1 /* Lower complex number operations to scalar operations.
2 Copyright (C) 2004-2018 Free Software Foundation, Inc.
4 This file is part of GCC.
6 GCC is free software; you can redistribute it and/or modify it
7 under the terms of the GNU General Public License as published by the
8 Free Software Foundation; either version 3, or (at your option) any
11 GCC is distributed in the hope that it will be useful, but WITHOUT
12 ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
13 FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License
16 You should have received a copy of the GNU General Public License
17 along with GCC; see the file COPYING3. If not see
18 <http://www.gnu.org/licenses/>. */
22 #include "coretypes.h"
28 #include "tree-pass.h"
30 #include "fold-const.h"
31 #include "stor-layout.h"
34 #include "gimple-iterator.h"
35 #include "gimplify-me.h"
39 #include "tree-ssa-propagate.h"
40 #include "tree-hasher.h"
45 /* For each complex ssa name, a lattice value. We're interested in finding
46 out whether a complex number is degenerate in some way, having only real
47 or only complex parts. */
57 /* The type complex_lattice_t holds combinations of the above
59 typedef int complex_lattice_t
;
61 #define PAIR(a, b) ((a) << 2 | (b))
63 class complex_propagate
: public ssa_propagation_engine
65 enum ssa_prop_result
visit_stmt (gimple
*, edge
*, tree
*) FINAL OVERRIDE
;
66 enum ssa_prop_result
visit_phi (gphi
*) FINAL OVERRIDE
;
69 static vec
<complex_lattice_t
> complex_lattice_values
;
71 /* For each complex variable, a pair of variables for the components exists in
73 static int_tree_htab_type
*complex_variable_components
;
75 /* For each complex SSA_NAME, a pair of ssa names for the components. */
76 static vec
<tree
> complex_ssa_name_components
;
78 /* Vector of PHI triplets (original complex PHI and corresponding real and
79 imag PHIs if real and/or imag PHIs contain temporarily
80 non-SSA_NAME/non-invariant args that need to be replaced by SSA_NAMEs. */
81 static vec
<gphi
*> phis_to_revisit
;
83 /* Lookup UID in the complex_variable_components hashtable and return the
86 cvc_lookup (unsigned int uid
)
88 struct int_tree_map in
;
90 return complex_variable_components
->find_with_hash (in
, uid
).to
;
93 /* Insert the pair UID, TO into the complex_variable_components hashtable. */
96 cvc_insert (unsigned int uid
, tree to
)
102 loc
= complex_variable_components
->find_slot_with_hash (h
, uid
, INSERT
);
107 /* Return true if T is not a zero constant. In the case of real values,
108 we're only interested in +0.0. */
111 some_nonzerop (tree t
)
115 /* Operations with real or imaginary part of a complex number zero
116 cannot be treated the same as operations with a real or imaginary
117 operand if we care about the signs of zeros in the result. */
118 if (TREE_CODE (t
) == REAL_CST
&& !flag_signed_zeros
)
119 zerop
= real_identical (&TREE_REAL_CST (t
), &dconst0
);
120 else if (TREE_CODE (t
) == FIXED_CST
)
121 zerop
= fixed_zerop (t
);
122 else if (TREE_CODE (t
) == INTEGER_CST
)
123 zerop
= integer_zerop (t
);
129 /* Compute a lattice value from the components of a complex type REAL
132 static complex_lattice_t
133 find_lattice_value_parts (tree real
, tree imag
)
136 complex_lattice_t ret
;
138 r
= some_nonzerop (real
);
139 i
= some_nonzerop (imag
);
140 ret
= r
* ONLY_REAL
+ i
* ONLY_IMAG
;
142 /* ??? On occasion we could do better than mapping 0+0i to real, but we
143 certainly don't want to leave it UNINITIALIZED, which eventually gets
144 mapped to VARYING. */
145 if (ret
== UNINITIALIZED
)
152 /* Compute a lattice value from gimple_val T. */
154 static complex_lattice_t
155 find_lattice_value (tree t
)
159 switch (TREE_CODE (t
))
162 return complex_lattice_values
[SSA_NAME_VERSION (t
)];
165 real
= TREE_REALPART (t
);
166 imag
= TREE_IMAGPART (t
);
173 return find_lattice_value_parts (real
, imag
);
176 /* Determine if LHS is something for which we're interested in seeing
177 simulation results. */
180 is_complex_reg (tree lhs
)
182 return TREE_CODE (TREE_TYPE (lhs
)) == COMPLEX_TYPE
&& is_gimple_reg (lhs
);
185 /* Mark the incoming parameters to the function as VARYING. */
188 init_parameter_lattice_values (void)
192 for (parm
= DECL_ARGUMENTS (cfun
->decl
); parm
; parm
= DECL_CHAIN (parm
))
193 if (is_complex_reg (parm
)
194 && (ssa_name
= ssa_default_def (cfun
, parm
)) != NULL_TREE
)
195 complex_lattice_values
[SSA_NAME_VERSION (ssa_name
)] = VARYING
;
198 /* Initialize simulation state for each statement. Return false if we
199 found no statements we want to simulate, and thus there's nothing
200 for the entire pass to do. */
203 init_dont_simulate_again (void)
206 bool saw_a_complex_op
= false;
208 FOR_EACH_BB_FN (bb
, cfun
)
210 for (gphi_iterator gsi
= gsi_start_phis (bb
); !gsi_end_p (gsi
);
213 gphi
*phi
= gsi
.phi ();
214 prop_set_simulate_again (phi
,
215 is_complex_reg (gimple_phi_result (phi
)));
218 for (gimple_stmt_iterator gsi
= gsi_start_bb (bb
); !gsi_end_p (gsi
);
225 stmt
= gsi_stmt (gsi
);
226 op0
= op1
= NULL_TREE
;
228 /* Most control-altering statements must be initially
229 simulated, else we won't cover the entire cfg. */
230 sim_again_p
= stmt_ends_bb_p (stmt
);
232 switch (gimple_code (stmt
))
235 if (gimple_call_lhs (stmt
))
236 sim_again_p
= is_complex_reg (gimple_call_lhs (stmt
));
240 sim_again_p
= is_complex_reg (gimple_assign_lhs (stmt
));
241 if (gimple_assign_rhs_code (stmt
) == REALPART_EXPR
242 || gimple_assign_rhs_code (stmt
) == IMAGPART_EXPR
)
243 op0
= TREE_OPERAND (gimple_assign_rhs1 (stmt
), 0);
245 op0
= gimple_assign_rhs1 (stmt
);
246 if (gimple_num_ops (stmt
) > 2)
247 op1
= gimple_assign_rhs2 (stmt
);
251 op0
= gimple_cond_lhs (stmt
);
252 op1
= gimple_cond_rhs (stmt
);
260 switch (gimple_expr_code (stmt
))
272 if (TREE_CODE (TREE_TYPE (op0
)) == COMPLEX_TYPE
273 || TREE_CODE (TREE_TYPE (op1
)) == COMPLEX_TYPE
)
274 saw_a_complex_op
= true;
279 if (TREE_CODE (TREE_TYPE (op0
)) == COMPLEX_TYPE
)
280 saw_a_complex_op
= true;
285 /* The total store transformation performed during
286 gimplification creates such uninitialized loads
287 and we need to lower the statement to be able
289 if (TREE_CODE (op0
) == SSA_NAME
290 && ssa_undefined_value_p (op0
))
291 saw_a_complex_op
= true;
298 prop_set_simulate_again (stmt
, sim_again_p
);
302 return saw_a_complex_op
;
306 /* Evaluate statement STMT against the complex lattice defined above. */
309 complex_propagate::visit_stmt (gimple
*stmt
, edge
*taken_edge_p ATTRIBUTE_UNUSED
,
312 complex_lattice_t new_l
, old_l
, op1_l
, op2_l
;
316 lhs
= gimple_get_lhs (stmt
);
317 /* Skip anything but GIMPLE_ASSIGN and GIMPLE_CALL with a lhs. */
319 return SSA_PROP_VARYING
;
321 /* These conditions should be satisfied due to the initial filter
322 set up in init_dont_simulate_again. */
323 gcc_assert (TREE_CODE (lhs
) == SSA_NAME
);
324 gcc_assert (TREE_CODE (TREE_TYPE (lhs
)) == COMPLEX_TYPE
);
327 ver
= SSA_NAME_VERSION (lhs
);
328 old_l
= complex_lattice_values
[ver
];
330 switch (gimple_expr_code (stmt
))
334 new_l
= find_lattice_value (gimple_assign_rhs1 (stmt
));
338 new_l
= find_lattice_value_parts (gimple_assign_rhs1 (stmt
),
339 gimple_assign_rhs2 (stmt
));
344 op1_l
= find_lattice_value (gimple_assign_rhs1 (stmt
));
345 op2_l
= find_lattice_value (gimple_assign_rhs2 (stmt
));
347 /* We've set up the lattice values such that IOR neatly
349 new_l
= op1_l
| op2_l
;
358 op1_l
= find_lattice_value (gimple_assign_rhs1 (stmt
));
359 op2_l
= find_lattice_value (gimple_assign_rhs2 (stmt
));
361 /* Obviously, if either varies, so does the result. */
362 if (op1_l
== VARYING
|| op2_l
== VARYING
)
364 /* Don't prematurely promote variables if we've not yet seen
366 else if (op1_l
== UNINITIALIZED
)
368 else if (op2_l
== UNINITIALIZED
)
372 /* At this point both numbers have only one component. If the
373 numbers are of opposite kind, the result is imaginary,
374 otherwise the result is real. The add/subtract translates
375 the real/imag from/to 0/1; the ^ performs the comparison. */
376 new_l
= ((op1_l
- ONLY_REAL
) ^ (op2_l
- ONLY_REAL
)) + ONLY_REAL
;
378 /* Don't allow the lattice value to flip-flop indefinitely. */
385 new_l
= find_lattice_value (gimple_assign_rhs1 (stmt
));
393 /* If nothing changed this round, let the propagator know. */
395 return SSA_PROP_NOT_INTERESTING
;
397 complex_lattice_values
[ver
] = new_l
;
398 return new_l
== VARYING
? SSA_PROP_VARYING
: SSA_PROP_INTERESTING
;
401 /* Evaluate a PHI node against the complex lattice defined above. */
404 complex_propagate::visit_phi (gphi
*phi
)
406 complex_lattice_t new_l
, old_l
;
411 lhs
= gimple_phi_result (phi
);
413 /* This condition should be satisfied due to the initial filter
414 set up in init_dont_simulate_again. */
415 gcc_assert (TREE_CODE (TREE_TYPE (lhs
)) == COMPLEX_TYPE
);
417 /* We've set up the lattice values such that IOR neatly models PHI meet. */
418 new_l
= UNINITIALIZED
;
419 for (i
= gimple_phi_num_args (phi
) - 1; i
>= 0; --i
)
420 new_l
|= find_lattice_value (gimple_phi_arg_def (phi
, i
));
422 ver
= SSA_NAME_VERSION (lhs
);
423 old_l
= complex_lattice_values
[ver
];
426 return SSA_PROP_NOT_INTERESTING
;
428 complex_lattice_values
[ver
] = new_l
;
429 return new_l
== VARYING
? SSA_PROP_VARYING
: SSA_PROP_INTERESTING
;
432 /* Create one backing variable for a complex component of ORIG. */
435 create_one_component_var (tree type
, tree orig
, const char *prefix
,
436 const char *suffix
, enum tree_code code
)
438 tree r
= create_tmp_var (type
, prefix
);
440 DECL_SOURCE_LOCATION (r
) = DECL_SOURCE_LOCATION (orig
);
441 DECL_ARTIFICIAL (r
) = 1;
443 if (DECL_NAME (orig
) && !DECL_IGNORED_P (orig
))
445 const char *name
= IDENTIFIER_POINTER (DECL_NAME (orig
));
446 name
= ACONCAT ((name
, suffix
, NULL
));
447 DECL_NAME (r
) = get_identifier (name
);
449 SET_DECL_DEBUG_EXPR (r
, build1 (code
, type
, orig
));
450 DECL_HAS_DEBUG_EXPR_P (r
) = 1;
451 DECL_IGNORED_P (r
) = 0;
452 TREE_NO_WARNING (r
) = TREE_NO_WARNING (orig
);
456 DECL_IGNORED_P (r
) = 1;
457 TREE_NO_WARNING (r
) = 1;
463 /* Retrieve a value for a complex component of VAR. */
466 get_component_var (tree var
, bool imag_p
)
468 size_t decl_index
= DECL_UID (var
) * 2 + imag_p
;
469 tree ret
= cvc_lookup (decl_index
);
473 ret
= create_one_component_var (TREE_TYPE (TREE_TYPE (var
)), var
,
474 imag_p
? "CI" : "CR",
475 imag_p
? "$imag" : "$real",
476 imag_p
? IMAGPART_EXPR
: REALPART_EXPR
);
477 cvc_insert (decl_index
, ret
);
483 /* Retrieve a value for a complex component of SSA_NAME. */
486 get_component_ssa_name (tree ssa_name
, bool imag_p
)
488 complex_lattice_t lattice
= find_lattice_value (ssa_name
);
489 size_t ssa_name_index
;
492 if (lattice
== (imag_p
? ONLY_REAL
: ONLY_IMAG
))
494 tree inner_type
= TREE_TYPE (TREE_TYPE (ssa_name
));
495 if (SCALAR_FLOAT_TYPE_P (inner_type
))
496 return build_real (inner_type
, dconst0
);
498 return build_int_cst (inner_type
, 0);
501 ssa_name_index
= SSA_NAME_VERSION (ssa_name
) * 2 + imag_p
;
502 ret
= complex_ssa_name_components
[ssa_name_index
];
505 if (SSA_NAME_VAR (ssa_name
))
506 ret
= get_component_var (SSA_NAME_VAR (ssa_name
), imag_p
);
508 ret
= TREE_TYPE (TREE_TYPE (ssa_name
));
509 ret
= make_ssa_name (ret
);
511 /* Copy some properties from the original. In particular, whether it
512 is used in an abnormal phi, and whether it's uninitialized. */
513 SSA_NAME_OCCURS_IN_ABNORMAL_PHI (ret
)
514 = SSA_NAME_OCCURS_IN_ABNORMAL_PHI (ssa_name
);
515 if (SSA_NAME_IS_DEFAULT_DEF (ssa_name
)
516 && TREE_CODE (SSA_NAME_VAR (ssa_name
)) == VAR_DECL
)
518 SSA_NAME_DEF_STMT (ret
) = SSA_NAME_DEF_STMT (ssa_name
);
519 set_ssa_default_def (cfun
, SSA_NAME_VAR (ret
), ret
);
522 complex_ssa_name_components
[ssa_name_index
] = ret
;
528 /* Set a value for a complex component of SSA_NAME, return a
529 gimple_seq of stuff that needs doing. */
532 set_component_ssa_name (tree ssa_name
, bool imag_p
, tree value
)
534 complex_lattice_t lattice
= find_lattice_value (ssa_name
);
535 size_t ssa_name_index
;
540 /* We know the value must be zero, else there's a bug in our lattice
541 analysis. But the value may well be a variable known to contain
542 zero. We should be safe ignoring it. */
543 if (lattice
== (imag_p
? ONLY_REAL
: ONLY_IMAG
))
546 /* If we've already assigned an SSA_NAME to this component, then this
547 means that our walk of the basic blocks found a use before the set.
548 This is fine. Now we should create an initialization for the value
549 we created earlier. */
550 ssa_name_index
= SSA_NAME_VERSION (ssa_name
) * 2 + imag_p
;
551 comp
= complex_ssa_name_components
[ssa_name_index
];
555 /* If we've nothing assigned, and the value we're given is already stable,
556 then install that as the value for this SSA_NAME. This preemptively
557 copy-propagates the value, which avoids unnecessary memory allocation. */
558 else if (is_gimple_min_invariant (value
)
559 && !SSA_NAME_OCCURS_IN_ABNORMAL_PHI (ssa_name
))
561 complex_ssa_name_components
[ssa_name_index
] = value
;
564 else if (TREE_CODE (value
) == SSA_NAME
565 && !SSA_NAME_OCCURS_IN_ABNORMAL_PHI (ssa_name
))
567 /* Replace an anonymous base value with the variable from cvc_lookup.
568 This should result in better debug info. */
569 if (SSA_NAME_VAR (ssa_name
)
570 && (!SSA_NAME_VAR (value
) || DECL_IGNORED_P (SSA_NAME_VAR (value
)))
571 && !DECL_IGNORED_P (SSA_NAME_VAR (ssa_name
)))
573 comp
= get_component_var (SSA_NAME_VAR (ssa_name
), imag_p
);
574 replace_ssa_name_symbol (value
, comp
);
577 complex_ssa_name_components
[ssa_name_index
] = value
;
581 /* Finally, we need to stabilize the result by installing the value into
584 comp
= get_component_ssa_name (ssa_name
, imag_p
);
586 /* Do all the work to assign VALUE to COMP. */
588 value
= force_gimple_operand (value
, &list
, false, NULL
);
589 last
= gimple_build_assign (comp
, value
);
590 gimple_seq_add_stmt (&list
, last
);
591 gcc_assert (SSA_NAME_DEF_STMT (comp
) == last
);
596 /* Extract the real or imaginary part of a complex variable or constant.
597 Make sure that it's a proper gimple_val and gimplify it if not.
598 Emit any new code before gsi. */
601 extract_component (gimple_stmt_iterator
*gsi
, tree t
, bool imagpart_p
,
602 bool gimple_p
, bool phiarg_p
= false)
604 switch (TREE_CODE (t
))
607 return imagpart_p
? TREE_IMAGPART (t
) : TREE_REALPART (t
);
614 tree inner_type
= TREE_TYPE (TREE_TYPE (t
));
615 t
= unshare_expr (t
);
616 TREE_TYPE (t
) = inner_type
;
617 TREE_OPERAND (t
, 1) = TYPE_SIZE (inner_type
);
619 TREE_OPERAND (t
, 2) = size_binop (PLUS_EXPR
, TREE_OPERAND (t
, 2),
620 TYPE_SIZE (inner_type
));
622 t
= force_gimple_operand_gsi (gsi
, t
, true, NULL
, true,
632 case VIEW_CONVERT_EXPR
:
635 tree inner_type
= TREE_TYPE (TREE_TYPE (t
));
637 t
= build1 ((imagpart_p
? IMAGPART_EXPR
: REALPART_EXPR
),
638 inner_type
, unshare_expr (t
));
641 t
= force_gimple_operand_gsi (gsi
, t
, true, NULL
, true,
648 t
= get_component_ssa_name (t
, imagpart_p
);
649 if (TREE_CODE (t
) == SSA_NAME
&& SSA_NAME_DEF_STMT (t
) == NULL
)
650 gcc_assert (phiarg_p
);
658 /* Update the complex components of the ssa name on the lhs of STMT. */
661 update_complex_components (gimple_stmt_iterator
*gsi
, gimple
*stmt
, tree r
,
667 lhs
= gimple_get_lhs (stmt
);
669 list
= set_component_ssa_name (lhs
, false, r
);
671 gsi_insert_seq_after (gsi
, list
, GSI_CONTINUE_LINKING
);
673 list
= set_component_ssa_name (lhs
, true, i
);
675 gsi_insert_seq_after (gsi
, list
, GSI_CONTINUE_LINKING
);
679 update_complex_components_on_edge (edge e
, tree lhs
, tree r
, tree i
)
683 list
= set_component_ssa_name (lhs
, false, r
);
685 gsi_insert_seq_on_edge (e
, list
);
687 list
= set_component_ssa_name (lhs
, true, i
);
689 gsi_insert_seq_on_edge (e
, list
);
693 /* Update an assignment to a complex variable in place. */
696 update_complex_assignment (gimple_stmt_iterator
*gsi
, tree r
, tree i
)
700 gimple_assign_set_rhs_with_ops (gsi
, COMPLEX_EXPR
, r
, i
);
701 stmt
= gsi_stmt (*gsi
);
703 if (maybe_clean_eh_stmt (stmt
))
704 gimple_purge_dead_eh_edges (gimple_bb (stmt
));
706 update_complex_components (gsi
, gsi_stmt (*gsi
), r
, i
);
710 /* Generate code at the entry point of the function to initialize the
711 component variables for a complex parameter. */
714 update_parameter_components (void)
716 edge entry_edge
= single_succ_edge (ENTRY_BLOCK_PTR_FOR_FN (cfun
));
719 for (parm
= DECL_ARGUMENTS (cfun
->decl
); parm
; parm
= DECL_CHAIN (parm
))
721 tree type
= TREE_TYPE (parm
);
724 if (TREE_CODE (type
) != COMPLEX_TYPE
|| !is_gimple_reg (parm
))
727 type
= TREE_TYPE (type
);
728 ssa_name
= ssa_default_def (cfun
, parm
);
732 r
= build1 (REALPART_EXPR
, type
, ssa_name
);
733 i
= build1 (IMAGPART_EXPR
, type
, ssa_name
);
734 update_complex_components_on_edge (entry_edge
, ssa_name
, r
, i
);
738 /* Generate code to set the component variables of a complex variable
739 to match the PHI statements in block BB. */
742 update_phi_components (basic_block bb
)
746 for (gsi
= gsi_start_phis (bb
); !gsi_end_p (gsi
); gsi_next (&gsi
))
748 gphi
*phi
= gsi
.phi ();
750 if (is_complex_reg (gimple_phi_result (phi
)))
752 gphi
*p
[2] = { NULL
, NULL
};
753 unsigned int i
, j
, n
;
754 bool revisit_phi
= false;
756 for (j
= 0; j
< 2; j
++)
758 tree l
= get_component_ssa_name (gimple_phi_result (phi
), j
> 0);
759 if (TREE_CODE (l
) == SSA_NAME
)
760 p
[j
] = create_phi_node (l
, bb
);
763 for (i
= 0, n
= gimple_phi_num_args (phi
); i
< n
; ++i
)
765 tree comp
, arg
= gimple_phi_arg_def (phi
, i
);
766 for (j
= 0; j
< 2; j
++)
769 comp
= extract_component (NULL
, arg
, j
> 0, false, true);
770 if (TREE_CODE (comp
) == SSA_NAME
771 && SSA_NAME_DEF_STMT (comp
) == NULL
)
773 /* For the benefit of any gimple simplification during
774 this pass that might walk SSA_NAME def stmts,
775 don't add SSA_NAMEs without definitions into the
776 PHI arguments, but put a decl in there instead
777 temporarily, and revisit this PHI later on. */
778 if (SSA_NAME_VAR (comp
))
779 comp
= SSA_NAME_VAR (comp
);
781 comp
= create_tmp_reg (TREE_TYPE (comp
),
785 SET_PHI_ARG_DEF (p
[j
], i
, comp
);
791 phis_to_revisit
.safe_push (phi
);
792 phis_to_revisit
.safe_push (p
[0]);
793 phis_to_revisit
.safe_push (p
[1]);
799 /* Expand a complex move to scalars. */
802 expand_complex_move (gimple_stmt_iterator
*gsi
, tree type
)
804 tree inner_type
= TREE_TYPE (type
);
806 gimple
*stmt
= gsi_stmt (*gsi
);
808 if (is_gimple_assign (stmt
))
810 lhs
= gimple_assign_lhs (stmt
);
811 if (gimple_num_ops (stmt
) == 2)
812 rhs
= gimple_assign_rhs1 (stmt
);
816 else if (is_gimple_call (stmt
))
818 lhs
= gimple_call_lhs (stmt
);
824 if (TREE_CODE (lhs
) == SSA_NAME
)
826 if (is_ctrl_altering_stmt (stmt
))
830 /* The value is not assigned on the exception edges, so we need not
831 concern ourselves there. We do need to update on the fallthru
833 e
= find_fallthru_edge (gsi_bb (*gsi
)->succs
);
837 r
= build1 (REALPART_EXPR
, inner_type
, lhs
);
838 i
= build1 (IMAGPART_EXPR
, inner_type
, lhs
);
839 update_complex_components_on_edge (e
, lhs
, r
, i
);
841 else if (is_gimple_call (stmt
)
842 || gimple_has_side_effects (stmt
)
843 || gimple_assign_rhs_code (stmt
) == PAREN_EXPR
)
845 r
= build1 (REALPART_EXPR
, inner_type
, lhs
);
846 i
= build1 (IMAGPART_EXPR
, inner_type
, lhs
);
847 update_complex_components (gsi
, stmt
, r
, i
);
851 if (gimple_assign_rhs_code (stmt
) != COMPLEX_EXPR
)
853 r
= extract_component (gsi
, rhs
, 0, true);
854 i
= extract_component (gsi
, rhs
, 1, true);
858 r
= gimple_assign_rhs1 (stmt
);
859 i
= gimple_assign_rhs2 (stmt
);
861 update_complex_assignment (gsi
, r
, i
);
864 else if (rhs
&& TREE_CODE (rhs
) == SSA_NAME
&& !TREE_SIDE_EFFECTS (lhs
))
870 loc
= gimple_location (stmt
);
871 r
= extract_component (gsi
, rhs
, 0, false);
872 i
= extract_component (gsi
, rhs
, 1, false);
874 x
= build1 (REALPART_EXPR
, inner_type
, unshare_expr (lhs
));
875 t
= gimple_build_assign (x
, r
);
876 gimple_set_location (t
, loc
);
877 gsi_insert_before (gsi
, t
, GSI_SAME_STMT
);
879 if (stmt
== gsi_stmt (*gsi
))
881 x
= build1 (IMAGPART_EXPR
, inner_type
, unshare_expr (lhs
));
882 gimple_assign_set_lhs (stmt
, x
);
883 gimple_assign_set_rhs1 (stmt
, i
);
887 x
= build1 (IMAGPART_EXPR
, inner_type
, unshare_expr (lhs
));
888 t
= gimple_build_assign (x
, i
);
889 gimple_set_location (t
, loc
);
890 gsi_insert_before (gsi
, t
, GSI_SAME_STMT
);
892 stmt
= gsi_stmt (*gsi
);
893 gcc_assert (gimple_code (stmt
) == GIMPLE_RETURN
);
894 gimple_return_set_retval (as_a
<greturn
*> (stmt
), lhs
);
901 /* Expand complex addition to scalars:
902 a + b = (ar + br) + i(ai + bi)
903 a - b = (ar - br) + i(ai + bi)
907 expand_complex_addition (gimple_stmt_iterator
*gsi
, tree inner_type
,
908 tree ar
, tree ai
, tree br
, tree bi
,
910 complex_lattice_t al
, complex_lattice_t bl
)
914 switch (PAIR (al
, bl
))
916 case PAIR (ONLY_REAL
, ONLY_REAL
):
917 rr
= gimplify_build2 (gsi
, code
, inner_type
, ar
, br
);
921 case PAIR (ONLY_REAL
, ONLY_IMAG
):
923 if (code
== MINUS_EXPR
)
924 ri
= gimplify_build2 (gsi
, MINUS_EXPR
, inner_type
, ai
, bi
);
929 case PAIR (ONLY_IMAG
, ONLY_REAL
):
930 if (code
== MINUS_EXPR
)
931 rr
= gimplify_build2 (gsi
, MINUS_EXPR
, inner_type
, ar
, br
);
937 case PAIR (ONLY_IMAG
, ONLY_IMAG
):
939 ri
= gimplify_build2 (gsi
, code
, inner_type
, ai
, bi
);
942 case PAIR (VARYING
, ONLY_REAL
):
943 rr
= gimplify_build2 (gsi
, code
, inner_type
, ar
, br
);
947 case PAIR (VARYING
, ONLY_IMAG
):
949 ri
= gimplify_build2 (gsi
, code
, inner_type
, ai
, bi
);
952 case PAIR (ONLY_REAL
, VARYING
):
953 if (code
== MINUS_EXPR
)
955 rr
= gimplify_build2 (gsi
, code
, inner_type
, ar
, br
);
959 case PAIR (ONLY_IMAG
, VARYING
):
960 if (code
== MINUS_EXPR
)
963 ri
= gimplify_build2 (gsi
, code
, inner_type
, ai
, bi
);
966 case PAIR (VARYING
, VARYING
):
968 rr
= gimplify_build2 (gsi
, code
, inner_type
, ar
, br
);
969 ri
= gimplify_build2 (gsi
, code
, inner_type
, ai
, bi
);
976 update_complex_assignment (gsi
, rr
, ri
);
979 /* Expand a complex multiplication or division to a libcall to the c99
980 compliant routines. TYPE is the complex type of the operation.
981 If INPLACE_P replace the statement at GSI with
982 the libcall and return NULL_TREE. Else insert the call, assign its
983 result to an output variable and return that variable. If INPLACE_P
984 is true then the statement being replaced should be an assignment
988 expand_complex_libcall (gimple_stmt_iterator
*gsi
, tree type
, tree ar
, tree ai
,
989 tree br
, tree bi
, enum tree_code code
, bool inplace_p
)
992 enum built_in_function bcode
;
996 mode
= TYPE_MODE (type
);
997 gcc_assert (GET_MODE_CLASS (mode
) == MODE_COMPLEX_FLOAT
);
999 if (code
== MULT_EXPR
)
1000 bcode
= ((enum built_in_function
)
1001 (BUILT_IN_COMPLEX_MUL_MIN
+ mode
- MIN_MODE_COMPLEX_FLOAT
));
1002 else if (code
== RDIV_EXPR
)
1003 bcode
= ((enum built_in_function
)
1004 (BUILT_IN_COMPLEX_DIV_MIN
+ mode
- MIN_MODE_COMPLEX_FLOAT
));
1007 fn
= builtin_decl_explicit (bcode
);
1008 stmt
= gimple_build_call (fn
, 4, ar
, ai
, br
, bi
);
1012 gimple
*old_stmt
= gsi_stmt (*gsi
);
1013 gimple_call_set_nothrow (stmt
, !stmt_could_throw_p (cfun
, old_stmt
));
1014 lhs
= gimple_assign_lhs (old_stmt
);
1015 gimple_call_set_lhs (stmt
, lhs
);
1016 gsi_replace (gsi
, stmt
, true);
1018 type
= TREE_TYPE (type
);
1019 if (stmt_can_throw_internal (cfun
, stmt
))
1023 FOR_EACH_EDGE (e
, ei
, gimple_bb (stmt
)->succs
)
1024 if (!(e
->flags
& EDGE_EH
))
1026 basic_block bb
= split_edge (e
);
1027 gimple_stmt_iterator gsi2
= gsi_start_bb (bb
);
1028 update_complex_components (&gsi2
, stmt
,
1029 build1 (REALPART_EXPR
, type
, lhs
),
1030 build1 (IMAGPART_EXPR
, type
, lhs
));
1034 update_complex_components (gsi
, stmt
,
1035 build1 (REALPART_EXPR
, type
, lhs
),
1036 build1 (IMAGPART_EXPR
, type
, lhs
));
1037 SSA_NAME_DEF_STMT (lhs
) = stmt
;
1041 gimple_call_set_nothrow (stmt
, true);
1042 lhs
= make_ssa_name (type
);
1043 gimple_call_set_lhs (stmt
, lhs
);
1044 gsi_insert_before (gsi
, stmt
, GSI_SAME_STMT
);
1049 /* Perform a complex multiplication on two complex constants A, B represented
1050 by AR, AI, BR, BI of type TYPE.
1051 The operation we want is: a * b = (ar*br - ai*bi) + i(ar*bi + br*ai).
1052 Insert the GIMPLE statements into GSI. Store the real and imaginary
1053 components of the result into RR and RI. */
1056 expand_complex_multiplication_components (gimple_stmt_iterator
*gsi
,
1057 tree type
, tree ar
, tree ai
,
1061 tree t1
, t2
, t3
, t4
;
1063 t1
= gimplify_build2 (gsi
, MULT_EXPR
, type
, ar
, br
);
1064 t2
= gimplify_build2 (gsi
, MULT_EXPR
, type
, ai
, bi
);
1065 t3
= gimplify_build2 (gsi
, MULT_EXPR
, type
, ar
, bi
);
1067 /* Avoid expanding redundant multiplication for the common
1068 case of squaring a complex number. */
1069 if (ar
== br
&& ai
== bi
)
1072 t4
= gimplify_build2 (gsi
, MULT_EXPR
, type
, ai
, br
);
1074 *rr
= gimplify_build2 (gsi
, MINUS_EXPR
, type
, t1
, t2
);
1075 *ri
= gimplify_build2 (gsi
, PLUS_EXPR
, type
, t3
, t4
);
1078 /* Expand complex multiplication to scalars:
1079 a * b = (ar*br - ai*bi) + i(ar*bi + br*ai)
1083 expand_complex_multiplication (gimple_stmt_iterator
*gsi
, tree type
,
1084 tree ar
, tree ai
, tree br
, tree bi
,
1085 complex_lattice_t al
, complex_lattice_t bl
)
1088 tree inner_type
= TREE_TYPE (type
);
1092 complex_lattice_t tl
;
1093 rr
= ar
, ar
= br
, br
= rr
;
1094 ri
= ai
, ai
= bi
, bi
= ri
;
1095 tl
= al
, al
= bl
, bl
= tl
;
1098 switch (PAIR (al
, bl
))
1100 case PAIR (ONLY_REAL
, ONLY_REAL
):
1101 rr
= gimplify_build2 (gsi
, MULT_EXPR
, inner_type
, ar
, br
);
1105 case PAIR (ONLY_IMAG
, ONLY_REAL
):
1107 if (TREE_CODE (ai
) == REAL_CST
1108 && real_identical (&TREE_REAL_CST (ai
), &dconst1
))
1111 ri
= gimplify_build2 (gsi
, MULT_EXPR
, inner_type
, ai
, br
);
1114 case PAIR (ONLY_IMAG
, ONLY_IMAG
):
1115 rr
= gimplify_build2 (gsi
, MULT_EXPR
, inner_type
, ai
, bi
);
1116 rr
= gimplify_build1 (gsi
, NEGATE_EXPR
, inner_type
, rr
);
1120 case PAIR (VARYING
, ONLY_REAL
):
1121 rr
= gimplify_build2 (gsi
, MULT_EXPR
, inner_type
, ar
, br
);
1122 ri
= gimplify_build2 (gsi
, MULT_EXPR
, inner_type
, ai
, br
);
1125 case PAIR (VARYING
, ONLY_IMAG
):
1126 rr
= gimplify_build2 (gsi
, MULT_EXPR
, inner_type
, ai
, bi
);
1127 rr
= gimplify_build1 (gsi
, NEGATE_EXPR
, inner_type
, rr
);
1128 ri
= gimplify_build2 (gsi
, MULT_EXPR
, inner_type
, ar
, bi
);
1131 case PAIR (VARYING
, VARYING
):
1132 if (flag_complex_method
== 2 && SCALAR_FLOAT_TYPE_P (inner_type
))
1134 /* If optimizing for size or not at all just do a libcall.
1135 Same if there are exception-handling edges or signaling NaNs. */
1136 if (optimize
== 0 || optimize_bb_for_size_p (gsi_bb (*gsi
))
1137 || stmt_can_throw_internal (cfun
, gsi_stmt (*gsi
))
1138 || flag_signaling_nans
)
1140 expand_complex_libcall (gsi
, type
, ar
, ai
, br
, bi
,
1145 /* Else, expand x = a * b into
1146 x = (ar*br - ai*bi) + i(ar*bi + br*ai);
1147 if (isunordered (__real__ x, __imag__ x))
1148 x = __muldc3 (a, b); */
1151 expand_complex_multiplication_components (gsi
, inner_type
, ar
, ai
,
1152 br
, bi
, &tmpr
, &tmpi
);
1155 = gimple_build_cond (UNORDERED_EXPR
, tmpr
, tmpi
,
1156 NULL_TREE
, NULL_TREE
);
1158 basic_block orig_bb
= gsi_bb (*gsi
);
1159 /* We want to keep track of the original complex multiplication
1160 statement as we're going to modify it later in
1161 update_complex_assignment. Make sure that insert_cond_bb leaves
1162 that statement in the join block. */
1165 = insert_cond_bb (gsi_bb (*gsi
), gsi_stmt (*gsi
), check
,
1166 profile_probability::very_unlikely ());
1169 gimple_stmt_iterator cond_bb_gsi
= gsi_last_bb (cond_bb
);
1170 gsi_insert_after (&cond_bb_gsi
, gimple_build_nop (), GSI_NEW_STMT
);
1173 = expand_complex_libcall (&cond_bb_gsi
, type
, ar
, ai
, br
,
1174 bi
, MULT_EXPR
, false);
1175 tree cond_real
= gimplify_build1 (&cond_bb_gsi
, REALPART_EXPR
,
1176 inner_type
, libcall_res
);
1177 tree cond_imag
= gimplify_build1 (&cond_bb_gsi
, IMAGPART_EXPR
,
1178 inner_type
, libcall_res
);
1180 basic_block join_bb
= single_succ_edge (cond_bb
)->dest
;
1181 *gsi
= gsi_start_nondebug_after_labels_bb (join_bb
);
1183 /* We have a conditional block with some assignments in cond_bb.
1184 Wire up the PHIs to wrap up. */
1185 rr
= make_ssa_name (inner_type
);
1186 ri
= make_ssa_name (inner_type
);
1187 edge cond_to_join
= single_succ_edge (cond_bb
);
1188 edge orig_to_join
= find_edge (orig_bb
, join_bb
);
1190 gphi
*real_phi
= create_phi_node (rr
, gsi_bb (*gsi
));
1191 add_phi_arg (real_phi
, cond_real
, cond_to_join
,
1193 add_phi_arg (real_phi
, tmpr
, orig_to_join
, UNKNOWN_LOCATION
);
1195 gphi
*imag_phi
= create_phi_node (ri
, gsi_bb (*gsi
));
1196 add_phi_arg (imag_phi
, cond_imag
, cond_to_join
,
1198 add_phi_arg (imag_phi
, tmpi
, orig_to_join
, UNKNOWN_LOCATION
);
1201 /* If we are not worrying about NaNs expand to
1202 (ar*br - ai*bi) + i(ar*bi + br*ai) directly. */
1203 expand_complex_multiplication_components (gsi
, inner_type
, ar
, ai
,
1211 update_complex_assignment (gsi
, rr
, ri
);
1214 /* Keep this algorithm in sync with fold-const.c:const_binop().
1216 Expand complex division to scalars, straightforward algorithm.
1217 a / b = ((ar*br + ai*bi)/t) + i((ai*br - ar*bi)/t)
1222 expand_complex_div_straight (gimple_stmt_iterator
*gsi
, tree inner_type
,
1223 tree ar
, tree ai
, tree br
, tree bi
,
1224 enum tree_code code
)
1226 tree rr
, ri
, div
, t1
, t2
, t3
;
1228 t1
= gimplify_build2 (gsi
, MULT_EXPR
, inner_type
, br
, br
);
1229 t2
= gimplify_build2 (gsi
, MULT_EXPR
, inner_type
, bi
, bi
);
1230 div
= gimplify_build2 (gsi
, PLUS_EXPR
, inner_type
, t1
, t2
);
1232 t1
= gimplify_build2 (gsi
, MULT_EXPR
, inner_type
, ar
, br
);
1233 t2
= gimplify_build2 (gsi
, MULT_EXPR
, inner_type
, ai
, bi
);
1234 t3
= gimplify_build2 (gsi
, PLUS_EXPR
, inner_type
, t1
, t2
);
1235 rr
= gimplify_build2 (gsi
, code
, inner_type
, t3
, div
);
1237 t1
= gimplify_build2 (gsi
, MULT_EXPR
, inner_type
, ai
, br
);
1238 t2
= gimplify_build2 (gsi
, MULT_EXPR
, inner_type
, ar
, bi
);
1239 t3
= gimplify_build2 (gsi
, MINUS_EXPR
, inner_type
, t1
, t2
);
1240 ri
= gimplify_build2 (gsi
, code
, inner_type
, t3
, div
);
1242 update_complex_assignment (gsi
, rr
, ri
);
1245 /* Keep this algorithm in sync with fold-const.c:const_binop().
1247 Expand complex division to scalars, modified algorithm to minimize
1248 overflow with wide input ranges. */
1251 expand_complex_div_wide (gimple_stmt_iterator
*gsi
, tree inner_type
,
1252 tree ar
, tree ai
, tree br
, tree bi
,
1253 enum tree_code code
)
1255 tree rr
, ri
, ratio
, div
, t1
, t2
, tr
, ti
, compare
;
1256 basic_block bb_cond
, bb_true
, bb_false
, bb_join
;
1259 /* Examine |br| < |bi|, and branch. */
1260 t1
= gimplify_build1 (gsi
, ABS_EXPR
, inner_type
, br
);
1261 t2
= gimplify_build1 (gsi
, ABS_EXPR
, inner_type
, bi
);
1262 compare
= fold_build2_loc (gimple_location (gsi_stmt (*gsi
)),
1263 LT_EXPR
, boolean_type_node
, t1
, t2
);
1264 STRIP_NOPS (compare
);
1266 bb_cond
= bb_true
= bb_false
= bb_join
= NULL
;
1267 rr
= ri
= tr
= ti
= NULL
;
1268 if (TREE_CODE (compare
) != INTEGER_CST
)
1274 tmp
= make_ssa_name (boolean_type_node
);
1275 stmt
= gimple_build_assign (tmp
, compare
);
1276 gsi_insert_before (gsi
, stmt
, GSI_SAME_STMT
);
1278 cond
= fold_build2_loc (gimple_location (stmt
),
1279 EQ_EXPR
, boolean_type_node
, tmp
, boolean_true_node
);
1280 stmt
= gimple_build_cond_from_tree (cond
, NULL_TREE
, NULL_TREE
);
1281 gsi_insert_before (gsi
, stmt
, GSI_SAME_STMT
);
1283 /* Split the original block, and create the TRUE and FALSE blocks. */
1284 e
= split_block (gsi_bb (*gsi
), stmt
);
1287 bb_true
= create_empty_bb (bb_cond
);
1288 bb_false
= create_empty_bb (bb_true
);
1289 bb_true
->count
= bb_false
->count
1290 = bb_cond
->count
.apply_probability (profile_probability::even ());
1292 /* Wire the blocks together. */
1293 e
->flags
= EDGE_TRUE_VALUE
;
1294 /* TODO: With value profile we could add an historgram to determine real
1296 e
->probability
= profile_probability::even ();
1297 redirect_edge_succ (e
, bb_true
);
1298 edge e2
= make_edge (bb_cond
, bb_false
, EDGE_FALSE_VALUE
);
1299 e2
->probability
= profile_probability::even ();
1300 make_single_succ_edge (bb_true
, bb_join
, EDGE_FALLTHRU
);
1301 make_single_succ_edge (bb_false
, bb_join
, EDGE_FALLTHRU
);
1302 add_bb_to_loop (bb_true
, bb_cond
->loop_father
);
1303 add_bb_to_loop (bb_false
, bb_cond
->loop_father
);
1305 /* Update dominance info. Note that bb_join's data was
1306 updated by split_block. */
1307 if (dom_info_available_p (CDI_DOMINATORS
))
1309 set_immediate_dominator (CDI_DOMINATORS
, bb_true
, bb_cond
);
1310 set_immediate_dominator (CDI_DOMINATORS
, bb_false
, bb_cond
);
1313 rr
= create_tmp_reg (inner_type
);
1314 ri
= create_tmp_reg (inner_type
);
1317 /* In the TRUE branch, we compute
1319 div = (br * ratio) + bi;
1320 tr = (ar * ratio) + ai;
1321 ti = (ai * ratio) - ar;
1324 if (bb_true
|| integer_nonzerop (compare
))
1328 *gsi
= gsi_last_bb (bb_true
);
1329 gsi_insert_after (gsi
, gimple_build_nop (), GSI_NEW_STMT
);
1332 ratio
= gimplify_build2 (gsi
, code
, inner_type
, br
, bi
);
1334 t1
= gimplify_build2 (gsi
, MULT_EXPR
, inner_type
, br
, ratio
);
1335 div
= gimplify_build2 (gsi
, PLUS_EXPR
, inner_type
, t1
, bi
);
1337 t1
= gimplify_build2 (gsi
, MULT_EXPR
, inner_type
, ar
, ratio
);
1338 tr
= gimplify_build2 (gsi
, PLUS_EXPR
, inner_type
, t1
, ai
);
1340 t1
= gimplify_build2 (gsi
, MULT_EXPR
, inner_type
, ai
, ratio
);
1341 ti
= gimplify_build2 (gsi
, MINUS_EXPR
, inner_type
, t1
, ar
);
1343 tr
= gimplify_build2 (gsi
, code
, inner_type
, tr
, div
);
1344 ti
= gimplify_build2 (gsi
, code
, inner_type
, ti
, div
);
1348 stmt
= gimple_build_assign (rr
, tr
);
1349 gsi_insert_before (gsi
, stmt
, GSI_SAME_STMT
);
1350 stmt
= gimple_build_assign (ri
, ti
);
1351 gsi_insert_before (gsi
, stmt
, GSI_SAME_STMT
);
1352 gsi_remove (gsi
, true);
1356 /* In the FALSE branch, we compute
1358 divisor = (d * ratio) + c;
1359 tr = (b * ratio) + a;
1360 ti = b - (a * ratio);
1363 if (bb_false
|| integer_zerop (compare
))
1367 *gsi
= gsi_last_bb (bb_false
);
1368 gsi_insert_after (gsi
, gimple_build_nop (), GSI_NEW_STMT
);
1371 ratio
= gimplify_build2 (gsi
, code
, inner_type
, bi
, br
);
1373 t1
= gimplify_build2 (gsi
, MULT_EXPR
, inner_type
, bi
, ratio
);
1374 div
= gimplify_build2 (gsi
, PLUS_EXPR
, inner_type
, t1
, br
);
1376 t1
= gimplify_build2 (gsi
, MULT_EXPR
, inner_type
, ai
, ratio
);
1377 tr
= gimplify_build2 (gsi
, PLUS_EXPR
, inner_type
, t1
, ar
);
1379 t1
= gimplify_build2 (gsi
, MULT_EXPR
, inner_type
, ar
, ratio
);
1380 ti
= gimplify_build2 (gsi
, MINUS_EXPR
, inner_type
, ai
, t1
);
1382 tr
= gimplify_build2 (gsi
, code
, inner_type
, tr
, div
);
1383 ti
= gimplify_build2 (gsi
, code
, inner_type
, ti
, div
);
1387 stmt
= gimple_build_assign (rr
, tr
);
1388 gsi_insert_before (gsi
, stmt
, GSI_SAME_STMT
);
1389 stmt
= gimple_build_assign (ri
, ti
);
1390 gsi_insert_before (gsi
, stmt
, GSI_SAME_STMT
);
1391 gsi_remove (gsi
, true);
1396 *gsi
= gsi_start_bb (bb_join
);
1400 update_complex_assignment (gsi
, rr
, ri
);
1403 /* Expand complex division to scalars. */
1406 expand_complex_division (gimple_stmt_iterator
*gsi
, tree type
,
1407 tree ar
, tree ai
, tree br
, tree bi
,
1408 enum tree_code code
,
1409 complex_lattice_t al
, complex_lattice_t bl
)
1413 tree inner_type
= TREE_TYPE (type
);
1414 switch (PAIR (al
, bl
))
1416 case PAIR (ONLY_REAL
, ONLY_REAL
):
1417 rr
= gimplify_build2 (gsi
, code
, inner_type
, ar
, br
);
1421 case PAIR (ONLY_REAL
, ONLY_IMAG
):
1423 ri
= gimplify_build2 (gsi
, code
, inner_type
, ar
, bi
);
1424 ri
= gimplify_build1 (gsi
, NEGATE_EXPR
, inner_type
, ri
);
1427 case PAIR (ONLY_IMAG
, ONLY_REAL
):
1429 ri
= gimplify_build2 (gsi
, code
, inner_type
, ai
, br
);
1432 case PAIR (ONLY_IMAG
, ONLY_IMAG
):
1433 rr
= gimplify_build2 (gsi
, code
, inner_type
, ai
, bi
);
1437 case PAIR (VARYING
, ONLY_REAL
):
1438 rr
= gimplify_build2 (gsi
, code
, inner_type
, ar
, br
);
1439 ri
= gimplify_build2 (gsi
, code
, inner_type
, ai
, br
);
1442 case PAIR (VARYING
, ONLY_IMAG
):
1443 rr
= gimplify_build2 (gsi
, code
, inner_type
, ai
, bi
);
1444 ri
= gimplify_build2 (gsi
, code
, inner_type
, ar
, bi
);
1445 ri
= gimplify_build1 (gsi
, NEGATE_EXPR
, inner_type
, ri
);
1448 case PAIR (ONLY_REAL
, VARYING
):
1449 case PAIR (ONLY_IMAG
, VARYING
):
1450 case PAIR (VARYING
, VARYING
):
1451 switch (flag_complex_method
)
1454 /* straightforward implementation of complex divide acceptable. */
1455 expand_complex_div_straight (gsi
, inner_type
, ar
, ai
, br
, bi
, code
);
1459 if (SCALAR_FLOAT_TYPE_P (inner_type
))
1461 expand_complex_libcall (gsi
, type
, ar
, ai
, br
, bi
, code
, true);
1467 /* wide ranges of inputs must work for complex divide. */
1468 expand_complex_div_wide (gsi
, inner_type
, ar
, ai
, br
, bi
, code
);
1480 update_complex_assignment (gsi
, rr
, ri
);
1483 /* Expand complex negation to scalars:
1488 expand_complex_negation (gimple_stmt_iterator
*gsi
, tree inner_type
,
1493 rr
= gimplify_build1 (gsi
, NEGATE_EXPR
, inner_type
, ar
);
1494 ri
= gimplify_build1 (gsi
, NEGATE_EXPR
, inner_type
, ai
);
1496 update_complex_assignment (gsi
, rr
, ri
);
1499 /* Expand complex conjugate to scalars:
1504 expand_complex_conjugate (gimple_stmt_iterator
*gsi
, tree inner_type
,
1509 ri
= gimplify_build1 (gsi
, NEGATE_EXPR
, inner_type
, ai
);
1511 update_complex_assignment (gsi
, ar
, ri
);
1514 /* Expand complex comparison (EQ or NE only). */
1517 expand_complex_comparison (gimple_stmt_iterator
*gsi
, tree ar
, tree ai
,
1518 tree br
, tree bi
, enum tree_code code
)
1520 tree cr
, ci
, cc
, type
;
1523 cr
= gimplify_build2 (gsi
, code
, boolean_type_node
, ar
, br
);
1524 ci
= gimplify_build2 (gsi
, code
, boolean_type_node
, ai
, bi
);
1525 cc
= gimplify_build2 (gsi
,
1526 (code
== EQ_EXPR
? TRUTH_AND_EXPR
: TRUTH_OR_EXPR
),
1527 boolean_type_node
, cr
, ci
);
1529 stmt
= gsi_stmt (*gsi
);
1531 switch (gimple_code (stmt
))
1535 greturn
*return_stmt
= as_a
<greturn
*> (stmt
);
1536 type
= TREE_TYPE (gimple_return_retval (return_stmt
));
1537 gimple_return_set_retval (return_stmt
, fold_convert (type
, cc
));
1542 type
= TREE_TYPE (gimple_assign_lhs (stmt
));
1543 gimple_assign_set_rhs_from_tree (gsi
, fold_convert (type
, cc
));
1544 stmt
= gsi_stmt (*gsi
);
1549 gcond
*cond_stmt
= as_a
<gcond
*> (stmt
);
1550 gimple_cond_set_code (cond_stmt
, EQ_EXPR
);
1551 gimple_cond_set_lhs (cond_stmt
, cc
);
1552 gimple_cond_set_rhs (cond_stmt
, boolean_true_node
);
1563 /* Expand inline asm that sets some complex SSA_NAMEs. */
1566 expand_complex_asm (gimple_stmt_iterator
*gsi
)
1568 gasm
*stmt
= as_a
<gasm
*> (gsi_stmt (*gsi
));
1571 for (i
= 0; i
< gimple_asm_noutputs (stmt
); ++i
)
1573 tree link
= gimple_asm_output_op (stmt
, i
);
1574 tree op
= TREE_VALUE (link
);
1575 if (TREE_CODE (op
) == SSA_NAME
1576 && TREE_CODE (TREE_TYPE (op
)) == COMPLEX_TYPE
)
1578 tree type
= TREE_TYPE (op
);
1579 tree inner_type
= TREE_TYPE (type
);
1580 tree r
= build1 (REALPART_EXPR
, inner_type
, op
);
1581 tree i
= build1 (IMAGPART_EXPR
, inner_type
, op
);
1582 gimple_seq list
= set_component_ssa_name (op
, false, r
);
1585 gsi_insert_seq_after (gsi
, list
, GSI_CONTINUE_LINKING
);
1587 list
= set_component_ssa_name (op
, true, i
);
1589 gsi_insert_seq_after (gsi
, list
, GSI_CONTINUE_LINKING
);
1594 /* Process one statement. If we identify a complex operation, expand it. */
1597 expand_complex_operations_1 (gimple_stmt_iterator
*gsi
)
1599 gimple
*stmt
= gsi_stmt (*gsi
);
1600 tree type
, inner_type
, lhs
;
1601 tree ac
, ar
, ai
, bc
, br
, bi
;
1602 complex_lattice_t al
, bl
;
1603 enum tree_code code
;
1605 if (gimple_code (stmt
) == GIMPLE_ASM
)
1607 expand_complex_asm (gsi
);
1611 lhs
= gimple_get_lhs (stmt
);
1612 if (!lhs
&& gimple_code (stmt
) != GIMPLE_COND
)
1615 type
= TREE_TYPE (gimple_op (stmt
, 0));
1616 code
= gimple_expr_code (stmt
);
1618 /* Initial filter for operations we handle. */
1624 case TRUNC_DIV_EXPR
:
1626 case FLOOR_DIV_EXPR
:
1627 case ROUND_DIV_EXPR
:
1631 if (TREE_CODE (type
) != COMPLEX_TYPE
)
1633 inner_type
= TREE_TYPE (type
);
1638 /* Note, both GIMPLE_ASSIGN and GIMPLE_COND may have an EQ_EXPR
1639 subcode, so we need to access the operands using gimple_op. */
1640 inner_type
= TREE_TYPE (gimple_op (stmt
, 1));
1641 if (TREE_CODE (inner_type
) != COMPLEX_TYPE
)
1649 /* GIMPLE_COND may also fallthru here, but we do not need to
1650 do anything with it. */
1651 if (gimple_code (stmt
) == GIMPLE_COND
)
1654 if (TREE_CODE (type
) == COMPLEX_TYPE
)
1655 expand_complex_move (gsi
, type
);
1656 else if (is_gimple_assign (stmt
)
1657 && (gimple_assign_rhs_code (stmt
) == REALPART_EXPR
1658 || gimple_assign_rhs_code (stmt
) == IMAGPART_EXPR
)
1659 && TREE_CODE (lhs
) == SSA_NAME
)
1661 rhs
= gimple_assign_rhs1 (stmt
);
1662 rhs
= extract_component (gsi
, TREE_OPERAND (rhs
, 0),
1663 gimple_assign_rhs_code (stmt
)
1666 gimple_assign_set_rhs_from_tree (gsi
, rhs
);
1667 stmt
= gsi_stmt (*gsi
);
1674 /* Extract the components of the two complex values. Make sure and
1675 handle the common case of the same value used twice specially. */
1676 if (is_gimple_assign (stmt
))
1678 ac
= gimple_assign_rhs1 (stmt
);
1679 bc
= (gimple_num_ops (stmt
) > 2) ? gimple_assign_rhs2 (stmt
) : NULL
;
1681 /* GIMPLE_CALL can not get here. */
1684 ac
= gimple_cond_lhs (stmt
);
1685 bc
= gimple_cond_rhs (stmt
);
1688 ar
= extract_component (gsi
, ac
, false, true);
1689 ai
= extract_component (gsi
, ac
, true, true);
1695 br
= extract_component (gsi
, bc
, 0, true);
1696 bi
= extract_component (gsi
, bc
, 1, true);
1699 br
= bi
= NULL_TREE
;
1701 al
= find_lattice_value (ac
);
1702 if (al
== UNINITIALIZED
)
1705 if (TREE_CODE_CLASS (code
) == tcc_unary
)
1711 bl
= find_lattice_value (bc
);
1712 if (bl
== UNINITIALIZED
)
1720 expand_complex_addition (gsi
, inner_type
, ar
, ai
, br
, bi
, code
, al
, bl
);
1724 expand_complex_multiplication (gsi
, type
, ar
, ai
, br
, bi
, al
, bl
);
1727 case TRUNC_DIV_EXPR
:
1729 case FLOOR_DIV_EXPR
:
1730 case ROUND_DIV_EXPR
:
1732 expand_complex_division (gsi
, type
, ar
, ai
, br
, bi
, code
, al
, bl
);
1736 expand_complex_negation (gsi
, inner_type
, ar
, ai
);
1740 expand_complex_conjugate (gsi
, inner_type
, ar
, ai
);
1745 expand_complex_comparison (gsi
, ar
, ai
, br
, bi
, code
);
1754 /* Entry point for complex operation lowering during optimization. */
1757 tree_lower_complex (void)
1759 gimple_stmt_iterator gsi
;
1764 if (!init_dont_simulate_again ())
1767 complex_lattice_values
.create (num_ssa_names
);
1768 complex_lattice_values
.safe_grow_cleared (num_ssa_names
);
1770 init_parameter_lattice_values ();
1771 class complex_propagate complex_propagate
;
1772 complex_propagate
.ssa_propagate ();
1774 complex_variable_components
= new int_tree_htab_type (10);
1776 complex_ssa_name_components
.create (2 * num_ssa_names
);
1777 complex_ssa_name_components
.safe_grow_cleared (2 * num_ssa_names
);
1779 update_parameter_components ();
1781 rpo
= XNEWVEC (int, last_basic_block_for_fn (cfun
));
1782 n_bbs
= pre_and_rev_post_order_compute (NULL
, rpo
, false);
1783 for (i
= 0; i
< n_bbs
; i
++)
1785 bb
= BASIC_BLOCK_FOR_FN (cfun
, rpo
[i
]);
1788 update_phi_components (bb
);
1789 for (gsi
= gsi_start_bb (bb
); !gsi_end_p (gsi
); gsi_next (&gsi
))
1790 expand_complex_operations_1 (&gsi
);
1795 if (!phis_to_revisit
.is_empty ())
1797 unsigned int n
= phis_to_revisit
.length ();
1798 for (unsigned int j
= 0; j
< n
; j
+= 3)
1799 for (unsigned int k
= 0; k
< 2; k
++)
1800 if (gphi
*phi
= phis_to_revisit
[j
+ k
+ 1])
1802 unsigned int m
= gimple_phi_num_args (phi
);
1803 for (unsigned int l
= 0; l
< m
; ++l
)
1805 tree op
= gimple_phi_arg_def (phi
, l
);
1806 if (TREE_CODE (op
) == SSA_NAME
1807 || is_gimple_min_invariant (op
))
1809 tree arg
= gimple_phi_arg_def (phis_to_revisit
[j
], l
);
1810 op
= extract_component (NULL
, arg
, k
> 0, false, false);
1811 SET_PHI_ARG_DEF (phi
, l
, op
);
1814 phis_to_revisit
.release ();
1817 gsi_commit_edge_inserts ();
1819 delete complex_variable_components
;
1820 complex_variable_components
= NULL
;
1821 complex_ssa_name_components
.release ();
1822 complex_lattice_values
.release ();
1828 const pass_data pass_data_lower_complex
=
1830 GIMPLE_PASS
, /* type */
1831 "cplxlower", /* name */
1832 OPTGROUP_NONE
, /* optinfo_flags */
1833 TV_NONE
, /* tv_id */
1834 PROP_ssa
, /* properties_required */
1835 PROP_gimple_lcx
, /* properties_provided */
1836 0, /* properties_destroyed */
1837 0, /* todo_flags_start */
1838 TODO_update_ssa
, /* todo_flags_finish */
1841 class pass_lower_complex
: public gimple_opt_pass
1844 pass_lower_complex (gcc::context
*ctxt
)
1845 : gimple_opt_pass (pass_data_lower_complex
, ctxt
)
1848 /* opt_pass methods: */
1849 opt_pass
* clone () { return new pass_lower_complex (m_ctxt
); }
1850 virtual unsigned int execute (function
*) { return tree_lower_complex (); }
1852 }; // class pass_lower_complex
1857 make_pass_lower_complex (gcc::context
*ctxt
)
1859 return new pass_lower_complex (ctxt
);
1865 const pass_data pass_data_lower_complex_O0
=
1867 GIMPLE_PASS
, /* type */
1868 "cplxlower0", /* name */
1869 OPTGROUP_NONE
, /* optinfo_flags */
1870 TV_NONE
, /* tv_id */
1871 PROP_cfg
, /* properties_required */
1872 PROP_gimple_lcx
, /* properties_provided */
1873 0, /* properties_destroyed */
1874 0, /* todo_flags_start */
1875 TODO_update_ssa
, /* todo_flags_finish */
1878 class pass_lower_complex_O0
: public gimple_opt_pass
1881 pass_lower_complex_O0 (gcc::context
*ctxt
)
1882 : gimple_opt_pass (pass_data_lower_complex_O0
, ctxt
)
1885 /* opt_pass methods: */
1886 virtual bool gate (function
*fun
)
1888 /* With errors, normal optimization passes are not run. If we don't
1889 lower complex operations at all, rtl expansion will abort. */
1890 return !(fun
->curr_properties
& PROP_gimple_lcx
);
1893 virtual unsigned int execute (function
*) { return tree_lower_complex (); }
1895 }; // class pass_lower_complex_O0
1900 make_pass_lower_complex_O0 (gcc::context
*ctxt
)
1902 return new pass_lower_complex_O0 (ctxt
);