1 /* Scalar evolution detector.
2 Copyright (C) 2003-2018 Free Software Foundation, Inc.
3 Contributed by Sebastian Pop <s.pop@laposte.net>
5 This file is part of GCC.
7 GCC is free software; you can redistribute it and/or modify it under
8 the terms of the GNU General Public License as published by the Free
9 Software Foundation; either version 3, or (at your option) any later
12 GCC is distributed in the hope that it will be useful, but WITHOUT ANY
13 WARRANTY; without even the implied warranty of MERCHANTABILITY or
14 FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License
17 You should have received a copy of the GNU General Public License
18 along with GCC; see the file COPYING3. If not see
19 <http://www.gnu.org/licenses/>. */
24 This pass analyzes the evolution of scalar variables in loop
25 structures. The algorithm is based on the SSA representation,
26 and on the loop hierarchy tree. This algorithm is not based on
27 the notion of versions of a variable, as it was the case for the
28 previous implementations of the scalar evolution algorithm, but
29 it assumes that each defined name is unique.
31 The notation used in this file is called "chains of recurrences",
32 and has been proposed by Eugene Zima, Robert Van Engelen, and
33 others for describing induction variables in programs. For example
34 "b -> {0, +, 2}_1" means that the scalar variable "b" is equal to 0
35 when entering in the loop_1 and has a step 2 in this loop, in other
36 words "for (b = 0; b < N; b+=2);". Note that the coefficients of
37 this chain of recurrence (or chrec [shrek]) can contain the name of
38 other variables, in which case they are called parametric chrecs.
39 For example, "b -> {a, +, 2}_1" means that the initial value of "b"
40 is the value of "a". In most of the cases these parametric chrecs
41 are fully instantiated before their use because symbolic names can
42 hide some difficult cases such as self-references described later
43 (see the Fibonacci example).
45 A short sketch of the algorithm is:
47 Given a scalar variable to be analyzed, follow the SSA edge to
50 - When the definition is a GIMPLE_ASSIGN: if the right hand side
51 (RHS) of the definition cannot be statically analyzed, the answer
52 of the analyzer is: "don't know".
53 Otherwise, for all the variables that are not yet analyzed in the
54 RHS, try to determine their evolution, and finally try to
55 evaluate the operation of the RHS that gives the evolution
56 function of the analyzed variable.
58 - When the definition is a condition-phi-node: determine the
59 evolution function for all the branches of the phi node, and
60 finally merge these evolutions (see chrec_merge).
62 - When the definition is a loop-phi-node: determine its initial
63 condition, that is the SSA edge defined in an outer loop, and
64 keep it symbolic. Then determine the SSA edges that are defined
65 in the body of the loop. Follow the inner edges until ending on
66 another loop-phi-node of the same analyzed loop. If the reached
67 loop-phi-node is not the starting loop-phi-node, then we keep
68 this definition under a symbolic form. If the reached
69 loop-phi-node is the same as the starting one, then we compute a
70 symbolic stride on the return path. The result is then the
71 symbolic chrec {initial_condition, +, symbolic_stride}_loop.
75 Example 1: Illustration of the basic algorithm.
81 | if (c > 10) exit_loop
84 Suppose that we want to know the number of iterations of the
85 loop_1. The exit_loop is controlled by a COND_EXPR (c > 10). We
86 ask the scalar evolution analyzer two questions: what's the
87 scalar evolution (scev) of "c", and what's the scev of "10". For
88 "10" the answer is "10" since it is a scalar constant. For the
89 scalar variable "c", it follows the SSA edge to its definition,
90 "c = b + 1", and then asks again what's the scev of "b".
91 Following the SSA edge, we end on a loop-phi-node "b = phi (a,
92 c)", where the initial condition is "a", and the inner loop edge
93 is "c". The initial condition is kept under a symbolic form (it
94 may be the case that the copy constant propagation has done its
95 work and we end with the constant "3" as one of the edges of the
96 loop-phi-node). The update edge is followed to the end of the
97 loop, and until reaching again the starting loop-phi-node: b -> c
98 -> b. At this point we have drawn a path from "b" to "b" from
99 which we compute the stride in the loop: in this example it is
100 "+1". The resulting scev for "b" is "b -> {a, +, 1}_1". Now
101 that the scev for "b" is known, it is possible to compute the
102 scev for "c", that is "c -> {a + 1, +, 1}_1". In order to
103 determine the number of iterations in the loop_1, we have to
104 instantiate_parameters (loop_1, {a + 1, +, 1}_1), that gives after some
105 more analysis the scev {4, +, 1}_1, or in other words, this is
106 the function "f (x) = x + 4", where x is the iteration count of
107 the loop_1. Now we have to solve the inequality "x + 4 > 10",
108 and take the smallest iteration number for which the loop is
109 exited: x = 7. This loop runs from x = 0 to x = 7, and in total
110 there are 8 iterations. In terms of loop normalization, we have
111 created a variable that is implicitly defined, "x" or just "_1",
112 and all the other analyzed scalars of the loop are defined in
113 function of this variable:
119 or in terms of a C program:
122 | for (x = 0; x <= 7; x++)
128 Example 2a: Illustration of the algorithm on nested loops.
139 For analyzing the scalar evolution of "a", the algorithm follows
140 the SSA edge into the loop's body: "a -> b". "b" is an inner
141 loop-phi-node, and its analysis as in Example 1, gives:
146 Following the SSA edge for the initial condition, we end on "c = a
147 + 2", and then on the starting loop-phi-node "a". From this point,
148 the loop stride is computed: back on "c = a + 2" we get a "+2" in
149 the loop_1, then on the loop-phi-node "b" we compute the overall
150 effect of the inner loop that is "b = c + 30", and we get a "+30"
151 in the loop_1. That means that the overall stride in loop_1 is
152 equal to "+32", and the result is:
157 Example 2b: Multivariate chains of recurrences.
170 Analyzing the access function of array A with
171 instantiate_parameters (loop_1, "j + k"), we obtain the
172 instantiation and the analysis of the scalar variables "j" and "k"
173 in loop_1. This leads to the scalar evolution {4, +, 1}_1: the end
174 value of loop_2 for "j" is 4, and the evolution of "k" in loop_1 is
175 {0, +, 1}_1. To obtain the evolution function in loop_3 and
176 instantiate the scalar variables up to loop_1, one has to use:
177 instantiate_scev (block_before_loop (loop_1), loop_3, "j + k").
178 The result of this call is {{0, +, 1}_1, +, 1}_2.
180 Example 3: Higher degree polynomials.
194 instantiate_parameters (loop_1, {5, +, a}_1) -> {5, +, 2, +, 1}_1
195 instantiate_parameters (loop_1, {5 + a, +, a}_1) -> {7, +, 3, +, 1}_1
197 Example 4: Lucas, Fibonacci, or mixers in general.
209 The syntax "(1, c)_1" stands for a PEELED_CHREC that has the
210 following semantics: during the first iteration of the loop_1, the
211 variable contains the value 1, and then it contains the value "c".
212 Note that this syntax is close to the syntax of the loop-phi-node:
213 "a -> (1, c)_1" vs. "a = phi (1, c)".
215 The symbolic chrec representation contains all the semantics of the
216 original code. What is more difficult is to use this information.
218 Example 5: Flip-flops, or exchangers.
230 Based on these symbolic chrecs, it is possible to refine this
231 information into the more precise PERIODIC_CHRECs:
236 This transformation is not yet implemented.
240 You can find a more detailed description of the algorithm in:
241 http://icps.u-strasbg.fr/~pop/DEA_03_Pop.pdf
242 http://icps.u-strasbg.fr/~pop/DEA_03_Pop.ps.gz. But note that
243 this is a preliminary report and some of the details of the
244 algorithm have changed. I'm working on a research report that
245 updates the description of the algorithms to reflect the design
246 choices used in this implementation.
248 A set of slides show a high level overview of the algorithm and run
249 an example through the scalar evolution analyzer:
250 http://cri.ensmp.fr/~pop/gcc/mar04/slides.pdf
252 The slides that I have presented at the GCC Summit'04 are available
253 at: http://cri.ensmp.fr/~pop/gcc/20040604/gccsummit-lno-spop.pdf
258 #include "coretypes.h"
264 #include "gimple-pretty-print.h"
265 #include "fold-const.h"
266 #include "gimplify.h"
267 #include "gimple-iterator.h"
268 #include "gimplify-me.h"
269 #include "tree-cfg.h"
270 #include "tree-ssa-loop-ivopts.h"
271 #include "tree-ssa-loop-manip.h"
272 #include "tree-ssa-loop-niter.h"
273 #include "tree-ssa-loop.h"
274 #include "tree-ssa.h"
276 #include "tree-chrec.h"
277 #include "tree-affine.h"
278 #include "tree-scalar-evolution.h"
279 #include "dumpfile.h"
281 #include "tree-ssa-propagate.h"
282 #include "gimple-fold.h"
283 #include "tree-into-ssa.h"
284 #include "builtins.h"
286 static tree
analyze_scalar_evolution_1 (struct loop
*, tree
);
287 static tree
analyze_scalar_evolution_for_address_of (struct loop
*loop
,
290 /* The cached information about an SSA name with version NAME_VERSION,
291 claiming that below basic block with index INSTANTIATED_BELOW, the
292 value of the SSA name can be expressed as CHREC. */
294 struct GTY((for_user
)) scev_info_str
{
295 unsigned int name_version
;
296 int instantiated_below
;
300 /* Counters for the scev database. */
301 static unsigned nb_set_scev
= 0;
302 static unsigned nb_get_scev
= 0;
304 /* The following trees are unique elements. Thus the comparison of
305 another element to these elements should be done on the pointer to
306 these trees, and not on their value. */
308 /* The SSA_NAMEs that are not yet analyzed are qualified with NULL_TREE. */
309 tree chrec_not_analyzed_yet
;
311 /* Reserved to the cases where the analyzer has detected an
312 undecidable property at compile time. */
313 tree chrec_dont_know
;
315 /* When the analyzer has detected that a property will never
316 happen, then it qualifies it with chrec_known. */
319 struct scev_info_hasher
: ggc_ptr_hash
<scev_info_str
>
321 static hashval_t
hash (scev_info_str
*i
);
322 static bool equal (const scev_info_str
*a
, const scev_info_str
*b
);
325 static GTY (()) hash_table
<scev_info_hasher
> *scalar_evolution_info
;
328 /* Constructs a new SCEV_INFO_STR structure for VAR and INSTANTIATED_BELOW. */
330 static inline struct scev_info_str
*
331 new_scev_info_str (basic_block instantiated_below
, tree var
)
333 struct scev_info_str
*res
;
335 res
= ggc_alloc
<scev_info_str
> ();
336 res
->name_version
= SSA_NAME_VERSION (var
);
337 res
->chrec
= chrec_not_analyzed_yet
;
338 res
->instantiated_below
= instantiated_below
->index
;
343 /* Computes a hash function for database element ELT. */
346 scev_info_hasher::hash (scev_info_str
*elt
)
348 return elt
->name_version
^ elt
->instantiated_below
;
351 /* Compares database elements E1 and E2. */
354 scev_info_hasher::equal (const scev_info_str
*elt1
, const scev_info_str
*elt2
)
356 return (elt1
->name_version
== elt2
->name_version
357 && elt1
->instantiated_below
== elt2
->instantiated_below
);
360 /* Get the scalar evolution of VAR for INSTANTIATED_BELOW basic block.
361 A first query on VAR returns chrec_not_analyzed_yet. */
364 find_var_scev_info (basic_block instantiated_below
, tree var
)
366 struct scev_info_str
*res
;
367 struct scev_info_str tmp
;
369 tmp
.name_version
= SSA_NAME_VERSION (var
);
370 tmp
.instantiated_below
= instantiated_below
->index
;
371 scev_info_str
**slot
= scalar_evolution_info
->find_slot (&tmp
, INSERT
);
374 *slot
= new_scev_info_str (instantiated_below
, var
);
380 /* Return true when CHREC contains symbolic names defined in
384 chrec_contains_symbols_defined_in_loop (const_tree chrec
, unsigned loop_nb
)
388 if (chrec
== NULL_TREE
)
391 if (is_gimple_min_invariant (chrec
))
394 if (TREE_CODE (chrec
) == SSA_NAME
)
397 loop_p def_loop
, loop
;
399 if (SSA_NAME_IS_DEFAULT_DEF (chrec
))
402 def
= SSA_NAME_DEF_STMT (chrec
);
403 def_loop
= loop_containing_stmt (def
);
404 loop
= get_loop (cfun
, loop_nb
);
406 if (def_loop
== NULL
)
409 if (loop
== def_loop
|| flow_loop_nested_p (loop
, def_loop
))
415 n
= TREE_OPERAND_LENGTH (chrec
);
416 for (i
= 0; i
< n
; i
++)
417 if (chrec_contains_symbols_defined_in_loop (TREE_OPERAND (chrec
, i
),
423 /* Return true when PHI is a loop-phi-node. */
426 loop_phi_node_p (gimple
*phi
)
428 /* The implementation of this function is based on the following
429 property: "all the loop-phi-nodes of a loop are contained in the
430 loop's header basic block". */
432 return loop_containing_stmt (phi
)->header
== gimple_bb (phi
);
435 /* Compute the scalar evolution for EVOLUTION_FN after crossing LOOP.
436 In general, in the case of multivariate evolutions we want to get
437 the evolution in different loops. LOOP specifies the level for
438 which to get the evolution.
442 | for (j = 0; j < 100; j++)
444 | for (k = 0; k < 100; k++)
446 | i = k + j; - Here the value of i is a function of j, k.
448 | ... = i - Here the value of i is a function of j.
450 | ... = i - Here the value of i is a scalar.
456 | i_1 = phi (i_0, i_2)
460 This loop has the same effect as:
461 LOOP_1 has the same effect as:
465 The overall effect of the loop, "i_0 + 20" in the previous example,
466 is obtained by passing in the parameters: LOOP = 1,
467 EVOLUTION_FN = {i_0, +, 2}_1.
471 compute_overall_effect_of_inner_loop (struct loop
*loop
, tree evolution_fn
)
475 if (evolution_fn
== chrec_dont_know
)
476 return chrec_dont_know
;
478 else if (TREE_CODE (evolution_fn
) == POLYNOMIAL_CHREC
)
480 struct loop
*inner_loop
= get_chrec_loop (evolution_fn
);
482 if (inner_loop
== loop
483 || flow_loop_nested_p (loop
, inner_loop
))
485 tree nb_iter
= number_of_latch_executions (inner_loop
);
487 if (nb_iter
== chrec_dont_know
)
488 return chrec_dont_know
;
493 /* evolution_fn is the evolution function in LOOP. Get
494 its value in the nb_iter-th iteration. */
495 res
= chrec_apply (inner_loop
->num
, evolution_fn
, nb_iter
);
497 if (chrec_contains_symbols_defined_in_loop (res
, loop
->num
))
498 res
= instantiate_parameters (loop
, res
);
500 /* Continue the computation until ending on a parent of LOOP. */
501 return compute_overall_effect_of_inner_loop (loop
, res
);
508 /* If the evolution function is an invariant, there is nothing to do. */
509 else if (no_evolution_in_loop_p (evolution_fn
, loop
->num
, &val
) && val
)
513 return chrec_dont_know
;
516 /* Associate CHREC to SCALAR. */
519 set_scalar_evolution (basic_block instantiated_below
, tree scalar
, tree chrec
)
523 if (TREE_CODE (scalar
) != SSA_NAME
)
526 scalar_info
= find_var_scev_info (instantiated_below
, scalar
);
530 if (dump_flags
& TDF_SCEV
)
532 fprintf (dump_file
, "(set_scalar_evolution \n");
533 fprintf (dump_file
, " instantiated_below = %d \n",
534 instantiated_below
->index
);
535 fprintf (dump_file
, " (scalar = ");
536 print_generic_expr (dump_file
, scalar
);
537 fprintf (dump_file
, ")\n (scalar_evolution = ");
538 print_generic_expr (dump_file
, chrec
);
539 fprintf (dump_file
, "))\n");
541 if (dump_flags
& TDF_STATS
)
545 *scalar_info
= chrec
;
548 /* Retrieve the chrec associated to SCALAR instantiated below
549 INSTANTIATED_BELOW block. */
552 get_scalar_evolution (basic_block instantiated_below
, tree scalar
)
558 if (dump_flags
& TDF_SCEV
)
560 fprintf (dump_file
, "(get_scalar_evolution \n");
561 fprintf (dump_file
, " (scalar = ");
562 print_generic_expr (dump_file
, scalar
);
563 fprintf (dump_file
, ")\n");
565 if (dump_flags
& TDF_STATS
)
569 if (VECTOR_TYPE_P (TREE_TYPE (scalar
))
570 || TREE_CODE (TREE_TYPE (scalar
)) == COMPLEX_TYPE
)
571 /* For chrec_dont_know we keep the symbolic form. */
574 switch (TREE_CODE (scalar
))
577 if (SSA_NAME_IS_DEFAULT_DEF (scalar
))
580 res
= *find_var_scev_info (instantiated_below
, scalar
);
590 res
= chrec_not_analyzed_yet
;
594 if (dump_file
&& (dump_flags
& TDF_SCEV
))
596 fprintf (dump_file
, " (scalar_evolution = ");
597 print_generic_expr (dump_file
, res
);
598 fprintf (dump_file
, "))\n");
604 /* Helper function for add_to_evolution. Returns the evolution
605 function for an assignment of the form "a = b + c", where "a" and
606 "b" are on the strongly connected component. CHREC_BEFORE is the
607 information that we already have collected up to this point.
608 TO_ADD is the evolution of "c".
610 When CHREC_BEFORE has an evolution part in LOOP_NB, add to this
611 evolution the expression TO_ADD, otherwise construct an evolution
612 part for this loop. */
615 add_to_evolution_1 (unsigned loop_nb
, tree chrec_before
, tree to_add
,
618 tree type
, left
, right
;
619 struct loop
*loop
= get_loop (cfun
, loop_nb
), *chloop
;
621 switch (TREE_CODE (chrec_before
))
623 case POLYNOMIAL_CHREC
:
624 chloop
= get_chrec_loop (chrec_before
);
626 || flow_loop_nested_p (chloop
, loop
))
630 type
= chrec_type (chrec_before
);
632 /* When there is no evolution part in this loop, build it. */
637 right
= SCALAR_FLOAT_TYPE_P (type
)
638 ? build_real (type
, dconst0
)
639 : build_int_cst (type
, 0);
643 var
= CHREC_VARIABLE (chrec_before
);
644 left
= CHREC_LEFT (chrec_before
);
645 right
= CHREC_RIGHT (chrec_before
);
648 to_add
= chrec_convert (type
, to_add
, at_stmt
);
649 right
= chrec_convert_rhs (type
, right
, at_stmt
);
650 right
= chrec_fold_plus (chrec_type (right
), right
, to_add
);
651 return build_polynomial_chrec (var
, left
, right
);
655 gcc_assert (flow_loop_nested_p (loop
, chloop
));
657 /* Search the evolution in LOOP_NB. */
658 left
= add_to_evolution_1 (loop_nb
, CHREC_LEFT (chrec_before
),
660 right
= CHREC_RIGHT (chrec_before
);
661 right
= chrec_convert_rhs (chrec_type (left
), right
, at_stmt
);
662 return build_polynomial_chrec (CHREC_VARIABLE (chrec_before
),
667 /* These nodes do not depend on a loop. */
668 if (chrec_before
== chrec_dont_know
)
669 return chrec_dont_know
;
672 right
= chrec_convert_rhs (chrec_type (left
), to_add
, at_stmt
);
673 return build_polynomial_chrec (loop_nb
, left
, right
);
677 /* Add TO_ADD to the evolution part of CHREC_BEFORE in the dimension
680 Description (provided for completeness, for those who read code in
681 a plane, and for my poor 62 bytes brain that would have forgotten
682 all this in the next two or three months):
684 The algorithm of translation of programs from the SSA representation
685 into the chrecs syntax is based on a pattern matching. After having
686 reconstructed the overall tree expression for a loop, there are only
687 two cases that can arise:
689 1. a = loop-phi (init, a + expr)
690 2. a = loop-phi (init, expr)
692 where EXPR is either a scalar constant with respect to the analyzed
693 loop (this is a degree 0 polynomial), or an expression containing
694 other loop-phi definitions (these are higher degree polynomials).
701 | a = phi (init, a + 5)
708 | a = phi (inita, 2 * b + 3)
709 | b = phi (initb, b + 1)
712 For the first case, the semantics of the SSA representation is:
714 | a (x) = init + \sum_{j = 0}^{x - 1} expr (j)
716 that is, there is a loop index "x" that determines the scalar value
717 of the variable during the loop execution. During the first
718 iteration, the value is that of the initial condition INIT, while
719 during the subsequent iterations, it is the sum of the initial
720 condition with the sum of all the values of EXPR from the initial
721 iteration to the before last considered iteration.
723 For the second case, the semantics of the SSA program is:
725 | a (x) = init, if x = 0;
726 | expr (x - 1), otherwise.
728 The second case corresponds to the PEELED_CHREC, whose syntax is
729 close to the syntax of a loop-phi-node:
731 | phi (init, expr) vs. (init, expr)_x
733 The proof of the translation algorithm for the first case is a
734 proof by structural induction based on the degree of EXPR.
737 When EXPR is a constant with respect to the analyzed loop, or in
738 other words when EXPR is a polynomial of degree 0, the evolution of
739 the variable A in the loop is an affine function with an initial
740 condition INIT, and a step EXPR. In order to show this, we start
741 from the semantics of the SSA representation:
743 f (x) = init + \sum_{j = 0}^{x - 1} expr (j)
745 and since "expr (j)" is a constant with respect to "j",
747 f (x) = init + x * expr
749 Finally, based on the semantics of the pure sum chrecs, by
750 identification we get the corresponding chrecs syntax:
752 f (x) = init * \binom{x}{0} + expr * \binom{x}{1}
753 f (x) -> {init, +, expr}_x
756 Suppose that EXPR is a polynomial of degree N with respect to the
757 analyzed loop_x for which we have already determined that it is
758 written under the chrecs syntax:
760 | expr (x) -> {b_0, +, b_1, +, ..., +, b_{n-1}} (x)
762 We start from the semantics of the SSA program:
764 | f (x) = init + \sum_{j = 0}^{x - 1} expr (j)
766 | f (x) = init + \sum_{j = 0}^{x - 1}
767 | (b_0 * \binom{j}{0} + ... + b_{n-1} * \binom{j}{n-1})
769 | f (x) = init + \sum_{j = 0}^{x - 1}
770 | \sum_{k = 0}^{n - 1} (b_k * \binom{j}{k})
772 | f (x) = init + \sum_{k = 0}^{n - 1}
773 | (b_k * \sum_{j = 0}^{x - 1} \binom{j}{k})
775 | f (x) = init + \sum_{k = 0}^{n - 1}
776 | (b_k * \binom{x}{k + 1})
778 | f (x) = init + b_0 * \binom{x}{1} + ...
779 | + b_{n-1} * \binom{x}{n}
781 | f (x) = init * \binom{x}{0} + b_0 * \binom{x}{1} + ...
782 | + b_{n-1} * \binom{x}{n}
785 And finally from the definition of the chrecs syntax, we identify:
786 | f (x) -> {init, +, b_0, +, ..., +, b_{n-1}}_x
788 This shows the mechanism that stands behind the add_to_evolution
789 function. An important point is that the use of symbolic
790 parameters avoids the need of an analysis schedule.
797 | a = phi (inita, a + 2 + b)
798 | b = phi (initb, b + 1)
801 When analyzing "a", the algorithm keeps "b" symbolically:
803 | a -> {inita, +, 2 + b}_1
805 Then, after instantiation, the analyzer ends on the evolution:
807 | a -> {inita, +, 2 + initb, +, 1}_1
812 add_to_evolution (unsigned loop_nb
, tree chrec_before
, enum tree_code code
,
813 tree to_add
, gimple
*at_stmt
)
815 tree type
= chrec_type (to_add
);
816 tree res
= NULL_TREE
;
818 if (to_add
== NULL_TREE
)
821 /* TO_ADD is either a scalar, or a parameter. TO_ADD is not
822 instantiated at this point. */
823 if (TREE_CODE (to_add
) == POLYNOMIAL_CHREC
)
824 /* This should not happen. */
825 return chrec_dont_know
;
827 if (dump_file
&& (dump_flags
& TDF_SCEV
))
829 fprintf (dump_file
, "(add_to_evolution \n");
830 fprintf (dump_file
, " (loop_nb = %d)\n", loop_nb
);
831 fprintf (dump_file
, " (chrec_before = ");
832 print_generic_expr (dump_file
, chrec_before
);
833 fprintf (dump_file
, ")\n (to_add = ");
834 print_generic_expr (dump_file
, to_add
);
835 fprintf (dump_file
, ")\n");
838 if (code
== MINUS_EXPR
)
839 to_add
= chrec_fold_multiply (type
, to_add
, SCALAR_FLOAT_TYPE_P (type
)
840 ? build_real (type
, dconstm1
)
841 : build_int_cst_type (type
, -1));
843 res
= add_to_evolution_1 (loop_nb
, chrec_before
, to_add
, at_stmt
);
845 if (dump_file
&& (dump_flags
& TDF_SCEV
))
847 fprintf (dump_file
, " (res = ");
848 print_generic_expr (dump_file
, res
);
849 fprintf (dump_file
, "))\n");
857 /* This section selects the loops that will be good candidates for the
858 scalar evolution analysis. For the moment, greedily select all the
859 loop nests we could analyze. */
861 /* For a loop with a single exit edge, return the COND_EXPR that
862 guards the exit edge. If the expression is too difficult to
863 analyze, then give up. */
866 get_loop_exit_condition (const struct loop
*loop
)
869 edge exit_edge
= single_exit (loop
);
871 if (dump_file
&& (dump_flags
& TDF_SCEV
))
872 fprintf (dump_file
, "(get_loop_exit_condition \n ");
878 stmt
= last_stmt (exit_edge
->src
);
879 if (gcond
*cond_stmt
= dyn_cast
<gcond
*> (stmt
))
883 if (dump_file
&& (dump_flags
& TDF_SCEV
))
885 print_gimple_stmt (dump_file
, res
, 0);
886 fprintf (dump_file
, ")\n");
893 /* Depth first search algorithm. */
902 static t_bool
follow_ssa_edge (struct loop
*loop
, gimple
*, gphi
*,
905 /* Follow the ssa edge into the binary expression RHS0 CODE RHS1.
906 Return true if the strongly connected component has been found. */
909 follow_ssa_edge_binary (struct loop
*loop
, gimple
*at_stmt
,
910 tree type
, tree rhs0
, enum tree_code code
, tree rhs1
,
911 gphi
*halting_phi
, tree
*evolution_of_loop
,
914 t_bool res
= t_false
;
919 case POINTER_PLUS_EXPR
:
921 if (TREE_CODE (rhs0
) == SSA_NAME
)
923 if (TREE_CODE (rhs1
) == SSA_NAME
)
925 /* Match an assignment under the form:
928 /* We want only assignments of form "name + name" contribute to
929 LIMIT, as the other cases do not necessarily contribute to
930 the complexity of the expression. */
933 evol
= *evolution_of_loop
;
934 evol
= add_to_evolution
936 chrec_convert (type
, evol
, at_stmt
),
937 code
, rhs1
, at_stmt
);
938 res
= follow_ssa_edge
939 (loop
, SSA_NAME_DEF_STMT (rhs0
), halting_phi
, &evol
, limit
);
941 *evolution_of_loop
= evol
;
942 else if (res
== t_false
)
944 *evolution_of_loop
= add_to_evolution
946 chrec_convert (type
, *evolution_of_loop
, at_stmt
),
947 code
, rhs0
, at_stmt
);
948 res
= follow_ssa_edge
949 (loop
, SSA_NAME_DEF_STMT (rhs1
), halting_phi
,
950 evolution_of_loop
, limit
);
953 else if (res
== t_dont_know
)
954 *evolution_of_loop
= chrec_dont_know
;
957 else if (res
== t_dont_know
)
958 *evolution_of_loop
= chrec_dont_know
;
963 /* Match an assignment under the form:
965 *evolution_of_loop
= add_to_evolution
966 (loop
->num
, chrec_convert (type
, *evolution_of_loop
,
968 code
, rhs1
, at_stmt
);
969 res
= follow_ssa_edge
970 (loop
, SSA_NAME_DEF_STMT (rhs0
), halting_phi
,
971 evolution_of_loop
, limit
);
974 else if (res
== t_dont_know
)
975 *evolution_of_loop
= chrec_dont_know
;
979 else if (TREE_CODE (rhs1
) == SSA_NAME
)
981 /* Match an assignment under the form:
983 *evolution_of_loop
= add_to_evolution
984 (loop
->num
, chrec_convert (type
, *evolution_of_loop
,
986 code
, rhs0
, at_stmt
);
987 res
= follow_ssa_edge
988 (loop
, SSA_NAME_DEF_STMT (rhs1
), halting_phi
,
989 evolution_of_loop
, limit
);
992 else if (res
== t_dont_know
)
993 *evolution_of_loop
= chrec_dont_know
;
997 /* Otherwise, match an assignment under the form:
999 /* And there is nothing to do. */
1004 /* This case is under the form "opnd0 = rhs0 - rhs1". */
1005 if (TREE_CODE (rhs0
) == SSA_NAME
)
1007 /* Match an assignment under the form:
1010 /* We want only assignments of form "name - name" contribute to
1011 LIMIT, as the other cases do not necessarily contribute to
1012 the complexity of the expression. */
1013 if (TREE_CODE (rhs1
) == SSA_NAME
)
1016 *evolution_of_loop
= add_to_evolution
1017 (loop
->num
, chrec_convert (type
, *evolution_of_loop
, at_stmt
),
1018 MINUS_EXPR
, rhs1
, at_stmt
);
1019 res
= follow_ssa_edge (loop
, SSA_NAME_DEF_STMT (rhs0
), halting_phi
,
1020 evolution_of_loop
, limit
);
1023 else if (res
== t_dont_know
)
1024 *evolution_of_loop
= chrec_dont_know
;
1027 /* Otherwise, match an assignment under the form:
1029 /* And there is nothing to do. */
1040 /* Follow the ssa edge into the expression EXPR.
1041 Return true if the strongly connected component has been found. */
1044 follow_ssa_edge_expr (struct loop
*loop
, gimple
*at_stmt
, tree expr
,
1045 gphi
*halting_phi
, tree
*evolution_of_loop
,
1048 enum tree_code code
= TREE_CODE (expr
);
1049 tree type
= TREE_TYPE (expr
), rhs0
, rhs1
;
1052 /* The EXPR is one of the following cases:
1056 - a POINTER_PLUS_EXPR,
1059 - other cases are not yet handled. */
1064 /* This assignment is under the form "a_1 = (cast) rhs. */
1065 res
= follow_ssa_edge_expr (loop
, at_stmt
, TREE_OPERAND (expr
, 0),
1066 halting_phi
, evolution_of_loop
, limit
);
1067 *evolution_of_loop
= chrec_convert (type
, *evolution_of_loop
, at_stmt
);
1071 /* This assignment is under the form "a_1 = 7". */
1076 /* This assignment is under the form: "a_1 = b_2". */
1077 res
= follow_ssa_edge
1078 (loop
, SSA_NAME_DEF_STMT (expr
), halting_phi
, evolution_of_loop
, limit
);
1081 case POINTER_PLUS_EXPR
:
1084 /* This case is under the form "rhs0 +- rhs1". */
1085 rhs0
= TREE_OPERAND (expr
, 0);
1086 rhs1
= TREE_OPERAND (expr
, 1);
1087 type
= TREE_TYPE (rhs0
);
1088 STRIP_USELESS_TYPE_CONVERSION (rhs0
);
1089 STRIP_USELESS_TYPE_CONVERSION (rhs1
);
1090 res
= follow_ssa_edge_binary (loop
, at_stmt
, type
, rhs0
, code
, rhs1
,
1091 halting_phi
, evolution_of_loop
, limit
);
1095 /* Handle &MEM[ptr + CST] which is equivalent to POINTER_PLUS_EXPR. */
1096 if (TREE_CODE (TREE_OPERAND (expr
, 0)) == MEM_REF
)
1098 expr
= TREE_OPERAND (expr
, 0);
1099 rhs0
= TREE_OPERAND (expr
, 0);
1100 rhs1
= TREE_OPERAND (expr
, 1);
1101 type
= TREE_TYPE (rhs0
);
1102 STRIP_USELESS_TYPE_CONVERSION (rhs0
);
1103 STRIP_USELESS_TYPE_CONVERSION (rhs1
);
1104 res
= follow_ssa_edge_binary (loop
, at_stmt
, type
,
1105 rhs0
, POINTER_PLUS_EXPR
, rhs1
,
1106 halting_phi
, evolution_of_loop
, limit
);
1113 /* This assignment is of the form: "a_1 = ASSERT_EXPR <a_2, ...>"
1114 It must be handled as a copy assignment of the form a_1 = a_2. */
1115 rhs0
= ASSERT_EXPR_VAR (expr
);
1116 if (TREE_CODE (rhs0
) == SSA_NAME
)
1117 res
= follow_ssa_edge (loop
, SSA_NAME_DEF_STMT (rhs0
),
1118 halting_phi
, evolution_of_loop
, limit
);
1131 /* Follow the ssa edge into the right hand side of an assignment STMT.
1132 Return true if the strongly connected component has been found. */
1135 follow_ssa_edge_in_rhs (struct loop
*loop
, gimple
*stmt
,
1136 gphi
*halting_phi
, tree
*evolution_of_loop
,
1139 enum tree_code code
= gimple_assign_rhs_code (stmt
);
1140 tree type
= gimple_expr_type (stmt
), rhs1
, rhs2
;
1146 /* This assignment is under the form "a_1 = (cast) rhs. */
1147 res
= follow_ssa_edge_expr (loop
, stmt
, gimple_assign_rhs1 (stmt
),
1148 halting_phi
, evolution_of_loop
, limit
);
1149 *evolution_of_loop
= chrec_convert (type
, *evolution_of_loop
, stmt
);
1152 case POINTER_PLUS_EXPR
:
1155 rhs1
= gimple_assign_rhs1 (stmt
);
1156 rhs2
= gimple_assign_rhs2 (stmt
);
1157 type
= TREE_TYPE (rhs1
);
1158 res
= follow_ssa_edge_binary (loop
, stmt
, type
, rhs1
, code
, rhs2
,
1159 halting_phi
, evolution_of_loop
, limit
);
1163 if (get_gimple_rhs_class (code
) == GIMPLE_SINGLE_RHS
)
1164 res
= follow_ssa_edge_expr (loop
, stmt
, gimple_assign_rhs1 (stmt
),
1165 halting_phi
, evolution_of_loop
, limit
);
1174 /* Checks whether the I-th argument of a PHI comes from a backedge. */
1177 backedge_phi_arg_p (gphi
*phi
, int i
)
1179 const_edge e
= gimple_phi_arg_edge (phi
, i
);
1181 /* We would in fact like to test EDGE_DFS_BACK here, but we do not care
1182 about updating it anywhere, and this should work as well most of the
1184 if (e
->flags
& EDGE_IRREDUCIBLE_LOOP
)
1190 /* Helper function for one branch of the condition-phi-node. Return
1191 true if the strongly connected component has been found following
1194 static inline t_bool
1195 follow_ssa_edge_in_condition_phi_branch (int i
,
1197 gphi
*condition_phi
,
1199 tree
*evolution_of_branch
,
1200 tree init_cond
, int limit
)
1202 tree branch
= PHI_ARG_DEF (condition_phi
, i
);
1203 *evolution_of_branch
= chrec_dont_know
;
1205 /* Do not follow back edges (they must belong to an irreducible loop, which
1206 we really do not want to worry about). */
1207 if (backedge_phi_arg_p (condition_phi
, i
))
1210 if (TREE_CODE (branch
) == SSA_NAME
)
1212 *evolution_of_branch
= init_cond
;
1213 return follow_ssa_edge (loop
, SSA_NAME_DEF_STMT (branch
), halting_phi
,
1214 evolution_of_branch
, limit
);
1217 /* This case occurs when one of the condition branches sets
1218 the variable to a constant: i.e. a phi-node like
1219 "a_2 = PHI <a_7(5), 2(6)>;".
1221 FIXME: This case have to be refined correctly:
1222 in some cases it is possible to say something better than
1223 chrec_dont_know, for example using a wrap-around notation. */
1227 /* This function merges the branches of a condition-phi-node in a
1231 follow_ssa_edge_in_condition_phi (struct loop
*loop
,
1232 gphi
*condition_phi
,
1234 tree
*evolution_of_loop
, int limit
)
1237 tree init
= *evolution_of_loop
;
1238 tree evolution_of_branch
;
1239 t_bool res
= follow_ssa_edge_in_condition_phi_branch (0, loop
, condition_phi
,
1241 &evolution_of_branch
,
1243 if (res
== t_false
|| res
== t_dont_know
)
1246 *evolution_of_loop
= evolution_of_branch
;
1248 n
= gimple_phi_num_args (condition_phi
);
1249 for (i
= 1; i
< n
; i
++)
1251 /* Quickly give up when the evolution of one of the branches is
1253 if (*evolution_of_loop
== chrec_dont_know
)
1256 /* Increase the limit by the PHI argument number to avoid exponential
1257 time and memory complexity. */
1258 res
= follow_ssa_edge_in_condition_phi_branch (i
, loop
, condition_phi
,
1260 &evolution_of_branch
,
1262 if (res
== t_false
|| res
== t_dont_know
)
1265 *evolution_of_loop
= chrec_merge (*evolution_of_loop
,
1266 evolution_of_branch
);
1272 /* Follow an SSA edge in an inner loop. It computes the overall
1273 effect of the loop, and following the symbolic initial conditions,
1274 it follows the edges in the parent loop. The inner loop is
1275 considered as a single statement. */
1278 follow_ssa_edge_inner_loop_phi (struct loop
*outer_loop
,
1279 gphi
*loop_phi_node
,
1281 tree
*evolution_of_loop
, int limit
)
1283 struct loop
*loop
= loop_containing_stmt (loop_phi_node
);
1284 tree ev
= analyze_scalar_evolution (loop
, PHI_RESULT (loop_phi_node
));
1286 /* Sometimes, the inner loop is too difficult to analyze, and the
1287 result of the analysis is a symbolic parameter. */
1288 if (ev
== PHI_RESULT (loop_phi_node
))
1290 t_bool res
= t_false
;
1291 int i
, n
= gimple_phi_num_args (loop_phi_node
);
1293 for (i
= 0; i
< n
; i
++)
1295 tree arg
= PHI_ARG_DEF (loop_phi_node
, i
);
1298 /* Follow the edges that exit the inner loop. */
1299 bb
= gimple_phi_arg_edge (loop_phi_node
, i
)->src
;
1300 if (!flow_bb_inside_loop_p (loop
, bb
))
1301 res
= follow_ssa_edge_expr (outer_loop
, loop_phi_node
,
1303 evolution_of_loop
, limit
);
1308 /* If the path crosses this loop-phi, give up. */
1310 *evolution_of_loop
= chrec_dont_know
;
1315 /* Otherwise, compute the overall effect of the inner loop. */
1316 ev
= compute_overall_effect_of_inner_loop (loop
, ev
);
1317 return follow_ssa_edge_expr (outer_loop
, loop_phi_node
, ev
, halting_phi
,
1318 evolution_of_loop
, limit
);
1321 /* Follow an SSA edge from a loop-phi-node to itself, constructing a
1322 path that is analyzed on the return walk. */
1325 follow_ssa_edge (struct loop
*loop
, gimple
*def
, gphi
*halting_phi
,
1326 tree
*evolution_of_loop
, int limit
)
1328 struct loop
*def_loop
;
1330 if (gimple_nop_p (def
))
1333 /* Give up if the path is longer than the MAX that we allow. */
1334 if (limit
> PARAM_VALUE (PARAM_SCEV_MAX_EXPR_COMPLEXITY
))
1337 def_loop
= loop_containing_stmt (def
);
1339 switch (gimple_code (def
))
1342 if (!loop_phi_node_p (def
))
1343 /* DEF is a condition-phi-node. Follow the branches, and
1344 record their evolutions. Finally, merge the collected
1345 information and set the approximation to the main
1347 return follow_ssa_edge_in_condition_phi
1348 (loop
, as_a
<gphi
*> (def
), halting_phi
, evolution_of_loop
,
1351 /* When the analyzed phi is the halting_phi, the
1352 depth-first search is over: we have found a path from
1353 the halting_phi to itself in the loop. */
1354 if (def
== halting_phi
)
1357 /* Otherwise, the evolution of the HALTING_PHI depends
1358 on the evolution of another loop-phi-node, i.e. the
1359 evolution function is a higher degree polynomial. */
1360 if (def_loop
== loop
)
1364 if (flow_loop_nested_p (loop
, def_loop
))
1365 return follow_ssa_edge_inner_loop_phi
1366 (loop
, as_a
<gphi
*> (def
), halting_phi
, evolution_of_loop
,
1373 return follow_ssa_edge_in_rhs (loop
, def
, halting_phi
,
1374 evolution_of_loop
, limit
);
1377 /* At this level of abstraction, the program is just a set
1378 of GIMPLE_ASSIGNs and PHI_NODEs. In principle there is no
1379 other node to be handled. */
1385 /* Simplify PEELED_CHREC represented by (init_cond, arg) in LOOP.
1386 Handle below case and return the corresponding POLYNOMIAL_CHREC:
1388 # i_17 = PHI <i_13(5), 0(3)>
1389 # _20 = PHI <_5(5), start_4(D)(3)>
1392 _5 = start_4(D) + i_13;
1394 Though variable _20 appears as a PEELED_CHREC in the form of
1395 (start_4, _5)_LOOP, it's a POLYNOMIAL_CHREC like {start_4, 1}_LOOP.
1400 simplify_peeled_chrec (struct loop
*loop
, tree arg
, tree init_cond
)
1402 aff_tree aff1
, aff2
;
1403 tree ev
, left
, right
, type
, step_val
;
1404 hash_map
<tree
, name_expansion
*> *peeled_chrec_map
= NULL
;
1406 ev
= instantiate_parameters (loop
, analyze_scalar_evolution (loop
, arg
));
1407 if (ev
== NULL_TREE
|| TREE_CODE (ev
) != POLYNOMIAL_CHREC
)
1408 return chrec_dont_know
;
1410 left
= CHREC_LEFT (ev
);
1411 right
= CHREC_RIGHT (ev
);
1412 type
= TREE_TYPE (left
);
1413 step_val
= chrec_fold_plus (type
, init_cond
, right
);
1415 /* Transform (init, {left, right}_LOOP)_LOOP to {init, right}_LOOP
1416 if "left" equals to "init + right". */
1417 if (operand_equal_p (left
, step_val
, 0))
1419 if (dump_file
&& (dump_flags
& TDF_SCEV
))
1420 fprintf (dump_file
, "Simplify PEELED_CHREC into POLYNOMIAL_CHREC.\n");
1422 return build_polynomial_chrec (loop
->num
, init_cond
, right
);
1425 /* Try harder to check if they are equal. */
1426 tree_to_aff_combination_expand (left
, type
, &aff1
, &peeled_chrec_map
);
1427 tree_to_aff_combination_expand (step_val
, type
, &aff2
, &peeled_chrec_map
);
1428 free_affine_expand_cache (&peeled_chrec_map
);
1429 aff_combination_scale (&aff2
, -1);
1430 aff_combination_add (&aff1
, &aff2
);
1432 /* Transform (init, {left, right}_LOOP)_LOOP to {init, right}_LOOP
1433 if "left" equals to "init + right". */
1434 if (aff_combination_zero_p (&aff1
))
1436 if (dump_file
&& (dump_flags
& TDF_SCEV
))
1437 fprintf (dump_file
, "Simplify PEELED_CHREC into POLYNOMIAL_CHREC.\n");
1439 return build_polynomial_chrec (loop
->num
, init_cond
, right
);
1441 return chrec_dont_know
;
1444 /* Given a LOOP_PHI_NODE, this function determines the evolution
1445 function from LOOP_PHI_NODE to LOOP_PHI_NODE in the loop. */
1448 analyze_evolution_in_loop (gphi
*loop_phi_node
,
1451 int i
, n
= gimple_phi_num_args (loop_phi_node
);
1452 tree evolution_function
= chrec_not_analyzed_yet
;
1453 struct loop
*loop
= loop_containing_stmt (loop_phi_node
);
1455 static bool simplify_peeled_chrec_p
= true;
1457 if (dump_file
&& (dump_flags
& TDF_SCEV
))
1459 fprintf (dump_file
, "(analyze_evolution_in_loop \n");
1460 fprintf (dump_file
, " (loop_phi_node = ");
1461 print_gimple_stmt (dump_file
, loop_phi_node
, 0);
1462 fprintf (dump_file
, ")\n");
1465 for (i
= 0; i
< n
; i
++)
1467 tree arg
= PHI_ARG_DEF (loop_phi_node
, i
);
1472 /* Select the edges that enter the loop body. */
1473 bb
= gimple_phi_arg_edge (loop_phi_node
, i
)->src
;
1474 if (!flow_bb_inside_loop_p (loop
, bb
))
1477 if (TREE_CODE (arg
) == SSA_NAME
)
1481 ssa_chain
= SSA_NAME_DEF_STMT (arg
);
1483 /* Pass in the initial condition to the follow edge function. */
1485 res
= follow_ssa_edge (loop
, ssa_chain
, loop_phi_node
, &ev_fn
, 0);
1487 /* If ev_fn has no evolution in the inner loop, and the
1488 init_cond is not equal to ev_fn, then we have an
1489 ambiguity between two possible values, as we cannot know
1490 the number of iterations at this point. */
1491 if (TREE_CODE (ev_fn
) != POLYNOMIAL_CHREC
1492 && no_evolution_in_loop_p (ev_fn
, loop
->num
, &val
) && val
1493 && !operand_equal_p (init_cond
, ev_fn
, 0))
1494 ev_fn
= chrec_dont_know
;
1499 /* When it is impossible to go back on the same
1500 loop_phi_node by following the ssa edges, the
1501 evolution is represented by a peeled chrec, i.e. the
1502 first iteration, EV_FN has the value INIT_COND, then
1503 all the other iterations it has the value of ARG.
1504 For the moment, PEELED_CHREC nodes are not built. */
1507 ev_fn
= chrec_dont_know
;
1508 /* Try to recognize POLYNOMIAL_CHREC which appears in
1509 the form of PEELED_CHREC, but guard the process with
1510 a bool variable to keep the analyzer from infinite
1511 recurrence for real PEELED_RECs. */
1512 if (simplify_peeled_chrec_p
&& TREE_CODE (arg
) == SSA_NAME
)
1514 simplify_peeled_chrec_p
= false;
1515 ev_fn
= simplify_peeled_chrec (loop
, arg
, init_cond
);
1516 simplify_peeled_chrec_p
= true;
1520 /* When there are multiple back edges of the loop (which in fact never
1521 happens currently, but nevertheless), merge their evolutions. */
1522 evolution_function
= chrec_merge (evolution_function
, ev_fn
);
1524 if (evolution_function
== chrec_dont_know
)
1528 if (dump_file
&& (dump_flags
& TDF_SCEV
))
1530 fprintf (dump_file
, " (evolution_function = ");
1531 print_generic_expr (dump_file
, evolution_function
);
1532 fprintf (dump_file
, "))\n");
1535 return evolution_function
;
1538 /* Looks to see if VAR is a copy of a constant (via straightforward assignments
1539 or degenerate phi's). If so, returns the constant; else, returns VAR. */
1542 follow_copies_to_constant (tree var
)
1545 while (TREE_CODE (res
) == SSA_NAME
1546 /* We face not updated SSA form in multiple places and this walk
1547 may end up in sibling loops so we have to guard it. */
1548 && !name_registered_for_update_p (res
))
1550 gimple
*def
= SSA_NAME_DEF_STMT (res
);
1551 if (gphi
*phi
= dyn_cast
<gphi
*> (def
))
1553 if (tree rhs
= degenerate_phi_result (phi
))
1558 else if (gimple_assign_single_p (def
))
1559 /* Will exit loop if not an SSA_NAME. */
1560 res
= gimple_assign_rhs1 (def
);
1564 if (CONSTANT_CLASS_P (res
))
1569 /* Given a loop-phi-node, return the initial conditions of the
1570 variable on entry of the loop. When the CCP has propagated
1571 constants into the loop-phi-node, the initial condition is
1572 instantiated, otherwise the initial condition is kept symbolic.
1573 This analyzer does not analyze the evolution outside the current
1574 loop, and leaves this task to the on-demand tree reconstructor. */
1577 analyze_initial_condition (gphi
*loop_phi_node
)
1580 tree init_cond
= chrec_not_analyzed_yet
;
1581 struct loop
*loop
= loop_containing_stmt (loop_phi_node
);
1583 if (dump_file
&& (dump_flags
& TDF_SCEV
))
1585 fprintf (dump_file
, "(analyze_initial_condition \n");
1586 fprintf (dump_file
, " (loop_phi_node = \n");
1587 print_gimple_stmt (dump_file
, loop_phi_node
, 0);
1588 fprintf (dump_file
, ")\n");
1591 n
= gimple_phi_num_args (loop_phi_node
);
1592 for (i
= 0; i
< n
; i
++)
1594 tree branch
= PHI_ARG_DEF (loop_phi_node
, i
);
1595 basic_block bb
= gimple_phi_arg_edge (loop_phi_node
, i
)->src
;
1597 /* When the branch is oriented to the loop's body, it does
1598 not contribute to the initial condition. */
1599 if (flow_bb_inside_loop_p (loop
, bb
))
1602 if (init_cond
== chrec_not_analyzed_yet
)
1608 if (TREE_CODE (branch
) == SSA_NAME
)
1610 init_cond
= chrec_dont_know
;
1614 init_cond
= chrec_merge (init_cond
, branch
);
1617 /* Ooops -- a loop without an entry??? */
1618 if (init_cond
== chrec_not_analyzed_yet
)
1619 init_cond
= chrec_dont_know
;
1621 /* We may not have fully constant propagated IL. Handle degenerate PHIs here
1622 to not miss important early loop unrollings. */
1623 init_cond
= follow_copies_to_constant (init_cond
);
1625 if (dump_file
&& (dump_flags
& TDF_SCEV
))
1627 fprintf (dump_file
, " (init_cond = ");
1628 print_generic_expr (dump_file
, init_cond
);
1629 fprintf (dump_file
, "))\n");
1635 /* Analyze the scalar evolution for LOOP_PHI_NODE. */
1638 interpret_loop_phi (struct loop
*loop
, gphi
*loop_phi_node
)
1641 struct loop
*phi_loop
= loop_containing_stmt (loop_phi_node
);
1644 gcc_assert (phi_loop
== loop
);
1646 /* Otherwise really interpret the loop phi. */
1647 init_cond
= analyze_initial_condition (loop_phi_node
);
1648 res
= analyze_evolution_in_loop (loop_phi_node
, init_cond
);
1650 /* Verify we maintained the correct initial condition throughout
1651 possible conversions in the SSA chain. */
1652 if (res
!= chrec_dont_know
)
1654 tree new_init
= res
;
1655 if (CONVERT_EXPR_P (res
)
1656 && TREE_CODE (TREE_OPERAND (res
, 0)) == POLYNOMIAL_CHREC
)
1657 new_init
= fold_convert (TREE_TYPE (res
),
1658 CHREC_LEFT (TREE_OPERAND (res
, 0)));
1659 else if (TREE_CODE (res
) == POLYNOMIAL_CHREC
)
1660 new_init
= CHREC_LEFT (res
);
1661 STRIP_USELESS_TYPE_CONVERSION (new_init
);
1662 if (TREE_CODE (new_init
) == POLYNOMIAL_CHREC
1663 || !operand_equal_p (init_cond
, new_init
, 0))
1664 return chrec_dont_know
;
1670 /* This function merges the branches of a condition-phi-node,
1671 contained in the outermost loop, and whose arguments are already
1675 interpret_condition_phi (struct loop
*loop
, gphi
*condition_phi
)
1677 int i
, n
= gimple_phi_num_args (condition_phi
);
1678 tree res
= chrec_not_analyzed_yet
;
1680 for (i
= 0; i
< n
; i
++)
1684 if (backedge_phi_arg_p (condition_phi
, i
))
1686 res
= chrec_dont_know
;
1690 branch_chrec
= analyze_scalar_evolution
1691 (loop
, PHI_ARG_DEF (condition_phi
, i
));
1693 res
= chrec_merge (res
, branch_chrec
);
1694 if (res
== chrec_dont_know
)
1701 /* Interpret the operation RHS1 OP RHS2. If we didn't
1702 analyze this node before, follow the definitions until ending
1703 either on an analyzed GIMPLE_ASSIGN, or on a loop-phi-node. On the
1704 return path, this function propagates evolutions (ala constant copy
1705 propagation). OPND1 is not a GIMPLE expression because we could
1706 analyze the effect of an inner loop: see interpret_loop_phi. */
1709 interpret_rhs_expr (struct loop
*loop
, gimple
*at_stmt
,
1710 tree type
, tree rhs1
, enum tree_code code
, tree rhs2
)
1712 tree res
, chrec1
, chrec2
, ctype
;
1715 if (get_gimple_rhs_class (code
) == GIMPLE_SINGLE_RHS
)
1717 if (is_gimple_min_invariant (rhs1
))
1718 return chrec_convert (type
, rhs1
, at_stmt
);
1720 if (code
== SSA_NAME
)
1721 return chrec_convert (type
, analyze_scalar_evolution (loop
, rhs1
),
1724 if (code
== ASSERT_EXPR
)
1726 rhs1
= ASSERT_EXPR_VAR (rhs1
);
1727 return chrec_convert (type
, analyze_scalar_evolution (loop
, rhs1
),
1735 if (TREE_CODE (TREE_OPERAND (rhs1
, 0)) == MEM_REF
1736 || handled_component_p (TREE_OPERAND (rhs1
, 0)))
1739 poly_int64 bitsize
, bitpos
;
1740 int unsignedp
, reversep
;
1746 base
= get_inner_reference (TREE_OPERAND (rhs1
, 0),
1747 &bitsize
, &bitpos
, &offset
, &mode
,
1748 &unsignedp
, &reversep
, &volatilep
);
1750 if (TREE_CODE (base
) == MEM_REF
)
1752 rhs2
= TREE_OPERAND (base
, 1);
1753 rhs1
= TREE_OPERAND (base
, 0);
1755 chrec1
= analyze_scalar_evolution (loop
, rhs1
);
1756 chrec2
= analyze_scalar_evolution (loop
, rhs2
);
1757 chrec1
= chrec_convert (type
, chrec1
, at_stmt
);
1758 chrec2
= chrec_convert (TREE_TYPE (rhs2
), chrec2
, at_stmt
);
1759 chrec1
= instantiate_parameters (loop
, chrec1
);
1760 chrec2
= instantiate_parameters (loop
, chrec2
);
1761 res
= chrec_fold_plus (type
, chrec1
, chrec2
);
1765 chrec1
= analyze_scalar_evolution_for_address_of (loop
, base
);
1766 chrec1
= chrec_convert (type
, chrec1
, at_stmt
);
1770 if (offset
!= NULL_TREE
)
1772 chrec2
= analyze_scalar_evolution (loop
, offset
);
1773 chrec2
= chrec_convert (TREE_TYPE (offset
), chrec2
, at_stmt
);
1774 chrec2
= instantiate_parameters (loop
, chrec2
);
1775 res
= chrec_fold_plus (type
, res
, chrec2
);
1778 if (maybe_ne (bitpos
, 0))
1780 unitpos
= size_int (exact_div (bitpos
, BITS_PER_UNIT
));
1781 chrec3
= analyze_scalar_evolution (loop
, unitpos
);
1782 chrec3
= chrec_convert (TREE_TYPE (unitpos
), chrec3
, at_stmt
);
1783 chrec3
= instantiate_parameters (loop
, chrec3
);
1784 res
= chrec_fold_plus (type
, res
, chrec3
);
1788 res
= chrec_dont_know
;
1791 case POINTER_PLUS_EXPR
:
1792 chrec1
= analyze_scalar_evolution (loop
, rhs1
);
1793 chrec2
= analyze_scalar_evolution (loop
, rhs2
);
1794 chrec1
= chrec_convert (type
, chrec1
, at_stmt
);
1795 chrec2
= chrec_convert (TREE_TYPE (rhs2
), chrec2
, at_stmt
);
1796 chrec1
= instantiate_parameters (loop
, chrec1
);
1797 chrec2
= instantiate_parameters (loop
, chrec2
);
1798 res
= chrec_fold_plus (type
, chrec1
, chrec2
);
1802 chrec1
= analyze_scalar_evolution (loop
, rhs1
);
1803 chrec2
= analyze_scalar_evolution (loop
, rhs2
);
1805 /* When the stmt is conditionally executed re-write the CHREC
1806 into a form that has well-defined behavior on overflow. */
1808 && INTEGRAL_TYPE_P (type
)
1809 && ! TYPE_OVERFLOW_WRAPS (type
)
1810 && ! dominated_by_p (CDI_DOMINATORS
, loop
->latch
,
1811 gimple_bb (at_stmt
)))
1812 ctype
= unsigned_type_for (type
);
1813 chrec1
= chrec_convert (ctype
, chrec1
, at_stmt
);
1814 chrec2
= chrec_convert (ctype
, chrec2
, at_stmt
);
1815 chrec1
= instantiate_parameters (loop
, chrec1
);
1816 chrec2
= instantiate_parameters (loop
, chrec2
);
1817 res
= chrec_fold_plus (ctype
, chrec1
, chrec2
);
1819 res
= chrec_convert (type
, res
, at_stmt
);
1823 chrec1
= analyze_scalar_evolution (loop
, rhs1
);
1824 chrec2
= analyze_scalar_evolution (loop
, rhs2
);
1826 /* When the stmt is conditionally executed re-write the CHREC
1827 into a form that has well-defined behavior on overflow. */
1829 && INTEGRAL_TYPE_P (type
)
1830 && ! TYPE_OVERFLOW_WRAPS (type
)
1831 && ! dominated_by_p (CDI_DOMINATORS
,
1832 loop
->latch
, gimple_bb (at_stmt
)))
1833 ctype
= unsigned_type_for (type
);
1834 chrec1
= chrec_convert (ctype
, chrec1
, at_stmt
);
1835 chrec2
= chrec_convert (ctype
, chrec2
, at_stmt
);
1836 chrec1
= instantiate_parameters (loop
, chrec1
);
1837 chrec2
= instantiate_parameters (loop
, chrec2
);
1838 res
= chrec_fold_minus (ctype
, chrec1
, chrec2
);
1840 res
= chrec_convert (type
, res
, at_stmt
);
1844 chrec1
= analyze_scalar_evolution (loop
, rhs1
);
1846 /* When the stmt is conditionally executed re-write the CHREC
1847 into a form that has well-defined behavior on overflow. */
1849 && INTEGRAL_TYPE_P (type
)
1850 && ! TYPE_OVERFLOW_WRAPS (type
)
1851 && ! dominated_by_p (CDI_DOMINATORS
,
1852 loop
->latch
, gimple_bb (at_stmt
)))
1853 ctype
= unsigned_type_for (type
);
1854 chrec1
= chrec_convert (ctype
, chrec1
, at_stmt
);
1855 /* TYPE may be integer, real or complex, so use fold_convert. */
1856 chrec1
= instantiate_parameters (loop
, chrec1
);
1857 res
= chrec_fold_multiply (ctype
, chrec1
,
1858 fold_convert (ctype
, integer_minus_one_node
));
1860 res
= chrec_convert (type
, res
, at_stmt
);
1864 /* Handle ~X as -1 - X. */
1865 chrec1
= analyze_scalar_evolution (loop
, rhs1
);
1866 chrec1
= chrec_convert (type
, chrec1
, at_stmt
);
1867 chrec1
= instantiate_parameters (loop
, chrec1
);
1868 res
= chrec_fold_minus (type
,
1869 fold_convert (type
, integer_minus_one_node
),
1874 chrec1
= analyze_scalar_evolution (loop
, rhs1
);
1875 chrec2
= analyze_scalar_evolution (loop
, rhs2
);
1877 /* When the stmt is conditionally executed re-write the CHREC
1878 into a form that has well-defined behavior on overflow. */
1880 && INTEGRAL_TYPE_P (type
)
1881 && ! TYPE_OVERFLOW_WRAPS (type
)
1882 && ! dominated_by_p (CDI_DOMINATORS
,
1883 loop
->latch
, gimple_bb (at_stmt
)))
1884 ctype
= unsigned_type_for (type
);
1885 chrec1
= chrec_convert (ctype
, chrec1
, at_stmt
);
1886 chrec2
= chrec_convert (ctype
, chrec2
, at_stmt
);
1887 chrec1
= instantiate_parameters (loop
, chrec1
);
1888 chrec2
= instantiate_parameters (loop
, chrec2
);
1889 res
= chrec_fold_multiply (ctype
, chrec1
, chrec2
);
1891 res
= chrec_convert (type
, res
, at_stmt
);
1896 /* Handle A<<B as A * (1<<B). */
1897 tree uns
= unsigned_type_for (type
);
1898 chrec1
= analyze_scalar_evolution (loop
, rhs1
);
1899 chrec2
= analyze_scalar_evolution (loop
, rhs2
);
1900 chrec1
= chrec_convert (uns
, chrec1
, at_stmt
);
1901 chrec1
= instantiate_parameters (loop
, chrec1
);
1902 chrec2
= instantiate_parameters (loop
, chrec2
);
1904 tree one
= build_int_cst (uns
, 1);
1905 chrec2
= fold_build2 (LSHIFT_EXPR
, uns
, one
, chrec2
);
1906 res
= chrec_fold_multiply (uns
, chrec1
, chrec2
);
1907 res
= chrec_convert (type
, res
, at_stmt
);
1912 /* In case we have a truncation of a widened operation that in
1913 the truncated type has undefined overflow behavior analyze
1914 the operation done in an unsigned type of the same precision
1915 as the final truncation. We cannot derive a scalar evolution
1916 for the widened operation but for the truncated result. */
1917 if (TREE_CODE (type
) == INTEGER_TYPE
1918 && TREE_CODE (TREE_TYPE (rhs1
)) == INTEGER_TYPE
1919 && TYPE_PRECISION (type
) < TYPE_PRECISION (TREE_TYPE (rhs1
))
1920 && TYPE_OVERFLOW_UNDEFINED (type
)
1921 && TREE_CODE (rhs1
) == SSA_NAME
1922 && (def
= SSA_NAME_DEF_STMT (rhs1
))
1923 && is_gimple_assign (def
)
1924 && TREE_CODE_CLASS (gimple_assign_rhs_code (def
)) == tcc_binary
1925 && TREE_CODE (gimple_assign_rhs2 (def
)) == INTEGER_CST
)
1927 tree utype
= unsigned_type_for (type
);
1928 chrec1
= interpret_rhs_expr (loop
, at_stmt
, utype
,
1929 gimple_assign_rhs1 (def
),
1930 gimple_assign_rhs_code (def
),
1931 gimple_assign_rhs2 (def
));
1934 chrec1
= analyze_scalar_evolution (loop
, rhs1
);
1935 res
= chrec_convert (type
, chrec1
, at_stmt
, true, rhs1
);
1939 /* Given int variable A, handle A&0xffff as (int)(unsigned short)A.
1940 If A is SCEV and its value is in the range of representable set
1941 of type unsigned short, the result expression is a (no-overflow)
1943 res
= chrec_dont_know
;
1944 if (tree_fits_uhwi_p (rhs2
))
1947 unsigned HOST_WIDE_INT val
= tree_to_uhwi (rhs2
);
1950 /* Skip if value of rhs2 wraps in unsigned HOST_WIDE_INT or
1951 it's not the maximum value of a smaller type than rhs1. */
1953 && (precision
= exact_log2 (val
)) > 0
1954 && (unsigned) precision
< TYPE_PRECISION (TREE_TYPE (rhs1
)))
1956 tree utype
= build_nonstandard_integer_type (precision
, 1);
1958 if (TYPE_PRECISION (utype
) < TYPE_PRECISION (TREE_TYPE (rhs1
)))
1960 chrec1
= analyze_scalar_evolution (loop
, rhs1
);
1961 chrec1
= chrec_convert (utype
, chrec1
, at_stmt
);
1962 res
= chrec_convert (TREE_TYPE (rhs1
), chrec1
, at_stmt
);
1969 res
= chrec_dont_know
;
1976 /* Interpret the expression EXPR. */
1979 interpret_expr (struct loop
*loop
, gimple
*at_stmt
, tree expr
)
1981 enum tree_code code
;
1982 tree type
= TREE_TYPE (expr
), op0
, op1
;
1984 if (automatically_generated_chrec_p (expr
))
1987 if (TREE_CODE (expr
) == POLYNOMIAL_CHREC
1988 || TREE_CODE (expr
) == CALL_EXPR
1989 || get_gimple_rhs_class (TREE_CODE (expr
)) == GIMPLE_TERNARY_RHS
)
1990 return chrec_dont_know
;
1992 extract_ops_from_tree (expr
, &code
, &op0
, &op1
);
1994 return interpret_rhs_expr (loop
, at_stmt
, type
,
1998 /* Interpret the rhs of the assignment STMT. */
2001 interpret_gimple_assign (struct loop
*loop
, gimple
*stmt
)
2003 tree type
= TREE_TYPE (gimple_assign_lhs (stmt
));
2004 enum tree_code code
= gimple_assign_rhs_code (stmt
);
2006 return interpret_rhs_expr (loop
, stmt
, type
,
2007 gimple_assign_rhs1 (stmt
), code
,
2008 gimple_assign_rhs2 (stmt
));
2013 /* This section contains all the entry points:
2014 - number_of_iterations_in_loop,
2015 - analyze_scalar_evolution,
2016 - instantiate_parameters.
2019 /* Helper recursive function. */
2022 analyze_scalar_evolution_1 (struct loop
*loop
, tree var
)
2026 struct loop
*def_loop
;
2029 if (TREE_CODE (var
) != SSA_NAME
)
2030 return interpret_expr (loop
, NULL
, var
);
2032 def
= SSA_NAME_DEF_STMT (var
);
2033 bb
= gimple_bb (def
);
2034 def_loop
= bb
->loop_father
;
2036 if (!flow_bb_inside_loop_p (loop
, bb
))
2038 /* Keep symbolic form, but look through obvious copies for constants. */
2039 res
= follow_copies_to_constant (var
);
2043 if (loop
!= def_loop
)
2045 res
= analyze_scalar_evolution_1 (def_loop
, var
);
2046 struct loop
*loop_to_skip
= superloop_at_depth (def_loop
,
2047 loop_depth (loop
) + 1);
2048 res
= compute_overall_effect_of_inner_loop (loop_to_skip
, res
);
2049 if (chrec_contains_symbols_defined_in_loop (res
, loop
->num
))
2050 res
= analyze_scalar_evolution_1 (loop
, res
);
2054 switch (gimple_code (def
))
2057 res
= interpret_gimple_assign (loop
, def
);
2061 if (loop_phi_node_p (def
))
2062 res
= interpret_loop_phi (loop
, as_a
<gphi
*> (def
));
2064 res
= interpret_condition_phi (loop
, as_a
<gphi
*> (def
));
2068 res
= chrec_dont_know
;
2074 /* Keep the symbolic form. */
2075 if (res
== chrec_dont_know
)
2078 if (loop
== def_loop
)
2079 set_scalar_evolution (block_before_loop (loop
), var
, res
);
2084 /* Analyzes and returns the scalar evolution of the ssa_name VAR in
2085 LOOP. LOOP is the loop in which the variable is used.
2087 Example of use: having a pointer VAR to a SSA_NAME node, STMT a
2088 pointer to the statement that uses this variable, in order to
2089 determine the evolution function of the variable, use the following
2092 loop_p loop = loop_containing_stmt (stmt);
2093 tree chrec_with_symbols = analyze_scalar_evolution (loop, var);
2094 tree chrec_instantiated = instantiate_parameters (loop, chrec_with_symbols);
2098 analyze_scalar_evolution (struct loop
*loop
, tree var
)
2102 /* ??? Fix callers. */
2106 if (dump_file
&& (dump_flags
& TDF_SCEV
))
2108 fprintf (dump_file
, "(analyze_scalar_evolution \n");
2109 fprintf (dump_file
, " (loop_nb = %d)\n", loop
->num
);
2110 fprintf (dump_file
, " (scalar = ");
2111 print_generic_expr (dump_file
, var
);
2112 fprintf (dump_file
, ")\n");
2115 res
= get_scalar_evolution (block_before_loop (loop
), var
);
2116 if (res
== chrec_not_analyzed_yet
)
2117 res
= analyze_scalar_evolution_1 (loop
, var
);
2119 if (dump_file
&& (dump_flags
& TDF_SCEV
))
2120 fprintf (dump_file
, ")\n");
2125 /* Analyzes and returns the scalar evolution of VAR address in LOOP. */
2128 analyze_scalar_evolution_for_address_of (struct loop
*loop
, tree var
)
2130 return analyze_scalar_evolution (loop
, build_fold_addr_expr (var
));
2133 /* Analyze scalar evolution of use of VERSION in USE_LOOP with respect to
2134 WRTO_LOOP (which should be a superloop of USE_LOOP)
2136 FOLDED_CASTS is set to true if resolve_mixers used
2137 chrec_convert_aggressive (TODO -- not really, we are way too conservative
2138 at the moment in order to keep things simple).
2140 To illustrate the meaning of USE_LOOP and WRTO_LOOP, consider the following
2143 for (i = 0; i < 100; i++) -- loop 1
2145 for (j = 0; j < 100; j++) -- loop 2
2152 for (t = 0; t < 100; t++) -- loop 3
2159 Both k1 and k2 are invariants in loop3, thus
2160 analyze_scalar_evolution_in_loop (loop3, loop3, k1) = k1
2161 analyze_scalar_evolution_in_loop (loop3, loop3, k2) = k2
2163 As they are invariant, it does not matter whether we consider their
2164 usage in loop 3 or loop 2, hence
2165 analyze_scalar_evolution_in_loop (loop2, loop3, k1) =
2166 analyze_scalar_evolution_in_loop (loop2, loop2, k1) = i
2167 analyze_scalar_evolution_in_loop (loop2, loop3, k2) =
2168 analyze_scalar_evolution_in_loop (loop2, loop2, k2) = [0,+,1]_2
2170 Similarly for their evolutions with respect to loop 1. The values of K2
2171 in the use in loop 2 vary independently on loop 1, thus we cannot express
2172 the evolution with respect to loop 1:
2173 analyze_scalar_evolution_in_loop (loop1, loop3, k1) =
2174 analyze_scalar_evolution_in_loop (loop1, loop2, k1) = [0,+,1]_1
2175 analyze_scalar_evolution_in_loop (loop1, loop3, k2) =
2176 analyze_scalar_evolution_in_loop (loop1, loop2, k2) = dont_know
2178 The value of k2 in the use in loop 1 is known, though:
2179 analyze_scalar_evolution_in_loop (loop1, loop1, k1) = [0,+,1]_1
2180 analyze_scalar_evolution_in_loop (loop1, loop1, k2) = 100
2184 analyze_scalar_evolution_in_loop (struct loop
*wrto_loop
, struct loop
*use_loop
,
2185 tree version
, bool *folded_casts
)
2188 tree ev
= version
, tmp
;
2190 /* We cannot just do
2192 tmp = analyze_scalar_evolution (use_loop, version);
2193 ev = resolve_mixers (wrto_loop, tmp, folded_casts);
2195 as resolve_mixers would query the scalar evolution with respect to
2196 wrto_loop. For example, in the situation described in the function
2197 comment, suppose that wrto_loop = loop1, use_loop = loop3 and
2200 analyze_scalar_evolution (use_loop, version) = k2
2202 and resolve_mixers (loop1, k2, folded_casts) finds that the value of
2203 k2 in loop 1 is 100, which is a wrong result, since we are interested
2204 in the value in loop 3.
2206 Instead, we need to proceed from use_loop to wrto_loop loop by loop,
2207 each time checking that there is no evolution in the inner loop. */
2210 *folded_casts
= false;
2213 tmp
= analyze_scalar_evolution (use_loop
, ev
);
2214 ev
= resolve_mixers (use_loop
, tmp
, folded_casts
);
2216 if (use_loop
== wrto_loop
)
2219 /* If the value of the use changes in the inner loop, we cannot express
2220 its value in the outer loop (we might try to return interval chrec,
2221 but we do not have a user for it anyway) */
2222 if (!no_evolution_in_loop_p (ev
, use_loop
->num
, &val
)
2224 return chrec_dont_know
;
2226 use_loop
= loop_outer (use_loop
);
2231 /* Hashtable helpers for a temporary hash-table used when
2232 instantiating a CHREC or resolving mixers. For this use
2233 instantiated_below is always the same. */
2235 struct instantiate_cache_type
2238 vec
<scev_info_str
> entries
;
2240 instantiate_cache_type () : map (NULL
), entries (vNULL
) {}
2241 ~instantiate_cache_type ();
2242 tree
get (unsigned slot
) { return entries
[slot
].chrec
; }
2243 void set (unsigned slot
, tree chrec
) { entries
[slot
].chrec
= chrec
; }
2246 instantiate_cache_type::~instantiate_cache_type ()
2255 /* Cache to avoid infinite recursion when instantiating an SSA name.
2256 Live during the outermost instantiate_scev or resolve_mixers call. */
2257 static instantiate_cache_type
*global_cache
;
2259 /* Computes a hash function for database element ELT. */
2261 static inline hashval_t
2262 hash_idx_scev_info (const void *elt_
)
2264 unsigned idx
= ((size_t) elt_
) - 2;
2265 return scev_info_hasher::hash (&global_cache
->entries
[idx
]);
2268 /* Compares database elements E1 and E2. */
2271 eq_idx_scev_info (const void *e1
, const void *e2
)
2273 unsigned idx1
= ((size_t) e1
) - 2;
2274 return scev_info_hasher::equal (&global_cache
->entries
[idx1
],
2275 (const scev_info_str
*) e2
);
2278 /* Returns from CACHE the slot number of the cached chrec for NAME. */
2281 get_instantiated_value_entry (instantiate_cache_type
&cache
,
2282 tree name
, edge instantiate_below
)
2286 cache
.map
= htab_create (10, hash_idx_scev_info
, eq_idx_scev_info
, NULL
);
2287 cache
.entries
.create (10);
2291 e
.name_version
= SSA_NAME_VERSION (name
);
2292 e
.instantiated_below
= instantiate_below
->dest
->index
;
2293 void **slot
= htab_find_slot_with_hash (cache
.map
, &e
,
2294 scev_info_hasher::hash (&e
), INSERT
);
2297 e
.chrec
= chrec_not_analyzed_yet
;
2298 *slot
= (void *)(size_t)(cache
.entries
.length () + 2);
2299 cache
.entries
.safe_push (e
);
2302 return ((size_t)*slot
) - 2;
2306 /* Return the closed_loop_phi node for VAR. If there is none, return
2310 loop_closed_phi_def (tree var
)
2317 if (var
== NULL_TREE
2318 || TREE_CODE (var
) != SSA_NAME
)
2321 loop
= loop_containing_stmt (SSA_NAME_DEF_STMT (var
));
2322 exit
= single_exit (loop
);
2326 for (psi
= gsi_start_phis (exit
->dest
); !gsi_end_p (psi
); gsi_next (&psi
))
2329 if (PHI_ARG_DEF_FROM_EDGE (phi
, exit
) == var
)
2330 return PHI_RESULT (phi
);
2336 static tree
instantiate_scev_r (edge
, struct loop
*, struct loop
*,
2339 /* Analyze all the parameters of the chrec, between INSTANTIATE_BELOW
2340 and EVOLUTION_LOOP, that were left under a symbolic form.
2342 CHREC is an SSA_NAME to be instantiated.
2344 CACHE is the cache of already instantiated values.
2346 Variable pointed by FOLD_CONVERSIONS is set to TRUE when the
2347 conversions that may wrap in signed/pointer type are folded, as long
2348 as the value of the chrec is preserved. If FOLD_CONVERSIONS is NULL
2349 then we don't do such fold.
2351 SIZE_EXPR is used for computing the size of the expression to be
2352 instantiated, and to stop if it exceeds some limit. */
2355 instantiate_scev_name (edge instantiate_below
,
2356 struct loop
*evolution_loop
, struct loop
*inner_loop
,
2358 bool *fold_conversions
,
2362 struct loop
*def_loop
;
2363 basic_block def_bb
= gimple_bb (SSA_NAME_DEF_STMT (chrec
));
2365 /* A parameter, nothing to do. */
2367 || !dominated_by_p (CDI_DOMINATORS
, def_bb
, instantiate_below
->dest
))
2370 /* We cache the value of instantiated variable to avoid exponential
2371 time complexity due to reevaluations. We also store the convenient
2372 value in the cache in order to prevent infinite recursion -- we do
2373 not want to instantiate the SSA_NAME if it is in a mixer
2374 structure. This is used for avoiding the instantiation of
2375 recursively defined functions, such as:
2377 | a_2 -> {0, +, 1, +, a_2}_1 */
2379 unsigned si
= get_instantiated_value_entry (*global_cache
,
2380 chrec
, instantiate_below
);
2381 if (global_cache
->get (si
) != chrec_not_analyzed_yet
)
2382 return global_cache
->get (si
);
2384 /* On recursion return chrec_dont_know. */
2385 global_cache
->set (si
, chrec_dont_know
);
2387 def_loop
= find_common_loop (evolution_loop
, def_bb
->loop_father
);
2389 if (! dominated_by_p (CDI_DOMINATORS
,
2390 def_loop
->header
, instantiate_below
->dest
))
2392 gimple
*def
= SSA_NAME_DEF_STMT (chrec
);
2393 if (gassign
*ass
= dyn_cast
<gassign
*> (def
))
2395 switch (gimple_assign_rhs_class (ass
))
2397 case GIMPLE_UNARY_RHS
:
2399 tree op0
= instantiate_scev_r (instantiate_below
, evolution_loop
,
2400 inner_loop
, gimple_assign_rhs1 (ass
),
2401 fold_conversions
, size_expr
);
2402 if (op0
== chrec_dont_know
)
2403 return chrec_dont_know
;
2404 res
= fold_build1 (gimple_assign_rhs_code (ass
),
2405 TREE_TYPE (chrec
), op0
);
2408 case GIMPLE_BINARY_RHS
:
2410 tree op0
= instantiate_scev_r (instantiate_below
, evolution_loop
,
2411 inner_loop
, gimple_assign_rhs1 (ass
),
2412 fold_conversions
, size_expr
);
2413 if (op0
== chrec_dont_know
)
2414 return chrec_dont_know
;
2415 tree op1
= instantiate_scev_r (instantiate_below
, evolution_loop
,
2416 inner_loop
, gimple_assign_rhs2 (ass
),
2417 fold_conversions
, size_expr
);
2418 if (op1
== chrec_dont_know
)
2419 return chrec_dont_know
;
2420 res
= fold_build2 (gimple_assign_rhs_code (ass
),
2421 TREE_TYPE (chrec
), op0
, op1
);
2425 res
= chrec_dont_know
;
2429 res
= chrec_dont_know
;
2430 global_cache
->set (si
, res
);
2434 /* If the analysis yields a parametric chrec, instantiate the
2436 res
= analyze_scalar_evolution (def_loop
, chrec
);
2438 /* Don't instantiate default definitions. */
2439 if (TREE_CODE (res
) == SSA_NAME
2440 && SSA_NAME_IS_DEFAULT_DEF (res
))
2443 /* Don't instantiate loop-closed-ssa phi nodes. */
2444 else if (TREE_CODE (res
) == SSA_NAME
2445 && loop_depth (loop_containing_stmt (SSA_NAME_DEF_STMT (res
)))
2446 > loop_depth (def_loop
))
2449 res
= loop_closed_phi_def (chrec
);
2453 /* When there is no loop_closed_phi_def, it means that the
2454 variable is not used after the loop: try to still compute the
2455 value of the variable when exiting the loop. */
2456 if (res
== NULL_TREE
)
2458 loop_p loop
= loop_containing_stmt (SSA_NAME_DEF_STMT (chrec
));
2459 res
= analyze_scalar_evolution (loop
, chrec
);
2460 res
= compute_overall_effect_of_inner_loop (loop
, res
);
2461 res
= instantiate_scev_r (instantiate_below
, evolution_loop
,
2463 fold_conversions
, size_expr
);
2465 else if (dominated_by_p (CDI_DOMINATORS
,
2466 gimple_bb (SSA_NAME_DEF_STMT (res
)),
2467 instantiate_below
->dest
))
2468 res
= chrec_dont_know
;
2471 else if (res
!= chrec_dont_know
)
2474 && def_bb
->loop_father
!= inner_loop
2475 && !flow_loop_nested_p (def_bb
->loop_father
, inner_loop
))
2476 /* ??? We could try to compute the overall effect of the loop here. */
2477 res
= chrec_dont_know
;
2479 res
= instantiate_scev_r (instantiate_below
, evolution_loop
,
2481 fold_conversions
, size_expr
);
2484 /* Store the correct value to the cache. */
2485 global_cache
->set (si
, res
);
2489 /* Analyze all the parameters of the chrec, between INSTANTIATE_BELOW
2490 and EVOLUTION_LOOP, that were left under a symbolic form.
2492 CHREC is a polynomial chain of recurrence to be instantiated.
2494 CACHE is the cache of already instantiated values.
2496 Variable pointed by FOLD_CONVERSIONS is set to TRUE when the
2497 conversions that may wrap in signed/pointer type are folded, as long
2498 as the value of the chrec is preserved. If FOLD_CONVERSIONS is NULL
2499 then we don't do such fold.
2501 SIZE_EXPR is used for computing the size of the expression to be
2502 instantiated, and to stop if it exceeds some limit. */
2505 instantiate_scev_poly (edge instantiate_below
,
2506 struct loop
*evolution_loop
, struct loop
*,
2507 tree chrec
, bool *fold_conversions
, int size_expr
)
2510 tree op0
= instantiate_scev_r (instantiate_below
, evolution_loop
,
2511 get_chrec_loop (chrec
),
2512 CHREC_LEFT (chrec
), fold_conversions
,
2514 if (op0
== chrec_dont_know
)
2515 return chrec_dont_know
;
2517 op1
= instantiate_scev_r (instantiate_below
, evolution_loop
,
2518 get_chrec_loop (chrec
),
2519 CHREC_RIGHT (chrec
), fold_conversions
,
2521 if (op1
== chrec_dont_know
)
2522 return chrec_dont_know
;
2524 if (CHREC_LEFT (chrec
) != op0
2525 || CHREC_RIGHT (chrec
) != op1
)
2527 op1
= chrec_convert_rhs (chrec_type (op0
), op1
, NULL
);
2528 chrec
= build_polynomial_chrec (CHREC_VARIABLE (chrec
), op0
, op1
);
2534 /* Analyze all the parameters of the chrec, between INSTANTIATE_BELOW
2535 and EVOLUTION_LOOP, that were left under a symbolic form.
2537 "C0 CODE C1" is a binary expression of type TYPE to be instantiated.
2539 CACHE is the cache of already instantiated values.
2541 Variable pointed by FOLD_CONVERSIONS is set to TRUE when the
2542 conversions that may wrap in signed/pointer type are folded, as long
2543 as the value of the chrec is preserved. If FOLD_CONVERSIONS is NULL
2544 then we don't do such fold.
2546 SIZE_EXPR is used for computing the size of the expression to be
2547 instantiated, and to stop if it exceeds some limit. */
2550 instantiate_scev_binary (edge instantiate_below
,
2551 struct loop
*evolution_loop
, struct loop
*inner_loop
,
2552 tree chrec
, enum tree_code code
,
2553 tree type
, tree c0
, tree c1
,
2554 bool *fold_conversions
, int size_expr
)
2557 tree op0
= instantiate_scev_r (instantiate_below
, evolution_loop
, inner_loop
,
2558 c0
, fold_conversions
, size_expr
);
2559 if (op0
== chrec_dont_know
)
2560 return chrec_dont_know
;
2562 op1
= instantiate_scev_r (instantiate_below
, evolution_loop
, inner_loop
,
2563 c1
, fold_conversions
, size_expr
);
2564 if (op1
== chrec_dont_know
)
2565 return chrec_dont_know
;
2570 op0
= chrec_convert (type
, op0
, NULL
);
2571 op1
= chrec_convert_rhs (type
, op1
, NULL
);
2575 case POINTER_PLUS_EXPR
:
2577 return chrec_fold_plus (type
, op0
, op1
);
2580 return chrec_fold_minus (type
, op0
, op1
);
2583 return chrec_fold_multiply (type
, op0
, op1
);
2590 return chrec
? chrec
: fold_build2 (code
, type
, c0
, c1
);
2593 /* Analyze all the parameters of the chrec, between INSTANTIATE_BELOW
2594 and EVOLUTION_LOOP, that were left under a symbolic form.
2596 "CHREC" that stands for a convert expression "(TYPE) OP" is to be
2599 CACHE is the cache of already instantiated values.
2601 Variable pointed by FOLD_CONVERSIONS is set to TRUE when the
2602 conversions that may wrap in signed/pointer type are folded, as long
2603 as the value of the chrec is preserved. If FOLD_CONVERSIONS is NULL
2604 then we don't do such fold.
2606 SIZE_EXPR is used for computing the size of the expression to be
2607 instantiated, and to stop if it exceeds some limit. */
2610 instantiate_scev_convert (edge instantiate_below
,
2611 struct loop
*evolution_loop
, struct loop
*inner_loop
,
2612 tree chrec
, tree type
, tree op
,
2613 bool *fold_conversions
, int size_expr
)
2615 tree op0
= instantiate_scev_r (instantiate_below
, evolution_loop
,
2617 fold_conversions
, size_expr
);
2619 if (op0
== chrec_dont_know
)
2620 return chrec_dont_know
;
2622 if (fold_conversions
)
2624 tree tmp
= chrec_convert_aggressive (type
, op0
, fold_conversions
);
2628 /* If we used chrec_convert_aggressive, we can no longer assume that
2629 signed chrecs do not overflow, as chrec_convert does, so avoid
2630 calling it in that case. */
2631 if (*fold_conversions
)
2633 if (chrec
&& op0
== op
)
2636 return fold_convert (type
, op0
);
2640 return chrec_convert (type
, op0
, NULL
);
2643 /* Analyze all the parameters of the chrec, between INSTANTIATE_BELOW
2644 and EVOLUTION_LOOP, that were left under a symbolic form.
2646 CHREC is a BIT_NOT_EXPR or a NEGATE_EXPR expression to be instantiated.
2647 Handle ~X as -1 - X.
2648 Handle -X as -1 * X.
2650 CACHE is the cache of already instantiated values.
2652 Variable pointed by FOLD_CONVERSIONS is set to TRUE when the
2653 conversions that may wrap in signed/pointer type are folded, as long
2654 as the value of the chrec is preserved. If FOLD_CONVERSIONS is NULL
2655 then we don't do such fold.
2657 SIZE_EXPR is used for computing the size of the expression to be
2658 instantiated, and to stop if it exceeds some limit. */
2661 instantiate_scev_not (edge instantiate_below
,
2662 struct loop
*evolution_loop
, struct loop
*inner_loop
,
2664 enum tree_code code
, tree type
, tree op
,
2665 bool *fold_conversions
, int size_expr
)
2667 tree op0
= instantiate_scev_r (instantiate_below
, evolution_loop
,
2669 fold_conversions
, size_expr
);
2671 if (op0
== chrec_dont_know
)
2672 return chrec_dont_know
;
2676 op0
= chrec_convert (type
, op0
, NULL
);
2681 return chrec_fold_minus
2682 (type
, fold_convert (type
, integer_minus_one_node
), op0
);
2685 return chrec_fold_multiply
2686 (type
, fold_convert (type
, integer_minus_one_node
), op0
);
2693 return chrec
? chrec
: fold_build1 (code
, type
, op0
);
2696 /* Analyze all the parameters of the chrec, between INSTANTIATE_BELOW
2697 and EVOLUTION_LOOP, that were left under a symbolic form.
2699 CHREC is the scalar evolution to instantiate.
2701 CACHE is the cache of already instantiated values.
2703 Variable pointed by FOLD_CONVERSIONS is set to TRUE when the
2704 conversions that may wrap in signed/pointer type are folded, as long
2705 as the value of the chrec is preserved. If FOLD_CONVERSIONS is NULL
2706 then we don't do such fold.
2708 SIZE_EXPR is used for computing the size of the expression to be
2709 instantiated, and to stop if it exceeds some limit. */
2712 instantiate_scev_r (edge instantiate_below
,
2713 struct loop
*evolution_loop
, struct loop
*inner_loop
,
2715 bool *fold_conversions
, int size_expr
)
2717 /* Give up if the expression is larger than the MAX that we allow. */
2718 if (size_expr
++ > PARAM_VALUE (PARAM_SCEV_MAX_EXPR_SIZE
))
2719 return chrec_dont_know
;
2721 if (chrec
== NULL_TREE
2722 || automatically_generated_chrec_p (chrec
)
2723 || is_gimple_min_invariant (chrec
))
2726 switch (TREE_CODE (chrec
))
2729 return instantiate_scev_name (instantiate_below
, evolution_loop
,
2731 fold_conversions
, size_expr
);
2733 case POLYNOMIAL_CHREC
:
2734 return instantiate_scev_poly (instantiate_below
, evolution_loop
,
2736 fold_conversions
, size_expr
);
2738 case POINTER_PLUS_EXPR
:
2742 return instantiate_scev_binary (instantiate_below
, evolution_loop
,
2744 TREE_CODE (chrec
), chrec_type (chrec
),
2745 TREE_OPERAND (chrec
, 0),
2746 TREE_OPERAND (chrec
, 1),
2747 fold_conversions
, size_expr
);
2750 return instantiate_scev_convert (instantiate_below
, evolution_loop
,
2752 TREE_TYPE (chrec
), TREE_OPERAND (chrec
, 0),
2753 fold_conversions
, size_expr
);
2757 return instantiate_scev_not (instantiate_below
, evolution_loop
,
2759 TREE_CODE (chrec
), TREE_TYPE (chrec
),
2760 TREE_OPERAND (chrec
, 0),
2761 fold_conversions
, size_expr
);
2764 if (is_gimple_min_invariant (chrec
))
2767 case SCEV_NOT_KNOWN
:
2768 return chrec_dont_know
;
2774 if (CONSTANT_CLASS_P (chrec
))
2776 return chrec_dont_know
;
2780 /* Analyze all the parameters of the chrec that were left under a
2781 symbolic form. INSTANTIATE_BELOW is the basic block that stops the
2782 recursive instantiation of parameters: a parameter is a variable
2783 that is defined in a basic block that dominates INSTANTIATE_BELOW or
2784 a function parameter. */
2787 instantiate_scev (edge instantiate_below
, struct loop
*evolution_loop
,
2792 if (dump_file
&& (dump_flags
& TDF_SCEV
))
2794 fprintf (dump_file
, "(instantiate_scev \n");
2795 fprintf (dump_file
, " (instantiate_below = %d -> %d)\n",
2796 instantiate_below
->src
->index
, instantiate_below
->dest
->index
);
2798 fprintf (dump_file
, " (evolution_loop = %d)\n", evolution_loop
->num
);
2799 fprintf (dump_file
, " (chrec = ");
2800 print_generic_expr (dump_file
, chrec
);
2801 fprintf (dump_file
, ")\n");
2807 global_cache
= new instantiate_cache_type
;
2811 res
= instantiate_scev_r (instantiate_below
, evolution_loop
,
2812 NULL
, chrec
, NULL
, 0);
2816 delete global_cache
;
2817 global_cache
= NULL
;
2820 if (dump_file
&& (dump_flags
& TDF_SCEV
))
2822 fprintf (dump_file
, " (res = ");
2823 print_generic_expr (dump_file
, res
);
2824 fprintf (dump_file
, "))\n");
2830 /* Similar to instantiate_parameters, but does not introduce the
2831 evolutions in outer loops for LOOP invariants in CHREC, and does not
2832 care about causing overflows, as long as they do not affect value
2833 of an expression. */
2836 resolve_mixers (struct loop
*loop
, tree chrec
, bool *folded_casts
)
2839 bool fold_conversions
= false;
2842 global_cache
= new instantiate_cache_type
;
2846 tree ret
= instantiate_scev_r (loop_preheader_edge (loop
), loop
, NULL
,
2847 chrec
, &fold_conversions
, 0);
2849 if (folded_casts
&& !*folded_casts
)
2850 *folded_casts
= fold_conversions
;
2854 delete global_cache
;
2855 global_cache
= NULL
;
2861 /* Entry point for the analysis of the number of iterations pass.
2862 This function tries to safely approximate the number of iterations
2863 the loop will run. When this property is not decidable at compile
2864 time, the result is chrec_dont_know. Otherwise the result is a
2865 scalar or a symbolic parameter. When the number of iterations may
2866 be equal to zero and the property cannot be determined at compile
2867 time, the result is a COND_EXPR that represents in a symbolic form
2868 the conditions under which the number of iterations is not zero.
2870 Example of analysis: suppose that the loop has an exit condition:
2872 "if (b > 49) goto end_loop;"
2874 and that in a previous analysis we have determined that the
2875 variable 'b' has an evolution function:
2877 "EF = {23, +, 5}_2".
2879 When we evaluate the function at the point 5, i.e. the value of the
2880 variable 'b' after 5 iterations in the loop, we have EF (5) = 48,
2881 and EF (6) = 53. In this case the value of 'b' on exit is '53' and
2882 the loop body has been executed 6 times. */
2885 number_of_latch_executions (struct loop
*loop
)
2888 struct tree_niter_desc niter_desc
;
2892 /* Determine whether the number of iterations in loop has already
2894 res
= loop
->nb_iterations
;
2898 may_be_zero
= NULL_TREE
;
2900 if (dump_file
&& (dump_flags
& TDF_SCEV
))
2901 fprintf (dump_file
, "(number_of_iterations_in_loop = \n");
2903 res
= chrec_dont_know
;
2904 exit
= single_exit (loop
);
2906 if (exit
&& number_of_iterations_exit (loop
, exit
, &niter_desc
, false))
2908 may_be_zero
= niter_desc
.may_be_zero
;
2909 res
= niter_desc
.niter
;
2912 if (res
== chrec_dont_know
2914 || integer_zerop (may_be_zero
))
2916 else if (integer_nonzerop (may_be_zero
))
2917 res
= build_int_cst (TREE_TYPE (res
), 0);
2919 else if (COMPARISON_CLASS_P (may_be_zero
))
2920 res
= fold_build3 (COND_EXPR
, TREE_TYPE (res
), may_be_zero
,
2921 build_int_cst (TREE_TYPE (res
), 0), res
);
2923 res
= chrec_dont_know
;
2925 if (dump_file
&& (dump_flags
& TDF_SCEV
))
2927 fprintf (dump_file
, " (set_nb_iterations_in_loop = ");
2928 print_generic_expr (dump_file
, res
);
2929 fprintf (dump_file
, "))\n");
2932 loop
->nb_iterations
= res
;
2937 /* Counters for the stats. */
2943 unsigned nb_affine_multivar
;
2944 unsigned nb_higher_poly
;
2945 unsigned nb_chrec_dont_know
;
2946 unsigned nb_undetermined
;
2949 /* Reset the counters. */
2952 reset_chrecs_counters (struct chrec_stats
*stats
)
2954 stats
->nb_chrecs
= 0;
2955 stats
->nb_affine
= 0;
2956 stats
->nb_affine_multivar
= 0;
2957 stats
->nb_higher_poly
= 0;
2958 stats
->nb_chrec_dont_know
= 0;
2959 stats
->nb_undetermined
= 0;
2962 /* Dump the contents of a CHREC_STATS structure. */
2965 dump_chrecs_stats (FILE *file
, struct chrec_stats
*stats
)
2967 fprintf (file
, "\n(\n");
2968 fprintf (file
, "-----------------------------------------\n");
2969 fprintf (file
, "%d\taffine univariate chrecs\n", stats
->nb_affine
);
2970 fprintf (file
, "%d\taffine multivariate chrecs\n", stats
->nb_affine_multivar
);
2971 fprintf (file
, "%d\tdegree greater than 2 polynomials\n",
2972 stats
->nb_higher_poly
);
2973 fprintf (file
, "%d\tchrec_dont_know chrecs\n", stats
->nb_chrec_dont_know
);
2974 fprintf (file
, "-----------------------------------------\n");
2975 fprintf (file
, "%d\ttotal chrecs\n", stats
->nb_chrecs
);
2976 fprintf (file
, "%d\twith undetermined coefficients\n",
2977 stats
->nb_undetermined
);
2978 fprintf (file
, "-----------------------------------------\n");
2979 fprintf (file
, "%d\tchrecs in the scev database\n",
2980 (int) scalar_evolution_info
->elements ());
2981 fprintf (file
, "%d\tsets in the scev database\n", nb_set_scev
);
2982 fprintf (file
, "%d\tgets in the scev database\n", nb_get_scev
);
2983 fprintf (file
, "-----------------------------------------\n");
2984 fprintf (file
, ")\n\n");
2987 /* Gather statistics about CHREC. */
2990 gather_chrec_stats (tree chrec
, struct chrec_stats
*stats
)
2992 if (dump_file
&& (dump_flags
& TDF_STATS
))
2994 fprintf (dump_file
, "(classify_chrec ");
2995 print_generic_expr (dump_file
, chrec
);
2996 fprintf (dump_file
, "\n");
3001 if (chrec
== NULL_TREE
)
3003 stats
->nb_undetermined
++;
3007 switch (TREE_CODE (chrec
))
3009 case POLYNOMIAL_CHREC
:
3010 if (evolution_function_is_affine_p (chrec
))
3012 if (dump_file
&& (dump_flags
& TDF_STATS
))
3013 fprintf (dump_file
, " affine_univariate\n");
3016 else if (evolution_function_is_affine_multivariate_p (chrec
, 0))
3018 if (dump_file
&& (dump_flags
& TDF_STATS
))
3019 fprintf (dump_file
, " affine_multivariate\n");
3020 stats
->nb_affine_multivar
++;
3024 if (dump_file
&& (dump_flags
& TDF_STATS
))
3025 fprintf (dump_file
, " higher_degree_polynomial\n");
3026 stats
->nb_higher_poly
++;
3035 if (chrec_contains_undetermined (chrec
))
3037 if (dump_file
&& (dump_flags
& TDF_STATS
))
3038 fprintf (dump_file
, " undetermined\n");
3039 stats
->nb_undetermined
++;
3042 if (dump_file
&& (dump_flags
& TDF_STATS
))
3043 fprintf (dump_file
, ")\n");
3046 /* Classify the chrecs of the whole database. */
3049 gather_stats_on_scev_database (void)
3051 struct chrec_stats stats
;
3056 reset_chrecs_counters (&stats
);
3058 hash_table
<scev_info_hasher
>::iterator iter
;
3060 FOR_EACH_HASH_TABLE_ELEMENT (*scalar_evolution_info
, elt
, scev_info_str
*,
3062 gather_chrec_stats (elt
->chrec
, &stats
);
3064 dump_chrecs_stats (dump_file
, &stats
);
3072 initialize_scalar_evolutions_analyzer (void)
3074 /* The elements below are unique. */
3075 if (chrec_dont_know
== NULL_TREE
)
3077 chrec_not_analyzed_yet
= NULL_TREE
;
3078 chrec_dont_know
= make_node (SCEV_NOT_KNOWN
);
3079 chrec_known
= make_node (SCEV_KNOWN
);
3080 TREE_TYPE (chrec_dont_know
) = void_type_node
;
3081 TREE_TYPE (chrec_known
) = void_type_node
;
3085 /* Initialize the analysis of scalar evolutions for LOOPS. */
3088 scev_initialize (void)
3092 gcc_assert (! scev_initialized_p ());
3094 scalar_evolution_info
= hash_table
<scev_info_hasher
>::create_ggc (100);
3096 initialize_scalar_evolutions_analyzer ();
3098 FOR_EACH_LOOP (loop
, 0)
3100 loop
->nb_iterations
= NULL_TREE
;
3104 /* Return true if SCEV is initialized. */
3107 scev_initialized_p (void)
3109 return scalar_evolution_info
!= NULL
;
3112 /* Cleans up the information cached by the scalar evolutions analysis
3113 in the hash table. */
3116 scev_reset_htab (void)
3118 if (!scalar_evolution_info
)
3121 scalar_evolution_info
->empty ();
3124 /* Cleans up the information cached by the scalar evolutions analysis
3125 in the hash table and in the loop->nb_iterations. */
3134 FOR_EACH_LOOP (loop
, 0)
3136 loop
->nb_iterations
= NULL_TREE
;
3140 /* Return true if the IV calculation in TYPE can overflow based on the knowledge
3141 of the upper bound on the number of iterations of LOOP, the BASE and STEP
3144 We do not use information whether TYPE can overflow so it is safe to
3145 use this test even for derived IVs not computed every iteration or
3146 hypotetical IVs to be inserted into code. */
3149 iv_can_overflow_p (struct loop
*loop
, tree type
, tree base
, tree step
)
3152 wide_int base_min
, base_max
, step_min
, step_max
, type_min
, type_max
;
3153 signop sgn
= TYPE_SIGN (type
);
3155 if (integer_zerop (step
))
3158 if (TREE_CODE (base
) == INTEGER_CST
)
3159 base_min
= base_max
= wi::to_wide (base
);
3160 else if (TREE_CODE (base
) == SSA_NAME
3161 && INTEGRAL_TYPE_P (TREE_TYPE (base
))
3162 && get_range_info (base
, &base_min
, &base_max
) == VR_RANGE
)
3167 if (TREE_CODE (step
) == INTEGER_CST
)
3168 step_min
= step_max
= wi::to_wide (step
);
3169 else if (TREE_CODE (step
) == SSA_NAME
3170 && INTEGRAL_TYPE_P (TREE_TYPE (step
))
3171 && get_range_info (step
, &step_min
, &step_max
) == VR_RANGE
)
3176 if (!get_max_loop_iterations (loop
, &nit
))
3179 type_min
= wi::min_value (type
);
3180 type_max
= wi::max_value (type
);
3182 /* Just sanity check that we don't see values out of the range of the type.
3183 In this case the arithmetics bellow would overflow. */
3184 gcc_checking_assert (wi::ge_p (base_min
, type_min
, sgn
)
3185 && wi::le_p (base_max
, type_max
, sgn
));
3187 /* Account the possible increment in the last ieration. */
3188 wi::overflow_type overflow
= wi::OVF_NONE
;
3189 nit
= wi::add (nit
, 1, SIGNED
, &overflow
);
3193 /* NIT is typeless and can exceed the precision of the type. In this case
3194 overflow is always possible, because we know STEP is non-zero. */
3195 if (wi::min_precision (nit
, UNSIGNED
) > TYPE_PRECISION (type
))
3197 wide_int nit2
= wide_int::from (nit
, TYPE_PRECISION (type
), UNSIGNED
);
3199 /* If step can be positive, check that nit*step <= type_max-base.
3200 This can be done by unsigned arithmetic and we only need to watch overflow
3201 in the multiplication. The right hand side can always be represented in
3203 if (sgn
== UNSIGNED
|| !wi::neg_p (step_max
))
3205 wi::overflow_type overflow
= wi::OVF_NONE
;
3206 if (wi::gtu_p (wi::mul (step_max
, nit2
, UNSIGNED
, &overflow
),
3207 type_max
- base_max
)
3211 /* If step can be negative, check that nit*(-step) <= base_min-type_min. */
3212 if (sgn
== SIGNED
&& wi::neg_p (step_min
))
3214 wi::overflow_type overflow
, overflow2
;
3215 overflow
= overflow2
= wi::OVF_NONE
;
3216 if (wi::gtu_p (wi::mul (wi::neg (step_min
, &overflow2
),
3217 nit2
, UNSIGNED
, &overflow
),
3218 base_min
- type_min
)
3219 || overflow
|| overflow2
)
3226 /* Given EV with form of "(type) {inner_base, inner_step}_loop", this
3227 function tries to derive condition under which it can be simplified
3228 into "{(type)inner_base, (type)inner_step}_loop". The condition is
3229 the maximum number that inner iv can iterate. */
3232 derive_simple_iv_with_niters (tree ev
, tree
*niters
)
3234 if (!CONVERT_EXPR_P (ev
))
3237 tree inner_ev
= TREE_OPERAND (ev
, 0);
3238 if (TREE_CODE (inner_ev
) != POLYNOMIAL_CHREC
)
3241 tree init
= CHREC_LEFT (inner_ev
);
3242 tree step
= CHREC_RIGHT (inner_ev
);
3243 if (TREE_CODE (init
) != INTEGER_CST
3244 || TREE_CODE (step
) != INTEGER_CST
|| integer_zerop (step
))
3247 tree type
= TREE_TYPE (ev
);
3248 tree inner_type
= TREE_TYPE (inner_ev
);
3249 if (TYPE_PRECISION (inner_type
) >= TYPE_PRECISION (type
))
3252 /* Type conversion in "(type) {inner_base, inner_step}_loop" can be
3253 folded only if inner iv won't overflow. We compute the maximum
3254 number the inner iv can iterate before overflowing and return the
3255 simplified affine iv. */
3257 init
= fold_convert (type
, init
);
3258 step
= fold_convert (type
, step
);
3259 ev
= build_polynomial_chrec (CHREC_VARIABLE (inner_ev
), init
, step
);
3260 if (tree_int_cst_sign_bit (step
))
3262 tree bound
= lower_bound_in_type (inner_type
, inner_type
);
3263 delta
= fold_build2 (MINUS_EXPR
, type
, init
, fold_convert (type
, bound
));
3264 step
= fold_build1 (NEGATE_EXPR
, type
, step
);
3268 tree bound
= upper_bound_in_type (inner_type
, inner_type
);
3269 delta
= fold_build2 (MINUS_EXPR
, type
, fold_convert (type
, bound
), init
);
3271 *niters
= fold_build2 (FLOOR_DIV_EXPR
, type
, delta
, step
);
3275 /* Checks whether use of OP in USE_LOOP behaves as a simple affine iv with
3276 respect to WRTO_LOOP and returns its base and step in IV if possible
3277 (see analyze_scalar_evolution_in_loop for more details on USE_LOOP
3278 and WRTO_LOOP). If ALLOW_NONCONSTANT_STEP is true, we want step to be
3279 invariant in LOOP. Otherwise we require it to be an integer constant.
3281 IV->no_overflow is set to true if we are sure the iv cannot overflow (e.g.
3282 because it is computed in signed arithmetics). Consequently, adding an
3285 for (i = IV->base; ; i += IV->step)
3287 is only safe if IV->no_overflow is false, or TYPE_OVERFLOW_UNDEFINED is
3288 false for the type of the induction variable, or you can prove that i does
3289 not wrap by some other argument. Otherwise, this might introduce undefined
3293 for (; ; i = (type) ((unsigned type) i + (unsigned type) iv->step))
3295 must be used instead.
3297 When IV_NITERS is not NULL, this function also checks case in which OP
3298 is a conversion of an inner simple iv of below form:
3300 (outer_type){inner_base, inner_step}_loop.
3302 If type of inner iv has smaller precision than outer_type, it can't be
3303 folded into {(outer_type)inner_base, (outer_type)inner_step}_loop because
3304 the inner iv could overflow/wrap. In this case, we derive a condition
3305 under which the inner iv won't overflow/wrap and do the simplification.
3306 The derived condition normally is the maximum number the inner iv can
3307 iterate, and will be stored in IV_NITERS. This is useful in loop niter
3308 analysis, to derive break conditions when a loop must terminate, when is
3312 simple_iv_with_niters (struct loop
*wrto_loop
, struct loop
*use_loop
,
3313 tree op
, affine_iv
*iv
, tree
*iv_niters
,
3314 bool allow_nonconstant_step
)
3316 enum tree_code code
;
3317 tree type
, ev
, base
, e
;
3321 iv
->base
= NULL_TREE
;
3322 iv
->step
= NULL_TREE
;
3323 iv
->no_overflow
= false;
3325 type
= TREE_TYPE (op
);
3326 if (!POINTER_TYPE_P (type
)
3327 && !INTEGRAL_TYPE_P (type
))
3330 ev
= analyze_scalar_evolution_in_loop (wrto_loop
, use_loop
, op
,
3332 if (chrec_contains_undetermined (ev
)
3333 || chrec_contains_symbols_defined_in_loop (ev
, wrto_loop
->num
))
3336 if (tree_does_not_contain_chrecs (ev
))
3339 iv
->step
= build_int_cst (TREE_TYPE (ev
), 0);
3340 iv
->no_overflow
= true;
3344 /* If we can derive valid scalar evolution with assumptions. */
3345 if (iv_niters
&& TREE_CODE (ev
) != POLYNOMIAL_CHREC
)
3346 ev
= derive_simple_iv_with_niters (ev
, iv_niters
);
3348 if (TREE_CODE (ev
) != POLYNOMIAL_CHREC
)
3351 if (CHREC_VARIABLE (ev
) != (unsigned) wrto_loop
->num
)
3354 iv
->step
= CHREC_RIGHT (ev
);
3355 if ((!allow_nonconstant_step
&& TREE_CODE (iv
->step
) != INTEGER_CST
)
3356 || tree_contains_chrecs (iv
->step
, NULL
))
3359 iv
->base
= CHREC_LEFT (ev
);
3360 if (tree_contains_chrecs (iv
->base
, NULL
))
3363 iv
->no_overflow
= !folded_casts
&& nowrap_type_p (type
);
3365 if (!iv
->no_overflow
3366 && !iv_can_overflow_p (wrto_loop
, type
, iv
->base
, iv
->step
))
3367 iv
->no_overflow
= true;
3369 /* Try to simplify iv base:
3371 (signed T) ((unsigned T)base + step) ;; TREE_TYPE (base) == signed T
3372 == (signed T)(unsigned T)base + step
3375 If we can prove operation (base + step) doesn't overflow or underflow.
3376 Specifically, we try to prove below conditions are satisfied:
3378 base <= UPPER_BOUND (type) - step ;;step > 0
3379 base >= LOWER_BOUND (type) - step ;;step < 0
3381 This is done by proving the reverse conditions are false using loop's
3384 The is necessary to make loop niter, or iv overflow analysis easier
3387 int foo (int *a, signed char s, signed char l)
3390 for (i = s; i < l; i++)
3395 Note variable I is firstly converted to type unsigned char, incremented,
3396 then converted back to type signed char. */
3398 if (wrto_loop
->num
!= use_loop
->num
)
3401 if (!CONVERT_EXPR_P (iv
->base
) || TREE_CODE (iv
->step
) != INTEGER_CST
)
3404 type
= TREE_TYPE (iv
->base
);
3405 e
= TREE_OPERAND (iv
->base
, 0);
3406 if (TREE_CODE (e
) != PLUS_EXPR
3407 || TREE_CODE (TREE_OPERAND (e
, 1)) != INTEGER_CST
3408 || !tree_int_cst_equal (iv
->step
,
3409 fold_convert (type
, TREE_OPERAND (e
, 1))))
3411 e
= TREE_OPERAND (e
, 0);
3412 if (!CONVERT_EXPR_P (e
))
3414 base
= TREE_OPERAND (e
, 0);
3415 if (!useless_type_conversion_p (type
, TREE_TYPE (base
)))
3418 if (tree_int_cst_sign_bit (iv
->step
))
3421 extreme
= wi::min_value (type
);
3426 extreme
= wi::max_value (type
);
3428 wi::overflow_type overflow
= wi::OVF_NONE
;
3429 extreme
= wi::sub (extreme
, wi::to_wide (iv
->step
),
3430 TYPE_SIGN (type
), &overflow
);
3433 e
= fold_build2 (code
, boolean_type_node
, base
,
3434 wide_int_to_tree (type
, extreme
));
3435 e
= simplify_using_initial_conditions (use_loop
, e
);
3436 if (!integer_zerop (e
))
3439 if (POINTER_TYPE_P (TREE_TYPE (base
)))
3440 code
= POINTER_PLUS_EXPR
;
3444 iv
->base
= fold_build2 (code
, TREE_TYPE (base
), base
, iv
->step
);
3448 /* Like simple_iv_with_niters, but return TRUE when OP behaves as a simple
3449 affine iv unconditionally. */
3452 simple_iv (struct loop
*wrto_loop
, struct loop
*use_loop
, tree op
,
3453 affine_iv
*iv
, bool allow_nonconstant_step
)
3455 return simple_iv_with_niters (wrto_loop
, use_loop
, op
, iv
,
3456 NULL
, allow_nonconstant_step
);
3459 /* Finalize the scalar evolution analysis. */
3462 scev_finalize (void)
3464 if (!scalar_evolution_info
)
3466 scalar_evolution_info
->empty ();
3467 scalar_evolution_info
= NULL
;
3468 free_numbers_of_iterations_estimates (cfun
);
3471 /* Returns true if the expression EXPR is considered to be too expensive
3472 for scev_const_prop. */
3475 expression_expensive_p (tree expr
)
3477 enum tree_code code
;
3479 if (is_gimple_val (expr
))
3482 code
= TREE_CODE (expr
);
3483 if (code
== TRUNC_DIV_EXPR
3484 || code
== CEIL_DIV_EXPR
3485 || code
== FLOOR_DIV_EXPR
3486 || code
== ROUND_DIV_EXPR
3487 || code
== TRUNC_MOD_EXPR
3488 || code
== CEIL_MOD_EXPR
3489 || code
== FLOOR_MOD_EXPR
3490 || code
== ROUND_MOD_EXPR
3491 || code
== EXACT_DIV_EXPR
)
3493 /* Division by power of two is usually cheap, so we allow it.
3494 Forbid anything else. */
3495 if (!integer_pow2p (TREE_OPERAND (expr
, 1)))
3499 if (code
== CALL_EXPR
)
3502 call_expr_arg_iterator iter
;
3504 if (!is_inexpensive_builtin (get_callee_fndecl (expr
)))
3506 FOR_EACH_CALL_EXPR_ARG (arg
, iter
, expr
)
3507 if (expression_expensive_p (arg
))
3512 if (code
== COND_EXPR
)
3513 return (expression_expensive_p (TREE_OPERAND (expr
, 0))
3514 || (EXPR_P (TREE_OPERAND (expr
, 1))
3515 && EXPR_P (TREE_OPERAND (expr
, 2)))
3516 /* If either branch has side effects or could trap. */
3517 || TREE_SIDE_EFFECTS (TREE_OPERAND (expr
, 1))
3518 || generic_expr_could_trap_p (TREE_OPERAND (expr
, 1))
3519 || TREE_SIDE_EFFECTS (TREE_OPERAND (expr
, 0))
3520 || generic_expr_could_trap_p (TREE_OPERAND (expr
, 0))
3521 || expression_expensive_p (TREE_OPERAND (expr
, 1))
3522 || expression_expensive_p (TREE_OPERAND (expr
, 2)));
3524 switch (TREE_CODE_CLASS (code
))
3527 case tcc_comparison
:
3528 if (expression_expensive_p (TREE_OPERAND (expr
, 1)))
3533 return expression_expensive_p (TREE_OPERAND (expr
, 0));
3540 /* Do final value replacement for LOOP. */
3543 final_value_replacement_loop (struct loop
*loop
)
3545 /* If we do not know exact number of iterations of the loop, we cannot
3546 replace the final value. */
3547 edge exit
= single_exit (loop
);
3551 tree niter
= number_of_latch_executions (loop
);
3552 if (niter
== chrec_dont_know
)
3555 /* Ensure that it is possible to insert new statements somewhere. */
3556 if (!single_pred_p (exit
->dest
))
3557 split_loop_exit_edge (exit
);
3559 /* Set stmt insertion pointer. All stmts are inserted before this point. */
3560 gimple_stmt_iterator gsi
= gsi_after_labels (exit
->dest
);
3562 struct loop
*ex_loop
3563 = superloop_at_depth (loop
,
3564 loop_depth (exit
->dest
->loop_father
) + 1);
3567 for (psi
= gsi_start_phis (exit
->dest
); !gsi_end_p (psi
); )
3569 gphi
*phi
= psi
.phi ();
3570 tree rslt
= PHI_RESULT (phi
);
3571 tree def
= PHI_ARG_DEF_FROM_EDGE (phi
, exit
);
3572 if (virtual_operand_p (def
))
3578 if (!POINTER_TYPE_P (TREE_TYPE (def
))
3579 && !INTEGRAL_TYPE_P (TREE_TYPE (def
)))
3586 def
= analyze_scalar_evolution_in_loop (ex_loop
, loop
, def
,
3588 def
= compute_overall_effect_of_inner_loop (ex_loop
, def
);
3589 if (!tree_does_not_contain_chrecs (def
)
3590 || chrec_contains_symbols_defined_in_loop (def
, ex_loop
->num
)
3591 /* Moving the computation from the loop may prolong life range
3592 of some ssa names, which may cause problems if they appear
3593 on abnormal edges. */
3594 || contains_abnormal_ssa_name_p (def
)
3595 /* Do not emit expensive expressions. The rationale is that
3596 when someone writes a code like
3598 while (n > 45) n -= 45;
3600 he probably knows that n is not large, and does not want it
3601 to be turned into n %= 45. */
3602 || expression_expensive_p (def
))
3604 if (dump_file
&& (dump_flags
& TDF_DETAILS
))
3606 fprintf (dump_file
, "not replacing:\n ");
3607 print_gimple_stmt (dump_file
, phi
, 0);
3608 fprintf (dump_file
, "\n");
3614 /* Eliminate the PHI node and replace it by a computation outside
3618 fprintf (dump_file
, "\nfinal value replacement:\n ");
3619 print_gimple_stmt (dump_file
, phi
, 0);
3620 fprintf (dump_file
, " with expr: ");
3621 print_generic_expr (dump_file
, def
);
3623 def
= unshare_expr (def
);
3624 remove_phi_node (&psi
, false);
3626 /* If def's type has undefined overflow and there were folded
3627 casts, rewrite all stmts added for def into arithmetics
3628 with defined overflow behavior. */
3629 if (folded_casts
&& ANY_INTEGRAL_TYPE_P (TREE_TYPE (def
))
3630 && TYPE_OVERFLOW_UNDEFINED (TREE_TYPE (def
)))
3633 gimple_stmt_iterator gsi2
;
3634 def
= force_gimple_operand (def
, &stmts
, true, NULL_TREE
);
3635 gsi2
= gsi_start (stmts
);
3636 while (!gsi_end_p (gsi2
))
3638 gimple
*stmt
= gsi_stmt (gsi2
);
3639 gimple_stmt_iterator gsi3
= gsi2
;
3641 gsi_remove (&gsi3
, false);
3642 if (is_gimple_assign (stmt
)
3643 && arith_code_with_undefined_signed_overflow
3644 (gimple_assign_rhs_code (stmt
)))
3645 gsi_insert_seq_before (&gsi
,
3646 rewrite_to_defined_overflow (stmt
),
3649 gsi_insert_before (&gsi
, stmt
, GSI_SAME_STMT
);
3653 def
= force_gimple_operand_gsi (&gsi
, def
, false, NULL_TREE
,
3654 true, GSI_SAME_STMT
);
3656 gassign
*ass
= gimple_build_assign (rslt
, def
);
3657 gsi_insert_before (&gsi
, ass
, GSI_SAME_STMT
);
3660 fprintf (dump_file
, "\n final stmt:\n ");
3661 print_gimple_stmt (dump_file
, ass
, 0);
3662 fprintf (dump_file
, "\n");
3667 /* Replace ssa names for that scev can prove they are constant by the
3668 appropriate constants. Also perform final value replacement in loops,
3669 in case the replacement expressions are cheap.
3671 We only consider SSA names defined by phi nodes; rest is left to the
3672 ordinary constant propagation pass. */
3675 scev_const_prop (void)
3678 tree name
, type
, ev
;
3681 bitmap ssa_names_to_remove
= NULL
;
3685 if (number_of_loops (cfun
) <= 1)
3688 FOR_EACH_BB_FN (bb
, cfun
)
3690 loop
= bb
->loop_father
;
3692 for (psi
= gsi_start_phis (bb
); !gsi_end_p (psi
); gsi_next (&psi
))
3695 name
= PHI_RESULT (phi
);
3697 if (virtual_operand_p (name
))
3700 type
= TREE_TYPE (name
);
3702 if (!POINTER_TYPE_P (type
)
3703 && !INTEGRAL_TYPE_P (type
))
3706 ev
= resolve_mixers (loop
, analyze_scalar_evolution (loop
, name
),
3708 if (!is_gimple_min_invariant (ev
)
3709 || !may_propagate_copy (name
, ev
))
3712 /* Replace the uses of the name. */
3715 if (dump_file
&& (dump_flags
& TDF_DETAILS
))
3717 fprintf (dump_file
, "Replacing uses of: ");
3718 print_generic_expr (dump_file
, name
);
3719 fprintf (dump_file
, " with: ");
3720 print_generic_expr (dump_file
, ev
);
3721 fprintf (dump_file
, "\n");
3723 replace_uses_by (name
, ev
);
3726 if (!ssa_names_to_remove
)
3727 ssa_names_to_remove
= BITMAP_ALLOC (NULL
);
3728 bitmap_set_bit (ssa_names_to_remove
, SSA_NAME_VERSION (name
));
3732 /* Remove the ssa names that were replaced by constants. We do not
3733 remove them directly in the previous cycle, since this
3734 invalidates scev cache. */
3735 if (ssa_names_to_remove
)
3739 EXECUTE_IF_SET_IN_BITMAP (ssa_names_to_remove
, 0, i
, bi
)
3741 gimple_stmt_iterator psi
;
3742 name
= ssa_name (i
);
3743 phi
= as_a
<gphi
*> (SSA_NAME_DEF_STMT (name
));
3745 gcc_assert (gimple_code (phi
) == GIMPLE_PHI
);
3746 psi
= gsi_for_stmt (phi
);
3747 remove_phi_node (&psi
, true);
3750 BITMAP_FREE (ssa_names_to_remove
);
3754 /* Now the regular final value replacement. */
3755 FOR_EACH_LOOP (loop
, LI_FROM_INNERMOST
)
3756 final_value_replacement_loop (loop
);
3761 #include "gt-tree-scalar-evolution.h"