1 /* real.c - software floating point emulation.
2 Copyright (C) 1993-2018 Free Software Foundation, Inc.
3 Contributed by Stephen L. Moshier (moshier@world.std.com).
4 Re-written by Richard Henderson <rth@redhat.com>
6 This file is part of GCC.
8 GCC is free software; you can redistribute it and/or modify it under
9 the terms of the GNU General Public License as published by the Free
10 Software Foundation; either version 3, or (at your option) any later
13 GCC is distributed in the hope that it will be useful, but WITHOUT ANY
14 WARRANTY; without even the implied warranty of MERCHANTABILITY or
15 FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License
18 You should have received a copy of the GNU General Public License
19 along with GCC; see the file COPYING3. If not see
20 <http://www.gnu.org/licenses/>. */
24 #include "coretypes.h"
31 /* The floating point model used internally is not exactly IEEE 754
32 compliant, and close to the description in the ISO C99 standard,
33 section 5.2.4.2.2 Characteristics of floating types.
37 x = s * b^e * \sum_{k=1}^p f_k * b^{-k}
41 b = base or radix, here always 2
43 p = precision (the number of base-b digits in the significand)
44 f_k = the digits of the significand.
46 We differ from typical IEEE 754 encodings in that the entire
47 significand is fractional. Normalized significands are in the
50 A requirement of the model is that P be larger than the largest
51 supported target floating-point type by at least 2 bits. This gives
52 us proper rounding when we truncate to the target type. In addition,
53 E must be large enough to hold the smallest supported denormal number
56 Both of these requirements are easily satisfied. The largest target
57 significand is 113 bits; we store at least 160. The smallest
58 denormal number fits in 17 exponent bits; we store 26. */
61 /* Used to classify two numbers simultaneously. */
62 #define CLASS2(A, B) ((A) << 2 | (B))
64 #if HOST_BITS_PER_LONG != 64 && HOST_BITS_PER_LONG != 32
65 #error "Some constant folding done by hand to avoid shift count warnings"
68 static void get_zero (REAL_VALUE_TYPE
*, int);
69 static void get_canonical_qnan (REAL_VALUE_TYPE
*, int);
70 static void get_canonical_snan (REAL_VALUE_TYPE
*, int);
71 static void get_inf (REAL_VALUE_TYPE
*, int);
72 static bool sticky_rshift_significand (REAL_VALUE_TYPE
*,
73 const REAL_VALUE_TYPE
*, unsigned int);
74 static void rshift_significand (REAL_VALUE_TYPE
*, const REAL_VALUE_TYPE
*,
76 static void lshift_significand (REAL_VALUE_TYPE
*, const REAL_VALUE_TYPE
*,
78 static void lshift_significand_1 (REAL_VALUE_TYPE
*, const REAL_VALUE_TYPE
*);
79 static bool add_significands (REAL_VALUE_TYPE
*r
, const REAL_VALUE_TYPE
*,
80 const REAL_VALUE_TYPE
*);
81 static bool sub_significands (REAL_VALUE_TYPE
*, const REAL_VALUE_TYPE
*,
82 const REAL_VALUE_TYPE
*, int);
83 static void neg_significand (REAL_VALUE_TYPE
*, const REAL_VALUE_TYPE
*);
84 static int cmp_significands (const REAL_VALUE_TYPE
*, const REAL_VALUE_TYPE
*);
85 static int cmp_significand_0 (const REAL_VALUE_TYPE
*);
86 static void set_significand_bit (REAL_VALUE_TYPE
*, unsigned int);
87 static void clear_significand_bit (REAL_VALUE_TYPE
*, unsigned int);
88 static bool test_significand_bit (REAL_VALUE_TYPE
*, unsigned int);
89 static void clear_significand_below (REAL_VALUE_TYPE
*, unsigned int);
90 static bool div_significands (REAL_VALUE_TYPE
*, const REAL_VALUE_TYPE
*,
91 const REAL_VALUE_TYPE
*);
92 static void normalize (REAL_VALUE_TYPE
*);
94 static bool do_add (REAL_VALUE_TYPE
*, const REAL_VALUE_TYPE
*,
95 const REAL_VALUE_TYPE
*, int);
96 static bool do_multiply (REAL_VALUE_TYPE
*, const REAL_VALUE_TYPE
*,
97 const REAL_VALUE_TYPE
*);
98 static bool do_divide (REAL_VALUE_TYPE
*, const REAL_VALUE_TYPE
*,
99 const REAL_VALUE_TYPE
*);
100 static int do_compare (const REAL_VALUE_TYPE
*, const REAL_VALUE_TYPE
*, int);
101 static void do_fix_trunc (REAL_VALUE_TYPE
*, const REAL_VALUE_TYPE
*);
103 static unsigned long rtd_divmod (REAL_VALUE_TYPE
*, REAL_VALUE_TYPE
*);
104 static void decimal_from_integer (REAL_VALUE_TYPE
*);
105 static void decimal_integer_string (char *, const REAL_VALUE_TYPE
*,
108 static const REAL_VALUE_TYPE
* ten_to_ptwo (int);
109 static const REAL_VALUE_TYPE
* ten_to_mptwo (int);
110 static const REAL_VALUE_TYPE
* real_digit (int);
111 static void times_pten (REAL_VALUE_TYPE
*, int);
113 static void round_for_format (const struct real_format
*, REAL_VALUE_TYPE
*);
115 /* Initialize R with a positive zero. */
118 get_zero (REAL_VALUE_TYPE
*r
, int sign
)
120 memset (r
, 0, sizeof (*r
));
124 /* Initialize R with the canonical quiet NaN. */
127 get_canonical_qnan (REAL_VALUE_TYPE
*r
, int sign
)
129 memset (r
, 0, sizeof (*r
));
136 get_canonical_snan (REAL_VALUE_TYPE
*r
, int sign
)
138 memset (r
, 0, sizeof (*r
));
146 get_inf (REAL_VALUE_TYPE
*r
, int sign
)
148 memset (r
, 0, sizeof (*r
));
154 /* Right-shift the significand of A by N bits; put the result in the
155 significand of R. If any one bits are shifted out, return true. */
158 sticky_rshift_significand (REAL_VALUE_TYPE
*r
, const REAL_VALUE_TYPE
*a
,
161 unsigned long sticky
= 0;
162 unsigned int i
, ofs
= 0;
164 if (n
>= HOST_BITS_PER_LONG
)
166 for (i
= 0, ofs
= n
/ HOST_BITS_PER_LONG
; i
< ofs
; ++i
)
168 n
&= HOST_BITS_PER_LONG
- 1;
173 sticky
|= a
->sig
[ofs
] & (((unsigned long)1 << n
) - 1);
174 for (i
= 0; i
< SIGSZ
; ++i
)
177 = (((ofs
+ i
>= SIGSZ
? 0 : a
->sig
[ofs
+ i
]) >> n
)
178 | ((ofs
+ i
+ 1 >= SIGSZ
? 0 : a
->sig
[ofs
+ i
+ 1])
179 << (HOST_BITS_PER_LONG
- n
)));
184 for (i
= 0; ofs
+ i
< SIGSZ
; ++i
)
185 r
->sig
[i
] = a
->sig
[ofs
+ i
];
186 for (; i
< SIGSZ
; ++i
)
193 /* Right-shift the significand of A by N bits; put the result in the
197 rshift_significand (REAL_VALUE_TYPE
*r
, const REAL_VALUE_TYPE
*a
,
200 unsigned int i
, ofs
= n
/ HOST_BITS_PER_LONG
;
202 n
&= HOST_BITS_PER_LONG
- 1;
205 for (i
= 0; i
< SIGSZ
; ++i
)
208 = (((ofs
+ i
>= SIGSZ
? 0 : a
->sig
[ofs
+ i
]) >> n
)
209 | ((ofs
+ i
+ 1 >= SIGSZ
? 0 : a
->sig
[ofs
+ i
+ 1])
210 << (HOST_BITS_PER_LONG
- n
)));
215 for (i
= 0; ofs
+ i
< SIGSZ
; ++i
)
216 r
->sig
[i
] = a
->sig
[ofs
+ i
];
217 for (; i
< SIGSZ
; ++i
)
222 /* Left-shift the significand of A by N bits; put the result in the
226 lshift_significand (REAL_VALUE_TYPE
*r
, const REAL_VALUE_TYPE
*a
,
229 unsigned int i
, ofs
= n
/ HOST_BITS_PER_LONG
;
231 n
&= HOST_BITS_PER_LONG
- 1;
234 for (i
= 0; ofs
+ i
< SIGSZ
; ++i
)
235 r
->sig
[SIGSZ
-1-i
] = a
->sig
[SIGSZ
-1-i
-ofs
];
236 for (; i
< SIGSZ
; ++i
)
237 r
->sig
[SIGSZ
-1-i
] = 0;
240 for (i
= 0; i
< SIGSZ
; ++i
)
243 = (((ofs
+ i
>= SIGSZ
? 0 : a
->sig
[SIGSZ
-1-i
-ofs
]) << n
)
244 | ((ofs
+ i
+ 1 >= SIGSZ
? 0 : a
->sig
[SIGSZ
-1-i
-ofs
-1])
245 >> (HOST_BITS_PER_LONG
- n
)));
249 /* Likewise, but N is specialized to 1. */
252 lshift_significand_1 (REAL_VALUE_TYPE
*r
, const REAL_VALUE_TYPE
*a
)
256 for (i
= SIGSZ
- 1; i
> 0; --i
)
257 r
->sig
[i
] = (a
->sig
[i
] << 1) | (a
->sig
[i
-1] >> (HOST_BITS_PER_LONG
- 1));
258 r
->sig
[0] = a
->sig
[0] << 1;
261 /* Add the significands of A and B, placing the result in R. Return
262 true if there was carry out of the most significant word. */
265 add_significands (REAL_VALUE_TYPE
*r
, const REAL_VALUE_TYPE
*a
,
266 const REAL_VALUE_TYPE
*b
)
271 for (i
= 0; i
< SIGSZ
; ++i
)
273 unsigned long ai
= a
->sig
[i
];
274 unsigned long ri
= ai
+ b
->sig
[i
];
290 /* Subtract the significands of A and B, placing the result in R. CARRY is
291 true if there's a borrow incoming to the least significant word.
292 Return true if there was borrow out of the most significant word. */
295 sub_significands (REAL_VALUE_TYPE
*r
, const REAL_VALUE_TYPE
*a
,
296 const REAL_VALUE_TYPE
*b
, int carry
)
300 for (i
= 0; i
< SIGSZ
; ++i
)
302 unsigned long ai
= a
->sig
[i
];
303 unsigned long ri
= ai
- b
->sig
[i
];
319 /* Negate the significand A, placing the result in R. */
322 neg_significand (REAL_VALUE_TYPE
*r
, const REAL_VALUE_TYPE
*a
)
327 for (i
= 0; i
< SIGSZ
; ++i
)
329 unsigned long ri
, ai
= a
->sig
[i
];
348 /* Compare significands. Return tri-state vs zero. */
351 cmp_significands (const REAL_VALUE_TYPE
*a
, const REAL_VALUE_TYPE
*b
)
355 for (i
= SIGSZ
- 1; i
>= 0; --i
)
357 unsigned long ai
= a
->sig
[i
];
358 unsigned long bi
= b
->sig
[i
];
369 /* Return true if A is nonzero. */
372 cmp_significand_0 (const REAL_VALUE_TYPE
*a
)
376 for (i
= SIGSZ
- 1; i
>= 0; --i
)
383 /* Set bit N of the significand of R. */
386 set_significand_bit (REAL_VALUE_TYPE
*r
, unsigned int n
)
388 r
->sig
[n
/ HOST_BITS_PER_LONG
]
389 |= (unsigned long)1 << (n
% HOST_BITS_PER_LONG
);
392 /* Clear bit N of the significand of R. */
395 clear_significand_bit (REAL_VALUE_TYPE
*r
, unsigned int n
)
397 r
->sig
[n
/ HOST_BITS_PER_LONG
]
398 &= ~((unsigned long)1 << (n
% HOST_BITS_PER_LONG
));
401 /* Test bit N of the significand of R. */
404 test_significand_bit (REAL_VALUE_TYPE
*r
, unsigned int n
)
406 /* ??? Compiler bug here if we return this expression directly.
407 The conversion to bool strips the "&1" and we wind up testing
408 e.g. 2 != 0 -> true. Seen in gcc version 3.2 20020520. */
409 int t
= (r
->sig
[n
/ HOST_BITS_PER_LONG
] >> (n
% HOST_BITS_PER_LONG
)) & 1;
413 /* Clear bits 0..N-1 of the significand of R. */
416 clear_significand_below (REAL_VALUE_TYPE
*r
, unsigned int n
)
418 int i
, w
= n
/ HOST_BITS_PER_LONG
;
420 for (i
= 0; i
< w
; ++i
)
423 r
->sig
[w
] &= ~(((unsigned long)1 << (n
% HOST_BITS_PER_LONG
)) - 1);
426 /* Divide the significands of A and B, placing the result in R. Return
427 true if the division was inexact. */
430 div_significands (REAL_VALUE_TYPE
*r
, const REAL_VALUE_TYPE
*a
,
431 const REAL_VALUE_TYPE
*b
)
434 int i
, bit
= SIGNIFICAND_BITS
- 1;
435 unsigned long msb
, inexact
;
438 memset (r
->sig
, 0, sizeof (r
->sig
));
444 msb
= u
.sig
[SIGSZ
-1] & SIG_MSB
;
445 lshift_significand_1 (&u
, &u
);
447 if (msb
|| cmp_significands (&u
, b
) >= 0)
449 sub_significands (&u
, &u
, b
, 0);
450 set_significand_bit (r
, bit
);
455 for (i
= 0, inexact
= 0; i
< SIGSZ
; i
++)
461 /* Adjust the exponent and significand of R such that the most
462 significant bit is set. We underflow to zero and overflow to
463 infinity here, without denormals. (The intermediate representation
464 exponent is large enough to handle target denormals normalized.) */
467 normalize (REAL_VALUE_TYPE
*r
)
475 /* Find the first word that is nonzero. */
476 for (i
= SIGSZ
- 1; i
>= 0; i
--)
478 shift
+= HOST_BITS_PER_LONG
;
482 /* Zero significand flushes to zero. */
490 /* Find the first bit that is nonzero. */
492 if (r
->sig
[i
] & ((unsigned long)1 << (HOST_BITS_PER_LONG
- 1 - j
)))
498 exp
= REAL_EXP (r
) - shift
;
500 get_inf (r
, r
->sign
);
501 else if (exp
< -MAX_EXP
)
502 get_zero (r
, r
->sign
);
505 SET_REAL_EXP (r
, exp
);
506 lshift_significand (r
, r
, shift
);
511 /* Calculate R = A + (SUBTRACT_P ? -B : B). Return true if the
512 result may be inexact due to a loss of precision. */
515 do_add (REAL_VALUE_TYPE
*r
, const REAL_VALUE_TYPE
*a
,
516 const REAL_VALUE_TYPE
*b
, int subtract_p
)
520 bool inexact
= false;
522 /* Determine if we need to add or subtract. */
524 subtract_p
= (sign
^ b
->sign
) ^ subtract_p
;
526 switch (CLASS2 (a
->cl
, b
->cl
))
528 case CLASS2 (rvc_zero
, rvc_zero
):
529 /* -0 + -0 = -0, -0 - +0 = -0; all other cases yield +0. */
530 get_zero (r
, sign
& !subtract_p
);
533 case CLASS2 (rvc_zero
, rvc_normal
):
534 case CLASS2 (rvc_zero
, rvc_inf
):
535 case CLASS2 (rvc_zero
, rvc_nan
):
537 case CLASS2 (rvc_normal
, rvc_nan
):
538 case CLASS2 (rvc_inf
, rvc_nan
):
539 case CLASS2 (rvc_nan
, rvc_nan
):
540 /* ANY + NaN = NaN. */
541 case CLASS2 (rvc_normal
, rvc_inf
):
544 /* Make resulting NaN value to be qNaN. The caller has the
545 responsibility to avoid the operation if flag_signaling_nans
548 r
->sign
= sign
^ subtract_p
;
551 case CLASS2 (rvc_normal
, rvc_zero
):
552 case CLASS2 (rvc_inf
, rvc_zero
):
553 case CLASS2 (rvc_nan
, rvc_zero
):
555 case CLASS2 (rvc_nan
, rvc_normal
):
556 case CLASS2 (rvc_nan
, rvc_inf
):
557 /* NaN + ANY = NaN. */
558 case CLASS2 (rvc_inf
, rvc_normal
):
561 /* Make resulting NaN value to be qNaN. The caller has the
562 responsibility to avoid the operation if flag_signaling_nans
567 case CLASS2 (rvc_inf
, rvc_inf
):
569 /* Inf - Inf = NaN. */
570 get_canonical_qnan (r
, 0);
572 /* Inf + Inf = Inf. */
576 case CLASS2 (rvc_normal
, rvc_normal
):
583 /* Swap the arguments such that A has the larger exponent. */
584 dexp
= REAL_EXP (a
) - REAL_EXP (b
);
587 const REAL_VALUE_TYPE
*t
;
594 /* If the exponents are not identical, we need to shift the
595 significand of B down. */
598 /* If the exponents are too far apart, the significands
599 do not overlap, which makes the subtraction a noop. */
600 if (dexp
>= SIGNIFICAND_BITS
)
607 inexact
|= sticky_rshift_significand (&t
, b
, dexp
);
613 if (sub_significands (r
, a
, b
, inexact
))
615 /* We got a borrow out of the subtraction. That means that
616 A and B had the same exponent, and B had the larger
617 significand. We need to swap the sign and negate the
620 neg_significand (r
, r
);
625 if (add_significands (r
, a
, b
))
627 /* We got carry out of the addition. This means we need to
628 shift the significand back down one bit and increase the
630 inexact
|= sticky_rshift_significand (r
, r
, 1);
631 r
->sig
[SIGSZ
-1] |= SIG_MSB
;
642 SET_REAL_EXP (r
, exp
);
643 /* Zero out the remaining fields. */
648 /* Re-normalize the result. */
651 /* Special case: if the subtraction results in zero, the result
653 if (r
->cl
== rvc_zero
)
656 r
->sig
[0] |= inexact
;
661 /* Calculate R = A * B. Return true if the result may be inexact. */
664 do_multiply (REAL_VALUE_TYPE
*r
, const REAL_VALUE_TYPE
*a
,
665 const REAL_VALUE_TYPE
*b
)
667 REAL_VALUE_TYPE u
, t
, *rr
;
668 unsigned int i
, j
, k
;
669 int sign
= a
->sign
^ b
->sign
;
670 bool inexact
= false;
672 switch (CLASS2 (a
->cl
, b
->cl
))
674 case CLASS2 (rvc_zero
, rvc_zero
):
675 case CLASS2 (rvc_zero
, rvc_normal
):
676 case CLASS2 (rvc_normal
, rvc_zero
):
677 /* +-0 * ANY = 0 with appropriate sign. */
681 case CLASS2 (rvc_zero
, rvc_nan
):
682 case CLASS2 (rvc_normal
, rvc_nan
):
683 case CLASS2 (rvc_inf
, rvc_nan
):
684 case CLASS2 (rvc_nan
, rvc_nan
):
685 /* ANY * NaN = NaN. */
687 /* Make resulting NaN value to be qNaN. The caller has the
688 responsibility to avoid the operation if flag_signaling_nans
694 case CLASS2 (rvc_nan
, rvc_zero
):
695 case CLASS2 (rvc_nan
, rvc_normal
):
696 case CLASS2 (rvc_nan
, rvc_inf
):
697 /* NaN * ANY = NaN. */
699 /* Make resulting NaN value to be qNaN. The caller has the
700 responsibility to avoid the operation if flag_signaling_nans
706 case CLASS2 (rvc_zero
, rvc_inf
):
707 case CLASS2 (rvc_inf
, rvc_zero
):
709 get_canonical_qnan (r
, sign
);
712 case CLASS2 (rvc_inf
, rvc_inf
):
713 case CLASS2 (rvc_normal
, rvc_inf
):
714 case CLASS2 (rvc_inf
, rvc_normal
):
715 /* Inf * Inf = Inf, R * Inf = Inf */
719 case CLASS2 (rvc_normal
, rvc_normal
):
726 if (r
== a
|| r
== b
)
732 /* Collect all the partial products. Since we don't have sure access
733 to a widening multiply, we split each long into two half-words.
735 Consider the long-hand form of a four half-word multiplication:
745 We construct partial products of the widened half-word products
746 that are known to not overlap, e.g. DF+DH. Each such partial
747 product is given its proper exponent, which allows us to sum them
748 and obtain the finished product. */
750 for (i
= 0; i
< SIGSZ
* 2; ++i
)
752 unsigned long ai
= a
->sig
[i
/ 2];
754 ai
>>= HOST_BITS_PER_LONG
/ 2;
756 ai
&= ((unsigned long)1 << (HOST_BITS_PER_LONG
/ 2)) - 1;
761 for (j
= 0; j
< 2; ++j
)
763 int exp
= (REAL_EXP (a
) - (2*SIGSZ
-1-i
)*(HOST_BITS_PER_LONG
/2)
764 + (REAL_EXP (b
) - (1-j
)*(HOST_BITS_PER_LONG
/2)));
773 /* Would underflow to zero, which we shouldn't bother adding. */
778 memset (&u
, 0, sizeof (u
));
780 SET_REAL_EXP (&u
, exp
);
782 for (k
= j
; k
< SIGSZ
* 2; k
+= 2)
784 unsigned long bi
= b
->sig
[k
/ 2];
786 bi
>>= HOST_BITS_PER_LONG
/ 2;
788 bi
&= ((unsigned long)1 << (HOST_BITS_PER_LONG
/ 2)) - 1;
790 u
.sig
[k
/ 2] = ai
* bi
;
794 inexact
|= do_add (rr
, rr
, &u
, 0);
805 /* Calculate R = A / B. Return true if the result may be inexact. */
808 do_divide (REAL_VALUE_TYPE
*r
, const REAL_VALUE_TYPE
*a
,
809 const REAL_VALUE_TYPE
*b
)
811 int exp
, sign
= a
->sign
^ b
->sign
;
812 REAL_VALUE_TYPE t
, *rr
;
815 switch (CLASS2 (a
->cl
, b
->cl
))
817 case CLASS2 (rvc_zero
, rvc_zero
):
819 case CLASS2 (rvc_inf
, rvc_inf
):
820 /* Inf / Inf = NaN. */
821 get_canonical_qnan (r
, sign
);
824 case CLASS2 (rvc_zero
, rvc_normal
):
825 case CLASS2 (rvc_zero
, rvc_inf
):
827 case CLASS2 (rvc_normal
, rvc_inf
):
832 case CLASS2 (rvc_normal
, rvc_zero
):
834 case CLASS2 (rvc_inf
, rvc_zero
):
839 case CLASS2 (rvc_zero
, rvc_nan
):
840 case CLASS2 (rvc_normal
, rvc_nan
):
841 case CLASS2 (rvc_inf
, rvc_nan
):
842 case CLASS2 (rvc_nan
, rvc_nan
):
843 /* ANY / NaN = NaN. */
845 /* Make resulting NaN value to be qNaN. The caller has the
846 responsibility to avoid the operation if flag_signaling_nans
852 case CLASS2 (rvc_nan
, rvc_zero
):
853 case CLASS2 (rvc_nan
, rvc_normal
):
854 case CLASS2 (rvc_nan
, rvc_inf
):
855 /* NaN / ANY = NaN. */
857 /* Make resulting NaN value to be qNaN. The caller has the
858 responsibility to avoid the operation if flag_signaling_nans
864 case CLASS2 (rvc_inf
, rvc_normal
):
869 case CLASS2 (rvc_normal
, rvc_normal
):
876 if (r
== a
|| r
== b
)
881 /* Make sure all fields in the result are initialized. */
886 exp
= REAL_EXP (a
) - REAL_EXP (b
) + 1;
897 SET_REAL_EXP (rr
, exp
);
899 inexact
= div_significands (rr
, a
, b
);
901 /* Re-normalize the result. */
903 rr
->sig
[0] |= inexact
;
911 /* Return a tri-state comparison of A vs B. Return NAN_RESULT if
912 one of the two operands is a NaN. */
915 do_compare (const REAL_VALUE_TYPE
*a
, const REAL_VALUE_TYPE
*b
,
920 switch (CLASS2 (a
->cl
, b
->cl
))
922 case CLASS2 (rvc_zero
, rvc_zero
):
923 /* Sign of zero doesn't matter for compares. */
926 case CLASS2 (rvc_normal
, rvc_zero
):
927 /* Decimal float zero is special and uses rvc_normal, not rvc_zero. */
929 return decimal_do_compare (a
, b
, nan_result
);
931 case CLASS2 (rvc_inf
, rvc_zero
):
932 case CLASS2 (rvc_inf
, rvc_normal
):
933 return (a
->sign
? -1 : 1);
935 case CLASS2 (rvc_inf
, rvc_inf
):
936 return -a
->sign
- -b
->sign
;
938 case CLASS2 (rvc_zero
, rvc_normal
):
939 /* Decimal float zero is special and uses rvc_normal, not rvc_zero. */
941 return decimal_do_compare (a
, b
, nan_result
);
943 case CLASS2 (rvc_zero
, rvc_inf
):
944 case CLASS2 (rvc_normal
, rvc_inf
):
945 return (b
->sign
? 1 : -1);
947 case CLASS2 (rvc_zero
, rvc_nan
):
948 case CLASS2 (rvc_normal
, rvc_nan
):
949 case CLASS2 (rvc_inf
, rvc_nan
):
950 case CLASS2 (rvc_nan
, rvc_nan
):
951 case CLASS2 (rvc_nan
, rvc_zero
):
952 case CLASS2 (rvc_nan
, rvc_normal
):
953 case CLASS2 (rvc_nan
, rvc_inf
):
956 case CLASS2 (rvc_normal
, rvc_normal
):
963 if (a
->decimal
|| b
->decimal
)
964 return decimal_do_compare (a
, b
, nan_result
);
966 if (a
->sign
!= b
->sign
)
967 return -a
->sign
- -b
->sign
;
969 if (REAL_EXP (a
) > REAL_EXP (b
))
971 else if (REAL_EXP (a
) < REAL_EXP (b
))
974 ret
= cmp_significands (a
, b
);
976 return (a
->sign
? -ret
: ret
);
979 /* Return A truncated to an integral value toward zero. */
982 do_fix_trunc (REAL_VALUE_TYPE
*r
, const REAL_VALUE_TYPE
*a
)
991 /* Make resulting NaN value to be qNaN. The caller has the
992 responsibility to avoid the operation if flag_signaling_nans
1000 decimal_do_fix_trunc (r
, a
);
1003 if (REAL_EXP (r
) <= 0)
1004 get_zero (r
, r
->sign
);
1005 else if (REAL_EXP (r
) < SIGNIFICAND_BITS
)
1006 clear_significand_below (r
, SIGNIFICAND_BITS
- REAL_EXP (r
));
1014 /* Perform the binary or unary operation described by CODE.
1015 For a unary operation, leave OP1 NULL. This function returns
1016 true if the result may be inexact due to loss of precision. */
1019 real_arithmetic (REAL_VALUE_TYPE
*r
, int icode
, const REAL_VALUE_TYPE
*op0
,
1020 const REAL_VALUE_TYPE
*op1
)
1022 enum tree_code code
= (enum tree_code
) icode
;
1024 if (op0
->decimal
|| (op1
&& op1
->decimal
))
1025 return decimal_real_arithmetic (r
, code
, op0
, op1
);
1030 /* Clear any padding areas in *r if it isn't equal to one of the
1031 operands so that we can later do bitwise comparisons later on. */
1032 if (r
!= op0
&& r
!= op1
)
1033 memset (r
, '\0', sizeof (*r
));
1034 return do_add (r
, op0
, op1
, 0);
1037 if (r
!= op0
&& r
!= op1
)
1038 memset (r
, '\0', sizeof (*r
));
1039 return do_add (r
, op0
, op1
, 1);
1042 if (r
!= op0
&& r
!= op1
)
1043 memset (r
, '\0', sizeof (*r
));
1044 return do_multiply (r
, op0
, op1
);
1047 if (r
!= op0
&& r
!= op1
)
1048 memset (r
, '\0', sizeof (*r
));
1049 return do_divide (r
, op0
, op1
);
1052 if (op1
->cl
== rvc_nan
)
1055 /* Make resulting NaN value to be qNaN. The caller has the
1056 responsibility to avoid the operation if flag_signaling_nans
1060 else if (do_compare (op0
, op1
, -1) < 0)
1067 if (op1
->cl
== rvc_nan
)
1070 /* Make resulting NaN value to be qNaN. The caller has the
1071 responsibility to avoid the operation if flag_signaling_nans
1075 else if (do_compare (op0
, op1
, 1) < 0)
1091 case FIX_TRUNC_EXPR
:
1092 do_fix_trunc (r
, op0
);
1102 real_value_negate (const REAL_VALUE_TYPE
*op0
)
1105 real_arithmetic (&r
, NEGATE_EXPR
, op0
, NULL
);
1110 real_value_abs (const REAL_VALUE_TYPE
*op0
)
1113 real_arithmetic (&r
, ABS_EXPR
, op0
, NULL
);
1117 /* Return whether OP0 == OP1. */
1120 real_equal (const REAL_VALUE_TYPE
*op0
, const REAL_VALUE_TYPE
*op1
)
1122 return do_compare (op0
, op1
, -1) == 0;
1125 /* Return whether OP0 < OP1. */
1128 real_less (const REAL_VALUE_TYPE
*op0
, const REAL_VALUE_TYPE
*op1
)
1130 return do_compare (op0
, op1
, 1) < 0;
1134 real_compare (int icode
, const REAL_VALUE_TYPE
*op0
,
1135 const REAL_VALUE_TYPE
*op1
)
1137 enum tree_code code
= (enum tree_code
) icode
;
1142 return real_less (op0
, op1
);
1144 return do_compare (op0
, op1
, 1) <= 0;
1146 return do_compare (op0
, op1
, -1) > 0;
1148 return do_compare (op0
, op1
, -1) >= 0;
1150 return real_equal (op0
, op1
);
1152 return do_compare (op0
, op1
, -1) != 0;
1153 case UNORDERED_EXPR
:
1154 return op0
->cl
== rvc_nan
|| op1
->cl
== rvc_nan
;
1156 return op0
->cl
!= rvc_nan
&& op1
->cl
!= rvc_nan
;
1158 return do_compare (op0
, op1
, -1) < 0;
1160 return do_compare (op0
, op1
, -1) <= 0;
1162 return do_compare (op0
, op1
, 1) > 0;
1164 return do_compare (op0
, op1
, 1) >= 0;
1166 return do_compare (op0
, op1
, 0) == 0;
1168 return do_compare (op0
, op1
, 0) != 0;
1175 /* Return floor log2(R). */
1178 real_exponent (const REAL_VALUE_TYPE
*r
)
1186 return (unsigned int)-1 >> 1;
1188 return REAL_EXP (r
);
1194 /* R = OP0 * 2**EXP. */
1197 real_ldexp (REAL_VALUE_TYPE
*r
, const REAL_VALUE_TYPE
*op0
, int exp
)
1205 /* Make resulting NaN value to be qNaN. The caller has the
1206 responsibility to avoid the operation if flag_signaling_nans
1212 exp
+= REAL_EXP (op0
);
1214 get_inf (r
, r
->sign
);
1215 else if (exp
< -MAX_EXP
)
1216 get_zero (r
, r
->sign
);
1218 SET_REAL_EXP (r
, exp
);
1226 /* Determine whether a floating-point value X is infinite. */
1229 real_isinf (const REAL_VALUE_TYPE
*r
)
1231 return (r
->cl
== rvc_inf
);
1234 /* Determine whether a floating-point value X is a NaN. */
1237 real_isnan (const REAL_VALUE_TYPE
*r
)
1239 return (r
->cl
== rvc_nan
);
1242 /* Determine whether a floating-point value X is a signaling NaN. */
1243 bool real_issignaling_nan (const REAL_VALUE_TYPE
*r
)
1245 return real_isnan (r
) && r
->signalling
;
1248 /* Determine whether a floating-point value X is finite. */
1251 real_isfinite (const REAL_VALUE_TYPE
*r
)
1253 return (r
->cl
!= rvc_nan
) && (r
->cl
!= rvc_inf
);
1256 /* Determine whether a floating-point value X is negative. */
1259 real_isneg (const REAL_VALUE_TYPE
*r
)
1264 /* Determine whether a floating-point value X is minus zero. */
1267 real_isnegzero (const REAL_VALUE_TYPE
*r
)
1269 return r
->sign
&& r
->cl
== rvc_zero
;
1272 /* Compare two floating-point objects for bitwise identity. */
1275 real_identical (const REAL_VALUE_TYPE
*a
, const REAL_VALUE_TYPE
*b
)
1281 if (a
->sign
!= b
->sign
)
1291 if (a
->decimal
!= b
->decimal
)
1293 if (REAL_EXP (a
) != REAL_EXP (b
))
1298 if (a
->signalling
!= b
->signalling
)
1300 /* The significand is ignored for canonical NaNs. */
1301 if (a
->canonical
|| b
->canonical
)
1302 return a
->canonical
== b
->canonical
;
1309 for (i
= 0; i
< SIGSZ
; ++i
)
1310 if (a
->sig
[i
] != b
->sig
[i
])
1316 /* Try to change R into its exact multiplicative inverse in format FMT.
1317 Return true if successful. */
1320 exact_real_inverse (format_helper fmt
, REAL_VALUE_TYPE
*r
)
1322 const REAL_VALUE_TYPE
*one
= real_digit (1);
1326 if (r
->cl
!= rvc_normal
)
1329 /* Check for a power of two: all significand bits zero except the MSB. */
1330 for (i
= 0; i
< SIGSZ
-1; ++i
)
1333 if (r
->sig
[SIGSZ
-1] != SIG_MSB
)
1336 /* Find the inverse and truncate to the required format. */
1337 do_divide (&u
, one
, r
);
1338 real_convert (&u
, fmt
, &u
);
1340 /* The rounding may have overflowed. */
1341 if (u
.cl
!= rvc_normal
)
1343 for (i
= 0; i
< SIGSZ
-1; ++i
)
1346 if (u
.sig
[SIGSZ
-1] != SIG_MSB
)
1353 /* Return true if arithmetic on values in IMODE that were promoted
1354 from values in TMODE is equivalent to direct arithmetic on values
1358 real_can_shorten_arithmetic (machine_mode imode
, machine_mode tmode
)
1360 const struct real_format
*tfmt
, *ifmt
;
1361 tfmt
= REAL_MODE_FORMAT (tmode
);
1362 ifmt
= REAL_MODE_FORMAT (imode
);
1363 /* These conditions are conservative rather than trying to catch the
1364 exact boundary conditions; the main case to allow is IEEE float
1366 return (ifmt
->b
== tfmt
->b
1367 && ifmt
->p
> 2 * tfmt
->p
1368 && ifmt
->emin
< 2 * tfmt
->emin
- tfmt
->p
- 2
1369 && ifmt
->emin
< tfmt
->emin
- tfmt
->emax
- tfmt
->p
- 2
1370 && ifmt
->emax
> 2 * tfmt
->emax
+ 2
1371 && ifmt
->emax
> tfmt
->emax
- tfmt
->emin
+ tfmt
->p
+ 2
1372 && ifmt
->round_towards_zero
== tfmt
->round_towards_zero
1373 && (ifmt
->has_sign_dependent_rounding
1374 == tfmt
->has_sign_dependent_rounding
)
1375 && ifmt
->has_nans
>= tfmt
->has_nans
1376 && ifmt
->has_inf
>= tfmt
->has_inf
1377 && ifmt
->has_signed_zero
>= tfmt
->has_signed_zero
1378 && !MODE_COMPOSITE_P (tmode
)
1379 && !MODE_COMPOSITE_P (imode
));
1382 /* Render R as an integer. */
1385 real_to_integer (const REAL_VALUE_TYPE
*r
)
1387 unsigned HOST_WIDE_INT i
;
1398 i
= HOST_WIDE_INT_1U
<< (HOST_BITS_PER_WIDE_INT
- 1);
1405 return decimal_real_to_integer (r
);
1407 if (REAL_EXP (r
) <= 0)
1409 /* Only force overflow for unsigned overflow. Signed overflow is
1410 undefined, so it doesn't matter what we return, and some callers
1411 expect to be able to use this routine for both signed and
1412 unsigned conversions. */
1413 if (REAL_EXP (r
) > HOST_BITS_PER_WIDE_INT
)
1416 if (HOST_BITS_PER_WIDE_INT
== HOST_BITS_PER_LONG
)
1417 i
= r
->sig
[SIGSZ
-1];
1420 gcc_assert (HOST_BITS_PER_WIDE_INT
== 2 * HOST_BITS_PER_LONG
);
1421 i
= r
->sig
[SIGSZ
-1];
1422 i
= i
<< (HOST_BITS_PER_LONG
- 1) << 1;
1423 i
|= r
->sig
[SIGSZ
-2];
1426 i
>>= HOST_BITS_PER_WIDE_INT
- REAL_EXP (r
);
1437 /* Likewise, but producing a wide-int of PRECISION. If the value cannot
1438 be represented in precision, *FAIL is set to TRUE. */
1441 real_to_integer (const REAL_VALUE_TYPE
*r
, bool *fail
, int precision
)
1443 HOST_WIDE_INT val
[2 * WIDE_INT_MAX_ELTS
];
1452 return wi::zero (precision
);
1460 return wi::set_bit_in_zero (precision
- 1, precision
);
1462 return ~wi::set_bit_in_zero (precision
- 1, precision
);
1466 return decimal_real_to_integer (r
, fail
, precision
);
1471 /* Only force overflow for unsigned overflow. Signed overflow is
1472 undefined, so it doesn't matter what we return, and some callers
1473 expect to be able to use this routine for both signed and
1474 unsigned conversions. */
1475 if (exp
> precision
)
1478 /* Put the significand into a wide_int that has precision W, which
1479 is the smallest HWI-multiple that has at least PRECISION bits.
1480 This ensures that the top bit of the significand is in the
1481 top bit of the wide_int. */
1482 words
= (precision
+ HOST_BITS_PER_WIDE_INT
- 1) / HOST_BITS_PER_WIDE_INT
;
1483 w
= words
* HOST_BITS_PER_WIDE_INT
;
1485 #if (HOST_BITS_PER_WIDE_INT == HOST_BITS_PER_LONG)
1486 for (int i
= 0; i
< words
; i
++)
1488 int j
= SIGSZ
- words
+ i
;
1489 val
[i
] = (j
< 0) ? 0 : r
->sig
[j
];
1492 gcc_assert (HOST_BITS_PER_WIDE_INT
== 2 * HOST_BITS_PER_LONG
);
1493 for (int i
= 0; i
< words
; i
++)
1495 int j
= SIGSZ
- (words
* 2) + (i
* 2);
1502 val
[i
] |= (unsigned HOST_WIDE_INT
) r
->sig
[j
] << HOST_BITS_PER_LONG
;
1505 /* Shift the value into place and truncate to the desired precision. */
1506 result
= wide_int::from_array (val
, words
, w
);
1507 result
= wi::lrshift (result
, w
- exp
);
1508 result
= wide_int::from (result
, precision
, UNSIGNED
);
1520 /* A subroutine of real_to_decimal. Compute the quotient and remainder
1521 of NUM / DEN. Return the quotient and place the remainder in NUM.
1522 It is expected that NUM / DEN are close enough that the quotient is
1525 static unsigned long
1526 rtd_divmod (REAL_VALUE_TYPE
*num
, REAL_VALUE_TYPE
*den
)
1528 unsigned long q
, msb
;
1529 int expn
= REAL_EXP (num
), expd
= REAL_EXP (den
);
1538 msb
= num
->sig
[SIGSZ
-1] & SIG_MSB
;
1540 lshift_significand_1 (num
, num
);
1542 if (msb
|| cmp_significands (num
, den
) >= 0)
1544 sub_significands (num
, num
, den
, 0);
1548 while (--expn
>= expd
);
1550 SET_REAL_EXP (num
, expd
);
1556 /* Render R as a decimal floating point constant. Emit DIGITS significant
1557 digits in the result, bounded by BUF_SIZE. If DIGITS is 0, choose the
1558 maximum for the representation. If CROP_TRAILING_ZEROS, strip trailing
1559 zeros. If MODE is VOIDmode, round to nearest value. Otherwise, round
1560 to a string that, when parsed back in mode MODE, yields the same value. */
1562 #define M_LOG10_2 0.30102999566398119521
1565 real_to_decimal_for_mode (char *str
, const REAL_VALUE_TYPE
*r_orig
,
1566 size_t buf_size
, size_t digits
,
1567 int crop_trailing_zeros
, machine_mode mode
)
1569 const struct real_format
*fmt
= NULL
;
1570 const REAL_VALUE_TYPE
*one
, *ten
;
1571 REAL_VALUE_TYPE r
, pten
, u
, v
;
1572 int dec_exp
, cmp_one
, digit
;
1574 char *p
, *first
, *last
;
1578 if (mode
!= VOIDmode
)
1580 fmt
= REAL_MODE_FORMAT (mode
);
1588 strcpy (str
, (r
.sign
? "-0.0" : "0.0"));
1593 strcpy (str
, (r
.sign
? "-Inf" : "+Inf"));
1596 /* ??? Print the significand as well, if not canonical? */
1597 sprintf (str
, "%c%cNaN", (r_orig
->sign
? '-' : '+'),
1598 (r_orig
->signalling
? 'S' : 'Q'));
1606 decimal_real_to_decimal (str
, &r
, buf_size
, digits
, crop_trailing_zeros
);
1610 /* Bound the number of digits printed by the size of the representation. */
1611 max_digits
= SIGNIFICAND_BITS
* M_LOG10_2
;
1612 if (digits
== 0 || digits
> max_digits
)
1613 digits
= max_digits
;
1615 /* Estimate the decimal exponent, and compute the length of the string it
1616 will print as. Be conservative and add one to account for possible
1617 overflow or rounding error. */
1618 dec_exp
= REAL_EXP (&r
) * M_LOG10_2
;
1619 for (max_digits
= 1; dec_exp
; max_digits
++)
1622 /* Bound the number of digits printed by the size of the output buffer. */
1623 max_digits
= buf_size
- 1 - 1 - 2 - max_digits
- 1;
1624 gcc_assert (max_digits
<= buf_size
);
1625 if (digits
> max_digits
)
1626 digits
= max_digits
;
1628 one
= real_digit (1);
1629 ten
= ten_to_ptwo (0);
1637 cmp_one
= do_compare (&r
, one
, 0);
1642 /* Number is greater than one. Convert significand to an integer
1643 and strip trailing decimal zeros. */
1646 SET_REAL_EXP (&u
, SIGNIFICAND_BITS
- 1);
1648 /* Largest M, such that 10**2**M fits within SIGNIFICAND_BITS. */
1649 m
= floor_log2 (max_digits
);
1651 /* Iterate over the bits of the possible powers of 10 that might
1652 be present in U and eliminate them. That is, if we find that
1653 10**2**M divides U evenly, keep the division and increase
1659 do_divide (&t
, &u
, ten_to_ptwo (m
));
1660 do_fix_trunc (&v
, &t
);
1661 if (cmp_significands (&v
, &t
) == 0)
1669 /* Revert the scaling to integer that we performed earlier. */
1670 SET_REAL_EXP (&u
, REAL_EXP (&u
) + REAL_EXP (&r
)
1671 - (SIGNIFICAND_BITS
- 1));
1674 /* Find power of 10. Do this by dividing out 10**2**M when
1675 this is larger than the current remainder. Fill PTEN with
1676 the power of 10 that we compute. */
1677 if (REAL_EXP (&r
) > 0)
1679 m
= floor_log2 ((int)(REAL_EXP (&r
) * M_LOG10_2
)) + 1;
1682 const REAL_VALUE_TYPE
*ptentwo
= ten_to_ptwo (m
);
1683 if (do_compare (&u
, ptentwo
, 0) >= 0)
1685 do_divide (&u
, &u
, ptentwo
);
1686 do_multiply (&pten
, &pten
, ptentwo
);
1693 /* We managed to divide off enough tens in the above reduction
1694 loop that we've now got a negative exponent. Fall into the
1695 less-than-one code to compute the proper value for PTEN. */
1702 /* Number is less than one. Pad significand with leading
1708 /* Stop if we'd shift bits off the bottom. */
1712 do_multiply (&u
, &v
, ten
);
1714 /* Stop if we're now >= 1. */
1715 if (REAL_EXP (&u
) > 0)
1723 /* Find power of 10. Do this by multiplying in P=10**2**M when
1724 the current remainder is smaller than 1/P. Fill PTEN with the
1725 power of 10 that we compute. */
1726 m
= floor_log2 ((int)(-REAL_EXP (&r
) * M_LOG10_2
)) + 1;
1729 const REAL_VALUE_TYPE
*ptentwo
= ten_to_ptwo (m
);
1730 const REAL_VALUE_TYPE
*ptenmtwo
= ten_to_mptwo (m
);
1732 if (do_compare (&v
, ptenmtwo
, 0) <= 0)
1734 do_multiply (&v
, &v
, ptentwo
);
1735 do_multiply (&pten
, &pten
, ptentwo
);
1741 /* Invert the positive power of 10 that we've collected so far. */
1742 do_divide (&pten
, one
, &pten
);
1750 /* At this point, PTEN should contain the nearest power of 10 smaller
1751 than R, such that this division produces the first digit.
1753 Using a divide-step primitive that returns the complete integral
1754 remainder avoids the rounding error that would be produced if
1755 we were to use do_divide here and then simply multiply by 10 for
1756 each subsequent digit. */
1758 digit
= rtd_divmod (&r
, &pten
);
1760 /* Be prepared for error in that division via underflow ... */
1761 if (digit
== 0 && cmp_significand_0 (&r
))
1763 /* Multiply by 10 and try again. */
1764 do_multiply (&r
, &r
, ten
);
1765 digit
= rtd_divmod (&r
, &pten
);
1767 gcc_assert (digit
!= 0);
1770 /* ... or overflow. */
1780 gcc_assert (digit
<= 10);
1784 /* Generate subsequent digits. */
1785 while (--digits
> 0)
1787 do_multiply (&r
, &r
, ten
);
1788 digit
= rtd_divmod (&r
, &pten
);
1793 /* Generate one more digit with which to do rounding. */
1794 do_multiply (&r
, &r
, ten
);
1795 digit
= rtd_divmod (&r
, &pten
);
1797 /* Round the result. */
1798 if (fmt
&& fmt
->round_towards_zero
)
1800 /* If the format uses round towards zero when parsing the string
1801 back in, we need to always round away from zero here. */
1802 if (cmp_significand_0 (&r
))
1804 round_up
= digit
> 0;
1810 /* Round to nearest. If R is nonzero there are additional
1811 nonzero digits to be extracted. */
1812 if (cmp_significand_0 (&r
))
1814 /* Round to even. */
1815 else if ((p
[-1] - '0') & 1)
1819 round_up
= digit
> 5;
1836 /* Carry out of the first digit. This means we had all 9's and
1837 now have all 0's. "Prepend" a 1 by overwriting the first 0. */
1845 /* Insert the decimal point. */
1846 first
[0] = first
[1];
1849 /* If requested, drop trailing zeros. Never crop past "1.0". */
1850 if (crop_trailing_zeros
)
1851 while (last
> first
+ 3 && last
[-1] == '0')
1854 /* Append the exponent. */
1855 sprintf (last
, "e%+d", dec_exp
);
1857 /* Verify that we can read the original value back in. */
1858 if (flag_checking
&& mode
!= VOIDmode
)
1860 real_from_string (&r
, str
);
1861 real_convert (&r
, mode
, &r
);
1862 gcc_assert (real_identical (&r
, r_orig
));
1866 /* Likewise, except always uses round-to-nearest. */
1869 real_to_decimal (char *str
, const REAL_VALUE_TYPE
*r_orig
, size_t buf_size
,
1870 size_t digits
, int crop_trailing_zeros
)
1872 real_to_decimal_for_mode (str
, r_orig
, buf_size
,
1873 digits
, crop_trailing_zeros
, VOIDmode
);
1876 /* Render R as a hexadecimal floating point constant. Emit DIGITS
1877 significant digits in the result, bounded by BUF_SIZE. If DIGITS is 0,
1878 choose the maximum for the representation. If CROP_TRAILING_ZEROS,
1879 strip trailing zeros. */
1882 real_to_hexadecimal (char *str
, const REAL_VALUE_TYPE
*r
, size_t buf_size
,
1883 size_t digits
, int crop_trailing_zeros
)
1885 int i
, j
, exp
= REAL_EXP (r
);
1898 strcpy (str
, (r
->sign
? "-Inf" : "+Inf"));
1901 /* ??? Print the significand as well, if not canonical? */
1902 sprintf (str
, "%c%cNaN", (r
->sign
? '-' : '+'),
1903 (r
->signalling
? 'S' : 'Q'));
1911 /* Hexadecimal format for decimal floats is not interesting. */
1912 strcpy (str
, "N/A");
1917 digits
= SIGNIFICAND_BITS
/ 4;
1919 /* Bound the number of digits printed by the size of the output buffer. */
1921 sprintf (exp_buf
, "p%+d", exp
);
1922 max_digits
= buf_size
- strlen (exp_buf
) - r
->sign
- 4 - 1;
1923 gcc_assert (max_digits
<= buf_size
);
1924 if (digits
> max_digits
)
1925 digits
= max_digits
;
1936 for (i
= SIGSZ
- 1; i
>= 0; --i
)
1937 for (j
= HOST_BITS_PER_LONG
- 4; j
>= 0; j
-= 4)
1939 *p
++ = "0123456789abcdef"[(r
->sig
[i
] >> j
) & 15];
1945 if (crop_trailing_zeros
)
1946 while (p
> first
+ 1 && p
[-1] == '0')
1949 sprintf (p
, "p%+d", exp
);
1952 /* Initialize R from a decimal or hexadecimal string. The string is
1953 assumed to have been syntax checked already. Return -1 if the
1954 value underflows, +1 if overflows, and 0 otherwise. */
1957 real_from_string (REAL_VALUE_TYPE
*r
, const char *str
)
1969 else if (*str
== '+')
1972 if (!strncmp (str
, "QNaN", 4))
1974 get_canonical_qnan (r
, sign
);
1977 else if (!strncmp (str
, "SNaN", 4))
1979 get_canonical_snan (r
, sign
);
1982 else if (!strncmp (str
, "Inf", 3))
1988 if (str
[0] == '0' && (str
[1] == 'x' || str
[1] == 'X'))
1990 /* Hexadecimal floating point. */
1991 int pos
= SIGNIFICAND_BITS
- 4, d
;
1999 d
= hex_value (*str
);
2004 r
->sig
[pos
/ HOST_BITS_PER_LONG
]
2005 |= (unsigned long) d
<< (pos
% HOST_BITS_PER_LONG
);
2009 /* Ensure correct rounding by setting last bit if there is
2010 a subsequent nonzero digit. */
2018 if (pos
== SIGNIFICAND_BITS
- 4)
2025 d
= hex_value (*str
);
2030 r
->sig
[pos
/ HOST_BITS_PER_LONG
]
2031 |= (unsigned long) d
<< (pos
% HOST_BITS_PER_LONG
);
2035 /* Ensure correct rounding by setting last bit if there is
2036 a subsequent nonzero digit. */
2042 /* If the mantissa is zero, ignore the exponent. */
2043 if (!cmp_significand_0 (r
))
2046 if (*str
== 'p' || *str
== 'P')
2048 bool exp_neg
= false;
2056 else if (*str
== '+')
2060 while (ISDIGIT (*str
))
2066 /* Overflowed the exponent. */
2081 SET_REAL_EXP (r
, exp
);
2087 /* Decimal floating point. */
2088 const char *cstr
= str
;
2092 while (*cstr
== '0')
2097 while (*cstr
== '0')
2101 /* If the mantissa is zero, ignore the exponent. */
2102 if (!ISDIGIT (*cstr
))
2105 /* Nonzero value, possibly overflowing or underflowing. */
2106 mpfr_init2 (m
, SIGNIFICAND_BITS
);
2107 inexact
= mpfr_strtofr (m
, str
, NULL
, 10, GMP_RNDZ
);
2108 /* The result should never be a NaN, and because the rounding is
2109 toward zero should never be an infinity. */
2110 gcc_assert (!mpfr_nan_p (m
) && !mpfr_inf_p (m
));
2111 if (mpfr_zero_p (m
) || mpfr_get_exp (m
) < -MAX_EXP
+ 4)
2116 else if (mpfr_get_exp (m
) > MAX_EXP
- 4)
2123 real_from_mpfr (r
, m
, NULL_TREE
, GMP_RNDZ
);
2124 /* 1 to 3 bits may have been shifted off (with a sticky bit)
2125 because the hex digits used in real_from_mpfr did not
2126 start with a digit 8 to f, but the exponent bounds above
2127 should have avoided underflow or overflow. */
2128 gcc_assert (r
->cl
== rvc_normal
);
2129 /* Set a sticky bit if mpfr_strtofr was inexact. */
2130 r
->sig
[0] |= inexact
;
2151 /* Legacy. Similar, but return the result directly. */
2154 real_from_string2 (const char *s
, format_helper fmt
)
2158 real_from_string (&r
, s
);
2160 real_convert (&r
, fmt
, &r
);
2165 /* Initialize R from string S and desired format FMT. */
2168 real_from_string3 (REAL_VALUE_TYPE
*r
, const char *s
, format_helper fmt
)
2170 if (fmt
.decimal_p ())
2171 decimal_real_from_string (r
, s
);
2173 real_from_string (r
, s
);
2176 real_convert (r
, fmt
, r
);
2179 /* Initialize R from the wide_int VAL_IN. Round it to format FMT if
2183 real_from_integer (REAL_VALUE_TYPE
*r
, format_helper fmt
,
2184 const wide_int_ref
&val_in
, signop sgn
)
2190 unsigned int len
= val_in
.get_precision ();
2192 int maxbitlen
= MAX_BITSIZE_MODE_ANY_INT
+ HOST_BITS_PER_WIDE_INT
;
2193 const unsigned int realmax
= (SIGNIFICAND_BITS
/ HOST_BITS_PER_WIDE_INT
2194 * HOST_BITS_PER_WIDE_INT
);
2196 memset (r
, 0, sizeof (*r
));
2198 r
->sign
= wi::neg_p (val_in
, sgn
);
2200 /* We have to ensure we can negate the largest negative number. */
2201 wide_int val
= wide_int::from (val_in
, maxbitlen
, sgn
);
2206 /* Ensure a multiple of HOST_BITS_PER_WIDE_INT, ceiling, as elt
2207 won't work with precisions that are not a multiple of
2208 HOST_BITS_PER_WIDE_INT. */
2209 len
+= HOST_BITS_PER_WIDE_INT
- 1;
2211 /* Ensure we can represent the largest negative number. */
2214 len
= len
/HOST_BITS_PER_WIDE_INT
* HOST_BITS_PER_WIDE_INT
;
2216 /* Cap the size to the size allowed by real.h. */
2219 HOST_WIDE_INT cnt_l_z
;
2220 cnt_l_z
= wi::clz (val
);
2222 if (maxbitlen
- cnt_l_z
> realmax
)
2224 e
= maxbitlen
- cnt_l_z
- realmax
;
2226 /* This value is too large, we must shift it right to
2227 preserve all the bits we can, and then bump the
2228 exponent up by that amount. */
2229 val
= wi::lrshift (val
, e
);
2234 /* Clear out top bits so elt will work with precisions that aren't
2235 a multiple of HOST_BITS_PER_WIDE_INT. */
2236 val
= wide_int::from (val
, len
, sgn
);
2237 len
= len
/ HOST_BITS_PER_WIDE_INT
;
2239 SET_REAL_EXP (r
, len
* HOST_BITS_PER_WIDE_INT
+ e
);
2242 if (HOST_BITS_PER_LONG
== HOST_BITS_PER_WIDE_INT
)
2243 for (i
= len
- 1; i
>= 0; i
--)
2245 r
->sig
[j
--] = val
.elt (i
);
2251 gcc_assert (HOST_BITS_PER_LONG
*2 == HOST_BITS_PER_WIDE_INT
);
2252 for (i
= len
- 1; i
>= 0; i
--)
2254 HOST_WIDE_INT e
= val
.elt (i
);
2255 r
->sig
[j
--] = e
>> (HOST_BITS_PER_LONG
- 1) >> 1;
2267 if (fmt
.decimal_p ())
2268 decimal_from_integer (r
);
2270 real_convert (r
, fmt
, r
);
2273 /* Render R, an integral value, as a floating point constant with no
2274 specified exponent. */
2277 decimal_integer_string (char *str
, const REAL_VALUE_TYPE
*r_orig
,
2280 int dec_exp
, digit
, digits
;
2281 REAL_VALUE_TYPE r
, pten
;
2287 if (r
.cl
== rvc_zero
)
2296 dec_exp
= REAL_EXP (&r
) * M_LOG10_2
;
2297 digits
= dec_exp
+ 1;
2298 gcc_assert ((digits
+ 2) < (int)buf_size
);
2300 pten
= *real_digit (1);
2301 times_pten (&pten
, dec_exp
);
2307 digit
= rtd_divmod (&r
, &pten
);
2308 gcc_assert (digit
>= 0 && digit
<= 9);
2310 while (--digits
> 0)
2313 digit
= rtd_divmod (&r
, &pten
);
2320 /* Convert a real with an integral value to decimal float. */
2323 decimal_from_integer (REAL_VALUE_TYPE
*r
)
2327 decimal_integer_string (str
, r
, sizeof (str
) - 1);
2328 decimal_real_from_string (r
, str
);
2331 /* Returns 10**2**N. */
2333 static const REAL_VALUE_TYPE
*
2336 static REAL_VALUE_TYPE tens
[EXP_BITS
];
2338 gcc_assert (n
>= 0);
2339 gcc_assert (n
< EXP_BITS
);
2341 if (tens
[n
].cl
== rvc_zero
)
2343 if (n
< (HOST_BITS_PER_WIDE_INT
== 64 ? 5 : 4))
2345 HOST_WIDE_INT t
= 10;
2348 for (i
= 0; i
< n
; ++i
)
2351 real_from_integer (&tens
[n
], VOIDmode
, t
, UNSIGNED
);
2355 const REAL_VALUE_TYPE
*t
= ten_to_ptwo (n
- 1);
2356 do_multiply (&tens
[n
], t
, t
);
2363 /* Returns 10**(-2**N). */
2365 static const REAL_VALUE_TYPE
*
2366 ten_to_mptwo (int n
)
2368 static REAL_VALUE_TYPE tens
[EXP_BITS
];
2370 gcc_assert (n
>= 0);
2371 gcc_assert (n
< EXP_BITS
);
2373 if (tens
[n
].cl
== rvc_zero
)
2374 do_divide (&tens
[n
], real_digit (1), ten_to_ptwo (n
));
2381 static const REAL_VALUE_TYPE
*
2384 static REAL_VALUE_TYPE num
[10];
2386 gcc_assert (n
>= 0);
2387 gcc_assert (n
<= 9);
2389 if (n
> 0 && num
[n
].cl
== rvc_zero
)
2390 real_from_integer (&num
[n
], VOIDmode
, n
, UNSIGNED
);
2395 /* Multiply R by 10**EXP. */
2398 times_pten (REAL_VALUE_TYPE
*r
, int exp
)
2400 REAL_VALUE_TYPE pten
, *rr
;
2401 bool negative
= (exp
< 0);
2407 pten
= *real_digit (1);
2413 for (i
= 0; exp
> 0; ++i
, exp
>>= 1)
2415 do_multiply (rr
, rr
, ten_to_ptwo (i
));
2418 do_divide (r
, r
, &pten
);
2421 /* Returns the special REAL_VALUE_TYPE corresponding to 'e'. */
2423 const REAL_VALUE_TYPE
*
2426 static REAL_VALUE_TYPE value
;
2428 /* Initialize mathematical constants for constant folding builtins.
2429 These constants need to be given to at least 160 bits precision. */
2430 if (value
.cl
== rvc_zero
)
2433 mpfr_init2 (m
, SIGNIFICAND_BITS
);
2434 mpfr_set_ui (m
, 1, GMP_RNDN
);
2435 mpfr_exp (m
, m
, GMP_RNDN
);
2436 real_from_mpfr (&value
, m
, NULL_TREE
, GMP_RNDN
);
2443 /* Returns a cached REAL_VALUE_TYPE corresponding to 1/n, for various n. */
2445 #define CACHED_FRACTION(NAME, N) \
2446 const REAL_VALUE_TYPE * \
2449 static REAL_VALUE_TYPE value; \
2451 /* Initialize mathematical constants for constant folding builtins. \
2452 These constants need to be given to at least 160 bits \
2454 if (value.cl == rvc_zero) \
2455 real_arithmetic (&value, RDIV_EXPR, &dconst1, real_digit (N)); \
2459 CACHED_FRACTION (dconst_third_ptr
, 3)
2460 CACHED_FRACTION (dconst_quarter_ptr
, 4)
2461 CACHED_FRACTION (dconst_sixth_ptr
, 6)
2462 CACHED_FRACTION (dconst_ninth_ptr
, 9)
2464 /* Returns the special REAL_VALUE_TYPE corresponding to sqrt(2). */
2466 const REAL_VALUE_TYPE
*
2467 dconst_sqrt2_ptr (void)
2469 static REAL_VALUE_TYPE value
;
2471 /* Initialize mathematical constants for constant folding builtins.
2472 These constants need to be given to at least 160 bits precision. */
2473 if (value
.cl
== rvc_zero
)
2476 mpfr_init2 (m
, SIGNIFICAND_BITS
);
2477 mpfr_sqrt_ui (m
, 2, GMP_RNDN
);
2478 real_from_mpfr (&value
, m
, NULL_TREE
, GMP_RNDN
);
2484 /* Fills R with +Inf. */
2487 real_inf (REAL_VALUE_TYPE
*r
)
2492 /* Fills R with a NaN whose significand is described by STR. If QUIET,
2493 we force a QNaN, else we force an SNaN. The string, if not empty,
2494 is parsed as a number and placed in the significand. Return true
2495 if the string was successfully parsed. */
2498 real_nan (REAL_VALUE_TYPE
*r
, const char *str
, int quiet
,
2504 get_canonical_qnan (r
, 0);
2506 get_canonical_snan (r
, 0);
2512 memset (r
, 0, sizeof (*r
));
2515 /* Parse akin to strtol into the significand of R. */
2517 while (ISSPACE (*str
))
2521 else if (*str
== '+')
2526 if (*str
== 'x' || *str
== 'X')
2535 while ((d
= hex_value (*str
)) < base
)
2542 lshift_significand (r
, r
, 3);
2545 lshift_significand (r
, r
, 4);
2548 lshift_significand_1 (&u
, r
);
2549 lshift_significand (r
, r
, 3);
2550 add_significands (r
, r
, &u
);
2558 add_significands (r
, r
, &u
);
2563 /* Must have consumed the entire string for success. */
2567 /* Shift the significand into place such that the bits
2568 are in the most significant bits for the format. */
2569 lshift_significand (r
, r
, SIGNIFICAND_BITS
- fmt
->pnan
);
2571 /* Our MSB is always unset for NaNs. */
2572 r
->sig
[SIGSZ
-1] &= ~SIG_MSB
;
2574 /* Force quiet or signaling NaN. */
2575 r
->signalling
= !quiet
;
2581 /* Fills R with the largest finite value representable in mode MODE.
2582 If SIGN is nonzero, R is set to the most negative finite value. */
2585 real_maxval (REAL_VALUE_TYPE
*r
, int sign
, machine_mode mode
)
2587 const struct real_format
*fmt
;
2590 fmt
= REAL_MODE_FORMAT (mode
);
2592 memset (r
, 0, sizeof (*r
));
2595 decimal_real_maxval (r
, sign
, mode
);
2600 SET_REAL_EXP (r
, fmt
->emax
);
2602 np2
= SIGNIFICAND_BITS
- fmt
->p
;
2603 memset (r
->sig
, -1, SIGSZ
* sizeof (unsigned long));
2604 clear_significand_below (r
, np2
);
2606 if (fmt
->pnan
< fmt
->p
)
2607 /* This is an IBM extended double format made up of two IEEE
2608 doubles. The value of the long double is the sum of the
2609 values of the two parts. The most significant part is
2610 required to be the value of the long double rounded to the
2611 nearest double. Rounding means we need a slightly smaller
2612 value for LDBL_MAX. */
2613 clear_significand_bit (r
, SIGNIFICAND_BITS
- fmt
->pnan
- 1);
2617 /* Fills R with 2**N. */
2620 real_2expN (REAL_VALUE_TYPE
*r
, int n
, format_helper fmt
)
2622 memset (r
, 0, sizeof (*r
));
2627 else if (n
< -MAX_EXP
)
2632 SET_REAL_EXP (r
, n
);
2633 r
->sig
[SIGSZ
-1] = SIG_MSB
;
2635 if (fmt
.decimal_p ())
2636 decimal_real_convert (r
, fmt
, r
);
2641 round_for_format (const struct real_format
*fmt
, REAL_VALUE_TYPE
*r
)
2645 bool round_up
= false;
2651 decimal_round_for_format (fmt
, r
);
2654 /* FIXME. We can come here via fp_easy_constant
2655 (e.g. -O0 on '_Decimal32 x = 1.0 + 2.0dd'), but have not
2656 investigated whether this convert needs to be here, or
2657 something else is missing. */
2658 decimal_real_convert (r
, REAL_MODE_FORMAT (DFmode
), r
);
2662 emin2m1
= fmt
->emin
- 1;
2665 np2
= SIGNIFICAND_BITS
- p2
;
2669 get_zero (r
, r
->sign
);
2672 if (!fmt
->has_signed_zero
)
2677 get_inf (r
, r
->sign
);
2682 clear_significand_below (r
, np2
);
2692 /* Check the range of the exponent. If we're out of range,
2693 either underflow or overflow. */
2694 if (REAL_EXP (r
) > emax2
)
2696 else if (REAL_EXP (r
) <= emin2m1
)
2700 if (!fmt
->has_denorm
)
2702 /* Don't underflow completely until we've had a chance to round. */
2703 if (REAL_EXP (r
) < emin2m1
)
2708 diff
= emin2m1
- REAL_EXP (r
) + 1;
2712 /* De-normalize the significand. */
2713 r
->sig
[0] |= sticky_rshift_significand (r
, r
, diff
);
2714 SET_REAL_EXP (r
, REAL_EXP (r
) + diff
);
2718 if (!fmt
->round_towards_zero
)
2720 /* There are P2 true significand bits, followed by one guard bit,
2721 followed by one sticky bit, followed by stuff. Fold nonzero
2722 stuff into the sticky bit. */
2723 unsigned long sticky
;
2727 for (i
= 0, w
= (np2
- 1) / HOST_BITS_PER_LONG
; i
< w
; ++i
)
2728 sticky
|= r
->sig
[i
];
2730 & (((unsigned long)1 << ((np2
- 1) % HOST_BITS_PER_LONG
)) - 1);
2732 guard
= test_significand_bit (r
, np2
- 1);
2733 lsb
= test_significand_bit (r
, np2
);
2735 /* Round to even. */
2736 round_up
= guard
&& (sticky
|| lsb
);
2743 set_significand_bit (&u
, np2
);
2745 if (add_significands (r
, r
, &u
))
2747 /* Overflow. Means the significand had been all ones, and
2748 is now all zeros. Need to increase the exponent, and
2749 possibly re-normalize it. */
2750 SET_REAL_EXP (r
, REAL_EXP (r
) + 1);
2751 if (REAL_EXP (r
) > emax2
)
2753 r
->sig
[SIGSZ
-1] = SIG_MSB
;
2757 /* Catch underflow that we deferred until after rounding. */
2758 if (REAL_EXP (r
) <= emin2m1
)
2761 /* Clear out trailing garbage. */
2762 clear_significand_below (r
, np2
);
2765 /* Extend or truncate to a new format. */
2768 real_convert (REAL_VALUE_TYPE
*r
, format_helper fmt
,
2769 const REAL_VALUE_TYPE
*a
)
2773 if (a
->decimal
|| fmt
->b
== 10)
2774 decimal_real_convert (r
, fmt
, a
);
2776 round_for_format (fmt
, r
);
2778 /* Make resulting NaN value to be qNaN. The caller has the
2779 responsibility to avoid the operation if flag_signaling_nans
2781 if (r
->cl
== rvc_nan
)
2784 /* round_for_format de-normalizes denormals. Undo just that part. */
2785 if (r
->cl
== rvc_normal
)
2789 /* Legacy. Likewise, except return the struct directly. */
2792 real_value_truncate (format_helper fmt
, REAL_VALUE_TYPE a
)
2795 real_convert (&r
, fmt
, &a
);
2799 /* Return true if truncating to FMT is exact. */
2802 exact_real_truncate (format_helper fmt
, const REAL_VALUE_TYPE
*a
)
2807 /* Don't allow conversion to denormals. */
2808 emin2m1
= fmt
->emin
- 1;
2809 if (REAL_EXP (a
) <= emin2m1
)
2812 /* After conversion to the new format, the value must be identical. */
2813 real_convert (&t
, fmt
, a
);
2814 return real_identical (&t
, a
);
2817 /* Write R to the given target format. Place the words of the result
2818 in target word order in BUF. There are always 32 bits in each
2819 long, no matter the size of the host long.
2821 Legacy: return word 0 for implementing REAL_VALUE_TO_TARGET_SINGLE. */
2824 real_to_target (long *buf
, const REAL_VALUE_TYPE
*r_orig
,
2831 round_for_format (fmt
, &r
);
2835 (*fmt
->encode
) (fmt
, buf
, &r
);
2840 /* Read R from the given target format. Read the words of the result
2841 in target word order in BUF. There are always 32 bits in each
2842 long, no matter the size of the host long. */
2845 real_from_target (REAL_VALUE_TYPE
*r
, const long *buf
, format_helper fmt
)
2847 (*fmt
->decode
) (fmt
, r
, buf
);
2850 /* Return the number of bits of the largest binary value that the
2851 significand of FMT will hold. */
2852 /* ??? Legacy. Should get access to real_format directly. */
2855 significand_size (format_helper fmt
)
2862 /* Return the size in bits of the largest binary value that can be
2863 held by the decimal coefficient for this format. This is one more
2864 than the number of bits required to hold the largest coefficient
2866 double log2_10
= 3.3219281;
2867 return fmt
->p
* log2_10
;
2872 /* Return a hash value for the given real value. */
2873 /* ??? The "unsigned int" return value is intended to be hashval_t,
2874 but I didn't want to pull hashtab.h into real.h. */
2877 real_hash (const REAL_VALUE_TYPE
*r
)
2882 h
= r
->cl
| (r
->sign
<< 2);
2890 h
|= (unsigned int)REAL_EXP (r
) << 3;
2895 h
^= (unsigned int)-1;
2904 if (sizeof (unsigned long) > sizeof (unsigned int))
2905 for (i
= 0; i
< SIGSZ
; ++i
)
2907 unsigned long s
= r
->sig
[i
];
2908 h
^= s
^ (s
>> (HOST_BITS_PER_LONG
/ 2));
2911 for (i
= 0; i
< SIGSZ
; ++i
)
2917 /* IEEE single-precision format. */
2919 static void encode_ieee_single (const struct real_format
*fmt
,
2920 long *, const REAL_VALUE_TYPE
*);
2921 static void decode_ieee_single (const struct real_format
*,
2922 REAL_VALUE_TYPE
*, const long *);
2925 encode_ieee_single (const struct real_format
*fmt
, long *buf
,
2926 const REAL_VALUE_TYPE
*r
)
2928 unsigned long image
, sig
, exp
;
2929 unsigned long sign
= r
->sign
;
2930 bool denormal
= (r
->sig
[SIGSZ
-1] & SIG_MSB
) == 0;
2933 sig
= (r
->sig
[SIGSZ
-1] >> (HOST_BITS_PER_LONG
- 24)) & 0x7fffff;
2944 image
|= 0x7fffffff;
2951 sig
= (fmt
->canonical_nan_lsbs_set
? (1 << 22) - 1 : 0);
2952 if (r
->signalling
== fmt
->qnan_msb_set
)
2963 image
|= 0x7fffffff;
2967 /* Recall that IEEE numbers are interpreted as 1.F x 2**exp,
2968 whereas the intermediate representation is 0.F x 2**exp.
2969 Which means we're off by one. */
2973 exp
= REAL_EXP (r
) + 127 - 1;
2986 decode_ieee_single (const struct real_format
*fmt
, REAL_VALUE_TYPE
*r
,
2989 unsigned long image
= buf
[0] & 0xffffffff;
2990 bool sign
= (image
>> 31) & 1;
2991 int exp
= (image
>> 23) & 0xff;
2993 memset (r
, 0, sizeof (*r
));
2994 image
<<= HOST_BITS_PER_LONG
- 24;
2999 if (image
&& fmt
->has_denorm
)
3003 SET_REAL_EXP (r
, -126);
3004 r
->sig
[SIGSZ
-1] = image
<< 1;
3007 else if (fmt
->has_signed_zero
)
3010 else if (exp
== 255 && (fmt
->has_nans
|| fmt
->has_inf
))
3016 r
->signalling
= (((image
>> (HOST_BITS_PER_LONG
- 2)) & 1)
3017 ^ fmt
->qnan_msb_set
);
3018 r
->sig
[SIGSZ
-1] = image
;
3030 SET_REAL_EXP (r
, exp
- 127 + 1);
3031 r
->sig
[SIGSZ
-1] = image
| SIG_MSB
;
3035 const struct real_format ieee_single_format
=
3058 const struct real_format mips_single_format
=
3081 const struct real_format motorola_single_format
=
3104 /* SPU Single Precision (Extended-Range Mode) format is the same as IEEE
3105 single precision with the following differences:
3106 - Infinities are not supported. Instead MAX_FLOAT or MIN_FLOAT
3108 - NaNs are not supported.
3109 - The range of non-zero numbers in binary is
3110 (001)[1.]000...000 to (255)[1.]111...111.
3111 - Denormals can be represented, but are treated as +0.0 when
3112 used as an operand and are never generated as a result.
3113 - -0.0 can be represented, but a zero result is always +0.0.
3114 - the only supported rounding mode is trunction (towards zero). */
3115 const struct real_format spu_single_format
=
3138 /* IEEE double-precision format. */
3140 static void encode_ieee_double (const struct real_format
*fmt
,
3141 long *, const REAL_VALUE_TYPE
*);
3142 static void decode_ieee_double (const struct real_format
*,
3143 REAL_VALUE_TYPE
*, const long *);
3146 encode_ieee_double (const struct real_format
*fmt
, long *buf
,
3147 const REAL_VALUE_TYPE
*r
)
3149 unsigned long image_lo
, image_hi
, sig_lo
, sig_hi
, exp
;
3150 bool denormal
= (r
->sig
[SIGSZ
-1] & SIG_MSB
) == 0;
3152 image_hi
= r
->sign
<< 31;
3155 if (HOST_BITS_PER_LONG
== 64)
3157 sig_hi
= r
->sig
[SIGSZ
-1];
3158 sig_lo
= (sig_hi
>> (64 - 53)) & 0xffffffff;
3159 sig_hi
= (sig_hi
>> (64 - 53 + 1) >> 31) & 0xfffff;
3163 sig_hi
= r
->sig
[SIGSZ
-1];
3164 sig_lo
= r
->sig
[SIGSZ
-2];
3165 sig_lo
= (sig_hi
<< 21) | (sig_lo
>> 11);
3166 sig_hi
= (sig_hi
>> 11) & 0xfffff;
3176 image_hi
|= 2047 << 20;
3179 image_hi
|= 0x7fffffff;
3180 image_lo
= 0xffffffff;
3189 if (fmt
->canonical_nan_lsbs_set
)
3191 sig_hi
= (1 << 19) - 1;
3192 sig_lo
= 0xffffffff;
3200 if (r
->signalling
== fmt
->qnan_msb_set
)
3201 sig_hi
&= ~(1 << 19);
3204 if (sig_hi
== 0 && sig_lo
== 0)
3207 image_hi
|= 2047 << 20;
3213 image_hi
|= 0x7fffffff;
3214 image_lo
= 0xffffffff;
3219 /* Recall that IEEE numbers are interpreted as 1.F x 2**exp,
3220 whereas the intermediate representation is 0.F x 2**exp.
3221 Which means we're off by one. */
3225 exp
= REAL_EXP (r
) + 1023 - 1;
3226 image_hi
|= exp
<< 20;
3235 if (FLOAT_WORDS_BIG_ENDIAN
)
3236 buf
[0] = image_hi
, buf
[1] = image_lo
;
3238 buf
[0] = image_lo
, buf
[1] = image_hi
;
3242 decode_ieee_double (const struct real_format
*fmt
, REAL_VALUE_TYPE
*r
,
3245 unsigned long image_hi
, image_lo
;
3249 if (FLOAT_WORDS_BIG_ENDIAN
)
3250 image_hi
= buf
[0], image_lo
= buf
[1];
3252 image_lo
= buf
[0], image_hi
= buf
[1];
3253 image_lo
&= 0xffffffff;
3254 image_hi
&= 0xffffffff;
3256 sign
= (image_hi
>> 31) & 1;
3257 exp
= (image_hi
>> 20) & 0x7ff;
3259 memset (r
, 0, sizeof (*r
));
3261 image_hi
<<= 32 - 21;
3262 image_hi
|= image_lo
>> 21;
3263 image_hi
&= 0x7fffffff;
3264 image_lo
<<= 32 - 21;
3268 if ((image_hi
|| image_lo
) && fmt
->has_denorm
)
3272 SET_REAL_EXP (r
, -1022);
3273 if (HOST_BITS_PER_LONG
== 32)
3275 image_hi
= (image_hi
<< 1) | (image_lo
>> 31);
3277 r
->sig
[SIGSZ
-1] = image_hi
;
3278 r
->sig
[SIGSZ
-2] = image_lo
;
3282 image_hi
= (image_hi
<< 31 << 2) | (image_lo
<< 1);
3283 r
->sig
[SIGSZ
-1] = image_hi
;
3287 else if (fmt
->has_signed_zero
)
3290 else if (exp
== 2047 && (fmt
->has_nans
|| fmt
->has_inf
))
3292 if (image_hi
|| image_lo
)
3296 r
->signalling
= ((image_hi
>> 30) & 1) ^ fmt
->qnan_msb_set
;
3297 if (HOST_BITS_PER_LONG
== 32)
3299 r
->sig
[SIGSZ
-1] = image_hi
;
3300 r
->sig
[SIGSZ
-2] = image_lo
;
3303 r
->sig
[SIGSZ
-1] = (image_hi
<< 31 << 1) | image_lo
;
3315 SET_REAL_EXP (r
, exp
- 1023 + 1);
3316 if (HOST_BITS_PER_LONG
== 32)
3318 r
->sig
[SIGSZ
-1] = image_hi
| SIG_MSB
;
3319 r
->sig
[SIGSZ
-2] = image_lo
;
3322 r
->sig
[SIGSZ
-1] = (image_hi
<< 31 << 1) | image_lo
| SIG_MSB
;
3326 const struct real_format ieee_double_format
=
3349 const struct real_format mips_double_format
=
3372 const struct real_format motorola_double_format
=
3395 /* IEEE extended real format. This comes in three flavors: Intel's as
3396 a 12 byte image, Intel's as a 16 byte image, and Motorola's. Intel
3397 12- and 16-byte images may be big- or little endian; Motorola's is
3398 always big endian. */
3400 /* Helper subroutine which converts from the internal format to the
3401 12-byte little-endian Intel format. Functions below adjust this
3402 for the other possible formats. */
3404 encode_ieee_extended (const struct real_format
*fmt
, long *buf
,
3405 const REAL_VALUE_TYPE
*r
)
3407 unsigned long image_hi
, sig_hi
, sig_lo
;
3408 bool denormal
= (r
->sig
[SIGSZ
-1] & SIG_MSB
) == 0;
3410 image_hi
= r
->sign
<< 15;
3411 sig_hi
= sig_lo
= 0;
3423 /* Intel requires the explicit integer bit to be set, otherwise
3424 it considers the value a "pseudo-infinity". Motorola docs
3425 say it doesn't care. */
3426 sig_hi
= 0x80000000;
3431 sig_lo
= sig_hi
= 0xffffffff;
3441 if (fmt
->canonical_nan_lsbs_set
)
3443 sig_hi
= (1 << 30) - 1;
3444 sig_lo
= 0xffffffff;
3447 else if (HOST_BITS_PER_LONG
== 32)
3449 sig_hi
= r
->sig
[SIGSZ
-1];
3450 sig_lo
= r
->sig
[SIGSZ
-2];
3454 sig_lo
= r
->sig
[SIGSZ
-1];
3455 sig_hi
= sig_lo
>> 31 >> 1;
3456 sig_lo
&= 0xffffffff;
3458 if (r
->signalling
== fmt
->qnan_msb_set
)
3459 sig_hi
&= ~(1 << 30);
3462 if ((sig_hi
& 0x7fffffff) == 0 && sig_lo
== 0)
3465 /* Intel requires the explicit integer bit to be set, otherwise
3466 it considers the value a "pseudo-nan". Motorola docs say it
3468 sig_hi
|= 0x80000000;
3473 sig_lo
= sig_hi
= 0xffffffff;
3479 int exp
= REAL_EXP (r
);
3481 /* Recall that IEEE numbers are interpreted as 1.F x 2**exp,
3482 whereas the intermediate representation is 0.F x 2**exp.
3483 Which means we're off by one.
3485 Except for Motorola, which consider exp=0 and explicit
3486 integer bit set to continue to be normalized. In theory
3487 this discrepancy has been taken care of by the difference
3488 in fmt->emin in round_for_format. */
3495 gcc_assert (exp
>= 0);
3499 if (HOST_BITS_PER_LONG
== 32)
3501 sig_hi
= r
->sig
[SIGSZ
-1];
3502 sig_lo
= r
->sig
[SIGSZ
-2];
3506 sig_lo
= r
->sig
[SIGSZ
-1];
3507 sig_hi
= sig_lo
>> 31 >> 1;
3508 sig_lo
&= 0xffffffff;
3517 buf
[0] = sig_lo
, buf
[1] = sig_hi
, buf
[2] = image_hi
;
3520 /* Convert from the internal format to the 12-byte Motorola format
3521 for an IEEE extended real. */
3523 encode_ieee_extended_motorola (const struct real_format
*fmt
, long *buf
,
3524 const REAL_VALUE_TYPE
*r
)
3527 encode_ieee_extended (fmt
, intermed
, r
);
3529 if (r
->cl
== rvc_inf
)
3530 /* For infinity clear the explicit integer bit again, so that the
3531 format matches the canonical infinity generated by the FPU. */
3534 /* Motorola chips are assumed always to be big-endian. Also, the
3535 padding in a Motorola extended real goes between the exponent and
3536 the mantissa. At this point the mantissa is entirely within
3537 elements 0 and 1 of intermed, and the exponent entirely within
3538 element 2, so all we have to do is swap the order around, and
3539 shift element 2 left 16 bits. */
3540 buf
[0] = intermed
[2] << 16;
3541 buf
[1] = intermed
[1];
3542 buf
[2] = intermed
[0];
3545 /* Convert from the internal format to the 12-byte Intel format for
3546 an IEEE extended real. */
3548 encode_ieee_extended_intel_96 (const struct real_format
*fmt
, long *buf
,
3549 const REAL_VALUE_TYPE
*r
)
3551 if (FLOAT_WORDS_BIG_ENDIAN
)
3553 /* All the padding in an Intel-format extended real goes at the high
3554 end, which in this case is after the mantissa, not the exponent.
3555 Therefore we must shift everything down 16 bits. */
3557 encode_ieee_extended (fmt
, intermed
, r
);
3558 buf
[0] = ((intermed
[2] << 16) | ((unsigned long)(intermed
[1] & 0xFFFF0000) >> 16));
3559 buf
[1] = ((intermed
[1] << 16) | ((unsigned long)(intermed
[0] & 0xFFFF0000) >> 16));
3560 buf
[2] = (intermed
[0] << 16);
3563 /* encode_ieee_extended produces what we want directly. */
3564 encode_ieee_extended (fmt
, buf
, r
);
3567 /* Convert from the internal format to the 16-byte Intel format for
3568 an IEEE extended real. */
3570 encode_ieee_extended_intel_128 (const struct real_format
*fmt
, long *buf
,
3571 const REAL_VALUE_TYPE
*r
)
3573 /* All the padding in an Intel-format extended real goes at the high end. */
3574 encode_ieee_extended_intel_96 (fmt
, buf
, r
);
3578 /* As above, we have a helper function which converts from 12-byte
3579 little-endian Intel format to internal format. Functions below
3580 adjust for the other possible formats. */
3582 decode_ieee_extended (const struct real_format
*fmt
, REAL_VALUE_TYPE
*r
,
3585 unsigned long image_hi
, sig_hi
, sig_lo
;
3589 sig_lo
= buf
[0], sig_hi
= buf
[1], image_hi
= buf
[2];
3590 sig_lo
&= 0xffffffff;
3591 sig_hi
&= 0xffffffff;
3592 image_hi
&= 0xffffffff;
3594 sign
= (image_hi
>> 15) & 1;
3595 exp
= image_hi
& 0x7fff;
3597 memset (r
, 0, sizeof (*r
));
3601 if ((sig_hi
|| sig_lo
) && fmt
->has_denorm
)
3606 /* When the IEEE format contains a hidden bit, we know that
3607 it's zero at this point, and so shift up the significand
3608 and decrease the exponent to match. In this case, Motorola
3609 defines the explicit integer bit to be valid, so we don't
3610 know whether the msb is set or not. */
3611 SET_REAL_EXP (r
, fmt
->emin
);
3612 if (HOST_BITS_PER_LONG
== 32)
3614 r
->sig
[SIGSZ
-1] = sig_hi
;
3615 r
->sig
[SIGSZ
-2] = sig_lo
;
3618 r
->sig
[SIGSZ
-1] = (sig_hi
<< 31 << 1) | sig_lo
;
3622 else if (fmt
->has_signed_zero
)
3625 else if (exp
== 32767 && (fmt
->has_nans
|| fmt
->has_inf
))
3627 /* See above re "pseudo-infinities" and "pseudo-nans".
3628 Short summary is that the MSB will likely always be
3629 set, and that we don't care about it. */
3630 sig_hi
&= 0x7fffffff;
3632 if (sig_hi
|| sig_lo
)
3636 r
->signalling
= ((sig_hi
>> 30) & 1) ^ fmt
->qnan_msb_set
;
3637 if (HOST_BITS_PER_LONG
== 32)
3639 r
->sig
[SIGSZ
-1] = sig_hi
;
3640 r
->sig
[SIGSZ
-2] = sig_lo
;
3643 r
->sig
[SIGSZ
-1] = (sig_hi
<< 31 << 1) | sig_lo
;
3655 SET_REAL_EXP (r
, exp
- 16383 + 1);
3656 if (HOST_BITS_PER_LONG
== 32)
3658 r
->sig
[SIGSZ
-1] = sig_hi
;
3659 r
->sig
[SIGSZ
-2] = sig_lo
;
3662 r
->sig
[SIGSZ
-1] = (sig_hi
<< 31 << 1) | sig_lo
;
3666 /* Convert from the internal format to the 12-byte Motorola format
3667 for an IEEE extended real. */
3669 decode_ieee_extended_motorola (const struct real_format
*fmt
, REAL_VALUE_TYPE
*r
,
3674 /* Motorola chips are assumed always to be big-endian. Also, the
3675 padding in a Motorola extended real goes between the exponent and
3676 the mantissa; remove it. */
3677 intermed
[0] = buf
[2];
3678 intermed
[1] = buf
[1];
3679 intermed
[2] = (unsigned long)buf
[0] >> 16;
3681 decode_ieee_extended (fmt
, r
, intermed
);
3684 /* Convert from the internal format to the 12-byte Intel format for
3685 an IEEE extended real. */
3687 decode_ieee_extended_intel_96 (const struct real_format
*fmt
, REAL_VALUE_TYPE
*r
,
3690 if (FLOAT_WORDS_BIG_ENDIAN
)
3692 /* All the padding in an Intel-format extended real goes at the high
3693 end, which in this case is after the mantissa, not the exponent.
3694 Therefore we must shift everything up 16 bits. */
3697 intermed
[0] = (((unsigned long)buf
[2] >> 16) | (buf
[1] << 16));
3698 intermed
[1] = (((unsigned long)buf
[1] >> 16) | (buf
[0] << 16));
3699 intermed
[2] = ((unsigned long)buf
[0] >> 16);
3701 decode_ieee_extended (fmt
, r
, intermed
);
3704 /* decode_ieee_extended produces what we want directly. */
3705 decode_ieee_extended (fmt
, r
, buf
);
3708 /* Convert from the internal format to the 16-byte Intel format for
3709 an IEEE extended real. */
3711 decode_ieee_extended_intel_128 (const struct real_format
*fmt
, REAL_VALUE_TYPE
*r
,
3714 /* All the padding in an Intel-format extended real goes at the high end. */
3715 decode_ieee_extended_intel_96 (fmt
, r
, buf
);
3718 const struct real_format ieee_extended_motorola_format
=
3720 encode_ieee_extended_motorola
,
3721 decode_ieee_extended_motorola
,
3738 "ieee_extended_motorola"
3741 const struct real_format ieee_extended_intel_96_format
=
3743 encode_ieee_extended_intel_96
,
3744 decode_ieee_extended_intel_96
,
3761 "ieee_extended_intel_96"
3764 const struct real_format ieee_extended_intel_128_format
=
3766 encode_ieee_extended_intel_128
,
3767 decode_ieee_extended_intel_128
,
3784 "ieee_extended_intel_128"
3787 /* The following caters to i386 systems that set the rounding precision
3788 to 53 bits instead of 64, e.g. FreeBSD. */
3789 const struct real_format ieee_extended_intel_96_round_53_format
=
3791 encode_ieee_extended_intel_96
,
3792 decode_ieee_extended_intel_96
,
3809 "ieee_extended_intel_96_round_53"
3812 /* IBM 128-bit extended precision format: a pair of IEEE double precision
3813 numbers whose sum is equal to the extended precision value. The number
3814 with greater magnitude is first. This format has the same magnitude
3815 range as an IEEE double precision value, but effectively 106 bits of
3816 significand precision. Infinity and NaN are represented by their IEEE
3817 double precision value stored in the first number, the second number is
3818 +0.0 or -0.0 for Infinity and don't-care for NaN. */
3820 static void encode_ibm_extended (const struct real_format
*fmt
,
3821 long *, const REAL_VALUE_TYPE
*);
3822 static void decode_ibm_extended (const struct real_format
*,
3823 REAL_VALUE_TYPE
*, const long *);
3826 encode_ibm_extended (const struct real_format
*fmt
, long *buf
,
3827 const REAL_VALUE_TYPE
*r
)
3829 REAL_VALUE_TYPE u
, normr
, v
;
3830 const struct real_format
*base_fmt
;
3832 base_fmt
= fmt
->qnan_msb_set
? &ieee_double_format
: &mips_double_format
;
3834 /* Renormalize R before doing any arithmetic on it. */
3836 if (normr
.cl
== rvc_normal
)
3839 /* u = IEEE double precision portion of significand. */
3841 round_for_format (base_fmt
, &u
);
3842 encode_ieee_double (base_fmt
, &buf
[0], &u
);
3844 if (u
.cl
== rvc_normal
)
3846 do_add (&v
, &normr
, &u
, 1);
3847 /* Call round_for_format since we might need to denormalize. */
3848 round_for_format (base_fmt
, &v
);
3849 encode_ieee_double (base_fmt
, &buf
[2], &v
);
3853 /* Inf, NaN, 0 are all representable as doubles, so the
3854 least-significant part can be 0.0. */
3861 decode_ibm_extended (const struct real_format
*fmt ATTRIBUTE_UNUSED
, REAL_VALUE_TYPE
*r
,
3864 REAL_VALUE_TYPE u
, v
;
3865 const struct real_format
*base_fmt
;
3867 base_fmt
= fmt
->qnan_msb_set
? &ieee_double_format
: &mips_double_format
;
3868 decode_ieee_double (base_fmt
, &u
, &buf
[0]);
3870 if (u
.cl
!= rvc_zero
&& u
.cl
!= rvc_inf
&& u
.cl
!= rvc_nan
)
3872 decode_ieee_double (base_fmt
, &v
, &buf
[2]);
3873 do_add (r
, &u
, &v
, 0);
3879 const struct real_format ibm_extended_format
=
3881 encode_ibm_extended
,
3882 decode_ibm_extended
,
3902 const struct real_format mips_extended_format
=
3904 encode_ibm_extended
,
3905 decode_ibm_extended
,
3926 /* IEEE quad precision format. */
3928 static void encode_ieee_quad (const struct real_format
*fmt
,
3929 long *, const REAL_VALUE_TYPE
*);
3930 static void decode_ieee_quad (const struct real_format
*,
3931 REAL_VALUE_TYPE
*, const long *);
3934 encode_ieee_quad (const struct real_format
*fmt
, long *buf
,
3935 const REAL_VALUE_TYPE
*r
)
3937 unsigned long image3
, image2
, image1
, image0
, exp
;
3938 bool denormal
= (r
->sig
[SIGSZ
-1] & SIG_MSB
) == 0;
3941 image3
= r
->sign
<< 31;
3946 rshift_significand (&u
, r
, SIGNIFICAND_BITS
- 113);
3955 image3
|= 32767 << 16;
3958 image3
|= 0x7fffffff;
3959 image2
= 0xffffffff;
3960 image1
= 0xffffffff;
3961 image0
= 0xffffffff;
3968 image3
|= 32767 << 16;
3972 if (fmt
->canonical_nan_lsbs_set
)
3975 image2
= image1
= image0
= 0xffffffff;
3978 else if (HOST_BITS_PER_LONG
== 32)
3983 image3
|= u
.sig
[3] & 0xffff;
3988 image1
= image0
>> 31 >> 1;
3990 image3
|= (image2
>> 31 >> 1) & 0xffff;
3991 image0
&= 0xffffffff;
3992 image2
&= 0xffffffff;
3994 if (r
->signalling
== fmt
->qnan_msb_set
)
3998 if (((image3
& 0xffff) | image2
| image1
| image0
) == 0)
4003 image3
|= 0x7fffffff;
4004 image2
= 0xffffffff;
4005 image1
= 0xffffffff;
4006 image0
= 0xffffffff;
4011 /* Recall that IEEE numbers are interpreted as 1.F x 2**exp,
4012 whereas the intermediate representation is 0.F x 2**exp.
4013 Which means we're off by one. */
4017 exp
= REAL_EXP (r
) + 16383 - 1;
4018 image3
|= exp
<< 16;
4020 if (HOST_BITS_PER_LONG
== 32)
4025 image3
|= u
.sig
[3] & 0xffff;
4030 image1
= image0
>> 31 >> 1;
4032 image3
|= (image2
>> 31 >> 1) & 0xffff;
4033 image0
&= 0xffffffff;
4034 image2
&= 0xffffffff;
4042 if (FLOAT_WORDS_BIG_ENDIAN
)
4059 decode_ieee_quad (const struct real_format
*fmt
, REAL_VALUE_TYPE
*r
,
4062 unsigned long image3
, image2
, image1
, image0
;
4066 if (FLOAT_WORDS_BIG_ENDIAN
)
4080 image0
&= 0xffffffff;
4081 image1
&= 0xffffffff;
4082 image2
&= 0xffffffff;
4084 sign
= (image3
>> 31) & 1;
4085 exp
= (image3
>> 16) & 0x7fff;
4088 memset (r
, 0, sizeof (*r
));
4092 if ((image3
| image2
| image1
| image0
) && fmt
->has_denorm
)
4097 SET_REAL_EXP (r
, -16382 + (SIGNIFICAND_BITS
- 112));
4098 if (HOST_BITS_PER_LONG
== 32)
4107 r
->sig
[0] = (image1
<< 31 << 1) | image0
;
4108 r
->sig
[1] = (image3
<< 31 << 1) | image2
;
4113 else if (fmt
->has_signed_zero
)
4116 else if (exp
== 32767 && (fmt
->has_nans
|| fmt
->has_inf
))
4118 if (image3
| image2
| image1
| image0
)
4122 r
->signalling
= ((image3
>> 15) & 1) ^ fmt
->qnan_msb_set
;
4124 if (HOST_BITS_PER_LONG
== 32)
4133 r
->sig
[0] = (image1
<< 31 << 1) | image0
;
4134 r
->sig
[1] = (image3
<< 31 << 1) | image2
;
4136 lshift_significand (r
, r
, SIGNIFICAND_BITS
- 113);
4148 SET_REAL_EXP (r
, exp
- 16383 + 1);
4150 if (HOST_BITS_PER_LONG
== 32)
4159 r
->sig
[0] = (image1
<< 31 << 1) | image0
;
4160 r
->sig
[1] = (image3
<< 31 << 1) | image2
;
4162 lshift_significand (r
, r
, SIGNIFICAND_BITS
- 113);
4163 r
->sig
[SIGSZ
-1] |= SIG_MSB
;
4167 const struct real_format ieee_quad_format
=
4190 const struct real_format mips_quad_format
=
4213 /* Descriptions of VAX floating point formats can be found beginning at
4215 http://h71000.www7.hp.com/doc/73FINAL/4515/4515pro_013.html#f_floating_point_format
4217 The thing to remember is that they're almost IEEE, except for word
4218 order, exponent bias, and the lack of infinities, nans, and denormals.
4220 We don't implement the H_floating format here, simply because neither
4221 the VAX or Alpha ports use it. */
4223 static void encode_vax_f (const struct real_format
*fmt
,
4224 long *, const REAL_VALUE_TYPE
*);
4225 static void decode_vax_f (const struct real_format
*,
4226 REAL_VALUE_TYPE
*, const long *);
4227 static void encode_vax_d (const struct real_format
*fmt
,
4228 long *, const REAL_VALUE_TYPE
*);
4229 static void decode_vax_d (const struct real_format
*,
4230 REAL_VALUE_TYPE
*, const long *);
4231 static void encode_vax_g (const struct real_format
*fmt
,
4232 long *, const REAL_VALUE_TYPE
*);
4233 static void decode_vax_g (const struct real_format
*,
4234 REAL_VALUE_TYPE
*, const long *);
4237 encode_vax_f (const struct real_format
*fmt ATTRIBUTE_UNUSED
, long *buf
,
4238 const REAL_VALUE_TYPE
*r
)
4240 unsigned long sign
, exp
, sig
, image
;
4242 sign
= r
->sign
<< 15;
4252 image
= 0xffff7fff | sign
;
4256 sig
= (r
->sig
[SIGSZ
-1] >> (HOST_BITS_PER_LONG
- 24)) & 0x7fffff;
4257 exp
= REAL_EXP (r
) + 128;
4259 image
= (sig
<< 16) & 0xffff0000;
4273 decode_vax_f (const struct real_format
*fmt ATTRIBUTE_UNUSED
,
4274 REAL_VALUE_TYPE
*r
, const long *buf
)
4276 unsigned long image
= buf
[0] & 0xffffffff;
4277 int exp
= (image
>> 7) & 0xff;
4279 memset (r
, 0, sizeof (*r
));
4284 r
->sign
= (image
>> 15) & 1;
4285 SET_REAL_EXP (r
, exp
- 128);
4287 image
= ((image
& 0x7f) << 16) | ((image
>> 16) & 0xffff);
4288 r
->sig
[SIGSZ
-1] = (image
<< (HOST_BITS_PER_LONG
- 24)) | SIG_MSB
;
4293 encode_vax_d (const struct real_format
*fmt ATTRIBUTE_UNUSED
, long *buf
,
4294 const REAL_VALUE_TYPE
*r
)
4296 unsigned long image0
, image1
, sign
= r
->sign
<< 15;
4301 image0
= image1
= 0;
4306 image0
= 0xffff7fff | sign
;
4307 image1
= 0xffffffff;
4311 /* Extract the significand into straight hi:lo. */
4312 if (HOST_BITS_PER_LONG
== 64)
4314 image0
= r
->sig
[SIGSZ
-1];
4315 image1
= (image0
>> (64 - 56)) & 0xffffffff;
4316 image0
= (image0
>> (64 - 56 + 1) >> 31) & 0x7fffff;
4320 image0
= r
->sig
[SIGSZ
-1];
4321 image1
= r
->sig
[SIGSZ
-2];
4322 image1
= (image0
<< 24) | (image1
>> 8);
4323 image0
= (image0
>> 8) & 0xffffff;
4326 /* Rearrange the half-words of the significand to match the
4328 image0
= ((image0
<< 16) | (image0
>> 16)) & 0xffff007f;
4329 image1
= ((image1
<< 16) | (image1
>> 16)) & 0xffffffff;
4331 /* Add the sign and exponent. */
4333 image0
|= (REAL_EXP (r
) + 128) << 7;
4340 if (FLOAT_WORDS_BIG_ENDIAN
)
4341 buf
[0] = image1
, buf
[1] = image0
;
4343 buf
[0] = image0
, buf
[1] = image1
;
4347 decode_vax_d (const struct real_format
*fmt ATTRIBUTE_UNUSED
,
4348 REAL_VALUE_TYPE
*r
, const long *buf
)
4350 unsigned long image0
, image1
;
4353 if (FLOAT_WORDS_BIG_ENDIAN
)
4354 image1
= buf
[0], image0
= buf
[1];
4356 image0
= buf
[0], image1
= buf
[1];
4357 image0
&= 0xffffffff;
4358 image1
&= 0xffffffff;
4360 exp
= (image0
>> 7) & 0xff;
4362 memset (r
, 0, sizeof (*r
));
4367 r
->sign
= (image0
>> 15) & 1;
4368 SET_REAL_EXP (r
, exp
- 128);
4370 /* Rearrange the half-words of the external format into
4371 proper ascending order. */
4372 image0
= ((image0
& 0x7f) << 16) | ((image0
>> 16) & 0xffff);
4373 image1
= ((image1
& 0xffff) << 16) | ((image1
>> 16) & 0xffff);
4375 if (HOST_BITS_PER_LONG
== 64)
4377 image0
= (image0
<< 31 << 1) | image1
;
4380 r
->sig
[SIGSZ
-1] = image0
;
4384 r
->sig
[SIGSZ
-1] = image0
;
4385 r
->sig
[SIGSZ
-2] = image1
;
4386 lshift_significand (r
, r
, 2*HOST_BITS_PER_LONG
- 56);
4387 r
->sig
[SIGSZ
-1] |= SIG_MSB
;
4393 encode_vax_g (const struct real_format
*fmt ATTRIBUTE_UNUSED
, long *buf
,
4394 const REAL_VALUE_TYPE
*r
)
4396 unsigned long image0
, image1
, sign
= r
->sign
<< 15;
4401 image0
= image1
= 0;
4406 image0
= 0xffff7fff | sign
;
4407 image1
= 0xffffffff;
4411 /* Extract the significand into straight hi:lo. */
4412 if (HOST_BITS_PER_LONG
== 64)
4414 image0
= r
->sig
[SIGSZ
-1];
4415 image1
= (image0
>> (64 - 53)) & 0xffffffff;
4416 image0
= (image0
>> (64 - 53 + 1) >> 31) & 0xfffff;
4420 image0
= r
->sig
[SIGSZ
-1];
4421 image1
= r
->sig
[SIGSZ
-2];
4422 image1
= (image0
<< 21) | (image1
>> 11);
4423 image0
= (image0
>> 11) & 0xfffff;
4426 /* Rearrange the half-words of the significand to match the
4428 image0
= ((image0
<< 16) | (image0
>> 16)) & 0xffff000f;
4429 image1
= ((image1
<< 16) | (image1
>> 16)) & 0xffffffff;
4431 /* Add the sign and exponent. */
4433 image0
|= (REAL_EXP (r
) + 1024) << 4;
4440 if (FLOAT_WORDS_BIG_ENDIAN
)
4441 buf
[0] = image1
, buf
[1] = image0
;
4443 buf
[0] = image0
, buf
[1] = image1
;
4447 decode_vax_g (const struct real_format
*fmt ATTRIBUTE_UNUSED
,
4448 REAL_VALUE_TYPE
*r
, const long *buf
)
4450 unsigned long image0
, image1
;
4453 if (FLOAT_WORDS_BIG_ENDIAN
)
4454 image1
= buf
[0], image0
= buf
[1];
4456 image0
= buf
[0], image1
= buf
[1];
4457 image0
&= 0xffffffff;
4458 image1
&= 0xffffffff;
4460 exp
= (image0
>> 4) & 0x7ff;
4462 memset (r
, 0, sizeof (*r
));
4467 r
->sign
= (image0
>> 15) & 1;
4468 SET_REAL_EXP (r
, exp
- 1024);
4470 /* Rearrange the half-words of the external format into
4471 proper ascending order. */
4472 image0
= ((image0
& 0xf) << 16) | ((image0
>> 16) & 0xffff);
4473 image1
= ((image1
& 0xffff) << 16) | ((image1
>> 16) & 0xffff);
4475 if (HOST_BITS_PER_LONG
== 64)
4477 image0
= (image0
<< 31 << 1) | image1
;
4480 r
->sig
[SIGSZ
-1] = image0
;
4484 r
->sig
[SIGSZ
-1] = image0
;
4485 r
->sig
[SIGSZ
-2] = image1
;
4486 lshift_significand (r
, r
, 64 - 53);
4487 r
->sig
[SIGSZ
-1] |= SIG_MSB
;
4492 const struct real_format vax_f_format
=
4515 const struct real_format vax_d_format
=
4538 const struct real_format vax_g_format
=
4561 /* Encode real R into a single precision DFP value in BUF. */
4563 encode_decimal_single (const struct real_format
*fmt ATTRIBUTE_UNUSED
,
4564 long *buf ATTRIBUTE_UNUSED
,
4565 const REAL_VALUE_TYPE
*r ATTRIBUTE_UNUSED
)
4567 encode_decimal32 (fmt
, buf
, r
);
4570 /* Decode a single precision DFP value in BUF into a real R. */
4572 decode_decimal_single (const struct real_format
*fmt ATTRIBUTE_UNUSED
,
4573 REAL_VALUE_TYPE
*r ATTRIBUTE_UNUSED
,
4574 const long *buf ATTRIBUTE_UNUSED
)
4576 decode_decimal32 (fmt
, r
, buf
);
4579 /* Encode real R into a double precision DFP value in BUF. */
4581 encode_decimal_double (const struct real_format
*fmt ATTRIBUTE_UNUSED
,
4582 long *buf ATTRIBUTE_UNUSED
,
4583 const REAL_VALUE_TYPE
*r ATTRIBUTE_UNUSED
)
4585 encode_decimal64 (fmt
, buf
, r
);
4588 /* Decode a double precision DFP value in BUF into a real R. */
4590 decode_decimal_double (const struct real_format
*fmt ATTRIBUTE_UNUSED
,
4591 REAL_VALUE_TYPE
*r ATTRIBUTE_UNUSED
,
4592 const long *buf ATTRIBUTE_UNUSED
)
4594 decode_decimal64 (fmt
, r
, buf
);
4597 /* Encode real R into a quad precision DFP value in BUF. */
4599 encode_decimal_quad (const struct real_format
*fmt ATTRIBUTE_UNUSED
,
4600 long *buf ATTRIBUTE_UNUSED
,
4601 const REAL_VALUE_TYPE
*r ATTRIBUTE_UNUSED
)
4603 encode_decimal128 (fmt
, buf
, r
);
4606 /* Decode a quad precision DFP value in BUF into a real R. */
4608 decode_decimal_quad (const struct real_format
*fmt ATTRIBUTE_UNUSED
,
4609 REAL_VALUE_TYPE
*r ATTRIBUTE_UNUSED
,
4610 const long *buf ATTRIBUTE_UNUSED
)
4612 decode_decimal128 (fmt
, r
, buf
);
4615 /* Single precision decimal floating point (IEEE 754). */
4616 const struct real_format decimal_single_format
=
4618 encode_decimal_single
,
4619 decode_decimal_single
,
4639 /* Double precision decimal floating point (IEEE 754). */
4640 const struct real_format decimal_double_format
=
4642 encode_decimal_double
,
4643 decode_decimal_double
,
4663 /* Quad precision decimal floating point (IEEE 754). */
4664 const struct real_format decimal_quad_format
=
4666 encode_decimal_quad
,
4667 decode_decimal_quad
,
4687 /* Encode half-precision floats. This routine is used both for the IEEE
4688 ARM alternative encodings. */
4690 encode_ieee_half (const struct real_format
*fmt
, long *buf
,
4691 const REAL_VALUE_TYPE
*r
)
4693 unsigned long image
, sig
, exp
;
4694 unsigned long sign
= r
->sign
;
4695 bool denormal
= (r
->sig
[SIGSZ
-1] & SIG_MSB
) == 0;
4698 sig
= (r
->sig
[SIGSZ
-1] >> (HOST_BITS_PER_LONG
- 11)) & 0x3ff;
4716 sig
= (fmt
->canonical_nan_lsbs_set
? (1 << 9) - 1 : 0);
4717 if (r
->signalling
== fmt
->qnan_msb_set
)
4732 /* Recall that IEEE numbers are interpreted as 1.F x 2**exp,
4733 whereas the intermediate representation is 0.F x 2**exp.
4734 Which means we're off by one. */
4738 exp
= REAL_EXP (r
) + 15 - 1;
4750 /* Decode half-precision floats. This routine is used both for the IEEE
4751 ARM alternative encodings. */
4753 decode_ieee_half (const struct real_format
*fmt
, REAL_VALUE_TYPE
*r
,
4756 unsigned long image
= buf
[0] & 0xffff;
4757 bool sign
= (image
>> 15) & 1;
4758 int exp
= (image
>> 10) & 0x1f;
4760 memset (r
, 0, sizeof (*r
));
4761 image
<<= HOST_BITS_PER_LONG
- 11;
4766 if (image
&& fmt
->has_denorm
)
4770 SET_REAL_EXP (r
, -14);
4771 r
->sig
[SIGSZ
-1] = image
<< 1;
4774 else if (fmt
->has_signed_zero
)
4777 else if (exp
== 31 && (fmt
->has_nans
|| fmt
->has_inf
))
4783 r
->signalling
= (((image
>> (HOST_BITS_PER_LONG
- 2)) & 1)
4784 ^ fmt
->qnan_msb_set
);
4785 r
->sig
[SIGSZ
-1] = image
;
4797 SET_REAL_EXP (r
, exp
- 15 + 1);
4798 r
->sig
[SIGSZ
-1] = image
| SIG_MSB
;
4802 /* Half-precision format, as specified in IEEE 754R. */
4803 const struct real_format ieee_half_format
=
4826 /* ARM's alternative half-precision format, similar to IEEE but with
4827 no reserved exponent value for NaNs and infinities; rather, it just
4828 extends the range of exponents by one. */
4829 const struct real_format arm_half_format
=
4852 /* A synthetic "format" for internal arithmetic. It's the size of the
4853 internal significand minus the two bits needed for proper rounding.
4854 The encode and decode routines exist only to satisfy our paranoia
4857 static void encode_internal (const struct real_format
*fmt
,
4858 long *, const REAL_VALUE_TYPE
*);
4859 static void decode_internal (const struct real_format
*,
4860 REAL_VALUE_TYPE
*, const long *);
4863 encode_internal (const struct real_format
*fmt ATTRIBUTE_UNUSED
, long *buf
,
4864 const REAL_VALUE_TYPE
*r
)
4866 memcpy (buf
, r
, sizeof (*r
));
4870 decode_internal (const struct real_format
*fmt ATTRIBUTE_UNUSED
,
4871 REAL_VALUE_TYPE
*r
, const long *buf
)
4873 memcpy (r
, buf
, sizeof (*r
));
4876 const struct real_format real_internal_format
=
4881 SIGNIFICAND_BITS
- 2,
4882 SIGNIFICAND_BITS
- 2,
4899 /* Calculate X raised to the integer exponent N in format FMT and store
4900 the result in R. Return true if the result may be inexact due to
4901 loss of precision. The algorithm is the classic "left-to-right binary
4902 method" described in section 4.6.3 of Donald Knuth's "Seminumerical
4903 Algorithms", "The Art of Computer Programming", Volume 2. */
4906 real_powi (REAL_VALUE_TYPE
*r
, format_helper fmt
,
4907 const REAL_VALUE_TYPE
*x
, HOST_WIDE_INT n
)
4909 unsigned HOST_WIDE_INT bit
;
4911 bool inexact
= false;
4923 /* Don't worry about overflow, from now on n is unsigned. */
4931 bit
= HOST_WIDE_INT_1U
<< (HOST_BITS_PER_WIDE_INT
- 1);
4932 for (i
= 0; i
< HOST_BITS_PER_WIDE_INT
; i
++)
4936 inexact
|= do_multiply (&t
, &t
, &t
);
4938 inexact
|= do_multiply (&t
, &t
, x
);
4946 inexact
|= do_divide (&t
, &dconst1
, &t
);
4948 real_convert (r
, fmt
, &t
);
4952 /* Round X to the nearest integer not larger in absolute value, i.e.
4953 towards zero, placing the result in R in format FMT. */
4956 real_trunc (REAL_VALUE_TYPE
*r
, format_helper fmt
,
4957 const REAL_VALUE_TYPE
*x
)
4959 do_fix_trunc (r
, x
);
4961 real_convert (r
, fmt
, r
);
4964 /* Round X to the largest integer not greater in value, i.e. round
4965 down, placing the result in R in format FMT. */
4968 real_floor (REAL_VALUE_TYPE
*r
, format_helper fmt
,
4969 const REAL_VALUE_TYPE
*x
)
4973 do_fix_trunc (&t
, x
);
4974 if (! real_identical (&t
, x
) && x
->sign
)
4975 do_add (&t
, &t
, &dconstm1
, 0);
4977 real_convert (r
, fmt
, &t
);
4982 /* Round X to the smallest integer not less then argument, i.e. round
4983 up, placing the result in R in format FMT. */
4986 real_ceil (REAL_VALUE_TYPE
*r
, format_helper fmt
,
4987 const REAL_VALUE_TYPE
*x
)
4991 do_fix_trunc (&t
, x
);
4992 if (! real_identical (&t
, x
) && ! x
->sign
)
4993 do_add (&t
, &t
, &dconst1
, 0);
4995 real_convert (r
, fmt
, &t
);
5000 /* Round X to the nearest integer, but round halfway cases away from
5004 real_round (REAL_VALUE_TYPE
*r
, format_helper fmt
,
5005 const REAL_VALUE_TYPE
*x
)
5007 do_add (r
, x
, &dconsthalf
, x
->sign
);
5008 do_fix_trunc (r
, r
);
5010 real_convert (r
, fmt
, r
);
5013 /* Set the sign of R to the sign of X. */
5016 real_copysign (REAL_VALUE_TYPE
*r
, const REAL_VALUE_TYPE
*x
)
5021 /* Check whether the real constant value given is an integer.
5022 Returns false for signaling NaN. */
5025 real_isinteger (const REAL_VALUE_TYPE
*c
, format_helper fmt
)
5027 REAL_VALUE_TYPE cint
;
5029 real_trunc (&cint
, fmt
, c
);
5030 return real_identical (c
, &cint
);
5033 /* Check whether C is an integer that fits in a HOST_WIDE_INT,
5034 storing it in *INT_OUT if so. */
5037 real_isinteger (const REAL_VALUE_TYPE
*c
, HOST_WIDE_INT
*int_out
)
5039 REAL_VALUE_TYPE cint
;
5041 HOST_WIDE_INT n
= real_to_integer (c
);
5042 real_from_integer (&cint
, VOIDmode
, n
, SIGNED
);
5043 if (real_identical (c
, &cint
))
5051 /* Calculate nextafter (X, Y) or nexttoward (X, Y). Return true if
5052 underflow or overflow needs to be raised. */
5055 real_nextafter (REAL_VALUE_TYPE
*r
, format_helper fmt
,
5056 const REAL_VALUE_TYPE
*x
, const REAL_VALUE_TYPE
*y
)
5058 int cmp
= do_compare (x
, y
, 2);
5059 /* If either operand is NaN, return qNaN. */
5062 get_canonical_qnan (r
, 0);
5065 /* If x == y, return y cast to target type. */
5068 real_convert (r
, fmt
, y
);
5072 if (x
->cl
== rvc_zero
)
5074 get_zero (r
, y
->sign
);
5076 SET_REAL_EXP (r
, fmt
->emin
- fmt
->p
+ 1);
5077 r
->sig
[SIGSZ
- 1] = SIG_MSB
;
5081 int np2
= SIGNIFICAND_BITS
- fmt
->p
;
5082 /* For denormals adjust np2 correspondingly. */
5083 if (x
->cl
== rvc_normal
&& REAL_EXP (x
) < fmt
->emin
)
5084 np2
+= fmt
->emin
- REAL_EXP (x
);
5087 get_zero (r
, x
->sign
);
5089 set_significand_bit (&u
, np2
);
5091 SET_REAL_EXP (r
, REAL_EXP (x
));
5093 if (x
->cl
== rvc_inf
)
5095 bool borrow
= sub_significands (r
, r
, &u
, 0);
5096 gcc_assert (borrow
);
5097 SET_REAL_EXP (r
, fmt
->emax
);
5099 else if (cmp
== (x
->sign
? 1 : -1))
5101 if (add_significands (r
, x
, &u
))
5103 /* Overflow. Means the significand had been all ones, and
5104 is now all zeros. Need to increase the exponent, and
5105 possibly re-normalize it. */
5106 SET_REAL_EXP (r
, REAL_EXP (r
) + 1);
5107 if (REAL_EXP (r
) > fmt
->emax
)
5109 get_inf (r
, x
->sign
);
5112 r
->sig
[SIGSZ
- 1] = SIG_MSB
;
5117 if (REAL_EXP (x
) > fmt
->emin
&& x
->sig
[SIGSZ
- 1] == SIG_MSB
)
5120 for (i
= SIGSZ
- 2; i
>= 0; i
--)
5125 /* When mantissa is 1.0, we need to subtract only
5126 half of u: nextafter (1.0, 0.0) is 1.0 - __DBL_EPSILON__ / 2
5127 rather than 1.0 - __DBL_EPSILON__. */
5128 clear_significand_bit (&u
, np2
);
5130 set_significand_bit (&u
, np2
);
5133 sub_significands (r
, x
, &u
, 0);
5136 /* Clear out trailing garbage. */
5137 clear_significand_below (r
, np2
);
5139 if (REAL_EXP (r
) <= fmt
->emin
- fmt
->p
)
5141 get_zero (r
, x
->sign
);
5144 return r
->cl
== rvc_zero
|| REAL_EXP (r
) < fmt
->emin
;
5147 /* Write into BUF the maximum representable finite floating-point
5148 number, (1 - b**-p) * b**emax for a given FP format FMT as a hex
5149 float string. LEN is the size of BUF, and the buffer must be large
5150 enough to contain the resulting string. */
5153 get_max_float (const struct real_format
*fmt
, char *buf
, size_t len
)
5158 strcpy (buf
, "0x0.");
5160 for (i
= 0, p
= buf
+ 4; i
+ 3 < n
; i
+= 4)
5163 *p
++ = "08ce"[n
- i
];
5164 sprintf (p
, "p%d", fmt
->emax
);
5165 if (fmt
->pnan
< fmt
->p
)
5167 /* This is an IBM extended double format made up of two IEEE
5168 doubles. The value of the long double is the sum of the
5169 values of the two parts. The most significant part is
5170 required to be the value of the long double rounded to the
5171 nearest double. Rounding means we need a slightly smaller
5172 value for LDBL_MAX. */
5173 buf
[4 + fmt
->pnan
/ 4] = "7bde"[fmt
->pnan
% 4];
5176 gcc_assert (strlen (buf
) < len
);
5179 /* True if all values of integral type can be represented
5180 by this floating-point type exactly. */
5182 bool format_helper::can_represent_integral_type_p (tree type
) const
5184 gcc_assert (! decimal_p () && INTEGRAL_TYPE_P (type
));
5186 /* INT?_MIN is power-of-two so it takes
5187 only one mantissa bit. */
5188 bool signed_p
= TYPE_SIGN (type
) == SIGNED
;
5189 return TYPE_PRECISION (type
) - signed_p
<= significand_size (*this);
5192 /* True if mode M has a NaN representation and
5193 the treatment of NaN operands is important. */
5196 HONOR_NANS (machine_mode m
)
5198 return MODE_HAS_NANS (m
) && !flag_finite_math_only
;
5202 HONOR_NANS (const_tree t
)
5204 return HONOR_NANS (element_mode (t
));
5208 HONOR_NANS (const_rtx x
)
5210 return HONOR_NANS (GET_MODE (x
));
5213 /* Like HONOR_NANs, but true if we honor signaling NaNs (or sNaNs). */
5216 HONOR_SNANS (machine_mode m
)
5218 return flag_signaling_nans
&& HONOR_NANS (m
);
5222 HONOR_SNANS (const_tree t
)
5224 return HONOR_SNANS (element_mode (t
));
5228 HONOR_SNANS (const_rtx x
)
5230 return HONOR_SNANS (GET_MODE (x
));
5233 /* As for HONOR_NANS, but true if the mode can represent infinity and
5234 the treatment of infinite values is important. */
5237 HONOR_INFINITIES (machine_mode m
)
5239 return MODE_HAS_INFINITIES (m
) && !flag_finite_math_only
;
5243 HONOR_INFINITIES (const_tree t
)
5245 return HONOR_INFINITIES (element_mode (t
));
5249 HONOR_INFINITIES (const_rtx x
)
5251 return HONOR_INFINITIES (GET_MODE (x
));
5254 /* Like HONOR_NANS, but true if the given mode distinguishes between
5255 positive and negative zero, and the sign of zero is important. */
5258 HONOR_SIGNED_ZEROS (machine_mode m
)
5260 return MODE_HAS_SIGNED_ZEROS (m
) && flag_signed_zeros
;
5264 HONOR_SIGNED_ZEROS (const_tree t
)
5266 return HONOR_SIGNED_ZEROS (element_mode (t
));
5270 HONOR_SIGNED_ZEROS (const_rtx x
)
5272 return HONOR_SIGNED_ZEROS (GET_MODE (x
));
5275 /* Like HONOR_NANS, but true if given mode supports sign-dependent rounding,
5276 and the rounding mode is important. */
5279 HONOR_SIGN_DEPENDENT_ROUNDING (machine_mode m
)
5281 return MODE_HAS_SIGN_DEPENDENT_ROUNDING (m
) && flag_rounding_math
;
5285 HONOR_SIGN_DEPENDENT_ROUNDING (const_tree t
)
5287 return HONOR_SIGN_DEPENDENT_ROUNDING (element_mode (t
));
5291 HONOR_SIGN_DEPENDENT_ROUNDING (const_rtx x
)
5293 return HONOR_SIGN_DEPENDENT_ROUNDING (GET_MODE (x
));
5296 /* Fills r with the largest value such that 1 + r*r won't overflow.
5297 This is used in both sin (atan (x)) and cos (atan(x)) optimizations. */
5300 build_sinatan_real (REAL_VALUE_TYPE
* r
, tree type
)
5302 REAL_VALUE_TYPE maxval
;
5303 mpfr_t mpfr_const1
, mpfr_c
, mpfr_maxval
;
5304 machine_mode mode
= TYPE_MODE (type
);
5305 const struct real_format
* fmt
= REAL_MODE_FORMAT (mode
);
5307 real_maxval (&maxval
, 0, mode
);
5309 mpfr_inits (mpfr_const1
, mpfr_c
, mpfr_maxval
, NULL
);
5311 mpfr_from_real (mpfr_const1
, &dconst1
, GMP_RNDN
);
5312 mpfr_from_real (mpfr_maxval
, &maxval
, GMP_RNDN
);
5314 mpfr_sub (mpfr_c
, mpfr_maxval
, mpfr_const1
, GMP_RNDN
);
5315 mpfr_sqrt (mpfr_c
, mpfr_c
, GMP_RNDZ
);
5317 real_from_mpfr (r
, mpfr_c
, fmt
, GMP_RNDZ
);
5319 mpfr_clears (mpfr_const1
, mpfr_c
, mpfr_maxval
, NULL
);