Relocation (= move+destroy)
[official-gcc.git] / gcc / tree-data-ref.h
blob525d27f04b96eb84910ac281a2474dcdcd7f4820
1 /* Data references and dependences detectors.
2 Copyright (C) 2003-2018 Free Software Foundation, Inc.
3 Contributed by Sebastian Pop <pop@cri.ensmp.fr>
5 This file is part of GCC.
7 GCC is free software; you can redistribute it and/or modify it under
8 the terms of the GNU General Public License as published by the Free
9 Software Foundation; either version 3, or (at your option) any later
10 version.
12 GCC is distributed in the hope that it will be useful, but WITHOUT ANY
13 WARRANTY; without even the implied warranty of MERCHANTABILITY or
14 FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License
15 for more details.
17 You should have received a copy of the GNU General Public License
18 along with GCC; see the file COPYING3. If not see
19 <http://www.gnu.org/licenses/>. */
21 #ifndef GCC_TREE_DATA_REF_H
22 #define GCC_TREE_DATA_REF_H
24 #include "graphds.h"
25 #include "tree-chrec.h"
26 #include "opt-problem.h"
29 innermost_loop_behavior describes the evolution of the address of the memory
30 reference in the innermost enclosing loop. The address is expressed as
31 BASE + STEP * # of iteration, and base is further decomposed as the base
32 pointer (BASE_ADDRESS), loop invariant offset (OFFSET) and
33 constant offset (INIT). Examples, in loop nest
35 for (i = 0; i < 100; i++)
36 for (j = 3; j < 100; j++)
38 Example 1 Example 2
39 data-ref a[j].b[i][j] *(p + x + 16B + 4B * j)
42 innermost_loop_behavior
43 base_address &a p
44 offset i * D_i x
45 init 3 * D_j + offsetof (b) 28
46 step D_j 4
49 struct innermost_loop_behavior
51 tree base_address;
52 tree offset;
53 tree init;
54 tree step;
56 /* BASE_ADDRESS is known to be misaligned by BASE_MISALIGNMENT bytes
57 from an alignment boundary of BASE_ALIGNMENT bytes. For example,
58 if we had:
60 struct S __attribute__((aligned(16))) { ... };
62 char *ptr;
63 ... *(struct S *) (ptr - 4) ...;
65 the information would be:
67 base_address: ptr
68 base_aligment: 16
69 base_misalignment: 4
70 init: -4
72 where init cancels the base misalignment. If instead we had a
73 reference to a particular field:
75 struct S __attribute__((aligned(16))) { ... int f; ... };
77 char *ptr;
78 ... ((struct S *) (ptr - 4))->f ...;
80 the information would be:
82 base_address: ptr
83 base_aligment: 16
84 base_misalignment: 4
85 init: -4 + offsetof (S, f)
87 where base_address + init might also be misaligned, and by a different
88 amount from base_address. */
89 unsigned int base_alignment;
90 unsigned int base_misalignment;
92 /* The largest power of two that divides OFFSET, capped to a suitably
93 high value if the offset is zero. This is a byte rather than a bit
94 quantity. */
95 unsigned int offset_alignment;
97 /* Likewise for STEP. */
98 unsigned int step_alignment;
101 /* Describes the evolutions of indices of the memory reference. The indices
102 are indices of the ARRAY_REFs, indexes in artificial dimensions
103 added for member selection of records and the operands of MEM_REFs.
104 BASE_OBJECT is the part of the reference that is loop-invariant
105 (note that this reference does not have to cover the whole object
106 being accessed, in which case UNCONSTRAINED_BASE is set; hence it is
107 not recommended to use BASE_OBJECT in any code generation).
108 For the examples above,
110 base_object: a *(p + x + 4B * j_0)
111 indices: {j_0, +, 1}_2 {16, +, 4}_2
113 {i_0, +, 1}_1
114 {j_0, +, 1}_2
117 struct indices
119 /* The object. */
120 tree base_object;
122 /* A list of chrecs. Access functions of the indices. */
123 vec<tree> access_fns;
125 /* Whether BASE_OBJECT is an access representing the whole object
126 or whether the access could not be constrained. */
127 bool unconstrained_base;
130 struct dr_alias
132 /* The alias information that should be used for new pointers to this
133 location. */
134 struct ptr_info_def *ptr_info;
137 /* An integer vector. A vector formally consists of an element of a vector
138 space. A vector space is a set that is closed under vector addition
139 and scalar multiplication. In this vector space, an element is a list of
140 integers. */
141 typedef int *lambda_vector;
143 /* An integer matrix. A matrix consists of m vectors of length n (IE
144 all vectors are the same length). */
145 typedef lambda_vector *lambda_matrix;
149 struct data_reference
151 /* A pointer to the statement that contains this DR. */
152 gimple *stmt;
154 /* A pointer to the memory reference. */
155 tree ref;
157 /* Auxiliary info specific to a pass. */
158 void *aux;
160 /* True when the data reference is in RHS of a stmt. */
161 bool is_read;
163 /* True when the data reference is conditional within STMT,
164 i.e. if it might not occur even when the statement is executed
165 and runs to completion. */
166 bool is_conditional_in_stmt;
168 /* Behavior of the memory reference in the innermost loop. */
169 struct innermost_loop_behavior innermost;
171 /* Subscripts of this data reference. */
172 struct indices indices;
174 /* Alias information for the data reference. */
175 struct dr_alias alias;
178 #define DR_STMT(DR) (DR)->stmt
179 #define DR_REF(DR) (DR)->ref
180 #define DR_BASE_OBJECT(DR) (DR)->indices.base_object
181 #define DR_UNCONSTRAINED_BASE(DR) (DR)->indices.unconstrained_base
182 #define DR_ACCESS_FNS(DR) (DR)->indices.access_fns
183 #define DR_ACCESS_FN(DR, I) DR_ACCESS_FNS (DR)[I]
184 #define DR_NUM_DIMENSIONS(DR) DR_ACCESS_FNS (DR).length ()
185 #define DR_IS_READ(DR) (DR)->is_read
186 #define DR_IS_WRITE(DR) (!DR_IS_READ (DR))
187 #define DR_IS_CONDITIONAL_IN_STMT(DR) (DR)->is_conditional_in_stmt
188 #define DR_BASE_ADDRESS(DR) (DR)->innermost.base_address
189 #define DR_OFFSET(DR) (DR)->innermost.offset
190 #define DR_INIT(DR) (DR)->innermost.init
191 #define DR_STEP(DR) (DR)->innermost.step
192 #define DR_PTR_INFO(DR) (DR)->alias.ptr_info
193 #define DR_BASE_ALIGNMENT(DR) (DR)->innermost.base_alignment
194 #define DR_BASE_MISALIGNMENT(DR) (DR)->innermost.base_misalignment
195 #define DR_OFFSET_ALIGNMENT(DR) (DR)->innermost.offset_alignment
196 #define DR_STEP_ALIGNMENT(DR) (DR)->innermost.step_alignment
197 #define DR_INNERMOST(DR) (DR)->innermost
199 typedef struct data_reference *data_reference_p;
201 /* This struct is used to store the information of a data reference,
202 including the data ref itself and the segment length for aliasing
203 checks. This is used to merge alias checks. */
205 struct dr_with_seg_len
207 dr_with_seg_len (data_reference_p d, tree len, unsigned HOST_WIDE_INT size,
208 unsigned int a)
209 : dr (d), seg_len (len), access_size (size), align (a) {}
211 data_reference_p dr;
212 /* The offset of the last access that needs to be checked minus
213 the offset of the first. */
214 tree seg_len;
215 /* A value that, when added to abs (SEG_LEN), gives the total number of
216 bytes in the segment. */
217 poly_uint64 access_size;
218 /* The minimum common alignment of DR's start address, SEG_LEN and
219 ACCESS_SIZE. */
220 unsigned int align;
223 /* This struct contains two dr_with_seg_len objects with aliasing data
224 refs. Two comparisons are generated from them. */
226 struct dr_with_seg_len_pair_t
228 dr_with_seg_len_pair_t (const dr_with_seg_len& d1,
229 const dr_with_seg_len& d2)
230 : first (d1), second (d2) {}
232 dr_with_seg_len first;
233 dr_with_seg_len second;
236 enum data_dependence_direction {
237 dir_positive,
238 dir_negative,
239 dir_equal,
240 dir_positive_or_negative,
241 dir_positive_or_equal,
242 dir_negative_or_equal,
243 dir_star,
244 dir_independent
247 /* The description of the grid of iterations that overlap. At most
248 two loops are considered at the same time just now, hence at most
249 two functions are needed. For each of the functions, we store
250 the vector of coefficients, f[0] + x * f[1] + y * f[2] + ...,
251 where x, y, ... are variables. */
253 #define MAX_DIM 2
255 /* Special values of N. */
256 #define NO_DEPENDENCE 0
257 #define NOT_KNOWN (MAX_DIM + 1)
258 #define CF_NONTRIVIAL_P(CF) ((CF)->n != NO_DEPENDENCE && (CF)->n != NOT_KNOWN)
259 #define CF_NOT_KNOWN_P(CF) ((CF)->n == NOT_KNOWN)
260 #define CF_NO_DEPENDENCE_P(CF) ((CF)->n == NO_DEPENDENCE)
262 typedef vec<tree> affine_fn;
264 struct conflict_function
266 unsigned n;
267 affine_fn fns[MAX_DIM];
270 /* What is a subscript? Given two array accesses a subscript is the
271 tuple composed of the access functions for a given dimension.
272 Example: Given A[f1][f2][f3] and B[g1][g2][g3], there are three
273 subscripts: (f1, g1), (f2, g2), (f3, g3). These three subscripts
274 are stored in the data_dependence_relation structure under the form
275 of an array of subscripts. */
277 struct subscript
279 /* The access functions of the two references. */
280 tree access_fn[2];
282 /* A description of the iterations for which the elements are
283 accessed twice. */
284 conflict_function *conflicting_iterations_in_a;
285 conflict_function *conflicting_iterations_in_b;
287 /* This field stores the information about the iteration domain
288 validity of the dependence relation. */
289 tree last_conflict;
291 /* Distance from the iteration that access a conflicting element in
292 A to the iteration that access this same conflicting element in
293 B. The distance is a tree scalar expression, i.e. a constant or a
294 symbolic expression, but certainly not a chrec function. */
295 tree distance;
298 typedef struct subscript *subscript_p;
300 #define SUB_ACCESS_FN(SUB, I) (SUB)->access_fn[I]
301 #define SUB_CONFLICTS_IN_A(SUB) (SUB)->conflicting_iterations_in_a
302 #define SUB_CONFLICTS_IN_B(SUB) (SUB)->conflicting_iterations_in_b
303 #define SUB_LAST_CONFLICT(SUB) (SUB)->last_conflict
304 #define SUB_DISTANCE(SUB) (SUB)->distance
306 /* A data_dependence_relation represents a relation between two
307 data_references A and B. */
309 struct data_dependence_relation
312 struct data_reference *a;
313 struct data_reference *b;
315 /* A "yes/no/maybe" field for the dependence relation:
317 - when "ARE_DEPENDENT == NULL_TREE", there exist a dependence
318 relation between A and B, and the description of this relation
319 is given in the SUBSCRIPTS array,
321 - when "ARE_DEPENDENT == chrec_known", there is no dependence and
322 SUBSCRIPTS is empty,
324 - when "ARE_DEPENDENT == chrec_dont_know", there may be a dependence,
325 but the analyzer cannot be more specific. */
326 tree are_dependent;
328 /* If nonnull, COULD_BE_INDEPENDENT_P is true and the accesses are
329 independent when the runtime addresses of OBJECT_A and OBJECT_B
330 are different. The addresses of both objects are invariant in the
331 loop nest. */
332 tree object_a;
333 tree object_b;
335 /* For each subscript in the dependence test, there is an element in
336 this array. This is the attribute that labels the edge A->B of
337 the data_dependence_relation. */
338 vec<subscript_p> subscripts;
340 /* The analyzed loop nest. */
341 vec<loop_p> loop_nest;
343 /* The classic direction vector. */
344 vec<lambda_vector> dir_vects;
346 /* The classic distance vector. */
347 vec<lambda_vector> dist_vects;
349 /* An index in loop_nest for the innermost loop that varies for
350 this data dependence relation. */
351 unsigned inner_loop;
353 /* Is the dependence reversed with respect to the lexicographic order? */
354 bool reversed_p;
356 /* When the dependence relation is affine, it can be represented by
357 a distance vector. */
358 bool affine_p;
360 /* Set to true when the dependence relation is on the same data
361 access. */
362 bool self_reference_p;
364 /* True if the dependence described is conservatively correct rather
365 than exact, and if it is still possible for the accesses to be
366 conditionally independent. For example, the a and b references in:
368 struct s *a, *b;
369 for (int i = 0; i < n; ++i)
370 a->f[i] += b->f[i];
372 conservatively have a distance vector of (0), for the case in which
373 a == b, but the accesses are independent if a != b. Similarly,
374 the a and b references in:
376 struct s *a, *b;
377 for (int i = 0; i < n; ++i)
378 a[0].f[i] += b[i].f[i];
380 conservatively have a distance vector of (0), but they are indepenent
381 when a != b + i. In contrast, the references in:
383 struct s *a;
384 for (int i = 0; i < n; ++i)
385 a->f[i] += a->f[i];
387 have the same distance vector of (0), but the accesses can never be
388 independent. */
389 bool could_be_independent_p;
392 typedef struct data_dependence_relation *ddr_p;
394 #define DDR_A(DDR) (DDR)->a
395 #define DDR_B(DDR) (DDR)->b
396 #define DDR_AFFINE_P(DDR) (DDR)->affine_p
397 #define DDR_ARE_DEPENDENT(DDR) (DDR)->are_dependent
398 #define DDR_OBJECT_A(DDR) (DDR)->object_a
399 #define DDR_OBJECT_B(DDR) (DDR)->object_b
400 #define DDR_SUBSCRIPTS(DDR) (DDR)->subscripts
401 #define DDR_SUBSCRIPT(DDR, I) DDR_SUBSCRIPTS (DDR)[I]
402 #define DDR_NUM_SUBSCRIPTS(DDR) DDR_SUBSCRIPTS (DDR).length ()
404 #define DDR_LOOP_NEST(DDR) (DDR)->loop_nest
405 /* The size of the direction/distance vectors: the number of loops in
406 the loop nest. */
407 #define DDR_NB_LOOPS(DDR) (DDR_LOOP_NEST (DDR).length ())
408 #define DDR_INNER_LOOP(DDR) (DDR)->inner_loop
409 #define DDR_SELF_REFERENCE(DDR) (DDR)->self_reference_p
411 #define DDR_DIST_VECTS(DDR) ((DDR)->dist_vects)
412 #define DDR_DIR_VECTS(DDR) ((DDR)->dir_vects)
413 #define DDR_NUM_DIST_VECTS(DDR) \
414 (DDR_DIST_VECTS (DDR).length ())
415 #define DDR_NUM_DIR_VECTS(DDR) \
416 (DDR_DIR_VECTS (DDR).length ())
417 #define DDR_DIR_VECT(DDR, I) \
418 DDR_DIR_VECTS (DDR)[I]
419 #define DDR_DIST_VECT(DDR, I) \
420 DDR_DIST_VECTS (DDR)[I]
421 #define DDR_REVERSED_P(DDR) (DDR)->reversed_p
422 #define DDR_COULD_BE_INDEPENDENT_P(DDR) (DDR)->could_be_independent_p
425 opt_result dr_analyze_innermost (innermost_loop_behavior *, tree,
426 struct loop *, const gimple *);
427 extern bool compute_data_dependences_for_loop (struct loop *, bool,
428 vec<loop_p> *,
429 vec<data_reference_p> *,
430 vec<ddr_p> *);
431 extern void debug_ddrs (vec<ddr_p> );
432 extern void dump_data_reference (FILE *, struct data_reference *);
433 extern void debug (data_reference &ref);
434 extern void debug (data_reference *ptr);
435 extern void debug_data_reference (struct data_reference *);
436 extern void debug_data_references (vec<data_reference_p> );
437 extern void debug (vec<data_reference_p> &ref);
438 extern void debug (vec<data_reference_p> *ptr);
439 extern void debug_data_dependence_relation (struct data_dependence_relation *);
440 extern void dump_data_dependence_relations (FILE *, vec<ddr_p> );
441 extern void debug (vec<ddr_p> &ref);
442 extern void debug (vec<ddr_p> *ptr);
443 extern void debug_data_dependence_relations (vec<ddr_p> );
444 extern void free_dependence_relation (struct data_dependence_relation *);
445 extern void free_dependence_relations (vec<ddr_p> );
446 extern void free_data_ref (data_reference_p);
447 extern void free_data_refs (vec<data_reference_p> );
448 extern opt_result find_data_references_in_stmt (struct loop *, gimple *,
449 vec<data_reference_p> *);
450 extern bool graphite_find_data_references_in_stmt (edge, loop_p, gimple *,
451 vec<data_reference_p> *);
452 tree find_data_references_in_loop (struct loop *, vec<data_reference_p> *);
453 bool loop_nest_has_data_refs (loop_p loop);
454 struct data_reference *create_data_ref (edge, loop_p, tree, gimple *, bool,
455 bool);
456 extern bool find_loop_nest (struct loop *, vec<loop_p> *);
457 extern struct data_dependence_relation *initialize_data_dependence_relation
458 (struct data_reference *, struct data_reference *, vec<loop_p>);
459 extern void compute_affine_dependence (struct data_dependence_relation *,
460 loop_p);
461 extern void compute_self_dependence (struct data_dependence_relation *);
462 extern bool compute_all_dependences (vec<data_reference_p> ,
463 vec<ddr_p> *,
464 vec<loop_p>, bool);
465 extern tree find_data_references_in_bb (struct loop *, basic_block,
466 vec<data_reference_p> *);
467 extern unsigned int dr_alignment (innermost_loop_behavior *);
468 extern tree get_base_for_alignment (tree, unsigned int *);
470 /* Return the alignment in bytes that DR is guaranteed to have at all
471 times. */
473 inline unsigned int
474 dr_alignment (data_reference *dr)
476 return dr_alignment (&DR_INNERMOST (dr));
479 extern bool dr_may_alias_p (const struct data_reference *,
480 const struct data_reference *, bool);
481 extern bool dr_equal_offsets_p (struct data_reference *,
482 struct data_reference *);
484 extern opt_result runtime_alias_check_p (ddr_p, struct loop *, bool);
485 extern int data_ref_compare_tree (tree, tree);
486 extern void prune_runtime_alias_test_list (vec<dr_with_seg_len_pair_t> *,
487 poly_uint64);
488 extern void create_runtime_alias_checks (struct loop *,
489 vec<dr_with_seg_len_pair_t> *, tree*);
490 extern tree dr_direction_indicator (struct data_reference *);
491 extern tree dr_zero_step_indicator (struct data_reference *);
492 extern bool dr_known_forward_stride_p (struct data_reference *);
494 /* Return true when the base objects of data references A and B are
495 the same memory object. */
497 static inline bool
498 same_data_refs_base_objects (data_reference_p a, data_reference_p b)
500 return DR_NUM_DIMENSIONS (a) == DR_NUM_DIMENSIONS (b)
501 && operand_equal_p (DR_BASE_OBJECT (a), DR_BASE_OBJECT (b), 0);
504 /* Return true when the data references A and B are accessing the same
505 memory object with the same access functions. */
507 static inline bool
508 same_data_refs (data_reference_p a, data_reference_p b)
510 unsigned int i;
512 /* The references are exactly the same. */
513 if (operand_equal_p (DR_REF (a), DR_REF (b), 0))
514 return true;
516 if (!same_data_refs_base_objects (a, b))
517 return false;
519 for (i = 0; i < DR_NUM_DIMENSIONS (a); i++)
520 if (!eq_evolutions_p (DR_ACCESS_FN (a, i), DR_ACCESS_FN (b, i)))
521 return false;
523 return true;
526 /* Returns true when all the dependences are computable. */
528 inline bool
529 known_dependences_p (vec<ddr_p> dependence_relations)
531 ddr_p ddr;
532 unsigned int i;
534 FOR_EACH_VEC_ELT (dependence_relations, i, ddr)
535 if (DDR_ARE_DEPENDENT (ddr) == chrec_dont_know)
536 return false;
538 return true;
541 /* Returns the dependence level for a vector DIST of size LENGTH.
542 LEVEL = 0 means a lexicographic dependence, i.e. a dependence due
543 to the sequence of statements, not carried by any loop. */
545 static inline unsigned
546 dependence_level (lambda_vector dist_vect, int length)
548 int i;
550 for (i = 0; i < length; i++)
551 if (dist_vect[i] != 0)
552 return i + 1;
554 return 0;
557 /* Return the dependence level for the DDR relation. */
559 static inline unsigned
560 ddr_dependence_level (ddr_p ddr)
562 unsigned vector;
563 unsigned level = 0;
565 if (DDR_DIST_VECTS (ddr).exists ())
566 level = dependence_level (DDR_DIST_VECT (ddr, 0), DDR_NB_LOOPS (ddr));
568 for (vector = 1; vector < DDR_NUM_DIST_VECTS (ddr); vector++)
569 level = MIN (level, dependence_level (DDR_DIST_VECT (ddr, vector),
570 DDR_NB_LOOPS (ddr)));
571 return level;
574 /* Return the index of the variable VAR in the LOOP_NEST array. */
576 static inline int
577 index_in_loop_nest (int var, vec<loop_p> loop_nest)
579 struct loop *loopi;
580 int var_index;
582 for (var_index = 0; loop_nest.iterate (var_index, &loopi);
583 var_index++)
584 if (loopi->num == var)
585 break;
587 return var_index;
590 /* Returns true when the data reference DR the form "A[i] = ..."
591 with a stride equal to its unit type size. */
593 static inline bool
594 adjacent_dr_p (struct data_reference *dr)
596 /* If this is a bitfield store bail out. */
597 if (TREE_CODE (DR_REF (dr)) == COMPONENT_REF
598 && DECL_BIT_FIELD (TREE_OPERAND (DR_REF (dr), 1)))
599 return false;
601 if (!DR_STEP (dr)
602 || TREE_CODE (DR_STEP (dr)) != INTEGER_CST)
603 return false;
605 return tree_int_cst_equal (fold_unary (ABS_EXPR, TREE_TYPE (DR_STEP (dr)),
606 DR_STEP (dr)),
607 TYPE_SIZE_UNIT (TREE_TYPE (DR_REF (dr))));
610 void split_constant_offset (tree , tree *, tree *);
612 /* Compute the greatest common divisor of a VECTOR of SIZE numbers. */
614 static inline int
615 lambda_vector_gcd (lambda_vector vector, int size)
617 int i;
618 int gcd1 = 0;
620 if (size > 0)
622 gcd1 = vector[0];
623 for (i = 1; i < size; i++)
624 gcd1 = gcd (gcd1, vector[i]);
626 return gcd1;
629 /* Allocate a new vector of given SIZE. */
631 static inline lambda_vector
632 lambda_vector_new (int size)
634 /* ??? We shouldn't abuse the GC allocator here. */
635 return ggc_cleared_vec_alloc<int> (size);
638 /* Clear out vector VEC1 of length SIZE. */
640 static inline void
641 lambda_vector_clear (lambda_vector vec1, int size)
643 memset (vec1, 0, size * sizeof (*vec1));
646 /* Returns true when the vector V is lexicographically positive, in
647 other words, when the first nonzero element is positive. */
649 static inline bool
650 lambda_vector_lexico_pos (lambda_vector v,
651 unsigned n)
653 unsigned i;
654 for (i = 0; i < n; i++)
656 if (v[i] == 0)
657 continue;
658 if (v[i] < 0)
659 return false;
660 if (v[i] > 0)
661 return true;
663 return true;
666 /* Return true if vector VEC1 of length SIZE is the zero vector. */
668 static inline bool
669 lambda_vector_zerop (lambda_vector vec1, int size)
671 int i;
672 for (i = 0; i < size; i++)
673 if (vec1[i] != 0)
674 return false;
675 return true;
678 /* Allocate a matrix of M rows x N cols. */
680 static inline lambda_matrix
681 lambda_matrix_new (int m, int n, struct obstack *lambda_obstack)
683 lambda_matrix mat;
684 int i;
686 mat = XOBNEWVEC (lambda_obstack, lambda_vector, m);
688 for (i = 0; i < m; i++)
689 mat[i] = XOBNEWVEC (lambda_obstack, int, n);
691 return mat;
694 #endif /* GCC_TREE_DATA_REF_H */