Relocation (= move+destroy)
[official-gcc.git] / gcc / function.c
blob302438323c8761fc339bc3c7949f9c28fb6e3a54
1 /* Expands front end tree to back end RTL for GCC.
2 Copyright (C) 1987-2018 Free Software Foundation, Inc.
4 This file is part of GCC.
6 GCC is free software; you can redistribute it and/or modify it under
7 the terms of the GNU General Public License as published by the Free
8 Software Foundation; either version 3, or (at your option) any later
9 version.
11 GCC is distributed in the hope that it will be useful, but WITHOUT ANY
12 WARRANTY; without even the implied warranty of MERCHANTABILITY or
13 FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License
14 for more details.
16 You should have received a copy of the GNU General Public License
17 along with GCC; see the file COPYING3. If not see
18 <http://www.gnu.org/licenses/>. */
20 /* This file handles the generation of rtl code from tree structure
21 at the level of the function as a whole.
22 It creates the rtl expressions for parameters and auto variables
23 and has full responsibility for allocating stack slots.
25 `expand_function_start' is called at the beginning of a function,
26 before the function body is parsed, and `expand_function_end' is
27 called after parsing the body.
29 Call `assign_stack_local' to allocate a stack slot for a local variable.
30 This is usually done during the RTL generation for the function body,
31 but it can also be done in the reload pass when a pseudo-register does
32 not get a hard register. */
34 #include "config.h"
35 #include "system.h"
36 #include "coretypes.h"
37 #include "backend.h"
38 #include "target.h"
39 #include "rtl.h"
40 #include "tree.h"
41 #include "gimple-expr.h"
42 #include "cfghooks.h"
43 #include "df.h"
44 #include "memmodel.h"
45 #include "tm_p.h"
46 #include "stringpool.h"
47 #include "expmed.h"
48 #include "optabs.h"
49 #include "regs.h"
50 #include "emit-rtl.h"
51 #include "recog.h"
52 #include "rtl-error.h"
53 #include "alias.h"
54 #include "fold-const.h"
55 #include "stor-layout.h"
56 #include "varasm.h"
57 #include "except.h"
58 #include "dojump.h"
59 #include "explow.h"
60 #include "calls.h"
61 #include "expr.h"
62 #include "optabs-tree.h"
63 #include "output.h"
64 #include "langhooks.h"
65 #include "common/common-target.h"
66 #include "gimplify.h"
67 #include "tree-pass.h"
68 #include "cfgrtl.h"
69 #include "cfganal.h"
70 #include "cfgbuild.h"
71 #include "cfgcleanup.h"
72 #include "cfgexpand.h"
73 #include "shrink-wrap.h"
74 #include "toplev.h"
75 #include "rtl-iter.h"
76 #include "tree-dfa.h"
77 #include "tree-ssa.h"
78 #include "stringpool.h"
79 #include "attribs.h"
80 #include "gimple.h"
81 #include "options.h"
83 /* So we can assign to cfun in this file. */
84 #undef cfun
86 #ifndef STACK_ALIGNMENT_NEEDED
87 #define STACK_ALIGNMENT_NEEDED 1
88 #endif
90 #define STACK_BYTES (STACK_BOUNDARY / BITS_PER_UNIT)
92 /* Round a value to the lowest integer less than it that is a multiple of
93 the required alignment. Avoid using division in case the value is
94 negative. Assume the alignment is a power of two. */
95 #define FLOOR_ROUND(VALUE,ALIGN) ((VALUE) & ~((ALIGN) - 1))
97 /* Similar, but round to the next highest integer that meets the
98 alignment. */
99 #define CEIL_ROUND(VALUE,ALIGN) (((VALUE) + (ALIGN) - 1) & ~((ALIGN)- 1))
101 /* Nonzero once virtual register instantiation has been done.
102 assign_stack_local uses frame_pointer_rtx when this is nonzero.
103 calls.c:emit_library_call_value_1 uses it to set up
104 post-instantiation libcalls. */
105 int virtuals_instantiated;
107 /* Assign unique numbers to labels generated for profiling, debugging, etc. */
108 static GTY(()) int funcdef_no;
110 /* These variables hold pointers to functions to create and destroy
111 target specific, per-function data structures. */
112 struct machine_function * (*init_machine_status) (void);
114 /* The currently compiled function. */
115 struct function *cfun = 0;
117 /* These hashes record the prologue and epilogue insns. */
119 struct insn_cache_hasher : ggc_cache_ptr_hash<rtx_def>
121 static hashval_t hash (rtx x) { return htab_hash_pointer (x); }
122 static bool equal (rtx a, rtx b) { return a == b; }
125 static GTY((cache))
126 hash_table<insn_cache_hasher> *prologue_insn_hash;
127 static GTY((cache))
128 hash_table<insn_cache_hasher> *epilogue_insn_hash;
131 hash_table<used_type_hasher> *types_used_by_vars_hash = NULL;
132 vec<tree, va_gc> *types_used_by_cur_var_decl;
134 /* Forward declarations. */
136 static struct temp_slot *find_temp_slot_from_address (rtx);
137 static void pad_to_arg_alignment (struct args_size *, int, struct args_size *);
138 static void pad_below (struct args_size *, machine_mode, tree);
139 static void reorder_blocks_1 (rtx_insn *, tree, vec<tree> *);
140 static int all_blocks (tree, tree *);
141 static tree *get_block_vector (tree, int *);
142 extern tree debug_find_var_in_block_tree (tree, tree);
143 /* We always define `record_insns' even if it's not used so that we
144 can always export `prologue_epilogue_contains'. */
145 static void record_insns (rtx_insn *, rtx, hash_table<insn_cache_hasher> **)
146 ATTRIBUTE_UNUSED;
147 static bool contains (const rtx_insn *, hash_table<insn_cache_hasher> *);
148 static void prepare_function_start (void);
149 static void do_clobber_return_reg (rtx, void *);
150 static void do_use_return_reg (rtx, void *);
153 /* Stack of nested functions. */
154 /* Keep track of the cfun stack. */
156 static vec<function *> function_context_stack;
158 /* Save the current context for compilation of a nested function.
159 This is called from language-specific code. */
161 void
162 push_function_context (void)
164 if (cfun == 0)
165 allocate_struct_function (NULL, false);
167 function_context_stack.safe_push (cfun);
168 set_cfun (NULL);
171 /* Restore the last saved context, at the end of a nested function.
172 This function is called from language-specific code. */
174 void
175 pop_function_context (void)
177 struct function *p = function_context_stack.pop ();
178 set_cfun (p);
179 current_function_decl = p->decl;
181 /* Reset variables that have known state during rtx generation. */
182 virtuals_instantiated = 0;
183 generating_concat_p = 1;
186 /* Clear out all parts of the state in F that can safely be discarded
187 after the function has been parsed, but not compiled, to let
188 garbage collection reclaim the memory. */
190 void
191 free_after_parsing (struct function *f)
193 f->language = 0;
196 /* Clear out all parts of the state in F that can safely be discarded
197 after the function has been compiled, to let garbage collection
198 reclaim the memory. */
200 void
201 free_after_compilation (struct function *f)
203 prologue_insn_hash = NULL;
204 epilogue_insn_hash = NULL;
206 free (crtl->emit.regno_pointer_align);
208 memset (crtl, 0, sizeof (struct rtl_data));
209 f->eh = NULL;
210 f->machine = NULL;
211 f->cfg = NULL;
212 f->curr_properties &= ~PROP_cfg;
214 regno_reg_rtx = NULL;
217 /* Return size needed for stack frame based on slots so far allocated.
218 This size counts from zero. It is not rounded to PREFERRED_STACK_BOUNDARY;
219 the caller may have to do that. */
221 poly_int64
222 get_frame_size (void)
224 if (FRAME_GROWS_DOWNWARD)
225 return -frame_offset;
226 else
227 return frame_offset;
230 /* Issue an error message and return TRUE if frame OFFSET overflows in
231 the signed target pointer arithmetics for function FUNC. Otherwise
232 return FALSE. */
234 bool
235 frame_offset_overflow (poly_int64 offset, tree func)
237 poly_uint64 size = FRAME_GROWS_DOWNWARD ? -offset : offset;
238 unsigned HOST_WIDE_INT limit
239 = ((HOST_WIDE_INT_1U << (GET_MODE_BITSIZE (Pmode) - 1))
240 /* Leave room for the fixed part of the frame. */
241 - 64 * UNITS_PER_WORD);
243 if (!coeffs_in_range_p (size, 0U, limit))
245 unsigned HOST_WIDE_INT hwisize;
246 if (size.is_constant (&hwisize))
247 error_at (DECL_SOURCE_LOCATION (func),
248 "total size of local objects %wu exceeds maximum %wu",
249 hwisize, limit);
250 else
251 error_at (DECL_SOURCE_LOCATION (func),
252 "total size of local objects exceeds maximum %wu",
253 limit);
254 return true;
257 return false;
260 /* Return the minimum spill slot alignment for a register of mode MODE. */
262 unsigned int
263 spill_slot_alignment (machine_mode mode ATTRIBUTE_UNUSED)
265 return STACK_SLOT_ALIGNMENT (NULL_TREE, mode, GET_MODE_ALIGNMENT (mode));
268 /* Return stack slot alignment in bits for TYPE and MODE. */
270 static unsigned int
271 get_stack_local_alignment (tree type, machine_mode mode)
273 unsigned int alignment;
275 if (mode == BLKmode)
276 alignment = BIGGEST_ALIGNMENT;
277 else
278 alignment = GET_MODE_ALIGNMENT (mode);
280 /* Allow the frond-end to (possibly) increase the alignment of this
281 stack slot. */
282 if (! type)
283 type = lang_hooks.types.type_for_mode (mode, 0);
285 return STACK_SLOT_ALIGNMENT (type, mode, alignment);
288 /* Determine whether it is possible to fit a stack slot of size SIZE and
289 alignment ALIGNMENT into an area in the stack frame that starts at
290 frame offset START and has a length of LENGTH. If so, store the frame
291 offset to be used for the stack slot in *POFFSET and return true;
292 return false otherwise. This function will extend the frame size when
293 given a start/length pair that lies at the end of the frame. */
295 static bool
296 try_fit_stack_local (poly_int64 start, poly_int64 length,
297 poly_int64 size, unsigned int alignment,
298 poly_int64_pod *poffset)
300 poly_int64 this_frame_offset;
301 int frame_off, frame_alignment, frame_phase;
303 /* Calculate how many bytes the start of local variables is off from
304 stack alignment. */
305 frame_alignment = PREFERRED_STACK_BOUNDARY / BITS_PER_UNIT;
306 frame_off = targetm.starting_frame_offset () % frame_alignment;
307 frame_phase = frame_off ? frame_alignment - frame_off : 0;
309 /* Round the frame offset to the specified alignment. */
311 if (FRAME_GROWS_DOWNWARD)
312 this_frame_offset
313 = (aligned_lower_bound (start + length - size - frame_phase, alignment)
314 + frame_phase);
315 else
316 this_frame_offset
317 = aligned_upper_bound (start - frame_phase, alignment) + frame_phase;
319 /* See if it fits. If this space is at the edge of the frame,
320 consider extending the frame to make it fit. Our caller relies on
321 this when allocating a new slot. */
322 if (maybe_lt (this_frame_offset, start))
324 if (known_eq (frame_offset, start))
325 frame_offset = this_frame_offset;
326 else
327 return false;
329 else if (maybe_gt (this_frame_offset + size, start + length))
331 if (known_eq (frame_offset, start + length))
332 frame_offset = this_frame_offset + size;
333 else
334 return false;
337 *poffset = this_frame_offset;
338 return true;
341 /* Create a new frame_space structure describing free space in the stack
342 frame beginning at START and ending at END, and chain it into the
343 function's frame_space_list. */
345 static void
346 add_frame_space (poly_int64 start, poly_int64 end)
348 struct frame_space *space = ggc_alloc<frame_space> ();
349 space->next = crtl->frame_space_list;
350 crtl->frame_space_list = space;
351 space->start = start;
352 space->length = end - start;
355 /* Allocate a stack slot of SIZE bytes and return a MEM rtx for it
356 with machine mode MODE.
358 ALIGN controls the amount of alignment for the address of the slot:
359 0 means according to MODE,
360 -1 means use BIGGEST_ALIGNMENT and round size to multiple of that,
361 -2 means use BITS_PER_UNIT,
362 positive specifies alignment boundary in bits.
364 KIND has ASLK_REDUCE_ALIGN bit set if it is OK to reduce
365 alignment and ASLK_RECORD_PAD bit set if we should remember
366 extra space we allocated for alignment purposes. When we are
367 called from assign_stack_temp_for_type, it is not set so we don't
368 track the same stack slot in two independent lists.
370 We do not round to stack_boundary here. */
373 assign_stack_local_1 (machine_mode mode, poly_int64 size,
374 int align, int kind)
376 rtx x, addr;
377 poly_int64 bigend_correction = 0;
378 poly_int64 slot_offset = 0, old_frame_offset;
379 unsigned int alignment, alignment_in_bits;
381 if (align == 0)
383 alignment = get_stack_local_alignment (NULL, mode);
384 alignment /= BITS_PER_UNIT;
386 else if (align == -1)
388 alignment = BIGGEST_ALIGNMENT / BITS_PER_UNIT;
389 size = aligned_upper_bound (size, alignment);
391 else if (align == -2)
392 alignment = 1; /* BITS_PER_UNIT / BITS_PER_UNIT */
393 else
394 alignment = align / BITS_PER_UNIT;
396 alignment_in_bits = alignment * BITS_PER_UNIT;
398 /* Ignore alignment if it exceeds MAX_SUPPORTED_STACK_ALIGNMENT. */
399 if (alignment_in_bits > MAX_SUPPORTED_STACK_ALIGNMENT)
401 alignment_in_bits = MAX_SUPPORTED_STACK_ALIGNMENT;
402 alignment = alignment_in_bits / BITS_PER_UNIT;
405 if (SUPPORTS_STACK_ALIGNMENT)
407 if (crtl->stack_alignment_estimated < alignment_in_bits)
409 if (!crtl->stack_realign_processed)
410 crtl->stack_alignment_estimated = alignment_in_bits;
411 else
413 /* If stack is realigned and stack alignment value
414 hasn't been finalized, it is OK not to increase
415 stack_alignment_estimated. The bigger alignment
416 requirement is recorded in stack_alignment_needed
417 below. */
418 gcc_assert (!crtl->stack_realign_finalized);
419 if (!crtl->stack_realign_needed)
421 /* It is OK to reduce the alignment as long as the
422 requested size is 0 or the estimated stack
423 alignment >= mode alignment. */
424 gcc_assert ((kind & ASLK_REDUCE_ALIGN)
425 || known_eq (size, 0)
426 || (crtl->stack_alignment_estimated
427 >= GET_MODE_ALIGNMENT (mode)));
428 alignment_in_bits = crtl->stack_alignment_estimated;
429 alignment = alignment_in_bits / BITS_PER_UNIT;
435 if (crtl->stack_alignment_needed < alignment_in_bits)
436 crtl->stack_alignment_needed = alignment_in_bits;
437 if (crtl->max_used_stack_slot_alignment < alignment_in_bits)
438 crtl->max_used_stack_slot_alignment = alignment_in_bits;
440 if (mode != BLKmode || maybe_ne (size, 0))
442 if (kind & ASLK_RECORD_PAD)
444 struct frame_space **psp;
446 for (psp = &crtl->frame_space_list; *psp; psp = &(*psp)->next)
448 struct frame_space *space = *psp;
449 if (!try_fit_stack_local (space->start, space->length, size,
450 alignment, &slot_offset))
451 continue;
452 *psp = space->next;
453 if (known_gt (slot_offset, space->start))
454 add_frame_space (space->start, slot_offset);
455 if (known_lt (slot_offset + size, space->start + space->length))
456 add_frame_space (slot_offset + size,
457 space->start + space->length);
458 goto found_space;
462 else if (!STACK_ALIGNMENT_NEEDED)
464 slot_offset = frame_offset;
465 goto found_space;
468 old_frame_offset = frame_offset;
470 if (FRAME_GROWS_DOWNWARD)
472 frame_offset -= size;
473 try_fit_stack_local (frame_offset, size, size, alignment, &slot_offset);
475 if (kind & ASLK_RECORD_PAD)
477 if (known_gt (slot_offset, frame_offset))
478 add_frame_space (frame_offset, slot_offset);
479 if (known_lt (slot_offset + size, old_frame_offset))
480 add_frame_space (slot_offset + size, old_frame_offset);
483 else
485 frame_offset += size;
486 try_fit_stack_local (old_frame_offset, size, size, alignment, &slot_offset);
488 if (kind & ASLK_RECORD_PAD)
490 if (known_gt (slot_offset, old_frame_offset))
491 add_frame_space (old_frame_offset, slot_offset);
492 if (known_lt (slot_offset + size, frame_offset))
493 add_frame_space (slot_offset + size, frame_offset);
497 found_space:
498 /* On a big-endian machine, if we are allocating more space than we will use,
499 use the least significant bytes of those that are allocated. */
500 if (mode != BLKmode)
502 /* The slot size can sometimes be smaller than the mode size;
503 e.g. the rs6000 port allocates slots with a vector mode
504 that have the size of only one element. However, the slot
505 size must always be ordered wrt to the mode size, in the
506 same way as for a subreg. */
507 gcc_checking_assert (ordered_p (GET_MODE_SIZE (mode), size));
508 if (BYTES_BIG_ENDIAN && maybe_lt (GET_MODE_SIZE (mode), size))
509 bigend_correction = size - GET_MODE_SIZE (mode);
512 /* If we have already instantiated virtual registers, return the actual
513 address relative to the frame pointer. */
514 if (virtuals_instantiated)
515 addr = plus_constant (Pmode, frame_pointer_rtx,
516 trunc_int_for_mode
517 (slot_offset + bigend_correction
518 + targetm.starting_frame_offset (), Pmode));
519 else
520 addr = plus_constant (Pmode, virtual_stack_vars_rtx,
521 trunc_int_for_mode
522 (slot_offset + bigend_correction,
523 Pmode));
525 x = gen_rtx_MEM (mode, addr);
526 set_mem_align (x, alignment_in_bits);
527 MEM_NOTRAP_P (x) = 1;
529 vec_safe_push (stack_slot_list, x);
531 if (frame_offset_overflow (frame_offset, current_function_decl))
532 frame_offset = 0;
534 return x;
537 /* Wrap up assign_stack_local_1 with last parameter as false. */
540 assign_stack_local (machine_mode mode, poly_int64 size, int align)
542 return assign_stack_local_1 (mode, size, align, ASLK_RECORD_PAD);
545 /* In order to evaluate some expressions, such as function calls returning
546 structures in memory, we need to temporarily allocate stack locations.
547 We record each allocated temporary in the following structure.
549 Associated with each temporary slot is a nesting level. When we pop up
550 one level, all temporaries associated with the previous level are freed.
551 Normally, all temporaries are freed after the execution of the statement
552 in which they were created. However, if we are inside a ({...}) grouping,
553 the result may be in a temporary and hence must be preserved. If the
554 result could be in a temporary, we preserve it if we can determine which
555 one it is in. If we cannot determine which temporary may contain the
556 result, all temporaries are preserved. A temporary is preserved by
557 pretending it was allocated at the previous nesting level. */
559 struct GTY(()) temp_slot {
560 /* Points to next temporary slot. */
561 struct temp_slot *next;
562 /* Points to previous temporary slot. */
563 struct temp_slot *prev;
564 /* The rtx to used to reference the slot. */
565 rtx slot;
566 /* The size, in units, of the slot. */
567 poly_int64 size;
568 /* The type of the object in the slot, or zero if it doesn't correspond
569 to a type. We use this to determine whether a slot can be reused.
570 It can be reused if objects of the type of the new slot will always
571 conflict with objects of the type of the old slot. */
572 tree type;
573 /* The alignment (in bits) of the slot. */
574 unsigned int align;
575 /* Nonzero if this temporary is currently in use. */
576 char in_use;
577 /* Nesting level at which this slot is being used. */
578 int level;
579 /* The offset of the slot from the frame_pointer, including extra space
580 for alignment. This info is for combine_temp_slots. */
581 poly_int64 base_offset;
582 /* The size of the slot, including extra space for alignment. This
583 info is for combine_temp_slots. */
584 poly_int64 full_size;
587 /* Entry for the below hash table. */
588 struct GTY((for_user)) temp_slot_address_entry {
589 hashval_t hash;
590 rtx address;
591 struct temp_slot *temp_slot;
594 struct temp_address_hasher : ggc_ptr_hash<temp_slot_address_entry>
596 static hashval_t hash (temp_slot_address_entry *);
597 static bool equal (temp_slot_address_entry *, temp_slot_address_entry *);
600 /* A table of addresses that represent a stack slot. The table is a mapping
601 from address RTXen to a temp slot. */
602 static GTY(()) hash_table<temp_address_hasher> *temp_slot_address_table;
603 static size_t n_temp_slots_in_use;
605 /* Removes temporary slot TEMP from LIST. */
607 static void
608 cut_slot_from_list (struct temp_slot *temp, struct temp_slot **list)
610 if (temp->next)
611 temp->next->prev = temp->prev;
612 if (temp->prev)
613 temp->prev->next = temp->next;
614 else
615 *list = temp->next;
617 temp->prev = temp->next = NULL;
620 /* Inserts temporary slot TEMP to LIST. */
622 static void
623 insert_slot_to_list (struct temp_slot *temp, struct temp_slot **list)
625 temp->next = *list;
626 if (*list)
627 (*list)->prev = temp;
628 temp->prev = NULL;
629 *list = temp;
632 /* Returns the list of used temp slots at LEVEL. */
634 static struct temp_slot **
635 temp_slots_at_level (int level)
637 if (level >= (int) vec_safe_length (used_temp_slots))
638 vec_safe_grow_cleared (used_temp_slots, level + 1);
640 return &(*used_temp_slots)[level];
643 /* Returns the maximal temporary slot level. */
645 static int
646 max_slot_level (void)
648 if (!used_temp_slots)
649 return -1;
651 return used_temp_slots->length () - 1;
654 /* Moves temporary slot TEMP to LEVEL. */
656 static void
657 move_slot_to_level (struct temp_slot *temp, int level)
659 cut_slot_from_list (temp, temp_slots_at_level (temp->level));
660 insert_slot_to_list (temp, temp_slots_at_level (level));
661 temp->level = level;
664 /* Make temporary slot TEMP available. */
666 static void
667 make_slot_available (struct temp_slot *temp)
669 cut_slot_from_list (temp, temp_slots_at_level (temp->level));
670 insert_slot_to_list (temp, &avail_temp_slots);
671 temp->in_use = 0;
672 temp->level = -1;
673 n_temp_slots_in_use--;
676 /* Compute the hash value for an address -> temp slot mapping.
677 The value is cached on the mapping entry. */
678 static hashval_t
679 temp_slot_address_compute_hash (struct temp_slot_address_entry *t)
681 int do_not_record = 0;
682 return hash_rtx (t->address, GET_MODE (t->address),
683 &do_not_record, NULL, false);
686 /* Return the hash value for an address -> temp slot mapping. */
687 hashval_t
688 temp_address_hasher::hash (temp_slot_address_entry *t)
690 return t->hash;
693 /* Compare two address -> temp slot mapping entries. */
694 bool
695 temp_address_hasher::equal (temp_slot_address_entry *t1,
696 temp_slot_address_entry *t2)
698 return exp_equiv_p (t1->address, t2->address, 0, true);
701 /* Add ADDRESS as an alias of TEMP_SLOT to the addess -> temp slot mapping. */
702 static void
703 insert_temp_slot_address (rtx address, struct temp_slot *temp_slot)
705 struct temp_slot_address_entry *t = ggc_alloc<temp_slot_address_entry> ();
706 t->address = address;
707 t->temp_slot = temp_slot;
708 t->hash = temp_slot_address_compute_hash (t);
709 *temp_slot_address_table->find_slot_with_hash (t, t->hash, INSERT) = t;
712 /* Remove an address -> temp slot mapping entry if the temp slot is
713 not in use anymore. Callback for remove_unused_temp_slot_addresses. */
715 remove_unused_temp_slot_addresses_1 (temp_slot_address_entry **slot, void *)
717 const struct temp_slot_address_entry *t = *slot;
718 if (! t->temp_slot->in_use)
719 temp_slot_address_table->clear_slot (slot);
720 return 1;
723 /* Remove all mappings of addresses to unused temp slots. */
724 static void
725 remove_unused_temp_slot_addresses (void)
727 /* Use quicker clearing if there aren't any active temp slots. */
728 if (n_temp_slots_in_use)
729 temp_slot_address_table->traverse
730 <void *, remove_unused_temp_slot_addresses_1> (NULL);
731 else
732 temp_slot_address_table->empty ();
735 /* Find the temp slot corresponding to the object at address X. */
737 static struct temp_slot *
738 find_temp_slot_from_address (rtx x)
740 struct temp_slot *p;
741 struct temp_slot_address_entry tmp, *t;
743 /* First try the easy way:
744 See if X exists in the address -> temp slot mapping. */
745 tmp.address = x;
746 tmp.temp_slot = NULL;
747 tmp.hash = temp_slot_address_compute_hash (&tmp);
748 t = temp_slot_address_table->find_with_hash (&tmp, tmp.hash);
749 if (t)
750 return t->temp_slot;
752 /* If we have a sum involving a register, see if it points to a temp
753 slot. */
754 if (GET_CODE (x) == PLUS && REG_P (XEXP (x, 0))
755 && (p = find_temp_slot_from_address (XEXP (x, 0))) != 0)
756 return p;
757 else if (GET_CODE (x) == PLUS && REG_P (XEXP (x, 1))
758 && (p = find_temp_slot_from_address (XEXP (x, 1))) != 0)
759 return p;
761 /* Last resort: Address is a virtual stack var address. */
762 poly_int64 offset;
763 if (strip_offset (x, &offset) == virtual_stack_vars_rtx)
765 int i;
766 for (i = max_slot_level (); i >= 0; i--)
767 for (p = *temp_slots_at_level (i); p; p = p->next)
768 if (known_in_range_p (offset, p->base_offset, p->full_size))
769 return p;
772 return NULL;
775 /* Allocate a temporary stack slot and record it for possible later
776 reuse.
778 MODE is the machine mode to be given to the returned rtx.
780 SIZE is the size in units of the space required. We do no rounding here
781 since assign_stack_local will do any required rounding.
783 TYPE is the type that will be used for the stack slot. */
786 assign_stack_temp_for_type (machine_mode mode, poly_int64 size, tree type)
788 unsigned int align;
789 struct temp_slot *p, *best_p = 0, *selected = NULL, **pp;
790 rtx slot;
792 gcc_assert (known_size_p (size));
794 align = get_stack_local_alignment (type, mode);
796 /* Try to find an available, already-allocated temporary of the proper
797 mode which meets the size and alignment requirements. Choose the
798 smallest one with the closest alignment.
800 If assign_stack_temp is called outside of the tree->rtl expansion,
801 we cannot reuse the stack slots (that may still refer to
802 VIRTUAL_STACK_VARS_REGNUM). */
803 if (!virtuals_instantiated)
805 for (p = avail_temp_slots; p; p = p->next)
807 if (p->align >= align
808 && known_ge (p->size, size)
809 && GET_MODE (p->slot) == mode
810 && objects_must_conflict_p (p->type, type)
811 && (best_p == 0
812 || (known_eq (best_p->size, p->size)
813 ? best_p->align > p->align
814 : known_ge (best_p->size, p->size))))
816 if (p->align == align && known_eq (p->size, size))
818 selected = p;
819 cut_slot_from_list (selected, &avail_temp_slots);
820 best_p = 0;
821 break;
823 best_p = p;
828 /* Make our best, if any, the one to use. */
829 if (best_p)
831 selected = best_p;
832 cut_slot_from_list (selected, &avail_temp_slots);
834 /* If there are enough aligned bytes left over, make them into a new
835 temp_slot so that the extra bytes don't get wasted. Do this only
836 for BLKmode slots, so that we can be sure of the alignment. */
837 if (GET_MODE (best_p->slot) == BLKmode)
839 int alignment = best_p->align / BITS_PER_UNIT;
840 poly_int64 rounded_size = aligned_upper_bound (size, alignment);
842 if (known_ge (best_p->size - rounded_size, alignment))
844 p = ggc_alloc<temp_slot> ();
845 p->in_use = 0;
846 p->size = best_p->size - rounded_size;
847 p->base_offset = best_p->base_offset + rounded_size;
848 p->full_size = best_p->full_size - rounded_size;
849 p->slot = adjust_address_nv (best_p->slot, BLKmode, rounded_size);
850 p->align = best_p->align;
851 p->type = best_p->type;
852 insert_slot_to_list (p, &avail_temp_slots);
854 vec_safe_push (stack_slot_list, p->slot);
856 best_p->size = rounded_size;
857 best_p->full_size = rounded_size;
862 /* If we still didn't find one, make a new temporary. */
863 if (selected == 0)
865 poly_int64 frame_offset_old = frame_offset;
867 p = ggc_alloc<temp_slot> ();
869 /* We are passing an explicit alignment request to assign_stack_local.
870 One side effect of that is assign_stack_local will not round SIZE
871 to ensure the frame offset remains suitably aligned.
873 So for requests which depended on the rounding of SIZE, we go ahead
874 and round it now. We also make sure ALIGNMENT is at least
875 BIGGEST_ALIGNMENT. */
876 gcc_assert (mode != BLKmode || align == BIGGEST_ALIGNMENT);
877 p->slot = assign_stack_local_1 (mode,
878 (mode == BLKmode
879 ? aligned_upper_bound (size,
880 (int) align
881 / BITS_PER_UNIT)
882 : size),
883 align, 0);
885 p->align = align;
887 /* The following slot size computation is necessary because we don't
888 know the actual size of the temporary slot until assign_stack_local
889 has performed all the frame alignment and size rounding for the
890 requested temporary. Note that extra space added for alignment
891 can be either above or below this stack slot depending on which
892 way the frame grows. We include the extra space if and only if it
893 is above this slot. */
894 if (FRAME_GROWS_DOWNWARD)
895 p->size = frame_offset_old - frame_offset;
896 else
897 p->size = size;
899 /* Now define the fields used by combine_temp_slots. */
900 if (FRAME_GROWS_DOWNWARD)
902 p->base_offset = frame_offset;
903 p->full_size = frame_offset_old - frame_offset;
905 else
907 p->base_offset = frame_offset_old;
908 p->full_size = frame_offset - frame_offset_old;
911 selected = p;
914 p = selected;
915 p->in_use = 1;
916 p->type = type;
917 p->level = temp_slot_level;
918 n_temp_slots_in_use++;
920 pp = temp_slots_at_level (p->level);
921 insert_slot_to_list (p, pp);
922 insert_temp_slot_address (XEXP (p->slot, 0), p);
924 /* Create a new MEM rtx to avoid clobbering MEM flags of old slots. */
925 slot = gen_rtx_MEM (mode, XEXP (p->slot, 0));
926 vec_safe_push (stack_slot_list, slot);
928 /* If we know the alias set for the memory that will be used, use
929 it. If there's no TYPE, then we don't know anything about the
930 alias set for the memory. */
931 set_mem_alias_set (slot, type ? get_alias_set (type) : 0);
932 set_mem_align (slot, align);
934 /* If a type is specified, set the relevant flags. */
935 if (type != 0)
936 MEM_VOLATILE_P (slot) = TYPE_VOLATILE (type);
937 MEM_NOTRAP_P (slot) = 1;
939 return slot;
942 /* Allocate a temporary stack slot and record it for possible later
943 reuse. First two arguments are same as in preceding function. */
946 assign_stack_temp (machine_mode mode, poly_int64 size)
948 return assign_stack_temp_for_type (mode, size, NULL_TREE);
951 /* Assign a temporary.
952 If TYPE_OR_DECL is a decl, then we are doing it on behalf of the decl
953 and so that should be used in error messages. In either case, we
954 allocate of the given type.
955 MEMORY_REQUIRED is 1 if the result must be addressable stack memory;
956 it is 0 if a register is OK.
957 DONT_PROMOTE is 1 if we should not promote values in register
958 to wider modes. */
961 assign_temp (tree type_or_decl, int memory_required,
962 int dont_promote ATTRIBUTE_UNUSED)
964 tree type, decl;
965 machine_mode mode;
966 #ifdef PROMOTE_MODE
967 int unsignedp;
968 #endif
970 if (DECL_P (type_or_decl))
971 decl = type_or_decl, type = TREE_TYPE (decl);
972 else
973 decl = NULL, type = type_or_decl;
975 mode = TYPE_MODE (type);
976 #ifdef PROMOTE_MODE
977 unsignedp = TYPE_UNSIGNED (type);
978 #endif
980 /* Allocating temporaries of TREE_ADDRESSABLE type must be done in the front
981 end. See also create_tmp_var for the gimplification-time check. */
982 gcc_assert (!TREE_ADDRESSABLE (type) && COMPLETE_TYPE_P (type));
984 if (mode == BLKmode || memory_required)
986 poly_int64 size;
987 rtx tmp;
989 /* Unfortunately, we don't yet know how to allocate variable-sized
990 temporaries. However, sometimes we can find a fixed upper limit on
991 the size, so try that instead. */
992 if (!poly_int_tree_p (TYPE_SIZE_UNIT (type), &size))
993 size = max_int_size_in_bytes (type);
995 /* Zero sized arrays are a GNU C extension. Set size to 1 to avoid
996 problems with allocating the stack space. */
997 if (known_eq (size, 0))
998 size = 1;
1000 /* The size of the temporary may be too large to fit into an integer. */
1001 /* ??? Not sure this should happen except for user silliness, so limit
1002 this to things that aren't compiler-generated temporaries. The
1003 rest of the time we'll die in assign_stack_temp_for_type. */
1004 if (decl
1005 && !known_size_p (size)
1006 && TREE_CODE (TYPE_SIZE_UNIT (type)) == INTEGER_CST)
1008 error ("size of variable %q+D is too large", decl);
1009 size = 1;
1012 tmp = assign_stack_temp_for_type (mode, size, type);
1013 return tmp;
1016 #ifdef PROMOTE_MODE
1017 if (! dont_promote)
1018 mode = promote_mode (type, mode, &unsignedp);
1019 #endif
1021 return gen_reg_rtx (mode);
1024 /* Combine temporary stack slots which are adjacent on the stack.
1026 This allows for better use of already allocated stack space. This is only
1027 done for BLKmode slots because we can be sure that we won't have alignment
1028 problems in this case. */
1030 static void
1031 combine_temp_slots (void)
1033 struct temp_slot *p, *q, *next, *next_q;
1034 int num_slots;
1036 /* We can't combine slots, because the information about which slot
1037 is in which alias set will be lost. */
1038 if (flag_strict_aliasing)
1039 return;
1041 /* If there are a lot of temp slots, don't do anything unless
1042 high levels of optimization. */
1043 if (! flag_expensive_optimizations)
1044 for (p = avail_temp_slots, num_slots = 0; p; p = p->next, num_slots++)
1045 if (num_slots > 100 || (num_slots > 10 && optimize == 0))
1046 return;
1048 for (p = avail_temp_slots; p; p = next)
1050 int delete_p = 0;
1052 next = p->next;
1054 if (GET_MODE (p->slot) != BLKmode)
1055 continue;
1057 for (q = p->next; q; q = next_q)
1059 int delete_q = 0;
1061 next_q = q->next;
1063 if (GET_MODE (q->slot) != BLKmode)
1064 continue;
1066 if (known_eq (p->base_offset + p->full_size, q->base_offset))
1068 /* Q comes after P; combine Q into P. */
1069 p->size += q->size;
1070 p->full_size += q->full_size;
1071 delete_q = 1;
1073 else if (known_eq (q->base_offset + q->full_size, p->base_offset))
1075 /* P comes after Q; combine P into Q. */
1076 q->size += p->size;
1077 q->full_size += p->full_size;
1078 delete_p = 1;
1079 break;
1081 if (delete_q)
1082 cut_slot_from_list (q, &avail_temp_slots);
1085 /* Either delete P or advance past it. */
1086 if (delete_p)
1087 cut_slot_from_list (p, &avail_temp_slots);
1091 /* Indicate that NEW_RTX is an alternate way of referring to the temp
1092 slot that previously was known by OLD_RTX. */
1094 void
1095 update_temp_slot_address (rtx old_rtx, rtx new_rtx)
1097 struct temp_slot *p;
1099 if (rtx_equal_p (old_rtx, new_rtx))
1100 return;
1102 p = find_temp_slot_from_address (old_rtx);
1104 /* If we didn't find one, see if both OLD_RTX is a PLUS. If so, and
1105 NEW_RTX is a register, see if one operand of the PLUS is a
1106 temporary location. If so, NEW_RTX points into it. Otherwise,
1107 if both OLD_RTX and NEW_RTX are a PLUS and if there is a register
1108 in common between them. If so, try a recursive call on those
1109 values. */
1110 if (p == 0)
1112 if (GET_CODE (old_rtx) != PLUS)
1113 return;
1115 if (REG_P (new_rtx))
1117 update_temp_slot_address (XEXP (old_rtx, 0), new_rtx);
1118 update_temp_slot_address (XEXP (old_rtx, 1), new_rtx);
1119 return;
1121 else if (GET_CODE (new_rtx) != PLUS)
1122 return;
1124 if (rtx_equal_p (XEXP (old_rtx, 0), XEXP (new_rtx, 0)))
1125 update_temp_slot_address (XEXP (old_rtx, 1), XEXP (new_rtx, 1));
1126 else if (rtx_equal_p (XEXP (old_rtx, 1), XEXP (new_rtx, 0)))
1127 update_temp_slot_address (XEXP (old_rtx, 0), XEXP (new_rtx, 1));
1128 else if (rtx_equal_p (XEXP (old_rtx, 0), XEXP (new_rtx, 1)))
1129 update_temp_slot_address (XEXP (old_rtx, 1), XEXP (new_rtx, 0));
1130 else if (rtx_equal_p (XEXP (old_rtx, 1), XEXP (new_rtx, 1)))
1131 update_temp_slot_address (XEXP (old_rtx, 0), XEXP (new_rtx, 0));
1133 return;
1136 /* Otherwise add an alias for the temp's address. */
1137 insert_temp_slot_address (new_rtx, p);
1140 /* If X could be a reference to a temporary slot, mark that slot as
1141 belonging to the to one level higher than the current level. If X
1142 matched one of our slots, just mark that one. Otherwise, we can't
1143 easily predict which it is, so upgrade all of them.
1145 This is called when an ({...}) construct occurs and a statement
1146 returns a value in memory. */
1148 void
1149 preserve_temp_slots (rtx x)
1151 struct temp_slot *p = 0, *next;
1153 if (x == 0)
1154 return;
1156 /* If X is a register that is being used as a pointer, see if we have
1157 a temporary slot we know it points to. */
1158 if (REG_P (x) && REG_POINTER (x))
1159 p = find_temp_slot_from_address (x);
1161 /* If X is not in memory or is at a constant address, it cannot be in
1162 a temporary slot. */
1163 if (p == 0 && (!MEM_P (x) || CONSTANT_P (XEXP (x, 0))))
1164 return;
1166 /* First see if we can find a match. */
1167 if (p == 0)
1168 p = find_temp_slot_from_address (XEXP (x, 0));
1170 if (p != 0)
1172 if (p->level == temp_slot_level)
1173 move_slot_to_level (p, temp_slot_level - 1);
1174 return;
1177 /* Otherwise, preserve all non-kept slots at this level. */
1178 for (p = *temp_slots_at_level (temp_slot_level); p; p = next)
1180 next = p->next;
1181 move_slot_to_level (p, temp_slot_level - 1);
1185 /* Free all temporaries used so far. This is normally called at the
1186 end of generating code for a statement. */
1188 void
1189 free_temp_slots (void)
1191 struct temp_slot *p, *next;
1192 bool some_available = false;
1194 for (p = *temp_slots_at_level (temp_slot_level); p; p = next)
1196 next = p->next;
1197 make_slot_available (p);
1198 some_available = true;
1201 if (some_available)
1203 remove_unused_temp_slot_addresses ();
1204 combine_temp_slots ();
1208 /* Push deeper into the nesting level for stack temporaries. */
1210 void
1211 push_temp_slots (void)
1213 temp_slot_level++;
1216 /* Pop a temporary nesting level. All slots in use in the current level
1217 are freed. */
1219 void
1220 pop_temp_slots (void)
1222 free_temp_slots ();
1223 temp_slot_level--;
1226 /* Initialize temporary slots. */
1228 void
1229 init_temp_slots (void)
1231 /* We have not allocated any temporaries yet. */
1232 avail_temp_slots = 0;
1233 vec_alloc (used_temp_slots, 0);
1234 temp_slot_level = 0;
1235 n_temp_slots_in_use = 0;
1237 /* Set up the table to map addresses to temp slots. */
1238 if (! temp_slot_address_table)
1239 temp_slot_address_table = hash_table<temp_address_hasher>::create_ggc (32);
1240 else
1241 temp_slot_address_table->empty ();
1244 /* Functions and data structures to keep track of the values hard regs
1245 had at the start of the function. */
1247 /* Private type used by get_hard_reg_initial_reg, get_hard_reg_initial_val,
1248 and has_hard_reg_initial_val.. */
1249 struct GTY(()) initial_value_pair {
1250 rtx hard_reg;
1251 rtx pseudo;
1253 /* ??? This could be a VEC but there is currently no way to define an
1254 opaque VEC type. This could be worked around by defining struct
1255 initial_value_pair in function.h. */
1256 struct GTY(()) initial_value_struct {
1257 int num_entries;
1258 int max_entries;
1259 initial_value_pair * GTY ((length ("%h.num_entries"))) entries;
1262 /* If a pseudo represents an initial hard reg (or expression), return
1263 it, else return NULL_RTX. */
1266 get_hard_reg_initial_reg (rtx reg)
1268 struct initial_value_struct *ivs = crtl->hard_reg_initial_vals;
1269 int i;
1271 if (ivs == 0)
1272 return NULL_RTX;
1274 for (i = 0; i < ivs->num_entries; i++)
1275 if (rtx_equal_p (ivs->entries[i].pseudo, reg))
1276 return ivs->entries[i].hard_reg;
1278 return NULL_RTX;
1281 /* Make sure that there's a pseudo register of mode MODE that stores the
1282 initial value of hard register REGNO. Return an rtx for such a pseudo. */
1285 get_hard_reg_initial_val (machine_mode mode, unsigned int regno)
1287 struct initial_value_struct *ivs;
1288 rtx rv;
1290 rv = has_hard_reg_initial_val (mode, regno);
1291 if (rv)
1292 return rv;
1294 ivs = crtl->hard_reg_initial_vals;
1295 if (ivs == 0)
1297 ivs = ggc_alloc<initial_value_struct> ();
1298 ivs->num_entries = 0;
1299 ivs->max_entries = 5;
1300 ivs->entries = ggc_vec_alloc<initial_value_pair> (5);
1301 crtl->hard_reg_initial_vals = ivs;
1304 if (ivs->num_entries >= ivs->max_entries)
1306 ivs->max_entries += 5;
1307 ivs->entries = GGC_RESIZEVEC (initial_value_pair, ivs->entries,
1308 ivs->max_entries);
1311 ivs->entries[ivs->num_entries].hard_reg = gen_rtx_REG (mode, regno);
1312 ivs->entries[ivs->num_entries].pseudo = gen_reg_rtx (mode);
1314 return ivs->entries[ivs->num_entries++].pseudo;
1317 /* See if get_hard_reg_initial_val has been used to create a pseudo
1318 for the initial value of hard register REGNO in mode MODE. Return
1319 the associated pseudo if so, otherwise return NULL. */
1322 has_hard_reg_initial_val (machine_mode mode, unsigned int regno)
1324 struct initial_value_struct *ivs;
1325 int i;
1327 ivs = crtl->hard_reg_initial_vals;
1328 if (ivs != 0)
1329 for (i = 0; i < ivs->num_entries; i++)
1330 if (GET_MODE (ivs->entries[i].hard_reg) == mode
1331 && REGNO (ivs->entries[i].hard_reg) == regno)
1332 return ivs->entries[i].pseudo;
1334 return NULL_RTX;
1337 unsigned int
1338 emit_initial_value_sets (void)
1340 struct initial_value_struct *ivs = crtl->hard_reg_initial_vals;
1341 int i;
1342 rtx_insn *seq;
1344 if (ivs == 0)
1345 return 0;
1347 start_sequence ();
1348 for (i = 0; i < ivs->num_entries; i++)
1349 emit_move_insn (ivs->entries[i].pseudo, ivs->entries[i].hard_reg);
1350 seq = get_insns ();
1351 end_sequence ();
1353 emit_insn_at_entry (seq);
1354 return 0;
1357 /* Return the hardreg-pseudoreg initial values pair entry I and
1358 TRUE if I is a valid entry, or FALSE if I is not a valid entry. */
1359 bool
1360 initial_value_entry (int i, rtx *hreg, rtx *preg)
1362 struct initial_value_struct *ivs = crtl->hard_reg_initial_vals;
1363 if (!ivs || i >= ivs->num_entries)
1364 return false;
1366 *hreg = ivs->entries[i].hard_reg;
1367 *preg = ivs->entries[i].pseudo;
1368 return true;
1371 /* These routines are responsible for converting virtual register references
1372 to the actual hard register references once RTL generation is complete.
1374 The following four variables are used for communication between the
1375 routines. They contain the offsets of the virtual registers from their
1376 respective hard registers. */
1378 static poly_int64 in_arg_offset;
1379 static poly_int64 var_offset;
1380 static poly_int64 dynamic_offset;
1381 static poly_int64 out_arg_offset;
1382 static poly_int64 cfa_offset;
1384 /* In most machines, the stack pointer register is equivalent to the bottom
1385 of the stack. */
1387 #ifndef STACK_POINTER_OFFSET
1388 #define STACK_POINTER_OFFSET 0
1389 #endif
1391 #if defined (REG_PARM_STACK_SPACE) && !defined (INCOMING_REG_PARM_STACK_SPACE)
1392 #define INCOMING_REG_PARM_STACK_SPACE REG_PARM_STACK_SPACE
1393 #endif
1395 /* If not defined, pick an appropriate default for the offset of dynamically
1396 allocated memory depending on the value of ACCUMULATE_OUTGOING_ARGS,
1397 INCOMING_REG_PARM_STACK_SPACE, and OUTGOING_REG_PARM_STACK_SPACE. */
1399 #ifndef STACK_DYNAMIC_OFFSET
1401 /* The bottom of the stack points to the actual arguments. If
1402 REG_PARM_STACK_SPACE is defined, this includes the space for the register
1403 parameters. However, if OUTGOING_REG_PARM_STACK space is not defined,
1404 stack space for register parameters is not pushed by the caller, but
1405 rather part of the fixed stack areas and hence not included in
1406 `crtl->outgoing_args_size'. Nevertheless, we must allow
1407 for it when allocating stack dynamic objects. */
1409 #ifdef INCOMING_REG_PARM_STACK_SPACE
1410 #define STACK_DYNAMIC_OFFSET(FNDECL) \
1411 ((ACCUMULATE_OUTGOING_ARGS \
1412 ? (crtl->outgoing_args_size \
1413 + (OUTGOING_REG_PARM_STACK_SPACE ((!(FNDECL) ? NULL_TREE : TREE_TYPE (FNDECL))) ? 0 \
1414 : INCOMING_REG_PARM_STACK_SPACE (FNDECL))) \
1415 : 0) + (STACK_POINTER_OFFSET))
1416 #else
1417 #define STACK_DYNAMIC_OFFSET(FNDECL) \
1418 ((ACCUMULATE_OUTGOING_ARGS ? crtl->outgoing_args_size : poly_int64 (0)) \
1419 + (STACK_POINTER_OFFSET))
1420 #endif
1421 #endif
1424 /* Given a piece of RTX and a pointer to a HOST_WIDE_INT, if the RTX
1425 is a virtual register, return the equivalent hard register and set the
1426 offset indirectly through the pointer. Otherwise, return 0. */
1428 static rtx
1429 instantiate_new_reg (rtx x, poly_int64_pod *poffset)
1431 rtx new_rtx;
1432 poly_int64 offset;
1434 if (x == virtual_incoming_args_rtx)
1436 if (stack_realign_drap)
1438 /* Replace virtual_incoming_args_rtx with internal arg
1439 pointer if DRAP is used to realign stack. */
1440 new_rtx = crtl->args.internal_arg_pointer;
1441 offset = 0;
1443 else
1444 new_rtx = arg_pointer_rtx, offset = in_arg_offset;
1446 else if (x == virtual_stack_vars_rtx)
1447 new_rtx = frame_pointer_rtx, offset = var_offset;
1448 else if (x == virtual_stack_dynamic_rtx)
1449 new_rtx = stack_pointer_rtx, offset = dynamic_offset;
1450 else if (x == virtual_outgoing_args_rtx)
1451 new_rtx = stack_pointer_rtx, offset = out_arg_offset;
1452 else if (x == virtual_cfa_rtx)
1454 #ifdef FRAME_POINTER_CFA_OFFSET
1455 new_rtx = frame_pointer_rtx;
1456 #else
1457 new_rtx = arg_pointer_rtx;
1458 #endif
1459 offset = cfa_offset;
1461 else if (x == virtual_preferred_stack_boundary_rtx)
1463 new_rtx = GEN_INT (crtl->preferred_stack_boundary / BITS_PER_UNIT);
1464 offset = 0;
1466 else
1467 return NULL_RTX;
1469 *poffset = offset;
1470 return new_rtx;
1473 /* A subroutine of instantiate_virtual_regs. Instantiate any virtual
1474 registers present inside of *LOC. The expression is simplified,
1475 as much as possible, but is not to be considered "valid" in any sense
1476 implied by the target. Return true if any change is made. */
1478 static bool
1479 instantiate_virtual_regs_in_rtx (rtx *loc)
1481 if (!*loc)
1482 return false;
1483 bool changed = false;
1484 subrtx_ptr_iterator::array_type array;
1485 FOR_EACH_SUBRTX_PTR (iter, array, loc, NONCONST)
1487 rtx *loc = *iter;
1488 if (rtx x = *loc)
1490 rtx new_rtx;
1491 poly_int64 offset;
1492 switch (GET_CODE (x))
1494 case REG:
1495 new_rtx = instantiate_new_reg (x, &offset);
1496 if (new_rtx)
1498 *loc = plus_constant (GET_MODE (x), new_rtx, offset);
1499 changed = true;
1501 iter.skip_subrtxes ();
1502 break;
1504 case PLUS:
1505 new_rtx = instantiate_new_reg (XEXP (x, 0), &offset);
1506 if (new_rtx)
1508 XEXP (x, 0) = new_rtx;
1509 *loc = plus_constant (GET_MODE (x), x, offset, true);
1510 changed = true;
1511 iter.skip_subrtxes ();
1512 break;
1515 /* FIXME -- from old code */
1516 /* If we have (plus (subreg (virtual-reg)) (const_int)), we know
1517 we can commute the PLUS and SUBREG because pointers into the
1518 frame are well-behaved. */
1519 break;
1521 default:
1522 break;
1526 return changed;
1529 /* A subroutine of instantiate_virtual_regs_in_insn. Return true if X
1530 matches the predicate for insn CODE operand OPERAND. */
1532 static int
1533 safe_insn_predicate (int code, int operand, rtx x)
1535 return code < 0 || insn_operand_matches ((enum insn_code) code, operand, x);
1538 /* A subroutine of instantiate_virtual_regs. Instantiate any virtual
1539 registers present inside of insn. The result will be a valid insn. */
1541 static void
1542 instantiate_virtual_regs_in_insn (rtx_insn *insn)
1544 poly_int64 offset;
1545 int insn_code, i;
1546 bool any_change = false;
1547 rtx set, new_rtx, x;
1548 rtx_insn *seq;
1550 /* There are some special cases to be handled first. */
1551 set = single_set (insn);
1552 if (set)
1554 /* We're allowed to assign to a virtual register. This is interpreted
1555 to mean that the underlying register gets assigned the inverse
1556 transformation. This is used, for example, in the handling of
1557 non-local gotos. */
1558 new_rtx = instantiate_new_reg (SET_DEST (set), &offset);
1559 if (new_rtx)
1561 start_sequence ();
1563 instantiate_virtual_regs_in_rtx (&SET_SRC (set));
1564 x = simplify_gen_binary (PLUS, GET_MODE (new_rtx), SET_SRC (set),
1565 gen_int_mode (-offset, GET_MODE (new_rtx)));
1566 x = force_operand (x, new_rtx);
1567 if (x != new_rtx)
1568 emit_move_insn (new_rtx, x);
1570 seq = get_insns ();
1571 end_sequence ();
1573 emit_insn_before (seq, insn);
1574 delete_insn (insn);
1575 return;
1578 /* Handle a straight copy from a virtual register by generating a
1579 new add insn. The difference between this and falling through
1580 to the generic case is avoiding a new pseudo and eliminating a
1581 move insn in the initial rtl stream. */
1582 new_rtx = instantiate_new_reg (SET_SRC (set), &offset);
1583 if (new_rtx
1584 && maybe_ne (offset, 0)
1585 && REG_P (SET_DEST (set))
1586 && REGNO (SET_DEST (set)) > LAST_VIRTUAL_REGISTER)
1588 start_sequence ();
1590 x = expand_simple_binop (GET_MODE (SET_DEST (set)), PLUS, new_rtx,
1591 gen_int_mode (offset,
1592 GET_MODE (SET_DEST (set))),
1593 SET_DEST (set), 1, OPTAB_LIB_WIDEN);
1594 if (x != SET_DEST (set))
1595 emit_move_insn (SET_DEST (set), x);
1597 seq = get_insns ();
1598 end_sequence ();
1600 emit_insn_before (seq, insn);
1601 delete_insn (insn);
1602 return;
1605 extract_insn (insn);
1606 insn_code = INSN_CODE (insn);
1608 /* Handle a plus involving a virtual register by determining if the
1609 operands remain valid if they're modified in place. */
1610 poly_int64 delta;
1611 if (GET_CODE (SET_SRC (set)) == PLUS
1612 && recog_data.n_operands >= 3
1613 && recog_data.operand_loc[1] == &XEXP (SET_SRC (set), 0)
1614 && recog_data.operand_loc[2] == &XEXP (SET_SRC (set), 1)
1615 && poly_int_rtx_p (recog_data.operand[2], &delta)
1616 && (new_rtx = instantiate_new_reg (recog_data.operand[1], &offset)))
1618 offset += delta;
1620 /* If the sum is zero, then replace with a plain move. */
1621 if (known_eq (offset, 0)
1622 && REG_P (SET_DEST (set))
1623 && REGNO (SET_DEST (set)) > LAST_VIRTUAL_REGISTER)
1625 start_sequence ();
1626 emit_move_insn (SET_DEST (set), new_rtx);
1627 seq = get_insns ();
1628 end_sequence ();
1630 emit_insn_before (seq, insn);
1631 delete_insn (insn);
1632 return;
1635 x = gen_int_mode (offset, recog_data.operand_mode[2]);
1637 /* Using validate_change and apply_change_group here leaves
1638 recog_data in an invalid state. Since we know exactly what
1639 we want to check, do those two by hand. */
1640 if (safe_insn_predicate (insn_code, 1, new_rtx)
1641 && safe_insn_predicate (insn_code, 2, x))
1643 *recog_data.operand_loc[1] = recog_data.operand[1] = new_rtx;
1644 *recog_data.operand_loc[2] = recog_data.operand[2] = x;
1645 any_change = true;
1647 /* Fall through into the regular operand fixup loop in
1648 order to take care of operands other than 1 and 2. */
1652 else
1654 extract_insn (insn);
1655 insn_code = INSN_CODE (insn);
1658 /* In the general case, we expect virtual registers to appear only in
1659 operands, and then only as either bare registers or inside memories. */
1660 for (i = 0; i < recog_data.n_operands; ++i)
1662 x = recog_data.operand[i];
1663 switch (GET_CODE (x))
1665 case MEM:
1667 rtx addr = XEXP (x, 0);
1669 if (!instantiate_virtual_regs_in_rtx (&addr))
1670 continue;
1672 start_sequence ();
1673 x = replace_equiv_address (x, addr, true);
1674 /* It may happen that the address with the virtual reg
1675 was valid (e.g. based on the virtual stack reg, which might
1676 be acceptable to the predicates with all offsets), whereas
1677 the address now isn't anymore, for instance when the address
1678 is still offsetted, but the base reg isn't virtual-stack-reg
1679 anymore. Below we would do a force_reg on the whole operand,
1680 but this insn might actually only accept memory. Hence,
1681 before doing that last resort, try to reload the address into
1682 a register, so this operand stays a MEM. */
1683 if (!safe_insn_predicate (insn_code, i, x))
1685 addr = force_reg (GET_MODE (addr), addr);
1686 x = replace_equiv_address (x, addr, true);
1688 seq = get_insns ();
1689 end_sequence ();
1690 if (seq)
1691 emit_insn_before (seq, insn);
1693 break;
1695 case REG:
1696 new_rtx = instantiate_new_reg (x, &offset);
1697 if (new_rtx == NULL)
1698 continue;
1699 if (known_eq (offset, 0))
1700 x = new_rtx;
1701 else
1703 start_sequence ();
1705 /* Careful, special mode predicates may have stuff in
1706 insn_data[insn_code].operand[i].mode that isn't useful
1707 to us for computing a new value. */
1708 /* ??? Recognize address_operand and/or "p" constraints
1709 to see if (plus new offset) is a valid before we put
1710 this through expand_simple_binop. */
1711 x = expand_simple_binop (GET_MODE (x), PLUS, new_rtx,
1712 gen_int_mode (offset, GET_MODE (x)),
1713 NULL_RTX, 1, OPTAB_LIB_WIDEN);
1714 seq = get_insns ();
1715 end_sequence ();
1716 emit_insn_before (seq, insn);
1718 break;
1720 case SUBREG:
1721 new_rtx = instantiate_new_reg (SUBREG_REG (x), &offset);
1722 if (new_rtx == NULL)
1723 continue;
1724 if (maybe_ne (offset, 0))
1726 start_sequence ();
1727 new_rtx = expand_simple_binop
1728 (GET_MODE (new_rtx), PLUS, new_rtx,
1729 gen_int_mode (offset, GET_MODE (new_rtx)),
1730 NULL_RTX, 1, OPTAB_LIB_WIDEN);
1731 seq = get_insns ();
1732 end_sequence ();
1733 emit_insn_before (seq, insn);
1735 x = simplify_gen_subreg (recog_data.operand_mode[i], new_rtx,
1736 GET_MODE (new_rtx), SUBREG_BYTE (x));
1737 gcc_assert (x);
1738 break;
1740 default:
1741 continue;
1744 /* At this point, X contains the new value for the operand.
1745 Validate the new value vs the insn predicate. Note that
1746 asm insns will have insn_code -1 here. */
1747 if (!safe_insn_predicate (insn_code, i, x))
1749 start_sequence ();
1750 if (REG_P (x))
1752 gcc_assert (REGNO (x) <= LAST_VIRTUAL_REGISTER);
1753 x = copy_to_reg (x);
1755 else
1756 x = force_reg (insn_data[insn_code].operand[i].mode, x);
1757 seq = get_insns ();
1758 end_sequence ();
1759 if (seq)
1760 emit_insn_before (seq, insn);
1763 *recog_data.operand_loc[i] = recog_data.operand[i] = x;
1764 any_change = true;
1767 if (any_change)
1769 /* Propagate operand changes into the duplicates. */
1770 for (i = 0; i < recog_data.n_dups; ++i)
1771 *recog_data.dup_loc[i]
1772 = copy_rtx (recog_data.operand[(unsigned)recog_data.dup_num[i]]);
1774 /* Force re-recognition of the instruction for validation. */
1775 INSN_CODE (insn) = -1;
1778 if (asm_noperands (PATTERN (insn)) >= 0)
1780 if (!check_asm_operands (PATTERN (insn)))
1782 error_for_asm (insn, "impossible constraint in %<asm%>");
1783 /* For asm goto, instead of fixing up all the edges
1784 just clear the template and clear input operands
1785 (asm goto doesn't have any output operands). */
1786 if (JUMP_P (insn))
1788 rtx asm_op = extract_asm_operands (PATTERN (insn));
1789 ASM_OPERANDS_TEMPLATE (asm_op) = ggc_strdup ("");
1790 ASM_OPERANDS_INPUT_VEC (asm_op) = rtvec_alloc (0);
1791 ASM_OPERANDS_INPUT_CONSTRAINT_VEC (asm_op) = rtvec_alloc (0);
1793 else
1794 delete_insn (insn);
1797 else
1799 if (recog_memoized (insn) < 0)
1800 fatal_insn_not_found (insn);
1804 /* Subroutine of instantiate_decls. Given RTL representing a decl,
1805 do any instantiation required. */
1807 void
1808 instantiate_decl_rtl (rtx x)
1810 rtx addr;
1812 if (x == 0)
1813 return;
1815 /* If this is a CONCAT, recurse for the pieces. */
1816 if (GET_CODE (x) == CONCAT)
1818 instantiate_decl_rtl (XEXP (x, 0));
1819 instantiate_decl_rtl (XEXP (x, 1));
1820 return;
1823 /* If this is not a MEM, no need to do anything. Similarly if the
1824 address is a constant or a register that is not a virtual register. */
1825 if (!MEM_P (x))
1826 return;
1828 addr = XEXP (x, 0);
1829 if (CONSTANT_P (addr)
1830 || (REG_P (addr)
1831 && (REGNO (addr) < FIRST_VIRTUAL_REGISTER
1832 || REGNO (addr) > LAST_VIRTUAL_REGISTER)))
1833 return;
1835 instantiate_virtual_regs_in_rtx (&XEXP (x, 0));
1838 /* Helper for instantiate_decls called via walk_tree: Process all decls
1839 in the given DECL_VALUE_EXPR. */
1841 static tree
1842 instantiate_expr (tree *tp, int *walk_subtrees, void *data ATTRIBUTE_UNUSED)
1844 tree t = *tp;
1845 if (! EXPR_P (t))
1847 *walk_subtrees = 0;
1848 if (DECL_P (t))
1850 if (DECL_RTL_SET_P (t))
1851 instantiate_decl_rtl (DECL_RTL (t));
1852 if (TREE_CODE (t) == PARM_DECL && DECL_NAMELESS (t)
1853 && DECL_INCOMING_RTL (t))
1854 instantiate_decl_rtl (DECL_INCOMING_RTL (t));
1855 if ((VAR_P (t) || TREE_CODE (t) == RESULT_DECL)
1856 && DECL_HAS_VALUE_EXPR_P (t))
1858 tree v = DECL_VALUE_EXPR (t);
1859 walk_tree (&v, instantiate_expr, NULL, NULL);
1863 return NULL;
1866 /* Subroutine of instantiate_decls: Process all decls in the given
1867 BLOCK node and all its subblocks. */
1869 static void
1870 instantiate_decls_1 (tree let)
1872 tree t;
1874 for (t = BLOCK_VARS (let); t; t = DECL_CHAIN (t))
1876 if (DECL_RTL_SET_P (t))
1877 instantiate_decl_rtl (DECL_RTL (t));
1878 if (VAR_P (t) && DECL_HAS_VALUE_EXPR_P (t))
1880 tree v = DECL_VALUE_EXPR (t);
1881 walk_tree (&v, instantiate_expr, NULL, NULL);
1885 /* Process all subblocks. */
1886 for (t = BLOCK_SUBBLOCKS (let); t; t = BLOCK_CHAIN (t))
1887 instantiate_decls_1 (t);
1890 /* Scan all decls in FNDECL (both variables and parameters) and instantiate
1891 all virtual registers in their DECL_RTL's. */
1893 static void
1894 instantiate_decls (tree fndecl)
1896 tree decl;
1897 unsigned ix;
1899 /* Process all parameters of the function. */
1900 for (decl = DECL_ARGUMENTS (fndecl); decl; decl = DECL_CHAIN (decl))
1902 instantiate_decl_rtl (DECL_RTL (decl));
1903 instantiate_decl_rtl (DECL_INCOMING_RTL (decl));
1904 if (DECL_HAS_VALUE_EXPR_P (decl))
1906 tree v = DECL_VALUE_EXPR (decl);
1907 walk_tree (&v, instantiate_expr, NULL, NULL);
1911 if ((decl = DECL_RESULT (fndecl))
1912 && TREE_CODE (decl) == RESULT_DECL)
1914 if (DECL_RTL_SET_P (decl))
1915 instantiate_decl_rtl (DECL_RTL (decl));
1916 if (DECL_HAS_VALUE_EXPR_P (decl))
1918 tree v = DECL_VALUE_EXPR (decl);
1919 walk_tree (&v, instantiate_expr, NULL, NULL);
1923 /* Process the saved static chain if it exists. */
1924 decl = DECL_STRUCT_FUNCTION (fndecl)->static_chain_decl;
1925 if (decl && DECL_HAS_VALUE_EXPR_P (decl))
1926 instantiate_decl_rtl (DECL_RTL (DECL_VALUE_EXPR (decl)));
1928 /* Now process all variables defined in the function or its subblocks. */
1929 if (DECL_INITIAL (fndecl))
1930 instantiate_decls_1 (DECL_INITIAL (fndecl));
1932 FOR_EACH_LOCAL_DECL (cfun, ix, decl)
1933 if (DECL_RTL_SET_P (decl))
1934 instantiate_decl_rtl (DECL_RTL (decl));
1935 vec_free (cfun->local_decls);
1938 /* Pass through the INSNS of function FNDECL and convert virtual register
1939 references to hard register references. */
1941 static unsigned int
1942 instantiate_virtual_regs (void)
1944 rtx_insn *insn;
1946 /* Compute the offsets to use for this function. */
1947 in_arg_offset = FIRST_PARM_OFFSET (current_function_decl);
1948 var_offset = targetm.starting_frame_offset ();
1949 dynamic_offset = STACK_DYNAMIC_OFFSET (current_function_decl);
1950 out_arg_offset = STACK_POINTER_OFFSET;
1951 #ifdef FRAME_POINTER_CFA_OFFSET
1952 cfa_offset = FRAME_POINTER_CFA_OFFSET (current_function_decl);
1953 #else
1954 cfa_offset = ARG_POINTER_CFA_OFFSET (current_function_decl);
1955 #endif
1957 /* Initialize recognition, indicating that volatile is OK. */
1958 init_recog ();
1960 /* Scan through all the insns, instantiating every virtual register still
1961 present. */
1962 for (insn = get_insns (); insn; insn = NEXT_INSN (insn))
1963 if (INSN_P (insn))
1965 /* These patterns in the instruction stream can never be recognized.
1966 Fortunately, they shouldn't contain virtual registers either. */
1967 if (GET_CODE (PATTERN (insn)) == USE
1968 || GET_CODE (PATTERN (insn)) == CLOBBER
1969 || GET_CODE (PATTERN (insn)) == ASM_INPUT
1970 || DEBUG_MARKER_INSN_P (insn))
1971 continue;
1972 else if (DEBUG_BIND_INSN_P (insn))
1973 instantiate_virtual_regs_in_rtx (INSN_VAR_LOCATION_PTR (insn));
1974 else
1975 instantiate_virtual_regs_in_insn (insn);
1977 if (insn->deleted ())
1978 continue;
1980 instantiate_virtual_regs_in_rtx (&REG_NOTES (insn));
1982 /* Instantiate any virtual registers in CALL_INSN_FUNCTION_USAGE. */
1983 if (CALL_P (insn))
1984 instantiate_virtual_regs_in_rtx (&CALL_INSN_FUNCTION_USAGE (insn));
1987 /* Instantiate the virtual registers in the DECLs for debugging purposes. */
1988 instantiate_decls (current_function_decl);
1990 targetm.instantiate_decls ();
1992 /* Indicate that, from now on, assign_stack_local should use
1993 frame_pointer_rtx. */
1994 virtuals_instantiated = 1;
1996 return 0;
1999 namespace {
2001 const pass_data pass_data_instantiate_virtual_regs =
2003 RTL_PASS, /* type */
2004 "vregs", /* name */
2005 OPTGROUP_NONE, /* optinfo_flags */
2006 TV_NONE, /* tv_id */
2007 0, /* properties_required */
2008 0, /* properties_provided */
2009 0, /* properties_destroyed */
2010 0, /* todo_flags_start */
2011 0, /* todo_flags_finish */
2014 class pass_instantiate_virtual_regs : public rtl_opt_pass
2016 public:
2017 pass_instantiate_virtual_regs (gcc::context *ctxt)
2018 : rtl_opt_pass (pass_data_instantiate_virtual_regs, ctxt)
2021 /* opt_pass methods: */
2022 virtual unsigned int execute (function *)
2024 return instantiate_virtual_regs ();
2027 }; // class pass_instantiate_virtual_regs
2029 } // anon namespace
2031 rtl_opt_pass *
2032 make_pass_instantiate_virtual_regs (gcc::context *ctxt)
2034 return new pass_instantiate_virtual_regs (ctxt);
2038 /* Return 1 if EXP is an aggregate type (or a value with aggregate type).
2039 This means a type for which function calls must pass an address to the
2040 function or get an address back from the function.
2041 EXP may be a type node or an expression (whose type is tested). */
2044 aggregate_value_p (const_tree exp, const_tree fntype)
2046 const_tree type = (TYPE_P (exp)) ? exp : TREE_TYPE (exp);
2047 int i, regno, nregs;
2048 rtx reg;
2050 if (fntype)
2051 switch (TREE_CODE (fntype))
2053 case CALL_EXPR:
2055 tree fndecl = get_callee_fndecl (fntype);
2056 if (fndecl)
2057 fntype = TREE_TYPE (fndecl);
2058 else if (CALL_EXPR_FN (fntype))
2059 fntype = TREE_TYPE (TREE_TYPE (CALL_EXPR_FN (fntype)));
2060 else
2061 /* For internal functions, assume nothing needs to be
2062 returned in memory. */
2063 return 0;
2065 break;
2066 case FUNCTION_DECL:
2067 fntype = TREE_TYPE (fntype);
2068 break;
2069 case FUNCTION_TYPE:
2070 case METHOD_TYPE:
2071 break;
2072 case IDENTIFIER_NODE:
2073 fntype = NULL_TREE;
2074 break;
2075 default:
2076 /* We don't expect other tree types here. */
2077 gcc_unreachable ();
2080 if (VOID_TYPE_P (type))
2081 return 0;
2083 /* If a record should be passed the same as its first (and only) member
2084 don't pass it as an aggregate. */
2085 if (TREE_CODE (type) == RECORD_TYPE && TYPE_TRANSPARENT_AGGR (type))
2086 return aggregate_value_p (first_field (type), fntype);
2088 /* If the front end has decided that this needs to be passed by
2089 reference, do so. */
2090 if ((TREE_CODE (exp) == PARM_DECL || TREE_CODE (exp) == RESULT_DECL)
2091 && DECL_BY_REFERENCE (exp))
2092 return 1;
2094 /* Function types that are TREE_ADDRESSABLE force return in memory. */
2095 if (fntype && TREE_ADDRESSABLE (fntype))
2096 return 1;
2098 /* Types that are TREE_ADDRESSABLE must be constructed in memory,
2099 and thus can't be returned in registers. */
2100 if (TREE_ADDRESSABLE (type))
2101 return 1;
2103 if (TYPE_EMPTY_P (type))
2104 return 0;
2106 if (flag_pcc_struct_return && AGGREGATE_TYPE_P (type))
2107 return 1;
2109 if (targetm.calls.return_in_memory (type, fntype))
2110 return 1;
2112 /* Make sure we have suitable call-clobbered regs to return
2113 the value in; if not, we must return it in memory. */
2114 reg = hard_function_value (type, 0, fntype, 0);
2116 /* If we have something other than a REG (e.g. a PARALLEL), then assume
2117 it is OK. */
2118 if (!REG_P (reg))
2119 return 0;
2121 regno = REGNO (reg);
2122 nregs = hard_regno_nregs (regno, TYPE_MODE (type));
2123 for (i = 0; i < nregs; i++)
2124 if (! call_used_regs[regno + i])
2125 return 1;
2127 return 0;
2130 /* Return true if we should assign DECL a pseudo register; false if it
2131 should live on the local stack. */
2133 bool
2134 use_register_for_decl (const_tree decl)
2136 if (TREE_CODE (decl) == SSA_NAME)
2138 /* We often try to use the SSA_NAME, instead of its underlying
2139 decl, to get type information and guide decisions, to avoid
2140 differences of behavior between anonymous and named
2141 variables, but in this one case we have to go for the actual
2142 variable if there is one. The main reason is that, at least
2143 at -O0, we want to place user variables on the stack, but we
2144 don't mind using pseudos for anonymous or ignored temps.
2145 Should we take the SSA_NAME, we'd conclude all SSA_NAMEs
2146 should go in pseudos, whereas their corresponding variables
2147 might have to go on the stack. So, disregarding the decl
2148 here would negatively impact debug info at -O0, enable
2149 coalescing between SSA_NAMEs that ought to get different
2150 stack/pseudo assignments, and get the incoming argument
2151 processing thoroughly confused by PARM_DECLs expected to live
2152 in stack slots but assigned to pseudos. */
2153 if (!SSA_NAME_VAR (decl))
2154 return TYPE_MODE (TREE_TYPE (decl)) != BLKmode
2155 && !(flag_float_store && FLOAT_TYPE_P (TREE_TYPE (decl)));
2157 decl = SSA_NAME_VAR (decl);
2160 /* Honor volatile. */
2161 if (TREE_SIDE_EFFECTS (decl))
2162 return false;
2164 /* Honor addressability. */
2165 if (TREE_ADDRESSABLE (decl))
2166 return false;
2168 /* RESULT_DECLs are a bit special in that they're assigned without
2169 regard to use_register_for_decl, but we generally only store in
2170 them. If we coalesce their SSA NAMEs, we'd better return a
2171 result that matches the assignment in expand_function_start. */
2172 if (TREE_CODE (decl) == RESULT_DECL)
2174 /* If it's not an aggregate, we're going to use a REG or a
2175 PARALLEL containing a REG. */
2176 if (!aggregate_value_p (decl, current_function_decl))
2177 return true;
2179 /* If expand_function_start determines the return value, we'll
2180 use MEM if it's not by reference. */
2181 if (cfun->returns_pcc_struct
2182 || (targetm.calls.struct_value_rtx
2183 (TREE_TYPE (current_function_decl), 1)))
2184 return DECL_BY_REFERENCE (decl);
2186 /* Otherwise, we're taking an extra all.function_result_decl
2187 argument. It's set up in assign_parms_augmented_arg_list,
2188 under the (negated) conditions above, and then it's used to
2189 set up the RESULT_DECL rtl in assign_params, after looping
2190 over all parameters. Now, if the RESULT_DECL is not by
2191 reference, we'll use a MEM either way. */
2192 if (!DECL_BY_REFERENCE (decl))
2193 return false;
2195 /* Otherwise, if RESULT_DECL is DECL_BY_REFERENCE, it will take
2196 the function_result_decl's assignment. Since it's a pointer,
2197 we can short-circuit a number of the tests below, and we must
2198 duplicat e them because we don't have the
2199 function_result_decl to test. */
2200 if (!targetm.calls.allocate_stack_slots_for_args ())
2201 return true;
2202 /* We don't set DECL_IGNORED_P for the function_result_decl. */
2203 if (optimize)
2204 return true;
2205 /* We don't set DECL_REGISTER for the function_result_decl. */
2206 return false;
2209 /* Only register-like things go in registers. */
2210 if (DECL_MODE (decl) == BLKmode)
2211 return false;
2213 /* If -ffloat-store specified, don't put explicit float variables
2214 into registers. */
2215 /* ??? This should be checked after DECL_ARTIFICIAL, but tree-ssa
2216 propagates values across these stores, and it probably shouldn't. */
2217 if (flag_float_store && FLOAT_TYPE_P (TREE_TYPE (decl)))
2218 return false;
2220 if (!targetm.calls.allocate_stack_slots_for_args ())
2221 return true;
2223 /* If we're not interested in tracking debugging information for
2224 this decl, then we can certainly put it in a register. */
2225 if (DECL_IGNORED_P (decl))
2226 return true;
2228 if (optimize)
2229 return true;
2231 if (!DECL_REGISTER (decl))
2232 return false;
2234 /* When not optimizing, disregard register keyword for types that
2235 could have methods, otherwise the methods won't be callable from
2236 the debugger. */
2237 if (RECORD_OR_UNION_TYPE_P (TREE_TYPE (decl)))
2238 return false;
2240 return true;
2243 /* Structures to communicate between the subroutines of assign_parms.
2244 The first holds data persistent across all parameters, the second
2245 is cleared out for each parameter. */
2247 struct assign_parm_data_all
2249 /* When INIT_CUMULATIVE_ARGS gets revamped, allocating CUMULATIVE_ARGS
2250 should become a job of the target or otherwise encapsulated. */
2251 CUMULATIVE_ARGS args_so_far_v;
2252 cumulative_args_t args_so_far;
2253 struct args_size stack_args_size;
2254 tree function_result_decl;
2255 tree orig_fnargs;
2256 rtx_insn *first_conversion_insn;
2257 rtx_insn *last_conversion_insn;
2258 HOST_WIDE_INT pretend_args_size;
2259 HOST_WIDE_INT extra_pretend_bytes;
2260 int reg_parm_stack_space;
2263 struct assign_parm_data_one
2265 tree nominal_type;
2266 tree passed_type;
2267 rtx entry_parm;
2268 rtx stack_parm;
2269 machine_mode nominal_mode;
2270 machine_mode passed_mode;
2271 machine_mode promoted_mode;
2272 struct locate_and_pad_arg_data locate;
2273 int partial;
2274 BOOL_BITFIELD named_arg : 1;
2275 BOOL_BITFIELD passed_pointer : 1;
2276 BOOL_BITFIELD on_stack : 1;
2277 BOOL_BITFIELD loaded_in_reg : 1;
2280 /* A subroutine of assign_parms. Initialize ALL. */
2282 static void
2283 assign_parms_initialize_all (struct assign_parm_data_all *all)
2285 tree fntype ATTRIBUTE_UNUSED;
2287 memset (all, 0, sizeof (*all));
2289 fntype = TREE_TYPE (current_function_decl);
2291 #ifdef INIT_CUMULATIVE_INCOMING_ARGS
2292 INIT_CUMULATIVE_INCOMING_ARGS (all->args_so_far_v, fntype, NULL_RTX);
2293 #else
2294 INIT_CUMULATIVE_ARGS (all->args_so_far_v, fntype, NULL_RTX,
2295 current_function_decl, -1);
2296 #endif
2297 all->args_so_far = pack_cumulative_args (&all->args_so_far_v);
2299 #ifdef INCOMING_REG_PARM_STACK_SPACE
2300 all->reg_parm_stack_space
2301 = INCOMING_REG_PARM_STACK_SPACE (current_function_decl);
2302 #endif
2305 /* If ARGS contains entries with complex types, split the entry into two
2306 entries of the component type. Return a new list of substitutions are
2307 needed, else the old list. */
2309 static void
2310 split_complex_args (vec<tree> *args)
2312 unsigned i;
2313 tree p;
2315 FOR_EACH_VEC_ELT (*args, i, p)
2317 tree type = TREE_TYPE (p);
2318 if (TREE_CODE (type) == COMPLEX_TYPE
2319 && targetm.calls.split_complex_arg (type))
2321 tree decl;
2322 tree subtype = TREE_TYPE (type);
2323 bool addressable = TREE_ADDRESSABLE (p);
2325 /* Rewrite the PARM_DECL's type with its component. */
2326 p = copy_node (p);
2327 TREE_TYPE (p) = subtype;
2328 DECL_ARG_TYPE (p) = TREE_TYPE (DECL_ARG_TYPE (p));
2329 SET_DECL_MODE (p, VOIDmode);
2330 DECL_SIZE (p) = NULL;
2331 DECL_SIZE_UNIT (p) = NULL;
2332 /* If this arg must go in memory, put it in a pseudo here.
2333 We can't allow it to go in memory as per normal parms,
2334 because the usual place might not have the imag part
2335 adjacent to the real part. */
2336 DECL_ARTIFICIAL (p) = addressable;
2337 DECL_IGNORED_P (p) = addressable;
2338 TREE_ADDRESSABLE (p) = 0;
2339 layout_decl (p, 0);
2340 (*args)[i] = p;
2342 /* Build a second synthetic decl. */
2343 decl = build_decl (EXPR_LOCATION (p),
2344 PARM_DECL, NULL_TREE, subtype);
2345 DECL_ARG_TYPE (decl) = DECL_ARG_TYPE (p);
2346 DECL_ARTIFICIAL (decl) = addressable;
2347 DECL_IGNORED_P (decl) = addressable;
2348 layout_decl (decl, 0);
2349 args->safe_insert (++i, decl);
2354 /* A subroutine of assign_parms. Adjust the parameter list to incorporate
2355 the hidden struct return argument, and (abi willing) complex args.
2356 Return the new parameter list. */
2358 static vec<tree>
2359 assign_parms_augmented_arg_list (struct assign_parm_data_all *all)
2361 tree fndecl = current_function_decl;
2362 tree fntype = TREE_TYPE (fndecl);
2363 vec<tree> fnargs = vNULL;
2364 tree arg;
2366 for (arg = DECL_ARGUMENTS (fndecl); arg; arg = DECL_CHAIN (arg))
2367 fnargs.safe_push (arg);
2369 all->orig_fnargs = DECL_ARGUMENTS (fndecl);
2371 /* If struct value address is treated as the first argument, make it so. */
2372 if (aggregate_value_p (DECL_RESULT (fndecl), fndecl)
2373 && ! cfun->returns_pcc_struct
2374 && targetm.calls.struct_value_rtx (TREE_TYPE (fndecl), 1) == 0)
2376 tree type = build_pointer_type (TREE_TYPE (fntype));
2377 tree decl;
2379 decl = build_decl (DECL_SOURCE_LOCATION (fndecl),
2380 PARM_DECL, get_identifier (".result_ptr"), type);
2381 DECL_ARG_TYPE (decl) = type;
2382 DECL_ARTIFICIAL (decl) = 1;
2383 DECL_NAMELESS (decl) = 1;
2384 TREE_CONSTANT (decl) = 1;
2385 /* We don't set DECL_IGNORED_P or DECL_REGISTER here. If this
2386 changes, the end of the RESULT_DECL handling block in
2387 use_register_for_decl must be adjusted to match. */
2389 DECL_CHAIN (decl) = all->orig_fnargs;
2390 all->orig_fnargs = decl;
2391 fnargs.safe_insert (0, decl);
2393 all->function_result_decl = decl;
2396 /* If the target wants to split complex arguments into scalars, do so. */
2397 if (targetm.calls.split_complex_arg)
2398 split_complex_args (&fnargs);
2400 return fnargs;
2403 /* A subroutine of assign_parms. Examine PARM and pull out type and mode
2404 data for the parameter. Incorporate ABI specifics such as pass-by-
2405 reference and type promotion. */
2407 static void
2408 assign_parm_find_data_types (struct assign_parm_data_all *all, tree parm,
2409 struct assign_parm_data_one *data)
2411 tree nominal_type, passed_type;
2412 machine_mode nominal_mode, passed_mode, promoted_mode;
2413 int unsignedp;
2415 memset (data, 0, sizeof (*data));
2417 /* NAMED_ARG is a misnomer. We really mean 'non-variadic'. */
2418 if (!cfun->stdarg)
2419 data->named_arg = 1; /* No variadic parms. */
2420 else if (DECL_CHAIN (parm))
2421 data->named_arg = 1; /* Not the last non-variadic parm. */
2422 else if (targetm.calls.strict_argument_naming (all->args_so_far))
2423 data->named_arg = 1; /* Only variadic ones are unnamed. */
2424 else
2425 data->named_arg = 0; /* Treat as variadic. */
2427 nominal_type = TREE_TYPE (parm);
2428 passed_type = DECL_ARG_TYPE (parm);
2430 /* Look out for errors propagating this far. Also, if the parameter's
2431 type is void then its value doesn't matter. */
2432 if (TREE_TYPE (parm) == error_mark_node
2433 /* This can happen after weird syntax errors
2434 or if an enum type is defined among the parms. */
2435 || TREE_CODE (parm) != PARM_DECL
2436 || passed_type == NULL
2437 || VOID_TYPE_P (nominal_type))
2439 nominal_type = passed_type = void_type_node;
2440 nominal_mode = passed_mode = promoted_mode = VOIDmode;
2441 goto egress;
2444 /* Find mode of arg as it is passed, and mode of arg as it should be
2445 during execution of this function. */
2446 passed_mode = TYPE_MODE (passed_type);
2447 nominal_mode = TYPE_MODE (nominal_type);
2449 /* If the parm is to be passed as a transparent union or record, use the
2450 type of the first field for the tests below. We have already verified
2451 that the modes are the same. */
2452 if ((TREE_CODE (passed_type) == UNION_TYPE
2453 || TREE_CODE (passed_type) == RECORD_TYPE)
2454 && TYPE_TRANSPARENT_AGGR (passed_type))
2455 passed_type = TREE_TYPE (first_field (passed_type));
2457 /* See if this arg was passed by invisible reference. */
2458 if (pass_by_reference (&all->args_so_far_v, passed_mode,
2459 passed_type, data->named_arg))
2461 passed_type = nominal_type = build_pointer_type (passed_type);
2462 data->passed_pointer = true;
2463 passed_mode = nominal_mode = TYPE_MODE (nominal_type);
2466 /* Find mode as it is passed by the ABI. */
2467 unsignedp = TYPE_UNSIGNED (passed_type);
2468 promoted_mode = promote_function_mode (passed_type, passed_mode, &unsignedp,
2469 TREE_TYPE (current_function_decl), 0);
2471 egress:
2472 data->nominal_type = nominal_type;
2473 data->passed_type = passed_type;
2474 data->nominal_mode = nominal_mode;
2475 data->passed_mode = passed_mode;
2476 data->promoted_mode = promoted_mode;
2479 /* A subroutine of assign_parms. Invoke setup_incoming_varargs. */
2481 static void
2482 assign_parms_setup_varargs (struct assign_parm_data_all *all,
2483 struct assign_parm_data_one *data, bool no_rtl)
2485 int varargs_pretend_bytes = 0;
2487 targetm.calls.setup_incoming_varargs (all->args_so_far,
2488 data->promoted_mode,
2489 data->passed_type,
2490 &varargs_pretend_bytes, no_rtl);
2492 /* If the back-end has requested extra stack space, record how much is
2493 needed. Do not change pretend_args_size otherwise since it may be
2494 nonzero from an earlier partial argument. */
2495 if (varargs_pretend_bytes > 0)
2496 all->pretend_args_size = varargs_pretend_bytes;
2499 /* A subroutine of assign_parms. Set DATA->ENTRY_PARM corresponding to
2500 the incoming location of the current parameter. */
2502 static void
2503 assign_parm_find_entry_rtl (struct assign_parm_data_all *all,
2504 struct assign_parm_data_one *data)
2506 HOST_WIDE_INT pretend_bytes = 0;
2507 rtx entry_parm;
2508 bool in_regs;
2510 if (data->promoted_mode == VOIDmode)
2512 data->entry_parm = data->stack_parm = const0_rtx;
2513 return;
2516 targetm.calls.warn_parameter_passing_abi (all->args_so_far,
2517 data->passed_type);
2519 entry_parm = targetm.calls.function_incoming_arg (all->args_so_far,
2520 data->promoted_mode,
2521 data->passed_type,
2522 data->named_arg);
2524 if (entry_parm == 0)
2525 data->promoted_mode = data->passed_mode;
2527 /* Determine parm's home in the stack, in case it arrives in the stack
2528 or we should pretend it did. Compute the stack position and rtx where
2529 the argument arrives and its size.
2531 There is one complexity here: If this was a parameter that would
2532 have been passed in registers, but wasn't only because it is
2533 __builtin_va_alist, we want locate_and_pad_parm to treat it as if
2534 it came in a register so that REG_PARM_STACK_SPACE isn't skipped.
2535 In this case, we call FUNCTION_ARG with NAMED set to 1 instead of 0
2536 as it was the previous time. */
2537 in_regs = (entry_parm != 0);
2538 #ifdef STACK_PARMS_IN_REG_PARM_AREA
2539 in_regs = true;
2540 #endif
2541 if (!in_regs && !data->named_arg)
2543 if (targetm.calls.pretend_outgoing_varargs_named (all->args_so_far))
2545 rtx tem;
2546 tem = targetm.calls.function_incoming_arg (all->args_so_far,
2547 data->promoted_mode,
2548 data->passed_type, true);
2549 in_regs = tem != NULL;
2553 /* If this parameter was passed both in registers and in the stack, use
2554 the copy on the stack. */
2555 if (targetm.calls.must_pass_in_stack (data->promoted_mode,
2556 data->passed_type))
2557 entry_parm = 0;
2559 if (entry_parm)
2561 int partial;
2563 partial = targetm.calls.arg_partial_bytes (all->args_so_far,
2564 data->promoted_mode,
2565 data->passed_type,
2566 data->named_arg);
2567 data->partial = partial;
2569 /* The caller might already have allocated stack space for the
2570 register parameters. */
2571 if (partial != 0 && all->reg_parm_stack_space == 0)
2573 /* Part of this argument is passed in registers and part
2574 is passed on the stack. Ask the prologue code to extend
2575 the stack part so that we can recreate the full value.
2577 PRETEND_BYTES is the size of the registers we need to store.
2578 CURRENT_FUNCTION_PRETEND_ARGS_SIZE is the amount of extra
2579 stack space that the prologue should allocate.
2581 Internally, gcc assumes that the argument pointer is aligned
2582 to STACK_BOUNDARY bits. This is used both for alignment
2583 optimizations (see init_emit) and to locate arguments that are
2584 aligned to more than PARM_BOUNDARY bits. We must preserve this
2585 invariant by rounding CURRENT_FUNCTION_PRETEND_ARGS_SIZE up to
2586 a stack boundary. */
2588 /* We assume at most one partial arg, and it must be the first
2589 argument on the stack. */
2590 gcc_assert (!all->extra_pretend_bytes && !all->pretend_args_size);
2592 pretend_bytes = partial;
2593 all->pretend_args_size = CEIL_ROUND (pretend_bytes, STACK_BYTES);
2595 /* We want to align relative to the actual stack pointer, so
2596 don't include this in the stack size until later. */
2597 all->extra_pretend_bytes = all->pretend_args_size;
2601 locate_and_pad_parm (data->promoted_mode, data->passed_type, in_regs,
2602 all->reg_parm_stack_space,
2603 entry_parm ? data->partial : 0, current_function_decl,
2604 &all->stack_args_size, &data->locate);
2606 /* Update parm_stack_boundary if this parameter is passed in the
2607 stack. */
2608 if (!in_regs && crtl->parm_stack_boundary < data->locate.boundary)
2609 crtl->parm_stack_boundary = data->locate.boundary;
2611 /* Adjust offsets to include the pretend args. */
2612 pretend_bytes = all->extra_pretend_bytes - pretend_bytes;
2613 data->locate.slot_offset.constant += pretend_bytes;
2614 data->locate.offset.constant += pretend_bytes;
2616 data->entry_parm = entry_parm;
2619 /* A subroutine of assign_parms. If there is actually space on the stack
2620 for this parm, count it in stack_args_size and return true. */
2622 static bool
2623 assign_parm_is_stack_parm (struct assign_parm_data_all *all,
2624 struct assign_parm_data_one *data)
2626 /* Trivially true if we've no incoming register. */
2627 if (data->entry_parm == NULL)
2629 /* Also true if we're partially in registers and partially not,
2630 since we've arranged to drop the entire argument on the stack. */
2631 else if (data->partial != 0)
2633 /* Also true if the target says that it's passed in both registers
2634 and on the stack. */
2635 else if (GET_CODE (data->entry_parm) == PARALLEL
2636 && XEXP (XVECEXP (data->entry_parm, 0, 0), 0) == NULL_RTX)
2638 /* Also true if the target says that there's stack allocated for
2639 all register parameters. */
2640 else if (all->reg_parm_stack_space > 0)
2642 /* Otherwise, no, this parameter has no ABI defined stack slot. */
2643 else
2644 return false;
2646 all->stack_args_size.constant += data->locate.size.constant;
2647 if (data->locate.size.var)
2648 ADD_PARM_SIZE (all->stack_args_size, data->locate.size.var);
2650 return true;
2653 /* A subroutine of assign_parms. Given that this parameter is allocated
2654 stack space by the ABI, find it. */
2656 static void
2657 assign_parm_find_stack_rtl (tree parm, struct assign_parm_data_one *data)
2659 rtx offset_rtx, stack_parm;
2660 unsigned int align, boundary;
2662 /* If we're passing this arg using a reg, make its stack home the
2663 aligned stack slot. */
2664 if (data->entry_parm)
2665 offset_rtx = ARGS_SIZE_RTX (data->locate.slot_offset);
2666 else
2667 offset_rtx = ARGS_SIZE_RTX (data->locate.offset);
2669 stack_parm = crtl->args.internal_arg_pointer;
2670 if (offset_rtx != const0_rtx)
2671 stack_parm = gen_rtx_PLUS (Pmode, stack_parm, offset_rtx);
2672 stack_parm = gen_rtx_MEM (data->promoted_mode, stack_parm);
2674 if (!data->passed_pointer)
2676 set_mem_attributes (stack_parm, parm, 1);
2677 /* set_mem_attributes could set MEM_SIZE to the passed mode's size,
2678 while promoted mode's size is needed. */
2679 if (data->promoted_mode != BLKmode
2680 && data->promoted_mode != DECL_MODE (parm))
2682 set_mem_size (stack_parm, GET_MODE_SIZE (data->promoted_mode));
2683 if (MEM_EXPR (stack_parm) && MEM_OFFSET_KNOWN_P (stack_parm))
2685 poly_int64 offset = subreg_lowpart_offset (DECL_MODE (parm),
2686 data->promoted_mode);
2687 if (maybe_ne (offset, 0))
2688 set_mem_offset (stack_parm, MEM_OFFSET (stack_parm) - offset);
2693 boundary = data->locate.boundary;
2694 align = BITS_PER_UNIT;
2696 /* If we're padding upward, we know that the alignment of the slot
2697 is TARGET_FUNCTION_ARG_BOUNDARY. If we're using slot_offset, we're
2698 intentionally forcing upward padding. Otherwise we have to come
2699 up with a guess at the alignment based on OFFSET_RTX. */
2700 poly_int64 offset;
2701 if (data->locate.where_pad != PAD_DOWNWARD || data->entry_parm)
2702 align = boundary;
2703 else if (poly_int_rtx_p (offset_rtx, &offset))
2705 align = least_bit_hwi (boundary);
2706 unsigned int offset_align = known_alignment (offset) * BITS_PER_UNIT;
2707 if (offset_align != 0)
2708 align = MIN (align, offset_align);
2710 set_mem_align (stack_parm, align);
2712 if (data->entry_parm)
2713 set_reg_attrs_for_parm (data->entry_parm, stack_parm);
2715 data->stack_parm = stack_parm;
2718 /* A subroutine of assign_parms. Adjust DATA->ENTRY_RTL such that it's
2719 always valid and contiguous. */
2721 static void
2722 assign_parm_adjust_entry_rtl (struct assign_parm_data_one *data)
2724 rtx entry_parm = data->entry_parm;
2725 rtx stack_parm = data->stack_parm;
2727 /* If this parm was passed part in regs and part in memory, pretend it
2728 arrived entirely in memory by pushing the register-part onto the stack.
2729 In the special case of a DImode or DFmode that is split, we could put
2730 it together in a pseudoreg directly, but for now that's not worth
2731 bothering with. */
2732 if (data->partial != 0)
2734 /* Handle calls that pass values in multiple non-contiguous
2735 locations. The Irix 6 ABI has examples of this. */
2736 if (GET_CODE (entry_parm) == PARALLEL)
2737 emit_group_store (validize_mem (copy_rtx (stack_parm)), entry_parm,
2738 data->passed_type,
2739 int_size_in_bytes (data->passed_type));
2740 else
2742 gcc_assert (data->partial % UNITS_PER_WORD == 0);
2743 move_block_from_reg (REGNO (entry_parm),
2744 validize_mem (copy_rtx (stack_parm)),
2745 data->partial / UNITS_PER_WORD);
2748 entry_parm = stack_parm;
2751 /* If we didn't decide this parm came in a register, by default it came
2752 on the stack. */
2753 else if (entry_parm == NULL)
2754 entry_parm = stack_parm;
2756 /* When an argument is passed in multiple locations, we can't make use
2757 of this information, but we can save some copying if the whole argument
2758 is passed in a single register. */
2759 else if (GET_CODE (entry_parm) == PARALLEL
2760 && data->nominal_mode != BLKmode
2761 && data->passed_mode != BLKmode)
2763 size_t i, len = XVECLEN (entry_parm, 0);
2765 for (i = 0; i < len; i++)
2766 if (XEXP (XVECEXP (entry_parm, 0, i), 0) != NULL_RTX
2767 && REG_P (XEXP (XVECEXP (entry_parm, 0, i), 0))
2768 && (GET_MODE (XEXP (XVECEXP (entry_parm, 0, i), 0))
2769 == data->passed_mode)
2770 && INTVAL (XEXP (XVECEXP (entry_parm, 0, i), 1)) == 0)
2772 entry_parm = XEXP (XVECEXP (entry_parm, 0, i), 0);
2773 break;
2777 data->entry_parm = entry_parm;
2780 /* A subroutine of assign_parms. Reconstitute any values which were
2781 passed in multiple registers and would fit in a single register. */
2783 static void
2784 assign_parm_remove_parallels (struct assign_parm_data_one *data)
2786 rtx entry_parm = data->entry_parm;
2788 /* Convert the PARALLEL to a REG of the same mode as the parallel.
2789 This can be done with register operations rather than on the
2790 stack, even if we will store the reconstituted parameter on the
2791 stack later. */
2792 if (GET_CODE (entry_parm) == PARALLEL && GET_MODE (entry_parm) != BLKmode)
2794 rtx parmreg = gen_reg_rtx (GET_MODE (entry_parm));
2795 emit_group_store (parmreg, entry_parm, data->passed_type,
2796 GET_MODE_SIZE (GET_MODE (entry_parm)));
2797 entry_parm = parmreg;
2800 data->entry_parm = entry_parm;
2803 /* A subroutine of assign_parms. Adjust DATA->STACK_RTL such that it's
2804 always valid and properly aligned. */
2806 static void
2807 assign_parm_adjust_stack_rtl (struct assign_parm_data_one *data)
2809 rtx stack_parm = data->stack_parm;
2811 /* If we can't trust the parm stack slot to be aligned enough for its
2812 ultimate type, don't use that slot after entry. We'll make another
2813 stack slot, if we need one. */
2814 if (stack_parm
2815 && ((STRICT_ALIGNMENT
2816 && GET_MODE_ALIGNMENT (data->nominal_mode) > MEM_ALIGN (stack_parm))
2817 || (data->nominal_type
2818 && TYPE_ALIGN (data->nominal_type) > MEM_ALIGN (stack_parm)
2819 && MEM_ALIGN (stack_parm) < PREFERRED_STACK_BOUNDARY)))
2820 stack_parm = NULL;
2822 /* If parm was passed in memory, and we need to convert it on entry,
2823 don't store it back in that same slot. */
2824 else if (data->entry_parm == stack_parm
2825 && data->nominal_mode != BLKmode
2826 && data->nominal_mode != data->passed_mode)
2827 stack_parm = NULL;
2829 /* If stack protection is in effect for this function, don't leave any
2830 pointers in their passed stack slots. */
2831 else if (crtl->stack_protect_guard
2832 && (flag_stack_protect == 2
2833 || data->passed_pointer
2834 || POINTER_TYPE_P (data->nominal_type)))
2835 stack_parm = NULL;
2837 data->stack_parm = stack_parm;
2840 /* A subroutine of assign_parms. Return true if the current parameter
2841 should be stored as a BLKmode in the current frame. */
2843 static bool
2844 assign_parm_setup_block_p (struct assign_parm_data_one *data)
2846 if (data->nominal_mode == BLKmode)
2847 return true;
2848 if (GET_MODE (data->entry_parm) == BLKmode)
2849 return true;
2851 #ifdef BLOCK_REG_PADDING
2852 /* Only assign_parm_setup_block knows how to deal with register arguments
2853 that are padded at the least significant end. */
2854 if (REG_P (data->entry_parm)
2855 && known_lt (GET_MODE_SIZE (data->promoted_mode), UNITS_PER_WORD)
2856 && (BLOCK_REG_PADDING (data->passed_mode, data->passed_type, 1)
2857 == (BYTES_BIG_ENDIAN ? PAD_UPWARD : PAD_DOWNWARD)))
2858 return true;
2859 #endif
2861 return false;
2864 /* A subroutine of assign_parms. Arrange for the parameter to be
2865 present and valid in DATA->STACK_RTL. */
2867 static void
2868 assign_parm_setup_block (struct assign_parm_data_all *all,
2869 tree parm, struct assign_parm_data_one *data)
2871 rtx entry_parm = data->entry_parm;
2872 rtx stack_parm = data->stack_parm;
2873 rtx target_reg = NULL_RTX;
2874 bool in_conversion_seq = false;
2875 HOST_WIDE_INT size;
2876 HOST_WIDE_INT size_stored;
2878 if (GET_CODE (entry_parm) == PARALLEL)
2879 entry_parm = emit_group_move_into_temps (entry_parm);
2881 /* If we want the parameter in a pseudo, don't use a stack slot. */
2882 if (is_gimple_reg (parm) && use_register_for_decl (parm))
2884 tree def = ssa_default_def (cfun, parm);
2885 gcc_assert (def);
2886 machine_mode mode = promote_ssa_mode (def, NULL);
2887 rtx reg = gen_reg_rtx (mode);
2888 if (GET_CODE (reg) != CONCAT)
2889 stack_parm = reg;
2890 else
2892 target_reg = reg;
2893 /* Avoid allocating a stack slot, if there isn't one
2894 preallocated by the ABI. It might seem like we should
2895 always prefer a pseudo, but converting between
2896 floating-point and integer modes goes through the stack
2897 on various machines, so it's better to use the reserved
2898 stack slot than to risk wasting it and allocating more
2899 for the conversion. */
2900 if (stack_parm == NULL_RTX)
2902 int save = generating_concat_p;
2903 generating_concat_p = 0;
2904 stack_parm = gen_reg_rtx (mode);
2905 generating_concat_p = save;
2908 data->stack_parm = NULL;
2911 size = int_size_in_bytes (data->passed_type);
2912 size_stored = CEIL_ROUND (size, UNITS_PER_WORD);
2913 if (stack_parm == 0)
2915 SET_DECL_ALIGN (parm, MAX (DECL_ALIGN (parm), BITS_PER_WORD));
2916 stack_parm = assign_stack_local (BLKmode, size_stored,
2917 DECL_ALIGN (parm));
2918 if (known_eq (GET_MODE_SIZE (GET_MODE (entry_parm)), size))
2919 PUT_MODE (stack_parm, GET_MODE (entry_parm));
2920 set_mem_attributes (stack_parm, parm, 1);
2923 /* If a BLKmode arrives in registers, copy it to a stack slot. Handle
2924 calls that pass values in multiple non-contiguous locations. */
2925 if (REG_P (entry_parm) || GET_CODE (entry_parm) == PARALLEL)
2927 rtx mem;
2929 /* Note that we will be storing an integral number of words.
2930 So we have to be careful to ensure that we allocate an
2931 integral number of words. We do this above when we call
2932 assign_stack_local if space was not allocated in the argument
2933 list. If it was, this will not work if PARM_BOUNDARY is not
2934 a multiple of BITS_PER_WORD. It isn't clear how to fix this
2935 if it becomes a problem. Exception is when BLKmode arrives
2936 with arguments not conforming to word_mode. */
2938 if (data->stack_parm == 0)
2940 else if (GET_CODE (entry_parm) == PARALLEL)
2942 else
2943 gcc_assert (!size || !(PARM_BOUNDARY % BITS_PER_WORD));
2945 mem = validize_mem (copy_rtx (stack_parm));
2947 /* Handle values in multiple non-contiguous locations. */
2948 if (GET_CODE (entry_parm) == PARALLEL && !MEM_P (mem))
2949 emit_group_store (mem, entry_parm, data->passed_type, size);
2950 else if (GET_CODE (entry_parm) == PARALLEL)
2952 push_to_sequence2 (all->first_conversion_insn,
2953 all->last_conversion_insn);
2954 emit_group_store (mem, entry_parm, data->passed_type, size);
2955 all->first_conversion_insn = get_insns ();
2956 all->last_conversion_insn = get_last_insn ();
2957 end_sequence ();
2958 in_conversion_seq = true;
2961 else if (size == 0)
2964 /* If SIZE is that of a mode no bigger than a word, just use
2965 that mode's store operation. */
2966 else if (size <= UNITS_PER_WORD)
2968 unsigned int bits = size * BITS_PER_UNIT;
2969 machine_mode mode = int_mode_for_size (bits, 0).else_blk ();
2971 if (mode != BLKmode
2972 #ifdef BLOCK_REG_PADDING
2973 && (size == UNITS_PER_WORD
2974 || (BLOCK_REG_PADDING (mode, data->passed_type, 1)
2975 != (BYTES_BIG_ENDIAN ? PAD_UPWARD : PAD_DOWNWARD)))
2976 #endif
2979 rtx reg;
2981 /* We are really truncating a word_mode value containing
2982 SIZE bytes into a value of mode MODE. If such an
2983 operation requires no actual instructions, we can refer
2984 to the value directly in mode MODE, otherwise we must
2985 start with the register in word_mode and explicitly
2986 convert it. */
2987 if (targetm.truly_noop_truncation (size * BITS_PER_UNIT,
2988 BITS_PER_WORD))
2989 reg = gen_rtx_REG (mode, REGNO (entry_parm));
2990 else
2992 reg = gen_rtx_REG (word_mode, REGNO (entry_parm));
2993 reg = convert_to_mode (mode, copy_to_reg (reg), 1);
2995 emit_move_insn (change_address (mem, mode, 0), reg);
2998 #ifdef BLOCK_REG_PADDING
2999 /* Storing the register in memory as a full word, as
3000 move_block_from_reg below would do, and then using the
3001 MEM in a smaller mode, has the effect of shifting right
3002 if BYTES_BIG_ENDIAN. If we're bypassing memory, the
3003 shifting must be explicit. */
3004 else if (!MEM_P (mem))
3006 rtx x;
3008 /* If the assert below fails, we should have taken the
3009 mode != BLKmode path above, unless we have downward
3010 padding of smaller-than-word arguments on a machine
3011 with little-endian bytes, which would likely require
3012 additional changes to work correctly. */
3013 gcc_checking_assert (BYTES_BIG_ENDIAN
3014 && (BLOCK_REG_PADDING (mode,
3015 data->passed_type, 1)
3016 == PAD_UPWARD));
3018 int by = (UNITS_PER_WORD - size) * BITS_PER_UNIT;
3020 x = gen_rtx_REG (word_mode, REGNO (entry_parm));
3021 x = expand_shift (RSHIFT_EXPR, word_mode, x, by,
3022 NULL_RTX, 1);
3023 x = force_reg (word_mode, x);
3024 x = gen_lowpart_SUBREG (GET_MODE (mem), x);
3026 emit_move_insn (mem, x);
3028 #endif
3030 /* Blocks smaller than a word on a BYTES_BIG_ENDIAN
3031 machine must be aligned to the left before storing
3032 to memory. Note that the previous test doesn't
3033 handle all cases (e.g. SIZE == 3). */
3034 else if (size != UNITS_PER_WORD
3035 #ifdef BLOCK_REG_PADDING
3036 && (BLOCK_REG_PADDING (mode, data->passed_type, 1)
3037 == PAD_DOWNWARD)
3038 #else
3039 && BYTES_BIG_ENDIAN
3040 #endif
3043 rtx tem, x;
3044 int by = (UNITS_PER_WORD - size) * BITS_PER_UNIT;
3045 rtx reg = gen_rtx_REG (word_mode, REGNO (entry_parm));
3047 x = expand_shift (LSHIFT_EXPR, word_mode, reg, by, NULL_RTX, 1);
3048 tem = change_address (mem, word_mode, 0);
3049 emit_move_insn (tem, x);
3051 else
3052 move_block_from_reg (REGNO (entry_parm), mem,
3053 size_stored / UNITS_PER_WORD);
3055 else if (!MEM_P (mem))
3057 gcc_checking_assert (size > UNITS_PER_WORD);
3058 #ifdef BLOCK_REG_PADDING
3059 gcc_checking_assert (BLOCK_REG_PADDING (GET_MODE (mem),
3060 data->passed_type, 0)
3061 == PAD_UPWARD);
3062 #endif
3063 emit_move_insn (mem, entry_parm);
3065 else
3066 move_block_from_reg (REGNO (entry_parm), mem,
3067 size_stored / UNITS_PER_WORD);
3069 else if (data->stack_parm == 0)
3071 push_to_sequence2 (all->first_conversion_insn, all->last_conversion_insn);
3072 emit_block_move (stack_parm, data->entry_parm, GEN_INT (size),
3073 BLOCK_OP_NORMAL);
3074 all->first_conversion_insn = get_insns ();
3075 all->last_conversion_insn = get_last_insn ();
3076 end_sequence ();
3077 in_conversion_seq = true;
3080 if (target_reg)
3082 if (!in_conversion_seq)
3083 emit_move_insn (target_reg, stack_parm);
3084 else
3086 push_to_sequence2 (all->first_conversion_insn,
3087 all->last_conversion_insn);
3088 emit_move_insn (target_reg, stack_parm);
3089 all->first_conversion_insn = get_insns ();
3090 all->last_conversion_insn = get_last_insn ();
3091 end_sequence ();
3093 stack_parm = target_reg;
3096 data->stack_parm = stack_parm;
3097 set_parm_rtl (parm, stack_parm);
3100 /* A subroutine of assign_parms. Allocate a pseudo to hold the current
3101 parameter. Get it there. Perform all ABI specified conversions. */
3103 static void
3104 assign_parm_setup_reg (struct assign_parm_data_all *all, tree parm,
3105 struct assign_parm_data_one *data)
3107 rtx parmreg, validated_mem;
3108 rtx equiv_stack_parm;
3109 machine_mode promoted_nominal_mode;
3110 int unsignedp = TYPE_UNSIGNED (TREE_TYPE (parm));
3111 bool did_conversion = false;
3112 bool need_conversion, moved;
3113 rtx rtl;
3115 /* Store the parm in a pseudoregister during the function, but we may
3116 need to do it in a wider mode. Using 2 here makes the result
3117 consistent with promote_decl_mode and thus expand_expr_real_1. */
3118 promoted_nominal_mode
3119 = promote_function_mode (data->nominal_type, data->nominal_mode, &unsignedp,
3120 TREE_TYPE (current_function_decl), 2);
3122 parmreg = gen_reg_rtx (promoted_nominal_mode);
3123 if (!DECL_ARTIFICIAL (parm))
3124 mark_user_reg (parmreg);
3126 /* If this was an item that we received a pointer to,
3127 set rtl appropriately. */
3128 if (data->passed_pointer)
3130 rtl = gen_rtx_MEM (TYPE_MODE (TREE_TYPE (data->passed_type)), parmreg);
3131 set_mem_attributes (rtl, parm, 1);
3133 else
3134 rtl = parmreg;
3136 assign_parm_remove_parallels (data);
3138 /* Copy the value into the register, thus bridging between
3139 assign_parm_find_data_types and expand_expr_real_1. */
3141 equiv_stack_parm = data->stack_parm;
3142 validated_mem = validize_mem (copy_rtx (data->entry_parm));
3144 need_conversion = (data->nominal_mode != data->passed_mode
3145 || promoted_nominal_mode != data->promoted_mode);
3146 moved = false;
3148 if (need_conversion
3149 && GET_MODE_CLASS (data->nominal_mode) == MODE_INT
3150 && data->nominal_mode == data->passed_mode
3151 && data->nominal_mode == GET_MODE (data->entry_parm))
3153 /* ENTRY_PARM has been converted to PROMOTED_MODE, its
3154 mode, by the caller. We now have to convert it to
3155 NOMINAL_MODE, if different. However, PARMREG may be in
3156 a different mode than NOMINAL_MODE if it is being stored
3157 promoted.
3159 If ENTRY_PARM is a hard register, it might be in a register
3160 not valid for operating in its mode (e.g., an odd-numbered
3161 register for a DFmode). In that case, moves are the only
3162 thing valid, so we can't do a convert from there. This
3163 occurs when the calling sequence allow such misaligned
3164 usages.
3166 In addition, the conversion may involve a call, which could
3167 clobber parameters which haven't been copied to pseudo
3168 registers yet.
3170 First, we try to emit an insn which performs the necessary
3171 conversion. We verify that this insn does not clobber any
3172 hard registers. */
3174 enum insn_code icode;
3175 rtx op0, op1;
3177 icode = can_extend_p (promoted_nominal_mode, data->passed_mode,
3178 unsignedp);
3180 op0 = parmreg;
3181 op1 = validated_mem;
3182 if (icode != CODE_FOR_nothing
3183 && insn_operand_matches (icode, 0, op0)
3184 && insn_operand_matches (icode, 1, op1))
3186 enum rtx_code code = unsignedp ? ZERO_EXTEND : SIGN_EXTEND;
3187 rtx_insn *insn, *insns;
3188 rtx t = op1;
3189 HARD_REG_SET hardregs;
3191 start_sequence ();
3192 /* If op1 is a hard register that is likely spilled, first
3193 force it into a pseudo, otherwise combiner might extend
3194 its lifetime too much. */
3195 if (GET_CODE (t) == SUBREG)
3196 t = SUBREG_REG (t);
3197 if (REG_P (t)
3198 && HARD_REGISTER_P (t)
3199 && ! TEST_HARD_REG_BIT (fixed_reg_set, REGNO (t))
3200 && targetm.class_likely_spilled_p (REGNO_REG_CLASS (REGNO (t))))
3202 t = gen_reg_rtx (GET_MODE (op1));
3203 emit_move_insn (t, op1);
3205 else
3206 t = op1;
3207 rtx_insn *pat = gen_extend_insn (op0, t, promoted_nominal_mode,
3208 data->passed_mode, unsignedp);
3209 emit_insn (pat);
3210 insns = get_insns ();
3212 moved = true;
3213 CLEAR_HARD_REG_SET (hardregs);
3214 for (insn = insns; insn && moved; insn = NEXT_INSN (insn))
3216 if (INSN_P (insn))
3217 note_stores (PATTERN (insn), record_hard_reg_sets,
3218 &hardregs);
3219 if (!hard_reg_set_empty_p (hardregs))
3220 moved = false;
3223 end_sequence ();
3225 if (moved)
3227 emit_insn (insns);
3228 if (equiv_stack_parm != NULL_RTX)
3229 equiv_stack_parm = gen_rtx_fmt_e (code, GET_MODE (parmreg),
3230 equiv_stack_parm);
3235 if (moved)
3236 /* Nothing to do. */
3238 else if (need_conversion)
3240 /* We did not have an insn to convert directly, or the sequence
3241 generated appeared unsafe. We must first copy the parm to a
3242 pseudo reg, and save the conversion until after all
3243 parameters have been moved. */
3245 int save_tree_used;
3246 rtx tempreg = gen_reg_rtx (GET_MODE (data->entry_parm));
3248 emit_move_insn (tempreg, validated_mem);
3250 push_to_sequence2 (all->first_conversion_insn, all->last_conversion_insn);
3251 tempreg = convert_to_mode (data->nominal_mode, tempreg, unsignedp);
3253 if (partial_subreg_p (tempreg)
3254 && GET_MODE (tempreg) == data->nominal_mode
3255 && REG_P (SUBREG_REG (tempreg))
3256 && data->nominal_mode == data->passed_mode
3257 && GET_MODE (SUBREG_REG (tempreg)) == GET_MODE (data->entry_parm))
3259 /* The argument is already sign/zero extended, so note it
3260 into the subreg. */
3261 SUBREG_PROMOTED_VAR_P (tempreg) = 1;
3262 SUBREG_PROMOTED_SET (tempreg, unsignedp);
3265 /* TREE_USED gets set erroneously during expand_assignment. */
3266 save_tree_used = TREE_USED (parm);
3267 SET_DECL_RTL (parm, rtl);
3268 expand_assignment (parm, make_tree (data->nominal_type, tempreg), false);
3269 SET_DECL_RTL (parm, NULL_RTX);
3270 TREE_USED (parm) = save_tree_used;
3271 all->first_conversion_insn = get_insns ();
3272 all->last_conversion_insn = get_last_insn ();
3273 end_sequence ();
3275 did_conversion = true;
3277 else
3278 emit_move_insn (parmreg, validated_mem);
3280 /* If we were passed a pointer but the actual value can safely live
3281 in a register, retrieve it and use it directly. */
3282 if (data->passed_pointer && TYPE_MODE (TREE_TYPE (parm)) != BLKmode)
3284 /* We can't use nominal_mode, because it will have been set to
3285 Pmode above. We must use the actual mode of the parm. */
3286 if (use_register_for_decl (parm))
3288 parmreg = gen_reg_rtx (TYPE_MODE (TREE_TYPE (parm)));
3289 mark_user_reg (parmreg);
3291 else
3293 int align = STACK_SLOT_ALIGNMENT (TREE_TYPE (parm),
3294 TYPE_MODE (TREE_TYPE (parm)),
3295 TYPE_ALIGN (TREE_TYPE (parm)));
3296 parmreg
3297 = assign_stack_local (TYPE_MODE (TREE_TYPE (parm)),
3298 GET_MODE_SIZE (TYPE_MODE (TREE_TYPE (parm))),
3299 align);
3300 set_mem_attributes (parmreg, parm, 1);
3303 /* We need to preserve an address based on VIRTUAL_STACK_VARS_REGNUM for
3304 the debug info in case it is not legitimate. */
3305 if (GET_MODE (parmreg) != GET_MODE (rtl))
3307 rtx tempreg = gen_reg_rtx (GET_MODE (rtl));
3308 int unsigned_p = TYPE_UNSIGNED (TREE_TYPE (parm));
3310 push_to_sequence2 (all->first_conversion_insn,
3311 all->last_conversion_insn);
3312 emit_move_insn (tempreg, rtl);
3313 tempreg = convert_to_mode (GET_MODE (parmreg), tempreg, unsigned_p);
3314 emit_move_insn (MEM_P (parmreg) ? copy_rtx (parmreg) : parmreg,
3315 tempreg);
3316 all->first_conversion_insn = get_insns ();
3317 all->last_conversion_insn = get_last_insn ();
3318 end_sequence ();
3320 did_conversion = true;
3322 else
3323 emit_move_insn (MEM_P (parmreg) ? copy_rtx (parmreg) : parmreg, rtl);
3325 rtl = parmreg;
3327 /* STACK_PARM is the pointer, not the parm, and PARMREG is
3328 now the parm. */
3329 data->stack_parm = NULL;
3332 set_parm_rtl (parm, rtl);
3334 /* Mark the register as eliminable if we did no conversion and it was
3335 copied from memory at a fixed offset, and the arg pointer was not
3336 copied to a pseudo-reg. If the arg pointer is a pseudo reg or the
3337 offset formed an invalid address, such memory-equivalences as we
3338 make here would screw up life analysis for it. */
3339 if (data->nominal_mode == data->passed_mode
3340 && !did_conversion
3341 && data->stack_parm != 0
3342 && MEM_P (data->stack_parm)
3343 && data->locate.offset.var == 0
3344 && reg_mentioned_p (virtual_incoming_args_rtx,
3345 XEXP (data->stack_parm, 0)))
3347 rtx_insn *linsn = get_last_insn ();
3348 rtx_insn *sinsn;
3349 rtx set;
3351 /* Mark complex types separately. */
3352 if (GET_CODE (parmreg) == CONCAT)
3354 scalar_mode submode = GET_MODE_INNER (GET_MODE (parmreg));
3355 int regnor = REGNO (XEXP (parmreg, 0));
3356 int regnoi = REGNO (XEXP (parmreg, 1));
3357 rtx stackr = adjust_address_nv (data->stack_parm, submode, 0);
3358 rtx stacki = adjust_address_nv (data->stack_parm, submode,
3359 GET_MODE_SIZE (submode));
3361 /* Scan backwards for the set of the real and
3362 imaginary parts. */
3363 for (sinsn = linsn; sinsn != 0;
3364 sinsn = prev_nonnote_insn (sinsn))
3366 set = single_set (sinsn);
3367 if (set == 0)
3368 continue;
3370 if (SET_DEST (set) == regno_reg_rtx [regnoi])
3371 set_unique_reg_note (sinsn, REG_EQUIV, stacki);
3372 else if (SET_DEST (set) == regno_reg_rtx [regnor])
3373 set_unique_reg_note (sinsn, REG_EQUIV, stackr);
3376 else
3377 set_dst_reg_note (linsn, REG_EQUIV, equiv_stack_parm, parmreg);
3380 /* For pointer data type, suggest pointer register. */
3381 if (POINTER_TYPE_P (TREE_TYPE (parm)))
3382 mark_reg_pointer (parmreg,
3383 TYPE_ALIGN (TREE_TYPE (TREE_TYPE (parm))));
3386 /* A subroutine of assign_parms. Allocate stack space to hold the current
3387 parameter. Get it there. Perform all ABI specified conversions. */
3389 static void
3390 assign_parm_setup_stack (struct assign_parm_data_all *all, tree parm,
3391 struct assign_parm_data_one *data)
3393 /* Value must be stored in the stack slot STACK_PARM during function
3394 execution. */
3395 bool to_conversion = false;
3397 assign_parm_remove_parallels (data);
3399 if (data->promoted_mode != data->nominal_mode)
3401 /* Conversion is required. */
3402 rtx tempreg = gen_reg_rtx (GET_MODE (data->entry_parm));
3404 emit_move_insn (tempreg, validize_mem (copy_rtx (data->entry_parm)));
3406 push_to_sequence2 (all->first_conversion_insn, all->last_conversion_insn);
3407 to_conversion = true;
3409 data->entry_parm = convert_to_mode (data->nominal_mode, tempreg,
3410 TYPE_UNSIGNED (TREE_TYPE (parm)));
3412 if (data->stack_parm)
3414 poly_int64 offset
3415 = subreg_lowpart_offset (data->nominal_mode,
3416 GET_MODE (data->stack_parm));
3417 /* ??? This may need a big-endian conversion on sparc64. */
3418 data->stack_parm
3419 = adjust_address (data->stack_parm, data->nominal_mode, 0);
3420 if (maybe_ne (offset, 0) && MEM_OFFSET_KNOWN_P (data->stack_parm))
3421 set_mem_offset (data->stack_parm,
3422 MEM_OFFSET (data->stack_parm) + offset);
3426 if (data->entry_parm != data->stack_parm)
3428 rtx src, dest;
3430 if (data->stack_parm == 0)
3432 int align = STACK_SLOT_ALIGNMENT (data->passed_type,
3433 GET_MODE (data->entry_parm),
3434 TYPE_ALIGN (data->passed_type));
3435 data->stack_parm
3436 = assign_stack_local (GET_MODE (data->entry_parm),
3437 GET_MODE_SIZE (GET_MODE (data->entry_parm)),
3438 align);
3439 set_mem_attributes (data->stack_parm, parm, 1);
3442 dest = validize_mem (copy_rtx (data->stack_parm));
3443 src = validize_mem (copy_rtx (data->entry_parm));
3445 if (MEM_P (src))
3447 /* Use a block move to handle potentially misaligned entry_parm. */
3448 if (!to_conversion)
3449 push_to_sequence2 (all->first_conversion_insn,
3450 all->last_conversion_insn);
3451 to_conversion = true;
3453 emit_block_move (dest, src,
3454 GEN_INT (int_size_in_bytes (data->passed_type)),
3455 BLOCK_OP_NORMAL);
3457 else
3459 if (!REG_P (src))
3460 src = force_reg (GET_MODE (src), src);
3461 emit_move_insn (dest, src);
3465 if (to_conversion)
3467 all->first_conversion_insn = get_insns ();
3468 all->last_conversion_insn = get_last_insn ();
3469 end_sequence ();
3472 set_parm_rtl (parm, data->stack_parm);
3475 /* A subroutine of assign_parms. If the ABI splits complex arguments, then
3476 undo the frobbing that we did in assign_parms_augmented_arg_list. */
3478 static void
3479 assign_parms_unsplit_complex (struct assign_parm_data_all *all,
3480 vec<tree> fnargs)
3482 tree parm;
3483 tree orig_fnargs = all->orig_fnargs;
3484 unsigned i = 0;
3486 for (parm = orig_fnargs; parm; parm = TREE_CHAIN (parm), ++i)
3488 if (TREE_CODE (TREE_TYPE (parm)) == COMPLEX_TYPE
3489 && targetm.calls.split_complex_arg (TREE_TYPE (parm)))
3491 rtx tmp, real, imag;
3492 scalar_mode inner = GET_MODE_INNER (DECL_MODE (parm));
3494 real = DECL_RTL (fnargs[i]);
3495 imag = DECL_RTL (fnargs[i + 1]);
3496 if (inner != GET_MODE (real))
3498 real = gen_lowpart_SUBREG (inner, real);
3499 imag = gen_lowpart_SUBREG (inner, imag);
3502 if (TREE_ADDRESSABLE (parm))
3504 rtx rmem, imem;
3505 HOST_WIDE_INT size = int_size_in_bytes (TREE_TYPE (parm));
3506 int align = STACK_SLOT_ALIGNMENT (TREE_TYPE (parm),
3507 DECL_MODE (parm),
3508 TYPE_ALIGN (TREE_TYPE (parm)));
3510 /* split_complex_arg put the real and imag parts in
3511 pseudos. Move them to memory. */
3512 tmp = assign_stack_local (DECL_MODE (parm), size, align);
3513 set_mem_attributes (tmp, parm, 1);
3514 rmem = adjust_address_nv (tmp, inner, 0);
3515 imem = adjust_address_nv (tmp, inner, GET_MODE_SIZE (inner));
3516 push_to_sequence2 (all->first_conversion_insn,
3517 all->last_conversion_insn);
3518 emit_move_insn (rmem, real);
3519 emit_move_insn (imem, imag);
3520 all->first_conversion_insn = get_insns ();
3521 all->last_conversion_insn = get_last_insn ();
3522 end_sequence ();
3524 else
3525 tmp = gen_rtx_CONCAT (DECL_MODE (parm), real, imag);
3526 set_parm_rtl (parm, tmp);
3528 real = DECL_INCOMING_RTL (fnargs[i]);
3529 imag = DECL_INCOMING_RTL (fnargs[i + 1]);
3530 if (inner != GET_MODE (real))
3532 real = gen_lowpart_SUBREG (inner, real);
3533 imag = gen_lowpart_SUBREG (inner, imag);
3535 tmp = gen_rtx_CONCAT (DECL_MODE (parm), real, imag);
3536 set_decl_incoming_rtl (parm, tmp, false);
3537 i++;
3542 /* Assign RTL expressions to the function's parameters. This may involve
3543 copying them into registers and using those registers as the DECL_RTL. */
3545 static void
3546 assign_parms (tree fndecl)
3548 struct assign_parm_data_all all;
3549 tree parm;
3550 vec<tree> fnargs;
3551 unsigned i;
3553 crtl->args.internal_arg_pointer
3554 = targetm.calls.internal_arg_pointer ();
3556 assign_parms_initialize_all (&all);
3557 fnargs = assign_parms_augmented_arg_list (&all);
3559 FOR_EACH_VEC_ELT (fnargs, i, parm)
3561 struct assign_parm_data_one data;
3563 /* Extract the type of PARM; adjust it according to ABI. */
3564 assign_parm_find_data_types (&all, parm, &data);
3566 /* Early out for errors and void parameters. */
3567 if (data.passed_mode == VOIDmode)
3569 SET_DECL_RTL (parm, const0_rtx);
3570 DECL_INCOMING_RTL (parm) = DECL_RTL (parm);
3571 continue;
3574 /* Estimate stack alignment from parameter alignment. */
3575 if (SUPPORTS_STACK_ALIGNMENT)
3577 unsigned int align
3578 = targetm.calls.function_arg_boundary (data.promoted_mode,
3579 data.passed_type);
3580 align = MINIMUM_ALIGNMENT (data.passed_type, data.promoted_mode,
3581 align);
3582 if (TYPE_ALIGN (data.nominal_type) > align)
3583 align = MINIMUM_ALIGNMENT (data.nominal_type,
3584 TYPE_MODE (data.nominal_type),
3585 TYPE_ALIGN (data.nominal_type));
3586 if (crtl->stack_alignment_estimated < align)
3588 gcc_assert (!crtl->stack_realign_processed);
3589 crtl->stack_alignment_estimated = align;
3593 /* Find out where the parameter arrives in this function. */
3594 assign_parm_find_entry_rtl (&all, &data);
3596 /* Find out where stack space for this parameter might be. */
3597 if (assign_parm_is_stack_parm (&all, &data))
3599 assign_parm_find_stack_rtl (parm, &data);
3600 assign_parm_adjust_entry_rtl (&data);
3602 /* Record permanently how this parm was passed. */
3603 if (data.passed_pointer)
3605 rtx incoming_rtl
3606 = gen_rtx_MEM (TYPE_MODE (TREE_TYPE (data.passed_type)),
3607 data.entry_parm);
3608 set_decl_incoming_rtl (parm, incoming_rtl, true);
3610 else
3611 set_decl_incoming_rtl (parm, data.entry_parm, false);
3613 assign_parm_adjust_stack_rtl (&data);
3615 if (assign_parm_setup_block_p (&data))
3616 assign_parm_setup_block (&all, parm, &data);
3617 else if (data.passed_pointer || use_register_for_decl (parm))
3618 assign_parm_setup_reg (&all, parm, &data);
3619 else
3620 assign_parm_setup_stack (&all, parm, &data);
3622 if (cfun->stdarg && !DECL_CHAIN (parm))
3623 assign_parms_setup_varargs (&all, &data, false);
3625 /* Update info on where next arg arrives in registers. */
3626 targetm.calls.function_arg_advance (all.args_so_far, data.promoted_mode,
3627 data.passed_type, data.named_arg);
3630 if (targetm.calls.split_complex_arg)
3631 assign_parms_unsplit_complex (&all, fnargs);
3633 fnargs.release ();
3635 /* Output all parameter conversion instructions (possibly including calls)
3636 now that all parameters have been copied out of hard registers. */
3637 emit_insn (all.first_conversion_insn);
3639 /* Estimate reload stack alignment from scalar return mode. */
3640 if (SUPPORTS_STACK_ALIGNMENT)
3642 if (DECL_RESULT (fndecl))
3644 tree type = TREE_TYPE (DECL_RESULT (fndecl));
3645 machine_mode mode = TYPE_MODE (type);
3647 if (mode != BLKmode
3648 && mode != VOIDmode
3649 && !AGGREGATE_TYPE_P (type))
3651 unsigned int align = GET_MODE_ALIGNMENT (mode);
3652 if (crtl->stack_alignment_estimated < align)
3654 gcc_assert (!crtl->stack_realign_processed);
3655 crtl->stack_alignment_estimated = align;
3661 /* If we are receiving a struct value address as the first argument, set up
3662 the RTL for the function result. As this might require code to convert
3663 the transmitted address to Pmode, we do this here to ensure that possible
3664 preliminary conversions of the address have been emitted already. */
3665 if (all.function_result_decl)
3667 tree result = DECL_RESULT (current_function_decl);
3668 rtx addr = DECL_RTL (all.function_result_decl);
3669 rtx x;
3671 if (DECL_BY_REFERENCE (result))
3673 SET_DECL_VALUE_EXPR (result, all.function_result_decl);
3674 x = addr;
3676 else
3678 SET_DECL_VALUE_EXPR (result,
3679 build1 (INDIRECT_REF, TREE_TYPE (result),
3680 all.function_result_decl));
3681 addr = convert_memory_address (Pmode, addr);
3682 x = gen_rtx_MEM (DECL_MODE (result), addr);
3683 set_mem_attributes (x, result, 1);
3686 DECL_HAS_VALUE_EXPR_P (result) = 1;
3688 set_parm_rtl (result, x);
3691 /* We have aligned all the args, so add space for the pretend args. */
3692 crtl->args.pretend_args_size = all.pretend_args_size;
3693 all.stack_args_size.constant += all.extra_pretend_bytes;
3694 crtl->args.size = all.stack_args_size.constant;
3696 /* Adjust function incoming argument size for alignment and
3697 minimum length. */
3699 crtl->args.size = upper_bound (crtl->args.size, all.reg_parm_stack_space);
3700 crtl->args.size = aligned_upper_bound (crtl->args.size,
3701 PARM_BOUNDARY / BITS_PER_UNIT);
3703 if (ARGS_GROW_DOWNWARD)
3705 crtl->args.arg_offset_rtx
3706 = (all.stack_args_size.var == 0
3707 ? gen_int_mode (-all.stack_args_size.constant, Pmode)
3708 : expand_expr (size_diffop (all.stack_args_size.var,
3709 size_int (-all.stack_args_size.constant)),
3710 NULL_RTX, VOIDmode, EXPAND_NORMAL));
3712 else
3713 crtl->args.arg_offset_rtx = ARGS_SIZE_RTX (all.stack_args_size);
3715 /* See how many bytes, if any, of its args a function should try to pop
3716 on return. */
3718 crtl->args.pops_args = targetm.calls.return_pops_args (fndecl,
3719 TREE_TYPE (fndecl),
3720 crtl->args.size);
3722 /* For stdarg.h function, save info about
3723 regs and stack space used by the named args. */
3725 crtl->args.info = all.args_so_far_v;
3727 /* Set the rtx used for the function return value. Put this in its
3728 own variable so any optimizers that need this information don't have
3729 to include tree.h. Do this here so it gets done when an inlined
3730 function gets output. */
3732 crtl->return_rtx
3733 = (DECL_RTL_SET_P (DECL_RESULT (fndecl))
3734 ? DECL_RTL (DECL_RESULT (fndecl)) : NULL_RTX);
3736 /* If scalar return value was computed in a pseudo-reg, or was a named
3737 return value that got dumped to the stack, copy that to the hard
3738 return register. */
3739 if (DECL_RTL_SET_P (DECL_RESULT (fndecl)))
3741 tree decl_result = DECL_RESULT (fndecl);
3742 rtx decl_rtl = DECL_RTL (decl_result);
3744 if (REG_P (decl_rtl)
3745 ? REGNO (decl_rtl) >= FIRST_PSEUDO_REGISTER
3746 : DECL_REGISTER (decl_result))
3748 rtx real_decl_rtl;
3750 real_decl_rtl = targetm.calls.function_value (TREE_TYPE (decl_result),
3751 fndecl, true);
3752 REG_FUNCTION_VALUE_P (real_decl_rtl) = 1;
3753 /* The delay slot scheduler assumes that crtl->return_rtx
3754 holds the hard register containing the return value, not a
3755 temporary pseudo. */
3756 crtl->return_rtx = real_decl_rtl;
3761 /* A subroutine of gimplify_parameters, invoked via walk_tree.
3762 For all seen types, gimplify their sizes. */
3764 static tree
3765 gimplify_parm_type (tree *tp, int *walk_subtrees, void *data)
3767 tree t = *tp;
3769 *walk_subtrees = 0;
3770 if (TYPE_P (t))
3772 if (POINTER_TYPE_P (t))
3773 *walk_subtrees = 1;
3774 else if (TYPE_SIZE (t) && !TREE_CONSTANT (TYPE_SIZE (t))
3775 && !TYPE_SIZES_GIMPLIFIED (t))
3777 gimplify_type_sizes (t, (gimple_seq *) data);
3778 *walk_subtrees = 1;
3782 return NULL;
3785 /* Gimplify the parameter list for current_function_decl. This involves
3786 evaluating SAVE_EXPRs of variable sized parameters and generating code
3787 to implement callee-copies reference parameters. Returns a sequence of
3788 statements to add to the beginning of the function. */
3790 gimple_seq
3791 gimplify_parameters (gimple_seq *cleanup)
3793 struct assign_parm_data_all all;
3794 tree parm;
3795 gimple_seq stmts = NULL;
3796 vec<tree> fnargs;
3797 unsigned i;
3799 assign_parms_initialize_all (&all);
3800 fnargs = assign_parms_augmented_arg_list (&all);
3802 FOR_EACH_VEC_ELT (fnargs, i, parm)
3804 struct assign_parm_data_one data;
3806 /* Extract the type of PARM; adjust it according to ABI. */
3807 assign_parm_find_data_types (&all, parm, &data);
3809 /* Early out for errors and void parameters. */
3810 if (data.passed_mode == VOIDmode || DECL_SIZE (parm) == NULL)
3811 continue;
3813 /* Update info on where next arg arrives in registers. */
3814 targetm.calls.function_arg_advance (all.args_so_far, data.promoted_mode,
3815 data.passed_type, data.named_arg);
3817 /* ??? Once upon a time variable_size stuffed parameter list
3818 SAVE_EXPRs (amongst others) onto a pending sizes list. This
3819 turned out to be less than manageable in the gimple world.
3820 Now we have to hunt them down ourselves. */
3821 walk_tree_without_duplicates (&data.passed_type,
3822 gimplify_parm_type, &stmts);
3824 if (TREE_CODE (DECL_SIZE_UNIT (parm)) != INTEGER_CST)
3826 gimplify_one_sizepos (&DECL_SIZE (parm), &stmts);
3827 gimplify_one_sizepos (&DECL_SIZE_UNIT (parm), &stmts);
3830 if (data.passed_pointer)
3832 tree type = TREE_TYPE (data.passed_type);
3833 if (reference_callee_copied (&all.args_so_far_v, TYPE_MODE (type),
3834 type, data.named_arg))
3836 tree local, t;
3838 /* For constant-sized objects, this is trivial; for
3839 variable-sized objects, we have to play games. */
3840 if (TREE_CODE (DECL_SIZE_UNIT (parm)) == INTEGER_CST
3841 && !(flag_stack_check == GENERIC_STACK_CHECK
3842 && compare_tree_int (DECL_SIZE_UNIT (parm),
3843 STACK_CHECK_MAX_VAR_SIZE) > 0))
3845 local = create_tmp_var (type, get_name (parm));
3846 DECL_IGNORED_P (local) = 0;
3847 /* If PARM was addressable, move that flag over
3848 to the local copy, as its address will be taken,
3849 not the PARMs. Keep the parms address taken
3850 as we'll query that flag during gimplification. */
3851 if (TREE_ADDRESSABLE (parm))
3852 TREE_ADDRESSABLE (local) = 1;
3853 else if (TREE_CODE (type) == COMPLEX_TYPE
3854 || TREE_CODE (type) == VECTOR_TYPE)
3855 DECL_GIMPLE_REG_P (local) = 1;
3857 if (!is_gimple_reg (local)
3858 && flag_stack_reuse != SR_NONE)
3860 tree clobber = build_constructor (type, NULL);
3861 gimple *clobber_stmt;
3862 TREE_THIS_VOLATILE (clobber) = 1;
3863 clobber_stmt = gimple_build_assign (local, clobber);
3864 gimple_seq_add_stmt (cleanup, clobber_stmt);
3867 else
3869 tree ptr_type, addr;
3871 ptr_type = build_pointer_type (type);
3872 addr = create_tmp_reg (ptr_type, get_name (parm));
3873 DECL_IGNORED_P (addr) = 0;
3874 local = build_fold_indirect_ref (addr);
3876 t = build_alloca_call_expr (DECL_SIZE_UNIT (parm),
3877 DECL_ALIGN (parm),
3878 max_int_size_in_bytes (type));
3879 /* The call has been built for a variable-sized object. */
3880 CALL_ALLOCA_FOR_VAR_P (t) = 1;
3881 t = fold_convert (ptr_type, t);
3882 t = build2 (MODIFY_EXPR, TREE_TYPE (addr), addr, t);
3883 gimplify_and_add (t, &stmts);
3886 gimplify_assign (local, parm, &stmts);
3888 SET_DECL_VALUE_EXPR (parm, local);
3889 DECL_HAS_VALUE_EXPR_P (parm) = 1;
3894 fnargs.release ();
3896 return stmts;
3899 /* Compute the size and offset from the start of the stacked arguments for a
3900 parm passed in mode PASSED_MODE and with type TYPE.
3902 INITIAL_OFFSET_PTR points to the current offset into the stacked
3903 arguments.
3905 The starting offset and size for this parm are returned in
3906 LOCATE->OFFSET and LOCATE->SIZE, respectively. When IN_REGS is
3907 nonzero, the offset is that of stack slot, which is returned in
3908 LOCATE->SLOT_OFFSET. LOCATE->ALIGNMENT_PAD is the amount of
3909 padding required from the initial offset ptr to the stack slot.
3911 IN_REGS is nonzero if the argument will be passed in registers. It will
3912 never be set if REG_PARM_STACK_SPACE is not defined.
3914 REG_PARM_STACK_SPACE is the number of bytes of stack space reserved
3915 for arguments which are passed in registers.
3917 FNDECL is the function in which the argument was defined.
3919 There are two types of rounding that are done. The first, controlled by
3920 TARGET_FUNCTION_ARG_BOUNDARY, forces the offset from the start of the
3921 argument list to be aligned to the specific boundary (in bits). This
3922 rounding affects the initial and starting offsets, but not the argument
3923 size.
3925 The second, controlled by TARGET_FUNCTION_ARG_PADDING and PARM_BOUNDARY,
3926 optionally rounds the size of the parm to PARM_BOUNDARY. The
3927 initial offset is not affected by this rounding, while the size always
3928 is and the starting offset may be. */
3930 /* LOCATE->OFFSET will be negative for ARGS_GROW_DOWNWARD case;
3931 INITIAL_OFFSET_PTR is positive because locate_and_pad_parm's
3932 callers pass in the total size of args so far as
3933 INITIAL_OFFSET_PTR. LOCATE->SIZE is always positive. */
3935 void
3936 locate_and_pad_parm (machine_mode passed_mode, tree type, int in_regs,
3937 int reg_parm_stack_space, int partial,
3938 tree fndecl ATTRIBUTE_UNUSED,
3939 struct args_size *initial_offset_ptr,
3940 struct locate_and_pad_arg_data *locate)
3942 tree sizetree;
3943 pad_direction where_pad;
3944 unsigned int boundary, round_boundary;
3945 int part_size_in_regs;
3947 /* If we have found a stack parm before we reach the end of the
3948 area reserved for registers, skip that area. */
3949 if (! in_regs)
3951 if (reg_parm_stack_space > 0)
3953 if (initial_offset_ptr->var
3954 || !ordered_p (initial_offset_ptr->constant,
3955 reg_parm_stack_space))
3957 initial_offset_ptr->var
3958 = size_binop (MAX_EXPR, ARGS_SIZE_TREE (*initial_offset_ptr),
3959 ssize_int (reg_parm_stack_space));
3960 initial_offset_ptr->constant = 0;
3962 else
3963 initial_offset_ptr->constant
3964 = ordered_max (initial_offset_ptr->constant,
3965 reg_parm_stack_space);
3969 part_size_in_regs = (reg_parm_stack_space == 0 ? partial : 0);
3971 sizetree = (type
3972 ? arg_size_in_bytes (type)
3973 : size_int (GET_MODE_SIZE (passed_mode)));
3974 where_pad = targetm.calls.function_arg_padding (passed_mode, type);
3975 boundary = targetm.calls.function_arg_boundary (passed_mode, type);
3976 round_boundary = targetm.calls.function_arg_round_boundary (passed_mode,
3977 type);
3978 locate->where_pad = where_pad;
3980 /* Alignment can't exceed MAX_SUPPORTED_STACK_ALIGNMENT. */
3981 if (boundary > MAX_SUPPORTED_STACK_ALIGNMENT)
3982 boundary = MAX_SUPPORTED_STACK_ALIGNMENT;
3984 locate->boundary = boundary;
3986 if (SUPPORTS_STACK_ALIGNMENT)
3988 /* stack_alignment_estimated can't change after stack has been
3989 realigned. */
3990 if (crtl->stack_alignment_estimated < boundary)
3992 if (!crtl->stack_realign_processed)
3993 crtl->stack_alignment_estimated = boundary;
3994 else
3996 /* If stack is realigned and stack alignment value
3997 hasn't been finalized, it is OK not to increase
3998 stack_alignment_estimated. The bigger alignment
3999 requirement is recorded in stack_alignment_needed
4000 below. */
4001 gcc_assert (!crtl->stack_realign_finalized
4002 && crtl->stack_realign_needed);
4007 /* Remember if the outgoing parameter requires extra alignment on the
4008 calling function side. */
4009 if (crtl->stack_alignment_needed < boundary)
4010 crtl->stack_alignment_needed = boundary;
4011 if (crtl->preferred_stack_boundary < boundary)
4012 crtl->preferred_stack_boundary = boundary;
4014 if (ARGS_GROW_DOWNWARD)
4016 locate->slot_offset.constant = -initial_offset_ptr->constant;
4017 if (initial_offset_ptr->var)
4018 locate->slot_offset.var = size_binop (MINUS_EXPR, ssize_int (0),
4019 initial_offset_ptr->var);
4022 tree s2 = sizetree;
4023 if (where_pad != PAD_NONE
4024 && (!tree_fits_uhwi_p (sizetree)
4025 || (tree_to_uhwi (sizetree) * BITS_PER_UNIT) % round_boundary))
4026 s2 = round_up (s2, round_boundary / BITS_PER_UNIT);
4027 SUB_PARM_SIZE (locate->slot_offset, s2);
4030 locate->slot_offset.constant += part_size_in_regs;
4032 if (!in_regs || reg_parm_stack_space > 0)
4033 pad_to_arg_alignment (&locate->slot_offset, boundary,
4034 &locate->alignment_pad);
4036 locate->size.constant = (-initial_offset_ptr->constant
4037 - locate->slot_offset.constant);
4038 if (initial_offset_ptr->var)
4039 locate->size.var = size_binop (MINUS_EXPR,
4040 size_binop (MINUS_EXPR,
4041 ssize_int (0),
4042 initial_offset_ptr->var),
4043 locate->slot_offset.var);
4045 /* Pad_below needs the pre-rounded size to know how much to pad
4046 below. */
4047 locate->offset = locate->slot_offset;
4048 if (where_pad == PAD_DOWNWARD)
4049 pad_below (&locate->offset, passed_mode, sizetree);
4052 else
4054 if (!in_regs || reg_parm_stack_space > 0)
4055 pad_to_arg_alignment (initial_offset_ptr, boundary,
4056 &locate->alignment_pad);
4057 locate->slot_offset = *initial_offset_ptr;
4059 #ifdef PUSH_ROUNDING
4060 if (passed_mode != BLKmode)
4061 sizetree = size_int (PUSH_ROUNDING (TREE_INT_CST_LOW (sizetree)));
4062 #endif
4064 /* Pad_below needs the pre-rounded size to know how much to pad below
4065 so this must be done before rounding up. */
4066 locate->offset = locate->slot_offset;
4067 if (where_pad == PAD_DOWNWARD)
4068 pad_below (&locate->offset, passed_mode, sizetree);
4070 if (where_pad != PAD_NONE
4071 && (!tree_fits_uhwi_p (sizetree)
4072 || (tree_to_uhwi (sizetree) * BITS_PER_UNIT) % round_boundary))
4073 sizetree = round_up (sizetree, round_boundary / BITS_PER_UNIT);
4075 ADD_PARM_SIZE (locate->size, sizetree);
4077 locate->size.constant -= part_size_in_regs;
4080 locate->offset.constant
4081 += targetm.calls.function_arg_offset (passed_mode, type);
4084 /* Round the stack offset in *OFFSET_PTR up to a multiple of BOUNDARY.
4085 BOUNDARY is measured in bits, but must be a multiple of a storage unit. */
4087 static void
4088 pad_to_arg_alignment (struct args_size *offset_ptr, int boundary,
4089 struct args_size *alignment_pad)
4091 tree save_var = NULL_TREE;
4092 poly_int64 save_constant = 0;
4093 int boundary_in_bytes = boundary / BITS_PER_UNIT;
4094 poly_int64 sp_offset = STACK_POINTER_OFFSET;
4096 #ifdef SPARC_STACK_BOUNDARY_HACK
4097 /* ??? The SPARC port may claim a STACK_BOUNDARY higher than
4098 the real alignment of %sp. However, when it does this, the
4099 alignment of %sp+STACK_POINTER_OFFSET is STACK_BOUNDARY. */
4100 if (SPARC_STACK_BOUNDARY_HACK)
4101 sp_offset = 0;
4102 #endif
4104 if (boundary > PARM_BOUNDARY)
4106 save_var = offset_ptr->var;
4107 save_constant = offset_ptr->constant;
4110 alignment_pad->var = NULL_TREE;
4111 alignment_pad->constant = 0;
4113 if (boundary > BITS_PER_UNIT)
4115 int misalign;
4116 if (offset_ptr->var
4117 || !known_misalignment (offset_ptr->constant + sp_offset,
4118 boundary_in_bytes, &misalign))
4120 tree sp_offset_tree = ssize_int (sp_offset);
4121 tree offset = size_binop (PLUS_EXPR,
4122 ARGS_SIZE_TREE (*offset_ptr),
4123 sp_offset_tree);
4124 tree rounded;
4125 if (ARGS_GROW_DOWNWARD)
4126 rounded = round_down (offset, boundary / BITS_PER_UNIT);
4127 else
4128 rounded = round_up (offset, boundary / BITS_PER_UNIT);
4130 offset_ptr->var = size_binop (MINUS_EXPR, rounded, sp_offset_tree);
4131 /* ARGS_SIZE_TREE includes constant term. */
4132 offset_ptr->constant = 0;
4133 if (boundary > PARM_BOUNDARY)
4134 alignment_pad->var = size_binop (MINUS_EXPR, offset_ptr->var,
4135 save_var);
4137 else
4139 if (ARGS_GROW_DOWNWARD)
4140 offset_ptr->constant -= misalign;
4141 else
4142 offset_ptr->constant += -misalign & (boundary_in_bytes - 1);
4144 if (boundary > PARM_BOUNDARY)
4145 alignment_pad->constant = offset_ptr->constant - save_constant;
4150 static void
4151 pad_below (struct args_size *offset_ptr, machine_mode passed_mode, tree sizetree)
4153 unsigned int align = PARM_BOUNDARY / BITS_PER_UNIT;
4154 int misalign;
4155 if (passed_mode != BLKmode
4156 && known_misalignment (GET_MODE_SIZE (passed_mode), align, &misalign))
4157 offset_ptr->constant += -misalign & (align - 1);
4158 else
4160 if (TREE_CODE (sizetree) != INTEGER_CST
4161 || (TREE_INT_CST_LOW (sizetree) & (align - 1)) != 0)
4163 /* Round the size up to multiple of PARM_BOUNDARY bits. */
4164 tree s2 = round_up (sizetree, align);
4165 /* Add it in. */
4166 ADD_PARM_SIZE (*offset_ptr, s2);
4167 SUB_PARM_SIZE (*offset_ptr, sizetree);
4173 /* True if register REGNO was alive at a place where `setjmp' was
4174 called and was set more than once or is an argument. Such regs may
4175 be clobbered by `longjmp'. */
4177 static bool
4178 regno_clobbered_at_setjmp (bitmap setjmp_crosses, int regno)
4180 /* There appear to be cases where some local vars never reach the
4181 backend but have bogus regnos. */
4182 if (regno >= max_reg_num ())
4183 return false;
4185 return ((REG_N_SETS (regno) > 1
4186 || REGNO_REG_SET_P (df_get_live_out (ENTRY_BLOCK_PTR_FOR_FN (cfun)),
4187 regno))
4188 && REGNO_REG_SET_P (setjmp_crosses, regno));
4191 /* Walk the tree of blocks describing the binding levels within a
4192 function and warn about variables the might be killed by setjmp or
4193 vfork. This is done after calling flow_analysis before register
4194 allocation since that will clobber the pseudo-regs to hard
4195 regs. */
4197 static void
4198 setjmp_vars_warning (bitmap setjmp_crosses, tree block)
4200 tree decl, sub;
4202 for (decl = BLOCK_VARS (block); decl; decl = DECL_CHAIN (decl))
4204 if (VAR_P (decl)
4205 && DECL_RTL_SET_P (decl)
4206 && REG_P (DECL_RTL (decl))
4207 && regno_clobbered_at_setjmp (setjmp_crosses, REGNO (DECL_RTL (decl))))
4208 warning (OPT_Wclobbered, "variable %q+D might be clobbered by"
4209 " %<longjmp%> or %<vfork%>", decl);
4212 for (sub = BLOCK_SUBBLOCKS (block); sub; sub = BLOCK_CHAIN (sub))
4213 setjmp_vars_warning (setjmp_crosses, sub);
4216 /* Do the appropriate part of setjmp_vars_warning
4217 but for arguments instead of local variables. */
4219 static void
4220 setjmp_args_warning (bitmap setjmp_crosses)
4222 tree decl;
4223 for (decl = DECL_ARGUMENTS (current_function_decl);
4224 decl; decl = DECL_CHAIN (decl))
4225 if (DECL_RTL (decl) != 0
4226 && REG_P (DECL_RTL (decl))
4227 && regno_clobbered_at_setjmp (setjmp_crosses, REGNO (DECL_RTL (decl))))
4228 warning (OPT_Wclobbered,
4229 "argument %q+D might be clobbered by %<longjmp%> or %<vfork%>",
4230 decl);
4233 /* Generate warning messages for variables live across setjmp. */
4235 void
4236 generate_setjmp_warnings (void)
4238 bitmap setjmp_crosses = regstat_get_setjmp_crosses ();
4240 if (n_basic_blocks_for_fn (cfun) == NUM_FIXED_BLOCKS
4241 || bitmap_empty_p (setjmp_crosses))
4242 return;
4244 setjmp_vars_warning (setjmp_crosses, DECL_INITIAL (current_function_decl));
4245 setjmp_args_warning (setjmp_crosses);
4249 /* Reverse the order of elements in the fragment chain T of blocks,
4250 and return the new head of the chain (old last element).
4251 In addition to that clear BLOCK_SAME_RANGE flags when needed
4252 and adjust BLOCK_SUPERCONTEXT from the super fragment to
4253 its super fragment origin. */
4255 static tree
4256 block_fragments_nreverse (tree t)
4258 tree prev = 0, block, next, prev_super = 0;
4259 tree super = BLOCK_SUPERCONTEXT (t);
4260 if (BLOCK_FRAGMENT_ORIGIN (super))
4261 super = BLOCK_FRAGMENT_ORIGIN (super);
4262 for (block = t; block; block = next)
4264 next = BLOCK_FRAGMENT_CHAIN (block);
4265 BLOCK_FRAGMENT_CHAIN (block) = prev;
4266 if ((prev && !BLOCK_SAME_RANGE (prev))
4267 || (BLOCK_FRAGMENT_CHAIN (BLOCK_SUPERCONTEXT (block))
4268 != prev_super))
4269 BLOCK_SAME_RANGE (block) = 0;
4270 prev_super = BLOCK_SUPERCONTEXT (block);
4271 BLOCK_SUPERCONTEXT (block) = super;
4272 prev = block;
4274 t = BLOCK_FRAGMENT_ORIGIN (t);
4275 if (BLOCK_FRAGMENT_CHAIN (BLOCK_SUPERCONTEXT (t))
4276 != prev_super)
4277 BLOCK_SAME_RANGE (t) = 0;
4278 BLOCK_SUPERCONTEXT (t) = super;
4279 return prev;
4282 /* Reverse the order of elements in the chain T of blocks,
4283 and return the new head of the chain (old last element).
4284 Also do the same on subblocks and reverse the order of elements
4285 in BLOCK_FRAGMENT_CHAIN as well. */
4287 static tree
4288 blocks_nreverse_all (tree t)
4290 tree prev = 0, block, next;
4291 for (block = t; block; block = next)
4293 next = BLOCK_CHAIN (block);
4294 BLOCK_CHAIN (block) = prev;
4295 if (BLOCK_FRAGMENT_CHAIN (block)
4296 && BLOCK_FRAGMENT_ORIGIN (block) == NULL_TREE)
4298 BLOCK_FRAGMENT_CHAIN (block)
4299 = block_fragments_nreverse (BLOCK_FRAGMENT_CHAIN (block));
4300 if (!BLOCK_SAME_RANGE (BLOCK_FRAGMENT_CHAIN (block)))
4301 BLOCK_SAME_RANGE (block) = 0;
4303 BLOCK_SUBBLOCKS (block) = blocks_nreverse_all (BLOCK_SUBBLOCKS (block));
4304 prev = block;
4306 return prev;
4310 /* Identify BLOCKs referenced by more than one NOTE_INSN_BLOCK_{BEG,END},
4311 and create duplicate blocks. */
4312 /* ??? Need an option to either create block fragments or to create
4313 abstract origin duplicates of a source block. It really depends
4314 on what optimization has been performed. */
4316 void
4317 reorder_blocks (void)
4319 tree block = DECL_INITIAL (current_function_decl);
4321 if (block == NULL_TREE)
4322 return;
4324 auto_vec<tree, 10> block_stack;
4326 /* Reset the TREE_ASM_WRITTEN bit for all blocks. */
4327 clear_block_marks (block);
4329 /* Prune the old trees away, so that they don't get in the way. */
4330 BLOCK_SUBBLOCKS (block) = NULL_TREE;
4331 BLOCK_CHAIN (block) = NULL_TREE;
4333 /* Recreate the block tree from the note nesting. */
4334 reorder_blocks_1 (get_insns (), block, &block_stack);
4335 BLOCK_SUBBLOCKS (block) = blocks_nreverse_all (BLOCK_SUBBLOCKS (block));
4338 /* Helper function for reorder_blocks. Reset TREE_ASM_WRITTEN. */
4340 void
4341 clear_block_marks (tree block)
4343 while (block)
4345 TREE_ASM_WRITTEN (block) = 0;
4346 clear_block_marks (BLOCK_SUBBLOCKS (block));
4347 block = BLOCK_CHAIN (block);
4351 static void
4352 reorder_blocks_1 (rtx_insn *insns, tree current_block,
4353 vec<tree> *p_block_stack)
4355 rtx_insn *insn;
4356 tree prev_beg = NULL_TREE, prev_end = NULL_TREE;
4358 for (insn = insns; insn; insn = NEXT_INSN (insn))
4360 if (NOTE_P (insn))
4362 if (NOTE_KIND (insn) == NOTE_INSN_BLOCK_BEG)
4364 tree block = NOTE_BLOCK (insn);
4365 tree origin;
4367 gcc_assert (BLOCK_FRAGMENT_ORIGIN (block) == NULL_TREE);
4368 origin = block;
4370 if (prev_end)
4371 BLOCK_SAME_RANGE (prev_end) = 0;
4372 prev_end = NULL_TREE;
4374 /* If we have seen this block before, that means it now
4375 spans multiple address regions. Create a new fragment. */
4376 if (TREE_ASM_WRITTEN (block))
4378 tree new_block = copy_node (block);
4380 BLOCK_SAME_RANGE (new_block) = 0;
4381 BLOCK_FRAGMENT_ORIGIN (new_block) = origin;
4382 BLOCK_FRAGMENT_CHAIN (new_block)
4383 = BLOCK_FRAGMENT_CHAIN (origin);
4384 BLOCK_FRAGMENT_CHAIN (origin) = new_block;
4386 NOTE_BLOCK (insn) = new_block;
4387 block = new_block;
4390 if (prev_beg == current_block && prev_beg)
4391 BLOCK_SAME_RANGE (block) = 1;
4393 prev_beg = origin;
4395 BLOCK_SUBBLOCKS (block) = 0;
4396 TREE_ASM_WRITTEN (block) = 1;
4397 /* When there's only one block for the entire function,
4398 current_block == block and we mustn't do this, it
4399 will cause infinite recursion. */
4400 if (block != current_block)
4402 tree super;
4403 if (block != origin)
4404 gcc_assert (BLOCK_SUPERCONTEXT (origin) == current_block
4405 || BLOCK_FRAGMENT_ORIGIN (BLOCK_SUPERCONTEXT
4406 (origin))
4407 == current_block);
4408 if (p_block_stack->is_empty ())
4409 super = current_block;
4410 else
4412 super = p_block_stack->last ();
4413 gcc_assert (super == current_block
4414 || BLOCK_FRAGMENT_ORIGIN (super)
4415 == current_block);
4417 BLOCK_SUPERCONTEXT (block) = super;
4418 BLOCK_CHAIN (block) = BLOCK_SUBBLOCKS (current_block);
4419 BLOCK_SUBBLOCKS (current_block) = block;
4420 current_block = origin;
4422 p_block_stack->safe_push (block);
4424 else if (NOTE_KIND (insn) == NOTE_INSN_BLOCK_END)
4426 NOTE_BLOCK (insn) = p_block_stack->pop ();
4427 current_block = BLOCK_SUPERCONTEXT (current_block);
4428 if (BLOCK_FRAGMENT_ORIGIN (current_block))
4429 current_block = BLOCK_FRAGMENT_ORIGIN (current_block);
4430 prev_beg = NULL_TREE;
4431 prev_end = BLOCK_SAME_RANGE (NOTE_BLOCK (insn))
4432 ? NOTE_BLOCK (insn) : NULL_TREE;
4435 else
4437 prev_beg = NULL_TREE;
4438 if (prev_end)
4439 BLOCK_SAME_RANGE (prev_end) = 0;
4440 prev_end = NULL_TREE;
4445 /* Reverse the order of elements in the chain T of blocks,
4446 and return the new head of the chain (old last element). */
4448 tree
4449 blocks_nreverse (tree t)
4451 tree prev = 0, block, next;
4452 for (block = t; block; block = next)
4454 next = BLOCK_CHAIN (block);
4455 BLOCK_CHAIN (block) = prev;
4456 prev = block;
4458 return prev;
4461 /* Concatenate two chains of blocks (chained through BLOCK_CHAIN)
4462 by modifying the last node in chain 1 to point to chain 2. */
4464 tree
4465 block_chainon (tree op1, tree op2)
4467 tree t1;
4469 if (!op1)
4470 return op2;
4471 if (!op2)
4472 return op1;
4474 for (t1 = op1; BLOCK_CHAIN (t1); t1 = BLOCK_CHAIN (t1))
4475 continue;
4476 BLOCK_CHAIN (t1) = op2;
4478 #ifdef ENABLE_TREE_CHECKING
4480 tree t2;
4481 for (t2 = op2; t2; t2 = BLOCK_CHAIN (t2))
4482 gcc_assert (t2 != t1);
4484 #endif
4486 return op1;
4489 /* Count the subblocks of the list starting with BLOCK. If VECTOR is
4490 non-NULL, list them all into VECTOR, in a depth-first preorder
4491 traversal of the block tree. Also clear TREE_ASM_WRITTEN in all
4492 blocks. */
4494 static int
4495 all_blocks (tree block, tree *vector)
4497 int n_blocks = 0;
4499 while (block)
4501 TREE_ASM_WRITTEN (block) = 0;
4503 /* Record this block. */
4504 if (vector)
4505 vector[n_blocks] = block;
4507 ++n_blocks;
4509 /* Record the subblocks, and their subblocks... */
4510 n_blocks += all_blocks (BLOCK_SUBBLOCKS (block),
4511 vector ? vector + n_blocks : 0);
4512 block = BLOCK_CHAIN (block);
4515 return n_blocks;
4518 /* Return a vector containing all the blocks rooted at BLOCK. The
4519 number of elements in the vector is stored in N_BLOCKS_P. The
4520 vector is dynamically allocated; it is the caller's responsibility
4521 to call `free' on the pointer returned. */
4523 static tree *
4524 get_block_vector (tree block, int *n_blocks_p)
4526 tree *block_vector;
4528 *n_blocks_p = all_blocks (block, NULL);
4529 block_vector = XNEWVEC (tree, *n_blocks_p);
4530 all_blocks (block, block_vector);
4532 return block_vector;
4535 static GTY(()) int next_block_index = 2;
4537 /* Set BLOCK_NUMBER for all the blocks in FN. */
4539 void
4540 number_blocks (tree fn)
4542 int i;
4543 int n_blocks;
4544 tree *block_vector;
4546 /* For XCOFF debugging output, we start numbering the blocks
4547 from 1 within each function, rather than keeping a running
4548 count. */
4549 #if defined (XCOFF_DEBUGGING_INFO)
4550 if (write_symbols == XCOFF_DEBUG)
4551 next_block_index = 1;
4552 #endif
4554 block_vector = get_block_vector (DECL_INITIAL (fn), &n_blocks);
4556 /* The top-level BLOCK isn't numbered at all. */
4557 for (i = 1; i < n_blocks; ++i)
4558 /* We number the blocks from two. */
4559 BLOCK_NUMBER (block_vector[i]) = next_block_index++;
4561 free (block_vector);
4563 return;
4566 /* If VAR is present in a subblock of BLOCK, return the subblock. */
4568 DEBUG_FUNCTION tree
4569 debug_find_var_in_block_tree (tree var, tree block)
4571 tree t;
4573 for (t = BLOCK_VARS (block); t; t = TREE_CHAIN (t))
4574 if (t == var)
4575 return block;
4577 for (t = BLOCK_SUBBLOCKS (block); t; t = TREE_CHAIN (t))
4579 tree ret = debug_find_var_in_block_tree (var, t);
4580 if (ret)
4581 return ret;
4584 return NULL_TREE;
4587 /* Keep track of whether we're in a dummy function context. If we are,
4588 we don't want to invoke the set_current_function hook, because we'll
4589 get into trouble if the hook calls target_reinit () recursively or
4590 when the initial initialization is not yet complete. */
4592 static bool in_dummy_function;
4594 /* Invoke the target hook when setting cfun. Update the optimization options
4595 if the function uses different options than the default. */
4597 static void
4598 invoke_set_current_function_hook (tree fndecl)
4600 if (!in_dummy_function)
4602 tree opts = ((fndecl)
4603 ? DECL_FUNCTION_SPECIFIC_OPTIMIZATION (fndecl)
4604 : optimization_default_node);
4606 if (!opts)
4607 opts = optimization_default_node;
4609 /* Change optimization options if needed. */
4610 if (optimization_current_node != opts)
4612 optimization_current_node = opts;
4613 cl_optimization_restore (&global_options, TREE_OPTIMIZATION (opts));
4616 targetm.set_current_function (fndecl);
4617 this_fn_optabs = this_target_optabs;
4619 /* Initialize global alignment variables after op. */
4620 parse_alignment_opts ();
4622 if (opts != optimization_default_node)
4624 init_tree_optimization_optabs (opts);
4625 if (TREE_OPTIMIZATION_OPTABS (opts))
4626 this_fn_optabs = (struct target_optabs *)
4627 TREE_OPTIMIZATION_OPTABS (opts);
4632 /* cfun should never be set directly; use this function. */
4634 void
4635 set_cfun (struct function *new_cfun, bool force)
4637 if (cfun != new_cfun || force)
4639 cfun = new_cfun;
4640 invoke_set_current_function_hook (new_cfun ? new_cfun->decl : NULL_TREE);
4641 redirect_edge_var_map_empty ();
4645 /* Initialized with NOGC, making this poisonous to the garbage collector. */
4647 static vec<function *> cfun_stack;
4649 /* Push the current cfun onto the stack, and set cfun to new_cfun. Also set
4650 current_function_decl accordingly. */
4652 void
4653 push_cfun (struct function *new_cfun)
4655 gcc_assert ((!cfun && !current_function_decl)
4656 || (cfun && current_function_decl == cfun->decl));
4657 cfun_stack.safe_push (cfun);
4658 current_function_decl = new_cfun ? new_cfun->decl : NULL_TREE;
4659 set_cfun (new_cfun);
4662 /* Pop cfun from the stack. Also set current_function_decl accordingly. */
4664 void
4665 pop_cfun (void)
4667 struct function *new_cfun = cfun_stack.pop ();
4668 /* When in_dummy_function, we do have a cfun but current_function_decl is
4669 NULL. We also allow pushing NULL cfun and subsequently changing
4670 current_function_decl to something else and have both restored by
4671 pop_cfun. */
4672 gcc_checking_assert (in_dummy_function
4673 || !cfun
4674 || current_function_decl == cfun->decl);
4675 set_cfun (new_cfun);
4676 current_function_decl = new_cfun ? new_cfun->decl : NULL_TREE;
4679 /* Return value of funcdef and increase it. */
4681 get_next_funcdef_no (void)
4683 return funcdef_no++;
4686 /* Return value of funcdef. */
4688 get_last_funcdef_no (void)
4690 return funcdef_no;
4693 /* Allocate a function structure for FNDECL and set its contents
4694 to the defaults. Set cfun to the newly-allocated object.
4695 Some of the helper functions invoked during initialization assume
4696 that cfun has already been set. Therefore, assign the new object
4697 directly into cfun and invoke the back end hook explicitly at the
4698 very end, rather than initializing a temporary and calling set_cfun
4699 on it.
4701 ABSTRACT_P is true if this is a function that will never be seen by
4702 the middle-end. Such functions are front-end concepts (like C++
4703 function templates) that do not correspond directly to functions
4704 placed in object files. */
4706 void
4707 allocate_struct_function (tree fndecl, bool abstract_p)
4709 tree fntype = fndecl ? TREE_TYPE (fndecl) : NULL_TREE;
4711 cfun = ggc_cleared_alloc<function> ();
4713 init_eh_for_function ();
4715 if (init_machine_status)
4716 cfun->machine = (*init_machine_status) ();
4718 #ifdef OVERRIDE_ABI_FORMAT
4719 OVERRIDE_ABI_FORMAT (fndecl);
4720 #endif
4722 if (fndecl != NULL_TREE)
4724 DECL_STRUCT_FUNCTION (fndecl) = cfun;
4725 cfun->decl = fndecl;
4726 current_function_funcdef_no = get_next_funcdef_no ();
4729 invoke_set_current_function_hook (fndecl);
4731 if (fndecl != NULL_TREE)
4733 tree result = DECL_RESULT (fndecl);
4735 if (!abstract_p)
4737 /* Now that we have activated any function-specific attributes
4738 that might affect layout, particularly vector modes, relayout
4739 each of the parameters and the result. */
4740 relayout_decl (result);
4741 for (tree parm = DECL_ARGUMENTS (fndecl); parm;
4742 parm = DECL_CHAIN (parm))
4743 relayout_decl (parm);
4745 /* Similarly relayout the function decl. */
4746 targetm.target_option.relayout_function (fndecl);
4749 if (!abstract_p && aggregate_value_p (result, fndecl))
4751 #ifdef PCC_STATIC_STRUCT_RETURN
4752 cfun->returns_pcc_struct = 1;
4753 #endif
4754 cfun->returns_struct = 1;
4757 cfun->stdarg = stdarg_p (fntype);
4759 /* Assume all registers in stdarg functions need to be saved. */
4760 cfun->va_list_gpr_size = VA_LIST_MAX_GPR_SIZE;
4761 cfun->va_list_fpr_size = VA_LIST_MAX_FPR_SIZE;
4763 /* ??? This could be set on a per-function basis by the front-end
4764 but is this worth the hassle? */
4765 cfun->can_throw_non_call_exceptions = flag_non_call_exceptions;
4766 cfun->can_delete_dead_exceptions = flag_delete_dead_exceptions;
4768 if (!profile_flag && !flag_instrument_function_entry_exit)
4769 DECL_NO_INSTRUMENT_FUNCTION_ENTRY_EXIT (fndecl) = 1;
4772 /* Don't enable begin stmt markers if var-tracking at assignments is
4773 disabled. The markers make little sense without the variable
4774 binding annotations among them. */
4775 cfun->debug_nonbind_markers = lang_hooks.emits_begin_stmt
4776 && MAY_HAVE_DEBUG_MARKER_STMTS;
4779 /* This is like allocate_struct_function, but pushes a new cfun for FNDECL
4780 instead of just setting it. */
4782 void
4783 push_struct_function (tree fndecl)
4785 /* When in_dummy_function we might be in the middle of a pop_cfun and
4786 current_function_decl and cfun may not match. */
4787 gcc_assert (in_dummy_function
4788 || (!cfun && !current_function_decl)
4789 || (cfun && current_function_decl == cfun->decl));
4790 cfun_stack.safe_push (cfun);
4791 current_function_decl = fndecl;
4792 allocate_struct_function (fndecl, false);
4795 /* Reset crtl and other non-struct-function variables to defaults as
4796 appropriate for emitting rtl at the start of a function. */
4798 static void
4799 prepare_function_start (void)
4801 gcc_assert (!get_last_insn ());
4802 init_temp_slots ();
4803 init_emit ();
4804 init_varasm_status ();
4805 init_expr ();
4806 default_rtl_profile ();
4808 if (flag_stack_usage_info)
4810 cfun->su = ggc_cleared_alloc<stack_usage> ();
4811 cfun->su->static_stack_size = -1;
4814 cse_not_expected = ! optimize;
4816 /* Caller save not needed yet. */
4817 caller_save_needed = 0;
4819 /* We haven't done register allocation yet. */
4820 reg_renumber = 0;
4822 /* Indicate that we have not instantiated virtual registers yet. */
4823 virtuals_instantiated = 0;
4825 /* Indicate that we want CONCATs now. */
4826 generating_concat_p = 1;
4828 /* Indicate we have no need of a frame pointer yet. */
4829 frame_pointer_needed = 0;
4832 void
4833 push_dummy_function (bool with_decl)
4835 tree fn_decl, fn_type, fn_result_decl;
4837 gcc_assert (!in_dummy_function);
4838 in_dummy_function = true;
4840 if (with_decl)
4842 fn_type = build_function_type_list (void_type_node, NULL_TREE);
4843 fn_decl = build_decl (UNKNOWN_LOCATION, FUNCTION_DECL, NULL_TREE,
4844 fn_type);
4845 fn_result_decl = build_decl (UNKNOWN_LOCATION, RESULT_DECL,
4846 NULL_TREE, void_type_node);
4847 DECL_RESULT (fn_decl) = fn_result_decl;
4849 else
4850 fn_decl = NULL_TREE;
4852 push_struct_function (fn_decl);
4855 /* Initialize the rtl expansion mechanism so that we can do simple things
4856 like generate sequences. This is used to provide a context during global
4857 initialization of some passes. You must call expand_dummy_function_end
4858 to exit this context. */
4860 void
4861 init_dummy_function_start (void)
4863 push_dummy_function (false);
4864 prepare_function_start ();
4867 /* Generate RTL for the start of the function SUBR (a FUNCTION_DECL tree node)
4868 and initialize static variables for generating RTL for the statements
4869 of the function. */
4871 void
4872 init_function_start (tree subr)
4874 /* Initialize backend, if needed. */
4875 initialize_rtl ();
4877 prepare_function_start ();
4878 decide_function_section (subr);
4880 /* Warn if this value is an aggregate type,
4881 regardless of which calling convention we are using for it. */
4882 if (AGGREGATE_TYPE_P (TREE_TYPE (DECL_RESULT (subr))))
4883 warning (OPT_Waggregate_return, "function returns an aggregate");
4886 /* Expand code to verify the stack_protect_guard. This is invoked at
4887 the end of a function to be protected. */
4889 void
4890 stack_protect_epilogue (void)
4892 tree guard_decl = targetm.stack_protect_guard ();
4893 rtx_code_label *label = gen_label_rtx ();
4894 rtx x, y;
4895 rtx_insn *seq;
4897 x = expand_normal (crtl->stack_protect_guard);
4898 if (guard_decl)
4899 y = expand_normal (guard_decl);
4900 else
4901 y = const0_rtx;
4903 /* Allow the target to compare Y with X without leaking either into
4904 a register. */
4905 if (targetm.have_stack_protect_test ()
4906 && ((seq = targetm.gen_stack_protect_test (x, y, label)) != NULL_RTX))
4907 emit_insn (seq);
4908 else
4909 emit_cmp_and_jump_insns (x, y, EQ, NULL_RTX, ptr_mode, 1, label);
4911 /* The noreturn predictor has been moved to the tree level. The rtl-level
4912 predictors estimate this branch about 20%, which isn't enough to get
4913 things moved out of line. Since this is the only extant case of adding
4914 a noreturn function at the rtl level, it doesn't seem worth doing ought
4915 except adding the prediction by hand. */
4916 rtx_insn *tmp = get_last_insn ();
4917 if (JUMP_P (tmp))
4918 predict_insn_def (tmp, PRED_NORETURN, TAKEN);
4920 expand_call (targetm.stack_protect_fail (), NULL_RTX, /*ignore=*/true);
4921 free_temp_slots ();
4922 emit_label (label);
4925 /* Start the RTL for a new function, and set variables used for
4926 emitting RTL.
4927 SUBR is the FUNCTION_DECL node.
4928 PARMS_HAVE_CLEANUPS is nonzero if there are cleanups associated with
4929 the function's parameters, which must be run at any return statement. */
4931 void
4932 expand_function_start (tree subr)
4934 /* Make sure volatile mem refs aren't considered
4935 valid operands of arithmetic insns. */
4936 init_recog_no_volatile ();
4938 crtl->profile
4939 = (profile_flag
4940 && ! DECL_NO_INSTRUMENT_FUNCTION_ENTRY_EXIT (subr));
4942 crtl->limit_stack
4943 = (stack_limit_rtx != NULL_RTX && ! DECL_NO_LIMIT_STACK (subr));
4945 /* Make the label for return statements to jump to. Do not special
4946 case machines with special return instructions -- they will be
4947 handled later during jump, ifcvt, or epilogue creation. */
4948 return_label = gen_label_rtx ();
4950 /* Initialize rtx used to return the value. */
4951 /* Do this before assign_parms so that we copy the struct value address
4952 before any library calls that assign parms might generate. */
4954 /* Decide whether to return the value in memory or in a register. */
4955 tree res = DECL_RESULT (subr);
4956 if (aggregate_value_p (res, subr))
4958 /* Returning something that won't go in a register. */
4959 rtx value_address = 0;
4961 #ifdef PCC_STATIC_STRUCT_RETURN
4962 if (cfun->returns_pcc_struct)
4964 int size = int_size_in_bytes (TREE_TYPE (res));
4965 value_address = assemble_static_space (size);
4967 else
4968 #endif
4970 rtx sv = targetm.calls.struct_value_rtx (TREE_TYPE (subr), 2);
4971 /* Expect to be passed the address of a place to store the value.
4972 If it is passed as an argument, assign_parms will take care of
4973 it. */
4974 if (sv)
4976 value_address = gen_reg_rtx (Pmode);
4977 emit_move_insn (value_address, sv);
4980 if (value_address)
4982 rtx x = value_address;
4983 if (!DECL_BY_REFERENCE (res))
4985 x = gen_rtx_MEM (DECL_MODE (res), x);
4986 set_mem_attributes (x, res, 1);
4988 set_parm_rtl (res, x);
4991 else if (DECL_MODE (res) == VOIDmode)
4992 /* If return mode is void, this decl rtl should not be used. */
4993 set_parm_rtl (res, NULL_RTX);
4994 else
4996 /* Compute the return values into a pseudo reg, which we will copy
4997 into the true return register after the cleanups are done. */
4998 tree return_type = TREE_TYPE (res);
5000 /* If we may coalesce this result, make sure it has the expected mode
5001 in case it was promoted. But we need not bother about BLKmode. */
5002 machine_mode promoted_mode
5003 = flag_tree_coalesce_vars && is_gimple_reg (res)
5004 ? promote_ssa_mode (ssa_default_def (cfun, res), NULL)
5005 : BLKmode;
5007 if (promoted_mode != BLKmode)
5008 set_parm_rtl (res, gen_reg_rtx (promoted_mode));
5009 else if (TYPE_MODE (return_type) != BLKmode
5010 && targetm.calls.return_in_msb (return_type))
5011 /* expand_function_end will insert the appropriate padding in
5012 this case. Use the return value's natural (unpadded) mode
5013 within the function proper. */
5014 set_parm_rtl (res, gen_reg_rtx (TYPE_MODE (return_type)));
5015 else
5017 /* In order to figure out what mode to use for the pseudo, we
5018 figure out what the mode of the eventual return register will
5019 actually be, and use that. */
5020 rtx hard_reg = hard_function_value (return_type, subr, 0, 1);
5022 /* Structures that are returned in registers are not
5023 aggregate_value_p, so we may see a PARALLEL or a REG. */
5024 if (REG_P (hard_reg))
5025 set_parm_rtl (res, gen_reg_rtx (GET_MODE (hard_reg)));
5026 else
5028 gcc_assert (GET_CODE (hard_reg) == PARALLEL);
5029 set_parm_rtl (res, gen_group_rtx (hard_reg));
5033 /* Set DECL_REGISTER flag so that expand_function_end will copy the
5034 result to the real return register(s). */
5035 DECL_REGISTER (res) = 1;
5038 /* Initialize rtx for parameters and local variables.
5039 In some cases this requires emitting insns. */
5040 assign_parms (subr);
5042 /* If function gets a static chain arg, store it. */
5043 if (cfun->static_chain_decl)
5045 tree parm = cfun->static_chain_decl;
5046 rtx local, chain;
5047 rtx_insn *insn;
5048 int unsignedp;
5050 local = gen_reg_rtx (promote_decl_mode (parm, &unsignedp));
5051 chain = targetm.calls.static_chain (current_function_decl, true);
5053 set_decl_incoming_rtl (parm, chain, false);
5054 set_parm_rtl (parm, local);
5055 mark_reg_pointer (local, TYPE_ALIGN (TREE_TYPE (TREE_TYPE (parm))));
5057 if (GET_MODE (local) != GET_MODE (chain))
5059 convert_move (local, chain, unsignedp);
5060 insn = get_last_insn ();
5062 else
5063 insn = emit_move_insn (local, chain);
5065 /* Mark the register as eliminable, similar to parameters. */
5066 if (MEM_P (chain)
5067 && reg_mentioned_p (arg_pointer_rtx, XEXP (chain, 0)))
5068 set_dst_reg_note (insn, REG_EQUIV, chain, local);
5070 /* If we aren't optimizing, save the static chain onto the stack. */
5071 if (!optimize)
5073 tree saved_static_chain_decl
5074 = build_decl (DECL_SOURCE_LOCATION (parm), VAR_DECL,
5075 DECL_NAME (parm), TREE_TYPE (parm));
5076 rtx saved_static_chain_rtx
5077 = assign_stack_local (Pmode, GET_MODE_SIZE (Pmode), 0);
5078 SET_DECL_RTL (saved_static_chain_decl, saved_static_chain_rtx);
5079 emit_move_insn (saved_static_chain_rtx, chain);
5080 SET_DECL_VALUE_EXPR (parm, saved_static_chain_decl);
5081 DECL_HAS_VALUE_EXPR_P (parm) = 1;
5085 /* The following was moved from init_function_start.
5086 The move was supposed to make sdb output more accurate. */
5087 /* Indicate the beginning of the function body,
5088 as opposed to parm setup. */
5089 emit_note (NOTE_INSN_FUNCTION_BEG);
5091 gcc_assert (NOTE_P (get_last_insn ()));
5093 parm_birth_insn = get_last_insn ();
5095 /* If the function receives a non-local goto, then store the
5096 bits we need to restore the frame pointer. */
5097 if (cfun->nonlocal_goto_save_area)
5099 tree t_save;
5100 rtx r_save;
5102 tree var = TREE_OPERAND (cfun->nonlocal_goto_save_area, 0);
5103 gcc_assert (DECL_RTL_SET_P (var));
5105 t_save = build4 (ARRAY_REF,
5106 TREE_TYPE (TREE_TYPE (cfun->nonlocal_goto_save_area)),
5107 cfun->nonlocal_goto_save_area,
5108 integer_zero_node, NULL_TREE, NULL_TREE);
5109 r_save = expand_expr (t_save, NULL_RTX, VOIDmode, EXPAND_WRITE);
5110 gcc_assert (GET_MODE (r_save) == Pmode);
5112 emit_move_insn (r_save, targetm.builtin_setjmp_frame_value ());
5113 update_nonlocal_goto_save_area ();
5116 if (crtl->profile)
5118 #ifdef PROFILE_HOOK
5119 PROFILE_HOOK (current_function_funcdef_no);
5120 #endif
5123 /* If we are doing generic stack checking, the probe should go here. */
5124 if (flag_stack_check == GENERIC_STACK_CHECK)
5125 stack_check_probe_note = emit_note (NOTE_INSN_DELETED);
5128 void
5129 pop_dummy_function (void)
5131 pop_cfun ();
5132 in_dummy_function = false;
5135 /* Undo the effects of init_dummy_function_start. */
5136 void
5137 expand_dummy_function_end (void)
5139 gcc_assert (in_dummy_function);
5141 /* End any sequences that failed to be closed due to syntax errors. */
5142 while (in_sequence_p ())
5143 end_sequence ();
5145 /* Outside function body, can't compute type's actual size
5146 until next function's body starts. */
5148 free_after_parsing (cfun);
5149 free_after_compilation (cfun);
5150 pop_dummy_function ();
5153 /* Helper for diddle_return_value. */
5155 void
5156 diddle_return_value_1 (void (*doit) (rtx, void *), void *arg, rtx outgoing)
5158 if (! outgoing)
5159 return;
5161 if (REG_P (outgoing))
5162 (*doit) (outgoing, arg);
5163 else if (GET_CODE (outgoing) == PARALLEL)
5165 int i;
5167 for (i = 0; i < XVECLEN (outgoing, 0); i++)
5169 rtx x = XEXP (XVECEXP (outgoing, 0, i), 0);
5171 if (REG_P (x) && REGNO (x) < FIRST_PSEUDO_REGISTER)
5172 (*doit) (x, arg);
5177 /* Call DOIT for each hard register used as a return value from
5178 the current function. */
5180 void
5181 diddle_return_value (void (*doit) (rtx, void *), void *arg)
5183 diddle_return_value_1 (doit, arg, crtl->return_rtx);
5186 static void
5187 do_clobber_return_reg (rtx reg, void *arg ATTRIBUTE_UNUSED)
5189 emit_clobber (reg);
5192 void
5193 clobber_return_register (void)
5195 diddle_return_value (do_clobber_return_reg, NULL);
5197 /* In case we do use pseudo to return value, clobber it too. */
5198 if (DECL_RTL_SET_P (DECL_RESULT (current_function_decl)))
5200 tree decl_result = DECL_RESULT (current_function_decl);
5201 rtx decl_rtl = DECL_RTL (decl_result);
5202 if (REG_P (decl_rtl) && REGNO (decl_rtl) >= FIRST_PSEUDO_REGISTER)
5204 do_clobber_return_reg (decl_rtl, NULL);
5209 static void
5210 do_use_return_reg (rtx reg, void *arg ATTRIBUTE_UNUSED)
5212 emit_use (reg);
5215 static void
5216 use_return_register (void)
5218 diddle_return_value (do_use_return_reg, NULL);
5221 /* Set the location of the insn chain starting at INSN to LOC. */
5223 static void
5224 set_insn_locations (rtx_insn *insn, int loc)
5226 while (insn != NULL)
5228 if (INSN_P (insn))
5229 INSN_LOCATION (insn) = loc;
5230 insn = NEXT_INSN (insn);
5234 /* Generate RTL for the end of the current function. */
5236 void
5237 expand_function_end (void)
5239 /* If arg_pointer_save_area was referenced only from a nested
5240 function, we will not have initialized it yet. Do that now. */
5241 if (arg_pointer_save_area && ! crtl->arg_pointer_save_area_init)
5242 get_arg_pointer_save_area ();
5244 /* If we are doing generic stack checking and this function makes calls,
5245 do a stack probe at the start of the function to ensure we have enough
5246 space for another stack frame. */
5247 if (flag_stack_check == GENERIC_STACK_CHECK)
5249 rtx_insn *insn, *seq;
5251 for (insn = get_insns (); insn; insn = NEXT_INSN (insn))
5252 if (CALL_P (insn))
5254 rtx max_frame_size = GEN_INT (STACK_CHECK_MAX_FRAME_SIZE);
5255 start_sequence ();
5256 if (STACK_CHECK_MOVING_SP)
5257 anti_adjust_stack_and_probe (max_frame_size, true);
5258 else
5259 probe_stack_range (STACK_OLD_CHECK_PROTECT, max_frame_size);
5260 seq = get_insns ();
5261 end_sequence ();
5262 set_insn_locations (seq, prologue_location);
5263 emit_insn_before (seq, stack_check_probe_note);
5264 break;
5268 /* End any sequences that failed to be closed due to syntax errors. */
5269 while (in_sequence_p ())
5270 end_sequence ();
5272 clear_pending_stack_adjust ();
5273 do_pending_stack_adjust ();
5275 /* Output a linenumber for the end of the function.
5276 SDB depended on this. */
5277 set_curr_insn_location (input_location);
5279 /* Before the return label (if any), clobber the return
5280 registers so that they are not propagated live to the rest of
5281 the function. This can only happen with functions that drop
5282 through; if there had been a return statement, there would
5283 have either been a return rtx, or a jump to the return label.
5285 We delay actual code generation after the current_function_value_rtx
5286 is computed. */
5287 rtx_insn *clobber_after = get_last_insn ();
5289 /* Output the label for the actual return from the function. */
5290 emit_label (return_label);
5292 if (targetm_common.except_unwind_info (&global_options) == UI_SJLJ)
5294 /* Let except.c know where it should emit the call to unregister
5295 the function context for sjlj exceptions. */
5296 if (flag_exceptions)
5297 sjlj_emit_function_exit_after (get_last_insn ());
5299 else
5301 /* We want to ensure that instructions that may trap are not
5302 moved into the epilogue by scheduling, because we don't
5303 always emit unwind information for the epilogue. */
5304 if (cfun->can_throw_non_call_exceptions)
5305 emit_insn (gen_blockage ());
5308 /* If this is an implementation of throw, do what's necessary to
5309 communicate between __builtin_eh_return and the epilogue. */
5310 expand_eh_return ();
5312 /* If scalar return value was computed in a pseudo-reg, or was a named
5313 return value that got dumped to the stack, copy that to the hard
5314 return register. */
5315 if (DECL_RTL_SET_P (DECL_RESULT (current_function_decl)))
5317 tree decl_result = DECL_RESULT (current_function_decl);
5318 rtx decl_rtl = DECL_RTL (decl_result);
5320 if (REG_P (decl_rtl)
5321 ? REGNO (decl_rtl) >= FIRST_PSEUDO_REGISTER
5322 : DECL_REGISTER (decl_result))
5324 rtx real_decl_rtl = crtl->return_rtx;
5325 complex_mode cmode;
5327 /* This should be set in assign_parms. */
5328 gcc_assert (REG_FUNCTION_VALUE_P (real_decl_rtl));
5330 /* If this is a BLKmode structure being returned in registers,
5331 then use the mode computed in expand_return. Note that if
5332 decl_rtl is memory, then its mode may have been changed,
5333 but that crtl->return_rtx has not. */
5334 if (GET_MODE (real_decl_rtl) == BLKmode)
5335 PUT_MODE (real_decl_rtl, GET_MODE (decl_rtl));
5337 /* If a non-BLKmode return value should be padded at the least
5338 significant end of the register, shift it left by the appropriate
5339 amount. BLKmode results are handled using the group load/store
5340 machinery. */
5341 if (TYPE_MODE (TREE_TYPE (decl_result)) != BLKmode
5342 && REG_P (real_decl_rtl)
5343 && targetm.calls.return_in_msb (TREE_TYPE (decl_result)))
5345 emit_move_insn (gen_rtx_REG (GET_MODE (decl_rtl),
5346 REGNO (real_decl_rtl)),
5347 decl_rtl);
5348 shift_return_value (GET_MODE (decl_rtl), true, real_decl_rtl);
5350 else if (GET_CODE (real_decl_rtl) == PARALLEL)
5352 /* If expand_function_start has created a PARALLEL for decl_rtl,
5353 move the result to the real return registers. Otherwise, do
5354 a group load from decl_rtl for a named return. */
5355 if (GET_CODE (decl_rtl) == PARALLEL)
5356 emit_group_move (real_decl_rtl, decl_rtl);
5357 else
5358 emit_group_load (real_decl_rtl, decl_rtl,
5359 TREE_TYPE (decl_result),
5360 int_size_in_bytes (TREE_TYPE (decl_result)));
5362 /* In the case of complex integer modes smaller than a word, we'll
5363 need to generate some non-trivial bitfield insertions. Do that
5364 on a pseudo and not the hard register. */
5365 else if (GET_CODE (decl_rtl) == CONCAT
5366 && is_complex_int_mode (GET_MODE (decl_rtl), &cmode)
5367 && GET_MODE_BITSIZE (cmode) <= BITS_PER_WORD)
5369 int old_generating_concat_p;
5370 rtx tmp;
5372 old_generating_concat_p = generating_concat_p;
5373 generating_concat_p = 0;
5374 tmp = gen_reg_rtx (GET_MODE (decl_rtl));
5375 generating_concat_p = old_generating_concat_p;
5377 emit_move_insn (tmp, decl_rtl);
5378 emit_move_insn (real_decl_rtl, tmp);
5380 /* If a named return value dumped decl_return to memory, then
5381 we may need to re-do the PROMOTE_MODE signed/unsigned
5382 extension. */
5383 else if (GET_MODE (real_decl_rtl) != GET_MODE (decl_rtl))
5385 int unsignedp = TYPE_UNSIGNED (TREE_TYPE (decl_result));
5386 promote_function_mode (TREE_TYPE (decl_result),
5387 GET_MODE (decl_rtl), &unsignedp,
5388 TREE_TYPE (current_function_decl), 1);
5390 convert_move (real_decl_rtl, decl_rtl, unsignedp);
5392 else
5393 emit_move_insn (real_decl_rtl, decl_rtl);
5397 /* If returning a structure, arrange to return the address of the value
5398 in a place where debuggers expect to find it.
5400 If returning a structure PCC style,
5401 the caller also depends on this value.
5402 And cfun->returns_pcc_struct is not necessarily set. */
5403 if ((cfun->returns_struct || cfun->returns_pcc_struct)
5404 && !targetm.calls.omit_struct_return_reg)
5406 rtx value_address = DECL_RTL (DECL_RESULT (current_function_decl));
5407 tree type = TREE_TYPE (DECL_RESULT (current_function_decl));
5408 rtx outgoing;
5410 if (DECL_BY_REFERENCE (DECL_RESULT (current_function_decl)))
5411 type = TREE_TYPE (type);
5412 else
5413 value_address = XEXP (value_address, 0);
5415 outgoing = targetm.calls.function_value (build_pointer_type (type),
5416 current_function_decl, true);
5418 /* Mark this as a function return value so integrate will delete the
5419 assignment and USE below when inlining this function. */
5420 REG_FUNCTION_VALUE_P (outgoing) = 1;
5422 /* The address may be ptr_mode and OUTGOING may be Pmode. */
5423 scalar_int_mode mode = as_a <scalar_int_mode> (GET_MODE (outgoing));
5424 value_address = convert_memory_address (mode, value_address);
5426 emit_move_insn (outgoing, value_address);
5428 /* Show return register used to hold result (in this case the address
5429 of the result. */
5430 crtl->return_rtx = outgoing;
5433 /* Emit the actual code to clobber return register. Don't emit
5434 it if clobber_after is a barrier, then the previous basic block
5435 certainly doesn't fall thru into the exit block. */
5436 if (!BARRIER_P (clobber_after))
5438 start_sequence ();
5439 clobber_return_register ();
5440 rtx_insn *seq = get_insns ();
5441 end_sequence ();
5443 emit_insn_after (seq, clobber_after);
5446 /* Output the label for the naked return from the function. */
5447 if (naked_return_label)
5448 emit_label (naked_return_label);
5450 /* @@@ This is a kludge. We want to ensure that instructions that
5451 may trap are not moved into the epilogue by scheduling, because
5452 we don't always emit unwind information for the epilogue. */
5453 if (cfun->can_throw_non_call_exceptions
5454 && targetm_common.except_unwind_info (&global_options) != UI_SJLJ)
5455 emit_insn (gen_blockage ());
5457 /* If stack protection is enabled for this function, check the guard. */
5458 if (crtl->stack_protect_guard && targetm.stack_protect_runtime_enabled_p ())
5459 stack_protect_epilogue ();
5461 /* If we had calls to alloca, and this machine needs
5462 an accurate stack pointer to exit the function,
5463 insert some code to save and restore the stack pointer. */
5464 if (! EXIT_IGNORE_STACK
5465 && cfun->calls_alloca)
5467 rtx tem = 0;
5469 start_sequence ();
5470 emit_stack_save (SAVE_FUNCTION, &tem);
5471 rtx_insn *seq = get_insns ();
5472 end_sequence ();
5473 emit_insn_before (seq, parm_birth_insn);
5475 emit_stack_restore (SAVE_FUNCTION, tem);
5478 /* ??? This should no longer be necessary since stupid is no longer with
5479 us, but there are some parts of the compiler (eg reload_combine, and
5480 sh mach_dep_reorg) that still try and compute their own lifetime info
5481 instead of using the general framework. */
5482 use_return_register ();
5486 get_arg_pointer_save_area (void)
5488 rtx ret = arg_pointer_save_area;
5490 if (! ret)
5492 ret = assign_stack_local (Pmode, GET_MODE_SIZE (Pmode), 0);
5493 arg_pointer_save_area = ret;
5496 if (! crtl->arg_pointer_save_area_init)
5498 /* Save the arg pointer at the beginning of the function. The
5499 generated stack slot may not be a valid memory address, so we
5500 have to check it and fix it if necessary. */
5501 start_sequence ();
5502 emit_move_insn (validize_mem (copy_rtx (ret)),
5503 crtl->args.internal_arg_pointer);
5504 rtx_insn *seq = get_insns ();
5505 end_sequence ();
5507 push_topmost_sequence ();
5508 emit_insn_after (seq, entry_of_function ());
5509 pop_topmost_sequence ();
5511 crtl->arg_pointer_save_area_init = true;
5514 return ret;
5518 /* If debugging dumps are requested, dump information about how the
5519 target handled -fstack-check=clash for the prologue.
5521 PROBES describes what if any probes were emitted.
5523 RESIDUALS indicates if the prologue had any residual allocation
5524 (i.e. total allocation was not a multiple of PROBE_INTERVAL). */
5526 void
5527 dump_stack_clash_frame_info (enum stack_clash_probes probes, bool residuals)
5529 if (!dump_file)
5530 return;
5532 switch (probes)
5534 case NO_PROBE_NO_FRAME:
5535 fprintf (dump_file,
5536 "Stack clash no probe no stack adjustment in prologue.\n");
5537 break;
5538 case NO_PROBE_SMALL_FRAME:
5539 fprintf (dump_file,
5540 "Stack clash no probe small stack adjustment in prologue.\n");
5541 break;
5542 case PROBE_INLINE:
5543 fprintf (dump_file, "Stack clash inline probes in prologue.\n");
5544 break;
5545 case PROBE_LOOP:
5546 fprintf (dump_file, "Stack clash probe loop in prologue.\n");
5547 break;
5550 if (residuals)
5551 fprintf (dump_file, "Stack clash residual allocation in prologue.\n");
5552 else
5553 fprintf (dump_file, "Stack clash no residual allocation in prologue.\n");
5555 if (frame_pointer_needed)
5556 fprintf (dump_file, "Stack clash frame pointer needed.\n");
5557 else
5558 fprintf (dump_file, "Stack clash no frame pointer needed.\n");
5560 if (TREE_THIS_VOLATILE (cfun->decl))
5561 fprintf (dump_file,
5562 "Stack clash noreturn prologue, assuming no implicit"
5563 " probes in caller.\n");
5564 else
5565 fprintf (dump_file,
5566 "Stack clash not noreturn prologue.\n");
5569 /* Add a list of INSNS to the hash HASHP, possibly allocating HASHP
5570 for the first time. */
5572 static void
5573 record_insns (rtx_insn *insns, rtx end, hash_table<insn_cache_hasher> **hashp)
5575 rtx_insn *tmp;
5576 hash_table<insn_cache_hasher> *hash = *hashp;
5578 if (hash == NULL)
5579 *hashp = hash = hash_table<insn_cache_hasher>::create_ggc (17);
5581 for (tmp = insns; tmp != end; tmp = NEXT_INSN (tmp))
5583 rtx *slot = hash->find_slot (tmp, INSERT);
5584 gcc_assert (*slot == NULL);
5585 *slot = tmp;
5589 /* INSN has been duplicated or replaced by as COPY, perhaps by duplicating a
5590 basic block, splitting or peepholes. If INSN is a prologue or epilogue
5591 insn, then record COPY as well. */
5593 void
5594 maybe_copy_prologue_epilogue_insn (rtx insn, rtx copy)
5596 hash_table<insn_cache_hasher> *hash;
5597 rtx *slot;
5599 hash = epilogue_insn_hash;
5600 if (!hash || !hash->find (insn))
5602 hash = prologue_insn_hash;
5603 if (!hash || !hash->find (insn))
5604 return;
5607 slot = hash->find_slot (copy, INSERT);
5608 gcc_assert (*slot == NULL);
5609 *slot = copy;
5612 /* Determine if any INSNs in HASH are, or are part of, INSN. Because
5613 we can be running after reorg, SEQUENCE rtl is possible. */
5615 static bool
5616 contains (const rtx_insn *insn, hash_table<insn_cache_hasher> *hash)
5618 if (hash == NULL)
5619 return false;
5621 if (NONJUMP_INSN_P (insn) && GET_CODE (PATTERN (insn)) == SEQUENCE)
5623 rtx_sequence *seq = as_a <rtx_sequence *> (PATTERN (insn));
5624 int i;
5625 for (i = seq->len () - 1; i >= 0; i--)
5626 if (hash->find (seq->element (i)))
5627 return true;
5628 return false;
5631 return hash->find (const_cast<rtx_insn *> (insn)) != NULL;
5635 prologue_contains (const rtx_insn *insn)
5637 return contains (insn, prologue_insn_hash);
5641 epilogue_contains (const rtx_insn *insn)
5643 return contains (insn, epilogue_insn_hash);
5647 prologue_epilogue_contains (const rtx_insn *insn)
5649 if (contains (insn, prologue_insn_hash))
5650 return 1;
5651 if (contains (insn, epilogue_insn_hash))
5652 return 1;
5653 return 0;
5656 void
5657 record_prologue_seq (rtx_insn *seq)
5659 record_insns (seq, NULL, &prologue_insn_hash);
5662 void
5663 record_epilogue_seq (rtx_insn *seq)
5665 record_insns (seq, NULL, &epilogue_insn_hash);
5668 /* Set JUMP_LABEL for a return insn. */
5670 void
5671 set_return_jump_label (rtx_insn *returnjump)
5673 rtx pat = PATTERN (returnjump);
5674 if (GET_CODE (pat) == PARALLEL)
5675 pat = XVECEXP (pat, 0, 0);
5676 if (ANY_RETURN_P (pat))
5677 JUMP_LABEL (returnjump) = pat;
5678 else
5679 JUMP_LABEL (returnjump) = ret_rtx;
5682 /* Return a sequence to be used as the split prologue for the current
5683 function, or NULL. */
5685 static rtx_insn *
5686 make_split_prologue_seq (void)
5688 if (!flag_split_stack
5689 || lookup_attribute ("no_split_stack", DECL_ATTRIBUTES (cfun->decl)))
5690 return NULL;
5692 start_sequence ();
5693 emit_insn (targetm.gen_split_stack_prologue ());
5694 rtx_insn *seq = get_insns ();
5695 end_sequence ();
5697 record_insns (seq, NULL, &prologue_insn_hash);
5698 set_insn_locations (seq, prologue_location);
5700 return seq;
5703 /* Return a sequence to be used as the prologue for the current function,
5704 or NULL. */
5706 static rtx_insn *
5707 make_prologue_seq (void)
5709 if (!targetm.have_prologue ())
5710 return NULL;
5712 start_sequence ();
5713 rtx_insn *seq = targetm.gen_prologue ();
5714 emit_insn (seq);
5716 /* Insert an explicit USE for the frame pointer
5717 if the profiling is on and the frame pointer is required. */
5718 if (crtl->profile && frame_pointer_needed)
5719 emit_use (hard_frame_pointer_rtx);
5721 /* Retain a map of the prologue insns. */
5722 record_insns (seq, NULL, &prologue_insn_hash);
5723 emit_note (NOTE_INSN_PROLOGUE_END);
5725 /* Ensure that instructions are not moved into the prologue when
5726 profiling is on. The call to the profiling routine can be
5727 emitted within the live range of a call-clobbered register. */
5728 if (!targetm.profile_before_prologue () && crtl->profile)
5729 emit_insn (gen_blockage ());
5731 seq = get_insns ();
5732 end_sequence ();
5733 set_insn_locations (seq, prologue_location);
5735 return seq;
5738 /* Return a sequence to be used as the epilogue for the current function,
5739 or NULL. */
5741 static rtx_insn *
5742 make_epilogue_seq (void)
5744 if (!targetm.have_epilogue ())
5745 return NULL;
5747 start_sequence ();
5748 emit_note (NOTE_INSN_EPILOGUE_BEG);
5749 rtx_insn *seq = targetm.gen_epilogue ();
5750 if (seq)
5751 emit_jump_insn (seq);
5753 /* Retain a map of the epilogue insns. */
5754 record_insns (seq, NULL, &epilogue_insn_hash);
5755 set_insn_locations (seq, epilogue_location);
5757 seq = get_insns ();
5758 rtx_insn *returnjump = get_last_insn ();
5759 end_sequence ();
5761 if (JUMP_P (returnjump))
5762 set_return_jump_label (returnjump);
5764 return seq;
5768 /* Generate the prologue and epilogue RTL if the machine supports it. Thread
5769 this into place with notes indicating where the prologue ends and where
5770 the epilogue begins. Update the basic block information when possible.
5772 Notes on epilogue placement:
5773 There are several kinds of edges to the exit block:
5774 * a single fallthru edge from LAST_BB
5775 * possibly, edges from blocks containing sibcalls
5776 * possibly, fake edges from infinite loops
5778 The epilogue is always emitted on the fallthru edge from the last basic
5779 block in the function, LAST_BB, into the exit block.
5781 If LAST_BB is empty except for a label, it is the target of every
5782 other basic block in the function that ends in a return. If a
5783 target has a return or simple_return pattern (possibly with
5784 conditional variants), these basic blocks can be changed so that a
5785 return insn is emitted into them, and their target is adjusted to
5786 the real exit block.
5788 Notes on shrink wrapping: We implement a fairly conservative
5789 version of shrink-wrapping rather than the textbook one. We only
5790 generate a single prologue and a single epilogue. This is
5791 sufficient to catch a number of interesting cases involving early
5792 exits.
5794 First, we identify the blocks that require the prologue to occur before
5795 them. These are the ones that modify a call-saved register, or reference
5796 any of the stack or frame pointer registers. To simplify things, we then
5797 mark everything reachable from these blocks as also requiring a prologue.
5798 This takes care of loops automatically, and avoids the need to examine
5799 whether MEMs reference the frame, since it is sufficient to check for
5800 occurrences of the stack or frame pointer.
5802 We then compute the set of blocks for which the need for a prologue
5803 is anticipatable (borrowing terminology from the shrink-wrapping
5804 description in Muchnick's book). These are the blocks which either
5805 require a prologue themselves, or those that have only successors
5806 where the prologue is anticipatable. The prologue needs to be
5807 inserted on all edges from BB1->BB2 where BB2 is in ANTIC and BB1
5808 is not. For the moment, we ensure that only one such edge exists.
5810 The epilogue is placed as described above, but we make a
5811 distinction between inserting return and simple_return patterns
5812 when modifying other blocks that end in a return. Blocks that end
5813 in a sibcall omit the sibcall_epilogue if the block is not in
5814 ANTIC. */
5816 void
5817 thread_prologue_and_epilogue_insns (void)
5819 df_analyze ();
5821 /* Can't deal with multiple successors of the entry block at the
5822 moment. Function should always have at least one entry
5823 point. */
5824 gcc_assert (single_succ_p (ENTRY_BLOCK_PTR_FOR_FN (cfun)));
5826 edge entry_edge = single_succ_edge (ENTRY_BLOCK_PTR_FOR_FN (cfun));
5827 edge orig_entry_edge = entry_edge;
5829 rtx_insn *split_prologue_seq = make_split_prologue_seq ();
5830 rtx_insn *prologue_seq = make_prologue_seq ();
5831 rtx_insn *epilogue_seq = make_epilogue_seq ();
5833 /* Try to perform a kind of shrink-wrapping, making sure the
5834 prologue/epilogue is emitted only around those parts of the
5835 function that require it. */
5836 try_shrink_wrapping (&entry_edge, prologue_seq);
5838 /* If the target can handle splitting the prologue/epilogue into separate
5839 components, try to shrink-wrap these components separately. */
5840 try_shrink_wrapping_separate (entry_edge->dest);
5842 /* If that did anything for any component we now need the generate the
5843 "main" prologue again. Because some targets require some of these
5844 to be called in a specific order (i386 requires the split prologue
5845 to be first, for example), we create all three sequences again here.
5846 If this does not work for some target, that target should not enable
5847 separate shrink-wrapping. */
5848 if (crtl->shrink_wrapped_separate)
5850 split_prologue_seq = make_split_prologue_seq ();
5851 prologue_seq = make_prologue_seq ();
5852 epilogue_seq = make_epilogue_seq ();
5855 rtl_profile_for_bb (EXIT_BLOCK_PTR_FOR_FN (cfun));
5857 /* A small fib -- epilogue is not yet completed, but we wish to re-use
5858 this marker for the splits of EH_RETURN patterns, and nothing else
5859 uses the flag in the meantime. */
5860 epilogue_completed = 1;
5862 /* Find non-fallthru edges that end with EH_RETURN instructions. On
5863 some targets, these get split to a special version of the epilogue
5864 code. In order to be able to properly annotate these with unwind
5865 info, try to split them now. If we get a valid split, drop an
5866 EPILOGUE_BEG note and mark the insns as epilogue insns. */
5867 edge e;
5868 edge_iterator ei;
5869 FOR_EACH_EDGE (e, ei, EXIT_BLOCK_PTR_FOR_FN (cfun)->preds)
5871 rtx_insn *prev, *last, *trial;
5873 if (e->flags & EDGE_FALLTHRU)
5874 continue;
5875 last = BB_END (e->src);
5876 if (!eh_returnjump_p (last))
5877 continue;
5879 prev = PREV_INSN (last);
5880 trial = try_split (PATTERN (last), last, 1);
5881 if (trial == last)
5882 continue;
5884 record_insns (NEXT_INSN (prev), NEXT_INSN (trial), &epilogue_insn_hash);
5885 emit_note_after (NOTE_INSN_EPILOGUE_BEG, prev);
5888 edge exit_fallthru_edge = find_fallthru_edge (EXIT_BLOCK_PTR_FOR_FN (cfun)->preds);
5890 if (exit_fallthru_edge)
5892 if (epilogue_seq)
5894 insert_insn_on_edge (epilogue_seq, exit_fallthru_edge);
5895 commit_edge_insertions ();
5897 /* The epilogue insns we inserted may cause the exit edge to no longer
5898 be fallthru. */
5899 FOR_EACH_EDGE (e, ei, EXIT_BLOCK_PTR_FOR_FN (cfun)->preds)
5901 if (((e->flags & EDGE_FALLTHRU) != 0)
5902 && returnjump_p (BB_END (e->src)))
5903 e->flags &= ~EDGE_FALLTHRU;
5906 else if (next_active_insn (BB_END (exit_fallthru_edge->src)))
5908 /* We have a fall-through edge to the exit block, the source is not
5909 at the end of the function, and there will be an assembler epilogue
5910 at the end of the function.
5911 We can't use force_nonfallthru here, because that would try to
5912 use return. Inserting a jump 'by hand' is extremely messy, so
5913 we take advantage of cfg_layout_finalize using
5914 fixup_fallthru_exit_predecessor. */
5915 cfg_layout_initialize (0);
5916 basic_block cur_bb;
5917 FOR_EACH_BB_FN (cur_bb, cfun)
5918 if (cur_bb->index >= NUM_FIXED_BLOCKS
5919 && cur_bb->next_bb->index >= NUM_FIXED_BLOCKS)
5920 cur_bb->aux = cur_bb->next_bb;
5921 cfg_layout_finalize ();
5925 /* Insert the prologue. */
5927 rtl_profile_for_bb (ENTRY_BLOCK_PTR_FOR_FN (cfun));
5929 if (split_prologue_seq || prologue_seq)
5931 rtx_insn *split_prologue_insn = split_prologue_seq;
5932 if (split_prologue_seq)
5934 while (split_prologue_insn && !NONDEBUG_INSN_P (split_prologue_insn))
5935 split_prologue_insn = NEXT_INSN (split_prologue_insn);
5936 insert_insn_on_edge (split_prologue_seq, orig_entry_edge);
5939 rtx_insn *prologue_insn = prologue_seq;
5940 if (prologue_seq)
5942 while (prologue_insn && !NONDEBUG_INSN_P (prologue_insn))
5943 prologue_insn = NEXT_INSN (prologue_insn);
5944 insert_insn_on_edge (prologue_seq, entry_edge);
5947 commit_edge_insertions ();
5949 /* Look for basic blocks within the prologue insns. */
5950 if (split_prologue_insn
5951 && BLOCK_FOR_INSN (split_prologue_insn) == NULL)
5952 split_prologue_insn = NULL;
5953 if (prologue_insn
5954 && BLOCK_FOR_INSN (prologue_insn) == NULL)
5955 prologue_insn = NULL;
5956 if (split_prologue_insn || prologue_insn)
5958 auto_sbitmap blocks (last_basic_block_for_fn (cfun));
5959 bitmap_clear (blocks);
5960 if (split_prologue_insn)
5961 bitmap_set_bit (blocks,
5962 BLOCK_FOR_INSN (split_prologue_insn)->index);
5963 if (prologue_insn)
5964 bitmap_set_bit (blocks, BLOCK_FOR_INSN (prologue_insn)->index);
5965 find_many_sub_basic_blocks (blocks);
5969 default_rtl_profile ();
5971 /* Emit sibling epilogues before any sibling call sites. */
5972 for (ei = ei_start (EXIT_BLOCK_PTR_FOR_FN (cfun)->preds);
5973 (e = ei_safe_edge (ei));
5974 ei_next (&ei))
5976 /* Skip those already handled, the ones that run without prologue. */
5977 if (e->flags & EDGE_IGNORE)
5979 e->flags &= ~EDGE_IGNORE;
5980 continue;
5983 rtx_insn *insn = BB_END (e->src);
5985 if (!(CALL_P (insn) && SIBLING_CALL_P (insn)))
5986 continue;
5988 if (rtx_insn *ep_seq = targetm.gen_sibcall_epilogue ())
5990 start_sequence ();
5991 emit_note (NOTE_INSN_EPILOGUE_BEG);
5992 emit_insn (ep_seq);
5993 rtx_insn *seq = get_insns ();
5994 end_sequence ();
5996 /* Retain a map of the epilogue insns. Used in life analysis to
5997 avoid getting rid of sibcall epilogue insns. Do this before we
5998 actually emit the sequence. */
5999 record_insns (seq, NULL, &epilogue_insn_hash);
6000 set_insn_locations (seq, epilogue_location);
6002 emit_insn_before (seq, insn);
6006 if (epilogue_seq)
6008 rtx_insn *insn, *next;
6010 /* Similarly, move any line notes that appear after the epilogue.
6011 There is no need, however, to be quite so anal about the existence
6012 of such a note. Also possibly move
6013 NOTE_INSN_FUNCTION_BEG notes, as those can be relevant for debug
6014 info generation. */
6015 for (insn = epilogue_seq; insn; insn = next)
6017 next = NEXT_INSN (insn);
6018 if (NOTE_P (insn)
6019 && (NOTE_KIND (insn) == NOTE_INSN_FUNCTION_BEG))
6020 reorder_insns (insn, insn, PREV_INSN (epilogue_seq));
6024 /* Threading the prologue and epilogue changes the artificial refs
6025 in the entry and exit blocks. */
6026 epilogue_completed = 1;
6027 df_update_entry_exit_and_calls ();
6030 /* Reposition the prologue-end and epilogue-begin notes after
6031 instruction scheduling. */
6033 void
6034 reposition_prologue_and_epilogue_notes (void)
6036 if (!targetm.have_prologue ()
6037 && !targetm.have_epilogue ()
6038 && !targetm.have_sibcall_epilogue ())
6039 return;
6041 /* Since the hash table is created on demand, the fact that it is
6042 non-null is a signal that it is non-empty. */
6043 if (prologue_insn_hash != NULL)
6045 size_t len = prologue_insn_hash->elements ();
6046 rtx_insn *insn, *last = NULL, *note = NULL;
6048 /* Scan from the beginning until we reach the last prologue insn. */
6049 /* ??? While we do have the CFG intact, there are two problems:
6050 (1) The prologue can contain loops (typically probing the stack),
6051 which means that the end of the prologue isn't in the first bb.
6052 (2) Sometimes the PROLOGUE_END note gets pushed into the next bb. */
6053 for (insn = get_insns (); insn; insn = NEXT_INSN (insn))
6055 if (NOTE_P (insn))
6057 if (NOTE_KIND (insn) == NOTE_INSN_PROLOGUE_END)
6058 note = insn;
6060 else if (contains (insn, prologue_insn_hash))
6062 last = insn;
6063 if (--len == 0)
6064 break;
6068 if (last)
6070 if (note == NULL)
6072 /* Scan forward looking for the PROLOGUE_END note. It should
6073 be right at the beginning of the block, possibly with other
6074 insn notes that got moved there. */
6075 for (note = NEXT_INSN (last); ; note = NEXT_INSN (note))
6077 if (NOTE_P (note)
6078 && NOTE_KIND (note) == NOTE_INSN_PROLOGUE_END)
6079 break;
6083 /* Avoid placing note between CODE_LABEL and BASIC_BLOCK note. */
6084 if (LABEL_P (last))
6085 last = NEXT_INSN (last);
6086 reorder_insns (note, note, last);
6090 if (epilogue_insn_hash != NULL)
6092 edge_iterator ei;
6093 edge e;
6095 FOR_EACH_EDGE (e, ei, EXIT_BLOCK_PTR_FOR_FN (cfun)->preds)
6097 rtx_insn *insn, *first = NULL, *note = NULL;
6098 basic_block bb = e->src;
6100 /* Scan from the beginning until we reach the first epilogue insn. */
6101 FOR_BB_INSNS (bb, insn)
6103 if (NOTE_P (insn))
6105 if (NOTE_KIND (insn) == NOTE_INSN_EPILOGUE_BEG)
6107 note = insn;
6108 if (first != NULL)
6109 break;
6112 else if (first == NULL && contains (insn, epilogue_insn_hash))
6114 first = insn;
6115 if (note != NULL)
6116 break;
6120 if (note)
6122 /* If the function has a single basic block, and no real
6123 epilogue insns (e.g. sibcall with no cleanup), the
6124 epilogue note can get scheduled before the prologue
6125 note. If we have frame related prologue insns, having
6126 them scanned during the epilogue will result in a crash.
6127 In this case re-order the epilogue note to just before
6128 the last insn in the block. */
6129 if (first == NULL)
6130 first = BB_END (bb);
6132 if (PREV_INSN (first) != note)
6133 reorder_insns (note, note, PREV_INSN (first));
6139 /* Returns the name of function declared by FNDECL. */
6140 const char *
6141 fndecl_name (tree fndecl)
6143 if (fndecl == NULL)
6144 return "(nofn)";
6145 return lang_hooks.decl_printable_name (fndecl, 1);
6148 /* Returns the name of function FN. */
6149 const char *
6150 function_name (struct function *fn)
6152 tree fndecl = (fn == NULL) ? NULL : fn->decl;
6153 return fndecl_name (fndecl);
6156 /* Returns the name of the current function. */
6157 const char *
6158 current_function_name (void)
6160 return function_name (cfun);
6164 static unsigned int
6165 rest_of_handle_check_leaf_regs (void)
6167 #ifdef LEAF_REGISTERS
6168 crtl->uses_only_leaf_regs
6169 = optimize > 0 && only_leaf_regs_used () && leaf_function_p ();
6170 #endif
6171 return 0;
6174 /* Insert a TYPE into the used types hash table of CFUN. */
6176 static void
6177 used_types_insert_helper (tree type, struct function *func)
6179 if (type != NULL && func != NULL)
6181 if (func->used_types_hash == NULL)
6182 func->used_types_hash = hash_set<tree>::create_ggc (37);
6184 func->used_types_hash->add (type);
6188 /* Given a type, insert it into the used hash table in cfun. */
6189 void
6190 used_types_insert (tree t)
6192 while (POINTER_TYPE_P (t) || TREE_CODE (t) == ARRAY_TYPE)
6193 if (TYPE_NAME (t))
6194 break;
6195 else
6196 t = TREE_TYPE (t);
6197 if (TREE_CODE (t) == ERROR_MARK)
6198 return;
6199 if (TYPE_NAME (t) == NULL_TREE
6200 || TYPE_NAME (t) == TYPE_NAME (TYPE_MAIN_VARIANT (t)))
6201 t = TYPE_MAIN_VARIANT (t);
6202 if (debug_info_level > DINFO_LEVEL_NONE)
6204 if (cfun)
6205 used_types_insert_helper (t, cfun);
6206 else
6208 /* So this might be a type referenced by a global variable.
6209 Record that type so that we can later decide to emit its
6210 debug information. */
6211 vec_safe_push (types_used_by_cur_var_decl, t);
6216 /* Helper to Hash a struct types_used_by_vars_entry. */
6218 static hashval_t
6219 hash_types_used_by_vars_entry (const struct types_used_by_vars_entry *entry)
6221 gcc_assert (entry && entry->var_decl && entry->type);
6223 return iterative_hash_object (entry->type,
6224 iterative_hash_object (entry->var_decl, 0));
6227 /* Hash function of the types_used_by_vars_entry hash table. */
6229 hashval_t
6230 used_type_hasher::hash (types_used_by_vars_entry *entry)
6232 return hash_types_used_by_vars_entry (entry);
6235 /*Equality function of the types_used_by_vars_entry hash table. */
6237 bool
6238 used_type_hasher::equal (types_used_by_vars_entry *e1,
6239 types_used_by_vars_entry *e2)
6241 return (e1->var_decl == e2->var_decl && e1->type == e2->type);
6244 /* Inserts an entry into the types_used_by_vars_hash hash table. */
6246 void
6247 types_used_by_var_decl_insert (tree type, tree var_decl)
6249 if (type != NULL && var_decl != NULL)
6251 types_used_by_vars_entry **slot;
6252 struct types_used_by_vars_entry e;
6253 e.var_decl = var_decl;
6254 e.type = type;
6255 if (types_used_by_vars_hash == NULL)
6256 types_used_by_vars_hash
6257 = hash_table<used_type_hasher>::create_ggc (37);
6259 slot = types_used_by_vars_hash->find_slot (&e, INSERT);
6260 if (*slot == NULL)
6262 struct types_used_by_vars_entry *entry;
6263 entry = ggc_alloc<types_used_by_vars_entry> ();
6264 entry->type = type;
6265 entry->var_decl = var_decl;
6266 *slot = entry;
6271 namespace {
6273 const pass_data pass_data_leaf_regs =
6275 RTL_PASS, /* type */
6276 "*leaf_regs", /* name */
6277 OPTGROUP_NONE, /* optinfo_flags */
6278 TV_NONE, /* tv_id */
6279 0, /* properties_required */
6280 0, /* properties_provided */
6281 0, /* properties_destroyed */
6282 0, /* todo_flags_start */
6283 0, /* todo_flags_finish */
6286 class pass_leaf_regs : public rtl_opt_pass
6288 public:
6289 pass_leaf_regs (gcc::context *ctxt)
6290 : rtl_opt_pass (pass_data_leaf_regs, ctxt)
6293 /* opt_pass methods: */
6294 virtual unsigned int execute (function *)
6296 return rest_of_handle_check_leaf_regs ();
6299 }; // class pass_leaf_regs
6301 } // anon namespace
6303 rtl_opt_pass *
6304 make_pass_leaf_regs (gcc::context *ctxt)
6306 return new pass_leaf_regs (ctxt);
6309 static unsigned int
6310 rest_of_handle_thread_prologue_and_epilogue (void)
6312 /* prepare_shrink_wrap is sensitive to the block structure of the control
6313 flow graph, so clean it up first. */
6314 if (optimize)
6315 cleanup_cfg (0);
6317 /* On some machines, the prologue and epilogue code, or parts thereof,
6318 can be represented as RTL. Doing so lets us schedule insns between
6319 it and the rest of the code and also allows delayed branch
6320 scheduling to operate in the epilogue. */
6321 thread_prologue_and_epilogue_insns ();
6323 /* Some non-cold blocks may now be only reachable from cold blocks.
6324 Fix that up. */
6325 fixup_partitions ();
6327 /* Shrink-wrapping can result in unreachable edges in the epilogue,
6328 see PR57320. */
6329 cleanup_cfg (optimize ? CLEANUP_EXPENSIVE : 0);
6331 /* The stack usage info is finalized during prologue expansion. */
6332 if (flag_stack_usage_info)
6333 output_stack_usage ();
6335 return 0;
6338 namespace {
6340 const pass_data pass_data_thread_prologue_and_epilogue =
6342 RTL_PASS, /* type */
6343 "pro_and_epilogue", /* name */
6344 OPTGROUP_NONE, /* optinfo_flags */
6345 TV_THREAD_PROLOGUE_AND_EPILOGUE, /* tv_id */
6346 0, /* properties_required */
6347 0, /* properties_provided */
6348 0, /* properties_destroyed */
6349 0, /* todo_flags_start */
6350 ( TODO_df_verify | TODO_df_finish ), /* todo_flags_finish */
6353 class pass_thread_prologue_and_epilogue : public rtl_opt_pass
6355 public:
6356 pass_thread_prologue_and_epilogue (gcc::context *ctxt)
6357 : rtl_opt_pass (pass_data_thread_prologue_and_epilogue, ctxt)
6360 /* opt_pass methods: */
6361 virtual unsigned int execute (function *)
6363 return rest_of_handle_thread_prologue_and_epilogue ();
6366 }; // class pass_thread_prologue_and_epilogue
6368 } // anon namespace
6370 rtl_opt_pass *
6371 make_pass_thread_prologue_and_epilogue (gcc::context *ctxt)
6373 return new pass_thread_prologue_and_epilogue (ctxt);
6377 /* This mini-pass fixes fall-out from SSA in asm statements that have
6378 in-out constraints. Say you start with
6380 orig = inout;
6381 asm ("": "+mr" (inout));
6382 use (orig);
6384 which is transformed very early to use explicit output and match operands:
6386 orig = inout;
6387 asm ("": "=mr" (inout) : "0" (inout));
6388 use (orig);
6390 Or, after SSA and copyprop,
6392 asm ("": "=mr" (inout_2) : "0" (inout_1));
6393 use (inout_1);
6395 Clearly inout_2 and inout_1 can't be coalesced easily anymore, as
6396 they represent two separate values, so they will get different pseudo
6397 registers during expansion. Then, since the two operands need to match
6398 per the constraints, but use different pseudo registers, reload can
6399 only register a reload for these operands. But reloads can only be
6400 satisfied by hardregs, not by memory, so we need a register for this
6401 reload, just because we are presented with non-matching operands.
6402 So, even though we allow memory for this operand, no memory can be
6403 used for it, just because the two operands don't match. This can
6404 cause reload failures on register-starved targets.
6406 So it's a symptom of reload not being able to use memory for reloads
6407 or, alternatively it's also a symptom of both operands not coming into
6408 reload as matching (in which case the pseudo could go to memory just
6409 fine, as the alternative allows it, and no reload would be necessary).
6410 We fix the latter problem here, by transforming
6412 asm ("": "=mr" (inout_2) : "0" (inout_1));
6414 back to
6416 inout_2 = inout_1;
6417 asm ("": "=mr" (inout_2) : "0" (inout_2)); */
6419 static void
6420 match_asm_constraints_1 (rtx_insn *insn, rtx *p_sets, int noutputs)
6422 int i;
6423 bool changed = false;
6424 rtx op = SET_SRC (p_sets[0]);
6425 int ninputs = ASM_OPERANDS_INPUT_LENGTH (op);
6426 rtvec inputs = ASM_OPERANDS_INPUT_VEC (op);
6427 bool *output_matched = XALLOCAVEC (bool, noutputs);
6429 memset (output_matched, 0, noutputs * sizeof (bool));
6430 for (i = 0; i < ninputs; i++)
6432 rtx input, output;
6433 rtx_insn *insns;
6434 const char *constraint = ASM_OPERANDS_INPUT_CONSTRAINT (op, i);
6435 char *end;
6436 int match, j;
6438 if (*constraint == '%')
6439 constraint++;
6441 match = strtoul (constraint, &end, 10);
6442 if (end == constraint)
6443 continue;
6445 gcc_assert (match < noutputs);
6446 output = SET_DEST (p_sets[match]);
6447 input = RTVEC_ELT (inputs, i);
6448 /* Only do the transformation for pseudos. */
6449 if (! REG_P (output)
6450 || rtx_equal_p (output, input)
6451 || !(REG_P (input) || SUBREG_P (input)
6452 || MEM_P (input) || CONSTANT_P (input))
6453 || !general_operand (input, GET_MODE (output)))
6454 continue;
6456 /* We can't do anything if the output is also used as input,
6457 as we're going to overwrite it. */
6458 for (j = 0; j < ninputs; j++)
6459 if (reg_overlap_mentioned_p (output, RTVEC_ELT (inputs, j)))
6460 break;
6461 if (j != ninputs)
6462 continue;
6464 /* Avoid changing the same input several times. For
6465 asm ("" : "=mr" (out1), "=mr" (out2) : "0" (in), "1" (in));
6466 only change in once (to out1), rather than changing it
6467 first to out1 and afterwards to out2. */
6468 if (i > 0)
6470 for (j = 0; j < noutputs; j++)
6471 if (output_matched[j] && input == SET_DEST (p_sets[j]))
6472 break;
6473 if (j != noutputs)
6474 continue;
6476 output_matched[match] = true;
6478 start_sequence ();
6479 emit_move_insn (output, input);
6480 insns = get_insns ();
6481 end_sequence ();
6482 emit_insn_before (insns, insn);
6484 /* Now replace all mentions of the input with output. We can't
6485 just replace the occurrence in inputs[i], as the register might
6486 also be used in some other input (or even in an address of an
6487 output), which would mean possibly increasing the number of
6488 inputs by one (namely 'output' in addition), which might pose
6489 a too complicated problem for reload to solve. E.g. this situation:
6491 asm ("" : "=r" (output), "=m" (input) : "0" (input))
6493 Here 'input' is used in two occurrences as input (once for the
6494 input operand, once for the address in the second output operand).
6495 If we would replace only the occurrence of the input operand (to
6496 make the matching) we would be left with this:
6498 output = input
6499 asm ("" : "=r" (output), "=m" (input) : "0" (output))
6501 Now we suddenly have two different input values (containing the same
6502 value, but different pseudos) where we formerly had only one.
6503 With more complicated asms this might lead to reload failures
6504 which wouldn't have happen without this pass. So, iterate over
6505 all operands and replace all occurrences of the register used. */
6506 for (j = 0; j < noutputs; j++)
6507 if (!rtx_equal_p (SET_DEST (p_sets[j]), input)
6508 && reg_overlap_mentioned_p (input, SET_DEST (p_sets[j])))
6509 SET_DEST (p_sets[j]) = replace_rtx (SET_DEST (p_sets[j]),
6510 input, output);
6511 for (j = 0; j < ninputs; j++)
6512 if (reg_overlap_mentioned_p (input, RTVEC_ELT (inputs, j)))
6513 RTVEC_ELT (inputs, j) = replace_rtx (RTVEC_ELT (inputs, j),
6514 input, output);
6516 changed = true;
6519 if (changed)
6520 df_insn_rescan (insn);
6523 /* Add the decl D to the local_decls list of FUN. */
6525 void
6526 add_local_decl (struct function *fun, tree d)
6528 gcc_assert (VAR_P (d));
6529 vec_safe_push (fun->local_decls, d);
6532 namespace {
6534 const pass_data pass_data_match_asm_constraints =
6536 RTL_PASS, /* type */
6537 "asmcons", /* name */
6538 OPTGROUP_NONE, /* optinfo_flags */
6539 TV_NONE, /* tv_id */
6540 0, /* properties_required */
6541 0, /* properties_provided */
6542 0, /* properties_destroyed */
6543 0, /* todo_flags_start */
6544 0, /* todo_flags_finish */
6547 class pass_match_asm_constraints : public rtl_opt_pass
6549 public:
6550 pass_match_asm_constraints (gcc::context *ctxt)
6551 : rtl_opt_pass (pass_data_match_asm_constraints, ctxt)
6554 /* opt_pass methods: */
6555 virtual unsigned int execute (function *);
6557 }; // class pass_match_asm_constraints
6559 unsigned
6560 pass_match_asm_constraints::execute (function *fun)
6562 basic_block bb;
6563 rtx_insn *insn;
6564 rtx pat, *p_sets;
6565 int noutputs;
6567 if (!crtl->has_asm_statement)
6568 return 0;
6570 df_set_flags (DF_DEFER_INSN_RESCAN);
6571 FOR_EACH_BB_FN (bb, fun)
6573 FOR_BB_INSNS (bb, insn)
6575 if (!INSN_P (insn))
6576 continue;
6578 pat = PATTERN (insn);
6579 if (GET_CODE (pat) == PARALLEL)
6580 p_sets = &XVECEXP (pat, 0, 0), noutputs = XVECLEN (pat, 0);
6581 else if (GET_CODE (pat) == SET)
6582 p_sets = &PATTERN (insn), noutputs = 1;
6583 else
6584 continue;
6586 if (GET_CODE (*p_sets) == SET
6587 && GET_CODE (SET_SRC (*p_sets)) == ASM_OPERANDS)
6588 match_asm_constraints_1 (insn, p_sets, noutputs);
6592 return TODO_df_finish;
6595 } // anon namespace
6597 rtl_opt_pass *
6598 make_pass_match_asm_constraints (gcc::context *ctxt)
6600 return new pass_match_asm_constraints (ctxt);
6604 #include "gt-function.h"