Relocation (= move+destroy)
[official-gcc.git] / gcc / rtl.h
blob68d3ceab29fc392b59e1a9deb33ff653b59fe1fc
1 /* Register Transfer Language (RTL) definitions for GCC
2 Copyright (C) 1987-2018 Free Software Foundation, Inc.
4 This file is part of GCC.
6 GCC is free software; you can redistribute it and/or modify it under
7 the terms of the GNU General Public License as published by the Free
8 Software Foundation; either version 3, or (at your option) any later
9 version.
11 GCC is distributed in the hope that it will be useful, but WITHOUT ANY
12 WARRANTY; without even the implied warranty of MERCHANTABILITY or
13 FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License
14 for more details.
16 You should have received a copy of the GNU General Public License
17 along with GCC; see the file COPYING3. If not see
18 <http://www.gnu.org/licenses/>. */
20 #ifndef GCC_RTL_H
21 #define GCC_RTL_H
23 /* This file is occasionally included by generator files which expect
24 machmode.h and other files to exist and would not normally have been
25 included by coretypes.h. */
26 #ifdef GENERATOR_FILE
27 #include "real.h"
28 #include "fixed-value.h"
29 #include "statistics.h"
30 #include "vec.h"
31 #include "hash-table.h"
32 #include "hash-set.h"
33 #include "input.h"
34 #include "is-a.h"
35 #endif /* GENERATOR_FILE */
37 #include "hard-reg-set.h"
39 /* Value used by some passes to "recognize" noop moves as valid
40 instructions. */
41 #define NOOP_MOVE_INSN_CODE INT_MAX
43 /* Register Transfer Language EXPRESSIONS CODES */
45 #define RTX_CODE enum rtx_code
46 enum rtx_code {
48 #define DEF_RTL_EXPR(ENUM, NAME, FORMAT, CLASS) ENUM ,
49 #include "rtl.def" /* rtl expressions are documented here */
50 #undef DEF_RTL_EXPR
52 LAST_AND_UNUSED_RTX_CODE}; /* A convenient way to get a value for
53 NUM_RTX_CODE.
54 Assumes default enum value assignment. */
56 /* The cast here, saves many elsewhere. */
57 #define NUM_RTX_CODE ((int) LAST_AND_UNUSED_RTX_CODE)
59 /* Similar, but since generator files get more entries... */
60 #ifdef GENERATOR_FILE
61 # define NON_GENERATOR_NUM_RTX_CODE ((int) MATCH_OPERAND)
62 #endif
64 /* Register Transfer Language EXPRESSIONS CODE CLASSES */
66 enum rtx_class {
67 /* We check bit 0-1 of some rtx class codes in the predicates below. */
69 /* Bit 0 = comparison if 0, arithmetic is 1
70 Bit 1 = 1 if commutative. */
71 RTX_COMPARE, /* 0 */
72 RTX_COMM_COMPARE,
73 RTX_BIN_ARITH,
74 RTX_COMM_ARITH,
76 /* Must follow the four preceding values. */
77 RTX_UNARY, /* 4 */
79 RTX_EXTRA,
80 RTX_MATCH,
81 RTX_INSN,
83 /* Bit 0 = 1 if constant. */
84 RTX_OBJ, /* 8 */
85 RTX_CONST_OBJ,
87 RTX_TERNARY,
88 RTX_BITFIELD_OPS,
89 RTX_AUTOINC
92 #define RTX_OBJ_MASK (~1)
93 #define RTX_OBJ_RESULT (RTX_OBJ & RTX_OBJ_MASK)
94 #define RTX_COMPARE_MASK (~1)
95 #define RTX_COMPARE_RESULT (RTX_COMPARE & RTX_COMPARE_MASK)
96 #define RTX_ARITHMETIC_MASK (~1)
97 #define RTX_ARITHMETIC_RESULT (RTX_COMM_ARITH & RTX_ARITHMETIC_MASK)
98 #define RTX_BINARY_MASK (~3)
99 #define RTX_BINARY_RESULT (RTX_COMPARE & RTX_BINARY_MASK)
100 #define RTX_COMMUTATIVE_MASK (~2)
101 #define RTX_COMMUTATIVE_RESULT (RTX_COMM_COMPARE & RTX_COMMUTATIVE_MASK)
102 #define RTX_NON_COMMUTATIVE_RESULT (RTX_COMPARE & RTX_COMMUTATIVE_MASK)
104 extern const unsigned char rtx_length[NUM_RTX_CODE];
105 #define GET_RTX_LENGTH(CODE) (rtx_length[(int) (CODE)])
107 extern const char * const rtx_name[NUM_RTX_CODE];
108 #define GET_RTX_NAME(CODE) (rtx_name[(int) (CODE)])
110 extern const char * const rtx_format[NUM_RTX_CODE];
111 #define GET_RTX_FORMAT(CODE) (rtx_format[(int) (CODE)])
113 extern const enum rtx_class rtx_class[NUM_RTX_CODE];
114 #define GET_RTX_CLASS(CODE) (rtx_class[(int) (CODE)])
116 /* True if CODE is part of the insn chain (i.e. has INSN_UID, PREV_INSN
117 and NEXT_INSN fields). */
118 #define INSN_CHAIN_CODE_P(CODE) IN_RANGE (CODE, DEBUG_INSN, NOTE)
120 extern const unsigned char rtx_code_size[NUM_RTX_CODE];
121 extern const unsigned char rtx_next[NUM_RTX_CODE];
123 /* The flags and bitfields of an ADDR_DIFF_VEC. BASE is the base label
124 relative to which the offsets are calculated, as explained in rtl.def. */
125 struct addr_diff_vec_flags
127 /* Set at the start of shorten_branches - ONLY WHEN OPTIMIZING - : */
128 unsigned min_align: 8;
129 /* Flags: */
130 unsigned base_after_vec: 1; /* BASE is after the ADDR_DIFF_VEC. */
131 unsigned min_after_vec: 1; /* minimum address target label is
132 after the ADDR_DIFF_VEC. */
133 unsigned max_after_vec: 1; /* maximum address target label is
134 after the ADDR_DIFF_VEC. */
135 unsigned min_after_base: 1; /* minimum address target label is
136 after BASE. */
137 unsigned max_after_base: 1; /* maximum address target label is
138 after BASE. */
139 /* Set by the actual branch shortening process - ONLY WHEN OPTIMIZING - : */
140 unsigned offset_unsigned: 1; /* offsets have to be treated as unsigned. */
141 unsigned : 2;
142 unsigned scale : 8;
145 /* Structure used to describe the attributes of a MEM. These are hashed
146 so MEMs that the same attributes share a data structure. This means
147 they cannot be modified in place. */
148 struct GTY(()) mem_attrs
150 mem_attrs ();
152 /* The expression that the MEM accesses, or null if not known.
153 This expression might be larger than the memory reference itself.
154 (In other words, the MEM might access only part of the object.) */
155 tree expr;
157 /* The offset of the memory reference from the start of EXPR.
158 Only valid if OFFSET_KNOWN_P. */
159 poly_int64 offset;
161 /* The size of the memory reference in bytes. Only valid if
162 SIZE_KNOWN_P. */
163 poly_int64 size;
165 /* The alias set of the memory reference. */
166 alias_set_type alias;
168 /* The alignment of the reference in bits. Always a multiple of
169 BITS_PER_UNIT. Note that EXPR may have a stricter alignment
170 than the memory reference itself. */
171 unsigned int align;
173 /* The address space that the memory reference uses. */
174 unsigned char addrspace;
176 /* True if OFFSET is known. */
177 bool offset_known_p;
179 /* True if SIZE is known. */
180 bool size_known_p;
183 /* Structure used to describe the attributes of a REG in similar way as
184 mem_attrs does for MEM above. Note that the OFFSET field is calculated
185 in the same way as for mem_attrs, rather than in the same way as a
186 SUBREG_BYTE. For example, if a big-endian target stores a byte
187 object in the low part of a 4-byte register, the OFFSET field
188 will be -3 rather than 0. */
190 struct GTY((for_user)) reg_attrs {
191 tree decl; /* decl corresponding to REG. */
192 poly_int64 offset; /* Offset from start of DECL. */
195 /* Common union for an element of an rtx. */
197 union rtunion
199 int rt_int;
200 unsigned int rt_uint;
201 poly_uint16_pod rt_subreg;
202 const char *rt_str;
203 rtx rt_rtx;
204 rtvec rt_rtvec;
205 machine_mode rt_type;
206 addr_diff_vec_flags rt_addr_diff_vec_flags;
207 struct cselib_val *rt_cselib;
208 tree rt_tree;
209 basic_block rt_bb;
210 mem_attrs *rt_mem;
211 struct constant_descriptor_rtx *rt_constant;
212 struct dw_cfi_node *rt_cfi;
215 /* Describes the properties of a REG. */
216 struct GTY(()) reg_info {
217 /* The value of REGNO. */
218 unsigned int regno;
220 /* The value of REG_NREGS. */
221 unsigned int nregs : 8;
222 unsigned int unused : 24;
224 /* The value of REG_ATTRS. */
225 reg_attrs *attrs;
228 /* This structure remembers the position of a SYMBOL_REF within an
229 object_block structure. A SYMBOL_REF only provides this information
230 if SYMBOL_REF_HAS_BLOCK_INFO_P is true. */
231 struct GTY(()) block_symbol {
232 /* The usual SYMBOL_REF fields. */
233 rtunion GTY ((skip)) fld[2];
235 /* The block that contains this object. */
236 struct object_block *block;
238 /* The offset of this object from the start of its block. It is negative
239 if the symbol has not yet been assigned an offset. */
240 HOST_WIDE_INT offset;
243 /* Describes a group of objects that are to be placed together in such
244 a way that their relative positions are known. */
245 struct GTY((for_user)) object_block {
246 /* The section in which these objects should be placed. */
247 section *sect;
249 /* The alignment of the first object, measured in bits. */
250 unsigned int alignment;
252 /* The total size of the objects, measured in bytes. */
253 HOST_WIDE_INT size;
255 /* The SYMBOL_REFs for each object. The vector is sorted in
256 order of increasing offset and the following conditions will
257 hold for each element X:
259 SYMBOL_REF_HAS_BLOCK_INFO_P (X)
260 !SYMBOL_REF_ANCHOR_P (X)
261 SYMBOL_REF_BLOCK (X) == [address of this structure]
262 SYMBOL_REF_BLOCK_OFFSET (X) >= 0. */
263 vec<rtx, va_gc> *objects;
265 /* All the anchor SYMBOL_REFs used to address these objects, sorted
266 in order of increasing offset, and then increasing TLS model.
267 The following conditions will hold for each element X in this vector:
269 SYMBOL_REF_HAS_BLOCK_INFO_P (X)
270 SYMBOL_REF_ANCHOR_P (X)
271 SYMBOL_REF_BLOCK (X) == [address of this structure]
272 SYMBOL_REF_BLOCK_OFFSET (X) >= 0. */
273 vec<rtx, va_gc> *anchors;
276 struct GTY((variable_size)) hwivec_def {
277 HOST_WIDE_INT elem[1];
280 /* Number of elements of the HWIVEC if RTX is a CONST_WIDE_INT. */
281 #define CWI_GET_NUM_ELEM(RTX) \
282 ((int)RTL_FLAG_CHECK1("CWI_GET_NUM_ELEM", (RTX), CONST_WIDE_INT)->u2.num_elem)
283 #define CWI_PUT_NUM_ELEM(RTX, NUM) \
284 (RTL_FLAG_CHECK1("CWI_PUT_NUM_ELEM", (RTX), CONST_WIDE_INT)->u2.num_elem = (NUM))
286 struct GTY((variable_size)) const_poly_int_def {
287 trailing_wide_ints<NUM_POLY_INT_COEFFS> coeffs;
290 /* RTL expression ("rtx"). */
292 /* The GTY "desc" and "tag" options below are a kludge: we need a desc
293 field for gengtype to recognize that inheritance is occurring,
294 so that all subclasses are redirected to the traversal hook for the
295 base class.
296 However, all of the fields are in the base class, and special-casing
297 is at work. Hence we use desc and tag of 0, generating a switch
298 statement of the form:
299 switch (0)
301 case 0: // all the work happens here
303 in order to work with the existing special-casing in gengtype. */
305 struct GTY((desc("0"), tag("0"),
306 chain_next ("RTX_NEXT (&%h)"),
307 chain_prev ("RTX_PREV (&%h)"))) rtx_def {
308 /* The kind of expression this is. */
309 ENUM_BITFIELD(rtx_code) code: 16;
311 /* The kind of value the expression has. */
312 ENUM_BITFIELD(machine_mode) mode : 8;
314 /* 1 in a MEM if we should keep the alias set for this mem unchanged
315 when we access a component.
316 1 in a JUMP_INSN if it is a crossing jump.
317 1 in a CALL_INSN if it is a sibling call.
318 1 in a SET that is for a return.
319 In a CODE_LABEL, part of the two-bit alternate entry field.
320 1 in a CONCAT is VAL_EXPR_IS_COPIED in var-tracking.c.
321 1 in a VALUE is SP_BASED_VALUE_P in cselib.c.
322 1 in a SUBREG generated by LRA for reload insns.
323 1 in a REG if this is a static chain register.
324 Dumped as "/j" in RTL dumps. */
325 unsigned int jump : 1;
326 /* In a CODE_LABEL, part of the two-bit alternate entry field.
327 1 in a MEM if it cannot trap.
328 1 in a CALL_INSN logically equivalent to
329 ECF_LOOPING_CONST_OR_PURE and DECL_LOOPING_CONST_OR_PURE_P.
330 Dumped as "/c" in RTL dumps. */
331 unsigned int call : 1;
332 /* 1 in a REG, MEM, or CONCAT if the value is set at most once, anywhere.
333 1 in a SUBREG used for SUBREG_PROMOTED_UNSIGNED_P.
334 1 in a SYMBOL_REF if it addresses something in the per-function
335 constants pool.
336 1 in a CALL_INSN logically equivalent to ECF_CONST and TREE_READONLY.
337 1 in a NOTE, or EXPR_LIST for a const call.
338 1 in a JUMP_INSN of an annulling branch.
339 1 in a CONCAT is VAL_EXPR_IS_CLOBBERED in var-tracking.c.
340 1 in a preserved VALUE is PRESERVED_VALUE_P in cselib.c.
341 1 in a clobber temporarily created for LRA.
342 Dumped as "/u" in RTL dumps. */
343 unsigned int unchanging : 1;
344 /* 1 in a MEM or ASM_OPERANDS expression if the memory reference is volatile.
345 1 in an INSN, CALL_INSN, JUMP_INSN, CODE_LABEL, BARRIER, or NOTE
346 if it has been deleted.
347 1 in a REG expression if corresponds to a variable declared by the user,
348 0 for an internally generated temporary.
349 1 in a SUBREG used for SUBREG_PROMOTED_UNSIGNED_P.
350 1 in a LABEL_REF, REG_LABEL_TARGET or REG_LABEL_OPERAND note for a
351 non-local label.
352 In a SYMBOL_REF, this flag is used for machine-specific purposes.
353 In a PREFETCH, this flag indicates that it should be considered a
354 scheduling barrier.
355 1 in a CONCAT is VAL_NEEDS_RESOLUTION in var-tracking.c.
356 Dumped as "/v" in RTL dumps. */
357 unsigned int volatil : 1;
358 /* 1 in a REG if the register is used only in exit code a loop.
359 1 in a SUBREG expression if was generated from a variable with a
360 promoted mode.
361 1 in a CODE_LABEL if the label is used for nonlocal gotos
362 and must not be deleted even if its count is zero.
363 1 in an INSN, JUMP_INSN or CALL_INSN if this insn must be scheduled
364 together with the preceding insn. Valid only within sched.
365 1 in an INSN, JUMP_INSN, or CALL_INSN if insn is in a delay slot and
366 from the target of a branch. Valid from reorg until end of compilation;
367 cleared before used.
369 The name of the field is historical. It used to be used in MEMs
370 to record whether the MEM accessed part of a structure.
371 Dumped as "/s" in RTL dumps. */
372 unsigned int in_struct : 1;
373 /* At the end of RTL generation, 1 if this rtx is used. This is used for
374 copying shared structure. See `unshare_all_rtl'.
375 In a REG, this is not needed for that purpose, and used instead
376 in `leaf_renumber_regs_insn'.
377 1 in a SYMBOL_REF, means that emit_library_call
378 has used it as the function.
379 1 in a CONCAT is VAL_HOLDS_TRACK_EXPR in var-tracking.c.
380 1 in a VALUE or DEBUG_EXPR is VALUE_RECURSED_INTO in var-tracking.c. */
381 unsigned int used : 1;
382 /* 1 in an INSN or a SET if this rtx is related to the call frame,
383 either changing how we compute the frame address or saving and
384 restoring registers in the prologue and epilogue.
385 1 in a REG or MEM if it is a pointer.
386 1 in a SYMBOL_REF if it addresses something in the per-function
387 constant string pool.
388 1 in a VALUE is VALUE_CHANGED in var-tracking.c.
389 Dumped as "/f" in RTL dumps. */
390 unsigned frame_related : 1;
391 /* 1 in a REG or PARALLEL that is the current function's return value.
392 1 in a SYMBOL_REF for a weak symbol.
393 1 in a CALL_INSN logically equivalent to ECF_PURE and DECL_PURE_P.
394 1 in a CONCAT is VAL_EXPR_HAS_REVERSE in var-tracking.c.
395 1 in a VALUE or DEBUG_EXPR is NO_LOC_P in var-tracking.c.
396 Dumped as "/i" in RTL dumps. */
397 unsigned return_val : 1;
399 union {
400 /* The final union field is aligned to 64 bits on LP64 hosts,
401 giving a 32-bit gap after the fields above. We optimize the
402 layout for that case and use the gap for extra code-specific
403 information. */
405 /* The ORIGINAL_REGNO of a REG. */
406 unsigned int original_regno;
408 /* The INSN_UID of an RTX_INSN-class code. */
409 int insn_uid;
411 /* The SYMBOL_REF_FLAGS of a SYMBOL_REF. */
412 unsigned int symbol_ref_flags;
414 /* The PAT_VAR_LOCATION_STATUS of a VAR_LOCATION. */
415 enum var_init_status var_location_status;
417 /* In a CONST_WIDE_INT (aka hwivec_def), this is the number of
418 HOST_WIDE_INTs in the hwivec_def. */
419 unsigned int num_elem;
421 /* Information about a CONST_VECTOR. */
422 struct
424 /* The value of CONST_VECTOR_NPATTERNS. */
425 unsigned int npatterns : 16;
427 /* The value of CONST_VECTOR_NELTS_PER_PATTERN. */
428 unsigned int nelts_per_pattern : 8;
430 /* For future expansion. */
431 unsigned int unused : 8;
432 } const_vector;
433 } GTY ((skip)) u2;
435 /* The first element of the operands of this rtx.
436 The number of operands and their types are controlled
437 by the `code' field, according to rtl.def. */
438 union u {
439 rtunion fld[1];
440 HOST_WIDE_INT hwint[1];
441 struct reg_info reg;
442 struct block_symbol block_sym;
443 struct real_value rv;
444 struct fixed_value fv;
445 struct hwivec_def hwiv;
446 struct const_poly_int_def cpi;
447 } GTY ((special ("rtx_def"), desc ("GET_CODE (&%0)"))) u;
450 /* A node for constructing singly-linked lists of rtx. */
452 class GTY(()) rtx_expr_list : public rtx_def
454 /* No extra fields, but adds invariant: (GET_CODE (X) == EXPR_LIST). */
456 public:
457 /* Get next in list. */
458 rtx_expr_list *next () const;
460 /* Get at the underlying rtx. */
461 rtx element () const;
464 template <>
465 template <>
466 inline bool
467 is_a_helper <rtx_expr_list *>::test (rtx rt)
469 return rt->code == EXPR_LIST;
472 class GTY(()) rtx_insn_list : public rtx_def
474 /* No extra fields, but adds invariant: (GET_CODE (X) == INSN_LIST).
476 This is an instance of:
478 DEF_RTL_EXPR(INSN_LIST, "insn_list", "ue", RTX_EXTRA)
480 i.e. a node for constructing singly-linked lists of rtx_insn *, where
481 the list is "external" to the insn (as opposed to the doubly-linked
482 list embedded within rtx_insn itself). */
484 public:
485 /* Get next in list. */
486 rtx_insn_list *next () const;
488 /* Get at the underlying instruction. */
489 rtx_insn *insn () const;
493 template <>
494 template <>
495 inline bool
496 is_a_helper <rtx_insn_list *>::test (rtx rt)
498 return rt->code == INSN_LIST;
501 /* A node with invariant GET_CODE (X) == SEQUENCE i.e. a vector of rtx,
502 typically (but not always) of rtx_insn *, used in the late passes. */
504 class GTY(()) rtx_sequence : public rtx_def
506 /* No extra fields, but adds invariant: (GET_CODE (X) == SEQUENCE). */
508 public:
509 /* Get number of elements in sequence. */
510 int len () const;
512 /* Get i-th element of the sequence. */
513 rtx element (int index) const;
515 /* Get i-th element of the sequence, with a checked cast to
516 rtx_insn *. */
517 rtx_insn *insn (int index) const;
520 template <>
521 template <>
522 inline bool
523 is_a_helper <rtx_sequence *>::test (rtx rt)
525 return rt->code == SEQUENCE;
528 template <>
529 template <>
530 inline bool
531 is_a_helper <const rtx_sequence *>::test (const_rtx rt)
533 return rt->code == SEQUENCE;
536 class GTY(()) rtx_insn : public rtx_def
538 public:
539 /* No extra fields, but adds the invariant:
541 (INSN_P (X)
542 || NOTE_P (X)
543 || JUMP_TABLE_DATA_P (X)
544 || BARRIER_P (X)
545 || LABEL_P (X))
547 i.e. that we must be able to use the following:
548 INSN_UID ()
549 NEXT_INSN ()
550 PREV_INSN ()
551 i.e. we have an rtx that has an INSN_UID field and can be part of
552 a linked list of insns.
555 /* Returns true if this insn has been deleted. */
557 bool deleted () const { return volatil; }
559 /* Mark this insn as deleted. */
561 void set_deleted () { volatil = true; }
563 /* Mark this insn as not deleted. */
565 void set_undeleted () { volatil = false; }
568 /* Subclasses of rtx_insn. */
570 class GTY(()) rtx_debug_insn : public rtx_insn
572 /* No extra fields, but adds the invariant:
573 DEBUG_INSN_P (X) aka (GET_CODE (X) == DEBUG_INSN)
574 i.e. an annotation for tracking variable assignments.
576 This is an instance of:
577 DEF_RTL_EXPR(DEBUG_INSN, "debug_insn", "uuBeiie", RTX_INSN)
578 from rtl.def. */
581 class GTY(()) rtx_nonjump_insn : public rtx_insn
583 /* No extra fields, but adds the invariant:
584 NONJUMP_INSN_P (X) aka (GET_CODE (X) == INSN)
585 i.e an instruction that cannot jump.
587 This is an instance of:
588 DEF_RTL_EXPR(INSN, "insn", "uuBeiie", RTX_INSN)
589 from rtl.def. */
592 class GTY(()) rtx_jump_insn : public rtx_insn
594 public:
595 /* No extra fields, but adds the invariant:
596 JUMP_P (X) aka (GET_CODE (X) == JUMP_INSN)
597 i.e. an instruction that can possibly jump.
599 This is an instance of:
600 DEF_RTL_EXPR(JUMP_INSN, "jump_insn", "uuBeiie0", RTX_INSN)
601 from rtl.def. */
603 /* Returns jump target of this instruction. The returned value is not
604 necessarily a code label: it may also be a RETURN or SIMPLE_RETURN
605 expression. Also, when the code label is marked "deleted", it is
606 replaced by a NOTE. In some cases the value is NULL_RTX. */
608 inline rtx jump_label () const;
610 /* Returns jump target cast to rtx_code_label *. */
612 inline rtx_code_label *jump_target () const;
614 /* Set jump target. */
616 inline void set_jump_target (rtx_code_label *);
619 class GTY(()) rtx_call_insn : public rtx_insn
621 /* No extra fields, but adds the invariant:
622 CALL_P (X) aka (GET_CODE (X) == CALL_INSN)
623 i.e. an instruction that can possibly call a subroutine
624 but which will not change which instruction comes next
625 in the current function.
627 This is an instance of:
628 DEF_RTL_EXPR(CALL_INSN, "call_insn", "uuBeiiee", RTX_INSN)
629 from rtl.def. */
632 class GTY(()) rtx_jump_table_data : public rtx_insn
634 /* No extra fields, but adds the invariant:
635 JUMP_TABLE_DATA_P (X) aka (GET_CODE (INSN) == JUMP_TABLE_DATA)
636 i.e. a data for a jump table, considered an instruction for
637 historical reasons.
639 This is an instance of:
640 DEF_RTL_EXPR(JUMP_TABLE_DATA, "jump_table_data", "uuBe0000", RTX_INSN)
641 from rtl.def. */
643 public:
645 /* This can be either:
647 (a) a table of absolute jumps, in which case PATTERN (this) is an
648 ADDR_VEC with arg 0 a vector of labels, or
650 (b) a table of relative jumps (e.g. for -fPIC), in which case
651 PATTERN (this) is an ADDR_DIFF_VEC, with arg 0 a LABEL_REF and
652 arg 1 the vector of labels.
654 This method gets the underlying vec. */
656 inline rtvec get_labels () const;
657 inline scalar_int_mode get_data_mode () const;
660 class GTY(()) rtx_barrier : public rtx_insn
662 /* No extra fields, but adds the invariant:
663 BARRIER_P (X) aka (GET_CODE (X) == BARRIER)
664 i.e. a marker that indicates that control will not flow through.
666 This is an instance of:
667 DEF_RTL_EXPR(BARRIER, "barrier", "uu00000", RTX_EXTRA)
668 from rtl.def. */
671 class GTY(()) rtx_code_label : public rtx_insn
673 /* No extra fields, but adds the invariant:
674 LABEL_P (X) aka (GET_CODE (X) == CODE_LABEL)
675 i.e. a label in the assembler.
677 This is an instance of:
678 DEF_RTL_EXPR(CODE_LABEL, "code_label", "uuB00is", RTX_EXTRA)
679 from rtl.def. */
682 class GTY(()) rtx_note : public rtx_insn
684 /* No extra fields, but adds the invariant:
685 NOTE_P(X) aka (GET_CODE (X) == NOTE)
686 i.e. a note about the corresponding source code.
688 This is an instance of:
689 DEF_RTL_EXPR(NOTE, "note", "uuB0ni", RTX_EXTRA)
690 from rtl.def. */
693 /* The size in bytes of an rtx header (code, mode and flags). */
694 #define RTX_HDR_SIZE offsetof (struct rtx_def, u)
696 /* The size in bytes of an rtx with code CODE. */
697 #define RTX_CODE_SIZE(CODE) rtx_code_size[CODE]
699 #define NULL_RTX (rtx) 0
701 /* The "next" and "previous" RTX, relative to this one. */
703 #define RTX_NEXT(X) (rtx_next[GET_CODE (X)] == 0 ? NULL \
704 : *(rtx *)(((char *)X) + rtx_next[GET_CODE (X)]))
706 /* FIXME: the "NEXT_INSN (PREV_INSN (X)) == X" condition shouldn't be needed.
708 #define RTX_PREV(X) ((INSN_P (X) \
709 || NOTE_P (X) \
710 || JUMP_TABLE_DATA_P (X) \
711 || BARRIER_P (X) \
712 || LABEL_P (X)) \
713 && PREV_INSN (as_a <rtx_insn *> (X)) != NULL \
714 && NEXT_INSN (PREV_INSN (as_a <rtx_insn *> (X))) == X \
715 ? PREV_INSN (as_a <rtx_insn *> (X)) : NULL)
717 /* Define macros to access the `code' field of the rtx. */
719 #define GET_CODE(RTX) ((enum rtx_code) (RTX)->code)
720 #define PUT_CODE(RTX, CODE) ((RTX)->code = (CODE))
722 #define GET_MODE(RTX) ((machine_mode) (RTX)->mode)
723 #define PUT_MODE_RAW(RTX, MODE) ((RTX)->mode = (MODE))
725 /* RTL vector. These appear inside RTX's when there is a need
726 for a variable number of things. The principle use is inside
727 PARALLEL expressions. */
729 struct GTY(()) rtvec_def {
730 int num_elem; /* number of elements */
731 rtx GTY ((length ("%h.num_elem"))) elem[1];
734 #define NULL_RTVEC (rtvec) 0
736 #define GET_NUM_ELEM(RTVEC) ((RTVEC)->num_elem)
737 #define PUT_NUM_ELEM(RTVEC, NUM) ((RTVEC)->num_elem = (NUM))
739 /* Predicate yielding nonzero iff X is an rtx for a register. */
740 #define REG_P(X) (GET_CODE (X) == REG)
742 /* Predicate yielding nonzero iff X is an rtx for a memory location. */
743 #define MEM_P(X) (GET_CODE (X) == MEM)
745 #if TARGET_SUPPORTS_WIDE_INT
747 /* Match CONST_*s that can represent compile-time constant integers. */
748 #define CASE_CONST_SCALAR_INT \
749 case CONST_INT: \
750 case CONST_WIDE_INT
752 /* Match CONST_*s for which pointer equality corresponds to value
753 equality. */
754 #define CASE_CONST_UNIQUE \
755 case CONST_INT: \
756 case CONST_WIDE_INT: \
757 case CONST_POLY_INT: \
758 case CONST_DOUBLE: \
759 case CONST_FIXED
761 /* Match all CONST_* rtxes. */
762 #define CASE_CONST_ANY \
763 case CONST_INT: \
764 case CONST_WIDE_INT: \
765 case CONST_POLY_INT: \
766 case CONST_DOUBLE: \
767 case CONST_FIXED: \
768 case CONST_VECTOR
770 #else
772 /* Match CONST_*s that can represent compile-time constant integers. */
773 #define CASE_CONST_SCALAR_INT \
774 case CONST_INT: \
775 case CONST_DOUBLE
777 /* Match CONST_*s for which pointer equality corresponds to value
778 equality. */
779 #define CASE_CONST_UNIQUE \
780 case CONST_INT: \
781 case CONST_DOUBLE: \
782 case CONST_FIXED
784 /* Match all CONST_* rtxes. */
785 #define CASE_CONST_ANY \
786 case CONST_INT: \
787 case CONST_DOUBLE: \
788 case CONST_FIXED: \
789 case CONST_VECTOR
790 #endif
792 /* Predicate yielding nonzero iff X is an rtx for a constant integer. */
793 #define CONST_INT_P(X) (GET_CODE (X) == CONST_INT)
795 /* Predicate yielding nonzero iff X is an rtx for a constant integer. */
796 #define CONST_WIDE_INT_P(X) (GET_CODE (X) == CONST_WIDE_INT)
798 /* Predicate yielding nonzero iff X is an rtx for a polynomial constant
799 integer. */
800 #define CONST_POLY_INT_P(X) \
801 (NUM_POLY_INT_COEFFS > 1 && GET_CODE (X) == CONST_POLY_INT)
803 /* Predicate yielding nonzero iff X is an rtx for a constant fixed-point. */
804 #define CONST_FIXED_P(X) (GET_CODE (X) == CONST_FIXED)
806 /* Predicate yielding true iff X is an rtx for a double-int
807 or floating point constant. */
808 #define CONST_DOUBLE_P(X) (GET_CODE (X) == CONST_DOUBLE)
810 /* Predicate yielding true iff X is an rtx for a double-int. */
811 #define CONST_DOUBLE_AS_INT_P(X) \
812 (GET_CODE (X) == CONST_DOUBLE && GET_MODE (X) == VOIDmode)
814 /* Predicate yielding true iff X is an rtx for a integer const. */
815 #if TARGET_SUPPORTS_WIDE_INT
816 #define CONST_SCALAR_INT_P(X) \
817 (CONST_INT_P (X) || CONST_WIDE_INT_P (X))
818 #else
819 #define CONST_SCALAR_INT_P(X) \
820 (CONST_INT_P (X) || CONST_DOUBLE_AS_INT_P (X))
821 #endif
823 /* Predicate yielding true iff X is an rtx for a double-int. */
824 #define CONST_DOUBLE_AS_FLOAT_P(X) \
825 (GET_CODE (X) == CONST_DOUBLE && GET_MODE (X) != VOIDmode)
827 /* Predicate yielding nonzero iff X is a label insn. */
828 #define LABEL_P(X) (GET_CODE (X) == CODE_LABEL)
830 /* Predicate yielding nonzero iff X is a jump insn. */
831 #define JUMP_P(X) (GET_CODE (X) == JUMP_INSN)
833 /* Predicate yielding nonzero iff X is a call insn. */
834 #define CALL_P(X) (GET_CODE (X) == CALL_INSN)
836 /* Predicate yielding nonzero iff X is an insn that cannot jump. */
837 #define NONJUMP_INSN_P(X) (GET_CODE (X) == INSN)
839 /* Predicate yielding nonzero iff X is a debug note/insn. */
840 #define DEBUG_INSN_P(X) (GET_CODE (X) == DEBUG_INSN)
842 /* Predicate yielding nonzero iff X is an insn that is not a debug insn. */
843 #define NONDEBUG_INSN_P(X) (INSN_P (X) && !DEBUG_INSN_P (X))
845 /* Nonzero if DEBUG_MARKER_INSN_P may possibly hold. */
846 #define MAY_HAVE_DEBUG_MARKER_INSNS debug_nonbind_markers_p
847 /* Nonzero if DEBUG_BIND_INSN_P may possibly hold. */
848 #define MAY_HAVE_DEBUG_BIND_INSNS flag_var_tracking_assignments
849 /* Nonzero if DEBUG_INSN_P may possibly hold. */
850 #define MAY_HAVE_DEBUG_INSNS \
851 (MAY_HAVE_DEBUG_MARKER_INSNS || MAY_HAVE_DEBUG_BIND_INSNS)
853 /* Predicate yielding nonzero iff X is a real insn. */
854 #define INSN_P(X) \
855 (NONJUMP_INSN_P (X) || DEBUG_INSN_P (X) || JUMP_P (X) || CALL_P (X))
857 /* Predicate yielding nonzero iff X is a note insn. */
858 #define NOTE_P(X) (GET_CODE (X) == NOTE)
860 /* Predicate yielding nonzero iff X is a barrier insn. */
861 #define BARRIER_P(X) (GET_CODE (X) == BARRIER)
863 /* Predicate yielding nonzero iff X is a data for a jump table. */
864 #define JUMP_TABLE_DATA_P(INSN) (GET_CODE (INSN) == JUMP_TABLE_DATA)
866 /* Predicate yielding nonzero iff RTX is a subreg. */
867 #define SUBREG_P(RTX) (GET_CODE (RTX) == SUBREG)
869 /* Predicate yielding true iff RTX is a symbol ref. */
870 #define SYMBOL_REF_P(RTX) (GET_CODE (RTX) == SYMBOL_REF)
872 template <>
873 template <>
874 inline bool
875 is_a_helper <rtx_insn *>::test (rtx rt)
877 return (INSN_P (rt)
878 || NOTE_P (rt)
879 || JUMP_TABLE_DATA_P (rt)
880 || BARRIER_P (rt)
881 || LABEL_P (rt));
884 template <>
885 template <>
886 inline bool
887 is_a_helper <const rtx_insn *>::test (const_rtx rt)
889 return (INSN_P (rt)
890 || NOTE_P (rt)
891 || JUMP_TABLE_DATA_P (rt)
892 || BARRIER_P (rt)
893 || LABEL_P (rt));
896 template <>
897 template <>
898 inline bool
899 is_a_helper <rtx_debug_insn *>::test (rtx rt)
901 return DEBUG_INSN_P (rt);
904 template <>
905 template <>
906 inline bool
907 is_a_helper <rtx_nonjump_insn *>::test (rtx rt)
909 return NONJUMP_INSN_P (rt);
912 template <>
913 template <>
914 inline bool
915 is_a_helper <rtx_jump_insn *>::test (rtx rt)
917 return JUMP_P (rt);
920 template <>
921 template <>
922 inline bool
923 is_a_helper <rtx_jump_insn *>::test (rtx_insn *insn)
925 return JUMP_P (insn);
928 template <>
929 template <>
930 inline bool
931 is_a_helper <rtx_call_insn *>::test (rtx rt)
933 return CALL_P (rt);
936 template <>
937 template <>
938 inline bool
939 is_a_helper <rtx_call_insn *>::test (rtx_insn *insn)
941 return CALL_P (insn);
944 template <>
945 template <>
946 inline bool
947 is_a_helper <rtx_jump_table_data *>::test (rtx rt)
949 return JUMP_TABLE_DATA_P (rt);
952 template <>
953 template <>
954 inline bool
955 is_a_helper <rtx_jump_table_data *>::test (rtx_insn *insn)
957 return JUMP_TABLE_DATA_P (insn);
960 template <>
961 template <>
962 inline bool
963 is_a_helper <rtx_barrier *>::test (rtx rt)
965 return BARRIER_P (rt);
968 template <>
969 template <>
970 inline bool
971 is_a_helper <rtx_code_label *>::test (rtx rt)
973 return LABEL_P (rt);
976 template <>
977 template <>
978 inline bool
979 is_a_helper <rtx_code_label *>::test (rtx_insn *insn)
981 return LABEL_P (insn);
984 template <>
985 template <>
986 inline bool
987 is_a_helper <rtx_note *>::test (rtx rt)
989 return NOTE_P (rt);
992 template <>
993 template <>
994 inline bool
995 is_a_helper <rtx_note *>::test (rtx_insn *insn)
997 return NOTE_P (insn);
1000 /* Predicate yielding nonzero iff X is a return or simple_return. */
1001 #define ANY_RETURN_P(X) \
1002 (GET_CODE (X) == RETURN || GET_CODE (X) == SIMPLE_RETURN)
1004 /* 1 if X is a unary operator. */
1006 #define UNARY_P(X) \
1007 (GET_RTX_CLASS (GET_CODE (X)) == RTX_UNARY)
1009 /* 1 if X is a binary operator. */
1011 #define BINARY_P(X) \
1012 ((GET_RTX_CLASS (GET_CODE (X)) & RTX_BINARY_MASK) == RTX_BINARY_RESULT)
1014 /* 1 if X is an arithmetic operator. */
1016 #define ARITHMETIC_P(X) \
1017 ((GET_RTX_CLASS (GET_CODE (X)) & RTX_ARITHMETIC_MASK) \
1018 == RTX_ARITHMETIC_RESULT)
1020 /* 1 if X is an arithmetic operator. */
1022 #define COMMUTATIVE_ARITH_P(X) \
1023 (GET_RTX_CLASS (GET_CODE (X)) == RTX_COMM_ARITH)
1025 /* 1 if X is a commutative arithmetic operator or a comparison operator.
1026 These two are sometimes selected together because it is possible to
1027 swap the two operands. */
1029 #define SWAPPABLE_OPERANDS_P(X) \
1030 ((1 << GET_RTX_CLASS (GET_CODE (X))) \
1031 & ((1 << RTX_COMM_ARITH) | (1 << RTX_COMM_COMPARE) \
1032 | (1 << RTX_COMPARE)))
1034 /* 1 if X is a non-commutative operator. */
1036 #define NON_COMMUTATIVE_P(X) \
1037 ((GET_RTX_CLASS (GET_CODE (X)) & RTX_COMMUTATIVE_MASK) \
1038 == RTX_NON_COMMUTATIVE_RESULT)
1040 /* 1 if X is a commutative operator on integers. */
1042 #define COMMUTATIVE_P(X) \
1043 ((GET_RTX_CLASS (GET_CODE (X)) & RTX_COMMUTATIVE_MASK) \
1044 == RTX_COMMUTATIVE_RESULT)
1046 /* 1 if X is a relational operator. */
1048 #define COMPARISON_P(X) \
1049 ((GET_RTX_CLASS (GET_CODE (X)) & RTX_COMPARE_MASK) == RTX_COMPARE_RESULT)
1051 /* 1 if X is a constant value that is an integer. */
1053 #define CONSTANT_P(X) \
1054 (GET_RTX_CLASS (GET_CODE (X)) == RTX_CONST_OBJ)
1056 /* 1 if X can be used to represent an object. */
1057 #define OBJECT_P(X) \
1058 ((GET_RTX_CLASS (GET_CODE (X)) & RTX_OBJ_MASK) == RTX_OBJ_RESULT)
1060 /* General accessor macros for accessing the fields of an rtx. */
1062 #if defined ENABLE_RTL_CHECKING && (GCC_VERSION >= 2007)
1063 /* The bit with a star outside the statement expr and an & inside is
1064 so that N can be evaluated only once. */
1065 #define RTL_CHECK1(RTX, N, C1) __extension__ \
1066 (*({ __typeof (RTX) const _rtx = (RTX); const int _n = (N); \
1067 const enum rtx_code _code = GET_CODE (_rtx); \
1068 if (_n < 0 || _n >= GET_RTX_LENGTH (_code)) \
1069 rtl_check_failed_bounds (_rtx, _n, __FILE__, __LINE__, \
1070 __FUNCTION__); \
1071 if (GET_RTX_FORMAT (_code)[_n] != C1) \
1072 rtl_check_failed_type1 (_rtx, _n, C1, __FILE__, __LINE__, \
1073 __FUNCTION__); \
1074 &_rtx->u.fld[_n]; }))
1076 #define RTL_CHECK2(RTX, N, C1, C2) __extension__ \
1077 (*({ __typeof (RTX) const _rtx = (RTX); const int _n = (N); \
1078 const enum rtx_code _code = GET_CODE (_rtx); \
1079 if (_n < 0 || _n >= GET_RTX_LENGTH (_code)) \
1080 rtl_check_failed_bounds (_rtx, _n, __FILE__, __LINE__, \
1081 __FUNCTION__); \
1082 if (GET_RTX_FORMAT (_code)[_n] != C1 \
1083 && GET_RTX_FORMAT (_code)[_n] != C2) \
1084 rtl_check_failed_type2 (_rtx, _n, C1, C2, __FILE__, __LINE__, \
1085 __FUNCTION__); \
1086 &_rtx->u.fld[_n]; }))
1088 #define RTL_CHECKC1(RTX, N, C) __extension__ \
1089 (*({ __typeof (RTX) const _rtx = (RTX); const int _n = (N); \
1090 if (GET_CODE (_rtx) != (C)) \
1091 rtl_check_failed_code1 (_rtx, (C), __FILE__, __LINE__, \
1092 __FUNCTION__); \
1093 &_rtx->u.fld[_n]; }))
1095 #define RTL_CHECKC2(RTX, N, C1, C2) __extension__ \
1096 (*({ __typeof (RTX) const _rtx = (RTX); const int _n = (N); \
1097 const enum rtx_code _code = GET_CODE (_rtx); \
1098 if (_code != (C1) && _code != (C2)) \
1099 rtl_check_failed_code2 (_rtx, (C1), (C2), __FILE__, __LINE__, \
1100 __FUNCTION__); \
1101 &_rtx->u.fld[_n]; }))
1103 #define RTL_CHECKC3(RTX, N, C1, C2, C3) __extension__ \
1104 (*({ __typeof (RTX) const _rtx = (RTX); const int _n = (N); \
1105 const enum rtx_code _code = GET_CODE (_rtx); \
1106 if (_code != (C1) && _code != (C2) && _code != (C3)) \
1107 rtl_check_failed_code3 (_rtx, (C1), (C2), (C3), __FILE__, \
1108 __LINE__, __FUNCTION__); \
1109 &_rtx->u.fld[_n]; }))
1111 #define RTVEC_ELT(RTVEC, I) __extension__ \
1112 (*({ __typeof (RTVEC) const _rtvec = (RTVEC); const int _i = (I); \
1113 if (_i < 0 || _i >= GET_NUM_ELEM (_rtvec)) \
1114 rtvec_check_failed_bounds (_rtvec, _i, __FILE__, __LINE__, \
1115 __FUNCTION__); \
1116 &_rtvec->elem[_i]; }))
1118 #define XWINT(RTX, N) __extension__ \
1119 (*({ __typeof (RTX) const _rtx = (RTX); const int _n = (N); \
1120 const enum rtx_code _code = GET_CODE (_rtx); \
1121 if (_n < 0 || _n >= GET_RTX_LENGTH (_code)) \
1122 rtl_check_failed_bounds (_rtx, _n, __FILE__, __LINE__, \
1123 __FUNCTION__); \
1124 if (GET_RTX_FORMAT (_code)[_n] != 'w') \
1125 rtl_check_failed_type1 (_rtx, _n, 'w', __FILE__, __LINE__, \
1126 __FUNCTION__); \
1127 &_rtx->u.hwint[_n]; }))
1129 #define CWI_ELT(RTX, I) __extension__ \
1130 (*({ __typeof (RTX) const _cwi = (RTX); \
1131 int _max = CWI_GET_NUM_ELEM (_cwi); \
1132 const int _i = (I); \
1133 if (_i < 0 || _i >= _max) \
1134 cwi_check_failed_bounds (_cwi, _i, __FILE__, __LINE__, \
1135 __FUNCTION__); \
1136 &_cwi->u.hwiv.elem[_i]; }))
1138 #define XCWINT(RTX, N, C) __extension__ \
1139 (*({ __typeof (RTX) const _rtx = (RTX); \
1140 if (GET_CODE (_rtx) != (C)) \
1141 rtl_check_failed_code1 (_rtx, (C), __FILE__, __LINE__, \
1142 __FUNCTION__); \
1143 &_rtx->u.hwint[N]; }))
1145 #define XCMWINT(RTX, N, C, M) __extension__ \
1146 (*({ __typeof (RTX) const _rtx = (RTX); \
1147 if (GET_CODE (_rtx) != (C) || GET_MODE (_rtx) != (M)) \
1148 rtl_check_failed_code_mode (_rtx, (C), (M), false, __FILE__, \
1149 __LINE__, __FUNCTION__); \
1150 &_rtx->u.hwint[N]; }))
1152 #define XCNMPRV(RTX, C, M) __extension__ \
1153 ({ __typeof (RTX) const _rtx = (RTX); \
1154 if (GET_CODE (_rtx) != (C) || GET_MODE (_rtx) == (M)) \
1155 rtl_check_failed_code_mode (_rtx, (C), (M), true, __FILE__, \
1156 __LINE__, __FUNCTION__); \
1157 &_rtx->u.rv; })
1159 #define XCNMPFV(RTX, C, M) __extension__ \
1160 ({ __typeof (RTX) const _rtx = (RTX); \
1161 if (GET_CODE (_rtx) != (C) || GET_MODE (_rtx) == (M)) \
1162 rtl_check_failed_code_mode (_rtx, (C), (M), true, __FILE__, \
1163 __LINE__, __FUNCTION__); \
1164 &_rtx->u.fv; })
1166 #define REG_CHECK(RTX) __extension__ \
1167 ({ __typeof (RTX) const _rtx = (RTX); \
1168 if (GET_CODE (_rtx) != REG) \
1169 rtl_check_failed_code1 (_rtx, REG, __FILE__, __LINE__, \
1170 __FUNCTION__); \
1171 &_rtx->u.reg; })
1173 #define BLOCK_SYMBOL_CHECK(RTX) __extension__ \
1174 ({ __typeof (RTX) const _symbol = (RTX); \
1175 const unsigned int flags = SYMBOL_REF_FLAGS (_symbol); \
1176 if ((flags & SYMBOL_FLAG_HAS_BLOCK_INFO) == 0) \
1177 rtl_check_failed_block_symbol (__FILE__, __LINE__, \
1178 __FUNCTION__); \
1179 &_symbol->u.block_sym; })
1181 #define HWIVEC_CHECK(RTX,C) __extension__ \
1182 ({ __typeof (RTX) const _symbol = (RTX); \
1183 RTL_CHECKC1 (_symbol, 0, C); \
1184 &_symbol->u.hwiv; })
1186 extern void rtl_check_failed_bounds (const_rtx, int, const char *, int,
1187 const char *)
1188 ATTRIBUTE_NORETURN ATTRIBUTE_COLD;
1189 extern void rtl_check_failed_type1 (const_rtx, int, int, const char *, int,
1190 const char *)
1191 ATTRIBUTE_NORETURN ATTRIBUTE_COLD;
1192 extern void rtl_check_failed_type2 (const_rtx, int, int, int, const char *,
1193 int, const char *)
1194 ATTRIBUTE_NORETURN ATTRIBUTE_COLD;
1195 extern void rtl_check_failed_code1 (const_rtx, enum rtx_code, const char *,
1196 int, const char *)
1197 ATTRIBUTE_NORETURN ATTRIBUTE_COLD;
1198 extern void rtl_check_failed_code2 (const_rtx, enum rtx_code, enum rtx_code,
1199 const char *, int, const char *)
1200 ATTRIBUTE_NORETURN ATTRIBUTE_COLD;
1201 extern void rtl_check_failed_code3 (const_rtx, enum rtx_code, enum rtx_code,
1202 enum rtx_code, const char *, int,
1203 const char *)
1204 ATTRIBUTE_NORETURN ATTRIBUTE_COLD;
1205 extern void rtl_check_failed_code_mode (const_rtx, enum rtx_code, machine_mode,
1206 bool, const char *, int, const char *)
1207 ATTRIBUTE_NORETURN ATTRIBUTE_COLD;
1208 extern void rtl_check_failed_block_symbol (const char *, int, const char *)
1209 ATTRIBUTE_NORETURN ATTRIBUTE_COLD;
1210 extern void cwi_check_failed_bounds (const_rtx, int, const char *, int,
1211 const char *)
1212 ATTRIBUTE_NORETURN ATTRIBUTE_COLD;
1213 extern void rtvec_check_failed_bounds (const_rtvec, int, const char *, int,
1214 const char *)
1215 ATTRIBUTE_NORETURN ATTRIBUTE_COLD;
1217 #else /* not ENABLE_RTL_CHECKING */
1219 #define RTL_CHECK1(RTX, N, C1) ((RTX)->u.fld[N])
1220 #define RTL_CHECK2(RTX, N, C1, C2) ((RTX)->u.fld[N])
1221 #define RTL_CHECKC1(RTX, N, C) ((RTX)->u.fld[N])
1222 #define RTL_CHECKC2(RTX, N, C1, C2) ((RTX)->u.fld[N])
1223 #define RTL_CHECKC3(RTX, N, C1, C2, C3) ((RTX)->u.fld[N])
1224 #define RTVEC_ELT(RTVEC, I) ((RTVEC)->elem[I])
1225 #define XWINT(RTX, N) ((RTX)->u.hwint[N])
1226 #define CWI_ELT(RTX, I) ((RTX)->u.hwiv.elem[I])
1227 #define XCWINT(RTX, N, C) ((RTX)->u.hwint[N])
1228 #define XCMWINT(RTX, N, C, M) ((RTX)->u.hwint[N])
1229 #define XCNMWINT(RTX, N, C, M) ((RTX)->u.hwint[N])
1230 #define XCNMPRV(RTX, C, M) (&(RTX)->u.rv)
1231 #define XCNMPFV(RTX, C, M) (&(RTX)->u.fv)
1232 #define REG_CHECK(RTX) (&(RTX)->u.reg)
1233 #define BLOCK_SYMBOL_CHECK(RTX) (&(RTX)->u.block_sym)
1234 #define HWIVEC_CHECK(RTX,C) (&(RTX)->u.hwiv)
1236 #endif
1238 /* General accessor macros for accessing the flags of an rtx. */
1240 /* Access an individual rtx flag, with no checking of any kind. */
1241 #define RTX_FLAG(RTX, FLAG) ((RTX)->FLAG)
1243 #if defined ENABLE_RTL_FLAG_CHECKING && (GCC_VERSION >= 2007)
1244 #define RTL_FLAG_CHECK1(NAME, RTX, C1) __extension__ \
1245 ({ __typeof (RTX) const _rtx = (RTX); \
1246 if (GET_CODE (_rtx) != C1) \
1247 rtl_check_failed_flag (NAME, _rtx, __FILE__, __LINE__, \
1248 __FUNCTION__); \
1249 _rtx; })
1251 #define RTL_FLAG_CHECK2(NAME, RTX, C1, C2) __extension__ \
1252 ({ __typeof (RTX) const _rtx = (RTX); \
1253 if (GET_CODE (_rtx) != C1 && GET_CODE(_rtx) != C2) \
1254 rtl_check_failed_flag (NAME,_rtx, __FILE__, __LINE__, \
1255 __FUNCTION__); \
1256 _rtx; })
1258 #define RTL_FLAG_CHECK3(NAME, RTX, C1, C2, C3) __extension__ \
1259 ({ __typeof (RTX) const _rtx = (RTX); \
1260 if (GET_CODE (_rtx) != C1 && GET_CODE(_rtx) != C2 \
1261 && GET_CODE (_rtx) != C3) \
1262 rtl_check_failed_flag (NAME, _rtx, __FILE__, __LINE__, \
1263 __FUNCTION__); \
1264 _rtx; })
1266 #define RTL_FLAG_CHECK4(NAME, RTX, C1, C2, C3, C4) __extension__ \
1267 ({ __typeof (RTX) const _rtx = (RTX); \
1268 if (GET_CODE (_rtx) != C1 && GET_CODE(_rtx) != C2 \
1269 && GET_CODE (_rtx) != C3 && GET_CODE(_rtx) != C4) \
1270 rtl_check_failed_flag (NAME, _rtx, __FILE__, __LINE__, \
1271 __FUNCTION__); \
1272 _rtx; })
1274 #define RTL_FLAG_CHECK5(NAME, RTX, C1, C2, C3, C4, C5) __extension__ \
1275 ({ __typeof (RTX) const _rtx = (RTX); \
1276 if (GET_CODE (_rtx) != C1 && GET_CODE (_rtx) != C2 \
1277 && GET_CODE (_rtx) != C3 && GET_CODE (_rtx) != C4 \
1278 && GET_CODE (_rtx) != C5) \
1279 rtl_check_failed_flag (NAME, _rtx, __FILE__, __LINE__, \
1280 __FUNCTION__); \
1281 _rtx; })
1283 #define RTL_FLAG_CHECK6(NAME, RTX, C1, C2, C3, C4, C5, C6) \
1284 __extension__ \
1285 ({ __typeof (RTX) const _rtx = (RTX); \
1286 if (GET_CODE (_rtx) != C1 && GET_CODE (_rtx) != C2 \
1287 && GET_CODE (_rtx) != C3 && GET_CODE (_rtx) != C4 \
1288 && GET_CODE (_rtx) != C5 && GET_CODE (_rtx) != C6) \
1289 rtl_check_failed_flag (NAME,_rtx, __FILE__, __LINE__, \
1290 __FUNCTION__); \
1291 _rtx; })
1293 #define RTL_FLAG_CHECK7(NAME, RTX, C1, C2, C3, C4, C5, C6, C7) \
1294 __extension__ \
1295 ({ __typeof (RTX) const _rtx = (RTX); \
1296 if (GET_CODE (_rtx) != C1 && GET_CODE (_rtx) != C2 \
1297 && GET_CODE (_rtx) != C3 && GET_CODE (_rtx) != C4 \
1298 && GET_CODE (_rtx) != C5 && GET_CODE (_rtx) != C6 \
1299 && GET_CODE (_rtx) != C7) \
1300 rtl_check_failed_flag (NAME, _rtx, __FILE__, __LINE__, \
1301 __FUNCTION__); \
1302 _rtx; })
1304 #define RTL_INSN_CHAIN_FLAG_CHECK(NAME, RTX) \
1305 __extension__ \
1306 ({ __typeof (RTX) const _rtx = (RTX); \
1307 if (!INSN_CHAIN_CODE_P (GET_CODE (_rtx))) \
1308 rtl_check_failed_flag (NAME, _rtx, __FILE__, __LINE__, \
1309 __FUNCTION__); \
1310 _rtx; })
1312 extern void rtl_check_failed_flag (const char *, const_rtx, const char *,
1313 int, const char *)
1314 ATTRIBUTE_NORETURN ATTRIBUTE_COLD
1317 #else /* not ENABLE_RTL_FLAG_CHECKING */
1319 #define RTL_FLAG_CHECK1(NAME, RTX, C1) (RTX)
1320 #define RTL_FLAG_CHECK2(NAME, RTX, C1, C2) (RTX)
1321 #define RTL_FLAG_CHECK3(NAME, RTX, C1, C2, C3) (RTX)
1322 #define RTL_FLAG_CHECK4(NAME, RTX, C1, C2, C3, C4) (RTX)
1323 #define RTL_FLAG_CHECK5(NAME, RTX, C1, C2, C3, C4, C5) (RTX)
1324 #define RTL_FLAG_CHECK6(NAME, RTX, C1, C2, C3, C4, C5, C6) (RTX)
1325 #define RTL_FLAG_CHECK7(NAME, RTX, C1, C2, C3, C4, C5, C6, C7) (RTX)
1326 #define RTL_INSN_CHAIN_FLAG_CHECK(NAME, RTX) (RTX)
1327 #endif
1329 #define XINT(RTX, N) (RTL_CHECK2 (RTX, N, 'i', 'n').rt_int)
1330 #define XUINT(RTX, N) (RTL_CHECK2 (RTX, N, 'i', 'n').rt_uint)
1331 #define XSTR(RTX, N) (RTL_CHECK2 (RTX, N, 's', 'S').rt_str)
1332 #define XEXP(RTX, N) (RTL_CHECK2 (RTX, N, 'e', 'u').rt_rtx)
1333 #define XVEC(RTX, N) (RTL_CHECK2 (RTX, N, 'E', 'V').rt_rtvec)
1334 #define XMODE(RTX, N) (RTL_CHECK1 (RTX, N, 'M').rt_type)
1335 #define XTREE(RTX, N) (RTL_CHECK1 (RTX, N, 't').rt_tree)
1336 #define XBBDEF(RTX, N) (RTL_CHECK1 (RTX, N, 'B').rt_bb)
1337 #define XTMPL(RTX, N) (RTL_CHECK1 (RTX, N, 'T').rt_str)
1338 #define XCFI(RTX, N) (RTL_CHECK1 (RTX, N, 'C').rt_cfi)
1340 #define XVECEXP(RTX, N, M) RTVEC_ELT (XVEC (RTX, N), M)
1341 #define XVECLEN(RTX, N) GET_NUM_ELEM (XVEC (RTX, N))
1343 /* These are like XINT, etc. except that they expect a '0' field instead
1344 of the normal type code. */
1346 #define X0INT(RTX, N) (RTL_CHECK1 (RTX, N, '0').rt_int)
1347 #define X0UINT(RTX, N) (RTL_CHECK1 (RTX, N, '0').rt_uint)
1348 #define X0STR(RTX, N) (RTL_CHECK1 (RTX, N, '0').rt_str)
1349 #define X0EXP(RTX, N) (RTL_CHECK1 (RTX, N, '0').rt_rtx)
1350 #define X0VEC(RTX, N) (RTL_CHECK1 (RTX, N, '0').rt_rtvec)
1351 #define X0MODE(RTX, N) (RTL_CHECK1 (RTX, N, '0').rt_type)
1352 #define X0TREE(RTX, N) (RTL_CHECK1 (RTX, N, '0').rt_tree)
1353 #define X0BBDEF(RTX, N) (RTL_CHECK1 (RTX, N, '0').rt_bb)
1354 #define X0ADVFLAGS(RTX, N) (RTL_CHECK1 (RTX, N, '0').rt_addr_diff_vec_flags)
1355 #define X0CSELIB(RTX, N) (RTL_CHECK1 (RTX, N, '0').rt_cselib)
1356 #define X0MEMATTR(RTX, N) (RTL_CHECKC1 (RTX, N, MEM).rt_mem)
1357 #define X0CONSTANT(RTX, N) (RTL_CHECK1 (RTX, N, '0').rt_constant)
1359 /* Access a '0' field with any type. */
1360 #define X0ANY(RTX, N) RTL_CHECK1 (RTX, N, '0')
1362 #define XCINT(RTX, N, C) (RTL_CHECKC1 (RTX, N, C).rt_int)
1363 #define XCUINT(RTX, N, C) (RTL_CHECKC1 (RTX, N, C).rt_uint)
1364 #define XCSUBREG(RTX, N, C) (RTL_CHECKC1 (RTX, N, C).rt_subreg)
1365 #define XCSTR(RTX, N, C) (RTL_CHECKC1 (RTX, N, C).rt_str)
1366 #define XCEXP(RTX, N, C) (RTL_CHECKC1 (RTX, N, C).rt_rtx)
1367 #define XCVEC(RTX, N, C) (RTL_CHECKC1 (RTX, N, C).rt_rtvec)
1368 #define XCMODE(RTX, N, C) (RTL_CHECKC1 (RTX, N, C).rt_type)
1369 #define XCTREE(RTX, N, C) (RTL_CHECKC1 (RTX, N, C).rt_tree)
1370 #define XCBBDEF(RTX, N, C) (RTL_CHECKC1 (RTX, N, C).rt_bb)
1371 #define XCCFI(RTX, N, C) (RTL_CHECKC1 (RTX, N, C).rt_cfi)
1372 #define XCCSELIB(RTX, N, C) (RTL_CHECKC1 (RTX, N, C).rt_cselib)
1374 #define XCVECEXP(RTX, N, M, C) RTVEC_ELT (XCVEC (RTX, N, C), M)
1375 #define XCVECLEN(RTX, N, C) GET_NUM_ELEM (XCVEC (RTX, N, C))
1377 #define XC2EXP(RTX, N, C1, C2) (RTL_CHECKC2 (RTX, N, C1, C2).rt_rtx)
1378 #define XC3EXP(RTX, N, C1, C2, C3) (RTL_CHECKC3 (RTX, N, C1, C2, C3).rt_rtx)
1381 /* Methods of rtx_expr_list. */
1383 inline rtx_expr_list *rtx_expr_list::next () const
1385 rtx tmp = XEXP (this, 1);
1386 return safe_as_a <rtx_expr_list *> (tmp);
1389 inline rtx rtx_expr_list::element () const
1391 return XEXP (this, 0);
1394 /* Methods of rtx_insn_list. */
1396 inline rtx_insn_list *rtx_insn_list::next () const
1398 rtx tmp = XEXP (this, 1);
1399 return safe_as_a <rtx_insn_list *> (tmp);
1402 inline rtx_insn *rtx_insn_list::insn () const
1404 rtx tmp = XEXP (this, 0);
1405 return safe_as_a <rtx_insn *> (tmp);
1408 /* Methods of rtx_sequence. */
1410 inline int rtx_sequence::len () const
1412 return XVECLEN (this, 0);
1415 inline rtx rtx_sequence::element (int index) const
1417 return XVECEXP (this, 0, index);
1420 inline rtx_insn *rtx_sequence::insn (int index) const
1422 return as_a <rtx_insn *> (XVECEXP (this, 0, index));
1425 /* ACCESS MACROS for particular fields of insns. */
1427 /* Holds a unique number for each insn.
1428 These are not necessarily sequentially increasing. */
1429 inline int INSN_UID (const_rtx insn)
1431 return RTL_INSN_CHAIN_FLAG_CHECK ("INSN_UID",
1432 (insn))->u2.insn_uid;
1434 inline int& INSN_UID (rtx insn)
1436 return RTL_INSN_CHAIN_FLAG_CHECK ("INSN_UID",
1437 (insn))->u2.insn_uid;
1440 /* Chain insns together in sequence. */
1442 /* For now these are split in two: an rvalue form:
1443 PREV_INSN/NEXT_INSN
1444 and an lvalue form:
1445 SET_NEXT_INSN/SET_PREV_INSN. */
1447 inline rtx_insn *PREV_INSN (const rtx_insn *insn)
1449 rtx prev = XEXP (insn, 0);
1450 return safe_as_a <rtx_insn *> (prev);
1453 inline rtx& SET_PREV_INSN (rtx_insn *insn)
1455 return XEXP (insn, 0);
1458 inline rtx_insn *NEXT_INSN (const rtx_insn *insn)
1460 rtx next = XEXP (insn, 1);
1461 return safe_as_a <rtx_insn *> (next);
1464 inline rtx& SET_NEXT_INSN (rtx_insn *insn)
1466 return XEXP (insn, 1);
1469 inline basic_block BLOCK_FOR_INSN (const_rtx insn)
1471 return XBBDEF (insn, 2);
1474 inline basic_block& BLOCK_FOR_INSN (rtx insn)
1476 return XBBDEF (insn, 2);
1479 inline void set_block_for_insn (rtx_insn *insn, basic_block bb)
1481 BLOCK_FOR_INSN (insn) = bb;
1484 /* The body of an insn. */
1485 inline rtx PATTERN (const_rtx insn)
1487 return XEXP (insn, 3);
1490 inline rtx& PATTERN (rtx insn)
1492 return XEXP (insn, 3);
1495 inline unsigned int INSN_LOCATION (const rtx_insn *insn)
1497 return XUINT (insn, 4);
1500 inline unsigned int& INSN_LOCATION (rtx_insn *insn)
1502 return XUINT (insn, 4);
1505 inline bool INSN_HAS_LOCATION (const rtx_insn *insn)
1507 return LOCATION_LOCUS (INSN_LOCATION (insn)) != UNKNOWN_LOCATION;
1510 /* LOCATION of an RTX if relevant. */
1511 #define RTL_LOCATION(X) (INSN_P (X) ? \
1512 INSN_LOCATION (as_a <rtx_insn *> (X)) \
1513 : UNKNOWN_LOCATION)
1515 /* Code number of instruction, from when it was recognized.
1516 -1 means this instruction has not been recognized yet. */
1517 #define INSN_CODE(INSN) XINT (INSN, 5)
1519 inline rtvec rtx_jump_table_data::get_labels () const
1521 rtx pat = PATTERN (this);
1522 if (GET_CODE (pat) == ADDR_VEC)
1523 return XVEC (pat, 0);
1524 else
1525 return XVEC (pat, 1); /* presumably an ADDR_DIFF_VEC */
1528 /* Return the mode of the data in the table, which is always a scalar
1529 integer. */
1531 inline scalar_int_mode
1532 rtx_jump_table_data::get_data_mode () const
1534 return as_a <scalar_int_mode> (GET_MODE (PATTERN (this)));
1537 /* If LABEL is followed by a jump table, return the table, otherwise
1538 return null. */
1540 inline rtx_jump_table_data *
1541 jump_table_for_label (const rtx_code_label *label)
1543 return safe_dyn_cast <rtx_jump_table_data *> (NEXT_INSN (label));
1546 #define RTX_FRAME_RELATED_P(RTX) \
1547 (RTL_FLAG_CHECK6 ("RTX_FRAME_RELATED_P", (RTX), DEBUG_INSN, INSN, \
1548 CALL_INSN, JUMP_INSN, BARRIER, SET)->frame_related)
1550 /* 1 if JUMP RTX is a crossing jump. */
1551 #define CROSSING_JUMP_P(RTX) \
1552 (RTL_FLAG_CHECK1 ("CROSSING_JUMP_P", (RTX), JUMP_INSN)->jump)
1554 /* 1 if RTX is a call to a const function. Built from ECF_CONST and
1555 TREE_READONLY. */
1556 #define RTL_CONST_CALL_P(RTX) \
1557 (RTL_FLAG_CHECK1 ("RTL_CONST_CALL_P", (RTX), CALL_INSN)->unchanging)
1559 /* 1 if RTX is a call to a pure function. Built from ECF_PURE and
1560 DECL_PURE_P. */
1561 #define RTL_PURE_CALL_P(RTX) \
1562 (RTL_FLAG_CHECK1 ("RTL_PURE_CALL_P", (RTX), CALL_INSN)->return_val)
1564 /* 1 if RTX is a call to a const or pure function. */
1565 #define RTL_CONST_OR_PURE_CALL_P(RTX) \
1566 (RTL_CONST_CALL_P (RTX) || RTL_PURE_CALL_P (RTX))
1568 /* 1 if RTX is a call to a looping const or pure function. Built from
1569 ECF_LOOPING_CONST_OR_PURE and DECL_LOOPING_CONST_OR_PURE_P. */
1570 #define RTL_LOOPING_CONST_OR_PURE_CALL_P(RTX) \
1571 (RTL_FLAG_CHECK1 ("CONST_OR_PURE_CALL_P", (RTX), CALL_INSN)->call)
1573 /* 1 if RTX is a call_insn for a sibling call. */
1574 #define SIBLING_CALL_P(RTX) \
1575 (RTL_FLAG_CHECK1 ("SIBLING_CALL_P", (RTX), CALL_INSN)->jump)
1577 /* 1 if RTX is a jump_insn, call_insn, or insn that is an annulling branch. */
1578 #define INSN_ANNULLED_BRANCH_P(RTX) \
1579 (RTL_FLAG_CHECK1 ("INSN_ANNULLED_BRANCH_P", (RTX), JUMP_INSN)->unchanging)
1581 /* 1 if RTX is an insn in a delay slot and is from the target of the branch.
1582 If the branch insn has INSN_ANNULLED_BRANCH_P set, this insn should only be
1583 executed if the branch is taken. For annulled branches with this bit
1584 clear, the insn should be executed only if the branch is not taken. */
1585 #define INSN_FROM_TARGET_P(RTX) \
1586 (RTL_FLAG_CHECK3 ("INSN_FROM_TARGET_P", (RTX), INSN, JUMP_INSN, \
1587 CALL_INSN)->in_struct)
1589 /* In an ADDR_DIFF_VEC, the flags for RTX for use by branch shortening.
1590 See the comments for ADDR_DIFF_VEC in rtl.def. */
1591 #define ADDR_DIFF_VEC_FLAGS(RTX) X0ADVFLAGS (RTX, 4)
1593 /* In a VALUE, the value cselib has assigned to RTX.
1594 This is a "struct cselib_val", see cselib.h. */
1595 #define CSELIB_VAL_PTR(RTX) X0CSELIB (RTX, 0)
1597 /* Holds a list of notes on what this insn does to various REGs.
1598 It is a chain of EXPR_LIST rtx's, where the second operand is the
1599 chain pointer and the first operand is the REG being described.
1600 The mode field of the EXPR_LIST contains not a real machine mode
1601 but a value from enum reg_note. */
1602 #define REG_NOTES(INSN) XEXP(INSN, 6)
1604 /* In an ENTRY_VALUE this is the DECL_INCOMING_RTL of the argument in
1605 question. */
1606 #define ENTRY_VALUE_EXP(RTX) (RTL_CHECKC1 (RTX, 0, ENTRY_VALUE).rt_rtx)
1608 enum reg_note
1610 #define DEF_REG_NOTE(NAME) NAME,
1611 #include "reg-notes.def"
1612 #undef DEF_REG_NOTE
1613 REG_NOTE_MAX
1616 /* Define macros to extract and insert the reg-note kind in an EXPR_LIST. */
1617 #define REG_NOTE_KIND(LINK) ((enum reg_note) GET_MODE (LINK))
1618 #define PUT_REG_NOTE_KIND(LINK, KIND) \
1619 PUT_MODE_RAW (LINK, (machine_mode) (KIND))
1621 /* Names for REG_NOTE's in EXPR_LIST insn's. */
1623 extern const char * const reg_note_name[];
1624 #define GET_REG_NOTE_NAME(MODE) (reg_note_name[(int) (MODE)])
1626 /* This field is only present on CALL_INSNs. It holds a chain of EXPR_LIST of
1627 USE and CLOBBER expressions.
1628 USE expressions list the registers filled with arguments that
1629 are passed to the function.
1630 CLOBBER expressions document the registers explicitly clobbered
1631 by this CALL_INSN.
1632 Pseudo registers can not be mentioned in this list. */
1633 #define CALL_INSN_FUNCTION_USAGE(INSN) XEXP(INSN, 7)
1635 /* The label-number of a code-label. The assembler label
1636 is made from `L' and the label-number printed in decimal.
1637 Label numbers are unique in a compilation. */
1638 #define CODE_LABEL_NUMBER(INSN) XINT (INSN, 5)
1640 /* In a NOTE that is a line number, this is a string for the file name that the
1641 line is in. We use the same field to record block numbers temporarily in
1642 NOTE_INSN_BLOCK_BEG and NOTE_INSN_BLOCK_END notes. (We avoid lots of casts
1643 between ints and pointers if we use a different macro for the block number.)
1646 /* Opaque data. */
1647 #define NOTE_DATA(INSN) RTL_CHECKC1 (INSN, 3, NOTE)
1648 #define NOTE_DELETED_LABEL_NAME(INSN) XCSTR (INSN, 3, NOTE)
1649 #define SET_INSN_DELETED(INSN) set_insn_deleted (INSN);
1650 #define NOTE_BLOCK(INSN) XCTREE (INSN, 3, NOTE)
1651 #define NOTE_EH_HANDLER(INSN) XCINT (INSN, 3, NOTE)
1652 #define NOTE_BASIC_BLOCK(INSN) XCBBDEF (INSN, 3, NOTE)
1653 #define NOTE_VAR_LOCATION(INSN) XCEXP (INSN, 3, NOTE)
1654 #define NOTE_MARKER_LOCATION(INSN) XCUINT (INSN, 3, NOTE)
1655 #define NOTE_CFI(INSN) XCCFI (INSN, 3, NOTE)
1656 #define NOTE_LABEL_NUMBER(INSN) XCINT (INSN, 3, NOTE)
1658 /* In a NOTE that is a line number, this is the line number.
1659 Other kinds of NOTEs are identified by negative numbers here. */
1660 #define NOTE_KIND(INSN) XCINT (INSN, 4, NOTE)
1662 /* Nonzero if INSN is a note marking the beginning of a basic block. */
1663 #define NOTE_INSN_BASIC_BLOCK_P(INSN) \
1664 (NOTE_P (INSN) && NOTE_KIND (INSN) == NOTE_INSN_BASIC_BLOCK)
1666 /* Nonzero if INSN is a debug nonbind marker note,
1667 for which NOTE_MARKER_LOCATION can be used. */
1668 #define NOTE_MARKER_P(INSN) \
1669 (NOTE_P (INSN) && \
1670 (NOTE_KIND (INSN) == NOTE_INSN_BEGIN_STMT \
1671 || NOTE_KIND (INSN) == NOTE_INSN_INLINE_ENTRY))
1673 /* Variable declaration and the location of a variable. */
1674 #define PAT_VAR_LOCATION_DECL(PAT) (XCTREE ((PAT), 0, VAR_LOCATION))
1675 #define PAT_VAR_LOCATION_LOC(PAT) (XCEXP ((PAT), 1, VAR_LOCATION))
1677 /* Initialization status of the variable in the location. Status
1678 can be unknown, uninitialized or initialized. See enumeration
1679 type below. */
1680 #define PAT_VAR_LOCATION_STATUS(PAT) \
1681 (RTL_FLAG_CHECK1 ("PAT_VAR_LOCATION_STATUS", PAT, VAR_LOCATION) \
1682 ->u2.var_location_status)
1684 /* Accessors for a NOTE_INSN_VAR_LOCATION. */
1685 #define NOTE_VAR_LOCATION_DECL(NOTE) \
1686 PAT_VAR_LOCATION_DECL (NOTE_VAR_LOCATION (NOTE))
1687 #define NOTE_VAR_LOCATION_LOC(NOTE) \
1688 PAT_VAR_LOCATION_LOC (NOTE_VAR_LOCATION (NOTE))
1689 #define NOTE_VAR_LOCATION_STATUS(NOTE) \
1690 PAT_VAR_LOCATION_STATUS (NOTE_VAR_LOCATION (NOTE))
1692 /* Evaluate to TRUE if INSN is a debug insn that denotes a variable
1693 location/value tracking annotation. */
1694 #define DEBUG_BIND_INSN_P(INSN) \
1695 (DEBUG_INSN_P (INSN) \
1696 && (GET_CODE (PATTERN (INSN)) \
1697 == VAR_LOCATION))
1698 /* Evaluate to TRUE if INSN is a debug insn that denotes a program
1699 source location marker. */
1700 #define DEBUG_MARKER_INSN_P(INSN) \
1701 (DEBUG_INSN_P (INSN) \
1702 && (GET_CODE (PATTERN (INSN)) \
1703 != VAR_LOCATION))
1704 /* Evaluate to the marker kind. */
1705 #define INSN_DEBUG_MARKER_KIND(INSN) \
1706 (GET_CODE (PATTERN (INSN)) == DEBUG_MARKER \
1707 ? (GET_MODE (PATTERN (INSN)) == VOIDmode \
1708 ? NOTE_INSN_BEGIN_STMT \
1709 : GET_MODE (PATTERN (INSN)) == BLKmode \
1710 ? NOTE_INSN_INLINE_ENTRY \
1711 : (enum insn_note)-1) \
1712 : (enum insn_note)-1)
1713 /* Create patterns for debug markers. These and the above abstract
1714 the representation, so that it's easier to get rid of the abuse of
1715 the mode to hold the marker kind. Other marker types are
1716 envisioned, so a single bit flag won't do; maybe separate RTL codes
1717 wouldn't be a problem. */
1718 #define GEN_RTX_DEBUG_MARKER_BEGIN_STMT_PAT() \
1719 gen_rtx_DEBUG_MARKER (VOIDmode)
1720 #define GEN_RTX_DEBUG_MARKER_INLINE_ENTRY_PAT() \
1721 gen_rtx_DEBUG_MARKER (BLKmode)
1723 /* The VAR_LOCATION rtx in a DEBUG_INSN. */
1724 #define INSN_VAR_LOCATION(INSN) \
1725 (RTL_FLAG_CHECK1 ("INSN_VAR_LOCATION", PATTERN (INSN), VAR_LOCATION))
1726 /* A pointer to the VAR_LOCATION rtx in a DEBUG_INSN. */
1727 #define INSN_VAR_LOCATION_PTR(INSN) \
1728 (&PATTERN (INSN))
1730 /* Accessors for a tree-expanded var location debug insn. */
1731 #define INSN_VAR_LOCATION_DECL(INSN) \
1732 PAT_VAR_LOCATION_DECL (INSN_VAR_LOCATION (INSN))
1733 #define INSN_VAR_LOCATION_LOC(INSN) \
1734 PAT_VAR_LOCATION_LOC (INSN_VAR_LOCATION (INSN))
1735 #define INSN_VAR_LOCATION_STATUS(INSN) \
1736 PAT_VAR_LOCATION_STATUS (INSN_VAR_LOCATION (INSN))
1738 /* Expand to the RTL that denotes an unknown variable location in a
1739 DEBUG_INSN. */
1740 #define gen_rtx_UNKNOWN_VAR_LOC() (gen_rtx_CLOBBER (VOIDmode, const0_rtx))
1742 /* Determine whether X is such an unknown location. */
1743 #define VAR_LOC_UNKNOWN_P(X) \
1744 (GET_CODE (X) == CLOBBER && XEXP ((X), 0) == const0_rtx)
1746 /* 1 if RTX is emitted after a call, but it should take effect before
1747 the call returns. */
1748 #define NOTE_DURING_CALL_P(RTX) \
1749 (RTL_FLAG_CHECK1 ("NOTE_VAR_LOCATION_DURING_CALL_P", (RTX), NOTE)->call)
1751 /* DEBUG_EXPR_DECL corresponding to a DEBUG_EXPR RTX. */
1752 #define DEBUG_EXPR_TREE_DECL(RTX) XCTREE (RTX, 0, DEBUG_EXPR)
1754 /* VAR_DECL/PARM_DECL DEBUG_IMPLICIT_PTR takes address of. */
1755 #define DEBUG_IMPLICIT_PTR_DECL(RTX) XCTREE (RTX, 0, DEBUG_IMPLICIT_PTR)
1757 /* PARM_DECL DEBUG_PARAMETER_REF references. */
1758 #define DEBUG_PARAMETER_REF_DECL(RTX) XCTREE (RTX, 0, DEBUG_PARAMETER_REF)
1760 /* Codes that appear in the NOTE_KIND field for kinds of notes
1761 that are not line numbers. These codes are all negative.
1763 Notice that we do not try to use zero here for any of
1764 the special note codes because sometimes the source line
1765 actually can be zero! This happens (for example) when we
1766 are generating code for the per-translation-unit constructor
1767 and destructor routines for some C++ translation unit. */
1769 enum insn_note
1771 #define DEF_INSN_NOTE(NAME) NAME,
1772 #include "insn-notes.def"
1773 #undef DEF_INSN_NOTE
1775 NOTE_INSN_MAX
1778 /* Names for NOTE insn's other than line numbers. */
1780 extern const char * const note_insn_name[NOTE_INSN_MAX];
1781 #define GET_NOTE_INSN_NAME(NOTE_CODE) \
1782 (note_insn_name[(NOTE_CODE)])
1784 /* The name of a label, in case it corresponds to an explicit label
1785 in the input source code. */
1786 #define LABEL_NAME(RTX) XCSTR (RTX, 6, CODE_LABEL)
1788 /* In jump.c, each label contains a count of the number
1789 of LABEL_REFs that point at it, so unused labels can be deleted. */
1790 #define LABEL_NUSES(RTX) XCINT (RTX, 4, CODE_LABEL)
1792 /* Labels carry a two-bit field composed of the ->jump and ->call
1793 bits. This field indicates whether the label is an alternate
1794 entry point, and if so, what kind. */
1795 enum label_kind
1797 LABEL_NORMAL = 0, /* ordinary label */
1798 LABEL_STATIC_ENTRY, /* alternate entry point, not exported */
1799 LABEL_GLOBAL_ENTRY, /* alternate entry point, exported */
1800 LABEL_WEAK_ENTRY /* alternate entry point, exported as weak symbol */
1803 #if defined ENABLE_RTL_FLAG_CHECKING && (GCC_VERSION > 2007)
1805 /* Retrieve the kind of LABEL. */
1806 #define LABEL_KIND(LABEL) __extension__ \
1807 ({ __typeof (LABEL) const _label = (LABEL); \
1808 if (! LABEL_P (_label)) \
1809 rtl_check_failed_flag ("LABEL_KIND", _label, __FILE__, __LINE__, \
1810 __FUNCTION__); \
1811 (enum label_kind) ((_label->jump << 1) | _label->call); })
1813 /* Set the kind of LABEL. */
1814 #define SET_LABEL_KIND(LABEL, KIND) do { \
1815 __typeof (LABEL) const _label = (LABEL); \
1816 const unsigned int _kind = (KIND); \
1817 if (! LABEL_P (_label)) \
1818 rtl_check_failed_flag ("SET_LABEL_KIND", _label, __FILE__, __LINE__, \
1819 __FUNCTION__); \
1820 _label->jump = ((_kind >> 1) & 1); \
1821 _label->call = (_kind & 1); \
1822 } while (0)
1824 #else
1826 /* Retrieve the kind of LABEL. */
1827 #define LABEL_KIND(LABEL) \
1828 ((enum label_kind) (((LABEL)->jump << 1) | (LABEL)->call))
1830 /* Set the kind of LABEL. */
1831 #define SET_LABEL_KIND(LABEL, KIND) do { \
1832 rtx const _label = (LABEL); \
1833 const unsigned int _kind = (KIND); \
1834 _label->jump = ((_kind >> 1) & 1); \
1835 _label->call = (_kind & 1); \
1836 } while (0)
1838 #endif /* rtl flag checking */
1840 #define LABEL_ALT_ENTRY_P(LABEL) (LABEL_KIND (LABEL) != LABEL_NORMAL)
1842 /* In jump.c, each JUMP_INSN can point to a label that it can jump to,
1843 so that if the JUMP_INSN is deleted, the label's LABEL_NUSES can
1844 be decremented and possibly the label can be deleted. */
1845 #define JUMP_LABEL(INSN) XCEXP (INSN, 7, JUMP_INSN)
1847 inline rtx_insn *JUMP_LABEL_AS_INSN (const rtx_insn *insn)
1849 return safe_as_a <rtx_insn *> (JUMP_LABEL (insn));
1852 /* Methods of rtx_jump_insn. */
1854 inline rtx rtx_jump_insn::jump_label () const
1856 return JUMP_LABEL (this);
1859 inline rtx_code_label *rtx_jump_insn::jump_target () const
1861 return safe_as_a <rtx_code_label *> (JUMP_LABEL (this));
1864 inline void rtx_jump_insn::set_jump_target (rtx_code_label *target)
1866 JUMP_LABEL (this) = target;
1869 /* Once basic blocks are found, each CODE_LABEL starts a chain that
1870 goes through all the LABEL_REFs that jump to that label. The chain
1871 eventually winds up at the CODE_LABEL: it is circular. */
1872 #define LABEL_REFS(LABEL) XCEXP (LABEL, 3, CODE_LABEL)
1874 /* Get the label that a LABEL_REF references. */
1875 static inline rtx_insn *
1876 label_ref_label (const_rtx ref)
1878 return as_a<rtx_insn *> (XCEXP (ref, 0, LABEL_REF));
1881 /* Set the label that LABEL_REF ref refers to. */
1883 static inline void
1884 set_label_ref_label (rtx ref, rtx_insn *label)
1886 XCEXP (ref, 0, LABEL_REF) = label;
1889 /* For a REG rtx, REGNO extracts the register number. REGNO can only
1890 be used on RHS. Use SET_REGNO to change the value. */
1891 #define REGNO(RTX) (rhs_regno(RTX))
1892 #define SET_REGNO(RTX, N) (df_ref_change_reg_with_loc (RTX, N))
1894 /* Return the number of consecutive registers in a REG. This is always
1895 1 for pseudo registers and is determined by TARGET_HARD_REGNO_NREGS for
1896 hard registers. */
1897 #define REG_NREGS(RTX) (REG_CHECK (RTX)->nregs)
1899 /* ORIGINAL_REGNO holds the number the register originally had; for a
1900 pseudo register turned into a hard reg this will hold the old pseudo
1901 register number. */
1902 #define ORIGINAL_REGNO(RTX) \
1903 (RTL_FLAG_CHECK1 ("ORIGINAL_REGNO", (RTX), REG)->u2.original_regno)
1905 /* Force the REGNO macro to only be used on the lhs. */
1906 static inline unsigned int
1907 rhs_regno (const_rtx x)
1909 return REG_CHECK (x)->regno;
1912 /* Return the final register in REG X plus one. */
1913 static inline unsigned int
1914 END_REGNO (const_rtx x)
1916 return REGNO (x) + REG_NREGS (x);
1919 /* Change the REGNO and REG_NREGS of REG X to the specified values,
1920 bypassing the df machinery. */
1921 static inline void
1922 set_regno_raw (rtx x, unsigned int regno, unsigned int nregs)
1924 reg_info *reg = REG_CHECK (x);
1925 reg->regno = regno;
1926 reg->nregs = nregs;
1929 /* 1 if RTX is a reg or parallel that is the current function's return
1930 value. */
1931 #define REG_FUNCTION_VALUE_P(RTX) \
1932 (RTL_FLAG_CHECK2 ("REG_FUNCTION_VALUE_P", (RTX), REG, PARALLEL)->return_val)
1934 /* 1 if RTX is a reg that corresponds to a variable declared by the user. */
1935 #define REG_USERVAR_P(RTX) \
1936 (RTL_FLAG_CHECK1 ("REG_USERVAR_P", (RTX), REG)->volatil)
1938 /* 1 if RTX is a reg that holds a pointer value. */
1939 #define REG_POINTER(RTX) \
1940 (RTL_FLAG_CHECK1 ("REG_POINTER", (RTX), REG)->frame_related)
1942 /* 1 if RTX is a mem that holds a pointer value. */
1943 #define MEM_POINTER(RTX) \
1944 (RTL_FLAG_CHECK1 ("MEM_POINTER", (RTX), MEM)->frame_related)
1946 /* 1 if the given register REG corresponds to a hard register. */
1947 #define HARD_REGISTER_P(REG) (HARD_REGISTER_NUM_P (REGNO (REG)))
1949 /* 1 if the given register number REG_NO corresponds to a hard register. */
1950 #define HARD_REGISTER_NUM_P(REG_NO) ((REG_NO) < FIRST_PSEUDO_REGISTER)
1952 /* For a CONST_INT rtx, INTVAL extracts the integer. */
1953 #define INTVAL(RTX) XCWINT (RTX, 0, CONST_INT)
1954 #define UINTVAL(RTX) ((unsigned HOST_WIDE_INT) INTVAL (RTX))
1956 /* For a CONST_WIDE_INT, CONST_WIDE_INT_NUNITS is the number of
1957 elements actually needed to represent the constant.
1958 CONST_WIDE_INT_ELT gets one of the elements. 0 is the least
1959 significant HOST_WIDE_INT. */
1960 #define CONST_WIDE_INT_VEC(RTX) HWIVEC_CHECK (RTX, CONST_WIDE_INT)
1961 #define CONST_WIDE_INT_NUNITS(RTX) CWI_GET_NUM_ELEM (RTX)
1962 #define CONST_WIDE_INT_ELT(RTX, N) CWI_ELT (RTX, N)
1964 /* For a CONST_POLY_INT, CONST_POLY_INT_COEFFS gives access to the
1965 individual coefficients, in the form of a trailing_wide_ints structure. */
1966 #define CONST_POLY_INT_COEFFS(RTX) \
1967 (RTL_FLAG_CHECK1("CONST_POLY_INT_COEFFS", (RTX), \
1968 CONST_POLY_INT)->u.cpi.coeffs)
1970 /* For a CONST_DOUBLE:
1971 #if TARGET_SUPPORTS_WIDE_INT == 0
1972 For a VOIDmode, there are two integers CONST_DOUBLE_LOW is the
1973 low-order word and ..._HIGH the high-order.
1974 #endif
1975 For a float, there is a REAL_VALUE_TYPE structure, and
1976 CONST_DOUBLE_REAL_VALUE(r) is a pointer to it. */
1977 #define CONST_DOUBLE_LOW(r) XCMWINT (r, 0, CONST_DOUBLE, VOIDmode)
1978 #define CONST_DOUBLE_HIGH(r) XCMWINT (r, 1, CONST_DOUBLE, VOIDmode)
1979 #define CONST_DOUBLE_REAL_VALUE(r) \
1980 ((const struct real_value *) XCNMPRV (r, CONST_DOUBLE, VOIDmode))
1982 #define CONST_FIXED_VALUE(r) \
1983 ((const struct fixed_value *) XCNMPFV (r, CONST_FIXED, VOIDmode))
1984 #define CONST_FIXED_VALUE_HIGH(r) \
1985 ((HOST_WIDE_INT) (CONST_FIXED_VALUE (r)->data.high))
1986 #define CONST_FIXED_VALUE_LOW(r) \
1987 ((HOST_WIDE_INT) (CONST_FIXED_VALUE (r)->data.low))
1989 /* For a CONST_VECTOR, return element #n. */
1990 #define CONST_VECTOR_ELT(RTX, N) const_vector_elt (RTX, N)
1992 /* See rtl.texi for a description of these macros. */
1993 #define CONST_VECTOR_NPATTERNS(RTX) \
1994 (RTL_FLAG_CHECK1 ("CONST_VECTOR_NPATTERNS", (RTX), CONST_VECTOR) \
1995 ->u2.const_vector.npatterns)
1997 #define CONST_VECTOR_NELTS_PER_PATTERN(RTX) \
1998 (RTL_FLAG_CHECK1 ("CONST_VECTOR_NELTS_PER_PATTERN", (RTX), CONST_VECTOR) \
1999 ->u2.const_vector.nelts_per_pattern)
2001 #define CONST_VECTOR_DUPLICATE_P(RTX) \
2002 (CONST_VECTOR_NELTS_PER_PATTERN (RTX) == 1)
2004 #define CONST_VECTOR_STEPPED_P(RTX) \
2005 (CONST_VECTOR_NELTS_PER_PATTERN (RTX) == 3)
2007 #define CONST_VECTOR_ENCODED_ELT(RTX, N) XCVECEXP (RTX, 0, N, CONST_VECTOR)
2009 /* Return the number of elements encoded directly in a CONST_VECTOR. */
2011 inline unsigned int
2012 const_vector_encoded_nelts (const_rtx x)
2014 return CONST_VECTOR_NPATTERNS (x) * CONST_VECTOR_NELTS_PER_PATTERN (x);
2017 /* For a CONST_VECTOR, return the number of elements in a vector. */
2018 #define CONST_VECTOR_NUNITS(RTX) GET_MODE_NUNITS (GET_MODE (RTX))
2020 /* For a SUBREG rtx, SUBREG_REG extracts the value we want a subreg of.
2021 SUBREG_BYTE extracts the byte-number. */
2023 #define SUBREG_REG(RTX) XCEXP (RTX, 0, SUBREG)
2024 #define SUBREG_BYTE(RTX) XCSUBREG (RTX, 1, SUBREG)
2026 /* in rtlanal.c */
2027 /* Return the right cost to give to an operation
2028 to make the cost of the corresponding register-to-register instruction
2029 N times that of a fast register-to-register instruction. */
2030 #define COSTS_N_INSNS(N) ((N) * 4)
2032 /* Maximum cost of an rtl expression. This value has the special meaning
2033 not to use an rtx with this cost under any circumstances. */
2034 #define MAX_COST INT_MAX
2036 /* Return true if CODE always has VOIDmode. */
2038 static inline bool
2039 always_void_p (enum rtx_code code)
2041 return code == SET;
2044 /* A structure to hold all available cost information about an rtl
2045 expression. */
2046 struct full_rtx_costs
2048 int speed;
2049 int size;
2052 /* Initialize a full_rtx_costs structure C to the maximum cost. */
2053 static inline void
2054 init_costs_to_max (struct full_rtx_costs *c)
2056 c->speed = MAX_COST;
2057 c->size = MAX_COST;
2060 /* Initialize a full_rtx_costs structure C to zero cost. */
2061 static inline void
2062 init_costs_to_zero (struct full_rtx_costs *c)
2064 c->speed = 0;
2065 c->size = 0;
2068 /* Compare two full_rtx_costs structures A and B, returning true
2069 if A < B when optimizing for speed. */
2070 static inline bool
2071 costs_lt_p (struct full_rtx_costs *a, struct full_rtx_costs *b,
2072 bool speed)
2074 if (speed)
2075 return (a->speed < b->speed
2076 || (a->speed == b->speed && a->size < b->size));
2077 else
2078 return (a->size < b->size
2079 || (a->size == b->size && a->speed < b->speed));
2082 /* Increase both members of the full_rtx_costs structure C by the
2083 cost of N insns. */
2084 static inline void
2085 costs_add_n_insns (struct full_rtx_costs *c, int n)
2087 c->speed += COSTS_N_INSNS (n);
2088 c->size += COSTS_N_INSNS (n);
2091 /* Describes the shape of a subreg:
2093 inner_mode == the mode of the SUBREG_REG
2094 offset == the SUBREG_BYTE
2095 outer_mode == the mode of the SUBREG itself. */
2096 struct subreg_shape {
2097 subreg_shape (machine_mode, poly_uint16, machine_mode);
2098 bool operator == (const subreg_shape &) const;
2099 bool operator != (const subreg_shape &) const;
2100 unsigned HOST_WIDE_INT unique_id () const;
2102 machine_mode inner_mode;
2103 poly_uint16 offset;
2104 machine_mode outer_mode;
2107 inline
2108 subreg_shape::subreg_shape (machine_mode inner_mode_in,
2109 poly_uint16 offset_in,
2110 machine_mode outer_mode_in)
2111 : inner_mode (inner_mode_in), offset (offset_in), outer_mode (outer_mode_in)
2114 inline bool
2115 subreg_shape::operator == (const subreg_shape &other) const
2117 return (inner_mode == other.inner_mode
2118 && known_eq (offset, other.offset)
2119 && outer_mode == other.outer_mode);
2122 inline bool
2123 subreg_shape::operator != (const subreg_shape &other) const
2125 return !operator == (other);
2128 /* Return an integer that uniquely identifies this shape. Structures
2129 like rtx_def assume that a mode can fit in an 8-bit bitfield and no
2130 current mode is anywhere near being 65536 bytes in size, so the
2131 id comfortably fits in an int. */
2133 inline unsigned HOST_WIDE_INT
2134 subreg_shape::unique_id () const
2136 { STATIC_ASSERT (MAX_MACHINE_MODE <= 256); }
2137 { STATIC_ASSERT (NUM_POLY_INT_COEFFS <= 3); }
2138 { STATIC_ASSERT (sizeof (offset.coeffs[0]) <= 2); }
2139 int res = (int) inner_mode + ((int) outer_mode << 8);
2140 for (int i = 0; i < NUM_POLY_INT_COEFFS; ++i)
2141 res += (HOST_WIDE_INT) offset.coeffs[i] << ((1 + i) * 16);
2142 return res;
2145 /* Return the shape of a SUBREG rtx. */
2147 static inline subreg_shape
2148 shape_of_subreg (const_rtx x)
2150 return subreg_shape (GET_MODE (SUBREG_REG (x)),
2151 SUBREG_BYTE (x), GET_MODE (x));
2154 /* Information about an address. This structure is supposed to be able
2155 to represent all supported target addresses. Please extend it if it
2156 is not yet general enough. */
2157 struct address_info {
2158 /* The mode of the value being addressed, or VOIDmode if this is
2159 a load-address operation with no known address mode. */
2160 machine_mode mode;
2162 /* The address space. */
2163 addr_space_t as;
2165 /* True if this is an RTX_AUTOINC address. */
2166 bool autoinc_p;
2168 /* A pointer to the top-level address. */
2169 rtx *outer;
2171 /* A pointer to the inner address, after all address mutations
2172 have been stripped from the top-level address. It can be one
2173 of the following:
2175 - A {PRE,POST}_{INC,DEC} of *BASE. SEGMENT, INDEX and DISP are null.
2177 - A {PRE,POST}_MODIFY of *BASE. In this case either INDEX or DISP
2178 points to the step value, depending on whether the step is variable
2179 or constant respectively. SEGMENT is null.
2181 - A plain sum of the form SEGMENT + BASE + INDEX + DISP,
2182 with null fields evaluating to 0. */
2183 rtx *inner;
2185 /* Components that make up *INNER. Each one may be null or nonnull.
2186 When nonnull, their meanings are as follows:
2188 - *SEGMENT is the "segment" of memory to which the address refers.
2189 This value is entirely target-specific and is only called a "segment"
2190 because that's its most typical use. It contains exactly one UNSPEC,
2191 pointed to by SEGMENT_TERM. The contents of *SEGMENT do not need
2192 reloading.
2194 - *BASE is a variable expression representing a base address.
2195 It contains exactly one REG, SUBREG or MEM, pointed to by BASE_TERM.
2197 - *INDEX is a variable expression representing an index value.
2198 It may be a scaled expression, such as a MULT. It has exactly
2199 one REG, SUBREG or MEM, pointed to by INDEX_TERM.
2201 - *DISP is a constant, possibly mutated. DISP_TERM points to the
2202 unmutated RTX_CONST_OBJ. */
2203 rtx *segment;
2204 rtx *base;
2205 rtx *index;
2206 rtx *disp;
2208 rtx *segment_term;
2209 rtx *base_term;
2210 rtx *index_term;
2211 rtx *disp_term;
2213 /* In a {PRE,POST}_MODIFY address, this points to a second copy
2214 of BASE_TERM, otherwise it is null. */
2215 rtx *base_term2;
2217 /* ADDRESS if this structure describes an address operand, MEM if
2218 it describes a MEM address. */
2219 enum rtx_code addr_outer_code;
2221 /* If BASE is nonnull, this is the code of the rtx that contains it. */
2222 enum rtx_code base_outer_code;
2225 /* This is used to bundle an rtx and a mode together so that the pair
2226 can be used with the wi:: routines. If we ever put modes into rtx
2227 integer constants, this should go away and then just pass an rtx in. */
2228 typedef std::pair <rtx, machine_mode> rtx_mode_t;
2230 namespace wi
2232 template <>
2233 struct int_traits <rtx_mode_t>
2235 static const enum precision_type precision_type = VAR_PRECISION;
2236 static const bool host_dependent_precision = false;
2237 /* This ought to be true, except for the special case that BImode
2238 is canonicalized to STORE_FLAG_VALUE, which might be 1. */
2239 static const bool is_sign_extended = false;
2240 static unsigned int get_precision (const rtx_mode_t &);
2241 static wi::storage_ref decompose (HOST_WIDE_INT *, unsigned int,
2242 const rtx_mode_t &);
2246 inline unsigned int
2247 wi::int_traits <rtx_mode_t>::get_precision (const rtx_mode_t &x)
2249 return GET_MODE_PRECISION (as_a <scalar_mode> (x.second));
2252 inline wi::storage_ref
2253 wi::int_traits <rtx_mode_t>::decompose (HOST_WIDE_INT *,
2254 unsigned int precision,
2255 const rtx_mode_t &x)
2257 gcc_checking_assert (precision == get_precision (x));
2258 switch (GET_CODE (x.first))
2260 case CONST_INT:
2261 if (precision < HOST_BITS_PER_WIDE_INT)
2262 /* Nonzero BImodes are stored as STORE_FLAG_VALUE, which on many
2263 targets is 1 rather than -1. */
2264 gcc_checking_assert (INTVAL (x.first)
2265 == sext_hwi (INTVAL (x.first), precision)
2266 || (x.second == BImode && INTVAL (x.first) == 1));
2268 return wi::storage_ref (&INTVAL (x.first), 1, precision);
2270 case CONST_WIDE_INT:
2271 return wi::storage_ref (&CONST_WIDE_INT_ELT (x.first, 0),
2272 CONST_WIDE_INT_NUNITS (x.first), precision);
2274 #if TARGET_SUPPORTS_WIDE_INT == 0
2275 case CONST_DOUBLE:
2276 return wi::storage_ref (&CONST_DOUBLE_LOW (x.first), 2, precision);
2277 #endif
2279 default:
2280 gcc_unreachable ();
2284 namespace wi
2286 hwi_with_prec shwi (HOST_WIDE_INT, machine_mode mode);
2287 wide_int min_value (machine_mode, signop);
2288 wide_int max_value (machine_mode, signop);
2291 inline wi::hwi_with_prec
2292 wi::shwi (HOST_WIDE_INT val, machine_mode mode)
2294 return shwi (val, GET_MODE_PRECISION (as_a <scalar_mode> (mode)));
2297 /* Produce the smallest number that is represented in MODE. The precision
2298 is taken from MODE and the sign from SGN. */
2299 inline wide_int
2300 wi::min_value (machine_mode mode, signop sgn)
2302 return min_value (GET_MODE_PRECISION (as_a <scalar_mode> (mode)), sgn);
2305 /* Produce the largest number that is represented in MODE. The precision
2306 is taken from MODE and the sign from SGN. */
2307 inline wide_int
2308 wi::max_value (machine_mode mode, signop sgn)
2310 return max_value (GET_MODE_PRECISION (as_a <scalar_mode> (mode)), sgn);
2313 namespace wi
2315 typedef poly_int<NUM_POLY_INT_COEFFS,
2316 generic_wide_int <wide_int_ref_storage <false, false> > >
2317 rtx_to_poly_wide_ref;
2318 rtx_to_poly_wide_ref to_poly_wide (const_rtx, machine_mode);
2321 /* Return the value of a CONST_POLY_INT in its native precision. */
2323 inline wi::rtx_to_poly_wide_ref
2324 const_poly_int_value (const_rtx x)
2326 poly_int<NUM_POLY_INT_COEFFS, WIDE_INT_REF_FOR (wide_int)> res;
2327 for (unsigned int i = 0; i < NUM_POLY_INT_COEFFS; ++i)
2328 res.coeffs[i] = CONST_POLY_INT_COEFFS (x)[i];
2329 return res;
2332 /* Return true if X is a scalar integer or a CONST_POLY_INT. The value
2333 can then be extracted using wi::to_poly_wide. */
2335 inline bool
2336 poly_int_rtx_p (const_rtx x)
2338 return CONST_SCALAR_INT_P (x) || CONST_POLY_INT_P (x);
2341 /* Access X (which satisfies poly_int_rtx_p) as a poly_wide_int.
2342 MODE is the mode of X. */
2344 inline wi::rtx_to_poly_wide_ref
2345 wi::to_poly_wide (const_rtx x, machine_mode mode)
2347 if (CONST_POLY_INT_P (x))
2348 return const_poly_int_value (x);
2349 return rtx_mode_t (const_cast<rtx> (x), mode);
2352 /* Return the value of X as a poly_int64. */
2354 inline poly_int64
2355 rtx_to_poly_int64 (const_rtx x)
2357 if (CONST_POLY_INT_P (x))
2359 poly_int64 res;
2360 for (unsigned int i = 0; i < NUM_POLY_INT_COEFFS; ++i)
2361 res.coeffs[i] = CONST_POLY_INT_COEFFS (x)[i].to_shwi ();
2362 return res;
2364 return INTVAL (x);
2367 /* Return true if arbitrary value X is an integer constant that can
2368 be represented as a poly_int64. Store the value in *RES if so,
2369 otherwise leave it unmodified. */
2371 inline bool
2372 poly_int_rtx_p (const_rtx x, poly_int64_pod *res)
2374 if (CONST_INT_P (x))
2376 *res = INTVAL (x);
2377 return true;
2379 if (CONST_POLY_INT_P (x))
2381 for (unsigned int i = 0; i < NUM_POLY_INT_COEFFS; ++i)
2382 if (!wi::fits_shwi_p (CONST_POLY_INT_COEFFS (x)[i]))
2383 return false;
2384 for (unsigned int i = 0; i < NUM_POLY_INT_COEFFS; ++i)
2385 res->coeffs[i] = CONST_POLY_INT_COEFFS (x)[i].to_shwi ();
2386 return true;
2388 return false;
2391 extern void init_rtlanal (void);
2392 extern int rtx_cost (rtx, machine_mode, enum rtx_code, int, bool);
2393 extern int address_cost (rtx, machine_mode, addr_space_t, bool);
2394 extern void get_full_rtx_cost (rtx, machine_mode, enum rtx_code, int,
2395 struct full_rtx_costs *);
2396 extern poly_uint64 subreg_lsb (const_rtx);
2397 extern poly_uint64 subreg_lsb_1 (machine_mode, machine_mode, poly_uint64);
2398 extern poly_uint64 subreg_size_offset_from_lsb (poly_uint64, poly_uint64,
2399 poly_uint64);
2400 extern bool read_modify_subreg_p (const_rtx);
2402 /* Return the subreg byte offset for a subreg whose outer mode is
2403 OUTER_MODE, whose inner mode is INNER_MODE, and where there are
2404 LSB_SHIFT *bits* between the lsb of the outer value and the lsb of
2405 the inner value. This is the inverse of subreg_lsb_1 (which converts
2406 byte offsets to bit shifts). */
2408 inline poly_uint64
2409 subreg_offset_from_lsb (machine_mode outer_mode,
2410 machine_mode inner_mode,
2411 poly_uint64 lsb_shift)
2413 return subreg_size_offset_from_lsb (GET_MODE_SIZE (outer_mode),
2414 GET_MODE_SIZE (inner_mode), lsb_shift);
2417 extern unsigned int subreg_regno_offset (unsigned int, machine_mode,
2418 poly_uint64, machine_mode);
2419 extern bool subreg_offset_representable_p (unsigned int, machine_mode,
2420 poly_uint64, machine_mode);
2421 extern unsigned int subreg_regno (const_rtx);
2422 extern int simplify_subreg_regno (unsigned int, machine_mode,
2423 poly_uint64, machine_mode);
2424 extern unsigned int subreg_nregs (const_rtx);
2425 extern unsigned int subreg_nregs_with_regno (unsigned int, const_rtx);
2426 extern unsigned HOST_WIDE_INT nonzero_bits (const_rtx, machine_mode);
2427 extern unsigned int num_sign_bit_copies (const_rtx, machine_mode);
2428 extern bool constant_pool_constant_p (rtx);
2429 extern bool truncated_to_mode (machine_mode, const_rtx);
2430 extern int low_bitmask_len (machine_mode, unsigned HOST_WIDE_INT);
2431 extern void split_double (rtx, rtx *, rtx *);
2432 extern rtx *strip_address_mutations (rtx *, enum rtx_code * = 0);
2433 extern void decompose_address (struct address_info *, rtx *,
2434 machine_mode, addr_space_t, enum rtx_code);
2435 extern void decompose_lea_address (struct address_info *, rtx *);
2436 extern void decompose_mem_address (struct address_info *, rtx);
2437 extern void update_address (struct address_info *);
2438 extern HOST_WIDE_INT get_index_scale (const struct address_info *);
2439 extern enum rtx_code get_index_code (const struct address_info *);
2441 /* 1 if RTX is a subreg containing a reg that is already known to be
2442 sign- or zero-extended from the mode of the subreg to the mode of
2443 the reg. SUBREG_PROMOTED_UNSIGNED_P gives the signedness of the
2444 extension.
2446 When used as a LHS, is means that this extension must be done
2447 when assigning to SUBREG_REG. */
2449 #define SUBREG_PROMOTED_VAR_P(RTX) \
2450 (RTL_FLAG_CHECK1 ("SUBREG_PROMOTED", (RTX), SUBREG)->in_struct)
2452 /* Valid for subregs which are SUBREG_PROMOTED_VAR_P(). In that case
2453 this gives the necessary extensions:
2454 0 - signed (SPR_SIGNED)
2455 1 - normal unsigned (SPR_UNSIGNED)
2456 2 - value is both sign and unsign extended for mode
2457 (SPR_SIGNED_AND_UNSIGNED).
2458 -1 - pointer unsigned, which most often can be handled like unsigned
2459 extension, except for generating instructions where we need to
2460 emit special code (ptr_extend insns) on some architectures
2461 (SPR_POINTER). */
2463 const int SRP_POINTER = -1;
2464 const int SRP_SIGNED = 0;
2465 const int SRP_UNSIGNED = 1;
2466 const int SRP_SIGNED_AND_UNSIGNED = 2;
2468 /* Sets promoted mode for SUBREG_PROMOTED_VAR_P(). */
2469 #define SUBREG_PROMOTED_SET(RTX, VAL) \
2470 do { \
2471 rtx const _rtx = RTL_FLAG_CHECK1 ("SUBREG_PROMOTED_SET", \
2472 (RTX), SUBREG); \
2473 switch (VAL) \
2475 case SRP_POINTER: \
2476 _rtx->volatil = 0; \
2477 _rtx->unchanging = 0; \
2478 break; \
2479 case SRP_SIGNED: \
2480 _rtx->volatil = 0; \
2481 _rtx->unchanging = 1; \
2482 break; \
2483 case SRP_UNSIGNED: \
2484 _rtx->volatil = 1; \
2485 _rtx->unchanging = 0; \
2486 break; \
2487 case SRP_SIGNED_AND_UNSIGNED: \
2488 _rtx->volatil = 1; \
2489 _rtx->unchanging = 1; \
2490 break; \
2492 } while (0)
2494 /* Gets the value stored in promoted mode for SUBREG_PROMOTED_VAR_P(),
2495 including SRP_SIGNED_AND_UNSIGNED if promoted for
2496 both signed and unsigned. */
2497 #define SUBREG_PROMOTED_GET(RTX) \
2498 (2 * (RTL_FLAG_CHECK1 ("SUBREG_PROMOTED_GET", (RTX), SUBREG)->volatil)\
2499 + (RTX)->unchanging - 1)
2501 /* Returns sign of promoted mode for SUBREG_PROMOTED_VAR_P(). */
2502 #define SUBREG_PROMOTED_SIGN(RTX) \
2503 ((RTL_FLAG_CHECK1 ("SUBREG_PROMOTED_SIGN", (RTX), SUBREG)->volatil) ? 1\
2504 : (RTX)->unchanging - 1)
2506 /* Predicate to check if RTX of SUBREG_PROMOTED_VAR_P() is promoted
2507 for SIGNED type. */
2508 #define SUBREG_PROMOTED_SIGNED_P(RTX) \
2509 (RTL_FLAG_CHECK1 ("SUBREG_PROMOTED_SIGNED_P", (RTX), SUBREG)->unchanging)
2511 /* Predicate to check if RTX of SUBREG_PROMOTED_VAR_P() is promoted
2512 for UNSIGNED type. */
2513 #define SUBREG_PROMOTED_UNSIGNED_P(RTX) \
2514 (RTL_FLAG_CHECK1 ("SUBREG_PROMOTED_UNSIGNED_P", (RTX), SUBREG)->volatil)
2516 /* Checks if RTX of SUBREG_PROMOTED_VAR_P() is promoted for given SIGN. */
2517 #define SUBREG_CHECK_PROMOTED_SIGN(RTX, SIGN) \
2518 ((SIGN) == SRP_POINTER ? SUBREG_PROMOTED_GET (RTX) == SRP_POINTER \
2519 : (SIGN) == SRP_SIGNED ? SUBREG_PROMOTED_SIGNED_P (RTX) \
2520 : SUBREG_PROMOTED_UNSIGNED_P (RTX))
2522 /* True if the REG is the static chain register for some CALL_INSN. */
2523 #define STATIC_CHAIN_REG_P(RTX) \
2524 (RTL_FLAG_CHECK1 ("STATIC_CHAIN_REG_P", (RTX), REG)->jump)
2526 /* True if the subreg was generated by LRA for reload insns. Such
2527 subregs are valid only during LRA. */
2528 #define LRA_SUBREG_P(RTX) \
2529 (RTL_FLAG_CHECK1 ("LRA_SUBREG_P", (RTX), SUBREG)->jump)
2531 /* Access various components of an ASM_OPERANDS rtx. */
2533 #define ASM_OPERANDS_TEMPLATE(RTX) XCSTR (RTX, 0, ASM_OPERANDS)
2534 #define ASM_OPERANDS_OUTPUT_CONSTRAINT(RTX) XCSTR (RTX, 1, ASM_OPERANDS)
2535 #define ASM_OPERANDS_OUTPUT_IDX(RTX) XCINT (RTX, 2, ASM_OPERANDS)
2536 #define ASM_OPERANDS_INPUT_VEC(RTX) XCVEC (RTX, 3, ASM_OPERANDS)
2537 #define ASM_OPERANDS_INPUT_CONSTRAINT_VEC(RTX) XCVEC (RTX, 4, ASM_OPERANDS)
2538 #define ASM_OPERANDS_INPUT(RTX, N) XCVECEXP (RTX, 3, N, ASM_OPERANDS)
2539 #define ASM_OPERANDS_INPUT_LENGTH(RTX) XCVECLEN (RTX, 3, ASM_OPERANDS)
2540 #define ASM_OPERANDS_INPUT_CONSTRAINT_EXP(RTX, N) \
2541 XCVECEXP (RTX, 4, N, ASM_OPERANDS)
2542 #define ASM_OPERANDS_INPUT_CONSTRAINT(RTX, N) \
2543 XSTR (XCVECEXP (RTX, 4, N, ASM_OPERANDS), 0)
2544 #define ASM_OPERANDS_INPUT_MODE(RTX, N) \
2545 GET_MODE (XCVECEXP (RTX, 4, N, ASM_OPERANDS))
2546 #define ASM_OPERANDS_LABEL_VEC(RTX) XCVEC (RTX, 5, ASM_OPERANDS)
2547 #define ASM_OPERANDS_LABEL_LENGTH(RTX) XCVECLEN (RTX, 5, ASM_OPERANDS)
2548 #define ASM_OPERANDS_LABEL(RTX, N) XCVECEXP (RTX, 5, N, ASM_OPERANDS)
2549 #define ASM_OPERANDS_SOURCE_LOCATION(RTX) XCUINT (RTX, 6, ASM_OPERANDS)
2550 #define ASM_INPUT_SOURCE_LOCATION(RTX) XCUINT (RTX, 1, ASM_INPUT)
2552 /* 1 if RTX is a mem that is statically allocated in read-only memory. */
2553 #define MEM_READONLY_P(RTX) \
2554 (RTL_FLAG_CHECK1 ("MEM_READONLY_P", (RTX), MEM)->unchanging)
2556 /* 1 if RTX is a mem and we should keep the alias set for this mem
2557 unchanged when we access a component. Set to 1, or example, when we
2558 are already in a non-addressable component of an aggregate. */
2559 #define MEM_KEEP_ALIAS_SET_P(RTX) \
2560 (RTL_FLAG_CHECK1 ("MEM_KEEP_ALIAS_SET_P", (RTX), MEM)->jump)
2562 /* 1 if RTX is a mem or asm_operand for a volatile reference. */
2563 #define MEM_VOLATILE_P(RTX) \
2564 (RTL_FLAG_CHECK3 ("MEM_VOLATILE_P", (RTX), MEM, ASM_OPERANDS, \
2565 ASM_INPUT)->volatil)
2567 /* 1 if RTX is a mem that cannot trap. */
2568 #define MEM_NOTRAP_P(RTX) \
2569 (RTL_FLAG_CHECK1 ("MEM_NOTRAP_P", (RTX), MEM)->call)
2571 /* The memory attribute block. We provide access macros for each value
2572 in the block and provide defaults if none specified. */
2573 #define MEM_ATTRS(RTX) X0MEMATTR (RTX, 1)
2575 /* The register attribute block. We provide access macros for each value
2576 in the block and provide defaults if none specified. */
2577 #define REG_ATTRS(RTX) (REG_CHECK (RTX)->attrs)
2579 #ifndef GENERATOR_FILE
2580 /* For a MEM rtx, the alias set. If 0, this MEM is not in any alias
2581 set, and may alias anything. Otherwise, the MEM can only alias
2582 MEMs in a conflicting alias set. This value is set in a
2583 language-dependent manner in the front-end, and should not be
2584 altered in the back-end. These set numbers are tested with
2585 alias_sets_conflict_p. */
2586 #define MEM_ALIAS_SET(RTX) (get_mem_attrs (RTX)->alias)
2588 /* For a MEM rtx, the decl it is known to refer to, if it is known to
2589 refer to part of a DECL. It may also be a COMPONENT_REF. */
2590 #define MEM_EXPR(RTX) (get_mem_attrs (RTX)->expr)
2592 /* For a MEM rtx, true if its MEM_OFFSET is known. */
2593 #define MEM_OFFSET_KNOWN_P(RTX) (get_mem_attrs (RTX)->offset_known_p)
2595 /* For a MEM rtx, the offset from the start of MEM_EXPR. */
2596 #define MEM_OFFSET(RTX) (get_mem_attrs (RTX)->offset)
2598 /* For a MEM rtx, the address space. */
2599 #define MEM_ADDR_SPACE(RTX) (get_mem_attrs (RTX)->addrspace)
2601 /* For a MEM rtx, true if its MEM_SIZE is known. */
2602 #define MEM_SIZE_KNOWN_P(RTX) (get_mem_attrs (RTX)->size_known_p)
2604 /* For a MEM rtx, the size in bytes of the MEM. */
2605 #define MEM_SIZE(RTX) (get_mem_attrs (RTX)->size)
2607 /* For a MEM rtx, the alignment in bits. We can use the alignment of the
2608 mode as a default when STRICT_ALIGNMENT, but not if not. */
2609 #define MEM_ALIGN(RTX) (get_mem_attrs (RTX)->align)
2610 #else
2611 #define MEM_ADDR_SPACE(RTX) ADDR_SPACE_GENERIC
2612 #endif
2614 /* For a REG rtx, the decl it is known to refer to, if it is known to
2615 refer to part of a DECL. */
2616 #define REG_EXPR(RTX) (REG_ATTRS (RTX) == 0 ? 0 : REG_ATTRS (RTX)->decl)
2618 /* For a REG rtx, the offset from the start of REG_EXPR, if known, as an
2619 HOST_WIDE_INT. */
2620 #define REG_OFFSET(RTX) (REG_ATTRS (RTX) == 0 ? 0 : REG_ATTRS (RTX)->offset)
2622 /* Copy the attributes that apply to memory locations from RHS to LHS. */
2623 #define MEM_COPY_ATTRIBUTES(LHS, RHS) \
2624 (MEM_VOLATILE_P (LHS) = MEM_VOLATILE_P (RHS), \
2625 MEM_NOTRAP_P (LHS) = MEM_NOTRAP_P (RHS), \
2626 MEM_READONLY_P (LHS) = MEM_READONLY_P (RHS), \
2627 MEM_KEEP_ALIAS_SET_P (LHS) = MEM_KEEP_ALIAS_SET_P (RHS), \
2628 MEM_POINTER (LHS) = MEM_POINTER (RHS), \
2629 MEM_ATTRS (LHS) = MEM_ATTRS (RHS))
2631 /* 1 if RTX is a label_ref for a nonlocal label. */
2632 /* Likewise in an expr_list for a REG_LABEL_OPERAND or
2633 REG_LABEL_TARGET note. */
2634 #define LABEL_REF_NONLOCAL_P(RTX) \
2635 (RTL_FLAG_CHECK1 ("LABEL_REF_NONLOCAL_P", (RTX), LABEL_REF)->volatil)
2637 /* 1 if RTX is a code_label that should always be considered to be needed. */
2638 #define LABEL_PRESERVE_P(RTX) \
2639 (RTL_FLAG_CHECK2 ("LABEL_PRESERVE_P", (RTX), CODE_LABEL, NOTE)->in_struct)
2641 /* During sched, 1 if RTX is an insn that must be scheduled together
2642 with the preceding insn. */
2643 #define SCHED_GROUP_P(RTX) \
2644 (RTL_FLAG_CHECK4 ("SCHED_GROUP_P", (RTX), DEBUG_INSN, INSN, \
2645 JUMP_INSN, CALL_INSN)->in_struct)
2647 /* For a SET rtx, SET_DEST is the place that is set
2648 and SET_SRC is the value it is set to. */
2649 #define SET_DEST(RTX) XC3EXP (RTX, 0, SET, CLOBBER, CLOBBER_HIGH)
2650 #define SET_SRC(RTX) XCEXP (RTX, 1, SET)
2651 #define SET_IS_RETURN_P(RTX) \
2652 (RTL_FLAG_CHECK1 ("SET_IS_RETURN_P", (RTX), SET)->jump)
2654 /* For a TRAP_IF rtx, TRAP_CONDITION is an expression. */
2655 #define TRAP_CONDITION(RTX) XCEXP (RTX, 0, TRAP_IF)
2656 #define TRAP_CODE(RTX) XCEXP (RTX, 1, TRAP_IF)
2658 /* For a COND_EXEC rtx, COND_EXEC_TEST is the condition to base
2659 conditionally executing the code on, COND_EXEC_CODE is the code
2660 to execute if the condition is true. */
2661 #define COND_EXEC_TEST(RTX) XCEXP (RTX, 0, COND_EXEC)
2662 #define COND_EXEC_CODE(RTX) XCEXP (RTX, 1, COND_EXEC)
2664 /* 1 if RTX is a symbol_ref that addresses this function's rtl
2665 constants pool. */
2666 #define CONSTANT_POOL_ADDRESS_P(RTX) \
2667 (RTL_FLAG_CHECK1 ("CONSTANT_POOL_ADDRESS_P", (RTX), SYMBOL_REF)->unchanging)
2669 /* 1 if RTX is a symbol_ref that addresses a value in the file's
2670 tree constant pool. This information is private to varasm.c. */
2671 #define TREE_CONSTANT_POOL_ADDRESS_P(RTX) \
2672 (RTL_FLAG_CHECK1 ("TREE_CONSTANT_POOL_ADDRESS_P", \
2673 (RTX), SYMBOL_REF)->frame_related)
2675 /* Used if RTX is a symbol_ref, for machine-specific purposes. */
2676 #define SYMBOL_REF_FLAG(RTX) \
2677 (RTL_FLAG_CHECK1 ("SYMBOL_REF_FLAG", (RTX), SYMBOL_REF)->volatil)
2679 /* 1 if RTX is a symbol_ref that has been the library function in
2680 emit_library_call. */
2681 #define SYMBOL_REF_USED(RTX) \
2682 (RTL_FLAG_CHECK1 ("SYMBOL_REF_USED", (RTX), SYMBOL_REF)->used)
2684 /* 1 if RTX is a symbol_ref for a weak symbol. */
2685 #define SYMBOL_REF_WEAK(RTX) \
2686 (RTL_FLAG_CHECK1 ("SYMBOL_REF_WEAK", (RTX), SYMBOL_REF)->return_val)
2688 /* A pointer attached to the SYMBOL_REF; either SYMBOL_REF_DECL or
2689 SYMBOL_REF_CONSTANT. */
2690 #define SYMBOL_REF_DATA(RTX) X0ANY ((RTX), 1)
2692 /* Set RTX's SYMBOL_REF_DECL to DECL. RTX must not be a constant
2693 pool symbol. */
2694 #define SET_SYMBOL_REF_DECL(RTX, DECL) \
2695 (gcc_assert (!CONSTANT_POOL_ADDRESS_P (RTX)), X0TREE ((RTX), 1) = (DECL))
2697 /* The tree (decl or constant) associated with the symbol, or null. */
2698 #define SYMBOL_REF_DECL(RTX) \
2699 (CONSTANT_POOL_ADDRESS_P (RTX) ? NULL : X0TREE ((RTX), 1))
2701 /* Set RTX's SYMBOL_REF_CONSTANT to C. RTX must be a constant pool symbol. */
2702 #define SET_SYMBOL_REF_CONSTANT(RTX, C) \
2703 (gcc_assert (CONSTANT_POOL_ADDRESS_P (RTX)), X0CONSTANT ((RTX), 1) = (C))
2705 /* The rtx constant pool entry for a symbol, or null. */
2706 #define SYMBOL_REF_CONSTANT(RTX) \
2707 (CONSTANT_POOL_ADDRESS_P (RTX) ? X0CONSTANT ((RTX), 1) : NULL)
2709 /* A set of flags on a symbol_ref that are, in some respects, redundant with
2710 information derivable from the tree decl associated with this symbol.
2711 Except that we build a *lot* of SYMBOL_REFs that aren't associated with a
2712 decl. In some cases this is a bug. But beyond that, it's nice to cache
2713 this information to avoid recomputing it. Finally, this allows space for
2714 the target to store more than one bit of information, as with
2715 SYMBOL_REF_FLAG. */
2716 #define SYMBOL_REF_FLAGS(RTX) \
2717 (RTL_FLAG_CHECK1 ("SYMBOL_REF_FLAGS", (RTX), SYMBOL_REF) \
2718 ->u2.symbol_ref_flags)
2720 /* These flags are common enough to be defined for all targets. They
2721 are computed by the default version of targetm.encode_section_info. */
2723 /* Set if this symbol is a function. */
2724 #define SYMBOL_FLAG_FUNCTION (1 << 0)
2725 #define SYMBOL_REF_FUNCTION_P(RTX) \
2726 ((SYMBOL_REF_FLAGS (RTX) & SYMBOL_FLAG_FUNCTION) != 0)
2727 /* Set if targetm.binds_local_p is true. */
2728 #define SYMBOL_FLAG_LOCAL (1 << 1)
2729 #define SYMBOL_REF_LOCAL_P(RTX) \
2730 ((SYMBOL_REF_FLAGS (RTX) & SYMBOL_FLAG_LOCAL) != 0)
2731 /* Set if targetm.in_small_data_p is true. */
2732 #define SYMBOL_FLAG_SMALL (1 << 2)
2733 #define SYMBOL_REF_SMALL_P(RTX) \
2734 ((SYMBOL_REF_FLAGS (RTX) & SYMBOL_FLAG_SMALL) != 0)
2735 /* The three-bit field at [5:3] is true for TLS variables; use
2736 SYMBOL_REF_TLS_MODEL to extract the field as an enum tls_model. */
2737 #define SYMBOL_FLAG_TLS_SHIFT 3
2738 #define SYMBOL_REF_TLS_MODEL(RTX) \
2739 ((enum tls_model) ((SYMBOL_REF_FLAGS (RTX) >> SYMBOL_FLAG_TLS_SHIFT) & 7))
2740 /* Set if this symbol is not defined in this translation unit. */
2741 #define SYMBOL_FLAG_EXTERNAL (1 << 6)
2742 #define SYMBOL_REF_EXTERNAL_P(RTX) \
2743 ((SYMBOL_REF_FLAGS (RTX) & SYMBOL_FLAG_EXTERNAL) != 0)
2744 /* Set if this symbol has a block_symbol structure associated with it. */
2745 #define SYMBOL_FLAG_HAS_BLOCK_INFO (1 << 7)
2746 #define SYMBOL_REF_HAS_BLOCK_INFO_P(RTX) \
2747 ((SYMBOL_REF_FLAGS (RTX) & SYMBOL_FLAG_HAS_BLOCK_INFO) != 0)
2748 /* Set if this symbol is a section anchor. SYMBOL_REF_ANCHOR_P implies
2749 SYMBOL_REF_HAS_BLOCK_INFO_P. */
2750 #define SYMBOL_FLAG_ANCHOR (1 << 8)
2751 #define SYMBOL_REF_ANCHOR_P(RTX) \
2752 ((SYMBOL_REF_FLAGS (RTX) & SYMBOL_FLAG_ANCHOR) != 0)
2754 /* Subsequent bits are available for the target to use. */
2755 #define SYMBOL_FLAG_MACH_DEP_SHIFT 9
2756 #define SYMBOL_FLAG_MACH_DEP (1 << SYMBOL_FLAG_MACH_DEP_SHIFT)
2758 /* If SYMBOL_REF_HAS_BLOCK_INFO_P (RTX), this is the object_block
2759 structure to which the symbol belongs, or NULL if it has not been
2760 assigned a block. */
2761 #define SYMBOL_REF_BLOCK(RTX) (BLOCK_SYMBOL_CHECK (RTX)->block)
2763 /* If SYMBOL_REF_HAS_BLOCK_INFO_P (RTX), this is the offset of RTX from
2764 the first object in SYMBOL_REF_BLOCK (RTX). The value is negative if
2765 RTX has not yet been assigned to a block, or it has not been given an
2766 offset within that block. */
2767 #define SYMBOL_REF_BLOCK_OFFSET(RTX) (BLOCK_SYMBOL_CHECK (RTX)->offset)
2769 /* True if RTX is flagged to be a scheduling barrier. */
2770 #define PREFETCH_SCHEDULE_BARRIER_P(RTX) \
2771 (RTL_FLAG_CHECK1 ("PREFETCH_SCHEDULE_BARRIER_P", (RTX), PREFETCH)->volatil)
2773 /* Indicate whether the machine has any sort of auto increment addressing.
2774 If not, we can avoid checking for REG_INC notes. */
2776 #if (defined (HAVE_PRE_INCREMENT) || defined (HAVE_PRE_DECREMENT) \
2777 || defined (HAVE_POST_INCREMENT) || defined (HAVE_POST_DECREMENT) \
2778 || defined (HAVE_PRE_MODIFY_DISP) || defined (HAVE_POST_MODIFY_DISP) \
2779 || defined (HAVE_PRE_MODIFY_REG) || defined (HAVE_POST_MODIFY_REG))
2780 #define AUTO_INC_DEC 1
2781 #else
2782 #define AUTO_INC_DEC 0
2783 #endif
2785 /* Define a macro to look for REG_INC notes,
2786 but save time on machines where they never exist. */
2788 #if AUTO_INC_DEC
2789 #define FIND_REG_INC_NOTE(INSN, REG) \
2790 ((REG) != NULL_RTX && REG_P ((REG)) \
2791 ? find_regno_note ((INSN), REG_INC, REGNO (REG)) \
2792 : find_reg_note ((INSN), REG_INC, (REG)))
2793 #else
2794 #define FIND_REG_INC_NOTE(INSN, REG) 0
2795 #endif
2797 #ifndef HAVE_PRE_INCREMENT
2798 #define HAVE_PRE_INCREMENT 0
2799 #endif
2801 #ifndef HAVE_PRE_DECREMENT
2802 #define HAVE_PRE_DECREMENT 0
2803 #endif
2805 #ifndef HAVE_POST_INCREMENT
2806 #define HAVE_POST_INCREMENT 0
2807 #endif
2809 #ifndef HAVE_POST_DECREMENT
2810 #define HAVE_POST_DECREMENT 0
2811 #endif
2813 #ifndef HAVE_POST_MODIFY_DISP
2814 #define HAVE_POST_MODIFY_DISP 0
2815 #endif
2817 #ifndef HAVE_POST_MODIFY_REG
2818 #define HAVE_POST_MODIFY_REG 0
2819 #endif
2821 #ifndef HAVE_PRE_MODIFY_DISP
2822 #define HAVE_PRE_MODIFY_DISP 0
2823 #endif
2825 #ifndef HAVE_PRE_MODIFY_REG
2826 #define HAVE_PRE_MODIFY_REG 0
2827 #endif
2830 /* Some architectures do not have complete pre/post increment/decrement
2831 instruction sets, or only move some modes efficiently. These macros
2832 allow us to tune autoincrement generation. */
2834 #ifndef USE_LOAD_POST_INCREMENT
2835 #define USE_LOAD_POST_INCREMENT(MODE) HAVE_POST_INCREMENT
2836 #endif
2838 #ifndef USE_LOAD_POST_DECREMENT
2839 #define USE_LOAD_POST_DECREMENT(MODE) HAVE_POST_DECREMENT
2840 #endif
2842 #ifndef USE_LOAD_PRE_INCREMENT
2843 #define USE_LOAD_PRE_INCREMENT(MODE) HAVE_PRE_INCREMENT
2844 #endif
2846 #ifndef USE_LOAD_PRE_DECREMENT
2847 #define USE_LOAD_PRE_DECREMENT(MODE) HAVE_PRE_DECREMENT
2848 #endif
2850 #ifndef USE_STORE_POST_INCREMENT
2851 #define USE_STORE_POST_INCREMENT(MODE) HAVE_POST_INCREMENT
2852 #endif
2854 #ifndef USE_STORE_POST_DECREMENT
2855 #define USE_STORE_POST_DECREMENT(MODE) HAVE_POST_DECREMENT
2856 #endif
2858 #ifndef USE_STORE_PRE_INCREMENT
2859 #define USE_STORE_PRE_INCREMENT(MODE) HAVE_PRE_INCREMENT
2860 #endif
2862 #ifndef USE_STORE_PRE_DECREMENT
2863 #define USE_STORE_PRE_DECREMENT(MODE) HAVE_PRE_DECREMENT
2864 #endif
2866 /* Nonzero when we are generating CONCATs. */
2867 extern int generating_concat_p;
2869 /* Nonzero when we are expanding trees to RTL. */
2870 extern int currently_expanding_to_rtl;
2872 /* Generally useful functions. */
2874 #ifndef GENERATOR_FILE
2875 /* Return the cost of SET X. SPEED_P is true if optimizing for speed
2876 rather than size. */
2878 static inline int
2879 set_rtx_cost (rtx x, bool speed_p)
2881 return rtx_cost (x, VOIDmode, INSN, 4, speed_p);
2884 /* Like set_rtx_cost, but return both the speed and size costs in C. */
2886 static inline void
2887 get_full_set_rtx_cost (rtx x, struct full_rtx_costs *c)
2889 get_full_rtx_cost (x, VOIDmode, INSN, 4, c);
2892 /* Return the cost of moving X into a register, relative to the cost
2893 of a register move. SPEED_P is true if optimizing for speed rather
2894 than size. */
2896 static inline int
2897 set_src_cost (rtx x, machine_mode mode, bool speed_p)
2899 return rtx_cost (x, mode, SET, 1, speed_p);
2902 /* Like set_src_cost, but return both the speed and size costs in C. */
2904 static inline void
2905 get_full_set_src_cost (rtx x, machine_mode mode, struct full_rtx_costs *c)
2907 get_full_rtx_cost (x, mode, SET, 1, c);
2909 #endif
2911 /* A convenience macro to validate the arguments of a zero_extract
2912 expression. It determines whether SIZE lies inclusively within
2913 [1, RANGE], POS lies inclusively within between [0, RANGE - 1]
2914 and the sum lies inclusively within [1, RANGE]. RANGE must be
2915 >= 1, but SIZE and POS may be negative. */
2916 #define EXTRACT_ARGS_IN_RANGE(SIZE, POS, RANGE) \
2917 (IN_RANGE ((POS), 0, (unsigned HOST_WIDE_INT) (RANGE) - 1) \
2918 && IN_RANGE ((SIZE), 1, (unsigned HOST_WIDE_INT) (RANGE) \
2919 - (unsigned HOST_WIDE_INT)(POS)))
2921 /* In explow.c */
2922 extern HOST_WIDE_INT trunc_int_for_mode (HOST_WIDE_INT, machine_mode);
2923 extern poly_int64 trunc_int_for_mode (poly_int64, machine_mode);
2924 extern rtx plus_constant (machine_mode, rtx, poly_int64, bool = false);
2925 extern HOST_WIDE_INT get_stack_check_protect (void);
2927 /* In rtl.c */
2928 extern rtx rtx_alloc (RTX_CODE CXX_MEM_STAT_INFO);
2929 extern rtx rtx_alloc_stat_v (RTX_CODE MEM_STAT_DECL, int);
2930 #define rtx_alloc_v(c, SZ) rtx_alloc_stat_v (c MEM_STAT_INFO, SZ)
2931 #define const_wide_int_alloc(NWORDS) \
2932 rtx_alloc_v (CONST_WIDE_INT, \
2933 (sizeof (struct hwivec_def) \
2934 + ((NWORDS)-1) * sizeof (HOST_WIDE_INT))) \
2936 extern rtvec rtvec_alloc (int);
2937 extern rtvec shallow_copy_rtvec (rtvec);
2938 extern bool shared_const_p (const_rtx);
2939 extern rtx copy_rtx (rtx);
2940 extern enum rtx_code classify_insn (rtx);
2941 extern void dump_rtx_statistics (void);
2943 /* In emit-rtl.c */
2944 extern rtx copy_rtx_if_shared (rtx);
2946 /* In rtl.c */
2947 extern unsigned int rtx_size (const_rtx);
2948 extern rtx shallow_copy_rtx (const_rtx CXX_MEM_STAT_INFO);
2949 extern int rtx_equal_p (const_rtx, const_rtx);
2950 extern bool rtvec_all_equal_p (const_rtvec);
2952 /* Return true if X is a vector constant with a duplicated element value. */
2954 inline bool
2955 const_vec_duplicate_p (const_rtx x)
2957 return (GET_CODE (x) == CONST_VECTOR
2958 && CONST_VECTOR_NPATTERNS (x) == 1
2959 && CONST_VECTOR_DUPLICATE_P (x));
2962 /* Return true if X is a vector constant with a duplicated element value.
2963 Store the duplicated element in *ELT if so. */
2965 template <typename T>
2966 inline bool
2967 const_vec_duplicate_p (T x, T *elt)
2969 if (const_vec_duplicate_p (x))
2971 *elt = CONST_VECTOR_ENCODED_ELT (x, 0);
2972 return true;
2974 return false;
2977 /* Return true if X is a vector with a duplicated element value, either
2978 constant or nonconstant. Store the duplicated element in *ELT if so. */
2980 template <typename T>
2981 inline bool
2982 vec_duplicate_p (T x, T *elt)
2984 if (GET_CODE (x) == VEC_DUPLICATE
2985 && !VECTOR_MODE_P (GET_MODE (XEXP (x, 0))))
2987 *elt = XEXP (x, 0);
2988 return true;
2990 return const_vec_duplicate_p (x, elt);
2993 /* If X is a vector constant with a duplicated element value, return that
2994 element value, otherwise return X. */
2996 template <typename T>
2997 inline T
2998 unwrap_const_vec_duplicate (T x)
3000 if (const_vec_duplicate_p (x))
3001 x = CONST_VECTOR_ELT (x, 0);
3002 return x;
3005 /* In emit-rtl.c. */
3006 extern wide_int const_vector_int_elt (const_rtx, unsigned int);
3007 extern rtx const_vector_elt (const_rtx, unsigned int);
3008 extern bool const_vec_series_p_1 (const_rtx, rtx *, rtx *);
3010 /* Return true if X is an integer constant vector that contains a linear
3011 series of the form:
3013 { B, B + S, B + 2 * S, B + 3 * S, ... }
3015 for a nonzero S. Store B and S in *BASE_OUT and *STEP_OUT on sucess. */
3017 inline bool
3018 const_vec_series_p (const_rtx x, rtx *base_out, rtx *step_out)
3020 if (GET_CODE (x) == CONST_VECTOR
3021 && CONST_VECTOR_NPATTERNS (x) == 1
3022 && !CONST_VECTOR_DUPLICATE_P (x))
3023 return const_vec_series_p_1 (x, base_out, step_out);
3024 return false;
3027 /* Return true if X is a vector that contains a linear series of the
3028 form:
3030 { B, B + S, B + 2 * S, B + 3 * S, ... }
3032 where B and S are constant or nonconstant. Store B and S in
3033 *BASE_OUT and *STEP_OUT on sucess. */
3035 inline bool
3036 vec_series_p (const_rtx x, rtx *base_out, rtx *step_out)
3038 if (GET_CODE (x) == VEC_SERIES)
3040 *base_out = XEXP (x, 0);
3041 *step_out = XEXP (x, 1);
3042 return true;
3044 return const_vec_series_p (x, base_out, step_out);
3047 /* Return the unpromoted (outer) mode of SUBREG_PROMOTED_VAR_P subreg X. */
3049 inline scalar_int_mode
3050 subreg_unpromoted_mode (rtx x)
3052 gcc_checking_assert (SUBREG_PROMOTED_VAR_P (x));
3053 return as_a <scalar_int_mode> (GET_MODE (x));
3056 /* Return the promoted (inner) mode of SUBREG_PROMOTED_VAR_P subreg X. */
3058 inline scalar_int_mode
3059 subreg_promoted_mode (rtx x)
3061 gcc_checking_assert (SUBREG_PROMOTED_VAR_P (x));
3062 return as_a <scalar_int_mode> (GET_MODE (SUBREG_REG (x)));
3065 /* In emit-rtl.c */
3066 extern rtvec gen_rtvec_v (int, rtx *);
3067 extern rtvec gen_rtvec_v (int, rtx_insn **);
3068 extern rtx gen_reg_rtx (machine_mode);
3069 extern rtx gen_rtx_REG_offset (rtx, machine_mode, unsigned int, poly_int64);
3070 extern rtx gen_reg_rtx_offset (rtx, machine_mode, int);
3071 extern rtx gen_reg_rtx_and_attrs (rtx);
3072 extern rtx_code_label *gen_label_rtx (void);
3073 extern rtx gen_lowpart_common (machine_mode, rtx);
3075 /* In cse.c */
3076 extern rtx gen_lowpart_if_possible (machine_mode, rtx);
3078 /* In emit-rtl.c */
3079 extern rtx gen_highpart (machine_mode, rtx);
3080 extern rtx gen_highpart_mode (machine_mode, machine_mode, rtx);
3081 extern rtx operand_subword (rtx, poly_uint64, int, machine_mode);
3083 /* In emit-rtl.c */
3084 extern rtx operand_subword_force (rtx, poly_uint64, machine_mode);
3085 extern int subreg_lowpart_p (const_rtx);
3086 extern poly_uint64 subreg_size_lowpart_offset (poly_uint64, poly_uint64);
3088 /* Return true if a subreg of mode OUTERMODE would only access part of
3089 an inner register with mode INNERMODE. The other bits of the inner
3090 register would then be "don't care" on read. The behavior for writes
3091 depends on REGMODE_NATURAL_SIZE; bits in the same REGMODE_NATURAL_SIZE-d
3092 chunk would be clobbered but other bits would be preserved. */
3094 inline bool
3095 partial_subreg_p (machine_mode outermode, machine_mode innermode)
3097 /* Modes involved in a subreg must be ordered. In particular, we must
3098 always know at compile time whether the subreg is paradoxical. */
3099 poly_int64 outer_prec = GET_MODE_PRECISION (outermode);
3100 poly_int64 inner_prec = GET_MODE_PRECISION (innermode);
3101 gcc_checking_assert (ordered_p (outer_prec, inner_prec));
3102 return maybe_lt (outer_prec, inner_prec);
3105 /* Likewise return true if X is a subreg that is smaller than the inner
3106 register. Use read_modify_subreg_p to test whether writing to such
3107 a subreg preserves any part of the inner register. */
3109 inline bool
3110 partial_subreg_p (const_rtx x)
3112 if (GET_CODE (x) != SUBREG)
3113 return false;
3114 return partial_subreg_p (GET_MODE (x), GET_MODE (SUBREG_REG (x)));
3117 /* Return true if a subreg with the given outer and inner modes is
3118 paradoxical. */
3120 inline bool
3121 paradoxical_subreg_p (machine_mode outermode, machine_mode innermode)
3123 /* Modes involved in a subreg must be ordered. In particular, we must
3124 always know at compile time whether the subreg is paradoxical. */
3125 poly_int64 outer_prec = GET_MODE_PRECISION (outermode);
3126 poly_int64 inner_prec = GET_MODE_PRECISION (innermode);
3127 gcc_checking_assert (ordered_p (outer_prec, inner_prec));
3128 return maybe_gt (outer_prec, inner_prec);
3131 /* Return true if X is a paradoxical subreg, false otherwise. */
3133 inline bool
3134 paradoxical_subreg_p (const_rtx x)
3136 if (GET_CODE (x) != SUBREG)
3137 return false;
3138 return paradoxical_subreg_p (GET_MODE (x), GET_MODE (SUBREG_REG (x)));
3141 /* Return the SUBREG_BYTE for an OUTERMODE lowpart of an INNERMODE value. */
3143 inline poly_uint64
3144 subreg_lowpart_offset (machine_mode outermode, machine_mode innermode)
3146 return subreg_size_lowpart_offset (GET_MODE_SIZE (outermode),
3147 GET_MODE_SIZE (innermode));
3150 /* Given that a subreg has outer mode OUTERMODE and inner mode INNERMODE,
3151 return the smaller of the two modes if they are different sizes,
3152 otherwise return the outer mode. */
3154 inline machine_mode
3155 narrower_subreg_mode (machine_mode outermode, machine_mode innermode)
3157 return paradoxical_subreg_p (outermode, innermode) ? innermode : outermode;
3160 /* Given that a subreg has outer mode OUTERMODE and inner mode INNERMODE,
3161 return the mode that is big enough to hold both the outer and inner
3162 values. Prefer the outer mode in the event of a tie. */
3164 inline machine_mode
3165 wider_subreg_mode (machine_mode outermode, machine_mode innermode)
3167 return partial_subreg_p (outermode, innermode) ? innermode : outermode;
3170 /* Likewise for subreg X. */
3172 inline machine_mode
3173 wider_subreg_mode (const_rtx x)
3175 return wider_subreg_mode (GET_MODE (x), GET_MODE (SUBREG_REG (x)));
3178 extern poly_uint64 subreg_size_highpart_offset (poly_uint64, poly_uint64);
3180 /* Return the SUBREG_BYTE for an OUTERMODE highpart of an INNERMODE value. */
3182 inline poly_uint64
3183 subreg_highpart_offset (machine_mode outermode, machine_mode innermode)
3185 return subreg_size_highpart_offset (GET_MODE_SIZE (outermode),
3186 GET_MODE_SIZE (innermode));
3189 extern poly_int64 byte_lowpart_offset (machine_mode, machine_mode);
3190 extern poly_int64 subreg_memory_offset (machine_mode, machine_mode,
3191 poly_uint64);
3192 extern poly_int64 subreg_memory_offset (const_rtx);
3193 extern rtx make_safe_from (rtx, rtx);
3194 extern rtx convert_memory_address_addr_space_1 (scalar_int_mode, rtx,
3195 addr_space_t, bool, bool);
3196 extern rtx convert_memory_address_addr_space (scalar_int_mode, rtx,
3197 addr_space_t);
3198 #define convert_memory_address(to_mode,x) \
3199 convert_memory_address_addr_space ((to_mode), (x), ADDR_SPACE_GENERIC)
3200 extern const char *get_insn_name (int);
3201 extern rtx_insn *get_last_insn_anywhere (void);
3202 extern rtx_insn *get_first_nonnote_insn (void);
3203 extern rtx_insn *get_last_nonnote_insn (void);
3204 extern void start_sequence (void);
3205 extern void push_to_sequence (rtx_insn *);
3206 extern void push_to_sequence2 (rtx_insn *, rtx_insn *);
3207 extern void end_sequence (void);
3208 #if TARGET_SUPPORTS_WIDE_INT == 0
3209 extern double_int rtx_to_double_int (const_rtx);
3210 #endif
3211 extern void cwi_output_hex (FILE *, const_rtx);
3212 #if TARGET_SUPPORTS_WIDE_INT == 0
3213 extern rtx immed_double_const (HOST_WIDE_INT, HOST_WIDE_INT,
3214 machine_mode);
3215 #endif
3216 extern rtx immed_wide_int_const (const poly_wide_int_ref &, machine_mode);
3218 /* In varasm.c */
3219 extern rtx force_const_mem (machine_mode, rtx);
3221 /* In varasm.c */
3223 struct function;
3224 extern rtx get_pool_constant (const_rtx);
3225 extern rtx get_pool_constant_mark (rtx, bool *);
3226 extern fixed_size_mode get_pool_mode (const_rtx);
3227 extern rtx simplify_subtraction (rtx);
3228 extern void decide_function_section (tree);
3230 /* In emit-rtl.c */
3231 extern rtx_insn *emit_insn_before (rtx, rtx_insn *);
3232 extern rtx_insn *emit_insn_before_noloc (rtx, rtx_insn *, basic_block);
3233 extern rtx_insn *emit_insn_before_setloc (rtx, rtx_insn *, location_t);
3234 extern rtx_jump_insn *emit_jump_insn_before (rtx, rtx_insn *);
3235 extern rtx_jump_insn *emit_jump_insn_before_noloc (rtx, rtx_insn *);
3236 extern rtx_jump_insn *emit_jump_insn_before_setloc (rtx, rtx_insn *,
3237 location_t);
3238 extern rtx_insn *emit_call_insn_before (rtx, rtx_insn *);
3239 extern rtx_insn *emit_call_insn_before_noloc (rtx, rtx_insn *);
3240 extern rtx_insn *emit_call_insn_before_setloc (rtx, rtx_insn *, location_t);
3241 extern rtx_insn *emit_debug_insn_before (rtx, rtx_insn *);
3242 extern rtx_insn *emit_debug_insn_before_noloc (rtx, rtx_insn *);
3243 extern rtx_insn *emit_debug_insn_before_setloc (rtx, rtx_insn *, location_t);
3244 extern rtx_barrier *emit_barrier_before (rtx_insn *);
3245 extern rtx_code_label *emit_label_before (rtx_code_label *, rtx_insn *);
3246 extern rtx_note *emit_note_before (enum insn_note, rtx_insn *);
3247 extern rtx_insn *emit_insn_after (rtx, rtx_insn *);
3248 extern rtx_insn *emit_insn_after_noloc (rtx, rtx_insn *, basic_block);
3249 extern rtx_insn *emit_insn_after_setloc (rtx, rtx_insn *, location_t);
3250 extern rtx_jump_insn *emit_jump_insn_after (rtx, rtx_insn *);
3251 extern rtx_jump_insn *emit_jump_insn_after_noloc (rtx, rtx_insn *);
3252 extern rtx_jump_insn *emit_jump_insn_after_setloc (rtx, rtx_insn *, location_t);
3253 extern rtx_insn *emit_call_insn_after (rtx, rtx_insn *);
3254 extern rtx_insn *emit_call_insn_after_noloc (rtx, rtx_insn *);
3255 extern rtx_insn *emit_call_insn_after_setloc (rtx, rtx_insn *, location_t);
3256 extern rtx_insn *emit_debug_insn_after (rtx, rtx_insn *);
3257 extern rtx_insn *emit_debug_insn_after_noloc (rtx, rtx_insn *);
3258 extern rtx_insn *emit_debug_insn_after_setloc (rtx, rtx_insn *, location_t);
3259 extern rtx_barrier *emit_barrier_after (rtx_insn *);
3260 extern rtx_insn *emit_label_after (rtx_insn *, rtx_insn *);
3261 extern rtx_note *emit_note_after (enum insn_note, rtx_insn *);
3262 extern rtx_insn *emit_insn (rtx);
3263 extern rtx_insn *emit_debug_insn (rtx);
3264 extern rtx_insn *emit_jump_insn (rtx);
3265 extern rtx_insn *emit_call_insn (rtx);
3266 extern rtx_code_label *emit_label (rtx);
3267 extern rtx_jump_table_data *emit_jump_table_data (rtx);
3268 extern rtx_barrier *emit_barrier (void);
3269 extern rtx_note *emit_note (enum insn_note);
3270 extern rtx_note *emit_note_copy (rtx_note *);
3271 extern rtx_insn *gen_clobber (rtx);
3272 extern rtx_insn *emit_clobber (rtx);
3273 extern rtx_insn *gen_use (rtx);
3274 extern rtx_insn *emit_use (rtx);
3275 extern rtx_insn *make_insn_raw (rtx);
3276 extern void add_function_usage_to (rtx, rtx);
3277 extern rtx_call_insn *last_call_insn (void);
3278 extern rtx_insn *previous_insn (rtx_insn *);
3279 extern rtx_insn *next_insn (rtx_insn *);
3280 extern rtx_insn *prev_nonnote_insn (rtx_insn *);
3281 extern rtx_insn *next_nonnote_insn (rtx_insn *);
3282 extern rtx_insn *prev_nondebug_insn (rtx_insn *);
3283 extern rtx_insn *next_nondebug_insn (rtx_insn *);
3284 extern rtx_insn *prev_nonnote_nondebug_insn (rtx_insn *);
3285 extern rtx_insn *prev_nonnote_nondebug_insn_bb (rtx_insn *);
3286 extern rtx_insn *next_nonnote_nondebug_insn (rtx_insn *);
3287 extern rtx_insn *next_nonnote_nondebug_insn_bb (rtx_insn *);
3288 extern rtx_insn *prev_real_insn (rtx_insn *);
3289 extern rtx_insn *next_real_insn (rtx_insn *);
3290 extern rtx_insn *prev_real_nondebug_insn (rtx_insn *);
3291 extern rtx_insn *next_real_nondebug_insn (rtx);
3292 extern rtx_insn *prev_active_insn (rtx_insn *);
3293 extern rtx_insn *next_active_insn (rtx_insn *);
3294 extern int active_insn_p (const rtx_insn *);
3295 extern rtx_insn *next_cc0_user (rtx_insn *);
3296 extern rtx_insn *prev_cc0_setter (rtx_insn *);
3298 /* In emit-rtl.c */
3299 extern int insn_line (const rtx_insn *);
3300 extern const char * insn_file (const rtx_insn *);
3301 extern tree insn_scope (const rtx_insn *);
3302 extern expanded_location insn_location (const rtx_insn *);
3303 extern location_t prologue_location, epilogue_location;
3305 /* In jump.c */
3306 extern enum rtx_code reverse_condition (enum rtx_code);
3307 extern enum rtx_code reverse_condition_maybe_unordered (enum rtx_code);
3308 extern enum rtx_code swap_condition (enum rtx_code);
3309 extern enum rtx_code unsigned_condition (enum rtx_code);
3310 extern enum rtx_code signed_condition (enum rtx_code);
3311 extern void mark_jump_label (rtx, rtx_insn *, int);
3313 /* Return true if integer comparison operator CODE interprets its operands
3314 as unsigned. */
3316 inline bool
3317 unsigned_condition_p (enum rtx_code code)
3319 return unsigned_condition (code) == code;
3322 /* In jump.c */
3323 extern rtx_insn *delete_related_insns (rtx);
3325 /* In recog.c */
3326 extern rtx *find_constant_term_loc (rtx *);
3328 /* In emit-rtl.c */
3329 extern rtx_insn *try_split (rtx, rtx_insn *, int);
3331 /* In insn-recog.c (generated by genrecog). */
3332 extern rtx_insn *split_insns (rtx, rtx_insn *);
3334 /* In simplify-rtx.c */
3335 extern rtx simplify_const_unary_operation (enum rtx_code, machine_mode,
3336 rtx, machine_mode);
3337 extern rtx simplify_unary_operation (enum rtx_code, machine_mode, rtx,
3338 machine_mode);
3339 extern rtx simplify_const_binary_operation (enum rtx_code, machine_mode,
3340 rtx, rtx);
3341 extern rtx simplify_binary_operation (enum rtx_code, machine_mode, rtx,
3342 rtx);
3343 extern rtx simplify_ternary_operation (enum rtx_code, machine_mode,
3344 machine_mode, rtx, rtx, rtx);
3345 extern rtx simplify_const_relational_operation (enum rtx_code,
3346 machine_mode, rtx, rtx);
3347 extern rtx simplify_relational_operation (enum rtx_code, machine_mode,
3348 machine_mode, rtx, rtx);
3349 extern rtx simplify_gen_binary (enum rtx_code, machine_mode, rtx, rtx);
3350 extern rtx simplify_gen_unary (enum rtx_code, machine_mode, rtx,
3351 machine_mode);
3352 extern rtx simplify_gen_ternary (enum rtx_code, machine_mode,
3353 machine_mode, rtx, rtx, rtx);
3354 extern rtx simplify_gen_relational (enum rtx_code, machine_mode,
3355 machine_mode, rtx, rtx);
3356 extern rtx simplify_subreg (machine_mode, rtx, machine_mode, poly_uint64);
3357 extern rtx simplify_gen_subreg (machine_mode, rtx, machine_mode, poly_uint64);
3358 extern rtx lowpart_subreg (machine_mode, rtx, machine_mode);
3359 extern rtx simplify_replace_fn_rtx (rtx, const_rtx,
3360 rtx (*fn) (rtx, const_rtx, void *), void *);
3361 extern rtx simplify_replace_rtx (rtx, const_rtx, rtx);
3362 extern rtx simplify_rtx (const_rtx);
3363 extern rtx avoid_constant_pool_reference (rtx);
3364 extern rtx delegitimize_mem_from_attrs (rtx);
3365 extern bool mode_signbit_p (machine_mode, const_rtx);
3366 extern bool val_signbit_p (machine_mode, unsigned HOST_WIDE_INT);
3367 extern bool val_signbit_known_set_p (machine_mode,
3368 unsigned HOST_WIDE_INT);
3369 extern bool val_signbit_known_clear_p (machine_mode,
3370 unsigned HOST_WIDE_INT);
3372 /* In reginfo.c */
3373 extern machine_mode choose_hard_reg_mode (unsigned int, unsigned int,
3374 bool);
3375 extern const HARD_REG_SET &simplifiable_subregs (const subreg_shape &);
3377 /* In emit-rtl.c */
3378 extern rtx set_for_reg_notes (rtx);
3379 extern rtx set_unique_reg_note (rtx, enum reg_note, rtx);
3380 extern rtx set_dst_reg_note (rtx, enum reg_note, rtx, rtx);
3381 extern void set_insn_deleted (rtx_insn *);
3383 /* Functions in rtlanal.c */
3385 extern rtx single_set_2 (const rtx_insn *, const_rtx);
3386 extern bool contains_symbol_ref_p (const_rtx);
3387 extern bool contains_symbolic_reference_p (const_rtx);
3389 /* Handle the cheap and common cases inline for performance. */
3391 inline rtx single_set (const rtx_insn *insn)
3393 if (!INSN_P (insn))
3394 return NULL_RTX;
3396 if (GET_CODE (PATTERN (insn)) == SET)
3397 return PATTERN (insn);
3399 /* Defer to the more expensive case. */
3400 return single_set_2 (insn, PATTERN (insn));
3403 extern scalar_int_mode get_address_mode (rtx mem);
3404 extern int rtx_addr_can_trap_p (const_rtx);
3405 extern bool nonzero_address_p (const_rtx);
3406 extern int rtx_unstable_p (const_rtx);
3407 extern bool rtx_varies_p (const_rtx, bool);
3408 extern bool rtx_addr_varies_p (const_rtx, bool);
3409 extern rtx get_call_rtx_from (rtx);
3410 extern HOST_WIDE_INT get_integer_term (const_rtx);
3411 extern rtx get_related_value (const_rtx);
3412 extern bool offset_within_block_p (const_rtx, HOST_WIDE_INT);
3413 extern void split_const (rtx, rtx *, rtx *);
3414 extern rtx strip_offset (rtx, poly_int64_pod *);
3415 extern poly_int64 get_args_size (const_rtx);
3416 extern bool unsigned_reg_p (rtx);
3417 extern int reg_mentioned_p (const_rtx, const_rtx);
3418 extern int count_occurrences (const_rtx, const_rtx, int);
3419 extern int reg_referenced_p (const_rtx, const_rtx);
3420 extern int reg_used_between_p (const_rtx, const rtx_insn *, const rtx_insn *);
3421 extern int reg_set_between_p (const_rtx, const rtx_insn *, const rtx_insn *);
3422 extern int commutative_operand_precedence (rtx);
3423 extern bool swap_commutative_operands_p (rtx, rtx);
3424 extern int modified_between_p (const_rtx, const rtx_insn *, const rtx_insn *);
3425 extern int no_labels_between_p (const rtx_insn *, const rtx_insn *);
3426 extern int modified_in_p (const_rtx, const_rtx);
3427 extern int reg_set_p (const_rtx, const_rtx);
3428 extern int multiple_sets (const_rtx);
3429 extern int set_noop_p (const_rtx);
3430 extern int noop_move_p (const rtx_insn *);
3431 extern bool refers_to_regno_p (unsigned int, unsigned int, const_rtx, rtx *);
3432 extern int reg_overlap_mentioned_p (const_rtx, const_rtx);
3433 extern const_rtx set_of (const_rtx, const_rtx);
3434 extern void record_hard_reg_sets (rtx, const_rtx, void *);
3435 extern void record_hard_reg_uses (rtx *, void *);
3436 extern void find_all_hard_regs (const_rtx, HARD_REG_SET *);
3437 extern void find_all_hard_reg_sets (const rtx_insn *, HARD_REG_SET *, bool);
3438 extern void note_stores (const_rtx, void (*) (rtx, const_rtx, void *), void *);
3439 extern void note_uses (rtx *, void (*) (rtx *, void *), void *);
3440 extern int dead_or_set_p (const rtx_insn *, const_rtx);
3441 extern int dead_or_set_regno_p (const rtx_insn *, unsigned int);
3442 extern rtx find_reg_note (const_rtx, enum reg_note, const_rtx);
3443 extern rtx find_regno_note (const_rtx, enum reg_note, unsigned int);
3444 extern rtx find_reg_equal_equiv_note (const_rtx);
3445 extern rtx find_constant_src (const rtx_insn *);
3446 extern int find_reg_fusage (const_rtx, enum rtx_code, const_rtx);
3447 extern int find_regno_fusage (const_rtx, enum rtx_code, unsigned int);
3448 extern rtx alloc_reg_note (enum reg_note, rtx, rtx);
3449 extern void add_reg_note (rtx, enum reg_note, rtx);
3450 extern void add_int_reg_note (rtx_insn *, enum reg_note, int);
3451 extern void add_args_size_note (rtx_insn *, poly_int64);
3452 extern void add_shallow_copy_of_reg_note (rtx_insn *, rtx);
3453 extern rtx duplicate_reg_note (rtx);
3454 extern void remove_note (rtx_insn *, const_rtx);
3455 extern bool remove_reg_equal_equiv_notes (rtx_insn *);
3456 extern void remove_reg_equal_equiv_notes_for_regno (unsigned int);
3457 extern int side_effects_p (const_rtx);
3458 extern int volatile_refs_p (const_rtx);
3459 extern int volatile_insn_p (const_rtx);
3460 extern int may_trap_p_1 (const_rtx, unsigned);
3461 extern int may_trap_p (const_rtx);
3462 extern int may_trap_or_fault_p (const_rtx);
3463 extern bool can_throw_internal (const_rtx);
3464 extern bool can_throw_external (const_rtx);
3465 extern bool insn_could_throw_p (const_rtx);
3466 extern bool insn_nothrow_p (const_rtx);
3467 extern bool can_nonlocal_goto (const rtx_insn *);
3468 extern void copy_reg_eh_region_note_forward (rtx, rtx_insn *, rtx);
3469 extern void copy_reg_eh_region_note_backward (rtx, rtx_insn *, rtx);
3470 extern int inequality_comparisons_p (const_rtx);
3471 extern rtx replace_rtx (rtx, rtx, rtx, bool = false);
3472 extern void replace_label (rtx *, rtx, rtx, bool);
3473 extern void replace_label_in_insn (rtx_insn *, rtx_insn *, rtx_insn *, bool);
3474 extern bool rtx_referenced_p (const_rtx, const_rtx);
3475 extern bool tablejump_p (const rtx_insn *, rtx_insn **, rtx_jump_table_data **);
3476 extern int computed_jump_p (const rtx_insn *);
3477 extern bool tls_referenced_p (const_rtx);
3478 extern bool contains_mem_rtx_p (rtx x);
3479 extern bool reg_is_clobbered_by_clobber_high (unsigned int, machine_mode,
3480 const_rtx);
3482 /* Convenient wrapper for reg_is_clobbered_by_clobber_high. */
3483 inline bool
3484 reg_is_clobbered_by_clobber_high (const_rtx x, const_rtx clobber_high_op)
3486 return reg_is_clobbered_by_clobber_high (REGNO (x), GET_MODE (x),
3487 clobber_high_op);
3490 /* Overload for refers_to_regno_p for checking a single register. */
3491 inline bool
3492 refers_to_regno_p (unsigned int regnum, const_rtx x, rtx* loc = NULL)
3494 return refers_to_regno_p (regnum, regnum + 1, x, loc);
3497 /* Callback for for_each_inc_dec, to process the autoinc operation OP
3498 within MEM that sets DEST to SRC + SRCOFF, or SRC if SRCOFF is
3499 NULL. The callback is passed the same opaque ARG passed to
3500 for_each_inc_dec. Return zero to continue looking for other
3501 autoinc operations or any other value to interrupt the traversal and
3502 return that value to the caller of for_each_inc_dec. */
3503 typedef int (*for_each_inc_dec_fn) (rtx mem, rtx op, rtx dest, rtx src,
3504 rtx srcoff, void *arg);
3505 extern int for_each_inc_dec (rtx, for_each_inc_dec_fn, void *arg);
3507 typedef int (*rtx_equal_p_callback_function) (const_rtx *, const_rtx *,
3508 rtx *, rtx *);
3509 extern int rtx_equal_p_cb (const_rtx, const_rtx,
3510 rtx_equal_p_callback_function);
3512 typedef int (*hash_rtx_callback_function) (const_rtx, machine_mode, rtx *,
3513 machine_mode *);
3514 extern unsigned hash_rtx_cb (const_rtx, machine_mode, int *, int *,
3515 bool, hash_rtx_callback_function);
3517 extern rtx regno_use_in (unsigned int, rtx);
3518 extern int auto_inc_p (const_rtx);
3519 extern bool in_insn_list_p (const rtx_insn_list *, const rtx_insn *);
3520 extern void remove_node_from_expr_list (const_rtx, rtx_expr_list **);
3521 extern void remove_node_from_insn_list (const rtx_insn *, rtx_insn_list **);
3522 extern int loc_mentioned_in_p (rtx *, const_rtx);
3523 extern rtx_insn *find_first_parameter_load (rtx_insn *, rtx_insn *);
3524 extern bool keep_with_call_p (const rtx_insn *);
3525 extern bool label_is_jump_target_p (const_rtx, const rtx_insn *);
3526 extern int pattern_cost (rtx, bool);
3527 extern int insn_cost (rtx_insn *, bool);
3528 extern unsigned seq_cost (const rtx_insn *, bool);
3530 /* Given an insn and condition, return a canonical description of
3531 the test being made. */
3532 extern rtx canonicalize_condition (rtx_insn *, rtx, int, rtx_insn **, rtx,
3533 int, int);
3535 /* Given a JUMP_INSN, return a canonical description of the test
3536 being made. */
3537 extern rtx get_condition (rtx_insn *, rtx_insn **, int, int);
3539 /* Information about a subreg of a hard register. */
3540 struct subreg_info
3542 /* Offset of first hard register involved in the subreg. */
3543 int offset;
3544 /* Number of hard registers involved in the subreg. In the case of
3545 a paradoxical subreg, this is the number of registers that would
3546 be modified by writing to the subreg; some of them may be don't-care
3547 when reading from the subreg. */
3548 int nregs;
3549 /* Whether this subreg can be represented as a hard reg with the new
3550 mode (by adding OFFSET to the original hard register). */
3551 bool representable_p;
3554 extern void subreg_get_info (unsigned int, machine_mode,
3555 poly_uint64, machine_mode,
3556 struct subreg_info *);
3558 /* lists.c */
3560 extern void free_EXPR_LIST_list (rtx_expr_list **);
3561 extern void free_INSN_LIST_list (rtx_insn_list **);
3562 extern void free_EXPR_LIST_node (rtx);
3563 extern void free_INSN_LIST_node (rtx);
3564 extern rtx_insn_list *alloc_INSN_LIST (rtx, rtx);
3565 extern rtx_insn_list *copy_INSN_LIST (rtx_insn_list *);
3566 extern rtx_insn_list *concat_INSN_LIST (rtx_insn_list *, rtx_insn_list *);
3567 extern rtx_expr_list *alloc_EXPR_LIST (int, rtx, rtx);
3568 extern void remove_free_INSN_LIST_elem (rtx_insn *, rtx_insn_list **);
3569 extern rtx remove_list_elem (rtx, rtx *);
3570 extern rtx_insn *remove_free_INSN_LIST_node (rtx_insn_list **);
3571 extern rtx remove_free_EXPR_LIST_node (rtx_expr_list **);
3574 /* reginfo.c */
3576 /* Resize reg info. */
3577 extern bool resize_reg_info (void);
3578 /* Free up register info memory. */
3579 extern void free_reg_info (void);
3580 extern void init_subregs_of_mode (void);
3581 extern void finish_subregs_of_mode (void);
3583 /* recog.c */
3584 extern rtx extract_asm_operands (rtx);
3585 extern int asm_noperands (const_rtx);
3586 extern const char *decode_asm_operands (rtx, rtx *, rtx **, const char **,
3587 machine_mode *, location_t *);
3588 extern void get_referenced_operands (const char *, bool *, unsigned int);
3590 extern enum reg_class reg_preferred_class (int);
3591 extern enum reg_class reg_alternate_class (int);
3592 extern enum reg_class reg_allocno_class (int);
3593 extern void setup_reg_classes (int, enum reg_class, enum reg_class,
3594 enum reg_class);
3596 extern void split_all_insns (void);
3597 extern unsigned int split_all_insns_noflow (void);
3599 #define MAX_SAVED_CONST_INT 64
3600 extern GTY(()) rtx const_int_rtx[MAX_SAVED_CONST_INT * 2 + 1];
3602 #define const0_rtx (const_int_rtx[MAX_SAVED_CONST_INT])
3603 #define const1_rtx (const_int_rtx[MAX_SAVED_CONST_INT+1])
3604 #define const2_rtx (const_int_rtx[MAX_SAVED_CONST_INT+2])
3605 #define constm1_rtx (const_int_rtx[MAX_SAVED_CONST_INT-1])
3606 extern GTY(()) rtx const_true_rtx;
3608 extern GTY(()) rtx const_tiny_rtx[4][(int) MAX_MACHINE_MODE];
3610 /* Returns a constant 0 rtx in mode MODE. Integer modes are treated the
3611 same as VOIDmode. */
3613 #define CONST0_RTX(MODE) (const_tiny_rtx[0][(int) (MODE)])
3615 /* Likewise, for the constants 1 and 2 and -1. */
3617 #define CONST1_RTX(MODE) (const_tiny_rtx[1][(int) (MODE)])
3618 #define CONST2_RTX(MODE) (const_tiny_rtx[2][(int) (MODE)])
3619 #define CONSTM1_RTX(MODE) (const_tiny_rtx[3][(int) (MODE)])
3621 extern GTY(()) rtx pc_rtx;
3622 extern GTY(()) rtx cc0_rtx;
3623 extern GTY(()) rtx ret_rtx;
3624 extern GTY(()) rtx simple_return_rtx;
3625 extern GTY(()) rtx_insn *invalid_insn_rtx;
3627 /* If HARD_FRAME_POINTER_REGNUM is defined, then a special dummy reg
3628 is used to represent the frame pointer. This is because the
3629 hard frame pointer and the automatic variables are separated by an amount
3630 that cannot be determined until after register allocation. We can assume
3631 that in this case ELIMINABLE_REGS will be defined, one action of which
3632 will be to eliminate FRAME_POINTER_REGNUM into HARD_FRAME_POINTER_REGNUM. */
3633 #ifndef HARD_FRAME_POINTER_REGNUM
3634 #define HARD_FRAME_POINTER_REGNUM FRAME_POINTER_REGNUM
3635 #endif
3637 #ifndef HARD_FRAME_POINTER_IS_FRAME_POINTER
3638 #define HARD_FRAME_POINTER_IS_FRAME_POINTER \
3639 (HARD_FRAME_POINTER_REGNUM == FRAME_POINTER_REGNUM)
3640 #endif
3642 #ifndef HARD_FRAME_POINTER_IS_ARG_POINTER
3643 #define HARD_FRAME_POINTER_IS_ARG_POINTER \
3644 (HARD_FRAME_POINTER_REGNUM == ARG_POINTER_REGNUM)
3645 #endif
3647 /* Index labels for global_rtl. */
3648 enum global_rtl_index
3650 GR_STACK_POINTER,
3651 GR_FRAME_POINTER,
3652 /* For register elimination to work properly these hard_frame_pointer_rtx,
3653 frame_pointer_rtx, and arg_pointer_rtx must be the same if they refer to
3654 the same register. */
3655 #if FRAME_POINTER_REGNUM == ARG_POINTER_REGNUM
3656 GR_ARG_POINTER = GR_FRAME_POINTER,
3657 #endif
3658 #if HARD_FRAME_POINTER_IS_FRAME_POINTER
3659 GR_HARD_FRAME_POINTER = GR_FRAME_POINTER,
3660 #else
3661 GR_HARD_FRAME_POINTER,
3662 #endif
3663 #if FRAME_POINTER_REGNUM != ARG_POINTER_REGNUM
3664 #if HARD_FRAME_POINTER_IS_ARG_POINTER
3665 GR_ARG_POINTER = GR_HARD_FRAME_POINTER,
3666 #else
3667 GR_ARG_POINTER,
3668 #endif
3669 #endif
3670 GR_VIRTUAL_INCOMING_ARGS,
3671 GR_VIRTUAL_STACK_ARGS,
3672 GR_VIRTUAL_STACK_DYNAMIC,
3673 GR_VIRTUAL_OUTGOING_ARGS,
3674 GR_VIRTUAL_CFA,
3675 GR_VIRTUAL_PREFERRED_STACK_BOUNDARY,
3677 GR_MAX
3680 /* Target-dependent globals. */
3681 struct GTY(()) target_rtl {
3682 /* All references to the hard registers in global_rtl_index go through
3683 these unique rtl objects. On machines where the frame-pointer and
3684 arg-pointer are the same register, they use the same unique object.
3686 After register allocation, other rtl objects which used to be pseudo-regs
3687 may be clobbered to refer to the frame-pointer register.
3688 But references that were originally to the frame-pointer can be
3689 distinguished from the others because they contain frame_pointer_rtx.
3691 When to use frame_pointer_rtx and hard_frame_pointer_rtx is a little
3692 tricky: until register elimination has taken place hard_frame_pointer_rtx
3693 should be used if it is being set, and frame_pointer_rtx otherwise. After
3694 register elimination hard_frame_pointer_rtx should always be used.
3695 On machines where the two registers are same (most) then these are the
3696 same. */
3697 rtx x_global_rtl[GR_MAX];
3699 /* A unique representation of (REG:Pmode PIC_OFFSET_TABLE_REGNUM). */
3700 rtx x_pic_offset_table_rtx;
3702 /* A unique representation of (REG:Pmode RETURN_ADDRESS_POINTER_REGNUM).
3703 This is used to implement __builtin_return_address for some machines;
3704 see for instance the MIPS port. */
3705 rtx x_return_address_pointer_rtx;
3707 /* Commonly used RTL for hard registers. These objects are not
3708 necessarily unique, so we allocate them separately from global_rtl.
3709 They are initialized once per compilation unit, then copied into
3710 regno_reg_rtx at the beginning of each function. */
3711 rtx x_initial_regno_reg_rtx[FIRST_PSEUDO_REGISTER];
3713 /* A sample (mem:M stack_pointer_rtx) rtx for each mode M. */
3714 rtx x_top_of_stack[MAX_MACHINE_MODE];
3716 /* Static hunks of RTL used by the aliasing code; these are treated
3717 as persistent to avoid unnecessary RTL allocations. */
3718 rtx x_static_reg_base_value[FIRST_PSEUDO_REGISTER];
3720 /* The default memory attributes for each mode. */
3721 struct mem_attrs *x_mode_mem_attrs[(int) MAX_MACHINE_MODE];
3723 /* Track if RTL has been initialized. */
3724 bool target_specific_initialized;
3727 extern GTY(()) struct target_rtl default_target_rtl;
3728 #if SWITCHABLE_TARGET
3729 extern struct target_rtl *this_target_rtl;
3730 #else
3731 #define this_target_rtl (&default_target_rtl)
3732 #endif
3734 #define global_rtl \
3735 (this_target_rtl->x_global_rtl)
3736 #define pic_offset_table_rtx \
3737 (this_target_rtl->x_pic_offset_table_rtx)
3738 #define return_address_pointer_rtx \
3739 (this_target_rtl->x_return_address_pointer_rtx)
3740 #define top_of_stack \
3741 (this_target_rtl->x_top_of_stack)
3742 #define mode_mem_attrs \
3743 (this_target_rtl->x_mode_mem_attrs)
3745 /* All references to certain hard regs, except those created
3746 by allocating pseudo regs into them (when that's possible),
3747 go through these unique rtx objects. */
3748 #define stack_pointer_rtx (global_rtl[GR_STACK_POINTER])
3749 #define frame_pointer_rtx (global_rtl[GR_FRAME_POINTER])
3750 #define hard_frame_pointer_rtx (global_rtl[GR_HARD_FRAME_POINTER])
3751 #define arg_pointer_rtx (global_rtl[GR_ARG_POINTER])
3753 #ifndef GENERATOR_FILE
3754 /* Return the attributes of a MEM rtx. */
3755 static inline const struct mem_attrs *
3756 get_mem_attrs (const_rtx x)
3758 struct mem_attrs *attrs;
3760 attrs = MEM_ATTRS (x);
3761 if (!attrs)
3762 attrs = mode_mem_attrs[(int) GET_MODE (x)];
3763 return attrs;
3765 #endif
3767 /* Include the RTL generation functions. */
3769 #ifndef GENERATOR_FILE
3770 #include "genrtl.h"
3771 #undef gen_rtx_ASM_INPUT
3772 #define gen_rtx_ASM_INPUT(MODE, ARG0) \
3773 gen_rtx_fmt_si (ASM_INPUT, (MODE), (ARG0), 0)
3774 #define gen_rtx_ASM_INPUT_loc(MODE, ARG0, LOC) \
3775 gen_rtx_fmt_si (ASM_INPUT, (MODE), (ARG0), (LOC))
3776 #endif
3778 /* There are some RTL codes that require special attention; the
3779 generation functions included above do the raw handling. If you
3780 add to this list, modify special_rtx in gengenrtl.c as well. */
3782 extern rtx_expr_list *gen_rtx_EXPR_LIST (machine_mode, rtx, rtx);
3783 extern rtx_insn_list *gen_rtx_INSN_LIST (machine_mode, rtx, rtx);
3784 extern rtx_insn *
3785 gen_rtx_INSN (machine_mode mode, rtx_insn *prev_insn, rtx_insn *next_insn,
3786 basic_block bb, rtx pattern, int location, int code,
3787 rtx reg_notes);
3788 extern rtx gen_rtx_CONST_INT (machine_mode, HOST_WIDE_INT);
3789 extern rtx gen_rtx_CONST_VECTOR (machine_mode, rtvec);
3790 extern void set_mode_and_regno (rtx, machine_mode, unsigned int);
3791 extern rtx gen_raw_REG (machine_mode, unsigned int);
3792 extern rtx gen_rtx_REG (machine_mode, unsigned int);
3793 extern rtx gen_rtx_SUBREG (machine_mode, rtx, poly_uint64);
3794 extern rtx gen_rtx_MEM (machine_mode, rtx);
3795 extern rtx gen_rtx_VAR_LOCATION (machine_mode, tree, rtx,
3796 enum var_init_status);
3798 #ifdef GENERATOR_FILE
3799 #define PUT_MODE(RTX, MODE) PUT_MODE_RAW (RTX, MODE)
3800 #else
3801 static inline void
3802 PUT_MODE (rtx x, machine_mode mode)
3804 if (REG_P (x))
3805 set_mode_and_regno (x, mode, REGNO (x));
3806 else
3807 PUT_MODE_RAW (x, mode);
3809 #endif
3811 #define GEN_INT(N) gen_rtx_CONST_INT (VOIDmode, (N))
3813 /* Virtual registers are used during RTL generation to refer to locations into
3814 the stack frame when the actual location isn't known until RTL generation
3815 is complete. The routine instantiate_virtual_regs replaces these with
3816 the proper value, which is normally {frame,arg,stack}_pointer_rtx plus
3817 a constant. */
3819 #define FIRST_VIRTUAL_REGISTER (FIRST_PSEUDO_REGISTER)
3821 /* This points to the first word of the incoming arguments passed on the stack,
3822 either by the caller or by the callee when pretending it was passed by the
3823 caller. */
3825 #define virtual_incoming_args_rtx (global_rtl[GR_VIRTUAL_INCOMING_ARGS])
3827 #define VIRTUAL_INCOMING_ARGS_REGNUM (FIRST_VIRTUAL_REGISTER)
3829 /* If FRAME_GROWS_DOWNWARD, this points to immediately above the first
3830 variable on the stack. Otherwise, it points to the first variable on
3831 the stack. */
3833 #define virtual_stack_vars_rtx (global_rtl[GR_VIRTUAL_STACK_ARGS])
3835 #define VIRTUAL_STACK_VARS_REGNUM ((FIRST_VIRTUAL_REGISTER) + 1)
3837 /* This points to the location of dynamically-allocated memory on the stack
3838 immediately after the stack pointer has been adjusted by the amount
3839 desired. */
3841 #define virtual_stack_dynamic_rtx (global_rtl[GR_VIRTUAL_STACK_DYNAMIC])
3843 #define VIRTUAL_STACK_DYNAMIC_REGNUM ((FIRST_VIRTUAL_REGISTER) + 2)
3845 /* This points to the location in the stack at which outgoing arguments should
3846 be written when the stack is pre-pushed (arguments pushed using push
3847 insns always use sp). */
3849 #define virtual_outgoing_args_rtx (global_rtl[GR_VIRTUAL_OUTGOING_ARGS])
3851 #define VIRTUAL_OUTGOING_ARGS_REGNUM ((FIRST_VIRTUAL_REGISTER) + 3)
3853 /* This points to the Canonical Frame Address of the function. This
3854 should correspond to the CFA produced by INCOMING_FRAME_SP_OFFSET,
3855 but is calculated relative to the arg pointer for simplicity; the
3856 frame pointer nor stack pointer are necessarily fixed relative to
3857 the CFA until after reload. */
3859 #define virtual_cfa_rtx (global_rtl[GR_VIRTUAL_CFA])
3861 #define VIRTUAL_CFA_REGNUM ((FIRST_VIRTUAL_REGISTER) + 4)
3863 #define LAST_VIRTUAL_POINTER_REGISTER ((FIRST_VIRTUAL_REGISTER) + 4)
3865 /* This is replaced by crtl->preferred_stack_boundary / BITS_PER_UNIT
3866 when finalized. */
3868 #define virtual_preferred_stack_boundary_rtx \
3869 (global_rtl[GR_VIRTUAL_PREFERRED_STACK_BOUNDARY])
3871 #define VIRTUAL_PREFERRED_STACK_BOUNDARY_REGNUM \
3872 ((FIRST_VIRTUAL_REGISTER) + 5)
3874 #define LAST_VIRTUAL_REGISTER ((FIRST_VIRTUAL_REGISTER) + 5)
3876 /* Nonzero if REGNUM is a pointer into the stack frame. */
3877 #define REGNO_PTR_FRAME_P(REGNUM) \
3878 ((REGNUM) == STACK_POINTER_REGNUM \
3879 || (REGNUM) == FRAME_POINTER_REGNUM \
3880 || (REGNUM) == HARD_FRAME_POINTER_REGNUM \
3881 || (REGNUM) == ARG_POINTER_REGNUM \
3882 || ((REGNUM) >= FIRST_VIRTUAL_REGISTER \
3883 && (REGNUM) <= LAST_VIRTUAL_POINTER_REGISTER))
3885 /* REGNUM never really appearing in the INSN stream. */
3886 #define INVALID_REGNUM (~(unsigned int) 0)
3888 /* REGNUM for which no debug information can be generated. */
3889 #define IGNORED_DWARF_REGNUM (INVALID_REGNUM - 1)
3891 extern rtx output_constant_def (tree, int);
3892 extern rtx lookup_constant_def (tree);
3894 /* Nonzero after end of reload pass.
3895 Set to 1 or 0 by reload1.c. */
3897 extern int reload_completed;
3899 /* Nonzero after thread_prologue_and_epilogue_insns has run. */
3900 extern int epilogue_completed;
3902 /* Set to 1 while reload_as_needed is operating.
3903 Required by some machines to handle any generated moves differently. */
3905 extern int reload_in_progress;
3907 /* Set to 1 while in lra. */
3908 extern int lra_in_progress;
3910 /* This macro indicates whether you may create a new
3911 pseudo-register. */
3913 #define can_create_pseudo_p() (!reload_in_progress && !reload_completed)
3915 #ifdef STACK_REGS
3916 /* Nonzero after end of regstack pass.
3917 Set to 1 or 0 by reg-stack.c. */
3918 extern int regstack_completed;
3919 #endif
3921 /* If this is nonzero, we do not bother generating VOLATILE
3922 around volatile memory references, and we are willing to
3923 output indirect addresses. If cse is to follow, we reject
3924 indirect addresses so a useful potential cse is generated;
3925 if it is used only once, instruction combination will produce
3926 the same indirect address eventually. */
3927 extern int cse_not_expected;
3929 /* Translates rtx code to tree code, for those codes needed by
3930 real_arithmetic. The function returns an int because the caller may not
3931 know what `enum tree_code' means. */
3933 extern int rtx_to_tree_code (enum rtx_code);
3935 /* In cse.c */
3936 extern int delete_trivially_dead_insns (rtx_insn *, int);
3937 extern int exp_equiv_p (const_rtx, const_rtx, int, bool);
3938 extern unsigned hash_rtx (const_rtx x, machine_mode, int *, int *, bool);
3940 /* In dse.c */
3941 extern bool check_for_inc_dec (rtx_insn *insn);
3943 /* In jump.c */
3944 extern int comparison_dominates_p (enum rtx_code, enum rtx_code);
3945 extern bool jump_to_label_p (const rtx_insn *);
3946 extern int condjump_p (const rtx_insn *);
3947 extern int any_condjump_p (const rtx_insn *);
3948 extern int any_uncondjump_p (const rtx_insn *);
3949 extern rtx pc_set (const rtx_insn *);
3950 extern rtx condjump_label (const rtx_insn *);
3951 extern int simplejump_p (const rtx_insn *);
3952 extern int returnjump_p (const rtx_insn *);
3953 extern int eh_returnjump_p (rtx_insn *);
3954 extern int onlyjump_p (const rtx_insn *);
3955 extern int only_sets_cc0_p (const_rtx);
3956 extern int sets_cc0_p (const_rtx);
3957 extern int invert_jump_1 (rtx_jump_insn *, rtx);
3958 extern int invert_jump (rtx_jump_insn *, rtx, int);
3959 extern int rtx_renumbered_equal_p (const_rtx, const_rtx);
3960 extern int true_regnum (const_rtx);
3961 extern unsigned int reg_or_subregno (const_rtx);
3962 extern int redirect_jump_1 (rtx_insn *, rtx);
3963 extern void redirect_jump_2 (rtx_jump_insn *, rtx, rtx, int, int);
3964 extern int redirect_jump (rtx_jump_insn *, rtx, int);
3965 extern void rebuild_jump_labels (rtx_insn *);
3966 extern void rebuild_jump_labels_chain (rtx_insn *);
3967 extern rtx reversed_comparison (const_rtx, machine_mode);
3968 extern enum rtx_code reversed_comparison_code (const_rtx, const rtx_insn *);
3969 extern enum rtx_code reversed_comparison_code_parts (enum rtx_code, const_rtx,
3970 const_rtx, const rtx_insn *);
3971 extern void delete_for_peephole (rtx_insn *, rtx_insn *);
3972 extern int condjump_in_parallel_p (const rtx_insn *);
3974 /* In emit-rtl.c. */
3975 extern int max_reg_num (void);
3976 extern int max_label_num (void);
3977 extern int get_first_label_num (void);
3978 extern void maybe_set_first_label_num (rtx_code_label *);
3979 extern void delete_insns_since (rtx_insn *);
3980 extern void mark_reg_pointer (rtx, int);
3981 extern void mark_user_reg (rtx);
3982 extern void reset_used_flags (rtx);
3983 extern void set_used_flags (rtx);
3984 extern void reorder_insns (rtx_insn *, rtx_insn *, rtx_insn *);
3985 extern void reorder_insns_nobb (rtx_insn *, rtx_insn *, rtx_insn *);
3986 extern int get_max_insn_count (void);
3987 extern int in_sequence_p (void);
3988 extern void init_emit (void);
3989 extern void init_emit_regs (void);
3990 extern void init_derived_machine_modes (void);
3991 extern void init_emit_once (void);
3992 extern void push_topmost_sequence (void);
3993 extern void pop_topmost_sequence (void);
3994 extern void set_new_first_and_last_insn (rtx_insn *, rtx_insn *);
3995 extern unsigned int unshare_all_rtl (void);
3996 extern void unshare_all_rtl_again (rtx_insn *);
3997 extern void unshare_all_rtl_in_chain (rtx_insn *);
3998 extern void verify_rtl_sharing (void);
3999 extern void add_insn (rtx_insn *);
4000 extern void add_insn_before (rtx_insn *, rtx_insn *, basic_block);
4001 extern void add_insn_after (rtx_insn *, rtx_insn *, basic_block);
4002 extern void remove_insn (rtx_insn *);
4003 extern rtx_insn *emit (rtx, bool = true);
4004 extern void emit_insn_at_entry (rtx);
4005 extern rtx gen_lowpart_SUBREG (machine_mode, rtx);
4006 extern rtx gen_const_mem (machine_mode, rtx);
4007 extern rtx gen_frame_mem (machine_mode, rtx);
4008 extern rtx gen_tmp_stack_mem (machine_mode, rtx);
4009 extern bool validate_subreg (machine_mode, machine_mode,
4010 const_rtx, poly_uint64);
4012 /* In combine.c */
4013 extern unsigned int extended_count (const_rtx, machine_mode, int);
4014 extern rtx remove_death (unsigned int, rtx_insn *);
4015 extern void dump_combine_stats (FILE *);
4016 extern void dump_combine_total_stats (FILE *);
4017 extern rtx make_compound_operation (rtx, enum rtx_code);
4019 /* In sched-rgn.c. */
4020 extern void schedule_insns (void);
4022 /* In sched-ebb.c. */
4023 extern void schedule_ebbs (void);
4025 /* In sel-sched-dump.c. */
4026 extern void sel_sched_fix_param (const char *param, const char *val);
4028 /* In print-rtl.c */
4029 extern const char *print_rtx_head;
4030 extern void debug (const rtx_def &ref);
4031 extern void debug (const rtx_def *ptr);
4032 extern void debug_rtx (const_rtx);
4033 extern void debug_rtx_list (const rtx_insn *, int);
4034 extern void debug_rtx_range (const rtx_insn *, const rtx_insn *);
4035 extern const rtx_insn *debug_rtx_find (const rtx_insn *, int);
4036 extern void print_mem_expr (FILE *, const_tree);
4037 extern void print_rtl (FILE *, const_rtx);
4038 extern void print_simple_rtl (FILE *, const_rtx);
4039 extern int print_rtl_single (FILE *, const_rtx);
4040 extern int print_rtl_single_with_indent (FILE *, const_rtx, int);
4041 extern void print_inline_rtx (FILE *, const_rtx, int);
4043 /* In stmt.c */
4044 extern void expand_null_return (void);
4045 extern void expand_naked_return (void);
4046 extern void emit_jump (rtx);
4048 /* In expr.c */
4049 extern rtx move_by_pieces (rtx, rtx, unsigned HOST_WIDE_INT,
4050 unsigned int, int);
4051 extern poly_int64 find_args_size_adjust (rtx_insn *);
4052 extern poly_int64 fixup_args_size_notes (rtx_insn *, rtx_insn *, poly_int64);
4054 /* In expmed.c */
4055 extern void init_expmed (void);
4056 extern void expand_inc (rtx, rtx);
4057 extern void expand_dec (rtx, rtx);
4059 /* In lower-subreg.c */
4060 extern void init_lower_subreg (void);
4062 /* In gcse.c */
4063 extern bool can_copy_p (machine_mode);
4064 extern bool can_assign_to_reg_without_clobbers_p (rtx, machine_mode);
4065 extern rtx fis_get_condition (rtx_insn *);
4067 /* In ira.c */
4068 extern HARD_REG_SET eliminable_regset;
4069 extern void mark_elimination (int, int);
4071 /* In reginfo.c */
4072 extern int reg_classes_intersect_p (reg_class_t, reg_class_t);
4073 extern int reg_class_subset_p (reg_class_t, reg_class_t);
4074 extern void globalize_reg (tree, int);
4075 extern void init_reg_modes_target (void);
4076 extern void init_regs (void);
4077 extern void reinit_regs (void);
4078 extern void init_fake_stack_mems (void);
4079 extern void save_register_info (void);
4080 extern void init_reg_sets (void);
4081 extern void regclass (rtx, int);
4082 extern void reg_scan (rtx_insn *, unsigned int);
4083 extern void fix_register (const char *, int, int);
4084 extern const HARD_REG_SET *valid_mode_changes_for_regno (unsigned int);
4086 /* In reload1.c */
4087 extern int function_invariant_p (const_rtx);
4089 /* In calls.c */
4090 enum libcall_type
4092 LCT_NORMAL = 0,
4093 LCT_CONST = 1,
4094 LCT_PURE = 2,
4095 LCT_NORETURN = 3,
4096 LCT_THROW = 4,
4097 LCT_RETURNS_TWICE = 5
4100 extern rtx emit_library_call_value_1 (int, rtx, rtx, enum libcall_type,
4101 machine_mode, int, rtx_mode_t *);
4103 /* Output a library call and discard the returned value. FUN is the
4104 address of the function, as a SYMBOL_REF rtx, and OUTMODE is the mode
4105 of the (discarded) return value. FN_TYPE is LCT_NORMAL for `normal'
4106 calls, LCT_CONST for `const' calls, LCT_PURE for `pure' calls, or
4107 another LCT_ value for other types of library calls.
4109 There are different overloads of this function for different numbers
4110 of arguments. In each case the argument value is followed by its mode. */
4112 inline void
4113 emit_library_call (rtx fun, libcall_type fn_type, machine_mode outmode)
4115 emit_library_call_value_1 (0, fun, NULL_RTX, fn_type, outmode, 0, NULL);
4118 inline void
4119 emit_library_call (rtx fun, libcall_type fn_type, machine_mode outmode,
4120 rtx arg1, machine_mode arg1_mode)
4122 rtx_mode_t args[] = { rtx_mode_t (arg1, arg1_mode) };
4123 emit_library_call_value_1 (0, fun, NULL_RTX, fn_type, outmode, 1, args);
4126 inline void
4127 emit_library_call (rtx fun, libcall_type fn_type, machine_mode outmode,
4128 rtx arg1, machine_mode arg1_mode,
4129 rtx arg2, machine_mode arg2_mode)
4131 rtx_mode_t args[] = {
4132 rtx_mode_t (arg1, arg1_mode),
4133 rtx_mode_t (arg2, arg2_mode)
4135 emit_library_call_value_1 (0, fun, NULL_RTX, fn_type, outmode, 2, args);
4138 inline void
4139 emit_library_call (rtx fun, libcall_type fn_type, machine_mode outmode,
4140 rtx arg1, machine_mode arg1_mode,
4141 rtx arg2, machine_mode arg2_mode,
4142 rtx arg3, machine_mode arg3_mode)
4144 rtx_mode_t args[] = {
4145 rtx_mode_t (arg1, arg1_mode),
4146 rtx_mode_t (arg2, arg2_mode),
4147 rtx_mode_t (arg3, arg3_mode)
4149 emit_library_call_value_1 (0, fun, NULL_RTX, fn_type, outmode, 3, args);
4152 inline void
4153 emit_library_call (rtx fun, libcall_type fn_type, machine_mode outmode,
4154 rtx arg1, machine_mode arg1_mode,
4155 rtx arg2, machine_mode arg2_mode,
4156 rtx arg3, machine_mode arg3_mode,
4157 rtx arg4, machine_mode arg4_mode)
4159 rtx_mode_t args[] = {
4160 rtx_mode_t (arg1, arg1_mode),
4161 rtx_mode_t (arg2, arg2_mode),
4162 rtx_mode_t (arg3, arg3_mode),
4163 rtx_mode_t (arg4, arg4_mode)
4165 emit_library_call_value_1 (0, fun, NULL_RTX, fn_type, outmode, 4, args);
4168 /* Like emit_library_call, but return the value produced by the call.
4169 Use VALUE to store the result if it is nonnull, otherwise pick a
4170 convenient location. */
4172 inline rtx
4173 emit_library_call_value (rtx fun, rtx value, libcall_type fn_type,
4174 machine_mode outmode)
4176 return emit_library_call_value_1 (1, fun, value, fn_type, outmode, 0, NULL);
4179 inline rtx
4180 emit_library_call_value (rtx fun, rtx value, libcall_type fn_type,
4181 machine_mode outmode,
4182 rtx arg1, machine_mode arg1_mode)
4184 rtx_mode_t args[] = { rtx_mode_t (arg1, arg1_mode) };
4185 return emit_library_call_value_1 (1, fun, value, fn_type, outmode, 1, args);
4188 inline rtx
4189 emit_library_call_value (rtx fun, rtx value, libcall_type fn_type,
4190 machine_mode outmode,
4191 rtx arg1, machine_mode arg1_mode,
4192 rtx arg2, machine_mode arg2_mode)
4194 rtx_mode_t args[] = {
4195 rtx_mode_t (arg1, arg1_mode),
4196 rtx_mode_t (arg2, arg2_mode)
4198 return emit_library_call_value_1 (1, fun, value, fn_type, outmode, 2, args);
4201 inline rtx
4202 emit_library_call_value (rtx fun, rtx value, libcall_type fn_type,
4203 machine_mode outmode,
4204 rtx arg1, machine_mode arg1_mode,
4205 rtx arg2, machine_mode arg2_mode,
4206 rtx arg3, machine_mode arg3_mode)
4208 rtx_mode_t args[] = {
4209 rtx_mode_t (arg1, arg1_mode),
4210 rtx_mode_t (arg2, arg2_mode),
4211 rtx_mode_t (arg3, arg3_mode)
4213 return emit_library_call_value_1 (1, fun, value, fn_type, outmode, 3, args);
4216 inline rtx
4217 emit_library_call_value (rtx fun, rtx value, libcall_type fn_type,
4218 machine_mode outmode,
4219 rtx arg1, machine_mode arg1_mode,
4220 rtx arg2, machine_mode arg2_mode,
4221 rtx arg3, machine_mode arg3_mode,
4222 rtx arg4, machine_mode arg4_mode)
4224 rtx_mode_t args[] = {
4225 rtx_mode_t (arg1, arg1_mode),
4226 rtx_mode_t (arg2, arg2_mode),
4227 rtx_mode_t (arg3, arg3_mode),
4228 rtx_mode_t (arg4, arg4_mode)
4230 return emit_library_call_value_1 (1, fun, value, fn_type, outmode, 4, args);
4233 /* In varasm.c */
4234 extern void init_varasm_once (void);
4236 extern rtx make_debug_expr_from_rtl (const_rtx);
4238 /* In read-rtl.c */
4239 #ifdef GENERATOR_FILE
4240 extern bool read_rtx (const char *, vec<rtx> *);
4241 #endif
4243 /* In alias.c */
4244 extern rtx canon_rtx (rtx);
4245 extern int true_dependence (const_rtx, machine_mode, const_rtx);
4246 extern rtx get_addr (rtx);
4247 extern int canon_true_dependence (const_rtx, machine_mode, rtx,
4248 const_rtx, rtx);
4249 extern int read_dependence (const_rtx, const_rtx);
4250 extern int anti_dependence (const_rtx, const_rtx);
4251 extern int canon_anti_dependence (const_rtx, bool,
4252 const_rtx, machine_mode, rtx);
4253 extern int output_dependence (const_rtx, const_rtx);
4254 extern int canon_output_dependence (const_rtx, bool,
4255 const_rtx, machine_mode, rtx);
4256 extern int may_alias_p (const_rtx, const_rtx);
4257 extern void init_alias_target (void);
4258 extern void init_alias_analysis (void);
4259 extern void end_alias_analysis (void);
4260 extern void vt_equate_reg_base_value (const_rtx, const_rtx);
4261 extern bool memory_modified_in_insn_p (const_rtx, const_rtx);
4262 extern bool may_be_sp_based_p (rtx);
4263 extern rtx gen_hard_reg_clobber (machine_mode, unsigned int);
4264 extern rtx gen_hard_reg_clobber_high (machine_mode, unsigned int);
4265 extern rtx get_reg_known_value (unsigned int);
4266 extern bool get_reg_known_equiv_p (unsigned int);
4267 extern rtx get_reg_base_value (unsigned int);
4269 #ifdef STACK_REGS
4270 extern int stack_regs_mentioned (const_rtx insn);
4271 #endif
4273 /* In toplev.c */
4274 extern GTY(()) rtx stack_limit_rtx;
4276 /* In var-tracking.c */
4277 extern unsigned int variable_tracking_main (void);
4278 extern void delete_vta_debug_insns (bool);
4280 /* In stor-layout.c. */
4281 extern void get_mode_bounds (scalar_int_mode, int,
4282 scalar_int_mode, rtx *, rtx *);
4284 /* In loop-iv.c */
4285 extern rtx canon_condition (rtx);
4286 extern void simplify_using_condition (rtx, rtx *, bitmap);
4288 /* In final.c */
4289 extern unsigned int compute_alignments (void);
4290 extern void update_alignments (vec<rtx> &);
4291 extern int asm_str_count (const char *templ);
4293 struct rtl_hooks
4295 rtx (*gen_lowpart) (machine_mode, rtx);
4296 rtx (*gen_lowpart_no_emit) (machine_mode, rtx);
4297 rtx (*reg_nonzero_bits) (const_rtx, scalar_int_mode, scalar_int_mode,
4298 unsigned HOST_WIDE_INT *);
4299 rtx (*reg_num_sign_bit_copies) (const_rtx, scalar_int_mode, scalar_int_mode,
4300 unsigned int *);
4301 bool (*reg_truncated_to_mode) (machine_mode, const_rtx);
4303 /* Whenever you add entries here, make sure you adjust rtlhooks-def.h. */
4306 /* Each pass can provide its own. */
4307 extern struct rtl_hooks rtl_hooks;
4309 /* ... but then it has to restore these. */
4310 extern const struct rtl_hooks general_rtl_hooks;
4312 /* Keep this for the nonce. */
4313 #define gen_lowpart rtl_hooks.gen_lowpart
4315 extern void insn_locations_init (void);
4316 extern void insn_locations_finalize (void);
4317 extern void set_curr_insn_location (location_t);
4318 extern location_t curr_insn_location (void);
4320 /* rtl-error.c */
4321 extern void _fatal_insn_not_found (const_rtx, const char *, int, const char *)
4322 ATTRIBUTE_NORETURN ATTRIBUTE_COLD;
4323 extern void _fatal_insn (const char *, const_rtx, const char *, int, const char *)
4324 ATTRIBUTE_NORETURN ATTRIBUTE_COLD;
4326 #define fatal_insn(msgid, insn) \
4327 _fatal_insn (msgid, insn, __FILE__, __LINE__, __FUNCTION__)
4328 #define fatal_insn_not_found(insn) \
4329 _fatal_insn_not_found (insn, __FILE__, __LINE__, __FUNCTION__)
4331 /* reginfo.c */
4332 extern tree GTY(()) global_regs_decl[FIRST_PSEUDO_REGISTER];
4334 /* Information about the function that is propagated by the RTL backend.
4335 Available only for functions that has been already assembled. */
4337 struct GTY(()) cgraph_rtl_info {
4338 unsigned int preferred_incoming_stack_boundary;
4340 /* Call unsaved hard registers really used by the corresponding
4341 function (including ones used by functions called by the
4342 function). */
4343 HARD_REG_SET function_used_regs;
4344 /* Set if function_used_regs is valid. */
4345 unsigned function_used_regs_valid: 1;
4348 /* If loads from memories of mode MODE always sign or zero extend,
4349 return SIGN_EXTEND or ZERO_EXTEND as appropriate. Return UNKNOWN
4350 otherwise. */
4352 inline rtx_code
4353 load_extend_op (machine_mode mode)
4355 scalar_int_mode int_mode;
4356 if (is_a <scalar_int_mode> (mode, &int_mode)
4357 && GET_MODE_PRECISION (int_mode) < BITS_PER_WORD)
4358 return LOAD_EXTEND_OP (int_mode);
4359 return UNKNOWN;
4362 /* If X is a PLUS of a base and a constant offset, add the constant to *OFFSET
4363 and return the base. Return X otherwise. */
4365 inline rtx
4366 strip_offset_and_add (rtx x, poly_int64_pod *offset)
4368 if (GET_CODE (x) == PLUS)
4370 poly_int64 suboffset;
4371 x = strip_offset (x, &suboffset);
4372 *offset = poly_uint64 (*offset) + suboffset;
4374 return x;
4377 /* gtype-desc.c. */
4378 extern void gt_ggc_mx (rtx &);
4379 extern void gt_pch_nx (rtx &);
4380 extern void gt_pch_nx (rtx &, gt_pointer_operator, void *);
4382 #endif /* ! GCC_RTL_H */