Relocation (= move+destroy)
[official-gcc.git] / gcc / tree-vrp.c
blob17b0b6c60378f5b6e9c2e7d34632bd0f9fe8faa3
1 /* Support routines for Value Range Propagation (VRP).
2 Copyright (C) 2005-2018 Free Software Foundation, Inc.
3 Contributed by Diego Novillo <dnovillo@redhat.com>.
5 This file is part of GCC.
7 GCC is free software; you can redistribute it and/or modify
8 it under the terms of the GNU General Public License as published by
9 the Free Software Foundation; either version 3, or (at your option)
10 any later version.
12 GCC is distributed in the hope that it will be useful,
13 but WITHOUT ANY WARRANTY; without even the implied warranty of
14 MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
15 GNU General Public License for more details.
17 You should have received a copy of the GNU General Public License
18 along with GCC; see the file COPYING3. If not see
19 <http://www.gnu.org/licenses/>. */
21 #include "config.h"
22 #include "system.h"
23 #include "coretypes.h"
24 #include "backend.h"
25 #include "insn-codes.h"
26 #include "rtl.h"
27 #include "tree.h"
28 #include "gimple.h"
29 #include "cfghooks.h"
30 #include "tree-pass.h"
31 #include "ssa.h"
32 #include "optabs-tree.h"
33 #include "gimple-pretty-print.h"
34 #include "diagnostic-core.h"
35 #include "flags.h"
36 #include "fold-const.h"
37 #include "stor-layout.h"
38 #include "calls.h"
39 #include "cfganal.h"
40 #include "gimple-fold.h"
41 #include "tree-eh.h"
42 #include "gimple-iterator.h"
43 #include "gimple-walk.h"
44 #include "tree-cfg.h"
45 #include "tree-dfa.h"
46 #include "tree-ssa-loop-manip.h"
47 #include "tree-ssa-loop-niter.h"
48 #include "tree-ssa-loop.h"
49 #include "tree-into-ssa.h"
50 #include "tree-ssa.h"
51 #include "intl.h"
52 #include "cfgloop.h"
53 #include "tree-scalar-evolution.h"
54 #include "tree-ssa-propagate.h"
55 #include "tree-chrec.h"
56 #include "tree-ssa-threadupdate.h"
57 #include "tree-ssa-scopedtables.h"
58 #include "tree-ssa-threadedge.h"
59 #include "omp-general.h"
60 #include "target.h"
61 #include "case-cfn-macros.h"
62 #include "params.h"
63 #include "alloc-pool.h"
64 #include "domwalk.h"
65 #include "tree-cfgcleanup.h"
66 #include "stringpool.h"
67 #include "attribs.h"
68 #include "vr-values.h"
69 #include "builtins.h"
70 #include "wide-int-range.h"
72 /* Set of SSA names found live during the RPO traversal of the function
73 for still active basic-blocks. */
74 static sbitmap *live;
76 /* Initialize value_range. */
78 void
79 value_range::set (enum value_range_kind kind, tree min, tree max,
80 bitmap equiv)
82 m_kind = kind;
83 m_min = min;
84 m_max = max;
86 /* Since updating the equivalence set involves deep copying the
87 bitmaps, only do it if absolutely necessary.
89 All equivalence bitmaps are allocated from the same obstack. So
90 we can use the obstack associated with EQUIV to allocate vr->equiv. */
91 if (m_equiv == NULL
92 && equiv != NULL)
93 m_equiv = BITMAP_ALLOC (equiv->obstack);
95 if (equiv != m_equiv)
97 if (equiv && !bitmap_empty_p (equiv))
98 bitmap_copy (m_equiv, equiv);
99 else
100 bitmap_clear (m_equiv);
102 if (flag_checking)
103 check ();
106 value_range::value_range (value_range_kind kind, tree min, tree max,
107 bitmap equiv)
109 m_equiv = NULL;
110 set (kind, min, max, equiv);
113 /* Like above, but keep the equivalences intact. */
115 void
116 value_range::update (value_range_kind kind, tree min, tree max)
118 set (kind, min, max, m_equiv);
121 /* Copy value_range in FROM into THIS while avoiding bitmap sharing.
123 Note: The code that avoids the bitmap sharing looks at the existing
124 this->m_equiv, so this function cannot be used to initalize an
125 object. Use the constructors for initialization. */
127 void
128 value_range::deep_copy (const value_range *from)
130 set (from->m_kind, from->min (), from->max (), from->m_equiv);
133 /* Check the validity of the range. */
135 void
136 value_range::check ()
138 switch (m_kind)
140 case VR_RANGE:
141 case VR_ANTI_RANGE:
143 int cmp;
145 gcc_assert (m_min && m_max);
147 gcc_assert (!TREE_OVERFLOW_P (m_min) && !TREE_OVERFLOW_P (m_max));
149 /* Creating ~[-MIN, +MAX] is stupid because that would be
150 the empty set. */
151 if (INTEGRAL_TYPE_P (TREE_TYPE (m_min)) && m_kind == VR_ANTI_RANGE)
152 gcc_assert (!vrp_val_is_min (m_min) || !vrp_val_is_max (m_max));
154 cmp = compare_values (m_min, m_max);
155 gcc_assert (cmp == 0 || cmp == -1 || cmp == -2);
156 break;
158 case VR_UNDEFINED:
159 case VR_VARYING:
160 gcc_assert (!m_min && !m_max);
161 gcc_assert (!m_equiv || bitmap_empty_p (m_equiv));
162 break;
163 default:
164 gcc_unreachable ();
168 /* Returns TRUE if THIS == OTHER. Ignores the equivalence bitmap if
169 IGNORE_EQUIVS is TRUE. */
171 bool
172 value_range::equal_p (const value_range &other, bool ignore_equivs) const
174 return (m_kind == other.m_kind
175 && vrp_operand_equal_p (m_min, other.m_min)
176 && vrp_operand_equal_p (m_max, other.m_max)
177 && (ignore_equivs
178 || vrp_bitmap_equal_p (m_equiv, other.m_equiv)));
181 /* Return equality while ignoring equivalence bitmap. */
183 bool
184 value_range::ignore_equivs_equal_p (const value_range &other) const
186 return equal_p (other, /*ignore_equivs=*/true);
189 bool
190 value_range::operator== (const value_range &other) const
192 return equal_p (other, /*ignore_equivs=*/false);
195 bool
196 value_range::operator!= (const value_range &other) const
198 return !(*this == other);
201 /* Return TRUE if this is a symbolic range. */
203 bool
204 value_range::symbolic_p () const
206 return (!varying_p ()
207 && !undefined_p ()
208 && (!is_gimple_min_invariant (m_min)
209 || !is_gimple_min_invariant (m_max)));
212 /* NOTE: This is not the inverse of symbolic_p because the range
213 could also be varying or undefined. Ideally they should be inverse
214 of each other, with varying only applying to symbolics. Varying of
215 constants would be represented as [-MIN, +MAX]. */
217 bool
218 value_range::constant_p () const
220 return (!varying_p ()
221 && !undefined_p ()
222 && TREE_CODE (m_min) == INTEGER_CST
223 && TREE_CODE (m_max) == INTEGER_CST);
226 void
227 value_range::set_undefined ()
229 equiv_clear ();
230 *this = value_range (VR_UNDEFINED, NULL, NULL, NULL);
233 void
234 value_range::set_varying ()
236 equiv_clear ();
237 *this = value_range (VR_VARYING, NULL, NULL, NULL);
240 /* Return TRUE if it is possible that range contains VAL. */
242 bool
243 value_range::may_contain_p (tree val) const
245 if (varying_p ())
246 return true;
248 if (undefined_p ())
249 return true;
251 if (m_kind == VR_ANTI_RANGE)
253 int res = value_inside_range (val, m_min, m_max);
254 return res == 0 || res == -2;
256 return value_inside_range (val, m_min, m_max) != 0;
259 void
260 value_range::equiv_clear ()
262 if (m_equiv)
263 bitmap_clear (m_equiv);
266 /* Add VAR and VAR's equivalence set (VAR_VR) to the equivalence
267 bitmap. If no equivalence table has been created, OBSTACK is the
268 obstack to use (NULL for the default obstack).
270 This is the central point where equivalence processing can be
271 turned on/off. */
273 void
274 value_range::equiv_add (const_tree var,
275 const value_range *var_vr,
276 bitmap_obstack *obstack)
278 if (!m_equiv)
279 m_equiv = BITMAP_ALLOC (obstack);
280 unsigned ver = SSA_NAME_VERSION (var);
281 bitmap_set_bit (m_equiv, ver);
282 if (var_vr && var_vr->m_equiv)
283 bitmap_ior_into (m_equiv, var_vr->m_equiv);
286 /* If range is a singleton, place it in RESULT and return TRUE.
287 Note: A singleton can be any gimple invariant, not just constants.
288 So, [&x, &x] counts as a singleton. */
290 bool
291 value_range::singleton_p (tree *result) const
293 if (m_kind == VR_RANGE
294 && vrp_operand_equal_p (m_min, m_max)
295 && is_gimple_min_invariant (m_min))
297 if (result)
298 *result = m_min;
299 return true;
301 return false;
304 tree
305 value_range::type () const
307 /* Types are only valid for VR_RANGE and VR_ANTI_RANGE, which are
308 known to have non-zero min/max. */
309 gcc_assert (m_min);
310 return TREE_TYPE (m_min);
313 /* Dump value range to FILE. */
315 void
316 value_range::dump (FILE *file) const
318 if (undefined_p ())
319 fprintf (file, "UNDEFINED");
320 else if (m_kind == VR_RANGE || m_kind == VR_ANTI_RANGE)
322 tree type = TREE_TYPE (min ());
324 fprintf (file, "%s[", (m_kind == VR_ANTI_RANGE) ? "~" : "");
326 if (INTEGRAL_TYPE_P (type)
327 && !TYPE_UNSIGNED (type)
328 && vrp_val_is_min (min ()))
329 fprintf (file, "-INF");
330 else
331 print_generic_expr (file, min ());
333 fprintf (file, ", ");
335 if (INTEGRAL_TYPE_P (type)
336 && vrp_val_is_max (max ()))
337 fprintf (file, "+INF");
338 else
339 print_generic_expr (file, max ());
341 fprintf (file, "]");
343 if (m_equiv)
345 bitmap_iterator bi;
346 unsigned i, c = 0;
348 fprintf (file, " EQUIVALENCES: { ");
350 EXECUTE_IF_SET_IN_BITMAP (m_equiv, 0, i, bi)
352 print_generic_expr (file, ssa_name (i));
353 fprintf (file, " ");
354 c++;
357 fprintf (file, "} (%u elements)", c);
360 else if (varying_p ())
361 fprintf (file, "VARYING");
362 else
363 fprintf (file, "INVALID RANGE");
366 void
367 value_range::dump () const
369 dump_value_range (stderr, this);
370 fprintf (stderr, "\n");
373 /* Return true if the SSA name NAME is live on the edge E. */
375 static bool
376 live_on_edge (edge e, tree name)
378 return (live[e->dest->index]
379 && bitmap_bit_p (live[e->dest->index], SSA_NAME_VERSION (name)));
382 /* Location information for ASSERT_EXPRs. Each instance of this
383 structure describes an ASSERT_EXPR for an SSA name. Since a single
384 SSA name may have more than one assertion associated with it, these
385 locations are kept in a linked list attached to the corresponding
386 SSA name. */
387 struct assert_locus
389 /* Basic block where the assertion would be inserted. */
390 basic_block bb;
392 /* Some assertions need to be inserted on an edge (e.g., assertions
393 generated by COND_EXPRs). In those cases, BB will be NULL. */
394 edge e;
396 /* Pointer to the statement that generated this assertion. */
397 gimple_stmt_iterator si;
399 /* Predicate code for the ASSERT_EXPR. Must be COMPARISON_CLASS_P. */
400 enum tree_code comp_code;
402 /* Value being compared against. */
403 tree val;
405 /* Expression to compare. */
406 tree expr;
408 /* Next node in the linked list. */
409 assert_locus *next;
412 /* If bit I is present, it means that SSA name N_i has a list of
413 assertions that should be inserted in the IL. */
414 static bitmap need_assert_for;
416 /* Array of locations lists where to insert assertions. ASSERTS_FOR[I]
417 holds a list of ASSERT_LOCUS_T nodes that describe where
418 ASSERT_EXPRs for SSA name N_I should be inserted. */
419 static assert_locus **asserts_for;
421 /* Return the maximum value for TYPE. */
423 tree
424 vrp_val_max (const_tree type)
426 if (!INTEGRAL_TYPE_P (type))
427 return NULL_TREE;
429 return TYPE_MAX_VALUE (type);
432 /* Return the minimum value for TYPE. */
434 tree
435 vrp_val_min (const_tree type)
437 if (!INTEGRAL_TYPE_P (type))
438 return NULL_TREE;
440 return TYPE_MIN_VALUE (type);
443 /* Return whether VAL is equal to the maximum value of its type.
444 We can't do a simple equality comparison with TYPE_MAX_VALUE because
445 C typedefs and Ada subtypes can produce types whose TYPE_MAX_VALUE
446 is not == to the integer constant with the same value in the type. */
448 bool
449 vrp_val_is_max (const_tree val)
451 tree type_max = vrp_val_max (TREE_TYPE (val));
452 return (val == type_max
453 || (type_max != NULL_TREE
454 && operand_equal_p (val, type_max, 0)));
457 /* Return whether VAL is equal to the minimum value of its type. */
459 bool
460 vrp_val_is_min (const_tree val)
462 tree type_min = vrp_val_min (TREE_TYPE (val));
463 return (val == type_min
464 || (type_min != NULL_TREE
465 && operand_equal_p (val, type_min, 0)));
468 /* VR_TYPE describes a range with mininum value *MIN and maximum
469 value *MAX. Restrict the range to the set of values that have
470 no bits set outside NONZERO_BITS. Update *MIN and *MAX and
471 return the new range type.
473 SGN gives the sign of the values described by the range. */
475 enum value_range_kind
476 intersect_range_with_nonzero_bits (enum value_range_kind vr_type,
477 wide_int *min, wide_int *max,
478 const wide_int &nonzero_bits,
479 signop sgn)
481 if (vr_type == VR_ANTI_RANGE)
483 /* The VR_ANTI_RANGE is equivalent to the union of the ranges
484 A: [-INF, *MIN) and B: (*MAX, +INF]. First use NONZERO_BITS
485 to create an inclusive upper bound for A and an inclusive lower
486 bound for B. */
487 wide_int a_max = wi::round_down_for_mask (*min - 1, nonzero_bits);
488 wide_int b_min = wi::round_up_for_mask (*max + 1, nonzero_bits);
490 /* If the calculation of A_MAX wrapped, A is effectively empty
491 and A_MAX is the highest value that satisfies NONZERO_BITS.
492 Likewise if the calculation of B_MIN wrapped, B is effectively
493 empty and B_MIN is the lowest value that satisfies NONZERO_BITS. */
494 bool a_empty = wi::ge_p (a_max, *min, sgn);
495 bool b_empty = wi::le_p (b_min, *max, sgn);
497 /* If both A and B are empty, there are no valid values. */
498 if (a_empty && b_empty)
499 return VR_UNDEFINED;
501 /* If exactly one of A or B is empty, return a VR_RANGE for the
502 other one. */
503 if (a_empty || b_empty)
505 *min = b_min;
506 *max = a_max;
507 gcc_checking_assert (wi::le_p (*min, *max, sgn));
508 return VR_RANGE;
511 /* Update the VR_ANTI_RANGE bounds. */
512 *min = a_max + 1;
513 *max = b_min - 1;
514 gcc_checking_assert (wi::le_p (*min, *max, sgn));
516 /* Now check whether the excluded range includes any values that
517 satisfy NONZERO_BITS. If not, switch to a full VR_RANGE. */
518 if (wi::round_up_for_mask (*min, nonzero_bits) == b_min)
520 unsigned int precision = min->get_precision ();
521 *min = wi::min_value (precision, sgn);
522 *max = wi::max_value (precision, sgn);
523 vr_type = VR_RANGE;
526 if (vr_type == VR_RANGE)
528 *max = wi::round_down_for_mask (*max, nonzero_bits);
530 /* Check that the range contains at least one valid value. */
531 if (wi::gt_p (*min, *max, sgn))
532 return VR_UNDEFINED;
534 *min = wi::round_up_for_mask (*min, nonzero_bits);
535 gcc_checking_assert (wi::le_p (*min, *max, sgn));
537 return vr_type;
540 /* Set value range VR to VR_UNDEFINED. */
542 static inline void
543 set_value_range_to_undefined (value_range *vr)
545 vr->set_undefined ();
548 /* Set value range VR to VR_VARYING. */
550 void
551 set_value_range_to_varying (value_range *vr)
553 vr->set_varying ();
556 /* Set value range VR to {T, MIN, MAX, EQUIV}. */
558 void
559 set_value_range (value_range *vr, enum value_range_kind kind,
560 tree min, tree max, bitmap equiv)
562 *vr = value_range (kind, min, max, equiv);
566 /* Set value range to the canonical form of {VRTYPE, MIN, MAX, EQUIV}.
567 This means adjusting VRTYPE, MIN and MAX representing the case of a
568 wrapping range with MAX < MIN covering [MIN, type_max] U [type_min, MAX]
569 as anti-rage ~[MAX+1, MIN-1]. Likewise for wrapping anti-ranges.
570 In corner cases where MAX+1 or MIN-1 wraps this will fall back
571 to varying.
572 This routine exists to ease canonicalization in the case where we
573 extract ranges from var + CST op limit. */
575 void
576 value_range::set_and_canonicalize (enum value_range_kind kind,
577 tree min, tree max, bitmap equiv)
579 /* Use the canonical setters for VR_UNDEFINED and VR_VARYING. */
580 if (kind == VR_UNDEFINED)
582 set_undefined ();
583 return;
585 else if (kind == VR_VARYING)
587 set_varying ();
588 return;
591 /* Nothing to canonicalize for symbolic ranges. */
592 if (TREE_CODE (min) != INTEGER_CST
593 || TREE_CODE (max) != INTEGER_CST)
595 set_value_range (this, kind, min, max, equiv);
596 return;
599 /* Wrong order for min and max, to swap them and the VR type we need
600 to adjust them. */
601 if (tree_int_cst_lt (max, min))
603 tree one, tmp;
605 /* For one bit precision if max < min, then the swapped
606 range covers all values, so for VR_RANGE it is varying and
607 for VR_ANTI_RANGE empty range, so drop to varying as well. */
608 if (TYPE_PRECISION (TREE_TYPE (min)) == 1)
610 set_varying ();
611 return;
614 one = build_int_cst (TREE_TYPE (min), 1);
615 tmp = int_const_binop (PLUS_EXPR, max, one);
616 max = int_const_binop (MINUS_EXPR, min, one);
617 min = tmp;
619 /* There's one corner case, if we had [C+1, C] before we now have
620 that again. But this represents an empty value range, so drop
621 to varying in this case. */
622 if (tree_int_cst_lt (max, min))
624 set_varying ();
625 return;
628 kind = kind == VR_RANGE ? VR_ANTI_RANGE : VR_RANGE;
631 /* Anti-ranges that can be represented as ranges should be so. */
632 if (kind == VR_ANTI_RANGE)
634 /* For -fstrict-enums we may receive out-of-range ranges so consider
635 values < -INF and values > INF as -INF/INF as well. */
636 tree type = TREE_TYPE (min);
637 bool is_min = (INTEGRAL_TYPE_P (type)
638 && tree_int_cst_compare (min, TYPE_MIN_VALUE (type)) <= 0);
639 bool is_max = (INTEGRAL_TYPE_P (type)
640 && tree_int_cst_compare (max, TYPE_MAX_VALUE (type)) >= 0);
642 if (is_min && is_max)
644 /* We cannot deal with empty ranges, drop to varying.
645 ??? This could be VR_UNDEFINED instead. */
646 set_varying ();
647 return;
649 else if (TYPE_PRECISION (TREE_TYPE (min)) == 1
650 && (is_min || is_max))
652 /* Non-empty boolean ranges can always be represented
653 as a singleton range. */
654 if (is_min)
655 min = max = vrp_val_max (TREE_TYPE (min));
656 else
657 min = max = vrp_val_min (TREE_TYPE (min));
658 kind = VR_RANGE;
660 else if (is_min
661 /* As a special exception preserve non-null ranges. */
662 && !(TYPE_UNSIGNED (TREE_TYPE (min))
663 && integer_zerop (max)))
665 tree one = build_int_cst (TREE_TYPE (max), 1);
666 min = int_const_binop (PLUS_EXPR, max, one);
667 max = vrp_val_max (TREE_TYPE (max));
668 kind = VR_RANGE;
670 else if (is_max)
672 tree one = build_int_cst (TREE_TYPE (min), 1);
673 max = int_const_binop (MINUS_EXPR, min, one);
674 min = vrp_val_min (TREE_TYPE (min));
675 kind = VR_RANGE;
679 /* Do not drop [-INF(OVF), +INF(OVF)] to varying. (OVF) has to be sticky
680 to make sure VRP iteration terminates, otherwise we can get into
681 oscillations. */
683 set_value_range (this, kind, min, max, equiv);
686 /* Set value range VR to a single value. This function is only called
687 with values we get from statements, and exists to clear the
688 TREE_OVERFLOW flag. */
690 void
691 set_value_range_to_value (value_range *vr, tree val, bitmap equiv)
693 gcc_assert (is_gimple_min_invariant (val));
694 if (TREE_OVERFLOW_P (val))
695 val = drop_tree_overflow (val);
696 set_value_range (vr, VR_RANGE, val, val, equiv);
699 /* Set value range VR to a non-NULL range of type TYPE. */
701 void
702 set_value_range_to_nonnull (value_range *vr, tree type)
704 tree zero = build_int_cst (type, 0);
705 vr->update (VR_ANTI_RANGE, zero, zero);
709 /* Set value range VR to a NULL range of type TYPE. */
711 void
712 set_value_range_to_null (value_range *vr, tree type)
714 set_value_range_to_value (vr, build_int_cst (type, 0), vr->equiv ());
717 /* Return true, if VAL1 and VAL2 are equal values for VRP purposes. */
719 bool
720 vrp_operand_equal_p (const_tree val1, const_tree val2)
722 if (val1 == val2)
723 return true;
724 if (!val1 || !val2 || !operand_equal_p (val1, val2, 0))
725 return false;
726 return true;
729 /* Return true, if the bitmaps B1 and B2 are equal. */
731 bool
732 vrp_bitmap_equal_p (const_bitmap b1, const_bitmap b2)
734 return (b1 == b2
735 || ((!b1 || bitmap_empty_p (b1))
736 && (!b2 || bitmap_empty_p (b2)))
737 || (b1 && b2
738 && bitmap_equal_p (b1, b2)));
741 /* Return true if VR is [0, 0]. */
743 static inline bool
744 range_is_null (const value_range *vr)
746 return vr->null_p ();
749 static inline bool
750 range_is_nonnull (const value_range *vr)
752 return (vr->kind () == VR_ANTI_RANGE
753 && vr->min () == vr->max ()
754 && integer_zerop (vr->min ()));
757 /* Return true if max and min of VR are INTEGER_CST. It's not necessary
758 a singleton. */
760 bool
761 range_int_cst_p (const value_range *vr)
763 return (vr->kind () == VR_RANGE
764 && TREE_CODE (vr->min ()) == INTEGER_CST
765 && TREE_CODE (vr->max ()) == INTEGER_CST);
768 /* Return true if VR is a INTEGER_CST singleton. */
770 bool
771 range_int_cst_singleton_p (const value_range *vr)
773 return (range_int_cst_p (vr)
774 && tree_int_cst_equal (vr->min (), vr->max ()));
777 /* Return the single symbol (an SSA_NAME) contained in T if any, or NULL_TREE
778 otherwise. We only handle additive operations and set NEG to true if the
779 symbol is negated and INV to the invariant part, if any. */
781 tree
782 get_single_symbol (tree t, bool *neg, tree *inv)
784 bool neg_;
785 tree inv_;
787 *inv = NULL_TREE;
788 *neg = false;
790 if (TREE_CODE (t) == PLUS_EXPR
791 || TREE_CODE (t) == POINTER_PLUS_EXPR
792 || TREE_CODE (t) == MINUS_EXPR)
794 if (is_gimple_min_invariant (TREE_OPERAND (t, 0)))
796 neg_ = (TREE_CODE (t) == MINUS_EXPR);
797 inv_ = TREE_OPERAND (t, 0);
798 t = TREE_OPERAND (t, 1);
800 else if (is_gimple_min_invariant (TREE_OPERAND (t, 1)))
802 neg_ = false;
803 inv_ = TREE_OPERAND (t, 1);
804 t = TREE_OPERAND (t, 0);
806 else
807 return NULL_TREE;
809 else
811 neg_ = false;
812 inv_ = NULL_TREE;
815 if (TREE_CODE (t) == NEGATE_EXPR)
817 t = TREE_OPERAND (t, 0);
818 neg_ = !neg_;
821 if (TREE_CODE (t) != SSA_NAME)
822 return NULL_TREE;
824 if (inv_ && TREE_OVERFLOW_P (inv_))
825 inv_ = drop_tree_overflow (inv_);
827 *neg = neg_;
828 *inv = inv_;
829 return t;
832 /* The reverse operation: build a symbolic expression with TYPE
833 from symbol SYM, negated according to NEG, and invariant INV. */
835 static tree
836 build_symbolic_expr (tree type, tree sym, bool neg, tree inv)
838 const bool pointer_p = POINTER_TYPE_P (type);
839 tree t = sym;
841 if (neg)
842 t = build1 (NEGATE_EXPR, type, t);
844 if (integer_zerop (inv))
845 return t;
847 return build2 (pointer_p ? POINTER_PLUS_EXPR : PLUS_EXPR, type, t, inv);
850 /* Return
851 1 if VAL < VAL2
852 0 if !(VAL < VAL2)
853 -2 if those are incomparable. */
855 operand_less_p (tree val, tree val2)
857 /* LT is folded faster than GE and others. Inline the common case. */
858 if (TREE_CODE (val) == INTEGER_CST && TREE_CODE (val2) == INTEGER_CST)
859 return tree_int_cst_lt (val, val2);
860 else
862 tree tcmp;
864 fold_defer_overflow_warnings ();
866 tcmp = fold_binary_to_constant (LT_EXPR, boolean_type_node, val, val2);
868 fold_undefer_and_ignore_overflow_warnings ();
870 if (!tcmp
871 || TREE_CODE (tcmp) != INTEGER_CST)
872 return -2;
874 if (!integer_zerop (tcmp))
875 return 1;
878 return 0;
881 /* Compare two values VAL1 and VAL2. Return
883 -2 if VAL1 and VAL2 cannot be compared at compile-time,
884 -1 if VAL1 < VAL2,
885 0 if VAL1 == VAL2,
886 +1 if VAL1 > VAL2, and
887 +2 if VAL1 != VAL2
889 This is similar to tree_int_cst_compare but supports pointer values
890 and values that cannot be compared at compile time.
892 If STRICT_OVERFLOW_P is not NULL, then set *STRICT_OVERFLOW_P to
893 true if the return value is only valid if we assume that signed
894 overflow is undefined. */
897 compare_values_warnv (tree val1, tree val2, bool *strict_overflow_p)
899 if (val1 == val2)
900 return 0;
902 /* Below we rely on the fact that VAL1 and VAL2 are both pointers or
903 both integers. */
904 gcc_assert (POINTER_TYPE_P (TREE_TYPE (val1))
905 == POINTER_TYPE_P (TREE_TYPE (val2)));
907 /* Convert the two values into the same type. This is needed because
908 sizetype causes sign extension even for unsigned types. */
909 val2 = fold_convert (TREE_TYPE (val1), val2);
910 STRIP_USELESS_TYPE_CONVERSION (val2);
912 const bool overflow_undefined
913 = INTEGRAL_TYPE_P (TREE_TYPE (val1))
914 && TYPE_OVERFLOW_UNDEFINED (TREE_TYPE (val1));
915 tree inv1, inv2;
916 bool neg1, neg2;
917 tree sym1 = get_single_symbol (val1, &neg1, &inv1);
918 tree sym2 = get_single_symbol (val2, &neg2, &inv2);
920 /* If VAL1 and VAL2 are of the form '[-]NAME [+ CST]', return -1 or +1
921 accordingly. If VAL1 and VAL2 don't use the same name, return -2. */
922 if (sym1 && sym2)
924 /* Both values must use the same name with the same sign. */
925 if (sym1 != sym2 || neg1 != neg2)
926 return -2;
928 /* [-]NAME + CST == [-]NAME + CST. */
929 if (inv1 == inv2)
930 return 0;
932 /* If overflow is defined we cannot simplify more. */
933 if (!overflow_undefined)
934 return -2;
936 if (strict_overflow_p != NULL
937 /* Symbolic range building sets TREE_NO_WARNING to declare
938 that overflow doesn't happen. */
939 && (!inv1 || !TREE_NO_WARNING (val1))
940 && (!inv2 || !TREE_NO_WARNING (val2)))
941 *strict_overflow_p = true;
943 if (!inv1)
944 inv1 = build_int_cst (TREE_TYPE (val1), 0);
945 if (!inv2)
946 inv2 = build_int_cst (TREE_TYPE (val2), 0);
948 return wi::cmp (wi::to_wide (inv1), wi::to_wide (inv2),
949 TYPE_SIGN (TREE_TYPE (val1)));
952 const bool cst1 = is_gimple_min_invariant (val1);
953 const bool cst2 = is_gimple_min_invariant (val2);
955 /* If one is of the form '[-]NAME + CST' and the other is constant, then
956 it might be possible to say something depending on the constants. */
957 if ((sym1 && inv1 && cst2) || (sym2 && inv2 && cst1))
959 if (!overflow_undefined)
960 return -2;
962 if (strict_overflow_p != NULL
963 /* Symbolic range building sets TREE_NO_WARNING to declare
964 that overflow doesn't happen. */
965 && (!sym1 || !TREE_NO_WARNING (val1))
966 && (!sym2 || !TREE_NO_WARNING (val2)))
967 *strict_overflow_p = true;
969 const signop sgn = TYPE_SIGN (TREE_TYPE (val1));
970 tree cst = cst1 ? val1 : val2;
971 tree inv = cst1 ? inv2 : inv1;
973 /* Compute the difference between the constants. If it overflows or
974 underflows, this means that we can trivially compare the NAME with
975 it and, consequently, the two values with each other. */
976 wide_int diff = wi::to_wide (cst) - wi::to_wide (inv);
977 if (wi::cmp (0, wi::to_wide (inv), sgn)
978 != wi::cmp (diff, wi::to_wide (cst), sgn))
980 const int res = wi::cmp (wi::to_wide (cst), wi::to_wide (inv), sgn);
981 return cst1 ? res : -res;
984 return -2;
987 /* We cannot say anything more for non-constants. */
988 if (!cst1 || !cst2)
989 return -2;
991 if (!POINTER_TYPE_P (TREE_TYPE (val1)))
993 /* We cannot compare overflowed values. */
994 if (TREE_OVERFLOW (val1) || TREE_OVERFLOW (val2))
995 return -2;
997 if (TREE_CODE (val1) == INTEGER_CST
998 && TREE_CODE (val2) == INTEGER_CST)
999 return tree_int_cst_compare (val1, val2);
1001 if (poly_int_tree_p (val1) && poly_int_tree_p (val2))
1003 if (known_eq (wi::to_poly_widest (val1),
1004 wi::to_poly_widest (val2)))
1005 return 0;
1006 if (known_lt (wi::to_poly_widest (val1),
1007 wi::to_poly_widest (val2)))
1008 return -1;
1009 if (known_gt (wi::to_poly_widest (val1),
1010 wi::to_poly_widest (val2)))
1011 return 1;
1014 return -2;
1016 else
1018 tree t;
1020 /* First see if VAL1 and VAL2 are not the same. */
1021 if (val1 == val2 || operand_equal_p (val1, val2, 0))
1022 return 0;
1024 /* If VAL1 is a lower address than VAL2, return -1. */
1025 if (operand_less_p (val1, val2) == 1)
1026 return -1;
1028 /* If VAL1 is a higher address than VAL2, return +1. */
1029 if (operand_less_p (val2, val1) == 1)
1030 return 1;
1032 /* If VAL1 is different than VAL2, return +2.
1033 For integer constants we either have already returned -1 or 1
1034 or they are equivalent. We still might succeed in proving
1035 something about non-trivial operands. */
1036 if (TREE_CODE (val1) != INTEGER_CST
1037 || TREE_CODE (val2) != INTEGER_CST)
1039 t = fold_binary_to_constant (NE_EXPR, boolean_type_node, val1, val2);
1040 if (t && integer_onep (t))
1041 return 2;
1044 return -2;
1048 /* Compare values like compare_values_warnv. */
1051 compare_values (tree val1, tree val2)
1053 bool sop;
1054 return compare_values_warnv (val1, val2, &sop);
1058 /* Return 1 if VAL is inside value range MIN <= VAL <= MAX,
1059 0 if VAL is not inside [MIN, MAX],
1060 -2 if we cannot tell either way.
1062 Benchmark compile/20001226-1.c compilation time after changing this
1063 function. */
1066 value_inside_range (tree val, tree min, tree max)
1068 int cmp1, cmp2;
1070 cmp1 = operand_less_p (val, min);
1071 if (cmp1 == -2)
1072 return -2;
1073 if (cmp1 == 1)
1074 return 0;
1076 cmp2 = operand_less_p (max, val);
1077 if (cmp2 == -2)
1078 return -2;
1080 return !cmp2;
1084 /* Return TRUE if *VR includes the value zero. */
1086 bool
1087 range_includes_zero_p (const value_range *vr)
1089 if (vr->varying_p () || vr->undefined_p ())
1090 return true;
1091 tree zero = build_int_cst (vr->type (), 0);
1092 return vr->may_contain_p (zero);
1095 /* If *VR has a value range that is a single constant value return that,
1096 otherwise return NULL_TREE.
1098 ?? This actually returns TRUE for [&x, &x], so perhaps "constant"
1099 is not the best name. */
1101 tree
1102 value_range_constant_singleton (const value_range *vr)
1104 tree result = NULL;
1105 if (vr->singleton_p (&result))
1106 return result;
1107 return NULL;
1110 /* Value range wrapper for wide_int_range_set_zero_nonzero_bits.
1112 Compute MAY_BE_NONZERO and MUST_BE_NONZERO bit masks for range in VR.
1114 Return TRUE if VR was a constant range and we were able to compute
1115 the bit masks. */
1117 bool
1118 vrp_set_zero_nonzero_bits (const tree expr_type,
1119 const value_range *vr,
1120 wide_int *may_be_nonzero,
1121 wide_int *must_be_nonzero)
1123 if (!range_int_cst_p (vr))
1125 *may_be_nonzero = wi::minus_one (TYPE_PRECISION (expr_type));
1126 *must_be_nonzero = wi::zero (TYPE_PRECISION (expr_type));
1127 return false;
1129 wide_int_range_set_zero_nonzero_bits (TYPE_SIGN (expr_type),
1130 wi::to_wide (vr->min ()),
1131 wi::to_wide (vr->max ()),
1132 *may_be_nonzero, *must_be_nonzero);
1133 return true;
1136 /* Create two value-ranges in *VR0 and *VR1 from the anti-range *AR
1137 so that *VR0 U *VR1 == *AR. Returns true if that is possible,
1138 false otherwise. If *AR can be represented with a single range
1139 *VR1 will be VR_UNDEFINED. */
1141 static bool
1142 ranges_from_anti_range (const value_range *ar,
1143 value_range *vr0, value_range *vr1)
1145 tree type = ar->type ();
1147 vr0->set_undefined ();
1148 vr1->set_undefined ();
1150 /* As a future improvement, we could handle ~[0, A] as: [-INF, -1] U
1151 [A+1, +INF]. Not sure if this helps in practice, though. */
1153 if (ar->kind () != VR_ANTI_RANGE
1154 || TREE_CODE (ar->min ()) != INTEGER_CST
1155 || TREE_CODE (ar->max ()) != INTEGER_CST
1156 || !vrp_val_min (type)
1157 || !vrp_val_max (type))
1158 return false;
1160 if (!vrp_val_is_min (ar->min ()))
1161 *vr0 = value_range (VR_RANGE,
1162 vrp_val_min (type),
1163 wide_int_to_tree (type, wi::to_wide (ar->min ()) - 1));
1164 if (!vrp_val_is_max (ar->max ()))
1165 *vr1 = value_range (VR_RANGE,
1166 wide_int_to_tree (type, wi::to_wide (ar->max ()) + 1),
1167 vrp_val_max (type));
1168 if (vr0->undefined_p ())
1170 *vr0 = *vr1;
1171 vr1->set_undefined ();
1174 return !vr0->undefined_p ();
1177 /* Extract the components of a value range into a pair of wide ints in
1178 [WMIN, WMAX].
1180 If the value range is anything but a VR_*RANGE of constants, the
1181 resulting wide ints are set to [-MIN, +MAX] for the type. */
1183 static void inline
1184 extract_range_into_wide_ints (const value_range *vr,
1185 signop sign, unsigned prec,
1186 wide_int &wmin, wide_int &wmax)
1188 gcc_assert (vr->kind () != VR_ANTI_RANGE || vr->symbolic_p ());
1189 if (range_int_cst_p (vr))
1191 wmin = wi::to_wide (vr->min ());
1192 wmax = wi::to_wide (vr->max ());
1194 else
1196 wmin = wi::min_value (prec, sign);
1197 wmax = wi::max_value (prec, sign);
1201 /* Value range wrapper for wide_int_range_multiplicative_op:
1203 *VR = *VR0 .CODE. *VR1. */
1205 static void
1206 extract_range_from_multiplicative_op (value_range *vr,
1207 enum tree_code code,
1208 const value_range *vr0,
1209 const value_range *vr1)
1211 gcc_assert (code == MULT_EXPR
1212 || code == TRUNC_DIV_EXPR
1213 || code == FLOOR_DIV_EXPR
1214 || code == CEIL_DIV_EXPR
1215 || code == EXACT_DIV_EXPR
1216 || code == ROUND_DIV_EXPR
1217 || code == RSHIFT_EXPR
1218 || code == LSHIFT_EXPR);
1219 gcc_assert (vr0->kind () == VR_RANGE
1220 && vr0->kind () == vr1->kind ());
1222 tree type = vr0->type ();
1223 wide_int res_lb, res_ub;
1224 wide_int vr0_lb = wi::to_wide (vr0->min ());
1225 wide_int vr0_ub = wi::to_wide (vr0->max ());
1226 wide_int vr1_lb = wi::to_wide (vr1->min ());
1227 wide_int vr1_ub = wi::to_wide (vr1->max ());
1228 bool overflow_undefined = TYPE_OVERFLOW_UNDEFINED (type);
1229 unsigned prec = TYPE_PRECISION (type);
1231 if (wide_int_range_multiplicative_op (res_lb, res_ub,
1232 code, TYPE_SIGN (type), prec,
1233 vr0_lb, vr0_ub, vr1_lb, vr1_ub,
1234 overflow_undefined))
1235 vr->set_and_canonicalize (VR_RANGE,
1236 wide_int_to_tree (type, res_lb),
1237 wide_int_to_tree (type, res_ub), NULL);
1238 else
1239 set_value_range_to_varying (vr);
1242 /* If BOUND will include a symbolic bound, adjust it accordingly,
1243 otherwise leave it as is.
1245 CODE is the original operation that combined the bounds (PLUS_EXPR
1246 or MINUS_EXPR).
1248 TYPE is the type of the original operation.
1250 SYM_OPn is the symbolic for OPn if it has a symbolic.
1252 NEG_OPn is TRUE if the OPn was negated. */
1254 static void
1255 adjust_symbolic_bound (tree &bound, enum tree_code code, tree type,
1256 tree sym_op0, tree sym_op1,
1257 bool neg_op0, bool neg_op1)
1259 bool minus_p = (code == MINUS_EXPR);
1260 /* If the result bound is constant, we're done; otherwise, build the
1261 symbolic lower bound. */
1262 if (sym_op0 == sym_op1)
1264 else if (sym_op0)
1265 bound = build_symbolic_expr (type, sym_op0,
1266 neg_op0, bound);
1267 else if (sym_op1)
1269 /* We may not negate if that might introduce
1270 undefined overflow. */
1271 if (!minus_p
1272 || neg_op1
1273 || TYPE_OVERFLOW_WRAPS (type))
1274 bound = build_symbolic_expr (type, sym_op1,
1275 neg_op1 ^ minus_p, bound);
1276 else
1277 bound = NULL_TREE;
1281 /* Combine OP1 and OP1, which are two parts of a bound, into one wide
1282 int bound according to CODE. CODE is the operation combining the
1283 bound (either a PLUS_EXPR or a MINUS_EXPR).
1285 TYPE is the type of the combine operation.
1287 WI is the wide int to store the result.
1289 OVF is -1 if an underflow occurred, +1 if an overflow occurred or 0
1290 if over/underflow occurred. */
1292 static void
1293 combine_bound (enum tree_code code, wide_int &wi, wi::overflow_type &ovf,
1294 tree type, tree op0, tree op1)
1296 bool minus_p = (code == MINUS_EXPR);
1297 const signop sgn = TYPE_SIGN (type);
1298 const unsigned int prec = TYPE_PRECISION (type);
1300 /* Combine the bounds, if any. */
1301 if (op0 && op1)
1303 if (minus_p)
1304 wi = wi::sub (wi::to_wide (op0), wi::to_wide (op1), sgn, &ovf);
1305 else
1306 wi = wi::add (wi::to_wide (op0), wi::to_wide (op1), sgn, &ovf);
1308 else if (op0)
1309 wi = wi::to_wide (op0);
1310 else if (op1)
1312 if (minus_p)
1313 wi = wi::neg (wi::to_wide (op1), &ovf);
1314 else
1315 wi = wi::to_wide (op1);
1317 else
1318 wi = wi::shwi (0, prec);
1321 /* Given a range in [WMIN, WMAX], adjust it for possible overflow and
1322 put the result in VR.
1324 TYPE is the type of the range.
1326 MIN_OVF and MAX_OVF indicate what type of overflow, if any,
1327 occurred while originally calculating WMIN or WMAX. -1 indicates
1328 underflow. +1 indicates overflow. 0 indicates neither. */
1330 static void
1331 set_value_range_with_overflow (value_range_kind &kind, tree &min, tree &max,
1332 tree type,
1333 const wide_int &wmin, const wide_int &wmax,
1334 wi::overflow_type min_ovf,
1335 wi::overflow_type max_ovf)
1337 const signop sgn = TYPE_SIGN (type);
1338 const unsigned int prec = TYPE_PRECISION (type);
1340 /* For one bit precision if max < min, then the swapped
1341 range covers all values. */
1342 if (prec == 1 && wi::lt_p (wmax, wmin, sgn))
1344 kind = VR_VARYING;
1345 return;
1348 if (TYPE_OVERFLOW_WRAPS (type))
1350 /* If overflow wraps, truncate the values and adjust the
1351 range kind and bounds appropriately. */
1352 wide_int tmin = wide_int::from (wmin, prec, sgn);
1353 wide_int tmax = wide_int::from (wmax, prec, sgn);
1354 if ((min_ovf != wi::OVF_NONE) == (max_ovf != wi::OVF_NONE))
1356 /* If the limits are swapped, we wrapped around and cover
1357 the entire range. We have a similar check at the end of
1358 extract_range_from_binary_expr_1. */
1359 if (wi::gt_p (tmin, tmax, sgn))
1360 kind = VR_VARYING;
1361 else
1363 kind = VR_RANGE;
1364 /* No overflow or both overflow or underflow. The
1365 range kind stays VR_RANGE. */
1366 min = wide_int_to_tree (type, tmin);
1367 max = wide_int_to_tree (type, tmax);
1369 return;
1371 else if ((min_ovf == wi::OVF_UNDERFLOW && max_ovf == wi::OVF_NONE)
1372 || (max_ovf == wi::OVF_OVERFLOW && min_ovf == wi::OVF_NONE))
1374 /* Min underflow or max overflow. The range kind
1375 changes to VR_ANTI_RANGE. */
1376 bool covers = false;
1377 wide_int tem = tmin;
1378 tmin = tmax + 1;
1379 if (wi::cmp (tmin, tmax, sgn) < 0)
1380 covers = true;
1381 tmax = tem - 1;
1382 if (wi::cmp (tmax, tem, sgn) > 0)
1383 covers = true;
1384 /* If the anti-range would cover nothing, drop to varying.
1385 Likewise if the anti-range bounds are outside of the
1386 types values. */
1387 if (covers || wi::cmp (tmin, tmax, sgn) > 0)
1389 kind = VR_VARYING;
1390 return;
1392 kind = VR_ANTI_RANGE;
1393 min = wide_int_to_tree (type, tmin);
1394 max = wide_int_to_tree (type, tmax);
1395 return;
1397 else
1399 /* Other underflow and/or overflow, drop to VR_VARYING. */
1400 kind = VR_VARYING;
1401 return;
1404 else
1406 /* If overflow does not wrap, saturate to the types min/max
1407 value. */
1408 wide_int type_min = wi::min_value (prec, sgn);
1409 wide_int type_max = wi::max_value (prec, sgn);
1410 kind = VR_RANGE;
1411 if (min_ovf == wi::OVF_UNDERFLOW)
1412 min = wide_int_to_tree (type, type_min);
1413 else if (min_ovf == wi::OVF_OVERFLOW)
1414 min = wide_int_to_tree (type, type_max);
1415 else
1416 min = wide_int_to_tree (type, wmin);
1418 if (max_ovf == wi::OVF_UNDERFLOW)
1419 max = wide_int_to_tree (type, type_min);
1420 else if (max_ovf == wi::OVF_OVERFLOW)
1421 max = wide_int_to_tree (type, type_max);
1422 else
1423 max = wide_int_to_tree (type, wmax);
1427 /* Extract range information from a binary operation CODE based on
1428 the ranges of each of its operands *VR0 and *VR1 with resulting
1429 type EXPR_TYPE. The resulting range is stored in *VR. */
1431 void
1432 extract_range_from_binary_expr_1 (value_range *vr,
1433 enum tree_code code, tree expr_type,
1434 const value_range *vr0_,
1435 const value_range *vr1_)
1437 signop sign = TYPE_SIGN (expr_type);
1438 unsigned int prec = TYPE_PRECISION (expr_type);
1439 value_range vr0 = *vr0_, vr1 = *vr1_;
1440 value_range vrtem0, vrtem1;
1441 enum value_range_kind type;
1442 tree min = NULL_TREE, max = NULL_TREE;
1443 int cmp;
1445 if (!INTEGRAL_TYPE_P (expr_type)
1446 && !POINTER_TYPE_P (expr_type))
1448 set_value_range_to_varying (vr);
1449 return;
1452 /* Not all binary expressions can be applied to ranges in a
1453 meaningful way. Handle only arithmetic operations. */
1454 if (code != PLUS_EXPR
1455 && code != MINUS_EXPR
1456 && code != POINTER_PLUS_EXPR
1457 && code != MULT_EXPR
1458 && code != TRUNC_DIV_EXPR
1459 && code != FLOOR_DIV_EXPR
1460 && code != CEIL_DIV_EXPR
1461 && code != EXACT_DIV_EXPR
1462 && code != ROUND_DIV_EXPR
1463 && code != TRUNC_MOD_EXPR
1464 && code != RSHIFT_EXPR
1465 && code != LSHIFT_EXPR
1466 && code != MIN_EXPR
1467 && code != MAX_EXPR
1468 && code != BIT_AND_EXPR
1469 && code != BIT_IOR_EXPR
1470 && code != BIT_XOR_EXPR)
1472 set_value_range_to_varying (vr);
1473 return;
1476 /* If both ranges are UNDEFINED, so is the result. */
1477 if (vr0.undefined_p () && vr1.undefined_p ())
1479 set_value_range_to_undefined (vr);
1480 return;
1482 /* If one of the ranges is UNDEFINED drop it to VARYING for the following
1483 code. At some point we may want to special-case operations that
1484 have UNDEFINED result for all or some value-ranges of the not UNDEFINED
1485 operand. */
1486 else if (vr0.undefined_p ())
1487 set_value_range_to_varying (&vr0);
1488 else if (vr1.undefined_p ())
1489 set_value_range_to_varying (&vr1);
1491 /* We get imprecise results from ranges_from_anti_range when
1492 code is EXACT_DIV_EXPR. We could mask out bits in the resulting
1493 range, but then we also need to hack up vrp_union. It's just
1494 easier to special case when vr0 is ~[0,0] for EXACT_DIV_EXPR. */
1495 if (code == EXACT_DIV_EXPR && range_is_nonnull (&vr0))
1497 set_value_range_to_nonnull (vr, expr_type);
1498 return;
1501 /* Now canonicalize anti-ranges to ranges when they are not symbolic
1502 and express ~[] op X as ([]' op X) U ([]'' op X). */
1503 if (vr0.kind () == VR_ANTI_RANGE
1504 && ranges_from_anti_range (&vr0, &vrtem0, &vrtem1))
1506 extract_range_from_binary_expr_1 (vr, code, expr_type, &vrtem0, vr1_);
1507 if (!vrtem1.undefined_p ())
1509 value_range vrres;
1510 extract_range_from_binary_expr_1 (&vrres, code, expr_type, &vrtem1, vr1_);
1511 vr->union_ (&vrres);
1513 return;
1515 /* Likewise for X op ~[]. */
1516 if (vr1.kind () == VR_ANTI_RANGE
1517 && ranges_from_anti_range (&vr1, &vrtem0, &vrtem1))
1519 extract_range_from_binary_expr_1 (vr, code, expr_type, vr0_, &vrtem0);
1520 if (!vrtem1.undefined_p ())
1522 value_range vrres;
1523 extract_range_from_binary_expr_1 (&vrres, code, expr_type,
1524 vr0_, &vrtem1);
1525 vr->union_ (&vrres);
1527 return;
1530 /* The type of the resulting value range defaults to VR0.TYPE. */
1531 type = vr0.kind ();
1533 /* Refuse to operate on VARYING ranges, ranges of different kinds
1534 and symbolic ranges. As an exception, we allow BIT_{AND,IOR}
1535 because we may be able to derive a useful range even if one of
1536 the operands is VR_VARYING or symbolic range. Similarly for
1537 divisions, MIN/MAX and PLUS/MINUS.
1539 TODO, we may be able to derive anti-ranges in some cases. */
1540 if (code != BIT_AND_EXPR
1541 && code != BIT_IOR_EXPR
1542 && code != TRUNC_DIV_EXPR
1543 && code != FLOOR_DIV_EXPR
1544 && code != CEIL_DIV_EXPR
1545 && code != EXACT_DIV_EXPR
1546 && code != ROUND_DIV_EXPR
1547 && code != TRUNC_MOD_EXPR
1548 && code != MIN_EXPR
1549 && code != MAX_EXPR
1550 && code != PLUS_EXPR
1551 && code != MINUS_EXPR
1552 && code != RSHIFT_EXPR
1553 && code != POINTER_PLUS_EXPR
1554 && (vr0.varying_p ()
1555 || vr1.varying_p ()
1556 || vr0.kind () != vr1.kind ()
1557 || vr0.symbolic_p ()
1558 || vr1.symbolic_p ()))
1560 set_value_range_to_varying (vr);
1561 return;
1564 /* Now evaluate the expression to determine the new range. */
1565 if (POINTER_TYPE_P (expr_type))
1567 if (code == MIN_EXPR || code == MAX_EXPR)
1569 /* For MIN/MAX expressions with pointers, we only care about
1570 nullness, if both are non null, then the result is nonnull.
1571 If both are null, then the result is null. Otherwise they
1572 are varying. */
1573 if (!range_includes_zero_p (&vr0) && !range_includes_zero_p (&vr1))
1574 set_value_range_to_nonnull (vr, expr_type);
1575 else if (range_is_null (&vr0) && range_is_null (&vr1))
1576 set_value_range_to_null (vr, expr_type);
1577 else
1578 set_value_range_to_varying (vr);
1580 else if (code == POINTER_PLUS_EXPR)
1582 /* For pointer types, we are really only interested in asserting
1583 whether the expression evaluates to non-NULL. */
1584 if (!range_includes_zero_p (&vr0)
1585 || !range_includes_zero_p (&vr1))
1586 set_value_range_to_nonnull (vr, expr_type);
1587 else if (range_is_null (&vr0) && range_is_null (&vr1))
1588 set_value_range_to_null (vr, expr_type);
1589 else
1590 set_value_range_to_varying (vr);
1592 else if (code == BIT_AND_EXPR)
1594 /* For pointer types, we are really only interested in asserting
1595 whether the expression evaluates to non-NULL. */
1596 if (!range_includes_zero_p (&vr0) && !range_includes_zero_p (&vr1))
1597 set_value_range_to_nonnull (vr, expr_type);
1598 else if (range_is_null (&vr0) || range_is_null (&vr1))
1599 set_value_range_to_null (vr, expr_type);
1600 else
1601 set_value_range_to_varying (vr);
1603 else
1604 set_value_range_to_varying (vr);
1606 return;
1609 /* For integer ranges, apply the operation to each end of the
1610 range and see what we end up with. */
1611 if (code == PLUS_EXPR || code == MINUS_EXPR)
1613 /* This will normalize things such that calculating
1614 [0,0] - VR_VARYING is not dropped to varying, but is
1615 calculated as [MIN+1, MAX]. */
1616 if (vr0.varying_p ())
1617 vr0.update (VR_RANGE,
1618 vrp_val_min (expr_type),
1619 vrp_val_max (expr_type));
1620 if (vr1.varying_p ())
1621 vr1.update (VR_RANGE,
1622 vrp_val_min (expr_type),
1623 vrp_val_max (expr_type));
1625 const bool minus_p = (code == MINUS_EXPR);
1626 tree min_op0 = vr0.min ();
1627 tree min_op1 = minus_p ? vr1.max () : vr1.min ();
1628 tree max_op0 = vr0.max ();
1629 tree max_op1 = minus_p ? vr1.min () : vr1.max ();
1630 tree sym_min_op0 = NULL_TREE;
1631 tree sym_min_op1 = NULL_TREE;
1632 tree sym_max_op0 = NULL_TREE;
1633 tree sym_max_op1 = NULL_TREE;
1634 bool neg_min_op0, neg_min_op1, neg_max_op0, neg_max_op1;
1636 neg_min_op0 = neg_min_op1 = neg_max_op0 = neg_max_op1 = false;
1638 /* If we have a PLUS or MINUS with two VR_RANGEs, either constant or
1639 single-symbolic ranges, try to compute the precise resulting range,
1640 but only if we know that this resulting range will also be constant
1641 or single-symbolic. */
1642 if (vr0.kind () == VR_RANGE && vr1.kind () == VR_RANGE
1643 && (TREE_CODE (min_op0) == INTEGER_CST
1644 || (sym_min_op0
1645 = get_single_symbol (min_op0, &neg_min_op0, &min_op0)))
1646 && (TREE_CODE (min_op1) == INTEGER_CST
1647 || (sym_min_op1
1648 = get_single_symbol (min_op1, &neg_min_op1, &min_op1)))
1649 && (!(sym_min_op0 && sym_min_op1)
1650 || (sym_min_op0 == sym_min_op1
1651 && neg_min_op0 == (minus_p ? neg_min_op1 : !neg_min_op1)))
1652 && (TREE_CODE (max_op0) == INTEGER_CST
1653 || (sym_max_op0
1654 = get_single_symbol (max_op0, &neg_max_op0, &max_op0)))
1655 && (TREE_CODE (max_op1) == INTEGER_CST
1656 || (sym_max_op1
1657 = get_single_symbol (max_op1, &neg_max_op1, &max_op1)))
1658 && (!(sym_max_op0 && sym_max_op1)
1659 || (sym_max_op0 == sym_max_op1
1660 && neg_max_op0 == (minus_p ? neg_max_op1 : !neg_max_op1))))
1662 wide_int wmin, wmax;
1663 wi::overflow_type min_ovf = wi::OVF_NONE;
1664 wi::overflow_type max_ovf = wi::OVF_NONE;
1666 /* Build the bounds. */
1667 combine_bound (code, wmin, min_ovf, expr_type, min_op0, min_op1);
1668 combine_bound (code, wmax, max_ovf, expr_type, max_op0, max_op1);
1670 /* If we have overflow for the constant part and the resulting
1671 range will be symbolic, drop to VR_VARYING. */
1672 if (((bool)min_ovf && sym_min_op0 != sym_min_op1)
1673 || ((bool)max_ovf && sym_max_op0 != sym_max_op1))
1675 set_value_range_to_varying (vr);
1676 return;
1679 /* Adjust the range for possible overflow. */
1680 min = NULL_TREE;
1681 max = NULL_TREE;
1682 set_value_range_with_overflow (type, min, max, expr_type,
1683 wmin, wmax, min_ovf, max_ovf);
1684 if (type == VR_VARYING)
1686 set_value_range_to_varying (vr);
1687 return;
1690 /* Build the symbolic bounds if needed. */
1691 adjust_symbolic_bound (min, code, expr_type,
1692 sym_min_op0, sym_min_op1,
1693 neg_min_op0, neg_min_op1);
1694 adjust_symbolic_bound (max, code, expr_type,
1695 sym_max_op0, sym_max_op1,
1696 neg_max_op0, neg_max_op1);
1698 else
1700 /* For other cases, for example if we have a PLUS_EXPR with two
1701 VR_ANTI_RANGEs, drop to VR_VARYING. It would take more effort
1702 to compute a precise range for such a case.
1703 ??? General even mixed range kind operations can be expressed
1704 by for example transforming ~[3, 5] + [1, 2] to range-only
1705 operations and a union primitive:
1706 [-INF, 2] + [1, 2] U [5, +INF] + [1, 2]
1707 [-INF+1, 4] U [6, +INF(OVF)]
1708 though usually the union is not exactly representable with
1709 a single range or anti-range as the above is
1710 [-INF+1, +INF(OVF)] intersected with ~[5, 5]
1711 but one could use a scheme similar to equivalences for this. */
1712 set_value_range_to_varying (vr);
1713 return;
1716 else if (code == MIN_EXPR
1717 || code == MAX_EXPR)
1719 wide_int wmin, wmax;
1720 wide_int vr0_min, vr0_max;
1721 wide_int vr1_min, vr1_max;
1722 extract_range_into_wide_ints (&vr0, sign, prec, vr0_min, vr0_max);
1723 extract_range_into_wide_ints (&vr1, sign, prec, vr1_min, vr1_max);
1724 if (wide_int_range_min_max (wmin, wmax, code, sign, prec,
1725 vr0_min, vr0_max, vr1_min, vr1_max))
1726 vr->update (VR_RANGE, wide_int_to_tree (expr_type, wmin),
1727 wide_int_to_tree (expr_type, wmax));
1728 else
1729 set_value_range_to_varying (vr);
1730 return;
1732 else if (code == MULT_EXPR)
1734 if (!range_int_cst_p (&vr0)
1735 || !range_int_cst_p (&vr1))
1737 set_value_range_to_varying (vr);
1738 return;
1740 extract_range_from_multiplicative_op (vr, code, &vr0, &vr1);
1741 return;
1743 else if (code == RSHIFT_EXPR
1744 || code == LSHIFT_EXPR)
1746 if (range_int_cst_p (&vr1)
1747 && !wide_int_range_shift_undefined_p
1748 (TYPE_SIGN (TREE_TYPE (vr1.min ())),
1749 prec,
1750 wi::to_wide (vr1.min ()),
1751 wi::to_wide (vr1.max ())))
1753 if (code == RSHIFT_EXPR)
1755 /* Even if vr0 is VARYING or otherwise not usable, we can derive
1756 useful ranges just from the shift count. E.g.
1757 x >> 63 for signed 64-bit x is always [-1, 0]. */
1758 if (vr0.kind () != VR_RANGE || vr0.symbolic_p ())
1759 vr0.update (VR_RANGE,
1760 vrp_val_min (expr_type),
1761 vrp_val_max (expr_type));
1762 extract_range_from_multiplicative_op (vr, code, &vr0, &vr1);
1763 return;
1765 else if (code == LSHIFT_EXPR
1766 && range_int_cst_p (&vr0))
1768 wide_int res_lb, res_ub;
1769 if (wide_int_range_lshift (res_lb, res_ub, sign, prec,
1770 wi::to_wide (vr0.min ()),
1771 wi::to_wide (vr0.max ()),
1772 wi::to_wide (vr1.min ()),
1773 wi::to_wide (vr1.max ()),
1774 TYPE_OVERFLOW_UNDEFINED (expr_type)))
1776 min = wide_int_to_tree (expr_type, res_lb);
1777 max = wide_int_to_tree (expr_type, res_ub);
1778 vr->set_and_canonicalize (VR_RANGE, min, max, NULL);
1779 return;
1783 set_value_range_to_varying (vr);
1784 return;
1786 else if (code == TRUNC_DIV_EXPR
1787 || code == FLOOR_DIV_EXPR
1788 || code == CEIL_DIV_EXPR
1789 || code == EXACT_DIV_EXPR
1790 || code == ROUND_DIV_EXPR)
1792 wide_int dividend_min, dividend_max, divisor_min, divisor_max;
1793 wide_int wmin, wmax, extra_min, extra_max;
1794 bool extra_range_p;
1796 /* Special case explicit division by zero as undefined. */
1797 if (range_is_null (&vr1))
1799 set_value_range_to_undefined (vr);
1800 return;
1803 /* First, normalize ranges into constants we can handle. Note
1804 that VR_ANTI_RANGE's of constants were already normalized
1805 before arriving here.
1807 NOTE: As a future improvement, we may be able to do better
1808 with mixed symbolic (anti-)ranges like [0, A]. See note in
1809 ranges_from_anti_range. */
1810 extract_range_into_wide_ints (&vr0, sign, prec,
1811 dividend_min, dividend_max);
1812 extract_range_into_wide_ints (&vr1, sign, prec,
1813 divisor_min, divisor_max);
1814 if (!wide_int_range_div (wmin, wmax, code, sign, prec,
1815 dividend_min, dividend_max,
1816 divisor_min, divisor_max,
1817 TYPE_OVERFLOW_UNDEFINED (expr_type),
1818 extra_range_p, extra_min, extra_max))
1820 set_value_range_to_varying (vr);
1821 return;
1823 set_value_range (vr, VR_RANGE,
1824 wide_int_to_tree (expr_type, wmin),
1825 wide_int_to_tree (expr_type, wmax), NULL);
1826 if (extra_range_p)
1828 value_range extra_range;
1829 set_value_range (&extra_range, VR_RANGE,
1830 wide_int_to_tree (expr_type, extra_min),
1831 wide_int_to_tree (expr_type, extra_max), NULL);
1832 vr->union_ (&extra_range);
1834 return;
1836 else if (code == TRUNC_MOD_EXPR)
1838 if (range_is_null (&vr1))
1840 set_value_range_to_undefined (vr);
1841 return;
1843 wide_int wmin, wmax, tmp;
1844 wide_int vr0_min, vr0_max, vr1_min, vr1_max;
1845 extract_range_into_wide_ints (&vr0, sign, prec, vr0_min, vr0_max);
1846 extract_range_into_wide_ints (&vr1, sign, prec, vr1_min, vr1_max);
1847 wide_int_range_trunc_mod (wmin, wmax, sign, prec,
1848 vr0_min, vr0_max, vr1_min, vr1_max);
1849 min = wide_int_to_tree (expr_type, wmin);
1850 max = wide_int_to_tree (expr_type, wmax);
1851 set_value_range (vr, VR_RANGE, min, max, NULL);
1852 return;
1854 else if (code == BIT_AND_EXPR || code == BIT_IOR_EXPR || code == BIT_XOR_EXPR)
1856 wide_int may_be_nonzero0, may_be_nonzero1;
1857 wide_int must_be_nonzero0, must_be_nonzero1;
1858 wide_int wmin, wmax;
1859 wide_int vr0_min, vr0_max, vr1_min, vr1_max;
1860 vrp_set_zero_nonzero_bits (expr_type, &vr0,
1861 &may_be_nonzero0, &must_be_nonzero0);
1862 vrp_set_zero_nonzero_bits (expr_type, &vr1,
1863 &may_be_nonzero1, &must_be_nonzero1);
1864 extract_range_into_wide_ints (&vr0, sign, prec, vr0_min, vr0_max);
1865 extract_range_into_wide_ints (&vr1, sign, prec, vr1_min, vr1_max);
1866 if (code == BIT_AND_EXPR)
1868 if (wide_int_range_bit_and (wmin, wmax, sign, prec,
1869 vr0_min, vr0_max,
1870 vr1_min, vr1_max,
1871 must_be_nonzero0,
1872 may_be_nonzero0,
1873 must_be_nonzero1,
1874 may_be_nonzero1))
1876 min = wide_int_to_tree (expr_type, wmin);
1877 max = wide_int_to_tree (expr_type, wmax);
1878 set_value_range (vr, VR_RANGE, min, max, NULL);
1880 else
1881 set_value_range_to_varying (vr);
1882 return;
1884 else if (code == BIT_IOR_EXPR)
1886 if (wide_int_range_bit_ior (wmin, wmax, sign,
1887 vr0_min, vr0_max,
1888 vr1_min, vr1_max,
1889 must_be_nonzero0,
1890 may_be_nonzero0,
1891 must_be_nonzero1,
1892 may_be_nonzero1))
1894 min = wide_int_to_tree (expr_type, wmin);
1895 max = wide_int_to_tree (expr_type, wmax);
1896 set_value_range (vr, VR_RANGE, min, max, NULL);
1898 else
1899 set_value_range_to_varying (vr);
1900 return;
1902 else if (code == BIT_XOR_EXPR)
1904 if (wide_int_range_bit_xor (wmin, wmax, sign, prec,
1905 must_be_nonzero0,
1906 may_be_nonzero0,
1907 must_be_nonzero1,
1908 may_be_nonzero1))
1910 min = wide_int_to_tree (expr_type, wmin);
1911 max = wide_int_to_tree (expr_type, wmax);
1912 set_value_range (vr, VR_RANGE, min, max, NULL);
1914 else
1915 set_value_range_to_varying (vr);
1916 return;
1919 else
1920 gcc_unreachable ();
1922 /* If either MIN or MAX overflowed, then set the resulting range to
1923 VARYING. */
1924 if (min == NULL_TREE
1925 || TREE_OVERFLOW_P (min)
1926 || max == NULL_TREE
1927 || TREE_OVERFLOW_P (max))
1929 set_value_range_to_varying (vr);
1930 return;
1933 /* We punt for [-INF, +INF].
1934 We learn nothing when we have INF on both sides.
1935 Note that we do accept [-INF, -INF] and [+INF, +INF]. */
1936 if (vrp_val_is_min (min) && vrp_val_is_max (max))
1938 set_value_range_to_varying (vr);
1939 return;
1942 cmp = compare_values (min, max);
1943 if (cmp == -2 || cmp == 1)
1945 /* If the new range has its limits swapped around (MIN > MAX),
1946 then the operation caused one of them to wrap around, mark
1947 the new range VARYING. */
1948 set_value_range_to_varying (vr);
1950 else
1951 set_value_range (vr, type, min, max, NULL);
1954 /* Extract range information from a unary operation CODE based on
1955 the range of its operand *VR0 with type OP0_TYPE with resulting type TYPE.
1956 The resulting range is stored in *VR. */
1958 void
1959 extract_range_from_unary_expr (value_range *vr,
1960 enum tree_code code, tree type,
1961 const value_range *vr0_, tree op0_type)
1963 signop sign = TYPE_SIGN (type);
1964 unsigned int prec = TYPE_PRECISION (type);
1965 value_range vr0 = *vr0_;
1966 value_range vrtem0, vrtem1;
1968 /* VRP only operates on integral and pointer types. */
1969 if (!(INTEGRAL_TYPE_P (op0_type)
1970 || POINTER_TYPE_P (op0_type))
1971 || !(INTEGRAL_TYPE_P (type)
1972 || POINTER_TYPE_P (type)))
1974 set_value_range_to_varying (vr);
1975 return;
1978 /* If VR0 is UNDEFINED, so is the result. */
1979 if (vr0.undefined_p ())
1981 set_value_range_to_undefined (vr);
1982 return;
1985 /* Handle operations that we express in terms of others. */
1986 if (code == PAREN_EXPR || code == OBJ_TYPE_REF)
1988 /* PAREN_EXPR and OBJ_TYPE_REF are simple copies. */
1989 vr->deep_copy (&vr0);
1990 return;
1992 else if (code == NEGATE_EXPR)
1994 /* -X is simply 0 - X, so re-use existing code that also handles
1995 anti-ranges fine. */
1996 value_range zero;
1997 set_value_range_to_value (&zero, build_int_cst (type, 0), NULL);
1998 extract_range_from_binary_expr_1 (vr, MINUS_EXPR, type, &zero, &vr0);
1999 return;
2001 else if (code == BIT_NOT_EXPR)
2003 /* ~X is simply -1 - X, so re-use existing code that also handles
2004 anti-ranges fine. */
2005 value_range minusone;
2006 set_value_range_to_value (&minusone, build_int_cst (type, -1), NULL);
2007 extract_range_from_binary_expr_1 (vr, MINUS_EXPR,
2008 type, &minusone, &vr0);
2009 return;
2012 /* Now canonicalize anti-ranges to ranges when they are not symbolic
2013 and express op ~[] as (op []') U (op []''). */
2014 if (vr0.kind () == VR_ANTI_RANGE
2015 && ranges_from_anti_range (&vr0, &vrtem0, &vrtem1))
2017 extract_range_from_unary_expr (vr, code, type, &vrtem0, op0_type);
2018 if (!vrtem1.undefined_p ())
2020 value_range vrres;
2021 extract_range_from_unary_expr (&vrres, code, type,
2022 &vrtem1, op0_type);
2023 vr->union_ (&vrres);
2025 return;
2028 if (CONVERT_EXPR_CODE_P (code))
2030 tree inner_type = op0_type;
2031 tree outer_type = type;
2033 /* If the expression involves a pointer, we are only interested in
2034 determining if it evaluates to NULL [0, 0] or non-NULL (~[0, 0]).
2036 This may lose precision when converting (char *)~[0,2] to
2037 int, because we'll forget that the pointer can also not be 1
2038 or 2. In practice we don't care, as this is some idiot
2039 storing a magic constant to a pointer. */
2040 if (POINTER_TYPE_P (type) || POINTER_TYPE_P (op0_type))
2042 if (!range_includes_zero_p (&vr0))
2043 set_value_range_to_nonnull (vr, type);
2044 else if (range_is_null (&vr0))
2045 set_value_range_to_null (vr, type);
2046 else
2047 set_value_range_to_varying (vr);
2048 return;
2051 /* The POINTER_TYPE_P code above will have dealt with all
2052 pointer anti-ranges. Any remaining anti-ranges at this point
2053 will be integer conversions from SSA names that will be
2054 normalized into VARYING. For instance: ~[x_55, x_55]. */
2055 gcc_assert (vr0.kind () != VR_ANTI_RANGE
2056 || TREE_CODE (vr0.min ()) != INTEGER_CST);
2058 /* NOTES: Previously we were returning VARYING for all symbolics, but
2059 we can do better by treating them as [-MIN, +MAX]. For
2060 example, converting [SYM, SYM] from INT to LONG UNSIGNED,
2061 we can return: ~[0x8000000, 0xffffffff7fffffff].
2063 We were also failing to convert ~[0,0] from char* to unsigned,
2064 instead choosing to return VR_VARYING. Now we return ~[0,0]. */
2065 wide_int vr0_min, vr0_max, wmin, wmax;
2066 signop inner_sign = TYPE_SIGN (inner_type);
2067 signop outer_sign = TYPE_SIGN (outer_type);
2068 unsigned inner_prec = TYPE_PRECISION (inner_type);
2069 unsigned outer_prec = TYPE_PRECISION (outer_type);
2070 extract_range_into_wide_ints (&vr0, inner_sign, inner_prec,
2071 vr0_min, vr0_max);
2072 if (wide_int_range_convert (wmin, wmax,
2073 inner_sign, inner_prec,
2074 outer_sign, outer_prec,
2075 vr0_min, vr0_max))
2077 tree min = wide_int_to_tree (outer_type, wmin);
2078 tree max = wide_int_to_tree (outer_type, wmax);
2079 vr->set_and_canonicalize (VR_RANGE, min, max, NULL);
2081 else
2082 set_value_range_to_varying (vr);
2083 return;
2085 else if (code == ABS_EXPR)
2087 wide_int wmin, wmax;
2088 wide_int vr0_min, vr0_max;
2089 extract_range_into_wide_ints (&vr0, sign, prec, vr0_min, vr0_max);
2090 if (wide_int_range_abs (wmin, wmax, sign, prec, vr0_min, vr0_max,
2091 TYPE_OVERFLOW_UNDEFINED (type)))
2092 set_value_range (vr, VR_RANGE,
2093 wide_int_to_tree (type, wmin),
2094 wide_int_to_tree (type, wmax), NULL);
2095 else
2096 set_value_range_to_varying (vr);
2097 return;
2100 /* For unhandled operations fall back to varying. */
2101 set_value_range_to_varying (vr);
2102 return;
2105 /* Debugging dumps. */
2107 void dump_value_range (FILE *, const value_range *);
2108 void debug_value_range (const value_range *);
2109 void dump_all_value_ranges (FILE *);
2110 void dump_vr_equiv (FILE *, bitmap);
2111 void debug_vr_equiv (bitmap);
2113 void
2114 dump_value_range (FILE *file, const value_range *vr)
2116 if (!vr)
2117 fprintf (file, "[]");
2118 else
2119 vr->dump (file);
2122 /* Dump value range VR to stderr. */
2124 DEBUG_FUNCTION void
2125 debug_value_range (const value_range *vr)
2127 vr->dump ();
2131 /* Given a COND_EXPR COND of the form 'V OP W', and an SSA name V,
2132 create a new SSA name N and return the assertion assignment
2133 'N = ASSERT_EXPR <V, V OP W>'. */
2135 static gimple *
2136 build_assert_expr_for (tree cond, tree v)
2138 tree a;
2139 gassign *assertion;
2141 gcc_assert (TREE_CODE (v) == SSA_NAME
2142 && COMPARISON_CLASS_P (cond));
2144 a = build2 (ASSERT_EXPR, TREE_TYPE (v), v, cond);
2145 assertion = gimple_build_assign (NULL_TREE, a);
2147 /* The new ASSERT_EXPR, creates a new SSA name that replaces the
2148 operand of the ASSERT_EXPR. Create it so the new name and the old one
2149 are registered in the replacement table so that we can fix the SSA web
2150 after adding all the ASSERT_EXPRs. */
2151 tree new_def = create_new_def_for (v, assertion, NULL);
2152 /* Make sure we preserve abnormalness throughout an ASSERT_EXPR chain
2153 given we have to be able to fully propagate those out to re-create
2154 valid SSA when removing the asserts. */
2155 if (SSA_NAME_OCCURS_IN_ABNORMAL_PHI (v))
2156 SSA_NAME_OCCURS_IN_ABNORMAL_PHI (new_def) = 1;
2158 return assertion;
2162 /* Return false if EXPR is a predicate expression involving floating
2163 point values. */
2165 static inline bool
2166 fp_predicate (gimple *stmt)
2168 GIMPLE_CHECK (stmt, GIMPLE_COND);
2170 return FLOAT_TYPE_P (TREE_TYPE (gimple_cond_lhs (stmt)));
2173 /* If the range of values taken by OP can be inferred after STMT executes,
2174 return the comparison code (COMP_CODE_P) and value (VAL_P) that
2175 describes the inferred range. Return true if a range could be
2176 inferred. */
2178 bool
2179 infer_value_range (gimple *stmt, tree op, tree_code *comp_code_p, tree *val_p)
2181 *val_p = NULL_TREE;
2182 *comp_code_p = ERROR_MARK;
2184 /* Do not attempt to infer anything in names that flow through
2185 abnormal edges. */
2186 if (SSA_NAME_OCCURS_IN_ABNORMAL_PHI (op))
2187 return false;
2189 /* If STMT is the last statement of a basic block with no normal
2190 successors, there is no point inferring anything about any of its
2191 operands. We would not be able to find a proper insertion point
2192 for the assertion, anyway. */
2193 if (stmt_ends_bb_p (stmt))
2195 edge_iterator ei;
2196 edge e;
2198 FOR_EACH_EDGE (e, ei, gimple_bb (stmt)->succs)
2199 if (!(e->flags & (EDGE_ABNORMAL|EDGE_EH)))
2200 break;
2201 if (e == NULL)
2202 return false;
2205 if (infer_nonnull_range (stmt, op))
2207 *val_p = build_int_cst (TREE_TYPE (op), 0);
2208 *comp_code_p = NE_EXPR;
2209 return true;
2212 return false;
2216 void dump_asserts_for (FILE *, tree);
2217 void debug_asserts_for (tree);
2218 void dump_all_asserts (FILE *);
2219 void debug_all_asserts (void);
2221 /* Dump all the registered assertions for NAME to FILE. */
2223 void
2224 dump_asserts_for (FILE *file, tree name)
2226 assert_locus *loc;
2228 fprintf (file, "Assertions to be inserted for ");
2229 print_generic_expr (file, name);
2230 fprintf (file, "\n");
2232 loc = asserts_for[SSA_NAME_VERSION (name)];
2233 while (loc)
2235 fprintf (file, "\t");
2236 print_gimple_stmt (file, gsi_stmt (loc->si), 0);
2237 fprintf (file, "\n\tBB #%d", loc->bb->index);
2238 if (loc->e)
2240 fprintf (file, "\n\tEDGE %d->%d", loc->e->src->index,
2241 loc->e->dest->index);
2242 dump_edge_info (file, loc->e, dump_flags, 0);
2244 fprintf (file, "\n\tPREDICATE: ");
2245 print_generic_expr (file, loc->expr);
2246 fprintf (file, " %s ", get_tree_code_name (loc->comp_code));
2247 print_generic_expr (file, loc->val);
2248 fprintf (file, "\n\n");
2249 loc = loc->next;
2252 fprintf (file, "\n");
2256 /* Dump all the registered assertions for NAME to stderr. */
2258 DEBUG_FUNCTION void
2259 debug_asserts_for (tree name)
2261 dump_asserts_for (stderr, name);
2265 /* Dump all the registered assertions for all the names to FILE. */
2267 void
2268 dump_all_asserts (FILE *file)
2270 unsigned i;
2271 bitmap_iterator bi;
2273 fprintf (file, "\nASSERT_EXPRs to be inserted\n\n");
2274 EXECUTE_IF_SET_IN_BITMAP (need_assert_for, 0, i, bi)
2275 dump_asserts_for (file, ssa_name (i));
2276 fprintf (file, "\n");
2280 /* Dump all the registered assertions for all the names to stderr. */
2282 DEBUG_FUNCTION void
2283 debug_all_asserts (void)
2285 dump_all_asserts (stderr);
2288 /* Push the assert info for NAME, EXPR, COMP_CODE and VAL to ASSERTS. */
2290 static void
2291 add_assert_info (vec<assert_info> &asserts,
2292 tree name, tree expr, enum tree_code comp_code, tree val)
2294 assert_info info;
2295 info.comp_code = comp_code;
2296 info.name = name;
2297 if (TREE_OVERFLOW_P (val))
2298 val = drop_tree_overflow (val);
2299 info.val = val;
2300 info.expr = expr;
2301 asserts.safe_push (info);
2302 if (dump_enabled_p ())
2303 dump_printf (MSG_NOTE | MSG_PRIORITY_INTERNALS,
2304 "Adding assert for %T from %T %s %T\n",
2305 name, expr, op_symbol_code (comp_code), val);
2308 /* If NAME doesn't have an ASSERT_EXPR registered for asserting
2309 'EXPR COMP_CODE VAL' at a location that dominates block BB or
2310 E->DEST, then register this location as a possible insertion point
2311 for ASSERT_EXPR <NAME, EXPR COMP_CODE VAL>.
2313 BB, E and SI provide the exact insertion point for the new
2314 ASSERT_EXPR. If BB is NULL, then the ASSERT_EXPR is to be inserted
2315 on edge E. Otherwise, if E is NULL, the ASSERT_EXPR is inserted on
2316 BB. If SI points to a COND_EXPR or a SWITCH_EXPR statement, then E
2317 must not be NULL. */
2319 static void
2320 register_new_assert_for (tree name, tree expr,
2321 enum tree_code comp_code,
2322 tree val,
2323 basic_block bb,
2324 edge e,
2325 gimple_stmt_iterator si)
2327 assert_locus *n, *loc, *last_loc;
2328 basic_block dest_bb;
2330 gcc_checking_assert (bb == NULL || e == NULL);
2332 if (e == NULL)
2333 gcc_checking_assert (gimple_code (gsi_stmt (si)) != GIMPLE_COND
2334 && gimple_code (gsi_stmt (si)) != GIMPLE_SWITCH);
2336 /* Never build an assert comparing against an integer constant with
2337 TREE_OVERFLOW set. This confuses our undefined overflow warning
2338 machinery. */
2339 if (TREE_OVERFLOW_P (val))
2340 val = drop_tree_overflow (val);
2342 /* The new assertion A will be inserted at BB or E. We need to
2343 determine if the new location is dominated by a previously
2344 registered location for A. If we are doing an edge insertion,
2345 assume that A will be inserted at E->DEST. Note that this is not
2346 necessarily true.
2348 If E is a critical edge, it will be split. But even if E is
2349 split, the new block will dominate the same set of blocks that
2350 E->DEST dominates.
2352 The reverse, however, is not true, blocks dominated by E->DEST
2353 will not be dominated by the new block created to split E. So,
2354 if the insertion location is on a critical edge, we will not use
2355 the new location to move another assertion previously registered
2356 at a block dominated by E->DEST. */
2357 dest_bb = (bb) ? bb : e->dest;
2359 /* If NAME already has an ASSERT_EXPR registered for COMP_CODE and
2360 VAL at a block dominating DEST_BB, then we don't need to insert a new
2361 one. Similarly, if the same assertion already exists at a block
2362 dominated by DEST_BB and the new location is not on a critical
2363 edge, then update the existing location for the assertion (i.e.,
2364 move the assertion up in the dominance tree).
2366 Note, this is implemented as a simple linked list because there
2367 should not be more than a handful of assertions registered per
2368 name. If this becomes a performance problem, a table hashed by
2369 COMP_CODE and VAL could be implemented. */
2370 loc = asserts_for[SSA_NAME_VERSION (name)];
2371 last_loc = loc;
2372 while (loc)
2374 if (loc->comp_code == comp_code
2375 && (loc->val == val
2376 || operand_equal_p (loc->val, val, 0))
2377 && (loc->expr == expr
2378 || operand_equal_p (loc->expr, expr, 0)))
2380 /* If E is not a critical edge and DEST_BB
2381 dominates the existing location for the assertion, move
2382 the assertion up in the dominance tree by updating its
2383 location information. */
2384 if ((e == NULL || !EDGE_CRITICAL_P (e))
2385 && dominated_by_p (CDI_DOMINATORS, loc->bb, dest_bb))
2387 loc->bb = dest_bb;
2388 loc->e = e;
2389 loc->si = si;
2390 return;
2394 /* Update the last node of the list and move to the next one. */
2395 last_loc = loc;
2396 loc = loc->next;
2399 /* If we didn't find an assertion already registered for
2400 NAME COMP_CODE VAL, add a new one at the end of the list of
2401 assertions associated with NAME. */
2402 n = XNEW (struct assert_locus);
2403 n->bb = dest_bb;
2404 n->e = e;
2405 n->si = si;
2406 n->comp_code = comp_code;
2407 n->val = val;
2408 n->expr = expr;
2409 n->next = NULL;
2411 if (last_loc)
2412 last_loc->next = n;
2413 else
2414 asserts_for[SSA_NAME_VERSION (name)] = n;
2416 bitmap_set_bit (need_assert_for, SSA_NAME_VERSION (name));
2419 /* (COND_OP0 COND_CODE COND_OP1) is a predicate which uses NAME.
2420 Extract a suitable test code and value and store them into *CODE_P and
2421 *VAL_P so the predicate is normalized to NAME *CODE_P *VAL_P.
2423 If no extraction was possible, return FALSE, otherwise return TRUE.
2425 If INVERT is true, then we invert the result stored into *CODE_P. */
2427 static bool
2428 extract_code_and_val_from_cond_with_ops (tree name, enum tree_code cond_code,
2429 tree cond_op0, tree cond_op1,
2430 bool invert, enum tree_code *code_p,
2431 tree *val_p)
2433 enum tree_code comp_code;
2434 tree val;
2436 /* Otherwise, we have a comparison of the form NAME COMP VAL
2437 or VAL COMP NAME. */
2438 if (name == cond_op1)
2440 /* If the predicate is of the form VAL COMP NAME, flip
2441 COMP around because we need to register NAME as the
2442 first operand in the predicate. */
2443 comp_code = swap_tree_comparison (cond_code);
2444 val = cond_op0;
2446 else if (name == cond_op0)
2448 /* The comparison is of the form NAME COMP VAL, so the
2449 comparison code remains unchanged. */
2450 comp_code = cond_code;
2451 val = cond_op1;
2453 else
2454 gcc_unreachable ();
2456 /* Invert the comparison code as necessary. */
2457 if (invert)
2458 comp_code = invert_tree_comparison (comp_code, 0);
2460 /* VRP only handles integral and pointer types. */
2461 if (! INTEGRAL_TYPE_P (TREE_TYPE (val))
2462 && ! POINTER_TYPE_P (TREE_TYPE (val)))
2463 return false;
2465 /* Do not register always-false predicates.
2466 FIXME: this works around a limitation in fold() when dealing with
2467 enumerations. Given 'enum { N1, N2 } x;', fold will not
2468 fold 'if (x > N2)' to 'if (0)'. */
2469 if ((comp_code == GT_EXPR || comp_code == LT_EXPR)
2470 && INTEGRAL_TYPE_P (TREE_TYPE (val)))
2472 tree min = TYPE_MIN_VALUE (TREE_TYPE (val));
2473 tree max = TYPE_MAX_VALUE (TREE_TYPE (val));
2475 if (comp_code == GT_EXPR
2476 && (!max
2477 || compare_values (val, max) == 0))
2478 return false;
2480 if (comp_code == LT_EXPR
2481 && (!min
2482 || compare_values (val, min) == 0))
2483 return false;
2485 *code_p = comp_code;
2486 *val_p = val;
2487 return true;
2490 /* Find out smallest RES where RES > VAL && (RES & MASK) == RES, if any
2491 (otherwise return VAL). VAL and MASK must be zero-extended for
2492 precision PREC. If SGNBIT is non-zero, first xor VAL with SGNBIT
2493 (to transform signed values into unsigned) and at the end xor
2494 SGNBIT back. */
2496 static wide_int
2497 masked_increment (const wide_int &val_in, const wide_int &mask,
2498 const wide_int &sgnbit, unsigned int prec)
2500 wide_int bit = wi::one (prec), res;
2501 unsigned int i;
2503 wide_int val = val_in ^ sgnbit;
2504 for (i = 0; i < prec; i++, bit += bit)
2506 res = mask;
2507 if ((res & bit) == 0)
2508 continue;
2509 res = bit - 1;
2510 res = wi::bit_and_not (val + bit, res);
2511 res &= mask;
2512 if (wi::gtu_p (res, val))
2513 return res ^ sgnbit;
2515 return val ^ sgnbit;
2518 /* Helper for overflow_comparison_p
2520 OP0 CODE OP1 is a comparison. Examine the comparison and potentially
2521 OP1's defining statement to see if it ultimately has the form
2522 OP0 CODE (OP0 PLUS INTEGER_CST)
2524 If so, return TRUE indicating this is an overflow test and store into
2525 *NEW_CST an updated constant that can be used in a narrowed range test.
2527 REVERSED indicates if the comparison was originally:
2529 OP1 CODE' OP0.
2531 This affects how we build the updated constant. */
2533 static bool
2534 overflow_comparison_p_1 (enum tree_code code, tree op0, tree op1,
2535 bool follow_assert_exprs, bool reversed, tree *new_cst)
2537 /* See if this is a relational operation between two SSA_NAMES with
2538 unsigned, overflow wrapping values. If so, check it more deeply. */
2539 if ((code == LT_EXPR || code == LE_EXPR
2540 || code == GE_EXPR || code == GT_EXPR)
2541 && TREE_CODE (op0) == SSA_NAME
2542 && TREE_CODE (op1) == SSA_NAME
2543 && INTEGRAL_TYPE_P (TREE_TYPE (op0))
2544 && TYPE_UNSIGNED (TREE_TYPE (op0))
2545 && TYPE_OVERFLOW_WRAPS (TREE_TYPE (op0)))
2547 gimple *op1_def = SSA_NAME_DEF_STMT (op1);
2549 /* If requested, follow any ASSERT_EXPRs backwards for OP1. */
2550 if (follow_assert_exprs)
2552 while (gimple_assign_single_p (op1_def)
2553 && TREE_CODE (gimple_assign_rhs1 (op1_def)) == ASSERT_EXPR)
2555 op1 = TREE_OPERAND (gimple_assign_rhs1 (op1_def), 0);
2556 if (TREE_CODE (op1) != SSA_NAME)
2557 break;
2558 op1_def = SSA_NAME_DEF_STMT (op1);
2562 /* Now look at the defining statement of OP1 to see if it adds
2563 or subtracts a nonzero constant from another operand. */
2564 if (op1_def
2565 && is_gimple_assign (op1_def)
2566 && gimple_assign_rhs_code (op1_def) == PLUS_EXPR
2567 && TREE_CODE (gimple_assign_rhs2 (op1_def)) == INTEGER_CST
2568 && !integer_zerop (gimple_assign_rhs2 (op1_def)))
2570 tree target = gimple_assign_rhs1 (op1_def);
2572 /* If requested, follow ASSERT_EXPRs backwards for op0 looking
2573 for one where TARGET appears on the RHS. */
2574 if (follow_assert_exprs)
2576 /* Now see if that "other operand" is op0, following the chain
2577 of ASSERT_EXPRs if necessary. */
2578 gimple *op0_def = SSA_NAME_DEF_STMT (op0);
2579 while (op0 != target
2580 && gimple_assign_single_p (op0_def)
2581 && TREE_CODE (gimple_assign_rhs1 (op0_def)) == ASSERT_EXPR)
2583 op0 = TREE_OPERAND (gimple_assign_rhs1 (op0_def), 0);
2584 if (TREE_CODE (op0) != SSA_NAME)
2585 break;
2586 op0_def = SSA_NAME_DEF_STMT (op0);
2590 /* If we did not find our target SSA_NAME, then this is not
2591 an overflow test. */
2592 if (op0 != target)
2593 return false;
2595 tree type = TREE_TYPE (op0);
2596 wide_int max = wi::max_value (TYPE_PRECISION (type), UNSIGNED);
2597 tree inc = gimple_assign_rhs2 (op1_def);
2598 if (reversed)
2599 *new_cst = wide_int_to_tree (type, max + wi::to_wide (inc));
2600 else
2601 *new_cst = wide_int_to_tree (type, max - wi::to_wide (inc));
2602 return true;
2605 return false;
2608 /* OP0 CODE OP1 is a comparison. Examine the comparison and potentially
2609 OP1's defining statement to see if it ultimately has the form
2610 OP0 CODE (OP0 PLUS INTEGER_CST)
2612 If so, return TRUE indicating this is an overflow test and store into
2613 *NEW_CST an updated constant that can be used in a narrowed range test.
2615 These statements are left as-is in the IL to facilitate discovery of
2616 {ADD,SUB}_OVERFLOW sequences later in the optimizer pipeline. But
2617 the alternate range representation is often useful within VRP. */
2619 bool
2620 overflow_comparison_p (tree_code code, tree name, tree val,
2621 bool use_equiv_p, tree *new_cst)
2623 if (overflow_comparison_p_1 (code, name, val, use_equiv_p, false, new_cst))
2624 return true;
2625 return overflow_comparison_p_1 (swap_tree_comparison (code), val, name,
2626 use_equiv_p, true, new_cst);
2630 /* Try to register an edge assertion for SSA name NAME on edge E for
2631 the condition COND contributing to the conditional jump pointed to by BSI.
2632 Invert the condition COND if INVERT is true. */
2634 static void
2635 register_edge_assert_for_2 (tree name, edge e,
2636 enum tree_code cond_code,
2637 tree cond_op0, tree cond_op1, bool invert,
2638 vec<assert_info> &asserts)
2640 tree val;
2641 enum tree_code comp_code;
2643 if (!extract_code_and_val_from_cond_with_ops (name, cond_code,
2644 cond_op0,
2645 cond_op1,
2646 invert, &comp_code, &val))
2647 return;
2649 /* Queue the assert. */
2650 tree x;
2651 if (overflow_comparison_p (comp_code, name, val, false, &x))
2653 enum tree_code new_code = ((comp_code == GT_EXPR || comp_code == GE_EXPR)
2654 ? GT_EXPR : LE_EXPR);
2655 add_assert_info (asserts, name, name, new_code, x);
2657 add_assert_info (asserts, name, name, comp_code, val);
2659 /* In the case of NAME <= CST and NAME being defined as
2660 NAME = (unsigned) NAME2 + CST2 we can assert NAME2 >= -CST2
2661 and NAME2 <= CST - CST2. We can do the same for NAME > CST.
2662 This catches range and anti-range tests. */
2663 if ((comp_code == LE_EXPR
2664 || comp_code == GT_EXPR)
2665 && TREE_CODE (val) == INTEGER_CST
2666 && TYPE_UNSIGNED (TREE_TYPE (val)))
2668 gimple *def_stmt = SSA_NAME_DEF_STMT (name);
2669 tree cst2 = NULL_TREE, name2 = NULL_TREE, name3 = NULL_TREE;
2671 /* Extract CST2 from the (optional) addition. */
2672 if (is_gimple_assign (def_stmt)
2673 && gimple_assign_rhs_code (def_stmt) == PLUS_EXPR)
2675 name2 = gimple_assign_rhs1 (def_stmt);
2676 cst2 = gimple_assign_rhs2 (def_stmt);
2677 if (TREE_CODE (name2) == SSA_NAME
2678 && TREE_CODE (cst2) == INTEGER_CST)
2679 def_stmt = SSA_NAME_DEF_STMT (name2);
2682 /* Extract NAME2 from the (optional) sign-changing cast. */
2683 if (gimple_assign_cast_p (def_stmt))
2685 if (CONVERT_EXPR_CODE_P (gimple_assign_rhs_code (def_stmt))
2686 && ! TYPE_UNSIGNED (TREE_TYPE (gimple_assign_rhs1 (def_stmt)))
2687 && (TYPE_PRECISION (gimple_expr_type (def_stmt))
2688 == TYPE_PRECISION (TREE_TYPE (gimple_assign_rhs1 (def_stmt)))))
2689 name3 = gimple_assign_rhs1 (def_stmt);
2692 /* If name3 is used later, create an ASSERT_EXPR for it. */
2693 if (name3 != NULL_TREE
2694 && TREE_CODE (name3) == SSA_NAME
2695 && (cst2 == NULL_TREE
2696 || TREE_CODE (cst2) == INTEGER_CST)
2697 && INTEGRAL_TYPE_P (TREE_TYPE (name3)))
2699 tree tmp;
2701 /* Build an expression for the range test. */
2702 tmp = build1 (NOP_EXPR, TREE_TYPE (name), name3);
2703 if (cst2 != NULL_TREE)
2704 tmp = build2 (PLUS_EXPR, TREE_TYPE (name), tmp, cst2);
2705 add_assert_info (asserts, name3, tmp, comp_code, val);
2708 /* If name2 is used later, create an ASSERT_EXPR for it. */
2709 if (name2 != NULL_TREE
2710 && TREE_CODE (name2) == SSA_NAME
2711 && TREE_CODE (cst2) == INTEGER_CST
2712 && INTEGRAL_TYPE_P (TREE_TYPE (name2)))
2714 tree tmp;
2716 /* Build an expression for the range test. */
2717 tmp = name2;
2718 if (TREE_TYPE (name) != TREE_TYPE (name2))
2719 tmp = build1 (NOP_EXPR, TREE_TYPE (name), tmp);
2720 if (cst2 != NULL_TREE)
2721 tmp = build2 (PLUS_EXPR, TREE_TYPE (name), tmp, cst2);
2722 add_assert_info (asserts, name2, tmp, comp_code, val);
2726 /* In the case of post-in/decrement tests like if (i++) ... and uses
2727 of the in/decremented value on the edge the extra name we want to
2728 assert for is not on the def chain of the name compared. Instead
2729 it is in the set of use stmts.
2730 Similar cases happen for conversions that were simplified through
2731 fold_{sign_changed,widened}_comparison. */
2732 if ((comp_code == NE_EXPR
2733 || comp_code == EQ_EXPR)
2734 && TREE_CODE (val) == INTEGER_CST)
2736 imm_use_iterator ui;
2737 gimple *use_stmt;
2738 FOR_EACH_IMM_USE_STMT (use_stmt, ui, name)
2740 if (!is_gimple_assign (use_stmt))
2741 continue;
2743 /* Cut off to use-stmts that are dominating the predecessor. */
2744 if (!dominated_by_p (CDI_DOMINATORS, e->src, gimple_bb (use_stmt)))
2745 continue;
2747 tree name2 = gimple_assign_lhs (use_stmt);
2748 if (TREE_CODE (name2) != SSA_NAME)
2749 continue;
2751 enum tree_code code = gimple_assign_rhs_code (use_stmt);
2752 tree cst;
2753 if (code == PLUS_EXPR
2754 || code == MINUS_EXPR)
2756 cst = gimple_assign_rhs2 (use_stmt);
2757 if (TREE_CODE (cst) != INTEGER_CST)
2758 continue;
2759 cst = int_const_binop (code, val, cst);
2761 else if (CONVERT_EXPR_CODE_P (code))
2763 /* For truncating conversions we cannot record
2764 an inequality. */
2765 if (comp_code == NE_EXPR
2766 && (TYPE_PRECISION (TREE_TYPE (name2))
2767 < TYPE_PRECISION (TREE_TYPE (name))))
2768 continue;
2769 cst = fold_convert (TREE_TYPE (name2), val);
2771 else
2772 continue;
2774 if (TREE_OVERFLOW_P (cst))
2775 cst = drop_tree_overflow (cst);
2776 add_assert_info (asserts, name2, name2, comp_code, cst);
2780 if (TREE_CODE_CLASS (comp_code) == tcc_comparison
2781 && TREE_CODE (val) == INTEGER_CST)
2783 gimple *def_stmt = SSA_NAME_DEF_STMT (name);
2784 tree name2 = NULL_TREE, names[2], cst2 = NULL_TREE;
2785 tree val2 = NULL_TREE;
2786 unsigned int prec = TYPE_PRECISION (TREE_TYPE (val));
2787 wide_int mask = wi::zero (prec);
2788 unsigned int nprec = prec;
2789 enum tree_code rhs_code = ERROR_MARK;
2791 if (is_gimple_assign (def_stmt))
2792 rhs_code = gimple_assign_rhs_code (def_stmt);
2794 /* In the case of NAME != CST1 where NAME = A +- CST2 we can
2795 assert that A != CST1 -+ CST2. */
2796 if ((comp_code == EQ_EXPR || comp_code == NE_EXPR)
2797 && (rhs_code == PLUS_EXPR || rhs_code == MINUS_EXPR))
2799 tree op0 = gimple_assign_rhs1 (def_stmt);
2800 tree op1 = gimple_assign_rhs2 (def_stmt);
2801 if (TREE_CODE (op0) == SSA_NAME
2802 && TREE_CODE (op1) == INTEGER_CST)
2804 enum tree_code reverse_op = (rhs_code == PLUS_EXPR
2805 ? MINUS_EXPR : PLUS_EXPR);
2806 op1 = int_const_binop (reverse_op, val, op1);
2807 if (TREE_OVERFLOW (op1))
2808 op1 = drop_tree_overflow (op1);
2809 add_assert_info (asserts, op0, op0, comp_code, op1);
2813 /* Add asserts for NAME cmp CST and NAME being defined
2814 as NAME = (int) NAME2. */
2815 if (!TYPE_UNSIGNED (TREE_TYPE (val))
2816 && (comp_code == LE_EXPR || comp_code == LT_EXPR
2817 || comp_code == GT_EXPR || comp_code == GE_EXPR)
2818 && gimple_assign_cast_p (def_stmt))
2820 name2 = gimple_assign_rhs1 (def_stmt);
2821 if (CONVERT_EXPR_CODE_P (rhs_code)
2822 && INTEGRAL_TYPE_P (TREE_TYPE (name2))
2823 && TYPE_UNSIGNED (TREE_TYPE (name2))
2824 && prec == TYPE_PRECISION (TREE_TYPE (name2))
2825 && (comp_code == LE_EXPR || comp_code == GT_EXPR
2826 || !tree_int_cst_equal (val,
2827 TYPE_MIN_VALUE (TREE_TYPE (val)))))
2829 tree tmp, cst;
2830 enum tree_code new_comp_code = comp_code;
2832 cst = fold_convert (TREE_TYPE (name2),
2833 TYPE_MIN_VALUE (TREE_TYPE (val)));
2834 /* Build an expression for the range test. */
2835 tmp = build2 (PLUS_EXPR, TREE_TYPE (name2), name2, cst);
2836 cst = fold_build2 (PLUS_EXPR, TREE_TYPE (name2), cst,
2837 fold_convert (TREE_TYPE (name2), val));
2838 if (comp_code == LT_EXPR || comp_code == GE_EXPR)
2840 new_comp_code = comp_code == LT_EXPR ? LE_EXPR : GT_EXPR;
2841 cst = fold_build2 (MINUS_EXPR, TREE_TYPE (name2), cst,
2842 build_int_cst (TREE_TYPE (name2), 1));
2844 add_assert_info (asserts, name2, tmp, new_comp_code, cst);
2848 /* Add asserts for NAME cmp CST and NAME being defined as
2849 NAME = NAME2 >> CST2.
2851 Extract CST2 from the right shift. */
2852 if (rhs_code == RSHIFT_EXPR)
2854 name2 = gimple_assign_rhs1 (def_stmt);
2855 cst2 = gimple_assign_rhs2 (def_stmt);
2856 if (TREE_CODE (name2) == SSA_NAME
2857 && tree_fits_uhwi_p (cst2)
2858 && INTEGRAL_TYPE_P (TREE_TYPE (name2))
2859 && IN_RANGE (tree_to_uhwi (cst2), 1, prec - 1)
2860 && type_has_mode_precision_p (TREE_TYPE (val)))
2862 mask = wi::mask (tree_to_uhwi (cst2), false, prec);
2863 val2 = fold_binary (LSHIFT_EXPR, TREE_TYPE (val), val, cst2);
2866 if (val2 != NULL_TREE
2867 && TREE_CODE (val2) == INTEGER_CST
2868 && simple_cst_equal (fold_build2 (RSHIFT_EXPR,
2869 TREE_TYPE (val),
2870 val2, cst2), val))
2872 enum tree_code new_comp_code = comp_code;
2873 tree tmp, new_val;
2875 tmp = name2;
2876 if (comp_code == EQ_EXPR || comp_code == NE_EXPR)
2878 if (!TYPE_UNSIGNED (TREE_TYPE (val)))
2880 tree type = build_nonstandard_integer_type (prec, 1);
2881 tmp = build1 (NOP_EXPR, type, name2);
2882 val2 = fold_convert (type, val2);
2884 tmp = fold_build2 (MINUS_EXPR, TREE_TYPE (tmp), tmp, val2);
2885 new_val = wide_int_to_tree (TREE_TYPE (tmp), mask);
2886 new_comp_code = comp_code == EQ_EXPR ? LE_EXPR : GT_EXPR;
2888 else if (comp_code == LT_EXPR || comp_code == GE_EXPR)
2890 wide_int minval
2891 = wi::min_value (prec, TYPE_SIGN (TREE_TYPE (val)));
2892 new_val = val2;
2893 if (minval == wi::to_wide (new_val))
2894 new_val = NULL_TREE;
2896 else
2898 wide_int maxval
2899 = wi::max_value (prec, TYPE_SIGN (TREE_TYPE (val)));
2900 mask |= wi::to_wide (val2);
2901 if (wi::eq_p (mask, maxval))
2902 new_val = NULL_TREE;
2903 else
2904 new_val = wide_int_to_tree (TREE_TYPE (val2), mask);
2907 if (new_val)
2908 add_assert_info (asserts, name2, tmp, new_comp_code, new_val);
2911 /* Add asserts for NAME cmp CST and NAME being defined as
2912 NAME = NAME2 & CST2.
2914 Extract CST2 from the and.
2916 Also handle
2917 NAME = (unsigned) NAME2;
2918 casts where NAME's type is unsigned and has smaller precision
2919 than NAME2's type as if it was NAME = NAME2 & MASK. */
2920 names[0] = NULL_TREE;
2921 names[1] = NULL_TREE;
2922 cst2 = NULL_TREE;
2923 if (rhs_code == BIT_AND_EXPR
2924 || (CONVERT_EXPR_CODE_P (rhs_code)
2925 && INTEGRAL_TYPE_P (TREE_TYPE (val))
2926 && TYPE_UNSIGNED (TREE_TYPE (val))
2927 && TYPE_PRECISION (TREE_TYPE (gimple_assign_rhs1 (def_stmt)))
2928 > prec))
2930 name2 = gimple_assign_rhs1 (def_stmt);
2931 if (rhs_code == BIT_AND_EXPR)
2932 cst2 = gimple_assign_rhs2 (def_stmt);
2933 else
2935 cst2 = TYPE_MAX_VALUE (TREE_TYPE (val));
2936 nprec = TYPE_PRECISION (TREE_TYPE (name2));
2938 if (TREE_CODE (name2) == SSA_NAME
2939 && INTEGRAL_TYPE_P (TREE_TYPE (name2))
2940 && TREE_CODE (cst2) == INTEGER_CST
2941 && !integer_zerop (cst2)
2942 && (nprec > 1
2943 || TYPE_UNSIGNED (TREE_TYPE (val))))
2945 gimple *def_stmt2 = SSA_NAME_DEF_STMT (name2);
2946 if (gimple_assign_cast_p (def_stmt2))
2948 names[1] = gimple_assign_rhs1 (def_stmt2);
2949 if (!CONVERT_EXPR_CODE_P (gimple_assign_rhs_code (def_stmt2))
2950 || !INTEGRAL_TYPE_P (TREE_TYPE (names[1]))
2951 || (TYPE_PRECISION (TREE_TYPE (name2))
2952 != TYPE_PRECISION (TREE_TYPE (names[1]))))
2953 names[1] = NULL_TREE;
2955 names[0] = name2;
2958 if (names[0] || names[1])
2960 wide_int minv, maxv, valv, cst2v;
2961 wide_int tem, sgnbit;
2962 bool valid_p = false, valn, cst2n;
2963 enum tree_code ccode = comp_code;
2965 valv = wide_int::from (wi::to_wide (val), nprec, UNSIGNED);
2966 cst2v = wide_int::from (wi::to_wide (cst2), nprec, UNSIGNED);
2967 valn = wi::neg_p (valv, TYPE_SIGN (TREE_TYPE (val)));
2968 cst2n = wi::neg_p (cst2v, TYPE_SIGN (TREE_TYPE (val)));
2969 /* If CST2 doesn't have most significant bit set,
2970 but VAL is negative, we have comparison like
2971 if ((x & 0x123) > -4) (always true). Just give up. */
2972 if (!cst2n && valn)
2973 ccode = ERROR_MARK;
2974 if (cst2n)
2975 sgnbit = wi::set_bit_in_zero (nprec - 1, nprec);
2976 else
2977 sgnbit = wi::zero (nprec);
2978 minv = valv & cst2v;
2979 switch (ccode)
2981 case EQ_EXPR:
2982 /* Minimum unsigned value for equality is VAL & CST2
2983 (should be equal to VAL, otherwise we probably should
2984 have folded the comparison into false) and
2985 maximum unsigned value is VAL | ~CST2. */
2986 maxv = valv | ~cst2v;
2987 valid_p = true;
2988 break;
2990 case NE_EXPR:
2991 tem = valv | ~cst2v;
2992 /* If VAL is 0, handle (X & CST2) != 0 as (X & CST2) > 0U. */
2993 if (valv == 0)
2995 cst2n = false;
2996 sgnbit = wi::zero (nprec);
2997 goto gt_expr;
2999 /* If (VAL | ~CST2) is all ones, handle it as
3000 (X & CST2) < VAL. */
3001 if (tem == -1)
3003 cst2n = false;
3004 valn = false;
3005 sgnbit = wi::zero (nprec);
3006 goto lt_expr;
3008 if (!cst2n && wi::neg_p (cst2v))
3009 sgnbit = wi::set_bit_in_zero (nprec - 1, nprec);
3010 if (sgnbit != 0)
3012 if (valv == sgnbit)
3014 cst2n = true;
3015 valn = true;
3016 goto gt_expr;
3018 if (tem == wi::mask (nprec - 1, false, nprec))
3020 cst2n = true;
3021 goto lt_expr;
3023 if (!cst2n)
3024 sgnbit = wi::zero (nprec);
3026 break;
3028 case GE_EXPR:
3029 /* Minimum unsigned value for >= if (VAL & CST2) == VAL
3030 is VAL and maximum unsigned value is ~0. For signed
3031 comparison, if CST2 doesn't have most significant bit
3032 set, handle it similarly. If CST2 has MSB set,
3033 the minimum is the same, and maximum is ~0U/2. */
3034 if (minv != valv)
3036 /* If (VAL & CST2) != VAL, X & CST2 can't be equal to
3037 VAL. */
3038 minv = masked_increment (valv, cst2v, sgnbit, nprec);
3039 if (minv == valv)
3040 break;
3042 maxv = wi::mask (nprec - (cst2n ? 1 : 0), false, nprec);
3043 valid_p = true;
3044 break;
3046 case GT_EXPR:
3047 gt_expr:
3048 /* Find out smallest MINV where MINV > VAL
3049 && (MINV & CST2) == MINV, if any. If VAL is signed and
3050 CST2 has MSB set, compute it biased by 1 << (nprec - 1). */
3051 minv = masked_increment (valv, cst2v, sgnbit, nprec);
3052 if (minv == valv)
3053 break;
3054 maxv = wi::mask (nprec - (cst2n ? 1 : 0), false, nprec);
3055 valid_p = true;
3056 break;
3058 case LE_EXPR:
3059 /* Minimum unsigned value for <= is 0 and maximum
3060 unsigned value is VAL | ~CST2 if (VAL & CST2) == VAL.
3061 Otherwise, find smallest VAL2 where VAL2 > VAL
3062 && (VAL2 & CST2) == VAL2 and use (VAL2 - 1) | ~CST2
3063 as maximum.
3064 For signed comparison, if CST2 doesn't have most
3065 significant bit set, handle it similarly. If CST2 has
3066 MSB set, the maximum is the same and minimum is INT_MIN. */
3067 if (minv == valv)
3068 maxv = valv;
3069 else
3071 maxv = masked_increment (valv, cst2v, sgnbit, nprec);
3072 if (maxv == valv)
3073 break;
3074 maxv -= 1;
3076 maxv |= ~cst2v;
3077 minv = sgnbit;
3078 valid_p = true;
3079 break;
3081 case LT_EXPR:
3082 lt_expr:
3083 /* Minimum unsigned value for < is 0 and maximum
3084 unsigned value is (VAL-1) | ~CST2 if (VAL & CST2) == VAL.
3085 Otherwise, find smallest VAL2 where VAL2 > VAL
3086 && (VAL2 & CST2) == VAL2 and use (VAL2 - 1) | ~CST2
3087 as maximum.
3088 For signed comparison, if CST2 doesn't have most
3089 significant bit set, handle it similarly. If CST2 has
3090 MSB set, the maximum is the same and minimum is INT_MIN. */
3091 if (minv == valv)
3093 if (valv == sgnbit)
3094 break;
3095 maxv = valv;
3097 else
3099 maxv = masked_increment (valv, cst2v, sgnbit, nprec);
3100 if (maxv == valv)
3101 break;
3103 maxv -= 1;
3104 maxv |= ~cst2v;
3105 minv = sgnbit;
3106 valid_p = true;
3107 break;
3109 default:
3110 break;
3112 if (valid_p
3113 && (maxv - minv) != -1)
3115 tree tmp, new_val, type;
3116 int i;
3118 for (i = 0; i < 2; i++)
3119 if (names[i])
3121 wide_int maxv2 = maxv;
3122 tmp = names[i];
3123 type = TREE_TYPE (names[i]);
3124 if (!TYPE_UNSIGNED (type))
3126 type = build_nonstandard_integer_type (nprec, 1);
3127 tmp = build1 (NOP_EXPR, type, names[i]);
3129 if (minv != 0)
3131 tmp = build2 (PLUS_EXPR, type, tmp,
3132 wide_int_to_tree (type, -minv));
3133 maxv2 = maxv - minv;
3135 new_val = wide_int_to_tree (type, maxv2);
3136 add_assert_info (asserts, names[i], tmp, LE_EXPR, new_val);
3143 /* OP is an operand of a truth value expression which is known to have
3144 a particular value. Register any asserts for OP and for any
3145 operands in OP's defining statement.
3147 If CODE is EQ_EXPR, then we want to register OP is zero (false),
3148 if CODE is NE_EXPR, then we want to register OP is nonzero (true). */
3150 static void
3151 register_edge_assert_for_1 (tree op, enum tree_code code,
3152 edge e, vec<assert_info> &asserts)
3154 gimple *op_def;
3155 tree val;
3156 enum tree_code rhs_code;
3158 /* We only care about SSA_NAMEs. */
3159 if (TREE_CODE (op) != SSA_NAME)
3160 return;
3162 /* We know that OP will have a zero or nonzero value. */
3163 val = build_int_cst (TREE_TYPE (op), 0);
3164 add_assert_info (asserts, op, op, code, val);
3166 /* Now look at how OP is set. If it's set from a comparison,
3167 a truth operation or some bit operations, then we may be able
3168 to register information about the operands of that assignment. */
3169 op_def = SSA_NAME_DEF_STMT (op);
3170 if (gimple_code (op_def) != GIMPLE_ASSIGN)
3171 return;
3173 rhs_code = gimple_assign_rhs_code (op_def);
3175 if (TREE_CODE_CLASS (rhs_code) == tcc_comparison)
3177 bool invert = (code == EQ_EXPR ? true : false);
3178 tree op0 = gimple_assign_rhs1 (op_def);
3179 tree op1 = gimple_assign_rhs2 (op_def);
3181 if (TREE_CODE (op0) == SSA_NAME)
3182 register_edge_assert_for_2 (op0, e, rhs_code, op0, op1, invert, asserts);
3183 if (TREE_CODE (op1) == SSA_NAME)
3184 register_edge_assert_for_2 (op1, e, rhs_code, op0, op1, invert, asserts);
3186 else if ((code == NE_EXPR
3187 && gimple_assign_rhs_code (op_def) == BIT_AND_EXPR)
3188 || (code == EQ_EXPR
3189 && gimple_assign_rhs_code (op_def) == BIT_IOR_EXPR))
3191 /* Recurse on each operand. */
3192 tree op0 = gimple_assign_rhs1 (op_def);
3193 tree op1 = gimple_assign_rhs2 (op_def);
3194 if (TREE_CODE (op0) == SSA_NAME
3195 && has_single_use (op0))
3196 register_edge_assert_for_1 (op0, code, e, asserts);
3197 if (TREE_CODE (op1) == SSA_NAME
3198 && has_single_use (op1))
3199 register_edge_assert_for_1 (op1, code, e, asserts);
3201 else if (gimple_assign_rhs_code (op_def) == BIT_NOT_EXPR
3202 && TYPE_PRECISION (TREE_TYPE (gimple_assign_lhs (op_def))) == 1)
3204 /* Recurse, flipping CODE. */
3205 code = invert_tree_comparison (code, false);
3206 register_edge_assert_for_1 (gimple_assign_rhs1 (op_def), code, e, asserts);
3208 else if (gimple_assign_rhs_code (op_def) == SSA_NAME)
3210 /* Recurse through the copy. */
3211 register_edge_assert_for_1 (gimple_assign_rhs1 (op_def), code, e, asserts);
3213 else if (CONVERT_EXPR_CODE_P (gimple_assign_rhs_code (op_def)))
3215 /* Recurse through the type conversion, unless it is a narrowing
3216 conversion or conversion from non-integral type. */
3217 tree rhs = gimple_assign_rhs1 (op_def);
3218 if (INTEGRAL_TYPE_P (TREE_TYPE (rhs))
3219 && (TYPE_PRECISION (TREE_TYPE (rhs))
3220 <= TYPE_PRECISION (TREE_TYPE (op))))
3221 register_edge_assert_for_1 (rhs, code, e, asserts);
3225 /* Check if comparison
3226 NAME COND_OP INTEGER_CST
3227 has a form of
3228 (X & 11...100..0) COND_OP XX...X00...0
3229 Such comparison can yield assertions like
3230 X >= XX...X00...0
3231 X <= XX...X11...1
3232 in case of COND_OP being EQ_EXPR or
3233 X < XX...X00...0
3234 X > XX...X11...1
3235 in case of NE_EXPR. */
3237 static bool
3238 is_masked_range_test (tree name, tree valt, enum tree_code cond_code,
3239 tree *new_name, tree *low, enum tree_code *low_code,
3240 tree *high, enum tree_code *high_code)
3242 gimple *def_stmt = SSA_NAME_DEF_STMT (name);
3244 if (!is_gimple_assign (def_stmt)
3245 || gimple_assign_rhs_code (def_stmt) != BIT_AND_EXPR)
3246 return false;
3248 tree t = gimple_assign_rhs1 (def_stmt);
3249 tree maskt = gimple_assign_rhs2 (def_stmt);
3250 if (TREE_CODE (t) != SSA_NAME || TREE_CODE (maskt) != INTEGER_CST)
3251 return false;
3253 wi::tree_to_wide_ref mask = wi::to_wide (maskt);
3254 wide_int inv_mask = ~mask;
3255 /* Must have been removed by now so don't bother optimizing. */
3256 if (mask == 0 || inv_mask == 0)
3257 return false;
3259 /* Assume VALT is INTEGER_CST. */
3260 wi::tree_to_wide_ref val = wi::to_wide (valt);
3262 if ((inv_mask & (inv_mask + 1)) != 0
3263 || (val & mask) != val)
3264 return false;
3266 bool is_range = cond_code == EQ_EXPR;
3268 tree type = TREE_TYPE (t);
3269 wide_int min = wi::min_value (type),
3270 max = wi::max_value (type);
3272 if (is_range)
3274 *low_code = val == min ? ERROR_MARK : GE_EXPR;
3275 *high_code = val == max ? ERROR_MARK : LE_EXPR;
3277 else
3279 /* We can still generate assertion if one of alternatives
3280 is known to always be false. */
3281 if (val == min)
3283 *low_code = (enum tree_code) 0;
3284 *high_code = GT_EXPR;
3286 else if ((val | inv_mask) == max)
3288 *low_code = LT_EXPR;
3289 *high_code = (enum tree_code) 0;
3291 else
3292 return false;
3295 *new_name = t;
3296 *low = wide_int_to_tree (type, val);
3297 *high = wide_int_to_tree (type, val | inv_mask);
3299 return true;
3302 /* Try to register an edge assertion for SSA name NAME on edge E for
3303 the condition COND contributing to the conditional jump pointed to by
3304 SI. */
3306 void
3307 register_edge_assert_for (tree name, edge e,
3308 enum tree_code cond_code, tree cond_op0,
3309 tree cond_op1, vec<assert_info> &asserts)
3311 tree val;
3312 enum tree_code comp_code;
3313 bool is_else_edge = (e->flags & EDGE_FALSE_VALUE) != 0;
3315 /* Do not attempt to infer anything in names that flow through
3316 abnormal edges. */
3317 if (SSA_NAME_OCCURS_IN_ABNORMAL_PHI (name))
3318 return;
3320 if (!extract_code_and_val_from_cond_with_ops (name, cond_code,
3321 cond_op0, cond_op1,
3322 is_else_edge,
3323 &comp_code, &val))
3324 return;
3326 /* Register ASSERT_EXPRs for name. */
3327 register_edge_assert_for_2 (name, e, cond_code, cond_op0,
3328 cond_op1, is_else_edge, asserts);
3331 /* If COND is effectively an equality test of an SSA_NAME against
3332 the value zero or one, then we may be able to assert values
3333 for SSA_NAMEs which flow into COND. */
3335 /* In the case of NAME == 1 or NAME != 0, for BIT_AND_EXPR defining
3336 statement of NAME we can assert both operands of the BIT_AND_EXPR
3337 have nonzero value. */
3338 if (((comp_code == EQ_EXPR && integer_onep (val))
3339 || (comp_code == NE_EXPR && integer_zerop (val))))
3341 gimple *def_stmt = SSA_NAME_DEF_STMT (name);
3343 if (is_gimple_assign (def_stmt)
3344 && gimple_assign_rhs_code (def_stmt) == BIT_AND_EXPR)
3346 tree op0 = gimple_assign_rhs1 (def_stmt);
3347 tree op1 = gimple_assign_rhs2 (def_stmt);
3348 register_edge_assert_for_1 (op0, NE_EXPR, e, asserts);
3349 register_edge_assert_for_1 (op1, NE_EXPR, e, asserts);
3353 /* In the case of NAME == 0 or NAME != 1, for BIT_IOR_EXPR defining
3354 statement of NAME we can assert both operands of the BIT_IOR_EXPR
3355 have zero value. */
3356 if (((comp_code == EQ_EXPR && integer_zerop (val))
3357 || (comp_code == NE_EXPR && integer_onep (val))))
3359 gimple *def_stmt = SSA_NAME_DEF_STMT (name);
3361 /* For BIT_IOR_EXPR only if NAME == 0 both operands have
3362 necessarily zero value, or if type-precision is one. */
3363 if (is_gimple_assign (def_stmt)
3364 && (gimple_assign_rhs_code (def_stmt) == BIT_IOR_EXPR
3365 && (TYPE_PRECISION (TREE_TYPE (name)) == 1
3366 || comp_code == EQ_EXPR)))
3368 tree op0 = gimple_assign_rhs1 (def_stmt);
3369 tree op1 = gimple_assign_rhs2 (def_stmt);
3370 register_edge_assert_for_1 (op0, EQ_EXPR, e, asserts);
3371 register_edge_assert_for_1 (op1, EQ_EXPR, e, asserts);
3375 /* Sometimes we can infer ranges from (NAME & MASK) == VALUE. */
3376 if ((comp_code == EQ_EXPR || comp_code == NE_EXPR)
3377 && TREE_CODE (val) == INTEGER_CST)
3379 enum tree_code low_code, high_code;
3380 tree low, high;
3381 if (is_masked_range_test (name, val, comp_code, &name, &low,
3382 &low_code, &high, &high_code))
3384 if (low_code != ERROR_MARK)
3385 register_edge_assert_for_2 (name, e, low_code, name,
3386 low, /*invert*/false, asserts);
3387 if (high_code != ERROR_MARK)
3388 register_edge_assert_for_2 (name, e, high_code, name,
3389 high, /*invert*/false, asserts);
3394 /* Finish found ASSERTS for E and register them at GSI. */
3396 static void
3397 finish_register_edge_assert_for (edge e, gimple_stmt_iterator gsi,
3398 vec<assert_info> &asserts)
3400 for (unsigned i = 0; i < asserts.length (); ++i)
3401 /* Only register an ASSERT_EXPR if NAME was found in the sub-graph
3402 reachable from E. */
3403 if (live_on_edge (e, asserts[i].name))
3404 register_new_assert_for (asserts[i].name, asserts[i].expr,
3405 asserts[i].comp_code, asserts[i].val,
3406 NULL, e, gsi);
3411 /* Determine whether the outgoing edges of BB should receive an
3412 ASSERT_EXPR for each of the operands of BB's LAST statement.
3413 The last statement of BB must be a COND_EXPR.
3415 If any of the sub-graphs rooted at BB have an interesting use of
3416 the predicate operands, an assert location node is added to the
3417 list of assertions for the corresponding operands. */
3419 static void
3420 find_conditional_asserts (basic_block bb, gcond *last)
3422 gimple_stmt_iterator bsi;
3423 tree op;
3424 edge_iterator ei;
3425 edge e;
3426 ssa_op_iter iter;
3428 bsi = gsi_for_stmt (last);
3430 /* Look for uses of the operands in each of the sub-graphs
3431 rooted at BB. We need to check each of the outgoing edges
3432 separately, so that we know what kind of ASSERT_EXPR to
3433 insert. */
3434 FOR_EACH_EDGE (e, ei, bb->succs)
3436 if (e->dest == bb)
3437 continue;
3439 /* Register the necessary assertions for each operand in the
3440 conditional predicate. */
3441 auto_vec<assert_info, 8> asserts;
3442 FOR_EACH_SSA_TREE_OPERAND (op, last, iter, SSA_OP_USE)
3443 register_edge_assert_for (op, e,
3444 gimple_cond_code (last),
3445 gimple_cond_lhs (last),
3446 gimple_cond_rhs (last), asserts);
3447 finish_register_edge_assert_for (e, bsi, asserts);
3451 struct case_info
3453 tree expr;
3454 basic_block bb;
3457 /* Compare two case labels sorting first by the destination bb index
3458 and then by the case value. */
3460 static int
3461 compare_case_labels (const void *p1, const void *p2)
3463 const struct case_info *ci1 = (const struct case_info *) p1;
3464 const struct case_info *ci2 = (const struct case_info *) p2;
3465 int idx1 = ci1->bb->index;
3466 int idx2 = ci2->bb->index;
3468 if (idx1 < idx2)
3469 return -1;
3470 else if (idx1 == idx2)
3472 /* Make sure the default label is first in a group. */
3473 if (!CASE_LOW (ci1->expr))
3474 return -1;
3475 else if (!CASE_LOW (ci2->expr))
3476 return 1;
3477 else
3478 return tree_int_cst_compare (CASE_LOW (ci1->expr),
3479 CASE_LOW (ci2->expr));
3481 else
3482 return 1;
3485 /* Determine whether the outgoing edges of BB should receive an
3486 ASSERT_EXPR for each of the operands of BB's LAST statement.
3487 The last statement of BB must be a SWITCH_EXPR.
3489 If any of the sub-graphs rooted at BB have an interesting use of
3490 the predicate operands, an assert location node is added to the
3491 list of assertions for the corresponding operands. */
3493 static void
3494 find_switch_asserts (basic_block bb, gswitch *last)
3496 gimple_stmt_iterator bsi;
3497 tree op;
3498 edge e;
3499 struct case_info *ci;
3500 size_t n = gimple_switch_num_labels (last);
3501 #if GCC_VERSION >= 4000
3502 unsigned int idx;
3503 #else
3504 /* Work around GCC 3.4 bug (PR 37086). */
3505 volatile unsigned int idx;
3506 #endif
3508 bsi = gsi_for_stmt (last);
3509 op = gimple_switch_index (last);
3510 if (TREE_CODE (op) != SSA_NAME)
3511 return;
3513 /* Build a vector of case labels sorted by destination label. */
3514 ci = XNEWVEC (struct case_info, n);
3515 for (idx = 0; idx < n; ++idx)
3517 ci[idx].expr = gimple_switch_label (last, idx);
3518 ci[idx].bb = label_to_block (cfun, CASE_LABEL (ci[idx].expr));
3520 edge default_edge = find_edge (bb, ci[0].bb);
3521 qsort (ci, n, sizeof (struct case_info), compare_case_labels);
3523 for (idx = 0; idx < n; ++idx)
3525 tree min, max;
3526 tree cl = ci[idx].expr;
3527 basic_block cbb = ci[idx].bb;
3529 min = CASE_LOW (cl);
3530 max = CASE_HIGH (cl);
3532 /* If there are multiple case labels with the same destination
3533 we need to combine them to a single value range for the edge. */
3534 if (idx + 1 < n && cbb == ci[idx + 1].bb)
3536 /* Skip labels until the last of the group. */
3537 do {
3538 ++idx;
3539 } while (idx < n && cbb == ci[idx].bb);
3540 --idx;
3542 /* Pick up the maximum of the case label range. */
3543 if (CASE_HIGH (ci[idx].expr))
3544 max = CASE_HIGH (ci[idx].expr);
3545 else
3546 max = CASE_LOW (ci[idx].expr);
3549 /* Can't extract a useful assertion out of a range that includes the
3550 default label. */
3551 if (min == NULL_TREE)
3552 continue;
3554 /* Find the edge to register the assert expr on. */
3555 e = find_edge (bb, cbb);
3557 /* Register the necessary assertions for the operand in the
3558 SWITCH_EXPR. */
3559 auto_vec<assert_info, 8> asserts;
3560 register_edge_assert_for (op, e,
3561 max ? GE_EXPR : EQ_EXPR,
3562 op, fold_convert (TREE_TYPE (op), min),
3563 asserts);
3564 if (max)
3565 register_edge_assert_for (op, e, LE_EXPR, op,
3566 fold_convert (TREE_TYPE (op), max),
3567 asserts);
3568 finish_register_edge_assert_for (e, bsi, asserts);
3571 XDELETEVEC (ci);
3573 if (!live_on_edge (default_edge, op))
3574 return;
3576 /* Now register along the default label assertions that correspond to the
3577 anti-range of each label. */
3578 int insertion_limit = PARAM_VALUE (PARAM_MAX_VRP_SWITCH_ASSERTIONS);
3579 if (insertion_limit == 0)
3580 return;
3582 /* We can't do this if the default case shares a label with another case. */
3583 tree default_cl = gimple_switch_default_label (last);
3584 for (idx = 1; idx < n; idx++)
3586 tree min, max;
3587 tree cl = gimple_switch_label (last, idx);
3588 if (CASE_LABEL (cl) == CASE_LABEL (default_cl))
3589 continue;
3591 min = CASE_LOW (cl);
3592 max = CASE_HIGH (cl);
3594 /* Combine contiguous case ranges to reduce the number of assertions
3595 to insert. */
3596 for (idx = idx + 1; idx < n; idx++)
3598 tree next_min, next_max;
3599 tree next_cl = gimple_switch_label (last, idx);
3600 if (CASE_LABEL (next_cl) == CASE_LABEL (default_cl))
3601 break;
3603 next_min = CASE_LOW (next_cl);
3604 next_max = CASE_HIGH (next_cl);
3606 wide_int difference = (wi::to_wide (next_min)
3607 - wi::to_wide (max ? max : min));
3608 if (wi::eq_p (difference, 1))
3609 max = next_max ? next_max : next_min;
3610 else
3611 break;
3613 idx--;
3615 if (max == NULL_TREE)
3617 /* Register the assertion OP != MIN. */
3618 auto_vec<assert_info, 8> asserts;
3619 min = fold_convert (TREE_TYPE (op), min);
3620 register_edge_assert_for (op, default_edge, NE_EXPR, op, min,
3621 asserts);
3622 finish_register_edge_assert_for (default_edge, bsi, asserts);
3624 else
3626 /* Register the assertion (unsigned)OP - MIN > (MAX - MIN),
3627 which will give OP the anti-range ~[MIN,MAX]. */
3628 tree uop = fold_convert (unsigned_type_for (TREE_TYPE (op)), op);
3629 min = fold_convert (TREE_TYPE (uop), min);
3630 max = fold_convert (TREE_TYPE (uop), max);
3632 tree lhs = fold_build2 (MINUS_EXPR, TREE_TYPE (uop), uop, min);
3633 tree rhs = int_const_binop (MINUS_EXPR, max, min);
3634 register_new_assert_for (op, lhs, GT_EXPR, rhs,
3635 NULL, default_edge, bsi);
3638 if (--insertion_limit == 0)
3639 break;
3644 /* Traverse all the statements in block BB looking for statements that
3645 may generate useful assertions for the SSA names in their operand.
3646 If a statement produces a useful assertion A for name N_i, then the
3647 list of assertions already generated for N_i is scanned to
3648 determine if A is actually needed.
3650 If N_i already had the assertion A at a location dominating the
3651 current location, then nothing needs to be done. Otherwise, the
3652 new location for A is recorded instead.
3654 1- For every statement S in BB, all the variables used by S are
3655 added to bitmap FOUND_IN_SUBGRAPH.
3657 2- If statement S uses an operand N in a way that exposes a known
3658 value range for N, then if N was not already generated by an
3659 ASSERT_EXPR, create a new assert location for N. For instance,
3660 if N is a pointer and the statement dereferences it, we can
3661 assume that N is not NULL.
3663 3- COND_EXPRs are a special case of #2. We can derive range
3664 information from the predicate but need to insert different
3665 ASSERT_EXPRs for each of the sub-graphs rooted at the
3666 conditional block. If the last statement of BB is a conditional
3667 expression of the form 'X op Y', then
3669 a) Remove X and Y from the set FOUND_IN_SUBGRAPH.
3671 b) If the conditional is the only entry point to the sub-graph
3672 corresponding to the THEN_CLAUSE, recurse into it. On
3673 return, if X and/or Y are marked in FOUND_IN_SUBGRAPH, then
3674 an ASSERT_EXPR is added for the corresponding variable.
3676 c) Repeat step (b) on the ELSE_CLAUSE.
3678 d) Mark X and Y in FOUND_IN_SUBGRAPH.
3680 For instance,
3682 if (a == 9)
3683 b = a;
3684 else
3685 b = c + 1;
3687 In this case, an assertion on the THEN clause is useful to
3688 determine that 'a' is always 9 on that edge. However, an assertion
3689 on the ELSE clause would be unnecessary.
3691 4- If BB does not end in a conditional expression, then we recurse
3692 into BB's dominator children.
3694 At the end of the recursive traversal, every SSA name will have a
3695 list of locations where ASSERT_EXPRs should be added. When a new
3696 location for name N is found, it is registered by calling
3697 register_new_assert_for. That function keeps track of all the
3698 registered assertions to prevent adding unnecessary assertions.
3699 For instance, if a pointer P_4 is dereferenced more than once in a
3700 dominator tree, only the location dominating all the dereference of
3701 P_4 will receive an ASSERT_EXPR. */
3703 static void
3704 find_assert_locations_1 (basic_block bb, sbitmap live)
3706 gimple *last;
3708 last = last_stmt (bb);
3710 /* If BB's last statement is a conditional statement involving integer
3711 operands, determine if we need to add ASSERT_EXPRs. */
3712 if (last
3713 && gimple_code (last) == GIMPLE_COND
3714 && !fp_predicate (last)
3715 && !ZERO_SSA_OPERANDS (last, SSA_OP_USE))
3716 find_conditional_asserts (bb, as_a <gcond *> (last));
3718 /* If BB's last statement is a switch statement involving integer
3719 operands, determine if we need to add ASSERT_EXPRs. */
3720 if (last
3721 && gimple_code (last) == GIMPLE_SWITCH
3722 && !ZERO_SSA_OPERANDS (last, SSA_OP_USE))
3723 find_switch_asserts (bb, as_a <gswitch *> (last));
3725 /* Traverse all the statements in BB marking used names and looking
3726 for statements that may infer assertions for their used operands. */
3727 for (gimple_stmt_iterator si = gsi_last_bb (bb); !gsi_end_p (si);
3728 gsi_prev (&si))
3730 gimple *stmt;
3731 tree op;
3732 ssa_op_iter i;
3734 stmt = gsi_stmt (si);
3736 if (is_gimple_debug (stmt))
3737 continue;
3739 /* See if we can derive an assertion for any of STMT's operands. */
3740 FOR_EACH_SSA_TREE_OPERAND (op, stmt, i, SSA_OP_USE)
3742 tree value;
3743 enum tree_code comp_code;
3745 /* If op is not live beyond this stmt, do not bother to insert
3746 asserts for it. */
3747 if (!bitmap_bit_p (live, SSA_NAME_VERSION (op)))
3748 continue;
3750 /* If OP is used in such a way that we can infer a value
3751 range for it, and we don't find a previous assertion for
3752 it, create a new assertion location node for OP. */
3753 if (infer_value_range (stmt, op, &comp_code, &value))
3755 /* If we are able to infer a nonzero value range for OP,
3756 then walk backwards through the use-def chain to see if OP
3757 was set via a typecast.
3759 If so, then we can also infer a nonzero value range
3760 for the operand of the NOP_EXPR. */
3761 if (comp_code == NE_EXPR && integer_zerop (value))
3763 tree t = op;
3764 gimple *def_stmt = SSA_NAME_DEF_STMT (t);
3766 while (is_gimple_assign (def_stmt)
3767 && CONVERT_EXPR_CODE_P
3768 (gimple_assign_rhs_code (def_stmt))
3769 && TREE_CODE
3770 (gimple_assign_rhs1 (def_stmt)) == SSA_NAME
3771 && POINTER_TYPE_P
3772 (TREE_TYPE (gimple_assign_rhs1 (def_stmt))))
3774 t = gimple_assign_rhs1 (def_stmt);
3775 def_stmt = SSA_NAME_DEF_STMT (t);
3777 /* Note we want to register the assert for the
3778 operand of the NOP_EXPR after SI, not after the
3779 conversion. */
3780 if (bitmap_bit_p (live, SSA_NAME_VERSION (t)))
3781 register_new_assert_for (t, t, comp_code, value,
3782 bb, NULL, si);
3786 register_new_assert_for (op, op, comp_code, value, bb, NULL, si);
3790 /* Update live. */
3791 FOR_EACH_SSA_TREE_OPERAND (op, stmt, i, SSA_OP_USE)
3792 bitmap_set_bit (live, SSA_NAME_VERSION (op));
3793 FOR_EACH_SSA_TREE_OPERAND (op, stmt, i, SSA_OP_DEF)
3794 bitmap_clear_bit (live, SSA_NAME_VERSION (op));
3797 /* Traverse all PHI nodes in BB, updating live. */
3798 for (gphi_iterator si = gsi_start_phis (bb); !gsi_end_p (si);
3799 gsi_next (&si))
3801 use_operand_p arg_p;
3802 ssa_op_iter i;
3803 gphi *phi = si.phi ();
3804 tree res = gimple_phi_result (phi);
3806 if (virtual_operand_p (res))
3807 continue;
3809 FOR_EACH_PHI_ARG (arg_p, phi, i, SSA_OP_USE)
3811 tree arg = USE_FROM_PTR (arg_p);
3812 if (TREE_CODE (arg) == SSA_NAME)
3813 bitmap_set_bit (live, SSA_NAME_VERSION (arg));
3816 bitmap_clear_bit (live, SSA_NAME_VERSION (res));
3820 /* Do an RPO walk over the function computing SSA name liveness
3821 on-the-fly and deciding on assert expressions to insert. */
3823 static void
3824 find_assert_locations (void)
3826 int *rpo = XNEWVEC (int, last_basic_block_for_fn (cfun));
3827 int *bb_rpo = XNEWVEC (int, last_basic_block_for_fn (cfun));
3828 int *last_rpo = XCNEWVEC (int, last_basic_block_for_fn (cfun));
3829 int rpo_cnt, i;
3831 live = XCNEWVEC (sbitmap, last_basic_block_for_fn (cfun));
3832 rpo_cnt = pre_and_rev_post_order_compute (NULL, rpo, false);
3833 for (i = 0; i < rpo_cnt; ++i)
3834 bb_rpo[rpo[i]] = i;
3836 /* Pre-seed loop latch liveness from loop header PHI nodes. Due to
3837 the order we compute liveness and insert asserts we otherwise
3838 fail to insert asserts into the loop latch. */
3839 loop_p loop;
3840 FOR_EACH_LOOP (loop, 0)
3842 i = loop->latch->index;
3843 unsigned int j = single_succ_edge (loop->latch)->dest_idx;
3844 for (gphi_iterator gsi = gsi_start_phis (loop->header);
3845 !gsi_end_p (gsi); gsi_next (&gsi))
3847 gphi *phi = gsi.phi ();
3848 if (virtual_operand_p (gimple_phi_result (phi)))
3849 continue;
3850 tree arg = gimple_phi_arg_def (phi, j);
3851 if (TREE_CODE (arg) == SSA_NAME)
3853 if (live[i] == NULL)
3855 live[i] = sbitmap_alloc (num_ssa_names);
3856 bitmap_clear (live[i]);
3858 bitmap_set_bit (live[i], SSA_NAME_VERSION (arg));
3863 for (i = rpo_cnt - 1; i >= 0; --i)
3865 basic_block bb = BASIC_BLOCK_FOR_FN (cfun, rpo[i]);
3866 edge e;
3867 edge_iterator ei;
3869 if (!live[rpo[i]])
3871 live[rpo[i]] = sbitmap_alloc (num_ssa_names);
3872 bitmap_clear (live[rpo[i]]);
3875 /* Process BB and update the live information with uses in
3876 this block. */
3877 find_assert_locations_1 (bb, live[rpo[i]]);
3879 /* Merge liveness into the predecessor blocks and free it. */
3880 if (!bitmap_empty_p (live[rpo[i]]))
3882 int pred_rpo = i;
3883 FOR_EACH_EDGE (e, ei, bb->preds)
3885 int pred = e->src->index;
3886 if ((e->flags & EDGE_DFS_BACK) || pred == ENTRY_BLOCK)
3887 continue;
3889 if (!live[pred])
3891 live[pred] = sbitmap_alloc (num_ssa_names);
3892 bitmap_clear (live[pred]);
3894 bitmap_ior (live[pred], live[pred], live[rpo[i]]);
3896 if (bb_rpo[pred] < pred_rpo)
3897 pred_rpo = bb_rpo[pred];
3900 /* Record the RPO number of the last visited block that needs
3901 live information from this block. */
3902 last_rpo[rpo[i]] = pred_rpo;
3904 else
3906 sbitmap_free (live[rpo[i]]);
3907 live[rpo[i]] = NULL;
3910 /* We can free all successors live bitmaps if all their
3911 predecessors have been visited already. */
3912 FOR_EACH_EDGE (e, ei, bb->succs)
3913 if (last_rpo[e->dest->index] == i
3914 && live[e->dest->index])
3916 sbitmap_free (live[e->dest->index]);
3917 live[e->dest->index] = NULL;
3921 XDELETEVEC (rpo);
3922 XDELETEVEC (bb_rpo);
3923 XDELETEVEC (last_rpo);
3924 for (i = 0; i < last_basic_block_for_fn (cfun); ++i)
3925 if (live[i])
3926 sbitmap_free (live[i]);
3927 XDELETEVEC (live);
3930 /* Create an ASSERT_EXPR for NAME and insert it in the location
3931 indicated by LOC. Return true if we made any edge insertions. */
3933 static bool
3934 process_assert_insertions_for (tree name, assert_locus *loc)
3936 /* Build the comparison expression NAME_i COMP_CODE VAL. */
3937 gimple *stmt;
3938 tree cond;
3939 gimple *assert_stmt;
3940 edge_iterator ei;
3941 edge e;
3943 /* If we have X <=> X do not insert an assert expr for that. */
3944 if (loc->expr == loc->val)
3945 return false;
3947 cond = build2 (loc->comp_code, boolean_type_node, loc->expr, loc->val);
3948 assert_stmt = build_assert_expr_for (cond, name);
3949 if (loc->e)
3951 /* We have been asked to insert the assertion on an edge. This
3952 is used only by COND_EXPR and SWITCH_EXPR assertions. */
3953 gcc_checking_assert (gimple_code (gsi_stmt (loc->si)) == GIMPLE_COND
3954 || (gimple_code (gsi_stmt (loc->si))
3955 == GIMPLE_SWITCH));
3957 gsi_insert_on_edge (loc->e, assert_stmt);
3958 return true;
3961 /* If the stmt iterator points at the end then this is an insertion
3962 at the beginning of a block. */
3963 if (gsi_end_p (loc->si))
3965 gimple_stmt_iterator si = gsi_after_labels (loc->bb);
3966 gsi_insert_before (&si, assert_stmt, GSI_SAME_STMT);
3967 return false;
3970 /* Otherwise, we can insert right after LOC->SI iff the
3971 statement must not be the last statement in the block. */
3972 stmt = gsi_stmt (loc->si);
3973 if (!stmt_ends_bb_p (stmt))
3975 gsi_insert_after (&loc->si, assert_stmt, GSI_SAME_STMT);
3976 return false;
3979 /* If STMT must be the last statement in BB, we can only insert new
3980 assertions on the non-abnormal edge out of BB. Note that since
3981 STMT is not control flow, there may only be one non-abnormal/eh edge
3982 out of BB. */
3983 FOR_EACH_EDGE (e, ei, loc->bb->succs)
3984 if (!(e->flags & (EDGE_ABNORMAL|EDGE_EH)))
3986 gsi_insert_on_edge (e, assert_stmt);
3987 return true;
3990 gcc_unreachable ();
3993 /* Qsort helper for sorting assert locations. If stable is true, don't
3994 use iterative_hash_expr because it can be unstable for -fcompare-debug,
3995 on the other side some pointers might be NULL. */
3997 template <bool stable>
3998 static int
3999 compare_assert_loc (const void *pa, const void *pb)
4001 assert_locus * const a = *(assert_locus * const *)pa;
4002 assert_locus * const b = *(assert_locus * const *)pb;
4004 /* If stable, some asserts might be optimized away already, sort
4005 them last. */
4006 if (stable)
4008 if (a == NULL)
4009 return b != NULL;
4010 else if (b == NULL)
4011 return -1;
4014 if (a->e == NULL && b->e != NULL)
4015 return 1;
4016 else if (a->e != NULL && b->e == NULL)
4017 return -1;
4019 /* After the above checks, we know that (a->e == NULL) == (b->e == NULL),
4020 no need to test both a->e and b->e. */
4022 /* Sort after destination index. */
4023 if (a->e == NULL)
4025 else if (a->e->dest->index > b->e->dest->index)
4026 return 1;
4027 else if (a->e->dest->index < b->e->dest->index)
4028 return -1;
4030 /* Sort after comp_code. */
4031 if (a->comp_code > b->comp_code)
4032 return 1;
4033 else if (a->comp_code < b->comp_code)
4034 return -1;
4036 hashval_t ha, hb;
4038 /* E.g. if a->val is ADDR_EXPR of a VAR_DECL, iterative_hash_expr
4039 uses DECL_UID of the VAR_DECL, so sorting might differ between
4040 -g and -g0. When doing the removal of redundant assert exprs
4041 and commonization to successors, this does not matter, but for
4042 the final sort needs to be stable. */
4043 if (stable)
4045 ha = 0;
4046 hb = 0;
4048 else
4050 ha = iterative_hash_expr (a->expr, iterative_hash_expr (a->val, 0));
4051 hb = iterative_hash_expr (b->expr, iterative_hash_expr (b->val, 0));
4054 /* Break the tie using hashing and source/bb index. */
4055 if (ha == hb)
4056 return (a->e != NULL
4057 ? a->e->src->index - b->e->src->index
4058 : a->bb->index - b->bb->index);
4059 return ha > hb ? 1 : -1;
4062 /* Process all the insertions registered for every name N_i registered
4063 in NEED_ASSERT_FOR. The list of assertions to be inserted are
4064 found in ASSERTS_FOR[i]. */
4066 static void
4067 process_assert_insertions (void)
4069 unsigned i;
4070 bitmap_iterator bi;
4071 bool update_edges_p = false;
4072 int num_asserts = 0;
4074 if (dump_file && (dump_flags & TDF_DETAILS))
4075 dump_all_asserts (dump_file);
4077 EXECUTE_IF_SET_IN_BITMAP (need_assert_for, 0, i, bi)
4079 assert_locus *loc = asserts_for[i];
4080 gcc_assert (loc);
4082 auto_vec<assert_locus *, 16> asserts;
4083 for (; loc; loc = loc->next)
4084 asserts.safe_push (loc);
4085 asserts.qsort (compare_assert_loc<false>);
4087 /* Push down common asserts to successors and remove redundant ones. */
4088 unsigned ecnt = 0;
4089 assert_locus *common = NULL;
4090 unsigned commonj = 0;
4091 for (unsigned j = 0; j < asserts.length (); ++j)
4093 loc = asserts[j];
4094 if (! loc->e)
4095 common = NULL;
4096 else if (! common
4097 || loc->e->dest != common->e->dest
4098 || loc->comp_code != common->comp_code
4099 || ! operand_equal_p (loc->val, common->val, 0)
4100 || ! operand_equal_p (loc->expr, common->expr, 0))
4102 commonj = j;
4103 common = loc;
4104 ecnt = 1;
4106 else if (loc->e == asserts[j-1]->e)
4108 /* Remove duplicate asserts. */
4109 if (commonj == j - 1)
4111 commonj = j;
4112 common = loc;
4114 free (asserts[j-1]);
4115 asserts[j-1] = NULL;
4117 else
4119 ecnt++;
4120 if (EDGE_COUNT (common->e->dest->preds) == ecnt)
4122 /* We have the same assertion on all incoming edges of a BB.
4123 Insert it at the beginning of that block. */
4124 loc->bb = loc->e->dest;
4125 loc->e = NULL;
4126 loc->si = gsi_none ();
4127 common = NULL;
4128 /* Clear asserts commoned. */
4129 for (; commonj != j; ++commonj)
4130 if (asserts[commonj])
4132 free (asserts[commonj]);
4133 asserts[commonj] = NULL;
4139 /* The asserts vector sorting above might be unstable for
4140 -fcompare-debug, sort again to ensure a stable sort. */
4141 asserts.qsort (compare_assert_loc<true>);
4142 for (unsigned j = 0; j < asserts.length (); ++j)
4144 loc = asserts[j];
4145 if (! loc)
4146 break;
4147 update_edges_p |= process_assert_insertions_for (ssa_name (i), loc);
4148 num_asserts++;
4149 free (loc);
4153 if (update_edges_p)
4154 gsi_commit_edge_inserts ();
4156 statistics_counter_event (cfun, "Number of ASSERT_EXPR expressions inserted",
4157 num_asserts);
4161 /* Traverse the flowgraph looking for conditional jumps to insert range
4162 expressions. These range expressions are meant to provide information
4163 to optimizations that need to reason in terms of value ranges. They
4164 will not be expanded into RTL. For instance, given:
4166 x = ...
4167 y = ...
4168 if (x < y)
4169 y = x - 2;
4170 else
4171 x = y + 3;
4173 this pass will transform the code into:
4175 x = ...
4176 y = ...
4177 if (x < y)
4179 x = ASSERT_EXPR <x, x < y>
4180 y = x - 2
4182 else
4184 y = ASSERT_EXPR <y, x >= y>
4185 x = y + 3
4188 The idea is that once copy and constant propagation have run, other
4189 optimizations will be able to determine what ranges of values can 'x'
4190 take in different paths of the code, simply by checking the reaching
4191 definition of 'x'. */
4193 static void
4194 insert_range_assertions (void)
4196 need_assert_for = BITMAP_ALLOC (NULL);
4197 asserts_for = XCNEWVEC (assert_locus *, num_ssa_names);
4199 calculate_dominance_info (CDI_DOMINATORS);
4201 find_assert_locations ();
4202 if (!bitmap_empty_p (need_assert_for))
4204 process_assert_insertions ();
4205 update_ssa (TODO_update_ssa_no_phi);
4208 if (dump_file && (dump_flags & TDF_DETAILS))
4210 fprintf (dump_file, "\nSSA form after inserting ASSERT_EXPRs\n");
4211 dump_function_to_file (current_function_decl, dump_file, dump_flags);
4214 free (asserts_for);
4215 BITMAP_FREE (need_assert_for);
4218 class vrp_prop : public ssa_propagation_engine
4220 public:
4221 enum ssa_prop_result visit_stmt (gimple *, edge *, tree *) FINAL OVERRIDE;
4222 enum ssa_prop_result visit_phi (gphi *) FINAL OVERRIDE;
4224 void vrp_initialize (void);
4225 void vrp_finalize (bool);
4226 void check_all_array_refs (void);
4227 void check_array_ref (location_t, tree, bool);
4228 void check_mem_ref (location_t, tree, bool);
4229 void search_for_addr_array (tree, location_t);
4231 class vr_values vr_values;
4232 /* Temporary delegator to minimize code churn. */
4233 value_range *get_value_range (const_tree op)
4234 { return vr_values.get_value_range (op); }
4235 void set_defs_to_varying (gimple *stmt)
4236 { return vr_values.set_defs_to_varying (stmt); }
4237 void extract_range_from_stmt (gimple *stmt, edge *taken_edge_p,
4238 tree *output_p, value_range *vr)
4239 { vr_values.extract_range_from_stmt (stmt, taken_edge_p, output_p, vr); }
4240 bool update_value_range (const_tree op, value_range *vr)
4241 { return vr_values.update_value_range (op, vr); }
4242 void extract_range_basic (value_range *vr, gimple *stmt)
4243 { vr_values.extract_range_basic (vr, stmt); }
4244 void extract_range_from_phi_node (gphi *phi, value_range *vr)
4245 { vr_values.extract_range_from_phi_node (phi, vr); }
4247 /* Checks one ARRAY_REF in REF, located at LOCUS. Ignores flexible arrays
4248 and "struct" hacks. If VRP can determine that the
4249 array subscript is a constant, check if it is outside valid
4250 range. If the array subscript is a RANGE, warn if it is
4251 non-overlapping with valid range.
4252 IGNORE_OFF_BY_ONE is true if the ARRAY_REF is inside a ADDR_EXPR. */
4254 void
4255 vrp_prop::check_array_ref (location_t location, tree ref,
4256 bool ignore_off_by_one)
4258 const value_range *vr = NULL;
4259 tree low_sub, up_sub;
4260 tree low_bound, up_bound, up_bound_p1;
4262 if (TREE_NO_WARNING (ref))
4263 return;
4265 low_sub = up_sub = TREE_OPERAND (ref, 1);
4266 up_bound = array_ref_up_bound (ref);
4268 if (!up_bound
4269 || TREE_CODE (up_bound) != INTEGER_CST
4270 || (warn_array_bounds < 2
4271 && array_at_struct_end_p (ref)))
4273 /* Accesses to trailing arrays via pointers may access storage
4274 beyond the types array bounds. For such arrays, or for flexible
4275 array members, as well as for other arrays of an unknown size,
4276 replace the upper bound with a more permissive one that assumes
4277 the size of the largest object is PTRDIFF_MAX. */
4278 tree eltsize = array_ref_element_size (ref);
4280 if (TREE_CODE (eltsize) != INTEGER_CST
4281 || integer_zerop (eltsize))
4283 up_bound = NULL_TREE;
4284 up_bound_p1 = NULL_TREE;
4286 else
4288 tree maxbound = TYPE_MAX_VALUE (ptrdiff_type_node);
4289 tree arg = TREE_OPERAND (ref, 0);
4290 poly_int64 off;
4292 if (get_addr_base_and_unit_offset (arg, &off) && known_gt (off, 0))
4293 maxbound = wide_int_to_tree (sizetype,
4294 wi::sub (wi::to_wide (maxbound),
4295 off));
4296 else
4297 maxbound = fold_convert (sizetype, maxbound);
4299 up_bound_p1 = int_const_binop (TRUNC_DIV_EXPR, maxbound, eltsize);
4301 up_bound = int_const_binop (MINUS_EXPR, up_bound_p1,
4302 build_int_cst (ptrdiff_type_node, 1));
4305 else
4306 up_bound_p1 = int_const_binop (PLUS_EXPR, up_bound,
4307 build_int_cst (TREE_TYPE (up_bound), 1));
4309 low_bound = array_ref_low_bound (ref);
4311 tree artype = TREE_TYPE (TREE_OPERAND (ref, 0));
4313 bool warned = false;
4315 /* Empty array. */
4316 if (up_bound && tree_int_cst_equal (low_bound, up_bound_p1))
4317 warned = warning_at (location, OPT_Warray_bounds,
4318 "array subscript %E is above array bounds of %qT",
4319 low_bound, artype);
4321 if (TREE_CODE (low_sub) == SSA_NAME)
4323 vr = get_value_range (low_sub);
4324 if (!vr->undefined_p () && !vr->varying_p ())
4326 low_sub = vr->kind () == VR_RANGE ? vr->max () : vr->min ();
4327 up_sub = vr->kind () == VR_RANGE ? vr->min () : vr->max ();
4331 if (vr && vr->kind () == VR_ANTI_RANGE)
4333 if (up_bound
4334 && TREE_CODE (up_sub) == INTEGER_CST
4335 && (ignore_off_by_one
4336 ? tree_int_cst_lt (up_bound, up_sub)
4337 : tree_int_cst_le (up_bound, up_sub))
4338 && TREE_CODE (low_sub) == INTEGER_CST
4339 && tree_int_cst_le (low_sub, low_bound))
4340 warned = warning_at (location, OPT_Warray_bounds,
4341 "array subscript [%E, %E] is outside "
4342 "array bounds of %qT",
4343 low_sub, up_sub, artype);
4345 else if (up_bound
4346 && TREE_CODE (up_sub) == INTEGER_CST
4347 && (ignore_off_by_one
4348 ? !tree_int_cst_le (up_sub, up_bound_p1)
4349 : !tree_int_cst_le (up_sub, up_bound)))
4351 if (dump_file && (dump_flags & TDF_DETAILS))
4353 fprintf (dump_file, "Array bound warning for ");
4354 dump_generic_expr (MSG_NOTE, TDF_SLIM, ref);
4355 fprintf (dump_file, "\n");
4357 warned = warning_at (location, OPT_Warray_bounds,
4358 "array subscript %E is above array bounds of %qT",
4359 up_sub, artype);
4361 else if (TREE_CODE (low_sub) == INTEGER_CST
4362 && tree_int_cst_lt (low_sub, low_bound))
4364 if (dump_file && (dump_flags & TDF_DETAILS))
4366 fprintf (dump_file, "Array bound warning for ");
4367 dump_generic_expr (MSG_NOTE, TDF_SLIM, ref);
4368 fprintf (dump_file, "\n");
4370 warned = warning_at (location, OPT_Warray_bounds,
4371 "array subscript %E is below array bounds of %qT",
4372 low_sub, artype);
4375 if (warned)
4377 ref = TREE_OPERAND (ref, 0);
4379 if (DECL_P (ref))
4380 inform (DECL_SOURCE_LOCATION (ref), "while referencing %qD", ref);
4382 TREE_NO_WARNING (ref) = 1;
4386 /* Checks one MEM_REF in REF, located at LOCATION, for out-of-bounds
4387 references to string constants. If VRP can determine that the array
4388 subscript is a constant, check if it is outside valid range.
4389 If the array subscript is a RANGE, warn if it is non-overlapping
4390 with valid range.
4391 IGNORE_OFF_BY_ONE is true if the MEM_REF is inside an ADDR_EXPR
4392 (used to allow one-past-the-end indices for code that takes
4393 the address of the just-past-the-end element of an array). */
4395 void
4396 vrp_prop::check_mem_ref (location_t location, tree ref,
4397 bool ignore_off_by_one)
4399 if (TREE_NO_WARNING (ref))
4400 return;
4402 tree arg = TREE_OPERAND (ref, 0);
4403 /* The constant and variable offset of the reference. */
4404 tree cstoff = TREE_OPERAND (ref, 1);
4405 tree varoff = NULL_TREE;
4407 const offset_int maxobjsize = tree_to_shwi (max_object_size ());
4409 /* The array or string constant bounds in bytes. Initially set
4410 to [-MAXOBJSIZE - 1, MAXOBJSIZE] until a tighter bound is
4411 determined. */
4412 offset_int arrbounds[2] = { -maxobjsize - 1, maxobjsize };
4414 /* The minimum and maximum intermediate offset. For a reference
4415 to be valid, not only does the final offset/subscript must be
4416 in bounds but all intermediate offsets should be as well.
4417 GCC may be able to deal gracefully with such out-of-bounds
4418 offsets so the checking is only enbaled at -Warray-bounds=2
4419 where it may help detect bugs in uses of the intermediate
4420 offsets that could otherwise not be detectable. */
4421 offset_int ioff = wi::to_offset (fold_convert (ptrdiff_type_node, cstoff));
4422 offset_int extrema[2] = { 0, wi::abs (ioff) };
4424 /* The range of the byte offset into the reference. */
4425 offset_int offrange[2] = { 0, 0 };
4427 const value_range *vr = NULL;
4429 /* Determine the offsets and increment OFFRANGE for the bounds of each.
4430 The loop computes the the range of the final offset for expressions
4431 such as (A + i0 + ... + iN)[CSTOFF] where i0 through iN are SSA_NAMEs
4432 in some range. */
4433 while (TREE_CODE (arg) == SSA_NAME)
4435 gimple *def = SSA_NAME_DEF_STMT (arg);
4436 if (!is_gimple_assign (def))
4437 break;
4439 tree_code code = gimple_assign_rhs_code (def);
4440 if (code == POINTER_PLUS_EXPR)
4442 arg = gimple_assign_rhs1 (def);
4443 varoff = gimple_assign_rhs2 (def);
4445 else if (code == ASSERT_EXPR)
4447 arg = TREE_OPERAND (gimple_assign_rhs1 (def), 0);
4448 continue;
4450 else
4451 return;
4453 /* VAROFF should always be a SSA_NAME here (and not even
4454 INTEGER_CST) but there's no point in taking chances. */
4455 if (TREE_CODE (varoff) != SSA_NAME)
4456 break;
4458 vr = get_value_range (varoff);
4459 if (!vr || vr->undefined_p () || vr->varying_p ())
4460 break;
4462 if (!vr->constant_p ())
4463 break;
4465 if (vr->kind () == VR_RANGE)
4467 if (tree_int_cst_lt (vr->min (), vr->max ()))
4469 offset_int min
4470 = wi::to_offset (fold_convert (ptrdiff_type_node, vr->min ()));
4471 offset_int max
4472 = wi::to_offset (fold_convert (ptrdiff_type_node, vr->max ()));
4473 if (min < max)
4475 offrange[0] += min;
4476 offrange[1] += max;
4478 else
4480 offrange[0] += max;
4481 offrange[1] += min;
4484 else
4486 /* Conservatively add [-MAXOBJSIZE -1, MAXOBJSIZE]
4487 to OFFRANGE. */
4488 offrange[0] += arrbounds[0];
4489 offrange[1] += arrbounds[1];
4492 else
4494 /* For an anti-range, analogously to the above, conservatively
4495 add [-MAXOBJSIZE -1, MAXOBJSIZE] to OFFRANGE. */
4496 offrange[0] += arrbounds[0];
4497 offrange[1] += arrbounds[1];
4500 /* Keep track of the minimum and maximum offset. */
4501 if (offrange[1] < 0 && offrange[1] < extrema[0])
4502 extrema[0] = offrange[1];
4503 if (offrange[0] > 0 && offrange[0] > extrema[1])
4504 extrema[1] = offrange[0];
4506 if (offrange[0] < arrbounds[0])
4507 offrange[0] = arrbounds[0];
4509 if (offrange[1] > arrbounds[1])
4510 offrange[1] = arrbounds[1];
4513 if (TREE_CODE (arg) == ADDR_EXPR)
4515 arg = TREE_OPERAND (arg, 0);
4516 if (TREE_CODE (arg) != STRING_CST
4517 && TREE_CODE (arg) != VAR_DECL)
4518 return;
4520 else
4521 return;
4523 /* The type of the object being referred to. It can be an array,
4524 string literal, or a non-array type when the MEM_REF represents
4525 a reference/subscript via a pointer to an object that is not
4526 an element of an array. References to members of structs and
4527 unions are excluded because MEM_REF doesn't make it possible
4528 to identify the member where the reference originated.
4529 Incomplete types are excluded as well because their size is
4530 not known. */
4531 tree reftype = TREE_TYPE (arg);
4532 if (POINTER_TYPE_P (reftype)
4533 || !COMPLETE_TYPE_P (reftype)
4534 || TREE_CODE (TYPE_SIZE_UNIT (reftype)) != INTEGER_CST
4535 || RECORD_OR_UNION_TYPE_P (reftype))
4536 return;
4538 offset_int eltsize;
4539 if (TREE_CODE (reftype) == ARRAY_TYPE)
4541 eltsize = wi::to_offset (TYPE_SIZE_UNIT (TREE_TYPE (reftype)));
4543 if (tree dom = TYPE_DOMAIN (reftype))
4545 tree bnds[] = { TYPE_MIN_VALUE (dom), TYPE_MAX_VALUE (dom) };
4546 if (array_at_struct_end_p (arg)
4547 || !bnds[0] || !bnds[1])
4549 arrbounds[0] = 0;
4550 arrbounds[1] = wi::lrshift (maxobjsize, wi::floor_log2 (eltsize));
4552 else
4554 arrbounds[0] = wi::to_offset (bnds[0]) * eltsize;
4555 arrbounds[1] = (wi::to_offset (bnds[1]) + 1) * eltsize;
4558 else
4560 arrbounds[0] = 0;
4561 arrbounds[1] = wi::lrshift (maxobjsize, wi::floor_log2 (eltsize));
4564 if (TREE_CODE (ref) == MEM_REF)
4566 /* For MEM_REF determine a tighter bound of the non-array
4567 element type. */
4568 tree eltype = TREE_TYPE (reftype);
4569 while (TREE_CODE (eltype) == ARRAY_TYPE)
4570 eltype = TREE_TYPE (eltype);
4571 eltsize = wi::to_offset (TYPE_SIZE_UNIT (eltype));
4574 else
4576 eltsize = 1;
4577 arrbounds[0] = 0;
4578 arrbounds[1] = wi::to_offset (TYPE_SIZE_UNIT (reftype));
4581 offrange[0] += ioff;
4582 offrange[1] += ioff;
4584 /* Compute the more permissive upper bound when IGNORE_OFF_BY_ONE
4585 is set (when taking the address of the one-past-last element
4586 of an array) but always use the stricter bound in diagnostics. */
4587 offset_int ubound = arrbounds[1];
4588 if (ignore_off_by_one)
4589 ubound += 1;
4591 if (offrange[0] >= ubound || offrange[1] < arrbounds[0])
4593 /* Treat a reference to a non-array object as one to an array
4594 of a single element. */
4595 if (TREE_CODE (reftype) != ARRAY_TYPE)
4596 reftype = build_array_type_nelts (reftype, 1);
4598 if (TREE_CODE (ref) == MEM_REF)
4600 /* Extract the element type out of MEM_REF and use its size
4601 to compute the index to print in the diagnostic; arrays
4602 in MEM_REF don't mean anything. */
4603 tree type = TREE_TYPE (ref);
4604 while (TREE_CODE (type) == ARRAY_TYPE)
4605 type = TREE_TYPE (type);
4606 tree size = TYPE_SIZE_UNIT (type);
4607 offrange[0] = offrange[0] / wi::to_offset (size);
4608 offrange[1] = offrange[1] / wi::to_offset (size);
4610 else
4612 /* For anything other than MEM_REF, compute the index to
4613 print in the diagnostic as the offset over element size. */
4614 offrange[0] = offrange[0] / eltsize;
4615 offrange[1] = offrange[1] / eltsize;
4618 bool warned;
4619 if (offrange[0] == offrange[1])
4620 warned = warning_at (location, OPT_Warray_bounds,
4621 "array subscript %wi is outside array bounds "
4622 "of %qT",
4623 offrange[0].to_shwi (), reftype);
4624 else
4625 warned = warning_at (location, OPT_Warray_bounds,
4626 "array subscript [%wi, %wi] is outside "
4627 "array bounds of %qT",
4628 offrange[0].to_shwi (),
4629 offrange[1].to_shwi (), reftype);
4630 if (warned && DECL_P (arg))
4631 inform (DECL_SOURCE_LOCATION (arg), "while referencing %qD", arg);
4633 TREE_NO_WARNING (ref) = 1;
4634 return;
4637 if (warn_array_bounds < 2)
4638 return;
4640 /* At level 2 check also intermediate offsets. */
4641 int i = 0;
4642 if (extrema[i] < -arrbounds[1] || extrema[i = 1] > ubound)
4644 HOST_WIDE_INT tmpidx = extrema[i].to_shwi () / eltsize.to_shwi ();
4646 warning_at (location, OPT_Warray_bounds,
4647 "intermediate array offset %wi is outside array bounds "
4648 "of %qT",
4649 tmpidx, reftype);
4650 TREE_NO_WARNING (ref) = 1;
4654 /* Searches if the expr T, located at LOCATION computes
4655 address of an ARRAY_REF, and call check_array_ref on it. */
4657 void
4658 vrp_prop::search_for_addr_array (tree t, location_t location)
4660 /* Check each ARRAY_REF and MEM_REF in the reference chain. */
4663 if (TREE_CODE (t) == ARRAY_REF)
4664 check_array_ref (location, t, true /*ignore_off_by_one*/);
4665 else if (TREE_CODE (t) == MEM_REF)
4666 check_mem_ref (location, t, true /*ignore_off_by_one*/);
4668 t = TREE_OPERAND (t, 0);
4670 while (handled_component_p (t) || TREE_CODE (t) == MEM_REF);
4672 if (TREE_CODE (t) != MEM_REF
4673 || TREE_CODE (TREE_OPERAND (t, 0)) != ADDR_EXPR
4674 || TREE_NO_WARNING (t))
4675 return;
4677 tree tem = TREE_OPERAND (TREE_OPERAND (t, 0), 0);
4678 tree low_bound, up_bound, el_sz;
4679 if (TREE_CODE (TREE_TYPE (tem)) != ARRAY_TYPE
4680 || TREE_CODE (TREE_TYPE (TREE_TYPE (tem))) == ARRAY_TYPE
4681 || !TYPE_DOMAIN (TREE_TYPE (tem)))
4682 return;
4684 low_bound = TYPE_MIN_VALUE (TYPE_DOMAIN (TREE_TYPE (tem)));
4685 up_bound = TYPE_MAX_VALUE (TYPE_DOMAIN (TREE_TYPE (tem)));
4686 el_sz = TYPE_SIZE_UNIT (TREE_TYPE (TREE_TYPE (tem)));
4687 if (!low_bound
4688 || TREE_CODE (low_bound) != INTEGER_CST
4689 || !up_bound
4690 || TREE_CODE (up_bound) != INTEGER_CST
4691 || !el_sz
4692 || TREE_CODE (el_sz) != INTEGER_CST)
4693 return;
4695 offset_int idx;
4696 if (!mem_ref_offset (t).is_constant (&idx))
4697 return;
4699 bool warned = false;
4700 idx = wi::sdiv_trunc (idx, wi::to_offset (el_sz));
4701 if (idx < 0)
4703 if (dump_file && (dump_flags & TDF_DETAILS))
4705 fprintf (dump_file, "Array bound warning for ");
4706 dump_generic_expr (MSG_NOTE, TDF_SLIM, t);
4707 fprintf (dump_file, "\n");
4709 warned = warning_at (location, OPT_Warray_bounds,
4710 "array subscript %wi is below "
4711 "array bounds of %qT",
4712 idx.to_shwi (), TREE_TYPE (tem));
4714 else if (idx > (wi::to_offset (up_bound)
4715 - wi::to_offset (low_bound) + 1))
4717 if (dump_file && (dump_flags & TDF_DETAILS))
4719 fprintf (dump_file, "Array bound warning for ");
4720 dump_generic_expr (MSG_NOTE, TDF_SLIM, t);
4721 fprintf (dump_file, "\n");
4723 warned = warning_at (location, OPT_Warray_bounds,
4724 "array subscript %wu is above "
4725 "array bounds of %qT",
4726 idx.to_uhwi (), TREE_TYPE (tem));
4729 if (warned)
4731 if (DECL_P (t))
4732 inform (DECL_SOURCE_LOCATION (t), "while referencing %qD", t);
4734 TREE_NO_WARNING (t) = 1;
4738 /* walk_tree() callback that checks if *TP is
4739 an ARRAY_REF inside an ADDR_EXPR (in which an array
4740 subscript one outside the valid range is allowed). Call
4741 check_array_ref for each ARRAY_REF found. The location is
4742 passed in DATA. */
4744 static tree
4745 check_array_bounds (tree *tp, int *walk_subtree, void *data)
4747 tree t = *tp;
4748 struct walk_stmt_info *wi = (struct walk_stmt_info *) data;
4749 location_t location;
4751 if (EXPR_HAS_LOCATION (t))
4752 location = EXPR_LOCATION (t);
4753 else
4754 location = gimple_location (wi->stmt);
4756 *walk_subtree = TRUE;
4758 vrp_prop *vrp_prop = (class vrp_prop *)wi->info;
4759 if (TREE_CODE (t) == ARRAY_REF)
4760 vrp_prop->check_array_ref (location, t, false /*ignore_off_by_one*/);
4761 else if (TREE_CODE (t) == MEM_REF)
4762 vrp_prop->check_mem_ref (location, t, false /*ignore_off_by_one*/);
4763 else if (TREE_CODE (t) == ADDR_EXPR)
4765 vrp_prop->search_for_addr_array (t, location);
4766 *walk_subtree = FALSE;
4769 return NULL_TREE;
4772 /* A dom_walker subclass for use by vrp_prop::check_all_array_refs,
4773 to walk over all statements of all reachable BBs and call
4774 check_array_bounds on them. */
4776 class check_array_bounds_dom_walker : public dom_walker
4778 public:
4779 check_array_bounds_dom_walker (vrp_prop *prop)
4780 : dom_walker (CDI_DOMINATORS,
4781 /* Discover non-executable edges, preserving EDGE_EXECUTABLE
4782 flags, so that we can merge in information on
4783 non-executable edges from vrp_folder . */
4784 REACHABLE_BLOCKS_PRESERVING_FLAGS),
4785 m_prop (prop) {}
4786 ~check_array_bounds_dom_walker () {}
4788 edge before_dom_children (basic_block) FINAL OVERRIDE;
4790 private:
4791 vrp_prop *m_prop;
4794 /* Implementation of dom_walker::before_dom_children.
4796 Walk over all statements of BB and call check_array_bounds on them,
4797 and determine if there's a unique successor edge. */
4799 edge
4800 check_array_bounds_dom_walker::before_dom_children (basic_block bb)
4802 gimple_stmt_iterator si;
4803 for (si = gsi_start_bb (bb); !gsi_end_p (si); gsi_next (&si))
4805 gimple *stmt = gsi_stmt (si);
4806 struct walk_stmt_info wi;
4807 if (!gimple_has_location (stmt)
4808 || is_gimple_debug (stmt))
4809 continue;
4811 memset (&wi, 0, sizeof (wi));
4813 wi.info = m_prop;
4815 walk_gimple_op (stmt, check_array_bounds, &wi);
4818 /* Determine if there's a unique successor edge, and if so, return
4819 that back to dom_walker, ensuring that we don't visit blocks that
4820 became unreachable during the VRP propagation
4821 (PR tree-optimization/83312). */
4822 return find_taken_edge (bb, NULL_TREE);
4825 /* Walk over all statements of all reachable BBs and call check_array_bounds
4826 on them. */
4828 void
4829 vrp_prop::check_all_array_refs ()
4831 check_array_bounds_dom_walker w (this);
4832 w.walk (ENTRY_BLOCK_PTR_FOR_FN (cfun));
4835 /* Return true if all imm uses of VAR are either in STMT, or
4836 feed (optionally through a chain of single imm uses) GIMPLE_COND
4837 in basic block COND_BB. */
4839 static bool
4840 all_imm_uses_in_stmt_or_feed_cond (tree var, gimple *stmt, basic_block cond_bb)
4842 use_operand_p use_p, use2_p;
4843 imm_use_iterator iter;
4845 FOR_EACH_IMM_USE_FAST (use_p, iter, var)
4846 if (USE_STMT (use_p) != stmt)
4848 gimple *use_stmt = USE_STMT (use_p), *use_stmt2;
4849 if (is_gimple_debug (use_stmt))
4850 continue;
4851 while (is_gimple_assign (use_stmt)
4852 && TREE_CODE (gimple_assign_lhs (use_stmt)) == SSA_NAME
4853 && single_imm_use (gimple_assign_lhs (use_stmt),
4854 &use2_p, &use_stmt2))
4855 use_stmt = use_stmt2;
4856 if (gimple_code (use_stmt) != GIMPLE_COND
4857 || gimple_bb (use_stmt) != cond_bb)
4858 return false;
4860 return true;
4863 /* Handle
4864 _4 = x_3 & 31;
4865 if (_4 != 0)
4866 goto <bb 6>;
4867 else
4868 goto <bb 7>;
4869 <bb 6>:
4870 __builtin_unreachable ();
4871 <bb 7>:
4872 x_5 = ASSERT_EXPR <x_3, ...>;
4873 If x_3 has no other immediate uses (checked by caller),
4874 var is the x_3 var from ASSERT_EXPR, we can clear low 5 bits
4875 from the non-zero bitmask. */
4877 void
4878 maybe_set_nonzero_bits (edge e, tree var)
4880 basic_block cond_bb = e->src;
4881 gimple *stmt = last_stmt (cond_bb);
4882 tree cst;
4884 if (stmt == NULL
4885 || gimple_code (stmt) != GIMPLE_COND
4886 || gimple_cond_code (stmt) != ((e->flags & EDGE_TRUE_VALUE)
4887 ? EQ_EXPR : NE_EXPR)
4888 || TREE_CODE (gimple_cond_lhs (stmt)) != SSA_NAME
4889 || !integer_zerop (gimple_cond_rhs (stmt)))
4890 return;
4892 stmt = SSA_NAME_DEF_STMT (gimple_cond_lhs (stmt));
4893 if (!is_gimple_assign (stmt)
4894 || gimple_assign_rhs_code (stmt) != BIT_AND_EXPR
4895 || TREE_CODE (gimple_assign_rhs2 (stmt)) != INTEGER_CST)
4896 return;
4897 if (gimple_assign_rhs1 (stmt) != var)
4899 gimple *stmt2;
4901 if (TREE_CODE (gimple_assign_rhs1 (stmt)) != SSA_NAME)
4902 return;
4903 stmt2 = SSA_NAME_DEF_STMT (gimple_assign_rhs1 (stmt));
4904 if (!gimple_assign_cast_p (stmt2)
4905 || gimple_assign_rhs1 (stmt2) != var
4906 || !CONVERT_EXPR_CODE_P (gimple_assign_rhs_code (stmt2))
4907 || (TYPE_PRECISION (TREE_TYPE (gimple_assign_rhs1 (stmt)))
4908 != TYPE_PRECISION (TREE_TYPE (var))))
4909 return;
4911 cst = gimple_assign_rhs2 (stmt);
4912 set_nonzero_bits (var, wi::bit_and_not (get_nonzero_bits (var),
4913 wi::to_wide (cst)));
4916 /* Convert range assertion expressions into the implied copies and
4917 copy propagate away the copies. Doing the trivial copy propagation
4918 here avoids the need to run the full copy propagation pass after
4919 VRP.
4921 FIXME, this will eventually lead to copy propagation removing the
4922 names that had useful range information attached to them. For
4923 instance, if we had the assertion N_i = ASSERT_EXPR <N_j, N_j > 3>,
4924 then N_i will have the range [3, +INF].
4926 However, by converting the assertion into the implied copy
4927 operation N_i = N_j, we will then copy-propagate N_j into the uses
4928 of N_i and lose the range information. We may want to hold on to
4929 ASSERT_EXPRs a little while longer as the ranges could be used in
4930 things like jump threading.
4932 The problem with keeping ASSERT_EXPRs around is that passes after
4933 VRP need to handle them appropriately.
4935 Another approach would be to make the range information a first
4936 class property of the SSA_NAME so that it can be queried from
4937 any pass. This is made somewhat more complex by the need for
4938 multiple ranges to be associated with one SSA_NAME. */
4940 static void
4941 remove_range_assertions (void)
4943 basic_block bb;
4944 gimple_stmt_iterator si;
4945 /* 1 if looking at ASSERT_EXPRs immediately at the beginning of
4946 a basic block preceeded by GIMPLE_COND branching to it and
4947 __builtin_trap, -1 if not yet checked, 0 otherwise. */
4948 int is_unreachable;
4950 /* Note that the BSI iterator bump happens at the bottom of the
4951 loop and no bump is necessary if we're removing the statement
4952 referenced by the current BSI. */
4953 FOR_EACH_BB_FN (bb, cfun)
4954 for (si = gsi_after_labels (bb), is_unreachable = -1; !gsi_end_p (si);)
4956 gimple *stmt = gsi_stmt (si);
4958 if (is_gimple_assign (stmt)
4959 && gimple_assign_rhs_code (stmt) == ASSERT_EXPR)
4961 tree lhs = gimple_assign_lhs (stmt);
4962 tree rhs = gimple_assign_rhs1 (stmt);
4963 tree var;
4965 var = ASSERT_EXPR_VAR (rhs);
4967 if (TREE_CODE (var) == SSA_NAME
4968 && !POINTER_TYPE_P (TREE_TYPE (lhs))
4969 && SSA_NAME_RANGE_INFO (lhs))
4971 if (is_unreachable == -1)
4973 is_unreachable = 0;
4974 if (single_pred_p (bb)
4975 && assert_unreachable_fallthru_edge_p
4976 (single_pred_edge (bb)))
4977 is_unreachable = 1;
4979 /* Handle
4980 if (x_7 >= 10 && x_7 < 20)
4981 __builtin_unreachable ();
4982 x_8 = ASSERT_EXPR <x_7, ...>;
4983 if the only uses of x_7 are in the ASSERT_EXPR and
4984 in the condition. In that case, we can copy the
4985 range info from x_8 computed in this pass also
4986 for x_7. */
4987 if (is_unreachable
4988 && all_imm_uses_in_stmt_or_feed_cond (var, stmt,
4989 single_pred (bb)))
4991 set_range_info (var, SSA_NAME_RANGE_TYPE (lhs),
4992 SSA_NAME_RANGE_INFO (lhs)->get_min (),
4993 SSA_NAME_RANGE_INFO (lhs)->get_max ());
4994 maybe_set_nonzero_bits (single_pred_edge (bb), var);
4998 /* Propagate the RHS into every use of the LHS. For SSA names
4999 also propagate abnormals as it merely restores the original
5000 IL in this case (an replace_uses_by would assert). */
5001 if (TREE_CODE (var) == SSA_NAME)
5003 imm_use_iterator iter;
5004 use_operand_p use_p;
5005 gimple *use_stmt;
5006 FOR_EACH_IMM_USE_STMT (use_stmt, iter, lhs)
5007 FOR_EACH_IMM_USE_ON_STMT (use_p, iter)
5008 SET_USE (use_p, var);
5010 else
5011 replace_uses_by (lhs, var);
5013 /* And finally, remove the copy, it is not needed. */
5014 gsi_remove (&si, true);
5015 release_defs (stmt);
5017 else
5019 if (!is_gimple_debug (gsi_stmt (si)))
5020 is_unreachable = 0;
5021 gsi_next (&si);
5026 /* Return true if STMT is interesting for VRP. */
5028 bool
5029 stmt_interesting_for_vrp (gimple *stmt)
5031 if (gimple_code (stmt) == GIMPLE_PHI)
5033 tree res = gimple_phi_result (stmt);
5034 return (!virtual_operand_p (res)
5035 && (INTEGRAL_TYPE_P (TREE_TYPE (res))
5036 || POINTER_TYPE_P (TREE_TYPE (res))));
5038 else if (is_gimple_assign (stmt) || is_gimple_call (stmt))
5040 tree lhs = gimple_get_lhs (stmt);
5042 /* In general, assignments with virtual operands are not useful
5043 for deriving ranges, with the obvious exception of calls to
5044 builtin functions. */
5045 if (lhs && TREE_CODE (lhs) == SSA_NAME
5046 && (INTEGRAL_TYPE_P (TREE_TYPE (lhs))
5047 || POINTER_TYPE_P (TREE_TYPE (lhs)))
5048 && (is_gimple_call (stmt)
5049 || !gimple_vuse (stmt)))
5050 return true;
5051 else if (is_gimple_call (stmt) && gimple_call_internal_p (stmt))
5052 switch (gimple_call_internal_fn (stmt))
5054 case IFN_ADD_OVERFLOW:
5055 case IFN_SUB_OVERFLOW:
5056 case IFN_MUL_OVERFLOW:
5057 case IFN_ATOMIC_COMPARE_EXCHANGE:
5058 /* These internal calls return _Complex integer type,
5059 but are interesting to VRP nevertheless. */
5060 if (lhs && TREE_CODE (lhs) == SSA_NAME)
5061 return true;
5062 break;
5063 default:
5064 break;
5067 else if (gimple_code (stmt) == GIMPLE_COND
5068 || gimple_code (stmt) == GIMPLE_SWITCH)
5069 return true;
5071 return false;
5074 /* Initialization required by ssa_propagate engine. */
5076 void
5077 vrp_prop::vrp_initialize ()
5079 basic_block bb;
5081 FOR_EACH_BB_FN (bb, cfun)
5083 for (gphi_iterator si = gsi_start_phis (bb); !gsi_end_p (si);
5084 gsi_next (&si))
5086 gphi *phi = si.phi ();
5087 if (!stmt_interesting_for_vrp (phi))
5089 tree lhs = PHI_RESULT (phi);
5090 set_value_range_to_varying (get_value_range (lhs));
5091 prop_set_simulate_again (phi, false);
5093 else
5094 prop_set_simulate_again (phi, true);
5097 for (gimple_stmt_iterator si = gsi_start_bb (bb); !gsi_end_p (si);
5098 gsi_next (&si))
5100 gimple *stmt = gsi_stmt (si);
5102 /* If the statement is a control insn, then we do not
5103 want to avoid simulating the statement once. Failure
5104 to do so means that those edges will never get added. */
5105 if (stmt_ends_bb_p (stmt))
5106 prop_set_simulate_again (stmt, true);
5107 else if (!stmt_interesting_for_vrp (stmt))
5109 set_defs_to_varying (stmt);
5110 prop_set_simulate_again (stmt, false);
5112 else
5113 prop_set_simulate_again (stmt, true);
5118 /* Searches the case label vector VEC for the index *IDX of the CASE_LABEL
5119 that includes the value VAL. The search is restricted to the range
5120 [START_IDX, n - 1] where n is the size of VEC.
5122 If there is a CASE_LABEL for VAL, its index is placed in IDX and true is
5123 returned.
5125 If there is no CASE_LABEL for VAL and there is one that is larger than VAL,
5126 it is placed in IDX and false is returned.
5128 If VAL is larger than any CASE_LABEL, n is placed on IDX and false is
5129 returned. */
5131 bool
5132 find_case_label_index (gswitch *stmt, size_t start_idx, tree val, size_t *idx)
5134 size_t n = gimple_switch_num_labels (stmt);
5135 size_t low, high;
5137 /* Find case label for minimum of the value range or the next one.
5138 At each iteration we are searching in [low, high - 1]. */
5140 for (low = start_idx, high = n; high != low; )
5142 tree t;
5143 int cmp;
5144 /* Note that i != high, so we never ask for n. */
5145 size_t i = (high + low) / 2;
5146 t = gimple_switch_label (stmt, i);
5148 /* Cache the result of comparing CASE_LOW and val. */
5149 cmp = tree_int_cst_compare (CASE_LOW (t), val);
5151 if (cmp == 0)
5153 /* Ranges cannot be empty. */
5154 *idx = i;
5155 return true;
5157 else if (cmp > 0)
5158 high = i;
5159 else
5161 low = i + 1;
5162 if (CASE_HIGH (t) != NULL
5163 && tree_int_cst_compare (CASE_HIGH (t), val) >= 0)
5165 *idx = i;
5166 return true;
5171 *idx = high;
5172 return false;
5175 /* Searches the case label vector VEC for the range of CASE_LABELs that is used
5176 for values between MIN and MAX. The first index is placed in MIN_IDX. The
5177 last index is placed in MAX_IDX. If the range of CASE_LABELs is empty
5178 then MAX_IDX < MIN_IDX.
5179 Returns true if the default label is not needed. */
5181 bool
5182 find_case_label_range (gswitch *stmt, tree min, tree max, size_t *min_idx,
5183 size_t *max_idx)
5185 size_t i, j;
5186 bool min_take_default = !find_case_label_index (stmt, 1, min, &i);
5187 bool max_take_default = !find_case_label_index (stmt, i, max, &j);
5189 if (i == j
5190 && min_take_default
5191 && max_take_default)
5193 /* Only the default case label reached.
5194 Return an empty range. */
5195 *min_idx = 1;
5196 *max_idx = 0;
5197 return false;
5199 else
5201 bool take_default = min_take_default || max_take_default;
5202 tree low, high;
5203 size_t k;
5205 if (max_take_default)
5206 j--;
5208 /* If the case label range is continuous, we do not need
5209 the default case label. Verify that. */
5210 high = CASE_LOW (gimple_switch_label (stmt, i));
5211 if (CASE_HIGH (gimple_switch_label (stmt, i)))
5212 high = CASE_HIGH (gimple_switch_label (stmt, i));
5213 for (k = i + 1; k <= j; ++k)
5215 low = CASE_LOW (gimple_switch_label (stmt, k));
5216 if (!integer_onep (int_const_binop (MINUS_EXPR, low, high)))
5218 take_default = true;
5219 break;
5221 high = low;
5222 if (CASE_HIGH (gimple_switch_label (stmt, k)))
5223 high = CASE_HIGH (gimple_switch_label (stmt, k));
5226 *min_idx = i;
5227 *max_idx = j;
5228 return !take_default;
5232 /* Evaluate statement STMT. If the statement produces a useful range,
5233 return SSA_PROP_INTERESTING and record the SSA name with the
5234 interesting range into *OUTPUT_P.
5236 If STMT is a conditional branch and we can determine its truth
5237 value, the taken edge is recorded in *TAKEN_EDGE_P.
5239 If STMT produces a varying value, return SSA_PROP_VARYING. */
5241 enum ssa_prop_result
5242 vrp_prop::visit_stmt (gimple *stmt, edge *taken_edge_p, tree *output_p)
5244 tree lhs = gimple_get_lhs (stmt);
5245 value_range vr;
5246 extract_range_from_stmt (stmt, taken_edge_p, output_p, &vr);
5248 if (*output_p)
5250 if (update_value_range (*output_p, &vr))
5252 if (dump_file && (dump_flags & TDF_DETAILS))
5254 fprintf (dump_file, "Found new range for ");
5255 print_generic_expr (dump_file, *output_p);
5256 fprintf (dump_file, ": ");
5257 dump_value_range (dump_file, &vr);
5258 fprintf (dump_file, "\n");
5261 if (vr.varying_p ())
5262 return SSA_PROP_VARYING;
5264 return SSA_PROP_INTERESTING;
5266 return SSA_PROP_NOT_INTERESTING;
5269 if (is_gimple_call (stmt) && gimple_call_internal_p (stmt))
5270 switch (gimple_call_internal_fn (stmt))
5272 case IFN_ADD_OVERFLOW:
5273 case IFN_SUB_OVERFLOW:
5274 case IFN_MUL_OVERFLOW:
5275 case IFN_ATOMIC_COMPARE_EXCHANGE:
5276 /* These internal calls return _Complex integer type,
5277 which VRP does not track, but the immediate uses
5278 thereof might be interesting. */
5279 if (lhs && TREE_CODE (lhs) == SSA_NAME)
5281 imm_use_iterator iter;
5282 use_operand_p use_p;
5283 enum ssa_prop_result res = SSA_PROP_VARYING;
5285 set_value_range_to_varying (get_value_range (lhs));
5287 FOR_EACH_IMM_USE_FAST (use_p, iter, lhs)
5289 gimple *use_stmt = USE_STMT (use_p);
5290 if (!is_gimple_assign (use_stmt))
5291 continue;
5292 enum tree_code rhs_code = gimple_assign_rhs_code (use_stmt);
5293 if (rhs_code != REALPART_EXPR && rhs_code != IMAGPART_EXPR)
5294 continue;
5295 tree rhs1 = gimple_assign_rhs1 (use_stmt);
5296 tree use_lhs = gimple_assign_lhs (use_stmt);
5297 if (TREE_CODE (rhs1) != rhs_code
5298 || TREE_OPERAND (rhs1, 0) != lhs
5299 || TREE_CODE (use_lhs) != SSA_NAME
5300 || !stmt_interesting_for_vrp (use_stmt)
5301 || (!INTEGRAL_TYPE_P (TREE_TYPE (use_lhs))
5302 || !TYPE_MIN_VALUE (TREE_TYPE (use_lhs))
5303 || !TYPE_MAX_VALUE (TREE_TYPE (use_lhs))))
5304 continue;
5306 /* If there is a change in the value range for any of the
5307 REALPART_EXPR/IMAGPART_EXPR immediate uses, return
5308 SSA_PROP_INTERESTING. If there are any REALPART_EXPR
5309 or IMAGPART_EXPR immediate uses, but none of them have
5310 a change in their value ranges, return
5311 SSA_PROP_NOT_INTERESTING. If there are no
5312 {REAL,IMAG}PART_EXPR uses at all,
5313 return SSA_PROP_VARYING. */
5314 value_range new_vr;
5315 extract_range_basic (&new_vr, use_stmt);
5316 const value_range *old_vr = get_value_range (use_lhs);
5317 if (*old_vr != new_vr)
5318 res = SSA_PROP_INTERESTING;
5319 else
5320 res = SSA_PROP_NOT_INTERESTING;
5321 new_vr.equiv_clear ();
5322 if (res == SSA_PROP_INTERESTING)
5324 *output_p = lhs;
5325 return res;
5329 return res;
5331 break;
5332 default:
5333 break;
5336 /* All other statements produce nothing of interest for VRP, so mark
5337 their outputs varying and prevent further simulation. */
5338 set_defs_to_varying (stmt);
5340 return (*taken_edge_p) ? SSA_PROP_INTERESTING : SSA_PROP_VARYING;
5343 /* Union the two value-ranges { *VR0TYPE, *VR0MIN, *VR0MAX } and
5344 { VR1TYPE, VR0MIN, VR0MAX } and store the result
5345 in { *VR0TYPE, *VR0MIN, *VR0MAX }. This may not be the smallest
5346 possible such range. The resulting range is not canonicalized. */
5348 static void
5349 union_ranges (enum value_range_kind *vr0type,
5350 tree *vr0min, tree *vr0max,
5351 enum value_range_kind vr1type,
5352 tree vr1min, tree vr1max)
5354 bool mineq = vrp_operand_equal_p (*vr0min, vr1min);
5355 bool maxeq = vrp_operand_equal_p (*vr0max, vr1max);
5357 /* [] is vr0, () is vr1 in the following classification comments. */
5358 if (mineq && maxeq)
5360 /* [( )] */
5361 if (*vr0type == vr1type)
5362 /* Nothing to do for equal ranges. */
5364 else if ((*vr0type == VR_RANGE
5365 && vr1type == VR_ANTI_RANGE)
5366 || (*vr0type == VR_ANTI_RANGE
5367 && vr1type == VR_RANGE))
5369 /* For anti-range with range union the result is varying. */
5370 goto give_up;
5372 else
5373 gcc_unreachable ();
5375 else if (operand_less_p (*vr0max, vr1min) == 1
5376 || operand_less_p (vr1max, *vr0min) == 1)
5378 /* [ ] ( ) or ( ) [ ]
5379 If the ranges have an empty intersection, result of the union
5380 operation is the anti-range or if both are anti-ranges
5381 it covers all. */
5382 if (*vr0type == VR_ANTI_RANGE
5383 && vr1type == VR_ANTI_RANGE)
5384 goto give_up;
5385 else if (*vr0type == VR_ANTI_RANGE
5386 && vr1type == VR_RANGE)
5388 else if (*vr0type == VR_RANGE
5389 && vr1type == VR_ANTI_RANGE)
5391 *vr0type = vr1type;
5392 *vr0min = vr1min;
5393 *vr0max = vr1max;
5395 else if (*vr0type == VR_RANGE
5396 && vr1type == VR_RANGE)
5398 /* The result is the convex hull of both ranges. */
5399 if (operand_less_p (*vr0max, vr1min) == 1)
5401 /* If the result can be an anti-range, create one. */
5402 if (TREE_CODE (*vr0max) == INTEGER_CST
5403 && TREE_CODE (vr1min) == INTEGER_CST
5404 && vrp_val_is_min (*vr0min)
5405 && vrp_val_is_max (vr1max))
5407 tree min = int_const_binop (PLUS_EXPR,
5408 *vr0max,
5409 build_int_cst (TREE_TYPE (*vr0max), 1));
5410 tree max = int_const_binop (MINUS_EXPR,
5411 vr1min,
5412 build_int_cst (TREE_TYPE (vr1min), 1));
5413 if (!operand_less_p (max, min))
5415 *vr0type = VR_ANTI_RANGE;
5416 *vr0min = min;
5417 *vr0max = max;
5419 else
5420 *vr0max = vr1max;
5422 else
5423 *vr0max = vr1max;
5425 else
5427 /* If the result can be an anti-range, create one. */
5428 if (TREE_CODE (vr1max) == INTEGER_CST
5429 && TREE_CODE (*vr0min) == INTEGER_CST
5430 && vrp_val_is_min (vr1min)
5431 && vrp_val_is_max (*vr0max))
5433 tree min = int_const_binop (PLUS_EXPR,
5434 vr1max,
5435 build_int_cst (TREE_TYPE (vr1max), 1));
5436 tree max = int_const_binop (MINUS_EXPR,
5437 *vr0min,
5438 build_int_cst (TREE_TYPE (*vr0min), 1));
5439 if (!operand_less_p (max, min))
5441 *vr0type = VR_ANTI_RANGE;
5442 *vr0min = min;
5443 *vr0max = max;
5445 else
5446 *vr0min = vr1min;
5448 else
5449 *vr0min = vr1min;
5452 else
5453 gcc_unreachable ();
5455 else if ((maxeq || operand_less_p (vr1max, *vr0max) == 1)
5456 && (mineq || operand_less_p (*vr0min, vr1min) == 1))
5458 /* [ ( ) ] or [( ) ] or [ ( )] */
5459 if (*vr0type == VR_RANGE
5460 && vr1type == VR_RANGE)
5462 else if (*vr0type == VR_ANTI_RANGE
5463 && vr1type == VR_ANTI_RANGE)
5465 *vr0type = vr1type;
5466 *vr0min = vr1min;
5467 *vr0max = vr1max;
5469 else if (*vr0type == VR_ANTI_RANGE
5470 && vr1type == VR_RANGE)
5472 /* Arbitrarily choose the right or left gap. */
5473 if (!mineq && TREE_CODE (vr1min) == INTEGER_CST)
5474 *vr0max = int_const_binop (MINUS_EXPR, vr1min,
5475 build_int_cst (TREE_TYPE (vr1min), 1));
5476 else if (!maxeq && TREE_CODE (vr1max) == INTEGER_CST)
5477 *vr0min = int_const_binop (PLUS_EXPR, vr1max,
5478 build_int_cst (TREE_TYPE (vr1max), 1));
5479 else
5480 goto give_up;
5482 else if (*vr0type == VR_RANGE
5483 && vr1type == VR_ANTI_RANGE)
5484 /* The result covers everything. */
5485 goto give_up;
5486 else
5487 gcc_unreachable ();
5489 else if ((maxeq || operand_less_p (*vr0max, vr1max) == 1)
5490 && (mineq || operand_less_p (vr1min, *vr0min) == 1))
5492 /* ( [ ] ) or ([ ] ) or ( [ ]) */
5493 if (*vr0type == VR_RANGE
5494 && vr1type == VR_RANGE)
5496 *vr0type = vr1type;
5497 *vr0min = vr1min;
5498 *vr0max = vr1max;
5500 else if (*vr0type == VR_ANTI_RANGE
5501 && vr1type == VR_ANTI_RANGE)
5503 else if (*vr0type == VR_RANGE
5504 && vr1type == VR_ANTI_RANGE)
5506 *vr0type = VR_ANTI_RANGE;
5507 if (!mineq && TREE_CODE (*vr0min) == INTEGER_CST)
5509 *vr0max = int_const_binop (MINUS_EXPR, *vr0min,
5510 build_int_cst (TREE_TYPE (*vr0min), 1));
5511 *vr0min = vr1min;
5513 else if (!maxeq && TREE_CODE (*vr0max) == INTEGER_CST)
5515 *vr0min = int_const_binop (PLUS_EXPR, *vr0max,
5516 build_int_cst (TREE_TYPE (*vr0max), 1));
5517 *vr0max = vr1max;
5519 else
5520 goto give_up;
5522 else if (*vr0type == VR_ANTI_RANGE
5523 && vr1type == VR_RANGE)
5524 /* The result covers everything. */
5525 goto give_up;
5526 else
5527 gcc_unreachable ();
5529 else if ((operand_less_p (vr1min, *vr0max) == 1
5530 || operand_equal_p (vr1min, *vr0max, 0))
5531 && operand_less_p (*vr0min, vr1min) == 1
5532 && operand_less_p (*vr0max, vr1max) == 1)
5534 /* [ ( ] ) or [ ]( ) */
5535 if (*vr0type == VR_RANGE
5536 && vr1type == VR_RANGE)
5537 *vr0max = vr1max;
5538 else if (*vr0type == VR_ANTI_RANGE
5539 && vr1type == VR_ANTI_RANGE)
5540 *vr0min = vr1min;
5541 else if (*vr0type == VR_ANTI_RANGE
5542 && vr1type == VR_RANGE)
5544 if (TREE_CODE (vr1min) == INTEGER_CST)
5545 *vr0max = int_const_binop (MINUS_EXPR, vr1min,
5546 build_int_cst (TREE_TYPE (vr1min), 1));
5547 else
5548 goto give_up;
5550 else if (*vr0type == VR_RANGE
5551 && vr1type == VR_ANTI_RANGE)
5553 if (TREE_CODE (*vr0max) == INTEGER_CST)
5555 *vr0type = vr1type;
5556 *vr0min = int_const_binop (PLUS_EXPR, *vr0max,
5557 build_int_cst (TREE_TYPE (*vr0max), 1));
5558 *vr0max = vr1max;
5560 else
5561 goto give_up;
5563 else
5564 gcc_unreachable ();
5566 else if ((operand_less_p (*vr0min, vr1max) == 1
5567 || operand_equal_p (*vr0min, vr1max, 0))
5568 && operand_less_p (vr1min, *vr0min) == 1
5569 && operand_less_p (vr1max, *vr0max) == 1)
5571 /* ( [ ) ] or ( )[ ] */
5572 if (*vr0type == VR_RANGE
5573 && vr1type == VR_RANGE)
5574 *vr0min = vr1min;
5575 else if (*vr0type == VR_ANTI_RANGE
5576 && vr1type == VR_ANTI_RANGE)
5577 *vr0max = vr1max;
5578 else if (*vr0type == VR_ANTI_RANGE
5579 && vr1type == VR_RANGE)
5581 if (TREE_CODE (vr1max) == INTEGER_CST)
5582 *vr0min = int_const_binop (PLUS_EXPR, vr1max,
5583 build_int_cst (TREE_TYPE (vr1max), 1));
5584 else
5585 goto give_up;
5587 else if (*vr0type == VR_RANGE
5588 && vr1type == VR_ANTI_RANGE)
5590 if (TREE_CODE (*vr0min) == INTEGER_CST)
5592 *vr0type = vr1type;
5593 *vr0max = int_const_binop (MINUS_EXPR, *vr0min,
5594 build_int_cst (TREE_TYPE (*vr0min), 1));
5595 *vr0min = vr1min;
5597 else
5598 goto give_up;
5600 else
5601 gcc_unreachable ();
5603 else
5604 goto give_up;
5606 return;
5608 give_up:
5609 *vr0type = VR_VARYING;
5610 *vr0min = NULL_TREE;
5611 *vr0max = NULL_TREE;
5614 /* Intersect the two value-ranges { *VR0TYPE, *VR0MIN, *VR0MAX } and
5615 { VR1TYPE, VR0MIN, VR0MAX } and store the result
5616 in { *VR0TYPE, *VR0MIN, *VR0MAX }. This may not be the smallest
5617 possible such range. The resulting range is not canonicalized. */
5619 static void
5620 intersect_ranges (enum value_range_kind *vr0type,
5621 tree *vr0min, tree *vr0max,
5622 enum value_range_kind vr1type,
5623 tree vr1min, tree vr1max)
5625 bool mineq = vrp_operand_equal_p (*vr0min, vr1min);
5626 bool maxeq = vrp_operand_equal_p (*vr0max, vr1max);
5628 /* [] is vr0, () is vr1 in the following classification comments. */
5629 if (mineq && maxeq)
5631 /* [( )] */
5632 if (*vr0type == vr1type)
5633 /* Nothing to do for equal ranges. */
5635 else if ((*vr0type == VR_RANGE
5636 && vr1type == VR_ANTI_RANGE)
5637 || (*vr0type == VR_ANTI_RANGE
5638 && vr1type == VR_RANGE))
5640 /* For anti-range with range intersection the result is empty. */
5641 *vr0type = VR_UNDEFINED;
5642 *vr0min = NULL_TREE;
5643 *vr0max = NULL_TREE;
5645 else
5646 gcc_unreachable ();
5648 else if (operand_less_p (*vr0max, vr1min) == 1
5649 || operand_less_p (vr1max, *vr0min) == 1)
5651 /* [ ] ( ) or ( ) [ ]
5652 If the ranges have an empty intersection, the result of the
5653 intersect operation is the range for intersecting an
5654 anti-range with a range or empty when intersecting two ranges. */
5655 if (*vr0type == VR_RANGE
5656 && vr1type == VR_ANTI_RANGE)
5658 else if (*vr0type == VR_ANTI_RANGE
5659 && vr1type == VR_RANGE)
5661 *vr0type = vr1type;
5662 *vr0min = vr1min;
5663 *vr0max = vr1max;
5665 else if (*vr0type == VR_RANGE
5666 && vr1type == VR_RANGE)
5668 *vr0type = VR_UNDEFINED;
5669 *vr0min = NULL_TREE;
5670 *vr0max = NULL_TREE;
5672 else if (*vr0type == VR_ANTI_RANGE
5673 && vr1type == VR_ANTI_RANGE)
5675 /* If the anti-ranges are adjacent to each other merge them. */
5676 if (TREE_CODE (*vr0max) == INTEGER_CST
5677 && TREE_CODE (vr1min) == INTEGER_CST
5678 && operand_less_p (*vr0max, vr1min) == 1
5679 && integer_onep (int_const_binop (MINUS_EXPR,
5680 vr1min, *vr0max)))
5681 *vr0max = vr1max;
5682 else if (TREE_CODE (vr1max) == INTEGER_CST
5683 && TREE_CODE (*vr0min) == INTEGER_CST
5684 && operand_less_p (vr1max, *vr0min) == 1
5685 && integer_onep (int_const_binop (MINUS_EXPR,
5686 *vr0min, vr1max)))
5687 *vr0min = vr1min;
5688 /* Else arbitrarily take VR0. */
5691 else if ((maxeq || operand_less_p (vr1max, *vr0max) == 1)
5692 && (mineq || operand_less_p (*vr0min, vr1min) == 1))
5694 /* [ ( ) ] or [( ) ] or [ ( )] */
5695 if (*vr0type == VR_RANGE
5696 && vr1type == VR_RANGE)
5698 /* If both are ranges the result is the inner one. */
5699 *vr0type = vr1type;
5700 *vr0min = vr1min;
5701 *vr0max = vr1max;
5703 else if (*vr0type == VR_RANGE
5704 && vr1type == VR_ANTI_RANGE)
5706 /* Choose the right gap if the left one is empty. */
5707 if (mineq)
5709 if (TREE_CODE (vr1max) != INTEGER_CST)
5710 *vr0min = vr1max;
5711 else if (TYPE_PRECISION (TREE_TYPE (vr1max)) == 1
5712 && !TYPE_UNSIGNED (TREE_TYPE (vr1max)))
5713 *vr0min
5714 = int_const_binop (MINUS_EXPR, vr1max,
5715 build_int_cst (TREE_TYPE (vr1max), -1));
5716 else
5717 *vr0min
5718 = int_const_binop (PLUS_EXPR, vr1max,
5719 build_int_cst (TREE_TYPE (vr1max), 1));
5721 /* Choose the left gap if the right one is empty. */
5722 else if (maxeq)
5724 if (TREE_CODE (vr1min) != INTEGER_CST)
5725 *vr0max = vr1min;
5726 else if (TYPE_PRECISION (TREE_TYPE (vr1min)) == 1
5727 && !TYPE_UNSIGNED (TREE_TYPE (vr1min)))
5728 *vr0max
5729 = int_const_binop (PLUS_EXPR, vr1min,
5730 build_int_cst (TREE_TYPE (vr1min), -1));
5731 else
5732 *vr0max
5733 = int_const_binop (MINUS_EXPR, vr1min,
5734 build_int_cst (TREE_TYPE (vr1min), 1));
5736 /* Choose the anti-range if the range is effectively varying. */
5737 else if (vrp_val_is_min (*vr0min)
5738 && vrp_val_is_max (*vr0max))
5740 *vr0type = vr1type;
5741 *vr0min = vr1min;
5742 *vr0max = vr1max;
5744 /* Else choose the range. */
5746 else if (*vr0type == VR_ANTI_RANGE
5747 && vr1type == VR_ANTI_RANGE)
5748 /* If both are anti-ranges the result is the outer one. */
5750 else if (*vr0type == VR_ANTI_RANGE
5751 && vr1type == VR_RANGE)
5753 /* The intersection is empty. */
5754 *vr0type = VR_UNDEFINED;
5755 *vr0min = NULL_TREE;
5756 *vr0max = NULL_TREE;
5758 else
5759 gcc_unreachable ();
5761 else if ((maxeq || operand_less_p (*vr0max, vr1max) == 1)
5762 && (mineq || operand_less_p (vr1min, *vr0min) == 1))
5764 /* ( [ ] ) or ([ ] ) or ( [ ]) */
5765 if (*vr0type == VR_RANGE
5766 && vr1type == VR_RANGE)
5767 /* Choose the inner range. */
5769 else if (*vr0type == VR_ANTI_RANGE
5770 && vr1type == VR_RANGE)
5772 /* Choose the right gap if the left is empty. */
5773 if (mineq)
5775 *vr0type = VR_RANGE;
5776 if (TREE_CODE (*vr0max) != INTEGER_CST)
5777 *vr0min = *vr0max;
5778 else if (TYPE_PRECISION (TREE_TYPE (*vr0max)) == 1
5779 && !TYPE_UNSIGNED (TREE_TYPE (*vr0max)))
5780 *vr0min
5781 = int_const_binop (MINUS_EXPR, *vr0max,
5782 build_int_cst (TREE_TYPE (*vr0max), -1));
5783 else
5784 *vr0min
5785 = int_const_binop (PLUS_EXPR, *vr0max,
5786 build_int_cst (TREE_TYPE (*vr0max), 1));
5787 *vr0max = vr1max;
5789 /* Choose the left gap if the right is empty. */
5790 else if (maxeq)
5792 *vr0type = VR_RANGE;
5793 if (TREE_CODE (*vr0min) != INTEGER_CST)
5794 *vr0max = *vr0min;
5795 else if (TYPE_PRECISION (TREE_TYPE (*vr0min)) == 1
5796 && !TYPE_UNSIGNED (TREE_TYPE (*vr0min)))
5797 *vr0max
5798 = int_const_binop (PLUS_EXPR, *vr0min,
5799 build_int_cst (TREE_TYPE (*vr0min), -1));
5800 else
5801 *vr0max
5802 = int_const_binop (MINUS_EXPR, *vr0min,
5803 build_int_cst (TREE_TYPE (*vr0min), 1));
5804 *vr0min = vr1min;
5806 /* Choose the anti-range if the range is effectively varying. */
5807 else if (vrp_val_is_min (vr1min)
5808 && vrp_val_is_max (vr1max))
5810 /* Choose the anti-range if it is ~[0,0], that range is special
5811 enough to special case when vr1's range is relatively wide.
5812 At least for types bigger than int - this covers pointers
5813 and arguments to functions like ctz. */
5814 else if (*vr0min == *vr0max
5815 && integer_zerop (*vr0min)
5816 && ((TYPE_PRECISION (TREE_TYPE (*vr0min))
5817 >= TYPE_PRECISION (integer_type_node))
5818 || POINTER_TYPE_P (TREE_TYPE (*vr0min)))
5819 && TREE_CODE (vr1max) == INTEGER_CST
5820 && TREE_CODE (vr1min) == INTEGER_CST
5821 && (wi::clz (wi::to_wide (vr1max) - wi::to_wide (vr1min))
5822 < TYPE_PRECISION (TREE_TYPE (*vr0min)) / 2))
5824 /* Else choose the range. */
5825 else
5827 *vr0type = vr1type;
5828 *vr0min = vr1min;
5829 *vr0max = vr1max;
5832 else if (*vr0type == VR_ANTI_RANGE
5833 && vr1type == VR_ANTI_RANGE)
5835 /* If both are anti-ranges the result is the outer one. */
5836 *vr0type = vr1type;
5837 *vr0min = vr1min;
5838 *vr0max = vr1max;
5840 else if (vr1type == VR_ANTI_RANGE
5841 && *vr0type == VR_RANGE)
5843 /* The intersection is empty. */
5844 *vr0type = VR_UNDEFINED;
5845 *vr0min = NULL_TREE;
5846 *vr0max = NULL_TREE;
5848 else
5849 gcc_unreachable ();
5851 else if ((operand_less_p (vr1min, *vr0max) == 1
5852 || operand_equal_p (vr1min, *vr0max, 0))
5853 && operand_less_p (*vr0min, vr1min) == 1)
5855 /* [ ( ] ) or [ ]( ) */
5856 if (*vr0type == VR_ANTI_RANGE
5857 && vr1type == VR_ANTI_RANGE)
5858 *vr0max = vr1max;
5859 else if (*vr0type == VR_RANGE
5860 && vr1type == VR_RANGE)
5861 *vr0min = vr1min;
5862 else if (*vr0type == VR_RANGE
5863 && vr1type == VR_ANTI_RANGE)
5865 if (TREE_CODE (vr1min) == INTEGER_CST)
5866 *vr0max = int_const_binop (MINUS_EXPR, vr1min,
5867 build_int_cst (TREE_TYPE (vr1min), 1));
5868 else
5869 *vr0max = vr1min;
5871 else if (*vr0type == VR_ANTI_RANGE
5872 && vr1type == VR_RANGE)
5874 *vr0type = VR_RANGE;
5875 if (TREE_CODE (*vr0max) == INTEGER_CST)
5876 *vr0min = int_const_binop (PLUS_EXPR, *vr0max,
5877 build_int_cst (TREE_TYPE (*vr0max), 1));
5878 else
5879 *vr0min = *vr0max;
5880 *vr0max = vr1max;
5882 else
5883 gcc_unreachable ();
5885 else if ((operand_less_p (*vr0min, vr1max) == 1
5886 || operand_equal_p (*vr0min, vr1max, 0))
5887 && operand_less_p (vr1min, *vr0min) == 1)
5889 /* ( [ ) ] or ( )[ ] */
5890 if (*vr0type == VR_ANTI_RANGE
5891 && vr1type == VR_ANTI_RANGE)
5892 *vr0min = vr1min;
5893 else if (*vr0type == VR_RANGE
5894 && vr1type == VR_RANGE)
5895 *vr0max = vr1max;
5896 else if (*vr0type == VR_RANGE
5897 && vr1type == VR_ANTI_RANGE)
5899 if (TREE_CODE (vr1max) == INTEGER_CST)
5900 *vr0min = int_const_binop (PLUS_EXPR, vr1max,
5901 build_int_cst (TREE_TYPE (vr1max), 1));
5902 else
5903 *vr0min = vr1max;
5905 else if (*vr0type == VR_ANTI_RANGE
5906 && vr1type == VR_RANGE)
5908 *vr0type = VR_RANGE;
5909 if (TREE_CODE (*vr0min) == INTEGER_CST)
5910 *vr0max = int_const_binop (MINUS_EXPR, *vr0min,
5911 build_int_cst (TREE_TYPE (*vr0min), 1));
5912 else
5913 *vr0max = *vr0min;
5914 *vr0min = vr1min;
5916 else
5917 gcc_unreachable ();
5920 /* As a fallback simply use { *VRTYPE, *VR0MIN, *VR0MAX } as
5921 result for the intersection. That's always a conservative
5922 correct estimate unless VR1 is a constant singleton range
5923 in which case we choose that. */
5924 if (vr1type == VR_RANGE
5925 && is_gimple_min_invariant (vr1min)
5926 && vrp_operand_equal_p (vr1min, vr1max))
5928 *vr0type = vr1type;
5929 *vr0min = vr1min;
5930 *vr0max = vr1max;
5935 /* Intersect the two value-ranges *VR0 and *VR1 and store the result
5936 in *VR0. This may not be the smallest possible such range. */
5938 void
5939 value_range::intersect_helper (value_range *vr0, const value_range *vr1)
5941 /* If either range is VR_VARYING the other one wins. */
5942 if (vr1->varying_p ())
5943 return;
5944 if (vr0->varying_p ())
5946 vr0->deep_copy (vr1);
5947 return;
5950 /* When either range is VR_UNDEFINED the resulting range is
5951 VR_UNDEFINED, too. */
5952 if (vr0->undefined_p ())
5953 return;
5954 if (vr1->undefined_p ())
5956 set_value_range_to_undefined (vr0);
5957 return;
5960 /* Save the original vr0 so we can return it as conservative intersection
5961 result when our worker turns things to varying. */
5962 value_range saved (*vr0);
5964 value_range_kind vr0type = vr0->kind ();
5965 tree vr0min = vr0->min ();
5966 tree vr0max = vr0->max ();
5967 intersect_ranges (&vr0type, &vr0min, &vr0max,
5968 vr1->kind (), vr1->min (), vr1->max ());
5969 /* Make sure to canonicalize the result though as the inversion of a
5970 VR_RANGE can still be a VR_RANGE. */
5971 vr0->set_and_canonicalize (vr0type, vr0min, vr0max, vr0->m_equiv);
5972 /* If that failed, use the saved original VR0. */
5973 if (vr0->varying_p ())
5975 *vr0 = saved;
5976 return;
5978 /* If the result is VR_UNDEFINED there is no need to mess with
5979 the equivalencies. */
5980 if (vr0->undefined_p ())
5981 return;
5983 /* The resulting set of equivalences for range intersection is the union of
5984 the two sets. */
5985 if (vr0->m_equiv && vr1->m_equiv && vr0->m_equiv != vr1->m_equiv)
5986 bitmap_ior_into (vr0->m_equiv, vr1->m_equiv);
5987 else if (vr1->m_equiv && !vr0->m_equiv)
5989 /* All equivalence bitmaps are allocated from the same obstack. So
5990 we can use the obstack associated with VR to allocate vr0->equiv. */
5991 vr0->m_equiv = BITMAP_ALLOC (vr1->m_equiv->obstack);
5992 bitmap_copy (m_equiv, vr1->m_equiv);
5996 void
5997 value_range::intersect (const value_range *other)
5999 if (dump_file && (dump_flags & TDF_DETAILS))
6001 fprintf (dump_file, "Intersecting\n ");
6002 dump_value_range (dump_file, this);
6003 fprintf (dump_file, "\nand\n ");
6004 dump_value_range (dump_file, other);
6005 fprintf (dump_file, "\n");
6007 intersect_helper (this, other);
6008 if (dump_file && (dump_flags & TDF_DETAILS))
6010 fprintf (dump_file, "to\n ");
6011 dump_value_range (dump_file, this);
6012 fprintf (dump_file, "\n");
6016 /* Meet operation for value ranges. Given two value ranges VR0 and
6017 VR1, store in VR0 a range that contains both VR0 and VR1. This
6018 may not be the smallest possible such range. */
6020 void
6021 value_range::union_helper (value_range *vr0, const value_range *vr1)
6023 if (vr1->undefined_p ())
6025 /* VR0 already has the resulting range. */
6026 return;
6029 if (vr0->undefined_p ())
6031 vr0->deep_copy (vr1);
6032 return;
6035 if (vr0->varying_p ())
6037 /* Nothing to do. VR0 already has the resulting range. */
6038 return;
6041 if (vr1->varying_p ())
6043 set_value_range_to_varying (vr0);
6044 return;
6047 value_range saved (*vr0);
6048 value_range_kind vr0type = vr0->kind ();
6049 tree vr0min = vr0->min ();
6050 tree vr0max = vr0->max ();
6051 union_ranges (&vr0type, &vr0min, &vr0max,
6052 vr1->kind (), vr1->min (), vr1->max ());
6053 *vr0 = value_range (vr0type, vr0min, vr0max);
6054 if (vr0->varying_p ())
6056 /* Failed to find an efficient meet. Before giving up and setting
6057 the result to VARYING, see if we can at least derive a useful
6058 anti-range. */
6059 if (range_includes_zero_p (&saved) == 0
6060 && range_includes_zero_p (vr1) == 0)
6062 set_value_range_to_nonnull (vr0, saved.type ());
6064 /* Since this meet operation did not result from the meeting of
6065 two equivalent names, VR0 cannot have any equivalences. */
6066 if (vr0->m_equiv)
6067 bitmap_clear (vr0->m_equiv);
6068 return;
6071 set_value_range_to_varying (vr0);
6072 return;
6074 vr0->set_and_canonicalize (vr0->kind (), vr0->min (), vr0->max (),
6075 vr0->equiv ());
6076 if (vr0->varying_p ())
6077 return;
6079 /* The resulting set of equivalences is always the intersection of
6080 the two sets. */
6081 if (vr0->m_equiv && vr1->m_equiv && vr0->m_equiv != vr1->m_equiv)
6082 bitmap_and_into (vr0->m_equiv, vr1->m_equiv);
6083 else if (vr0->m_equiv && !vr1->m_equiv)
6084 bitmap_clear (vr0->m_equiv);
6087 void
6088 value_range::union_ (const value_range *other)
6090 if (dump_file && (dump_flags & TDF_DETAILS))
6092 fprintf (dump_file, "Meeting\n ");
6093 dump_value_range (dump_file, this);
6094 fprintf (dump_file, "\nand\n ");
6095 dump_value_range (dump_file, other);
6096 fprintf (dump_file, "\n");
6098 union_helper (this, other);
6099 if (dump_file && (dump_flags & TDF_DETAILS))
6101 fprintf (dump_file, "to\n ");
6102 dump_value_range (dump_file, this);
6103 fprintf (dump_file, "\n");
6107 /* Visit all arguments for PHI node PHI that flow through executable
6108 edges. If a valid value range can be derived from all the incoming
6109 value ranges, set a new range for the LHS of PHI. */
6111 enum ssa_prop_result
6112 vrp_prop::visit_phi (gphi *phi)
6114 tree lhs = PHI_RESULT (phi);
6115 value_range vr_result;
6116 extract_range_from_phi_node (phi, &vr_result);
6117 if (update_value_range (lhs, &vr_result))
6119 if (dump_file && (dump_flags & TDF_DETAILS))
6121 fprintf (dump_file, "Found new range for ");
6122 print_generic_expr (dump_file, lhs);
6123 fprintf (dump_file, ": ");
6124 dump_value_range (dump_file, &vr_result);
6125 fprintf (dump_file, "\n");
6128 if (vr_result.varying_p ())
6129 return SSA_PROP_VARYING;
6131 return SSA_PROP_INTERESTING;
6134 /* Nothing changed, don't add outgoing edges. */
6135 return SSA_PROP_NOT_INTERESTING;
6138 class vrp_folder : public substitute_and_fold_engine
6140 public:
6141 tree get_value (tree) FINAL OVERRIDE;
6142 bool fold_stmt (gimple_stmt_iterator *) FINAL OVERRIDE;
6143 bool fold_predicate_in (gimple_stmt_iterator *);
6145 class vr_values *vr_values;
6147 /* Delegators. */
6148 tree vrp_evaluate_conditional (tree_code code, tree op0,
6149 tree op1, gimple *stmt)
6150 { return vr_values->vrp_evaluate_conditional (code, op0, op1, stmt); }
6151 bool simplify_stmt_using_ranges (gimple_stmt_iterator *gsi)
6152 { return vr_values->simplify_stmt_using_ranges (gsi); }
6153 tree op_with_constant_singleton_value_range (tree op)
6154 { return vr_values->op_with_constant_singleton_value_range (op); }
6157 /* If the statement pointed by SI has a predicate whose value can be
6158 computed using the value range information computed by VRP, compute
6159 its value and return true. Otherwise, return false. */
6161 bool
6162 vrp_folder::fold_predicate_in (gimple_stmt_iterator *si)
6164 bool assignment_p = false;
6165 tree val;
6166 gimple *stmt = gsi_stmt (*si);
6168 if (is_gimple_assign (stmt)
6169 && TREE_CODE_CLASS (gimple_assign_rhs_code (stmt)) == tcc_comparison)
6171 assignment_p = true;
6172 val = vrp_evaluate_conditional (gimple_assign_rhs_code (stmt),
6173 gimple_assign_rhs1 (stmt),
6174 gimple_assign_rhs2 (stmt),
6175 stmt);
6177 else if (gcond *cond_stmt = dyn_cast <gcond *> (stmt))
6178 val = vrp_evaluate_conditional (gimple_cond_code (cond_stmt),
6179 gimple_cond_lhs (cond_stmt),
6180 gimple_cond_rhs (cond_stmt),
6181 stmt);
6182 else
6183 return false;
6185 if (val)
6187 if (assignment_p)
6188 val = fold_convert (gimple_expr_type (stmt), val);
6190 if (dump_file)
6192 fprintf (dump_file, "Folding predicate ");
6193 print_gimple_expr (dump_file, stmt, 0);
6194 fprintf (dump_file, " to ");
6195 print_generic_expr (dump_file, val);
6196 fprintf (dump_file, "\n");
6199 if (is_gimple_assign (stmt))
6200 gimple_assign_set_rhs_from_tree (si, val);
6201 else
6203 gcc_assert (gimple_code (stmt) == GIMPLE_COND);
6204 gcond *cond_stmt = as_a <gcond *> (stmt);
6205 if (integer_zerop (val))
6206 gimple_cond_make_false (cond_stmt);
6207 else if (integer_onep (val))
6208 gimple_cond_make_true (cond_stmt);
6209 else
6210 gcc_unreachable ();
6213 return true;
6216 return false;
6219 /* Callback for substitute_and_fold folding the stmt at *SI. */
6221 bool
6222 vrp_folder::fold_stmt (gimple_stmt_iterator *si)
6224 if (fold_predicate_in (si))
6225 return true;
6227 return simplify_stmt_using_ranges (si);
6230 /* If OP has a value range with a single constant value return that,
6231 otherwise return NULL_TREE. This returns OP itself if OP is a
6232 constant.
6234 Implemented as a pure wrapper right now, but this will change. */
6236 tree
6237 vrp_folder::get_value (tree op)
6239 return op_with_constant_singleton_value_range (op);
6242 /* Return the LHS of any ASSERT_EXPR where OP appears as the first
6243 argument to the ASSERT_EXPR and in which the ASSERT_EXPR dominates
6244 BB. If no such ASSERT_EXPR is found, return OP. */
6246 static tree
6247 lhs_of_dominating_assert (tree op, basic_block bb, gimple *stmt)
6249 imm_use_iterator imm_iter;
6250 gimple *use_stmt;
6251 use_operand_p use_p;
6253 if (TREE_CODE (op) == SSA_NAME)
6255 FOR_EACH_IMM_USE_FAST (use_p, imm_iter, op)
6257 use_stmt = USE_STMT (use_p);
6258 if (use_stmt != stmt
6259 && gimple_assign_single_p (use_stmt)
6260 && TREE_CODE (gimple_assign_rhs1 (use_stmt)) == ASSERT_EXPR
6261 && TREE_OPERAND (gimple_assign_rhs1 (use_stmt), 0) == op
6262 && dominated_by_p (CDI_DOMINATORS, bb, gimple_bb (use_stmt)))
6263 return gimple_assign_lhs (use_stmt);
6266 return op;
6269 /* A hack. */
6270 static class vr_values *x_vr_values;
6272 /* A trivial wrapper so that we can present the generic jump threading
6273 code with a simple API for simplifying statements. STMT is the
6274 statement we want to simplify, WITHIN_STMT provides the location
6275 for any overflow warnings. */
6277 static tree
6278 simplify_stmt_for_jump_threading (gimple *stmt, gimple *within_stmt,
6279 class avail_exprs_stack *avail_exprs_stack ATTRIBUTE_UNUSED,
6280 basic_block bb)
6282 /* First see if the conditional is in the hash table. */
6283 tree cached_lhs = avail_exprs_stack->lookup_avail_expr (stmt, false, true);
6284 if (cached_lhs && is_gimple_min_invariant (cached_lhs))
6285 return cached_lhs;
6287 vr_values *vr_values = x_vr_values;
6288 if (gcond *cond_stmt = dyn_cast <gcond *> (stmt))
6290 tree op0 = gimple_cond_lhs (cond_stmt);
6291 op0 = lhs_of_dominating_assert (op0, bb, stmt);
6293 tree op1 = gimple_cond_rhs (cond_stmt);
6294 op1 = lhs_of_dominating_assert (op1, bb, stmt);
6296 return vr_values->vrp_evaluate_conditional (gimple_cond_code (cond_stmt),
6297 op0, op1, within_stmt);
6300 /* We simplify a switch statement by trying to determine which case label
6301 will be taken. If we are successful then we return the corresponding
6302 CASE_LABEL_EXPR. */
6303 if (gswitch *switch_stmt = dyn_cast <gswitch *> (stmt))
6305 tree op = gimple_switch_index (switch_stmt);
6306 if (TREE_CODE (op) != SSA_NAME)
6307 return NULL_TREE;
6309 op = lhs_of_dominating_assert (op, bb, stmt);
6311 const value_range *vr = vr_values->get_value_range (op);
6312 if (vr->undefined_p ()
6313 || vr->varying_p ()
6314 || vr->symbolic_p ())
6315 return NULL_TREE;
6317 if (vr->kind () == VR_RANGE)
6319 size_t i, j;
6320 /* Get the range of labels that contain a part of the operand's
6321 value range. */
6322 find_case_label_range (switch_stmt, vr->min (), vr->max (), &i, &j);
6324 /* Is there only one such label? */
6325 if (i == j)
6327 tree label = gimple_switch_label (switch_stmt, i);
6329 /* The i'th label will be taken only if the value range of the
6330 operand is entirely within the bounds of this label. */
6331 if (CASE_HIGH (label) != NULL_TREE
6332 ? (tree_int_cst_compare (CASE_LOW (label), vr->min ()) <= 0
6333 && tree_int_cst_compare (CASE_HIGH (label),
6334 vr->max ()) >= 0)
6335 : (tree_int_cst_equal (CASE_LOW (label), vr->min ())
6336 && tree_int_cst_equal (vr->min (), vr->max ())))
6337 return label;
6340 /* If there are no such labels then the default label will be
6341 taken. */
6342 if (i > j)
6343 return gimple_switch_label (switch_stmt, 0);
6346 if (vr->kind () == VR_ANTI_RANGE)
6348 unsigned n = gimple_switch_num_labels (switch_stmt);
6349 tree min_label = gimple_switch_label (switch_stmt, 1);
6350 tree max_label = gimple_switch_label (switch_stmt, n - 1);
6352 /* The default label will be taken only if the anti-range of the
6353 operand is entirely outside the bounds of all the (non-default)
6354 case labels. */
6355 if (tree_int_cst_compare (vr->min (), CASE_LOW (min_label)) <= 0
6356 && (CASE_HIGH (max_label) != NULL_TREE
6357 ? tree_int_cst_compare (vr->max (),
6358 CASE_HIGH (max_label)) >= 0
6359 : tree_int_cst_compare (vr->max (),
6360 CASE_LOW (max_label)) >= 0))
6361 return gimple_switch_label (switch_stmt, 0);
6364 return NULL_TREE;
6367 if (gassign *assign_stmt = dyn_cast <gassign *> (stmt))
6369 tree lhs = gimple_assign_lhs (assign_stmt);
6370 if (TREE_CODE (lhs) == SSA_NAME
6371 && (INTEGRAL_TYPE_P (TREE_TYPE (lhs))
6372 || POINTER_TYPE_P (TREE_TYPE (lhs)))
6373 && stmt_interesting_for_vrp (stmt))
6375 edge dummy_e;
6376 tree dummy_tree;
6377 value_range new_vr;
6378 vr_values->extract_range_from_stmt (stmt, &dummy_e,
6379 &dummy_tree, &new_vr);
6380 tree singleton;
6381 if (new_vr.singleton_p (&singleton))
6382 return singleton;
6386 return NULL_TREE;
6389 class vrp_dom_walker : public dom_walker
6391 public:
6392 vrp_dom_walker (cdi_direction direction,
6393 class const_and_copies *const_and_copies,
6394 class avail_exprs_stack *avail_exprs_stack)
6395 : dom_walker (direction, REACHABLE_BLOCKS),
6396 m_const_and_copies (const_and_copies),
6397 m_avail_exprs_stack (avail_exprs_stack),
6398 m_dummy_cond (NULL) {}
6400 virtual edge before_dom_children (basic_block);
6401 virtual void after_dom_children (basic_block);
6403 class vr_values *vr_values;
6405 private:
6406 class const_and_copies *m_const_and_copies;
6407 class avail_exprs_stack *m_avail_exprs_stack;
6409 gcond *m_dummy_cond;
6413 /* Called before processing dominator children of BB. We want to look
6414 at ASSERT_EXPRs and record information from them in the appropriate
6415 tables.
6417 We could look at other statements here. It's not seen as likely
6418 to significantly increase the jump threads we discover. */
6420 edge
6421 vrp_dom_walker::before_dom_children (basic_block bb)
6423 gimple_stmt_iterator gsi;
6425 m_avail_exprs_stack->push_marker ();
6426 m_const_and_copies->push_marker ();
6427 for (gsi = gsi_start_nondebug_bb (bb); !gsi_end_p (gsi); gsi_next (&gsi))
6429 gimple *stmt = gsi_stmt (gsi);
6430 if (gimple_assign_single_p (stmt)
6431 && TREE_CODE (gimple_assign_rhs1 (stmt)) == ASSERT_EXPR)
6433 tree rhs1 = gimple_assign_rhs1 (stmt);
6434 tree cond = TREE_OPERAND (rhs1, 1);
6435 tree inverted = invert_truthvalue (cond);
6436 vec<cond_equivalence> p;
6437 p.create (3);
6438 record_conditions (&p, cond, inverted);
6439 for (unsigned int i = 0; i < p.length (); i++)
6440 m_avail_exprs_stack->record_cond (&p[i]);
6442 tree lhs = gimple_assign_lhs (stmt);
6443 m_const_and_copies->record_const_or_copy (lhs,
6444 TREE_OPERAND (rhs1, 0));
6445 p.release ();
6446 continue;
6448 break;
6450 return NULL;
6453 /* Called after processing dominator children of BB. This is where we
6454 actually call into the threader. */
6455 void
6456 vrp_dom_walker::after_dom_children (basic_block bb)
6458 if (!m_dummy_cond)
6459 m_dummy_cond = gimple_build_cond (NE_EXPR,
6460 integer_zero_node, integer_zero_node,
6461 NULL, NULL);
6463 x_vr_values = vr_values;
6464 thread_outgoing_edges (bb, m_dummy_cond, m_const_and_copies,
6465 m_avail_exprs_stack, NULL,
6466 simplify_stmt_for_jump_threading);
6467 x_vr_values = NULL;
6469 m_avail_exprs_stack->pop_to_marker ();
6470 m_const_and_copies->pop_to_marker ();
6473 /* Blocks which have more than one predecessor and more than
6474 one successor present jump threading opportunities, i.e.,
6475 when the block is reached from a specific predecessor, we
6476 may be able to determine which of the outgoing edges will
6477 be traversed. When this optimization applies, we are able
6478 to avoid conditionals at runtime and we may expose secondary
6479 optimization opportunities.
6481 This routine is effectively a driver for the generic jump
6482 threading code. It basically just presents the generic code
6483 with edges that may be suitable for jump threading.
6485 Unlike DOM, we do not iterate VRP if jump threading was successful.
6486 While iterating may expose new opportunities for VRP, it is expected
6487 those opportunities would be very limited and the compile time cost
6488 to expose those opportunities would be significant.
6490 As jump threading opportunities are discovered, they are registered
6491 for later realization. */
6493 static void
6494 identify_jump_threads (class vr_values *vr_values)
6496 /* Ugh. When substituting values earlier in this pass we can
6497 wipe the dominance information. So rebuild the dominator
6498 information as we need it within the jump threading code. */
6499 calculate_dominance_info (CDI_DOMINATORS);
6501 /* We do not allow VRP information to be used for jump threading
6502 across a back edge in the CFG. Otherwise it becomes too
6503 difficult to avoid eliminating loop exit tests. Of course
6504 EDGE_DFS_BACK is not accurate at this time so we have to
6505 recompute it. */
6506 mark_dfs_back_edges ();
6508 /* Allocate our unwinder stack to unwind any temporary equivalences
6509 that might be recorded. */
6510 const_and_copies *equiv_stack = new const_and_copies ();
6512 hash_table<expr_elt_hasher> *avail_exprs
6513 = new hash_table<expr_elt_hasher> (1024);
6514 avail_exprs_stack *avail_exprs_stack
6515 = new class avail_exprs_stack (avail_exprs);
6517 vrp_dom_walker walker (CDI_DOMINATORS, equiv_stack, avail_exprs_stack);
6518 walker.vr_values = vr_values;
6519 walker.walk (cfun->cfg->x_entry_block_ptr);
6521 /* We do not actually update the CFG or SSA graphs at this point as
6522 ASSERT_EXPRs are still in the IL and cfg cleanup code does not yet
6523 handle ASSERT_EXPRs gracefully. */
6524 delete equiv_stack;
6525 delete avail_exprs;
6526 delete avail_exprs_stack;
6529 /* Traverse all the blocks folding conditionals with known ranges. */
6531 void
6532 vrp_prop::vrp_finalize (bool warn_array_bounds_p)
6534 size_t i;
6536 /* We have completed propagating through the lattice. */
6537 vr_values.set_lattice_propagation_complete ();
6539 if (dump_file)
6541 fprintf (dump_file, "\nValue ranges after VRP:\n\n");
6542 vr_values.dump_all_value_ranges (dump_file);
6543 fprintf (dump_file, "\n");
6546 /* Set value range to non pointer SSA_NAMEs. */
6547 for (i = 0; i < num_ssa_names; i++)
6549 tree name = ssa_name (i);
6550 if (!name)
6551 continue;
6553 const value_range *vr = get_value_range (name);
6554 if (!name || !vr->constant_p ())
6555 continue;
6557 if (POINTER_TYPE_P (TREE_TYPE (name))
6558 && range_includes_zero_p (vr) == 0)
6559 set_ptr_nonnull (name);
6560 else if (!POINTER_TYPE_P (TREE_TYPE (name)))
6561 set_range_info (name, vr->kind (),
6562 wi::to_wide (vr->min ()),
6563 wi::to_wide (vr->max ()));
6566 /* If we're checking array refs, we want to merge information on
6567 the executability of each edge between vrp_folder and the
6568 check_array_bounds_dom_walker: each can clear the
6569 EDGE_EXECUTABLE flag on edges, in different ways.
6571 Hence, if we're going to call check_all_array_refs, set
6572 the flag on every edge now, rather than in
6573 check_array_bounds_dom_walker's ctor; vrp_folder may clear
6574 it from some edges. */
6575 if (warn_array_bounds && warn_array_bounds_p)
6576 set_all_edges_as_executable (cfun);
6578 class vrp_folder vrp_folder;
6579 vrp_folder.vr_values = &vr_values;
6580 vrp_folder.substitute_and_fold ();
6582 if (warn_array_bounds && warn_array_bounds_p)
6583 check_all_array_refs ();
6586 /* Main entry point to VRP (Value Range Propagation). This pass is
6587 loosely based on J. R. C. Patterson, ``Accurate Static Branch
6588 Prediction by Value Range Propagation,'' in SIGPLAN Conference on
6589 Programming Language Design and Implementation, pp. 67-78, 1995.
6590 Also available at http://citeseer.ist.psu.edu/patterson95accurate.html
6592 This is essentially an SSA-CCP pass modified to deal with ranges
6593 instead of constants.
6595 While propagating ranges, we may find that two or more SSA name
6596 have equivalent, though distinct ranges. For instance,
6598 1 x_9 = p_3->a;
6599 2 p_4 = ASSERT_EXPR <p_3, p_3 != 0>
6600 3 if (p_4 == q_2)
6601 4 p_5 = ASSERT_EXPR <p_4, p_4 == q_2>;
6602 5 endif
6603 6 if (q_2)
6605 In the code above, pointer p_5 has range [q_2, q_2], but from the
6606 code we can also determine that p_5 cannot be NULL and, if q_2 had
6607 a non-varying range, p_5's range should also be compatible with it.
6609 These equivalences are created by two expressions: ASSERT_EXPR and
6610 copy operations. Since p_5 is an assertion on p_4, and p_4 was the
6611 result of another assertion, then we can use the fact that p_5 and
6612 p_4 are equivalent when evaluating p_5's range.
6614 Together with value ranges, we also propagate these equivalences
6615 between names so that we can take advantage of information from
6616 multiple ranges when doing final replacement. Note that this
6617 equivalency relation is transitive but not symmetric.
6619 In the example above, p_5 is equivalent to p_4, q_2 and p_3, but we
6620 cannot assert that q_2 is equivalent to p_5 because q_2 may be used
6621 in contexts where that assertion does not hold (e.g., in line 6).
6623 TODO, the main difference between this pass and Patterson's is that
6624 we do not propagate edge probabilities. We only compute whether
6625 edges can be taken or not. That is, instead of having a spectrum
6626 of jump probabilities between 0 and 1, we only deal with 0, 1 and
6627 DON'T KNOW. In the future, it may be worthwhile to propagate
6628 probabilities to aid branch prediction. */
6630 static unsigned int
6631 execute_vrp (bool warn_array_bounds_p)
6634 loop_optimizer_init (LOOPS_NORMAL | LOOPS_HAVE_RECORDED_EXITS);
6635 rewrite_into_loop_closed_ssa (NULL, TODO_update_ssa);
6636 scev_initialize ();
6638 /* ??? This ends up using stale EDGE_DFS_BACK for liveness computation.
6639 Inserting assertions may split edges which will invalidate
6640 EDGE_DFS_BACK. */
6641 insert_range_assertions ();
6643 threadedge_initialize_values ();
6645 /* For visiting PHI nodes we need EDGE_DFS_BACK computed. */
6646 mark_dfs_back_edges ();
6648 class vrp_prop vrp_prop;
6649 vrp_prop.vrp_initialize ();
6650 vrp_prop.ssa_propagate ();
6651 vrp_prop.vrp_finalize (warn_array_bounds_p);
6653 /* We must identify jump threading opportunities before we release
6654 the datastructures built by VRP. */
6655 identify_jump_threads (&vrp_prop.vr_values);
6657 /* A comparison of an SSA_NAME against a constant where the SSA_NAME
6658 was set by a type conversion can often be rewritten to use the
6659 RHS of the type conversion.
6661 However, doing so inhibits jump threading through the comparison.
6662 So that transformation is not performed until after jump threading
6663 is complete. */
6664 basic_block bb;
6665 FOR_EACH_BB_FN (bb, cfun)
6667 gimple *last = last_stmt (bb);
6668 if (last && gimple_code (last) == GIMPLE_COND)
6669 vrp_prop.vr_values.simplify_cond_using_ranges_2 (as_a <gcond *> (last));
6672 free_numbers_of_iterations_estimates (cfun);
6674 /* ASSERT_EXPRs must be removed before finalizing jump threads
6675 as finalizing jump threads calls the CFG cleanup code which
6676 does not properly handle ASSERT_EXPRs. */
6677 remove_range_assertions ();
6679 /* If we exposed any new variables, go ahead and put them into
6680 SSA form now, before we handle jump threading. This simplifies
6681 interactions between rewriting of _DECL nodes into SSA form
6682 and rewriting SSA_NAME nodes into SSA form after block
6683 duplication and CFG manipulation. */
6684 update_ssa (TODO_update_ssa);
6686 /* We identified all the jump threading opportunities earlier, but could
6687 not transform the CFG at that time. This routine transforms the
6688 CFG and arranges for the dominator tree to be rebuilt if necessary.
6690 Note the SSA graph update will occur during the normal TODO
6691 processing by the pass manager. */
6692 thread_through_all_blocks (false);
6694 vrp_prop.vr_values.cleanup_edges_and_switches ();
6695 threadedge_finalize_values ();
6697 scev_finalize ();
6698 loop_optimizer_finalize ();
6699 return 0;
6702 namespace {
6704 const pass_data pass_data_vrp =
6706 GIMPLE_PASS, /* type */
6707 "vrp", /* name */
6708 OPTGROUP_NONE, /* optinfo_flags */
6709 TV_TREE_VRP, /* tv_id */
6710 PROP_ssa, /* properties_required */
6711 0, /* properties_provided */
6712 0, /* properties_destroyed */
6713 0, /* todo_flags_start */
6714 ( TODO_cleanup_cfg | TODO_update_ssa ), /* todo_flags_finish */
6717 class pass_vrp : public gimple_opt_pass
6719 public:
6720 pass_vrp (gcc::context *ctxt)
6721 : gimple_opt_pass (pass_data_vrp, ctxt), warn_array_bounds_p (false)
6724 /* opt_pass methods: */
6725 opt_pass * clone () { return new pass_vrp (m_ctxt); }
6726 void set_pass_param (unsigned int n, bool param)
6728 gcc_assert (n == 0);
6729 warn_array_bounds_p = param;
6731 virtual bool gate (function *) { return flag_tree_vrp != 0; }
6732 virtual unsigned int execute (function *)
6733 { return execute_vrp (warn_array_bounds_p); }
6735 private:
6736 bool warn_array_bounds_p;
6737 }; // class pass_vrp
6739 } // anon namespace
6741 gimple_opt_pass *
6742 make_pass_vrp (gcc::context *ctxt)
6744 return new pass_vrp (ctxt);
6748 /* Worker for determine_value_range. */
6750 static void
6751 determine_value_range_1 (value_range *vr, tree expr)
6753 if (BINARY_CLASS_P (expr))
6755 value_range vr0, vr1;
6756 determine_value_range_1 (&vr0, TREE_OPERAND (expr, 0));
6757 determine_value_range_1 (&vr1, TREE_OPERAND (expr, 1));
6758 extract_range_from_binary_expr_1 (vr, TREE_CODE (expr), TREE_TYPE (expr),
6759 &vr0, &vr1);
6761 else if (UNARY_CLASS_P (expr))
6763 value_range vr0;
6764 determine_value_range_1 (&vr0, TREE_OPERAND (expr, 0));
6765 extract_range_from_unary_expr (vr, TREE_CODE (expr), TREE_TYPE (expr),
6766 &vr0, TREE_TYPE (TREE_OPERAND (expr, 0)));
6768 else if (TREE_CODE (expr) == INTEGER_CST)
6769 set_value_range_to_value (vr, expr, NULL);
6770 else
6772 value_range_kind kind;
6773 wide_int min, max;
6774 /* For SSA names try to extract range info computed by VRP. Otherwise
6775 fall back to varying. */
6776 if (TREE_CODE (expr) == SSA_NAME
6777 && INTEGRAL_TYPE_P (TREE_TYPE (expr))
6778 && (kind = get_range_info (expr, &min, &max)) != VR_VARYING)
6779 set_value_range (vr, kind, wide_int_to_tree (TREE_TYPE (expr), min),
6780 wide_int_to_tree (TREE_TYPE (expr), max), NULL);
6781 else
6782 set_value_range_to_varying (vr);
6786 /* Compute a value-range for EXPR and set it in *MIN and *MAX. Return
6787 the determined range type. */
6789 value_range_kind
6790 determine_value_range (tree expr, wide_int *min, wide_int *max)
6792 value_range vr;
6793 determine_value_range_1 (&vr, expr);
6794 if (vr.constant_p ())
6796 *min = wi::to_wide (vr.min ());
6797 *max = wi::to_wide (vr.max ());
6798 return vr.kind ();
6801 return VR_VARYING;