1 /* Control flow functions for trees.
2 Copyright (C) 2001-2018 Free Software Foundation, Inc.
3 Contributed by Diego Novillo <dnovillo@redhat.com>
5 This file is part of GCC.
7 GCC is free software; you can redistribute it and/or modify
8 it under the terms of the GNU General Public License as published by
9 the Free Software Foundation; either version 3, or (at your option)
12 GCC is distributed in the hope that it will be useful,
13 but WITHOUT ANY WARRANTY; without even the implied warranty of
14 MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
15 GNU General Public License for more details.
17 You should have received a copy of the GNU General Public License
18 along with GCC; see the file COPYING3. If not see
19 <http://www.gnu.org/licenses/>. */
23 #include "coretypes.h"
30 #include "tree-pass.h"
33 #include "gimple-pretty-print.h"
34 #include "diagnostic-core.h"
35 #include "fold-const.h"
36 #include "trans-mem.h"
37 #include "stor-layout.h"
38 #include "print-tree.h"
40 #include "gimple-fold.h"
42 #include "gimple-iterator.h"
43 #include "gimplify-me.h"
44 #include "gimple-walk.h"
46 #include "tree-ssa-loop-manip.h"
47 #include "tree-ssa-loop-niter.h"
48 #include "tree-into-ssa.h"
53 #include "tree-ssa-propagate.h"
54 #include "value-prof.h"
55 #include "tree-inline.h"
56 #include "tree-ssa-live.h"
57 #include "omp-general.h"
58 #include "omp-expand.h"
59 #include "tree-cfgcleanup.h"
66 /* This file contains functions for building the Control Flow Graph (CFG)
67 for a function tree. */
69 /* Local declarations. */
71 /* Initial capacity for the basic block array. */
72 static const int initial_cfg_capacity
= 20;
74 /* This hash table allows us to efficiently lookup all CASE_LABEL_EXPRs
75 which use a particular edge. The CASE_LABEL_EXPRs are chained together
76 via their CASE_CHAIN field, which we clear after we're done with the
77 hash table to prevent problems with duplication of GIMPLE_SWITCHes.
79 Access to this list of CASE_LABEL_EXPRs allows us to efficiently
80 update the case vector in response to edge redirections.
82 Right now this table is set up and torn down at key points in the
83 compilation process. It would be nice if we could make the table
84 more persistent. The key is getting notification of changes to
85 the CFG (particularly edge removal, creation and redirection). */
87 static hash_map
<edge
, tree
> *edge_to_cases
;
89 /* If we record edge_to_cases, this bitmap will hold indexes
90 of basic blocks that end in a GIMPLE_SWITCH which we touched
91 due to edge manipulations. */
93 static bitmap touched_switch_bbs
;
98 long num_merged_labels
;
101 static struct cfg_stats_d cfg_stats
;
103 /* Data to pass to replace_block_vars_by_duplicates_1. */
104 struct replace_decls_d
106 hash_map
<tree
, tree
> *vars_map
;
110 /* Hash table to store last discriminator assigned for each locus. */
111 struct locus_discrim_map
117 /* Hashtable helpers. */
119 struct locus_discrim_hasher
: free_ptr_hash
<locus_discrim_map
>
121 static inline hashval_t
hash (const locus_discrim_map
*);
122 static inline bool equal (const locus_discrim_map
*,
123 const locus_discrim_map
*);
126 /* Trivial hash function for a location_t. ITEM is a pointer to
127 a hash table entry that maps a location_t to a discriminator. */
130 locus_discrim_hasher::hash (const locus_discrim_map
*item
)
132 return item
->location_line
;
135 /* Equality function for the locus-to-discriminator map. A and B
136 point to the two hash table entries to compare. */
139 locus_discrim_hasher::equal (const locus_discrim_map
*a
,
140 const locus_discrim_map
*b
)
142 return a
->location_line
== b
->location_line
;
145 static hash_table
<locus_discrim_hasher
> *discriminator_per_locus
;
147 /* Basic blocks and flowgraphs. */
148 static void make_blocks (gimple_seq
);
151 static void make_edges (void);
152 static void assign_discriminators (void);
153 static void make_cond_expr_edges (basic_block
);
154 static void make_gimple_switch_edges (gswitch
*, basic_block
);
155 static bool make_goto_expr_edges (basic_block
);
156 static void make_gimple_asm_edges (basic_block
);
157 static edge
gimple_redirect_edge_and_branch (edge
, basic_block
);
158 static edge
gimple_try_redirect_by_replacing_jump (edge
, basic_block
);
160 /* Various helpers. */
161 static inline bool stmt_starts_bb_p (gimple
*, gimple
*);
162 static int gimple_verify_flow_info (void);
163 static void gimple_make_forwarder_block (edge
);
164 static gimple
*first_non_label_stmt (basic_block
);
165 static bool verify_gimple_transaction (gtransaction
*);
166 static bool call_can_make_abnormal_goto (gimple
*);
168 /* Flowgraph optimization and cleanup. */
169 static void gimple_merge_blocks (basic_block
, basic_block
);
170 static bool gimple_can_merge_blocks_p (basic_block
, basic_block
);
171 static void remove_bb (basic_block
);
172 static edge
find_taken_edge_computed_goto (basic_block
, tree
);
173 static edge
find_taken_edge_cond_expr (const gcond
*, tree
);
174 static void lower_phi_internal_fn ();
177 init_empty_tree_cfg_for_function (struct function
*fn
)
179 /* Initialize the basic block array. */
181 profile_status_for_fn (fn
) = PROFILE_ABSENT
;
182 n_basic_blocks_for_fn (fn
) = NUM_FIXED_BLOCKS
;
183 last_basic_block_for_fn (fn
) = NUM_FIXED_BLOCKS
;
184 vec_alloc (basic_block_info_for_fn (fn
), initial_cfg_capacity
);
185 vec_safe_grow_cleared (basic_block_info_for_fn (fn
),
186 initial_cfg_capacity
);
188 /* Build a mapping of labels to their associated blocks. */
189 vec_alloc (label_to_block_map_for_fn (fn
), initial_cfg_capacity
);
190 vec_safe_grow_cleared (label_to_block_map_for_fn (fn
),
191 initial_cfg_capacity
);
193 SET_BASIC_BLOCK_FOR_FN (fn
, ENTRY_BLOCK
, ENTRY_BLOCK_PTR_FOR_FN (fn
));
194 SET_BASIC_BLOCK_FOR_FN (fn
, EXIT_BLOCK
, EXIT_BLOCK_PTR_FOR_FN (fn
));
196 ENTRY_BLOCK_PTR_FOR_FN (fn
)->next_bb
197 = EXIT_BLOCK_PTR_FOR_FN (fn
);
198 EXIT_BLOCK_PTR_FOR_FN (fn
)->prev_bb
199 = ENTRY_BLOCK_PTR_FOR_FN (fn
);
203 init_empty_tree_cfg (void)
205 init_empty_tree_cfg_for_function (cfun
);
208 /*---------------------------------------------------------------------------
210 ---------------------------------------------------------------------------*/
212 /* Entry point to the CFG builder for trees. SEQ is the sequence of
213 statements to be added to the flowgraph. */
216 build_gimple_cfg (gimple_seq seq
)
218 /* Register specific gimple functions. */
219 gimple_register_cfg_hooks ();
221 memset ((void *) &cfg_stats
, 0, sizeof (cfg_stats
));
223 init_empty_tree_cfg ();
227 /* Make sure there is always at least one block, even if it's empty. */
228 if (n_basic_blocks_for_fn (cfun
) == NUM_FIXED_BLOCKS
)
229 create_empty_bb (ENTRY_BLOCK_PTR_FOR_FN (cfun
));
231 /* Adjust the size of the array. */
232 if (basic_block_info_for_fn (cfun
)->length ()
233 < (size_t) n_basic_blocks_for_fn (cfun
))
234 vec_safe_grow_cleared (basic_block_info_for_fn (cfun
),
235 n_basic_blocks_for_fn (cfun
));
237 /* To speed up statement iterator walks, we first purge dead labels. */
238 cleanup_dead_labels ();
240 /* Group case nodes to reduce the number of edges.
241 We do this after cleaning up dead labels because otherwise we miss
242 a lot of obvious case merging opportunities. */
243 group_case_labels ();
245 /* Create the edges of the flowgraph. */
246 discriminator_per_locus
= new hash_table
<locus_discrim_hasher
> (13);
248 assign_discriminators ();
249 lower_phi_internal_fn ();
250 cleanup_dead_labels ();
251 delete discriminator_per_locus
;
252 discriminator_per_locus
= NULL
;
255 /* Look for ANNOTATE calls with loop annotation kind in BB; if found, remove
256 them and propagate the information to LOOP. We assume that the annotations
257 come immediately before the condition in BB, if any. */
260 replace_loop_annotate_in_block (basic_block bb
, struct loop
*loop
)
262 gimple_stmt_iterator gsi
= gsi_last_bb (bb
);
263 gimple
*stmt
= gsi_stmt (gsi
);
265 if (!(stmt
&& gimple_code (stmt
) == GIMPLE_COND
))
268 for (gsi_prev_nondebug (&gsi
); !gsi_end_p (gsi
); gsi_prev (&gsi
))
270 stmt
= gsi_stmt (gsi
);
271 if (gimple_code (stmt
) != GIMPLE_CALL
)
273 if (!gimple_call_internal_p (stmt
)
274 || gimple_call_internal_fn (stmt
) != IFN_ANNOTATE
)
277 switch ((annot_expr_kind
) tree_to_shwi (gimple_call_arg (stmt
, 1)))
279 case annot_expr_ivdep_kind
:
280 loop
->safelen
= INT_MAX
;
282 case annot_expr_unroll_kind
:
284 = (unsigned short) tree_to_shwi (gimple_call_arg (stmt
, 2));
285 cfun
->has_unroll
= true;
287 case annot_expr_no_vector_kind
:
288 loop
->dont_vectorize
= true;
290 case annot_expr_vector_kind
:
291 loop
->force_vectorize
= true;
292 cfun
->has_force_vectorize_loops
= true;
294 case annot_expr_parallel_kind
:
295 loop
->can_be_parallel
= true;
296 loop
->safelen
= INT_MAX
;
302 stmt
= gimple_build_assign (gimple_call_lhs (stmt
),
303 gimple_call_arg (stmt
, 0));
304 gsi_replace (&gsi
, stmt
, true);
308 /* Look for ANNOTATE calls with loop annotation kind; if found, remove
309 them and propagate the information to the loop. We assume that the
310 annotations come immediately before the condition of the loop. */
313 replace_loop_annotate (void)
317 gimple_stmt_iterator gsi
;
320 FOR_EACH_LOOP (loop
, 0)
322 /* First look into the header. */
323 replace_loop_annotate_in_block (loop
->header
, loop
);
325 /* Then look into the latch, if any. */
327 replace_loop_annotate_in_block (loop
->latch
, loop
);
330 /* Remove IFN_ANNOTATE. Safeguard for the case loop->latch == NULL. */
331 FOR_EACH_BB_FN (bb
, cfun
)
333 for (gsi
= gsi_last_bb (bb
); !gsi_end_p (gsi
); gsi_prev (&gsi
))
335 stmt
= gsi_stmt (gsi
);
336 if (gimple_code (stmt
) != GIMPLE_CALL
)
338 if (!gimple_call_internal_p (stmt
)
339 || gimple_call_internal_fn (stmt
) != IFN_ANNOTATE
)
342 switch ((annot_expr_kind
) tree_to_shwi (gimple_call_arg (stmt
, 1)))
344 case annot_expr_ivdep_kind
:
345 case annot_expr_unroll_kind
:
346 case annot_expr_no_vector_kind
:
347 case annot_expr_vector_kind
:
348 case annot_expr_parallel_kind
:
354 warning_at (gimple_location (stmt
), 0, "ignoring loop annotation");
355 stmt
= gimple_build_assign (gimple_call_lhs (stmt
),
356 gimple_call_arg (stmt
, 0));
357 gsi_replace (&gsi
, stmt
, true);
362 /* Lower internal PHI function from GIMPLE FE. */
365 lower_phi_internal_fn ()
367 basic_block bb
, pred
= NULL
;
368 gimple_stmt_iterator gsi
;
373 /* After edge creation, handle __PHI function from GIMPLE FE. */
374 FOR_EACH_BB_FN (bb
, cfun
)
376 for (gsi
= gsi_after_labels (bb
); !gsi_end_p (gsi
);)
378 stmt
= gsi_stmt (gsi
);
379 if (! gimple_call_internal_p (stmt
, IFN_PHI
))
382 lhs
= gimple_call_lhs (stmt
);
383 phi_node
= create_phi_node (lhs
, bb
);
385 /* Add arguments to the PHI node. */
386 for (unsigned i
= 0; i
< gimple_call_num_args (stmt
); ++i
)
388 tree arg
= gimple_call_arg (stmt
, i
);
389 if (TREE_CODE (arg
) == LABEL_DECL
)
390 pred
= label_to_block (cfun
, arg
);
393 edge e
= find_edge (pred
, bb
);
394 add_phi_arg (phi_node
, arg
, e
, UNKNOWN_LOCATION
);
398 gsi_remove (&gsi
, true);
404 execute_build_cfg (void)
406 gimple_seq body
= gimple_body (current_function_decl
);
408 build_gimple_cfg (body
);
409 gimple_set_body (current_function_decl
, NULL
);
410 if (dump_file
&& (dump_flags
& TDF_DETAILS
))
412 fprintf (dump_file
, "Scope blocks:\n");
413 dump_scope_blocks (dump_file
, dump_flags
);
416 loop_optimizer_init (AVOID_CFG_MODIFICATIONS
);
417 replace_loop_annotate ();
423 const pass_data pass_data_build_cfg
=
425 GIMPLE_PASS
, /* type */
427 OPTGROUP_NONE
, /* optinfo_flags */
428 TV_TREE_CFG
, /* tv_id */
429 PROP_gimple_leh
, /* properties_required */
430 ( PROP_cfg
| PROP_loops
), /* properties_provided */
431 0, /* properties_destroyed */
432 0, /* todo_flags_start */
433 0, /* todo_flags_finish */
436 class pass_build_cfg
: public gimple_opt_pass
439 pass_build_cfg (gcc::context
*ctxt
)
440 : gimple_opt_pass (pass_data_build_cfg
, ctxt
)
443 /* opt_pass methods: */
444 virtual unsigned int execute (function
*) { return execute_build_cfg (); }
446 }; // class pass_build_cfg
451 make_pass_build_cfg (gcc::context
*ctxt
)
453 return new pass_build_cfg (ctxt
);
457 /* Return true if T is a computed goto. */
460 computed_goto_p (gimple
*t
)
462 return (gimple_code (t
) == GIMPLE_GOTO
463 && TREE_CODE (gimple_goto_dest (t
)) != LABEL_DECL
);
466 /* Returns true if the sequence of statements STMTS only contains
467 a call to __builtin_unreachable (). */
470 gimple_seq_unreachable_p (gimple_seq stmts
)
473 /* Return false if -fsanitize=unreachable, we don't want to
474 optimize away those calls, but rather turn them into
475 __ubsan_handle_builtin_unreachable () or __builtin_trap ()
477 || sanitize_flags_p (SANITIZE_UNREACHABLE
))
480 gimple_stmt_iterator gsi
= gsi_last (stmts
);
482 if (!gimple_call_builtin_p (gsi_stmt (gsi
), BUILT_IN_UNREACHABLE
))
485 for (gsi_prev (&gsi
); !gsi_end_p (gsi
); gsi_prev (&gsi
))
487 gimple
*stmt
= gsi_stmt (gsi
);
488 if (gimple_code (stmt
) != GIMPLE_LABEL
489 && !is_gimple_debug (stmt
)
490 && !gimple_clobber_p (stmt
))
496 /* Returns true for edge E where e->src ends with a GIMPLE_COND and
497 the other edge points to a bb with just __builtin_unreachable ().
498 I.e. return true for C->M edge in:
506 __builtin_unreachable ();
510 assert_unreachable_fallthru_edge_p (edge e
)
512 basic_block pred_bb
= e
->src
;
513 gimple
*last
= last_stmt (pred_bb
);
514 if (last
&& gimple_code (last
) == GIMPLE_COND
)
516 basic_block other_bb
= EDGE_SUCC (pred_bb
, 0)->dest
;
517 if (other_bb
== e
->dest
)
518 other_bb
= EDGE_SUCC (pred_bb
, 1)->dest
;
519 if (EDGE_COUNT (other_bb
->succs
) == 0)
520 return gimple_seq_unreachable_p (bb_seq (other_bb
));
526 /* Initialize GF_CALL_CTRL_ALTERING flag, which indicates the call
527 could alter control flow except via eh. We initialize the flag at
528 CFG build time and only ever clear it later. */
531 gimple_call_initialize_ctrl_altering (gimple
*stmt
)
533 int flags
= gimple_call_flags (stmt
);
535 /* A call alters control flow if it can make an abnormal goto. */
536 if (call_can_make_abnormal_goto (stmt
)
537 /* A call also alters control flow if it does not return. */
538 || flags
& ECF_NORETURN
539 /* TM ending statements have backedges out of the transaction.
540 Return true so we split the basic block containing them.
541 Note that the TM_BUILTIN test is merely an optimization. */
542 || ((flags
& ECF_TM_BUILTIN
)
543 && is_tm_ending_fndecl (gimple_call_fndecl (stmt
)))
544 /* BUILT_IN_RETURN call is same as return statement. */
545 || gimple_call_builtin_p (stmt
, BUILT_IN_RETURN
)
546 /* IFN_UNIQUE should be the last insn, to make checking for it
547 as cheap as possible. */
548 || (gimple_call_internal_p (stmt
)
549 && gimple_call_internal_unique_p (stmt
)))
550 gimple_call_set_ctrl_altering (stmt
, true);
552 gimple_call_set_ctrl_altering (stmt
, false);
556 /* Insert SEQ after BB and build a flowgraph. */
559 make_blocks_1 (gimple_seq seq
, basic_block bb
)
561 gimple_stmt_iterator i
= gsi_start (seq
);
563 gimple
*prev_stmt
= NULL
;
564 bool start_new_block
= true;
565 bool first_stmt_of_seq
= true;
567 while (!gsi_end_p (i
))
569 /* PREV_STMT should only be set to a debug stmt if the debug
570 stmt is before nondebug stmts. Once stmt reaches a nondebug
571 nonlabel, prev_stmt will be set to it, so that
572 stmt_starts_bb_p will know to start a new block if a label is
573 found. However, if stmt was a label after debug stmts only,
574 keep the label in prev_stmt even if we find further debug
575 stmts, for there may be other labels after them, and they
576 should land in the same block. */
577 if (!prev_stmt
|| !stmt
|| !is_gimple_debug (stmt
))
581 if (stmt
&& is_gimple_call (stmt
))
582 gimple_call_initialize_ctrl_altering (stmt
);
584 /* If the statement starts a new basic block or if we have determined
585 in a previous pass that we need to create a new block for STMT, do
587 if (start_new_block
|| stmt_starts_bb_p (stmt
, prev_stmt
))
589 if (!first_stmt_of_seq
)
590 gsi_split_seq_before (&i
, &seq
);
591 bb
= create_basic_block (seq
, bb
);
592 start_new_block
= false;
596 /* Now add STMT to BB and create the subgraphs for special statement
598 gimple_set_bb (stmt
, bb
);
600 /* If STMT is a basic block terminator, set START_NEW_BLOCK for the
602 if (stmt_ends_bb_p (stmt
))
604 /* If the stmt can make abnormal goto use a new temporary
605 for the assignment to the LHS. This makes sure the old value
606 of the LHS is available on the abnormal edge. Otherwise
607 we will end up with overlapping life-ranges for abnormal
609 if (gimple_has_lhs (stmt
)
610 && stmt_can_make_abnormal_goto (stmt
)
611 && is_gimple_reg_type (TREE_TYPE (gimple_get_lhs (stmt
))))
613 tree lhs
= gimple_get_lhs (stmt
);
614 tree tmp
= create_tmp_var (TREE_TYPE (lhs
));
615 gimple
*s
= gimple_build_assign (lhs
, tmp
);
616 gimple_set_location (s
, gimple_location (stmt
));
617 gimple_set_block (s
, gimple_block (stmt
));
618 gimple_set_lhs (stmt
, tmp
);
619 if (TREE_CODE (TREE_TYPE (tmp
)) == COMPLEX_TYPE
620 || TREE_CODE (TREE_TYPE (tmp
)) == VECTOR_TYPE
)
621 DECL_GIMPLE_REG_P (tmp
) = 1;
622 gsi_insert_after (&i
, s
, GSI_SAME_STMT
);
624 start_new_block
= true;
628 first_stmt_of_seq
= false;
633 /* Build a flowgraph for the sequence of stmts SEQ. */
636 make_blocks (gimple_seq seq
)
638 /* Look for debug markers right before labels, and move the debug
639 stmts after the labels. Accepting labels among debug markers
640 adds no value, just complexity; if we wanted to annotate labels
641 with view numbers (so sequencing among markers would matter) or
642 somesuch, we're probably better off still moving the labels, but
643 adding other debug annotations in their original positions or
644 emitting nonbind or bind markers associated with the labels in
645 the original position of the labels.
647 Moving labels would probably be simpler, but we can't do that:
648 moving labels assigns label ids to them, and doing so because of
649 debug markers makes for -fcompare-debug and possibly even codegen
650 differences. So, we have to move the debug stmts instead. To
651 that end, we scan SEQ backwards, marking the position of the
652 latest (earliest we find) label, and moving debug stmts that are
653 not separated from it by nondebug nonlabel stmts after the
655 if (MAY_HAVE_DEBUG_MARKER_STMTS
)
657 gimple_stmt_iterator label
= gsi_none ();
659 for (gimple_stmt_iterator i
= gsi_last (seq
); !gsi_end_p (i
); gsi_prev (&i
))
661 gimple
*stmt
= gsi_stmt (i
);
663 /* If this is the first label we encounter (latest in SEQ)
664 before nondebug stmts, record its position. */
665 if (is_a
<glabel
*> (stmt
))
667 if (gsi_end_p (label
))
672 /* Without a recorded label position to move debug stmts to,
673 there's nothing to do. */
674 if (gsi_end_p (label
))
677 /* Move the debug stmt at I after LABEL. */
678 if (is_gimple_debug (stmt
))
680 gcc_assert (gimple_debug_nonbind_marker_p (stmt
));
681 /* As STMT is removed, I advances to the stmt after
682 STMT, so the gsi_prev in the for "increment"
683 expression gets us to the stmt we're to visit after
684 STMT. LABEL, however, would advance to the moved
685 stmt if we passed it to gsi_move_after, so pass it a
686 copy instead, so as to keep LABEL pointing to the
688 gimple_stmt_iterator copy
= label
;
689 gsi_move_after (&i
, ©
);
693 /* There aren't any (more?) debug stmts before label, so
694 there isn't anything else to move after it. */
699 make_blocks_1 (seq
, ENTRY_BLOCK_PTR_FOR_FN (cfun
));
702 /* Create and return a new empty basic block after bb AFTER. */
705 create_bb (void *h
, void *e
, basic_block after
)
711 /* Create and initialize a new basic block. Since alloc_block uses
712 GC allocation that clears memory to allocate a basic block, we do
713 not have to clear the newly allocated basic block here. */
716 bb
->index
= last_basic_block_for_fn (cfun
);
718 set_bb_seq (bb
, h
? (gimple_seq
) h
: NULL
);
720 /* Add the new block to the linked list of blocks. */
721 link_block (bb
, after
);
723 /* Grow the basic block array if needed. */
724 if ((size_t) last_basic_block_for_fn (cfun
)
725 == basic_block_info_for_fn (cfun
)->length ())
728 (last_basic_block_for_fn (cfun
)
729 + (last_basic_block_for_fn (cfun
) + 3) / 4);
730 vec_safe_grow_cleared (basic_block_info_for_fn (cfun
), new_size
);
733 /* Add the newly created block to the array. */
734 SET_BASIC_BLOCK_FOR_FN (cfun
, last_basic_block_for_fn (cfun
), bb
);
736 n_basic_blocks_for_fn (cfun
)++;
737 last_basic_block_for_fn (cfun
)++;
743 /*---------------------------------------------------------------------------
745 ---------------------------------------------------------------------------*/
747 /* If basic block BB has an abnormal edge to a basic block
748 containing IFN_ABNORMAL_DISPATCHER internal call, return
749 that the dispatcher's basic block, otherwise return NULL. */
752 get_abnormal_succ_dispatcher (basic_block bb
)
757 FOR_EACH_EDGE (e
, ei
, bb
->succs
)
758 if ((e
->flags
& (EDGE_ABNORMAL
| EDGE_EH
)) == EDGE_ABNORMAL
)
760 gimple_stmt_iterator gsi
761 = gsi_start_nondebug_after_labels_bb (e
->dest
);
762 gimple
*g
= gsi_stmt (gsi
);
763 if (g
&& gimple_call_internal_p (g
, IFN_ABNORMAL_DISPATCHER
))
769 /* Helper function for make_edges. Create a basic block with
770 with ABNORMAL_DISPATCHER internal call in it if needed, and
771 create abnormal edges from BBS to it and from it to FOR_BB
772 if COMPUTED_GOTO is false, otherwise factor the computed gotos. */
775 handle_abnormal_edges (basic_block
*dispatcher_bbs
,
776 basic_block for_bb
, int *bb_to_omp_idx
,
777 auto_vec
<basic_block
> *bbs
, bool computed_goto
)
779 basic_block
*dispatcher
= dispatcher_bbs
+ (computed_goto
? 1 : 0);
780 unsigned int idx
= 0;
786 dispatcher
= dispatcher_bbs
+ 2 * bb_to_omp_idx
[for_bb
->index
];
787 if (bb_to_omp_idx
[for_bb
->index
] != 0)
791 /* If the dispatcher has been created already, then there are basic
792 blocks with abnormal edges to it, so just make a new edge to
794 if (*dispatcher
== NULL
)
796 /* Check if there are any basic blocks that need to have
797 abnormal edges to this dispatcher. If there are none, return
799 if (bb_to_omp_idx
== NULL
)
801 if (bbs
->is_empty ())
806 FOR_EACH_VEC_ELT (*bbs
, idx
, bb
)
807 if (bb_to_omp_idx
[bb
->index
] == bb_to_omp_idx
[for_bb
->index
])
813 /* Create the dispatcher bb. */
814 *dispatcher
= create_basic_block (NULL
, for_bb
);
817 /* Factor computed gotos into a common computed goto site. Also
818 record the location of that site so that we can un-factor the
819 gotos after we have converted back to normal form. */
820 gimple_stmt_iterator gsi
= gsi_start_bb (*dispatcher
);
822 /* Create the destination of the factored goto. Each original
823 computed goto will put its desired destination into this
824 variable and jump to the label we create immediately below. */
825 tree var
= create_tmp_var (ptr_type_node
, "gotovar");
827 /* Build a label for the new block which will contain the
828 factored computed goto. */
829 tree factored_label_decl
830 = create_artificial_label (UNKNOWN_LOCATION
);
831 gimple
*factored_computed_goto_label
832 = gimple_build_label (factored_label_decl
);
833 gsi_insert_after (&gsi
, factored_computed_goto_label
, GSI_NEW_STMT
);
835 /* Build our new computed goto. */
836 gimple
*factored_computed_goto
= gimple_build_goto (var
);
837 gsi_insert_after (&gsi
, factored_computed_goto
, GSI_NEW_STMT
);
839 FOR_EACH_VEC_ELT (*bbs
, idx
, bb
)
842 && bb_to_omp_idx
[bb
->index
] != bb_to_omp_idx
[for_bb
->index
])
845 gsi
= gsi_last_bb (bb
);
846 gimple
*last
= gsi_stmt (gsi
);
848 gcc_assert (computed_goto_p (last
));
850 /* Copy the original computed goto's destination into VAR. */
852 = gimple_build_assign (var
, gimple_goto_dest (last
));
853 gsi_insert_before (&gsi
, assignment
, GSI_SAME_STMT
);
855 edge e
= make_edge (bb
, *dispatcher
, EDGE_FALLTHRU
);
856 e
->goto_locus
= gimple_location (last
);
857 gsi_remove (&gsi
, true);
862 tree arg
= inner
? boolean_true_node
: boolean_false_node
;
863 gimple
*g
= gimple_build_call_internal (IFN_ABNORMAL_DISPATCHER
,
865 gimple_stmt_iterator gsi
= gsi_after_labels (*dispatcher
);
866 gsi_insert_after (&gsi
, g
, GSI_NEW_STMT
);
868 /* Create predecessor edges of the dispatcher. */
869 FOR_EACH_VEC_ELT (*bbs
, idx
, bb
)
872 && bb_to_omp_idx
[bb
->index
] != bb_to_omp_idx
[for_bb
->index
])
874 make_edge (bb
, *dispatcher
, EDGE_ABNORMAL
);
879 make_edge (*dispatcher
, for_bb
, EDGE_ABNORMAL
);
882 /* Creates outgoing edges for BB. Returns 1 when it ends with an
883 computed goto, returns 2 when it ends with a statement that
884 might return to this function via an nonlocal goto, otherwise
885 return 0. Updates *PCUR_REGION with the OMP region this BB is in. */
888 make_edges_bb (basic_block bb
, struct omp_region
**pcur_region
, int *pomp_index
)
890 gimple
*last
= last_stmt (bb
);
891 bool fallthru
= false;
897 switch (gimple_code (last
))
900 if (make_goto_expr_edges (bb
))
906 edge e
= make_edge (bb
, EXIT_BLOCK_PTR_FOR_FN (cfun
), 0);
907 e
->goto_locus
= gimple_location (last
);
912 make_cond_expr_edges (bb
);
916 make_gimple_switch_edges (as_a
<gswitch
*> (last
), bb
);
920 make_eh_edges (last
);
923 case GIMPLE_EH_DISPATCH
:
924 fallthru
= make_eh_dispatch_edges (as_a
<geh_dispatch
*> (last
));
928 /* If this function receives a nonlocal goto, then we need to
929 make edges from this call site to all the nonlocal goto
931 if (stmt_can_make_abnormal_goto (last
))
934 /* If this statement has reachable exception handlers, then
935 create abnormal edges to them. */
936 make_eh_edges (last
);
938 /* BUILTIN_RETURN is really a return statement. */
939 if (gimple_call_builtin_p (last
, BUILT_IN_RETURN
))
941 make_edge (bb
, EXIT_BLOCK_PTR_FOR_FN (cfun
), 0);
944 /* Some calls are known not to return. */
946 fallthru
= !gimple_call_noreturn_p (last
);
950 /* A GIMPLE_ASSIGN may throw internally and thus be considered
952 if (is_ctrl_altering_stmt (last
))
953 make_eh_edges (last
);
958 make_gimple_asm_edges (bb
);
963 fallthru
= omp_make_gimple_edges (bb
, pcur_region
, pomp_index
);
966 case GIMPLE_TRANSACTION
:
968 gtransaction
*txn
= as_a
<gtransaction
*> (last
);
969 tree label1
= gimple_transaction_label_norm (txn
);
970 tree label2
= gimple_transaction_label_uninst (txn
);
973 make_edge (bb
, label_to_block (cfun
, label1
), EDGE_FALLTHRU
);
975 make_edge (bb
, label_to_block (cfun
, label2
),
976 EDGE_TM_UNINSTRUMENTED
| (label1
? 0 : EDGE_FALLTHRU
));
978 tree label3
= gimple_transaction_label_over (txn
);
979 if (gimple_transaction_subcode (txn
)
980 & (GTMA_HAVE_ABORT
| GTMA_IS_OUTER
))
981 make_edge (bb
, label_to_block (cfun
, label3
), EDGE_TM_ABORT
);
988 gcc_assert (!stmt_ends_bb_p (last
));
994 make_edge (bb
, bb
->next_bb
, EDGE_FALLTHRU
);
999 /* Join all the blocks in the flowgraph. */
1005 struct omp_region
*cur_region
= NULL
;
1006 auto_vec
<basic_block
> ab_edge_goto
;
1007 auto_vec
<basic_block
> ab_edge_call
;
1008 int *bb_to_omp_idx
= NULL
;
1009 int cur_omp_region_idx
= 0;
1011 /* Create an edge from entry to the first block with executable
1012 statements in it. */
1013 make_edge (ENTRY_BLOCK_PTR_FOR_FN (cfun
),
1014 BASIC_BLOCK_FOR_FN (cfun
, NUM_FIXED_BLOCKS
),
1017 /* Traverse the basic block array placing edges. */
1018 FOR_EACH_BB_FN (bb
, cfun
)
1023 bb_to_omp_idx
[bb
->index
] = cur_omp_region_idx
;
1025 mer
= make_edges_bb (bb
, &cur_region
, &cur_omp_region_idx
);
1027 ab_edge_goto
.safe_push (bb
);
1029 ab_edge_call
.safe_push (bb
);
1031 if (cur_region
&& bb_to_omp_idx
== NULL
)
1032 bb_to_omp_idx
= XCNEWVEC (int, n_basic_blocks_for_fn (cfun
));
1035 /* Computed gotos are hell to deal with, especially if there are
1036 lots of them with a large number of destinations. So we factor
1037 them to a common computed goto location before we build the
1038 edge list. After we convert back to normal form, we will un-factor
1039 the computed gotos since factoring introduces an unwanted jump.
1040 For non-local gotos and abnormal edges from calls to calls that return
1041 twice or forced labels, factor the abnormal edges too, by having all
1042 abnormal edges from the calls go to a common artificial basic block
1043 with ABNORMAL_DISPATCHER internal call and abnormal edges from that
1044 basic block to all forced labels and calls returning twice.
1045 We do this per-OpenMP structured block, because those regions
1046 are guaranteed to be single entry single exit by the standard,
1047 so it is not allowed to enter or exit such regions abnormally this way,
1048 thus all computed gotos, non-local gotos and setjmp/longjmp calls
1049 must not transfer control across SESE region boundaries. */
1050 if (!ab_edge_goto
.is_empty () || !ab_edge_call
.is_empty ())
1052 gimple_stmt_iterator gsi
;
1053 basic_block dispatcher_bb_array
[2] = { NULL
, NULL
};
1054 basic_block
*dispatcher_bbs
= dispatcher_bb_array
;
1055 int count
= n_basic_blocks_for_fn (cfun
);
1058 dispatcher_bbs
= XCNEWVEC (basic_block
, 2 * count
);
1060 FOR_EACH_BB_FN (bb
, cfun
)
1062 for (gsi
= gsi_start_bb (bb
); !gsi_end_p (gsi
); gsi_next (&gsi
))
1064 glabel
*label_stmt
= dyn_cast
<glabel
*> (gsi_stmt (gsi
));
1070 target
= gimple_label_label (label_stmt
);
1072 /* Make an edge to every label block that has been marked as a
1073 potential target for a computed goto or a non-local goto. */
1074 if (FORCED_LABEL (target
))
1075 handle_abnormal_edges (dispatcher_bbs
, bb
, bb_to_omp_idx
,
1076 &ab_edge_goto
, true);
1077 if (DECL_NONLOCAL (target
))
1079 handle_abnormal_edges (dispatcher_bbs
, bb
, bb_to_omp_idx
,
1080 &ab_edge_call
, false);
1085 if (!gsi_end_p (gsi
) && is_gimple_debug (gsi_stmt (gsi
)))
1086 gsi_next_nondebug (&gsi
);
1087 if (!gsi_end_p (gsi
))
1089 /* Make an edge to every setjmp-like call. */
1090 gimple
*call_stmt
= gsi_stmt (gsi
);
1091 if (is_gimple_call (call_stmt
)
1092 && ((gimple_call_flags (call_stmt
) & ECF_RETURNS_TWICE
)
1093 || gimple_call_builtin_p (call_stmt
,
1094 BUILT_IN_SETJMP_RECEIVER
)))
1095 handle_abnormal_edges (dispatcher_bbs
, bb
, bb_to_omp_idx
,
1096 &ab_edge_call
, false);
1101 XDELETE (dispatcher_bbs
);
1104 XDELETE (bb_to_omp_idx
);
1106 omp_free_regions ();
1109 /* Add SEQ after GSI. Start new bb after GSI, and created further bbs as
1110 needed. Returns true if new bbs were created.
1111 Note: This is transitional code, and should not be used for new code. We
1112 should be able to get rid of this by rewriting all target va-arg
1113 gimplification hooks to use an interface gimple_build_cond_value as described
1114 in https://gcc.gnu.org/ml/gcc-patches/2015-02/msg01194.html. */
1117 gimple_find_sub_bbs (gimple_seq seq
, gimple_stmt_iterator
*gsi
)
1119 gimple
*stmt
= gsi_stmt (*gsi
);
1120 basic_block bb
= gimple_bb (stmt
);
1121 basic_block lastbb
, afterbb
;
1122 int old_num_bbs
= n_basic_blocks_for_fn (cfun
);
1124 lastbb
= make_blocks_1 (seq
, bb
);
1125 if (old_num_bbs
== n_basic_blocks_for_fn (cfun
))
1127 e
= split_block (bb
, stmt
);
1128 /* Move e->dest to come after the new basic blocks. */
1130 unlink_block (afterbb
);
1131 link_block (afterbb
, lastbb
);
1132 redirect_edge_succ (e
, bb
->next_bb
);
1134 while (bb
!= afterbb
)
1136 struct omp_region
*cur_region
= NULL
;
1137 profile_count cnt
= profile_count::zero ();
1140 int cur_omp_region_idx
= 0;
1141 int mer
= make_edges_bb (bb
, &cur_region
, &cur_omp_region_idx
);
1142 gcc_assert (!mer
&& !cur_region
);
1143 add_bb_to_loop (bb
, afterbb
->loop_father
);
1147 FOR_EACH_EDGE (e
, ei
, bb
->preds
)
1149 if (e
->count ().initialized_p ())
1154 tree_guess_outgoing_edge_probabilities (bb
);
1155 if (all
|| profile_status_for_fn (cfun
) == PROFILE_READ
)
1163 /* Find the next available discriminator value for LOCUS. The
1164 discriminator distinguishes among several basic blocks that
1165 share a common locus, allowing for more accurate sample-based
1169 next_discriminator_for_locus (int line
)
1171 struct locus_discrim_map item
;
1172 struct locus_discrim_map
**slot
;
1174 item
.location_line
= line
;
1175 item
.discriminator
= 0;
1176 slot
= discriminator_per_locus
->find_slot_with_hash (&item
, line
, INSERT
);
1178 if (*slot
== HTAB_EMPTY_ENTRY
)
1180 *slot
= XNEW (struct locus_discrim_map
);
1182 (*slot
)->location_line
= line
;
1183 (*slot
)->discriminator
= 0;
1185 (*slot
)->discriminator
++;
1186 return (*slot
)->discriminator
;
1189 /* Return TRUE if LOCUS1 and LOCUS2 refer to the same source line. */
1192 same_line_p (location_t locus1
, expanded_location
*from
, location_t locus2
)
1194 expanded_location to
;
1196 if (locus1
== locus2
)
1199 to
= expand_location (locus2
);
1201 if (from
->line
!= to
.line
)
1203 if (from
->file
== to
.file
)
1205 return (from
->file
!= NULL
1207 && filename_cmp (from
->file
, to
.file
) == 0);
1210 /* Assign discriminators to each basic block. */
1213 assign_discriminators (void)
1217 FOR_EACH_BB_FN (bb
, cfun
)
1221 gimple
*last
= last_stmt (bb
);
1222 location_t locus
= last
? gimple_location (last
) : UNKNOWN_LOCATION
;
1224 if (locus
== UNKNOWN_LOCATION
)
1227 expanded_location locus_e
= expand_location (locus
);
1229 FOR_EACH_EDGE (e
, ei
, bb
->succs
)
1231 gimple
*first
= first_non_label_stmt (e
->dest
);
1232 gimple
*last
= last_stmt (e
->dest
);
1233 if ((first
&& same_line_p (locus
, &locus_e
,
1234 gimple_location (first
)))
1235 || (last
&& same_line_p (locus
, &locus_e
,
1236 gimple_location (last
))))
1238 if (e
->dest
->discriminator
!= 0 && bb
->discriminator
== 0)
1240 = next_discriminator_for_locus (locus_e
.line
);
1242 e
->dest
->discriminator
1243 = next_discriminator_for_locus (locus_e
.line
);
1249 /* Create the edges for a GIMPLE_COND starting at block BB. */
1252 make_cond_expr_edges (basic_block bb
)
1254 gcond
*entry
= as_a
<gcond
*> (last_stmt (bb
));
1255 gimple
*then_stmt
, *else_stmt
;
1256 basic_block then_bb
, else_bb
;
1257 tree then_label
, else_label
;
1261 gcc_assert (gimple_code (entry
) == GIMPLE_COND
);
1263 /* Entry basic blocks for each component. */
1264 then_label
= gimple_cond_true_label (entry
);
1265 else_label
= gimple_cond_false_label (entry
);
1266 then_bb
= label_to_block (cfun
, then_label
);
1267 else_bb
= label_to_block (cfun
, else_label
);
1268 then_stmt
= first_stmt (then_bb
);
1269 else_stmt
= first_stmt (else_bb
);
1271 e
= make_edge (bb
, then_bb
, EDGE_TRUE_VALUE
);
1272 e
->goto_locus
= gimple_location (then_stmt
);
1273 e
= make_edge (bb
, else_bb
, EDGE_FALSE_VALUE
);
1275 e
->goto_locus
= gimple_location (else_stmt
);
1277 /* We do not need the labels anymore. */
1278 gimple_cond_set_true_label (entry
, NULL_TREE
);
1279 gimple_cond_set_false_label (entry
, NULL_TREE
);
1283 /* Called for each element in the hash table (P) as we delete the
1284 edge to cases hash table.
1286 Clear all the CASE_CHAINs to prevent problems with copying of
1287 SWITCH_EXPRs and structure sharing rules, then free the hash table
1291 edge_to_cases_cleanup (edge
const &, tree
const &value
, void *)
1295 for (t
= value
; t
; t
= next
)
1297 next
= CASE_CHAIN (t
);
1298 CASE_CHAIN (t
) = NULL
;
1304 /* Start recording information mapping edges to case labels. */
1307 start_recording_case_labels (void)
1309 gcc_assert (edge_to_cases
== NULL
);
1310 edge_to_cases
= new hash_map
<edge
, tree
>;
1311 touched_switch_bbs
= BITMAP_ALLOC (NULL
);
1314 /* Return nonzero if we are recording information for case labels. */
1317 recording_case_labels_p (void)
1319 return (edge_to_cases
!= NULL
);
1322 /* Stop recording information mapping edges to case labels and
1323 remove any information we have recorded. */
1325 end_recording_case_labels (void)
1329 edge_to_cases
->traverse
<void *, edge_to_cases_cleanup
> (NULL
);
1330 delete edge_to_cases
;
1331 edge_to_cases
= NULL
;
1332 EXECUTE_IF_SET_IN_BITMAP (touched_switch_bbs
, 0, i
, bi
)
1334 basic_block bb
= BASIC_BLOCK_FOR_FN (cfun
, i
);
1337 gimple
*stmt
= last_stmt (bb
);
1338 if (stmt
&& gimple_code (stmt
) == GIMPLE_SWITCH
)
1339 group_case_labels_stmt (as_a
<gswitch
*> (stmt
));
1342 BITMAP_FREE (touched_switch_bbs
);
1345 /* If we are inside a {start,end}_recording_cases block, then return
1346 a chain of CASE_LABEL_EXPRs from T which reference E.
1348 Otherwise return NULL. */
1351 get_cases_for_edge (edge e
, gswitch
*t
)
1356 /* If we are not recording cases, then we do not have CASE_LABEL_EXPR
1357 chains available. Return NULL so the caller can detect this case. */
1358 if (!recording_case_labels_p ())
1361 slot
= edge_to_cases
->get (e
);
1365 /* If we did not find E in the hash table, then this must be the first
1366 time we have been queried for information about E & T. Add all the
1367 elements from T to the hash table then perform the query again. */
1369 n
= gimple_switch_num_labels (t
);
1370 for (i
= 0; i
< n
; i
++)
1372 tree elt
= gimple_switch_label (t
, i
);
1373 tree lab
= CASE_LABEL (elt
);
1374 basic_block label_bb
= label_to_block (cfun
, lab
);
1375 edge this_edge
= find_edge (e
->src
, label_bb
);
1377 /* Add it to the chain of CASE_LABEL_EXPRs referencing E, or create
1379 tree
&s
= edge_to_cases
->get_or_insert (this_edge
);
1380 CASE_CHAIN (elt
) = s
;
1384 return *edge_to_cases
->get (e
);
1387 /* Create the edges for a GIMPLE_SWITCH starting at block BB. */
1390 make_gimple_switch_edges (gswitch
*entry
, basic_block bb
)
1394 n
= gimple_switch_num_labels (entry
);
1396 for (i
= 0; i
< n
; ++i
)
1398 basic_block label_bb
= gimple_switch_label_bb (cfun
, entry
, i
);
1399 make_edge (bb
, label_bb
, 0);
1404 /* Return the basic block holding label DEST. */
1407 label_to_block (struct function
*ifun
, tree dest
)
1409 int uid
= LABEL_DECL_UID (dest
);
1411 /* We would die hard when faced by an undefined label. Emit a label to
1412 the very first basic block. This will hopefully make even the dataflow
1413 and undefined variable warnings quite right. */
1414 if (seen_error () && uid
< 0)
1416 gimple_stmt_iterator gsi
=
1417 gsi_start_bb (BASIC_BLOCK_FOR_FN (cfun
, NUM_FIXED_BLOCKS
));
1420 stmt
= gimple_build_label (dest
);
1421 gsi_insert_before (&gsi
, stmt
, GSI_NEW_STMT
);
1422 uid
= LABEL_DECL_UID (dest
);
1424 if (vec_safe_length (ifun
->cfg
->x_label_to_block_map
) <= (unsigned int) uid
)
1426 return (*ifun
->cfg
->x_label_to_block_map
)[uid
];
1429 /* Create edges for a goto statement at block BB. Returns true
1430 if abnormal edges should be created. */
1433 make_goto_expr_edges (basic_block bb
)
1435 gimple_stmt_iterator last
= gsi_last_bb (bb
);
1436 gimple
*goto_t
= gsi_stmt (last
);
1438 /* A simple GOTO creates normal edges. */
1439 if (simple_goto_p (goto_t
))
1441 tree dest
= gimple_goto_dest (goto_t
);
1442 basic_block label_bb
= label_to_block (cfun
, dest
);
1443 edge e
= make_edge (bb
, label_bb
, EDGE_FALLTHRU
);
1444 e
->goto_locus
= gimple_location (goto_t
);
1445 gsi_remove (&last
, true);
1449 /* A computed GOTO creates abnormal edges. */
1453 /* Create edges for an asm statement with labels at block BB. */
1456 make_gimple_asm_edges (basic_block bb
)
1458 gasm
*stmt
= as_a
<gasm
*> (last_stmt (bb
));
1459 int i
, n
= gimple_asm_nlabels (stmt
);
1461 for (i
= 0; i
< n
; ++i
)
1463 tree label
= TREE_VALUE (gimple_asm_label_op (stmt
, i
));
1464 basic_block label_bb
= label_to_block (cfun
, label
);
1465 make_edge (bb
, label_bb
, 0);
1469 /*---------------------------------------------------------------------------
1471 ---------------------------------------------------------------------------*/
1473 /* Cleanup useless labels in basic blocks. This is something we wish
1474 to do early because it allows us to group case labels before creating
1475 the edges for the CFG, and it speeds up block statement iterators in
1476 all passes later on.
1477 We rerun this pass after CFG is created, to get rid of the labels that
1478 are no longer referenced. After then we do not run it any more, since
1479 (almost) no new labels should be created. */
1481 /* A map from basic block index to the leading label of that block. */
1482 static struct label_record
1487 /* True if the label is referenced from somewhere. */
1491 /* Given LABEL return the first label in the same basic block. */
1494 main_block_label (tree label
)
1496 basic_block bb
= label_to_block (cfun
, label
);
1497 tree main_label
= label_for_bb
[bb
->index
].label
;
1499 /* label_to_block possibly inserted undefined label into the chain. */
1502 label_for_bb
[bb
->index
].label
= label
;
1506 label_for_bb
[bb
->index
].used
= true;
1510 /* Clean up redundant labels within the exception tree. */
1513 cleanup_dead_labels_eh (void)
1520 if (cfun
->eh
== NULL
)
1523 for (i
= 1; vec_safe_iterate (cfun
->eh
->lp_array
, i
, &lp
); ++i
)
1524 if (lp
&& lp
->post_landing_pad
)
1526 lab
= main_block_label (lp
->post_landing_pad
);
1527 if (lab
!= lp
->post_landing_pad
)
1529 EH_LANDING_PAD_NR (lp
->post_landing_pad
) = 0;
1530 EH_LANDING_PAD_NR (lab
) = lp
->index
;
1534 FOR_ALL_EH_REGION (r
)
1538 case ERT_MUST_NOT_THROW
:
1544 for (c
= r
->u
.eh_try
.first_catch
; c
; c
= c
->next_catch
)
1548 c
->label
= main_block_label (lab
);
1553 case ERT_ALLOWED_EXCEPTIONS
:
1554 lab
= r
->u
.allowed
.label
;
1556 r
->u
.allowed
.label
= main_block_label (lab
);
1562 /* Cleanup redundant labels. This is a three-step process:
1563 1) Find the leading label for each block.
1564 2) Redirect all references to labels to the leading labels.
1565 3) Cleanup all useless labels. */
1568 cleanup_dead_labels (void)
1571 label_for_bb
= XCNEWVEC (struct label_record
, last_basic_block_for_fn (cfun
));
1573 /* Find a suitable label for each block. We use the first user-defined
1574 label if there is one, or otherwise just the first label we see. */
1575 FOR_EACH_BB_FN (bb
, cfun
)
1577 gimple_stmt_iterator i
;
1579 for (i
= gsi_start_bb (bb
); !gsi_end_p (i
); gsi_next (&i
))
1582 glabel
*label_stmt
= dyn_cast
<glabel
*> (gsi_stmt (i
));
1587 label
= gimple_label_label (label_stmt
);
1589 /* If we have not yet seen a label for the current block,
1590 remember this one and see if there are more labels. */
1591 if (!label_for_bb
[bb
->index
].label
)
1593 label_for_bb
[bb
->index
].label
= label
;
1597 /* If we did see a label for the current block already, but it
1598 is an artificially created label, replace it if the current
1599 label is a user defined label. */
1600 if (!DECL_ARTIFICIAL (label
)
1601 && DECL_ARTIFICIAL (label_for_bb
[bb
->index
].label
))
1603 label_for_bb
[bb
->index
].label
= label
;
1609 /* Now redirect all jumps/branches to the selected label.
1610 First do so for each block ending in a control statement. */
1611 FOR_EACH_BB_FN (bb
, cfun
)
1613 gimple
*stmt
= last_stmt (bb
);
1614 tree label
, new_label
;
1619 switch (gimple_code (stmt
))
1623 gcond
*cond_stmt
= as_a
<gcond
*> (stmt
);
1624 label
= gimple_cond_true_label (cond_stmt
);
1627 new_label
= main_block_label (label
);
1628 if (new_label
!= label
)
1629 gimple_cond_set_true_label (cond_stmt
, new_label
);
1632 label
= gimple_cond_false_label (cond_stmt
);
1635 new_label
= main_block_label (label
);
1636 if (new_label
!= label
)
1637 gimple_cond_set_false_label (cond_stmt
, new_label
);
1644 gswitch
*switch_stmt
= as_a
<gswitch
*> (stmt
);
1645 size_t i
, n
= gimple_switch_num_labels (switch_stmt
);
1647 /* Replace all destination labels. */
1648 for (i
= 0; i
< n
; ++i
)
1650 tree case_label
= gimple_switch_label (switch_stmt
, i
);
1651 label
= CASE_LABEL (case_label
);
1652 new_label
= main_block_label (label
);
1653 if (new_label
!= label
)
1654 CASE_LABEL (case_label
) = new_label
;
1661 gasm
*asm_stmt
= as_a
<gasm
*> (stmt
);
1662 int i
, n
= gimple_asm_nlabels (asm_stmt
);
1664 for (i
= 0; i
< n
; ++i
)
1666 tree cons
= gimple_asm_label_op (asm_stmt
, i
);
1667 tree label
= main_block_label (TREE_VALUE (cons
));
1668 TREE_VALUE (cons
) = label
;
1673 /* We have to handle gotos until they're removed, and we don't
1674 remove them until after we've created the CFG edges. */
1676 if (!computed_goto_p (stmt
))
1678 ggoto
*goto_stmt
= as_a
<ggoto
*> (stmt
);
1679 label
= gimple_goto_dest (goto_stmt
);
1680 new_label
= main_block_label (label
);
1681 if (new_label
!= label
)
1682 gimple_goto_set_dest (goto_stmt
, new_label
);
1686 case GIMPLE_TRANSACTION
:
1688 gtransaction
*txn
= as_a
<gtransaction
*> (stmt
);
1690 label
= gimple_transaction_label_norm (txn
);
1693 new_label
= main_block_label (label
);
1694 if (new_label
!= label
)
1695 gimple_transaction_set_label_norm (txn
, new_label
);
1698 label
= gimple_transaction_label_uninst (txn
);
1701 new_label
= main_block_label (label
);
1702 if (new_label
!= label
)
1703 gimple_transaction_set_label_uninst (txn
, new_label
);
1706 label
= gimple_transaction_label_over (txn
);
1709 new_label
= main_block_label (label
);
1710 if (new_label
!= label
)
1711 gimple_transaction_set_label_over (txn
, new_label
);
1721 /* Do the same for the exception region tree labels. */
1722 cleanup_dead_labels_eh ();
1724 /* Finally, purge dead labels. All user-defined labels and labels that
1725 can be the target of non-local gotos and labels which have their
1726 address taken are preserved. */
1727 FOR_EACH_BB_FN (bb
, cfun
)
1729 gimple_stmt_iterator i
;
1730 tree label_for_this_bb
= label_for_bb
[bb
->index
].label
;
1732 if (!label_for_this_bb
)
1735 /* If the main label of the block is unused, we may still remove it. */
1736 if (!label_for_bb
[bb
->index
].used
)
1737 label_for_this_bb
= NULL
;
1739 for (i
= gsi_start_bb (bb
); !gsi_end_p (i
); )
1742 glabel
*label_stmt
= dyn_cast
<glabel
*> (gsi_stmt (i
));
1747 label
= gimple_label_label (label_stmt
);
1749 if (label
== label_for_this_bb
1750 || !DECL_ARTIFICIAL (label
)
1751 || DECL_NONLOCAL (label
)
1752 || FORCED_LABEL (label
))
1755 gsi_remove (&i
, true);
1759 free (label_for_bb
);
1762 /* Scan the sorted vector of cases in STMT (a GIMPLE_SWITCH) and combine
1763 the ones jumping to the same label.
1764 Eg. three separate entries 1: 2: 3: become one entry 1..3: */
1767 group_case_labels_stmt (gswitch
*stmt
)
1769 int old_size
= gimple_switch_num_labels (stmt
);
1770 int i
, next_index
, new_size
;
1771 basic_block default_bb
= NULL
;
1773 default_bb
= gimple_switch_default_bb (cfun
, stmt
);
1775 /* Look for possible opportunities to merge cases. */
1777 while (i
< old_size
)
1779 tree base_case
, base_high
;
1780 basic_block base_bb
;
1782 base_case
= gimple_switch_label (stmt
, i
);
1784 gcc_assert (base_case
);
1785 base_bb
= label_to_block (cfun
, CASE_LABEL (base_case
));
1787 /* Discard cases that have the same destination as the default case or
1788 whose destiniation blocks have already been removed as unreachable. */
1789 if (base_bb
== NULL
|| base_bb
== default_bb
)
1795 base_high
= CASE_HIGH (base_case
)
1796 ? CASE_HIGH (base_case
)
1797 : CASE_LOW (base_case
);
1800 /* Try to merge case labels. Break out when we reach the end
1801 of the label vector or when we cannot merge the next case
1802 label with the current one. */
1803 while (next_index
< old_size
)
1805 tree merge_case
= gimple_switch_label (stmt
, next_index
);
1806 basic_block merge_bb
= label_to_block (cfun
, CASE_LABEL (merge_case
));
1807 wide_int bhp1
= wi::to_wide (base_high
) + 1;
1809 /* Merge the cases if they jump to the same place,
1810 and their ranges are consecutive. */
1811 if (merge_bb
== base_bb
1812 && wi::to_wide (CASE_LOW (merge_case
)) == bhp1
)
1814 base_high
= CASE_HIGH (merge_case
) ?
1815 CASE_HIGH (merge_case
) : CASE_LOW (merge_case
);
1816 CASE_HIGH (base_case
) = base_high
;
1823 /* Discard cases that have an unreachable destination block. */
1824 if (EDGE_COUNT (base_bb
->succs
) == 0
1825 && gimple_seq_unreachable_p (bb_seq (base_bb
))
1826 /* Don't optimize this if __builtin_unreachable () is the
1827 implicitly added one by the C++ FE too early, before
1828 -Wreturn-type can be diagnosed. We'll optimize it later
1829 during switchconv pass or any other cfg cleanup. */
1830 && (gimple_in_ssa_p (cfun
)
1831 || (LOCATION_LOCUS (gimple_location (last_stmt (base_bb
)))
1832 != BUILTINS_LOCATION
)))
1834 edge base_edge
= find_edge (gimple_bb (stmt
), base_bb
);
1835 if (base_edge
!= NULL
)
1836 remove_edge_and_dominated_blocks (base_edge
);
1842 gimple_switch_set_label (stmt
, new_size
,
1843 gimple_switch_label (stmt
, i
));
1848 gcc_assert (new_size
<= old_size
);
1850 if (new_size
< old_size
)
1851 gimple_switch_set_num_labels (stmt
, new_size
);
1853 return new_size
< old_size
;
1856 /* Look for blocks ending in a multiway branch (a GIMPLE_SWITCH),
1857 and scan the sorted vector of cases. Combine the ones jumping to the
1861 group_case_labels (void)
1864 bool changed
= false;
1866 FOR_EACH_BB_FN (bb
, cfun
)
1868 gimple
*stmt
= last_stmt (bb
);
1869 if (stmt
&& gimple_code (stmt
) == GIMPLE_SWITCH
)
1870 changed
|= group_case_labels_stmt (as_a
<gswitch
*> (stmt
));
1876 /* Checks whether we can merge block B into block A. */
1879 gimple_can_merge_blocks_p (basic_block a
, basic_block b
)
1883 if (!single_succ_p (a
))
1886 if (single_succ_edge (a
)->flags
& EDGE_COMPLEX
)
1889 if (single_succ (a
) != b
)
1892 if (!single_pred_p (b
))
1895 if (a
== ENTRY_BLOCK_PTR_FOR_FN (cfun
)
1896 || b
== EXIT_BLOCK_PTR_FOR_FN (cfun
))
1899 /* If A ends by a statement causing exceptions or something similar, we
1900 cannot merge the blocks. */
1901 stmt
= last_stmt (a
);
1902 if (stmt
&& stmt_ends_bb_p (stmt
))
1905 /* Do not allow a block with only a non-local label to be merged. */
1907 if (glabel
*label_stmt
= dyn_cast
<glabel
*> (stmt
))
1908 if (DECL_NONLOCAL (gimple_label_label (label_stmt
)))
1911 /* Examine the labels at the beginning of B. */
1912 for (gimple_stmt_iterator gsi
= gsi_start_bb (b
); !gsi_end_p (gsi
);
1916 glabel
*label_stmt
= dyn_cast
<glabel
*> (gsi_stmt (gsi
));
1919 lab
= gimple_label_label (label_stmt
);
1921 /* Do not remove user forced labels or for -O0 any user labels. */
1922 if (!DECL_ARTIFICIAL (lab
) && (!optimize
|| FORCED_LABEL (lab
)))
1926 /* Protect simple loop latches. We only want to avoid merging
1927 the latch with the loop header or with a block in another
1928 loop in this case. */
1930 && b
->loop_father
->latch
== b
1931 && loops_state_satisfies_p (LOOPS_HAVE_SIMPLE_LATCHES
)
1932 && (b
->loop_father
->header
== a
1933 || b
->loop_father
!= a
->loop_father
))
1936 /* It must be possible to eliminate all phi nodes in B. If ssa form
1937 is not up-to-date and a name-mapping is registered, we cannot eliminate
1938 any phis. Symbols marked for renaming are never a problem though. */
1939 for (gphi_iterator gsi
= gsi_start_phis (b
); !gsi_end_p (gsi
);
1942 gphi
*phi
= gsi
.phi ();
1943 /* Technically only new names matter. */
1944 if (name_registered_for_update_p (PHI_RESULT (phi
)))
1948 /* When not optimizing, don't merge if we'd lose goto_locus. */
1950 && single_succ_edge (a
)->goto_locus
!= UNKNOWN_LOCATION
)
1952 location_t goto_locus
= single_succ_edge (a
)->goto_locus
;
1953 gimple_stmt_iterator prev
, next
;
1954 prev
= gsi_last_nondebug_bb (a
);
1955 next
= gsi_after_labels (b
);
1956 if (!gsi_end_p (next
) && is_gimple_debug (gsi_stmt (next
)))
1957 gsi_next_nondebug (&next
);
1958 if ((gsi_end_p (prev
)
1959 || gimple_location (gsi_stmt (prev
)) != goto_locus
)
1960 && (gsi_end_p (next
)
1961 || gimple_location (gsi_stmt (next
)) != goto_locus
))
1968 /* Replaces all uses of NAME by VAL. */
1971 replace_uses_by (tree name
, tree val
)
1973 imm_use_iterator imm_iter
;
1978 FOR_EACH_IMM_USE_STMT (stmt
, imm_iter
, name
)
1980 /* Mark the block if we change the last stmt in it. */
1981 if (cfgcleanup_altered_bbs
1982 && stmt_ends_bb_p (stmt
))
1983 bitmap_set_bit (cfgcleanup_altered_bbs
, gimple_bb (stmt
)->index
);
1985 FOR_EACH_IMM_USE_ON_STMT (use
, imm_iter
)
1987 replace_exp (use
, val
);
1989 if (gimple_code (stmt
) == GIMPLE_PHI
)
1991 e
= gimple_phi_arg_edge (as_a
<gphi
*> (stmt
),
1992 PHI_ARG_INDEX_FROM_USE (use
));
1993 if (e
->flags
& EDGE_ABNORMAL
1994 && !SSA_NAME_OCCURS_IN_ABNORMAL_PHI (val
))
1996 /* This can only occur for virtual operands, since
1997 for the real ones SSA_NAME_OCCURS_IN_ABNORMAL_PHI (name))
1998 would prevent replacement. */
1999 gcc_checking_assert (virtual_operand_p (name
));
2000 SSA_NAME_OCCURS_IN_ABNORMAL_PHI (val
) = 1;
2005 if (gimple_code (stmt
) != GIMPLE_PHI
)
2007 gimple_stmt_iterator gsi
= gsi_for_stmt (stmt
);
2008 gimple
*orig_stmt
= stmt
;
2011 /* FIXME. It shouldn't be required to keep TREE_CONSTANT
2012 on ADDR_EXPRs up-to-date on GIMPLE. Propagation will
2013 only change sth from non-invariant to invariant, and only
2014 when propagating constants. */
2015 if (is_gimple_min_invariant (val
))
2016 for (i
= 0; i
< gimple_num_ops (stmt
); i
++)
2018 tree op
= gimple_op (stmt
, i
);
2019 /* Operands may be empty here. For example, the labels
2020 of a GIMPLE_COND are nulled out following the creation
2021 of the corresponding CFG edges. */
2022 if (op
&& TREE_CODE (op
) == ADDR_EXPR
)
2023 recompute_tree_invariant_for_addr_expr (op
);
2026 if (fold_stmt (&gsi
))
2027 stmt
= gsi_stmt (gsi
);
2029 if (maybe_clean_or_replace_eh_stmt (orig_stmt
, stmt
))
2030 gimple_purge_dead_eh_edges (gimple_bb (stmt
));
2036 gcc_checking_assert (has_zero_uses (name
));
2038 /* Also update the trees stored in loop structures. */
2043 FOR_EACH_LOOP (loop
, 0)
2045 substitute_in_loop_info (loop
, name
, val
);
2050 /* Merge block B into block A. */
2053 gimple_merge_blocks (basic_block a
, basic_block b
)
2055 gimple_stmt_iterator last
, gsi
;
2059 fprintf (dump_file
, "Merging blocks %d and %d\n", a
->index
, b
->index
);
2061 /* Remove all single-valued PHI nodes from block B of the form
2062 V_i = PHI <V_j> by propagating V_j to all the uses of V_i. */
2063 gsi
= gsi_last_bb (a
);
2064 for (psi
= gsi_start_phis (b
); !gsi_end_p (psi
); )
2066 gimple
*phi
= gsi_stmt (psi
);
2067 tree def
= gimple_phi_result (phi
), use
= gimple_phi_arg_def (phi
, 0);
2069 bool may_replace_uses
= (virtual_operand_p (def
)
2070 || may_propagate_copy (def
, use
));
2072 /* In case we maintain loop closed ssa form, do not propagate arguments
2073 of loop exit phi nodes. */
2075 && loops_state_satisfies_p (LOOP_CLOSED_SSA
)
2076 && !virtual_operand_p (def
)
2077 && TREE_CODE (use
) == SSA_NAME
2078 && a
->loop_father
!= b
->loop_father
)
2079 may_replace_uses
= false;
2081 if (!may_replace_uses
)
2083 gcc_assert (!virtual_operand_p (def
));
2085 /* Note that just emitting the copies is fine -- there is no problem
2086 with ordering of phi nodes. This is because A is the single
2087 predecessor of B, therefore results of the phi nodes cannot
2088 appear as arguments of the phi nodes. */
2089 copy
= gimple_build_assign (def
, use
);
2090 gsi_insert_after (&gsi
, copy
, GSI_NEW_STMT
);
2091 remove_phi_node (&psi
, false);
2095 /* If we deal with a PHI for virtual operands, we can simply
2096 propagate these without fussing with folding or updating
2098 if (virtual_operand_p (def
))
2100 imm_use_iterator iter
;
2101 use_operand_p use_p
;
2104 FOR_EACH_IMM_USE_STMT (stmt
, iter
, def
)
2105 FOR_EACH_IMM_USE_ON_STMT (use_p
, iter
)
2106 SET_USE (use_p
, use
);
2108 if (SSA_NAME_OCCURS_IN_ABNORMAL_PHI (def
))
2109 SSA_NAME_OCCURS_IN_ABNORMAL_PHI (use
) = 1;
2112 replace_uses_by (def
, use
);
2114 remove_phi_node (&psi
, true);
2118 /* Ensure that B follows A. */
2119 move_block_after (b
, a
);
2121 gcc_assert (single_succ_edge (a
)->flags
& EDGE_FALLTHRU
);
2122 gcc_assert (!last_stmt (a
) || !stmt_ends_bb_p (last_stmt (a
)));
2124 /* Remove labels from B and set gimple_bb to A for other statements. */
2125 for (gsi
= gsi_start_bb (b
); !gsi_end_p (gsi
);)
2127 gimple
*stmt
= gsi_stmt (gsi
);
2128 if (glabel
*label_stmt
= dyn_cast
<glabel
*> (stmt
))
2130 tree label
= gimple_label_label (label_stmt
);
2133 gsi_remove (&gsi
, false);
2135 /* Now that we can thread computed gotos, we might have
2136 a situation where we have a forced label in block B
2137 However, the label at the start of block B might still be
2138 used in other ways (think about the runtime checking for
2139 Fortran assigned gotos). So we can not just delete the
2140 label. Instead we move the label to the start of block A. */
2141 if (FORCED_LABEL (label
))
2143 gimple_stmt_iterator dest_gsi
= gsi_start_bb (a
);
2144 gsi_insert_before (&dest_gsi
, stmt
, GSI_NEW_STMT
);
2146 /* Other user labels keep around in a form of a debug stmt. */
2147 else if (!DECL_ARTIFICIAL (label
) && MAY_HAVE_DEBUG_BIND_STMTS
)
2149 gimple
*dbg
= gimple_build_debug_bind (label
,
2152 gimple_debug_bind_reset_value (dbg
);
2153 gsi_insert_before (&gsi
, dbg
, GSI_SAME_STMT
);
2156 lp_nr
= EH_LANDING_PAD_NR (label
);
2159 eh_landing_pad lp
= get_eh_landing_pad_from_number (lp_nr
);
2160 lp
->post_landing_pad
= NULL
;
2165 gimple_set_bb (stmt
, a
);
2170 /* When merging two BBs, if their counts are different, the larger count
2171 is selected as the new bb count. This is to handle inconsistent
2173 if (a
->loop_father
== b
->loop_father
)
2175 a
->count
= a
->count
.merge (b
->count
);
2178 /* Merge the sequences. */
2179 last
= gsi_last_bb (a
);
2180 gsi_insert_seq_after (&last
, bb_seq (b
), GSI_NEW_STMT
);
2181 set_bb_seq (b
, NULL
);
2183 if (cfgcleanup_altered_bbs
)
2184 bitmap_set_bit (cfgcleanup_altered_bbs
, a
->index
);
2188 /* Return the one of two successors of BB that is not reachable by a
2189 complex edge, if there is one. Else, return BB. We use
2190 this in optimizations that use post-dominators for their heuristics,
2191 to catch the cases in C++ where function calls are involved. */
2194 single_noncomplex_succ (basic_block bb
)
2197 if (EDGE_COUNT (bb
->succs
) != 2)
2200 e0
= EDGE_SUCC (bb
, 0);
2201 e1
= EDGE_SUCC (bb
, 1);
2202 if (e0
->flags
& EDGE_COMPLEX
)
2204 if (e1
->flags
& EDGE_COMPLEX
)
2210 /* T is CALL_EXPR. Set current_function_calls_* flags. */
2213 notice_special_calls (gcall
*call
)
2215 int flags
= gimple_call_flags (call
);
2217 if (flags
& ECF_MAY_BE_ALLOCA
)
2218 cfun
->calls_alloca
= true;
2219 if (flags
& ECF_RETURNS_TWICE
)
2220 cfun
->calls_setjmp
= true;
2224 /* Clear flags set by notice_special_calls. Used by dead code removal
2225 to update the flags. */
2228 clear_special_calls (void)
2230 cfun
->calls_alloca
= false;
2231 cfun
->calls_setjmp
= false;
2234 /* Remove PHI nodes associated with basic block BB and all edges out of BB. */
2237 remove_phi_nodes_and_edges_for_unreachable_block (basic_block bb
)
2239 /* Since this block is no longer reachable, we can just delete all
2240 of its PHI nodes. */
2241 remove_phi_nodes (bb
);
2243 /* Remove edges to BB's successors. */
2244 while (EDGE_COUNT (bb
->succs
) > 0)
2245 remove_edge (EDGE_SUCC (bb
, 0));
2249 /* Remove statements of basic block BB. */
2252 remove_bb (basic_block bb
)
2254 gimple_stmt_iterator i
;
2258 fprintf (dump_file
, "Removing basic block %d\n", bb
->index
);
2259 if (dump_flags
& TDF_DETAILS
)
2261 dump_bb (dump_file
, bb
, 0, TDF_BLOCKS
);
2262 fprintf (dump_file
, "\n");
2268 struct loop
*loop
= bb
->loop_father
;
2270 /* If a loop gets removed, clean up the information associated
2272 if (loop
->latch
== bb
2273 || loop
->header
== bb
)
2274 free_numbers_of_iterations_estimates (loop
);
2277 /* Remove all the instructions in the block. */
2278 if (bb_seq (bb
) != NULL
)
2280 /* Walk backwards so as to get a chance to substitute all
2281 released DEFs into debug stmts. See
2282 eliminate_unnecessary_stmts() in tree-ssa-dce.c for more
2284 for (i
= gsi_last_bb (bb
); !gsi_end_p (i
);)
2286 gimple
*stmt
= gsi_stmt (i
);
2287 glabel
*label_stmt
= dyn_cast
<glabel
*> (stmt
);
2289 && (FORCED_LABEL (gimple_label_label (label_stmt
))
2290 || DECL_NONLOCAL (gimple_label_label (label_stmt
))))
2293 gimple_stmt_iterator new_gsi
;
2295 /* A non-reachable non-local label may still be referenced.
2296 But it no longer needs to carry the extra semantics of
2298 if (DECL_NONLOCAL (gimple_label_label (label_stmt
)))
2300 DECL_NONLOCAL (gimple_label_label (label_stmt
)) = 0;
2301 FORCED_LABEL (gimple_label_label (label_stmt
)) = 1;
2304 new_bb
= bb
->prev_bb
;
2305 /* Don't move any labels into ENTRY block. */
2306 if (new_bb
== ENTRY_BLOCK_PTR_FOR_FN (cfun
))
2308 new_bb
= single_succ (new_bb
);
2309 gcc_assert (new_bb
!= bb
);
2311 new_gsi
= gsi_start_bb (new_bb
);
2312 gsi_remove (&i
, false);
2313 gsi_insert_before (&new_gsi
, stmt
, GSI_NEW_STMT
);
2317 /* Release SSA definitions. */
2318 release_defs (stmt
);
2319 gsi_remove (&i
, true);
2323 i
= gsi_last_bb (bb
);
2329 remove_phi_nodes_and_edges_for_unreachable_block (bb
);
2330 bb
->il
.gimple
.seq
= NULL
;
2331 bb
->il
.gimple
.phi_nodes
= NULL
;
2335 /* Given a basic block BB and a value VAL for use in the final statement
2336 of the block (if a GIMPLE_COND, GIMPLE_SWITCH, or computed goto), return
2337 the edge that will be taken out of the block.
2338 If VAL is NULL_TREE, then the current value of the final statement's
2339 predicate or index is used.
2340 If the value does not match a unique edge, NULL is returned. */
2343 find_taken_edge (basic_block bb
, tree val
)
2347 stmt
= last_stmt (bb
);
2349 /* Handle ENTRY and EXIT. */
2353 if (gimple_code (stmt
) == GIMPLE_COND
)
2354 return find_taken_edge_cond_expr (as_a
<gcond
*> (stmt
), val
);
2356 if (gimple_code (stmt
) == GIMPLE_SWITCH
)
2357 return find_taken_edge_switch_expr (as_a
<gswitch
*> (stmt
), val
);
2359 if (computed_goto_p (stmt
))
2361 /* Only optimize if the argument is a label, if the argument is
2362 not a label then we can not construct a proper CFG.
2364 It may be the case that we only need to allow the LABEL_REF to
2365 appear inside an ADDR_EXPR, but we also allow the LABEL_REF to
2366 appear inside a LABEL_EXPR just to be safe. */
2368 && (TREE_CODE (val
) == ADDR_EXPR
|| TREE_CODE (val
) == LABEL_EXPR
)
2369 && TREE_CODE (TREE_OPERAND (val
, 0)) == LABEL_DECL
)
2370 return find_taken_edge_computed_goto (bb
, TREE_OPERAND (val
, 0));
2373 /* Otherwise we only know the taken successor edge if it's unique. */
2374 return single_succ_p (bb
) ? single_succ_edge (bb
) : NULL
;
2377 /* Given a constant value VAL and the entry block BB to a GOTO_EXPR
2378 statement, determine which of the outgoing edges will be taken out of the
2379 block. Return NULL if either edge may be taken. */
2382 find_taken_edge_computed_goto (basic_block bb
, tree val
)
2387 dest
= label_to_block (cfun
, val
);
2389 e
= find_edge (bb
, dest
);
2391 /* It's possible for find_edge to return NULL here on invalid code
2392 that abuses the labels-as-values extension (e.g. code that attempts to
2393 jump *between* functions via stored labels-as-values; PR 84136).
2394 If so, then we simply return that NULL for the edge.
2395 We don't currently have a way of detecting such invalid code, so we
2396 can't assert that it was the case when a NULL edge occurs here. */
2401 /* Given COND_STMT and a constant value VAL for use as the predicate,
2402 determine which of the two edges will be taken out of
2403 the statement's block. Return NULL if either edge may be taken.
2404 If VAL is NULL_TREE, then the current value of COND_STMT's predicate
2408 find_taken_edge_cond_expr (const gcond
*cond_stmt
, tree val
)
2410 edge true_edge
, false_edge
;
2412 if (val
== NULL_TREE
)
2414 /* Use the current value of the predicate. */
2415 if (gimple_cond_true_p (cond_stmt
))
2416 val
= integer_one_node
;
2417 else if (gimple_cond_false_p (cond_stmt
))
2418 val
= integer_zero_node
;
2422 else if (TREE_CODE (val
) != INTEGER_CST
)
2425 extract_true_false_edges_from_block (gimple_bb (cond_stmt
),
2426 &true_edge
, &false_edge
);
2428 return (integer_zerop (val
) ? false_edge
: true_edge
);
2431 /* Given SWITCH_STMT and an INTEGER_CST VAL for use as the index, determine
2432 which edge will be taken out of the statement's block. Return NULL if any
2434 If VAL is NULL_TREE, then the current value of SWITCH_STMT's index
2438 find_taken_edge_switch_expr (const gswitch
*switch_stmt
, tree val
)
2440 basic_block dest_bb
;
2444 if (gimple_switch_num_labels (switch_stmt
) == 1)
2445 taken_case
= gimple_switch_default_label (switch_stmt
);
2448 if (val
== NULL_TREE
)
2449 val
= gimple_switch_index (switch_stmt
);
2450 if (TREE_CODE (val
) != INTEGER_CST
)
2453 taken_case
= find_case_label_for_value (switch_stmt
, val
);
2455 dest_bb
= label_to_block (cfun
, CASE_LABEL (taken_case
));
2457 e
= find_edge (gimple_bb (switch_stmt
), dest_bb
);
2463 /* Return the CASE_LABEL_EXPR that SWITCH_STMT will take for VAL.
2464 We can make optimal use here of the fact that the case labels are
2465 sorted: We can do a binary search for a case matching VAL. */
2468 find_case_label_for_value (const gswitch
*switch_stmt
, tree val
)
2470 size_t low
, high
, n
= gimple_switch_num_labels (switch_stmt
);
2471 tree default_case
= gimple_switch_default_label (switch_stmt
);
2473 for (low
= 0, high
= n
; high
- low
> 1; )
2475 size_t i
= (high
+ low
) / 2;
2476 tree t
= gimple_switch_label (switch_stmt
, i
);
2479 /* Cache the result of comparing CASE_LOW and val. */
2480 cmp
= tree_int_cst_compare (CASE_LOW (t
), val
);
2487 if (CASE_HIGH (t
) == NULL
)
2489 /* A singe-valued case label. */
2495 /* A case range. We can only handle integer ranges. */
2496 if (cmp
<= 0 && tree_int_cst_compare (CASE_HIGH (t
), val
) >= 0)
2501 return default_case
;
2505 /* Dump a basic block on stderr. */
2508 gimple_debug_bb (basic_block bb
)
2510 dump_bb (stderr
, bb
, 0, TDF_VOPS
|TDF_MEMSYMS
|TDF_BLOCKS
);
2514 /* Dump basic block with index N on stderr. */
2517 gimple_debug_bb_n (int n
)
2519 gimple_debug_bb (BASIC_BLOCK_FOR_FN (cfun
, n
));
2520 return BASIC_BLOCK_FOR_FN (cfun
, n
);
2524 /* Dump the CFG on stderr.
2526 FLAGS are the same used by the tree dumping functions
2527 (see TDF_* in dumpfile.h). */
2530 gimple_debug_cfg (dump_flags_t flags
)
2532 gimple_dump_cfg (stderr
, flags
);
2536 /* Dump the program showing basic block boundaries on the given FILE.
2538 FLAGS are the same used by the tree dumping functions (see TDF_* in
2542 gimple_dump_cfg (FILE *file
, dump_flags_t flags
)
2544 if (flags
& TDF_DETAILS
)
2546 dump_function_header (file
, current_function_decl
, flags
);
2547 fprintf (file
, ";; \n%d basic blocks, %d edges, last basic block %d.\n\n",
2548 n_basic_blocks_for_fn (cfun
), n_edges_for_fn (cfun
),
2549 last_basic_block_for_fn (cfun
));
2551 brief_dump_cfg (file
, flags
);
2552 fprintf (file
, "\n");
2555 if (flags
& TDF_STATS
)
2556 dump_cfg_stats (file
);
2558 dump_function_to_file (current_function_decl
, file
, flags
| TDF_BLOCKS
);
2562 /* Dump CFG statistics on FILE. */
2565 dump_cfg_stats (FILE *file
)
2567 static long max_num_merged_labels
= 0;
2568 unsigned long size
, total
= 0;
2571 const char * const fmt_str
= "%-30s%-13s%12s\n";
2572 const char * const fmt_str_1
= "%-30s%13d%11lu%c\n";
2573 const char * const fmt_str_2
= "%-30s%13ld%11lu%c\n";
2574 const char * const fmt_str_3
= "%-43s%11lu%c\n";
2575 const char *funcname
= current_function_name ();
2577 fprintf (file
, "\nCFG Statistics for %s\n\n", funcname
);
2579 fprintf (file
, "---------------------------------------------------------\n");
2580 fprintf (file
, fmt_str
, "", " Number of ", "Memory");
2581 fprintf (file
, fmt_str
, "", " instances ", "used ");
2582 fprintf (file
, "---------------------------------------------------------\n");
2584 size
= n_basic_blocks_for_fn (cfun
) * sizeof (struct basic_block_def
);
2586 fprintf (file
, fmt_str_1
, "Basic blocks", n_basic_blocks_for_fn (cfun
),
2587 SCALE (size
), LABEL (size
));
2590 FOR_EACH_BB_FN (bb
, cfun
)
2591 num_edges
+= EDGE_COUNT (bb
->succs
);
2592 size
= num_edges
* sizeof (struct edge_def
);
2594 fprintf (file
, fmt_str_2
, "Edges", num_edges
, SCALE (size
), LABEL (size
));
2596 fprintf (file
, "---------------------------------------------------------\n");
2597 fprintf (file
, fmt_str_3
, "Total memory used by CFG data", SCALE (total
),
2599 fprintf (file
, "---------------------------------------------------------\n");
2600 fprintf (file
, "\n");
2602 if (cfg_stats
.num_merged_labels
> max_num_merged_labels
)
2603 max_num_merged_labels
= cfg_stats
.num_merged_labels
;
2605 fprintf (file
, "Coalesced label blocks: %ld (Max so far: %ld)\n",
2606 cfg_stats
.num_merged_labels
, max_num_merged_labels
);
2608 fprintf (file
, "\n");
2612 /* Dump CFG statistics on stderr. Keep extern so that it's always
2613 linked in the final executable. */
2616 debug_cfg_stats (void)
2618 dump_cfg_stats (stderr
);
2621 /*---------------------------------------------------------------------------
2622 Miscellaneous helpers
2623 ---------------------------------------------------------------------------*/
2625 /* Return true if T, a GIMPLE_CALL, can make an abnormal transfer of control
2626 flow. Transfers of control flow associated with EH are excluded. */
2629 call_can_make_abnormal_goto (gimple
*t
)
2631 /* If the function has no non-local labels, then a call cannot make an
2632 abnormal transfer of control. */
2633 if (!cfun
->has_nonlocal_label
2634 && !cfun
->calls_setjmp
)
2637 /* Likewise if the call has no side effects. */
2638 if (!gimple_has_side_effects (t
))
2641 /* Likewise if the called function is leaf. */
2642 if (gimple_call_flags (t
) & ECF_LEAF
)
2649 /* Return true if T can make an abnormal transfer of control flow.
2650 Transfers of control flow associated with EH are excluded. */
2653 stmt_can_make_abnormal_goto (gimple
*t
)
2655 if (computed_goto_p (t
))
2657 if (is_gimple_call (t
))
2658 return call_can_make_abnormal_goto (t
);
2663 /* Return true if T represents a stmt that always transfers control. */
2666 is_ctrl_stmt (gimple
*t
)
2668 switch (gimple_code (t
))
2682 /* Return true if T is a statement that may alter the flow of control
2683 (e.g., a call to a non-returning function). */
2686 is_ctrl_altering_stmt (gimple
*t
)
2690 switch (gimple_code (t
))
2693 /* Per stmt call flag indicates whether the call could alter
2695 if (gimple_call_ctrl_altering_p (t
))
2699 case GIMPLE_EH_DISPATCH
:
2700 /* EH_DISPATCH branches to the individual catch handlers at
2701 this level of a try or allowed-exceptions region. It can
2702 fallthru to the next statement as well. */
2706 if (gimple_asm_nlabels (as_a
<gasm
*> (t
)) > 0)
2711 /* OpenMP directives alter control flow. */
2714 case GIMPLE_TRANSACTION
:
2715 /* A transaction start alters control flow. */
2722 /* If a statement can throw, it alters control flow. */
2723 return stmt_can_throw_internal (cfun
, t
);
2727 /* Return true if T is a simple local goto. */
2730 simple_goto_p (gimple
*t
)
2732 return (gimple_code (t
) == GIMPLE_GOTO
2733 && TREE_CODE (gimple_goto_dest (t
)) == LABEL_DECL
);
2737 /* Return true if STMT should start a new basic block. PREV_STMT is
2738 the statement preceding STMT. It is used when STMT is a label or a
2739 case label. Labels should only start a new basic block if their
2740 previous statement wasn't a label. Otherwise, sequence of labels
2741 would generate unnecessary basic blocks that only contain a single
2745 stmt_starts_bb_p (gimple
*stmt
, gimple
*prev_stmt
)
2750 /* PREV_STMT is only set to a debug stmt if the debug stmt is before
2751 any nondebug stmts in the block. We don't want to start another
2752 block in this case: the debug stmt will already have started the
2753 one STMT would start if we weren't outputting debug stmts. */
2754 if (prev_stmt
&& is_gimple_debug (prev_stmt
))
2757 /* Labels start a new basic block only if the preceding statement
2758 wasn't a label of the same type. This prevents the creation of
2759 consecutive blocks that have nothing but a single label. */
2760 if (glabel
*label_stmt
= dyn_cast
<glabel
*> (stmt
))
2762 /* Nonlocal and computed GOTO targets always start a new block. */
2763 if (DECL_NONLOCAL (gimple_label_label (label_stmt
))
2764 || FORCED_LABEL (gimple_label_label (label_stmt
)))
2767 if (prev_stmt
&& gimple_code (prev_stmt
) == GIMPLE_LABEL
)
2769 if (DECL_NONLOCAL (gimple_label_label (
2770 as_a
<glabel
*> (prev_stmt
))))
2773 cfg_stats
.num_merged_labels
++;
2779 else if (gimple_code (stmt
) == GIMPLE_CALL
)
2781 if (gimple_call_flags (stmt
) & ECF_RETURNS_TWICE
)
2782 /* setjmp acts similar to a nonlocal GOTO target and thus should
2783 start a new block. */
2785 if (gimple_call_internal_p (stmt
, IFN_PHI
)
2787 && gimple_code (prev_stmt
) != GIMPLE_LABEL
2788 && (gimple_code (prev_stmt
) != GIMPLE_CALL
2789 || ! gimple_call_internal_p (prev_stmt
, IFN_PHI
)))
2790 /* PHI nodes start a new block unless preceeded by a label
2799 /* Return true if T should end a basic block. */
2802 stmt_ends_bb_p (gimple
*t
)
2804 return is_ctrl_stmt (t
) || is_ctrl_altering_stmt (t
);
2807 /* Remove block annotations and other data structures. */
2810 delete_tree_cfg_annotations (struct function
*fn
)
2812 vec_free (label_to_block_map_for_fn (fn
));
2815 /* Return the virtual phi in BB. */
2818 get_virtual_phi (basic_block bb
)
2820 for (gphi_iterator gsi
= gsi_start_phis (bb
);
2824 gphi
*phi
= gsi
.phi ();
2826 if (virtual_operand_p (PHI_RESULT (phi
)))
2833 /* Return the first statement in basic block BB. */
2836 first_stmt (basic_block bb
)
2838 gimple_stmt_iterator i
= gsi_start_bb (bb
);
2839 gimple
*stmt
= NULL
;
2841 while (!gsi_end_p (i
) && is_gimple_debug ((stmt
= gsi_stmt (i
))))
2849 /* Return the first non-label statement in basic block BB. */
2852 first_non_label_stmt (basic_block bb
)
2854 gimple_stmt_iterator i
= gsi_start_bb (bb
);
2855 while (!gsi_end_p (i
) && gimple_code (gsi_stmt (i
)) == GIMPLE_LABEL
)
2857 return !gsi_end_p (i
) ? gsi_stmt (i
) : NULL
;
2860 /* Return the last statement in basic block BB. */
2863 last_stmt (basic_block bb
)
2865 gimple_stmt_iterator i
= gsi_last_bb (bb
);
2866 gimple
*stmt
= NULL
;
2868 while (!gsi_end_p (i
) && is_gimple_debug ((stmt
= gsi_stmt (i
))))
2876 /* Return the last statement of an otherwise empty block. Return NULL
2877 if the block is totally empty, or if it contains more than one
2881 last_and_only_stmt (basic_block bb
)
2883 gimple_stmt_iterator i
= gsi_last_nondebug_bb (bb
);
2884 gimple
*last
, *prev
;
2889 last
= gsi_stmt (i
);
2890 gsi_prev_nondebug (&i
);
2894 /* Empty statements should no longer appear in the instruction stream.
2895 Everything that might have appeared before should be deleted by
2896 remove_useless_stmts, and the optimizers should just gsi_remove
2897 instead of smashing with build_empty_stmt.
2899 Thus the only thing that should appear here in a block containing
2900 one executable statement is a label. */
2901 prev
= gsi_stmt (i
);
2902 if (gimple_code (prev
) == GIMPLE_LABEL
)
2908 /* Reinstall those PHI arguments queued in OLD_EDGE to NEW_EDGE. */
2911 reinstall_phi_args (edge new_edge
, edge old_edge
)
2917 vec
<edge_var_map
> *v
= redirect_edge_var_map_vector (old_edge
);
2921 for (i
= 0, phis
= gsi_start_phis (new_edge
->dest
);
2922 v
->iterate (i
, &vm
) && !gsi_end_p (phis
);
2923 i
++, gsi_next (&phis
))
2925 gphi
*phi
= phis
.phi ();
2926 tree result
= redirect_edge_var_map_result (vm
);
2927 tree arg
= redirect_edge_var_map_def (vm
);
2929 gcc_assert (result
== gimple_phi_result (phi
));
2931 add_phi_arg (phi
, arg
, new_edge
, redirect_edge_var_map_location (vm
));
2934 redirect_edge_var_map_clear (old_edge
);
2937 /* Returns the basic block after which the new basic block created
2938 by splitting edge EDGE_IN should be placed. Tries to keep the new block
2939 near its "logical" location. This is of most help to humans looking
2940 at debugging dumps. */
2943 split_edge_bb_loc (edge edge_in
)
2945 basic_block dest
= edge_in
->dest
;
2946 basic_block dest_prev
= dest
->prev_bb
;
2950 edge e
= find_edge (dest_prev
, dest
);
2951 if (e
&& !(e
->flags
& EDGE_COMPLEX
))
2952 return edge_in
->src
;
2957 /* Split a (typically critical) edge EDGE_IN. Return the new block.
2958 Abort on abnormal edges. */
2961 gimple_split_edge (edge edge_in
)
2963 basic_block new_bb
, after_bb
, dest
;
2966 /* Abnormal edges cannot be split. */
2967 gcc_assert (!(edge_in
->flags
& EDGE_ABNORMAL
));
2969 dest
= edge_in
->dest
;
2971 after_bb
= split_edge_bb_loc (edge_in
);
2973 new_bb
= create_empty_bb (after_bb
);
2974 new_bb
->count
= edge_in
->count ();
2976 e
= redirect_edge_and_branch (edge_in
, new_bb
);
2977 gcc_assert (e
== edge_in
);
2979 new_edge
= make_single_succ_edge (new_bb
, dest
, EDGE_FALLTHRU
);
2980 reinstall_phi_args (new_edge
, e
);
2986 /* Verify properties of the address expression T whose base should be
2987 TREE_ADDRESSABLE if VERIFY_ADDRESSABLE is true. */
2990 verify_address (tree t
, bool verify_addressable
)
2993 bool old_side_effects
;
2995 bool new_side_effects
;
2997 old_constant
= TREE_CONSTANT (t
);
2998 old_side_effects
= TREE_SIDE_EFFECTS (t
);
3000 recompute_tree_invariant_for_addr_expr (t
);
3001 new_side_effects
= TREE_SIDE_EFFECTS (t
);
3002 new_constant
= TREE_CONSTANT (t
);
3004 if (old_constant
!= new_constant
)
3006 error ("constant not recomputed when ADDR_EXPR changed");
3009 if (old_side_effects
!= new_side_effects
)
3011 error ("side effects not recomputed when ADDR_EXPR changed");
3015 tree base
= TREE_OPERAND (t
, 0);
3016 while (handled_component_p (base
))
3017 base
= TREE_OPERAND (base
, 0);
3020 || TREE_CODE (base
) == PARM_DECL
3021 || TREE_CODE (base
) == RESULT_DECL
))
3024 if (DECL_GIMPLE_REG_P (base
))
3026 error ("DECL_GIMPLE_REG_P set on a variable with address taken");
3030 if (verify_addressable
&& !TREE_ADDRESSABLE (base
))
3032 error ("address taken, but ADDRESSABLE bit not set");
3040 /* Verify if EXPR is either a GIMPLE ID or a GIMPLE indirect reference.
3041 Returns true if there is an error, otherwise false. */
3044 verify_types_in_gimple_min_lval (tree expr
)
3048 if (is_gimple_id (expr
))
3051 if (TREE_CODE (expr
) != TARGET_MEM_REF
3052 && TREE_CODE (expr
) != MEM_REF
)
3054 error ("invalid expression for min lvalue");
3058 /* TARGET_MEM_REFs are strange beasts. */
3059 if (TREE_CODE (expr
) == TARGET_MEM_REF
)
3062 op
= TREE_OPERAND (expr
, 0);
3063 if (!is_gimple_val (op
))
3065 error ("invalid operand in indirect reference");
3066 debug_generic_stmt (op
);
3069 /* Memory references now generally can involve a value conversion. */
3074 /* Verify if EXPR is a valid GIMPLE reference expression. If
3075 REQUIRE_LVALUE is true verifies it is an lvalue. Returns true
3076 if there is an error, otherwise false. */
3079 verify_types_in_gimple_reference (tree expr
, bool require_lvalue
)
3081 if (TREE_CODE (expr
) == REALPART_EXPR
3082 || TREE_CODE (expr
) == IMAGPART_EXPR
3083 || TREE_CODE (expr
) == BIT_FIELD_REF
)
3085 tree op
= TREE_OPERAND (expr
, 0);
3086 if (!is_gimple_reg_type (TREE_TYPE (expr
)))
3088 error ("non-scalar BIT_FIELD_REF, IMAGPART_EXPR or REALPART_EXPR");
3092 if (TREE_CODE (expr
) == BIT_FIELD_REF
)
3094 tree t1
= TREE_OPERAND (expr
, 1);
3095 tree t2
= TREE_OPERAND (expr
, 2);
3096 poly_uint64 size
, bitpos
;
3097 if (!poly_int_tree_p (t1
, &size
)
3098 || !poly_int_tree_p (t2
, &bitpos
)
3099 || !types_compatible_p (bitsizetype
, TREE_TYPE (t1
))
3100 || !types_compatible_p (bitsizetype
, TREE_TYPE (t2
)))
3102 error ("invalid position or size operand to BIT_FIELD_REF");
3105 if (INTEGRAL_TYPE_P (TREE_TYPE (expr
))
3106 && maybe_ne (TYPE_PRECISION (TREE_TYPE (expr
)), size
))
3108 error ("integral result type precision does not match "
3109 "field size of BIT_FIELD_REF");
3112 else if (!INTEGRAL_TYPE_P (TREE_TYPE (expr
))
3113 && TYPE_MODE (TREE_TYPE (expr
)) != BLKmode
3114 && maybe_ne (GET_MODE_BITSIZE (TYPE_MODE (TREE_TYPE (expr
))),
3117 error ("mode size of non-integral result does not "
3118 "match field size of BIT_FIELD_REF");
3121 if (!AGGREGATE_TYPE_P (TREE_TYPE (op
))
3122 && maybe_gt (size
+ bitpos
,
3123 tree_to_poly_uint64 (TYPE_SIZE (TREE_TYPE (op
)))))
3125 error ("position plus size exceeds size of referenced object in "
3131 if ((TREE_CODE (expr
) == REALPART_EXPR
3132 || TREE_CODE (expr
) == IMAGPART_EXPR
)
3133 && !useless_type_conversion_p (TREE_TYPE (expr
),
3134 TREE_TYPE (TREE_TYPE (op
))))
3136 error ("type mismatch in real/imagpart reference");
3137 debug_generic_stmt (TREE_TYPE (expr
));
3138 debug_generic_stmt (TREE_TYPE (TREE_TYPE (op
)));
3144 while (handled_component_p (expr
))
3146 if (TREE_CODE (expr
) == REALPART_EXPR
3147 || TREE_CODE (expr
) == IMAGPART_EXPR
3148 || TREE_CODE (expr
) == BIT_FIELD_REF
)
3150 error ("non-top-level BIT_FIELD_REF, IMAGPART_EXPR or REALPART_EXPR");
3154 tree op
= TREE_OPERAND (expr
, 0);
3156 if (TREE_CODE (expr
) == ARRAY_REF
3157 || TREE_CODE (expr
) == ARRAY_RANGE_REF
)
3159 if (!is_gimple_val (TREE_OPERAND (expr
, 1))
3160 || (TREE_OPERAND (expr
, 2)
3161 && !is_gimple_val (TREE_OPERAND (expr
, 2)))
3162 || (TREE_OPERAND (expr
, 3)
3163 && !is_gimple_val (TREE_OPERAND (expr
, 3))))
3165 error ("invalid operands to array reference");
3166 debug_generic_stmt (expr
);
3171 /* Verify if the reference array element types are compatible. */
3172 if (TREE_CODE (expr
) == ARRAY_REF
3173 && !useless_type_conversion_p (TREE_TYPE (expr
),
3174 TREE_TYPE (TREE_TYPE (op
))))
3176 error ("type mismatch in array reference");
3177 debug_generic_stmt (TREE_TYPE (expr
));
3178 debug_generic_stmt (TREE_TYPE (TREE_TYPE (op
)));
3181 if (TREE_CODE (expr
) == ARRAY_RANGE_REF
3182 && !useless_type_conversion_p (TREE_TYPE (TREE_TYPE (expr
)),
3183 TREE_TYPE (TREE_TYPE (op
))))
3185 error ("type mismatch in array range reference");
3186 debug_generic_stmt (TREE_TYPE (TREE_TYPE (expr
)));
3187 debug_generic_stmt (TREE_TYPE (TREE_TYPE (op
)));
3191 if (TREE_CODE (expr
) == COMPONENT_REF
)
3193 if (TREE_OPERAND (expr
, 2)
3194 && !is_gimple_val (TREE_OPERAND (expr
, 2)))
3196 error ("invalid COMPONENT_REF offset operator");
3199 if (!useless_type_conversion_p (TREE_TYPE (expr
),
3200 TREE_TYPE (TREE_OPERAND (expr
, 1))))
3202 error ("type mismatch in component reference");
3203 debug_generic_stmt (TREE_TYPE (expr
));
3204 debug_generic_stmt (TREE_TYPE (TREE_OPERAND (expr
, 1)));
3209 if (TREE_CODE (expr
) == VIEW_CONVERT_EXPR
)
3211 /* For VIEW_CONVERT_EXPRs which are allowed here too, we only check
3212 that their operand is not an SSA name or an invariant when
3213 requiring an lvalue (this usually means there is a SRA or IPA-SRA
3214 bug). Otherwise there is nothing to verify, gross mismatches at
3215 most invoke undefined behavior. */
3217 && (TREE_CODE (op
) == SSA_NAME
3218 || is_gimple_min_invariant (op
)))
3220 error ("conversion of an SSA_NAME on the left hand side");
3221 debug_generic_stmt (expr
);
3224 else if (TREE_CODE (op
) == SSA_NAME
3225 && TYPE_SIZE (TREE_TYPE (expr
)) != TYPE_SIZE (TREE_TYPE (op
)))
3227 error ("conversion of register to a different size");
3228 debug_generic_stmt (expr
);
3231 else if (!handled_component_p (op
))
3238 if (TREE_CODE (expr
) == MEM_REF
)
3240 if (!is_gimple_mem_ref_addr (TREE_OPERAND (expr
, 0))
3241 || (TREE_CODE (TREE_OPERAND (expr
, 0)) == ADDR_EXPR
3242 && verify_address (TREE_OPERAND (expr
, 0), false)))
3244 error ("invalid address operand in MEM_REF");
3245 debug_generic_stmt (expr
);
3248 if (!poly_int_tree_p (TREE_OPERAND (expr
, 1))
3249 || !POINTER_TYPE_P (TREE_TYPE (TREE_OPERAND (expr
, 1))))
3251 error ("invalid offset operand in MEM_REF");
3252 debug_generic_stmt (expr
);
3256 else if (TREE_CODE (expr
) == TARGET_MEM_REF
)
3258 if (!TMR_BASE (expr
)
3259 || !is_gimple_mem_ref_addr (TMR_BASE (expr
))
3260 || (TREE_CODE (TMR_BASE (expr
)) == ADDR_EXPR
3261 && verify_address (TMR_BASE (expr
), false)))
3263 error ("invalid address operand in TARGET_MEM_REF");
3266 if (!TMR_OFFSET (expr
)
3267 || !poly_int_tree_p (TMR_OFFSET (expr
))
3268 || !POINTER_TYPE_P (TREE_TYPE (TMR_OFFSET (expr
))))
3270 error ("invalid offset operand in TARGET_MEM_REF");
3271 debug_generic_stmt (expr
);
3275 else if (TREE_CODE (expr
) == INDIRECT_REF
)
3277 error ("INDIRECT_REF in gimple IL");
3278 debug_generic_stmt (expr
);
3282 return ((require_lvalue
|| !is_gimple_min_invariant (expr
))
3283 && verify_types_in_gimple_min_lval (expr
));
3286 /* Returns true if there is one pointer type in TYPE_POINTER_TO (SRC_OBJ)
3287 list of pointer-to types that is trivially convertible to DEST. */
3290 one_pointer_to_useless_type_conversion_p (tree dest
, tree src_obj
)
3294 if (!TYPE_POINTER_TO (src_obj
))
3297 for (src
= TYPE_POINTER_TO (src_obj
); src
; src
= TYPE_NEXT_PTR_TO (src
))
3298 if (useless_type_conversion_p (dest
, src
))
3304 /* Return true if TYPE1 is a fixed-point type and if conversions to and
3305 from TYPE2 can be handled by FIXED_CONVERT_EXPR. */
3308 valid_fixed_convert_types_p (tree type1
, tree type2
)
3310 return (FIXED_POINT_TYPE_P (type1
)
3311 && (INTEGRAL_TYPE_P (type2
)
3312 || SCALAR_FLOAT_TYPE_P (type2
)
3313 || FIXED_POINT_TYPE_P (type2
)));
3316 /* Verify the contents of a GIMPLE_CALL STMT. Returns true when there
3317 is a problem, otherwise false. */
3320 verify_gimple_call (gcall
*stmt
)
3322 tree fn
= gimple_call_fn (stmt
);
3323 tree fntype
, fndecl
;
3326 if (gimple_call_internal_p (stmt
))
3330 error ("gimple call has two targets");
3331 debug_generic_stmt (fn
);
3334 /* FIXME : for passing label as arg in internal fn PHI from GIMPLE FE*/
3335 else if (gimple_call_internal_fn (stmt
) == IFN_PHI
)
3344 error ("gimple call has no target");
3349 if (fn
&& !is_gimple_call_addr (fn
))
3351 error ("invalid function in gimple call");
3352 debug_generic_stmt (fn
);
3357 && (!POINTER_TYPE_P (TREE_TYPE (fn
))
3358 || (TREE_CODE (TREE_TYPE (TREE_TYPE (fn
))) != FUNCTION_TYPE
3359 && TREE_CODE (TREE_TYPE (TREE_TYPE (fn
))) != METHOD_TYPE
)))
3361 error ("non-function in gimple call");
3365 fndecl
= gimple_call_fndecl (stmt
);
3367 && TREE_CODE (fndecl
) == FUNCTION_DECL
3368 && DECL_LOOPING_CONST_OR_PURE_P (fndecl
)
3369 && !DECL_PURE_P (fndecl
)
3370 && !TREE_READONLY (fndecl
))
3372 error ("invalid pure const state for function");
3376 tree lhs
= gimple_call_lhs (stmt
);
3378 && (!is_gimple_lvalue (lhs
)
3379 || verify_types_in_gimple_reference (lhs
, true)))
3381 error ("invalid LHS in gimple call");
3385 if (gimple_call_ctrl_altering_p (stmt
)
3386 && gimple_call_noreturn_p (stmt
)
3387 && should_remove_lhs_p (lhs
))
3389 error ("LHS in noreturn call");
3393 fntype
= gimple_call_fntype (stmt
);
3396 && !useless_type_conversion_p (TREE_TYPE (lhs
), TREE_TYPE (fntype
))
3397 /* ??? At least C++ misses conversions at assignments from
3398 void * call results.
3399 For now simply allow arbitrary pointer type conversions. */
3400 && !(POINTER_TYPE_P (TREE_TYPE (lhs
))
3401 && POINTER_TYPE_P (TREE_TYPE (fntype
))))
3403 error ("invalid conversion in gimple call");
3404 debug_generic_stmt (TREE_TYPE (lhs
));
3405 debug_generic_stmt (TREE_TYPE (fntype
));
3409 if (gimple_call_chain (stmt
)
3410 && !is_gimple_val (gimple_call_chain (stmt
)))
3412 error ("invalid static chain in gimple call");
3413 debug_generic_stmt (gimple_call_chain (stmt
));
3417 /* If there is a static chain argument, the call should either be
3418 indirect, or the decl should have DECL_STATIC_CHAIN set. */
3419 if (gimple_call_chain (stmt
)
3421 && !DECL_STATIC_CHAIN (fndecl
))
3423 error ("static chain with function that doesn%'t use one");
3427 if (fndecl
&& fndecl_built_in_p (fndecl
, BUILT_IN_NORMAL
))
3429 switch (DECL_FUNCTION_CODE (fndecl
))
3431 case BUILT_IN_UNREACHABLE
:
3433 if (gimple_call_num_args (stmt
) > 0)
3435 /* Built-in unreachable with parameters might not be caught by
3436 undefined behavior sanitizer. Front-ends do check users do not
3437 call them that way but we also produce calls to
3438 __builtin_unreachable internally, for example when IPA figures
3439 out a call cannot happen in a legal program. In such cases,
3440 we must make sure arguments are stripped off. */
3441 error ("__builtin_unreachable or __builtin_trap call with "
3451 /* ??? The C frontend passes unpromoted arguments in case it
3452 didn't see a function declaration before the call. So for now
3453 leave the call arguments mostly unverified. Once we gimplify
3454 unit-at-a-time we have a chance to fix this. */
3456 for (i
= 0; i
< gimple_call_num_args (stmt
); ++i
)
3458 tree arg
= gimple_call_arg (stmt
, i
);
3459 if ((is_gimple_reg_type (TREE_TYPE (arg
))
3460 && !is_gimple_val (arg
))
3461 || (!is_gimple_reg_type (TREE_TYPE (arg
))
3462 && !is_gimple_lvalue (arg
)))
3464 error ("invalid argument to gimple call");
3465 debug_generic_expr (arg
);
3473 /* Verifies the gimple comparison with the result type TYPE and
3474 the operands OP0 and OP1, comparison code is CODE. */
3477 verify_gimple_comparison (tree type
, tree op0
, tree op1
, enum tree_code code
)
3479 tree op0_type
= TREE_TYPE (op0
);
3480 tree op1_type
= TREE_TYPE (op1
);
3482 if (!is_gimple_val (op0
) || !is_gimple_val (op1
))
3484 error ("invalid operands in gimple comparison");
3488 /* For comparisons we do not have the operations type as the
3489 effective type the comparison is carried out in. Instead
3490 we require that either the first operand is trivially
3491 convertible into the second, or the other way around.
3492 Because we special-case pointers to void we allow
3493 comparisons of pointers with the same mode as well. */
3494 if (!useless_type_conversion_p (op0_type
, op1_type
)
3495 && !useless_type_conversion_p (op1_type
, op0_type
)
3496 && (!POINTER_TYPE_P (op0_type
)
3497 || !POINTER_TYPE_P (op1_type
)
3498 || TYPE_MODE (op0_type
) != TYPE_MODE (op1_type
)))
3500 error ("mismatching comparison operand types");
3501 debug_generic_expr (op0_type
);
3502 debug_generic_expr (op1_type
);
3506 /* The resulting type of a comparison may be an effective boolean type. */
3507 if (INTEGRAL_TYPE_P (type
)
3508 && (TREE_CODE (type
) == BOOLEAN_TYPE
3509 || TYPE_PRECISION (type
) == 1))
3511 if ((TREE_CODE (op0_type
) == VECTOR_TYPE
3512 || TREE_CODE (op1_type
) == VECTOR_TYPE
)
3513 && code
!= EQ_EXPR
&& code
!= NE_EXPR
3514 && !VECTOR_BOOLEAN_TYPE_P (op0_type
)
3515 && !VECTOR_INTEGER_TYPE_P (op0_type
))
3517 error ("unsupported operation or type for vector comparison"
3518 " returning a boolean");
3519 debug_generic_expr (op0_type
);
3520 debug_generic_expr (op1_type
);
3524 /* Or a boolean vector type with the same element count
3525 as the comparison operand types. */
3526 else if (TREE_CODE (type
) == VECTOR_TYPE
3527 && TREE_CODE (TREE_TYPE (type
)) == BOOLEAN_TYPE
)
3529 if (TREE_CODE (op0_type
) != VECTOR_TYPE
3530 || TREE_CODE (op1_type
) != VECTOR_TYPE
)
3532 error ("non-vector operands in vector comparison");
3533 debug_generic_expr (op0_type
);
3534 debug_generic_expr (op1_type
);
3538 if (maybe_ne (TYPE_VECTOR_SUBPARTS (type
),
3539 TYPE_VECTOR_SUBPARTS (op0_type
)))
3541 error ("invalid vector comparison resulting type");
3542 debug_generic_expr (type
);
3548 error ("bogus comparison result type");
3549 debug_generic_expr (type
);
3556 /* Verify a gimple assignment statement STMT with an unary rhs.
3557 Returns true if anything is wrong. */
3560 verify_gimple_assign_unary (gassign
*stmt
)
3562 enum tree_code rhs_code
= gimple_assign_rhs_code (stmt
);
3563 tree lhs
= gimple_assign_lhs (stmt
);
3564 tree lhs_type
= TREE_TYPE (lhs
);
3565 tree rhs1
= gimple_assign_rhs1 (stmt
);
3566 tree rhs1_type
= TREE_TYPE (rhs1
);
3568 if (!is_gimple_reg (lhs
))
3570 error ("non-register as LHS of unary operation");
3574 if (!is_gimple_val (rhs1
))
3576 error ("invalid operand in unary operation");
3580 /* First handle conversions. */
3585 /* Allow conversions from pointer type to integral type only if
3586 there is no sign or zero extension involved.
3587 For targets were the precision of ptrofftype doesn't match that
3588 of pointers we need to allow arbitrary conversions to ptrofftype. */
3589 if ((POINTER_TYPE_P (lhs_type
)
3590 && INTEGRAL_TYPE_P (rhs1_type
))
3591 || (POINTER_TYPE_P (rhs1_type
)
3592 && INTEGRAL_TYPE_P (lhs_type
)
3593 && (TYPE_PRECISION (rhs1_type
) >= TYPE_PRECISION (lhs_type
)
3594 || ptrofftype_p (lhs_type
))))
3597 /* Allow conversion from integral to offset type and vice versa. */
3598 if ((TREE_CODE (lhs_type
) == OFFSET_TYPE
3599 && INTEGRAL_TYPE_P (rhs1_type
))
3600 || (INTEGRAL_TYPE_P (lhs_type
)
3601 && TREE_CODE (rhs1_type
) == OFFSET_TYPE
))
3604 /* Otherwise assert we are converting between types of the
3606 if (INTEGRAL_TYPE_P (lhs_type
) != INTEGRAL_TYPE_P (rhs1_type
))
3608 error ("invalid types in nop conversion");
3609 debug_generic_expr (lhs_type
);
3610 debug_generic_expr (rhs1_type
);
3617 case ADDR_SPACE_CONVERT_EXPR
:
3619 if (!POINTER_TYPE_P (rhs1_type
) || !POINTER_TYPE_P (lhs_type
)
3620 || (TYPE_ADDR_SPACE (TREE_TYPE (rhs1_type
))
3621 == TYPE_ADDR_SPACE (TREE_TYPE (lhs_type
))))
3623 error ("invalid types in address space conversion");
3624 debug_generic_expr (lhs_type
);
3625 debug_generic_expr (rhs1_type
);
3632 case FIXED_CONVERT_EXPR
:
3634 if (!valid_fixed_convert_types_p (lhs_type
, rhs1_type
)
3635 && !valid_fixed_convert_types_p (rhs1_type
, lhs_type
))
3637 error ("invalid types in fixed-point conversion");
3638 debug_generic_expr (lhs_type
);
3639 debug_generic_expr (rhs1_type
);
3648 if ((!INTEGRAL_TYPE_P (rhs1_type
) || !SCALAR_FLOAT_TYPE_P (lhs_type
))
3649 && (!VECTOR_INTEGER_TYPE_P (rhs1_type
)
3650 || !VECTOR_FLOAT_TYPE_P (lhs_type
)))
3652 error ("invalid types in conversion to floating point");
3653 debug_generic_expr (lhs_type
);
3654 debug_generic_expr (rhs1_type
);
3661 case FIX_TRUNC_EXPR
:
3663 if ((!INTEGRAL_TYPE_P (lhs_type
) || !SCALAR_FLOAT_TYPE_P (rhs1_type
))
3664 && (!VECTOR_INTEGER_TYPE_P (lhs_type
)
3665 || !VECTOR_FLOAT_TYPE_P (rhs1_type
)))
3667 error ("invalid types in conversion to integer");
3668 debug_generic_expr (lhs_type
);
3669 debug_generic_expr (rhs1_type
);
3676 case VEC_UNPACK_HI_EXPR
:
3677 case VEC_UNPACK_LO_EXPR
:
3678 case VEC_UNPACK_FLOAT_HI_EXPR
:
3679 case VEC_UNPACK_FLOAT_LO_EXPR
:
3680 case VEC_UNPACK_FIX_TRUNC_HI_EXPR
:
3681 case VEC_UNPACK_FIX_TRUNC_LO_EXPR
:
3682 if (TREE_CODE (rhs1_type
) != VECTOR_TYPE
3683 || TREE_CODE (lhs_type
) != VECTOR_TYPE
3684 || (!INTEGRAL_TYPE_P (TREE_TYPE (lhs_type
))
3685 && !SCALAR_FLOAT_TYPE_P (TREE_TYPE (lhs_type
)))
3686 || (!INTEGRAL_TYPE_P (TREE_TYPE (rhs1_type
))
3687 && !SCALAR_FLOAT_TYPE_P (TREE_TYPE (rhs1_type
)))
3688 || ((rhs_code
== VEC_UNPACK_HI_EXPR
3689 || rhs_code
== VEC_UNPACK_LO_EXPR
)
3690 && (INTEGRAL_TYPE_P (TREE_TYPE (lhs_type
))
3691 != INTEGRAL_TYPE_P (TREE_TYPE (rhs1_type
))))
3692 || ((rhs_code
== VEC_UNPACK_FLOAT_HI_EXPR
3693 || rhs_code
== VEC_UNPACK_FLOAT_LO_EXPR
)
3694 && (INTEGRAL_TYPE_P (TREE_TYPE (lhs_type
))
3695 || SCALAR_FLOAT_TYPE_P (TREE_TYPE (rhs1_type
))))
3696 || ((rhs_code
== VEC_UNPACK_FIX_TRUNC_HI_EXPR
3697 || rhs_code
== VEC_UNPACK_FIX_TRUNC_LO_EXPR
)
3698 && (INTEGRAL_TYPE_P (TREE_TYPE (rhs1_type
))
3699 || SCALAR_FLOAT_TYPE_P (TREE_TYPE (lhs_type
))))
3700 || (maybe_ne (GET_MODE_SIZE (element_mode (lhs_type
)),
3701 2 * GET_MODE_SIZE (element_mode (rhs1_type
)))
3702 && (!VECTOR_BOOLEAN_TYPE_P (lhs_type
)
3703 || !VECTOR_BOOLEAN_TYPE_P (rhs1_type
)))
3704 || maybe_ne (2 * TYPE_VECTOR_SUBPARTS (lhs_type
),
3705 TYPE_VECTOR_SUBPARTS (rhs1_type
)))
3707 error ("type mismatch in vector unpack expression");
3708 debug_generic_expr (lhs_type
);
3709 debug_generic_expr (rhs1_type
);
3723 if (!ANY_INTEGRAL_TYPE_P (lhs_type
)
3724 || !TYPE_UNSIGNED (lhs_type
)
3725 || !ANY_INTEGRAL_TYPE_P (rhs1_type
)
3726 || TYPE_UNSIGNED (rhs1_type
)
3727 || element_precision (lhs_type
) != element_precision (rhs1_type
))
3729 error ("invalid types for ABSU_EXPR");
3730 debug_generic_expr (lhs_type
);
3731 debug_generic_expr (rhs1_type
);
3736 case VEC_DUPLICATE_EXPR
:
3737 if (TREE_CODE (lhs_type
) != VECTOR_TYPE
3738 || !useless_type_conversion_p (TREE_TYPE (lhs_type
), rhs1_type
))
3740 error ("vec_duplicate should be from a scalar to a like vector");
3741 debug_generic_expr (lhs_type
);
3742 debug_generic_expr (rhs1_type
);
3751 /* For the remaining codes assert there is no conversion involved. */
3752 if (!useless_type_conversion_p (lhs_type
, rhs1_type
))
3754 error ("non-trivial conversion in unary operation");
3755 debug_generic_expr (lhs_type
);
3756 debug_generic_expr (rhs1_type
);
3763 /* Verify a gimple assignment statement STMT with a binary rhs.
3764 Returns true if anything is wrong. */
3767 verify_gimple_assign_binary (gassign
*stmt
)
3769 enum tree_code rhs_code
= gimple_assign_rhs_code (stmt
);
3770 tree lhs
= gimple_assign_lhs (stmt
);
3771 tree lhs_type
= TREE_TYPE (lhs
);
3772 tree rhs1
= gimple_assign_rhs1 (stmt
);
3773 tree rhs1_type
= TREE_TYPE (rhs1
);
3774 tree rhs2
= gimple_assign_rhs2 (stmt
);
3775 tree rhs2_type
= TREE_TYPE (rhs2
);
3777 if (!is_gimple_reg (lhs
))
3779 error ("non-register as LHS of binary operation");
3783 if (!is_gimple_val (rhs1
)
3784 || !is_gimple_val (rhs2
))
3786 error ("invalid operands in binary operation");
3790 /* First handle operations that involve different types. */
3795 if (TREE_CODE (lhs_type
) != COMPLEX_TYPE
3796 || !(INTEGRAL_TYPE_P (rhs1_type
)
3797 || SCALAR_FLOAT_TYPE_P (rhs1_type
))
3798 || !(INTEGRAL_TYPE_P (rhs2_type
)
3799 || SCALAR_FLOAT_TYPE_P (rhs2_type
)))
3801 error ("type mismatch in complex expression");
3802 debug_generic_expr (lhs_type
);
3803 debug_generic_expr (rhs1_type
);
3804 debug_generic_expr (rhs2_type
);
3816 /* Shifts and rotates are ok on integral types, fixed point
3817 types and integer vector types. */
3818 if ((!INTEGRAL_TYPE_P (rhs1_type
)
3819 && !FIXED_POINT_TYPE_P (rhs1_type
)
3820 && !(TREE_CODE (rhs1_type
) == VECTOR_TYPE
3821 && INTEGRAL_TYPE_P (TREE_TYPE (rhs1_type
))))
3822 || (!INTEGRAL_TYPE_P (rhs2_type
)
3823 /* Vector shifts of vectors are also ok. */
3824 && !(TREE_CODE (rhs1_type
) == VECTOR_TYPE
3825 && INTEGRAL_TYPE_P (TREE_TYPE (rhs1_type
))
3826 && TREE_CODE (rhs2_type
) == VECTOR_TYPE
3827 && INTEGRAL_TYPE_P (TREE_TYPE (rhs2_type
))))
3828 || !useless_type_conversion_p (lhs_type
, rhs1_type
))
3830 error ("type mismatch in shift expression");
3831 debug_generic_expr (lhs_type
);
3832 debug_generic_expr (rhs1_type
);
3833 debug_generic_expr (rhs2_type
);
3840 case WIDEN_LSHIFT_EXPR
:
3842 if (!INTEGRAL_TYPE_P (lhs_type
)
3843 || !INTEGRAL_TYPE_P (rhs1_type
)
3844 || TREE_CODE (rhs2
) != INTEGER_CST
3845 || (2 * TYPE_PRECISION (rhs1_type
) > TYPE_PRECISION (lhs_type
)))
3847 error ("type mismatch in widening vector shift expression");
3848 debug_generic_expr (lhs_type
);
3849 debug_generic_expr (rhs1_type
);
3850 debug_generic_expr (rhs2_type
);
3857 case VEC_WIDEN_LSHIFT_HI_EXPR
:
3858 case VEC_WIDEN_LSHIFT_LO_EXPR
:
3860 if (TREE_CODE (rhs1_type
) != VECTOR_TYPE
3861 || TREE_CODE (lhs_type
) != VECTOR_TYPE
3862 || !INTEGRAL_TYPE_P (TREE_TYPE (rhs1_type
))
3863 || !INTEGRAL_TYPE_P (TREE_TYPE (lhs_type
))
3864 || TREE_CODE (rhs2
) != INTEGER_CST
3865 || (2 * TYPE_PRECISION (TREE_TYPE (rhs1_type
))
3866 > TYPE_PRECISION (TREE_TYPE (lhs_type
))))
3868 error ("type mismatch in widening vector shift expression");
3869 debug_generic_expr (lhs_type
);
3870 debug_generic_expr (rhs1_type
);
3871 debug_generic_expr (rhs2_type
);
3881 tree lhs_etype
= lhs_type
;
3882 tree rhs1_etype
= rhs1_type
;
3883 tree rhs2_etype
= rhs2_type
;
3884 if (TREE_CODE (lhs_type
) == VECTOR_TYPE
)
3886 if (TREE_CODE (rhs1_type
) != VECTOR_TYPE
3887 || TREE_CODE (rhs2_type
) != VECTOR_TYPE
)
3889 error ("invalid non-vector operands to vector valued plus");
3892 lhs_etype
= TREE_TYPE (lhs_type
);
3893 rhs1_etype
= TREE_TYPE (rhs1_type
);
3894 rhs2_etype
= TREE_TYPE (rhs2_type
);
3896 if (POINTER_TYPE_P (lhs_etype
)
3897 || POINTER_TYPE_P (rhs1_etype
)
3898 || POINTER_TYPE_P (rhs2_etype
))
3900 error ("invalid (pointer) operands to plus/minus");
3904 /* Continue with generic binary expression handling. */
3908 case POINTER_PLUS_EXPR
:
3910 if (!POINTER_TYPE_P (rhs1_type
)
3911 || !useless_type_conversion_p (lhs_type
, rhs1_type
)
3912 || !ptrofftype_p (rhs2_type
))
3914 error ("type mismatch in pointer plus expression");
3915 debug_generic_stmt (lhs_type
);
3916 debug_generic_stmt (rhs1_type
);
3917 debug_generic_stmt (rhs2_type
);
3924 case POINTER_DIFF_EXPR
:
3926 if (!POINTER_TYPE_P (rhs1_type
)
3927 || !POINTER_TYPE_P (rhs2_type
)
3928 /* Because we special-case pointers to void we allow difference
3929 of arbitrary pointers with the same mode. */
3930 || TYPE_MODE (rhs1_type
) != TYPE_MODE (rhs2_type
)
3931 || TREE_CODE (lhs_type
) != INTEGER_TYPE
3932 || TYPE_UNSIGNED (lhs_type
)
3933 || TYPE_PRECISION (lhs_type
) != TYPE_PRECISION (rhs1_type
))
3935 error ("type mismatch in pointer diff expression");
3936 debug_generic_stmt (lhs_type
);
3937 debug_generic_stmt (rhs1_type
);
3938 debug_generic_stmt (rhs2_type
);
3945 case TRUTH_ANDIF_EXPR
:
3946 case TRUTH_ORIF_EXPR
:
3947 case TRUTH_AND_EXPR
:
3949 case TRUTH_XOR_EXPR
:
3959 case UNORDERED_EXPR
:
3967 /* Comparisons are also binary, but the result type is not
3968 connected to the operand types. */
3969 return verify_gimple_comparison (lhs_type
, rhs1
, rhs2
, rhs_code
);
3971 case WIDEN_MULT_EXPR
:
3972 if (TREE_CODE (lhs_type
) != INTEGER_TYPE
)
3974 return ((2 * TYPE_PRECISION (rhs1_type
) > TYPE_PRECISION (lhs_type
))
3975 || (TYPE_PRECISION (rhs1_type
) != TYPE_PRECISION (rhs2_type
)));
3977 case WIDEN_SUM_EXPR
:
3979 if (((TREE_CODE (rhs1_type
) != VECTOR_TYPE
3980 || TREE_CODE (lhs_type
) != VECTOR_TYPE
)
3981 && ((!INTEGRAL_TYPE_P (rhs1_type
)
3982 && !SCALAR_FLOAT_TYPE_P (rhs1_type
))
3983 || (!INTEGRAL_TYPE_P (lhs_type
)
3984 && !SCALAR_FLOAT_TYPE_P (lhs_type
))))
3985 || !useless_type_conversion_p (lhs_type
, rhs2_type
)
3986 || maybe_lt (GET_MODE_SIZE (element_mode (rhs2_type
)),
3987 2 * GET_MODE_SIZE (element_mode (rhs1_type
))))
3989 error ("type mismatch in widening sum reduction");
3990 debug_generic_expr (lhs_type
);
3991 debug_generic_expr (rhs1_type
);
3992 debug_generic_expr (rhs2_type
);
3998 case VEC_WIDEN_MULT_HI_EXPR
:
3999 case VEC_WIDEN_MULT_LO_EXPR
:
4000 case VEC_WIDEN_MULT_EVEN_EXPR
:
4001 case VEC_WIDEN_MULT_ODD_EXPR
:
4003 if (TREE_CODE (rhs1_type
) != VECTOR_TYPE
4004 || TREE_CODE (lhs_type
) != VECTOR_TYPE
4005 || !types_compatible_p (rhs1_type
, rhs2_type
)
4006 || maybe_ne (GET_MODE_SIZE (element_mode (lhs_type
)),
4007 2 * GET_MODE_SIZE (element_mode (rhs1_type
))))
4009 error ("type mismatch in vector widening multiplication");
4010 debug_generic_expr (lhs_type
);
4011 debug_generic_expr (rhs1_type
);
4012 debug_generic_expr (rhs2_type
);
4018 case VEC_PACK_TRUNC_EXPR
:
4019 /* ??? We currently use VEC_PACK_TRUNC_EXPR to simply concat
4020 vector boolean types. */
4021 if (VECTOR_BOOLEAN_TYPE_P (lhs_type
)
4022 && VECTOR_BOOLEAN_TYPE_P (rhs1_type
)
4023 && types_compatible_p (rhs1_type
, rhs2_type
)
4024 && known_eq (TYPE_VECTOR_SUBPARTS (lhs_type
),
4025 2 * TYPE_VECTOR_SUBPARTS (rhs1_type
)))
4029 case VEC_PACK_SAT_EXPR
:
4030 case VEC_PACK_FIX_TRUNC_EXPR
:
4032 if (TREE_CODE (rhs1_type
) != VECTOR_TYPE
4033 || TREE_CODE (lhs_type
) != VECTOR_TYPE
4034 || !((rhs_code
== VEC_PACK_FIX_TRUNC_EXPR
4035 && SCALAR_FLOAT_TYPE_P (TREE_TYPE (rhs1_type
))
4036 && INTEGRAL_TYPE_P (TREE_TYPE (lhs_type
)))
4037 || (INTEGRAL_TYPE_P (TREE_TYPE (rhs1_type
))
4038 == INTEGRAL_TYPE_P (TREE_TYPE (lhs_type
))))
4039 || !types_compatible_p (rhs1_type
, rhs2_type
)
4040 || maybe_ne (GET_MODE_SIZE (element_mode (rhs1_type
)),
4041 2 * GET_MODE_SIZE (element_mode (lhs_type
)))
4042 || maybe_ne (2 * TYPE_VECTOR_SUBPARTS (rhs1_type
),
4043 TYPE_VECTOR_SUBPARTS (lhs_type
)))
4045 error ("type mismatch in vector pack expression");
4046 debug_generic_expr (lhs_type
);
4047 debug_generic_expr (rhs1_type
);
4048 debug_generic_expr (rhs2_type
);
4055 case VEC_PACK_FLOAT_EXPR
:
4056 if (TREE_CODE (rhs1_type
) != VECTOR_TYPE
4057 || TREE_CODE (lhs_type
) != VECTOR_TYPE
4058 || !INTEGRAL_TYPE_P (TREE_TYPE (rhs1_type
))
4059 || !SCALAR_FLOAT_TYPE_P (TREE_TYPE (lhs_type
))
4060 || !types_compatible_p (rhs1_type
, rhs2_type
)
4061 || maybe_ne (GET_MODE_SIZE (element_mode (rhs1_type
)),
4062 2 * GET_MODE_SIZE (element_mode (lhs_type
)))
4063 || maybe_ne (2 * TYPE_VECTOR_SUBPARTS (rhs1_type
),
4064 TYPE_VECTOR_SUBPARTS (lhs_type
)))
4066 error ("type mismatch in vector pack expression");
4067 debug_generic_expr (lhs_type
);
4068 debug_generic_expr (rhs1_type
);
4069 debug_generic_expr (rhs2_type
);
4076 case MULT_HIGHPART_EXPR
:
4077 case TRUNC_DIV_EXPR
:
4079 case FLOOR_DIV_EXPR
:
4080 case ROUND_DIV_EXPR
:
4081 case TRUNC_MOD_EXPR
:
4083 case FLOOR_MOD_EXPR
:
4084 case ROUND_MOD_EXPR
:
4086 case EXACT_DIV_EXPR
:
4092 /* Continue with generic binary expression handling. */
4095 case VEC_SERIES_EXPR
:
4096 if (!useless_type_conversion_p (rhs1_type
, rhs2_type
))
4098 error ("type mismatch in series expression");
4099 debug_generic_expr (rhs1_type
);
4100 debug_generic_expr (rhs2_type
);
4103 if (TREE_CODE (lhs_type
) != VECTOR_TYPE
4104 || !useless_type_conversion_p (TREE_TYPE (lhs_type
), rhs1_type
))
4106 error ("vector type expected in series expression");
4107 debug_generic_expr (lhs_type
);
4116 if (!useless_type_conversion_p (lhs_type
, rhs1_type
)
4117 || !useless_type_conversion_p (lhs_type
, rhs2_type
))
4119 error ("type mismatch in binary expression");
4120 debug_generic_stmt (lhs_type
);
4121 debug_generic_stmt (rhs1_type
);
4122 debug_generic_stmt (rhs2_type
);
4129 /* Verify a gimple assignment statement STMT with a ternary rhs.
4130 Returns true if anything is wrong. */
4133 verify_gimple_assign_ternary (gassign
*stmt
)
4135 enum tree_code rhs_code
= gimple_assign_rhs_code (stmt
);
4136 tree lhs
= gimple_assign_lhs (stmt
);
4137 tree lhs_type
= TREE_TYPE (lhs
);
4138 tree rhs1
= gimple_assign_rhs1 (stmt
);
4139 tree rhs1_type
= TREE_TYPE (rhs1
);
4140 tree rhs2
= gimple_assign_rhs2 (stmt
);
4141 tree rhs2_type
= TREE_TYPE (rhs2
);
4142 tree rhs3
= gimple_assign_rhs3 (stmt
);
4143 tree rhs3_type
= TREE_TYPE (rhs3
);
4145 if (!is_gimple_reg (lhs
))
4147 error ("non-register as LHS of ternary operation");
4151 if (((rhs_code
== VEC_COND_EXPR
|| rhs_code
== COND_EXPR
)
4152 ? !is_gimple_condexpr (rhs1
) : !is_gimple_val (rhs1
))
4153 || !is_gimple_val (rhs2
)
4154 || !is_gimple_val (rhs3
))
4156 error ("invalid operands in ternary operation");
4160 /* First handle operations that involve different types. */
4163 case WIDEN_MULT_PLUS_EXPR
:
4164 case WIDEN_MULT_MINUS_EXPR
:
4165 if ((!INTEGRAL_TYPE_P (rhs1_type
)
4166 && !FIXED_POINT_TYPE_P (rhs1_type
))
4167 || !useless_type_conversion_p (rhs1_type
, rhs2_type
)
4168 || !useless_type_conversion_p (lhs_type
, rhs3_type
)
4169 || 2 * TYPE_PRECISION (rhs1_type
) > TYPE_PRECISION (lhs_type
)
4170 || TYPE_PRECISION (rhs1_type
) != TYPE_PRECISION (rhs2_type
))
4172 error ("type mismatch in widening multiply-accumulate expression");
4173 debug_generic_expr (lhs_type
);
4174 debug_generic_expr (rhs1_type
);
4175 debug_generic_expr (rhs2_type
);
4176 debug_generic_expr (rhs3_type
);
4182 if (!VECTOR_BOOLEAN_TYPE_P (rhs1_type
)
4183 || maybe_ne (TYPE_VECTOR_SUBPARTS (rhs1_type
),
4184 TYPE_VECTOR_SUBPARTS (lhs_type
)))
4186 error ("the first argument of a VEC_COND_EXPR must be of a "
4187 "boolean vector type of the same number of elements "
4189 debug_generic_expr (lhs_type
);
4190 debug_generic_expr (rhs1_type
);
4195 if (!is_gimple_val (rhs1
)
4196 && verify_gimple_comparison (TREE_TYPE (rhs1
),
4197 TREE_OPERAND (rhs1
, 0),
4198 TREE_OPERAND (rhs1
, 1),
4201 if (!useless_type_conversion_p (lhs_type
, rhs2_type
)
4202 || !useless_type_conversion_p (lhs_type
, rhs3_type
))
4204 error ("type mismatch in conditional expression");
4205 debug_generic_expr (lhs_type
);
4206 debug_generic_expr (rhs2_type
);
4207 debug_generic_expr (rhs3_type
);
4213 if (!useless_type_conversion_p (lhs_type
, rhs1_type
)
4214 || !useless_type_conversion_p (lhs_type
, rhs2_type
))
4216 error ("type mismatch in vector permute expression");
4217 debug_generic_expr (lhs_type
);
4218 debug_generic_expr (rhs1_type
);
4219 debug_generic_expr (rhs2_type
);
4220 debug_generic_expr (rhs3_type
);
4224 if (TREE_CODE (rhs1_type
) != VECTOR_TYPE
4225 || TREE_CODE (rhs2_type
) != VECTOR_TYPE
4226 || TREE_CODE (rhs3_type
) != VECTOR_TYPE
)
4228 error ("vector types expected in vector permute expression");
4229 debug_generic_expr (lhs_type
);
4230 debug_generic_expr (rhs1_type
);
4231 debug_generic_expr (rhs2_type
);
4232 debug_generic_expr (rhs3_type
);
4236 if (maybe_ne (TYPE_VECTOR_SUBPARTS (rhs1_type
),
4237 TYPE_VECTOR_SUBPARTS (rhs2_type
))
4238 || maybe_ne (TYPE_VECTOR_SUBPARTS (rhs2_type
),
4239 TYPE_VECTOR_SUBPARTS (rhs3_type
))
4240 || maybe_ne (TYPE_VECTOR_SUBPARTS (rhs3_type
),
4241 TYPE_VECTOR_SUBPARTS (lhs_type
)))
4243 error ("vectors with different element number found "
4244 "in vector permute expression");
4245 debug_generic_expr (lhs_type
);
4246 debug_generic_expr (rhs1_type
);
4247 debug_generic_expr (rhs2_type
);
4248 debug_generic_expr (rhs3_type
);
4252 if (TREE_CODE (TREE_TYPE (rhs3_type
)) != INTEGER_TYPE
4253 || (TREE_CODE (rhs3
) != VECTOR_CST
4254 && (GET_MODE_BITSIZE (SCALAR_INT_TYPE_MODE
4255 (TREE_TYPE (rhs3_type
)))
4256 != GET_MODE_BITSIZE (SCALAR_TYPE_MODE
4257 (TREE_TYPE (rhs1_type
))))))
4259 error ("invalid mask type in vector permute expression");
4260 debug_generic_expr (lhs_type
);
4261 debug_generic_expr (rhs1_type
);
4262 debug_generic_expr (rhs2_type
);
4263 debug_generic_expr (rhs3_type
);
4270 if (!useless_type_conversion_p (rhs1_type
, rhs2_type
)
4271 || !useless_type_conversion_p (lhs_type
, rhs3_type
)
4272 || 2 * GET_MODE_UNIT_BITSIZE (TYPE_MODE (TREE_TYPE (rhs1_type
)))
4273 > GET_MODE_UNIT_BITSIZE (TYPE_MODE (TREE_TYPE (lhs_type
))))
4275 error ("type mismatch in sad expression");
4276 debug_generic_expr (lhs_type
);
4277 debug_generic_expr (rhs1_type
);
4278 debug_generic_expr (rhs2_type
);
4279 debug_generic_expr (rhs3_type
);
4283 if (TREE_CODE (rhs1_type
) != VECTOR_TYPE
4284 || TREE_CODE (rhs2_type
) != VECTOR_TYPE
4285 || TREE_CODE (rhs3_type
) != VECTOR_TYPE
)
4287 error ("vector types expected in sad expression");
4288 debug_generic_expr (lhs_type
);
4289 debug_generic_expr (rhs1_type
);
4290 debug_generic_expr (rhs2_type
);
4291 debug_generic_expr (rhs3_type
);
4297 case BIT_INSERT_EXPR
:
4298 if (! useless_type_conversion_p (lhs_type
, rhs1_type
))
4300 error ("type mismatch in BIT_INSERT_EXPR");
4301 debug_generic_expr (lhs_type
);
4302 debug_generic_expr (rhs1_type
);
4305 if (! ((INTEGRAL_TYPE_P (rhs1_type
)
4306 && INTEGRAL_TYPE_P (rhs2_type
))
4307 || (VECTOR_TYPE_P (rhs1_type
)
4308 && types_compatible_p (TREE_TYPE (rhs1_type
), rhs2_type
))))
4310 error ("not allowed type combination in BIT_INSERT_EXPR");
4311 debug_generic_expr (rhs1_type
);
4312 debug_generic_expr (rhs2_type
);
4315 if (! tree_fits_uhwi_p (rhs3
)
4316 || ! types_compatible_p (bitsizetype
, TREE_TYPE (rhs3
))
4317 || ! tree_fits_uhwi_p (TYPE_SIZE (rhs2_type
)))
4319 error ("invalid position or size in BIT_INSERT_EXPR");
4322 if (INTEGRAL_TYPE_P (rhs1_type
))
4324 unsigned HOST_WIDE_INT bitpos
= tree_to_uhwi (rhs3
);
4325 if (bitpos
>= TYPE_PRECISION (rhs1_type
)
4326 || (bitpos
+ TYPE_PRECISION (rhs2_type
)
4327 > TYPE_PRECISION (rhs1_type
)))
4329 error ("insertion out of range in BIT_INSERT_EXPR");
4333 else if (VECTOR_TYPE_P (rhs1_type
))
4335 unsigned HOST_WIDE_INT bitpos
= tree_to_uhwi (rhs3
);
4336 unsigned HOST_WIDE_INT bitsize
= tree_to_uhwi (TYPE_SIZE (rhs2_type
));
4337 if (bitpos
% bitsize
!= 0)
4339 error ("vector insertion not at element boundary");
4347 if (((TREE_CODE (rhs1_type
) != VECTOR_TYPE
4348 || TREE_CODE (lhs_type
) != VECTOR_TYPE
)
4349 && ((!INTEGRAL_TYPE_P (rhs1_type
)
4350 && !SCALAR_FLOAT_TYPE_P (rhs1_type
))
4351 || (!INTEGRAL_TYPE_P (lhs_type
)
4352 && !SCALAR_FLOAT_TYPE_P (lhs_type
))))
4353 || !types_compatible_p (rhs1_type
, rhs2_type
)
4354 || !useless_type_conversion_p (lhs_type
, rhs3_type
)
4355 || maybe_lt (GET_MODE_SIZE (element_mode (rhs3_type
)),
4356 2 * GET_MODE_SIZE (element_mode (rhs1_type
))))
4358 error ("type mismatch in dot product reduction");
4359 debug_generic_expr (lhs_type
);
4360 debug_generic_expr (rhs1_type
);
4361 debug_generic_expr (rhs2_type
);
4367 case REALIGN_LOAD_EXPR
:
4377 /* Verify a gimple assignment statement STMT with a single rhs.
4378 Returns true if anything is wrong. */
4381 verify_gimple_assign_single (gassign
*stmt
)
4383 enum tree_code rhs_code
= gimple_assign_rhs_code (stmt
);
4384 tree lhs
= gimple_assign_lhs (stmt
);
4385 tree lhs_type
= TREE_TYPE (lhs
);
4386 tree rhs1
= gimple_assign_rhs1 (stmt
);
4387 tree rhs1_type
= TREE_TYPE (rhs1
);
4390 if (!useless_type_conversion_p (lhs_type
, rhs1_type
))
4392 error ("non-trivial conversion at assignment");
4393 debug_generic_expr (lhs_type
);
4394 debug_generic_expr (rhs1_type
);
4398 if (gimple_clobber_p (stmt
)
4399 && !(DECL_P (lhs
) || TREE_CODE (lhs
) == MEM_REF
))
4401 error ("non-decl/MEM_REF LHS in clobber statement");
4402 debug_generic_expr (lhs
);
4406 if (handled_component_p (lhs
)
4407 || TREE_CODE (lhs
) == MEM_REF
4408 || TREE_CODE (lhs
) == TARGET_MEM_REF
)
4409 res
|= verify_types_in_gimple_reference (lhs
, true);
4411 /* Special codes we cannot handle via their class. */
4416 tree op
= TREE_OPERAND (rhs1
, 0);
4417 if (!is_gimple_addressable (op
))
4419 error ("invalid operand in unary expression");
4423 /* Technically there is no longer a need for matching types, but
4424 gimple hygiene asks for this check. In LTO we can end up
4425 combining incompatible units and thus end up with addresses
4426 of globals that change their type to a common one. */
4428 && !types_compatible_p (TREE_TYPE (op
),
4429 TREE_TYPE (TREE_TYPE (rhs1
)))
4430 && !one_pointer_to_useless_type_conversion_p (TREE_TYPE (rhs1
),
4433 error ("type mismatch in address expression");
4434 debug_generic_stmt (TREE_TYPE (rhs1
));
4435 debug_generic_stmt (TREE_TYPE (op
));
4439 return (verify_address (rhs1
, true)
4440 || verify_types_in_gimple_reference (op
, true));
4445 error ("INDIRECT_REF in gimple IL");
4451 case ARRAY_RANGE_REF
:
4452 case VIEW_CONVERT_EXPR
:
4455 case TARGET_MEM_REF
:
4457 if (!is_gimple_reg (lhs
)
4458 && is_gimple_reg_type (TREE_TYPE (lhs
)))
4460 error ("invalid rhs for gimple memory store");
4461 debug_generic_stmt (lhs
);
4462 debug_generic_stmt (rhs1
);
4465 return res
|| verify_types_in_gimple_reference (rhs1
, false);
4477 /* tcc_declaration */
4482 if (!is_gimple_reg (lhs
)
4483 && !is_gimple_reg (rhs1
)
4484 && is_gimple_reg_type (TREE_TYPE (lhs
)))
4486 error ("invalid rhs for gimple memory store");
4487 debug_generic_stmt (lhs
);
4488 debug_generic_stmt (rhs1
);
4494 if (TREE_CODE (rhs1_type
) == VECTOR_TYPE
)
4497 tree elt_i
, elt_v
, elt_t
= NULL_TREE
;
4499 if (CONSTRUCTOR_NELTS (rhs1
) == 0)
4501 /* For vector CONSTRUCTORs we require that either it is empty
4502 CONSTRUCTOR, or it is a CONSTRUCTOR of smaller vector elements
4503 (then the element count must be correct to cover the whole
4504 outer vector and index must be NULL on all elements, or it is
4505 a CONSTRUCTOR of scalar elements, where we as an exception allow
4506 smaller number of elements (assuming zero filling) and
4507 consecutive indexes as compared to NULL indexes (such
4508 CONSTRUCTORs can appear in the IL from FEs). */
4509 FOR_EACH_CONSTRUCTOR_ELT (CONSTRUCTOR_ELTS (rhs1
), i
, elt_i
, elt_v
)
4511 if (elt_t
== NULL_TREE
)
4513 elt_t
= TREE_TYPE (elt_v
);
4514 if (TREE_CODE (elt_t
) == VECTOR_TYPE
)
4516 tree elt_t
= TREE_TYPE (elt_v
);
4517 if (!useless_type_conversion_p (TREE_TYPE (rhs1_type
),
4520 error ("incorrect type of vector CONSTRUCTOR"
4522 debug_generic_stmt (rhs1
);
4525 else if (maybe_ne (CONSTRUCTOR_NELTS (rhs1
)
4526 * TYPE_VECTOR_SUBPARTS (elt_t
),
4527 TYPE_VECTOR_SUBPARTS (rhs1_type
)))
4529 error ("incorrect number of vector CONSTRUCTOR"
4531 debug_generic_stmt (rhs1
);
4535 else if (!useless_type_conversion_p (TREE_TYPE (rhs1_type
),
4538 error ("incorrect type of vector CONSTRUCTOR elements");
4539 debug_generic_stmt (rhs1
);
4542 else if (maybe_gt (CONSTRUCTOR_NELTS (rhs1
),
4543 TYPE_VECTOR_SUBPARTS (rhs1_type
)))
4545 error ("incorrect number of vector CONSTRUCTOR elements");
4546 debug_generic_stmt (rhs1
);
4550 else if (!useless_type_conversion_p (elt_t
, TREE_TYPE (elt_v
)))
4552 error ("incorrect type of vector CONSTRUCTOR elements");
4553 debug_generic_stmt (rhs1
);
4556 if (elt_i
!= NULL_TREE
4557 && (TREE_CODE (elt_t
) == VECTOR_TYPE
4558 || TREE_CODE (elt_i
) != INTEGER_CST
4559 || compare_tree_int (elt_i
, i
) != 0))
4561 error ("vector CONSTRUCTOR with non-NULL element index");
4562 debug_generic_stmt (rhs1
);
4565 if (!is_gimple_val (elt_v
))
4567 error ("vector CONSTRUCTOR element is not a GIMPLE value");
4568 debug_generic_stmt (rhs1
);
4573 else if (CONSTRUCTOR_NELTS (rhs1
) != 0)
4575 error ("non-vector CONSTRUCTOR with elements");
4576 debug_generic_stmt (rhs1
);
4583 rhs1
= fold (ASSERT_EXPR_COND (rhs1
));
4584 if (rhs1
== boolean_false_node
)
4586 error ("ASSERT_EXPR with an always-false condition");
4587 debug_generic_stmt (rhs1
);
4593 case WITH_SIZE_EXPR
:
4603 /* Verify the contents of a GIMPLE_ASSIGN STMT. Returns true when there
4604 is a problem, otherwise false. */
4607 verify_gimple_assign (gassign
*stmt
)
4609 switch (gimple_assign_rhs_class (stmt
))
4611 case GIMPLE_SINGLE_RHS
:
4612 return verify_gimple_assign_single (stmt
);
4614 case GIMPLE_UNARY_RHS
:
4615 return verify_gimple_assign_unary (stmt
);
4617 case GIMPLE_BINARY_RHS
:
4618 return verify_gimple_assign_binary (stmt
);
4620 case GIMPLE_TERNARY_RHS
:
4621 return verify_gimple_assign_ternary (stmt
);
4628 /* Verify the contents of a GIMPLE_RETURN STMT. Returns true when there
4629 is a problem, otherwise false. */
4632 verify_gimple_return (greturn
*stmt
)
4634 tree op
= gimple_return_retval (stmt
);
4635 tree restype
= TREE_TYPE (TREE_TYPE (cfun
->decl
));
4637 /* We cannot test for present return values as we do not fix up missing
4638 return values from the original source. */
4642 if (!is_gimple_val (op
)
4643 && TREE_CODE (op
) != RESULT_DECL
)
4645 error ("invalid operand in return statement");
4646 debug_generic_stmt (op
);
4650 if ((TREE_CODE (op
) == RESULT_DECL
4651 && DECL_BY_REFERENCE (op
))
4652 || (TREE_CODE (op
) == SSA_NAME
4653 && SSA_NAME_VAR (op
)
4654 && TREE_CODE (SSA_NAME_VAR (op
)) == RESULT_DECL
4655 && DECL_BY_REFERENCE (SSA_NAME_VAR (op
))))
4656 op
= TREE_TYPE (op
);
4658 if (!useless_type_conversion_p (restype
, TREE_TYPE (op
)))
4660 error ("invalid conversion in return statement");
4661 debug_generic_stmt (restype
);
4662 debug_generic_stmt (TREE_TYPE (op
));
4670 /* Verify the contents of a GIMPLE_GOTO STMT. Returns true when there
4671 is a problem, otherwise false. */
4674 verify_gimple_goto (ggoto
*stmt
)
4676 tree dest
= gimple_goto_dest (stmt
);
4678 /* ??? We have two canonical forms of direct goto destinations, a
4679 bare LABEL_DECL and an ADDR_EXPR of a LABEL_DECL. */
4680 if (TREE_CODE (dest
) != LABEL_DECL
4681 && (!is_gimple_val (dest
)
4682 || !POINTER_TYPE_P (TREE_TYPE (dest
))))
4684 error ("goto destination is neither a label nor a pointer");
4691 /* Verify the contents of a GIMPLE_SWITCH STMT. Returns true when there
4692 is a problem, otherwise false. */
4695 verify_gimple_switch (gswitch
*stmt
)
4698 tree elt
, prev_upper_bound
= NULL_TREE
;
4699 tree index_type
, elt_type
= NULL_TREE
;
4701 if (!is_gimple_val (gimple_switch_index (stmt
)))
4703 error ("invalid operand to switch statement");
4704 debug_generic_stmt (gimple_switch_index (stmt
));
4708 index_type
= TREE_TYPE (gimple_switch_index (stmt
));
4709 if (! INTEGRAL_TYPE_P (index_type
))
4711 error ("non-integral type switch statement");
4712 debug_generic_expr (index_type
);
4716 elt
= gimple_switch_label (stmt
, 0);
4717 if (CASE_LOW (elt
) != NULL_TREE
4718 || CASE_HIGH (elt
) != NULL_TREE
4719 || CASE_CHAIN (elt
) != NULL_TREE
)
4721 error ("invalid default case label in switch statement");
4722 debug_generic_expr (elt
);
4726 n
= gimple_switch_num_labels (stmt
);
4727 for (i
= 1; i
< n
; i
++)
4729 elt
= gimple_switch_label (stmt
, i
);
4731 if (CASE_CHAIN (elt
))
4733 error ("invalid CASE_CHAIN");
4734 debug_generic_expr (elt
);
4737 if (! CASE_LOW (elt
))
4739 error ("invalid case label in switch statement");
4740 debug_generic_expr (elt
);
4744 && ! tree_int_cst_lt (CASE_LOW (elt
), CASE_HIGH (elt
)))
4746 error ("invalid case range in switch statement");
4747 debug_generic_expr (elt
);
4753 if (TREE_TYPE (CASE_LOW (elt
)) != elt_type
4754 || (CASE_HIGH (elt
) && TREE_TYPE (CASE_HIGH (elt
)) != elt_type
))
4756 error ("type mismatch for case label in switch statement");
4757 debug_generic_expr (elt
);
4763 elt_type
= TREE_TYPE (CASE_LOW (elt
));
4764 if (TYPE_PRECISION (index_type
) < TYPE_PRECISION (elt_type
))
4766 error ("type precision mismatch in switch statement");
4771 if (prev_upper_bound
)
4773 if (! tree_int_cst_lt (prev_upper_bound
, CASE_LOW (elt
)))
4775 error ("case labels not sorted in switch statement");
4780 prev_upper_bound
= CASE_HIGH (elt
);
4781 if (! prev_upper_bound
)
4782 prev_upper_bound
= CASE_LOW (elt
);
4788 /* Verify a gimple debug statement STMT.
4789 Returns true if anything is wrong. */
4792 verify_gimple_debug (gimple
*stmt ATTRIBUTE_UNUSED
)
4794 /* There isn't much that could be wrong in a gimple debug stmt. A
4795 gimple debug bind stmt, for example, maps a tree, that's usually
4796 a VAR_DECL or a PARM_DECL, but that could also be some scalarized
4797 component or member of an aggregate type, to another tree, that
4798 can be an arbitrary expression. These stmts expand into debug
4799 insns, and are converted to debug notes by var-tracking.c. */
4803 /* Verify a gimple label statement STMT.
4804 Returns true if anything is wrong. */
4807 verify_gimple_label (glabel
*stmt
)
4809 tree decl
= gimple_label_label (stmt
);
4813 if (TREE_CODE (decl
) != LABEL_DECL
)
4815 if (!DECL_NONLOCAL (decl
) && !FORCED_LABEL (decl
)
4816 && DECL_CONTEXT (decl
) != current_function_decl
)
4818 error ("label's context is not the current function decl");
4822 uid
= LABEL_DECL_UID (decl
);
4825 || (*label_to_block_map_for_fn (cfun
))[uid
] != gimple_bb (stmt
)))
4827 error ("incorrect entry in label_to_block_map");
4831 uid
= EH_LANDING_PAD_NR (decl
);
4834 eh_landing_pad lp
= get_eh_landing_pad_from_number (uid
);
4835 if (decl
!= lp
->post_landing_pad
)
4837 error ("incorrect setting of landing pad number");
4845 /* Verify a gimple cond statement STMT.
4846 Returns true if anything is wrong. */
4849 verify_gimple_cond (gcond
*stmt
)
4851 if (TREE_CODE_CLASS (gimple_cond_code (stmt
)) != tcc_comparison
)
4853 error ("invalid comparison code in gimple cond");
4856 if (!(!gimple_cond_true_label (stmt
)
4857 || TREE_CODE (gimple_cond_true_label (stmt
)) == LABEL_DECL
)
4858 || !(!gimple_cond_false_label (stmt
)
4859 || TREE_CODE (gimple_cond_false_label (stmt
)) == LABEL_DECL
))
4861 error ("invalid labels in gimple cond");
4865 return verify_gimple_comparison (boolean_type_node
,
4866 gimple_cond_lhs (stmt
),
4867 gimple_cond_rhs (stmt
),
4868 gimple_cond_code (stmt
));
4871 /* Verify the GIMPLE statement STMT. Returns true if there is an
4872 error, otherwise false. */
4875 verify_gimple_stmt (gimple
*stmt
)
4877 switch (gimple_code (stmt
))
4880 return verify_gimple_assign (as_a
<gassign
*> (stmt
));
4883 return verify_gimple_label (as_a
<glabel
*> (stmt
));
4886 return verify_gimple_call (as_a
<gcall
*> (stmt
));
4889 return verify_gimple_cond (as_a
<gcond
*> (stmt
));
4892 return verify_gimple_goto (as_a
<ggoto
*> (stmt
));
4895 return verify_gimple_switch (as_a
<gswitch
*> (stmt
));
4898 return verify_gimple_return (as_a
<greturn
*> (stmt
));
4903 case GIMPLE_TRANSACTION
:
4904 return verify_gimple_transaction (as_a
<gtransaction
*> (stmt
));
4906 /* Tuples that do not have tree operands. */
4908 case GIMPLE_PREDICT
:
4910 case GIMPLE_EH_DISPATCH
:
4911 case GIMPLE_EH_MUST_NOT_THROW
:
4915 /* OpenMP directives are validated by the FE and never operated
4916 on by the optimizers. Furthermore, GIMPLE_OMP_FOR may contain
4917 non-gimple expressions when the main index variable has had
4918 its address taken. This does not affect the loop itself
4919 because the header of an GIMPLE_OMP_FOR is merely used to determine
4920 how to setup the parallel iteration. */
4924 return verify_gimple_debug (stmt
);
4931 /* Verify the contents of a GIMPLE_PHI. Returns true if there is a problem,
4932 and false otherwise. */
4935 verify_gimple_phi (gphi
*phi
)
4939 tree phi_result
= gimple_phi_result (phi
);
4944 error ("invalid PHI result");
4948 virtual_p
= virtual_operand_p (phi_result
);
4949 if (TREE_CODE (phi_result
) != SSA_NAME
4951 && SSA_NAME_VAR (phi_result
) != gimple_vop (cfun
)))
4953 error ("invalid PHI result");
4957 for (i
= 0; i
< gimple_phi_num_args (phi
); i
++)
4959 tree t
= gimple_phi_arg_def (phi
, i
);
4963 error ("missing PHI def");
4967 /* Addressable variables do have SSA_NAMEs but they
4968 are not considered gimple values. */
4969 else if ((TREE_CODE (t
) == SSA_NAME
4970 && virtual_p
!= virtual_operand_p (t
))
4972 && (TREE_CODE (t
) != SSA_NAME
4973 || SSA_NAME_VAR (t
) != gimple_vop (cfun
)))
4975 && !is_gimple_val (t
)))
4977 error ("invalid PHI argument");
4978 debug_generic_expr (t
);
4981 #ifdef ENABLE_TYPES_CHECKING
4982 if (!useless_type_conversion_p (TREE_TYPE (phi_result
), TREE_TYPE (t
)))
4984 error ("incompatible types in PHI argument %u", i
);
4985 debug_generic_stmt (TREE_TYPE (phi_result
));
4986 debug_generic_stmt (TREE_TYPE (t
));
4995 /* Verify the GIMPLE statements inside the sequence STMTS. */
4998 verify_gimple_in_seq_2 (gimple_seq stmts
)
5000 gimple_stmt_iterator ittr
;
5003 for (ittr
= gsi_start (stmts
); !gsi_end_p (ittr
); gsi_next (&ittr
))
5005 gimple
*stmt
= gsi_stmt (ittr
);
5007 switch (gimple_code (stmt
))
5010 err
|= verify_gimple_in_seq_2 (
5011 gimple_bind_body (as_a
<gbind
*> (stmt
)));
5015 err
|= verify_gimple_in_seq_2 (gimple_try_eval (stmt
));
5016 err
|= verify_gimple_in_seq_2 (gimple_try_cleanup (stmt
));
5019 case GIMPLE_EH_FILTER
:
5020 err
|= verify_gimple_in_seq_2 (gimple_eh_filter_failure (stmt
));
5023 case GIMPLE_EH_ELSE
:
5025 geh_else
*eh_else
= as_a
<geh_else
*> (stmt
);
5026 err
|= verify_gimple_in_seq_2 (gimple_eh_else_n_body (eh_else
));
5027 err
|= verify_gimple_in_seq_2 (gimple_eh_else_e_body (eh_else
));
5032 err
|= verify_gimple_in_seq_2 (gimple_catch_handler (
5033 as_a
<gcatch
*> (stmt
)));
5036 case GIMPLE_TRANSACTION
:
5037 err
|= verify_gimple_transaction (as_a
<gtransaction
*> (stmt
));
5042 bool err2
= verify_gimple_stmt (stmt
);
5044 debug_gimple_stmt (stmt
);
5053 /* Verify the contents of a GIMPLE_TRANSACTION. Returns true if there
5054 is a problem, otherwise false. */
5057 verify_gimple_transaction (gtransaction
*stmt
)
5061 lab
= gimple_transaction_label_norm (stmt
);
5062 if (lab
!= NULL
&& TREE_CODE (lab
) != LABEL_DECL
)
5064 lab
= gimple_transaction_label_uninst (stmt
);
5065 if (lab
!= NULL
&& TREE_CODE (lab
) != LABEL_DECL
)
5067 lab
= gimple_transaction_label_over (stmt
);
5068 if (lab
!= NULL
&& TREE_CODE (lab
) != LABEL_DECL
)
5071 return verify_gimple_in_seq_2 (gimple_transaction_body (stmt
));
5075 /* Verify the GIMPLE statements inside the statement list STMTS. */
5078 verify_gimple_in_seq (gimple_seq stmts
)
5080 timevar_push (TV_TREE_STMT_VERIFY
);
5081 if (verify_gimple_in_seq_2 (stmts
))
5082 internal_error ("verify_gimple failed");
5083 timevar_pop (TV_TREE_STMT_VERIFY
);
5086 /* Return true when the T can be shared. */
5089 tree_node_can_be_shared (tree t
)
5091 if (IS_TYPE_OR_DECL_P (t
)
5092 || TREE_CODE (t
) == SSA_NAME
5093 || TREE_CODE (t
) == IDENTIFIER_NODE
5094 || TREE_CODE (t
) == CASE_LABEL_EXPR
5095 || is_gimple_min_invariant (t
))
5098 if (t
== error_mark_node
)
5104 /* Called via walk_tree. Verify tree sharing. */
5107 verify_node_sharing_1 (tree
*tp
, int *walk_subtrees
, void *data
)
5109 hash_set
<void *> *visited
= (hash_set
<void *> *) data
;
5111 if (tree_node_can_be_shared (*tp
))
5113 *walk_subtrees
= false;
5117 if (visited
->add (*tp
))
5123 /* Called via walk_gimple_stmt. Verify tree sharing. */
5126 verify_node_sharing (tree
*tp
, int *walk_subtrees
, void *data
)
5128 struct walk_stmt_info
*wi
= (struct walk_stmt_info
*) data
;
5129 return verify_node_sharing_1 (tp
, walk_subtrees
, wi
->info
);
5132 static bool eh_error_found
;
5134 verify_eh_throw_stmt_node (gimple
*const &stmt
, const int &,
5135 hash_set
<gimple
*> *visited
)
5137 if (!visited
->contains (stmt
))
5139 error ("dead STMT in EH table");
5140 debug_gimple_stmt (stmt
);
5141 eh_error_found
= true;
5146 /* Verify if the location LOCs block is in BLOCKS. */
5149 verify_location (hash_set
<tree
> *blocks
, location_t loc
)
5151 tree block
= LOCATION_BLOCK (loc
);
5152 if (block
!= NULL_TREE
5153 && !blocks
->contains (block
))
5155 error ("location references block not in block tree");
5158 if (block
!= NULL_TREE
)
5159 return verify_location (blocks
, BLOCK_SOURCE_LOCATION (block
));
5163 /* Called via walk_tree. Verify that expressions have no blocks. */
5166 verify_expr_no_block (tree
*tp
, int *walk_subtrees
, void *)
5170 *walk_subtrees
= false;
5174 location_t loc
= EXPR_LOCATION (*tp
);
5175 if (LOCATION_BLOCK (loc
) != NULL
)
5181 /* Called via walk_tree. Verify locations of expressions. */
5184 verify_expr_location_1 (tree
*tp
, int *walk_subtrees
, void *data
)
5186 hash_set
<tree
> *blocks
= (hash_set
<tree
> *) data
;
5189 /* ??? This doesn't really belong here but there's no good place to
5190 stick this remainder of old verify_expr. */
5191 /* ??? This barfs on debug stmts which contain binds to vars with
5192 different function context. */
5195 || TREE_CODE (t
) == PARM_DECL
5196 || TREE_CODE (t
) == RESULT_DECL
)
5198 tree context
= decl_function_context (t
);
5199 if (context
!= cfun
->decl
5200 && !SCOPE_FILE_SCOPE_P (context
)
5202 && !DECL_EXTERNAL (t
))
5204 error ("local declaration from a different function");
5210 if (VAR_P (t
) && DECL_HAS_DEBUG_EXPR_P (t
))
5212 tree x
= DECL_DEBUG_EXPR (t
);
5213 tree addr
= walk_tree (&x
, verify_expr_no_block
, NULL
, NULL
);
5218 || TREE_CODE (t
) == PARM_DECL
5219 || TREE_CODE (t
) == RESULT_DECL
)
5220 && DECL_HAS_VALUE_EXPR_P (t
))
5222 tree x
= DECL_VALUE_EXPR (t
);
5223 tree addr
= walk_tree (&x
, verify_expr_no_block
, NULL
, NULL
);
5230 *walk_subtrees
= false;
5234 location_t loc
= EXPR_LOCATION (t
);
5235 if (verify_location (blocks
, loc
))
5241 /* Called via walk_gimple_op. Verify locations of expressions. */
5244 verify_expr_location (tree
*tp
, int *walk_subtrees
, void *data
)
5246 struct walk_stmt_info
*wi
= (struct walk_stmt_info
*) data
;
5247 return verify_expr_location_1 (tp
, walk_subtrees
, wi
->info
);
5250 /* Insert all subblocks of BLOCK into BLOCKS and recurse. */
5253 collect_subblocks (hash_set
<tree
> *blocks
, tree block
)
5256 for (t
= BLOCK_SUBBLOCKS (block
); t
; t
= BLOCK_CHAIN (t
))
5259 collect_subblocks (blocks
, t
);
5263 /* Verify the GIMPLE statements in the CFG of FN. */
5266 verify_gimple_in_cfg (struct function
*fn
, bool verify_nothrow
)
5271 timevar_push (TV_TREE_STMT_VERIFY
);
5272 hash_set
<void *> visited
;
5273 hash_set
<gimple
*> visited_throwing_stmts
;
5275 /* Collect all BLOCKs referenced by the BLOCK tree of FN. */
5276 hash_set
<tree
> blocks
;
5277 if (DECL_INITIAL (fn
->decl
))
5279 blocks
.add (DECL_INITIAL (fn
->decl
));
5280 collect_subblocks (&blocks
, DECL_INITIAL (fn
->decl
));
5283 FOR_EACH_BB_FN (bb
, fn
)
5285 gimple_stmt_iterator gsi
;
5289 for (gphi_iterator gpi
= gsi_start_phis (bb
);
5293 gphi
*phi
= gpi
.phi ();
5297 if (gimple_bb (phi
) != bb
)
5299 error ("gimple_bb (phi) is set to a wrong basic block");
5303 err2
|= verify_gimple_phi (phi
);
5305 /* Only PHI arguments have locations. */
5306 if (gimple_location (phi
) != UNKNOWN_LOCATION
)
5308 error ("PHI node with location");
5312 for (i
= 0; i
< gimple_phi_num_args (phi
); i
++)
5314 tree arg
= gimple_phi_arg_def (phi
, i
);
5315 tree addr
= walk_tree (&arg
, verify_node_sharing_1
,
5319 error ("incorrect sharing of tree nodes");
5320 debug_generic_expr (addr
);
5323 location_t loc
= gimple_phi_arg_location (phi
, i
);
5324 if (virtual_operand_p (gimple_phi_result (phi
))
5325 && loc
!= UNKNOWN_LOCATION
)
5327 error ("virtual PHI with argument locations");
5330 addr
= walk_tree (&arg
, verify_expr_location_1
, &blocks
, NULL
);
5333 debug_generic_expr (addr
);
5336 err2
|= verify_location (&blocks
, loc
);
5340 debug_gimple_stmt (phi
);
5344 for (gsi
= gsi_start_bb (bb
); !gsi_end_p (gsi
); gsi_next (&gsi
))
5346 gimple
*stmt
= gsi_stmt (gsi
);
5348 struct walk_stmt_info wi
;
5352 if (gimple_bb (stmt
) != bb
)
5354 error ("gimple_bb (stmt) is set to a wrong basic block");
5358 err2
|= verify_gimple_stmt (stmt
);
5359 err2
|= verify_location (&blocks
, gimple_location (stmt
));
5361 memset (&wi
, 0, sizeof (wi
));
5362 wi
.info
= (void *) &visited
;
5363 addr
= walk_gimple_op (stmt
, verify_node_sharing
, &wi
);
5366 error ("incorrect sharing of tree nodes");
5367 debug_generic_expr (addr
);
5371 memset (&wi
, 0, sizeof (wi
));
5372 wi
.info
= (void *) &blocks
;
5373 addr
= walk_gimple_op (stmt
, verify_expr_location
, &wi
);
5376 debug_generic_expr (addr
);
5380 /* If the statement is marked as part of an EH region, then it is
5381 expected that the statement could throw. Verify that when we
5382 have optimizations that simplify statements such that we prove
5383 that they cannot throw, that we update other data structures
5385 lp_nr
= lookup_stmt_eh_lp (stmt
);
5387 visited_throwing_stmts
.add (stmt
);
5390 if (!stmt_could_throw_p (cfun
, stmt
))
5394 error ("statement marked for throw, but doesn%'t");
5398 else if (!gsi_one_before_end_p (gsi
))
5400 error ("statement marked for throw in middle of block");
5406 debug_gimple_stmt (stmt
);
5410 FOR_EACH_EDGE (e
, ei
, bb
->succs
)
5411 if (e
->goto_locus
!= UNKNOWN_LOCATION
)
5412 err
|= verify_location (&blocks
, e
->goto_locus
);
5415 hash_map
<gimple
*, int> *eh_table
= get_eh_throw_stmt_table (cfun
);
5416 eh_error_found
= false;
5418 eh_table
->traverse
<hash_set
<gimple
*> *, verify_eh_throw_stmt_node
>
5419 (&visited_throwing_stmts
);
5421 if (err
|| eh_error_found
)
5422 internal_error ("verify_gimple failed");
5424 verify_histograms ();
5425 timevar_pop (TV_TREE_STMT_VERIFY
);
5429 /* Verifies that the flow information is OK. */
5432 gimple_verify_flow_info (void)
5436 gimple_stmt_iterator gsi
;
5441 if (ENTRY_BLOCK_PTR_FOR_FN (cfun
)->il
.gimple
.seq
5442 || ENTRY_BLOCK_PTR_FOR_FN (cfun
)->il
.gimple
.phi_nodes
)
5444 error ("ENTRY_BLOCK has IL associated with it");
5448 if (EXIT_BLOCK_PTR_FOR_FN (cfun
)->il
.gimple
.seq
5449 || EXIT_BLOCK_PTR_FOR_FN (cfun
)->il
.gimple
.phi_nodes
)
5451 error ("EXIT_BLOCK has IL associated with it");
5455 FOR_EACH_EDGE (e
, ei
, EXIT_BLOCK_PTR_FOR_FN (cfun
)->preds
)
5456 if (e
->flags
& EDGE_FALLTHRU
)
5458 error ("fallthru to exit from bb %d", e
->src
->index
);
5462 FOR_EACH_BB_FN (bb
, cfun
)
5464 bool found_ctrl_stmt
= false;
5468 /* Skip labels on the start of basic block. */
5469 for (gsi
= gsi_start_bb (bb
); !gsi_end_p (gsi
); gsi_next (&gsi
))
5472 gimple
*prev_stmt
= stmt
;
5474 stmt
= gsi_stmt (gsi
);
5476 if (gimple_code (stmt
) != GIMPLE_LABEL
)
5479 label
= gimple_label_label (as_a
<glabel
*> (stmt
));
5480 if (prev_stmt
&& DECL_NONLOCAL (label
))
5482 error ("nonlocal label ");
5483 print_generic_expr (stderr
, label
);
5484 fprintf (stderr
, " is not first in a sequence of labels in bb %d",
5489 if (prev_stmt
&& EH_LANDING_PAD_NR (label
) != 0)
5491 error ("EH landing pad label ");
5492 print_generic_expr (stderr
, label
);
5493 fprintf (stderr
, " is not first in a sequence of labels in bb %d",
5498 if (label_to_block (cfun
, label
) != bb
)
5501 print_generic_expr (stderr
, label
);
5502 fprintf (stderr
, " to block does not match in bb %d",
5507 if (decl_function_context (label
) != current_function_decl
)
5510 print_generic_expr (stderr
, label
);
5511 fprintf (stderr
, " has incorrect context in bb %d",
5517 /* Verify that body of basic block BB is free of control flow. */
5518 for (; !gsi_end_p (gsi
); gsi_next (&gsi
))
5520 gimple
*stmt
= gsi_stmt (gsi
);
5522 if (found_ctrl_stmt
)
5524 error ("control flow in the middle of basic block %d",
5529 if (stmt_ends_bb_p (stmt
))
5530 found_ctrl_stmt
= true;
5532 if (glabel
*label_stmt
= dyn_cast
<glabel
*> (stmt
))
5535 print_generic_expr (stderr
, gimple_label_label (label_stmt
));
5536 fprintf (stderr
, " in the middle of basic block %d", bb
->index
);
5541 gsi
= gsi_last_nondebug_bb (bb
);
5542 if (gsi_end_p (gsi
))
5545 stmt
= gsi_stmt (gsi
);
5547 if (gimple_code (stmt
) == GIMPLE_LABEL
)
5550 err
|= verify_eh_edges (stmt
);
5552 if (is_ctrl_stmt (stmt
))
5554 FOR_EACH_EDGE (e
, ei
, bb
->succs
)
5555 if (e
->flags
& EDGE_FALLTHRU
)
5557 error ("fallthru edge after a control statement in bb %d",
5563 if (gimple_code (stmt
) != GIMPLE_COND
)
5565 /* Verify that there are no edges with EDGE_TRUE/FALSE_FLAG set
5566 after anything else but if statement. */
5567 FOR_EACH_EDGE (e
, ei
, bb
->succs
)
5568 if (e
->flags
& (EDGE_TRUE_VALUE
| EDGE_FALSE_VALUE
))
5570 error ("true/false edge after a non-GIMPLE_COND in bb %d",
5576 switch (gimple_code (stmt
))
5583 extract_true_false_edges_from_block (bb
, &true_edge
, &false_edge
);
5587 || !(true_edge
->flags
& EDGE_TRUE_VALUE
)
5588 || !(false_edge
->flags
& EDGE_FALSE_VALUE
)
5589 || (true_edge
->flags
& (EDGE_FALLTHRU
| EDGE_ABNORMAL
))
5590 || (false_edge
->flags
& (EDGE_FALLTHRU
| EDGE_ABNORMAL
))
5591 || EDGE_COUNT (bb
->succs
) >= 3)
5593 error ("wrong outgoing edge flags at end of bb %d",
5601 if (simple_goto_p (stmt
))
5603 error ("explicit goto at end of bb %d", bb
->index
);
5608 /* FIXME. We should double check that the labels in the
5609 destination blocks have their address taken. */
5610 FOR_EACH_EDGE (e
, ei
, bb
->succs
)
5611 if ((e
->flags
& (EDGE_FALLTHRU
| EDGE_TRUE_VALUE
5612 | EDGE_FALSE_VALUE
))
5613 || !(e
->flags
& EDGE_ABNORMAL
))
5615 error ("wrong outgoing edge flags at end of bb %d",
5623 if (!gimple_call_builtin_p (stmt
, BUILT_IN_RETURN
))
5627 if (!single_succ_p (bb
)
5628 || (single_succ_edge (bb
)->flags
5629 & (EDGE_FALLTHRU
| EDGE_ABNORMAL
5630 | EDGE_TRUE_VALUE
| EDGE_FALSE_VALUE
)))
5632 error ("wrong outgoing edge flags at end of bb %d", bb
->index
);
5635 if (single_succ (bb
) != EXIT_BLOCK_PTR_FOR_FN (cfun
))
5637 error ("return edge does not point to exit in bb %d",
5645 gswitch
*switch_stmt
= as_a
<gswitch
*> (stmt
);
5650 n
= gimple_switch_num_labels (switch_stmt
);
5652 /* Mark all the destination basic blocks. */
5653 for (i
= 0; i
< n
; ++i
)
5655 basic_block label_bb
= gimple_switch_label_bb (cfun
, switch_stmt
, i
);
5656 gcc_assert (!label_bb
->aux
|| label_bb
->aux
== (void *)1);
5657 label_bb
->aux
= (void *)1;
5660 /* Verify that the case labels are sorted. */
5661 prev
= gimple_switch_label (switch_stmt
, 0);
5662 for (i
= 1; i
< n
; ++i
)
5664 tree c
= gimple_switch_label (switch_stmt
, i
);
5667 error ("found default case not at the start of "
5673 && !tree_int_cst_lt (CASE_LOW (prev
), CASE_LOW (c
)))
5675 error ("case labels not sorted: ");
5676 print_generic_expr (stderr
, prev
);
5677 fprintf (stderr
," is greater than ");
5678 print_generic_expr (stderr
, c
);
5679 fprintf (stderr
," but comes before it.\n");
5684 /* VRP will remove the default case if it can prove it will
5685 never be executed. So do not verify there always exists
5686 a default case here. */
5688 FOR_EACH_EDGE (e
, ei
, bb
->succs
)
5692 error ("extra outgoing edge %d->%d",
5693 bb
->index
, e
->dest
->index
);
5697 e
->dest
->aux
= (void *)2;
5698 if ((e
->flags
& (EDGE_FALLTHRU
| EDGE_ABNORMAL
5699 | EDGE_TRUE_VALUE
| EDGE_FALSE_VALUE
)))
5701 error ("wrong outgoing edge flags at end of bb %d",
5707 /* Check that we have all of them. */
5708 for (i
= 0; i
< n
; ++i
)
5710 basic_block label_bb
= gimple_switch_label_bb (cfun
,
5713 if (label_bb
->aux
!= (void *)2)
5715 error ("missing edge %i->%i", bb
->index
, label_bb
->index
);
5720 FOR_EACH_EDGE (e
, ei
, bb
->succs
)
5721 e
->dest
->aux
= (void *)0;
5725 case GIMPLE_EH_DISPATCH
:
5726 err
|= verify_eh_dispatch_edge (as_a
<geh_dispatch
*> (stmt
));
5734 if (dom_info_state (CDI_DOMINATORS
) >= DOM_NO_FAST_QUERY
)
5735 verify_dominators (CDI_DOMINATORS
);
5741 /* Updates phi nodes after creating a forwarder block joined
5742 by edge FALLTHRU. */
5745 gimple_make_forwarder_block (edge fallthru
)
5749 basic_block dummy
, bb
;
5753 dummy
= fallthru
->src
;
5754 bb
= fallthru
->dest
;
5756 if (single_pred_p (bb
))
5759 /* If we redirected a branch we must create new PHI nodes at the
5761 for (gsi
= gsi_start_phis (dummy
); !gsi_end_p (gsi
); gsi_next (&gsi
))
5763 gphi
*phi
, *new_phi
;
5766 var
= gimple_phi_result (phi
);
5767 new_phi
= create_phi_node (var
, bb
);
5768 gimple_phi_set_result (phi
, copy_ssa_name (var
, phi
));
5769 add_phi_arg (new_phi
, gimple_phi_result (phi
), fallthru
,
5773 /* Add the arguments we have stored on edges. */
5774 FOR_EACH_EDGE (e
, ei
, bb
->preds
)
5779 flush_pending_stmts (e
);
5784 /* Return a non-special label in the head of basic block BLOCK.
5785 Create one if it doesn't exist. */
5788 gimple_block_label (basic_block bb
)
5790 gimple_stmt_iterator i
, s
= gsi_start_bb (bb
);
5795 for (i
= s
; !gsi_end_p (i
); first
= false, gsi_next (&i
))
5797 stmt
= dyn_cast
<glabel
*> (gsi_stmt (i
));
5800 label
= gimple_label_label (stmt
);
5801 if (!DECL_NONLOCAL (label
))
5804 gsi_move_before (&i
, &s
);
5809 label
= create_artificial_label (UNKNOWN_LOCATION
);
5810 stmt
= gimple_build_label (label
);
5811 gsi_insert_before (&s
, stmt
, GSI_NEW_STMT
);
5816 /* Attempt to perform edge redirection by replacing a possibly complex
5817 jump instruction by a goto or by removing the jump completely.
5818 This can apply only if all edges now point to the same block. The
5819 parameters and return values are equivalent to
5820 redirect_edge_and_branch. */
5823 gimple_try_redirect_by_replacing_jump (edge e
, basic_block target
)
5825 basic_block src
= e
->src
;
5826 gimple_stmt_iterator i
;
5829 /* We can replace or remove a complex jump only when we have exactly
5831 if (EDGE_COUNT (src
->succs
) != 2
5832 /* Verify that all targets will be TARGET. Specifically, the
5833 edge that is not E must also go to TARGET. */
5834 || EDGE_SUCC (src
, EDGE_SUCC (src
, 0) == e
)->dest
!= target
)
5837 i
= gsi_last_bb (src
);
5841 stmt
= gsi_stmt (i
);
5843 if (gimple_code (stmt
) == GIMPLE_COND
|| gimple_code (stmt
) == GIMPLE_SWITCH
)
5845 gsi_remove (&i
, true);
5846 e
= ssa_redirect_edge (e
, target
);
5847 e
->flags
= EDGE_FALLTHRU
;
5855 /* Redirect E to DEST. Return NULL on failure. Otherwise, return the
5856 edge representing the redirected branch. */
5859 gimple_redirect_edge_and_branch (edge e
, basic_block dest
)
5861 basic_block bb
= e
->src
;
5862 gimple_stmt_iterator gsi
;
5866 if (e
->flags
& EDGE_ABNORMAL
)
5869 if (e
->dest
== dest
)
5872 if (e
->flags
& EDGE_EH
)
5873 return redirect_eh_edge (e
, dest
);
5875 if (e
->src
!= ENTRY_BLOCK_PTR_FOR_FN (cfun
))
5877 ret
= gimple_try_redirect_by_replacing_jump (e
, dest
);
5882 gsi
= gsi_last_nondebug_bb (bb
);
5883 stmt
= gsi_end_p (gsi
) ? NULL
: gsi_stmt (gsi
);
5885 switch (stmt
? gimple_code (stmt
) : GIMPLE_ERROR_MARK
)
5888 /* For COND_EXPR, we only need to redirect the edge. */
5892 /* No non-abnormal edges should lead from a non-simple goto, and
5893 simple ones should be represented implicitly. */
5898 gswitch
*switch_stmt
= as_a
<gswitch
*> (stmt
);
5899 tree label
= gimple_block_label (dest
);
5900 tree cases
= get_cases_for_edge (e
, switch_stmt
);
5902 /* If we have a list of cases associated with E, then use it
5903 as it's a lot faster than walking the entire case vector. */
5906 edge e2
= find_edge (e
->src
, dest
);
5913 CASE_LABEL (cases
) = label
;
5914 cases
= CASE_CHAIN (cases
);
5917 /* If there was already an edge in the CFG, then we need
5918 to move all the cases associated with E to E2. */
5921 tree cases2
= get_cases_for_edge (e2
, switch_stmt
);
5923 CASE_CHAIN (last
) = CASE_CHAIN (cases2
);
5924 CASE_CHAIN (cases2
) = first
;
5926 bitmap_set_bit (touched_switch_bbs
, gimple_bb (stmt
)->index
);
5930 size_t i
, n
= gimple_switch_num_labels (switch_stmt
);
5932 for (i
= 0; i
< n
; i
++)
5934 tree elt
= gimple_switch_label (switch_stmt
, i
);
5935 if (label_to_block (cfun
, CASE_LABEL (elt
)) == e
->dest
)
5936 CASE_LABEL (elt
) = label
;
5944 gasm
*asm_stmt
= as_a
<gasm
*> (stmt
);
5945 int i
, n
= gimple_asm_nlabels (asm_stmt
);
5948 for (i
= 0; i
< n
; ++i
)
5950 tree cons
= gimple_asm_label_op (asm_stmt
, i
);
5951 if (label_to_block (cfun
, TREE_VALUE (cons
)) == e
->dest
)
5954 label
= gimple_block_label (dest
);
5955 TREE_VALUE (cons
) = label
;
5959 /* If we didn't find any label matching the former edge in the
5960 asm labels, we must be redirecting the fallthrough
5962 gcc_assert (label
|| (e
->flags
& EDGE_FALLTHRU
));
5967 gsi_remove (&gsi
, true);
5968 e
->flags
|= EDGE_FALLTHRU
;
5971 case GIMPLE_OMP_RETURN
:
5972 case GIMPLE_OMP_CONTINUE
:
5973 case GIMPLE_OMP_SECTIONS_SWITCH
:
5974 case GIMPLE_OMP_FOR
:
5975 /* The edges from OMP constructs can be simply redirected. */
5978 case GIMPLE_EH_DISPATCH
:
5979 if (!(e
->flags
& EDGE_FALLTHRU
))
5980 redirect_eh_dispatch_edge (as_a
<geh_dispatch
*> (stmt
), e
, dest
);
5983 case GIMPLE_TRANSACTION
:
5984 if (e
->flags
& EDGE_TM_ABORT
)
5985 gimple_transaction_set_label_over (as_a
<gtransaction
*> (stmt
),
5986 gimple_block_label (dest
));
5987 else if (e
->flags
& EDGE_TM_UNINSTRUMENTED
)
5988 gimple_transaction_set_label_uninst (as_a
<gtransaction
*> (stmt
),
5989 gimple_block_label (dest
));
5991 gimple_transaction_set_label_norm (as_a
<gtransaction
*> (stmt
),
5992 gimple_block_label (dest
));
5996 /* Otherwise it must be a fallthru edge, and we don't need to
5997 do anything besides redirecting it. */
5998 gcc_assert (e
->flags
& EDGE_FALLTHRU
);
6002 /* Update/insert PHI nodes as necessary. */
6004 /* Now update the edges in the CFG. */
6005 e
= ssa_redirect_edge (e
, dest
);
6010 /* Returns true if it is possible to remove edge E by redirecting
6011 it to the destination of the other edge from E->src. */
6014 gimple_can_remove_branch_p (const_edge e
)
6016 if (e
->flags
& (EDGE_ABNORMAL
| EDGE_EH
))
6022 /* Simple wrapper, as we can always redirect fallthru edges. */
6025 gimple_redirect_edge_and_branch_force (edge e
, basic_block dest
)
6027 e
= gimple_redirect_edge_and_branch (e
, dest
);
6034 /* Splits basic block BB after statement STMT (but at least after the
6035 labels). If STMT is NULL, BB is split just after the labels. */
6038 gimple_split_block (basic_block bb
, void *stmt
)
6040 gimple_stmt_iterator gsi
;
6041 gimple_stmt_iterator gsi_tgt
;
6047 new_bb
= create_empty_bb (bb
);
6049 /* Redirect the outgoing edges. */
6050 new_bb
->succs
= bb
->succs
;
6052 FOR_EACH_EDGE (e
, ei
, new_bb
->succs
)
6055 /* Get a stmt iterator pointing to the first stmt to move. */
6056 if (!stmt
|| gimple_code ((gimple
*) stmt
) == GIMPLE_LABEL
)
6057 gsi
= gsi_after_labels (bb
);
6060 gsi
= gsi_for_stmt ((gimple
*) stmt
);
6064 /* Move everything from GSI to the new basic block. */
6065 if (gsi_end_p (gsi
))
6068 /* Split the statement list - avoid re-creating new containers as this
6069 brings ugly quadratic memory consumption in the inliner.
6070 (We are still quadratic since we need to update stmt BB pointers,
6072 gsi_split_seq_before (&gsi
, &list
);
6073 set_bb_seq (new_bb
, list
);
6074 for (gsi_tgt
= gsi_start (list
);
6075 !gsi_end_p (gsi_tgt
); gsi_next (&gsi_tgt
))
6076 gimple_set_bb (gsi_stmt (gsi_tgt
), new_bb
);
6082 /* Moves basic block BB after block AFTER. */
6085 gimple_move_block_after (basic_block bb
, basic_block after
)
6087 if (bb
->prev_bb
== after
)
6091 link_block (bb
, after
);
6097 /* Return TRUE if block BB has no executable statements, otherwise return
6101 gimple_empty_block_p (basic_block bb
)
6103 /* BB must have no executable statements. */
6104 gimple_stmt_iterator gsi
= gsi_after_labels (bb
);
6107 while (!gsi_end_p (gsi
))
6109 gimple
*stmt
= gsi_stmt (gsi
);
6110 if (is_gimple_debug (stmt
))
6112 else if (gimple_code (stmt
) == GIMPLE_NOP
6113 || gimple_code (stmt
) == GIMPLE_PREDICT
)
6123 /* Split a basic block if it ends with a conditional branch and if the
6124 other part of the block is not empty. */
6127 gimple_split_block_before_cond_jump (basic_block bb
)
6129 gimple
*last
, *split_point
;
6130 gimple_stmt_iterator gsi
= gsi_last_nondebug_bb (bb
);
6131 if (gsi_end_p (gsi
))
6133 last
= gsi_stmt (gsi
);
6134 if (gimple_code (last
) != GIMPLE_COND
6135 && gimple_code (last
) != GIMPLE_SWITCH
)
6138 split_point
= gsi_stmt (gsi
);
6139 return split_block (bb
, split_point
)->dest
;
6143 /* Return true if basic_block can be duplicated. */
6146 gimple_can_duplicate_bb_p (const_basic_block bb ATTRIBUTE_UNUSED
)
6151 /* Create a duplicate of the basic block BB. NOTE: This does not
6152 preserve SSA form. */
6155 gimple_duplicate_bb (basic_block bb
)
6158 gimple_stmt_iterator gsi_tgt
;
6160 new_bb
= create_empty_bb (EXIT_BLOCK_PTR_FOR_FN (cfun
)->prev_bb
);
6162 /* Copy the PHI nodes. We ignore PHI node arguments here because
6163 the incoming edges have not been setup yet. */
6164 for (gphi_iterator gpi
= gsi_start_phis (bb
);
6170 copy
= create_phi_node (NULL_TREE
, new_bb
);
6171 create_new_def_for (gimple_phi_result (phi
), copy
,
6172 gimple_phi_result_ptr (copy
));
6173 gimple_set_uid (copy
, gimple_uid (phi
));
6176 gsi_tgt
= gsi_start_bb (new_bb
);
6177 for (gimple_stmt_iterator gsi
= gsi_start_bb (bb
);
6181 def_operand_p def_p
;
6182 ssa_op_iter op_iter
;
6184 gimple
*stmt
, *copy
;
6186 stmt
= gsi_stmt (gsi
);
6187 if (gimple_code (stmt
) == GIMPLE_LABEL
)
6190 /* Don't duplicate label debug stmts. */
6191 if (gimple_debug_bind_p (stmt
)
6192 && TREE_CODE (gimple_debug_bind_get_var (stmt
))
6196 /* Create a new copy of STMT and duplicate STMT's virtual
6198 copy
= gimple_copy (stmt
);
6199 gsi_insert_after (&gsi_tgt
, copy
, GSI_NEW_STMT
);
6201 maybe_duplicate_eh_stmt (copy
, stmt
);
6202 gimple_duplicate_stmt_histograms (cfun
, copy
, cfun
, stmt
);
6204 /* When copying around a stmt writing into a local non-user
6205 aggregate, make sure it won't share stack slot with other
6207 lhs
= gimple_get_lhs (stmt
);
6208 if (lhs
&& TREE_CODE (lhs
) != SSA_NAME
)
6210 tree base
= get_base_address (lhs
);
6212 && (VAR_P (base
) || TREE_CODE (base
) == RESULT_DECL
)
6213 && DECL_IGNORED_P (base
)
6214 && !TREE_STATIC (base
)
6215 && !DECL_EXTERNAL (base
)
6216 && (!VAR_P (base
) || !DECL_HAS_VALUE_EXPR_P (base
)))
6217 DECL_NONSHAREABLE (base
) = 1;
6220 /* Create new names for all the definitions created by COPY and
6221 add replacement mappings for each new name. */
6222 FOR_EACH_SSA_DEF_OPERAND (def_p
, copy
, op_iter
, SSA_OP_ALL_DEFS
)
6223 create_new_def_for (DEF_FROM_PTR (def_p
), copy
, def_p
);
6229 /* Adds phi node arguments for edge E_COPY after basic block duplication. */
6232 add_phi_args_after_copy_edge (edge e_copy
)
6234 basic_block bb
, bb_copy
= e_copy
->src
, dest
;
6237 gphi
*phi
, *phi_copy
;
6239 gphi_iterator psi
, psi_copy
;
6241 if (gimple_seq_empty_p (phi_nodes (e_copy
->dest
)))
6244 bb
= bb_copy
->flags
& BB_DUPLICATED
? get_bb_original (bb_copy
) : bb_copy
;
6246 if (e_copy
->dest
->flags
& BB_DUPLICATED
)
6247 dest
= get_bb_original (e_copy
->dest
);
6249 dest
= e_copy
->dest
;
6251 e
= find_edge (bb
, dest
);
6254 /* During loop unrolling the target of the latch edge is copied.
6255 In this case we are not looking for edge to dest, but to
6256 duplicated block whose original was dest. */
6257 FOR_EACH_EDGE (e
, ei
, bb
->succs
)
6259 if ((e
->dest
->flags
& BB_DUPLICATED
)
6260 && get_bb_original (e
->dest
) == dest
)
6264 gcc_assert (e
!= NULL
);
6267 for (psi
= gsi_start_phis (e
->dest
),
6268 psi_copy
= gsi_start_phis (e_copy
->dest
);
6270 gsi_next (&psi
), gsi_next (&psi_copy
))
6273 phi_copy
= psi_copy
.phi ();
6274 def
= PHI_ARG_DEF_FROM_EDGE (phi
, e
);
6275 add_phi_arg (phi_copy
, def
, e_copy
,
6276 gimple_phi_arg_location_from_edge (phi
, e
));
6281 /* Basic block BB_COPY was created by code duplication. Add phi node
6282 arguments for edges going out of BB_COPY. The blocks that were
6283 duplicated have BB_DUPLICATED set. */
6286 add_phi_args_after_copy_bb (basic_block bb_copy
)
6291 FOR_EACH_EDGE (e_copy
, ei
, bb_copy
->succs
)
6293 add_phi_args_after_copy_edge (e_copy
);
6297 /* Blocks in REGION_COPY array of length N_REGION were created by
6298 duplication of basic blocks. Add phi node arguments for edges
6299 going from these blocks. If E_COPY is not NULL, also add
6300 phi node arguments for its destination.*/
6303 add_phi_args_after_copy (basic_block
*region_copy
, unsigned n_region
,
6308 for (i
= 0; i
< n_region
; i
++)
6309 region_copy
[i
]->flags
|= BB_DUPLICATED
;
6311 for (i
= 0; i
< n_region
; i
++)
6312 add_phi_args_after_copy_bb (region_copy
[i
]);
6314 add_phi_args_after_copy_edge (e_copy
);
6316 for (i
= 0; i
< n_region
; i
++)
6317 region_copy
[i
]->flags
&= ~BB_DUPLICATED
;
6320 /* Duplicates a REGION (set of N_REGION basic blocks) with just a single
6321 important exit edge EXIT. By important we mean that no SSA name defined
6322 inside region is live over the other exit edges of the region. All entry
6323 edges to the region must go to ENTRY->dest. The edge ENTRY is redirected
6324 to the duplicate of the region. Dominance and loop information is
6325 updated if UPDATE_DOMINANCE is true, but not the SSA web. If
6326 UPDATE_DOMINANCE is false then we assume that the caller will update the
6327 dominance information after calling this function. The new basic
6328 blocks are stored to REGION_COPY in the same order as they had in REGION,
6329 provided that REGION_COPY is not NULL.
6330 The function returns false if it is unable to copy the region,
6334 gimple_duplicate_sese_region (edge entry
, edge exit
,
6335 basic_block
*region
, unsigned n_region
,
6336 basic_block
*region_copy
,
6337 bool update_dominance
)
6340 bool free_region_copy
= false, copying_header
= false;
6341 struct loop
*loop
= entry
->dest
->loop_father
;
6343 vec
<basic_block
> doms
= vNULL
;
6345 profile_count total_count
= profile_count::uninitialized ();
6346 profile_count entry_count
= profile_count::uninitialized ();
6348 if (!can_copy_bbs_p (region
, n_region
))
6351 /* Some sanity checking. Note that we do not check for all possible
6352 missuses of the functions. I.e. if you ask to copy something weird,
6353 it will work, but the state of structures probably will not be
6355 for (i
= 0; i
< n_region
; i
++)
6357 /* We do not handle subloops, i.e. all the blocks must belong to the
6359 if (region
[i
]->loop_father
!= loop
)
6362 if (region
[i
] != entry
->dest
6363 && region
[i
] == loop
->header
)
6367 /* In case the function is used for loop header copying (which is the primary
6368 use), ensure that EXIT and its copy will be new latch and entry edges. */
6369 if (loop
->header
== entry
->dest
)
6371 copying_header
= true;
6373 if (!dominated_by_p (CDI_DOMINATORS
, loop
->latch
, exit
->src
))
6376 for (i
= 0; i
< n_region
; i
++)
6377 if (region
[i
] != exit
->src
6378 && dominated_by_p (CDI_DOMINATORS
, region
[i
], exit
->src
))
6382 initialize_original_copy_tables ();
6385 set_loop_copy (loop
, loop_outer (loop
));
6387 set_loop_copy (loop
, loop
);
6391 region_copy
= XNEWVEC (basic_block
, n_region
);
6392 free_region_copy
= true;
6395 /* Record blocks outside the region that are dominated by something
6397 if (update_dominance
)
6400 doms
= get_dominated_by_region (CDI_DOMINATORS
, region
, n_region
);
6403 if (entry
->dest
->count
.initialized_p ())
6405 total_count
= entry
->dest
->count
;
6406 entry_count
= entry
->count ();
6407 /* Fix up corner cases, to avoid division by zero or creation of negative
6409 if (entry_count
> total_count
)
6410 entry_count
= total_count
;
6413 copy_bbs (region
, n_region
, region_copy
, &exit
, 1, &exit_copy
, loop
,
6414 split_edge_bb_loc (entry
), update_dominance
);
6415 if (total_count
.initialized_p () && entry_count
.initialized_p ())
6417 scale_bbs_frequencies_profile_count (region
, n_region
,
6418 total_count
- entry_count
,
6420 scale_bbs_frequencies_profile_count (region_copy
, n_region
, entry_count
,
6426 loop
->header
= exit
->dest
;
6427 loop
->latch
= exit
->src
;
6430 /* Redirect the entry and add the phi node arguments. */
6431 redirected
= redirect_edge_and_branch (entry
, get_bb_copy (entry
->dest
));
6432 gcc_assert (redirected
!= NULL
);
6433 flush_pending_stmts (entry
);
6435 /* Concerning updating of dominators: We must recount dominators
6436 for entry block and its copy. Anything that is outside of the
6437 region, but was dominated by something inside needs recounting as
6439 if (update_dominance
)
6441 set_immediate_dominator (CDI_DOMINATORS
, entry
->dest
, entry
->src
);
6442 doms
.safe_push (get_bb_original (entry
->dest
));
6443 iterate_fix_dominators (CDI_DOMINATORS
, doms
, false);
6447 /* Add the other PHI node arguments. */
6448 add_phi_args_after_copy (region_copy
, n_region
, NULL
);
6450 if (free_region_copy
)
6453 free_original_copy_tables ();
6457 /* Checks if BB is part of the region defined by N_REGION BBS. */
6459 bb_part_of_region_p (basic_block bb
, basic_block
* bbs
, unsigned n_region
)
6463 for (n
= 0; n
< n_region
; n
++)
6471 /* Duplicates REGION consisting of N_REGION blocks. The new blocks
6472 are stored to REGION_COPY in the same order in that they appear
6473 in REGION, if REGION_COPY is not NULL. ENTRY is the entry to
6474 the region, EXIT an exit from it. The condition guarding EXIT
6475 is moved to ENTRY. Returns true if duplication succeeds, false
6501 gimple_duplicate_sese_tail (edge entry
, edge exit
,
6502 basic_block
*region
, unsigned n_region
,
6503 basic_block
*region_copy
)
6506 bool free_region_copy
= false;
6507 struct loop
*loop
= exit
->dest
->loop_father
;
6508 struct loop
*orig_loop
= entry
->dest
->loop_father
;
6509 basic_block switch_bb
, entry_bb
, nentry_bb
;
6510 vec
<basic_block
> doms
;
6511 profile_count total_count
= profile_count::uninitialized (),
6512 exit_count
= profile_count::uninitialized ();
6513 edge exits
[2], nexits
[2], e
;
6514 gimple_stmt_iterator gsi
;
6517 basic_block exit_bb
;
6521 struct loop
*target
, *aloop
, *cloop
;
6523 gcc_assert (EDGE_COUNT (exit
->src
->succs
) == 2);
6525 exits
[1] = EDGE_SUCC (exit
->src
, EDGE_SUCC (exit
->src
, 0) == exit
);
6527 if (!can_copy_bbs_p (region
, n_region
))
6530 initialize_original_copy_tables ();
6531 set_loop_copy (orig_loop
, loop
);
6534 for (aloop
= orig_loop
->inner
; aloop
; aloop
= aloop
->next
)
6536 if (bb_part_of_region_p (aloop
->header
, region
, n_region
))
6538 cloop
= duplicate_loop (aloop
, target
);
6539 duplicate_subloops (aloop
, cloop
);
6545 region_copy
= XNEWVEC (basic_block
, n_region
);
6546 free_region_copy
= true;
6549 gcc_assert (!need_ssa_update_p (cfun
));
6551 /* Record blocks outside the region that are dominated by something
6553 doms
= get_dominated_by_region (CDI_DOMINATORS
, region
, n_region
);
6555 total_count
= exit
->src
->count
;
6556 exit_count
= exit
->count ();
6557 /* Fix up corner cases, to avoid division by zero or creation of negative
6559 if (exit_count
> total_count
)
6560 exit_count
= total_count
;
6562 copy_bbs (region
, n_region
, region_copy
, exits
, 2, nexits
, orig_loop
,
6563 split_edge_bb_loc (exit
), true);
6564 if (total_count
.initialized_p () && exit_count
.initialized_p ())
6566 scale_bbs_frequencies_profile_count (region
, n_region
,
6567 total_count
- exit_count
,
6569 scale_bbs_frequencies_profile_count (region_copy
, n_region
, exit_count
,
6573 /* Create the switch block, and put the exit condition to it. */
6574 entry_bb
= entry
->dest
;
6575 nentry_bb
= get_bb_copy (entry_bb
);
6576 if (!last_stmt (entry
->src
)
6577 || !stmt_ends_bb_p (last_stmt (entry
->src
)))
6578 switch_bb
= entry
->src
;
6580 switch_bb
= split_edge (entry
);
6581 set_immediate_dominator (CDI_DOMINATORS
, nentry_bb
, switch_bb
);
6583 gsi
= gsi_last_bb (switch_bb
);
6584 cond_stmt
= last_stmt (exit
->src
);
6585 gcc_assert (gimple_code (cond_stmt
) == GIMPLE_COND
);
6586 cond_stmt
= gimple_copy (cond_stmt
);
6588 gsi_insert_after (&gsi
, cond_stmt
, GSI_NEW_STMT
);
6590 sorig
= single_succ_edge (switch_bb
);
6591 sorig
->flags
= exits
[1]->flags
;
6592 sorig
->probability
= exits
[1]->probability
;
6593 snew
= make_edge (switch_bb
, nentry_bb
, exits
[0]->flags
);
6594 snew
->probability
= exits
[0]->probability
;
6597 /* Register the new edge from SWITCH_BB in loop exit lists. */
6598 rescan_loop_exit (snew
, true, false);
6600 /* Add the PHI node arguments. */
6601 add_phi_args_after_copy (region_copy
, n_region
, snew
);
6603 /* Get rid of now superfluous conditions and associated edges (and phi node
6605 exit_bb
= exit
->dest
;
6607 e
= redirect_edge_and_branch (exits
[0], exits
[1]->dest
);
6608 PENDING_STMT (e
) = NULL
;
6610 /* The latch of ORIG_LOOP was copied, and so was the backedge
6611 to the original header. We redirect this backedge to EXIT_BB. */
6612 for (i
= 0; i
< n_region
; i
++)
6613 if (get_bb_original (region_copy
[i
]) == orig_loop
->latch
)
6615 gcc_assert (single_succ_edge (region_copy
[i
]));
6616 e
= redirect_edge_and_branch (single_succ_edge (region_copy
[i
]), exit_bb
);
6617 PENDING_STMT (e
) = NULL
;
6618 for (psi
= gsi_start_phis (exit_bb
);
6623 def
= PHI_ARG_DEF (phi
, nexits
[0]->dest_idx
);
6624 add_phi_arg (phi
, def
, e
, gimple_phi_arg_location_from_edge (phi
, e
));
6627 e
= redirect_edge_and_branch (nexits
[1], nexits
[0]->dest
);
6628 PENDING_STMT (e
) = NULL
;
6630 /* Anything that is outside of the region, but was dominated by something
6631 inside needs to update dominance info. */
6632 iterate_fix_dominators (CDI_DOMINATORS
, doms
, false);
6634 /* Update the SSA web. */
6635 update_ssa (TODO_update_ssa
);
6637 if (free_region_copy
)
6640 free_original_copy_tables ();
6644 /* Add all the blocks dominated by ENTRY to the array BBS_P. Stop
6645 adding blocks when the dominator traversal reaches EXIT. This
6646 function silently assumes that ENTRY strictly dominates EXIT. */
6649 gather_blocks_in_sese_region (basic_block entry
, basic_block exit
,
6650 vec
<basic_block
> *bbs_p
)
6654 for (son
= first_dom_son (CDI_DOMINATORS
, entry
);
6656 son
= next_dom_son (CDI_DOMINATORS
, son
))
6658 bbs_p
->safe_push (son
);
6660 gather_blocks_in_sese_region (son
, exit
, bbs_p
);
6664 /* Replaces *TP with a duplicate (belonging to function TO_CONTEXT).
6665 The duplicates are recorded in VARS_MAP. */
6668 replace_by_duplicate_decl (tree
*tp
, hash_map
<tree
, tree
> *vars_map
,
6671 tree t
= *tp
, new_t
;
6672 struct function
*f
= DECL_STRUCT_FUNCTION (to_context
);
6674 if (DECL_CONTEXT (t
) == to_context
)
6678 tree
&loc
= vars_map
->get_or_insert (t
, &existed
);
6684 new_t
= copy_var_decl (t
, DECL_NAME (t
), TREE_TYPE (t
));
6685 add_local_decl (f
, new_t
);
6689 gcc_assert (TREE_CODE (t
) == CONST_DECL
);
6690 new_t
= copy_node (t
);
6692 DECL_CONTEXT (new_t
) = to_context
;
6703 /* Creates an ssa name in TO_CONTEXT equivalent to NAME.
6704 VARS_MAP maps old ssa names and var_decls to the new ones. */
6707 replace_ssa_name (tree name
, hash_map
<tree
, tree
> *vars_map
,
6712 gcc_assert (!virtual_operand_p (name
));
6714 tree
*loc
= vars_map
->get (name
);
6718 tree decl
= SSA_NAME_VAR (name
);
6721 gcc_assert (!SSA_NAME_IS_DEFAULT_DEF (name
));
6722 replace_by_duplicate_decl (&decl
, vars_map
, to_context
);
6723 new_name
= make_ssa_name_fn (DECL_STRUCT_FUNCTION (to_context
),
6724 decl
, SSA_NAME_DEF_STMT (name
));
6727 new_name
= copy_ssa_name_fn (DECL_STRUCT_FUNCTION (to_context
),
6728 name
, SSA_NAME_DEF_STMT (name
));
6730 /* Now that we've used the def stmt to define new_name, make sure it
6731 doesn't define name anymore. */
6732 SSA_NAME_DEF_STMT (name
) = NULL
;
6734 vars_map
->put (name
, new_name
);
6748 hash_map
<tree
, tree
> *vars_map
;
6749 htab_t new_label_map
;
6750 hash_map
<void *, void *> *eh_map
;
6754 /* Helper for move_block_to_fn. Set TREE_BLOCK in every expression
6755 contained in *TP if it has been ORIG_BLOCK previously and change the
6756 DECL_CONTEXT of every local variable referenced in *TP. */
6759 move_stmt_op (tree
*tp
, int *walk_subtrees
, void *data
)
6761 struct walk_stmt_info
*wi
= (struct walk_stmt_info
*) data
;
6762 struct move_stmt_d
*p
= (struct move_stmt_d
*) wi
->info
;
6767 tree block
= TREE_BLOCK (t
);
6768 if (block
== NULL_TREE
)
6770 else if (block
== p
->orig_block
6771 || p
->orig_block
== NULL_TREE
)
6773 /* tree_node_can_be_shared says we can share invariant
6774 addresses but unshare_expr copies them anyways. Make sure
6775 to unshare before adjusting the block in place - we do not
6776 always see a copy here. */
6777 if (TREE_CODE (t
) == ADDR_EXPR
6778 && is_gimple_min_invariant (t
))
6779 *tp
= t
= unshare_expr (t
);
6780 TREE_SET_BLOCK (t
, p
->new_block
);
6782 else if (flag_checking
)
6784 while (block
&& TREE_CODE (block
) == BLOCK
&& block
!= p
->orig_block
)
6785 block
= BLOCK_SUPERCONTEXT (block
);
6786 gcc_assert (block
== p
->orig_block
);
6789 else if (DECL_P (t
) || TREE_CODE (t
) == SSA_NAME
)
6791 if (TREE_CODE (t
) == SSA_NAME
)
6792 *tp
= replace_ssa_name (t
, p
->vars_map
, p
->to_context
);
6793 else if (TREE_CODE (t
) == PARM_DECL
6794 && gimple_in_ssa_p (cfun
))
6795 *tp
= *(p
->vars_map
->get (t
));
6796 else if (TREE_CODE (t
) == LABEL_DECL
)
6798 if (p
->new_label_map
)
6800 struct tree_map in
, *out
;
6802 out
= (struct tree_map
*)
6803 htab_find_with_hash (p
->new_label_map
, &in
, DECL_UID (t
));
6808 /* For FORCED_LABELs we can end up with references from other
6809 functions if some SESE regions are outlined. It is UB to
6810 jump in between them, but they could be used just for printing
6811 addresses etc. In that case, DECL_CONTEXT on the label should
6812 be the function containing the glabel stmt with that LABEL_DECL,
6813 rather than whatever function a reference to the label was seen
6815 if (!FORCED_LABEL (t
) && !DECL_NONLOCAL (t
))
6816 DECL_CONTEXT (t
) = p
->to_context
;
6818 else if (p
->remap_decls_p
)
6820 /* Replace T with its duplicate. T should no longer appear in the
6821 parent function, so this looks wasteful; however, it may appear
6822 in referenced_vars, and more importantly, as virtual operands of
6823 statements, and in alias lists of other variables. It would be
6824 quite difficult to expunge it from all those places. ??? It might
6825 suffice to do this for addressable variables. */
6826 if ((VAR_P (t
) && !is_global_var (t
))
6827 || TREE_CODE (t
) == CONST_DECL
)
6828 replace_by_duplicate_decl (tp
, p
->vars_map
, p
->to_context
);
6832 else if (TYPE_P (t
))
6838 /* Helper for move_stmt_r. Given an EH region number for the source
6839 function, map that to the duplicate EH regio number in the dest. */
6842 move_stmt_eh_region_nr (int old_nr
, struct move_stmt_d
*p
)
6844 eh_region old_r
, new_r
;
6846 old_r
= get_eh_region_from_number (old_nr
);
6847 new_r
= static_cast<eh_region
> (*p
->eh_map
->get (old_r
));
6849 return new_r
->index
;
6852 /* Similar, but operate on INTEGER_CSTs. */
6855 move_stmt_eh_region_tree_nr (tree old_t_nr
, struct move_stmt_d
*p
)
6859 old_nr
= tree_to_shwi (old_t_nr
);
6860 new_nr
= move_stmt_eh_region_nr (old_nr
, p
);
6862 return build_int_cst (integer_type_node
, new_nr
);
6865 /* Like move_stmt_op, but for gimple statements.
6867 Helper for move_block_to_fn. Set GIMPLE_BLOCK in every expression
6868 contained in the current statement in *GSI_P and change the
6869 DECL_CONTEXT of every local variable referenced in the current
6873 move_stmt_r (gimple_stmt_iterator
*gsi_p
, bool *handled_ops_p
,
6874 struct walk_stmt_info
*wi
)
6876 struct move_stmt_d
*p
= (struct move_stmt_d
*) wi
->info
;
6877 gimple
*stmt
= gsi_stmt (*gsi_p
);
6878 tree block
= gimple_block (stmt
);
6880 if (block
== p
->orig_block
6881 || (p
->orig_block
== NULL_TREE
6882 && block
!= NULL_TREE
))
6883 gimple_set_block (stmt
, p
->new_block
);
6885 switch (gimple_code (stmt
))
6888 /* Remap the region numbers for __builtin_eh_{pointer,filter}. */
6890 tree r
, fndecl
= gimple_call_fndecl (stmt
);
6891 if (fndecl
&& fndecl_built_in_p (fndecl
, BUILT_IN_NORMAL
))
6892 switch (DECL_FUNCTION_CODE (fndecl
))
6894 case BUILT_IN_EH_COPY_VALUES
:
6895 r
= gimple_call_arg (stmt
, 1);
6896 r
= move_stmt_eh_region_tree_nr (r
, p
);
6897 gimple_call_set_arg (stmt
, 1, r
);
6900 case BUILT_IN_EH_POINTER
:
6901 case BUILT_IN_EH_FILTER
:
6902 r
= gimple_call_arg (stmt
, 0);
6903 r
= move_stmt_eh_region_tree_nr (r
, p
);
6904 gimple_call_set_arg (stmt
, 0, r
);
6915 gresx
*resx_stmt
= as_a
<gresx
*> (stmt
);
6916 int r
= gimple_resx_region (resx_stmt
);
6917 r
= move_stmt_eh_region_nr (r
, p
);
6918 gimple_resx_set_region (resx_stmt
, r
);
6922 case GIMPLE_EH_DISPATCH
:
6924 geh_dispatch
*eh_dispatch_stmt
= as_a
<geh_dispatch
*> (stmt
);
6925 int r
= gimple_eh_dispatch_region (eh_dispatch_stmt
);
6926 r
= move_stmt_eh_region_nr (r
, p
);
6927 gimple_eh_dispatch_set_region (eh_dispatch_stmt
, r
);
6931 case GIMPLE_OMP_RETURN
:
6932 case GIMPLE_OMP_CONTINUE
:
6937 /* For FORCED_LABEL, move_stmt_op doesn't adjust DECL_CONTEXT,
6938 so that such labels can be referenced from other regions.
6939 Make sure to update it when seeing a GIMPLE_LABEL though,
6940 that is the owner of the label. */
6941 walk_gimple_op (stmt
, move_stmt_op
, wi
);
6942 *handled_ops_p
= true;
6943 tree label
= gimple_label_label (as_a
<glabel
*> (stmt
));
6944 if (FORCED_LABEL (label
) || DECL_NONLOCAL (label
))
6945 DECL_CONTEXT (label
) = p
->to_context
;
6950 if (is_gimple_omp (stmt
))
6952 /* Do not remap variables inside OMP directives. Variables
6953 referenced in clauses and directive header belong to the
6954 parent function and should not be moved into the child
6956 bool save_remap_decls_p
= p
->remap_decls_p
;
6957 p
->remap_decls_p
= false;
6958 *handled_ops_p
= true;
6960 walk_gimple_seq_mod (gimple_omp_body_ptr (stmt
), move_stmt_r
,
6963 p
->remap_decls_p
= save_remap_decls_p
;
6971 /* Move basic block BB from function CFUN to function DEST_FN. The
6972 block is moved out of the original linked list and placed after
6973 block AFTER in the new list. Also, the block is removed from the
6974 original array of blocks and placed in DEST_FN's array of blocks.
6975 If UPDATE_EDGE_COUNT_P is true, the edge counts on both CFGs is
6976 updated to reflect the moved edges.
6978 The local variables are remapped to new instances, VARS_MAP is used
6979 to record the mapping. */
6982 move_block_to_fn (struct function
*dest_cfun
, basic_block bb
,
6983 basic_block after
, bool update_edge_count_p
,
6984 struct move_stmt_d
*d
)
6986 struct control_flow_graph
*cfg
;
6989 gimple_stmt_iterator si
;
6990 unsigned old_len
, new_len
;
6992 /* Remove BB from dominance structures. */
6993 delete_from_dominance_info (CDI_DOMINATORS
, bb
);
6995 /* Move BB from its current loop to the copy in the new function. */
6998 struct loop
*new_loop
= (struct loop
*)bb
->loop_father
->aux
;
7000 bb
->loop_father
= new_loop
;
7003 /* Link BB to the new linked list. */
7004 move_block_after (bb
, after
);
7006 /* Update the edge count in the corresponding flowgraphs. */
7007 if (update_edge_count_p
)
7008 FOR_EACH_EDGE (e
, ei
, bb
->succs
)
7010 cfun
->cfg
->x_n_edges
--;
7011 dest_cfun
->cfg
->x_n_edges
++;
7014 /* Remove BB from the original basic block array. */
7015 (*cfun
->cfg
->x_basic_block_info
)[bb
->index
] = NULL
;
7016 cfun
->cfg
->x_n_basic_blocks
--;
7018 /* Grow DEST_CFUN's basic block array if needed. */
7019 cfg
= dest_cfun
->cfg
;
7020 cfg
->x_n_basic_blocks
++;
7021 if (bb
->index
>= cfg
->x_last_basic_block
)
7022 cfg
->x_last_basic_block
= bb
->index
+ 1;
7024 old_len
= vec_safe_length (cfg
->x_basic_block_info
);
7025 if ((unsigned) cfg
->x_last_basic_block
>= old_len
)
7027 new_len
= cfg
->x_last_basic_block
+ (cfg
->x_last_basic_block
+ 3) / 4;
7028 vec_safe_grow_cleared (cfg
->x_basic_block_info
, new_len
);
7031 (*cfg
->x_basic_block_info
)[bb
->index
] = bb
;
7033 /* Remap the variables in phi nodes. */
7034 for (gphi_iterator psi
= gsi_start_phis (bb
);
7037 gphi
*phi
= psi
.phi ();
7039 tree op
= PHI_RESULT (phi
);
7043 if (virtual_operand_p (op
))
7045 /* Remove the phi nodes for virtual operands (alias analysis will be
7046 run for the new function, anyway). */
7047 remove_phi_node (&psi
, true);
7051 SET_PHI_RESULT (phi
,
7052 replace_ssa_name (op
, d
->vars_map
, dest_cfun
->decl
));
7053 FOR_EACH_PHI_ARG (use
, phi
, oi
, SSA_OP_USE
)
7055 op
= USE_FROM_PTR (use
);
7056 if (TREE_CODE (op
) == SSA_NAME
)
7057 SET_USE (use
, replace_ssa_name (op
, d
->vars_map
, dest_cfun
->decl
));
7060 for (i
= 0; i
< EDGE_COUNT (bb
->preds
); i
++)
7062 location_t locus
= gimple_phi_arg_location (phi
, i
);
7063 tree block
= LOCATION_BLOCK (locus
);
7065 if (locus
== UNKNOWN_LOCATION
)
7067 if (d
->orig_block
== NULL_TREE
|| block
== d
->orig_block
)
7069 locus
= set_block (locus
, d
->new_block
);
7070 gimple_phi_arg_set_location (phi
, i
, locus
);
7077 for (si
= gsi_start_bb (bb
); !gsi_end_p (si
); gsi_next (&si
))
7079 gimple
*stmt
= gsi_stmt (si
);
7080 struct walk_stmt_info wi
;
7082 memset (&wi
, 0, sizeof (wi
));
7084 walk_gimple_stmt (&si
, move_stmt_r
, move_stmt_op
, &wi
);
7086 if (glabel
*label_stmt
= dyn_cast
<glabel
*> (stmt
))
7088 tree label
= gimple_label_label (label_stmt
);
7089 int uid
= LABEL_DECL_UID (label
);
7091 gcc_assert (uid
> -1);
7093 old_len
= vec_safe_length (cfg
->x_label_to_block_map
);
7094 if (old_len
<= (unsigned) uid
)
7096 new_len
= 3 * uid
/ 2 + 1;
7097 vec_safe_grow_cleared (cfg
->x_label_to_block_map
, new_len
);
7100 (*cfg
->x_label_to_block_map
)[uid
] = bb
;
7101 (*cfun
->cfg
->x_label_to_block_map
)[uid
] = NULL
;
7103 gcc_assert (DECL_CONTEXT (label
) == dest_cfun
->decl
);
7105 if (uid
>= dest_cfun
->cfg
->last_label_uid
)
7106 dest_cfun
->cfg
->last_label_uid
= uid
+ 1;
7109 maybe_duplicate_eh_stmt_fn (dest_cfun
, stmt
, cfun
, stmt
, d
->eh_map
, 0);
7110 remove_stmt_from_eh_lp_fn (cfun
, stmt
);
7112 gimple_duplicate_stmt_histograms (dest_cfun
, stmt
, cfun
, stmt
);
7113 gimple_remove_stmt_histograms (cfun
, stmt
);
7115 /* We cannot leave any operands allocated from the operand caches of
7116 the current function. */
7117 free_stmt_operands (cfun
, stmt
);
7118 push_cfun (dest_cfun
);
7123 FOR_EACH_EDGE (e
, ei
, bb
->succs
)
7124 if (e
->goto_locus
!= UNKNOWN_LOCATION
)
7126 tree block
= LOCATION_BLOCK (e
->goto_locus
);
7127 if (d
->orig_block
== NULL_TREE
7128 || block
== d
->orig_block
)
7129 e
->goto_locus
= set_block (e
->goto_locus
, d
->new_block
);
7133 /* Examine the statements in BB (which is in SRC_CFUN); find and return
7134 the outermost EH region. Use REGION as the incoming base EH region. */
7137 find_outermost_region_in_block (struct function
*src_cfun
,
7138 basic_block bb
, eh_region region
)
7140 gimple_stmt_iterator si
;
7142 for (si
= gsi_start_bb (bb
); !gsi_end_p (si
); gsi_next (&si
))
7144 gimple
*stmt
= gsi_stmt (si
);
7145 eh_region stmt_region
;
7148 lp_nr
= lookup_stmt_eh_lp_fn (src_cfun
, stmt
);
7149 stmt_region
= get_eh_region_from_lp_number_fn (src_cfun
, lp_nr
);
7153 region
= stmt_region
;
7154 else if (stmt_region
!= region
)
7156 region
= eh_region_outermost (src_cfun
, stmt_region
, region
);
7157 gcc_assert (region
!= NULL
);
7166 new_label_mapper (tree decl
, void *data
)
7168 htab_t hash
= (htab_t
) data
;
7172 gcc_assert (TREE_CODE (decl
) == LABEL_DECL
);
7174 m
= XNEW (struct tree_map
);
7175 m
->hash
= DECL_UID (decl
);
7176 m
->base
.from
= decl
;
7177 m
->to
= create_artificial_label (UNKNOWN_LOCATION
);
7178 LABEL_DECL_UID (m
->to
) = LABEL_DECL_UID (decl
);
7179 if (LABEL_DECL_UID (m
->to
) >= cfun
->cfg
->last_label_uid
)
7180 cfun
->cfg
->last_label_uid
= LABEL_DECL_UID (m
->to
) + 1;
7182 slot
= htab_find_slot_with_hash (hash
, m
, m
->hash
, INSERT
);
7183 gcc_assert (*slot
== NULL
);
7190 /* Tree walker to replace the decls used inside value expressions by
7194 replace_block_vars_by_duplicates_1 (tree
*tp
, int *walk_subtrees
, void *data
)
7196 struct replace_decls_d
*rd
= (struct replace_decls_d
*)data
;
7198 switch (TREE_CODE (*tp
))
7203 replace_by_duplicate_decl (tp
, rd
->vars_map
, rd
->to_context
);
7209 if (IS_TYPE_OR_DECL_P (*tp
))
7210 *walk_subtrees
= false;
7215 /* Change DECL_CONTEXT of all BLOCK_VARS in block, including
7219 replace_block_vars_by_duplicates (tree block
, hash_map
<tree
, tree
> *vars_map
,
7224 for (tp
= &BLOCK_VARS (block
); *tp
; tp
= &DECL_CHAIN (*tp
))
7227 if (!VAR_P (t
) && TREE_CODE (t
) != CONST_DECL
)
7229 replace_by_duplicate_decl (&t
, vars_map
, to_context
);
7232 if (VAR_P (*tp
) && DECL_HAS_VALUE_EXPR_P (*tp
))
7234 tree x
= DECL_VALUE_EXPR (*tp
);
7235 struct replace_decls_d rd
= { vars_map
, to_context
};
7237 walk_tree (&x
, replace_block_vars_by_duplicates_1
, &rd
, NULL
);
7238 SET_DECL_VALUE_EXPR (t
, x
);
7239 DECL_HAS_VALUE_EXPR_P (t
) = 1;
7241 DECL_CHAIN (t
) = DECL_CHAIN (*tp
);
7246 for (block
= BLOCK_SUBBLOCKS (block
); block
; block
= BLOCK_CHAIN (block
))
7247 replace_block_vars_by_duplicates (block
, vars_map
, to_context
);
7250 /* Fixup the loop arrays and numbers after moving LOOP and its subloops
7254 fixup_loop_arrays_after_move (struct function
*fn1
, struct function
*fn2
,
7257 /* Discard it from the old loop array. */
7258 (*get_loops (fn1
))[loop
->num
] = NULL
;
7260 /* Place it in the new loop array, assigning it a new number. */
7261 loop
->num
= number_of_loops (fn2
);
7262 vec_safe_push (loops_for_fn (fn2
)->larray
, loop
);
7264 /* Recurse to children. */
7265 for (loop
= loop
->inner
; loop
; loop
= loop
->next
)
7266 fixup_loop_arrays_after_move (fn1
, fn2
, loop
);
7269 /* Verify that the blocks in BBS_P are a single-entry, single-exit region
7270 delimited by ENTRY_BB and EXIT_BB, possibly containing noreturn blocks. */
7273 verify_sese (basic_block entry
, basic_block exit
, vec
<basic_block
> *bbs_p
)
7278 bitmap bbs
= BITMAP_ALLOC (NULL
);
7281 gcc_assert (entry
!= NULL
);
7282 gcc_assert (entry
!= exit
);
7283 gcc_assert (bbs_p
!= NULL
);
7285 gcc_assert (bbs_p
->length () > 0);
7287 FOR_EACH_VEC_ELT (*bbs_p
, i
, bb
)
7288 bitmap_set_bit (bbs
, bb
->index
);
7290 gcc_assert (bitmap_bit_p (bbs
, entry
->index
));
7291 gcc_assert (exit
== NULL
|| bitmap_bit_p (bbs
, exit
->index
));
7293 FOR_EACH_VEC_ELT (*bbs_p
, i
, bb
)
7297 gcc_assert (single_pred_p (entry
));
7298 gcc_assert (!bitmap_bit_p (bbs
, single_pred (entry
)->index
));
7301 for (ei
= ei_start (bb
->preds
); !ei_end_p (ei
); ei_next (&ei
))
7304 gcc_assert (bitmap_bit_p (bbs
, e
->src
->index
));
7309 gcc_assert (single_succ_p (exit
));
7310 gcc_assert (!bitmap_bit_p (bbs
, single_succ (exit
)->index
));
7313 for (ei
= ei_start (bb
->succs
); !ei_end_p (ei
); ei_next (&ei
))
7316 gcc_assert (bitmap_bit_p (bbs
, e
->dest
->index
));
7323 /* If FROM is an SSA_NAME, mark the version in bitmap DATA. */
7326 gather_ssa_name_hash_map_from (tree
const &from
, tree
const &, void *data
)
7328 bitmap release_names
= (bitmap
)data
;
7330 if (TREE_CODE (from
) != SSA_NAME
)
7333 bitmap_set_bit (release_names
, SSA_NAME_VERSION (from
));
7337 /* Return LOOP_DIST_ALIAS call if present in BB. */
7340 find_loop_dist_alias (basic_block bb
)
7342 gimple
*g
= last_stmt (bb
);
7343 if (g
== NULL
|| gimple_code (g
) != GIMPLE_COND
)
7346 gimple_stmt_iterator gsi
= gsi_for_stmt (g
);
7348 if (gsi_end_p (gsi
))
7352 if (gimple_call_internal_p (g
, IFN_LOOP_DIST_ALIAS
))
7357 /* Fold loop internal call G like IFN_LOOP_VECTORIZED/IFN_LOOP_DIST_ALIAS
7358 to VALUE and update any immediate uses of it's LHS. */
7361 fold_loop_internal_call (gimple
*g
, tree value
)
7363 tree lhs
= gimple_call_lhs (g
);
7364 use_operand_p use_p
;
7365 imm_use_iterator iter
;
7367 gimple_stmt_iterator gsi
= gsi_for_stmt (g
);
7369 update_call_from_tree (&gsi
, value
);
7370 FOR_EACH_IMM_USE_STMT (use_stmt
, iter
, lhs
)
7372 FOR_EACH_IMM_USE_ON_STMT (use_p
, iter
)
7373 SET_USE (use_p
, value
);
7374 update_stmt (use_stmt
);
7378 /* Move a single-entry, single-exit region delimited by ENTRY_BB and
7379 EXIT_BB to function DEST_CFUN. The whole region is replaced by a
7380 single basic block in the original CFG and the new basic block is
7381 returned. DEST_CFUN must not have a CFG yet.
7383 Note that the region need not be a pure SESE region. Blocks inside
7384 the region may contain calls to abort/exit. The only restriction
7385 is that ENTRY_BB should be the only entry point and it must
7388 Change TREE_BLOCK of all statements in ORIG_BLOCK to the new
7389 functions outermost BLOCK, move all subblocks of ORIG_BLOCK
7390 to the new function.
7392 All local variables referenced in the region are assumed to be in
7393 the corresponding BLOCK_VARS and unexpanded variable lists
7394 associated with DEST_CFUN.
7396 TODO: investigate whether we can reuse gimple_duplicate_sese_region to
7397 reimplement move_sese_region_to_fn by duplicating the region rather than
7401 move_sese_region_to_fn (struct function
*dest_cfun
, basic_block entry_bb
,
7402 basic_block exit_bb
, tree orig_block
)
7404 vec
<basic_block
> bbs
, dom_bbs
;
7405 basic_block dom_entry
= get_immediate_dominator (CDI_DOMINATORS
, entry_bb
);
7406 basic_block after
, bb
, *entry_pred
, *exit_succ
, abb
;
7407 struct function
*saved_cfun
= cfun
;
7408 int *entry_flag
, *exit_flag
;
7409 profile_probability
*entry_prob
, *exit_prob
;
7410 unsigned i
, num_entry_edges
, num_exit_edges
, num_nodes
;
7413 htab_t new_label_map
;
7414 hash_map
<void *, void *> *eh_map
;
7415 struct loop
*loop
= entry_bb
->loop_father
;
7416 struct loop
*loop0
= get_loop (saved_cfun
, 0);
7417 struct move_stmt_d d
;
7419 /* If ENTRY does not strictly dominate EXIT, this cannot be an SESE
7421 gcc_assert (entry_bb
!= exit_bb
7423 || dominated_by_p (CDI_DOMINATORS
, exit_bb
, entry_bb
)));
7425 /* Collect all the blocks in the region. Manually add ENTRY_BB
7426 because it won't be added by dfs_enumerate_from. */
7428 bbs
.safe_push (entry_bb
);
7429 gather_blocks_in_sese_region (entry_bb
, exit_bb
, &bbs
);
7432 verify_sese (entry_bb
, exit_bb
, &bbs
);
7434 /* The blocks that used to be dominated by something in BBS will now be
7435 dominated by the new block. */
7436 dom_bbs
= get_dominated_by_region (CDI_DOMINATORS
,
7440 /* Detach ENTRY_BB and EXIT_BB from CFUN->CFG. We need to remember
7441 the predecessor edges to ENTRY_BB and the successor edges to
7442 EXIT_BB so that we can re-attach them to the new basic block that
7443 will replace the region. */
7444 num_entry_edges
= EDGE_COUNT (entry_bb
->preds
);
7445 entry_pred
= XNEWVEC (basic_block
, num_entry_edges
);
7446 entry_flag
= XNEWVEC (int, num_entry_edges
);
7447 entry_prob
= XNEWVEC (profile_probability
, num_entry_edges
);
7449 for (ei
= ei_start (entry_bb
->preds
); (e
= ei_safe_edge (ei
)) != NULL
;)
7451 entry_prob
[i
] = e
->probability
;
7452 entry_flag
[i
] = e
->flags
;
7453 entry_pred
[i
++] = e
->src
;
7459 num_exit_edges
= EDGE_COUNT (exit_bb
->succs
);
7460 exit_succ
= XNEWVEC (basic_block
, num_exit_edges
);
7461 exit_flag
= XNEWVEC (int, num_exit_edges
);
7462 exit_prob
= XNEWVEC (profile_probability
, num_exit_edges
);
7464 for (ei
= ei_start (exit_bb
->succs
); (e
= ei_safe_edge (ei
)) != NULL
;)
7466 exit_prob
[i
] = e
->probability
;
7467 exit_flag
[i
] = e
->flags
;
7468 exit_succ
[i
++] = e
->dest
;
7480 /* Switch context to the child function to initialize DEST_FN's CFG. */
7481 gcc_assert (dest_cfun
->cfg
== NULL
);
7482 push_cfun (dest_cfun
);
7484 init_empty_tree_cfg ();
7486 /* Initialize EH information for the new function. */
7488 new_label_map
= NULL
;
7491 eh_region region
= NULL
;
7493 FOR_EACH_VEC_ELT (bbs
, i
, bb
)
7494 region
= find_outermost_region_in_block (saved_cfun
, bb
, region
);
7496 init_eh_for_function ();
7499 new_label_map
= htab_create (17, tree_map_hash
, tree_map_eq
, free
);
7500 eh_map
= duplicate_eh_regions (saved_cfun
, region
, 0,
7501 new_label_mapper
, new_label_map
);
7505 /* Initialize an empty loop tree. */
7506 struct loops
*loops
= ggc_cleared_alloc
<struct loops
> ();
7507 init_loops_structure (dest_cfun
, loops
, 1);
7508 loops
->state
= LOOPS_MAY_HAVE_MULTIPLE_LATCHES
;
7509 set_loops_for_fn (dest_cfun
, loops
);
7511 vec
<loop_p
, va_gc
> *larray
= get_loops (saved_cfun
)->copy ();
7513 /* Move the outlined loop tree part. */
7514 num_nodes
= bbs
.length ();
7515 FOR_EACH_VEC_ELT (bbs
, i
, bb
)
7517 if (bb
->loop_father
->header
== bb
)
7519 struct loop
*this_loop
= bb
->loop_father
;
7520 struct loop
*outer
= loop_outer (this_loop
);
7522 /* If the SESE region contains some bbs ending with
7523 a noreturn call, those are considered to belong
7524 to the outermost loop in saved_cfun, rather than
7525 the entry_bb's loop_father. */
7529 num_nodes
-= this_loop
->num_nodes
;
7530 flow_loop_tree_node_remove (bb
->loop_father
);
7531 flow_loop_tree_node_add (get_loop (dest_cfun
, 0), this_loop
);
7532 fixup_loop_arrays_after_move (saved_cfun
, cfun
, this_loop
);
7535 else if (bb
->loop_father
== loop0
&& loop0
!= loop
)
7538 /* Remove loop exits from the outlined region. */
7539 if (loops_for_fn (saved_cfun
)->exits
)
7540 FOR_EACH_EDGE (e
, ei
, bb
->succs
)
7542 struct loops
*l
= loops_for_fn (saved_cfun
);
7544 = l
->exits
->find_slot_with_hash (e
, htab_hash_pointer (e
),
7547 l
->exits
->clear_slot (slot
);
7551 /* Adjust the number of blocks in the tree root of the outlined part. */
7552 get_loop (dest_cfun
, 0)->num_nodes
= bbs
.length () + 2;
7554 /* Setup a mapping to be used by move_block_to_fn. */
7555 loop
->aux
= current_loops
->tree_root
;
7556 loop0
->aux
= current_loops
->tree_root
;
7558 /* Fix up orig_loop_num. If the block referenced in it has been moved
7559 to dest_cfun, update orig_loop_num field, otherwise clear it. */
7561 signed char *moved_orig_loop_num
= NULL
;
7562 FOR_EACH_LOOP_FN (dest_cfun
, dloop
, 0)
7563 if (dloop
->orig_loop_num
)
7565 if (moved_orig_loop_num
== NULL
)
7567 = XCNEWVEC (signed char, vec_safe_length (larray
));
7568 if ((*larray
)[dloop
->orig_loop_num
] != NULL
7569 && get_loop (saved_cfun
, dloop
->orig_loop_num
) == NULL
)
7571 if (moved_orig_loop_num
[dloop
->orig_loop_num
] >= 0
7572 && moved_orig_loop_num
[dloop
->orig_loop_num
] < 2)
7573 moved_orig_loop_num
[dloop
->orig_loop_num
]++;
7574 dloop
->orig_loop_num
= (*larray
)[dloop
->orig_loop_num
]->num
;
7578 moved_orig_loop_num
[dloop
->orig_loop_num
] = -1;
7579 dloop
->orig_loop_num
= 0;
7584 if (moved_orig_loop_num
)
7586 FOR_EACH_VEC_ELT (bbs
, i
, bb
)
7588 gimple
*g
= find_loop_dist_alias (bb
);
7592 int orig_loop_num
= tree_to_shwi (gimple_call_arg (g
, 0));
7593 gcc_assert (orig_loop_num
7594 && (unsigned) orig_loop_num
< vec_safe_length (larray
));
7595 if (moved_orig_loop_num
[orig_loop_num
] == 2)
7597 /* If we have moved both loops with this orig_loop_num into
7598 dest_cfun and the LOOP_DIST_ALIAS call is being moved there
7599 too, update the first argument. */
7600 gcc_assert ((*larray
)[dloop
->orig_loop_num
] != NULL
7601 && (get_loop (saved_cfun
, dloop
->orig_loop_num
)
7603 tree t
= build_int_cst (integer_type_node
,
7604 (*larray
)[dloop
->orig_loop_num
]->num
);
7605 gimple_call_set_arg (g
, 0, t
);
7607 /* Make sure the following loop will not update it. */
7608 moved_orig_loop_num
[orig_loop_num
] = 0;
7611 /* Otherwise at least one of the loops stayed in saved_cfun.
7612 Remove the LOOP_DIST_ALIAS call. */
7613 fold_loop_internal_call (g
, gimple_call_arg (g
, 1));
7615 FOR_EACH_BB_FN (bb
, saved_cfun
)
7617 gimple
*g
= find_loop_dist_alias (bb
);
7620 int orig_loop_num
= tree_to_shwi (gimple_call_arg (g
, 0));
7621 gcc_assert (orig_loop_num
7622 && (unsigned) orig_loop_num
< vec_safe_length (larray
));
7623 if (moved_orig_loop_num
[orig_loop_num
])
7624 /* LOOP_DIST_ALIAS call remained in saved_cfun, if at least one
7625 of the corresponding loops was moved, remove it. */
7626 fold_loop_internal_call (g
, gimple_call_arg (g
, 1));
7628 XDELETEVEC (moved_orig_loop_num
);
7632 /* Move blocks from BBS into DEST_CFUN. */
7633 gcc_assert (bbs
.length () >= 2);
7634 after
= dest_cfun
->cfg
->x_entry_block_ptr
;
7635 hash_map
<tree
, tree
> vars_map
;
7637 memset (&d
, 0, sizeof (d
));
7638 d
.orig_block
= orig_block
;
7639 d
.new_block
= DECL_INITIAL (dest_cfun
->decl
);
7640 d
.from_context
= cfun
->decl
;
7641 d
.to_context
= dest_cfun
->decl
;
7642 d
.vars_map
= &vars_map
;
7643 d
.new_label_map
= new_label_map
;
7645 d
.remap_decls_p
= true;
7647 if (gimple_in_ssa_p (cfun
))
7648 for (tree arg
= DECL_ARGUMENTS (d
.to_context
); arg
; arg
= DECL_CHAIN (arg
))
7650 tree narg
= make_ssa_name_fn (dest_cfun
, arg
, gimple_build_nop ());
7651 set_ssa_default_def (dest_cfun
, arg
, narg
);
7652 vars_map
.put (arg
, narg
);
7655 FOR_EACH_VEC_ELT (bbs
, i
, bb
)
7657 /* No need to update edge counts on the last block. It has
7658 already been updated earlier when we detached the region from
7659 the original CFG. */
7660 move_block_to_fn (dest_cfun
, bb
, after
, bb
!= exit_bb
, &d
);
7666 /* Loop sizes are no longer correct, fix them up. */
7667 loop
->num_nodes
-= num_nodes
;
7668 for (struct loop
*outer
= loop_outer (loop
);
7669 outer
; outer
= loop_outer (outer
))
7670 outer
->num_nodes
-= num_nodes
;
7671 loop0
->num_nodes
-= bbs
.length () - num_nodes
;
7673 if (saved_cfun
->has_simduid_loops
|| saved_cfun
->has_force_vectorize_loops
)
7676 for (i
= 0; vec_safe_iterate (loops
->larray
, i
, &aloop
); i
++)
7681 replace_by_duplicate_decl (&aloop
->simduid
, d
.vars_map
,
7683 dest_cfun
->has_simduid_loops
= true;
7685 if (aloop
->force_vectorize
)
7686 dest_cfun
->has_force_vectorize_loops
= true;
7690 /* Rewire BLOCK_SUBBLOCKS of orig_block. */
7694 gcc_assert (BLOCK_SUBBLOCKS (DECL_INITIAL (dest_cfun
->decl
))
7696 BLOCK_SUBBLOCKS (DECL_INITIAL (dest_cfun
->decl
))
7697 = BLOCK_SUBBLOCKS (orig_block
);
7698 for (block
= BLOCK_SUBBLOCKS (orig_block
);
7699 block
; block
= BLOCK_CHAIN (block
))
7700 BLOCK_SUPERCONTEXT (block
) = DECL_INITIAL (dest_cfun
->decl
);
7701 BLOCK_SUBBLOCKS (orig_block
) = NULL_TREE
;
7704 replace_block_vars_by_duplicates (DECL_INITIAL (dest_cfun
->decl
),
7705 &vars_map
, dest_cfun
->decl
);
7708 htab_delete (new_label_map
);
7712 if (gimple_in_ssa_p (cfun
))
7714 /* We need to release ssa-names in a defined order, so first find them,
7715 and then iterate in ascending version order. */
7716 bitmap release_names
= BITMAP_ALLOC (NULL
);
7717 vars_map
.traverse
<void *, gather_ssa_name_hash_map_from
> (release_names
);
7720 EXECUTE_IF_SET_IN_BITMAP (release_names
, 0, i
, bi
)
7721 release_ssa_name (ssa_name (i
));
7722 BITMAP_FREE (release_names
);
7725 /* Rewire the entry and exit blocks. The successor to the entry
7726 block turns into the successor of DEST_FN's ENTRY_BLOCK_PTR in
7727 the child function. Similarly, the predecessor of DEST_FN's
7728 EXIT_BLOCK_PTR turns into the predecessor of EXIT_BLOCK_PTR. We
7729 need to switch CFUN between DEST_CFUN and SAVED_CFUN so that the
7730 various CFG manipulation function get to the right CFG.
7732 FIXME, this is silly. The CFG ought to become a parameter to
7734 push_cfun (dest_cfun
);
7735 ENTRY_BLOCK_PTR_FOR_FN (cfun
)->count
= entry_bb
->count
;
7736 make_single_succ_edge (ENTRY_BLOCK_PTR_FOR_FN (cfun
), entry_bb
, EDGE_FALLTHRU
);
7739 make_single_succ_edge (exit_bb
, EXIT_BLOCK_PTR_FOR_FN (cfun
), 0);
7740 EXIT_BLOCK_PTR_FOR_FN (cfun
)->count
= exit_bb
->count
;
7743 EXIT_BLOCK_PTR_FOR_FN (cfun
)->count
= profile_count::zero ();
7746 /* Back in the original function, the SESE region has disappeared,
7747 create a new basic block in its place. */
7748 bb
= create_empty_bb (entry_pred
[0]);
7750 add_bb_to_loop (bb
, loop
);
7751 for (i
= 0; i
< num_entry_edges
; i
++)
7753 e
= make_edge (entry_pred
[i
], bb
, entry_flag
[i
]);
7754 e
->probability
= entry_prob
[i
];
7757 for (i
= 0; i
< num_exit_edges
; i
++)
7759 e
= make_edge (bb
, exit_succ
[i
], exit_flag
[i
]);
7760 e
->probability
= exit_prob
[i
];
7763 set_immediate_dominator (CDI_DOMINATORS
, bb
, dom_entry
);
7764 FOR_EACH_VEC_ELT (dom_bbs
, i
, abb
)
7765 set_immediate_dominator (CDI_DOMINATORS
, abb
, bb
);
7782 /* Dump default def DEF to file FILE using FLAGS and indentation
7786 dump_default_def (FILE *file
, tree def
, int spc
, dump_flags_t flags
)
7788 for (int i
= 0; i
< spc
; ++i
)
7789 fprintf (file
, " ");
7790 dump_ssaname_info_to_file (file
, def
, spc
);
7792 print_generic_expr (file
, TREE_TYPE (def
), flags
);
7793 fprintf (file
, " ");
7794 print_generic_expr (file
, def
, flags
);
7795 fprintf (file
, " = ");
7796 print_generic_expr (file
, SSA_NAME_VAR (def
), flags
);
7797 fprintf (file
, ";\n");
7800 /* Print no_sanitize attribute to FILE for a given attribute VALUE. */
7803 print_no_sanitize_attr_value (FILE *file
, tree value
)
7805 unsigned int flags
= tree_to_uhwi (value
);
7807 for (int i
= 0; sanitizer_opts
[i
].name
!= NULL
; ++i
)
7809 if ((sanitizer_opts
[i
].flag
& flags
) == sanitizer_opts
[i
].flag
)
7812 fprintf (file
, " | ");
7813 fprintf (file
, "%s", sanitizer_opts
[i
].name
);
7819 /* Dump FUNCTION_DECL FN to file FILE using FLAGS (see TDF_* in dumpfile.h)
7823 dump_function_to_file (tree fndecl
, FILE *file
, dump_flags_t flags
)
7825 tree arg
, var
, old_current_fndecl
= current_function_decl
;
7826 struct function
*dsf
;
7827 bool ignore_topmost_bind
= false, any_var
= false;
7830 bool tmclone
= (TREE_CODE (fndecl
) == FUNCTION_DECL
7831 && decl_is_tm_clone (fndecl
));
7832 struct function
*fun
= DECL_STRUCT_FUNCTION (fndecl
);
7834 if (DECL_ATTRIBUTES (fndecl
) != NULL_TREE
)
7836 fprintf (file
, "__attribute__((");
7840 for (chain
= DECL_ATTRIBUTES (fndecl
); chain
;
7841 first
= false, chain
= TREE_CHAIN (chain
))
7844 fprintf (file
, ", ");
7846 tree name
= get_attribute_name (chain
);
7847 print_generic_expr (file
, name
, dump_flags
);
7848 if (TREE_VALUE (chain
) != NULL_TREE
)
7850 fprintf (file
, " (");
7852 if (strstr (IDENTIFIER_POINTER (name
), "no_sanitize"))
7853 print_no_sanitize_attr_value (file
, TREE_VALUE (chain
));
7855 print_generic_expr (file
, TREE_VALUE (chain
), dump_flags
);
7856 fprintf (file
, ")");
7860 fprintf (file
, "))\n");
7863 current_function_decl
= fndecl
;
7864 if (flags
& TDF_GIMPLE
)
7866 print_generic_expr (file
, TREE_TYPE (TREE_TYPE (fndecl
)),
7867 dump_flags
| TDF_SLIM
);
7868 fprintf (file
, " __GIMPLE ()\n%s (", function_name (fun
));
7871 fprintf (file
, "%s %s(", function_name (fun
), tmclone
? "[tm-clone] " : "");
7873 arg
= DECL_ARGUMENTS (fndecl
);
7876 print_generic_expr (file
, TREE_TYPE (arg
), dump_flags
);
7877 fprintf (file
, " ");
7878 print_generic_expr (file
, arg
, dump_flags
);
7879 if (DECL_CHAIN (arg
))
7880 fprintf (file
, ", ");
7881 arg
= DECL_CHAIN (arg
);
7883 fprintf (file
, ")\n");
7885 dsf
= DECL_STRUCT_FUNCTION (fndecl
);
7886 if (dsf
&& (flags
& TDF_EH
))
7887 dump_eh_tree (file
, dsf
);
7889 if (flags
& TDF_RAW
&& !gimple_has_body_p (fndecl
))
7891 dump_node (fndecl
, TDF_SLIM
| flags
, file
);
7892 current_function_decl
= old_current_fndecl
;
7896 /* When GIMPLE is lowered, the variables are no longer available in
7897 BIND_EXPRs, so display them separately. */
7898 if (fun
&& fun
->decl
== fndecl
&& (fun
->curr_properties
& PROP_gimple_lcf
))
7901 ignore_topmost_bind
= true;
7903 fprintf (file
, "{\n");
7904 if (gimple_in_ssa_p (fun
)
7905 && (flags
& TDF_ALIAS
))
7907 for (arg
= DECL_ARGUMENTS (fndecl
); arg
!= NULL
;
7908 arg
= DECL_CHAIN (arg
))
7910 tree def
= ssa_default_def (fun
, arg
);
7912 dump_default_def (file
, def
, 2, flags
);
7915 tree res
= DECL_RESULT (fun
->decl
);
7916 if (res
!= NULL_TREE
7917 && DECL_BY_REFERENCE (res
))
7919 tree def
= ssa_default_def (fun
, res
);
7921 dump_default_def (file
, def
, 2, flags
);
7924 tree static_chain
= fun
->static_chain_decl
;
7925 if (static_chain
!= NULL_TREE
)
7927 tree def
= ssa_default_def (fun
, static_chain
);
7929 dump_default_def (file
, def
, 2, flags
);
7933 if (!vec_safe_is_empty (fun
->local_decls
))
7934 FOR_EACH_LOCAL_DECL (fun
, ix
, var
)
7936 print_generic_decl (file
, var
, flags
);
7937 fprintf (file
, "\n");
7944 if (gimple_in_ssa_p (cfun
))
7945 FOR_EACH_SSA_NAME (ix
, name
, cfun
)
7947 if (!SSA_NAME_VAR (name
))
7949 fprintf (file
, " ");
7950 print_generic_expr (file
, TREE_TYPE (name
), flags
);
7951 fprintf (file
, " ");
7952 print_generic_expr (file
, name
, flags
);
7953 fprintf (file
, ";\n");
7960 if (fun
&& fun
->decl
== fndecl
7962 && basic_block_info_for_fn (fun
))
7964 /* If the CFG has been built, emit a CFG-based dump. */
7965 if (!ignore_topmost_bind
)
7966 fprintf (file
, "{\n");
7968 if (any_var
&& n_basic_blocks_for_fn (fun
))
7969 fprintf (file
, "\n");
7971 FOR_EACH_BB_FN (bb
, fun
)
7972 dump_bb (file
, bb
, 2, flags
);
7974 fprintf (file
, "}\n");
7976 else if (fun
->curr_properties
& PROP_gimple_any
)
7978 /* The function is now in GIMPLE form but the CFG has not been
7979 built yet. Emit the single sequence of GIMPLE statements
7980 that make up its body. */
7981 gimple_seq body
= gimple_body (fndecl
);
7983 if (gimple_seq_first_stmt (body
)
7984 && gimple_seq_first_stmt (body
) == gimple_seq_last_stmt (body
)
7985 && gimple_code (gimple_seq_first_stmt (body
)) == GIMPLE_BIND
)
7986 print_gimple_seq (file
, body
, 0, flags
);
7989 if (!ignore_topmost_bind
)
7990 fprintf (file
, "{\n");
7993 fprintf (file
, "\n");
7995 print_gimple_seq (file
, body
, 2, flags
);
7996 fprintf (file
, "}\n");
8003 /* Make a tree based dump. */
8004 chain
= DECL_SAVED_TREE (fndecl
);
8005 if (chain
&& TREE_CODE (chain
) == BIND_EXPR
)
8007 if (ignore_topmost_bind
)
8009 chain
= BIND_EXPR_BODY (chain
);
8017 if (!ignore_topmost_bind
)
8019 fprintf (file
, "{\n");
8020 /* No topmost bind, pretend it's ignored for later. */
8021 ignore_topmost_bind
= true;
8027 fprintf (file
, "\n");
8029 print_generic_stmt_indented (file
, chain
, flags
, indent
);
8030 if (ignore_topmost_bind
)
8031 fprintf (file
, "}\n");
8034 if (flags
& TDF_ENUMERATE_LOCALS
)
8035 dump_enumerated_decls (file
, flags
);
8036 fprintf (file
, "\n\n");
8038 current_function_decl
= old_current_fndecl
;
8041 /* Dump FUNCTION_DECL FN to stderr using FLAGS (see TDF_* in tree.h) */
8044 debug_function (tree fn
, dump_flags_t flags
)
8046 dump_function_to_file (fn
, stderr
, flags
);
8050 /* Print on FILE the indexes for the predecessors of basic_block BB. */
8053 print_pred_bbs (FILE *file
, basic_block bb
)
8058 FOR_EACH_EDGE (e
, ei
, bb
->preds
)
8059 fprintf (file
, "bb_%d ", e
->src
->index
);
8063 /* Print on FILE the indexes for the successors of basic_block BB. */
8066 print_succ_bbs (FILE *file
, basic_block bb
)
8071 FOR_EACH_EDGE (e
, ei
, bb
->succs
)
8072 fprintf (file
, "bb_%d ", e
->dest
->index
);
8075 /* Print to FILE the basic block BB following the VERBOSITY level. */
8078 print_loops_bb (FILE *file
, basic_block bb
, int indent
, int verbosity
)
8080 char *s_indent
= (char *) alloca ((size_t) indent
+ 1);
8081 memset ((void *) s_indent
, ' ', (size_t) indent
);
8082 s_indent
[indent
] = '\0';
8084 /* Print basic_block's header. */
8087 fprintf (file
, "%s bb_%d (preds = {", s_indent
, bb
->index
);
8088 print_pred_bbs (file
, bb
);
8089 fprintf (file
, "}, succs = {");
8090 print_succ_bbs (file
, bb
);
8091 fprintf (file
, "})\n");
8094 /* Print basic_block's body. */
8097 fprintf (file
, "%s {\n", s_indent
);
8098 dump_bb (file
, bb
, indent
+ 4, TDF_VOPS
|TDF_MEMSYMS
);
8099 fprintf (file
, "%s }\n", s_indent
);
8103 static void print_loop_and_siblings (FILE *, struct loop
*, int, int);
8105 /* Pretty print LOOP on FILE, indented INDENT spaces. Following
8106 VERBOSITY level this outputs the contents of the loop, or just its
8110 print_loop (FILE *file
, struct loop
*loop
, int indent
, int verbosity
)
8118 s_indent
= (char *) alloca ((size_t) indent
+ 1);
8119 memset ((void *) s_indent
, ' ', (size_t) indent
);
8120 s_indent
[indent
] = '\0';
8122 /* Print loop's header. */
8123 fprintf (file
, "%sloop_%d (", s_indent
, loop
->num
);
8125 fprintf (file
, "header = %d", loop
->header
->index
);
8128 fprintf (file
, "deleted)\n");
8132 fprintf (file
, ", latch = %d", loop
->latch
->index
);
8134 fprintf (file
, ", multiple latches");
8135 fprintf (file
, ", niter = ");
8136 print_generic_expr (file
, loop
->nb_iterations
);
8138 if (loop
->any_upper_bound
)
8140 fprintf (file
, ", upper_bound = ");
8141 print_decu (loop
->nb_iterations_upper_bound
, file
);
8143 if (loop
->any_likely_upper_bound
)
8145 fprintf (file
, ", likely_upper_bound = ");
8146 print_decu (loop
->nb_iterations_likely_upper_bound
, file
);
8149 if (loop
->any_estimate
)
8151 fprintf (file
, ", estimate = ");
8152 print_decu (loop
->nb_iterations_estimate
, file
);
8155 fprintf (file
, ", unroll = %d", loop
->unroll
);
8156 fprintf (file
, ")\n");
8158 /* Print loop's body. */
8161 fprintf (file
, "%s{\n", s_indent
);
8162 FOR_EACH_BB_FN (bb
, cfun
)
8163 if (bb
->loop_father
== loop
)
8164 print_loops_bb (file
, bb
, indent
, verbosity
);
8166 print_loop_and_siblings (file
, loop
->inner
, indent
+ 2, verbosity
);
8167 fprintf (file
, "%s}\n", s_indent
);
8171 /* Print the LOOP and its sibling loops on FILE, indented INDENT
8172 spaces. Following VERBOSITY level this outputs the contents of the
8173 loop, or just its structure. */
8176 print_loop_and_siblings (FILE *file
, struct loop
*loop
, int indent
,
8182 print_loop (file
, loop
, indent
, verbosity
);
8183 print_loop_and_siblings (file
, loop
->next
, indent
, verbosity
);
8186 /* Follow a CFG edge from the entry point of the program, and on entry
8187 of a loop, pretty print the loop structure on FILE. */
8190 print_loops (FILE *file
, int verbosity
)
8194 bb
= ENTRY_BLOCK_PTR_FOR_FN (cfun
);
8195 fprintf (file
, "\nLoops in function: %s\n", current_function_name ());
8196 if (bb
&& bb
->loop_father
)
8197 print_loop_and_siblings (file
, bb
->loop_father
, 0, verbosity
);
8203 debug (struct loop
&ref
)
8205 print_loop (stderr
, &ref
, 0, /*verbosity*/0);
8209 debug (struct loop
*ptr
)
8214 fprintf (stderr
, "<nil>\n");
8217 /* Dump a loop verbosely. */
8220 debug_verbose (struct loop
&ref
)
8222 print_loop (stderr
, &ref
, 0, /*verbosity*/3);
8226 debug_verbose (struct loop
*ptr
)
8231 fprintf (stderr
, "<nil>\n");
8235 /* Debugging loops structure at tree level, at some VERBOSITY level. */
8238 debug_loops (int verbosity
)
8240 print_loops (stderr
, verbosity
);
8243 /* Print on stderr the code of LOOP, at some VERBOSITY level. */
8246 debug_loop (struct loop
*loop
, int verbosity
)
8248 print_loop (stderr
, loop
, 0, verbosity
);
8251 /* Print on stderr the code of loop number NUM, at some VERBOSITY
8255 debug_loop_num (unsigned num
, int verbosity
)
8257 debug_loop (get_loop (cfun
, num
), verbosity
);
8260 /* Return true if BB ends with a call, possibly followed by some
8261 instructions that must stay with the call. Return false,
8265 gimple_block_ends_with_call_p (basic_block bb
)
8267 gimple_stmt_iterator gsi
= gsi_last_nondebug_bb (bb
);
8268 return !gsi_end_p (gsi
) && is_gimple_call (gsi_stmt (gsi
));
8272 /* Return true if BB ends with a conditional branch. Return false,
8276 gimple_block_ends_with_condjump_p (const_basic_block bb
)
8278 gimple
*stmt
= last_stmt (CONST_CAST_BB (bb
));
8279 return (stmt
&& gimple_code (stmt
) == GIMPLE_COND
);
8283 /* Return true if statement T may terminate execution of BB in ways not
8284 explicitly represtented in the CFG. */
8287 stmt_can_terminate_bb_p (gimple
*t
)
8289 tree fndecl
= NULL_TREE
;
8292 /* Eh exception not handled internally terminates execution of the whole
8294 if (stmt_can_throw_external (cfun
, t
))
8297 /* NORETURN and LONGJMP calls already have an edge to exit.
8298 CONST and PURE calls do not need one.
8299 We don't currently check for CONST and PURE here, although
8300 it would be a good idea, because those attributes are
8301 figured out from the RTL in mark_constant_function, and
8302 the counter incrementation code from -fprofile-arcs
8303 leads to different results from -fbranch-probabilities. */
8304 if (is_gimple_call (t
))
8306 fndecl
= gimple_call_fndecl (t
);
8307 call_flags
= gimple_call_flags (t
);
8310 if (is_gimple_call (t
)
8312 && fndecl_built_in_p (fndecl
)
8313 && (call_flags
& ECF_NOTHROW
)
8314 && !(call_flags
& ECF_RETURNS_TWICE
)
8315 /* fork() doesn't really return twice, but the effect of
8316 wrapping it in __gcov_fork() which calls __gcov_flush()
8317 and clears the counters before forking has the same
8318 effect as returning twice. Force a fake edge. */
8319 && !fndecl_built_in_p (fndecl
, BUILT_IN_FORK
))
8322 if (is_gimple_call (t
))
8328 if (call_flags
& (ECF_PURE
| ECF_CONST
)
8329 && !(call_flags
& ECF_LOOPING_CONST_OR_PURE
))
8332 /* Function call may do longjmp, terminate program or do other things.
8333 Special case noreturn that have non-abnormal edges out as in this case
8334 the fact is sufficiently represented by lack of edges out of T. */
8335 if (!(call_flags
& ECF_NORETURN
))
8339 FOR_EACH_EDGE (e
, ei
, bb
->succs
)
8340 if ((e
->flags
& EDGE_FAKE
) == 0)
8344 if (gasm
*asm_stmt
= dyn_cast
<gasm
*> (t
))
8345 if (gimple_asm_volatile_p (asm_stmt
) || gimple_asm_input_p (asm_stmt
))
8352 /* Add fake edges to the function exit for any non constant and non
8353 noreturn calls (or noreturn calls with EH/abnormal edges),
8354 volatile inline assembly in the bitmap of blocks specified by BLOCKS
8355 or to the whole CFG if BLOCKS is zero. Return the number of blocks
8358 The goal is to expose cases in which entering a basic block does
8359 not imply that all subsequent instructions must be executed. */
8362 gimple_flow_call_edges_add (sbitmap blocks
)
8365 int blocks_split
= 0;
8366 int last_bb
= last_basic_block_for_fn (cfun
);
8367 bool check_last_block
= false;
8369 if (n_basic_blocks_for_fn (cfun
) == NUM_FIXED_BLOCKS
)
8373 check_last_block
= true;
8375 check_last_block
= bitmap_bit_p (blocks
,
8376 EXIT_BLOCK_PTR_FOR_FN (cfun
)->prev_bb
->index
);
8378 /* In the last basic block, before epilogue generation, there will be
8379 a fallthru edge to EXIT. Special care is required if the last insn
8380 of the last basic block is a call because make_edge folds duplicate
8381 edges, which would result in the fallthru edge also being marked
8382 fake, which would result in the fallthru edge being removed by
8383 remove_fake_edges, which would result in an invalid CFG.
8385 Moreover, we can't elide the outgoing fake edge, since the block
8386 profiler needs to take this into account in order to solve the minimal
8387 spanning tree in the case that the call doesn't return.
8389 Handle this by adding a dummy instruction in a new last basic block. */
8390 if (check_last_block
)
8392 basic_block bb
= EXIT_BLOCK_PTR_FOR_FN (cfun
)->prev_bb
;
8393 gimple_stmt_iterator gsi
= gsi_last_nondebug_bb (bb
);
8396 if (!gsi_end_p (gsi
))
8399 if (t
&& stmt_can_terminate_bb_p (t
))
8403 e
= find_edge (bb
, EXIT_BLOCK_PTR_FOR_FN (cfun
));
8406 gsi_insert_on_edge (e
, gimple_build_nop ());
8407 gsi_commit_edge_inserts ();
8412 /* Now add fake edges to the function exit for any non constant
8413 calls since there is no way that we can determine if they will
8415 for (i
= 0; i
< last_bb
; i
++)
8417 basic_block bb
= BASIC_BLOCK_FOR_FN (cfun
, i
);
8418 gimple_stmt_iterator gsi
;
8419 gimple
*stmt
, *last_stmt
;
8424 if (blocks
&& !bitmap_bit_p (blocks
, i
))
8427 gsi
= gsi_last_nondebug_bb (bb
);
8428 if (!gsi_end_p (gsi
))
8430 last_stmt
= gsi_stmt (gsi
);
8433 stmt
= gsi_stmt (gsi
);
8434 if (stmt_can_terminate_bb_p (stmt
))
8438 /* The handling above of the final block before the
8439 epilogue should be enough to verify that there is
8440 no edge to the exit block in CFG already.
8441 Calling make_edge in such case would cause us to
8442 mark that edge as fake and remove it later. */
8443 if (flag_checking
&& stmt
== last_stmt
)
8445 e
= find_edge (bb
, EXIT_BLOCK_PTR_FOR_FN (cfun
));
8446 gcc_assert (e
== NULL
);
8449 /* Note that the following may create a new basic block
8450 and renumber the existing basic blocks. */
8451 if (stmt
!= last_stmt
)
8453 e
= split_block (bb
, stmt
);
8457 e
= make_edge (bb
, EXIT_BLOCK_PTR_FOR_FN (cfun
), EDGE_FAKE
);
8458 e
->probability
= profile_probability::guessed_never ();
8462 while (!gsi_end_p (gsi
));
8467 checking_verify_flow_info ();
8469 return blocks_split
;
8472 /* Removes edge E and all the blocks dominated by it, and updates dominance
8473 information. The IL in E->src needs to be updated separately.
8474 If dominance info is not available, only the edge E is removed.*/
8477 remove_edge_and_dominated_blocks (edge e
)
8479 vec
<basic_block
> bbs_to_remove
= vNULL
;
8480 vec
<basic_block
> bbs_to_fix_dom
= vNULL
;
8483 bool none_removed
= false;
8485 basic_block bb
, dbb
;
8488 /* If we are removing a path inside a non-root loop that may change
8489 loop ownership of blocks or remove loops. Mark loops for fixup. */
8491 && loop_outer (e
->src
->loop_father
) != NULL
8492 && e
->src
->loop_father
== e
->dest
->loop_father
)
8493 loops_state_set (LOOPS_NEED_FIXUP
);
8495 if (!dom_info_available_p (CDI_DOMINATORS
))
8501 /* No updating is needed for edges to exit. */
8502 if (e
->dest
== EXIT_BLOCK_PTR_FOR_FN (cfun
))
8504 if (cfgcleanup_altered_bbs
)
8505 bitmap_set_bit (cfgcleanup_altered_bbs
, e
->src
->index
);
8510 /* First, we find the basic blocks to remove. If E->dest has a predecessor
8511 that is not dominated by E->dest, then this set is empty. Otherwise,
8512 all the basic blocks dominated by E->dest are removed.
8514 Also, to DF_IDOM we store the immediate dominators of the blocks in
8515 the dominance frontier of E (i.e., of the successors of the
8516 removed blocks, if there are any, and of E->dest otherwise). */
8517 FOR_EACH_EDGE (f
, ei
, e
->dest
->preds
)
8522 if (!dominated_by_p (CDI_DOMINATORS
, f
->src
, e
->dest
))
8524 none_removed
= true;
8529 auto_bitmap df
, df_idom
;
8531 bitmap_set_bit (df_idom
,
8532 get_immediate_dominator (CDI_DOMINATORS
, e
->dest
)->index
);
8535 bbs_to_remove
= get_all_dominated_blocks (CDI_DOMINATORS
, e
->dest
);
8536 FOR_EACH_VEC_ELT (bbs_to_remove
, i
, bb
)
8538 FOR_EACH_EDGE (f
, ei
, bb
->succs
)
8540 if (f
->dest
!= EXIT_BLOCK_PTR_FOR_FN (cfun
))
8541 bitmap_set_bit (df
, f
->dest
->index
);
8544 FOR_EACH_VEC_ELT (bbs_to_remove
, i
, bb
)
8545 bitmap_clear_bit (df
, bb
->index
);
8547 EXECUTE_IF_SET_IN_BITMAP (df
, 0, i
, bi
)
8549 bb
= BASIC_BLOCK_FOR_FN (cfun
, i
);
8550 bitmap_set_bit (df_idom
,
8551 get_immediate_dominator (CDI_DOMINATORS
, bb
)->index
);
8555 if (cfgcleanup_altered_bbs
)
8557 /* Record the set of the altered basic blocks. */
8558 bitmap_set_bit (cfgcleanup_altered_bbs
, e
->src
->index
);
8559 bitmap_ior_into (cfgcleanup_altered_bbs
, df
);
8562 /* Remove E and the cancelled blocks. */
8567 /* Walk backwards so as to get a chance to substitute all
8568 released DEFs into debug stmts. See
8569 eliminate_unnecessary_stmts() in tree-ssa-dce.c for more
8571 for (i
= bbs_to_remove
.length (); i
-- > 0; )
8572 delete_basic_block (bbs_to_remove
[i
]);
8575 /* Update the dominance information. The immediate dominator may change only
8576 for blocks whose immediate dominator belongs to DF_IDOM:
8578 Suppose that idom(X) = Y before removal of E and idom(X) != Y after the
8579 removal. Let Z the arbitrary block such that idom(Z) = Y and
8580 Z dominates X after the removal. Before removal, there exists a path P
8581 from Y to X that avoids Z. Let F be the last edge on P that is
8582 removed, and let W = F->dest. Before removal, idom(W) = Y (since Y
8583 dominates W, and because of P, Z does not dominate W), and W belongs to
8584 the dominance frontier of E. Therefore, Y belongs to DF_IDOM. */
8585 EXECUTE_IF_SET_IN_BITMAP (df_idom
, 0, i
, bi
)
8587 bb
= BASIC_BLOCK_FOR_FN (cfun
, i
);
8588 for (dbb
= first_dom_son (CDI_DOMINATORS
, bb
);
8590 dbb
= next_dom_son (CDI_DOMINATORS
, dbb
))
8591 bbs_to_fix_dom
.safe_push (dbb
);
8594 iterate_fix_dominators (CDI_DOMINATORS
, bbs_to_fix_dom
, true);
8596 bbs_to_remove
.release ();
8597 bbs_to_fix_dom
.release ();
8600 /* Purge dead EH edges from basic block BB. */
8603 gimple_purge_dead_eh_edges (basic_block bb
)
8605 bool changed
= false;
8608 gimple
*stmt
= last_stmt (bb
);
8610 if (stmt
&& stmt_can_throw_internal (cfun
, stmt
))
8613 for (ei
= ei_start (bb
->succs
); (e
= ei_safe_edge (ei
)); )
8615 if (e
->flags
& EDGE_EH
)
8617 remove_edge_and_dominated_blocks (e
);
8627 /* Purge dead EH edges from basic block listed in BLOCKS. */
8630 gimple_purge_all_dead_eh_edges (const_bitmap blocks
)
8632 bool changed
= false;
8636 EXECUTE_IF_SET_IN_BITMAP (blocks
, 0, i
, bi
)
8638 basic_block bb
= BASIC_BLOCK_FOR_FN (cfun
, i
);
8640 /* Earlier gimple_purge_dead_eh_edges could have removed
8641 this basic block already. */
8642 gcc_assert (bb
|| changed
);
8644 changed
|= gimple_purge_dead_eh_edges (bb
);
8650 /* Purge dead abnormal call edges from basic block BB. */
8653 gimple_purge_dead_abnormal_call_edges (basic_block bb
)
8655 bool changed
= false;
8658 gimple
*stmt
= last_stmt (bb
);
8660 if (!cfun
->has_nonlocal_label
8661 && !cfun
->calls_setjmp
)
8664 if (stmt
&& stmt_can_make_abnormal_goto (stmt
))
8667 for (ei
= ei_start (bb
->succs
); (e
= ei_safe_edge (ei
)); )
8669 if (e
->flags
& EDGE_ABNORMAL
)
8671 if (e
->flags
& EDGE_FALLTHRU
)
8672 e
->flags
&= ~EDGE_ABNORMAL
;
8674 remove_edge_and_dominated_blocks (e
);
8684 /* Purge dead abnormal call edges from basic block listed in BLOCKS. */
8687 gimple_purge_all_dead_abnormal_call_edges (const_bitmap blocks
)
8689 bool changed
= false;
8693 EXECUTE_IF_SET_IN_BITMAP (blocks
, 0, i
, bi
)
8695 basic_block bb
= BASIC_BLOCK_FOR_FN (cfun
, i
);
8697 /* Earlier gimple_purge_dead_abnormal_call_edges could have removed
8698 this basic block already. */
8699 gcc_assert (bb
|| changed
);
8701 changed
|= gimple_purge_dead_abnormal_call_edges (bb
);
8707 /* This function is called whenever a new edge is created or
8711 gimple_execute_on_growing_pred (edge e
)
8713 basic_block bb
= e
->dest
;
8715 if (!gimple_seq_empty_p (phi_nodes (bb
)))
8716 reserve_phi_args_for_new_edge (bb
);
8719 /* This function is called immediately before edge E is removed from
8720 the edge vector E->dest->preds. */
8723 gimple_execute_on_shrinking_pred (edge e
)
8725 if (!gimple_seq_empty_p (phi_nodes (e
->dest
)))
8726 remove_phi_args (e
);
8729 /*---------------------------------------------------------------------------
8730 Helper functions for Loop versioning
8731 ---------------------------------------------------------------------------*/
8733 /* Adjust phi nodes for 'first' basic block. 'second' basic block is a copy
8734 of 'first'. Both of them are dominated by 'new_head' basic block. When
8735 'new_head' was created by 'second's incoming edge it received phi arguments
8736 on the edge by split_edge(). Later, additional edge 'e' was created to
8737 connect 'new_head' and 'first'. Now this routine adds phi args on this
8738 additional edge 'e' that new_head to second edge received as part of edge
8742 gimple_lv_adjust_loop_header_phi (basic_block first
, basic_block second
,
8743 basic_block new_head
, edge e
)
8746 gphi_iterator psi1
, psi2
;
8748 edge e2
= find_edge (new_head
, second
);
8750 /* Because NEW_HEAD has been created by splitting SECOND's incoming
8751 edge, we should always have an edge from NEW_HEAD to SECOND. */
8752 gcc_assert (e2
!= NULL
);
8754 /* Browse all 'second' basic block phi nodes and add phi args to
8755 edge 'e' for 'first' head. PHI args are always in correct order. */
8757 for (psi2
= gsi_start_phis (second
),
8758 psi1
= gsi_start_phis (first
);
8759 !gsi_end_p (psi2
) && !gsi_end_p (psi1
);
8760 gsi_next (&psi2
), gsi_next (&psi1
))
8764 def
= PHI_ARG_DEF (phi2
, e2
->dest_idx
);
8765 add_phi_arg (phi1
, def
, e
, gimple_phi_arg_location_from_edge (phi2
, e2
));
8770 /* Adds a if else statement to COND_BB with condition COND_EXPR.
8771 SECOND_HEAD is the destination of the THEN and FIRST_HEAD is
8772 the destination of the ELSE part. */
8775 gimple_lv_add_condition_to_bb (basic_block first_head ATTRIBUTE_UNUSED
,
8776 basic_block second_head ATTRIBUTE_UNUSED
,
8777 basic_block cond_bb
, void *cond_e
)
8779 gimple_stmt_iterator gsi
;
8780 gimple
*new_cond_expr
;
8781 tree cond_expr
= (tree
) cond_e
;
8784 /* Build new conditional expr */
8785 new_cond_expr
= gimple_build_cond_from_tree (cond_expr
,
8786 NULL_TREE
, NULL_TREE
);
8788 /* Add new cond in cond_bb. */
8789 gsi
= gsi_last_bb (cond_bb
);
8790 gsi_insert_after (&gsi
, new_cond_expr
, GSI_NEW_STMT
);
8792 /* Adjust edges appropriately to connect new head with first head
8793 as well as second head. */
8794 e0
= single_succ_edge (cond_bb
);
8795 e0
->flags
&= ~EDGE_FALLTHRU
;
8796 e0
->flags
|= EDGE_FALSE_VALUE
;
8800 /* Do book-keeping of basic block BB for the profile consistency checker.
8801 If AFTER_PASS is 0, do pre-pass accounting, or if AFTER_PASS is 1
8802 then do post-pass accounting. Store the counting in RECORD. */
8804 gimple_account_profile_record (basic_block bb
, int after_pass
,
8805 struct profile_record
*record
)
8807 gimple_stmt_iterator i
;
8808 for (i
= gsi_start_bb (bb
); !gsi_end_p (i
); gsi_next (&i
))
8810 record
->size
[after_pass
]
8811 += estimate_num_insns (gsi_stmt (i
), &eni_size_weights
);
8812 if (bb
->count
.initialized_p ())
8813 record
->time
[after_pass
]
8814 += estimate_num_insns (gsi_stmt (i
),
8815 &eni_time_weights
) * bb
->count
.to_gcov_type ();
8816 else if (profile_status_for_fn (cfun
) == PROFILE_GUESSED
)
8817 record
->time
[after_pass
]
8818 += estimate_num_insns (gsi_stmt (i
),
8819 &eni_time_weights
) * bb
->count
.to_frequency (cfun
);
8823 struct cfg_hooks gimple_cfg_hooks
= {
8825 gimple_verify_flow_info
,
8826 gimple_dump_bb
, /* dump_bb */
8827 gimple_dump_bb_for_graph
, /* dump_bb_for_graph */
8828 create_bb
, /* create_basic_block */
8829 gimple_redirect_edge_and_branch
, /* redirect_edge_and_branch */
8830 gimple_redirect_edge_and_branch_force
, /* redirect_edge_and_branch_force */
8831 gimple_can_remove_branch_p
, /* can_remove_branch_p */
8832 remove_bb
, /* delete_basic_block */
8833 gimple_split_block
, /* split_block */
8834 gimple_move_block_after
, /* move_block_after */
8835 gimple_can_merge_blocks_p
, /* can_merge_blocks_p */
8836 gimple_merge_blocks
, /* merge_blocks */
8837 gimple_predict_edge
, /* predict_edge */
8838 gimple_predicted_by_p
, /* predicted_by_p */
8839 gimple_can_duplicate_bb_p
, /* can_duplicate_block_p */
8840 gimple_duplicate_bb
, /* duplicate_block */
8841 gimple_split_edge
, /* split_edge */
8842 gimple_make_forwarder_block
, /* make_forward_block */
8843 NULL
, /* tidy_fallthru_edge */
8844 NULL
, /* force_nonfallthru */
8845 gimple_block_ends_with_call_p
,/* block_ends_with_call_p */
8846 gimple_block_ends_with_condjump_p
, /* block_ends_with_condjump_p */
8847 gimple_flow_call_edges_add
, /* flow_call_edges_add */
8848 gimple_execute_on_growing_pred
, /* execute_on_growing_pred */
8849 gimple_execute_on_shrinking_pred
, /* execute_on_shrinking_pred */
8850 gimple_duplicate_loop_to_header_edge
, /* duplicate loop for trees */
8851 gimple_lv_add_condition_to_bb
, /* lv_add_condition_to_bb */
8852 gimple_lv_adjust_loop_header_phi
, /* lv_adjust_loop_header_phi*/
8853 extract_true_false_edges_from_block
, /* extract_cond_bb_edges */
8854 flush_pending_stmts
, /* flush_pending_stmts */
8855 gimple_empty_block_p
, /* block_empty_p */
8856 gimple_split_block_before_cond_jump
, /* split_block_before_cond_jump */
8857 gimple_account_profile_record
,
8861 /* Split all critical edges. */
8864 split_critical_edges (void)
8870 /* split_edge can redirect edges out of SWITCH_EXPRs, which can get
8871 expensive. So we want to enable recording of edge to CASE_LABEL_EXPR
8872 mappings around the calls to split_edge. */
8873 start_recording_case_labels ();
8874 FOR_ALL_BB_FN (bb
, cfun
)
8876 FOR_EACH_EDGE (e
, ei
, bb
->succs
)
8878 if (EDGE_CRITICAL_P (e
) && !(e
->flags
& EDGE_ABNORMAL
))
8880 /* PRE inserts statements to edges and expects that
8881 since split_critical_edges was done beforehand, committing edge
8882 insertions will not split more edges. In addition to critical
8883 edges we must split edges that have multiple successors and
8884 end by control flow statements, such as RESX.
8885 Go ahead and split them too. This matches the logic in
8886 gimple_find_edge_insert_loc. */
8887 else if ((!single_pred_p (e
->dest
)
8888 || !gimple_seq_empty_p (phi_nodes (e
->dest
))
8889 || e
->dest
== EXIT_BLOCK_PTR_FOR_FN (cfun
))
8890 && e
->src
!= ENTRY_BLOCK_PTR_FOR_FN (cfun
)
8891 && !(e
->flags
& EDGE_ABNORMAL
))
8893 gimple_stmt_iterator gsi
;
8895 gsi
= gsi_last_bb (e
->src
);
8896 if (!gsi_end_p (gsi
)
8897 && stmt_ends_bb_p (gsi_stmt (gsi
))
8898 && (gimple_code (gsi_stmt (gsi
)) != GIMPLE_RETURN
8899 && !gimple_call_builtin_p (gsi_stmt (gsi
),
8905 end_recording_case_labels ();
8911 const pass_data pass_data_split_crit_edges
=
8913 GIMPLE_PASS
, /* type */
8914 "crited", /* name */
8915 OPTGROUP_NONE
, /* optinfo_flags */
8916 TV_TREE_SPLIT_EDGES
, /* tv_id */
8917 PROP_cfg
, /* properties_required */
8918 PROP_no_crit_edges
, /* properties_provided */
8919 0, /* properties_destroyed */
8920 0, /* todo_flags_start */
8921 0, /* todo_flags_finish */
8924 class pass_split_crit_edges
: public gimple_opt_pass
8927 pass_split_crit_edges (gcc::context
*ctxt
)
8928 : gimple_opt_pass (pass_data_split_crit_edges
, ctxt
)
8931 /* opt_pass methods: */
8932 virtual unsigned int execute (function
*) { return split_critical_edges (); }
8934 opt_pass
* clone () { return new pass_split_crit_edges (m_ctxt
); }
8935 }; // class pass_split_crit_edges
8940 make_pass_split_crit_edges (gcc::context
*ctxt
)
8942 return new pass_split_crit_edges (ctxt
);
8946 /* Insert COND expression which is GIMPLE_COND after STMT
8947 in basic block BB with appropriate basic block split
8948 and creation of a new conditionally executed basic block.
8949 Update profile so the new bb is visited with probability PROB.
8950 Return created basic block. */
8952 insert_cond_bb (basic_block bb
, gimple
*stmt
, gimple
*cond
,
8953 profile_probability prob
)
8955 edge fall
= split_block (bb
, stmt
);
8956 gimple_stmt_iterator iter
= gsi_last_bb (bb
);
8959 /* Insert cond statement. */
8960 gcc_assert (gimple_code (cond
) == GIMPLE_COND
);
8961 if (gsi_end_p (iter
))
8962 gsi_insert_before (&iter
, cond
, GSI_CONTINUE_LINKING
);
8964 gsi_insert_after (&iter
, cond
, GSI_CONTINUE_LINKING
);
8966 /* Create conditionally executed block. */
8967 new_bb
= create_empty_bb (bb
);
8968 edge e
= make_edge (bb
, new_bb
, EDGE_TRUE_VALUE
);
8969 e
->probability
= prob
;
8970 new_bb
->count
= e
->count ();
8971 make_single_succ_edge (new_bb
, fall
->dest
, EDGE_FALLTHRU
);
8973 /* Fix edge for split bb. */
8974 fall
->flags
= EDGE_FALSE_VALUE
;
8975 fall
->probability
-= e
->probability
;
8977 /* Update dominance info. */
8978 if (dom_info_available_p (CDI_DOMINATORS
))
8980 set_immediate_dominator (CDI_DOMINATORS
, new_bb
, bb
);
8981 set_immediate_dominator (CDI_DOMINATORS
, fall
->dest
, bb
);
8984 /* Update loop info. */
8986 add_bb_to_loop (new_bb
, bb
->loop_father
);
8991 /* Build a ternary operation and gimplify it. Emit code before GSI.
8992 Return the gimple_val holding the result. */
8995 gimplify_build3 (gimple_stmt_iterator
*gsi
, enum tree_code code
,
8996 tree type
, tree a
, tree b
, tree c
)
8999 location_t loc
= gimple_location (gsi_stmt (*gsi
));
9001 ret
= fold_build3_loc (loc
, code
, type
, a
, b
, c
);
9002 return force_gimple_operand_gsi (gsi
, ret
, true, NULL
, true,
9006 /* Build a binary operation and gimplify it. Emit code before GSI.
9007 Return the gimple_val holding the result. */
9010 gimplify_build2 (gimple_stmt_iterator
*gsi
, enum tree_code code
,
9011 tree type
, tree a
, tree b
)
9015 ret
= fold_build2_loc (gimple_location (gsi_stmt (*gsi
)), code
, type
, a
, b
);
9016 return force_gimple_operand_gsi (gsi
, ret
, true, NULL
, true,
9020 /* Build a unary operation and gimplify it. Emit code before GSI.
9021 Return the gimple_val holding the result. */
9024 gimplify_build1 (gimple_stmt_iterator
*gsi
, enum tree_code code
, tree type
,
9029 ret
= fold_build1_loc (gimple_location (gsi_stmt (*gsi
)), code
, type
, a
);
9030 return force_gimple_operand_gsi (gsi
, ret
, true, NULL
, true,
9036 /* Given a basic block B which ends with a conditional and has
9037 precisely two successors, determine which of the edges is taken if
9038 the conditional is true and which is taken if the conditional is
9039 false. Set TRUE_EDGE and FALSE_EDGE appropriately. */
9042 extract_true_false_edges_from_block (basic_block b
,
9046 edge e
= EDGE_SUCC (b
, 0);
9048 if (e
->flags
& EDGE_TRUE_VALUE
)
9051 *false_edge
= EDGE_SUCC (b
, 1);
9056 *true_edge
= EDGE_SUCC (b
, 1);
9061 /* From a controlling predicate in the immediate dominator DOM of
9062 PHIBLOCK determine the edges into PHIBLOCK that are chosen if the
9063 predicate evaluates to true and false and store them to
9064 *TRUE_CONTROLLED_EDGE and *FALSE_CONTROLLED_EDGE if
9065 they are non-NULL. Returns true if the edges can be determined,
9066 else return false. */
9069 extract_true_false_controlled_edges (basic_block dom
, basic_block phiblock
,
9070 edge
*true_controlled_edge
,
9071 edge
*false_controlled_edge
)
9073 basic_block bb
= phiblock
;
9074 edge true_edge
, false_edge
, tem
;
9075 edge e0
= NULL
, e1
= NULL
;
9077 /* We have to verify that one edge into the PHI node is dominated
9078 by the true edge of the predicate block and the other edge
9079 dominated by the false edge. This ensures that the PHI argument
9080 we are going to take is completely determined by the path we
9081 take from the predicate block.
9082 We can only use BB dominance checks below if the destination of
9083 the true/false edges are dominated by their edge, thus only
9084 have a single predecessor. */
9085 extract_true_false_edges_from_block (dom
, &true_edge
, &false_edge
);
9086 tem
= EDGE_PRED (bb
, 0);
9087 if (tem
== true_edge
9088 || (single_pred_p (true_edge
->dest
)
9089 && (tem
->src
== true_edge
->dest
9090 || dominated_by_p (CDI_DOMINATORS
,
9091 tem
->src
, true_edge
->dest
))))
9093 else if (tem
== false_edge
9094 || (single_pred_p (false_edge
->dest
)
9095 && (tem
->src
== false_edge
->dest
9096 || dominated_by_p (CDI_DOMINATORS
,
9097 tem
->src
, false_edge
->dest
))))
9101 tem
= EDGE_PRED (bb
, 1);
9102 if (tem
== true_edge
9103 || (single_pred_p (true_edge
->dest
)
9104 && (tem
->src
== true_edge
->dest
9105 || dominated_by_p (CDI_DOMINATORS
,
9106 tem
->src
, true_edge
->dest
))))
9108 else if (tem
== false_edge
9109 || (single_pred_p (false_edge
->dest
)
9110 && (tem
->src
== false_edge
->dest
9111 || dominated_by_p (CDI_DOMINATORS
,
9112 tem
->src
, false_edge
->dest
))))
9119 if (true_controlled_edge
)
9120 *true_controlled_edge
= e0
;
9121 if (false_controlled_edge
)
9122 *false_controlled_edge
= e1
;
9127 /* Generate a range test LHS CODE RHS that determines whether INDEX is in the
9128 range [low, high]. Place associated stmts before *GSI. */
9131 generate_range_test (basic_block bb
, tree index
, tree low
, tree high
,
9132 tree
*lhs
, tree
*rhs
)
9134 tree type
= TREE_TYPE (index
);
9135 tree utype
= unsigned_type_for (type
);
9137 low
= fold_convert (utype
, low
);
9138 high
= fold_convert (utype
, high
);
9140 gimple_seq seq
= NULL
;
9141 index
= gimple_convert (&seq
, utype
, index
);
9142 *lhs
= gimple_build (&seq
, MINUS_EXPR
, utype
, index
, low
);
9143 *rhs
= const_binop (MINUS_EXPR
, utype
, high
, low
);
9145 gimple_stmt_iterator gsi
= gsi_last_bb (bb
);
9146 gsi_insert_seq_before (&gsi
, seq
, GSI_SAME_STMT
);
9149 /* Return the basic block that belongs to label numbered INDEX
9150 of a switch statement. */
9153 gimple_switch_label_bb (function
*ifun
, gswitch
*gs
, unsigned index
)
9155 return label_to_block (ifun
, CASE_LABEL (gimple_switch_label (gs
, index
)));
9158 /* Return the default basic block of a switch statement. */
9161 gimple_switch_default_bb (function
*ifun
, gswitch
*gs
)
9163 return gimple_switch_label_bb (ifun
, gs
, 0);
9166 /* Return the edge that belongs to label numbered INDEX
9167 of a switch statement. */
9170 gimple_switch_edge (function
*ifun
, gswitch
*gs
, unsigned index
)
9172 return find_edge (gimple_bb (gs
), gimple_switch_label_bb (ifun
, gs
, index
));
9175 /* Return the default edge of a switch statement. */
9178 gimple_switch_default_edge (function
*ifun
, gswitch
*gs
)
9180 return gimple_switch_edge (ifun
, gs
, 0);
9184 /* Emit return warnings. */
9188 const pass_data pass_data_warn_function_return
=
9190 GIMPLE_PASS
, /* type */
9191 "*warn_function_return", /* name */
9192 OPTGROUP_NONE
, /* optinfo_flags */
9193 TV_NONE
, /* tv_id */
9194 PROP_cfg
, /* properties_required */
9195 0, /* properties_provided */
9196 0, /* properties_destroyed */
9197 0, /* todo_flags_start */
9198 0, /* todo_flags_finish */
9201 class pass_warn_function_return
: public gimple_opt_pass
9204 pass_warn_function_return (gcc::context
*ctxt
)
9205 : gimple_opt_pass (pass_data_warn_function_return
, ctxt
)
9208 /* opt_pass methods: */
9209 virtual unsigned int execute (function
*);
9211 }; // class pass_warn_function_return
9214 pass_warn_function_return::execute (function
*fun
)
9216 source_location location
;
9221 if (!targetm
.warn_func_return (fun
->decl
))
9224 /* If we have a path to EXIT, then we do return. */
9225 if (TREE_THIS_VOLATILE (fun
->decl
)
9226 && EDGE_COUNT (EXIT_BLOCK_PTR_FOR_FN (fun
)->preds
) > 0)
9228 location
= UNKNOWN_LOCATION
;
9229 for (ei
= ei_start (EXIT_BLOCK_PTR_FOR_FN (fun
)->preds
);
9230 (e
= ei_safe_edge (ei
)); )
9232 last
= last_stmt (e
->src
);
9233 if ((gimple_code (last
) == GIMPLE_RETURN
9234 || gimple_call_builtin_p (last
, BUILT_IN_RETURN
))
9235 && location
== UNKNOWN_LOCATION
9236 && ((location
= LOCATION_LOCUS (gimple_location (last
)))
9237 != UNKNOWN_LOCATION
)
9240 /* When optimizing, replace return stmts in noreturn functions
9241 with __builtin_unreachable () call. */
9242 if (optimize
&& gimple_code (last
) == GIMPLE_RETURN
)
9244 tree fndecl
= builtin_decl_implicit (BUILT_IN_UNREACHABLE
);
9245 gimple
*new_stmt
= gimple_build_call (fndecl
, 0);
9246 gimple_set_location (new_stmt
, gimple_location (last
));
9247 gimple_stmt_iterator gsi
= gsi_for_stmt (last
);
9248 gsi_replace (&gsi
, new_stmt
, true);
9254 if (location
== UNKNOWN_LOCATION
)
9255 location
= cfun
->function_end_locus
;
9256 warning_at (location
, 0, "%<noreturn%> function does return");
9259 /* If we see "return;" in some basic block, then we do reach the end
9260 without returning a value. */
9261 else if (warn_return_type
> 0
9262 && !TREE_NO_WARNING (fun
->decl
)
9263 && !VOID_TYPE_P (TREE_TYPE (TREE_TYPE (fun
->decl
))))
9265 FOR_EACH_EDGE (e
, ei
, EXIT_BLOCK_PTR_FOR_FN (fun
)->preds
)
9267 gimple
*last
= last_stmt (e
->src
);
9268 greturn
*return_stmt
= dyn_cast
<greturn
*> (last
);
9270 && gimple_return_retval (return_stmt
) == NULL
9271 && !gimple_no_warning_p (last
))
9273 location
= gimple_location (last
);
9274 if (LOCATION_LOCUS (location
) == UNKNOWN_LOCATION
)
9275 location
= fun
->function_end_locus
;
9276 warning_at (location
, OPT_Wreturn_type
,
9277 "control reaches end of non-void function");
9278 TREE_NO_WARNING (fun
->decl
) = 1;
9282 /* The C++ FE turns fallthrough from the end of non-void function
9283 into __builtin_unreachable () call with BUILTINS_LOCATION.
9284 Recognize those too. */
9286 if (!TREE_NO_WARNING (fun
->decl
))
9287 FOR_EACH_BB_FN (bb
, fun
)
9288 if (EDGE_COUNT (bb
->succs
) == 0)
9290 gimple
*last
= last_stmt (bb
);
9291 const enum built_in_function ubsan_missing_ret
9292 = BUILT_IN_UBSAN_HANDLE_MISSING_RETURN
;
9294 && ((LOCATION_LOCUS (gimple_location (last
))
9295 == BUILTINS_LOCATION
9296 && gimple_call_builtin_p (last
, BUILT_IN_UNREACHABLE
))
9297 || gimple_call_builtin_p (last
, ubsan_missing_ret
)))
9299 gimple_stmt_iterator gsi
= gsi_for_stmt (last
);
9300 gsi_prev_nondebug (&gsi
);
9301 gimple
*prev
= gsi_stmt (gsi
);
9303 location
= UNKNOWN_LOCATION
;
9305 location
= gimple_location (prev
);
9306 if (LOCATION_LOCUS (location
) == UNKNOWN_LOCATION
)
9307 location
= fun
->function_end_locus
;
9308 warning_at (location
, OPT_Wreturn_type
,
9309 "control reaches end of non-void function");
9310 TREE_NO_WARNING (fun
->decl
) = 1;
9321 make_pass_warn_function_return (gcc::context
*ctxt
)
9323 return new pass_warn_function_return (ctxt
);
9326 /* Walk a gimplified function and warn for functions whose return value is
9327 ignored and attribute((warn_unused_result)) is set. This is done before
9328 inlining, so we don't have to worry about that. */
9331 do_warn_unused_result (gimple_seq seq
)
9334 gimple_stmt_iterator i
;
9336 for (i
= gsi_start (seq
); !gsi_end_p (i
); gsi_next (&i
))
9338 gimple
*g
= gsi_stmt (i
);
9340 switch (gimple_code (g
))
9343 do_warn_unused_result (gimple_bind_body (as_a
<gbind
*>(g
)));
9346 do_warn_unused_result (gimple_try_eval (g
));
9347 do_warn_unused_result (gimple_try_cleanup (g
));
9350 do_warn_unused_result (gimple_catch_handler (
9351 as_a
<gcatch
*> (g
)));
9353 case GIMPLE_EH_FILTER
:
9354 do_warn_unused_result (gimple_eh_filter_failure (g
));
9358 if (gimple_call_lhs (g
))
9360 if (gimple_call_internal_p (g
))
9363 /* This is a naked call, as opposed to a GIMPLE_CALL with an
9364 LHS. All calls whose value is ignored should be
9365 represented like this. Look for the attribute. */
9366 fdecl
= gimple_call_fndecl (g
);
9367 ftype
= gimple_call_fntype (g
);
9369 if (lookup_attribute ("warn_unused_result", TYPE_ATTRIBUTES (ftype
)))
9371 location_t loc
= gimple_location (g
);
9374 warning_at (loc
, OPT_Wunused_result
,
9375 "ignoring return value of %qD, "
9376 "declared with attribute warn_unused_result",
9379 warning_at (loc
, OPT_Wunused_result
,
9380 "ignoring return value of function "
9381 "declared with attribute warn_unused_result");
9386 /* Not a container, not a call, or a call whose value is used. */
9394 const pass_data pass_data_warn_unused_result
=
9396 GIMPLE_PASS
, /* type */
9397 "*warn_unused_result", /* name */
9398 OPTGROUP_NONE
, /* optinfo_flags */
9399 TV_NONE
, /* tv_id */
9400 PROP_gimple_any
, /* properties_required */
9401 0, /* properties_provided */
9402 0, /* properties_destroyed */
9403 0, /* todo_flags_start */
9404 0, /* todo_flags_finish */
9407 class pass_warn_unused_result
: public gimple_opt_pass
9410 pass_warn_unused_result (gcc::context
*ctxt
)
9411 : gimple_opt_pass (pass_data_warn_unused_result
, ctxt
)
9414 /* opt_pass methods: */
9415 virtual bool gate (function
*) { return flag_warn_unused_result
; }
9416 virtual unsigned int execute (function
*)
9418 do_warn_unused_result (gimple_body (current_function_decl
));
9422 }; // class pass_warn_unused_result
9427 make_pass_warn_unused_result (gcc::context
*ctxt
)
9429 return new pass_warn_unused_result (ctxt
);
9432 /* IPA passes, compilation of earlier functions or inlining
9433 might have changed some properties, such as marked functions nothrow,
9434 pure, const or noreturn.
9435 Remove redundant edges and basic blocks, and create new ones if necessary.
9437 This pass can't be executed as stand alone pass from pass manager, because
9438 in between inlining and this fixup the verify_flow_info would fail. */
9441 execute_fixup_cfg (void)
9444 gimple_stmt_iterator gsi
;
9446 cgraph_node
*node
= cgraph_node::get (current_function_decl
);
9447 profile_count num
= node
->count
;
9448 profile_count den
= ENTRY_BLOCK_PTR_FOR_FN (cfun
)->count
;
9449 bool scale
= num
.initialized_p () && !(num
== den
);
9453 profile_count::adjust_for_ipa_scaling (&num
, &den
);
9454 ENTRY_BLOCK_PTR_FOR_FN (cfun
)->count
= node
->count
;
9455 EXIT_BLOCK_PTR_FOR_FN (cfun
)->count
9456 = EXIT_BLOCK_PTR_FOR_FN (cfun
)->count
.apply_scale (num
, den
);
9459 FOR_EACH_BB_FN (bb
, cfun
)
9462 bb
->count
= bb
->count
.apply_scale (num
, den
);
9463 for (gsi
= gsi_start_bb (bb
); !gsi_end_p (gsi
);)
9465 gimple
*stmt
= gsi_stmt (gsi
);
9466 tree decl
= is_gimple_call (stmt
)
9467 ? gimple_call_fndecl (stmt
)
9471 int flags
= gimple_call_flags (stmt
);
9472 if (flags
& (ECF_CONST
| ECF_PURE
| ECF_LOOPING_CONST_OR_PURE
))
9474 if (gimple_purge_dead_abnormal_call_edges (bb
))
9475 todo
|= TODO_cleanup_cfg
;
9477 if (gimple_in_ssa_p (cfun
))
9479 todo
|= TODO_update_ssa
| TODO_cleanup_cfg
;
9484 if (flags
& ECF_NORETURN
9485 && fixup_noreturn_call (stmt
))
9486 todo
|= TODO_cleanup_cfg
;
9489 /* Remove stores to variables we marked write-only.
9490 Keep access when store has side effect, i.e. in case when source
9492 if (gimple_store_p (stmt
)
9493 && !gimple_has_side_effects (stmt
))
9495 tree lhs
= get_base_address (gimple_get_lhs (stmt
));
9498 && (TREE_STATIC (lhs
) || DECL_EXTERNAL (lhs
))
9499 && varpool_node::get (lhs
)->writeonly
)
9501 unlink_stmt_vdef (stmt
);
9502 gsi_remove (&gsi
, true);
9503 release_defs (stmt
);
9504 todo
|= TODO_update_ssa
| TODO_cleanup_cfg
;
9508 /* For calls we can simply remove LHS when it is known
9509 to be write-only. */
9510 if (is_gimple_call (stmt
)
9511 && gimple_get_lhs (stmt
))
9513 tree lhs
= get_base_address (gimple_get_lhs (stmt
));
9516 && (TREE_STATIC (lhs
) || DECL_EXTERNAL (lhs
))
9517 && varpool_node::get (lhs
)->writeonly
)
9519 gimple_call_set_lhs (stmt
, NULL
);
9521 todo
|= TODO_update_ssa
| TODO_cleanup_cfg
;
9525 if (maybe_clean_eh_stmt (stmt
)
9526 && gimple_purge_dead_eh_edges (bb
))
9527 todo
|= TODO_cleanup_cfg
;
9531 /* If we have a basic block with no successors that does not
9532 end with a control statement or a noreturn call end it with
9533 a call to __builtin_unreachable. This situation can occur
9534 when inlining a noreturn call that does in fact return. */
9535 if (EDGE_COUNT (bb
->succs
) == 0)
9537 gimple
*stmt
= last_stmt (bb
);
9539 || (!is_ctrl_stmt (stmt
)
9540 && (!is_gimple_call (stmt
)
9541 || !gimple_call_noreturn_p (stmt
))))
9543 if (stmt
&& is_gimple_call (stmt
))
9544 gimple_call_set_ctrl_altering (stmt
, false);
9545 tree fndecl
= builtin_decl_implicit (BUILT_IN_UNREACHABLE
);
9546 stmt
= gimple_build_call (fndecl
, 0);
9547 gimple_stmt_iterator gsi
= gsi_last_bb (bb
);
9548 gsi_insert_after (&gsi
, stmt
, GSI_NEW_STMT
);
9549 if (!cfun
->after_inlining
)
9551 gcall
*call_stmt
= dyn_cast
<gcall
*> (stmt
);
9552 node
->create_edge (cgraph_node::get_create (fndecl
),
9553 call_stmt
, bb
->count
);
9559 compute_function_frequency ();
9562 && (todo
& TODO_cleanup_cfg
))
9563 loops_state_set (LOOPS_NEED_FIXUP
);
9570 const pass_data pass_data_fixup_cfg
=
9572 GIMPLE_PASS
, /* type */
9573 "fixup_cfg", /* name */
9574 OPTGROUP_NONE
, /* optinfo_flags */
9575 TV_NONE
, /* tv_id */
9576 PROP_cfg
, /* properties_required */
9577 0, /* properties_provided */
9578 0, /* properties_destroyed */
9579 0, /* todo_flags_start */
9580 0, /* todo_flags_finish */
9583 class pass_fixup_cfg
: public gimple_opt_pass
9586 pass_fixup_cfg (gcc::context
*ctxt
)
9587 : gimple_opt_pass (pass_data_fixup_cfg
, ctxt
)
9590 /* opt_pass methods: */
9591 opt_pass
* clone () { return new pass_fixup_cfg (m_ctxt
); }
9592 virtual unsigned int execute (function
*) { return execute_fixup_cfg (); }
9594 }; // class pass_fixup_cfg
9599 make_pass_fixup_cfg (gcc::context
*ctxt
)
9601 return new pass_fixup_cfg (ctxt
);
9604 /* Garbage collection support for edge_def. */
9606 extern void gt_ggc_mx (tree
&);
9607 extern void gt_ggc_mx (gimple
*&);
9608 extern void gt_ggc_mx (rtx
&);
9609 extern void gt_ggc_mx (basic_block
&);
9612 gt_ggc_mx (rtx_insn
*& x
)
9615 gt_ggc_mx_rtx_def ((void *) x
);
9619 gt_ggc_mx (edge_def
*e
)
9621 tree block
= LOCATION_BLOCK (e
->goto_locus
);
9623 gt_ggc_mx (e
->dest
);
9624 if (current_ir_type () == IR_GIMPLE
)
9625 gt_ggc_mx (e
->insns
.g
);
9627 gt_ggc_mx (e
->insns
.r
);
9631 /* PCH support for edge_def. */
9633 extern void gt_pch_nx (tree
&);
9634 extern void gt_pch_nx (gimple
*&);
9635 extern void gt_pch_nx (rtx
&);
9636 extern void gt_pch_nx (basic_block
&);
9639 gt_pch_nx (rtx_insn
*& x
)
9642 gt_pch_nx_rtx_def ((void *) x
);
9646 gt_pch_nx (edge_def
*e
)
9648 tree block
= LOCATION_BLOCK (e
->goto_locus
);
9650 gt_pch_nx (e
->dest
);
9651 if (current_ir_type () == IR_GIMPLE
)
9652 gt_pch_nx (e
->insns
.g
);
9654 gt_pch_nx (e
->insns
.r
);
9659 gt_pch_nx (edge_def
*e
, gt_pointer_operator op
, void *cookie
)
9661 tree block
= LOCATION_BLOCK (e
->goto_locus
);
9662 op (&(e
->src
), cookie
);
9663 op (&(e
->dest
), cookie
);
9664 if (current_ir_type () == IR_GIMPLE
)
9665 op (&(e
->insns
.g
), cookie
);
9667 op (&(e
->insns
.r
), cookie
);
9668 op (&(block
), cookie
);
9673 namespace selftest
{
9675 /* Helper function for CFG selftests: create a dummy function decl
9676 and push it as cfun. */
9679 push_fndecl (const char *name
)
9681 tree fn_type
= build_function_type_array (integer_type_node
, 0, NULL
);
9682 /* FIXME: this uses input_location: */
9683 tree fndecl
= build_fn_decl (name
, fn_type
);
9684 tree retval
= build_decl (UNKNOWN_LOCATION
, RESULT_DECL
,
9685 NULL_TREE
, integer_type_node
);
9686 DECL_RESULT (fndecl
) = retval
;
9687 push_struct_function (fndecl
);
9688 function
*fun
= DECL_STRUCT_FUNCTION (fndecl
);
9689 ASSERT_TRUE (fun
!= NULL
);
9690 init_empty_tree_cfg_for_function (fun
);
9691 ASSERT_EQ (2, n_basic_blocks_for_fn (fun
));
9692 ASSERT_EQ (0, n_edges_for_fn (fun
));
9696 /* These tests directly create CFGs.
9697 Compare with the static fns within tree-cfg.c:
9699 - make_blocks: calls create_basic_block (seq, bb);
9702 /* Verify a simple cfg of the form:
9703 ENTRY -> A -> B -> C -> EXIT. */
9706 test_linear_chain ()
9708 gimple_register_cfg_hooks ();
9710 tree fndecl
= push_fndecl ("cfg_test_linear_chain");
9711 function
*fun
= DECL_STRUCT_FUNCTION (fndecl
);
9713 /* Create some empty blocks. */
9714 basic_block bb_a
= create_empty_bb (ENTRY_BLOCK_PTR_FOR_FN (fun
));
9715 basic_block bb_b
= create_empty_bb (bb_a
);
9716 basic_block bb_c
= create_empty_bb (bb_b
);
9718 ASSERT_EQ (5, n_basic_blocks_for_fn (fun
));
9719 ASSERT_EQ (0, n_edges_for_fn (fun
));
9721 /* Create some edges: a simple linear chain of BBs. */
9722 make_edge (ENTRY_BLOCK_PTR_FOR_FN (fun
), bb_a
, EDGE_FALLTHRU
);
9723 make_edge (bb_a
, bb_b
, 0);
9724 make_edge (bb_b
, bb_c
, 0);
9725 make_edge (bb_c
, EXIT_BLOCK_PTR_FOR_FN (fun
), 0);
9727 /* Verify the edges. */
9728 ASSERT_EQ (4, n_edges_for_fn (fun
));
9729 ASSERT_EQ (NULL
, ENTRY_BLOCK_PTR_FOR_FN (fun
)->preds
);
9730 ASSERT_EQ (1, ENTRY_BLOCK_PTR_FOR_FN (fun
)->succs
->length ());
9731 ASSERT_EQ (1, bb_a
->preds
->length ());
9732 ASSERT_EQ (1, bb_a
->succs
->length ());
9733 ASSERT_EQ (1, bb_b
->preds
->length ());
9734 ASSERT_EQ (1, bb_b
->succs
->length ());
9735 ASSERT_EQ (1, bb_c
->preds
->length ());
9736 ASSERT_EQ (1, bb_c
->succs
->length ());
9737 ASSERT_EQ (1, EXIT_BLOCK_PTR_FOR_FN (fun
)->preds
->length ());
9738 ASSERT_EQ (NULL
, EXIT_BLOCK_PTR_FOR_FN (fun
)->succs
);
9740 /* Verify the dominance information
9741 Each BB in our simple chain should be dominated by the one before
9743 calculate_dominance_info (CDI_DOMINATORS
);
9744 ASSERT_EQ (bb_a
, get_immediate_dominator (CDI_DOMINATORS
, bb_b
));
9745 ASSERT_EQ (bb_b
, get_immediate_dominator (CDI_DOMINATORS
, bb_c
));
9746 vec
<basic_block
> dom_by_b
= get_dominated_by (CDI_DOMINATORS
, bb_b
);
9747 ASSERT_EQ (1, dom_by_b
.length ());
9748 ASSERT_EQ (bb_c
, dom_by_b
[0]);
9749 free_dominance_info (CDI_DOMINATORS
);
9750 dom_by_b
.release ();
9752 /* Similarly for post-dominance: each BB in our chain is post-dominated
9753 by the one after it. */
9754 calculate_dominance_info (CDI_POST_DOMINATORS
);
9755 ASSERT_EQ (bb_b
, get_immediate_dominator (CDI_POST_DOMINATORS
, bb_a
));
9756 ASSERT_EQ (bb_c
, get_immediate_dominator (CDI_POST_DOMINATORS
, bb_b
));
9757 vec
<basic_block
> postdom_by_b
= get_dominated_by (CDI_POST_DOMINATORS
, bb_b
);
9758 ASSERT_EQ (1, postdom_by_b
.length ());
9759 ASSERT_EQ (bb_a
, postdom_by_b
[0]);
9760 free_dominance_info (CDI_POST_DOMINATORS
);
9761 postdom_by_b
.release ();
9766 /* Verify a simple CFG of the form:
9782 gimple_register_cfg_hooks ();
9784 tree fndecl
= push_fndecl ("cfg_test_diamond");
9785 function
*fun
= DECL_STRUCT_FUNCTION (fndecl
);
9787 /* Create some empty blocks. */
9788 basic_block bb_a
= create_empty_bb (ENTRY_BLOCK_PTR_FOR_FN (fun
));
9789 basic_block bb_b
= create_empty_bb (bb_a
);
9790 basic_block bb_c
= create_empty_bb (bb_a
);
9791 basic_block bb_d
= create_empty_bb (bb_b
);
9793 ASSERT_EQ (6, n_basic_blocks_for_fn (fun
));
9794 ASSERT_EQ (0, n_edges_for_fn (fun
));
9796 /* Create the edges. */
9797 make_edge (ENTRY_BLOCK_PTR_FOR_FN (fun
), bb_a
, EDGE_FALLTHRU
);
9798 make_edge (bb_a
, bb_b
, EDGE_TRUE_VALUE
);
9799 make_edge (bb_a
, bb_c
, EDGE_FALSE_VALUE
);
9800 make_edge (bb_b
, bb_d
, 0);
9801 make_edge (bb_c
, bb_d
, 0);
9802 make_edge (bb_d
, EXIT_BLOCK_PTR_FOR_FN (fun
), 0);
9804 /* Verify the edges. */
9805 ASSERT_EQ (6, n_edges_for_fn (fun
));
9806 ASSERT_EQ (1, bb_a
->preds
->length ());
9807 ASSERT_EQ (2, bb_a
->succs
->length ());
9808 ASSERT_EQ (1, bb_b
->preds
->length ());
9809 ASSERT_EQ (1, bb_b
->succs
->length ());
9810 ASSERT_EQ (1, bb_c
->preds
->length ());
9811 ASSERT_EQ (1, bb_c
->succs
->length ());
9812 ASSERT_EQ (2, bb_d
->preds
->length ());
9813 ASSERT_EQ (1, bb_d
->succs
->length ());
9815 /* Verify the dominance information. */
9816 calculate_dominance_info (CDI_DOMINATORS
);
9817 ASSERT_EQ (bb_a
, get_immediate_dominator (CDI_DOMINATORS
, bb_b
));
9818 ASSERT_EQ (bb_a
, get_immediate_dominator (CDI_DOMINATORS
, bb_c
));
9819 ASSERT_EQ (bb_a
, get_immediate_dominator (CDI_DOMINATORS
, bb_d
));
9820 vec
<basic_block
> dom_by_a
= get_dominated_by (CDI_DOMINATORS
, bb_a
);
9821 ASSERT_EQ (3, dom_by_a
.length ()); /* B, C, D, in some order. */
9822 dom_by_a
.release ();
9823 vec
<basic_block
> dom_by_b
= get_dominated_by (CDI_DOMINATORS
, bb_b
);
9824 ASSERT_EQ (0, dom_by_b
.length ());
9825 dom_by_b
.release ();
9826 free_dominance_info (CDI_DOMINATORS
);
9828 /* Similarly for post-dominance. */
9829 calculate_dominance_info (CDI_POST_DOMINATORS
);
9830 ASSERT_EQ (bb_d
, get_immediate_dominator (CDI_POST_DOMINATORS
, bb_a
));
9831 ASSERT_EQ (bb_d
, get_immediate_dominator (CDI_POST_DOMINATORS
, bb_b
));
9832 ASSERT_EQ (bb_d
, get_immediate_dominator (CDI_POST_DOMINATORS
, bb_c
));
9833 vec
<basic_block
> postdom_by_d
= get_dominated_by (CDI_POST_DOMINATORS
, bb_d
);
9834 ASSERT_EQ (3, postdom_by_d
.length ()); /* A, B, C in some order. */
9835 postdom_by_d
.release ();
9836 vec
<basic_block
> postdom_by_b
= get_dominated_by (CDI_POST_DOMINATORS
, bb_b
);
9837 ASSERT_EQ (0, postdom_by_b
.length ());
9838 postdom_by_b
.release ();
9839 free_dominance_info (CDI_POST_DOMINATORS
);
9844 /* Verify that we can handle a CFG containing a "complete" aka
9845 fully-connected subgraph (where A B C D below all have edges
9846 pointing to each other node, also to themselves).
9864 test_fully_connected ()
9866 gimple_register_cfg_hooks ();
9868 tree fndecl
= push_fndecl ("cfg_fully_connected");
9869 function
*fun
= DECL_STRUCT_FUNCTION (fndecl
);
9873 /* Create some empty blocks. */
9874 auto_vec
<basic_block
> subgraph_nodes
;
9875 for (int i
= 0; i
< n
; i
++)
9876 subgraph_nodes
.safe_push (create_empty_bb (ENTRY_BLOCK_PTR_FOR_FN (fun
)));
9878 ASSERT_EQ (n
+ 2, n_basic_blocks_for_fn (fun
));
9879 ASSERT_EQ (0, n_edges_for_fn (fun
));
9881 /* Create the edges. */
9882 make_edge (ENTRY_BLOCK_PTR_FOR_FN (fun
), subgraph_nodes
[0], EDGE_FALLTHRU
);
9883 make_edge (subgraph_nodes
[0], EXIT_BLOCK_PTR_FOR_FN (fun
), 0);
9884 for (int i
= 0; i
< n
; i
++)
9885 for (int j
= 0; j
< n
; j
++)
9886 make_edge (subgraph_nodes
[i
], subgraph_nodes
[j
], 0);
9888 /* Verify the edges. */
9889 ASSERT_EQ (2 + (n
* n
), n_edges_for_fn (fun
));
9890 /* The first one is linked to ENTRY/EXIT as well as itself and
9892 ASSERT_EQ (n
+ 1, subgraph_nodes
[0]->preds
->length ());
9893 ASSERT_EQ (n
+ 1, subgraph_nodes
[0]->succs
->length ());
9894 /* The other ones in the subgraph are linked to everything in
9895 the subgraph (including themselves). */
9896 for (int i
= 1; i
< n
; i
++)
9898 ASSERT_EQ (n
, subgraph_nodes
[i
]->preds
->length ());
9899 ASSERT_EQ (n
, subgraph_nodes
[i
]->succs
->length ());
9902 /* Verify the dominance information. */
9903 calculate_dominance_info (CDI_DOMINATORS
);
9904 /* The initial block in the subgraph should be dominated by ENTRY. */
9905 ASSERT_EQ (ENTRY_BLOCK_PTR_FOR_FN (fun
),
9906 get_immediate_dominator (CDI_DOMINATORS
,
9907 subgraph_nodes
[0]));
9908 /* Every other block in the subgraph should be dominated by the
9910 for (int i
= 1; i
< n
; i
++)
9911 ASSERT_EQ (subgraph_nodes
[0],
9912 get_immediate_dominator (CDI_DOMINATORS
,
9913 subgraph_nodes
[i
]));
9914 free_dominance_info (CDI_DOMINATORS
);
9916 /* Similarly for post-dominance. */
9917 calculate_dominance_info (CDI_POST_DOMINATORS
);
9918 /* The initial block in the subgraph should be postdominated by EXIT. */
9919 ASSERT_EQ (EXIT_BLOCK_PTR_FOR_FN (fun
),
9920 get_immediate_dominator (CDI_POST_DOMINATORS
,
9921 subgraph_nodes
[0]));
9922 /* Every other block in the subgraph should be postdominated by the
9923 initial block, since that leads to EXIT. */
9924 for (int i
= 1; i
< n
; i
++)
9925 ASSERT_EQ (subgraph_nodes
[0],
9926 get_immediate_dominator (CDI_POST_DOMINATORS
,
9927 subgraph_nodes
[i
]));
9928 free_dominance_info (CDI_POST_DOMINATORS
);
9933 /* Run all of the selftests within this file. */
9938 test_linear_chain ();
9940 test_fully_connected ();
9943 } // namespace selftest
9945 /* TODO: test the dominator/postdominator logic with various graphs/nodes:
9948 - switch statement (a block with many out-edges)
9949 - something that jumps to itself
9952 #endif /* CHECKING_P */