 in A's live range and restoring the same register after each call. */
1674 inline int
1675 ira_caller_save_cost (ira_allocno_t a)
1677 auto mode = ALLOCNO_MODE (a);
1678 auto rclass = ALLOCNO_CLASS (a);
1679 return (ALLOCNO_CALL_FREQ (a)
1680 * (ira_memory_move_cost[mode][rclass][0]
1681 + ira_memory_move_cost[mode][rclass][1]));
1684 /* A and SUBLOOP_A are allocnos for the same pseudo register, with A's
1685 loop immediately enclosing SUBLOOP_A's loop. If we allocate to A a
1686 hard register R that is clobbered by a call in SUBLOOP_A, decide
1687 which of the following approaches should be used for handling the
1688 conflict:
1690 (1) Spill R on entry to SUBLOOP_A's loop, assign memory to SUBLOOP_A,
1691 and restore R on exit from SUBLOOP_A's loop.
1693 (2) Spill R before each necessary call in SUBLOOP_A's live range and
1694 restore R after each such call.
1696 Return true if (1) is better than (2). SPILL_COST is the cost of
1697 doing (1). */
1698 inline bool
1699 ira_caller_save_loop_spill_p (ira_allocno_t a, ira_allocno_t subloop_a,
1700 int spill_cost)
1702 if (!ira_subloop_allocnos_can_differ_p (a))
1703 return false;
1705 /* Calculate the cost of saving a call-clobbered register
1706 before each call and restoring it afterwards. */
1707 int call_cost = ira_caller_save_cost (subloop_a);
1708 return call_cost && call_cost >= spill_cost;
1711 #endif /* GCC_IRA_INT_H */