Relocation (= move+destroy)
[official-gcc.git] / gcc / opt-problem.h
blob55d0ff024f70d7d76ee75e1b09c0962b193b873c
1 /* Rich information on why an optimization wasn't possible.
2 Copyright (C) 2018 Free Software Foundation, Inc.
3 Contributed by David Malcolm <dmalcolm@redhat.com>.
5 This file is part of GCC.
7 GCC is free software; you can redistribute it and/or modify it under
8 the terms of the GNU General Public License as published by the Free
9 Software Foundation; either version 3, or (at your option) any later
10 version.
12 GCC is distributed in the hope that it will be useful, but WITHOUT ANY
13 WARRANTY; without even the implied warranty of MERCHANTABILITY or
14 FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License
15 for more details.
17 You should have received a copy of the GNU General Public License
18 along with GCC; see the file COPYING3. If not see
19 <http://www.gnu.org/licenses/>. */
21 #ifndef GCC_OPT_PROBLEM_H
22 #define GCC_OPT_PROBLEM_H
24 #include "diagnostic-core.h" /* for ATTRIBUTE_GCC_DIAG. */
25 #include "optinfo.h" /* for optinfo. */
27 /* This header declares a family of wrapper classes for tracking a
28 success/failure value, while optionally supporting propagating an
29 opt_problem * describing any failure back up the call stack.
31 For instance, at the deepest point of the callstack where the failure
32 happens, rather than:
34 if (!check_something ())
36 if (dump_enabled_p ())
37 dump_printf_loc (MSG_MISSED_OPTIMIZATION, vect_location,
38 "foo is unsupported.\n");
39 return false;
41 // [...more checks...]
43 // All checks passed:
44 return true;
46 we can capture the cause of the failure via:
48 if (!check_something ())
49 return opt_result::failure_at (stmt, "foo is unsupported");
50 // [...more checks...]
52 // All checks passed:
53 return opt_result::success ();
55 which effectively returns true or false, whilst recording any problem.
57 opt_result::success and opt_result::failure return opt_result values
58 which "looks like" true/false respectively, via operator bool().
59 If dump_enabled_p, then opt_result::failure also creates an opt_problem *,
60 capturing the pertinent data (here, "foo is unsupported " and "stmt").
61 If dumps are disabled, then opt_problem instances aren't
62 created, and it's equivalent to just returning a bool.
64 The opt_problem can be propagated via opt_result values back up
65 the call stack to where it makes most sense to the user.
66 For instance, rather than:
68 bool ok = try_something_that_might_fail ();
69 if (!ok)
71 if (dump_enabled_p ())
72 dump_printf_loc (MSG_MISSED_OPTIMIZATION, vect_location,
73 "some message.\n");
74 return false;
77 we can replace the bool with an opt_result, so if dump_enabled_p, we
78 assume that if try_something_that_might_fail, an opt_problem * will be
79 created, and we can propagate it up the call chain:
81 opt_result ok = try_something_that_might_fail ();
82 if (!ok)
84 if (dump_enabled_p ())
85 dump_printf_loc (MSG_MISSED_OPTIMIZATION, vect_location,
86 "some message.\n");
87 return ok; // propagating the opt_result
90 opt_result is an opt_wrapper<bool>, where opt_wrapper<T> is a base
91 class for wrapping a T, optionally propagating an opt_problem in
92 case of failure_at (when dumps are enabled). Similarly,
93 opt_pointer_wrapper<T> can be used to wrap pointer types (where non-NULL
94 signifies success, NULL signifies failure).
96 In all cases, opt_wrapper<T> acts as if the opt_problem were one of its
97 fields, but the opt_problem is actually stored in a global, so that when
98 compiled, an opt_wrapper<T> is effectively just a T, so that we're
99 still just passing e.g. a bool around; the opt_wrapper<T> classes
100 simply provide type-checking and an API to ensure that we provide
101 error-messages deep in the callstack at the places where problems
102 occur, and that we propagate them. This also avoids having
103 to manage the ownership of the opt_problem instances.
105 Using opt_result and opt_wrapper<T> documents the intent of the code
106 for the places where we represent success values, and allows the C++ type
107 system to track where the deepest points in the callstack are where we
108 need to emit the failure messages from. */
110 /* A bundle of information about why an optimization failed (e.g.
111 vectorization), and the location in both the user's code and
112 in GCC itself where the problem occurred.
114 Instances are created by static member functions in opt_wrapper
115 subclasses, such as opt_result::failure.
117 Instances are only created when dump_enabled_p (). */
119 class opt_problem
121 public:
122 static opt_problem *get_singleton () { return s_the_problem; }
124 opt_problem (const dump_location_t &loc,
125 const char *fmt, va_list *ap)
126 ATTRIBUTE_GCC_DUMP_PRINTF (3, 0);
128 const dump_location_t &
129 get_dump_location () const { return m_optinfo.get_dump_location (); }
131 const optinfo & get_optinfo () const { return m_optinfo; }
133 void emit_and_clear ();
135 private:
136 optinfo m_optinfo;
138 static opt_problem *s_the_problem;
141 /* A base class for wrapper classes that track a success/failure value, while
142 optionally supporting propagating an opt_problem * describing any
143 failure back up the call stack. */
145 template <typename T>
146 class opt_wrapper
148 public:
149 typedef T wrapped_t;
151 /* Be accessible as the wrapped type. */
152 operator wrapped_t () const { return m_result; }
154 /* No public ctor. */
156 wrapped_t get_result () const { return m_result; }
157 opt_problem *get_problem () const { return opt_problem::get_singleton (); }
159 protected:
160 opt_wrapper (wrapped_t result, opt_problem */*problem*/)
161 : m_result (result)
163 /* "problem" is ignored: although it looks like a field, we
164 actually just use the opt_problem singleton, so that
165 opt_wrapper<T> in memory is just a T. */
168 private:
169 wrapped_t m_result;
172 /* Subclass of opt_wrapper<T> for bool, where
173 - true signifies "success", and
174 - false signifies "failure"
175 whilst effectively propagating an opt_problem * describing any failure
176 back up the call stack. */
178 class opt_result : public opt_wrapper <bool>
180 public:
181 /* Generate a "success" value: a wrapper around "true". */
183 static opt_result success () { return opt_result (true, NULL); }
185 /* Generate a "failure" value: a wrapper around "false", and,
186 if dump_enabled_p, an opt_problem. */
188 static opt_result failure_at (const dump_location_t &loc,
189 const char *fmt, ...)
190 ATTRIBUTE_GCC_DUMP_PRINTF (2, 3)
192 opt_problem *problem = NULL;
193 if (dump_enabled_p ())
195 va_list ap;
196 va_start (ap, fmt);
197 problem = new opt_problem (loc, fmt, &ap);
198 va_end (ap);
200 return opt_result (false, problem);
203 /* Given a failure wrapper of some other kind, make an opt_result failure
204 object, for propagating the opt_problem up the call stack. */
206 template <typename S>
207 static opt_result
208 propagate_failure (opt_wrapper <S> other)
210 return opt_result (false, other.get_problem ());
213 private:
214 /* Private ctor. Instances should be created by the success and failure
215 static member functions. */
216 opt_result (wrapped_t result, opt_problem *problem)
217 : opt_wrapper <bool> (result, problem)
221 /* Subclass of opt_wrapper<T> where T is a pointer type, for tracking
222 success/failure, where:
223 - a non-NULL value signifies "success", and
224 - a NULL value signifies "failure",
225 whilst effectively propagating an opt_problem * describing any failure
226 back up the call stack. */
228 template <typename PtrType_t>
229 class opt_pointer_wrapper : public opt_wrapper <PtrType_t>
231 public:
232 typedef PtrType_t wrapped_pointer_t;
234 /* Given a non-NULL pointer, make a success object wrapping it. */
236 static opt_pointer_wrapper <wrapped_pointer_t>
237 success (wrapped_pointer_t ptr)
239 return opt_pointer_wrapper <wrapped_pointer_t> (ptr, NULL);
242 /* Make a NULL pointer failure object, with the given message
243 (if dump_enabled_p). */
245 static opt_pointer_wrapper <wrapped_pointer_t>
246 failure_at (const dump_location_t &loc,
247 const char *fmt, ...)
248 ATTRIBUTE_GCC_DUMP_PRINTF (2, 3)
250 opt_problem *problem = NULL;
251 if (dump_enabled_p ())
253 va_list ap;
254 va_start (ap, fmt);
255 problem = new opt_problem (loc, fmt, &ap);
256 va_end (ap);
258 return opt_pointer_wrapper <wrapped_pointer_t> (NULL, problem);
261 /* Given a failure wrapper of some other kind, make a NULL pointer
262 failure object, propagating the problem. */
264 template <typename S>
265 static opt_pointer_wrapper <wrapped_pointer_t>
266 propagate_failure (opt_wrapper <S> other)
268 return opt_pointer_wrapper <wrapped_pointer_t> (NULL,
269 other.get_problem ());
272 /* Support accessing the underlying pointer via ->. */
274 wrapped_pointer_t operator-> () const { return this->get_result (); }
276 private:
277 /* Private ctor. Instances should be built using the static member
278 functions "success" and "failure". */
279 opt_pointer_wrapper (wrapped_pointer_t result, opt_problem *problem)
280 : opt_wrapper<PtrType_t> (result, problem)
284 /* A typedef for wrapping "tree" so that NULL_TREE can carry an
285 opt_problem describing the failure (if dump_enabled_p). */
287 typedef opt_pointer_wrapper<tree> opt_tree;
289 #endif /* #ifndef GCC_OPT_PROBLEM_H */