1 /* Search for references that a functions loads or stores.
2 Copyright (C) 2020-2022 Free Software Foundation, Inc.
3 Contributed by David Cepelik and Jan Hubicka
5 This file is part of GCC.
7 GCC is free software; you can redistribute it and/or modify it under
8 the terms of the GNU General Public License as published by the Free
9 Software Foundation; either version 3, or (at your option) any later
12 GCC is distributed in the hope that it will be useful, but WITHOUT ANY
13 WARRANTY; without even the implied warranty of MERCHANTABILITY or
14 FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License
17 You should have received a copy of the GNU General Public License
18 along with GCC; see the file COPYING3. If not see
19 <http://www.gnu.org/licenses/>. */
21 /* Mod/ref pass records summary about loads and stores performed by the
22 function. This is later used by alias analysis to disambiguate memory
23 accesses across function calls.
25 This file contains a tree pass and an IPA pass. Both performs the same
26 analysis however tree pass is executed during early and late optimization
27 passes to propagate info downwards in the compilation order. IPA pass
28 propagates across the callgraph and is able to handle recursion and works on
29 whole program during link-time analysis.
31 LTO mode differs from the local mode by not recording alias sets but types
32 that are translated to alias sets later. This is necessary in order stream
33 the information because the alias sets are rebuild at stream-in time and may
34 not correspond to ones seen during analysis. For this reason part of
35 analysis is duplicated.
37 The following information is computed
38 1) load/store access tree described in ipa-modref-tree.h
39 This is used by tree-ssa-alias to disambiguate load/stores
40 2) EAF flags used by points-to analysis (in tree-ssa-structalias).
41 and defined in tree-core.h.
42 and stored to optimization_summaries.
44 There are multiple summaries computed and used during the propagation:
45 - summaries holds summaries from analysis to IPA propagation
47 - summaries_lto is same as summaries but holds them in a format
48 that can be streamed (as described above).
49 - fnspec_summary holds fnspec strings for call. This is
50 necessary because gimple_call_fnspec performs additional
51 analysis except for looking callee fndecl.
52 - escape_summary holds escape points for given call edge.
53 That is a vector recording what function parameters
54 may escape to a function call (and with what parameter index). */
58 #include "coretypes.h"
62 #include "alloc-pool.h"
63 #include "tree-pass.h"
64 #include "gimple-iterator.h"
67 #include "ipa-utils.h"
68 #include "symbol-summary.h"
69 #include "gimple-pretty-print.h"
70 #include "gimple-walk.h"
71 #include "print-tree.h"
72 #include "tree-streamer.h"
75 #include "ipa-modref-tree.h"
76 #include "ipa-modref.h"
77 #include "value-range.h"
79 #include "ipa-fnsummary.h"
80 #include "attr-fnspec.h"
81 #include "symtab-clones.h"
82 #include "gimple-ssa.h"
83 #include "tree-phinodes.h"
84 #include "tree-ssa-operands.h"
85 #include "ssa-iterators.h"
86 #include "stringpool.h"
87 #include "tree-ssanames.h"
95 /* We record fnspec specifiers for call edges since they depends on actual
114 /* Summary holding fnspec string for a given call. */
116 class fnspec_summaries_t
: public call_summary
<fnspec_summary
*>
119 fnspec_summaries_t (symbol_table
*symtab
)
120 : call_summary
<fnspec_summary
*> (symtab
) {}
121 /* Hook that is called by summary when an edge is duplicated. */
122 void duplicate (cgraph_edge
*,
125 fnspec_summary
*dst
) final override
127 dst
->fnspec
= xstrdup (src
->fnspec
);
131 static fnspec_summaries_t
*fnspec_summaries
= NULL
;
133 /* Escape summary holds a vector of param indexes that escape to
137 /* Parameter that escapes at a given call. */
139 /* Argument it escapes to. */
141 /* Minimal flags known about the argument. */
142 eaf_flags_t min_flags
;
143 /* Does it escape directly or indirectly? */
147 /* Dump EAF flags. */
150 dump_eaf_flags (FILE *out
, int flags
, bool newline
= true)
152 if (flags
& EAF_UNUSED
)
153 fprintf (out
, " unused");
154 if (flags
& EAF_NO_DIRECT_CLOBBER
)
155 fprintf (out
, " no_direct_clobber");
156 if (flags
& EAF_NO_INDIRECT_CLOBBER
)
157 fprintf (out
, " no_indirect_clobber");
158 if (flags
& EAF_NO_DIRECT_ESCAPE
)
159 fprintf (out
, " no_direct_escape");
160 if (flags
& EAF_NO_INDIRECT_ESCAPE
)
161 fprintf (out
, " no_indirect_escape");
162 if (flags
& EAF_NOT_RETURNED_DIRECTLY
)
163 fprintf (out
, " not_returned_directly");
164 if (flags
& EAF_NOT_RETURNED_INDIRECTLY
)
165 fprintf (out
, " not_returned_indirectly");
166 if (flags
& EAF_NO_DIRECT_READ
)
167 fprintf (out
, " no_direct_read");
168 if (flags
& EAF_NO_INDIRECT_READ
)
169 fprintf (out
, " no_indirect_read");
174 struct escape_summary
176 auto_vec
<escape_entry
> esc
;
177 void dump (FILE *out
)
179 for (unsigned int i
= 0; i
< esc
.length (); i
++)
181 fprintf (out
, " parm %i arg %i %s min:",
184 esc
[i
].direct
? "(direct)" : "(indirect)");
185 dump_eaf_flags (out
, esc
[i
].min_flags
, false);
191 class escape_summaries_t
: public call_summary
<escape_summary
*>
194 escape_summaries_t (symbol_table
*symtab
)
195 : call_summary
<escape_summary
*> (symtab
) {}
196 /* Hook that is called by summary when an edge is duplicated. */
197 void duplicate (cgraph_edge
*,
200 escape_summary
*dst
) final override
202 dst
->esc
= src
->esc
.copy ();
206 static escape_summaries_t
*escape_summaries
= NULL
;
208 } /* ANON namespace: GTY annotated summaries can not be anonymous. */
211 /* Class (from which there is one global instance) that holds modref summaries
212 for all analyzed functions. */
214 class GTY((user
)) modref_summaries
215 : public fast_function_summary
<modref_summary
*, va_gc
>
218 modref_summaries (symbol_table
*symtab
)
219 : fast_function_summary
<modref_summary
*, va_gc
> (symtab
) {}
220 void insert (cgraph_node
*, modref_summary
*state
) final override
;
221 void duplicate (cgraph_node
*src_node
,
222 cgraph_node
*dst_node
,
223 modref_summary
*src_data
,
224 modref_summary
*dst_data
) final override
;
225 static modref_summaries
*create_ggc (symbol_table
*symtab
)
227 return new (ggc_alloc_no_dtor
<modref_summaries
> ())
228 modref_summaries (symtab
);
232 class modref_summary_lto
;
234 /* Class (from which there is one global instance) that holds modref summaries
235 for all analyzed functions. */
237 class GTY((user
)) modref_summaries_lto
238 : public fast_function_summary
<modref_summary_lto
*, va_gc
>
241 modref_summaries_lto (symbol_table
*symtab
)
242 : fast_function_summary
<modref_summary_lto
*, va_gc
> (symtab
),
243 propagated (false) {}
244 void insert (cgraph_node
*, modref_summary_lto
*state
) final override
;
245 void duplicate (cgraph_node
*src_node
,
246 cgraph_node
*dst_node
,
247 modref_summary_lto
*src_data
,
248 modref_summary_lto
*dst_data
) final override
;
249 static modref_summaries_lto
*create_ggc (symbol_table
*symtab
)
251 return new (ggc_alloc_no_dtor
<modref_summaries_lto
> ())
252 modref_summaries_lto (symtab
);
257 /* Global variable holding all modref summaries
258 (from analysis to IPA propagation time). */
260 static GTY(()) fast_function_summary
<modref_summary
*, va_gc
>
263 /* Global variable holding all modref optimization summaries
264 (from IPA propagation time or used by local optimization pass). */
266 static GTY(()) fast_function_summary
<modref_summary
*, va_gc
>
267 *optimization_summaries
;
269 /* LTO summaries hold info from analysis to LTO streaming or from LTO
270 stream-in through propagation to LTO stream-out. */
272 static GTY(()) fast_function_summary
<modref_summary_lto
*, va_gc
>
275 /* Summary for a single function which this pass produces. */
277 modref_summary::modref_summary ()
278 : loads (NULL
), stores (NULL
), retslot_flags (0), static_chain_flags (0),
279 writes_errno (false), side_effects (false), nondeterministic (false),
280 calls_interposable (false), global_memory_read (false),
281 global_memory_written (false), try_dse (false)
285 modref_summary::~modref_summary ()
293 /* Remove all flags from EAF_FLAGS that are implied by ECF_FLAGS and not
294 useful to track. If returns_void is true moreover clear
297 remove_useless_eaf_flags (int eaf_flags
, int ecf_flags
, bool returns_void
)
299 if (ecf_flags
& (ECF_CONST
| ECF_NOVOPS
))
300 eaf_flags
&= ~implicit_const_eaf_flags
;
301 else if (ecf_flags
& ECF_PURE
)
302 eaf_flags
&= ~implicit_pure_eaf_flags
;
303 else if ((ecf_flags
& ECF_NORETURN
) || returns_void
)
304 eaf_flags
&= ~(EAF_NOT_RETURNED_DIRECTLY
| EAF_NOT_RETURNED_INDIRECTLY
);
308 /* Return true if FLAGS holds some useful information. */
311 eaf_flags_useful_p (vec
<eaf_flags_t
> &flags
, int ecf_flags
)
313 for (unsigned i
= 0; i
< flags
.length (); i
++)
314 if (remove_useless_eaf_flags (flags
[i
], ecf_flags
, false))
319 /* Return true if summary is potentially useful for optimization.
320 If CHECK_FLAGS is false assume that arg_flags are useful. */
323 modref_summary::useful_p (int ecf_flags
, bool check_flags
)
325 if (arg_flags
.length () && !check_flags
)
327 if (check_flags
&& eaf_flags_useful_p (arg_flags
, ecf_flags
))
329 arg_flags
.release ();
330 if (check_flags
&& remove_useless_eaf_flags (retslot_flags
, ecf_flags
, false))
333 && remove_useless_eaf_flags (static_chain_flags
, ecf_flags
, false))
335 if (ecf_flags
& (ECF_CONST
| ECF_NOVOPS
))
336 return ((!side_effects
|| !nondeterministic
)
337 && (ecf_flags
& ECF_LOOPING_CONST_OR_PURE
));
338 if (loads
&& !loads
->every_base
)
342 if (ecf_flags
& ECF_PURE
)
343 return ((!side_effects
|| !nondeterministic
)
344 && (ecf_flags
& ECF_LOOPING_CONST_OR_PURE
));
345 return stores
&& !stores
->every_base
;
348 /* Single function summary used for LTO. */
350 typedef modref_tree
<tree
> modref_records_lto
;
351 struct GTY(()) modref_summary_lto
353 /* Load and stores in functions using types rather then alias sets.
355 This is necessary to make the information streamable for LTO but is also
356 more verbose and thus more likely to hit the limits. */
357 modref_records_lto
*loads
;
358 modref_records_lto
*stores
;
359 auto_vec
<modref_access_node
> GTY((skip
)) kills
;
360 auto_vec
<eaf_flags_t
> GTY((skip
)) arg_flags
;
361 eaf_flags_t retslot_flags
;
362 eaf_flags_t static_chain_flags
;
363 unsigned writes_errno
: 1;
364 unsigned side_effects
: 1;
365 unsigned nondeterministic
: 1;
366 unsigned calls_interposable
: 1;
368 modref_summary_lto ();
369 ~modref_summary_lto ();
371 bool useful_p (int ecf_flags
, bool check_flags
= true);
374 /* Summary for a single function which this pass produces. */
376 modref_summary_lto::modref_summary_lto ()
377 : loads (NULL
), stores (NULL
), retslot_flags (0), static_chain_flags (0),
378 writes_errno (false), side_effects (false), nondeterministic (false),
379 calls_interposable (false)
383 modref_summary_lto::~modref_summary_lto ()
392 /* Return true if lto summary is potentially useful for optimization.
393 If CHECK_FLAGS is false assume that arg_flags are useful. */
396 modref_summary_lto::useful_p (int ecf_flags
, bool check_flags
)
398 if (arg_flags
.length () && !check_flags
)
400 if (check_flags
&& eaf_flags_useful_p (arg_flags
, ecf_flags
))
402 arg_flags
.release ();
403 if (check_flags
&& remove_useless_eaf_flags (retslot_flags
, ecf_flags
, false))
406 && remove_useless_eaf_flags (static_chain_flags
, ecf_flags
, false))
408 if (ecf_flags
& (ECF_CONST
| ECF_NOVOPS
))
409 return ((!side_effects
|| !nondeterministic
)
410 && (ecf_flags
& ECF_LOOPING_CONST_OR_PURE
));
411 if (loads
&& !loads
->every_base
)
415 if (ecf_flags
& ECF_PURE
)
416 return ((!side_effects
|| !nondeterministic
)
417 && (ecf_flags
& ECF_LOOPING_CONST_OR_PURE
));
418 return stores
&& !stores
->every_base
;
421 /* Dump records TT to OUT. */
424 dump_records (modref_records
*tt
, FILE *out
)
428 fprintf (out
, " Every base\n");
432 modref_base_node
<alias_set_type
> *n
;
433 FOR_EACH_VEC_SAFE_ELT (tt
->bases
, i
, n
)
435 fprintf (out
, " Base %i: alias set %i\n", (int)i
, n
->base
);
438 fprintf (out
, " Every ref\n");
442 modref_ref_node
<alias_set_type
> *r
;
443 FOR_EACH_VEC_SAFE_ELT (n
->refs
, j
, r
)
445 fprintf (out
, " Ref %i: alias set %i\n", (int)j
, r
->ref
);
448 fprintf (out
, " Every access\n");
452 modref_access_node
*a
;
453 FOR_EACH_VEC_SAFE_ELT (r
->accesses
, k
, a
)
455 fprintf (out
, " access:");
462 /* Dump records TT to OUT. */
465 dump_lto_records (modref_records_lto
*tt
, FILE *out
)
469 fprintf (out
, " Every base\n");
473 modref_base_node
<tree
> *n
;
474 FOR_EACH_VEC_SAFE_ELT (tt
->bases
, i
, n
)
476 fprintf (out
, " Base %i:", (int)i
);
477 print_generic_expr (dump_file
, n
->base
);
478 fprintf (out
, " (alias set %i)\n",
479 n
->base
? get_alias_set (n
->base
) : 0);
482 fprintf (out
, " Every ref\n");
486 modref_ref_node
<tree
> *r
;
487 FOR_EACH_VEC_SAFE_ELT (n
->refs
, j
, r
)
489 fprintf (out
, " Ref %i:", (int)j
);
490 print_generic_expr (dump_file
, r
->ref
);
491 fprintf (out
, " (alias set %i)\n",
492 r
->ref
? get_alias_set (r
->ref
) : 0);
495 fprintf (out
, " Every access\n");
499 modref_access_node
*a
;
500 FOR_EACH_VEC_SAFE_ELT (r
->accesses
, k
, a
)
502 fprintf (out
, " access:");
509 /* Dump all escape points of NODE to OUT. */
512 dump_modref_edge_summaries (FILE *out
, cgraph_node
*node
, int depth
)
515 if (!escape_summaries
)
517 for (cgraph_edge
*e
= node
->indirect_calls
; e
; e
= e
->next_callee
)
519 class escape_summary
*sum
= escape_summaries
->get (e
);
522 fprintf (out
, "%*sIndirect call %i in %s escapes:",
523 depth
, "", i
, node
->dump_name ());
528 for (cgraph_edge
*e
= node
->callees
; e
; e
= e
->next_callee
)
530 if (!e
->inline_failed
)
531 dump_modref_edge_summaries (out
, e
->callee
, depth
+ 1);
532 class escape_summary
*sum
= escape_summaries
->get (e
);
535 fprintf (out
, "%*sCall %s->%s escapes:", depth
, "",
536 node
->dump_name (), e
->callee
->dump_name ());
539 class fnspec_summary
*fsum
= fnspec_summaries
->get (e
);
542 fprintf (out
, "%*sCall %s->%s fnspec: %s\n", depth
, "",
543 node
->dump_name (), e
->callee
->dump_name (),
549 /* Remove all call edge summaries associated with NODE. */
552 remove_modref_edge_summaries (cgraph_node
*node
)
554 if (!escape_summaries
)
556 for (cgraph_edge
*e
= node
->indirect_calls
; e
; e
= e
->next_callee
)
557 escape_summaries
->remove (e
);
558 for (cgraph_edge
*e
= node
->callees
; e
; e
= e
->next_callee
)
560 if (!e
->inline_failed
)
561 remove_modref_edge_summaries (e
->callee
);
562 escape_summaries
->remove (e
);
563 fnspec_summaries
->remove (e
);
570 modref_summary::dump (FILE *out
)
574 fprintf (out
, " loads:\n");
575 dump_records (loads
, out
);
579 fprintf (out
, " stores:\n");
580 dump_records (stores
, out
);
584 fprintf (out
, " kills:\n");
585 for (auto kill
: kills
)
592 fprintf (out
, " Writes errno\n");
594 fprintf (out
, " Side effects\n");
595 if (nondeterministic
)
596 fprintf (out
, " Nondeterministic\n");
597 if (calls_interposable
)
598 fprintf (out
, " Calls interposable\n");
599 if (global_memory_read
)
600 fprintf (out
, " Global memory read\n");
601 if (global_memory_written
)
602 fprintf (out
, " Global memory written\n");
604 fprintf (out
, " Try dse\n");
605 if (arg_flags
.length ())
607 for (unsigned int i
= 0; i
< arg_flags
.length (); i
++)
610 fprintf (out
, " parm %i flags:", i
);
611 dump_eaf_flags (out
, arg_flags
[i
]);
616 fprintf (out
, " Retslot flags:");
617 dump_eaf_flags (out
, retslot_flags
);
619 if (static_chain_flags
)
621 fprintf (out
, " Static chain flags:");
622 dump_eaf_flags (out
, static_chain_flags
);
629 modref_summary_lto::dump (FILE *out
)
631 fprintf (out
, " loads:\n");
632 dump_lto_records (loads
, out
);
633 fprintf (out
, " stores:\n");
634 dump_lto_records (stores
, out
);
637 fprintf (out
, " kills:\n");
638 for (auto kill
: kills
)
645 fprintf (out
, " Writes errno\n");
647 fprintf (out
, " Side effects\n");
648 if (nondeterministic
)
649 fprintf (out
, " Nondeterministic\n");
650 if (calls_interposable
)
651 fprintf (out
, " Calls interposable\n");
652 if (arg_flags
.length ())
654 for (unsigned int i
= 0; i
< arg_flags
.length (); i
++)
657 fprintf (out
, " parm %i flags:", i
);
658 dump_eaf_flags (out
, arg_flags
[i
]);
663 fprintf (out
, " Retslot flags:");
664 dump_eaf_flags (out
, retslot_flags
);
666 if (static_chain_flags
)
668 fprintf (out
, " Static chain flags:");
669 dump_eaf_flags (out
, static_chain_flags
);
673 /* Called after summary is produced and before it is used by local analysis.
674 Can be called multiple times in case summary needs to update signature.
675 FUN is decl of function summary is attached to. */
677 modref_summary::finalize (tree fun
)
679 global_memory_read
= !loads
|| loads
->global_access_p ();
680 global_memory_written
= !stores
|| stores
->global_access_p ();
682 /* We can do DSE if we know function has no side effects and
683 we can analyze all stores. Disable dse if there are too many
685 if (side_effects
|| global_memory_written
|| writes_errno
)
691 int num_tests
= 0, max_tests
692 = opt_for_fn (fun
, param_modref_max_tests
);
693 modref_base_node
<alias_set_type
> *base_node
;
694 modref_ref_node
<alias_set_type
> *ref_node
;
695 modref_access_node
*access_node
;
696 FOR_EACH_VEC_SAFE_ELT (stores
->bases
, i
, base_node
)
698 if (base_node
->every_ref
)
703 FOR_EACH_VEC_SAFE_ELT (base_node
->refs
, j
, ref_node
)
705 if (base_node
->every_ref
)
710 FOR_EACH_VEC_SAFE_ELT (ref_node
->accesses
, k
, access_node
)
711 if (num_tests
++ > max_tests
712 || !access_node
->parm_offset_known
)
724 if (loads
->every_base
)
729 for (auto base_node
: loads
->bases
)
731 if (base_node
->every_ref
)
734 for (auto ref_node
: base_node
->refs
)
735 if (ref_node
->every_access
)
738 load_accesses
+= ref_node
->accesses
->length ();
743 /* Get function summary for FUNC if it exists, return NULL otherwise. */
746 get_modref_function_summary (cgraph_node
*func
)
748 /* Avoid creation of the summary too early (e.g. when front-end calls us). */
749 if (!optimization_summaries
)
752 /* A single function body may be represented by multiple symbols with
753 different visibility. For example, if FUNC is an interposable alias,
754 we don't want to return anything, even if we have summary for the target
756 enum availability avail
;
757 func
= func
->ultimate_alias_target
758 (&avail
, current_function_decl
?
759 cgraph_node::get (current_function_decl
) : NULL
);
760 if (avail
<= AVAIL_INTERPOSABLE
)
763 modref_summary
*r
= optimization_summaries
->get (func
);
767 /* Get function summary for CALL if it exists, return NULL otherwise.
768 If non-null set interposed to indicate whether function may not
769 bind to current def. In this case sometimes loads from function
770 needs to be ignored. */
773 get_modref_function_summary (gcall
*call
, bool *interposed
)
775 tree callee
= gimple_call_fndecl (call
);
778 struct cgraph_node
*node
= cgraph_node::get (callee
);
781 modref_summary
*r
= get_modref_function_summary (node
);
783 *interposed
= r
->calls_interposable
784 || !node
->binds_to_current_def_p ();
791 /* Return true if ECF flags says that nondeterminism can be ignored. */
794 ignore_nondeterminism_p (tree caller
, int flags
)
796 if (flags
& (ECF_CONST
| ECF_PURE
))
798 if ((flags
& (ECF_NORETURN
| ECF_NOTHROW
)) == (ECF_NORETURN
| ECF_NOTHROW
)
799 || (!opt_for_fn (caller
, flag_exceptions
) && (flags
& ECF_NORETURN
)))
804 /* Return true if ECF flags says that return value can be ignored. */
807 ignore_retval_p (tree caller
, int flags
)
809 if ((flags
& (ECF_NORETURN
| ECF_NOTHROW
)) == (ECF_NORETURN
| ECF_NOTHROW
)
810 || (!opt_for_fn (caller
, flag_exceptions
) && (flags
& ECF_NORETURN
)))
815 /* Return true if ECF flags says that stores can be ignored. */
818 ignore_stores_p (tree caller
, int flags
)
820 if (flags
& (ECF_PURE
| ECF_CONST
| ECF_NOVOPS
))
822 if ((flags
& (ECF_NORETURN
| ECF_NOTHROW
)) == (ECF_NORETURN
| ECF_NOTHROW
)
823 || (!opt_for_fn (caller
, flag_exceptions
) && (flags
& ECF_NORETURN
)))
828 /* Determine parm_map for PTR which is supposed to be a pointer. */
831 parm_map_for_ptr (tree op
)
835 struct modref_parm_map parm_map
;
838 parm_map
.parm_offset_known
= false;
839 parm_map
.parm_offset
= 0;
841 offset_known
= unadjusted_ptr_and_unit_offset (op
, &op
, &offset
);
842 if (TREE_CODE (op
) == SSA_NAME
843 && SSA_NAME_IS_DEFAULT_DEF (op
)
844 && TREE_CODE (SSA_NAME_VAR (op
)) == PARM_DECL
)
848 if (cfun
->static_chain_decl
849 && op
== ssa_default_def (cfun
, cfun
->static_chain_decl
))
850 index
= MODREF_STATIC_CHAIN_PARM
;
852 for (tree t
= DECL_ARGUMENTS (current_function_decl
);
853 t
!= SSA_NAME_VAR (op
); t
= DECL_CHAIN (t
))
855 parm_map
.parm_index
= index
;
856 parm_map
.parm_offset_known
= offset_known
;
857 parm_map
.parm_offset
= offset
;
859 else if (points_to_local_or_readonly_memory_p (op
))
860 parm_map
.parm_index
= MODREF_LOCAL_MEMORY_PARM
;
861 /* Memory allocated in the function is not visible to caller before the
862 call and thus we do not need to record it as load/stores/kills. */
863 else if (TREE_CODE (op
) == SSA_NAME
864 && (call
= dyn_cast
<gcall
*>(SSA_NAME_DEF_STMT (op
))) != NULL
865 && gimple_call_flags (call
) & ECF_MALLOC
)
866 parm_map
.parm_index
= MODREF_LOCAL_MEMORY_PARM
;
868 parm_map
.parm_index
= MODREF_UNKNOWN_PARM
;
872 /* Return true if ARG with EAF flags FLAGS can not make any caller's parameter
873 used (if LOAD is true we check loads, otherwise stores). */
876 verify_arg (tree arg
, int flags
, bool load
)
878 if (flags
& EAF_UNUSED
)
880 if (load
&& (flags
& EAF_NO_DIRECT_READ
))
883 && (flags
& (EAF_NO_DIRECT_CLOBBER
| EAF_NO_INDIRECT_CLOBBER
))
884 == (EAF_NO_DIRECT_CLOBBER
| EAF_NO_INDIRECT_CLOBBER
))
886 if (is_gimple_constant (arg
))
888 if (DECL_P (arg
) && TREE_READONLY (arg
))
890 if (TREE_CODE (arg
) == ADDR_EXPR
)
892 tree t
= get_base_address (TREE_OPERAND (arg
, 0));
893 if (is_gimple_constant (t
))
896 && (TREE_READONLY (t
) || TREE_CODE (t
) == FUNCTION_DECL
))
902 /* Return true if STMT may access memory that is pointed to by parameters
903 of caller and which is not seen as an escape by PTA.
904 CALLEE_ECF_FLAGS are ECF flags of callee. If LOAD is true then by access
905 we mean load, otherwise we mean store. */
908 may_access_nonescaping_parm_p (gcall
*call
, int callee_ecf_flags
, bool load
)
910 int implicit_flags
= 0;
912 if (ignore_stores_p (current_function_decl
, callee_ecf_flags
))
913 implicit_flags
|= ignore_stores_eaf_flags
;
914 if (callee_ecf_flags
& ECF_PURE
)
915 implicit_flags
|= implicit_pure_eaf_flags
;
916 if (callee_ecf_flags
& (ECF_CONST
| ECF_NOVOPS
))
917 implicit_flags
|= implicit_const_eaf_flags
;
918 if (gimple_call_chain (call
)
919 && !verify_arg (gimple_call_chain (call
),
920 gimple_call_static_chain_flags (call
) | implicit_flags
,
923 for (unsigned int i
= 0; i
< gimple_call_num_args (call
); i
++)
924 if (!verify_arg (gimple_call_arg (call
, i
),
925 gimple_call_arg_flags (call
, i
) | implicit_flags
,
932 /* Analyze memory accesses (loads, stores and kills) performed
933 by the function. Set also side_effects, calls_interposable
934 and nondeterminism flags. */
936 class modref_access_analysis
939 modref_access_analysis (bool ipa
, modref_summary
*summary
,
940 modref_summary_lto
*summary_lto
)
941 : m_summary (summary
), m_summary_lto (summary_lto
), m_ipa (ipa
)
946 bool set_side_effects ();
947 bool set_nondeterministic ();
948 static modref_access_node
get_access (ao_ref
*ref
);
949 static void record_access (modref_records
*, ao_ref
*, modref_access_node
&);
950 static void record_access_lto (modref_records_lto
*, ao_ref
*,
951 modref_access_node
&a
);
952 bool record_access_p (tree
);
953 bool record_unknown_load ();
954 bool record_unknown_store ();
955 bool record_global_memory_load ();
956 bool record_global_memory_store ();
957 bool merge_call_side_effects (gimple
*, modref_summary
*,
958 cgraph_node
*, bool);
959 modref_access_node
get_access_for_fnspec (gcall
*, attr_fnspec
&,
960 unsigned int, modref_parm_map
&);
961 void process_fnspec (gcall
*);
962 void analyze_call (gcall
*);
963 static bool analyze_load (gimple
*, tree
, tree
, void *);
964 static bool analyze_store (gimple
*, tree
, tree
, void *);
965 void analyze_stmt (gimple
*, bool);
968 /* Summary being computed.
969 We work either with m_summary or m_summary_lto. Never on both. */
970 modref_summary
*m_summary
;
971 modref_summary_lto
*m_summary_lto
;
972 /* Recursive calls needs simplistic dataflow after analysis finished.
973 Collect all calls into this vector during analysis and later process
974 them in propagate. */
975 auto_vec
<gimple
*, 32> m_recursive_calls
;
976 /* ECF flags of function being analyzed. */
978 /* True if IPA propagation will be done later. */
980 /* Set true if statement currently analyze is known to be
981 executed each time function is called. */
982 bool m_always_executed
;
985 /* Set side_effects flag and return if something changed. */
988 modref_access_analysis::set_side_effects ()
990 bool changed
= false;
992 if (m_summary
&& !m_summary
->side_effects
)
994 m_summary
->side_effects
= true;
997 if (m_summary_lto
&& !m_summary_lto
->side_effects
)
999 m_summary_lto
->side_effects
= true;
1005 /* Set nondeterministic flag and return if something changed. */
1008 modref_access_analysis::set_nondeterministic ()
1010 bool changed
= false;
1012 if (m_summary
&& !m_summary
->nondeterministic
)
1014 m_summary
->side_effects
= m_summary
->nondeterministic
= true;
1017 if (m_summary_lto
&& !m_summary_lto
->nondeterministic
)
1019 m_summary_lto
->side_effects
= m_summary_lto
->nondeterministic
= true;
1025 /* Construct modref_access_node from REF. */
1028 modref_access_analysis::get_access (ao_ref
*ref
)
1032 base
= ao_ref_base (ref
);
1033 modref_access_node a
= {ref
->offset
, ref
->size
, ref
->max_size
,
1034 0, MODREF_UNKNOWN_PARM
, false, 0};
1035 if (TREE_CODE (base
) == MEM_REF
|| TREE_CODE (base
) == TARGET_MEM_REF
)
1038 modref_parm_map m
= parm_map_for_ptr (TREE_OPERAND (base
, 0));
1040 a
.parm_index
= m
.parm_index
;
1041 if (a
.parm_index
!= MODREF_UNKNOWN_PARM
&& TREE_CODE (memref
) == MEM_REF
)
1044 = wi::to_poly_wide (TREE_OPERAND
1045 (memref
, 1)).to_shwi (&a
.parm_offset
);
1046 if (a
.parm_offset_known
&& m
.parm_offset_known
)
1047 a
.parm_offset
+= m
.parm_offset
;
1049 a
.parm_offset_known
= false;
1053 a
.parm_index
= MODREF_UNKNOWN_PARM
;
1057 /* Record access into the modref_records data structure. */
1060 modref_access_analysis::record_access (modref_records
*tt
,
1062 modref_access_node
&a
)
1064 alias_set_type base_set
= !flag_strict_aliasing
1065 || !flag_ipa_strict_aliasing
? 0
1066 : ao_ref_base_alias_set (ref
);
1067 alias_set_type ref_set
= !flag_strict_aliasing
1068 || !flag_ipa_strict_aliasing
? 0
1069 : (ao_ref_alias_set (ref
));
1072 fprintf (dump_file
, " - Recording base_set=%i ref_set=%i ",
1076 tt
->insert (current_function_decl
, base_set
, ref_set
, a
, false);
1079 /* IPA version of record_access_tree. */
1082 modref_access_analysis::record_access_lto (modref_records_lto
*tt
, ao_ref
*ref
,
1083 modref_access_node
&a
)
1085 /* get_alias_set sometimes use different type to compute the alias set
1086 than TREE_TYPE (base). Do same adjustments. */
1087 tree base_type
= NULL_TREE
, ref_type
= NULL_TREE
;
1088 if (flag_strict_aliasing
&& flag_ipa_strict_aliasing
)
1093 while (handled_component_p (base
))
1094 base
= TREE_OPERAND (base
, 0);
1096 base_type
= reference_alias_ptr_type_1 (&base
);
1099 base_type
= TREE_TYPE (base
);
1101 base_type
= TYPE_REF_CAN_ALIAS_ALL (base_type
)
1102 ? NULL_TREE
: TREE_TYPE (base_type
);
1104 tree ref_expr
= ref
->ref
;
1105 ref_type
= reference_alias_ptr_type_1 (&ref_expr
);
1108 ref_type
= TREE_TYPE (ref_expr
);
1110 ref_type
= TYPE_REF_CAN_ALIAS_ALL (ref_type
)
1111 ? NULL_TREE
: TREE_TYPE (ref_type
);
1113 /* Sanity check that we are in sync with what get_alias_set does. */
1114 gcc_checking_assert ((!base_type
&& !ao_ref_base_alias_set (ref
))
1115 || get_alias_set (base_type
)
1116 == ao_ref_base_alias_set (ref
));
1117 gcc_checking_assert ((!ref_type
&& !ao_ref_alias_set (ref
))
1118 || get_alias_set (ref_type
)
1119 == ao_ref_alias_set (ref
));
1121 /* Do not bother to record types that have no meaningful alias set.
1122 Also skip variably modified types since these go to local streams. */
1123 if (base_type
&& (!get_alias_set (base_type
)
1124 || variably_modified_type_p (base_type
, NULL_TREE
)))
1125 base_type
= NULL_TREE
;
1126 if (ref_type
&& (!get_alias_set (ref_type
)
1127 || variably_modified_type_p (ref_type
, NULL_TREE
)))
1128 ref_type
= NULL_TREE
;
1132 fprintf (dump_file
, " - Recording base type:");
1133 print_generic_expr (dump_file
, base_type
);
1134 fprintf (dump_file
, " (alias set %i) ref type:",
1135 base_type
? get_alias_set (base_type
) : 0);
1136 print_generic_expr (dump_file
, ref_type
);
1137 fprintf (dump_file
, " (alias set %i) ",
1138 ref_type
? get_alias_set (ref_type
) : 0);
1142 tt
->insert (current_function_decl
, base_type
, ref_type
, a
, false);
1145 /* Returns true if and only if we should store the access to EXPR.
1146 Some accesses, e.g. loads from automatic variables, are not interesting. */
1149 modref_access_analysis::record_access_p (tree expr
)
1151 if (TREE_THIS_VOLATILE (expr
))
1154 fprintf (dump_file
, " (volatile; marking nondeterministic) ");
1155 set_nondeterministic ();
1157 if (cfun
->can_throw_non_call_exceptions
1158 && tree_could_throw_p (expr
))
1161 fprintf (dump_file
, " (can throw; marking side effects) ");
1162 set_side_effects ();
1165 if (refs_local_or_readonly_memory_p (expr
))
1168 fprintf (dump_file
, " - Read-only or local, ignoring.\n");
1174 /* Collapse loads and return true if something changed. */
1177 modref_access_analysis::record_unknown_load ()
1179 bool changed
= false;
1181 if (m_summary
&& !m_summary
->loads
->every_base
)
1183 m_summary
->loads
->collapse ();
1186 if (m_summary_lto
&& !m_summary_lto
->loads
->every_base
)
1188 m_summary_lto
->loads
->collapse ();
1194 /* Collapse loads and return true if something changed. */
1197 modref_access_analysis::record_unknown_store ()
1199 bool changed
= false;
1201 if (m_summary
&& !m_summary
->stores
->every_base
)
1203 m_summary
->stores
->collapse ();
1206 if (m_summary_lto
&& !m_summary_lto
->stores
->every_base
)
1208 m_summary_lto
->stores
->collapse ();
1214 /* Record unknown load from global memory. */
1217 modref_access_analysis::record_global_memory_load ()
1219 bool changed
= false;
1220 modref_access_node a
= {0, -1, -1,
1221 0, MODREF_GLOBAL_MEMORY_PARM
, false, 0};
1223 if (m_summary
&& !m_summary
->loads
->every_base
)
1224 changed
|= m_summary
->loads
->insert (current_function_decl
, 0, 0, a
, false);
1225 if (m_summary_lto
&& !m_summary_lto
->loads
->every_base
)
1226 changed
|= m_summary_lto
->loads
->insert (current_function_decl
,
1231 /* Record unknown store from global memory. */
1234 modref_access_analysis::record_global_memory_store ()
1236 bool changed
= false;
1237 modref_access_node a
= {0, -1, -1,
1238 0, MODREF_GLOBAL_MEMORY_PARM
, false, 0};
1240 if (m_summary
&& !m_summary
->stores
->every_base
)
1241 changed
|= m_summary
->stores
->insert (current_function_decl
,
1243 if (m_summary_lto
&& !m_summary_lto
->stores
->every_base
)
1244 changed
|= m_summary_lto
->stores
->insert (current_function_decl
,
1249 /* Merge side effects of call STMT to function with CALLEE_SUMMARY.
1250 Return true if something changed.
1251 If IGNORE_STORES is true, do not merge stores.
1252 If RECORD_ADJUSTMENTS is true cap number of adjustments to
1253 a given access to make dataflow finite. */
1256 modref_access_analysis::merge_call_side_effects
1257 (gimple
*stmt
, modref_summary
*callee_summary
,
1258 cgraph_node
*callee_node
, bool record_adjustments
)
1260 gcall
*call
= as_a
<gcall
*> (stmt
);
1261 int flags
= gimple_call_flags (call
);
1263 /* Nothing to do for non-looping cont functions. */
1264 if ((flags
& (ECF_CONST
| ECF_NOVOPS
))
1265 && !(flags
& ECF_LOOPING_CONST_OR_PURE
))
1268 bool changed
= false;
1271 fprintf (dump_file
, " - Merging side effects of %s\n",
1272 callee_node
->dump_name ());
1274 /* Merge side effects and non-determinism.
1275 PURE/CONST flags makes functions deterministic and if there is
1276 no LOOPING_CONST_OR_PURE they also have no side effects. */
1277 if (!(flags
& (ECF_CONST
| ECF_NOVOPS
| ECF_PURE
))
1278 || (flags
& ECF_LOOPING_CONST_OR_PURE
))
1280 if (!m_summary
->side_effects
&& callee_summary
->side_effects
)
1283 fprintf (dump_file
, " - merging side effects.\n");
1284 m_summary
->side_effects
= true;
1287 if (!m_summary
->nondeterministic
&& callee_summary
->nondeterministic
1288 && !ignore_nondeterminism_p (current_function_decl
, flags
))
1291 fprintf (dump_file
, " - merging nondeterministic.\n");
1292 m_summary
->nondeterministic
= true;
1297 /* For const functions we are done. */
1298 if (flags
& (ECF_CONST
| ECF_NOVOPS
))
1301 /* Merge calls_interposable flags. */
1302 if (!m_summary
->calls_interposable
&& callee_summary
->calls_interposable
)
1305 fprintf (dump_file
, " - merging calls interposable.\n");
1306 m_summary
->calls_interposable
= true;
1310 if (!callee_node
->binds_to_current_def_p () && !m_summary
->calls_interposable
)
1313 fprintf (dump_file
, " - May be interposed.\n");
1314 m_summary
->calls_interposable
= true;
1318 /* Now merge the actual load, store and kill vectors. For this we need
1319 to compute map translating new parameters to old. */
1321 fprintf (dump_file
, " Parm map:");
1323 auto_vec
<modref_parm_map
, 32> parm_map
;
1324 parm_map
.safe_grow_cleared (gimple_call_num_args (call
), true);
1325 for (unsigned i
= 0; i
< gimple_call_num_args (call
); i
++)
1327 parm_map
[i
] = parm_map_for_ptr (gimple_call_arg (call
, i
));
1330 fprintf (dump_file
, " %i", parm_map
[i
].parm_index
);
1331 if (parm_map
[i
].parm_offset_known
)
1333 fprintf (dump_file
, " offset:");
1334 print_dec ((poly_int64_pod
)parm_map
[i
].parm_offset
,
1340 modref_parm_map chain_map
;
1341 if (gimple_call_chain (call
))
1343 chain_map
= parm_map_for_ptr (gimple_call_chain (call
));
1346 fprintf (dump_file
, "static chain %i", chain_map
.parm_index
);
1347 if (chain_map
.parm_offset_known
)
1349 fprintf (dump_file
, " offset:");
1350 print_dec ((poly_int64_pod
)chain_map
.parm_offset
,
1356 fprintf (dump_file
, "\n");
1358 /* Kills can me merged in only if we know the function is going to be
1360 if (m_always_executed
1361 && callee_summary
->kills
.length ()
1362 && (!cfun
->can_throw_non_call_exceptions
1363 || !stmt_could_throw_p (cfun
, call
)))
1365 /* Watch for self recursive updates. */
1366 auto_vec
<modref_access_node
, 32> saved_kills
;
1368 saved_kills
.reserve_exact (callee_summary
->kills
.length ());
1369 saved_kills
.splice (callee_summary
->kills
);
1370 for (auto kill
: saved_kills
)
1372 if (kill
.parm_index
>= (int)parm_map
.length ())
1375 = kill
.parm_index
== MODREF_STATIC_CHAIN_PARM
1377 : parm_map
[kill
.parm_index
];
1378 if (m
.parm_index
== MODREF_LOCAL_MEMORY_PARM
1379 || m
.parm_index
== MODREF_UNKNOWN_PARM
1380 || m
.parm_index
== MODREF_RETSLOT_PARM
1381 || !m
.parm_offset_known
)
1383 modref_access_node n
= kill
;
1384 n
.parm_index
= m
.parm_index
;
1385 n
.parm_offset
+= m
.parm_offset
;
1386 if (modref_access_node::insert_kill (m_summary
->kills
, n
,
1387 record_adjustments
))
1392 /* Merge in loads. */
1393 changed
|= m_summary
->loads
->merge (current_function_decl
,
1394 callee_summary
->loads
,
1395 &parm_map
, &chain_map
,
1397 !may_access_nonescaping_parm_p
1398 (call
, flags
, true));
1399 /* Merge in stores. */
1400 if (!ignore_stores_p (current_function_decl
, flags
))
1402 changed
|= m_summary
->stores
->merge (current_function_decl
,
1403 callee_summary
->stores
,
1404 &parm_map
, &chain_map
,
1406 !may_access_nonescaping_parm_p
1407 (call
, flags
, false));
1408 if (!m_summary
->writes_errno
1409 && callee_summary
->writes_errno
)
1411 m_summary
->writes_errno
= true;
1418 /* Return access mode for argument I of call STMT with FNSPEC. */
1421 modref_access_analysis::get_access_for_fnspec (gcall
*call
, attr_fnspec
&fnspec
,
1423 modref_parm_map
&map
)
1425 tree size
= NULL_TREE
;
1426 unsigned int size_arg
;
1428 if (!fnspec
.arg_specified_p (i
))
1430 else if (fnspec
.arg_max_access_size_given_by_arg_p (i
, &size_arg
))
1431 size
= gimple_call_arg (call
, size_arg
);
1432 else if (fnspec
.arg_access_size_given_by_type_p (i
))
1434 tree callee
= gimple_call_fndecl (call
);
1435 tree t
= TYPE_ARG_TYPES (TREE_TYPE (callee
));
1437 for (unsigned int p
= 0; p
< i
; p
++)
1439 size
= TYPE_SIZE_UNIT (TREE_TYPE (TREE_VALUE (t
)));
1441 modref_access_node a
= {0, -1, -1,
1442 map
.parm_offset
, map
.parm_index
,
1443 map
.parm_offset_known
, 0};
1444 poly_int64 size_hwi
;
1446 && poly_int_tree_p (size
, &size_hwi
)
1447 && coeffs_in_range_p (size_hwi
, 0,
1448 HOST_WIDE_INT_MAX
/ BITS_PER_UNIT
))
1451 a
.max_size
= size_hwi
<< LOG2_BITS_PER_UNIT
;
1455 /* Apply side effects of call STMT to CUR_SUMMARY using FNSPEC.
1456 If IGNORE_STORES is true ignore them.
1457 Return false if no useful summary can be produced. */
1460 modref_access_analysis::process_fnspec (gcall
*call
)
1462 int flags
= gimple_call_flags (call
);
1464 /* PURE/CONST flags makes functions deterministic and if there is
1465 no LOOPING_CONST_OR_PURE they also have no side effects. */
1466 if (!(flags
& (ECF_CONST
| ECF_NOVOPS
| ECF_PURE
))
1467 || (flags
& ECF_LOOPING_CONST_OR_PURE
)
1468 || (cfun
->can_throw_non_call_exceptions
1469 && stmt_could_throw_p (cfun
, call
)))
1471 set_side_effects ();
1472 if (!ignore_nondeterminism_p (current_function_decl
, flags
))
1473 set_nondeterministic ();
1476 /* For const functions we are done. */
1477 if (flags
& (ECF_CONST
| ECF_NOVOPS
))
1480 attr_fnspec fnspec
= gimple_call_fnspec (call
);
1481 /* If there is no fnpec we know nothing about loads & stores. */
1482 if (!fnspec
.known_p ())
1484 if (dump_file
&& gimple_call_builtin_p (call
, BUILT_IN_NORMAL
))
1485 fprintf (dump_file
, " Builtin with no fnspec: %s\n",
1486 IDENTIFIER_POINTER (DECL_NAME (gimple_call_fndecl (call
))));
1487 if (!ignore_stores_p (current_function_decl
, flags
))
1489 if (!may_access_nonescaping_parm_p (call
, flags
, false))
1490 record_global_memory_store ();
1492 record_unknown_store ();
1493 if (!may_access_nonescaping_parm_p (call
, flags
, true))
1494 record_global_memory_load ();
1496 record_unknown_load ();
1500 if (!may_access_nonescaping_parm_p (call
, flags
, true))
1501 record_global_memory_load ();
1503 record_unknown_load ();
1507 /* Process fnspec. */
1508 if (fnspec
.global_memory_read_p ())
1510 if (may_access_nonescaping_parm_p (call
, flags
, true))
1511 record_unknown_load ();
1513 record_global_memory_load ();
1517 for (unsigned int i
= 0; i
< gimple_call_num_args (call
); i
++)
1518 if (!POINTER_TYPE_P (TREE_TYPE (gimple_call_arg (call
, i
))))
1520 else if (!fnspec
.arg_specified_p (i
)
1521 || fnspec
.arg_maybe_read_p (i
))
1523 modref_parm_map map
= parm_map_for_ptr
1524 (gimple_call_arg (call
, i
));
1526 if (map
.parm_index
== MODREF_LOCAL_MEMORY_PARM
)
1528 if (map
.parm_index
== MODREF_UNKNOWN_PARM
)
1530 record_unknown_load ();
1533 modref_access_node a
= get_access_for_fnspec (call
, fnspec
, i
, map
);
1534 if (a
.parm_index
== MODREF_LOCAL_MEMORY_PARM
)
1537 m_summary
->loads
->insert (current_function_decl
, 0, 0, a
, false);
1539 m_summary_lto
->loads
->insert (current_function_decl
, 0, 0, a
,
1543 if (ignore_stores_p (current_function_decl
, flags
))
1545 if (fnspec
.global_memory_written_p ())
1547 if (may_access_nonescaping_parm_p (call
, flags
, false))
1548 record_unknown_store ();
1550 record_global_memory_store ();
1554 for (unsigned int i
= 0; i
< gimple_call_num_args (call
); i
++)
1555 if (!POINTER_TYPE_P (TREE_TYPE (gimple_call_arg (call
, i
))))
1557 else if (!fnspec
.arg_specified_p (i
)
1558 || fnspec
.arg_maybe_written_p (i
))
1560 modref_parm_map map
= parm_map_for_ptr
1561 (gimple_call_arg (call
, i
));
1563 if (map
.parm_index
== MODREF_LOCAL_MEMORY_PARM
)
1565 if (map
.parm_index
== MODREF_UNKNOWN_PARM
)
1567 record_unknown_store ();
1570 modref_access_node a
= get_access_for_fnspec (call
, fnspec
, i
, map
);
1571 if (a
.parm_index
== MODREF_LOCAL_MEMORY_PARM
)
1574 m_summary
->stores
->insert (current_function_decl
, 0, 0, a
, false);
1576 m_summary_lto
->stores
->insert (current_function_decl
,
1579 if (fnspec
.errno_maybe_written_p () && flag_errno_math
)
1582 m_summary
->writes_errno
= true;
1584 m_summary_lto
->writes_errno
= true;
1589 /* Analyze function call STMT in function F.
1590 Remember recursive calls in RECURSIVE_CALLS. */
1593 modref_access_analysis::analyze_call (gcall
*stmt
)
1595 /* Check flags on the function call. In certain cases, analysis can be
1597 int flags
= gimple_call_flags (stmt
);
1601 fprintf (dump_file
, " - Analyzing call:");
1602 print_gimple_stmt (dump_file
, stmt
, 0);
1605 if ((flags
& (ECF_CONST
| ECF_NOVOPS
))
1606 && !(flags
& ECF_LOOPING_CONST_OR_PURE
))
1610 " - ECF_CONST | ECF_NOVOPS, ignoring all stores and all loads "
1611 "except for args.\n");
1615 /* Next, we try to get the callee's function declaration. The goal is to
1616 merge their summary with ours. */
1617 tree callee
= gimple_call_fndecl (stmt
);
1619 /* Check if this is an indirect call. */
1623 fprintf (dump_file
, gimple_call_internal_p (stmt
)
1624 ? " - Internal call" : " - Indirect call.\n");
1625 process_fnspec (stmt
);
1628 /* We only need to handle internal calls in IPA mode. */
1629 gcc_checking_assert (!m_summary_lto
&& !m_ipa
);
1631 struct cgraph_node
*callee_node
= cgraph_node::get_create (callee
);
1633 /* If this is a recursive call, the target summary is the same as ours, so
1634 there's nothing to do. */
1635 if (recursive_call_p (current_function_decl
, callee
))
1637 m_recursive_calls
.safe_push (stmt
);
1638 set_side_effects ();
1640 fprintf (dump_file
, " - Skipping recursive call.\n");
1644 gcc_assert (callee_node
!= NULL
);
1646 /* Get the function symbol and its availability. */
1647 enum availability avail
;
1648 callee_node
= callee_node
->function_symbol (&avail
);
1650 if (builtin_safe_for_const_function_p (&looping
, callee
))
1653 set_side_effects ();
1655 fprintf (dump_file
, " - Builtin is safe for const.\n");
1658 if (avail
<= AVAIL_INTERPOSABLE
)
1662 " - Function availability <= AVAIL_INTERPOSABLE.\n");
1663 process_fnspec (stmt
);
1667 /* Get callee's modref summary. As above, if there's no summary, we either
1668 have to give up or, if stores are ignored, we can just purge loads. */
1669 modref_summary
*callee_summary
= optimization_summaries
->get (callee_node
);
1670 if (!callee_summary
)
1673 fprintf (dump_file
, " - No modref summary available for callee.\n");
1674 process_fnspec (stmt
);
1678 merge_call_side_effects (stmt
, callee_summary
, callee_node
, false);
1683 /* Helper for analyze_stmt. */
1686 modref_access_analysis::analyze_load (gimple
*, tree
, tree op
, void *data
)
1688 modref_access_analysis
*t
= (modref_access_analysis
*)data
;
1692 fprintf (dump_file
, " - Analyzing load: ");
1693 print_generic_expr (dump_file
, op
);
1694 fprintf (dump_file
, "\n");
1697 if (!t
->record_access_p (op
))
1701 ao_ref_init (&r
, op
);
1702 modref_access_node a
= get_access (&r
);
1703 if (a
.parm_index
== MODREF_LOCAL_MEMORY_PARM
)
1707 t
->record_access (t
->m_summary
->loads
, &r
, a
);
1708 if (t
->m_summary_lto
)
1709 t
->record_access_lto (t
->m_summary_lto
->loads
, &r
, a
);
1713 /* Helper for analyze_stmt. */
1716 modref_access_analysis::analyze_store (gimple
*stmt
, tree
, tree op
, void *data
)
1718 modref_access_analysis
*t
= (modref_access_analysis
*)data
;
1722 fprintf (dump_file
, " - Analyzing store: ");
1723 print_generic_expr (dump_file
, op
);
1724 fprintf (dump_file
, "\n");
1727 if (!t
->record_access_p (op
))
1731 ao_ref_init (&r
, op
);
1732 modref_access_node a
= get_access (&r
);
1733 if (a
.parm_index
== MODREF_LOCAL_MEMORY_PARM
)
1737 t
->record_access (t
->m_summary
->stores
, &r
, a
);
1738 if (t
->m_summary_lto
)
1739 t
->record_access_lto (t
->m_summary_lto
->stores
, &r
, a
);
1740 if (t
->m_always_executed
1741 && a
.useful_for_kill_p ()
1742 && (!cfun
->can_throw_non_call_exceptions
1743 || !stmt_could_throw_p (cfun
, stmt
)))
1746 fprintf (dump_file
, " - Recording kill\n");
1748 modref_access_node::insert_kill (t
->m_summary
->kills
, a
, false);
1749 if (t
->m_summary_lto
)
1750 modref_access_node::insert_kill (t
->m_summary_lto
->kills
, a
, false);
1755 /* Analyze statement STMT of function F.
1756 If IPA is true do not merge in side effects of calls. */
1759 modref_access_analysis::analyze_stmt (gimple
*stmt
, bool always_executed
)
1761 m_always_executed
= always_executed
;
1762 /* In general we can not ignore clobbers because they are barriers for code
1763 motion, however after inlining it is safe to do because local optimization
1764 passes do not consider clobbers from other functions.
1765 Similar logic is in ipa-pure-const.cc. */
1766 if ((m_ipa
|| cfun
->after_inlining
) && gimple_clobber_p (stmt
))
1768 if (always_executed
&& record_access_p (gimple_assign_lhs (stmt
)))
1771 ao_ref_init (&r
, gimple_assign_lhs (stmt
));
1772 modref_access_node a
= get_access (&r
);
1773 if (a
.useful_for_kill_p ())
1776 fprintf (dump_file
, " - Recording kill\n");
1778 modref_access_node::insert_kill (m_summary
->kills
, a
, false);
1780 modref_access_node::insert_kill (m_summary_lto
->kills
,
1787 /* Analyze all loads and stores in STMT. */
1788 walk_stmt_load_store_ops (stmt
, this,
1789 analyze_load
, analyze_store
);
1791 switch (gimple_code (stmt
))
1794 if (gimple_asm_volatile_p (as_a
<gasm
*> (stmt
)))
1795 set_nondeterministic ();
1796 if (cfun
->can_throw_non_call_exceptions
1797 && stmt_could_throw_p (cfun
, stmt
))
1798 set_side_effects ();
1799 /* If the ASM statement does not read nor write memory, there's nothing
1800 to do. Otherwise just give up. */
1801 if (!gimple_asm_clobbers_memory_p (as_a
<gasm
*> (stmt
)))
1804 fprintf (dump_file
, " - Function contains GIMPLE_ASM statement "
1805 "which clobbers memory.\n");
1806 record_unknown_load ();
1807 record_unknown_store ();
1810 if (!m_ipa
|| gimple_call_internal_p (stmt
))
1811 analyze_call (as_a
<gcall
*> (stmt
));
1814 attr_fnspec fnspec
= gimple_call_fnspec (as_a
<gcall
*>(stmt
));
1816 if (fnspec
.known_p ()
1817 && (!fnspec
.global_memory_read_p ()
1818 || !fnspec
.global_memory_written_p ()))
1820 cgraph_edge
*e
= cgraph_node::get
1821 (current_function_decl
)->get_edge (stmt
);
1824 fnspec_summaries
->get_create (e
)->fnspec
1825 = xstrdup (fnspec
.get_str ());
1827 fprintf (dump_file
, " Recorded fnspec %s\n",
1834 if (cfun
->can_throw_non_call_exceptions
1835 && stmt_could_throw_p (cfun
, stmt
))
1836 set_side_effects ();
1841 /* Propagate load/stores across recursive calls. */
1844 modref_access_analysis::propagate ()
1846 if (m_ipa
&& m_summary
)
1849 bool changed
= true;
1851 cgraph_node
*fnode
= cgraph_node::get (current_function_decl
);
1853 m_always_executed
= false;
1854 while (changed
&& m_summary
->useful_p (m_ecf_flags
, false))
1857 for (unsigned i
= 0; i
< m_recursive_calls
.length (); i
++)
1859 changed
|= merge_call_side_effects (m_recursive_calls
[i
], m_summary
,
1866 /* Analyze function. */
1869 modref_access_analysis::analyze ()
1871 m_ecf_flags
= flags_from_decl_or_type (current_function_decl
);
1872 bool summary_useful
= true;
1874 /* Analyze each statement in each basic block of the function. If the
1875 statement cannot be analyzed (for any reason), the entire function cannot
1876 be analyzed by modref. */
1878 FOR_EACH_BB_FN (bb
, cfun
)
1880 gimple_stmt_iterator si
;
1881 bool always_executed
1882 = bb
== single_succ_edge (ENTRY_BLOCK_PTR_FOR_FN (cfun
))->dest
;
1884 for (si
= gsi_start_nondebug_after_labels_bb (bb
);
1885 !gsi_end_p (si
); gsi_next_nondebug (&si
))
1887 /* NULL memory accesses terminates BB. These accesses are known
1888 to trip undefined behavior. gimple-ssa-isolate-paths turns them
1889 to volatile accesses and adds builtin_trap call which would
1890 confuse us otherwise. */
1891 if (infer_nonnull_range_by_dereference (gsi_stmt (si
),
1895 fprintf (dump_file
, " - NULL memory access; terminating BB\n");
1896 if (flag_non_call_exceptions
)
1897 set_side_effects ();
1900 analyze_stmt (gsi_stmt (si
), always_executed
);
1902 /* Avoid doing useless work. */
1903 if ((!m_summary
|| !m_summary
->useful_p (m_ecf_flags
, false))
1905 || !m_summary_lto
->useful_p (m_ecf_flags
, false)))
1907 summary_useful
= false;
1911 && stmt_can_throw_external (cfun
, gsi_stmt (si
)))
1912 always_executed
= false;
1914 if (!summary_useful
)
1917 /* In non-IPA mode we need to perform iterative dataflow on recursive calls.
1918 This needs to be done after all other side effects are computed. */
1923 if (m_summary
&& !m_summary
->side_effects
&& !finite_function_p ())
1924 m_summary
->side_effects
= true;
1925 if (m_summary_lto
&& !m_summary_lto
->side_effects
1926 && !finite_function_p ())
1927 m_summary_lto
->side_effects
= true;
1931 /* Return true if OP accesses memory pointed to by SSA_NAME. */
1934 memory_access_to (tree op
, tree ssa_name
)
1936 tree base
= get_base_address (op
);
1939 if (TREE_CODE (base
) != MEM_REF
&& TREE_CODE (base
) != TARGET_MEM_REF
)
1941 return TREE_OPERAND (base
, 0) == ssa_name
;
1944 /* Consider statement val = *arg.
1945 return EAF flags of ARG that can be determined from EAF flags of VAL
1946 (which are known to be FLAGS). If IGNORE_STORES is true we can ignore
1947 all stores to VAL, i.e. when handling noreturn function. */
1950 deref_flags (int flags
, bool ignore_stores
)
1952 /* Dereference is also a direct read but dereferenced value does not
1953 yield any other direct use. */
1954 int ret
= EAF_NO_DIRECT_CLOBBER
| EAF_NO_DIRECT_ESCAPE
1955 | EAF_NOT_RETURNED_DIRECTLY
;
1956 /* If argument is unused just account for
1957 the read involved in dereference. */
1958 if (flags
& EAF_UNUSED
)
1959 ret
|= EAF_NO_INDIRECT_READ
| EAF_NO_INDIRECT_CLOBBER
1960 | EAF_NO_INDIRECT_ESCAPE
;
1963 /* Direct or indirect accesses leads to indirect accesses. */
1964 if (((flags
& EAF_NO_DIRECT_CLOBBER
)
1965 && (flags
& EAF_NO_INDIRECT_CLOBBER
))
1967 ret
|= EAF_NO_INDIRECT_CLOBBER
;
1968 if (((flags
& EAF_NO_DIRECT_ESCAPE
)
1969 && (flags
& EAF_NO_INDIRECT_ESCAPE
))
1971 ret
|= EAF_NO_INDIRECT_ESCAPE
;
1972 if ((flags
& EAF_NO_DIRECT_READ
)
1973 && (flags
& EAF_NO_INDIRECT_READ
))
1974 ret
|= EAF_NO_INDIRECT_READ
;
1975 if ((flags
& EAF_NOT_RETURNED_DIRECTLY
)
1976 && (flags
& EAF_NOT_RETURNED_INDIRECTLY
))
1977 ret
|= EAF_NOT_RETURNED_INDIRECTLY
;
1983 /* Description of an escape point: a call which affects flags of a given
1988 /* Value escapes to this call. */
1990 /* Argument it escapes to. */
1992 /* Flags already known about the argument (this can save us from recording
1993 escape points if local analysis did good job already). */
1994 eaf_flags_t min_flags
;
1995 /* Does value escape directly or indirectly? */
1999 /* Lattice used during the eaf flags analysis dataflow. For a given SSA name
2000 we aim to compute its flags and escape points. We also use the lattice
2001 to dynamically build dataflow graph to propagate on. */
2003 class modref_lattice
2006 /* EAF flags of the SSA name. */
2008 /* Used during DFS walk to mark names where final value was determined
2009 without need for dataflow. */
2011 /* Used during DFS walk to mark open vertices (for cycle detection). */
2013 /* Set during DFS walk for names that needs dataflow propagation. */
2015 /* Used during the iterative dataflow. */
2018 /* When doing IPA analysis we can not merge in callee escape points;
2019 Only remember them and do the merging at IPA propagation time. */
2020 vec
<escape_point
, va_heap
, vl_ptr
> escape_points
;
2022 /* Representation of a graph for dataflow. This graph is built on-demand
2023 using modref_eaf_analysis::analyze_ssa and later solved by
2024 modref_eaf_analysis::propagate.
2025 Each edge represents the fact that flags of current lattice should be
2026 propagated to lattice of SSA_NAME. */
2027 struct propagate_edge
2032 vec
<propagate_edge
, va_heap
, vl_ptr
> propagate_to
;
2036 bool merge (const modref_lattice
&with
);
2037 bool merge (int flags
);
2038 bool merge_deref (const modref_lattice
&with
, bool ignore_stores
);
2039 bool merge_direct_load ();
2040 bool merge_direct_store ();
2041 bool add_escape_point (gcall
*call
, int arg
, int min_flags
, bool diret
);
2042 void dump (FILE *out
, int indent
= 0) const;
2045 /* Lattices are saved to vectors, so keep them PODs. */
2047 modref_lattice::init ()
2049 /* All flags we track. */
2050 int f
= EAF_NO_DIRECT_CLOBBER
| EAF_NO_INDIRECT_CLOBBER
2051 | EAF_NO_DIRECT_ESCAPE
| EAF_NO_INDIRECT_ESCAPE
2052 | EAF_NO_DIRECT_READ
| EAF_NO_INDIRECT_READ
2053 | EAF_NOT_RETURNED_DIRECTLY
| EAF_NOT_RETURNED_INDIRECTLY
2056 /* Check that eaf_flags_t is wide enough to hold all flags. */
2057 gcc_checking_assert (f
== flags
);
2062 /* Release memory. */
2064 modref_lattice::release ()
2066 escape_points
.release ();
2067 propagate_to
.release ();
2070 /* Dump lattice to OUT; indent with INDENT spaces. */
2073 modref_lattice::dump (FILE *out
, int indent
) const
2075 dump_eaf_flags (out
, flags
);
2076 if (escape_points
.length ())
2078 fprintf (out
, "%*sEscapes:\n", indent
, "");
2079 for (unsigned int i
= 0; i
< escape_points
.length (); i
++)
2081 fprintf (out
, "%*s Arg %i (%s) min flags", indent
, "",
2082 escape_points
[i
].arg
,
2083 escape_points
[i
].direct
? "direct" : "indirect");
2084 dump_eaf_flags (out
, escape_points
[i
].min_flags
, false);
2085 fprintf (out
, " in call ");
2086 print_gimple_stmt (out
, escape_points
[i
].call
, 0);
2091 /* Add escape point CALL, ARG, MIN_FLAGS, DIRECT. Return false if such escape
2095 modref_lattice::add_escape_point (gcall
*call
, int arg
, int min_flags
,
2101 /* If we already determined flags to be bad enough,
2102 we do not need to record. */
2103 if ((flags
& min_flags
) == flags
|| (min_flags
& EAF_UNUSED
))
2106 FOR_EACH_VEC_ELT (escape_points
, i
, ep
)
2107 if (ep
->call
== call
&& ep
->arg
== arg
&& ep
->direct
== direct
)
2109 if ((ep
->min_flags
& min_flags
) == min_flags
)
2111 ep
->min_flags
&= min_flags
;
2114 /* Give up if max escape points is met. */
2115 if ((int)escape_points
.length () > param_modref_max_escape_points
)
2118 fprintf (dump_file
, "--param modref-max-escape-points limit reached\n");
2122 escape_point new_ep
= {call
, arg
, min_flags
, direct
};
2123 escape_points
.safe_push (new_ep
);
2127 /* Merge in flags from F. */
2129 modref_lattice::merge (int f
)
2133 /* Check that flags seems sane: if function does not read the parameter
2134 it can not access it indirectly. */
2135 gcc_checking_assert (!(f
& EAF_NO_DIRECT_READ
)
2136 || ((f
& EAF_NO_INDIRECT_READ
)
2137 && (f
& EAF_NO_INDIRECT_CLOBBER
)
2138 && (f
& EAF_NO_INDIRECT_ESCAPE
)
2139 && (f
& EAF_NOT_RETURNED_INDIRECTLY
)));
2140 if ((flags
& f
) != flags
)
2143 /* Prune obviously useless flags;
2144 We do not have ECF_FLAGS handy which is not big problem since
2145 we will do final flags cleanup before producing summary.
2146 Merging should be fast so it can work well with dataflow. */
2147 flags
= remove_useless_eaf_flags (flags
, 0, false);
2149 escape_points
.release ();
2155 /* Merge in WITH. Return true if anything changed. */
2158 modref_lattice::merge (const modref_lattice
&with
)
2163 bool changed
= merge (with
.flags
);
2167 for (unsigned int i
= 0; i
< with
.escape_points
.length (); i
++)
2168 changed
|= add_escape_point (with
.escape_points
[i
].call
,
2169 with
.escape_points
[i
].arg
,
2170 with
.escape_points
[i
].min_flags
,
2171 with
.escape_points
[i
].direct
);
2175 /* Merge in deref of WITH. If IGNORE_STORES is true do not consider
2176 stores. Return true if anything changed. */
2179 modref_lattice::merge_deref (const modref_lattice
&with
, bool ignore_stores
)
2184 bool changed
= merge (deref_flags (with
.flags
, ignore_stores
));
2188 for (unsigned int i
= 0; i
< with
.escape_points
.length (); i
++)
2190 int min_flags
= with
.escape_points
[i
].min_flags
;
2192 if (with
.escape_points
[i
].direct
)
2193 min_flags
= deref_flags (min_flags
, ignore_stores
);
2194 else if (ignore_stores
)
2195 min_flags
|= ignore_stores_eaf_flags
;
2196 changed
|= add_escape_point (with
.escape_points
[i
].call
,
2197 with
.escape_points
[i
].arg
,
2204 /* Merge in flags for direct load. */
2207 modref_lattice::merge_direct_load ()
2209 return merge (~(EAF_UNUSED
| EAF_NO_DIRECT_READ
));
2212 /* Merge in flags for direct store. */
2215 modref_lattice::merge_direct_store ()
2217 return merge (~(EAF_UNUSED
| EAF_NO_DIRECT_CLOBBER
));
2220 /* Analyzer of EAF flags.
2221 This is generally dataflow problem over the SSA graph, however we only
2222 care about flags of few selected ssa names (arguments, return slot and
2223 static chain). So we first call analyze_ssa_name on all relevant names
2224 and perform a DFS walk to discover SSA names where flags needs to be
2225 determined. For acyclic graphs we try to determine final flags during
2226 this walk. Once cycles or recursion depth is met we enlist SSA names
2227 for dataflow which is done by propagate call.
2229 After propagation the flags can be obtained using get_ssa_name_flags. */
2231 class modref_eaf_analysis
2234 /* Mark NAME as relevant for analysis. */
2235 void analyze_ssa_name (tree name
, bool deferred
= false);
2236 /* Dataflow solver. */
2238 /* Return flags computed earlier for NAME. */
2239 int get_ssa_name_flags (tree name
)
2241 int version
= SSA_NAME_VERSION (name
);
2242 gcc_checking_assert (m_lattice
[version
].known
);
2243 return m_lattice
[version
].flags
;
2245 /* In IPA mode this will record all escape points
2246 determined for NAME to PARM_IDNEX. Flags are minimal
2248 void record_escape_points (tree name
, int parm_index
, int flags
);
2249 modref_eaf_analysis (bool ipa
)
2253 m_lattice
.safe_grow_cleared (num_ssa_names
, true);
2255 ~modref_eaf_analysis ()
2257 gcc_checking_assert (!m_depth
);
2258 if (m_ipa
|| m_names_to_propagate
.length ())
2259 for (unsigned int i
= 0; i
< num_ssa_names
; i
++)
2260 m_lattice
[i
].release ();
2263 /* If true, we produce analysis for IPA mode. In this case escape points are
2266 /* Depth of recursion of analyze_ssa_name. */
2268 /* Propagation lattice for individual ssa names. */
2269 auto_vec
<modref_lattice
> m_lattice
;
2270 auto_vec
<tree
> m_deferred_names
;
2271 auto_vec
<int> m_names_to_propagate
;
2273 void merge_with_ssa_name (tree dest
, tree src
, bool deref
);
2274 void merge_call_lhs_flags (gcall
*call
, int arg
, tree name
, bool direct
,
2279 /* Call statements may return their parameters. Consider argument number
2280 ARG of USE_STMT and determine flags that can needs to be cleared
2281 in case pointer possibly indirectly references from ARG I is returned.
2282 If DIRECT is true consider direct returns and if INDIRECT consider
2284 LATTICE, DEPTH and ipa are same as in analyze_ssa_name.
2285 ARG is set to -1 for static chain. */
2288 modref_eaf_analysis::merge_call_lhs_flags (gcall
*call
, int arg
,
2289 tree name
, bool direct
,
2292 int index
= SSA_NAME_VERSION (name
);
2293 bool returned_directly
= false;
2295 /* If there is no return value, no flags are affected. */
2296 if (!gimple_call_lhs (call
))
2299 /* If we know that function returns given argument and it is not ARG
2300 we can still be happy. */
2303 int flags
= gimple_call_return_flags (call
);
2304 if (flags
& ERF_RETURNS_ARG
)
2306 if ((flags
& ERF_RETURN_ARG_MASK
) == arg
)
2307 returned_directly
= true;
2312 /* Make ERF_RETURNS_ARG overwrite EAF_UNUSED. */
2313 if (returned_directly
)
2318 /* If value is not returned at all, do nothing. */
2319 else if (!direct
&& !indirect
)
2322 /* If return value is SSA name determine its flags. */
2323 if (TREE_CODE (gimple_call_lhs (call
)) == SSA_NAME
)
2325 tree lhs
= gimple_call_lhs (call
);
2327 merge_with_ssa_name (name
, lhs
, false);
2329 merge_with_ssa_name (name
, lhs
, true);
2331 /* In the case of memory store we can do nothing. */
2333 m_lattice
[index
].merge (deref_flags (0, false));
2335 m_lattice
[index
].merge (0);
2338 /* CALL_FLAGS are EAF_FLAGS of the argument. Turn them
2339 into flags for caller, update LATTICE of corresponding
2340 argument if needed. */
2343 callee_to_caller_flags (int call_flags
, bool ignore_stores
,
2344 modref_lattice
&lattice
)
2346 /* call_flags is about callee returning a value
2347 that is not the same as caller returning it. */
2348 call_flags
|= EAF_NOT_RETURNED_DIRECTLY
2349 | EAF_NOT_RETURNED_INDIRECTLY
;
2350 if (!ignore_stores
&& !(call_flags
& EAF_UNUSED
))
2352 /* If value escapes we are no longer able to track what happens
2353 with it because we can read it from the escaped location
2355 if (!(call_flags
& EAF_NO_DIRECT_ESCAPE
))
2357 else if (!(call_flags
& EAF_NO_INDIRECT_ESCAPE
))
2358 lattice
.merge (~(EAF_NOT_RETURNED_INDIRECTLY
2359 | EAF_NO_DIRECT_READ
2360 | EAF_NO_INDIRECT_READ
2361 | EAF_NO_INDIRECT_CLOBBER
2365 call_flags
|= ignore_stores_eaf_flags
;
2369 /* Analyze EAF flags for SSA name NAME and store result to LATTICE.
2370 LATTICE is an array of modref_lattices.
2371 DEPTH is a recursion depth used to make debug output prettier.
2372 If IPA is true we analyze for IPA propagation (and thus call escape points
2373 are processed later) */
2376 modref_eaf_analysis::analyze_ssa_name (tree name
, bool deferred
)
2378 imm_use_iterator ui
;
2380 int index
= SSA_NAME_VERSION (name
);
2384 /* See if value is already computed. */
2385 if (m_lattice
[index
].known
|| m_lattice
[index
].do_dataflow
)
2387 if (m_lattice
[index
].open
)
2391 "%*sCycle in SSA graph\n",
2395 /* Recursion guard. */
2396 m_lattice
[index
].init ();
2397 if (m_depth
== param_modref_max_depth
)
2401 "%*sMax recursion depth reached; postponing\n",
2403 m_deferred_names
.safe_push (name
);
2411 "%*sAnalyzing flags of ssa name: ", m_depth
* 4, "");
2412 print_generic_expr (dump_file
, name
);
2413 fprintf (dump_file
, "\n");
2416 FOR_EACH_IMM_USE_STMT (use_stmt
, ui
, name
)
2418 if (m_lattice
[index
].flags
== 0)
2420 if (is_gimple_debug (use_stmt
))
2424 fprintf (dump_file
, "%*s Analyzing stmt: ", m_depth
* 4, "");
2425 print_gimple_stmt (dump_file
, use_stmt
, 0);
2427 /* If we see a direct non-debug use, clear unused bit.
2428 All dereferences should be accounted below using deref_flags. */
2429 m_lattice
[index
].merge (~EAF_UNUSED
);
2431 /* Gimple return may load the return value.
2432 Returning name counts as an use by tree-ssa-structalias.cc */
2433 if (greturn
*ret
= dyn_cast
<greturn
*> (use_stmt
))
2435 /* Returning through return slot is seen as memory write earlier. */
2436 if (DECL_RESULT (current_function_decl
)
2437 && DECL_BY_REFERENCE (DECL_RESULT (current_function_decl
)))
2439 else if (gimple_return_retval (ret
) == name
)
2440 m_lattice
[index
].merge (~(EAF_UNUSED
| EAF_NOT_RETURNED_DIRECTLY
2441 | EAF_NOT_RETURNED_DIRECTLY
));
2442 else if (memory_access_to (gimple_return_retval (ret
), name
))
2444 m_lattice
[index
].merge_direct_load ();
2445 m_lattice
[index
].merge (~(EAF_UNUSED
2446 | EAF_NOT_RETURNED_INDIRECTLY
));
2449 /* Account for LHS store, arg loads and flags from callee function. */
2450 else if (gcall
*call
= dyn_cast
<gcall
*> (use_stmt
))
2452 tree callee
= gimple_call_fndecl (call
);
2454 /* IPA PTA internally it treats calling a function as "writing" to
2455 the argument space of all functions the function pointer points to
2456 (PR101949). We can not drop EAF_NOCLOBBER only when ipa-pta
2457 is on since that would allow propagation of this from -fno-ipa-pta
2458 to -fipa-pta functions. */
2459 if (gimple_call_fn (use_stmt
) == name
)
2460 m_lattice
[index
].merge (~(EAF_NO_DIRECT_CLOBBER
| EAF_UNUSED
));
2462 /* Recursion would require bit of propagation; give up for now. */
2463 if (callee
&& !m_ipa
&& recursive_call_p (current_function_decl
,
2465 m_lattice
[index
].merge (0);
2468 int ecf_flags
= gimple_call_flags (call
);
2469 bool ignore_stores
= ignore_stores_p (current_function_decl
,
2471 bool ignore_retval
= ignore_retval_p (current_function_decl
,
2474 /* Handle *name = func (...). */
2475 if (gimple_call_lhs (call
)
2476 && memory_access_to (gimple_call_lhs (call
), name
))
2478 m_lattice
[index
].merge_direct_store ();
2479 /* Return slot optimization passes address of
2480 LHS to callee via hidden parameter and this
2481 may make LHS to escape. See PR 98499. */
2482 if (gimple_call_return_slot_opt_p (call
)
2483 && TREE_ADDRESSABLE (TREE_TYPE (gimple_call_lhs (call
))))
2485 int call_flags
= gimple_call_retslot_flags (call
);
2486 bool isretslot
= false;
2488 if (DECL_RESULT (current_function_decl
)
2489 && DECL_BY_REFERENCE
2490 (DECL_RESULT (current_function_decl
)))
2491 isretslot
= ssa_default_def
2493 DECL_RESULT (current_function_decl
))
2496 /* Passing returnslot to return slot is special because
2497 not_returned and escape has same meaning.
2498 However passing arg to return slot is different. If
2499 the callee's return slot is returned it means that
2500 arg is written to itself which is an escape.
2501 Since we do not track the memory it is written to we
2502 need to give up on analyzing it. */
2505 if (!(call_flags
& (EAF_NOT_RETURNED_DIRECTLY
2507 m_lattice
[index
].merge (0);
2508 else gcc_checking_assert
2509 (call_flags
& (EAF_NOT_RETURNED_INDIRECTLY
2511 call_flags
= callee_to_caller_flags
2515 m_lattice
[index
].merge (call_flags
);
2519 if (gimple_call_chain (call
)
2520 && (gimple_call_chain (call
) == name
))
2522 int call_flags
= gimple_call_static_chain_flags (call
);
2523 if (!ignore_retval
&& !(call_flags
& EAF_UNUSED
))
2524 merge_call_lhs_flags
2526 !(call_flags
& EAF_NOT_RETURNED_DIRECTLY
),
2527 !(call_flags
& EAF_NOT_RETURNED_INDIRECTLY
));
2528 call_flags
= callee_to_caller_flags
2529 (call_flags
, ignore_stores
,
2531 if (!(ecf_flags
& (ECF_CONST
| ECF_NOVOPS
)))
2532 m_lattice
[index
].merge (call_flags
);
2535 /* Process internal functions and right away. */
2536 bool record_ipa
= m_ipa
&& !gimple_call_internal_p (call
);
2538 /* Handle all function parameters. */
2539 for (unsigned i
= 0;
2540 i
< gimple_call_num_args (call
)
2541 && m_lattice
[index
].flags
; i
++)
2542 /* Name is directly passed to the callee. */
2543 if (gimple_call_arg (call
, i
) == name
)
2545 int call_flags
= gimple_call_arg_flags (call
, i
);
2547 merge_call_lhs_flags
2549 !(call_flags
& (EAF_NOT_RETURNED_DIRECTLY
2551 !(call_flags
& (EAF_NOT_RETURNED_INDIRECTLY
2553 if (!(ecf_flags
& (ECF_CONST
| ECF_NOVOPS
)))
2555 call_flags
= callee_to_caller_flags
2556 (call_flags
, ignore_stores
,
2559 m_lattice
[index
].merge (call_flags
);
2561 m_lattice
[index
].add_escape_point (call
, i
,
2565 /* Name is dereferenced and passed to a callee. */
2566 else if (memory_access_to (gimple_call_arg (call
, i
), name
))
2568 int call_flags
= deref_flags
2569 (gimple_call_arg_flags (call
, i
), ignore_stores
);
2570 if (!ignore_retval
&& !(call_flags
& EAF_UNUSED
)
2571 && !(call_flags
& EAF_NOT_RETURNED_DIRECTLY
)
2572 && !(call_flags
& EAF_NOT_RETURNED_INDIRECTLY
))
2573 merge_call_lhs_flags (call
, i
, name
, false, true);
2574 if (ecf_flags
& (ECF_CONST
| ECF_NOVOPS
))
2575 m_lattice
[index
].merge_direct_load ();
2578 call_flags
= callee_to_caller_flags
2579 (call_flags
, ignore_stores
,
2582 m_lattice
[index
].merge (call_flags
);
2584 m_lattice
[index
].add_escape_point (call
, i
,
2590 else if (gimple_assign_load_p (use_stmt
))
2592 gassign
*assign
= as_a
<gassign
*> (use_stmt
);
2593 /* Memory to memory copy. */
2594 if (gimple_store_p (assign
))
2596 /* Handle *lhs = *name.
2598 We do not track memory locations, so assume that value
2599 is used arbitrarily. */
2600 if (memory_access_to (gimple_assign_rhs1 (assign
), name
))
2601 m_lattice
[index
].merge (deref_flags (0, false));
2602 /* Handle *name = *exp. */
2603 else if (memory_access_to (gimple_assign_lhs (assign
), name
))
2604 m_lattice
[index
].merge_direct_store ();
2606 /* Handle lhs = *name. */
2607 else if (memory_access_to (gimple_assign_rhs1 (assign
), name
))
2609 tree lhs
= gimple_assign_lhs (assign
);
2610 merge_with_ssa_name (name
, lhs
, true);
2613 else if (gimple_store_p (use_stmt
))
2615 gassign
*assign
= dyn_cast
<gassign
*> (use_stmt
);
2617 /* Handle *lhs = name. */
2618 if (assign
&& gimple_assign_rhs1 (assign
) == name
)
2621 fprintf (dump_file
, "%*s ssa name saved to memory\n",
2623 m_lattice
[index
].merge (0);
2625 /* Handle *name = exp. */
2627 && memory_access_to (gimple_assign_lhs (assign
), name
))
2629 /* In general we can not ignore clobbers because they are
2630 barriers for code motion, however after inlining it is safe to
2631 do because local optimization passes do not consider clobbers
2632 from other functions.
2633 Similar logic is in ipa-pure-const.cc. */
2634 if (!cfun
->after_inlining
|| !gimple_clobber_p (assign
))
2635 m_lattice
[index
].merge_direct_store ();
2637 /* ASM statements etc. */
2641 fprintf (dump_file
, "%*s Unhandled store\n", m_depth
* 4, "");
2642 m_lattice
[index
].merge (0);
2645 else if (gassign
*assign
= dyn_cast
<gassign
*> (use_stmt
))
2647 enum tree_code code
= gimple_assign_rhs_code (assign
);
2649 /* See if operation is a merge as considered by
2650 tree-ssa-structalias.cc:find_func_aliases. */
2651 if (!truth_value_p (code
)
2652 && code
!= POINTER_DIFF_EXPR
2653 && (code
!= POINTER_PLUS_EXPR
2654 || gimple_assign_rhs1 (assign
) == name
))
2656 tree lhs
= gimple_assign_lhs (assign
);
2657 merge_with_ssa_name (name
, lhs
, false);
2660 else if (gphi
*phi
= dyn_cast
<gphi
*> (use_stmt
))
2662 tree result
= gimple_phi_result (phi
);
2663 merge_with_ssa_name (name
, result
, false);
2665 /* Conditions are not considered escape points
2666 by tree-ssa-structalias. */
2667 else if (gimple_code (use_stmt
) == GIMPLE_COND
)
2672 fprintf (dump_file
, "%*s Unhandled stmt\n", m_depth
* 4, "");
2673 m_lattice
[index
].merge (0);
2678 fprintf (dump_file
, "%*s current flags of ", m_depth
* 4, "");
2679 print_generic_expr (dump_file
, name
);
2680 m_lattice
[index
].dump (dump_file
, m_depth
* 4 + 4);
2685 fprintf (dump_file
, "%*sflags of ssa name ", m_depth
* 4, "");
2686 print_generic_expr (dump_file
, name
);
2687 m_lattice
[index
].dump (dump_file
, m_depth
* 4 + 2);
2689 m_lattice
[index
].open
= false;
2690 if (!m_lattice
[index
].do_dataflow
)
2691 m_lattice
[index
].known
= true;
2694 /* Propagate info from SRC to DEST. If DEREF it true, assume that SRC
2698 modref_eaf_analysis::merge_with_ssa_name (tree dest
, tree src
, bool deref
)
2700 int index
= SSA_NAME_VERSION (dest
);
2701 int src_index
= SSA_NAME_VERSION (src
);
2703 /* Merging lattice with itself is a no-op. */
2704 if (!deref
&& src
== dest
)
2708 analyze_ssa_name (src
);
2711 m_lattice
[index
].merge_deref (m_lattice
[src_index
], false);
2713 m_lattice
[index
].merge (m_lattice
[src_index
]);
2715 /* If we failed to produce final solution add an edge to the dataflow
2717 if (!m_lattice
[src_index
].known
)
2719 modref_lattice::propagate_edge e
= {index
, deref
};
2721 if (!m_lattice
[src_index
].propagate_to
.length ())
2722 m_names_to_propagate
.safe_push (src_index
);
2723 m_lattice
[src_index
].propagate_to
.safe_push (e
);
2724 m_lattice
[src_index
].changed
= true;
2725 m_lattice
[src_index
].do_dataflow
= true;
2728 "%*sWill propgate from ssa_name %i to %i%s\n",
2730 "", src_index
, index
, deref
? " (deref)" : "");
2734 /* In the case we deferred some SSA names, reprocess them. In the case some
2735 dataflow edges were introduced, do the actual iterative dataflow. */
2738 modref_eaf_analysis::propagate ()
2743 bool changed
= true;
2745 while (m_deferred_names
.length ())
2747 tree name
= m_deferred_names
.pop ();
2749 fprintf (dump_file
, "Analyzing deferred SSA name\n");
2750 analyze_ssa_name (name
, true);
2753 if (!m_names_to_propagate
.length ())
2756 fprintf (dump_file
, "Propagating EAF flags\n");
2758 /* Compute reverse postorder. */
2765 auto_vec
<struct stack_entry
> stack
;
2766 int pos
= m_names_to_propagate
.length () - 1;
2768 rpo
.safe_grow (m_names_to_propagate
.length (), true);
2769 stack
.reserve_exact (m_names_to_propagate
.length ());
2771 /* We reuse known flag for RPO DFS walk bookkeeping. */
2773 FOR_EACH_VEC_ELT (m_names_to_propagate
, i
, index
)
2774 gcc_assert (!m_lattice
[index
].known
&& m_lattice
[index
].changed
);
2776 FOR_EACH_VEC_ELT (m_names_to_propagate
, i
, index
)
2778 if (!m_lattice
[index
].known
)
2780 stack_entry e
= {index
, 0};
2782 stack
.quick_push (e
);
2783 m_lattice
[index
].known
= true;
2785 while (stack
.length ())
2788 int index1
= stack
.last ().name
;
2790 while (stack
.last ().pos
< m_lattice
[index1
].propagate_to
.length ())
2792 int index2
= m_lattice
[index1
]
2793 .propagate_to
[stack
.last ().pos
].ssa_name
;
2795 stack
.last ().pos
++;
2796 if (!m_lattice
[index2
].known
2797 && m_lattice
[index2
].propagate_to
.length ())
2799 stack_entry e
= {index2
, 0};
2801 stack
.quick_push (e
);
2802 m_lattice
[index2
].known
= true;
2808 && stack
.last ().pos
== m_lattice
[index1
].propagate_to
.length ())
2810 rpo
[pos
--] = index1
;
2816 /* Perform iterative dataflow. */
2822 fprintf (dump_file
, " iteration %i\n", iterations
);
2823 FOR_EACH_VEC_ELT (rpo
, i
, index
)
2825 if (m_lattice
[index
].changed
)
2829 m_lattice
[index
].changed
= false;
2831 fprintf (dump_file
, " Visiting ssa name %i\n", index
);
2832 for (j
= 0; j
< m_lattice
[index
].propagate_to
.length (); j
++)
2835 int target
= m_lattice
[index
].propagate_to
[j
].ssa_name
;
2836 bool deref
= m_lattice
[index
].propagate_to
[j
].deref
;
2839 fprintf (dump_file
, " Propagating flags of ssa name"
2841 index
, target
, deref
? " (deref)" : "");
2842 m_lattice
[target
].known
= true;
2843 if (!m_lattice
[index
].propagate_to
[j
].deref
)
2844 ch
= m_lattice
[target
].merge (m_lattice
[index
]);
2846 ch
= m_lattice
[target
].merge_deref (m_lattice
[index
],
2852 fprintf (dump_file
, " New lattice: ");
2853 m_lattice
[target
].dump (dump_file
);
2856 m_lattice
[target
].changed
= true;
2862 fprintf (dump_file
, "EAF flags propagated in %i iterations\n", iterations
);
2865 /* Record escape points of PARM_INDEX according to LATTICE. */
2868 modref_eaf_analysis::record_escape_points (tree name
, int parm_index
, int flags
)
2870 modref_lattice
&lattice
= m_lattice
[SSA_NAME_VERSION (name
)];
2872 if (lattice
.escape_points
.length ())
2876 cgraph_node
*node
= cgraph_node::get (current_function_decl
);
2879 FOR_EACH_VEC_ELT (lattice
.escape_points
, ip
, ep
)
2880 if ((ep
->min_flags
& flags
) != flags
)
2882 cgraph_edge
*e
= node
->get_edge (ep
->call
);
2883 struct escape_entry ee
= {parm_index
, ep
->arg
,
2884 ep
->min_flags
, ep
->direct
};
2886 escape_summaries
->get_create (e
)->esc
.safe_push (ee
);
2891 /* Determine EAF flags for function parameters
2892 and fill in SUMMARY/SUMMARY_LTO. If IPA is true work in IPA mode
2893 where we also collect escape points.
2894 PAST_FLAGS, PAST_RETSLOT_FLAGS, PAST_STATIC_CHAIN_FLAGS can be
2895 used to preserve flags from previous (IPA) run for cases where
2896 late optimizations changed code in a way we can no longer analyze
2900 analyze_parms (modref_summary
*summary
, modref_summary_lto
*summary_lto
,
2901 bool ipa
, vec
<eaf_flags_t
> &past_flags
,
2902 int past_retslot_flags
, int past_static_chain_flags
)
2904 unsigned int parm_index
= 0;
2905 unsigned int count
= 0;
2906 int ecf_flags
= flags_from_decl_or_type (current_function_decl
);
2907 tree retslot
= NULL
;
2908 tree static_chain
= NULL
;
2910 /* If there is return slot, look up its SSA name. */
2911 if (DECL_RESULT (current_function_decl
)
2912 && DECL_BY_REFERENCE (DECL_RESULT (current_function_decl
)))
2913 retslot
= ssa_default_def (cfun
, DECL_RESULT (current_function_decl
));
2914 if (cfun
->static_chain_decl
)
2915 static_chain
= ssa_default_def (cfun
, cfun
->static_chain_decl
);
2917 for (tree parm
= DECL_ARGUMENTS (current_function_decl
); parm
;
2918 parm
= TREE_CHAIN (parm
))
2921 if (!count
&& !retslot
&& !static_chain
)
2924 modref_eaf_analysis
eaf_analysis (ipa
);
2926 /* Determine all SSA names we need to know flags for. */
2927 for (tree parm
= DECL_ARGUMENTS (current_function_decl
); parm
;
2928 parm
= TREE_CHAIN (parm
))
2930 tree name
= ssa_default_def (cfun
, parm
);
2932 eaf_analysis
.analyze_ssa_name (name
);
2935 eaf_analysis
.analyze_ssa_name (retslot
);
2937 eaf_analysis
.analyze_ssa_name (static_chain
);
2939 /* Do the dataflow. */
2940 eaf_analysis
.propagate ();
2942 tree attr
= lookup_attribute ("fn spec",
2944 (TREE_TYPE (current_function_decl
)));
2945 attr_fnspec
fnspec (attr
2946 ? TREE_STRING_POINTER (TREE_VALUE (TREE_VALUE (attr
)))
2950 /* Store results to summaries. */
2951 for (tree parm
= DECL_ARGUMENTS (current_function_decl
); parm
; parm_index
++,
2952 parm
= TREE_CHAIN (parm
))
2954 tree name
= ssa_default_def (cfun
, parm
);
2955 if (!name
|| has_zero_uses (name
))
2957 /* We do not track non-SSA parameters,
2958 but we want to track unused gimple_regs. */
2959 if (!is_gimple_reg (parm
))
2963 if (parm_index
>= summary
->arg_flags
.length ())
2964 summary
->arg_flags
.safe_grow_cleared (count
, true);
2965 summary
->arg_flags
[parm_index
] = EAF_UNUSED
;
2967 else if (summary_lto
)
2969 if (parm_index
>= summary_lto
->arg_flags
.length ())
2970 summary_lto
->arg_flags
.safe_grow_cleared (count
, true);
2971 summary_lto
->arg_flags
[parm_index
] = EAF_UNUSED
;
2975 int flags
= eaf_analysis
.get_ssa_name_flags (name
);
2976 int attr_flags
= fnspec
.arg_eaf_flags (parm_index
);
2978 if (dump_file
&& (flags
| attr_flags
) != flags
&& !(flags
& EAF_UNUSED
))
2981 " Flags for param %i combined with fnspec flags:",
2983 dump_eaf_flags (dump_file
, attr_flags
, false);
2984 fprintf (dump_file
, " determined: ");
2985 dump_eaf_flags (dump_file
, flags
, true);
2987 flags
|= attr_flags
;
2989 /* Eliminate useless flags so we do not end up storing unnecessary
2992 flags
= remove_useless_eaf_flags
2994 VOID_TYPE_P (TREE_TYPE (TREE_TYPE (current_function_decl
))));
2995 if (past_flags
.length () > parm_index
)
2997 int past
= past_flags
[parm_index
];
2998 past
= remove_useless_eaf_flags
3000 VOID_TYPE_P (TREE_TYPE
3001 (TREE_TYPE (current_function_decl
))));
3002 if (dump_file
&& (flags
| past
) != flags
&& !(flags
& EAF_UNUSED
))
3005 " Flags for param %i combined with IPA pass:",
3007 dump_eaf_flags (dump_file
, past
, false);
3008 fprintf (dump_file
, " determined: ");
3009 dump_eaf_flags (dump_file
, flags
, true);
3011 if (!(flags
& EAF_UNUSED
))
3019 if (parm_index
>= summary
->arg_flags
.length ())
3020 summary
->arg_flags
.safe_grow_cleared (count
, true);
3021 summary
->arg_flags
[parm_index
] = flags
;
3023 else if (summary_lto
)
3025 if (parm_index
>= summary_lto
->arg_flags
.length ())
3026 summary_lto
->arg_flags
.safe_grow_cleared (count
, true);
3027 summary_lto
->arg_flags
[parm_index
] = flags
;
3029 eaf_analysis
.record_escape_points (name
, parm_index
, flags
);
3034 int flags
= eaf_analysis
.get_ssa_name_flags (retslot
);
3035 int past
= past_retslot_flags
;
3037 flags
= remove_useless_eaf_flags (flags
, ecf_flags
, false);
3038 past
= remove_useless_eaf_flags
3040 VOID_TYPE_P (TREE_TYPE
3041 (TREE_TYPE (current_function_decl
))));
3042 if (dump_file
&& (flags
| past
) != flags
&& !(flags
& EAF_UNUSED
))
3045 " Retslot flags combined with IPA pass:");
3046 dump_eaf_flags (dump_file
, past
, false);
3047 fprintf (dump_file
, " determined: ");
3048 dump_eaf_flags (dump_file
, flags
, true);
3050 if (!(flags
& EAF_UNUSED
))
3055 summary
->retslot_flags
= flags
;
3057 summary_lto
->retslot_flags
= flags
;
3058 eaf_analysis
.record_escape_points (retslot
,
3059 MODREF_RETSLOT_PARM
, flags
);
3064 int flags
= eaf_analysis
.get_ssa_name_flags (static_chain
);
3065 int past
= past_static_chain_flags
;
3067 flags
= remove_useless_eaf_flags (flags
, ecf_flags
, false);
3068 past
= remove_useless_eaf_flags
3070 VOID_TYPE_P (TREE_TYPE
3071 (TREE_TYPE (current_function_decl
))));
3072 if (dump_file
&& (flags
| past
) != flags
&& !(flags
& EAF_UNUSED
))
3075 " Static chain flags combined with IPA pass:");
3076 dump_eaf_flags (dump_file
, past
, false);
3077 fprintf (dump_file
, " determined: ");
3078 dump_eaf_flags (dump_file
, flags
, true);
3080 if (!(flags
& EAF_UNUSED
))
3085 summary
->static_chain_flags
= flags
;
3087 summary_lto
->static_chain_flags
= flags
;
3088 eaf_analysis
.record_escape_points (static_chain
,
3089 MODREF_STATIC_CHAIN_PARM
,
3095 /* Analyze function. IPA indicates whether we're running in local mode
3096 (false) or the IPA mode (true).
3097 Return true if fixup cfg is needed after the pass. */
3100 analyze_function (bool ipa
)
3102 bool fixup_cfg
= false;
3104 fprintf (dump_file
, "\n\nmodref analyzing '%s' (ipa=%i)%s%s\n",
3105 cgraph_node::get (current_function_decl
)->dump_name (), ipa
,
3106 TREE_READONLY (current_function_decl
) ? " (const)" : "",
3107 DECL_PURE_P (current_function_decl
) ? " (pure)" : "");
3109 /* Don't analyze this function if it's compiled with -fno-strict-aliasing. */
3110 if (!flag_ipa_modref
3111 || lookup_attribute ("noipa", DECL_ATTRIBUTES (current_function_decl
)))
3114 /* Compute no-LTO summaries when local optimization is going to happen. */
3115 bool nolto
= (!ipa
|| ((!flag_lto
|| flag_fat_lto_objects
) && !in_lto_p
)
3116 || (in_lto_p
&& !flag_wpa
3117 && flag_incremental_link
!= INCREMENTAL_LINK_LTO
));
3118 /* Compute LTO when LTO streaming is going to happen. */
3119 bool lto
= ipa
&& ((flag_lto
&& !in_lto_p
)
3121 || flag_incremental_link
== INCREMENTAL_LINK_LTO
);
3122 cgraph_node
*fnode
= cgraph_node::get (current_function_decl
);
3124 modref_summary
*summary
= NULL
;
3125 modref_summary_lto
*summary_lto
= NULL
;
3127 bool past_flags_known
= false;
3128 auto_vec
<eaf_flags_t
> past_flags
;
3129 int past_retslot_flags
= 0;
3130 int past_static_chain_flags
= 0;
3132 /* Initialize the summary.
3133 If we run in local mode there is possibly pre-existing summary from
3134 IPA pass. Dump it so it is easy to compare if mod-ref info has
3138 if (!optimization_summaries
)
3139 optimization_summaries
= modref_summaries::create_ggc (symtab
);
3140 else /* Remove existing summary if we are re-running the pass. */
3142 summary
= optimization_summaries
->get (fnode
);
3148 fprintf (dump_file
, "Past summary:\n");
3149 optimization_summaries
->get (fnode
)->dump (dump_file
);
3151 past_flags
.reserve_exact (summary
->arg_flags
.length ());
3152 past_flags
.splice (summary
->arg_flags
);
3153 past_retslot_flags
= summary
->retslot_flags
;
3154 past_static_chain_flags
= summary
->static_chain_flags
;
3155 past_flags_known
= true;
3157 optimization_summaries
->remove (fnode
);
3159 summary
= optimization_summaries
->get_create (fnode
);
3160 gcc_checking_assert (nolto
&& !lto
);
3162 /* In IPA mode we analyze every function precisely once. Assert that. */
3168 summaries
= modref_summaries::create_ggc (symtab
);
3170 summaries
->remove (fnode
);
3171 summary
= summaries
->get_create (fnode
);
3176 summaries_lto
= modref_summaries_lto::create_ggc (symtab
);
3178 summaries_lto
->remove (fnode
);
3179 summary_lto
= summaries_lto
->get_create (fnode
);
3181 if (!fnspec_summaries
)
3182 fnspec_summaries
= new fnspec_summaries_t (symtab
);
3183 if (!escape_summaries
)
3184 escape_summaries
= new escape_summaries_t (symtab
);
3188 /* Create and initialize summary for F.
3189 Note that summaries may be already allocated from previous
3193 gcc_assert (!summary
->loads
);
3194 summary
->loads
= modref_records::create_ggc ();
3195 gcc_assert (!summary
->stores
);
3196 summary
->stores
= modref_records::create_ggc ();
3197 summary
->writes_errno
= false;
3198 summary
->side_effects
= false;
3199 summary
->nondeterministic
= false;
3200 summary
->calls_interposable
= false;
3204 gcc_assert (!summary_lto
->loads
);
3205 summary_lto
->loads
= modref_records_lto::create_ggc ();
3206 gcc_assert (!summary_lto
->stores
);
3207 summary_lto
->stores
= modref_records_lto::create_ggc ();
3208 summary_lto
->writes_errno
= false;
3209 summary_lto
->side_effects
= false;
3210 summary_lto
->nondeterministic
= false;
3211 summary_lto
->calls_interposable
= false;
3214 analyze_parms (summary
, summary_lto
, ipa
,
3215 past_flags
, past_retslot_flags
, past_static_chain_flags
);
3218 modref_access_analysis
analyzer (ipa
, summary
, summary_lto
);
3219 analyzer
.analyze ();
3222 if (!ipa
&& flag_ipa_pure_const
)
3224 if (!summary
->stores
->every_base
&& !summary
->stores
->bases
3225 && !summary
->nondeterministic
)
3227 if (!summary
->loads
->every_base
&& !summary
->loads
->bases
3228 && !summary
->calls_interposable
)
3229 fixup_cfg
= ipa_make_function_const (fnode
,
3230 summary
->side_effects
, true);
3232 fixup_cfg
= ipa_make_function_pure (fnode
,
3233 summary
->side_effects
, true);
3236 int ecf_flags
= flags_from_decl_or_type (current_function_decl
);
3237 if (summary
&& !summary
->useful_p (ecf_flags
))
3240 optimization_summaries
->remove (fnode
);
3242 summaries
->remove (fnode
);
3246 summary
->finalize (current_function_decl
);
3247 if (summary_lto
&& !summary_lto
->useful_p (ecf_flags
))
3249 summaries_lto
->remove (fnode
);
3253 if (ipa
&& !summary
&& !summary_lto
)
3254 remove_modref_edge_summaries (fnode
);
3258 fprintf (dump_file
, " - modref done with result: tracked.\n");
3260 summary
->dump (dump_file
);
3262 summary_lto
->dump (dump_file
);
3263 dump_modref_edge_summaries (dump_file
, fnode
, 2);
3264 /* To simplify debugging, compare IPA and local solutions. */
3265 if (past_flags_known
&& summary
)
3267 size_t len
= summary
->arg_flags
.length ();
3269 if (past_flags
.length () > len
)
3270 len
= past_flags
.length ();
3271 for (size_t i
= 0; i
< len
; i
++)
3273 int old_flags
= i
< past_flags
.length () ? past_flags
[i
] : 0;
3274 int new_flags
= i
< summary
->arg_flags
.length ()
3275 ? summary
->arg_flags
[i
] : 0;
3276 old_flags
= remove_useless_eaf_flags
3277 (old_flags
, flags_from_decl_or_type (current_function_decl
),
3278 VOID_TYPE_P (TREE_TYPE (TREE_TYPE (current_function_decl
))));
3279 if (old_flags
!= new_flags
)
3281 if ((old_flags
& ~new_flags
) == 0
3282 || (new_flags
& EAF_UNUSED
))
3283 fprintf (dump_file
, " Flags for param %i improved:",
3287 dump_eaf_flags (dump_file
, old_flags
, false);
3288 fprintf (dump_file
, " -> ");
3289 dump_eaf_flags (dump_file
, new_flags
, true);
3292 past_retslot_flags
= remove_useless_eaf_flags
3293 (past_retslot_flags
,
3294 flags_from_decl_or_type (current_function_decl
),
3295 VOID_TYPE_P (TREE_TYPE (TREE_TYPE (current_function_decl
))));
3296 if (past_retslot_flags
!= summary
->retslot_flags
)
3298 if ((past_retslot_flags
& ~summary
->retslot_flags
) == 0
3299 || (summary
->retslot_flags
& EAF_UNUSED
))
3300 fprintf (dump_file
, " Flags for retslot improved:");
3303 dump_eaf_flags (dump_file
, past_retslot_flags
, false);
3304 fprintf (dump_file
, " -> ");
3305 dump_eaf_flags (dump_file
, summary
->retslot_flags
, true);
3307 past_static_chain_flags
= remove_useless_eaf_flags
3308 (past_static_chain_flags
,
3309 flags_from_decl_or_type (current_function_decl
),
3310 VOID_TYPE_P (TREE_TYPE (TREE_TYPE (current_function_decl
))));
3311 if (past_static_chain_flags
!= summary
->static_chain_flags
)
3313 if ((past_static_chain_flags
& ~summary
->static_chain_flags
) == 0
3314 || (summary
->static_chain_flags
& EAF_UNUSED
))
3315 fprintf (dump_file
, " Flags for static chain improved:");
3318 dump_eaf_flags (dump_file
, past_static_chain_flags
, false);
3319 fprintf (dump_file
, " -> ");
3320 dump_eaf_flags (dump_file
, summary
->static_chain_flags
, true);
3323 else if (past_flags_known
&& !summary
)
3325 for (size_t i
= 0; i
< past_flags
.length (); i
++)
3327 int old_flags
= past_flags
[i
];
3328 old_flags
= remove_useless_eaf_flags
3329 (old_flags
, flags_from_decl_or_type (current_function_decl
),
3330 VOID_TYPE_P (TREE_TYPE (TREE_TYPE (current_function_decl
))));
3333 fprintf (dump_file
, " Flags for param %i worsened:",
3335 dump_eaf_flags (dump_file
, old_flags
, false);
3336 fprintf (dump_file
, " -> \n");
3339 past_retslot_flags
= remove_useless_eaf_flags
3340 (past_retslot_flags
,
3341 flags_from_decl_or_type (current_function_decl
),
3342 VOID_TYPE_P (TREE_TYPE (TREE_TYPE (current_function_decl
))));
3343 if (past_retslot_flags
)
3345 fprintf (dump_file
, " Flags for retslot worsened:");
3346 dump_eaf_flags (dump_file
, past_retslot_flags
, false);
3347 fprintf (dump_file
, " ->\n");
3349 past_static_chain_flags
= remove_useless_eaf_flags
3350 (past_static_chain_flags
,
3351 flags_from_decl_or_type (current_function_decl
),
3352 VOID_TYPE_P (TREE_TYPE (TREE_TYPE (current_function_decl
))));
3353 if (past_static_chain_flags
)
3355 fprintf (dump_file
, " Flags for static chain worsened:");
3356 dump_eaf_flags (dump_file
, past_static_chain_flags
, false);
3357 fprintf (dump_file
, " ->\n");
3364 /* Callback for generate_summary. */
3367 modref_generate (void)
3369 struct cgraph_node
*node
;
3370 FOR_EACH_FUNCTION_WITH_GIMPLE_BODY (node
)
3372 function
*f
= DECL_STRUCT_FUNCTION (node
->decl
);
3376 analyze_function (true);
3381 } /* ANON namespace. */
3383 /* Debugging helper. */
3386 debug_eaf_flags (int flags
)
3388 dump_eaf_flags (stderr
, flags
, true);
3391 /* Called when a new function is inserted to callgraph late. */
3394 modref_summaries::insert (struct cgraph_node
*node
, modref_summary
*)
3396 /* Local passes ought to be executed by the pass manager. */
3397 if (this == optimization_summaries
)
3399 optimization_summaries
->remove (node
);
3402 if (!DECL_STRUCT_FUNCTION (node
->decl
)
3403 || !opt_for_fn (node
->decl
, flag_ipa_modref
))
3405 summaries
->remove (node
);
3408 push_cfun (DECL_STRUCT_FUNCTION (node
->decl
));
3409 analyze_function (true);
3413 /* Called when a new function is inserted to callgraph late. */
3416 modref_summaries_lto::insert (struct cgraph_node
*node
, modref_summary_lto
*)
3418 /* We do not support adding new function when IPA information is already
3419 propagated. This is done only by SIMD cloning that is not very
3421 if (!DECL_STRUCT_FUNCTION (node
->decl
)
3422 || !opt_for_fn (node
->decl
, flag_ipa_modref
)
3425 summaries_lto
->remove (node
);
3428 push_cfun (DECL_STRUCT_FUNCTION (node
->decl
));
3429 analyze_function (true);
3433 /* Called when new clone is inserted to callgraph late. */
3436 modref_summaries::duplicate (cgraph_node
*, cgraph_node
*dst
,
3437 modref_summary
*src_data
,
3438 modref_summary
*dst_data
)
3440 /* Do not duplicate optimization summaries; we do not handle parameter
3441 transforms on them. */
3442 if (this == optimization_summaries
)
3444 optimization_summaries
->remove (dst
);
3447 dst_data
->stores
= modref_records::create_ggc ();
3448 dst_data
->stores
->copy_from (src_data
->stores
);
3449 dst_data
->loads
= modref_records::create_ggc ();
3450 dst_data
->loads
->copy_from (src_data
->loads
);
3451 dst_data
->kills
.reserve_exact (src_data
->kills
.length ());
3452 dst_data
->kills
.splice (src_data
->kills
);
3453 dst_data
->writes_errno
= src_data
->writes_errno
;
3454 dst_data
->side_effects
= src_data
->side_effects
;
3455 dst_data
->nondeterministic
= src_data
->nondeterministic
;
3456 dst_data
->calls_interposable
= src_data
->calls_interposable
;
3457 if (src_data
->arg_flags
.length ())
3458 dst_data
->arg_flags
= src_data
->arg_flags
.copy ();
3459 dst_data
->retslot_flags
= src_data
->retslot_flags
;
3460 dst_data
->static_chain_flags
= src_data
->static_chain_flags
;
3463 /* Called when new clone is inserted to callgraph late. */
3466 modref_summaries_lto::duplicate (cgraph_node
*, cgraph_node
*,
3467 modref_summary_lto
*src_data
,
3468 modref_summary_lto
*dst_data
)
3470 /* Be sure that no further cloning happens after ipa-modref. If it does
3471 we will need to update signatures for possible param changes. */
3472 gcc_checking_assert (!((modref_summaries_lto
*)summaries_lto
)->propagated
);
3473 dst_data
->stores
= modref_records_lto::create_ggc ();
3474 dst_data
->stores
->copy_from (src_data
->stores
);
3475 dst_data
->loads
= modref_records_lto::create_ggc ();
3476 dst_data
->loads
->copy_from (src_data
->loads
);
3477 dst_data
->kills
.reserve_exact (src_data
->kills
.length ());
3478 dst_data
->kills
.splice (src_data
->kills
);
3479 dst_data
->writes_errno
= src_data
->writes_errno
;
3480 dst_data
->side_effects
= src_data
->side_effects
;
3481 dst_data
->nondeterministic
= src_data
->nondeterministic
;
3482 dst_data
->calls_interposable
= src_data
->calls_interposable
;
3483 if (src_data
->arg_flags
.length ())
3484 dst_data
->arg_flags
= src_data
->arg_flags
.copy ();
3485 dst_data
->retslot_flags
= src_data
->retslot_flags
;
3486 dst_data
->static_chain_flags
= src_data
->static_chain_flags
;
3491 /* Definition of the modref pass on GIMPLE. */
3492 const pass_data pass_data_modref
= {
3497 (PROP_cfg
| PROP_ssa
),
3504 class pass_modref
: public gimple_opt_pass
3507 pass_modref (gcc::context
*ctxt
)
3508 : gimple_opt_pass (pass_data_modref
, ctxt
) {}
3510 /* opt_pass methods: */
3511 opt_pass
*clone () final override
3513 return new pass_modref (m_ctxt
);
3515 bool gate (function
*) final override
3517 return flag_ipa_modref
;
3519 unsigned int execute (function
*) final override
;
3522 /* Encode TT to the output block OB using the summary streaming API. */
3525 write_modref_records (modref_records_lto
*tt
, struct output_block
*ob
)
3527 streamer_write_uhwi (ob
, tt
->every_base
);
3528 streamer_write_uhwi (ob
, vec_safe_length (tt
->bases
));
3529 for (auto base_node
: tt
->bases
)
3531 stream_write_tree (ob
, base_node
->base
, true);
3533 streamer_write_uhwi (ob
, base_node
->every_ref
);
3534 streamer_write_uhwi (ob
, vec_safe_length (base_node
->refs
));
3536 for (auto ref_node
: base_node
->refs
)
3538 stream_write_tree (ob
, ref_node
->ref
, true);
3539 streamer_write_uhwi (ob
, ref_node
->every_access
);
3540 streamer_write_uhwi (ob
, vec_safe_length (ref_node
->accesses
));
3542 for (auto access_node
: ref_node
->accesses
)
3543 access_node
.stream_out (ob
);
3548 /* Read a modref_tree from the input block IB using the data from DATA_IN.
3549 This assumes that the tree was encoded using write_modref_tree.
3550 Either nolto_ret or lto_ret is initialized by the tree depending whether
3551 LTO streaming is expected or not. */
3554 read_modref_records (tree decl
,
3555 lto_input_block
*ib
, struct data_in
*data_in
,
3556 modref_records
**nolto_ret
,
3557 modref_records_lto
**lto_ret
)
3559 size_t max_bases
= opt_for_fn (decl
, param_modref_max_bases
);
3560 size_t max_refs
= opt_for_fn (decl
, param_modref_max_refs
);
3561 size_t max_accesses
= opt_for_fn (decl
, param_modref_max_accesses
);
3564 *lto_ret
= modref_records_lto::create_ggc ();
3566 *nolto_ret
= modref_records::create_ggc ();
3567 gcc_checking_assert (lto_ret
|| nolto_ret
);
3569 size_t every_base
= streamer_read_uhwi (ib
);
3570 size_t nbase
= streamer_read_uhwi (ib
);
3572 gcc_assert (!every_base
|| nbase
== 0);
3576 (*nolto_ret
)->collapse ();
3578 (*lto_ret
)->collapse ();
3580 for (size_t i
= 0; i
< nbase
; i
++)
3582 tree base_tree
= stream_read_tree (ib
, data_in
);
3583 modref_base_node
<alias_set_type
> *nolto_base_node
= NULL
;
3584 modref_base_node
<tree
> *lto_base_node
= NULL
;
3586 /* At stream in time we have LTO alias info. Check if we streamed in
3587 something obviously unnecessary. Do not glob types by alias sets;
3588 it is not 100% clear that ltrans types will get merged same way.
3589 Types may get refined based on ODR type conflicts. */
3590 if (base_tree
&& !get_alias_set (base_tree
))
3594 fprintf (dump_file
, "Streamed in alias set 0 type ");
3595 print_generic_expr (dump_file
, base_tree
);
3596 fprintf (dump_file
, "\n");
3602 nolto_base_node
= (*nolto_ret
)->insert_base (base_tree
3603 ? get_alias_set (base_tree
)
3606 lto_base_node
= (*lto_ret
)->insert_base (base_tree
, 0, max_bases
);
3607 size_t every_ref
= streamer_read_uhwi (ib
);
3608 size_t nref
= streamer_read_uhwi (ib
);
3610 gcc_assert (!every_ref
|| nref
== 0);
3613 if (nolto_base_node
)
3614 nolto_base_node
->collapse ();
3616 lto_base_node
->collapse ();
3618 for (size_t j
= 0; j
< nref
; j
++)
3620 tree ref_tree
= stream_read_tree (ib
, data_in
);
3622 if (ref_tree
&& !get_alias_set (ref_tree
))
3626 fprintf (dump_file
, "Streamed in alias set 0 type ");
3627 print_generic_expr (dump_file
, ref_tree
);
3628 fprintf (dump_file
, "\n");
3633 modref_ref_node
<alias_set_type
> *nolto_ref_node
= NULL
;
3634 modref_ref_node
<tree
> *lto_ref_node
= NULL
;
3636 if (nolto_base_node
)
3638 = nolto_base_node
->insert_ref (ref_tree
3639 ? get_alias_set (ref_tree
) : 0,
3642 lto_ref_node
= lto_base_node
->insert_ref (ref_tree
, max_refs
);
3644 size_t every_access
= streamer_read_uhwi (ib
);
3645 size_t naccesses
= streamer_read_uhwi (ib
);
3647 if (nolto_ref_node
&& every_access
)
3648 nolto_ref_node
->collapse ();
3649 if (lto_ref_node
&& every_access
)
3650 lto_ref_node
->collapse ();
3652 for (size_t k
= 0; k
< naccesses
; k
++)
3654 modref_access_node a
= modref_access_node::stream_in (ib
);
3656 nolto_ref_node
->insert_access (a
, max_accesses
, false);
3658 lto_ref_node
->insert_access (a
, max_accesses
, false);
3663 (*lto_ret
)->cleanup ();
3665 (*nolto_ret
)->cleanup ();
3668 /* Write ESUM to BP. */
3671 modref_write_escape_summary (struct bitpack_d
*bp
, escape_summary
*esum
)
3675 bp_pack_var_len_unsigned (bp
, 0);
3678 bp_pack_var_len_unsigned (bp
, esum
->esc
.length ());
3681 FOR_EACH_VEC_ELT (esum
->esc
, i
, ee
)
3683 bp_pack_var_len_int (bp
, ee
->parm_index
);
3684 bp_pack_var_len_unsigned (bp
, ee
->arg
);
3685 bp_pack_var_len_unsigned (bp
, ee
->min_flags
);
3686 bp_pack_value (bp
, ee
->direct
, 1);
3690 /* Read escape summary for E from BP. */
3693 modref_read_escape_summary (struct bitpack_d
*bp
, cgraph_edge
*e
)
3695 unsigned int n
= bp_unpack_var_len_unsigned (bp
);
3698 escape_summary
*esum
= escape_summaries
->get_create (e
);
3699 esum
->esc
.reserve_exact (n
);
3700 for (unsigned int i
= 0; i
< n
; i
++)
3703 ee
.parm_index
= bp_unpack_var_len_int (bp
);
3704 ee
.arg
= bp_unpack_var_len_unsigned (bp
);
3705 ee
.min_flags
= bp_unpack_var_len_unsigned (bp
);
3706 ee
.direct
= bp_unpack_value (bp
, 1);
3707 esum
->esc
.quick_push (ee
);
3711 /* Callback for write_summary. */
3716 struct output_block
*ob
= create_output_block (LTO_section_ipa_modref
);
3717 lto_symtab_encoder_t encoder
= ob
->decl_state
->symtab_node_encoder
;
3718 unsigned int count
= 0;
3723 streamer_write_uhwi (ob
, 0);
3724 streamer_write_char_stream (ob
->main_stream
, 0);
3725 produce_asm (ob
, NULL
);
3726 destroy_output_block (ob
);
3730 for (i
= 0; i
< lto_symtab_encoder_size (encoder
); i
++)
3732 symtab_node
*snode
= lto_symtab_encoder_deref (encoder
, i
);
3733 cgraph_node
*cnode
= dyn_cast
<cgraph_node
*> (snode
);
3734 modref_summary_lto
*r
;
3736 if (cnode
&& cnode
->definition
&& !cnode
->alias
3737 && (r
= summaries_lto
->get (cnode
))
3738 && r
->useful_p (flags_from_decl_or_type (cnode
->decl
)))
3741 streamer_write_uhwi (ob
, count
);
3743 for (i
= 0; i
< lto_symtab_encoder_size (encoder
); i
++)
3745 symtab_node
*snode
= lto_symtab_encoder_deref (encoder
, i
);
3746 cgraph_node
*cnode
= dyn_cast
<cgraph_node
*> (snode
);
3748 if (cnode
&& cnode
->definition
&& !cnode
->alias
)
3750 modref_summary_lto
*r
= summaries_lto
->get (cnode
);
3752 if (!r
|| !r
->useful_p (flags_from_decl_or_type (cnode
->decl
)))
3755 streamer_write_uhwi (ob
, lto_symtab_encoder_encode (encoder
, cnode
));
3757 streamer_write_uhwi (ob
, r
->arg_flags
.length ());
3758 for (unsigned int i
= 0; i
< r
->arg_flags
.length (); i
++)
3759 streamer_write_uhwi (ob
, r
->arg_flags
[i
]);
3760 streamer_write_uhwi (ob
, r
->retslot_flags
);
3761 streamer_write_uhwi (ob
, r
->static_chain_flags
);
3763 write_modref_records (r
->loads
, ob
);
3764 write_modref_records (r
->stores
, ob
);
3765 streamer_write_uhwi (ob
, r
->kills
.length ());
3766 for (auto kill
: r
->kills
)
3767 kill
.stream_out (ob
);
3769 struct bitpack_d bp
= bitpack_create (ob
->main_stream
);
3770 bp_pack_value (&bp
, r
->writes_errno
, 1);
3771 bp_pack_value (&bp
, r
->side_effects
, 1);
3772 bp_pack_value (&bp
, r
->nondeterministic
, 1);
3773 bp_pack_value (&bp
, r
->calls_interposable
, 1);
3776 for (cgraph_edge
*e
= cnode
->indirect_calls
;
3777 e
; e
= e
->next_callee
)
3779 class fnspec_summary
*sum
= fnspec_summaries
->get (e
);
3780 bp_pack_value (&bp
, sum
!= NULL
, 1);
3782 bp_pack_string (ob
, &bp
, sum
->fnspec
, true);
3783 class escape_summary
*esum
= escape_summaries
->get (e
);
3784 modref_write_escape_summary (&bp
,esum
);
3786 for (cgraph_edge
*e
= cnode
->callees
; e
; e
= e
->next_callee
)
3788 class fnspec_summary
*sum
= fnspec_summaries
->get (e
);
3789 bp_pack_value (&bp
, sum
!= NULL
, 1);
3791 bp_pack_string (ob
, &bp
, sum
->fnspec
, true);
3792 class escape_summary
*esum
= escape_summaries
->get (e
);
3793 modref_write_escape_summary (&bp
,esum
);
3796 streamer_write_bitpack (&bp
);
3799 streamer_write_char_stream (ob
->main_stream
, 0);
3800 produce_asm (ob
, NULL
);
3801 destroy_output_block (ob
);
3805 read_section (struct lto_file_decl_data
*file_data
, const char *data
,
3808 const struct lto_function_header
*header
3809 = (const struct lto_function_header
*) data
;
3810 const int cfg_offset
= sizeof (struct lto_function_header
);
3811 const int main_offset
= cfg_offset
+ header
->cfg_size
;
3812 const int string_offset
= main_offset
+ header
->main_size
;
3813 struct data_in
*data_in
;
3815 unsigned int f_count
;
3817 lto_input_block
ib ((const char *) data
+ main_offset
, header
->main_size
,
3818 file_data
->mode_table
);
3821 = lto_data_in_create (file_data
, (const char *) data
+ string_offset
,
3822 header
->string_size
, vNULL
);
3823 f_count
= streamer_read_uhwi (&ib
);
3824 for (i
= 0; i
< f_count
; i
++)
3826 struct cgraph_node
*node
;
3827 lto_symtab_encoder_t encoder
;
3829 unsigned int index
= streamer_read_uhwi (&ib
);
3830 encoder
= file_data
->symtab_node_encoder
;
3831 node
= dyn_cast
<cgraph_node
*> (lto_symtab_encoder_deref (encoder
,
3834 modref_summary
*modref_sum
= summaries
3835 ? summaries
->get_create (node
) : NULL
;
3836 modref_summary_lto
*modref_sum_lto
= summaries_lto
3837 ? summaries_lto
->get_create (node
)
3839 if (optimization_summaries
)
3840 modref_sum
= optimization_summaries
->get_create (node
);
3844 modref_sum
->writes_errno
= false;
3845 modref_sum
->side_effects
= false;
3846 modref_sum
->nondeterministic
= false;
3847 modref_sum
->calls_interposable
= false;
3851 modref_sum_lto
->writes_errno
= false;
3852 modref_sum_lto
->side_effects
= false;
3853 modref_sum_lto
->nondeterministic
= false;
3854 modref_sum_lto
->calls_interposable
= false;
3857 gcc_assert (!modref_sum
|| (!modref_sum
->loads
3858 && !modref_sum
->stores
));
3859 gcc_assert (!modref_sum_lto
|| (!modref_sum_lto
->loads
3860 && !modref_sum_lto
->stores
));
3861 unsigned int args
= streamer_read_uhwi (&ib
);
3862 if (args
&& modref_sum
)
3863 modref_sum
->arg_flags
.reserve_exact (args
);
3864 if (args
&& modref_sum_lto
)
3865 modref_sum_lto
->arg_flags
.reserve_exact (args
);
3866 for (unsigned int i
= 0; i
< args
; i
++)
3868 eaf_flags_t flags
= streamer_read_uhwi (&ib
);
3870 modref_sum
->arg_flags
.quick_push (flags
);
3872 modref_sum_lto
->arg_flags
.quick_push (flags
);
3874 eaf_flags_t flags
= streamer_read_uhwi (&ib
);
3876 modref_sum
->retslot_flags
= flags
;
3878 modref_sum_lto
->retslot_flags
= flags
;
3880 flags
= streamer_read_uhwi (&ib
);
3882 modref_sum
->static_chain_flags
= flags
;
3884 modref_sum_lto
->static_chain_flags
= flags
;
3886 read_modref_records (node
->decl
, &ib
, data_in
,
3887 modref_sum
? &modref_sum
->loads
: NULL
,
3888 modref_sum_lto
? &modref_sum_lto
->loads
: NULL
);
3889 read_modref_records (node
->decl
, &ib
, data_in
,
3890 modref_sum
? &modref_sum
->stores
: NULL
,
3891 modref_sum_lto
? &modref_sum_lto
->stores
: NULL
);
3892 int j
= streamer_read_uhwi (&ib
);
3893 if (j
&& modref_sum
)
3894 modref_sum
->kills
.reserve_exact (j
);
3895 if (j
&& modref_sum_lto
)
3896 modref_sum_lto
->kills
.reserve_exact (j
);
3897 for (int k
= 0; k
< j
; k
++)
3899 modref_access_node a
= modref_access_node::stream_in (&ib
);
3902 modref_sum
->kills
.quick_push (a
);
3904 modref_sum_lto
->kills
.quick_push (a
);
3906 struct bitpack_d bp
= streamer_read_bitpack (&ib
);
3907 if (bp_unpack_value (&bp
, 1))
3910 modref_sum
->writes_errno
= true;
3912 modref_sum_lto
->writes_errno
= true;
3914 if (bp_unpack_value (&bp
, 1))
3917 modref_sum
->side_effects
= true;
3919 modref_sum_lto
->side_effects
= true;
3921 if (bp_unpack_value (&bp
, 1))
3924 modref_sum
->nondeterministic
= true;
3926 modref_sum_lto
->nondeterministic
= true;
3928 if (bp_unpack_value (&bp
, 1))
3931 modref_sum
->calls_interposable
= true;
3933 modref_sum_lto
->calls_interposable
= true;
3937 for (cgraph_edge
*e
= node
->indirect_calls
; e
; e
= e
->next_callee
)
3939 if (bp_unpack_value (&bp
, 1))
3941 class fnspec_summary
*sum
= fnspec_summaries
->get_create (e
);
3942 sum
->fnspec
= xstrdup (bp_unpack_string (data_in
, &bp
));
3944 modref_read_escape_summary (&bp
, e
);
3946 for (cgraph_edge
*e
= node
->callees
; e
; e
= e
->next_callee
)
3948 if (bp_unpack_value (&bp
, 1))
3950 class fnspec_summary
*sum
= fnspec_summaries
->get_create (e
);
3951 sum
->fnspec
= xstrdup (bp_unpack_string (data_in
, &bp
));
3953 modref_read_escape_summary (&bp
, e
);
3957 modref_sum
->finalize (node
->decl
);
3960 fprintf (dump_file
, "Read modref for %s\n",
3961 node
->dump_name ());
3963 modref_sum
->dump (dump_file
);
3965 modref_sum_lto
->dump (dump_file
);
3966 dump_modref_edge_summaries (dump_file
, node
, 4);
3970 lto_free_section_data (file_data
, LTO_section_ipa_modref
, NULL
, data
,
3972 lto_data_in_delete (data_in
);
3975 /* Callback for read_summary. */
3980 struct lto_file_decl_data
**file_data_vec
= lto_get_file_decl_data ();
3981 struct lto_file_decl_data
*file_data
;
3984 gcc_checking_assert (!optimization_summaries
&& !summaries
&& !summaries_lto
);
3986 optimization_summaries
= modref_summaries::create_ggc (symtab
);
3989 if (flag_wpa
|| flag_incremental_link
== INCREMENTAL_LINK_LTO
)
3990 summaries_lto
= modref_summaries_lto::create_ggc (symtab
);
3992 || (flag_incremental_link
== INCREMENTAL_LINK_LTO
3993 && flag_fat_lto_objects
))
3994 summaries
= modref_summaries::create_ggc (symtab
);
3995 if (!fnspec_summaries
)
3996 fnspec_summaries
= new fnspec_summaries_t (symtab
);
3997 if (!escape_summaries
)
3998 escape_summaries
= new escape_summaries_t (symtab
);
4001 while ((file_data
= file_data_vec
[j
++]))
4004 const char *data
= lto_get_summary_section_data (file_data
,
4005 LTO_section_ipa_modref
,
4008 read_section (file_data
, data
, len
);
4010 /* Fatal error here. We do not want to support compiling ltrans units
4011 with different version of compiler or different flags than the WPA
4012 unit, so this should never happen. */
4013 fatal_error (input_location
,
4014 "IPA modref summary is missing in input file");
4018 /* Recompute arg_flags for param adjustments in INFO. */
4021 remap_arg_flags (auto_vec
<eaf_flags_t
> &arg_flags
, clone_info
*info
)
4023 auto_vec
<eaf_flags_t
> old
= arg_flags
.copy ();
4026 ipa_adjusted_param
*p
;
4028 arg_flags
.release ();
4030 FOR_EACH_VEC_SAFE_ELT (info
->param_adjustments
->m_adj_params
, i
, p
)
4032 int o
= info
->param_adjustments
->get_original_index (i
);
4033 if (o
>= 0 && (int)old
.length () > o
&& old
[o
])
4037 arg_flags
.safe_grow_cleared (max
+ 1, true);
4038 FOR_EACH_VEC_SAFE_ELT (info
->param_adjustments
->m_adj_params
, i
, p
)
4040 int o
= info
->param_adjustments
->get_original_index (i
);
4041 if (o
>= 0 && (int)old
.length () > o
&& old
[o
])
4042 arg_flags
[i
] = old
[o
];
4046 /* Update kills according to the parm map MAP. */
4049 remap_kills (vec
<modref_access_node
> &kills
, const vec
<int> &map
)
4051 for (size_t i
= 0; i
< kills
.length ();)
4052 if (kills
[i
].parm_index
>= 0)
4054 if (kills
[i
].parm_index
< (int)map
.length ()
4055 && map
[kills
[i
].parm_index
] != MODREF_UNKNOWN_PARM
)
4057 kills
[i
].parm_index
= map
[kills
[i
].parm_index
];
4061 kills
.unordered_remove (i
);
4067 /* If signature changed, update the summary. */
4070 update_signature (struct cgraph_node
*node
)
4072 clone_info
*info
= clone_info::get (node
);
4073 if (!info
|| !info
->param_adjustments
)
4076 modref_summary
*r
= optimization_summaries
4077 ? optimization_summaries
->get (node
) : NULL
;
4078 modref_summary_lto
*r_lto
= summaries_lto
4079 ? summaries_lto
->get (node
) : NULL
;
4084 fprintf (dump_file
, "Updating summary for %s from:\n",
4085 node
->dump_name ());
4087 r
->dump (dump_file
);
4089 r_lto
->dump (dump_file
);
4093 ipa_adjusted_param
*p
;
4095 FOR_EACH_VEC_SAFE_ELT (info
->param_adjustments
->m_adj_params
, i
, p
)
4097 int idx
= info
->param_adjustments
->get_original_index (i
);
4102 auto_vec
<int, 32> map
;
4104 map
.reserve (max
+ 1);
4105 for (i
= 0; i
<= max
; i
++)
4106 map
.quick_push (MODREF_UNKNOWN_PARM
);
4107 FOR_EACH_VEC_SAFE_ELT (info
->param_adjustments
->m_adj_params
, i
, p
)
4109 int idx
= info
->param_adjustments
->get_original_index (i
);
4115 r
->loads
->remap_params (&map
);
4116 r
->stores
->remap_params (&map
);
4117 remap_kills (r
->kills
, map
);
4118 if (r
->arg_flags
.length ())
4119 remap_arg_flags (r
->arg_flags
, info
);
4123 r_lto
->loads
->remap_params (&map
);
4124 r_lto
->stores
->remap_params (&map
);
4125 remap_kills (r_lto
->kills
, map
);
4126 if (r_lto
->arg_flags
.length ())
4127 remap_arg_flags (r_lto
->arg_flags
, info
);
4131 fprintf (dump_file
, "to:\n");
4133 r
->dump (dump_file
);
4135 r_lto
->dump (dump_file
);
4138 r
->finalize (node
->decl
);
4142 /* Definition of the modref IPA pass. */
4143 const pass_data pass_data_ipa_modref
=
4145 IPA_PASS
, /* type */
4146 "modref", /* name */
4147 OPTGROUP_IPA
, /* optinfo_flags */
4148 TV_IPA_MODREF
, /* tv_id */
4149 0, /* properties_required */
4150 0, /* properties_provided */
4151 0, /* properties_destroyed */
4152 0, /* todo_flags_start */
4153 ( TODO_dump_symtab
), /* todo_flags_finish */
4156 class pass_ipa_modref
: public ipa_opt_pass_d
4159 pass_ipa_modref (gcc::context
*ctxt
)
4160 : ipa_opt_pass_d (pass_data_ipa_modref
, ctxt
,
4161 modref_generate
, /* generate_summary */
4162 modref_write
, /* write_summary */
4163 modref_read
, /* read_summary */
4164 modref_write
, /* write_optimization_summary */
4165 modref_read
, /* read_optimization_summary */
4166 NULL
, /* stmt_fixup */
4167 0, /* function_transform_todo_flags_start */
4168 NULL
, /* function_transform */
4169 NULL
) /* variable_transform */
4172 /* opt_pass methods: */
4173 opt_pass
*clone () final override
{ return new pass_ipa_modref (m_ctxt
); }
4174 bool gate (function
*) final override
4178 unsigned int execute (function
*) final override
;
4184 unsigned int pass_modref::execute (function
*)
4186 if (analyze_function (false))
4187 return execute_fixup_cfg ();
4192 make_pass_modref (gcc::context
*ctxt
)
4194 return new pass_modref (ctxt
);
4198 make_pass_ipa_modref (gcc::context
*ctxt
)
4200 return new pass_ipa_modref (ctxt
);
4205 /* Skip edges from and to nodes without ipa_pure_const enabled.
4206 Ignore not available symbols. */
4209 ignore_edge (struct cgraph_edge
*e
)
4211 /* We merge summaries of inline clones into summaries of functions they
4212 are inlined to. For that reason the complete function bodies must
4214 if (!e
->inline_failed
)
4216 enum availability avail
;
4217 cgraph_node
*callee
= e
->callee
->ultimate_alias_target
4218 (&avail
, e
->caller
);
4220 return (avail
<= AVAIL_INTERPOSABLE
4221 || ((!optimization_summaries
|| !optimization_summaries
->get (callee
))
4222 && (!summaries_lto
|| !summaries_lto
->get (callee
))));
4225 /* Compute parm_map for CALLEE_EDGE. */
4228 compute_parm_map (cgraph_edge
*callee_edge
, vec
<modref_parm_map
> *parm_map
)
4230 class ipa_edge_args
*args
;
4231 if (ipa_node_params_sum
4232 && !callee_edge
->call_stmt_cannot_inline_p
4233 && (args
= ipa_edge_args_sum
->get (callee_edge
)) != NULL
)
4235 int i
, count
= ipa_get_cs_argument_count (args
);
4236 class ipa_node_params
*caller_parms_info
, *callee_pi
;
4237 class ipa_call_summary
*es
4238 = ipa_call_summaries
->get (callee_edge
);
4240 = callee_edge
->callee
->ultimate_alias_target
4241 (NULL
, callee_edge
->caller
);
4244 = ipa_node_params_sum
->get (callee_edge
->caller
->inlined_to
4245 ? callee_edge
->caller
->inlined_to
4246 : callee_edge
->caller
);
4247 callee_pi
= ipa_node_params_sum
->get (callee
);
4249 (*parm_map
).safe_grow_cleared (count
, true);
4251 for (i
= 0; i
< count
; i
++)
4253 if (es
&& es
->param
[i
].points_to_local_or_readonly_memory
)
4255 (*parm_map
)[i
].parm_index
= MODREF_LOCAL_MEMORY_PARM
;
4259 struct ipa_jump_func
*jf
4260 = ipa_get_ith_jump_func (args
, i
);
4261 if (jf
&& callee_pi
)
4263 tree cst
= ipa_value_from_jfunc (caller_parms_info
,
4267 if (cst
&& points_to_local_or_readonly_memory_p (cst
))
4269 (*parm_map
)[i
].parm_index
= MODREF_LOCAL_MEMORY_PARM
;
4273 if (jf
&& jf
->type
== IPA_JF_PASS_THROUGH
)
4275 (*parm_map
)[i
].parm_index
4276 = ipa_get_jf_pass_through_formal_id (jf
);
4277 if (ipa_get_jf_pass_through_operation (jf
) == NOP_EXPR
)
4279 (*parm_map
)[i
].parm_offset_known
= true;
4280 (*parm_map
)[i
].parm_offset
= 0;
4282 else if (ipa_get_jf_pass_through_operation (jf
)
4283 == POINTER_PLUS_EXPR
4284 && ptrdiff_tree_p (ipa_get_jf_pass_through_operand (jf
),
4285 &(*parm_map
)[i
].parm_offset
))
4286 (*parm_map
)[i
].parm_offset_known
= true;
4288 (*parm_map
)[i
].parm_offset_known
= false;
4291 if (jf
&& jf
->type
== IPA_JF_ANCESTOR
)
4293 (*parm_map
)[i
].parm_index
= ipa_get_jf_ancestor_formal_id (jf
);
4294 (*parm_map
)[i
].parm_offset_known
= true;
4296 (!(ipa_get_jf_ancestor_offset (jf
) & (BITS_PER_UNIT
- 1)));
4297 (*parm_map
)[i
].parm_offset
4298 = ipa_get_jf_ancestor_offset (jf
) >> LOG2_BITS_PER_UNIT
;
4301 (*parm_map
)[i
].parm_index
= -1;
4305 fprintf (dump_file
, " Parm map: ");
4306 for (i
= 0; i
< count
; i
++)
4307 fprintf (dump_file
, " %i", (*parm_map
)[i
].parm_index
);
4308 fprintf (dump_file
, "\n");
4315 /* Map used to translate escape infos. */
4323 /* Update escape map for E. */
4326 update_escape_summary_1 (cgraph_edge
*e
,
4327 vec
<vec
<escape_map
>> &map
,
4330 escape_summary
*sum
= escape_summaries
->get (e
);
4333 auto_vec
<escape_entry
> old
= sum
->esc
.copy ();
4334 sum
->esc
.release ();
4338 FOR_EACH_VEC_ELT (old
, i
, ee
)
4341 struct escape_map
*em
;
4342 /* TODO: We do not have jump functions for return slots, so we
4343 never propagate them to outer function. */
4344 if (ee
->parm_index
>= (int)map
.length ()
4345 || ee
->parm_index
< 0)
4347 FOR_EACH_VEC_ELT (map
[ee
->parm_index
], j
, em
)
4349 int min_flags
= ee
->min_flags
;
4350 if (ee
->direct
&& !em
->direct
)
4351 min_flags
= deref_flags (min_flags
, ignore_stores
);
4352 struct escape_entry entry
= {em
->parm_index
, ee
->arg
,
4354 ee
->direct
& em
->direct
};
4355 sum
->esc
.safe_push (entry
);
4358 if (!sum
->esc
.length ())
4359 escape_summaries
->remove (e
);
4362 /* Update escape map for NODE. */
4365 update_escape_summary (cgraph_node
*node
,
4366 vec
<vec
<escape_map
>> &map
,
4369 if (!escape_summaries
)
4371 for (cgraph_edge
*e
= node
->indirect_calls
; e
; e
= e
->next_callee
)
4372 update_escape_summary_1 (e
, map
, ignore_stores
);
4373 for (cgraph_edge
*e
= node
->callees
; e
; e
= e
->next_callee
)
4375 if (!e
->inline_failed
)
4376 update_escape_summary (e
->callee
, map
, ignore_stores
);
4378 update_escape_summary_1 (e
, map
, ignore_stores
);
4382 /* Get parameter type from DECL. This is only safe for special cases
4383 like builtins we create fnspec for because the type match is checked
4384 at fnspec creation time. */
4387 get_parm_type (tree decl
, unsigned int i
)
4389 tree t
= TYPE_ARG_TYPES (TREE_TYPE (decl
));
4391 for (unsigned int p
= 0; p
< i
; p
++)
4393 return TREE_VALUE (t
);
4396 /* Return access mode for argument I of call E with FNSPEC. */
4398 static modref_access_node
4399 get_access_for_fnspec (cgraph_edge
*e
, attr_fnspec
&fnspec
,
4400 unsigned int i
, modref_parm_map
&map
)
4402 tree size
= NULL_TREE
;
4403 unsigned int size_arg
;
4405 if (!fnspec
.arg_specified_p (i
))
4407 else if (fnspec
.arg_max_access_size_given_by_arg_p (i
, &size_arg
))
4409 cgraph_node
*node
= e
->caller
->inlined_to
4410 ? e
->caller
->inlined_to
: e
->caller
;
4411 ipa_node_params
*caller_parms_info
= ipa_node_params_sum
->get (node
);
4412 ipa_edge_args
*args
= ipa_edge_args_sum
->get (e
);
4413 struct ipa_jump_func
*jf
= ipa_get_ith_jump_func (args
, size_arg
);
4416 size
= ipa_value_from_jfunc (caller_parms_info
, jf
,
4417 get_parm_type (e
->callee
->decl
, size_arg
));
4419 else if (fnspec
.arg_access_size_given_by_type_p (i
))
4420 size
= TYPE_SIZE_UNIT (get_parm_type (e
->callee
->decl
, i
));
4421 modref_access_node a
= {0, -1, -1,
4422 map
.parm_offset
, map
.parm_index
,
4423 map
.parm_offset_known
, 0};
4424 poly_int64 size_hwi
;
4426 && poly_int_tree_p (size
, &size_hwi
)
4427 && coeffs_in_range_p (size_hwi
, 0,
4428 HOST_WIDE_INT_MAX
/ BITS_PER_UNIT
))
4431 a
.max_size
= size_hwi
<< LOG2_BITS_PER_UNIT
;
4436 /* Collapse loads and return true if something changed. */
4438 collapse_loads (modref_summary
*cur_summary
,
4439 modref_summary_lto
*cur_summary_lto
)
4441 bool changed
= false;
4443 if (cur_summary
&& !cur_summary
->loads
->every_base
)
4445 cur_summary
->loads
->collapse ();
4449 && !cur_summary_lto
->loads
->every_base
)
4451 cur_summary_lto
->loads
->collapse ();
4457 /* Collapse loads and return true if something changed. */
4460 collapse_stores (modref_summary
*cur_summary
,
4461 modref_summary_lto
*cur_summary_lto
)
4463 bool changed
= false;
4465 if (cur_summary
&& !cur_summary
->stores
->every_base
)
4467 cur_summary
->stores
->collapse ();
4471 && !cur_summary_lto
->stores
->every_base
)
4473 cur_summary_lto
->stores
->collapse ();
4479 /* Call E in NODE with ECF_FLAGS has no summary; update MODREF_SUMMARY and
4480 CUR_SUMMARY_LTO accordingly. Return true if something changed. */
4483 propagate_unknown_call (cgraph_node
*node
,
4484 cgraph_edge
*e
, int ecf_flags
,
4485 modref_summary
*cur_summary
,
4486 modref_summary_lto
*cur_summary_lto
,
4487 bool nontrivial_scc
)
4489 bool changed
= false;
4490 class fnspec_summary
*fnspec_sum
= fnspec_summaries
->get (e
);
4491 auto_vec
<modref_parm_map
, 32> parm_map
;
4495 && builtin_safe_for_const_function_p (&looping
, e
->callee
->decl
))
4497 if (looping
&& cur_summary
&& !cur_summary
->side_effects
)
4499 cur_summary
->side_effects
= true;
4502 if (looping
&& cur_summary_lto
&& !cur_summary_lto
->side_effects
)
4504 cur_summary_lto
->side_effects
= true;
4510 if (!(ecf_flags
& (ECF_CONST
| ECF_NOVOPS
| ECF_PURE
))
4511 || (ecf_flags
& ECF_LOOPING_CONST_OR_PURE
)
4514 if (cur_summary
&& !cur_summary
->side_effects
)
4516 cur_summary
->side_effects
= true;
4519 if (cur_summary_lto
&& !cur_summary_lto
->side_effects
)
4521 cur_summary_lto
->side_effects
= true;
4524 if (cur_summary
&& !cur_summary
->nondeterministic
4525 && !ignore_nondeterminism_p (node
->decl
, ecf_flags
))
4527 cur_summary
->nondeterministic
= true;
4530 if (cur_summary_lto
&& !cur_summary_lto
->nondeterministic
4531 && !ignore_nondeterminism_p (node
->decl
, ecf_flags
))
4533 cur_summary_lto
->nondeterministic
= true;
4537 if (ecf_flags
& (ECF_CONST
| ECF_NOVOPS
))
4541 && compute_parm_map (e
, &parm_map
))
4543 attr_fnspec
fnspec (fnspec_sum
->fnspec
);
4545 gcc_checking_assert (fnspec
.known_p ());
4546 if (fnspec
.global_memory_read_p ())
4547 collapse_loads (cur_summary
, cur_summary_lto
);
4550 tree t
= TYPE_ARG_TYPES (TREE_TYPE (e
->callee
->decl
));
4551 for (unsigned i
= 0; i
< parm_map
.length () && t
;
4552 i
++, t
= TREE_CHAIN (t
))
4553 if (!POINTER_TYPE_P (TREE_VALUE (t
)))
4555 else if (!fnspec
.arg_specified_p (i
)
4556 || fnspec
.arg_maybe_read_p (i
))
4558 modref_parm_map map
= parm_map
[i
];
4559 if (map
.parm_index
== MODREF_LOCAL_MEMORY_PARM
)
4561 if (map
.parm_index
== MODREF_UNKNOWN_PARM
)
4563 collapse_loads (cur_summary
, cur_summary_lto
);
4567 changed
|= cur_summary
->loads
->insert
4569 get_access_for_fnspec (e
, fnspec
, i
, map
), false);
4570 if (cur_summary_lto
)
4571 changed
|= cur_summary_lto
->loads
->insert
4573 get_access_for_fnspec (e
, fnspec
, i
, map
), false);
4576 if (ignore_stores_p (node
->decl
, ecf_flags
))
4578 else if (fnspec
.global_memory_written_p ())
4579 collapse_stores (cur_summary
, cur_summary_lto
);
4582 tree t
= TYPE_ARG_TYPES (TREE_TYPE (e
->callee
->decl
));
4583 for (unsigned i
= 0; i
< parm_map
.length () && t
;
4584 i
++, t
= TREE_CHAIN (t
))
4585 if (!POINTER_TYPE_P (TREE_VALUE (t
)))
4587 else if (!fnspec
.arg_specified_p (i
)
4588 || fnspec
.arg_maybe_written_p (i
))
4590 modref_parm_map map
= parm_map
[i
];
4591 if (map
.parm_index
== MODREF_LOCAL_MEMORY_PARM
)
4593 if (map
.parm_index
== MODREF_UNKNOWN_PARM
)
4595 collapse_stores (cur_summary
, cur_summary_lto
);
4599 changed
|= cur_summary
->stores
->insert
4601 get_access_for_fnspec (e
, fnspec
, i
, map
), false);
4602 if (cur_summary_lto
)
4603 changed
|= cur_summary_lto
->stores
->insert
4605 get_access_for_fnspec (e
, fnspec
, i
, map
), false);
4608 if (fnspec
.errno_maybe_written_p () && flag_errno_math
)
4610 if (cur_summary
&& !cur_summary
->writes_errno
)
4612 cur_summary
->writes_errno
= true;
4615 if (cur_summary_lto
&& !cur_summary_lto
->writes_errno
)
4617 cur_summary_lto
->writes_errno
= true;
4624 fprintf (dump_file
, " collapsing loads\n");
4625 changed
|= collapse_loads (cur_summary
, cur_summary_lto
);
4626 if (!ignore_stores_p (node
->decl
, ecf_flags
))
4629 fprintf (dump_file
, " collapsing stores\n");
4630 changed
|= collapse_stores (cur_summary
, cur_summary_lto
);
4635 /* Maybe remove summaries of NODE pointed to by CUR_SUMMARY_PTR
4636 and CUR_SUMMARY_LTO_PTR if they are useless according to ECF_FLAGS. */
4639 remove_useless_summaries (cgraph_node
*node
,
4640 modref_summary
**cur_summary_ptr
,
4641 modref_summary_lto
**cur_summary_lto_ptr
,
4644 if (*cur_summary_ptr
&& !(*cur_summary_ptr
)->useful_p (ecf_flags
, false))
4646 optimization_summaries
->remove (node
);
4647 *cur_summary_ptr
= NULL
;
4649 if (*cur_summary_lto_ptr
4650 && !(*cur_summary_lto_ptr
)->useful_p (ecf_flags
, false))
4652 summaries_lto
->remove (node
);
4653 *cur_summary_lto_ptr
= NULL
;
4657 /* Perform iterative dataflow on SCC component starting in COMPONENT_NODE
4658 and propagate loads/stores. */
4661 modref_propagate_in_scc (cgraph_node
*component_node
)
4663 bool changed
= true;
4670 = ((struct ipa_dfs_info
*) component_node
->aux
)->next_cycle
;
4672 for (struct cgraph_node
*cur
= component_node
; cur
;
4673 cur
= ((struct ipa_dfs_info
*) cur
->aux
)->next_cycle
)
4675 cgraph_node
*node
= cur
->inlined_to
? cur
->inlined_to
: cur
;
4676 modref_summary
*cur_summary
= optimization_summaries
4677 ? optimization_summaries
->get (node
)
4679 modref_summary_lto
*cur_summary_lto
= summaries_lto
4680 ? summaries_lto
->get (node
)
4683 if (!cur_summary
&& !cur_summary_lto
)
4686 int cur_ecf_flags
= flags_from_decl_or_type (node
->decl
);
4689 fprintf (dump_file
, " Processing %s%s%s\n",
4691 TREE_READONLY (cur
->decl
) ? " (const)" : "",
4692 DECL_PURE_P (cur
->decl
) ? " (pure)" : "");
4694 for (cgraph_edge
*e
= cur
->indirect_calls
; e
; e
= e
->next_callee
)
4697 fprintf (dump_file
, " Indirect call\n");
4698 if (propagate_unknown_call
4699 (node
, e
, e
->indirect_info
->ecf_flags
,
4700 cur_summary
, cur_summary_lto
,
4704 remove_useless_summaries (node
, &cur_summary
,
4707 if (!cur_summary
&& !cur_summary_lto
)
4712 if (!cur_summary
&& !cur_summary_lto
)
4715 for (cgraph_edge
*callee_edge
= cur
->callees
; callee_edge
;
4716 callee_edge
= callee_edge
->next_callee
)
4718 int flags
= flags_from_decl_or_type (callee_edge
->callee
->decl
);
4719 modref_summary
*callee_summary
= NULL
;
4720 modref_summary_lto
*callee_summary_lto
= NULL
;
4721 struct cgraph_node
*callee
;
4723 if (!callee_edge
->inline_failed
4724 || ((flags
& (ECF_CONST
| ECF_NOVOPS
))
4725 && !(flags
& ECF_LOOPING_CONST_OR_PURE
)))
4728 /* Get the callee and its summary. */
4729 enum availability avail
;
4730 callee
= callee_edge
->callee
->ultimate_alias_target
4733 /* It is not necessary to re-process calls outside of the
4737 || ((struct ipa_dfs_info
*)cur
->aux
)->scc_no
4738 != ((struct ipa_dfs_info
*)callee
->aux
)->scc_no
))
4742 fprintf (dump_file
, " Call to %s\n",
4743 callee_edge
->callee
->dump_name ());
4745 bool ignore_stores
= ignore_stores_p (cur
->decl
, flags
);
4747 if (avail
<= AVAIL_INTERPOSABLE
)
4750 fprintf (dump_file
, " Call target interposable"
4751 " or not available\n");
4752 changed
|= propagate_unknown_call
4753 (node
, callee_edge
, flags
,
4754 cur_summary
, cur_summary_lto
,
4756 if (!cur_summary
&& !cur_summary_lto
)
4761 /* We don't know anything about CALLEE, hence we cannot tell
4762 anything about the entire component. */
4765 && !(callee_summary
= optimization_summaries
->get (callee
)))
4768 fprintf (dump_file
, " No call target summary\n");
4769 changed
|= propagate_unknown_call
4770 (node
, callee_edge
, flags
,
4775 && !(callee_summary_lto
= summaries_lto
->get (callee
)))
4778 fprintf (dump_file
, " No call target summary\n");
4779 changed
|= propagate_unknown_call
4780 (node
, callee_edge
, flags
,
4781 NULL
, cur_summary_lto
,
4785 if (callee_summary
&& !cur_summary
->side_effects
4786 && (callee_summary
->side_effects
4787 || callee_edge
->recursive_p ()))
4789 cur_summary
->side_effects
= true;
4792 if (callee_summary_lto
&& !cur_summary_lto
->side_effects
4793 && (callee_summary_lto
->side_effects
4794 || callee_edge
->recursive_p ()))
4796 cur_summary_lto
->side_effects
= true;
4799 if (callee_summary
&& !cur_summary
->nondeterministic
4800 && callee_summary
->nondeterministic
4801 && !ignore_nondeterminism_p (cur
->decl
, flags
))
4803 cur_summary
->nondeterministic
= true;
4806 if (callee_summary_lto
&& !cur_summary_lto
->nondeterministic
4807 && callee_summary_lto
->nondeterministic
4808 && !ignore_nondeterminism_p (cur
->decl
, flags
))
4810 cur_summary_lto
->nondeterministic
= true;
4813 if (flags
& (ECF_CONST
| ECF_NOVOPS
))
4816 /* We can not safely optimize based on summary of callee if it
4817 does not always bind to current def: it is possible that
4818 memory load was optimized out earlier which may not happen in
4819 the interposed variant. */
4820 if (!callee_edge
->binds_to_current_def_p ())
4822 if (cur_summary
&& !cur_summary
->calls_interposable
)
4824 cur_summary
->calls_interposable
= true;
4827 if (cur_summary_lto
&& !cur_summary_lto
->calls_interposable
)
4829 cur_summary_lto
->calls_interposable
= true;
4833 fprintf (dump_file
, " May not bind local;"
4834 " collapsing loads\n");
4838 auto_vec
<modref_parm_map
, 32> parm_map
;
4839 modref_parm_map chain_map
;
4840 /* TODO: Once we get jump functions for static chains we could
4842 chain_map
.parm_index
= MODREF_UNKNOWN_PARM
;
4844 compute_parm_map (callee_edge
, &parm_map
);
4846 /* Merge in callee's information. */
4849 changed
|= cur_summary
->loads
->merge
4850 (node
->decl
, callee_summary
->loads
,
4851 &parm_map
, &chain_map
, !first
);
4854 changed
|= cur_summary
->stores
->merge
4855 (node
->decl
, callee_summary
->stores
,
4856 &parm_map
, &chain_map
, !first
);
4857 if (!cur_summary
->writes_errno
4858 && callee_summary
->writes_errno
)
4860 cur_summary
->writes_errno
= true;
4865 if (callee_summary_lto
)
4867 changed
|= cur_summary_lto
->loads
->merge
4868 (node
->decl
, callee_summary_lto
->loads
,
4869 &parm_map
, &chain_map
, !first
);
4872 changed
|= cur_summary_lto
->stores
->merge
4873 (node
->decl
, callee_summary_lto
->stores
,
4874 &parm_map
, &chain_map
, !first
);
4875 if (!cur_summary_lto
->writes_errno
4876 && callee_summary_lto
->writes_errno
)
4878 cur_summary_lto
->writes_errno
= true;
4884 remove_useless_summaries (node
, &cur_summary
,
4887 if (!cur_summary
&& !cur_summary_lto
)
4889 if (dump_file
&& changed
)
4892 cur_summary
->dump (dump_file
);
4893 if (cur_summary_lto
)
4894 cur_summary_lto
->dump (dump_file
);
4895 dump_modref_edge_summaries (dump_file
, node
, 4);
4904 "Propagation finished in %i iterations\n", iteration
);
4905 bool pureconst
= false;
4906 for (struct cgraph_node
*cur
= component_node
; cur
;
4907 cur
= ((struct ipa_dfs_info
*) cur
->aux
)->next_cycle
)
4908 if (!cur
->inlined_to
&& opt_for_fn (cur
->decl
, flag_ipa_pure_const
))
4910 modref_summary
*summary
= optimization_summaries
4911 ? optimization_summaries
->get (cur
)
4913 modref_summary_lto
*summary_lto
= summaries_lto
4914 ? summaries_lto
->get (cur
)
4916 if (summary
&& !summary
->stores
->every_base
&& !summary
->stores
->bases
4917 && !summary
->nondeterministic
)
4919 if (!summary
->loads
->every_base
&& !summary
->loads
->bases
4920 && !summary
->calls_interposable
)
4921 pureconst
|= ipa_make_function_const
4922 (cur
, summary
->side_effects
, false);
4924 pureconst
|= ipa_make_function_pure
4925 (cur
, summary
->side_effects
, false);
4927 if (summary_lto
&& !summary_lto
->stores
->every_base
4928 && !summary_lto
->stores
->bases
&& !summary_lto
->nondeterministic
)
4930 if (!summary_lto
->loads
->every_base
&& !summary_lto
->loads
->bases
4931 && !summary_lto
->calls_interposable
)
4932 pureconst
|= ipa_make_function_const
4933 (cur
, summary_lto
->side_effects
, false);
4935 pureconst
|= ipa_make_function_pure
4936 (cur
, summary_lto
->side_effects
, false);
4942 /* Dump results of propagation in SCC rooted in COMPONENT_NODE. */
4945 modref_propagate_dump_scc (cgraph_node
*component_node
)
4947 for (struct cgraph_node
*cur
= component_node
; cur
;
4948 cur
= ((struct ipa_dfs_info
*) cur
->aux
)->next_cycle
)
4949 if (!cur
->inlined_to
)
4951 modref_summary
*cur_summary
= optimization_summaries
4952 ? optimization_summaries
->get (cur
)
4954 modref_summary_lto
*cur_summary_lto
= summaries_lto
4955 ? summaries_lto
->get (cur
)
4958 fprintf (dump_file
, "Propagated modref for %s%s%s\n",
4960 TREE_READONLY (cur
->decl
) ? " (const)" : "",
4961 DECL_PURE_P (cur
->decl
) ? " (pure)" : "");
4962 if (optimization_summaries
)
4965 cur_summary
->dump (dump_file
);
4967 fprintf (dump_file
, " Not tracked\n");
4971 if (cur_summary_lto
)
4972 cur_summary_lto
->dump (dump_file
);
4974 fprintf (dump_file
, " Not tracked (lto)\n");
4979 /* Determine EAF flags know for call E with CALLEE_ECF_FLAGS and ARG. */
4982 implicit_eaf_flags_for_edge_and_arg (cgraph_edge
*e
, int callee_ecf_flags
,
4983 bool ignore_stores
, int arg
)
4985 /* Returning the value is already accounted to at local propagation. */
4986 int implicit_flags
= EAF_NOT_RETURNED_DIRECTLY
4987 | EAF_NOT_RETURNED_INDIRECTLY
;
4989 implicit_flags
|= ignore_stores_eaf_flags
;
4990 if (callee_ecf_flags
& ECF_PURE
)
4991 implicit_flags
|= implicit_pure_eaf_flags
;
4992 if (callee_ecf_flags
& (ECF_CONST
| ECF_NOVOPS
))
4993 implicit_flags
|= implicit_const_eaf_flags
;
4994 class fnspec_summary
*fnspec_sum
= fnspec_summaries
->get (e
);
4997 attr_fnspec
fnspec (fnspec_sum
->fnspec
);
4998 implicit_flags
|= fnspec
.arg_eaf_flags (arg
);
5000 return implicit_flags
;
5003 /* Process escapes in SUM and merge SUMMARY to CUR_SUMMARY
5004 and SUMMARY_LTO to CUR_SUMMARY_LTO.
5005 Return true if something changed. */
5008 modref_merge_call_site_flags (escape_summary
*sum
,
5009 modref_summary
*cur_summary
,
5010 modref_summary_lto
*cur_summary_lto
,
5011 modref_summary
*summary
,
5012 modref_summary_lto
*summary_lto
,
5015 int caller_ecf_flags
,
5016 int callee_ecf_flags
,
5017 bool binds_to_current_def
)
5021 bool changed
= false;
5022 bool ignore_stores
= ignore_stores_p (caller
, callee_ecf_flags
);
5024 /* Return early if we have no useful info to propagate. */
5026 || (!cur_summary
->arg_flags
.length ()
5027 && !cur_summary
->static_chain_flags
5028 && !cur_summary
->retslot_flags
))
5029 && (!cur_summary_lto
5030 || (!cur_summary_lto
->arg_flags
.length ()
5031 && !cur_summary_lto
->static_chain_flags
5032 && !cur_summary_lto
->retslot_flags
)))
5035 FOR_EACH_VEC_ELT (sum
->esc
, i
, ee
)
5039 int implicit_flags
= implicit_eaf_flags_for_edge_and_arg
5040 (e
, callee_ecf_flags
, ignore_stores
, ee
->arg
);
5042 if (summary
&& ee
->arg
< summary
->arg_flags
.length ())
5043 flags
= summary
->arg_flags
[ee
->arg
];
5045 && ee
->arg
< summary_lto
->arg_flags
.length ())
5046 flags_lto
= summary_lto
->arg_flags
[ee
->arg
];
5049 flags
= deref_flags (flags
, ignore_stores
);
5050 flags_lto
= deref_flags (flags_lto
, ignore_stores
);
5053 implicit_flags
|= ignore_stores_eaf_flags
;
5054 if (callee_ecf_flags
& ECF_PURE
)
5055 implicit_flags
|= implicit_pure_eaf_flags
;
5056 if (callee_ecf_flags
& (ECF_CONST
| ECF_NOVOPS
))
5057 implicit_flags
|= implicit_const_eaf_flags
;
5058 class fnspec_summary
*fnspec_sum
= fnspec_summaries
->get (e
);
5061 attr_fnspec
fnspec (fnspec_sum
->fnspec
);
5062 implicit_flags
|= fnspec
.arg_eaf_flags (ee
->arg
);
5065 implicit_flags
= deref_flags (implicit_flags
, ignore_stores
);
5066 flags
|= implicit_flags
;
5067 flags_lto
|= implicit_flags
;
5068 if (!binds_to_current_def
&& (flags
|| flags_lto
))
5070 flags
= interposable_eaf_flags (flags
, implicit_flags
);
5071 flags_lto
= interposable_eaf_flags (flags_lto
, implicit_flags
);
5073 if (!(flags
& EAF_UNUSED
)
5074 && cur_summary
&& ee
->parm_index
< (int)cur_summary
->arg_flags
.length ())
5076 eaf_flags_t
&f
= ee
->parm_index
== MODREF_RETSLOT_PARM
5077 ? cur_summary
->retslot_flags
5078 : ee
->parm_index
== MODREF_STATIC_CHAIN_PARM
5079 ? cur_summary
->static_chain_flags
5080 : cur_summary
->arg_flags
[ee
->parm_index
];
5081 if ((f
& flags
) != f
)
5083 f
= remove_useless_eaf_flags
5084 (f
& flags
, caller_ecf_flags
,
5085 VOID_TYPE_P (TREE_TYPE (TREE_TYPE (caller
))));
5089 if (!(flags_lto
& EAF_UNUSED
)
5091 && ee
->parm_index
< (int)cur_summary_lto
->arg_flags
.length ())
5093 eaf_flags_t
&f
= ee
->parm_index
== MODREF_RETSLOT_PARM
5094 ? cur_summary_lto
->retslot_flags
5095 : ee
->parm_index
== MODREF_STATIC_CHAIN_PARM
5096 ? cur_summary_lto
->static_chain_flags
5097 : cur_summary_lto
->arg_flags
[ee
->parm_index
];
5098 if ((f
& flags_lto
) != f
)
5100 f
= remove_useless_eaf_flags
5101 (f
& flags_lto
, caller_ecf_flags
,
5102 VOID_TYPE_P (TREE_TYPE (TREE_TYPE (caller
))));
5110 /* Perform iterative dataflow on SCC component starting in COMPONENT_NODE
5111 and propagate arg flags. */
5114 modref_propagate_flags_in_scc (cgraph_node
*component_node
)
5116 bool changed
= true;
5122 for (struct cgraph_node
*cur
= component_node
; cur
;
5123 cur
= ((struct ipa_dfs_info
*) cur
->aux
)->next_cycle
)
5125 cgraph_node
*node
= cur
->inlined_to
? cur
->inlined_to
: cur
;
5126 modref_summary
*cur_summary
= optimization_summaries
5127 ? optimization_summaries
->get (node
)
5129 modref_summary_lto
*cur_summary_lto
= summaries_lto
5130 ? summaries_lto
->get (node
)
5133 if (!cur_summary
&& !cur_summary_lto
)
5135 int caller_ecf_flags
= flags_from_decl_or_type (cur
->decl
);
5138 fprintf (dump_file
, " Processing %s%s%s\n",
5140 TREE_READONLY (cur
->decl
) ? " (const)" : "",
5141 DECL_PURE_P (cur
->decl
) ? " (pure)" : "");
5143 for (cgraph_edge
*e
= cur
->indirect_calls
; e
; e
= e
->next_callee
)
5145 escape_summary
*sum
= escape_summaries
->get (e
);
5147 if (!sum
|| (e
->indirect_info
->ecf_flags
5148 & (ECF_CONST
| ECF_NOVOPS
)))
5151 changed
|= modref_merge_call_site_flags
5152 (sum
, cur_summary
, cur_summary_lto
,
5157 e
->indirect_info
->ecf_flags
,
5161 if (!cur_summary
&& !cur_summary_lto
)
5164 for (cgraph_edge
*callee_edge
= cur
->callees
; callee_edge
;
5165 callee_edge
= callee_edge
->next_callee
)
5167 int ecf_flags
= flags_from_decl_or_type
5168 (callee_edge
->callee
->decl
);
5169 modref_summary
*callee_summary
= NULL
;
5170 modref_summary_lto
*callee_summary_lto
= NULL
;
5171 struct cgraph_node
*callee
;
5173 if (ecf_flags
& (ECF_CONST
| ECF_NOVOPS
)
5174 || !callee_edge
->inline_failed
)
5177 /* Get the callee and its summary. */
5178 enum availability avail
;
5179 callee
= callee_edge
->callee
->ultimate_alias_target
5182 /* It is not necessary to re-process calls outside of the
5186 || ((struct ipa_dfs_info
*)cur
->aux
)->scc_no
5187 != ((struct ipa_dfs_info
*)callee
->aux
)->scc_no
))
5190 escape_summary
*sum
= escape_summaries
->get (callee_edge
);
5195 fprintf (dump_file
, " Call to %s\n",
5196 callee_edge
->callee
->dump_name ());
5198 if (avail
<= AVAIL_INTERPOSABLE
5199 || callee_edge
->call_stmt_cannot_inline_p
)
5204 callee_summary
= optimization_summaries
->get (callee
);
5205 if (cur_summary_lto
)
5206 callee_summary_lto
= summaries_lto
->get (callee
);
5208 changed
|= modref_merge_call_site_flags
5209 (sum
, cur_summary
, cur_summary_lto
,
5210 callee_summary
, callee_summary_lto
,
5215 callee
->binds_to_current_def_p ());
5216 if (dump_file
&& changed
)
5219 cur_summary
->dump (dump_file
);
5220 if (cur_summary_lto
)
5221 cur_summary_lto
->dump (dump_file
);
5229 "Propagation of flags finished in %i iterations\n", iteration
);
5232 } /* ANON namespace. */
5234 /* Call EDGE was inlined; merge summary from callee to the caller. */
5237 ipa_merge_modref_summary_after_inlining (cgraph_edge
*edge
)
5239 if (!summaries
&& !summaries_lto
)
5242 struct cgraph_node
*to
= (edge
->caller
->inlined_to
5243 ? edge
->caller
->inlined_to
: edge
->caller
);
5244 class modref_summary
*to_info
= summaries
? summaries
->get (to
) : NULL
;
5245 class modref_summary_lto
*to_info_lto
= summaries_lto
5246 ? summaries_lto
->get (to
) : NULL
;
5248 if (!to_info
&& !to_info_lto
)
5251 summaries
->remove (edge
->callee
);
5253 summaries_lto
->remove (edge
->callee
);
5254 remove_modref_edge_summaries (edge
->callee
);
5258 class modref_summary
*callee_info
= summaries
? summaries
->get (edge
->callee
)
5260 class modref_summary_lto
*callee_info_lto
5261 = summaries_lto
? summaries_lto
->get (edge
->callee
) : NULL
;
5262 int flags
= flags_from_decl_or_type (edge
->callee
->decl
);
5263 /* Combine in outer flags. */
5265 for (n
= edge
->caller
; n
->inlined_to
; n
= n
->callers
->caller
)
5266 flags
|= flags_from_decl_or_type (n
->decl
);
5267 flags
|= flags_from_decl_or_type (n
->decl
);
5268 bool ignore_stores
= ignore_stores_p (edge
->caller
->decl
, flags
);
5270 if (!callee_info
&& to_info
)
5272 if (!(flags
& (ECF_CONST
| ECF_NOVOPS
)))
5273 to_info
->loads
->collapse ();
5275 to_info
->stores
->collapse ();
5277 if (!callee_info_lto
&& to_info_lto
)
5279 if (!(flags
& (ECF_CONST
| ECF_NOVOPS
)))
5280 to_info_lto
->loads
->collapse ();
5282 to_info_lto
->stores
->collapse ();
5284 /* Merge side effects and non-determinism.
5285 PURE/CONST flags makes functions deterministic and if there is
5286 no LOOPING_CONST_OR_PURE they also have no side effects. */
5287 if (!(flags
& (ECF_CONST
| ECF_NOVOPS
| ECF_PURE
))
5288 || (flags
& ECF_LOOPING_CONST_OR_PURE
))
5292 if (!callee_info
|| callee_info
->side_effects
)
5293 to_info
->side_effects
= true;
5294 if ((!callee_info
|| callee_info
->nondeterministic
)
5295 && !ignore_nondeterminism_p (edge
->caller
->decl
, flags
))
5296 to_info
->nondeterministic
= true;
5300 if (!callee_info_lto
|| callee_info_lto
->side_effects
)
5301 to_info_lto
->side_effects
= true;
5302 if ((!callee_info_lto
|| callee_info_lto
->nondeterministic
)
5303 && !ignore_nondeterminism_p (edge
->caller
->decl
, flags
))
5304 to_info_lto
->nondeterministic
= true;
5307 if (callee_info
|| callee_info_lto
)
5309 auto_vec
<modref_parm_map
, 32> parm_map
;
5310 modref_parm_map chain_map
;
5311 /* TODO: Once we get jump functions for static chains we could
5312 compute parm_index. */
5314 compute_parm_map (edge
, &parm_map
);
5318 if (to_info
&& callee_info
)
5319 to_info
->stores
->merge (to
->decl
, callee_info
->stores
, &parm_map
,
5321 if (to_info_lto
&& callee_info_lto
)
5322 to_info_lto
->stores
->merge (to
->decl
, callee_info_lto
->stores
,
5323 &parm_map
, &chain_map
, false);
5325 if (!(flags
& (ECF_CONST
| ECF_NOVOPS
)))
5327 if (to_info
&& callee_info
)
5328 to_info
->loads
->merge (to
->decl
, callee_info
->loads
, &parm_map
,
5330 if (to_info_lto
&& callee_info_lto
)
5331 to_info_lto
->loads
->merge (to
->decl
, callee_info_lto
->loads
,
5332 &parm_map
, &chain_map
, false);
5336 /* Now merge escape summaries.
5337 For every escape to the callee we need to merge callee flags
5338 and remap callee's escapes. */
5339 class escape_summary
*sum
= escape_summaries
->get (edge
);
5340 int max_escape
= -1;
5344 if (sum
&& !(flags
& (ECF_CONST
| ECF_NOVOPS
)))
5345 FOR_EACH_VEC_ELT (sum
->esc
, i
, ee
)
5346 if ((int)ee
->arg
> max_escape
)
5347 max_escape
= ee
->arg
;
5349 auto_vec
<vec
<struct escape_map
>, 32> emap (max_escape
+ 1);
5350 emap
.safe_grow (max_escape
+ 1, true);
5351 for (i
= 0; (int)i
< max_escape
+ 1; i
++)
5354 if (sum
&& !(flags
& (ECF_CONST
| ECF_NOVOPS
)))
5355 FOR_EACH_VEC_ELT (sum
->esc
, i
, ee
)
5357 bool needed
= false;
5358 int implicit_flags
= implicit_eaf_flags_for_edge_and_arg
5359 (edge
, flags
, ignore_stores
,
5362 implicit_flags
= deref_flags (implicit_flags
, ignore_stores
);
5363 if (to_info
&& (int)to_info
->arg_flags
.length () > ee
->parm_index
)
5365 int flags
= callee_info
5366 && callee_info
->arg_flags
.length () > ee
->arg
5367 ? callee_info
->arg_flags
[ee
->arg
] : 0;
5369 flags
= deref_flags (flags
, ignore_stores
);
5370 flags
|= ee
->min_flags
| implicit_flags
;
5371 eaf_flags_t
&f
= ee
->parm_index
== MODREF_RETSLOT_PARM
5372 ? to_info
->retslot_flags
5373 : ee
->parm_index
== MODREF_STATIC_CHAIN_PARM
5374 ? to_info
->static_chain_flags
5375 : to_info
->arg_flags
[ee
->parm_index
];
5381 && (int)to_info_lto
->arg_flags
.length () > ee
->parm_index
)
5383 int flags
= callee_info_lto
5384 && callee_info_lto
->arg_flags
.length () > ee
->arg
5385 ? callee_info_lto
->arg_flags
[ee
->arg
] : 0;
5387 flags
= deref_flags (flags
, ignore_stores
);
5388 flags
|= ee
->min_flags
| implicit_flags
;
5389 eaf_flags_t
&f
= ee
->parm_index
== MODREF_RETSLOT_PARM
5390 ? to_info_lto
->retslot_flags
5391 : ee
->parm_index
== MODREF_STATIC_CHAIN_PARM
5392 ? to_info_lto
->static_chain_flags
5393 : to_info_lto
->arg_flags
[ee
->parm_index
];
5398 struct escape_map entry
= {ee
->parm_index
, ee
->direct
};
5400 emap
[ee
->arg
].safe_push (entry
);
5402 update_escape_summary (edge
->callee
, emap
, ignore_stores
);
5403 for (i
= 0; (int)i
< max_escape
+ 1; i
++)
5406 escape_summaries
->remove (edge
);
5410 if (to_info
&& !to_info
->useful_p (flags
))
5413 fprintf (dump_file
, "Removed mod-ref summary for %s\n",
5415 summaries
->remove (to
);
5418 else if (to_info
&& dump_file
)
5421 fprintf (dump_file
, "Updated mod-ref summary for %s\n",
5423 to_info
->dump (dump_file
);
5426 summaries
->remove (edge
->callee
);
5430 if (to_info_lto
&& !to_info_lto
->useful_p (flags
))
5433 fprintf (dump_file
, "Removed mod-ref summary for %s\n",
5435 summaries_lto
->remove (to
);
5438 else if (to_info_lto
&& dump_file
)
5441 fprintf (dump_file
, "Updated mod-ref summary for %s\n",
5443 to_info_lto
->dump (dump_file
);
5445 if (callee_info_lto
)
5446 summaries_lto
->remove (edge
->callee
);
5448 if (!to_info
&& !to_info_lto
)
5449 remove_modref_edge_summaries (to
);
5453 /* Run the IPA pass. This will take a function's summaries and calls and
5454 construct new summaries which represent a transitive closure. So that
5455 summary of an analyzed function contains information about the loads and
5456 stores that the function or any function that it calls does. */
5459 pass_ipa_modref::execute (function
*)
5461 if (!summaries
&& !summaries_lto
)
5463 bool pureconst
= false;
5465 if (optimization_summaries
)
5466 ggc_delete (optimization_summaries
);
5467 optimization_summaries
= summaries
;
5470 struct cgraph_node
**order
= XCNEWVEC (struct cgraph_node
*,
5471 symtab
->cgraph_count
);
5473 order_pos
= ipa_reduced_postorder (order
, true, ignore_edge
);
5476 /* Iterate over all strongly connected components in post-order. */
5477 for (i
= 0; i
< order_pos
; i
++)
5479 /* Get the component's representative. That's just any node in the
5480 component from which we can traverse the entire component. */
5481 struct cgraph_node
*component_node
= order
[i
];
5484 fprintf (dump_file
, "\n\nStart of SCC component\n");
5486 pureconst
|= modref_propagate_in_scc (component_node
);
5487 modref_propagate_flags_in_scc (component_node
);
5488 if (optimization_summaries
)
5489 for (struct cgraph_node
*cur
= component_node
; cur
;
5490 cur
= ((struct ipa_dfs_info
*) cur
->aux
)->next_cycle
)
5491 if (modref_summary
*sum
= optimization_summaries
->get (cur
))
5492 sum
->finalize (cur
->decl
);
5494 modref_propagate_dump_scc (component_node
);
5497 FOR_EACH_FUNCTION (node
)
5498 update_signature (node
);
5500 ((modref_summaries_lto
*)summaries_lto
)->propagated
= true;
5501 ipa_free_postorder_info ();
5503 delete fnspec_summaries
;
5504 fnspec_summaries
= NULL
;
5505 delete escape_summaries
;
5506 escape_summaries
= NULL
;
5508 /* If we possibly made constructors const/pure we may need to remove
5510 return pureconst
? TODO_remove_functions
: 0;
5513 /* Summaries must stay alive until end of compilation. */
5516 ipa_modref_cc_finalize ()
5518 if (optimization_summaries
)
5519 ggc_delete (optimization_summaries
);
5520 optimization_summaries
= NULL
;
5522 ggc_delete (summaries_lto
);
5523 summaries_lto
= NULL
;
5524 if (fnspec_summaries
)
5525 delete fnspec_summaries
;
5526 fnspec_summaries
= NULL
;
5527 if (escape_summaries
)
5528 delete escape_summaries
;
5529 escape_summaries
= NULL
;
5532 #include "gt-ipa-modref.h"