1 /* Fold a constant sub-tree into a single node for C-compiler
2 Copyright (C) 1987-2018 Free Software Foundation, Inc.
4 This file is part of GCC.
6 GCC is free software; you can redistribute it and/or modify it under
7 the terms of the GNU General Public License as published by the Free
8 Software Foundation; either version 3, or (at your option) any later
11 GCC is distributed in the hope that it will be useful, but WITHOUT ANY
12 WARRANTY; without even the implied warranty of MERCHANTABILITY or
13 FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License
16 You should have received a copy of the GNU General Public License
17 along with GCC; see the file COPYING3. If not see
18 <http://www.gnu.org/licenses/>. */
20 /*@@ This file should be rewritten to use an arbitrary precision
21 @@ representation for "struct tree_int_cst" and "struct tree_real_cst".
22 @@ Perhaps the routines could also be used for bc/dc, and made a lib.
23 @@ The routines that translate from the ap rep should
24 @@ warn if precision et. al. is lost.
25 @@ This would also make life easier when this technology is used
26 @@ for cross-compilers. */
28 /* The entry points in this file are fold, size_int_wide and size_binop.
30 fold takes a tree as argument and returns a simplified tree.
32 size_binop takes a tree code for an arithmetic operation
33 and two operands that are trees, and produces a tree for the
34 result, assuming the type comes from `sizetype'.
36 size_int takes an integer value, and creates a tree constant
37 with type from `sizetype'.
39 Note: Since the folders get called on non-gimple code as well as
40 gimple code, we need to handle GIMPLE tuples as well as their
41 corresponding tree equivalents. */
45 #include "coretypes.h"
54 #include "tree-ssa-operands.h"
55 #include "optabs-query.h"
57 #include "diagnostic-core.h"
60 #include "fold-const.h"
61 #include "fold-const-call.h"
62 #include "stor-layout.h"
64 #include "tree-iterator.h"
67 #include "langhooks.h"
72 #include "generic-match.h"
73 #include "gimple-fold.h"
75 #include "tree-into-ssa.h"
77 #include "case-cfn-macros.h"
78 #include "stringpool.h"
80 #include "tree-ssanames.h"
82 #include "stringpool.h"
84 #include "tree-vector-builder.h"
85 #include "vec-perm-indices.h"
87 /* Nonzero if we are folding constants inside an initializer; zero
89 int folding_initializer
= 0;
91 /* The following constants represent a bit based encoding of GCC's
92 comparison operators. This encoding simplifies transformations
93 on relational comparison operators, such as AND and OR. */
94 enum comparison_code
{
113 static bool negate_expr_p (tree
);
114 static tree
negate_expr (tree
);
115 static tree
associate_trees (location_t
, tree
, tree
, enum tree_code
, tree
);
116 static enum comparison_code
comparison_to_compcode (enum tree_code
);
117 static enum tree_code
compcode_to_comparison (enum comparison_code
);
118 static int twoval_comparison_p (tree
, tree
*, tree
*);
119 static tree
eval_subst (location_t
, tree
, tree
, tree
, tree
, tree
);
120 static tree
optimize_bit_field_compare (location_t
, enum tree_code
,
122 static int simple_operand_p (const_tree
);
123 static bool simple_operand_p_2 (tree
);
124 static tree
range_binop (enum tree_code
, tree
, tree
, int, tree
, int);
125 static tree
range_predecessor (tree
);
126 static tree
range_successor (tree
);
127 static tree
fold_range_test (location_t
, enum tree_code
, tree
, tree
, tree
);
128 static tree
fold_cond_expr_with_comparison (location_t
, tree
, tree
, tree
, tree
);
129 static tree
unextend (tree
, int, int, tree
);
130 static tree
extract_muldiv (tree
, tree
, enum tree_code
, tree
, bool *);
131 static tree
extract_muldiv_1 (tree
, tree
, enum tree_code
, tree
, bool *);
132 static tree
fold_binary_op_with_conditional_arg (location_t
,
133 enum tree_code
, tree
,
136 static tree
fold_negate_const (tree
, tree
);
137 static tree
fold_not_const (const_tree
, tree
);
138 static tree
fold_relational_const (enum tree_code
, tree
, tree
, tree
);
139 static tree
fold_convert_const (enum tree_code
, tree
, tree
);
140 static tree
fold_view_convert_expr (tree
, tree
);
141 static tree
fold_negate_expr (location_t
, tree
);
144 /* Return EXPR_LOCATION of T if it is not UNKNOWN_LOCATION.
145 Otherwise, return LOC. */
148 expr_location_or (tree t
, location_t loc
)
150 location_t tloc
= EXPR_LOCATION (t
);
151 return tloc
== UNKNOWN_LOCATION
? loc
: tloc
;
154 /* Similar to protected_set_expr_location, but never modify x in place,
155 if location can and needs to be set, unshare it. */
158 protected_set_expr_location_unshare (tree x
, location_t loc
)
160 if (CAN_HAVE_LOCATION_P (x
)
161 && EXPR_LOCATION (x
) != loc
162 && !(TREE_CODE (x
) == SAVE_EXPR
163 || TREE_CODE (x
) == TARGET_EXPR
164 || TREE_CODE (x
) == BIND_EXPR
))
167 SET_EXPR_LOCATION (x
, loc
);
172 /* If ARG2 divides ARG1 with zero remainder, carries out the exact
173 division and returns the quotient. Otherwise returns
177 div_if_zero_remainder (const_tree arg1
, const_tree arg2
)
181 if (wi::multiple_of_p (wi::to_widest (arg1
), wi::to_widest (arg2
),
183 return wide_int_to_tree (TREE_TYPE (arg1
), quo
);
188 /* This is nonzero if we should defer warnings about undefined
189 overflow. This facility exists because these warnings are a
190 special case. The code to estimate loop iterations does not want
191 to issue any warnings, since it works with expressions which do not
192 occur in user code. Various bits of cleanup code call fold(), but
193 only use the result if it has certain characteristics (e.g., is a
194 constant); that code only wants to issue a warning if the result is
197 static int fold_deferring_overflow_warnings
;
199 /* If a warning about undefined overflow is deferred, this is the
200 warning. Note that this may cause us to turn two warnings into
201 one, but that is fine since it is sufficient to only give one
202 warning per expression. */
204 static const char* fold_deferred_overflow_warning
;
206 /* If a warning about undefined overflow is deferred, this is the
207 level at which the warning should be emitted. */
209 static enum warn_strict_overflow_code fold_deferred_overflow_code
;
211 /* Start deferring overflow warnings. We could use a stack here to
212 permit nested calls, but at present it is not necessary. */
215 fold_defer_overflow_warnings (void)
217 ++fold_deferring_overflow_warnings
;
220 /* Stop deferring overflow warnings. If there is a pending warning,
221 and ISSUE is true, then issue the warning if appropriate. STMT is
222 the statement with which the warning should be associated (used for
223 location information); STMT may be NULL. CODE is the level of the
224 warning--a warn_strict_overflow_code value. This function will use
225 the smaller of CODE and the deferred code when deciding whether to
226 issue the warning. CODE may be zero to mean to always use the
230 fold_undefer_overflow_warnings (bool issue
, const gimple
*stmt
, int code
)
235 gcc_assert (fold_deferring_overflow_warnings
> 0);
236 --fold_deferring_overflow_warnings
;
237 if (fold_deferring_overflow_warnings
> 0)
239 if (fold_deferred_overflow_warning
!= NULL
241 && code
< (int) fold_deferred_overflow_code
)
242 fold_deferred_overflow_code
= (enum warn_strict_overflow_code
) code
;
246 warnmsg
= fold_deferred_overflow_warning
;
247 fold_deferred_overflow_warning
= NULL
;
249 if (!issue
|| warnmsg
== NULL
)
252 if (gimple_no_warning_p (stmt
))
255 /* Use the smallest code level when deciding to issue the
257 if (code
== 0 || code
> (int) fold_deferred_overflow_code
)
258 code
= fold_deferred_overflow_code
;
260 if (!issue_strict_overflow_warning (code
))
264 locus
= input_location
;
266 locus
= gimple_location (stmt
);
267 warning_at (locus
, OPT_Wstrict_overflow
, "%s", warnmsg
);
270 /* Stop deferring overflow warnings, ignoring any deferred
274 fold_undefer_and_ignore_overflow_warnings (void)
276 fold_undefer_overflow_warnings (false, NULL
, 0);
279 /* Whether we are deferring overflow warnings. */
282 fold_deferring_overflow_warnings_p (void)
284 return fold_deferring_overflow_warnings
> 0;
287 /* This is called when we fold something based on the fact that signed
288 overflow is undefined. */
291 fold_overflow_warning (const char* gmsgid
, enum warn_strict_overflow_code wc
)
293 if (fold_deferring_overflow_warnings
> 0)
295 if (fold_deferred_overflow_warning
== NULL
296 || wc
< fold_deferred_overflow_code
)
298 fold_deferred_overflow_warning
= gmsgid
;
299 fold_deferred_overflow_code
= wc
;
302 else if (issue_strict_overflow_warning (wc
))
303 warning (OPT_Wstrict_overflow
, gmsgid
);
306 /* Return true if the built-in mathematical function specified by CODE
307 is odd, i.e. -f(x) == f(-x). */
310 negate_mathfn_p (combined_fn fn
)
343 return !flag_rounding_math
;
351 /* Check whether we may negate an integer constant T without causing
355 may_negate_without_overflow_p (const_tree t
)
359 gcc_assert (TREE_CODE (t
) == INTEGER_CST
);
361 type
= TREE_TYPE (t
);
362 if (TYPE_UNSIGNED (type
))
365 return !wi::only_sign_bit_p (wi::to_wide (t
));
368 /* Determine whether an expression T can be cheaply negated using
369 the function negate_expr without introducing undefined overflow. */
372 negate_expr_p (tree t
)
379 type
= TREE_TYPE (t
);
382 switch (TREE_CODE (t
))
385 if (INTEGRAL_TYPE_P (type
) && TYPE_UNSIGNED (type
))
388 /* Check that -CST will not overflow type. */
389 return may_negate_without_overflow_p (t
);
391 return (INTEGRAL_TYPE_P (type
)
392 && TYPE_OVERFLOW_WRAPS (type
));
398 return !TYPE_OVERFLOW_SANITIZED (type
);
401 /* We want to canonicalize to positive real constants. Pretend
402 that only negative ones can be easily negated. */
403 return REAL_VALUE_NEGATIVE (TREE_REAL_CST (t
));
406 return negate_expr_p (TREE_REALPART (t
))
407 && negate_expr_p (TREE_IMAGPART (t
));
411 if (FLOAT_TYPE_P (TREE_TYPE (type
)) || TYPE_OVERFLOW_WRAPS (type
))
414 /* Steps don't prevent negation. */
415 unsigned int count
= vector_cst_encoded_nelts (t
);
416 for (unsigned int i
= 0; i
< count
; ++i
)
417 if (!negate_expr_p (VECTOR_CST_ENCODED_ELT (t
, i
)))
424 return negate_expr_p (TREE_OPERAND (t
, 0))
425 && negate_expr_p (TREE_OPERAND (t
, 1));
428 return negate_expr_p (TREE_OPERAND (t
, 0));
431 if (HONOR_SIGN_DEPENDENT_ROUNDING (element_mode (type
))
432 || HONOR_SIGNED_ZEROS (element_mode (type
))
433 || (ANY_INTEGRAL_TYPE_P (type
)
434 && ! TYPE_OVERFLOW_WRAPS (type
)))
436 /* -(A + B) -> (-B) - A. */
437 if (negate_expr_p (TREE_OPERAND (t
, 1)))
439 /* -(A + B) -> (-A) - B. */
440 return negate_expr_p (TREE_OPERAND (t
, 0));
443 /* We can't turn -(A-B) into B-A when we honor signed zeros. */
444 return !HONOR_SIGN_DEPENDENT_ROUNDING (element_mode (type
))
445 && !HONOR_SIGNED_ZEROS (element_mode (type
))
446 && (! ANY_INTEGRAL_TYPE_P (type
)
447 || TYPE_OVERFLOW_WRAPS (type
));
450 if (TYPE_UNSIGNED (type
))
452 /* INT_MIN/n * n doesn't overflow while negating one operand it does
453 if n is a (negative) power of two. */
454 if (INTEGRAL_TYPE_P (TREE_TYPE (t
))
455 && ! TYPE_OVERFLOW_WRAPS (TREE_TYPE (t
))
456 && ! ((TREE_CODE (TREE_OPERAND (t
, 0)) == INTEGER_CST
458 (wi::abs (wi::to_wide (TREE_OPERAND (t
, 0))))) != 1)
459 || (TREE_CODE (TREE_OPERAND (t
, 1)) == INTEGER_CST
461 (wi::abs (wi::to_wide (TREE_OPERAND (t
, 1))))) != 1)))
467 if (! HONOR_SIGN_DEPENDENT_ROUNDING (element_mode (TREE_TYPE (t
))))
468 return negate_expr_p (TREE_OPERAND (t
, 1))
469 || negate_expr_p (TREE_OPERAND (t
, 0));
475 if (TYPE_UNSIGNED (type
))
477 /* In general we can't negate A in A / B, because if A is INT_MIN and
478 B is not 1 we change the sign of the result. */
479 if (TREE_CODE (TREE_OPERAND (t
, 0)) == INTEGER_CST
480 && negate_expr_p (TREE_OPERAND (t
, 0)))
482 /* In general we can't negate B in A / B, because if A is INT_MIN and
483 B is 1, we may turn this into INT_MIN / -1 which is undefined
484 and actually traps on some architectures. */
485 if (! ANY_INTEGRAL_TYPE_P (TREE_TYPE (t
))
486 || TYPE_OVERFLOW_WRAPS (TREE_TYPE (t
))
487 || (TREE_CODE (TREE_OPERAND (t
, 1)) == INTEGER_CST
488 && ! integer_onep (TREE_OPERAND (t
, 1))))
489 return negate_expr_p (TREE_OPERAND (t
, 1));
493 /* Negate -((double)float) as (double)(-float). */
494 if (TREE_CODE (type
) == REAL_TYPE
)
496 tree tem
= strip_float_extensions (t
);
498 return negate_expr_p (tem
);
503 /* Negate -f(x) as f(-x). */
504 if (negate_mathfn_p (get_call_combined_fn (t
)))
505 return negate_expr_p (CALL_EXPR_ARG (t
, 0));
509 /* Optimize -((int)x >> 31) into (unsigned)x >> 31 for int. */
510 if (TREE_CODE (TREE_OPERAND (t
, 1)) == INTEGER_CST
)
512 tree op1
= TREE_OPERAND (t
, 1);
513 if (wi::to_wide (op1
) == TYPE_PRECISION (type
) - 1)
524 /* Given T, an expression, return a folded tree for -T or NULL_TREE, if no
525 simplification is possible.
526 If negate_expr_p would return true for T, NULL_TREE will never be
530 fold_negate_expr_1 (location_t loc
, tree t
)
532 tree type
= TREE_TYPE (t
);
535 switch (TREE_CODE (t
))
537 /* Convert - (~A) to A + 1. */
539 if (INTEGRAL_TYPE_P (type
))
540 return fold_build2_loc (loc
, PLUS_EXPR
, type
, TREE_OPERAND (t
, 0),
541 build_one_cst (type
));
545 tem
= fold_negate_const (t
, type
);
546 if (TREE_OVERFLOW (tem
) == TREE_OVERFLOW (t
)
547 || (ANY_INTEGRAL_TYPE_P (type
)
548 && !TYPE_OVERFLOW_TRAPS (type
)
549 && TYPE_OVERFLOW_WRAPS (type
))
550 || (flag_sanitize
& SANITIZE_SI_OVERFLOW
) == 0)
557 tem
= fold_negate_const (t
, type
);
562 tree rpart
= fold_negate_expr (loc
, TREE_REALPART (t
));
563 tree ipart
= fold_negate_expr (loc
, TREE_IMAGPART (t
));
565 return build_complex (type
, rpart
, ipart
);
571 tree_vector_builder elts
;
572 elts
.new_unary_operation (type
, t
, true);
573 unsigned int count
= elts
.encoded_nelts ();
574 for (unsigned int i
= 0; i
< count
; ++i
)
576 tree elt
= fold_negate_expr (loc
, VECTOR_CST_ELT (t
, i
));
577 if (elt
== NULL_TREE
)
579 elts
.quick_push (elt
);
582 return elts
.build ();
586 if (negate_expr_p (t
))
587 return fold_build2_loc (loc
, COMPLEX_EXPR
, type
,
588 fold_negate_expr (loc
, TREE_OPERAND (t
, 0)),
589 fold_negate_expr (loc
, TREE_OPERAND (t
, 1)));
593 if (negate_expr_p (t
))
594 return fold_build1_loc (loc
, CONJ_EXPR
, type
,
595 fold_negate_expr (loc
, TREE_OPERAND (t
, 0)));
599 if (!TYPE_OVERFLOW_SANITIZED (type
))
600 return TREE_OPERAND (t
, 0);
604 if (!HONOR_SIGN_DEPENDENT_ROUNDING (element_mode (type
))
605 && !HONOR_SIGNED_ZEROS (element_mode (type
)))
607 /* -(A + B) -> (-B) - A. */
608 if (negate_expr_p (TREE_OPERAND (t
, 1)))
610 tem
= negate_expr (TREE_OPERAND (t
, 1));
611 return fold_build2_loc (loc
, MINUS_EXPR
, type
,
612 tem
, TREE_OPERAND (t
, 0));
615 /* -(A + B) -> (-A) - B. */
616 if (negate_expr_p (TREE_OPERAND (t
, 0)))
618 tem
= negate_expr (TREE_OPERAND (t
, 0));
619 return fold_build2_loc (loc
, MINUS_EXPR
, type
,
620 tem
, TREE_OPERAND (t
, 1));
626 /* - (A - B) -> B - A */
627 if (!HONOR_SIGN_DEPENDENT_ROUNDING (element_mode (type
))
628 && !HONOR_SIGNED_ZEROS (element_mode (type
)))
629 return fold_build2_loc (loc
, MINUS_EXPR
, type
,
630 TREE_OPERAND (t
, 1), TREE_OPERAND (t
, 0));
634 if (TYPE_UNSIGNED (type
))
640 if (! HONOR_SIGN_DEPENDENT_ROUNDING (element_mode (type
)))
642 tem
= TREE_OPERAND (t
, 1);
643 if (negate_expr_p (tem
))
644 return fold_build2_loc (loc
, TREE_CODE (t
), type
,
645 TREE_OPERAND (t
, 0), negate_expr (tem
));
646 tem
= TREE_OPERAND (t
, 0);
647 if (negate_expr_p (tem
))
648 return fold_build2_loc (loc
, TREE_CODE (t
), type
,
649 negate_expr (tem
), TREE_OPERAND (t
, 1));
656 if (TYPE_UNSIGNED (type
))
658 /* In general we can't negate A in A / B, because if A is INT_MIN and
659 B is not 1 we change the sign of the result. */
660 if (TREE_CODE (TREE_OPERAND (t
, 0)) == INTEGER_CST
661 && negate_expr_p (TREE_OPERAND (t
, 0)))
662 return fold_build2_loc (loc
, TREE_CODE (t
), type
,
663 negate_expr (TREE_OPERAND (t
, 0)),
664 TREE_OPERAND (t
, 1));
665 /* In general we can't negate B in A / B, because if A is INT_MIN and
666 B is 1, we may turn this into INT_MIN / -1 which is undefined
667 and actually traps on some architectures. */
668 if ((! ANY_INTEGRAL_TYPE_P (TREE_TYPE (t
))
669 || TYPE_OVERFLOW_WRAPS (TREE_TYPE (t
))
670 || (TREE_CODE (TREE_OPERAND (t
, 1)) == INTEGER_CST
671 && ! integer_onep (TREE_OPERAND (t
, 1))))
672 && negate_expr_p (TREE_OPERAND (t
, 1)))
673 return fold_build2_loc (loc
, TREE_CODE (t
), type
,
675 negate_expr (TREE_OPERAND (t
, 1)));
679 /* Convert -((double)float) into (double)(-float). */
680 if (TREE_CODE (type
) == REAL_TYPE
)
682 tem
= strip_float_extensions (t
);
683 if (tem
!= t
&& negate_expr_p (tem
))
684 return fold_convert_loc (loc
, type
, negate_expr (tem
));
689 /* Negate -f(x) as f(-x). */
690 if (negate_mathfn_p (get_call_combined_fn (t
))
691 && negate_expr_p (CALL_EXPR_ARG (t
, 0)))
695 fndecl
= get_callee_fndecl (t
);
696 arg
= negate_expr (CALL_EXPR_ARG (t
, 0));
697 return build_call_expr_loc (loc
, fndecl
, 1, arg
);
702 /* Optimize -((int)x >> 31) into (unsigned)x >> 31 for int. */
703 if (TREE_CODE (TREE_OPERAND (t
, 1)) == INTEGER_CST
)
705 tree op1
= TREE_OPERAND (t
, 1);
706 if (wi::to_wide (op1
) == TYPE_PRECISION (type
) - 1)
708 tree ntype
= TYPE_UNSIGNED (type
)
709 ? signed_type_for (type
)
710 : unsigned_type_for (type
);
711 tree temp
= fold_convert_loc (loc
, ntype
, TREE_OPERAND (t
, 0));
712 temp
= fold_build2_loc (loc
, RSHIFT_EXPR
, ntype
, temp
, op1
);
713 return fold_convert_loc (loc
, type
, temp
);
725 /* A wrapper for fold_negate_expr_1. */
728 fold_negate_expr (location_t loc
, tree t
)
730 tree type
= TREE_TYPE (t
);
732 tree tem
= fold_negate_expr_1 (loc
, t
);
733 if (tem
== NULL_TREE
)
735 return fold_convert_loc (loc
, type
, tem
);
738 /* Like fold_negate_expr, but return a NEGATE_EXPR tree, if T can not be
739 negated in a simpler way. Also allow for T to be NULL_TREE, in which case
751 loc
= EXPR_LOCATION (t
);
752 type
= TREE_TYPE (t
);
755 tem
= fold_negate_expr (loc
, t
);
757 tem
= build1_loc (loc
, NEGATE_EXPR
, TREE_TYPE (t
), t
);
758 return fold_convert_loc (loc
, type
, tem
);
761 /* Split a tree IN into a constant, literal and variable parts that could be
762 combined with CODE to make IN. "constant" means an expression with
763 TREE_CONSTANT but that isn't an actual constant. CODE must be a
764 commutative arithmetic operation. Store the constant part into *CONP,
765 the literal in *LITP and return the variable part. If a part isn't
766 present, set it to null. If the tree does not decompose in this way,
767 return the entire tree as the variable part and the other parts as null.
769 If CODE is PLUS_EXPR we also split trees that use MINUS_EXPR. In that
770 case, we negate an operand that was subtracted. Except if it is a
771 literal for which we use *MINUS_LITP instead.
773 If NEGATE_P is true, we are negating all of IN, again except a literal
774 for which we use *MINUS_LITP instead. If a variable part is of pointer
775 type, it is negated after converting to TYPE. This prevents us from
776 generating illegal MINUS pointer expression. LOC is the location of
777 the converted variable part.
779 If IN is itself a literal or constant, return it as appropriate.
781 Note that we do not guarantee that any of the three values will be the
782 same type as IN, but they will have the same signedness and mode. */
785 split_tree (tree in
, tree type
, enum tree_code code
,
786 tree
*minus_varp
, tree
*conp
, tree
*minus_conp
,
787 tree
*litp
, tree
*minus_litp
, int negate_p
)
796 /* Strip any conversions that don't change the machine mode or signedness. */
797 STRIP_SIGN_NOPS (in
);
799 if (TREE_CODE (in
) == INTEGER_CST
|| TREE_CODE (in
) == REAL_CST
800 || TREE_CODE (in
) == FIXED_CST
)
802 else if (TREE_CODE (in
) == code
803 || ((! FLOAT_TYPE_P (TREE_TYPE (in
)) || flag_associative_math
)
804 && ! SAT_FIXED_POINT_TYPE_P (TREE_TYPE (in
))
805 /* We can associate addition and subtraction together (even
806 though the C standard doesn't say so) for integers because
807 the value is not affected. For reals, the value might be
808 affected, so we can't. */
809 && ((code
== PLUS_EXPR
&& TREE_CODE (in
) == POINTER_PLUS_EXPR
)
810 || (code
== PLUS_EXPR
&& TREE_CODE (in
) == MINUS_EXPR
)
811 || (code
== MINUS_EXPR
812 && (TREE_CODE (in
) == PLUS_EXPR
813 || TREE_CODE (in
) == POINTER_PLUS_EXPR
)))))
815 tree op0
= TREE_OPERAND (in
, 0);
816 tree op1
= TREE_OPERAND (in
, 1);
817 int neg1_p
= TREE_CODE (in
) == MINUS_EXPR
;
818 int neg_litp_p
= 0, neg_conp_p
= 0, neg_var_p
= 0;
820 /* First see if either of the operands is a literal, then a constant. */
821 if (TREE_CODE (op0
) == INTEGER_CST
|| TREE_CODE (op0
) == REAL_CST
822 || TREE_CODE (op0
) == FIXED_CST
)
823 *litp
= op0
, op0
= 0;
824 else if (TREE_CODE (op1
) == INTEGER_CST
|| TREE_CODE (op1
) == REAL_CST
825 || TREE_CODE (op1
) == FIXED_CST
)
826 *litp
= op1
, neg_litp_p
= neg1_p
, op1
= 0;
828 if (op0
!= 0 && TREE_CONSTANT (op0
))
829 *conp
= op0
, op0
= 0;
830 else if (op1
!= 0 && TREE_CONSTANT (op1
))
831 *conp
= op1
, neg_conp_p
= neg1_p
, op1
= 0;
833 /* If we haven't dealt with either operand, this is not a case we can
834 decompose. Otherwise, VAR is either of the ones remaining, if any. */
835 if (op0
!= 0 && op1
!= 0)
840 var
= op1
, neg_var_p
= neg1_p
;
842 /* Now do any needed negations. */
844 *minus_litp
= *litp
, *litp
= 0;
845 if (neg_conp_p
&& *conp
)
846 *minus_conp
= *conp
, *conp
= 0;
847 if (neg_var_p
&& var
)
848 *minus_varp
= var
, var
= 0;
850 else if (TREE_CONSTANT (in
))
852 else if (TREE_CODE (in
) == BIT_NOT_EXPR
853 && code
== PLUS_EXPR
)
855 /* -1 - X is folded to ~X, undo that here. Do _not_ do this
856 when IN is constant. */
857 *litp
= build_minus_one_cst (type
);
858 *minus_varp
= TREE_OPERAND (in
, 0);
866 *minus_litp
= *litp
, *litp
= 0;
867 else if (*minus_litp
)
868 *litp
= *minus_litp
, *minus_litp
= 0;
870 *minus_conp
= *conp
, *conp
= 0;
871 else if (*minus_conp
)
872 *conp
= *minus_conp
, *minus_conp
= 0;
874 *minus_varp
= var
, var
= 0;
875 else if (*minus_varp
)
876 var
= *minus_varp
, *minus_varp
= 0;
880 && TREE_OVERFLOW_P (*litp
))
881 *litp
= drop_tree_overflow (*litp
);
883 && TREE_OVERFLOW_P (*minus_litp
))
884 *minus_litp
= drop_tree_overflow (*minus_litp
);
889 /* Re-associate trees split by the above function. T1 and T2 are
890 either expressions to associate or null. Return the new
891 expression, if any. LOC is the location of the new expression. If
892 we build an operation, do it in TYPE and with CODE. */
895 associate_trees (location_t loc
, tree t1
, tree t2
, enum tree_code code
, tree type
)
899 gcc_assert (t2
== 0 || code
!= MINUS_EXPR
);
905 /* If either input is CODE, a PLUS_EXPR, or a MINUS_EXPR, don't
906 try to fold this since we will have infinite recursion. But do
907 deal with any NEGATE_EXPRs. */
908 if (TREE_CODE (t1
) == code
|| TREE_CODE (t2
) == code
909 || TREE_CODE (t1
) == PLUS_EXPR
|| TREE_CODE (t2
) == PLUS_EXPR
910 || TREE_CODE (t1
) == MINUS_EXPR
|| TREE_CODE (t2
) == MINUS_EXPR
)
912 if (code
== PLUS_EXPR
)
914 if (TREE_CODE (t1
) == NEGATE_EXPR
)
915 return build2_loc (loc
, MINUS_EXPR
, type
,
916 fold_convert_loc (loc
, type
, t2
),
917 fold_convert_loc (loc
, type
,
918 TREE_OPERAND (t1
, 0)));
919 else if (TREE_CODE (t2
) == NEGATE_EXPR
)
920 return build2_loc (loc
, MINUS_EXPR
, type
,
921 fold_convert_loc (loc
, type
, t1
),
922 fold_convert_loc (loc
, type
,
923 TREE_OPERAND (t2
, 0)));
924 else if (integer_zerop (t2
))
925 return fold_convert_loc (loc
, type
, t1
);
927 else if (code
== MINUS_EXPR
)
929 if (integer_zerop (t2
))
930 return fold_convert_loc (loc
, type
, t1
);
933 return build2_loc (loc
, code
, type
, fold_convert_loc (loc
, type
, t1
),
934 fold_convert_loc (loc
, type
, t2
));
937 return fold_build2_loc (loc
, code
, type
, fold_convert_loc (loc
, type
, t1
),
938 fold_convert_loc (loc
, type
, t2
));
941 /* Check whether TYPE1 and TYPE2 are equivalent integer types, suitable
942 for use in int_const_binop, size_binop and size_diffop. */
945 int_binop_types_match_p (enum tree_code code
, const_tree type1
, const_tree type2
)
947 if (!INTEGRAL_TYPE_P (type1
) && !POINTER_TYPE_P (type1
))
949 if (!INTEGRAL_TYPE_P (type2
) && !POINTER_TYPE_P (type2
))
964 return TYPE_UNSIGNED (type1
) == TYPE_UNSIGNED (type2
)
965 && TYPE_PRECISION (type1
) == TYPE_PRECISION (type2
)
966 && TYPE_MODE (type1
) == TYPE_MODE (type2
);
969 /* Combine two wide ints ARG1 and ARG2 under operation CODE to produce
970 a new constant in RES. Return FALSE if we don't know how to
971 evaluate CODE at compile-time. */
974 wide_int_binop (wide_int
&res
,
975 enum tree_code code
, const wide_int
&arg1
, const wide_int
&arg2
,
976 signop sign
, wi::overflow_type
*overflow
)
979 *overflow
= wi::OVF_NONE
;
983 res
= wi::bit_or (arg1
, arg2
);
987 res
= wi::bit_xor (arg1
, arg2
);
991 res
= wi::bit_and (arg1
, arg2
);
996 if (wi::neg_p (arg2
))
999 if (code
== RSHIFT_EXPR
)
1007 if (code
== RSHIFT_EXPR
)
1008 /* It's unclear from the C standard whether shifts can overflow.
1009 The following code ignores overflow; perhaps a C standard
1010 interpretation ruling is needed. */
1011 res
= wi::rshift (arg1
, tmp
, sign
);
1013 res
= wi::lshift (arg1
, tmp
);
1018 if (wi::neg_p (arg2
))
1021 if (code
== RROTATE_EXPR
)
1022 code
= LROTATE_EXPR
;
1024 code
= RROTATE_EXPR
;
1029 if (code
== RROTATE_EXPR
)
1030 res
= wi::rrotate (arg1
, tmp
);
1032 res
= wi::lrotate (arg1
, tmp
);
1036 res
= wi::add (arg1
, arg2
, sign
, overflow
);
1040 res
= wi::sub (arg1
, arg2
, sign
, overflow
);
1044 res
= wi::mul (arg1
, arg2
, sign
, overflow
);
1047 case MULT_HIGHPART_EXPR
:
1048 res
= wi::mul_high (arg1
, arg2
, sign
);
1051 case TRUNC_DIV_EXPR
:
1052 case EXACT_DIV_EXPR
:
1055 res
= wi::div_trunc (arg1
, arg2
, sign
, overflow
);
1058 case FLOOR_DIV_EXPR
:
1061 res
= wi::div_floor (arg1
, arg2
, sign
, overflow
);
1067 res
= wi::div_ceil (arg1
, arg2
, sign
, overflow
);
1070 case ROUND_DIV_EXPR
:
1073 res
= wi::div_round (arg1
, arg2
, sign
, overflow
);
1076 case TRUNC_MOD_EXPR
:
1079 res
= wi::mod_trunc (arg1
, arg2
, sign
, overflow
);
1082 case FLOOR_MOD_EXPR
:
1085 res
= wi::mod_floor (arg1
, arg2
, sign
, overflow
);
1091 res
= wi::mod_ceil (arg1
, arg2
, sign
, overflow
);
1094 case ROUND_MOD_EXPR
:
1097 res
= wi::mod_round (arg1
, arg2
, sign
, overflow
);
1101 res
= wi::min (arg1
, arg2
, sign
);
1105 res
= wi::max (arg1
, arg2
, sign
);
1114 /* Combine two poly int's ARG1 and ARG2 under operation CODE to
1115 produce a new constant in RES. Return FALSE if we don't know how
1116 to evaluate CODE at compile-time. */
1119 poly_int_binop (poly_wide_int
&res
, enum tree_code code
,
1120 const_tree arg1
, const_tree arg2
,
1121 signop sign
, wi::overflow_type
*overflow
)
1123 gcc_assert (NUM_POLY_INT_COEFFS
!= 1);
1124 gcc_assert (poly_int_tree_p (arg1
) && poly_int_tree_p (arg2
));
1128 res
= wi::add (wi::to_poly_wide (arg1
),
1129 wi::to_poly_wide (arg2
), sign
, overflow
);
1133 res
= wi::sub (wi::to_poly_wide (arg1
),
1134 wi::to_poly_wide (arg2
), sign
, overflow
);
1138 if (TREE_CODE (arg2
) == INTEGER_CST
)
1139 res
= wi::mul (wi::to_poly_wide (arg1
),
1140 wi::to_wide (arg2
), sign
, overflow
);
1141 else if (TREE_CODE (arg1
) == INTEGER_CST
)
1142 res
= wi::mul (wi::to_poly_wide (arg2
),
1143 wi::to_wide (arg1
), sign
, overflow
);
1149 if (TREE_CODE (arg2
) == INTEGER_CST
)
1150 res
= wi::to_poly_wide (arg1
) << wi::to_wide (arg2
);
1156 if (TREE_CODE (arg2
) != INTEGER_CST
1157 || !can_ior_p (wi::to_poly_wide (arg1
), wi::to_wide (arg2
),
1168 /* Combine two integer constants ARG1 and ARG2 under operation CODE to
1169 produce a new constant. Return NULL_TREE if we don't know how to
1170 evaluate CODE at compile-time. */
1173 int_const_binop (enum tree_code code
, const_tree arg1
, const_tree arg2
,
1176 bool success
= false;
1177 poly_wide_int poly_res
;
1178 tree type
= TREE_TYPE (arg1
);
1179 signop sign
= TYPE_SIGN (type
);
1180 wi::overflow_type overflow
= wi::OVF_NONE
;
1182 if (TREE_CODE (arg1
) == INTEGER_CST
&& TREE_CODE (arg2
) == INTEGER_CST
)
1184 wide_int warg1
= wi::to_wide (arg1
), res
;
1185 wide_int warg2
= wi::to_wide (arg2
, TYPE_PRECISION (type
));
1186 success
= wide_int_binop (res
, code
, warg1
, warg2
, sign
, &overflow
);
1189 else if (poly_int_tree_p (arg1
) && poly_int_tree_p (arg2
))
1190 success
= poly_int_binop (poly_res
, code
, arg1
, arg2
, sign
, &overflow
);
1192 return force_fit_type (type
, poly_res
, overflowable
,
1193 (((sign
== SIGNED
|| overflowable
== -1)
1195 | TREE_OVERFLOW (arg1
) | TREE_OVERFLOW (arg2
)));
1199 /* Return true if binary operation OP distributes over addition in operand
1200 OPNO, with the other operand being held constant. OPNO counts from 1. */
1203 distributes_over_addition_p (tree_code op
, int opno
)
1220 /* Combine two constants ARG1 and ARG2 under operation CODE to produce a new
1221 constant. We assume ARG1 and ARG2 have the same data type, or at least
1222 are the same kind of constant and the same machine mode. Return zero if
1223 combining the constants is not allowed in the current operating mode. */
1226 const_binop (enum tree_code code
, tree arg1
, tree arg2
)
1228 /* Sanity check for the recursive cases. */
1235 if (poly_int_tree_p (arg1
) && poly_int_tree_p (arg2
))
1237 if (code
== POINTER_PLUS_EXPR
)
1238 return int_const_binop (PLUS_EXPR
,
1239 arg1
, fold_convert (TREE_TYPE (arg1
), arg2
));
1241 return int_const_binop (code
, arg1
, arg2
);
1244 if (TREE_CODE (arg1
) == REAL_CST
&& TREE_CODE (arg2
) == REAL_CST
)
1249 REAL_VALUE_TYPE value
;
1250 REAL_VALUE_TYPE result
;
1254 /* The following codes are handled by real_arithmetic. */
1269 d1
= TREE_REAL_CST (arg1
);
1270 d2
= TREE_REAL_CST (arg2
);
1272 type
= TREE_TYPE (arg1
);
1273 mode
= TYPE_MODE (type
);
1275 /* Don't perform operation if we honor signaling NaNs and
1276 either operand is a signaling NaN. */
1277 if (HONOR_SNANS (mode
)
1278 && (REAL_VALUE_ISSIGNALING_NAN (d1
)
1279 || REAL_VALUE_ISSIGNALING_NAN (d2
)))
1282 /* Don't perform operation if it would raise a division
1283 by zero exception. */
1284 if (code
== RDIV_EXPR
1285 && real_equal (&d2
, &dconst0
)
1286 && (flag_trapping_math
|| ! MODE_HAS_INFINITIES (mode
)))
1289 /* If either operand is a NaN, just return it. Otherwise, set up
1290 for floating-point trap; we return an overflow. */
1291 if (REAL_VALUE_ISNAN (d1
))
1293 /* Make resulting NaN value to be qNaN when flag_signaling_nans
1296 t
= build_real (type
, d1
);
1299 else if (REAL_VALUE_ISNAN (d2
))
1301 /* Make resulting NaN value to be qNaN when flag_signaling_nans
1304 t
= build_real (type
, d2
);
1308 inexact
= real_arithmetic (&value
, code
, &d1
, &d2
);
1309 real_convert (&result
, mode
, &value
);
1311 /* Don't constant fold this floating point operation if
1312 the result has overflowed and flag_trapping_math. */
1313 if (flag_trapping_math
1314 && MODE_HAS_INFINITIES (mode
)
1315 && REAL_VALUE_ISINF (result
)
1316 && !REAL_VALUE_ISINF (d1
)
1317 && !REAL_VALUE_ISINF (d2
))
1320 /* Don't constant fold this floating point operation if the
1321 result may dependent upon the run-time rounding mode and
1322 flag_rounding_math is set, or if GCC's software emulation
1323 is unable to accurately represent the result. */
1324 if ((flag_rounding_math
1325 || (MODE_COMPOSITE_P (mode
) && !flag_unsafe_math_optimizations
))
1326 && (inexact
|| !real_identical (&result
, &value
)))
1329 t
= build_real (type
, result
);
1331 TREE_OVERFLOW (t
) = TREE_OVERFLOW (arg1
) | TREE_OVERFLOW (arg2
);
1335 if (TREE_CODE (arg1
) == FIXED_CST
)
1337 FIXED_VALUE_TYPE f1
;
1338 FIXED_VALUE_TYPE f2
;
1339 FIXED_VALUE_TYPE result
;
1344 /* The following codes are handled by fixed_arithmetic. */
1350 case TRUNC_DIV_EXPR
:
1351 if (TREE_CODE (arg2
) != FIXED_CST
)
1353 f2
= TREE_FIXED_CST (arg2
);
1359 if (TREE_CODE (arg2
) != INTEGER_CST
)
1361 wi::tree_to_wide_ref w2
= wi::to_wide (arg2
);
1362 f2
.data
.high
= w2
.elt (1);
1363 f2
.data
.low
= w2
.ulow ();
1372 f1
= TREE_FIXED_CST (arg1
);
1373 type
= TREE_TYPE (arg1
);
1374 sat_p
= TYPE_SATURATING (type
);
1375 overflow_p
= fixed_arithmetic (&result
, code
, &f1
, &f2
, sat_p
);
1376 t
= build_fixed (type
, result
);
1377 /* Propagate overflow flags. */
1378 if (overflow_p
| TREE_OVERFLOW (arg1
) | TREE_OVERFLOW (arg2
))
1379 TREE_OVERFLOW (t
) = 1;
1383 if (TREE_CODE (arg1
) == COMPLEX_CST
&& TREE_CODE (arg2
) == COMPLEX_CST
)
1385 tree type
= TREE_TYPE (arg1
);
1386 tree r1
= TREE_REALPART (arg1
);
1387 tree i1
= TREE_IMAGPART (arg1
);
1388 tree r2
= TREE_REALPART (arg2
);
1389 tree i2
= TREE_IMAGPART (arg2
);
1396 real
= const_binop (code
, r1
, r2
);
1397 imag
= const_binop (code
, i1
, i2
);
1401 if (COMPLEX_FLOAT_TYPE_P (type
))
1402 return do_mpc_arg2 (arg1
, arg2
, type
,
1403 /* do_nonfinite= */ folding_initializer
,
1406 real
= const_binop (MINUS_EXPR
,
1407 const_binop (MULT_EXPR
, r1
, r2
),
1408 const_binop (MULT_EXPR
, i1
, i2
));
1409 imag
= const_binop (PLUS_EXPR
,
1410 const_binop (MULT_EXPR
, r1
, i2
),
1411 const_binop (MULT_EXPR
, i1
, r2
));
1415 if (COMPLEX_FLOAT_TYPE_P (type
))
1416 return do_mpc_arg2 (arg1
, arg2
, type
,
1417 /* do_nonfinite= */ folding_initializer
,
1420 case TRUNC_DIV_EXPR
:
1422 case FLOOR_DIV_EXPR
:
1423 case ROUND_DIV_EXPR
:
1424 if (flag_complex_method
== 0)
1426 /* Keep this algorithm in sync with
1427 tree-complex.c:expand_complex_div_straight().
1429 Expand complex division to scalars, straightforward algorithm.
1430 a / b = ((ar*br + ai*bi)/t) + i((ai*br - ar*bi)/t)
1434 = const_binop (PLUS_EXPR
,
1435 const_binop (MULT_EXPR
, r2
, r2
),
1436 const_binop (MULT_EXPR
, i2
, i2
));
1438 = const_binop (PLUS_EXPR
,
1439 const_binop (MULT_EXPR
, r1
, r2
),
1440 const_binop (MULT_EXPR
, i1
, i2
));
1442 = const_binop (MINUS_EXPR
,
1443 const_binop (MULT_EXPR
, i1
, r2
),
1444 const_binop (MULT_EXPR
, r1
, i2
));
1446 real
= const_binop (code
, t1
, magsquared
);
1447 imag
= const_binop (code
, t2
, magsquared
);
1451 /* Keep this algorithm in sync with
1452 tree-complex.c:expand_complex_div_wide().
1454 Expand complex division to scalars, modified algorithm to minimize
1455 overflow with wide input ranges. */
1456 tree compare
= fold_build2 (LT_EXPR
, boolean_type_node
,
1457 fold_abs_const (r2
, TREE_TYPE (type
)),
1458 fold_abs_const (i2
, TREE_TYPE (type
)));
1460 if (integer_nonzerop (compare
))
1462 /* In the TRUE branch, we compute
1464 div = (br * ratio) + bi;
1465 tr = (ar * ratio) + ai;
1466 ti = (ai * ratio) - ar;
1469 tree ratio
= const_binop (code
, r2
, i2
);
1470 tree div
= const_binop (PLUS_EXPR
, i2
,
1471 const_binop (MULT_EXPR
, r2
, ratio
));
1472 real
= const_binop (MULT_EXPR
, r1
, ratio
);
1473 real
= const_binop (PLUS_EXPR
, real
, i1
);
1474 real
= const_binop (code
, real
, div
);
1476 imag
= const_binop (MULT_EXPR
, i1
, ratio
);
1477 imag
= const_binop (MINUS_EXPR
, imag
, r1
);
1478 imag
= const_binop (code
, imag
, div
);
1482 /* In the FALSE branch, we compute
1484 divisor = (d * ratio) + c;
1485 tr = (b * ratio) + a;
1486 ti = b - (a * ratio);
1489 tree ratio
= const_binop (code
, i2
, r2
);
1490 tree div
= const_binop (PLUS_EXPR
, r2
,
1491 const_binop (MULT_EXPR
, i2
, ratio
));
1493 real
= const_binop (MULT_EXPR
, i1
, ratio
);
1494 real
= const_binop (PLUS_EXPR
, real
, r1
);
1495 real
= const_binop (code
, real
, div
);
1497 imag
= const_binop (MULT_EXPR
, r1
, ratio
);
1498 imag
= const_binop (MINUS_EXPR
, i1
, imag
);
1499 imag
= const_binop (code
, imag
, div
);
1509 return build_complex (type
, real
, imag
);
1512 if (TREE_CODE (arg1
) == VECTOR_CST
1513 && TREE_CODE (arg2
) == VECTOR_CST
1514 && known_eq (TYPE_VECTOR_SUBPARTS (TREE_TYPE (arg1
)),
1515 TYPE_VECTOR_SUBPARTS (TREE_TYPE (arg2
))))
1517 tree type
= TREE_TYPE (arg1
);
1519 if (VECTOR_CST_STEPPED_P (arg1
)
1520 && VECTOR_CST_STEPPED_P (arg2
))
1521 /* We can operate directly on the encoding if:
1523 a3 - a2 == a2 - a1 && b3 - b2 == b2 - b1
1525 (a3 op b3) - (a2 op b2) == (a2 op b2) - (a1 op b1)
1527 Addition and subtraction are the supported operators
1528 for which this is true. */
1529 step_ok_p
= (code
== PLUS_EXPR
|| code
== MINUS_EXPR
);
1530 else if (VECTOR_CST_STEPPED_P (arg1
))
1531 /* We can operate directly on stepped encodings if:
1535 (a3 op c) - (a2 op c) == (a2 op c) - (a1 op c)
1537 which is true if (x -> x op c) distributes over addition. */
1538 step_ok_p
= distributes_over_addition_p (code
, 1);
1540 /* Similarly in reverse. */
1541 step_ok_p
= distributes_over_addition_p (code
, 2);
1542 tree_vector_builder elts
;
1543 if (!elts
.new_binary_operation (type
, arg1
, arg2
, step_ok_p
))
1545 unsigned int count
= elts
.encoded_nelts ();
1546 for (unsigned int i
= 0; i
< count
; ++i
)
1548 tree elem1
= VECTOR_CST_ELT (arg1
, i
);
1549 tree elem2
= VECTOR_CST_ELT (arg2
, i
);
1551 tree elt
= const_binop (code
, elem1
, elem2
);
1553 /* It is possible that const_binop cannot handle the given
1554 code and return NULL_TREE */
1555 if (elt
== NULL_TREE
)
1557 elts
.quick_push (elt
);
1560 return elts
.build ();
1563 /* Shifts allow a scalar offset for a vector. */
1564 if (TREE_CODE (arg1
) == VECTOR_CST
1565 && TREE_CODE (arg2
) == INTEGER_CST
)
1567 tree type
= TREE_TYPE (arg1
);
1568 bool step_ok_p
= distributes_over_addition_p (code
, 1);
1569 tree_vector_builder elts
;
1570 if (!elts
.new_unary_operation (type
, arg1
, step_ok_p
))
1572 unsigned int count
= elts
.encoded_nelts ();
1573 for (unsigned int i
= 0; i
< count
; ++i
)
1575 tree elem1
= VECTOR_CST_ELT (arg1
, i
);
1577 tree elt
= const_binop (code
, elem1
, arg2
);
1579 /* It is possible that const_binop cannot handle the given
1580 code and return NULL_TREE. */
1581 if (elt
== NULL_TREE
)
1583 elts
.quick_push (elt
);
1586 return elts
.build ();
1591 /* Overload that adds a TYPE parameter to be able to dispatch
1592 to fold_relational_const. */
1595 const_binop (enum tree_code code
, tree type
, tree arg1
, tree arg2
)
1597 if (TREE_CODE_CLASS (code
) == tcc_comparison
)
1598 return fold_relational_const (code
, type
, arg1
, arg2
);
1600 /* ??? Until we make the const_binop worker take the type of the
1601 result as argument put those cases that need it here. */
1604 case VEC_SERIES_EXPR
:
1605 if (CONSTANT_CLASS_P (arg1
)
1606 && CONSTANT_CLASS_P (arg2
))
1607 return build_vec_series (type
, arg1
, arg2
);
1611 if ((TREE_CODE (arg1
) == REAL_CST
1612 && TREE_CODE (arg2
) == REAL_CST
)
1613 || (TREE_CODE (arg1
) == INTEGER_CST
1614 && TREE_CODE (arg2
) == INTEGER_CST
))
1615 return build_complex (type
, arg1
, arg2
);
1618 case POINTER_DIFF_EXPR
:
1619 if (poly_int_tree_p (arg1
) && poly_int_tree_p (arg2
))
1621 poly_offset_int res
= (wi::to_poly_offset (arg1
)
1622 - wi::to_poly_offset (arg2
));
1623 return force_fit_type (type
, res
, 1,
1624 TREE_OVERFLOW (arg1
) | TREE_OVERFLOW (arg2
));
1628 case VEC_PACK_TRUNC_EXPR
:
1629 case VEC_PACK_FIX_TRUNC_EXPR
:
1630 case VEC_PACK_FLOAT_EXPR
:
1632 unsigned int HOST_WIDE_INT out_nelts
, in_nelts
, i
;
1634 if (TREE_CODE (arg1
) != VECTOR_CST
1635 || TREE_CODE (arg2
) != VECTOR_CST
)
1638 if (!VECTOR_CST_NELTS (arg1
).is_constant (&in_nelts
))
1641 out_nelts
= in_nelts
* 2;
1642 gcc_assert (known_eq (in_nelts
, VECTOR_CST_NELTS (arg2
))
1643 && known_eq (out_nelts
, TYPE_VECTOR_SUBPARTS (type
)));
1645 tree_vector_builder
elts (type
, out_nelts
, 1);
1646 for (i
= 0; i
< out_nelts
; i
++)
1648 tree elt
= (i
< in_nelts
1649 ? VECTOR_CST_ELT (arg1
, i
)
1650 : VECTOR_CST_ELT (arg2
, i
- in_nelts
));
1651 elt
= fold_convert_const (code
== VEC_PACK_TRUNC_EXPR
1653 : code
== VEC_PACK_FLOAT_EXPR
1654 ? FLOAT_EXPR
: FIX_TRUNC_EXPR
,
1655 TREE_TYPE (type
), elt
);
1656 if (elt
== NULL_TREE
|| !CONSTANT_CLASS_P (elt
))
1658 elts
.quick_push (elt
);
1661 return elts
.build ();
1664 case VEC_WIDEN_MULT_LO_EXPR
:
1665 case VEC_WIDEN_MULT_HI_EXPR
:
1666 case VEC_WIDEN_MULT_EVEN_EXPR
:
1667 case VEC_WIDEN_MULT_ODD_EXPR
:
1669 unsigned HOST_WIDE_INT out_nelts
, in_nelts
, out
, ofs
, scale
;
1671 if (TREE_CODE (arg1
) != VECTOR_CST
|| TREE_CODE (arg2
) != VECTOR_CST
)
1674 if (!VECTOR_CST_NELTS (arg1
).is_constant (&in_nelts
))
1676 out_nelts
= in_nelts
/ 2;
1677 gcc_assert (known_eq (in_nelts
, VECTOR_CST_NELTS (arg2
))
1678 && known_eq (out_nelts
, TYPE_VECTOR_SUBPARTS (type
)));
1680 if (code
== VEC_WIDEN_MULT_LO_EXPR
)
1681 scale
= 0, ofs
= BYTES_BIG_ENDIAN
? out_nelts
: 0;
1682 else if (code
== VEC_WIDEN_MULT_HI_EXPR
)
1683 scale
= 0, ofs
= BYTES_BIG_ENDIAN
? 0 : out_nelts
;
1684 else if (code
== VEC_WIDEN_MULT_EVEN_EXPR
)
1686 else /* if (code == VEC_WIDEN_MULT_ODD_EXPR) */
1689 tree_vector_builder
elts (type
, out_nelts
, 1);
1690 for (out
= 0; out
< out_nelts
; out
++)
1692 unsigned int in
= (out
<< scale
) + ofs
;
1693 tree t1
= fold_convert_const (NOP_EXPR
, TREE_TYPE (type
),
1694 VECTOR_CST_ELT (arg1
, in
));
1695 tree t2
= fold_convert_const (NOP_EXPR
, TREE_TYPE (type
),
1696 VECTOR_CST_ELT (arg2
, in
));
1698 if (t1
== NULL_TREE
|| t2
== NULL_TREE
)
1700 tree elt
= const_binop (MULT_EXPR
, t1
, t2
);
1701 if (elt
== NULL_TREE
|| !CONSTANT_CLASS_P (elt
))
1703 elts
.quick_push (elt
);
1706 return elts
.build ();
1712 if (TREE_CODE_CLASS (code
) != tcc_binary
)
1715 /* Make sure type and arg0 have the same saturating flag. */
1716 gcc_checking_assert (TYPE_SATURATING (type
)
1717 == TYPE_SATURATING (TREE_TYPE (arg1
)));
1719 return const_binop (code
, arg1
, arg2
);
1722 /* Compute CODE ARG1 with resulting type TYPE with ARG1 being constant.
1723 Return zero if computing the constants is not possible. */
1726 const_unop (enum tree_code code
, tree type
, tree arg0
)
1728 /* Don't perform the operation, other than NEGATE and ABS, if
1729 flag_signaling_nans is on and the operand is a signaling NaN. */
1730 if (TREE_CODE (arg0
) == REAL_CST
1731 && HONOR_SNANS (TYPE_MODE (TREE_TYPE (arg0
)))
1732 && REAL_VALUE_ISSIGNALING_NAN (TREE_REAL_CST (arg0
))
1733 && code
!= NEGATE_EXPR
1735 && code
!= ABSU_EXPR
)
1742 case FIX_TRUNC_EXPR
:
1743 case FIXED_CONVERT_EXPR
:
1744 return fold_convert_const (code
, type
, arg0
);
1746 case ADDR_SPACE_CONVERT_EXPR
:
1747 /* If the source address is 0, and the source address space
1748 cannot have a valid object at 0, fold to dest type null. */
1749 if (integer_zerop (arg0
)
1750 && !(targetm
.addr_space
.zero_address_valid
1751 (TYPE_ADDR_SPACE (TREE_TYPE (TREE_TYPE (arg0
))))))
1752 return fold_convert_const (code
, type
, arg0
);
1755 case VIEW_CONVERT_EXPR
:
1756 return fold_view_convert_expr (type
, arg0
);
1760 /* Can't call fold_negate_const directly here as that doesn't
1761 handle all cases and we might not be able to negate some
1763 tree tem
= fold_negate_expr (UNKNOWN_LOCATION
, arg0
);
1764 if (tem
&& CONSTANT_CLASS_P (tem
))
1771 if (TREE_CODE (arg0
) == INTEGER_CST
|| TREE_CODE (arg0
) == REAL_CST
)
1772 return fold_abs_const (arg0
, type
);
1776 if (TREE_CODE (arg0
) == COMPLEX_CST
)
1778 tree ipart
= fold_negate_const (TREE_IMAGPART (arg0
),
1780 return build_complex (type
, TREE_REALPART (arg0
), ipart
);
1785 if (TREE_CODE (arg0
) == INTEGER_CST
)
1786 return fold_not_const (arg0
, type
);
1787 else if (POLY_INT_CST_P (arg0
))
1788 return wide_int_to_tree (type
, -poly_int_cst_value (arg0
));
1789 /* Perform BIT_NOT_EXPR on each element individually. */
1790 else if (TREE_CODE (arg0
) == VECTOR_CST
)
1794 /* This can cope with stepped encodings because ~x == -1 - x. */
1795 tree_vector_builder elements
;
1796 elements
.new_unary_operation (type
, arg0
, true);
1797 unsigned int i
, count
= elements
.encoded_nelts ();
1798 for (i
= 0; i
< count
; ++i
)
1800 elem
= VECTOR_CST_ELT (arg0
, i
);
1801 elem
= const_unop (BIT_NOT_EXPR
, TREE_TYPE (type
), elem
);
1802 if (elem
== NULL_TREE
)
1804 elements
.quick_push (elem
);
1807 return elements
.build ();
1811 case TRUTH_NOT_EXPR
:
1812 if (TREE_CODE (arg0
) == INTEGER_CST
)
1813 return constant_boolean_node (integer_zerop (arg0
), type
);
1817 if (TREE_CODE (arg0
) == COMPLEX_CST
)
1818 return fold_convert (type
, TREE_REALPART (arg0
));
1822 if (TREE_CODE (arg0
) == COMPLEX_CST
)
1823 return fold_convert (type
, TREE_IMAGPART (arg0
));
1826 case VEC_UNPACK_LO_EXPR
:
1827 case VEC_UNPACK_HI_EXPR
:
1828 case VEC_UNPACK_FLOAT_LO_EXPR
:
1829 case VEC_UNPACK_FLOAT_HI_EXPR
:
1830 case VEC_UNPACK_FIX_TRUNC_LO_EXPR
:
1831 case VEC_UNPACK_FIX_TRUNC_HI_EXPR
:
1833 unsigned HOST_WIDE_INT out_nelts
, in_nelts
, i
;
1834 enum tree_code subcode
;
1836 if (TREE_CODE (arg0
) != VECTOR_CST
)
1839 if (!VECTOR_CST_NELTS (arg0
).is_constant (&in_nelts
))
1841 out_nelts
= in_nelts
/ 2;
1842 gcc_assert (known_eq (out_nelts
, TYPE_VECTOR_SUBPARTS (type
)));
1844 unsigned int offset
= 0;
1845 if ((!BYTES_BIG_ENDIAN
) ^ (code
== VEC_UNPACK_LO_EXPR
1846 || code
== VEC_UNPACK_FLOAT_LO_EXPR
1847 || code
== VEC_UNPACK_FIX_TRUNC_LO_EXPR
))
1850 if (code
== VEC_UNPACK_LO_EXPR
|| code
== VEC_UNPACK_HI_EXPR
)
1852 else if (code
== VEC_UNPACK_FLOAT_LO_EXPR
1853 || code
== VEC_UNPACK_FLOAT_HI_EXPR
)
1854 subcode
= FLOAT_EXPR
;
1856 subcode
= FIX_TRUNC_EXPR
;
1858 tree_vector_builder
elts (type
, out_nelts
, 1);
1859 for (i
= 0; i
< out_nelts
; i
++)
1861 tree elt
= fold_convert_const (subcode
, TREE_TYPE (type
),
1862 VECTOR_CST_ELT (arg0
, i
+ offset
));
1863 if (elt
== NULL_TREE
|| !CONSTANT_CLASS_P (elt
))
1865 elts
.quick_push (elt
);
1868 return elts
.build ();
1871 case VEC_DUPLICATE_EXPR
:
1872 if (CONSTANT_CLASS_P (arg0
))
1873 return build_vector_from_val (type
, arg0
);
1883 /* Create a sizetype INT_CST node with NUMBER sign extended. KIND
1884 indicates which particular sizetype to create. */
1887 size_int_kind (poly_int64 number
, enum size_type_kind kind
)
1889 return build_int_cst (sizetype_tab
[(int) kind
], number
);
1892 /* Combine operands OP1 and OP2 with arithmetic operation CODE. CODE
1893 is a tree code. The type of the result is taken from the operands.
1894 Both must be equivalent integer types, ala int_binop_types_match_p.
1895 If the operands are constant, so is the result. */
1898 size_binop_loc (location_t loc
, enum tree_code code
, tree arg0
, tree arg1
)
1900 tree type
= TREE_TYPE (arg0
);
1902 if (arg0
== error_mark_node
|| arg1
== error_mark_node
)
1903 return error_mark_node
;
1905 gcc_assert (int_binop_types_match_p (code
, TREE_TYPE (arg0
),
1908 /* Handle the special case of two poly_int constants faster. */
1909 if (poly_int_tree_p (arg0
) && poly_int_tree_p (arg1
))
1911 /* And some specific cases even faster than that. */
1912 if (code
== PLUS_EXPR
)
1914 if (integer_zerop (arg0
) && !TREE_OVERFLOW (arg0
))
1916 if (integer_zerop (arg1
) && !TREE_OVERFLOW (arg1
))
1919 else if (code
== MINUS_EXPR
)
1921 if (integer_zerop (arg1
) && !TREE_OVERFLOW (arg1
))
1924 else if (code
== MULT_EXPR
)
1926 if (integer_onep (arg0
) && !TREE_OVERFLOW (arg0
))
1930 /* Handle general case of two integer constants. For sizetype
1931 constant calculations we always want to know about overflow,
1932 even in the unsigned case. */
1933 tree res
= int_const_binop (code
, arg0
, arg1
, -1);
1934 if (res
!= NULL_TREE
)
1938 return fold_build2_loc (loc
, code
, type
, arg0
, arg1
);
1941 /* Given two values, either both of sizetype or both of bitsizetype,
1942 compute the difference between the two values. Return the value
1943 in signed type corresponding to the type of the operands. */
1946 size_diffop_loc (location_t loc
, tree arg0
, tree arg1
)
1948 tree type
= TREE_TYPE (arg0
);
1951 gcc_assert (int_binop_types_match_p (MINUS_EXPR
, TREE_TYPE (arg0
),
1954 /* If the type is already signed, just do the simple thing. */
1955 if (!TYPE_UNSIGNED (type
))
1956 return size_binop_loc (loc
, MINUS_EXPR
, arg0
, arg1
);
1958 if (type
== sizetype
)
1960 else if (type
== bitsizetype
)
1961 ctype
= sbitsizetype
;
1963 ctype
= signed_type_for (type
);
1965 /* If either operand is not a constant, do the conversions to the signed
1966 type and subtract. The hardware will do the right thing with any
1967 overflow in the subtraction. */
1968 if (TREE_CODE (arg0
) != INTEGER_CST
|| TREE_CODE (arg1
) != INTEGER_CST
)
1969 return size_binop_loc (loc
, MINUS_EXPR
,
1970 fold_convert_loc (loc
, ctype
, arg0
),
1971 fold_convert_loc (loc
, ctype
, arg1
));
1973 /* If ARG0 is larger than ARG1, subtract and return the result in CTYPE.
1974 Otherwise, subtract the other way, convert to CTYPE (we know that can't
1975 overflow) and negate (which can't either). Special-case a result
1976 of zero while we're here. */
1977 if (tree_int_cst_equal (arg0
, arg1
))
1978 return build_int_cst (ctype
, 0);
1979 else if (tree_int_cst_lt (arg1
, arg0
))
1980 return fold_convert_loc (loc
, ctype
,
1981 size_binop_loc (loc
, MINUS_EXPR
, arg0
, arg1
));
1983 return size_binop_loc (loc
, MINUS_EXPR
, build_int_cst (ctype
, 0),
1984 fold_convert_loc (loc
, ctype
,
1985 size_binop_loc (loc
,
1990 /* A subroutine of fold_convert_const handling conversions of an
1991 INTEGER_CST to another integer type. */
1994 fold_convert_const_int_from_int (tree type
, const_tree arg1
)
1996 /* Given an integer constant, make new constant with new type,
1997 appropriately sign-extended or truncated. Use widest_int
1998 so that any extension is done according ARG1's type. */
1999 return force_fit_type (type
, wi::to_widest (arg1
),
2000 !POINTER_TYPE_P (TREE_TYPE (arg1
)),
2001 TREE_OVERFLOW (arg1
));
2004 /* A subroutine of fold_convert_const handling conversions a REAL_CST
2005 to an integer type. */
2008 fold_convert_const_int_from_real (enum tree_code code
, tree type
, const_tree arg1
)
2010 bool overflow
= false;
2013 /* The following code implements the floating point to integer
2014 conversion rules required by the Java Language Specification,
2015 that IEEE NaNs are mapped to zero and values that overflow
2016 the target precision saturate, i.e. values greater than
2017 INT_MAX are mapped to INT_MAX, and values less than INT_MIN
2018 are mapped to INT_MIN. These semantics are allowed by the
2019 C and C++ standards that simply state that the behavior of
2020 FP-to-integer conversion is unspecified upon overflow. */
2024 REAL_VALUE_TYPE x
= TREE_REAL_CST (arg1
);
2028 case FIX_TRUNC_EXPR
:
2029 real_trunc (&r
, VOIDmode
, &x
);
2036 /* If R is NaN, return zero and show we have an overflow. */
2037 if (REAL_VALUE_ISNAN (r
))
2040 val
= wi::zero (TYPE_PRECISION (type
));
2043 /* See if R is less than the lower bound or greater than the
2048 tree lt
= TYPE_MIN_VALUE (type
);
2049 REAL_VALUE_TYPE l
= real_value_from_int_cst (NULL_TREE
, lt
);
2050 if (real_less (&r
, &l
))
2053 val
= wi::to_wide (lt
);
2059 tree ut
= TYPE_MAX_VALUE (type
);
2062 REAL_VALUE_TYPE u
= real_value_from_int_cst (NULL_TREE
, ut
);
2063 if (real_less (&u
, &r
))
2066 val
= wi::to_wide (ut
);
2072 val
= real_to_integer (&r
, &overflow
, TYPE_PRECISION (type
));
2074 t
= force_fit_type (type
, val
, -1, overflow
| TREE_OVERFLOW (arg1
));
2078 /* A subroutine of fold_convert_const handling conversions of a
2079 FIXED_CST to an integer type. */
2082 fold_convert_const_int_from_fixed (tree type
, const_tree arg1
)
2085 double_int temp
, temp_trunc
;
2088 /* Right shift FIXED_CST to temp by fbit. */
2089 temp
= TREE_FIXED_CST (arg1
).data
;
2090 mode
= TREE_FIXED_CST (arg1
).mode
;
2091 if (GET_MODE_FBIT (mode
) < HOST_BITS_PER_DOUBLE_INT
)
2093 temp
= temp
.rshift (GET_MODE_FBIT (mode
),
2094 HOST_BITS_PER_DOUBLE_INT
,
2095 SIGNED_FIXED_POINT_MODE_P (mode
));
2097 /* Left shift temp to temp_trunc by fbit. */
2098 temp_trunc
= temp
.lshift (GET_MODE_FBIT (mode
),
2099 HOST_BITS_PER_DOUBLE_INT
,
2100 SIGNED_FIXED_POINT_MODE_P (mode
));
2104 temp
= double_int_zero
;
2105 temp_trunc
= double_int_zero
;
2108 /* If FIXED_CST is negative, we need to round the value toward 0.
2109 By checking if the fractional bits are not zero to add 1 to temp. */
2110 if (SIGNED_FIXED_POINT_MODE_P (mode
)
2111 && temp_trunc
.is_negative ()
2112 && TREE_FIXED_CST (arg1
).data
!= temp_trunc
)
2113 temp
+= double_int_one
;
2115 /* Given a fixed-point constant, make new constant with new type,
2116 appropriately sign-extended or truncated. */
2117 t
= force_fit_type (type
, temp
, -1,
2118 (temp
.is_negative ()
2119 && (TYPE_UNSIGNED (type
)
2120 < TYPE_UNSIGNED (TREE_TYPE (arg1
))))
2121 | TREE_OVERFLOW (arg1
));
2126 /* A subroutine of fold_convert_const handling conversions a REAL_CST
2127 to another floating point type. */
2130 fold_convert_const_real_from_real (tree type
, const_tree arg1
)
2132 REAL_VALUE_TYPE value
;
2135 /* Don't perform the operation if flag_signaling_nans is on
2136 and the operand is a signaling NaN. */
2137 if (HONOR_SNANS (TYPE_MODE (TREE_TYPE (arg1
)))
2138 && REAL_VALUE_ISSIGNALING_NAN (TREE_REAL_CST (arg1
)))
2141 real_convert (&value
, TYPE_MODE (type
), &TREE_REAL_CST (arg1
));
2142 t
= build_real (type
, value
);
2144 /* If converting an infinity or NAN to a representation that doesn't
2145 have one, set the overflow bit so that we can produce some kind of
2146 error message at the appropriate point if necessary. It's not the
2147 most user-friendly message, but it's better than nothing. */
2148 if (REAL_VALUE_ISINF (TREE_REAL_CST (arg1
))
2149 && !MODE_HAS_INFINITIES (TYPE_MODE (type
)))
2150 TREE_OVERFLOW (t
) = 1;
2151 else if (REAL_VALUE_ISNAN (TREE_REAL_CST (arg1
))
2152 && !MODE_HAS_NANS (TYPE_MODE (type
)))
2153 TREE_OVERFLOW (t
) = 1;
2154 /* Regular overflow, conversion produced an infinity in a mode that
2155 can't represent them. */
2156 else if (!MODE_HAS_INFINITIES (TYPE_MODE (type
))
2157 && REAL_VALUE_ISINF (value
)
2158 && !REAL_VALUE_ISINF (TREE_REAL_CST (arg1
)))
2159 TREE_OVERFLOW (t
) = 1;
2161 TREE_OVERFLOW (t
) = TREE_OVERFLOW (arg1
);
2165 /* A subroutine of fold_convert_const handling conversions a FIXED_CST
2166 to a floating point type. */
2169 fold_convert_const_real_from_fixed (tree type
, const_tree arg1
)
2171 REAL_VALUE_TYPE value
;
2174 real_convert_from_fixed (&value
, SCALAR_FLOAT_TYPE_MODE (type
),
2175 &TREE_FIXED_CST (arg1
));
2176 t
= build_real (type
, value
);
2178 TREE_OVERFLOW (t
) = TREE_OVERFLOW (arg1
);
2182 /* A subroutine of fold_convert_const handling conversions a FIXED_CST
2183 to another fixed-point type. */
2186 fold_convert_const_fixed_from_fixed (tree type
, const_tree arg1
)
2188 FIXED_VALUE_TYPE value
;
2192 overflow_p
= fixed_convert (&value
, SCALAR_TYPE_MODE (type
),
2193 &TREE_FIXED_CST (arg1
), TYPE_SATURATING (type
));
2194 t
= build_fixed (type
, value
);
2196 /* Propagate overflow flags. */
2197 if (overflow_p
| TREE_OVERFLOW (arg1
))
2198 TREE_OVERFLOW (t
) = 1;
2202 /* A subroutine of fold_convert_const handling conversions an INTEGER_CST
2203 to a fixed-point type. */
2206 fold_convert_const_fixed_from_int (tree type
, const_tree arg1
)
2208 FIXED_VALUE_TYPE value
;
2213 gcc_assert (TREE_INT_CST_NUNITS (arg1
) <= 2);
2215 di
.low
= TREE_INT_CST_ELT (arg1
, 0);
2216 if (TREE_INT_CST_NUNITS (arg1
) == 1)
2217 di
.high
= (HOST_WIDE_INT
) di
.low
< 0 ? HOST_WIDE_INT_M1
: 0;
2219 di
.high
= TREE_INT_CST_ELT (arg1
, 1);
2221 overflow_p
= fixed_convert_from_int (&value
, SCALAR_TYPE_MODE (type
), di
,
2222 TYPE_UNSIGNED (TREE_TYPE (arg1
)),
2223 TYPE_SATURATING (type
));
2224 t
= build_fixed (type
, value
);
2226 /* Propagate overflow flags. */
2227 if (overflow_p
| TREE_OVERFLOW (arg1
))
2228 TREE_OVERFLOW (t
) = 1;
2232 /* A subroutine of fold_convert_const handling conversions a REAL_CST
2233 to a fixed-point type. */
2236 fold_convert_const_fixed_from_real (tree type
, const_tree arg1
)
2238 FIXED_VALUE_TYPE value
;
2242 overflow_p
= fixed_convert_from_real (&value
, SCALAR_TYPE_MODE (type
),
2243 &TREE_REAL_CST (arg1
),
2244 TYPE_SATURATING (type
));
2245 t
= build_fixed (type
, value
);
2247 /* Propagate overflow flags. */
2248 if (overflow_p
| TREE_OVERFLOW (arg1
))
2249 TREE_OVERFLOW (t
) = 1;
2253 /* Attempt to fold type conversion operation CODE of expression ARG1 to
2254 type TYPE. If no simplification can be done return NULL_TREE. */
2257 fold_convert_const (enum tree_code code
, tree type
, tree arg1
)
2259 tree arg_type
= TREE_TYPE (arg1
);
2260 if (arg_type
== type
)
2263 /* We can't widen types, since the runtime value could overflow the
2264 original type before being extended to the new type. */
2265 if (POLY_INT_CST_P (arg1
)
2266 && (POINTER_TYPE_P (type
) || INTEGRAL_TYPE_P (type
))
2267 && TYPE_PRECISION (type
) <= TYPE_PRECISION (arg_type
))
2268 return build_poly_int_cst (type
,
2269 poly_wide_int::from (poly_int_cst_value (arg1
),
2270 TYPE_PRECISION (type
),
2271 TYPE_SIGN (arg_type
)));
2273 if (POINTER_TYPE_P (type
) || INTEGRAL_TYPE_P (type
)
2274 || TREE_CODE (type
) == OFFSET_TYPE
)
2276 if (TREE_CODE (arg1
) == INTEGER_CST
)
2277 return fold_convert_const_int_from_int (type
, arg1
);
2278 else if (TREE_CODE (arg1
) == REAL_CST
)
2279 return fold_convert_const_int_from_real (code
, type
, arg1
);
2280 else if (TREE_CODE (arg1
) == FIXED_CST
)
2281 return fold_convert_const_int_from_fixed (type
, arg1
);
2283 else if (TREE_CODE (type
) == REAL_TYPE
)
2285 if (TREE_CODE (arg1
) == INTEGER_CST
)
2286 return build_real_from_int_cst (type
, arg1
);
2287 else if (TREE_CODE (arg1
) == REAL_CST
)
2288 return fold_convert_const_real_from_real (type
, arg1
);
2289 else if (TREE_CODE (arg1
) == FIXED_CST
)
2290 return fold_convert_const_real_from_fixed (type
, arg1
);
2292 else if (TREE_CODE (type
) == FIXED_POINT_TYPE
)
2294 if (TREE_CODE (arg1
) == FIXED_CST
)
2295 return fold_convert_const_fixed_from_fixed (type
, arg1
);
2296 else if (TREE_CODE (arg1
) == INTEGER_CST
)
2297 return fold_convert_const_fixed_from_int (type
, arg1
);
2298 else if (TREE_CODE (arg1
) == REAL_CST
)
2299 return fold_convert_const_fixed_from_real (type
, arg1
);
2301 else if (TREE_CODE (type
) == VECTOR_TYPE
)
2303 if (TREE_CODE (arg1
) == VECTOR_CST
2304 && known_eq (TYPE_VECTOR_SUBPARTS (type
), VECTOR_CST_NELTS (arg1
)))
2306 tree elttype
= TREE_TYPE (type
);
2307 tree arg1_elttype
= TREE_TYPE (TREE_TYPE (arg1
));
2308 /* We can't handle steps directly when extending, since the
2309 values need to wrap at the original precision first. */
2311 = (INTEGRAL_TYPE_P (elttype
)
2312 && INTEGRAL_TYPE_P (arg1_elttype
)
2313 && TYPE_PRECISION (elttype
) <= TYPE_PRECISION (arg1_elttype
));
2314 tree_vector_builder v
;
2315 if (!v
.new_unary_operation (type
, arg1
, step_ok_p
))
2317 unsigned int len
= v
.encoded_nelts ();
2318 for (unsigned int i
= 0; i
< len
; ++i
)
2320 tree elt
= VECTOR_CST_ELT (arg1
, i
);
2321 tree cvt
= fold_convert_const (code
, elttype
, elt
);
2322 if (cvt
== NULL_TREE
)
2332 /* Construct a vector of zero elements of vector type TYPE. */
2335 build_zero_vector (tree type
)
2339 t
= fold_convert_const (NOP_EXPR
, TREE_TYPE (type
), integer_zero_node
);
2340 return build_vector_from_val (type
, t
);
2343 /* Returns true, if ARG is convertible to TYPE using a NOP_EXPR. */
2346 fold_convertible_p (const_tree type
, const_tree arg
)
2348 tree orig
= TREE_TYPE (arg
);
2353 if (TREE_CODE (arg
) == ERROR_MARK
2354 || TREE_CODE (type
) == ERROR_MARK
2355 || TREE_CODE (orig
) == ERROR_MARK
)
2358 if (TYPE_MAIN_VARIANT (type
) == TYPE_MAIN_VARIANT (orig
))
2361 switch (TREE_CODE (type
))
2363 case INTEGER_TYPE
: case ENUMERAL_TYPE
: case BOOLEAN_TYPE
:
2364 case POINTER_TYPE
: case REFERENCE_TYPE
:
2366 return (INTEGRAL_TYPE_P (orig
)
2367 || (POINTER_TYPE_P (orig
)
2368 && TYPE_PRECISION (type
) <= TYPE_PRECISION (orig
))
2369 || TREE_CODE (orig
) == OFFSET_TYPE
);
2372 case FIXED_POINT_TYPE
:
2375 return TREE_CODE (type
) == TREE_CODE (orig
);
2382 /* Convert expression ARG to type TYPE. Used by the middle-end for
2383 simple conversions in preference to calling the front-end's convert. */
2386 fold_convert_loc (location_t loc
, tree type
, tree arg
)
2388 tree orig
= TREE_TYPE (arg
);
2394 if (TREE_CODE (arg
) == ERROR_MARK
2395 || TREE_CODE (type
) == ERROR_MARK
2396 || TREE_CODE (orig
) == ERROR_MARK
)
2397 return error_mark_node
;
2399 switch (TREE_CODE (type
))
2402 case REFERENCE_TYPE
:
2403 /* Handle conversions between pointers to different address spaces. */
2404 if (POINTER_TYPE_P (orig
)
2405 && (TYPE_ADDR_SPACE (TREE_TYPE (type
))
2406 != TYPE_ADDR_SPACE (TREE_TYPE (orig
))))
2407 return fold_build1_loc (loc
, ADDR_SPACE_CONVERT_EXPR
, type
, arg
);
2410 case INTEGER_TYPE
: case ENUMERAL_TYPE
: case BOOLEAN_TYPE
:
2412 if (TREE_CODE (arg
) == INTEGER_CST
)
2414 tem
= fold_convert_const (NOP_EXPR
, type
, arg
);
2415 if (tem
!= NULL_TREE
)
2418 if (INTEGRAL_TYPE_P (orig
) || POINTER_TYPE_P (orig
)
2419 || TREE_CODE (orig
) == OFFSET_TYPE
)
2420 return fold_build1_loc (loc
, NOP_EXPR
, type
, arg
);
2421 if (TREE_CODE (orig
) == COMPLEX_TYPE
)
2422 return fold_convert_loc (loc
, type
,
2423 fold_build1_loc (loc
, REALPART_EXPR
,
2424 TREE_TYPE (orig
), arg
));
2425 gcc_assert (TREE_CODE (orig
) == VECTOR_TYPE
2426 && tree_int_cst_equal (TYPE_SIZE (type
), TYPE_SIZE (orig
)));
2427 return fold_build1_loc (loc
, VIEW_CONVERT_EXPR
, type
, arg
);
2430 if (TREE_CODE (arg
) == INTEGER_CST
)
2432 tem
= fold_convert_const (FLOAT_EXPR
, type
, arg
);
2433 if (tem
!= NULL_TREE
)
2436 else if (TREE_CODE (arg
) == REAL_CST
)
2438 tem
= fold_convert_const (NOP_EXPR
, type
, arg
);
2439 if (tem
!= NULL_TREE
)
2442 else if (TREE_CODE (arg
) == FIXED_CST
)
2444 tem
= fold_convert_const (FIXED_CONVERT_EXPR
, type
, arg
);
2445 if (tem
!= NULL_TREE
)
2449 switch (TREE_CODE (orig
))
2452 case BOOLEAN_TYPE
: case ENUMERAL_TYPE
:
2453 case POINTER_TYPE
: case REFERENCE_TYPE
:
2454 return fold_build1_loc (loc
, FLOAT_EXPR
, type
, arg
);
2457 return fold_build1_loc (loc
, NOP_EXPR
, type
, arg
);
2459 case FIXED_POINT_TYPE
:
2460 return fold_build1_loc (loc
, FIXED_CONVERT_EXPR
, type
, arg
);
2463 tem
= fold_build1_loc (loc
, REALPART_EXPR
, TREE_TYPE (orig
), arg
);
2464 return fold_convert_loc (loc
, type
, tem
);
2470 case FIXED_POINT_TYPE
:
2471 if (TREE_CODE (arg
) == FIXED_CST
|| TREE_CODE (arg
) == INTEGER_CST
2472 || TREE_CODE (arg
) == REAL_CST
)
2474 tem
= fold_convert_const (FIXED_CONVERT_EXPR
, type
, arg
);
2475 if (tem
!= NULL_TREE
)
2476 goto fold_convert_exit
;
2479 switch (TREE_CODE (orig
))
2481 case FIXED_POINT_TYPE
:
2486 return fold_build1_loc (loc
, FIXED_CONVERT_EXPR
, type
, arg
);
2489 tem
= fold_build1_loc (loc
, REALPART_EXPR
, TREE_TYPE (orig
), arg
);
2490 return fold_convert_loc (loc
, type
, tem
);
2497 switch (TREE_CODE (orig
))
2500 case BOOLEAN_TYPE
: case ENUMERAL_TYPE
:
2501 case POINTER_TYPE
: case REFERENCE_TYPE
:
2503 case FIXED_POINT_TYPE
:
2504 return fold_build2_loc (loc
, COMPLEX_EXPR
, type
,
2505 fold_convert_loc (loc
, TREE_TYPE (type
), arg
),
2506 fold_convert_loc (loc
, TREE_TYPE (type
),
2507 integer_zero_node
));
2512 if (TREE_CODE (arg
) == COMPLEX_EXPR
)
2514 rpart
= fold_convert_loc (loc
, TREE_TYPE (type
),
2515 TREE_OPERAND (arg
, 0));
2516 ipart
= fold_convert_loc (loc
, TREE_TYPE (type
),
2517 TREE_OPERAND (arg
, 1));
2518 return fold_build2_loc (loc
, COMPLEX_EXPR
, type
, rpart
, ipart
);
2521 arg
= save_expr (arg
);
2522 rpart
= fold_build1_loc (loc
, REALPART_EXPR
, TREE_TYPE (orig
), arg
);
2523 ipart
= fold_build1_loc (loc
, IMAGPART_EXPR
, TREE_TYPE (orig
), arg
);
2524 rpart
= fold_convert_loc (loc
, TREE_TYPE (type
), rpart
);
2525 ipart
= fold_convert_loc (loc
, TREE_TYPE (type
), ipart
);
2526 return fold_build2_loc (loc
, COMPLEX_EXPR
, type
, rpart
, ipart
);
2534 if (integer_zerop (arg
))
2535 return build_zero_vector (type
);
2536 gcc_assert (tree_int_cst_equal (TYPE_SIZE (type
), TYPE_SIZE (orig
)));
2537 gcc_assert (INTEGRAL_TYPE_P (orig
) || POINTER_TYPE_P (orig
)
2538 || TREE_CODE (orig
) == VECTOR_TYPE
);
2539 return fold_build1_loc (loc
, VIEW_CONVERT_EXPR
, type
, arg
);
2542 tem
= fold_ignored_result (arg
);
2543 return fold_build1_loc (loc
, NOP_EXPR
, type
, tem
);
2546 if (TYPE_MAIN_VARIANT (type
) == TYPE_MAIN_VARIANT (orig
))
2547 return fold_build1_loc (loc
, NOP_EXPR
, type
, arg
);
2551 protected_set_expr_location_unshare (tem
, loc
);
2555 /* Return false if expr can be assumed not to be an lvalue, true
2559 maybe_lvalue_p (const_tree x
)
2561 /* We only need to wrap lvalue tree codes. */
2562 switch (TREE_CODE (x
))
2575 case ARRAY_RANGE_REF
:
2581 case PREINCREMENT_EXPR
:
2582 case PREDECREMENT_EXPR
:
2584 case TRY_CATCH_EXPR
:
2585 case WITH_CLEANUP_EXPR
:
2594 /* Assume the worst for front-end tree codes. */
2595 if ((int)TREE_CODE (x
) >= NUM_TREE_CODES
)
2603 /* Return an expr equal to X but certainly not valid as an lvalue. */
2606 non_lvalue_loc (location_t loc
, tree x
)
2608 /* While we are in GIMPLE, NON_LVALUE_EXPR doesn't mean anything to
2613 if (! maybe_lvalue_p (x
))
2615 return build1_loc (loc
, NON_LVALUE_EXPR
, TREE_TYPE (x
), x
);
2618 /* When pedantic, return an expr equal to X but certainly not valid as a
2619 pedantic lvalue. Otherwise, return X. */
2622 pedantic_non_lvalue_loc (location_t loc
, tree x
)
2624 return protected_set_expr_location_unshare (x
, loc
);
2627 /* Given a tree comparison code, return the code that is the logical inverse.
2628 It is generally not safe to do this for floating-point comparisons, except
2629 for EQ_EXPR, NE_EXPR, ORDERED_EXPR and UNORDERED_EXPR, so we return
2630 ERROR_MARK in this case. */
2633 invert_tree_comparison (enum tree_code code
, bool honor_nans
)
2635 if (honor_nans
&& flag_trapping_math
&& code
!= EQ_EXPR
&& code
!= NE_EXPR
2636 && code
!= ORDERED_EXPR
&& code
!= UNORDERED_EXPR
)
2646 return honor_nans
? UNLE_EXPR
: LE_EXPR
;
2648 return honor_nans
? UNLT_EXPR
: LT_EXPR
;
2650 return honor_nans
? UNGE_EXPR
: GE_EXPR
;
2652 return honor_nans
? UNGT_EXPR
: GT_EXPR
;
2666 return UNORDERED_EXPR
;
2667 case UNORDERED_EXPR
:
2668 return ORDERED_EXPR
;
2674 /* Similar, but return the comparison that results if the operands are
2675 swapped. This is safe for floating-point. */
2678 swap_tree_comparison (enum tree_code code
)
2685 case UNORDERED_EXPR
:
2711 /* Convert a comparison tree code from an enum tree_code representation
2712 into a compcode bit-based encoding. This function is the inverse of
2713 compcode_to_comparison. */
2715 static enum comparison_code
2716 comparison_to_compcode (enum tree_code code
)
2733 return COMPCODE_ORD
;
2734 case UNORDERED_EXPR
:
2735 return COMPCODE_UNORD
;
2737 return COMPCODE_UNLT
;
2739 return COMPCODE_UNEQ
;
2741 return COMPCODE_UNLE
;
2743 return COMPCODE_UNGT
;
2745 return COMPCODE_LTGT
;
2747 return COMPCODE_UNGE
;
2753 /* Convert a compcode bit-based encoding of a comparison operator back
2754 to GCC's enum tree_code representation. This function is the
2755 inverse of comparison_to_compcode. */
2757 static enum tree_code
2758 compcode_to_comparison (enum comparison_code code
)
2775 return ORDERED_EXPR
;
2776 case COMPCODE_UNORD
:
2777 return UNORDERED_EXPR
;
2795 /* Return true if COND1 tests the opposite condition of COND2. */
2798 inverse_conditions_p (const_tree cond1
, const_tree cond2
)
2800 return (COMPARISON_CLASS_P (cond1
)
2801 && COMPARISON_CLASS_P (cond2
)
2802 && (invert_tree_comparison
2804 HONOR_NANS (TREE_OPERAND (cond1
, 0))) == TREE_CODE (cond2
))
2805 && operand_equal_p (TREE_OPERAND (cond1
, 0),
2806 TREE_OPERAND (cond2
, 0), 0)
2807 && operand_equal_p (TREE_OPERAND (cond1
, 1),
2808 TREE_OPERAND (cond2
, 1), 0));
2811 /* Return a tree for the comparison which is the combination of
2812 doing the AND or OR (depending on CODE) of the two operations LCODE
2813 and RCODE on the identical operands LL_ARG and LR_ARG. Take into account
2814 the possibility of trapping if the mode has NaNs, and return NULL_TREE
2815 if this makes the transformation invalid. */
2818 combine_comparisons (location_t loc
,
2819 enum tree_code code
, enum tree_code lcode
,
2820 enum tree_code rcode
, tree truth_type
,
2821 tree ll_arg
, tree lr_arg
)
2823 bool honor_nans
= HONOR_NANS (ll_arg
);
2824 enum comparison_code lcompcode
= comparison_to_compcode (lcode
);
2825 enum comparison_code rcompcode
= comparison_to_compcode (rcode
);
2830 case TRUTH_AND_EXPR
: case TRUTH_ANDIF_EXPR
:
2831 compcode
= lcompcode
& rcompcode
;
2834 case TRUTH_OR_EXPR
: case TRUTH_ORIF_EXPR
:
2835 compcode
= lcompcode
| rcompcode
;
2844 /* Eliminate unordered comparisons, as well as LTGT and ORD
2845 which are not used unless the mode has NaNs. */
2846 compcode
&= ~COMPCODE_UNORD
;
2847 if (compcode
== COMPCODE_LTGT
)
2848 compcode
= COMPCODE_NE
;
2849 else if (compcode
== COMPCODE_ORD
)
2850 compcode
= COMPCODE_TRUE
;
2852 else if (flag_trapping_math
)
2854 /* Check that the original operation and the optimized ones will trap
2855 under the same condition. */
2856 bool ltrap
= (lcompcode
& COMPCODE_UNORD
) == 0
2857 && (lcompcode
!= COMPCODE_EQ
)
2858 && (lcompcode
!= COMPCODE_ORD
);
2859 bool rtrap
= (rcompcode
& COMPCODE_UNORD
) == 0
2860 && (rcompcode
!= COMPCODE_EQ
)
2861 && (rcompcode
!= COMPCODE_ORD
);
2862 bool trap
= (compcode
& COMPCODE_UNORD
) == 0
2863 && (compcode
!= COMPCODE_EQ
)
2864 && (compcode
!= COMPCODE_ORD
);
2866 /* In a short-circuited boolean expression the LHS might be
2867 such that the RHS, if evaluated, will never trap. For
2868 example, in ORD (x, y) && (x < y), we evaluate the RHS only
2869 if neither x nor y is NaN. (This is a mixed blessing: for
2870 example, the expression above will never trap, hence
2871 optimizing it to x < y would be invalid). */
2872 if ((code
== TRUTH_ORIF_EXPR
&& (lcompcode
& COMPCODE_UNORD
))
2873 || (code
== TRUTH_ANDIF_EXPR
&& !(lcompcode
& COMPCODE_UNORD
)))
2876 /* If the comparison was short-circuited, and only the RHS
2877 trapped, we may now generate a spurious trap. */
2879 && (code
== TRUTH_ANDIF_EXPR
|| code
== TRUTH_ORIF_EXPR
))
2882 /* If we changed the conditions that cause a trap, we lose. */
2883 if ((ltrap
|| rtrap
) != trap
)
2887 if (compcode
== COMPCODE_TRUE
)
2888 return constant_boolean_node (true, truth_type
);
2889 else if (compcode
== COMPCODE_FALSE
)
2890 return constant_boolean_node (false, truth_type
);
2893 enum tree_code tcode
;
2895 tcode
= compcode_to_comparison ((enum comparison_code
) compcode
);
2896 return fold_build2_loc (loc
, tcode
, truth_type
, ll_arg
, lr_arg
);
2900 /* Return nonzero if two operands (typically of the same tree node)
2901 are necessarily equal. FLAGS modifies behavior as follows:
2903 If OEP_ONLY_CONST is set, only return nonzero for constants.
2904 This function tests whether the operands are indistinguishable;
2905 it does not test whether they are equal using C's == operation.
2906 The distinction is important for IEEE floating point, because
2907 (1) -0.0 and 0.0 are distinguishable, but -0.0==0.0, and
2908 (2) two NaNs may be indistinguishable, but NaN!=NaN.
2910 If OEP_ONLY_CONST is unset, a VAR_DECL is considered equal to itself
2911 even though it may hold multiple values during a function.
2912 This is because a GCC tree node guarantees that nothing else is
2913 executed between the evaluation of its "operands" (which may often
2914 be evaluated in arbitrary order). Hence if the operands themselves
2915 don't side-effect, the VAR_DECLs, PARM_DECLs etc... must hold the
2916 same value in each operand/subexpression. Hence leaving OEP_ONLY_CONST
2917 unset means assuming isochronic (or instantaneous) tree equivalence.
2918 Unless comparing arbitrary expression trees, such as from different
2919 statements, this flag can usually be left unset.
2921 If OEP_PURE_SAME is set, then pure functions with identical arguments
2922 are considered the same. It is used when the caller has other ways
2923 to ensure that global memory is unchanged in between.
2925 If OEP_ADDRESS_OF is set, we are actually comparing addresses of objects,
2926 not values of expressions.
2928 If OEP_LEXICOGRAPHIC is set, then also handle expressions with side-effects
2929 such as MODIFY_EXPR, RETURN_EXPR, as well as STATEMENT_LISTs.
2931 Unless OEP_MATCH_SIDE_EFFECTS is set, the function returns false on
2932 any operand with side effect. This is unnecesarily conservative in the
2933 case we know that arg0 and arg1 are in disjoint code paths (such as in
2934 ?: operator). In addition OEP_MATCH_SIDE_EFFECTS is used when comparing
2935 addresses with TREE_CONSTANT flag set so we know that &var == &var
2936 even if var is volatile. */
2939 operand_equal_p (const_tree arg0
, const_tree arg1
, unsigned int flags
)
2941 /* When checking, verify at the outermost operand_equal_p call that
2942 if operand_equal_p returns non-zero then ARG0 and ARG1 has the same
2944 if (flag_checking
&& !(flags
& OEP_NO_HASH_CHECK
))
2946 if (operand_equal_p (arg0
, arg1
, flags
| OEP_NO_HASH_CHECK
))
2950 inchash::hash
hstate0 (0), hstate1 (0);
2951 inchash::add_expr (arg0
, hstate0
, flags
| OEP_HASH_CHECK
);
2952 inchash::add_expr (arg1
, hstate1
, flags
| OEP_HASH_CHECK
);
2953 hashval_t h0
= hstate0
.end ();
2954 hashval_t h1
= hstate1
.end ();
2955 gcc_assert (h0
== h1
);
2963 /* If either is ERROR_MARK, they aren't equal. */
2964 if (TREE_CODE (arg0
) == ERROR_MARK
|| TREE_CODE (arg1
) == ERROR_MARK
2965 || TREE_TYPE (arg0
) == error_mark_node
2966 || TREE_TYPE (arg1
) == error_mark_node
)
2969 /* Similar, if either does not have a type (like a released SSA name),
2970 they aren't equal. */
2971 if (!TREE_TYPE (arg0
) || !TREE_TYPE (arg1
))
2974 /* We cannot consider pointers to different address space equal. */
2975 if (POINTER_TYPE_P (TREE_TYPE (arg0
))
2976 && POINTER_TYPE_P (TREE_TYPE (arg1
))
2977 && (TYPE_ADDR_SPACE (TREE_TYPE (TREE_TYPE (arg0
)))
2978 != TYPE_ADDR_SPACE (TREE_TYPE (TREE_TYPE (arg1
)))))
2981 /* Check equality of integer constants before bailing out due to
2982 precision differences. */
2983 if (TREE_CODE (arg0
) == INTEGER_CST
&& TREE_CODE (arg1
) == INTEGER_CST
)
2985 /* Address of INTEGER_CST is not defined; check that we did not forget
2986 to drop the OEP_ADDRESS_OF flags. */
2987 gcc_checking_assert (!(flags
& OEP_ADDRESS_OF
));
2988 return tree_int_cst_equal (arg0
, arg1
);
2991 if (!(flags
& OEP_ADDRESS_OF
))
2993 /* If both types don't have the same signedness, then we can't consider
2994 them equal. We must check this before the STRIP_NOPS calls
2995 because they may change the signedness of the arguments. As pointers
2996 strictly don't have a signedness, require either two pointers or
2997 two non-pointers as well. */
2998 if (TYPE_UNSIGNED (TREE_TYPE (arg0
)) != TYPE_UNSIGNED (TREE_TYPE (arg1
))
2999 || POINTER_TYPE_P (TREE_TYPE (arg0
))
3000 != POINTER_TYPE_P (TREE_TYPE (arg1
)))
3003 /* If both types don't have the same precision, then it is not safe
3005 if (element_precision (TREE_TYPE (arg0
))
3006 != element_precision (TREE_TYPE (arg1
)))
3013 /* FIXME: Fortran FE currently produce ADDR_EXPR of NOP_EXPR. Enable the
3014 sanity check once the issue is solved. */
3016 /* Addresses of conversions and SSA_NAMEs (and many other things)
3017 are not defined. Check that we did not forget to drop the
3018 OEP_ADDRESS_OF/OEP_CONSTANT_ADDRESS_OF flags. */
3019 gcc_checking_assert (!CONVERT_EXPR_P (arg0
) && !CONVERT_EXPR_P (arg1
)
3020 && TREE_CODE (arg0
) != SSA_NAME
);
3023 /* In case both args are comparisons but with different comparison
3024 code, try to swap the comparison operands of one arg to produce
3025 a match and compare that variant. */
3026 if (TREE_CODE (arg0
) != TREE_CODE (arg1
)
3027 && COMPARISON_CLASS_P (arg0
)
3028 && COMPARISON_CLASS_P (arg1
))
3030 enum tree_code swap_code
= swap_tree_comparison (TREE_CODE (arg1
));
3032 if (TREE_CODE (arg0
) == swap_code
)
3033 return operand_equal_p (TREE_OPERAND (arg0
, 0),
3034 TREE_OPERAND (arg1
, 1), flags
)
3035 && operand_equal_p (TREE_OPERAND (arg0
, 1),
3036 TREE_OPERAND (arg1
, 0), flags
);
3039 if (TREE_CODE (arg0
) != TREE_CODE (arg1
))
3041 /* NOP_EXPR and CONVERT_EXPR are considered equal. */
3042 if (CONVERT_EXPR_P (arg0
) && CONVERT_EXPR_P (arg1
))
3044 else if (flags
& OEP_ADDRESS_OF
)
3046 /* If we are interested in comparing addresses ignore
3047 MEM_REF wrappings of the base that can appear just for
3049 if (TREE_CODE (arg0
) == MEM_REF
3051 && TREE_CODE (TREE_OPERAND (arg0
, 0)) == ADDR_EXPR
3052 && TREE_OPERAND (TREE_OPERAND (arg0
, 0), 0) == arg1
3053 && integer_zerop (TREE_OPERAND (arg0
, 1)))
3055 else if (TREE_CODE (arg1
) == MEM_REF
3057 && TREE_CODE (TREE_OPERAND (arg1
, 0)) == ADDR_EXPR
3058 && TREE_OPERAND (TREE_OPERAND (arg1
, 0), 0) == arg0
3059 && integer_zerop (TREE_OPERAND (arg1
, 1)))
3067 /* When not checking adddresses, this is needed for conversions and for
3068 COMPONENT_REF. Might as well play it safe and always test this. */
3069 if (TREE_CODE (TREE_TYPE (arg0
)) == ERROR_MARK
3070 || TREE_CODE (TREE_TYPE (arg1
)) == ERROR_MARK
3071 || (TYPE_MODE (TREE_TYPE (arg0
)) != TYPE_MODE (TREE_TYPE (arg1
))
3072 && !(flags
& OEP_ADDRESS_OF
)))
3075 /* If ARG0 and ARG1 are the same SAVE_EXPR, they are necessarily equal.
3076 We don't care about side effects in that case because the SAVE_EXPR
3077 takes care of that for us. In all other cases, two expressions are
3078 equal if they have no side effects. If we have two identical
3079 expressions with side effects that should be treated the same due
3080 to the only side effects being identical SAVE_EXPR's, that will
3081 be detected in the recursive calls below.
3082 If we are taking an invariant address of two identical objects
3083 they are necessarily equal as well. */
3084 if (arg0
== arg1
&& ! (flags
& OEP_ONLY_CONST
)
3085 && (TREE_CODE (arg0
) == SAVE_EXPR
3086 || (flags
& OEP_MATCH_SIDE_EFFECTS
)
3087 || (! TREE_SIDE_EFFECTS (arg0
) && ! TREE_SIDE_EFFECTS (arg1
))))
3090 /* Next handle constant cases, those for which we can return 1 even
3091 if ONLY_CONST is set. */
3092 if (TREE_CONSTANT (arg0
) && TREE_CONSTANT (arg1
))
3093 switch (TREE_CODE (arg0
))
3096 return tree_int_cst_equal (arg0
, arg1
);
3099 return FIXED_VALUES_IDENTICAL (TREE_FIXED_CST (arg0
),
3100 TREE_FIXED_CST (arg1
));
3103 if (real_identical (&TREE_REAL_CST (arg0
), &TREE_REAL_CST (arg1
)))
3107 if (!HONOR_SIGNED_ZEROS (arg0
))
3109 /* If we do not distinguish between signed and unsigned zero,
3110 consider them equal. */
3111 if (real_zerop (arg0
) && real_zerop (arg1
))
3118 if (VECTOR_CST_LOG2_NPATTERNS (arg0
)
3119 != VECTOR_CST_LOG2_NPATTERNS (arg1
))
3122 if (VECTOR_CST_NELTS_PER_PATTERN (arg0
)
3123 != VECTOR_CST_NELTS_PER_PATTERN (arg1
))
3126 unsigned int count
= vector_cst_encoded_nelts (arg0
);
3127 for (unsigned int i
= 0; i
< count
; ++i
)
3128 if (!operand_equal_p (VECTOR_CST_ENCODED_ELT (arg0
, i
),
3129 VECTOR_CST_ENCODED_ELT (arg1
, i
), flags
))
3135 return (operand_equal_p (TREE_REALPART (arg0
), TREE_REALPART (arg1
),
3137 && operand_equal_p (TREE_IMAGPART (arg0
), TREE_IMAGPART (arg1
),
3141 return (TREE_STRING_LENGTH (arg0
) == TREE_STRING_LENGTH (arg1
)
3142 && ! memcmp (TREE_STRING_POINTER (arg0
),
3143 TREE_STRING_POINTER (arg1
),
3144 TREE_STRING_LENGTH (arg0
)));
3147 gcc_checking_assert (!(flags
& OEP_ADDRESS_OF
));
3148 return operand_equal_p (TREE_OPERAND (arg0
, 0), TREE_OPERAND (arg1
, 0),
3149 flags
| OEP_ADDRESS_OF
3150 | OEP_MATCH_SIDE_EFFECTS
);
3152 /* In GIMPLE empty constructors are allowed in initializers of
3154 return !CONSTRUCTOR_NELTS (arg0
) && !CONSTRUCTOR_NELTS (arg1
);
3159 if (flags
& OEP_ONLY_CONST
)
3162 /* Define macros to test an operand from arg0 and arg1 for equality and a
3163 variant that allows null and views null as being different from any
3164 non-null value. In the latter case, if either is null, the both
3165 must be; otherwise, do the normal comparison. */
3166 #define OP_SAME(N) operand_equal_p (TREE_OPERAND (arg0, N), \
3167 TREE_OPERAND (arg1, N), flags)
3169 #define OP_SAME_WITH_NULL(N) \
3170 ((!TREE_OPERAND (arg0, N) || !TREE_OPERAND (arg1, N)) \
3171 ? TREE_OPERAND (arg0, N) == TREE_OPERAND (arg1, N) : OP_SAME (N))
3173 switch (TREE_CODE_CLASS (TREE_CODE (arg0
)))
3176 /* Two conversions are equal only if signedness and modes match. */
3177 switch (TREE_CODE (arg0
))
3180 case FIX_TRUNC_EXPR
:
3181 if (TYPE_UNSIGNED (TREE_TYPE (arg0
))
3182 != TYPE_UNSIGNED (TREE_TYPE (arg1
)))
3192 case tcc_comparison
:
3194 if (OP_SAME (0) && OP_SAME (1))
3197 /* For commutative ops, allow the other order. */
3198 return (commutative_tree_code (TREE_CODE (arg0
))
3199 && operand_equal_p (TREE_OPERAND (arg0
, 0),
3200 TREE_OPERAND (arg1
, 1), flags
)
3201 && operand_equal_p (TREE_OPERAND (arg0
, 1),
3202 TREE_OPERAND (arg1
, 0), flags
));
3205 /* If either of the pointer (or reference) expressions we are
3206 dereferencing contain a side effect, these cannot be equal,
3207 but their addresses can be. */
3208 if ((flags
& OEP_MATCH_SIDE_EFFECTS
) == 0
3209 && (TREE_SIDE_EFFECTS (arg0
)
3210 || TREE_SIDE_EFFECTS (arg1
)))
3213 switch (TREE_CODE (arg0
))
3216 if (!(flags
& OEP_ADDRESS_OF
)
3217 && (TYPE_ALIGN (TREE_TYPE (arg0
))
3218 != TYPE_ALIGN (TREE_TYPE (arg1
))))
3220 flags
&= ~OEP_ADDRESS_OF
;
3224 /* Require the same offset. */
3225 if (!operand_equal_p (TYPE_SIZE (TREE_TYPE (arg0
)),
3226 TYPE_SIZE (TREE_TYPE (arg1
)),
3227 flags
& ~OEP_ADDRESS_OF
))
3232 case VIEW_CONVERT_EXPR
:
3235 case TARGET_MEM_REF
:
3237 if (!(flags
& OEP_ADDRESS_OF
))
3239 /* Require equal access sizes */
3240 if (TYPE_SIZE (TREE_TYPE (arg0
)) != TYPE_SIZE (TREE_TYPE (arg1
))
3241 && (!TYPE_SIZE (TREE_TYPE (arg0
))
3242 || !TYPE_SIZE (TREE_TYPE (arg1
))
3243 || !operand_equal_p (TYPE_SIZE (TREE_TYPE (arg0
)),
3244 TYPE_SIZE (TREE_TYPE (arg1
)),
3247 /* Verify that access happens in similar types. */
3248 if (!types_compatible_p (TREE_TYPE (arg0
), TREE_TYPE (arg1
)))
3250 /* Verify that accesses are TBAA compatible. */
3251 if (!alias_ptr_types_compatible_p
3252 (TREE_TYPE (TREE_OPERAND (arg0
, 1)),
3253 TREE_TYPE (TREE_OPERAND (arg1
, 1)))
3254 || (MR_DEPENDENCE_CLIQUE (arg0
)
3255 != MR_DEPENDENCE_CLIQUE (arg1
))
3256 || (MR_DEPENDENCE_BASE (arg0
)
3257 != MR_DEPENDENCE_BASE (arg1
)))
3259 /* Verify that alignment is compatible. */
3260 if (TYPE_ALIGN (TREE_TYPE (arg0
))
3261 != TYPE_ALIGN (TREE_TYPE (arg1
)))
3264 flags
&= ~OEP_ADDRESS_OF
;
3265 return (OP_SAME (0) && OP_SAME (1)
3266 /* TARGET_MEM_REF require equal extra operands. */
3267 && (TREE_CODE (arg0
) != TARGET_MEM_REF
3268 || (OP_SAME_WITH_NULL (2)
3269 && OP_SAME_WITH_NULL (3)
3270 && OP_SAME_WITH_NULL (4))));
3273 case ARRAY_RANGE_REF
:
3276 flags
&= ~OEP_ADDRESS_OF
;
3277 /* Compare the array index by value if it is constant first as we
3278 may have different types but same value here. */
3279 return ((tree_int_cst_equal (TREE_OPERAND (arg0
, 1),
3280 TREE_OPERAND (arg1
, 1))
3282 && OP_SAME_WITH_NULL (2)
3283 && OP_SAME_WITH_NULL (3)
3284 /* Compare low bound and element size as with OEP_ADDRESS_OF
3285 we have to account for the offset of the ref. */
3286 && (TREE_TYPE (TREE_OPERAND (arg0
, 0))
3287 == TREE_TYPE (TREE_OPERAND (arg1
, 0))
3288 || (operand_equal_p (array_ref_low_bound
3289 (CONST_CAST_TREE (arg0
)),
3291 (CONST_CAST_TREE (arg1
)), flags
)
3292 && operand_equal_p (array_ref_element_size
3293 (CONST_CAST_TREE (arg0
)),
3294 array_ref_element_size
3295 (CONST_CAST_TREE (arg1
)),
3299 /* Handle operand 2 the same as for ARRAY_REF. Operand 0
3300 may be NULL when we're called to compare MEM_EXPRs. */
3301 if (!OP_SAME_WITH_NULL (0)
3304 flags
&= ~OEP_ADDRESS_OF
;
3305 return OP_SAME_WITH_NULL (2);
3310 flags
&= ~OEP_ADDRESS_OF
;
3311 return OP_SAME (1) && OP_SAME (2);
3317 case tcc_expression
:
3318 switch (TREE_CODE (arg0
))
3321 /* Be sure we pass right ADDRESS_OF flag. */
3322 gcc_checking_assert (!(flags
& OEP_ADDRESS_OF
));
3323 return operand_equal_p (TREE_OPERAND (arg0
, 0),
3324 TREE_OPERAND (arg1
, 0),
3325 flags
| OEP_ADDRESS_OF
);
3327 case TRUTH_NOT_EXPR
:
3330 case TRUTH_ANDIF_EXPR
:
3331 case TRUTH_ORIF_EXPR
:
3332 return OP_SAME (0) && OP_SAME (1);
3334 case WIDEN_MULT_PLUS_EXPR
:
3335 case WIDEN_MULT_MINUS_EXPR
:
3338 /* The multiplcation operands are commutative. */
3341 case TRUTH_AND_EXPR
:
3343 case TRUTH_XOR_EXPR
:
3344 if (OP_SAME (0) && OP_SAME (1))
3347 /* Otherwise take into account this is a commutative operation. */
3348 return (operand_equal_p (TREE_OPERAND (arg0
, 0),
3349 TREE_OPERAND (arg1
, 1), flags
)
3350 && operand_equal_p (TREE_OPERAND (arg0
, 1),
3351 TREE_OPERAND (arg1
, 0), flags
));
3354 if (! OP_SAME (1) || ! OP_SAME_WITH_NULL (2))
3356 flags
&= ~OEP_ADDRESS_OF
;
3359 case BIT_INSERT_EXPR
:
3360 /* BIT_INSERT_EXPR has an implict operand as the type precision
3361 of op1. Need to check to make sure they are the same. */
3362 if (TREE_CODE (TREE_OPERAND (arg0
, 1)) == INTEGER_CST
3363 && TREE_CODE (TREE_OPERAND (arg1
, 1)) == INTEGER_CST
3364 && TYPE_PRECISION (TREE_TYPE (TREE_OPERAND (arg0
, 1)))
3365 != TYPE_PRECISION (TREE_TYPE (TREE_OPERAND (arg1
, 1))))
3371 return OP_SAME (0) && OP_SAME (1) && OP_SAME (2);
3376 case PREDECREMENT_EXPR
:
3377 case PREINCREMENT_EXPR
:
3378 case POSTDECREMENT_EXPR
:
3379 case POSTINCREMENT_EXPR
:
3380 if (flags
& OEP_LEXICOGRAPHIC
)
3381 return OP_SAME (0) && OP_SAME (1);
3384 case CLEANUP_POINT_EXPR
:
3387 if (flags
& OEP_LEXICOGRAPHIC
)
3396 switch (TREE_CODE (arg0
))
3399 if ((CALL_EXPR_FN (arg0
) == NULL_TREE
)
3400 != (CALL_EXPR_FN (arg1
) == NULL_TREE
))
3401 /* If not both CALL_EXPRs are either internal or normal function
3402 functions, then they are not equal. */
3404 else if (CALL_EXPR_FN (arg0
) == NULL_TREE
)
3406 /* If the CALL_EXPRs call different internal functions, then they
3408 if (CALL_EXPR_IFN (arg0
) != CALL_EXPR_IFN (arg1
))
3413 /* If the CALL_EXPRs call different functions, then they are not
3415 if (! operand_equal_p (CALL_EXPR_FN (arg0
), CALL_EXPR_FN (arg1
),
3420 /* FIXME: We could skip this test for OEP_MATCH_SIDE_EFFECTS. */
3422 unsigned int cef
= call_expr_flags (arg0
);
3423 if (flags
& OEP_PURE_SAME
)
3424 cef
&= ECF_CONST
| ECF_PURE
;
3427 if (!cef
&& !(flags
& OEP_LEXICOGRAPHIC
))
3431 /* Now see if all the arguments are the same. */
3433 const_call_expr_arg_iterator iter0
, iter1
;
3435 for (a0
= first_const_call_expr_arg (arg0
, &iter0
),
3436 a1
= first_const_call_expr_arg (arg1
, &iter1
);
3438 a0
= next_const_call_expr_arg (&iter0
),
3439 a1
= next_const_call_expr_arg (&iter1
))
3440 if (! operand_equal_p (a0
, a1
, flags
))
3443 /* If we get here and both argument lists are exhausted
3444 then the CALL_EXPRs are equal. */
3445 return ! (a0
|| a1
);
3451 case tcc_declaration
:
3452 /* Consider __builtin_sqrt equal to sqrt. */
3453 return (TREE_CODE (arg0
) == FUNCTION_DECL
3454 && fndecl_built_in_p (arg0
) && fndecl_built_in_p (arg1
)
3455 && DECL_BUILT_IN_CLASS (arg0
) == DECL_BUILT_IN_CLASS (arg1
)
3456 && DECL_FUNCTION_CODE (arg0
) == DECL_FUNCTION_CODE (arg1
));
3458 case tcc_exceptional
:
3459 if (TREE_CODE (arg0
) == CONSTRUCTOR
)
3461 /* In GIMPLE constructors are used only to build vectors from
3462 elements. Individual elements in the constructor must be
3463 indexed in increasing order and form an initial sequence.
3465 We make no effort to compare constructors in generic.
3466 (see sem_variable::equals in ipa-icf which can do so for
3468 if (!VECTOR_TYPE_P (TREE_TYPE (arg0
))
3469 || !VECTOR_TYPE_P (TREE_TYPE (arg1
)))
3472 /* Be sure that vectors constructed have the same representation.
3473 We only tested element precision and modes to match.
3474 Vectors may be BLKmode and thus also check that the number of
3476 if (maybe_ne (TYPE_VECTOR_SUBPARTS (TREE_TYPE (arg0
)),
3477 TYPE_VECTOR_SUBPARTS (TREE_TYPE (arg1
))))
3480 vec
<constructor_elt
, va_gc
> *v0
= CONSTRUCTOR_ELTS (arg0
);
3481 vec
<constructor_elt
, va_gc
> *v1
= CONSTRUCTOR_ELTS (arg1
);
3482 unsigned int len
= vec_safe_length (v0
);
3484 if (len
!= vec_safe_length (v1
))
3487 for (unsigned int i
= 0; i
< len
; i
++)
3489 constructor_elt
*c0
= &(*v0
)[i
];
3490 constructor_elt
*c1
= &(*v1
)[i
];
3492 if (!operand_equal_p (c0
->value
, c1
->value
, flags
)
3493 /* In GIMPLE the indexes can be either NULL or matching i.
3494 Double check this so we won't get false
3495 positives for GENERIC. */
3497 && (TREE_CODE (c0
->index
) != INTEGER_CST
3498 || !compare_tree_int (c0
->index
, i
)))
3500 && (TREE_CODE (c1
->index
) != INTEGER_CST
3501 || !compare_tree_int (c1
->index
, i
))))
3506 else if (TREE_CODE (arg0
) == STATEMENT_LIST
3507 && (flags
& OEP_LEXICOGRAPHIC
))
3509 /* Compare the STATEMENT_LISTs. */
3510 tree_stmt_iterator tsi1
, tsi2
;
3511 tree body1
= CONST_CAST_TREE (arg0
);
3512 tree body2
= CONST_CAST_TREE (arg1
);
3513 for (tsi1
= tsi_start (body1
), tsi2
= tsi_start (body2
); ;
3514 tsi_next (&tsi1
), tsi_next (&tsi2
))
3516 /* The lists don't have the same number of statements. */
3517 if (tsi_end_p (tsi1
) ^ tsi_end_p (tsi2
))
3519 if (tsi_end_p (tsi1
) && tsi_end_p (tsi2
))
3521 if (!operand_equal_p (tsi_stmt (tsi1
), tsi_stmt (tsi2
),
3522 flags
& (OEP_LEXICOGRAPHIC
3523 | OEP_NO_HASH_CHECK
)))
3530 switch (TREE_CODE (arg0
))
3533 if (flags
& OEP_LEXICOGRAPHIC
)
3534 return OP_SAME_WITH_NULL (0);
3536 case DEBUG_BEGIN_STMT
:
3537 if (flags
& OEP_LEXICOGRAPHIC
)
3549 #undef OP_SAME_WITH_NULL
3552 /* Similar to operand_equal_p, but see if ARG0 might be a variant of ARG1
3553 with a different signedness or a narrower precision. */
3556 operand_equal_for_comparison_p (tree arg0
, tree arg1
)
3558 if (operand_equal_p (arg0
, arg1
, 0))
3561 if (! INTEGRAL_TYPE_P (TREE_TYPE (arg0
))
3562 || ! INTEGRAL_TYPE_P (TREE_TYPE (arg1
)))
3565 /* Discard any conversions that don't change the modes of ARG0 and ARG1
3566 and see if the inner values are the same. This removes any
3567 signedness comparison, which doesn't matter here. */
3572 if (operand_equal_p (op0
, op1
, 0))
3575 /* Discard a single widening conversion from ARG1 and see if the inner
3576 value is the same as ARG0. */
3577 if (CONVERT_EXPR_P (arg1
)
3578 && INTEGRAL_TYPE_P (TREE_TYPE (TREE_OPERAND (arg1
, 0)))
3579 && TYPE_PRECISION (TREE_TYPE (TREE_OPERAND (arg1
, 0)))
3580 < TYPE_PRECISION (TREE_TYPE (arg1
))
3581 && operand_equal_p (arg0
, TREE_OPERAND (arg1
, 0), 0))
3587 /* See if ARG is an expression that is either a comparison or is performing
3588 arithmetic on comparisons. The comparisons must only be comparing
3589 two different values, which will be stored in *CVAL1 and *CVAL2; if
3590 they are nonzero it means that some operands have already been found.
3591 No variables may be used anywhere else in the expression except in the
3594 If this is true, return 1. Otherwise, return zero. */
3597 twoval_comparison_p (tree arg
, tree
*cval1
, tree
*cval2
)
3599 enum tree_code code
= TREE_CODE (arg
);
3600 enum tree_code_class tclass
= TREE_CODE_CLASS (code
);
3602 /* We can handle some of the tcc_expression cases here. */
3603 if (tclass
== tcc_expression
&& code
== TRUTH_NOT_EXPR
)
3605 else if (tclass
== tcc_expression
3606 && (code
== TRUTH_ANDIF_EXPR
|| code
== TRUTH_ORIF_EXPR
3607 || code
== COMPOUND_EXPR
))
3608 tclass
= tcc_binary
;
3613 return twoval_comparison_p (TREE_OPERAND (arg
, 0), cval1
, cval2
);
3616 return (twoval_comparison_p (TREE_OPERAND (arg
, 0), cval1
, cval2
)
3617 && twoval_comparison_p (TREE_OPERAND (arg
, 1), cval1
, cval2
));
3622 case tcc_expression
:
3623 if (code
== COND_EXPR
)
3624 return (twoval_comparison_p (TREE_OPERAND (arg
, 0), cval1
, cval2
)
3625 && twoval_comparison_p (TREE_OPERAND (arg
, 1), cval1
, cval2
)
3626 && twoval_comparison_p (TREE_OPERAND (arg
, 2), cval1
, cval2
));
3629 case tcc_comparison
:
3630 /* First see if we can handle the first operand, then the second. For
3631 the second operand, we know *CVAL1 can't be zero. It must be that
3632 one side of the comparison is each of the values; test for the
3633 case where this isn't true by failing if the two operands
3636 if (operand_equal_p (TREE_OPERAND (arg
, 0),
3637 TREE_OPERAND (arg
, 1), 0))
3641 *cval1
= TREE_OPERAND (arg
, 0);
3642 else if (operand_equal_p (*cval1
, TREE_OPERAND (arg
, 0), 0))
3644 else if (*cval2
== 0)
3645 *cval2
= TREE_OPERAND (arg
, 0);
3646 else if (operand_equal_p (*cval2
, TREE_OPERAND (arg
, 0), 0))
3651 if (operand_equal_p (*cval1
, TREE_OPERAND (arg
, 1), 0))
3653 else if (*cval2
== 0)
3654 *cval2
= TREE_OPERAND (arg
, 1);
3655 else if (operand_equal_p (*cval2
, TREE_OPERAND (arg
, 1), 0))
3667 /* ARG is a tree that is known to contain just arithmetic operations and
3668 comparisons. Evaluate the operations in the tree substituting NEW0 for
3669 any occurrence of OLD0 as an operand of a comparison and likewise for
3673 eval_subst (location_t loc
, tree arg
, tree old0
, tree new0
,
3674 tree old1
, tree new1
)
3676 tree type
= TREE_TYPE (arg
);
3677 enum tree_code code
= TREE_CODE (arg
);
3678 enum tree_code_class tclass
= TREE_CODE_CLASS (code
);
3680 /* We can handle some of the tcc_expression cases here. */
3681 if (tclass
== tcc_expression
&& code
== TRUTH_NOT_EXPR
)
3683 else if (tclass
== tcc_expression
3684 && (code
== TRUTH_ANDIF_EXPR
|| code
== TRUTH_ORIF_EXPR
))
3685 tclass
= tcc_binary
;
3690 return fold_build1_loc (loc
, code
, type
,
3691 eval_subst (loc
, TREE_OPERAND (arg
, 0),
3692 old0
, new0
, old1
, new1
));
3695 return fold_build2_loc (loc
, code
, type
,
3696 eval_subst (loc
, TREE_OPERAND (arg
, 0),
3697 old0
, new0
, old1
, new1
),
3698 eval_subst (loc
, TREE_OPERAND (arg
, 1),
3699 old0
, new0
, old1
, new1
));
3701 case tcc_expression
:
3705 return eval_subst (loc
, TREE_OPERAND (arg
, 0), old0
, new0
,
3709 return eval_subst (loc
, TREE_OPERAND (arg
, 1), old0
, new0
,
3713 return fold_build3_loc (loc
, code
, type
,
3714 eval_subst (loc
, TREE_OPERAND (arg
, 0),
3715 old0
, new0
, old1
, new1
),
3716 eval_subst (loc
, TREE_OPERAND (arg
, 1),
3717 old0
, new0
, old1
, new1
),
3718 eval_subst (loc
, TREE_OPERAND (arg
, 2),
3719 old0
, new0
, old1
, new1
));
3723 /* Fall through - ??? */
3725 case tcc_comparison
:
3727 tree arg0
= TREE_OPERAND (arg
, 0);
3728 tree arg1
= TREE_OPERAND (arg
, 1);
3730 /* We need to check both for exact equality and tree equality. The
3731 former will be true if the operand has a side-effect. In that
3732 case, we know the operand occurred exactly once. */
3734 if (arg0
== old0
|| operand_equal_p (arg0
, old0
, 0))
3736 else if (arg0
== old1
|| operand_equal_p (arg0
, old1
, 0))
3739 if (arg1
== old0
|| operand_equal_p (arg1
, old0
, 0))
3741 else if (arg1
== old1
|| operand_equal_p (arg1
, old1
, 0))
3744 return fold_build2_loc (loc
, code
, type
, arg0
, arg1
);
3752 /* Return a tree for the case when the result of an expression is RESULT
3753 converted to TYPE and OMITTED was previously an operand of the expression
3754 but is now not needed (e.g., we folded OMITTED * 0).
3756 If OMITTED has side effects, we must evaluate it. Otherwise, just do
3757 the conversion of RESULT to TYPE. */
3760 omit_one_operand_loc (location_t loc
, tree type
, tree result
, tree omitted
)
3762 tree t
= fold_convert_loc (loc
, type
, result
);
3764 /* If the resulting operand is an empty statement, just return the omitted
3765 statement casted to void. */
3766 if (IS_EMPTY_STMT (t
) && TREE_SIDE_EFFECTS (omitted
))
3767 return build1_loc (loc
, NOP_EXPR
, void_type_node
,
3768 fold_ignored_result (omitted
));
3770 if (TREE_SIDE_EFFECTS (omitted
))
3771 return build2_loc (loc
, COMPOUND_EXPR
, type
,
3772 fold_ignored_result (omitted
), t
);
3774 return non_lvalue_loc (loc
, t
);
3777 /* Return a tree for the case when the result of an expression is RESULT
3778 converted to TYPE and OMITTED1 and OMITTED2 were previously operands
3779 of the expression but are now not needed.
3781 If OMITTED1 or OMITTED2 has side effects, they must be evaluated.
3782 If both OMITTED1 and OMITTED2 have side effects, OMITTED1 is
3783 evaluated before OMITTED2. Otherwise, if neither has side effects,
3784 just do the conversion of RESULT to TYPE. */
3787 omit_two_operands_loc (location_t loc
, tree type
, tree result
,
3788 tree omitted1
, tree omitted2
)
3790 tree t
= fold_convert_loc (loc
, type
, result
);
3792 if (TREE_SIDE_EFFECTS (omitted2
))
3793 t
= build2_loc (loc
, COMPOUND_EXPR
, type
, omitted2
, t
);
3794 if (TREE_SIDE_EFFECTS (omitted1
))
3795 t
= build2_loc (loc
, COMPOUND_EXPR
, type
, omitted1
, t
);
3797 return TREE_CODE (t
) != COMPOUND_EXPR
? non_lvalue_loc (loc
, t
) : t
;
3801 /* Return a simplified tree node for the truth-negation of ARG. This
3802 never alters ARG itself. We assume that ARG is an operation that
3803 returns a truth value (0 or 1).
3805 FIXME: one would think we would fold the result, but it causes
3806 problems with the dominator optimizer. */
3809 fold_truth_not_expr (location_t loc
, tree arg
)
3811 tree type
= TREE_TYPE (arg
);
3812 enum tree_code code
= TREE_CODE (arg
);
3813 location_t loc1
, loc2
;
3815 /* If this is a comparison, we can simply invert it, except for
3816 floating-point non-equality comparisons, in which case we just
3817 enclose a TRUTH_NOT_EXPR around what we have. */
3819 if (TREE_CODE_CLASS (code
) == tcc_comparison
)
3821 tree op_type
= TREE_TYPE (TREE_OPERAND (arg
, 0));
3822 if (FLOAT_TYPE_P (op_type
)
3823 && flag_trapping_math
3824 && code
!= ORDERED_EXPR
&& code
!= UNORDERED_EXPR
3825 && code
!= NE_EXPR
&& code
!= EQ_EXPR
)
3828 code
= invert_tree_comparison (code
, HONOR_NANS (op_type
));
3829 if (code
== ERROR_MARK
)
3832 tree ret
= build2_loc (loc
, code
, type
, TREE_OPERAND (arg
, 0),
3833 TREE_OPERAND (arg
, 1));
3834 if (TREE_NO_WARNING (arg
))
3835 TREE_NO_WARNING (ret
) = 1;
3842 return constant_boolean_node (integer_zerop (arg
), type
);
3844 case TRUTH_AND_EXPR
:
3845 loc1
= expr_location_or (TREE_OPERAND (arg
, 0), loc
);
3846 loc2
= expr_location_or (TREE_OPERAND (arg
, 1), loc
);
3847 return build2_loc (loc
, TRUTH_OR_EXPR
, type
,
3848 invert_truthvalue_loc (loc1
, TREE_OPERAND (arg
, 0)),
3849 invert_truthvalue_loc (loc2
, TREE_OPERAND (arg
, 1)));
3852 loc1
= expr_location_or (TREE_OPERAND (arg
, 0), loc
);
3853 loc2
= expr_location_or (TREE_OPERAND (arg
, 1), loc
);
3854 return build2_loc (loc
, TRUTH_AND_EXPR
, type
,
3855 invert_truthvalue_loc (loc1
, TREE_OPERAND (arg
, 0)),
3856 invert_truthvalue_loc (loc2
, TREE_OPERAND (arg
, 1)));
3858 case TRUTH_XOR_EXPR
:
3859 /* Here we can invert either operand. We invert the first operand
3860 unless the second operand is a TRUTH_NOT_EXPR in which case our
3861 result is the XOR of the first operand with the inside of the
3862 negation of the second operand. */
3864 if (TREE_CODE (TREE_OPERAND (arg
, 1)) == TRUTH_NOT_EXPR
)
3865 return build2_loc (loc
, TRUTH_XOR_EXPR
, type
, TREE_OPERAND (arg
, 0),
3866 TREE_OPERAND (TREE_OPERAND (arg
, 1), 0));
3868 return build2_loc (loc
, TRUTH_XOR_EXPR
, type
,
3869 invert_truthvalue_loc (loc
, TREE_OPERAND (arg
, 0)),
3870 TREE_OPERAND (arg
, 1));
3872 case TRUTH_ANDIF_EXPR
:
3873 loc1
= expr_location_or (TREE_OPERAND (arg
, 0), loc
);
3874 loc2
= expr_location_or (TREE_OPERAND (arg
, 1), loc
);
3875 return build2_loc (loc
, TRUTH_ORIF_EXPR
, type
,
3876 invert_truthvalue_loc (loc1
, TREE_OPERAND (arg
, 0)),
3877 invert_truthvalue_loc (loc2
, TREE_OPERAND (arg
, 1)));
3879 case TRUTH_ORIF_EXPR
:
3880 loc1
= expr_location_or (TREE_OPERAND (arg
, 0), loc
);
3881 loc2
= expr_location_or (TREE_OPERAND (arg
, 1), loc
);
3882 return build2_loc (loc
, TRUTH_ANDIF_EXPR
, type
,
3883 invert_truthvalue_loc (loc1
, TREE_OPERAND (arg
, 0)),
3884 invert_truthvalue_loc (loc2
, TREE_OPERAND (arg
, 1)));
3886 case TRUTH_NOT_EXPR
:
3887 return TREE_OPERAND (arg
, 0);
3891 tree arg1
= TREE_OPERAND (arg
, 1);
3892 tree arg2
= TREE_OPERAND (arg
, 2);
3894 loc1
= expr_location_or (TREE_OPERAND (arg
, 1), loc
);
3895 loc2
= expr_location_or (TREE_OPERAND (arg
, 2), loc
);
3897 /* A COND_EXPR may have a throw as one operand, which
3898 then has void type. Just leave void operands
3900 return build3_loc (loc
, COND_EXPR
, type
, TREE_OPERAND (arg
, 0),
3901 VOID_TYPE_P (TREE_TYPE (arg1
))
3902 ? arg1
: invert_truthvalue_loc (loc1
, arg1
),
3903 VOID_TYPE_P (TREE_TYPE (arg2
))
3904 ? arg2
: invert_truthvalue_loc (loc2
, arg2
));
3908 loc1
= expr_location_or (TREE_OPERAND (arg
, 1), loc
);
3909 return build2_loc (loc
, COMPOUND_EXPR
, type
,
3910 TREE_OPERAND (arg
, 0),
3911 invert_truthvalue_loc (loc1
, TREE_OPERAND (arg
, 1)));
3913 case NON_LVALUE_EXPR
:
3914 loc1
= expr_location_or (TREE_OPERAND (arg
, 0), loc
);
3915 return invert_truthvalue_loc (loc1
, TREE_OPERAND (arg
, 0));
3918 if (TREE_CODE (TREE_TYPE (arg
)) == BOOLEAN_TYPE
)
3919 return build1_loc (loc
, TRUTH_NOT_EXPR
, type
, arg
);
3924 loc1
= expr_location_or (TREE_OPERAND (arg
, 0), loc
);
3925 return build1_loc (loc
, TREE_CODE (arg
), type
,
3926 invert_truthvalue_loc (loc1
, TREE_OPERAND (arg
, 0)));
3929 if (!integer_onep (TREE_OPERAND (arg
, 1)))
3931 return build2_loc (loc
, EQ_EXPR
, type
, arg
, build_int_cst (type
, 0));
3934 return build1_loc (loc
, TRUTH_NOT_EXPR
, type
, arg
);
3936 case CLEANUP_POINT_EXPR
:
3937 loc1
= expr_location_or (TREE_OPERAND (arg
, 0), loc
);
3938 return build1_loc (loc
, CLEANUP_POINT_EXPR
, type
,
3939 invert_truthvalue_loc (loc1
, TREE_OPERAND (arg
, 0)));
3946 /* Fold the truth-negation of ARG. This never alters ARG itself. We
3947 assume that ARG is an operation that returns a truth value (0 or 1
3948 for scalars, 0 or -1 for vectors). Return the folded expression if
3949 folding is successful. Otherwise, return NULL_TREE. */
3952 fold_invert_truthvalue (location_t loc
, tree arg
)
3954 tree type
= TREE_TYPE (arg
);
3955 return fold_unary_loc (loc
, VECTOR_TYPE_P (type
)
3961 /* Return a simplified tree node for the truth-negation of ARG. This
3962 never alters ARG itself. We assume that ARG is an operation that
3963 returns a truth value (0 or 1 for scalars, 0 or -1 for vectors). */
3966 invert_truthvalue_loc (location_t loc
, tree arg
)
3968 if (TREE_CODE (arg
) == ERROR_MARK
)
3971 tree type
= TREE_TYPE (arg
);
3972 return fold_build1_loc (loc
, VECTOR_TYPE_P (type
)
3978 /* Return a BIT_FIELD_REF of type TYPE to refer to BITSIZE bits of INNER
3979 starting at BITPOS. The field is unsigned if UNSIGNEDP is nonzero
3980 and uses reverse storage order if REVERSEP is nonzero. ORIG_INNER
3981 is the original memory reference used to preserve the alias set of
3985 make_bit_field_ref (location_t loc
, tree inner
, tree orig_inner
, tree type
,
3986 HOST_WIDE_INT bitsize
, poly_int64 bitpos
,
3987 int unsignedp
, int reversep
)
3989 tree result
, bftype
;
3991 /* Attempt not to lose the access path if possible. */
3992 if (TREE_CODE (orig_inner
) == COMPONENT_REF
)
3994 tree ninner
= TREE_OPERAND (orig_inner
, 0);
3996 poly_int64 nbitsize
, nbitpos
;
3998 int nunsignedp
, nreversep
, nvolatilep
= 0;
3999 tree base
= get_inner_reference (ninner
, &nbitsize
, &nbitpos
,
4000 &noffset
, &nmode
, &nunsignedp
,
4001 &nreversep
, &nvolatilep
);
4003 && noffset
== NULL_TREE
4004 && known_subrange_p (bitpos
, bitsize
, nbitpos
, nbitsize
)
4014 alias_set_type iset
= get_alias_set (orig_inner
);
4015 if (iset
== 0 && get_alias_set (inner
) != iset
)
4016 inner
= fold_build2 (MEM_REF
, TREE_TYPE (inner
),
4017 build_fold_addr_expr (inner
),
4018 build_int_cst (ptr_type_node
, 0));
4020 if (known_eq (bitpos
, 0) && !reversep
)
4022 tree size
= TYPE_SIZE (TREE_TYPE (inner
));
4023 if ((INTEGRAL_TYPE_P (TREE_TYPE (inner
))
4024 || POINTER_TYPE_P (TREE_TYPE (inner
)))
4025 && tree_fits_shwi_p (size
)
4026 && tree_to_shwi (size
) == bitsize
)
4027 return fold_convert_loc (loc
, type
, inner
);
4031 if (TYPE_PRECISION (bftype
) != bitsize
4032 || TYPE_UNSIGNED (bftype
) == !unsignedp
)
4033 bftype
= build_nonstandard_integer_type (bitsize
, 0);
4035 result
= build3_loc (loc
, BIT_FIELD_REF
, bftype
, inner
,
4036 bitsize_int (bitsize
), bitsize_int (bitpos
));
4037 REF_REVERSE_STORAGE_ORDER (result
) = reversep
;
4040 result
= fold_convert_loc (loc
, type
, result
);
4045 /* Optimize a bit-field compare.
4047 There are two cases: First is a compare against a constant and the
4048 second is a comparison of two items where the fields are at the same
4049 bit position relative to the start of a chunk (byte, halfword, word)
4050 large enough to contain it. In these cases we can avoid the shift
4051 implicit in bitfield extractions.
4053 For constants, we emit a compare of the shifted constant with the
4054 BIT_AND_EXPR of a mask and a byte, halfword, or word of the operand being
4055 compared. For two fields at the same position, we do the ANDs with the
4056 similar mask and compare the result of the ANDs.
4058 CODE is the comparison code, known to be either NE_EXPR or EQ_EXPR.
4059 COMPARE_TYPE is the type of the comparison, and LHS and RHS
4060 are the left and right operands of the comparison, respectively.
4062 If the optimization described above can be done, we return the resulting
4063 tree. Otherwise we return zero. */
4066 optimize_bit_field_compare (location_t loc
, enum tree_code code
,
4067 tree compare_type
, tree lhs
, tree rhs
)
4069 poly_int64 plbitpos
, plbitsize
, rbitpos
, rbitsize
;
4070 HOST_WIDE_INT lbitpos
, lbitsize
, nbitpos
, nbitsize
;
4071 tree type
= TREE_TYPE (lhs
);
4073 int const_p
= TREE_CODE (rhs
) == INTEGER_CST
;
4074 machine_mode lmode
, rmode
;
4075 scalar_int_mode nmode
;
4076 int lunsignedp
, runsignedp
;
4077 int lreversep
, rreversep
;
4078 int lvolatilep
= 0, rvolatilep
= 0;
4079 tree linner
, rinner
= NULL_TREE
;
4083 /* Get all the information about the extractions being done. If the bit size
4084 is the same as the size of the underlying object, we aren't doing an
4085 extraction at all and so can do nothing. We also don't want to
4086 do anything if the inner expression is a PLACEHOLDER_EXPR since we
4087 then will no longer be able to replace it. */
4088 linner
= get_inner_reference (lhs
, &plbitsize
, &plbitpos
, &offset
, &lmode
,
4089 &lunsignedp
, &lreversep
, &lvolatilep
);
4091 || !known_size_p (plbitsize
)
4092 || !plbitsize
.is_constant (&lbitsize
)
4093 || !plbitpos
.is_constant (&lbitpos
)
4094 || known_eq (lbitsize
, GET_MODE_BITSIZE (lmode
))
4096 || TREE_CODE (linner
) == PLACEHOLDER_EXPR
4101 rreversep
= lreversep
;
4104 /* If this is not a constant, we can only do something if bit positions,
4105 sizes, signedness and storage order are the same. */
4107 = get_inner_reference (rhs
, &rbitsize
, &rbitpos
, &offset
, &rmode
,
4108 &runsignedp
, &rreversep
, &rvolatilep
);
4111 || maybe_ne (lbitpos
, rbitpos
)
4112 || maybe_ne (lbitsize
, rbitsize
)
4113 || lunsignedp
!= runsignedp
4114 || lreversep
!= rreversep
4116 || TREE_CODE (rinner
) == PLACEHOLDER_EXPR
4121 /* Honor the C++ memory model and mimic what RTL expansion does. */
4122 poly_uint64 bitstart
= 0;
4123 poly_uint64 bitend
= 0;
4124 if (TREE_CODE (lhs
) == COMPONENT_REF
)
4126 get_bit_range (&bitstart
, &bitend
, lhs
, &plbitpos
, &offset
);
4127 if (!plbitpos
.is_constant (&lbitpos
) || offset
!= NULL_TREE
)
4131 /* See if we can find a mode to refer to this field. We should be able to,
4132 but fail if we can't. */
4133 if (!get_best_mode (lbitsize
, lbitpos
, bitstart
, bitend
,
4134 const_p
? TYPE_ALIGN (TREE_TYPE (linner
))
4135 : MIN (TYPE_ALIGN (TREE_TYPE (linner
)),
4136 TYPE_ALIGN (TREE_TYPE (rinner
))),
4137 BITS_PER_WORD
, false, &nmode
))
4140 /* Set signed and unsigned types of the precision of this mode for the
4142 unsigned_type
= lang_hooks
.types
.type_for_mode (nmode
, 1);
4144 /* Compute the bit position and size for the new reference and our offset
4145 within it. If the new reference is the same size as the original, we
4146 won't optimize anything, so return zero. */
4147 nbitsize
= GET_MODE_BITSIZE (nmode
);
4148 nbitpos
= lbitpos
& ~ (nbitsize
- 1);
4150 if (nbitsize
== lbitsize
)
4153 if (lreversep
? !BYTES_BIG_ENDIAN
: BYTES_BIG_ENDIAN
)
4154 lbitpos
= nbitsize
- lbitsize
- lbitpos
;
4156 /* Make the mask to be used against the extracted field. */
4157 mask
= build_int_cst_type (unsigned_type
, -1);
4158 mask
= const_binop (LSHIFT_EXPR
, mask
, size_int (nbitsize
- lbitsize
));
4159 mask
= const_binop (RSHIFT_EXPR
, mask
,
4160 size_int (nbitsize
- lbitsize
- lbitpos
));
4167 /* If not comparing with constant, just rework the comparison
4169 tree t1
= make_bit_field_ref (loc
, linner
, lhs
, unsigned_type
,
4170 nbitsize
, nbitpos
, 1, lreversep
);
4171 t1
= fold_build2_loc (loc
, BIT_AND_EXPR
, unsigned_type
, t1
, mask
);
4172 tree t2
= make_bit_field_ref (loc
, rinner
, rhs
, unsigned_type
,
4173 nbitsize
, nbitpos
, 1, rreversep
);
4174 t2
= fold_build2_loc (loc
, BIT_AND_EXPR
, unsigned_type
, t2
, mask
);
4175 return fold_build2_loc (loc
, code
, compare_type
, t1
, t2
);
4178 /* Otherwise, we are handling the constant case. See if the constant is too
4179 big for the field. Warn and return a tree for 0 (false) if so. We do
4180 this not only for its own sake, but to avoid having to test for this
4181 error case below. If we didn't, we might generate wrong code.
4183 For unsigned fields, the constant shifted right by the field length should
4184 be all zero. For signed fields, the high-order bits should agree with
4189 if (wi::lrshift (wi::to_wide (rhs
), lbitsize
) != 0)
4191 warning (0, "comparison is always %d due to width of bit-field",
4193 return constant_boolean_node (code
== NE_EXPR
, compare_type
);
4198 wide_int tem
= wi::arshift (wi::to_wide (rhs
), lbitsize
- 1);
4199 if (tem
!= 0 && tem
!= -1)
4201 warning (0, "comparison is always %d due to width of bit-field",
4203 return constant_boolean_node (code
== NE_EXPR
, compare_type
);
4210 /* Single-bit compares should always be against zero. */
4211 if (lbitsize
== 1 && ! integer_zerop (rhs
))
4213 code
= code
== EQ_EXPR
? NE_EXPR
: EQ_EXPR
;
4214 rhs
= build_int_cst (type
, 0);
4217 /* Make a new bitfield reference, shift the constant over the
4218 appropriate number of bits and mask it with the computed mask
4219 (in case this was a signed field). If we changed it, make a new one. */
4220 lhs
= make_bit_field_ref (loc
, linner
, lhs
, unsigned_type
,
4221 nbitsize
, nbitpos
, 1, lreversep
);
4223 rhs
= const_binop (BIT_AND_EXPR
,
4224 const_binop (LSHIFT_EXPR
,
4225 fold_convert_loc (loc
, unsigned_type
, rhs
),
4226 size_int (lbitpos
)),
4229 lhs
= build2_loc (loc
, code
, compare_type
,
4230 build2 (BIT_AND_EXPR
, unsigned_type
, lhs
, mask
), rhs
);
4234 /* Subroutine for fold_truth_andor_1: decode a field reference.
4236 If EXP is a comparison reference, we return the innermost reference.
4238 *PBITSIZE is set to the number of bits in the reference, *PBITPOS is
4239 set to the starting bit number.
4241 If the innermost field can be completely contained in a mode-sized
4242 unit, *PMODE is set to that mode. Otherwise, it is set to VOIDmode.
4244 *PVOLATILEP is set to 1 if the any expression encountered is volatile;
4245 otherwise it is not changed.
4247 *PUNSIGNEDP is set to the signedness of the field.
4249 *PREVERSEP is set to the storage order of the field.
4251 *PMASK is set to the mask used. This is either contained in a
4252 BIT_AND_EXPR or derived from the width of the field.
4254 *PAND_MASK is set to the mask found in a BIT_AND_EXPR, if any.
4256 Return 0 if this is not a component reference or is one that we can't
4257 do anything with. */
4260 decode_field_reference (location_t loc
, tree
*exp_
, HOST_WIDE_INT
*pbitsize
,
4261 HOST_WIDE_INT
*pbitpos
, machine_mode
*pmode
,
4262 int *punsignedp
, int *preversep
, int *pvolatilep
,
4263 tree
*pmask
, tree
*pand_mask
)
4266 tree outer_type
= 0;
4268 tree mask
, inner
, offset
;
4270 unsigned int precision
;
4272 /* All the optimizations using this function assume integer fields.
4273 There are problems with FP fields since the type_for_size call
4274 below can fail for, e.g., XFmode. */
4275 if (! INTEGRAL_TYPE_P (TREE_TYPE (exp
)))
4278 /* We are interested in the bare arrangement of bits, so strip everything
4279 that doesn't affect the machine mode. However, record the type of the
4280 outermost expression if it may matter below. */
4281 if (CONVERT_EXPR_P (exp
)
4282 || TREE_CODE (exp
) == NON_LVALUE_EXPR
)
4283 outer_type
= TREE_TYPE (exp
);
4286 if (TREE_CODE (exp
) == BIT_AND_EXPR
)
4288 and_mask
= TREE_OPERAND (exp
, 1);
4289 exp
= TREE_OPERAND (exp
, 0);
4290 STRIP_NOPS (exp
); STRIP_NOPS (and_mask
);
4291 if (TREE_CODE (and_mask
) != INTEGER_CST
)
4295 poly_int64 poly_bitsize
, poly_bitpos
;
4296 inner
= get_inner_reference (exp
, &poly_bitsize
, &poly_bitpos
, &offset
,
4297 pmode
, punsignedp
, preversep
, pvolatilep
);
4298 if ((inner
== exp
&& and_mask
== 0)
4299 || !poly_bitsize
.is_constant (pbitsize
)
4300 || !poly_bitpos
.is_constant (pbitpos
)
4303 || TREE_CODE (inner
) == PLACEHOLDER_EXPR
4304 /* Reject out-of-bound accesses (PR79731). */
4305 || (! AGGREGATE_TYPE_P (TREE_TYPE (inner
))
4306 && compare_tree_int (TYPE_SIZE (TREE_TYPE (inner
)),
4307 *pbitpos
+ *pbitsize
) < 0))
4312 /* If the number of bits in the reference is the same as the bitsize of
4313 the outer type, then the outer type gives the signedness. Otherwise
4314 (in case of a small bitfield) the signedness is unchanged. */
4315 if (outer_type
&& *pbitsize
== TYPE_PRECISION (outer_type
))
4316 *punsignedp
= TYPE_UNSIGNED (outer_type
);
4318 /* Compute the mask to access the bitfield. */
4319 unsigned_type
= lang_hooks
.types
.type_for_size (*pbitsize
, 1);
4320 precision
= TYPE_PRECISION (unsigned_type
);
4322 mask
= build_int_cst_type (unsigned_type
, -1);
4324 mask
= const_binop (LSHIFT_EXPR
, mask
, size_int (precision
- *pbitsize
));
4325 mask
= const_binop (RSHIFT_EXPR
, mask
, size_int (precision
- *pbitsize
));
4327 /* Merge it with the mask we found in the BIT_AND_EXPR, if any. */
4329 mask
= fold_build2_loc (loc
, BIT_AND_EXPR
, unsigned_type
,
4330 fold_convert_loc (loc
, unsigned_type
, and_mask
), mask
);
4333 *pand_mask
= and_mask
;
4337 /* Return nonzero if MASK represents a mask of SIZE ones in the low-order
4338 bit positions and MASK is SIGNED. */
4341 all_ones_mask_p (const_tree mask
, unsigned int size
)
4343 tree type
= TREE_TYPE (mask
);
4344 unsigned int precision
= TYPE_PRECISION (type
);
4346 /* If this function returns true when the type of the mask is
4347 UNSIGNED, then there will be errors. In particular see
4348 gcc.c-torture/execute/990326-1.c. There does not appear to be
4349 any documentation paper trail as to why this is so. But the pre
4350 wide-int worked with that restriction and it has been preserved
4352 if (size
> precision
|| TYPE_SIGN (type
) == UNSIGNED
)
4355 return wi::mask (size
, false, precision
) == wi::to_wide (mask
);
4358 /* Subroutine for fold: determine if VAL is the INTEGER_CONST that
4359 represents the sign bit of EXP's type. If EXP represents a sign
4360 or zero extension, also test VAL against the unextended type.
4361 The return value is the (sub)expression whose sign bit is VAL,
4362 or NULL_TREE otherwise. */
4365 sign_bit_p (tree exp
, const_tree val
)
4370 /* Tree EXP must have an integral type. */
4371 t
= TREE_TYPE (exp
);
4372 if (! INTEGRAL_TYPE_P (t
))
4375 /* Tree VAL must be an integer constant. */
4376 if (TREE_CODE (val
) != INTEGER_CST
4377 || TREE_OVERFLOW (val
))
4380 width
= TYPE_PRECISION (t
);
4381 if (wi::only_sign_bit_p (wi::to_wide (val
), width
))
4384 /* Handle extension from a narrower type. */
4385 if (TREE_CODE (exp
) == NOP_EXPR
4386 && TYPE_PRECISION (TREE_TYPE (TREE_OPERAND (exp
, 0))) < width
)
4387 return sign_bit_p (TREE_OPERAND (exp
, 0), val
);
4392 /* Subroutine for fold_truth_andor_1: determine if an operand is simple enough
4393 to be evaluated unconditionally. */
4396 simple_operand_p (const_tree exp
)
4398 /* Strip any conversions that don't change the machine mode. */
4401 return (CONSTANT_CLASS_P (exp
)
4402 || TREE_CODE (exp
) == SSA_NAME
4404 && ! TREE_ADDRESSABLE (exp
)
4405 && ! TREE_THIS_VOLATILE (exp
)
4406 && ! DECL_NONLOCAL (exp
)
4407 /* Don't regard global variables as simple. They may be
4408 allocated in ways unknown to the compiler (shared memory,
4409 #pragma weak, etc). */
4410 && ! TREE_PUBLIC (exp
)
4411 && ! DECL_EXTERNAL (exp
)
4412 /* Weakrefs are not safe to be read, since they can be NULL.
4413 They are !TREE_PUBLIC && !DECL_EXTERNAL but still
4414 have DECL_WEAK flag set. */
4415 && (! VAR_OR_FUNCTION_DECL_P (exp
) || ! DECL_WEAK (exp
))
4416 /* Loading a static variable is unduly expensive, but global
4417 registers aren't expensive. */
4418 && (! TREE_STATIC (exp
) || DECL_REGISTER (exp
))));
4421 /* Subroutine for fold_truth_andor: determine if an operand is simple enough
4422 to be evaluated unconditionally.
4423 I addition to simple_operand_p, we assume that comparisons, conversions,
4424 and logic-not operations are simple, if their operands are simple, too. */
4427 simple_operand_p_2 (tree exp
)
4429 enum tree_code code
;
4431 if (TREE_SIDE_EFFECTS (exp
)
4432 || tree_could_trap_p (exp
))
4435 while (CONVERT_EXPR_P (exp
))
4436 exp
= TREE_OPERAND (exp
, 0);
4438 code
= TREE_CODE (exp
);
4440 if (TREE_CODE_CLASS (code
) == tcc_comparison
)
4441 return (simple_operand_p (TREE_OPERAND (exp
, 0))
4442 && simple_operand_p (TREE_OPERAND (exp
, 1)));
4444 if (code
== TRUTH_NOT_EXPR
)
4445 return simple_operand_p_2 (TREE_OPERAND (exp
, 0));
4447 return simple_operand_p (exp
);
4451 /* The following functions are subroutines to fold_range_test and allow it to
4452 try to change a logical combination of comparisons into a range test.
4455 X == 2 || X == 3 || X == 4 || X == 5
4459 (unsigned) (X - 2) <= 3
4461 We describe each set of comparisons as being either inside or outside
4462 a range, using a variable named like IN_P, and then describe the
4463 range with a lower and upper bound. If one of the bounds is omitted,
4464 it represents either the highest or lowest value of the type.
4466 In the comments below, we represent a range by two numbers in brackets
4467 preceded by a "+" to designate being inside that range, or a "-" to
4468 designate being outside that range, so the condition can be inverted by
4469 flipping the prefix. An omitted bound is represented by a "-". For
4470 example, "- [-, 10]" means being outside the range starting at the lowest
4471 possible value and ending at 10, in other words, being greater than 10.
4472 The range "+ [-, -]" is always true and hence the range "- [-, -]" is
4475 We set up things so that the missing bounds are handled in a consistent
4476 manner so neither a missing bound nor "true" and "false" need to be
4477 handled using a special case. */
4479 /* Return the result of applying CODE to ARG0 and ARG1, but handle the case
4480 of ARG0 and/or ARG1 being omitted, meaning an unlimited range. UPPER0_P
4481 and UPPER1_P are nonzero if the respective argument is an upper bound
4482 and zero for a lower. TYPE, if nonzero, is the type of the result; it
4483 must be specified for a comparison. ARG1 will be converted to ARG0's
4484 type if both are specified. */
4487 range_binop (enum tree_code code
, tree type
, tree arg0
, int upper0_p
,
4488 tree arg1
, int upper1_p
)
4494 /* If neither arg represents infinity, do the normal operation.
4495 Else, if not a comparison, return infinity. Else handle the special
4496 comparison rules. Note that most of the cases below won't occur, but
4497 are handled for consistency. */
4499 if (arg0
!= 0 && arg1
!= 0)
4501 tem
= fold_build2 (code
, type
!= 0 ? type
: TREE_TYPE (arg0
),
4502 arg0
, fold_convert (TREE_TYPE (arg0
), arg1
));
4504 return TREE_CODE (tem
) == INTEGER_CST
? tem
: 0;
4507 if (TREE_CODE_CLASS (code
) != tcc_comparison
)
4510 /* Set SGN[01] to -1 if ARG[01] is a lower bound, 1 for upper, and 0
4511 for neither. In real maths, we cannot assume open ended ranges are
4512 the same. But, this is computer arithmetic, where numbers are finite.
4513 We can therefore make the transformation of any unbounded range with
4514 the value Z, Z being greater than any representable number. This permits
4515 us to treat unbounded ranges as equal. */
4516 sgn0
= arg0
!= 0 ? 0 : (upper0_p
? 1 : -1);
4517 sgn1
= arg1
!= 0 ? 0 : (upper1_p
? 1 : -1);
4521 result
= sgn0
== sgn1
;
4524 result
= sgn0
!= sgn1
;
4527 result
= sgn0
< sgn1
;
4530 result
= sgn0
<= sgn1
;
4533 result
= sgn0
> sgn1
;
4536 result
= sgn0
>= sgn1
;
4542 return constant_boolean_node (result
, type
);
4545 /* Helper routine for make_range. Perform one step for it, return
4546 new expression if the loop should continue or NULL_TREE if it should
4550 make_range_step (location_t loc
, enum tree_code code
, tree arg0
, tree arg1
,
4551 tree exp_type
, tree
*p_low
, tree
*p_high
, int *p_in_p
,
4552 bool *strict_overflow_p
)
4554 tree arg0_type
= TREE_TYPE (arg0
);
4555 tree n_low
, n_high
, low
= *p_low
, high
= *p_high
;
4556 int in_p
= *p_in_p
, n_in_p
;
4560 case TRUTH_NOT_EXPR
:
4561 /* We can only do something if the range is testing for zero. */
4562 if (low
== NULL_TREE
|| high
== NULL_TREE
4563 || ! integer_zerop (low
) || ! integer_zerop (high
))
4568 case EQ_EXPR
: case NE_EXPR
:
4569 case LT_EXPR
: case LE_EXPR
: case GE_EXPR
: case GT_EXPR
:
4570 /* We can only do something if the range is testing for zero
4571 and if the second operand is an integer constant. Note that
4572 saying something is "in" the range we make is done by
4573 complementing IN_P since it will set in the initial case of
4574 being not equal to zero; "out" is leaving it alone. */
4575 if (low
== NULL_TREE
|| high
== NULL_TREE
4576 || ! integer_zerop (low
) || ! integer_zerop (high
)
4577 || TREE_CODE (arg1
) != INTEGER_CST
)
4582 case NE_EXPR
: /* - [c, c] */
4585 case EQ_EXPR
: /* + [c, c] */
4586 in_p
= ! in_p
, low
= high
= arg1
;
4588 case GT_EXPR
: /* - [-, c] */
4589 low
= 0, high
= arg1
;
4591 case GE_EXPR
: /* + [c, -] */
4592 in_p
= ! in_p
, low
= arg1
, high
= 0;
4594 case LT_EXPR
: /* - [c, -] */
4595 low
= arg1
, high
= 0;
4597 case LE_EXPR
: /* + [-, c] */
4598 in_p
= ! in_p
, low
= 0, high
= arg1
;
4604 /* If this is an unsigned comparison, we also know that EXP is
4605 greater than or equal to zero. We base the range tests we make
4606 on that fact, so we record it here so we can parse existing
4607 range tests. We test arg0_type since often the return type
4608 of, e.g. EQ_EXPR, is boolean. */
4609 if (TYPE_UNSIGNED (arg0_type
) && (low
== 0 || high
== 0))
4611 if (! merge_ranges (&n_in_p
, &n_low
, &n_high
,
4613 build_int_cst (arg0_type
, 0),
4617 in_p
= n_in_p
, low
= n_low
, high
= n_high
;
4619 /* If the high bound is missing, but we have a nonzero low
4620 bound, reverse the range so it goes from zero to the low bound
4622 if (high
== 0 && low
&& ! integer_zerop (low
))
4625 high
= range_binop (MINUS_EXPR
, NULL_TREE
, low
, 0,
4626 build_int_cst (TREE_TYPE (low
), 1), 0);
4627 low
= build_int_cst (arg0_type
, 0);
4637 /* If flag_wrapv and ARG0_TYPE is signed, make sure
4638 low and high are non-NULL, then normalize will DTRT. */
4639 if (!TYPE_UNSIGNED (arg0_type
)
4640 && !TYPE_OVERFLOW_UNDEFINED (arg0_type
))
4642 if (low
== NULL_TREE
)
4643 low
= TYPE_MIN_VALUE (arg0_type
);
4644 if (high
== NULL_TREE
)
4645 high
= TYPE_MAX_VALUE (arg0_type
);
4648 /* (-x) IN [a,b] -> x in [-b, -a] */
4649 n_low
= range_binop (MINUS_EXPR
, exp_type
,
4650 build_int_cst (exp_type
, 0),
4652 n_high
= range_binop (MINUS_EXPR
, exp_type
,
4653 build_int_cst (exp_type
, 0),
4655 if (n_high
!= 0 && TREE_OVERFLOW (n_high
))
4661 return build2_loc (loc
, MINUS_EXPR
, exp_type
, negate_expr (arg0
),
4662 build_int_cst (exp_type
, 1));
4666 if (TREE_CODE (arg1
) != INTEGER_CST
)
4669 /* If flag_wrapv and ARG0_TYPE is signed, then we cannot
4670 move a constant to the other side. */
4671 if (!TYPE_UNSIGNED (arg0_type
)
4672 && !TYPE_OVERFLOW_UNDEFINED (arg0_type
))
4675 /* If EXP is signed, any overflow in the computation is undefined,
4676 so we don't worry about it so long as our computations on
4677 the bounds don't overflow. For unsigned, overflow is defined
4678 and this is exactly the right thing. */
4679 n_low
= range_binop (code
== MINUS_EXPR
? PLUS_EXPR
: MINUS_EXPR
,
4680 arg0_type
, low
, 0, arg1
, 0);
4681 n_high
= range_binop (code
== MINUS_EXPR
? PLUS_EXPR
: MINUS_EXPR
,
4682 arg0_type
, high
, 1, arg1
, 0);
4683 if ((n_low
!= 0 && TREE_OVERFLOW (n_low
))
4684 || (n_high
!= 0 && TREE_OVERFLOW (n_high
)))
4687 if (TYPE_OVERFLOW_UNDEFINED (arg0_type
))
4688 *strict_overflow_p
= true;
4691 /* Check for an unsigned range which has wrapped around the maximum
4692 value thus making n_high < n_low, and normalize it. */
4693 if (n_low
&& n_high
&& tree_int_cst_lt (n_high
, n_low
))
4695 low
= range_binop (PLUS_EXPR
, arg0_type
, n_high
, 0,
4696 build_int_cst (TREE_TYPE (n_high
), 1), 0);
4697 high
= range_binop (MINUS_EXPR
, arg0_type
, n_low
, 0,
4698 build_int_cst (TREE_TYPE (n_low
), 1), 0);
4700 /* If the range is of the form +/- [ x+1, x ], we won't
4701 be able to normalize it. But then, it represents the
4702 whole range or the empty set, so make it
4704 if (tree_int_cst_equal (n_low
, low
)
4705 && tree_int_cst_equal (n_high
, high
))
4711 low
= n_low
, high
= n_high
;
4719 case NON_LVALUE_EXPR
:
4720 if (TYPE_PRECISION (arg0_type
) > TYPE_PRECISION (exp_type
))
4723 if (! INTEGRAL_TYPE_P (arg0_type
)
4724 || (low
!= 0 && ! int_fits_type_p (low
, arg0_type
))
4725 || (high
!= 0 && ! int_fits_type_p (high
, arg0_type
)))
4728 n_low
= low
, n_high
= high
;
4731 n_low
= fold_convert_loc (loc
, arg0_type
, n_low
);
4734 n_high
= fold_convert_loc (loc
, arg0_type
, n_high
);
4736 /* If we're converting arg0 from an unsigned type, to exp,
4737 a signed type, we will be doing the comparison as unsigned.
4738 The tests above have already verified that LOW and HIGH
4741 So we have to ensure that we will handle large unsigned
4742 values the same way that the current signed bounds treat
4745 if (!TYPE_UNSIGNED (exp_type
) && TYPE_UNSIGNED (arg0_type
))
4749 /* For fixed-point modes, we need to pass the saturating flag
4750 as the 2nd parameter. */
4751 if (ALL_FIXED_POINT_MODE_P (TYPE_MODE (arg0_type
)))
4753 = lang_hooks
.types
.type_for_mode (TYPE_MODE (arg0_type
),
4754 TYPE_SATURATING (arg0_type
));
4757 = lang_hooks
.types
.type_for_mode (TYPE_MODE (arg0_type
), 1);
4759 /* A range without an upper bound is, naturally, unbounded.
4760 Since convert would have cropped a very large value, use
4761 the max value for the destination type. */
4763 = TYPE_MAX_VALUE (equiv_type
) ? TYPE_MAX_VALUE (equiv_type
)
4764 : TYPE_MAX_VALUE (arg0_type
);
4766 if (TYPE_PRECISION (exp_type
) == TYPE_PRECISION (arg0_type
))
4767 high_positive
= fold_build2_loc (loc
, RSHIFT_EXPR
, arg0_type
,
4768 fold_convert_loc (loc
, arg0_type
,
4770 build_int_cst (arg0_type
, 1));
4772 /* If the low bound is specified, "and" the range with the
4773 range for which the original unsigned value will be
4777 if (! merge_ranges (&n_in_p
, &n_low
, &n_high
, 1, n_low
, n_high
,
4778 1, fold_convert_loc (loc
, arg0_type
,
4783 in_p
= (n_in_p
== in_p
);
4787 /* Otherwise, "or" the range with the range of the input
4788 that will be interpreted as negative. */
4789 if (! merge_ranges (&n_in_p
, &n_low
, &n_high
, 0, n_low
, n_high
,
4790 1, fold_convert_loc (loc
, arg0_type
,
4795 in_p
= (in_p
!= n_in_p
);
4809 /* Given EXP, a logical expression, set the range it is testing into
4810 variables denoted by PIN_P, PLOW, and PHIGH. Return the expression
4811 actually being tested. *PLOW and *PHIGH will be made of the same
4812 type as the returned expression. If EXP is not a comparison, we
4813 will most likely not be returning a useful value and range. Set
4814 *STRICT_OVERFLOW_P to true if the return value is only valid
4815 because signed overflow is undefined; otherwise, do not change
4816 *STRICT_OVERFLOW_P. */
4819 make_range (tree exp
, int *pin_p
, tree
*plow
, tree
*phigh
,
4820 bool *strict_overflow_p
)
4822 enum tree_code code
;
4823 tree arg0
, arg1
= NULL_TREE
;
4824 tree exp_type
, nexp
;
4827 location_t loc
= EXPR_LOCATION (exp
);
4829 /* Start with simply saying "EXP != 0" and then look at the code of EXP
4830 and see if we can refine the range. Some of the cases below may not
4831 happen, but it doesn't seem worth worrying about this. We "continue"
4832 the outer loop when we've changed something; otherwise we "break"
4833 the switch, which will "break" the while. */
4836 low
= high
= build_int_cst (TREE_TYPE (exp
), 0);
4840 code
= TREE_CODE (exp
);
4841 exp_type
= TREE_TYPE (exp
);
4844 if (IS_EXPR_CODE_CLASS (TREE_CODE_CLASS (code
)))
4846 if (TREE_OPERAND_LENGTH (exp
) > 0)
4847 arg0
= TREE_OPERAND (exp
, 0);
4848 if (TREE_CODE_CLASS (code
) == tcc_binary
4849 || TREE_CODE_CLASS (code
) == tcc_comparison
4850 || (TREE_CODE_CLASS (code
) == tcc_expression
4851 && TREE_OPERAND_LENGTH (exp
) > 1))
4852 arg1
= TREE_OPERAND (exp
, 1);
4854 if (arg0
== NULL_TREE
)
4857 nexp
= make_range_step (loc
, code
, arg0
, arg1
, exp_type
, &low
,
4858 &high
, &in_p
, strict_overflow_p
);
4859 if (nexp
== NULL_TREE
)
4864 /* If EXP is a constant, we can evaluate whether this is true or false. */
4865 if (TREE_CODE (exp
) == INTEGER_CST
)
4867 in_p
= in_p
== (integer_onep (range_binop (GE_EXPR
, integer_type_node
,
4869 && integer_onep (range_binop (LE_EXPR
, integer_type_node
,
4875 *pin_p
= in_p
, *plow
= low
, *phigh
= high
;
4879 /* Returns TRUE if [LOW, HIGH] range check can be optimized to
4880 a bitwise check i.e. when
4881 LOW == 0xXX...X00...0
4882 HIGH == 0xXX...X11...1
4883 Return corresponding mask in MASK and stem in VALUE. */
4886 maskable_range_p (const_tree low
, const_tree high
, tree type
, tree
*mask
,
4889 if (TREE_CODE (low
) != INTEGER_CST
4890 || TREE_CODE (high
) != INTEGER_CST
)
4893 unsigned prec
= TYPE_PRECISION (type
);
4894 wide_int lo
= wi::to_wide (low
, prec
);
4895 wide_int hi
= wi::to_wide (high
, prec
);
4897 wide_int end_mask
= lo
^ hi
;
4898 if ((end_mask
& (end_mask
+ 1)) != 0
4899 || (lo
& end_mask
) != 0)
4902 wide_int stem_mask
= ~end_mask
;
4903 wide_int stem
= lo
& stem_mask
;
4904 if (stem
!= (hi
& stem_mask
))
4907 *mask
= wide_int_to_tree (type
, stem_mask
);
4908 *value
= wide_int_to_tree (type
, stem
);
4913 /* Helper routine for build_range_check and match.pd. Return the type to
4914 perform the check or NULL if it shouldn't be optimized. */
4917 range_check_type (tree etype
)
4919 /* First make sure that arithmetics in this type is valid, then make sure
4920 that it wraps around. */
4921 if (TREE_CODE (etype
) == ENUMERAL_TYPE
|| TREE_CODE (etype
) == BOOLEAN_TYPE
)
4922 etype
= lang_hooks
.types
.type_for_size (TYPE_PRECISION (etype
),
4923 TYPE_UNSIGNED (etype
));
4925 if (TREE_CODE (etype
) == INTEGER_TYPE
&& !TYPE_OVERFLOW_WRAPS (etype
))
4927 tree utype
, minv
, maxv
;
4929 /* Check if (unsigned) INT_MAX + 1 == (unsigned) INT_MIN
4930 for the type in question, as we rely on this here. */
4931 utype
= unsigned_type_for (etype
);
4932 maxv
= fold_convert (utype
, TYPE_MAX_VALUE (etype
));
4933 maxv
= range_binop (PLUS_EXPR
, NULL_TREE
, maxv
, 1,
4934 build_int_cst (TREE_TYPE (maxv
), 1), 1);
4935 minv
= fold_convert (utype
, TYPE_MIN_VALUE (etype
));
4937 if (integer_zerop (range_binop (NE_EXPR
, integer_type_node
,
4946 /* Given a range, LOW, HIGH, and IN_P, an expression, EXP, and a result
4947 type, TYPE, return an expression to test if EXP is in (or out of, depending
4948 on IN_P) the range. Return 0 if the test couldn't be created. */
4951 build_range_check (location_t loc
, tree type
, tree exp
, int in_p
,
4952 tree low
, tree high
)
4954 tree etype
= TREE_TYPE (exp
), mask
, value
;
4956 /* Disable this optimization for function pointer expressions
4957 on targets that require function pointer canonicalization. */
4958 if (targetm
.have_canonicalize_funcptr_for_compare ()
4959 && POINTER_TYPE_P (etype
)
4960 && FUNC_OR_METHOD_TYPE_P (TREE_TYPE (etype
)))
4965 value
= build_range_check (loc
, type
, exp
, 1, low
, high
);
4967 return invert_truthvalue_loc (loc
, value
);
4972 if (low
== 0 && high
== 0)
4973 return omit_one_operand_loc (loc
, type
, build_int_cst (type
, 1), exp
);
4976 return fold_build2_loc (loc
, LE_EXPR
, type
, exp
,
4977 fold_convert_loc (loc
, etype
, high
));
4980 return fold_build2_loc (loc
, GE_EXPR
, type
, exp
,
4981 fold_convert_loc (loc
, etype
, low
));
4983 if (operand_equal_p (low
, high
, 0))
4984 return fold_build2_loc (loc
, EQ_EXPR
, type
, exp
,
4985 fold_convert_loc (loc
, etype
, low
));
4987 if (TREE_CODE (exp
) == BIT_AND_EXPR
4988 && maskable_range_p (low
, high
, etype
, &mask
, &value
))
4989 return fold_build2_loc (loc
, EQ_EXPR
, type
,
4990 fold_build2_loc (loc
, BIT_AND_EXPR
, etype
,
4994 if (integer_zerop (low
))
4996 if (! TYPE_UNSIGNED (etype
))
4998 etype
= unsigned_type_for (etype
);
4999 high
= fold_convert_loc (loc
, etype
, high
);
5000 exp
= fold_convert_loc (loc
, etype
, exp
);
5002 return build_range_check (loc
, type
, exp
, 1, 0, high
);
5005 /* Optimize (c>=1) && (c<=127) into (signed char)c > 0. */
5006 if (integer_onep (low
) && TREE_CODE (high
) == INTEGER_CST
)
5008 int prec
= TYPE_PRECISION (etype
);
5010 if (wi::mask
<widest_int
> (prec
- 1, false) == wi::to_widest (high
))
5012 if (TYPE_UNSIGNED (etype
))
5014 tree signed_etype
= signed_type_for (etype
);
5015 if (TYPE_PRECISION (signed_etype
) != TYPE_PRECISION (etype
))
5017 = build_nonstandard_integer_type (TYPE_PRECISION (etype
), 0);
5019 etype
= signed_etype
;
5020 exp
= fold_convert_loc (loc
, etype
, exp
);
5022 return fold_build2_loc (loc
, GT_EXPR
, type
, exp
,
5023 build_int_cst (etype
, 0));
5027 /* Optimize (c>=low) && (c<=high) into (c-low>=0) && (c-low<=high-low).
5028 This requires wrap-around arithmetics for the type of the expression. */
5029 etype
= range_check_type (etype
);
5030 if (etype
== NULL_TREE
)
5033 if (POINTER_TYPE_P (etype
))
5034 etype
= unsigned_type_for (etype
);
5036 high
= fold_convert_loc (loc
, etype
, high
);
5037 low
= fold_convert_loc (loc
, etype
, low
);
5038 exp
= fold_convert_loc (loc
, etype
, exp
);
5040 value
= const_binop (MINUS_EXPR
, high
, low
);
5042 if (value
!= 0 && !TREE_OVERFLOW (value
))
5043 return build_range_check (loc
, type
,
5044 fold_build2_loc (loc
, MINUS_EXPR
, etype
, exp
, low
),
5045 1, build_int_cst (etype
, 0), value
);
5050 /* Return the predecessor of VAL in its type, handling the infinite case. */
5053 range_predecessor (tree val
)
5055 tree type
= TREE_TYPE (val
);
5057 if (INTEGRAL_TYPE_P (type
)
5058 && operand_equal_p (val
, TYPE_MIN_VALUE (type
), 0))
5061 return range_binop (MINUS_EXPR
, NULL_TREE
, val
, 0,
5062 build_int_cst (TREE_TYPE (val
), 1), 0);
5065 /* Return the successor of VAL in its type, handling the infinite case. */
5068 range_successor (tree val
)
5070 tree type
= TREE_TYPE (val
);
5072 if (INTEGRAL_TYPE_P (type
)
5073 && operand_equal_p (val
, TYPE_MAX_VALUE (type
), 0))
5076 return range_binop (PLUS_EXPR
, NULL_TREE
, val
, 0,
5077 build_int_cst (TREE_TYPE (val
), 1), 0);
5080 /* Given two ranges, see if we can merge them into one. Return 1 if we
5081 can, 0 if we can't. Set the output range into the specified parameters. */
5084 merge_ranges (int *pin_p
, tree
*plow
, tree
*phigh
, int in0_p
, tree low0
,
5085 tree high0
, int in1_p
, tree low1
, tree high1
)
5093 int lowequal
= ((low0
== 0 && low1
== 0)
5094 || integer_onep (range_binop (EQ_EXPR
, integer_type_node
,
5095 low0
, 0, low1
, 0)));
5096 int highequal
= ((high0
== 0 && high1
== 0)
5097 || integer_onep (range_binop (EQ_EXPR
, integer_type_node
,
5098 high0
, 1, high1
, 1)));
5100 /* Make range 0 be the range that starts first, or ends last if they
5101 start at the same value. Swap them if it isn't. */
5102 if (integer_onep (range_binop (GT_EXPR
, integer_type_node
,
5105 && integer_onep (range_binop (GT_EXPR
, integer_type_node
,
5106 high1
, 1, high0
, 1))))
5108 temp
= in0_p
, in0_p
= in1_p
, in1_p
= temp
;
5109 tem
= low0
, low0
= low1
, low1
= tem
;
5110 tem
= high0
, high0
= high1
, high1
= tem
;
5113 /* If the second range is != high1 where high1 is the type maximum of
5114 the type, try first merging with < high1 range. */
5117 && TREE_CODE (low1
) == INTEGER_CST
5118 && (TREE_CODE (TREE_TYPE (low1
)) == INTEGER_TYPE
5119 || (TREE_CODE (TREE_TYPE (low1
)) == ENUMERAL_TYPE
5120 && known_eq (TYPE_PRECISION (TREE_TYPE (low1
)),
5121 GET_MODE_BITSIZE (TYPE_MODE (TREE_TYPE (low1
))))))
5122 && operand_equal_p (low1
, high1
, 0))
5124 if (tree_int_cst_equal (low1
, TYPE_MAX_VALUE (TREE_TYPE (low1
)))
5125 && merge_ranges (pin_p
, plow
, phigh
, in0_p
, low0
, high0
,
5126 !in1_p
, NULL_TREE
, range_predecessor (low1
)))
5128 /* Similarly for the second range != low1 where low1 is the type minimum
5129 of the type, try first merging with > low1 range. */
5130 if (tree_int_cst_equal (low1
, TYPE_MIN_VALUE (TREE_TYPE (low1
)))
5131 && merge_ranges (pin_p
, plow
, phigh
, in0_p
, low0
, high0
,
5132 !in1_p
, range_successor (low1
), NULL_TREE
))
5136 /* Now flag two cases, whether the ranges are disjoint or whether the
5137 second range is totally subsumed in the first. Note that the tests
5138 below are simplified by the ones above. */
5139 no_overlap
= integer_onep (range_binop (LT_EXPR
, integer_type_node
,
5140 high0
, 1, low1
, 0));
5141 subset
= integer_onep (range_binop (LE_EXPR
, integer_type_node
,
5142 high1
, 1, high0
, 1));
5144 /* We now have four cases, depending on whether we are including or
5145 excluding the two ranges. */
5148 /* If they don't overlap, the result is false. If the second range
5149 is a subset it is the result. Otherwise, the range is from the start
5150 of the second to the end of the first. */
5152 in_p
= 0, low
= high
= 0;
5154 in_p
= 1, low
= low1
, high
= high1
;
5156 in_p
= 1, low
= low1
, high
= high0
;
5159 else if (in0_p
&& ! in1_p
)
5161 /* If they don't overlap, the result is the first range. If they are
5162 equal, the result is false. If the second range is a subset of the
5163 first, and the ranges begin at the same place, we go from just after
5164 the end of the second range to the end of the first. If the second
5165 range is not a subset of the first, or if it is a subset and both
5166 ranges end at the same place, the range starts at the start of the
5167 first range and ends just before the second range.
5168 Otherwise, we can't describe this as a single range. */
5170 in_p
= 1, low
= low0
, high
= high0
;
5171 else if (lowequal
&& highequal
)
5172 in_p
= 0, low
= high
= 0;
5173 else if (subset
&& lowequal
)
5175 low
= range_successor (high1
);
5180 /* We are in the weird situation where high0 > high1 but
5181 high1 has no successor. Punt. */
5185 else if (! subset
|| highequal
)
5188 high
= range_predecessor (low1
);
5192 /* low0 < low1 but low1 has no predecessor. Punt. */
5200 else if (! in0_p
&& in1_p
)
5202 /* If they don't overlap, the result is the second range. If the second
5203 is a subset of the first, the result is false. Otherwise,
5204 the range starts just after the first range and ends at the
5205 end of the second. */
5207 in_p
= 1, low
= low1
, high
= high1
;
5208 else if (subset
|| highequal
)
5209 in_p
= 0, low
= high
= 0;
5212 low
= range_successor (high0
);
5217 /* high1 > high0 but high0 has no successor. Punt. */
5225 /* The case where we are excluding both ranges. Here the complex case
5226 is if they don't overlap. In that case, the only time we have a
5227 range is if they are adjacent. If the second is a subset of the
5228 first, the result is the first. Otherwise, the range to exclude
5229 starts at the beginning of the first range and ends at the end of the
5233 if (integer_onep (range_binop (EQ_EXPR
, integer_type_node
,
5234 range_successor (high0
),
5236 in_p
= 0, low
= low0
, high
= high1
;
5239 /* Canonicalize - [min, x] into - [-, x]. */
5240 if (low0
&& TREE_CODE (low0
) == INTEGER_CST
)
5241 switch (TREE_CODE (TREE_TYPE (low0
)))
5244 if (maybe_ne (TYPE_PRECISION (TREE_TYPE (low0
)),
5246 (TYPE_MODE (TREE_TYPE (low0
)))))
5250 if (tree_int_cst_equal (low0
,
5251 TYPE_MIN_VALUE (TREE_TYPE (low0
))))
5255 if (TYPE_UNSIGNED (TREE_TYPE (low0
))
5256 && integer_zerop (low0
))
5263 /* Canonicalize - [x, max] into - [x, -]. */
5264 if (high1
&& TREE_CODE (high1
) == INTEGER_CST
)
5265 switch (TREE_CODE (TREE_TYPE (high1
)))
5268 if (maybe_ne (TYPE_PRECISION (TREE_TYPE (high1
)),
5270 (TYPE_MODE (TREE_TYPE (high1
)))))
5274 if (tree_int_cst_equal (high1
,
5275 TYPE_MAX_VALUE (TREE_TYPE (high1
))))
5279 if (TYPE_UNSIGNED (TREE_TYPE (high1
))
5280 && integer_zerop (range_binop (PLUS_EXPR
, NULL_TREE
,
5282 build_int_cst (TREE_TYPE (high1
), 1),
5290 /* The ranges might be also adjacent between the maximum and
5291 minimum values of the given type. For
5292 - [{min,-}, x] and - [y, {max,-}] ranges where x + 1 < y
5293 return + [x + 1, y - 1]. */
5294 if (low0
== 0 && high1
== 0)
5296 low
= range_successor (high0
);
5297 high
= range_predecessor (low1
);
5298 if (low
== 0 || high
== 0)
5308 in_p
= 0, low
= low0
, high
= high0
;
5310 in_p
= 0, low
= low0
, high
= high1
;
5313 *pin_p
= in_p
, *plow
= low
, *phigh
= high
;
5318 /* Subroutine of fold, looking inside expressions of the form
5319 A op B ? A : C, where ARG0, ARG1 and ARG2 are the three operands
5320 of the COND_EXPR. This function is being used also to optimize
5321 A op B ? C : A, by reversing the comparison first.
5323 Return a folded expression whose code is not a COND_EXPR
5324 anymore, or NULL_TREE if no folding opportunity is found. */
5327 fold_cond_expr_with_comparison (location_t loc
, tree type
,
5328 tree arg0
, tree arg1
, tree arg2
)
5330 enum tree_code comp_code
= TREE_CODE (arg0
);
5331 tree arg00
= TREE_OPERAND (arg0
, 0);
5332 tree arg01
= TREE_OPERAND (arg0
, 1);
5333 tree arg1_type
= TREE_TYPE (arg1
);
5339 /* If we have A op 0 ? A : -A, consider applying the following
5342 A == 0? A : -A same as -A
5343 A != 0? A : -A same as A
5344 A >= 0? A : -A same as abs (A)
5345 A > 0? A : -A same as abs (A)
5346 A <= 0? A : -A same as -abs (A)
5347 A < 0? A : -A same as -abs (A)
5349 None of these transformations work for modes with signed
5350 zeros. If A is +/-0, the first two transformations will
5351 change the sign of the result (from +0 to -0, or vice
5352 versa). The last four will fix the sign of the result,
5353 even though the original expressions could be positive or
5354 negative, depending on the sign of A.
5356 Note that all these transformations are correct if A is
5357 NaN, since the two alternatives (A and -A) are also NaNs. */
5358 if (!HONOR_SIGNED_ZEROS (element_mode (type
))
5359 && (FLOAT_TYPE_P (TREE_TYPE (arg01
))
5360 ? real_zerop (arg01
)
5361 : integer_zerop (arg01
))
5362 && ((TREE_CODE (arg2
) == NEGATE_EXPR
5363 && operand_equal_p (TREE_OPERAND (arg2
, 0), arg1
, 0))
5364 /* In the case that A is of the form X-Y, '-A' (arg2) may
5365 have already been folded to Y-X, check for that. */
5366 || (TREE_CODE (arg1
) == MINUS_EXPR
5367 && TREE_CODE (arg2
) == MINUS_EXPR
5368 && operand_equal_p (TREE_OPERAND (arg1
, 0),
5369 TREE_OPERAND (arg2
, 1), 0)
5370 && operand_equal_p (TREE_OPERAND (arg1
, 1),
5371 TREE_OPERAND (arg2
, 0), 0))))
5376 tem
= fold_convert_loc (loc
, arg1_type
, arg1
);
5377 return fold_convert_loc (loc
, type
, negate_expr (tem
));
5380 return fold_convert_loc (loc
, type
, arg1
);
5383 if (flag_trapping_math
)
5388 if (TYPE_UNSIGNED (TREE_TYPE (arg1
)))
5390 tem
= fold_build1_loc (loc
, ABS_EXPR
, TREE_TYPE (arg1
), arg1
);
5391 return fold_convert_loc (loc
, type
, tem
);
5394 if (flag_trapping_math
)
5399 if (TYPE_UNSIGNED (TREE_TYPE (arg1
)))
5401 tem
= fold_build1_loc (loc
, ABS_EXPR
, TREE_TYPE (arg1
), arg1
);
5402 return negate_expr (fold_convert_loc (loc
, type
, tem
));
5404 gcc_assert (TREE_CODE_CLASS (comp_code
) == tcc_comparison
);
5408 /* A != 0 ? A : 0 is simply A, unless A is -0. Likewise
5409 A == 0 ? A : 0 is always 0 unless A is -0. Note that
5410 both transformations are correct when A is NaN: A != 0
5411 is then true, and A == 0 is false. */
5413 if (!HONOR_SIGNED_ZEROS (element_mode (type
))
5414 && integer_zerop (arg01
) && integer_zerop (arg2
))
5416 if (comp_code
== NE_EXPR
)
5417 return fold_convert_loc (loc
, type
, arg1
);
5418 else if (comp_code
== EQ_EXPR
)
5419 return build_zero_cst (type
);
5422 /* Try some transformations of A op B ? A : B.
5424 A == B? A : B same as B
5425 A != B? A : B same as A
5426 A >= B? A : B same as max (A, B)
5427 A > B? A : B same as max (B, A)
5428 A <= B? A : B same as min (A, B)
5429 A < B? A : B same as min (B, A)
5431 As above, these transformations don't work in the presence
5432 of signed zeros. For example, if A and B are zeros of
5433 opposite sign, the first two transformations will change
5434 the sign of the result. In the last four, the original
5435 expressions give different results for (A=+0, B=-0) and
5436 (A=-0, B=+0), but the transformed expressions do not.
5438 The first two transformations are correct if either A or B
5439 is a NaN. In the first transformation, the condition will
5440 be false, and B will indeed be chosen. In the case of the
5441 second transformation, the condition A != B will be true,
5442 and A will be chosen.
5444 The conversions to max() and min() are not correct if B is
5445 a number and A is not. The conditions in the original
5446 expressions will be false, so all four give B. The min()
5447 and max() versions would give a NaN instead. */
5448 if (!HONOR_SIGNED_ZEROS (element_mode (type
))
5449 && operand_equal_for_comparison_p (arg01
, arg2
)
5450 /* Avoid these transformations if the COND_EXPR may be used
5451 as an lvalue in the C++ front-end. PR c++/19199. */
5453 || VECTOR_TYPE_P (type
)
5454 || (! lang_GNU_CXX ()
5455 && strcmp (lang_hooks
.name
, "GNU Objective-C++") != 0)
5456 || ! maybe_lvalue_p (arg1
)
5457 || ! maybe_lvalue_p (arg2
)))
5459 tree comp_op0
= arg00
;
5460 tree comp_op1
= arg01
;
5461 tree comp_type
= TREE_TYPE (comp_op0
);
5466 return fold_convert_loc (loc
, type
, arg2
);
5468 return fold_convert_loc (loc
, type
, arg1
);
5473 /* In C++ a ?: expression can be an lvalue, so put the
5474 operand which will be used if they are equal first
5475 so that we can convert this back to the
5476 corresponding COND_EXPR. */
5477 if (!HONOR_NANS (arg1
))
5479 comp_op0
= fold_convert_loc (loc
, comp_type
, comp_op0
);
5480 comp_op1
= fold_convert_loc (loc
, comp_type
, comp_op1
);
5481 tem
= (comp_code
== LE_EXPR
|| comp_code
== UNLE_EXPR
)
5482 ? fold_build2_loc (loc
, MIN_EXPR
, comp_type
, comp_op0
, comp_op1
)
5483 : fold_build2_loc (loc
, MIN_EXPR
, comp_type
,
5484 comp_op1
, comp_op0
);
5485 return fold_convert_loc (loc
, type
, tem
);
5492 if (!HONOR_NANS (arg1
))
5494 comp_op0
= fold_convert_loc (loc
, comp_type
, comp_op0
);
5495 comp_op1
= fold_convert_loc (loc
, comp_type
, comp_op1
);
5496 tem
= (comp_code
== GE_EXPR
|| comp_code
== UNGE_EXPR
)
5497 ? fold_build2_loc (loc
, MAX_EXPR
, comp_type
, comp_op0
, comp_op1
)
5498 : fold_build2_loc (loc
, MAX_EXPR
, comp_type
,
5499 comp_op1
, comp_op0
);
5500 return fold_convert_loc (loc
, type
, tem
);
5504 if (!HONOR_NANS (arg1
))
5505 return fold_convert_loc (loc
, type
, arg2
);
5508 if (!HONOR_NANS (arg1
))
5509 return fold_convert_loc (loc
, type
, arg1
);
5512 gcc_assert (TREE_CODE_CLASS (comp_code
) == tcc_comparison
);
5522 #ifndef LOGICAL_OP_NON_SHORT_CIRCUIT
5523 #define LOGICAL_OP_NON_SHORT_CIRCUIT \
5524 (BRANCH_COST (optimize_function_for_speed_p (cfun), \
5528 /* EXP is some logical combination of boolean tests. See if we can
5529 merge it into some range test. Return the new tree if so. */
5532 fold_range_test (location_t loc
, enum tree_code code
, tree type
,
5535 int or_op
= (code
== TRUTH_ORIF_EXPR
5536 || code
== TRUTH_OR_EXPR
);
5537 int in0_p
, in1_p
, in_p
;
5538 tree low0
, low1
, low
, high0
, high1
, high
;
5539 bool strict_overflow_p
= false;
5541 const char * const warnmsg
= G_("assuming signed overflow does not occur "
5542 "when simplifying range test");
5544 if (!INTEGRAL_TYPE_P (type
))
5547 lhs
= make_range (op0
, &in0_p
, &low0
, &high0
, &strict_overflow_p
);
5548 rhs
= make_range (op1
, &in1_p
, &low1
, &high1
, &strict_overflow_p
);
5550 /* If this is an OR operation, invert both sides; we will invert
5551 again at the end. */
5553 in0_p
= ! in0_p
, in1_p
= ! in1_p
;
5555 /* If both expressions are the same, if we can merge the ranges, and we
5556 can build the range test, return it or it inverted. If one of the
5557 ranges is always true or always false, consider it to be the same
5558 expression as the other. */
5559 if ((lhs
== 0 || rhs
== 0 || operand_equal_p (lhs
, rhs
, 0))
5560 && merge_ranges (&in_p
, &low
, &high
, in0_p
, low0
, high0
,
5562 && (tem
= (build_range_check (loc
, type
,
5564 : rhs
!= 0 ? rhs
: integer_zero_node
,
5565 in_p
, low
, high
))) != 0)
5567 if (strict_overflow_p
)
5568 fold_overflow_warning (warnmsg
, WARN_STRICT_OVERFLOW_COMPARISON
);
5569 return or_op
? invert_truthvalue_loc (loc
, tem
) : tem
;
5572 /* On machines where the branch cost is expensive, if this is a
5573 short-circuited branch and the underlying object on both sides
5574 is the same, make a non-short-circuit operation. */
5575 else if (LOGICAL_OP_NON_SHORT_CIRCUIT
5576 && !flag_sanitize_coverage
5577 && lhs
!= 0 && rhs
!= 0
5578 && (code
== TRUTH_ANDIF_EXPR
5579 || code
== TRUTH_ORIF_EXPR
)
5580 && operand_equal_p (lhs
, rhs
, 0))
5582 /* If simple enough, just rewrite. Otherwise, make a SAVE_EXPR
5583 unless we are at top level or LHS contains a PLACEHOLDER_EXPR, in
5584 which cases we can't do this. */
5585 if (simple_operand_p (lhs
))
5586 return build2_loc (loc
, code
== TRUTH_ANDIF_EXPR
5587 ? TRUTH_AND_EXPR
: TRUTH_OR_EXPR
,
5590 else if (!lang_hooks
.decls
.global_bindings_p ()
5591 && !CONTAINS_PLACEHOLDER_P (lhs
))
5593 tree common
= save_expr (lhs
);
5595 if ((lhs
= build_range_check (loc
, type
, common
,
5596 or_op
? ! in0_p
: in0_p
,
5598 && (rhs
= build_range_check (loc
, type
, common
,
5599 or_op
? ! in1_p
: in1_p
,
5602 if (strict_overflow_p
)
5603 fold_overflow_warning (warnmsg
,
5604 WARN_STRICT_OVERFLOW_COMPARISON
);
5605 return build2_loc (loc
, code
== TRUTH_ANDIF_EXPR
5606 ? TRUTH_AND_EXPR
: TRUTH_OR_EXPR
,
5615 /* Subroutine for fold_truth_andor_1: C is an INTEGER_CST interpreted as a P
5616 bit value. Arrange things so the extra bits will be set to zero if and
5617 only if C is signed-extended to its full width. If MASK is nonzero,
5618 it is an INTEGER_CST that should be AND'ed with the extra bits. */
5621 unextend (tree c
, int p
, int unsignedp
, tree mask
)
5623 tree type
= TREE_TYPE (c
);
5624 int modesize
= GET_MODE_BITSIZE (SCALAR_INT_TYPE_MODE (type
));
5627 if (p
== modesize
|| unsignedp
)
5630 /* We work by getting just the sign bit into the low-order bit, then
5631 into the high-order bit, then sign-extend. We then XOR that value
5633 temp
= build_int_cst (TREE_TYPE (c
),
5634 wi::extract_uhwi (wi::to_wide (c
), p
- 1, 1));
5636 /* We must use a signed type in order to get an arithmetic right shift.
5637 However, we must also avoid introducing accidental overflows, so that
5638 a subsequent call to integer_zerop will work. Hence we must
5639 do the type conversion here. At this point, the constant is either
5640 zero or one, and the conversion to a signed type can never overflow.
5641 We could get an overflow if this conversion is done anywhere else. */
5642 if (TYPE_UNSIGNED (type
))
5643 temp
= fold_convert (signed_type_for (type
), temp
);
5645 temp
= const_binop (LSHIFT_EXPR
, temp
, size_int (modesize
- 1));
5646 temp
= const_binop (RSHIFT_EXPR
, temp
, size_int (modesize
- p
- 1));
5648 temp
= const_binop (BIT_AND_EXPR
, temp
,
5649 fold_convert (TREE_TYPE (c
), mask
));
5650 /* If necessary, convert the type back to match the type of C. */
5651 if (TYPE_UNSIGNED (type
))
5652 temp
= fold_convert (type
, temp
);
5654 return fold_convert (type
, const_binop (BIT_XOR_EXPR
, c
, temp
));
5657 /* For an expression that has the form
5661 we can drop one of the inner expressions and simplify to
5665 LOC is the location of the resulting expression. OP is the inner
5666 logical operation; the left-hand side in the examples above, while CMPOP
5667 is the right-hand side. RHS_ONLY is used to prevent us from accidentally
5668 removing a condition that guards another, as in
5669 (A != NULL && A->...) || A == NULL
5670 which we must not transform. If RHS_ONLY is true, only eliminate the
5671 right-most operand of the inner logical operation. */
5674 merge_truthop_with_opposite_arm (location_t loc
, tree op
, tree cmpop
,
5677 tree type
= TREE_TYPE (cmpop
);
5678 enum tree_code code
= TREE_CODE (cmpop
);
5679 enum tree_code truthop_code
= TREE_CODE (op
);
5680 tree lhs
= TREE_OPERAND (op
, 0);
5681 tree rhs
= TREE_OPERAND (op
, 1);
5682 tree orig_lhs
= lhs
, orig_rhs
= rhs
;
5683 enum tree_code rhs_code
= TREE_CODE (rhs
);
5684 enum tree_code lhs_code
= TREE_CODE (lhs
);
5685 enum tree_code inv_code
;
5687 if (TREE_SIDE_EFFECTS (op
) || TREE_SIDE_EFFECTS (cmpop
))
5690 if (TREE_CODE_CLASS (code
) != tcc_comparison
)
5693 if (rhs_code
== truthop_code
)
5695 tree newrhs
= merge_truthop_with_opposite_arm (loc
, rhs
, cmpop
, rhs_only
);
5696 if (newrhs
!= NULL_TREE
)
5699 rhs_code
= TREE_CODE (rhs
);
5702 if (lhs_code
== truthop_code
&& !rhs_only
)
5704 tree newlhs
= merge_truthop_with_opposite_arm (loc
, lhs
, cmpop
, false);
5705 if (newlhs
!= NULL_TREE
)
5708 lhs_code
= TREE_CODE (lhs
);
5712 inv_code
= invert_tree_comparison (code
, HONOR_NANS (type
));
5713 if (inv_code
== rhs_code
5714 && operand_equal_p (TREE_OPERAND (rhs
, 0), TREE_OPERAND (cmpop
, 0), 0)
5715 && operand_equal_p (TREE_OPERAND (rhs
, 1), TREE_OPERAND (cmpop
, 1), 0))
5717 if (!rhs_only
&& inv_code
== lhs_code
5718 && operand_equal_p (TREE_OPERAND (lhs
, 0), TREE_OPERAND (cmpop
, 0), 0)
5719 && operand_equal_p (TREE_OPERAND (lhs
, 1), TREE_OPERAND (cmpop
, 1), 0))
5721 if (rhs
!= orig_rhs
|| lhs
!= orig_lhs
)
5722 return fold_build2_loc (loc
, truthop_code
, TREE_TYPE (cmpop
),
5727 /* Find ways of folding logical expressions of LHS and RHS:
5728 Try to merge two comparisons to the same innermost item.
5729 Look for range tests like "ch >= '0' && ch <= '9'".
5730 Look for combinations of simple terms on machines with expensive branches
5731 and evaluate the RHS unconditionally.
5733 For example, if we have p->a == 2 && p->b == 4 and we can make an
5734 object large enough to span both A and B, we can do this with a comparison
5735 against the object ANDed with the a mask.
5737 If we have p->a == q->a && p->b == q->b, we may be able to use bit masking
5738 operations to do this with one comparison.
5740 We check for both normal comparisons and the BIT_AND_EXPRs made this by
5741 function and the one above.
5743 CODE is the logical operation being done. It can be TRUTH_ANDIF_EXPR,
5744 TRUTH_AND_EXPR, TRUTH_ORIF_EXPR, or TRUTH_OR_EXPR.
5746 TRUTH_TYPE is the type of the logical operand and LHS and RHS are its
5749 We return the simplified tree or 0 if no optimization is possible. */
5752 fold_truth_andor_1 (location_t loc
, enum tree_code code
, tree truth_type
,
5755 /* If this is the "or" of two comparisons, we can do something if
5756 the comparisons are NE_EXPR. If this is the "and", we can do something
5757 if the comparisons are EQ_EXPR. I.e.,
5758 (a->b == 2 && a->c == 4) can become (a->new == NEW).
5760 WANTED_CODE is this operation code. For single bit fields, we can
5761 convert EQ_EXPR to NE_EXPR so we need not reject the "wrong"
5762 comparison for one-bit fields. */
5764 enum tree_code wanted_code
;
5765 enum tree_code lcode
, rcode
;
5766 tree ll_arg
, lr_arg
, rl_arg
, rr_arg
;
5767 tree ll_inner
, lr_inner
, rl_inner
, rr_inner
;
5768 HOST_WIDE_INT ll_bitsize
, ll_bitpos
, lr_bitsize
, lr_bitpos
;
5769 HOST_WIDE_INT rl_bitsize
, rl_bitpos
, rr_bitsize
, rr_bitpos
;
5770 HOST_WIDE_INT xll_bitpos
, xlr_bitpos
, xrl_bitpos
, xrr_bitpos
;
5771 HOST_WIDE_INT lnbitsize
, lnbitpos
, rnbitsize
, rnbitpos
;
5772 int ll_unsignedp
, lr_unsignedp
, rl_unsignedp
, rr_unsignedp
;
5773 int ll_reversep
, lr_reversep
, rl_reversep
, rr_reversep
;
5774 machine_mode ll_mode
, lr_mode
, rl_mode
, rr_mode
;
5775 scalar_int_mode lnmode
, rnmode
;
5776 tree ll_mask
, lr_mask
, rl_mask
, rr_mask
;
5777 tree ll_and_mask
, lr_and_mask
, rl_and_mask
, rr_and_mask
;
5778 tree l_const
, r_const
;
5779 tree lntype
, rntype
, result
;
5780 HOST_WIDE_INT first_bit
, end_bit
;
5783 /* Start by getting the comparison codes. Fail if anything is volatile.
5784 If one operand is a BIT_AND_EXPR with the constant one, treat it as if
5785 it were surrounded with a NE_EXPR. */
5787 if (TREE_SIDE_EFFECTS (lhs
) || TREE_SIDE_EFFECTS (rhs
))
5790 lcode
= TREE_CODE (lhs
);
5791 rcode
= TREE_CODE (rhs
);
5793 if (lcode
== BIT_AND_EXPR
&& integer_onep (TREE_OPERAND (lhs
, 1)))
5795 lhs
= build2 (NE_EXPR
, truth_type
, lhs
,
5796 build_int_cst (TREE_TYPE (lhs
), 0));
5800 if (rcode
== BIT_AND_EXPR
&& integer_onep (TREE_OPERAND (rhs
, 1)))
5802 rhs
= build2 (NE_EXPR
, truth_type
, rhs
,
5803 build_int_cst (TREE_TYPE (rhs
), 0));
5807 if (TREE_CODE_CLASS (lcode
) != tcc_comparison
5808 || TREE_CODE_CLASS (rcode
) != tcc_comparison
)
5811 ll_arg
= TREE_OPERAND (lhs
, 0);
5812 lr_arg
= TREE_OPERAND (lhs
, 1);
5813 rl_arg
= TREE_OPERAND (rhs
, 0);
5814 rr_arg
= TREE_OPERAND (rhs
, 1);
5816 /* Simplify (x<y) && (x==y) into (x<=y) and related optimizations. */
5817 if (simple_operand_p (ll_arg
)
5818 && simple_operand_p (lr_arg
))
5820 if (operand_equal_p (ll_arg
, rl_arg
, 0)
5821 && operand_equal_p (lr_arg
, rr_arg
, 0))
5823 result
= combine_comparisons (loc
, code
, lcode
, rcode
,
5824 truth_type
, ll_arg
, lr_arg
);
5828 else if (operand_equal_p (ll_arg
, rr_arg
, 0)
5829 && operand_equal_p (lr_arg
, rl_arg
, 0))
5831 result
= combine_comparisons (loc
, code
, lcode
,
5832 swap_tree_comparison (rcode
),
5833 truth_type
, ll_arg
, lr_arg
);
5839 code
= ((code
== TRUTH_AND_EXPR
|| code
== TRUTH_ANDIF_EXPR
)
5840 ? TRUTH_AND_EXPR
: TRUTH_OR_EXPR
);
5842 /* If the RHS can be evaluated unconditionally and its operands are
5843 simple, it wins to evaluate the RHS unconditionally on machines
5844 with expensive branches. In this case, this isn't a comparison
5845 that can be merged. */
5847 if (BRANCH_COST (optimize_function_for_speed_p (cfun
),
5849 && ! FLOAT_TYPE_P (TREE_TYPE (rl_arg
))
5850 && simple_operand_p (rl_arg
)
5851 && simple_operand_p (rr_arg
))
5853 /* Convert (a != 0) || (b != 0) into (a | b) != 0. */
5854 if (code
== TRUTH_OR_EXPR
5855 && lcode
== NE_EXPR
&& integer_zerop (lr_arg
)
5856 && rcode
== NE_EXPR
&& integer_zerop (rr_arg
)
5857 && TREE_TYPE (ll_arg
) == TREE_TYPE (rl_arg
)
5858 && INTEGRAL_TYPE_P (TREE_TYPE (ll_arg
)))
5859 return build2_loc (loc
, NE_EXPR
, truth_type
,
5860 build2 (BIT_IOR_EXPR
, TREE_TYPE (ll_arg
),
5862 build_int_cst (TREE_TYPE (ll_arg
), 0));
5864 /* Convert (a == 0) && (b == 0) into (a | b) == 0. */
5865 if (code
== TRUTH_AND_EXPR
5866 && lcode
== EQ_EXPR
&& integer_zerop (lr_arg
)
5867 && rcode
== EQ_EXPR
&& integer_zerop (rr_arg
)
5868 && TREE_TYPE (ll_arg
) == TREE_TYPE (rl_arg
)
5869 && INTEGRAL_TYPE_P (TREE_TYPE (ll_arg
)))
5870 return build2_loc (loc
, EQ_EXPR
, truth_type
,
5871 build2 (BIT_IOR_EXPR
, TREE_TYPE (ll_arg
),
5873 build_int_cst (TREE_TYPE (ll_arg
), 0));
5876 /* See if the comparisons can be merged. Then get all the parameters for
5879 if ((lcode
!= EQ_EXPR
&& lcode
!= NE_EXPR
)
5880 || (rcode
!= EQ_EXPR
&& rcode
!= NE_EXPR
))
5883 ll_reversep
= lr_reversep
= rl_reversep
= rr_reversep
= 0;
5885 ll_inner
= decode_field_reference (loc
, &ll_arg
,
5886 &ll_bitsize
, &ll_bitpos
, &ll_mode
,
5887 &ll_unsignedp
, &ll_reversep
, &volatilep
,
5888 &ll_mask
, &ll_and_mask
);
5889 lr_inner
= decode_field_reference (loc
, &lr_arg
,
5890 &lr_bitsize
, &lr_bitpos
, &lr_mode
,
5891 &lr_unsignedp
, &lr_reversep
, &volatilep
,
5892 &lr_mask
, &lr_and_mask
);
5893 rl_inner
= decode_field_reference (loc
, &rl_arg
,
5894 &rl_bitsize
, &rl_bitpos
, &rl_mode
,
5895 &rl_unsignedp
, &rl_reversep
, &volatilep
,
5896 &rl_mask
, &rl_and_mask
);
5897 rr_inner
= decode_field_reference (loc
, &rr_arg
,
5898 &rr_bitsize
, &rr_bitpos
, &rr_mode
,
5899 &rr_unsignedp
, &rr_reversep
, &volatilep
,
5900 &rr_mask
, &rr_and_mask
);
5902 /* It must be true that the inner operation on the lhs of each
5903 comparison must be the same if we are to be able to do anything.
5904 Then see if we have constants. If not, the same must be true for
5907 || ll_reversep
!= rl_reversep
5908 || ll_inner
== 0 || rl_inner
== 0
5909 || ! operand_equal_p (ll_inner
, rl_inner
, 0))
5912 if (TREE_CODE (lr_arg
) == INTEGER_CST
5913 && TREE_CODE (rr_arg
) == INTEGER_CST
)
5915 l_const
= lr_arg
, r_const
= rr_arg
;
5916 lr_reversep
= ll_reversep
;
5918 else if (lr_reversep
!= rr_reversep
5919 || lr_inner
== 0 || rr_inner
== 0
5920 || ! operand_equal_p (lr_inner
, rr_inner
, 0))
5923 l_const
= r_const
= 0;
5925 /* If either comparison code is not correct for our logical operation,
5926 fail. However, we can convert a one-bit comparison against zero into
5927 the opposite comparison against that bit being set in the field. */
5929 wanted_code
= (code
== TRUTH_AND_EXPR
? EQ_EXPR
: NE_EXPR
);
5930 if (lcode
!= wanted_code
)
5932 if (l_const
&& integer_zerop (l_const
) && integer_pow2p (ll_mask
))
5934 /* Make the left operand unsigned, since we are only interested
5935 in the value of one bit. Otherwise we are doing the wrong
5944 /* This is analogous to the code for l_const above. */
5945 if (rcode
!= wanted_code
)
5947 if (r_const
&& integer_zerop (r_const
) && integer_pow2p (rl_mask
))
5956 /* See if we can find a mode that contains both fields being compared on
5957 the left. If we can't, fail. Otherwise, update all constants and masks
5958 to be relative to a field of that size. */
5959 first_bit
= MIN (ll_bitpos
, rl_bitpos
);
5960 end_bit
= MAX (ll_bitpos
+ ll_bitsize
, rl_bitpos
+ rl_bitsize
);
5961 if (!get_best_mode (end_bit
- first_bit
, first_bit
, 0, 0,
5962 TYPE_ALIGN (TREE_TYPE (ll_inner
)), BITS_PER_WORD
,
5963 volatilep
, &lnmode
))
5966 lnbitsize
= GET_MODE_BITSIZE (lnmode
);
5967 lnbitpos
= first_bit
& ~ (lnbitsize
- 1);
5968 lntype
= lang_hooks
.types
.type_for_size (lnbitsize
, 1);
5969 xll_bitpos
= ll_bitpos
- lnbitpos
, xrl_bitpos
= rl_bitpos
- lnbitpos
;
5971 if (ll_reversep
? !BYTES_BIG_ENDIAN
: BYTES_BIG_ENDIAN
)
5973 xll_bitpos
= lnbitsize
- xll_bitpos
- ll_bitsize
;
5974 xrl_bitpos
= lnbitsize
- xrl_bitpos
- rl_bitsize
;
5977 ll_mask
= const_binop (LSHIFT_EXPR
, fold_convert_loc (loc
, lntype
, ll_mask
),
5978 size_int (xll_bitpos
));
5979 rl_mask
= const_binop (LSHIFT_EXPR
, fold_convert_loc (loc
, lntype
, rl_mask
),
5980 size_int (xrl_bitpos
));
5984 l_const
= fold_convert_loc (loc
, lntype
, l_const
);
5985 l_const
= unextend (l_const
, ll_bitsize
, ll_unsignedp
, ll_and_mask
);
5986 l_const
= const_binop (LSHIFT_EXPR
, l_const
, size_int (xll_bitpos
));
5987 if (! integer_zerop (const_binop (BIT_AND_EXPR
, l_const
,
5988 fold_build1_loc (loc
, BIT_NOT_EXPR
,
5991 warning (0, "comparison is always %d", wanted_code
== NE_EXPR
);
5993 return constant_boolean_node (wanted_code
== NE_EXPR
, truth_type
);
5998 r_const
= fold_convert_loc (loc
, lntype
, r_const
);
5999 r_const
= unextend (r_const
, rl_bitsize
, rl_unsignedp
, rl_and_mask
);
6000 r_const
= const_binop (LSHIFT_EXPR
, r_const
, size_int (xrl_bitpos
));
6001 if (! integer_zerop (const_binop (BIT_AND_EXPR
, r_const
,
6002 fold_build1_loc (loc
, BIT_NOT_EXPR
,
6005 warning (0, "comparison is always %d", wanted_code
== NE_EXPR
);
6007 return constant_boolean_node (wanted_code
== NE_EXPR
, truth_type
);
6011 /* If the right sides are not constant, do the same for it. Also,
6012 disallow this optimization if a size, signedness or storage order
6013 mismatch occurs between the left and right sides. */
6016 if (ll_bitsize
!= lr_bitsize
|| rl_bitsize
!= rr_bitsize
6017 || ll_unsignedp
!= lr_unsignedp
|| rl_unsignedp
!= rr_unsignedp
6018 || ll_reversep
!= lr_reversep
6019 /* Make sure the two fields on the right
6020 correspond to the left without being swapped. */
6021 || ll_bitpos
- rl_bitpos
!= lr_bitpos
- rr_bitpos
)
6024 first_bit
= MIN (lr_bitpos
, rr_bitpos
);
6025 end_bit
= MAX (lr_bitpos
+ lr_bitsize
, rr_bitpos
+ rr_bitsize
);
6026 if (!get_best_mode (end_bit
- first_bit
, first_bit
, 0, 0,
6027 TYPE_ALIGN (TREE_TYPE (lr_inner
)), BITS_PER_WORD
,
6028 volatilep
, &rnmode
))
6031 rnbitsize
= GET_MODE_BITSIZE (rnmode
);
6032 rnbitpos
= first_bit
& ~ (rnbitsize
- 1);
6033 rntype
= lang_hooks
.types
.type_for_size (rnbitsize
, 1);
6034 xlr_bitpos
= lr_bitpos
- rnbitpos
, xrr_bitpos
= rr_bitpos
- rnbitpos
;
6036 if (lr_reversep
? !BYTES_BIG_ENDIAN
: BYTES_BIG_ENDIAN
)
6038 xlr_bitpos
= rnbitsize
- xlr_bitpos
- lr_bitsize
;
6039 xrr_bitpos
= rnbitsize
- xrr_bitpos
- rr_bitsize
;
6042 lr_mask
= const_binop (LSHIFT_EXPR
, fold_convert_loc (loc
,
6044 size_int (xlr_bitpos
));
6045 rr_mask
= const_binop (LSHIFT_EXPR
, fold_convert_loc (loc
,
6047 size_int (xrr_bitpos
));
6049 /* Make a mask that corresponds to both fields being compared.
6050 Do this for both items being compared. If the operands are the
6051 same size and the bits being compared are in the same position
6052 then we can do this by masking both and comparing the masked
6054 ll_mask
= const_binop (BIT_IOR_EXPR
, ll_mask
, rl_mask
);
6055 lr_mask
= const_binop (BIT_IOR_EXPR
, lr_mask
, rr_mask
);
6056 if (lnbitsize
== rnbitsize
6057 && xll_bitpos
== xlr_bitpos
6061 lhs
= make_bit_field_ref (loc
, ll_inner
, ll_arg
,
6062 lntype
, lnbitsize
, lnbitpos
,
6063 ll_unsignedp
|| rl_unsignedp
, ll_reversep
);
6064 if (! all_ones_mask_p (ll_mask
, lnbitsize
))
6065 lhs
= build2 (BIT_AND_EXPR
, lntype
, lhs
, ll_mask
);
6067 rhs
= make_bit_field_ref (loc
, lr_inner
, lr_arg
,
6068 rntype
, rnbitsize
, rnbitpos
,
6069 lr_unsignedp
|| rr_unsignedp
, lr_reversep
);
6070 if (! all_ones_mask_p (lr_mask
, rnbitsize
))
6071 rhs
= build2 (BIT_AND_EXPR
, rntype
, rhs
, lr_mask
);
6073 return build2_loc (loc
, wanted_code
, truth_type
, lhs
, rhs
);
6076 /* There is still another way we can do something: If both pairs of
6077 fields being compared are adjacent, we may be able to make a wider
6078 field containing them both.
6080 Note that we still must mask the lhs/rhs expressions. Furthermore,
6081 the mask must be shifted to account for the shift done by
6082 make_bit_field_ref. */
6083 if (((ll_bitsize
+ ll_bitpos
== rl_bitpos
6084 && lr_bitsize
+ lr_bitpos
== rr_bitpos
)
6085 || (ll_bitpos
== rl_bitpos
+ rl_bitsize
6086 && lr_bitpos
== rr_bitpos
+ rr_bitsize
))
6094 lhs
= make_bit_field_ref (loc
, ll_inner
, ll_arg
, lntype
,
6095 ll_bitsize
+ rl_bitsize
,
6096 MIN (ll_bitpos
, rl_bitpos
),
6097 ll_unsignedp
, ll_reversep
);
6098 rhs
= make_bit_field_ref (loc
, lr_inner
, lr_arg
, rntype
,
6099 lr_bitsize
+ rr_bitsize
,
6100 MIN (lr_bitpos
, rr_bitpos
),
6101 lr_unsignedp
, lr_reversep
);
6103 ll_mask
= const_binop (RSHIFT_EXPR
, ll_mask
,
6104 size_int (MIN (xll_bitpos
, xrl_bitpos
)));
6105 lr_mask
= const_binop (RSHIFT_EXPR
, lr_mask
,
6106 size_int (MIN (xlr_bitpos
, xrr_bitpos
)));
6108 /* Convert to the smaller type before masking out unwanted bits. */
6110 if (lntype
!= rntype
)
6112 if (lnbitsize
> rnbitsize
)
6114 lhs
= fold_convert_loc (loc
, rntype
, lhs
);
6115 ll_mask
= fold_convert_loc (loc
, rntype
, ll_mask
);
6118 else if (lnbitsize
< rnbitsize
)
6120 rhs
= fold_convert_loc (loc
, lntype
, rhs
);
6121 lr_mask
= fold_convert_loc (loc
, lntype
, lr_mask
);
6126 if (! all_ones_mask_p (ll_mask
, ll_bitsize
+ rl_bitsize
))
6127 lhs
= build2 (BIT_AND_EXPR
, type
, lhs
, ll_mask
);
6129 if (! all_ones_mask_p (lr_mask
, lr_bitsize
+ rr_bitsize
))
6130 rhs
= build2 (BIT_AND_EXPR
, type
, rhs
, lr_mask
);
6132 return build2_loc (loc
, wanted_code
, truth_type
, lhs
, rhs
);
6138 /* Handle the case of comparisons with constants. If there is something in
6139 common between the masks, those bits of the constants must be the same.
6140 If not, the condition is always false. Test for this to avoid generating
6141 incorrect code below. */
6142 result
= const_binop (BIT_AND_EXPR
, ll_mask
, rl_mask
);
6143 if (! integer_zerop (result
)
6144 && simple_cst_equal (const_binop (BIT_AND_EXPR
, result
, l_const
),
6145 const_binop (BIT_AND_EXPR
, result
, r_const
)) != 1)
6147 if (wanted_code
== NE_EXPR
)
6149 warning (0, "%<or%> of unmatched not-equal tests is always 1");
6150 return constant_boolean_node (true, truth_type
);
6154 warning (0, "%<and%> of mutually exclusive equal-tests is always 0");
6155 return constant_boolean_node (false, truth_type
);
6162 /* Construct the expression we will return. First get the component
6163 reference we will make. Unless the mask is all ones the width of
6164 that field, perform the mask operation. Then compare with the
6166 result
= make_bit_field_ref (loc
, ll_inner
, ll_arg
,
6167 lntype
, lnbitsize
, lnbitpos
,
6168 ll_unsignedp
|| rl_unsignedp
, ll_reversep
);
6170 ll_mask
= const_binop (BIT_IOR_EXPR
, ll_mask
, rl_mask
);
6171 if (! all_ones_mask_p (ll_mask
, lnbitsize
))
6172 result
= build2_loc (loc
, BIT_AND_EXPR
, lntype
, result
, ll_mask
);
6174 return build2_loc (loc
, wanted_code
, truth_type
, result
,
6175 const_binop (BIT_IOR_EXPR
, l_const
, r_const
));
6178 /* T is an integer expression that is being multiplied, divided, or taken a
6179 modulus (CODE says which and what kind of divide or modulus) by a
6180 constant C. See if we can eliminate that operation by folding it with
6181 other operations already in T. WIDE_TYPE, if non-null, is a type that
6182 should be used for the computation if wider than our type.
6184 For example, if we are dividing (X * 8) + (Y * 16) by 4, we can return
6185 (X * 2) + (Y * 4). We must, however, be assured that either the original
6186 expression would not overflow or that overflow is undefined for the type
6187 in the language in question.
6189 If we return a non-null expression, it is an equivalent form of the
6190 original computation, but need not be in the original type.
6192 We set *STRICT_OVERFLOW_P to true if the return values depends on
6193 signed overflow being undefined. Otherwise we do not change
6194 *STRICT_OVERFLOW_P. */
6197 extract_muldiv (tree t
, tree c
, enum tree_code code
, tree wide_type
,
6198 bool *strict_overflow_p
)
6200 /* To avoid exponential search depth, refuse to allow recursion past
6201 three levels. Beyond that (1) it's highly unlikely that we'll find
6202 something interesting and (2) we've probably processed it before
6203 when we built the inner expression. */
6212 ret
= extract_muldiv_1 (t
, c
, code
, wide_type
, strict_overflow_p
);
6219 extract_muldiv_1 (tree t
, tree c
, enum tree_code code
, tree wide_type
,
6220 bool *strict_overflow_p
)
6222 tree type
= TREE_TYPE (t
);
6223 enum tree_code tcode
= TREE_CODE (t
);
6224 tree ctype
= (wide_type
!= 0
6225 && (GET_MODE_SIZE (SCALAR_INT_TYPE_MODE (wide_type
))
6226 > GET_MODE_SIZE (SCALAR_INT_TYPE_MODE (type
)))
6227 ? wide_type
: type
);
6229 int same_p
= tcode
== code
;
6230 tree op0
= NULL_TREE
, op1
= NULL_TREE
;
6231 bool sub_strict_overflow_p
;
6233 /* Don't deal with constants of zero here; they confuse the code below. */
6234 if (integer_zerop (c
))
6237 if (TREE_CODE_CLASS (tcode
) == tcc_unary
)
6238 op0
= TREE_OPERAND (t
, 0);
6240 if (TREE_CODE_CLASS (tcode
) == tcc_binary
)
6241 op0
= TREE_OPERAND (t
, 0), op1
= TREE_OPERAND (t
, 1);
6243 /* Note that we need not handle conditional operations here since fold
6244 already handles those cases. So just do arithmetic here. */
6248 /* For a constant, we can always simplify if we are a multiply
6249 or (for divide and modulus) if it is a multiple of our constant. */
6250 if (code
== MULT_EXPR
6251 || wi::multiple_of_p (wi::to_wide (t
), wi::to_wide (c
),
6254 tree tem
= const_binop (code
, fold_convert (ctype
, t
),
6255 fold_convert (ctype
, c
));
6256 /* If the multiplication overflowed, we lost information on it.
6257 See PR68142 and PR69845. */
6258 if (TREE_OVERFLOW (tem
))
6264 CASE_CONVERT
: case NON_LVALUE_EXPR
:
6265 /* If op0 is an expression ... */
6266 if ((COMPARISON_CLASS_P (op0
)
6267 || UNARY_CLASS_P (op0
)
6268 || BINARY_CLASS_P (op0
)
6269 || VL_EXP_CLASS_P (op0
)
6270 || EXPRESSION_CLASS_P (op0
))
6271 /* ... and has wrapping overflow, and its type is smaller
6272 than ctype, then we cannot pass through as widening. */
6273 && (((ANY_INTEGRAL_TYPE_P (TREE_TYPE (op0
))
6274 && TYPE_OVERFLOW_WRAPS (TREE_TYPE (op0
)))
6275 && (TYPE_PRECISION (ctype
)
6276 > TYPE_PRECISION (TREE_TYPE (op0
))))
6277 /* ... or this is a truncation (t is narrower than op0),
6278 then we cannot pass through this narrowing. */
6279 || (TYPE_PRECISION (type
)
6280 < TYPE_PRECISION (TREE_TYPE (op0
)))
6281 /* ... or signedness changes for division or modulus,
6282 then we cannot pass through this conversion. */
6283 || (code
!= MULT_EXPR
6284 && (TYPE_UNSIGNED (ctype
)
6285 != TYPE_UNSIGNED (TREE_TYPE (op0
))))
6286 /* ... or has undefined overflow while the converted to
6287 type has not, we cannot do the operation in the inner type
6288 as that would introduce undefined overflow. */
6289 || ((ANY_INTEGRAL_TYPE_P (TREE_TYPE (op0
))
6290 && TYPE_OVERFLOW_UNDEFINED (TREE_TYPE (op0
)))
6291 && !TYPE_OVERFLOW_UNDEFINED (type
))))
6294 /* Pass the constant down and see if we can make a simplification. If
6295 we can, replace this expression with the inner simplification for
6296 possible later conversion to our or some other type. */
6297 if ((t2
= fold_convert (TREE_TYPE (op0
), c
)) != 0
6298 && TREE_CODE (t2
) == INTEGER_CST
6299 && !TREE_OVERFLOW (t2
)
6300 && (t1
= extract_muldiv (op0
, t2
, code
,
6301 code
== MULT_EXPR
? ctype
: NULL_TREE
,
6302 strict_overflow_p
)) != 0)
6307 /* If widening the type changes it from signed to unsigned, then we
6308 must avoid building ABS_EXPR itself as unsigned. */
6309 if (TYPE_UNSIGNED (ctype
) && !TYPE_UNSIGNED (type
))
6311 tree cstype
= (*signed_type_for
) (ctype
);
6312 if ((t1
= extract_muldiv (op0
, c
, code
, cstype
, strict_overflow_p
))
6315 t1
= fold_build1 (tcode
, cstype
, fold_convert (cstype
, t1
));
6316 return fold_convert (ctype
, t1
);
6320 /* If the constant is negative, we cannot simplify this. */
6321 if (tree_int_cst_sgn (c
) == -1)
6325 /* For division and modulus, type can't be unsigned, as e.g.
6326 (-(x / 2U)) / 2U isn't equal to -((x / 2U) / 2U) for x >= 2.
6327 For signed types, even with wrapping overflow, this is fine. */
6328 if (code
!= MULT_EXPR
&& TYPE_UNSIGNED (type
))
6330 if ((t1
= extract_muldiv (op0
, c
, code
, wide_type
, strict_overflow_p
))
6332 return fold_build1 (tcode
, ctype
, fold_convert (ctype
, t1
));
6335 case MIN_EXPR
: case MAX_EXPR
:
6336 /* If widening the type changes the signedness, then we can't perform
6337 this optimization as that changes the result. */
6338 if (TYPE_UNSIGNED (ctype
) != TYPE_UNSIGNED (type
))
6341 /* MIN (a, b) / 5 -> MIN (a / 5, b / 5) */
6342 sub_strict_overflow_p
= false;
6343 if ((t1
= extract_muldiv (op0
, c
, code
, wide_type
,
6344 &sub_strict_overflow_p
)) != 0
6345 && (t2
= extract_muldiv (op1
, c
, code
, wide_type
,
6346 &sub_strict_overflow_p
)) != 0)
6348 if (tree_int_cst_sgn (c
) < 0)
6349 tcode
= (tcode
== MIN_EXPR
? MAX_EXPR
: MIN_EXPR
);
6350 if (sub_strict_overflow_p
)
6351 *strict_overflow_p
= true;
6352 return fold_build2 (tcode
, ctype
, fold_convert (ctype
, t1
),
6353 fold_convert (ctype
, t2
));
6357 case LSHIFT_EXPR
: case RSHIFT_EXPR
:
6358 /* If the second operand is constant, this is a multiplication
6359 or floor division, by a power of two, so we can treat it that
6360 way unless the multiplier or divisor overflows. Signed
6361 left-shift overflow is implementation-defined rather than
6362 undefined in C90, so do not convert signed left shift into
6364 if (TREE_CODE (op1
) == INTEGER_CST
6365 && (tcode
== RSHIFT_EXPR
|| TYPE_UNSIGNED (TREE_TYPE (op0
)))
6366 /* const_binop may not detect overflow correctly,
6367 so check for it explicitly here. */
6368 && wi::gtu_p (TYPE_PRECISION (TREE_TYPE (size_one_node
)),
6370 && (t1
= fold_convert (ctype
,
6371 const_binop (LSHIFT_EXPR
, size_one_node
,
6373 && !TREE_OVERFLOW (t1
))
6374 return extract_muldiv (build2 (tcode
== LSHIFT_EXPR
6375 ? MULT_EXPR
: FLOOR_DIV_EXPR
,
6377 fold_convert (ctype
, op0
),
6379 c
, code
, wide_type
, strict_overflow_p
);
6382 case PLUS_EXPR
: case MINUS_EXPR
:
6383 /* See if we can eliminate the operation on both sides. If we can, we
6384 can return a new PLUS or MINUS. If we can't, the only remaining
6385 cases where we can do anything are if the second operand is a
6387 sub_strict_overflow_p
= false;
6388 t1
= extract_muldiv (op0
, c
, code
, wide_type
, &sub_strict_overflow_p
);
6389 t2
= extract_muldiv (op1
, c
, code
, wide_type
, &sub_strict_overflow_p
);
6390 if (t1
!= 0 && t2
!= 0
6391 && TYPE_OVERFLOW_WRAPS (ctype
)
6392 && (code
== MULT_EXPR
6393 /* If not multiplication, we can only do this if both operands
6394 are divisible by c. */
6395 || (multiple_of_p (ctype
, op0
, c
)
6396 && multiple_of_p (ctype
, op1
, c
))))
6398 if (sub_strict_overflow_p
)
6399 *strict_overflow_p
= true;
6400 return fold_build2 (tcode
, ctype
, fold_convert (ctype
, t1
),
6401 fold_convert (ctype
, t2
));
6404 /* If this was a subtraction, negate OP1 and set it to be an addition.
6405 This simplifies the logic below. */
6406 if (tcode
== MINUS_EXPR
)
6408 tcode
= PLUS_EXPR
, op1
= negate_expr (op1
);
6409 /* If OP1 was not easily negatable, the constant may be OP0. */
6410 if (TREE_CODE (op0
) == INTEGER_CST
)
6412 std::swap (op0
, op1
);
6417 if (TREE_CODE (op1
) != INTEGER_CST
)
6420 /* If either OP1 or C are negative, this optimization is not safe for
6421 some of the division and remainder types while for others we need
6422 to change the code. */
6423 if (tree_int_cst_sgn (op1
) < 0 || tree_int_cst_sgn (c
) < 0)
6425 if (code
== CEIL_DIV_EXPR
)
6426 code
= FLOOR_DIV_EXPR
;
6427 else if (code
== FLOOR_DIV_EXPR
)
6428 code
= CEIL_DIV_EXPR
;
6429 else if (code
!= MULT_EXPR
6430 && code
!= CEIL_MOD_EXPR
&& code
!= FLOOR_MOD_EXPR
)
6434 /* If it's a multiply or a division/modulus operation of a multiple
6435 of our constant, do the operation and verify it doesn't overflow. */
6436 if (code
== MULT_EXPR
6437 || wi::multiple_of_p (wi::to_wide (op1
), wi::to_wide (c
),
6440 op1
= const_binop (code
, fold_convert (ctype
, op1
),
6441 fold_convert (ctype
, c
));
6442 /* We allow the constant to overflow with wrapping semantics. */
6444 || (TREE_OVERFLOW (op1
) && !TYPE_OVERFLOW_WRAPS (ctype
)))
6450 /* If we have an unsigned type, we cannot widen the operation since it
6451 will change the result if the original computation overflowed. */
6452 if (TYPE_UNSIGNED (ctype
) && ctype
!= type
)
6455 /* The last case is if we are a multiply. In that case, we can
6456 apply the distributive law to commute the multiply and addition
6457 if the multiplication of the constants doesn't overflow
6458 and overflow is defined. With undefined overflow
6459 op0 * c might overflow, while (op0 + orig_op1) * c doesn't. */
6460 if (code
== MULT_EXPR
&& TYPE_OVERFLOW_WRAPS (ctype
))
6461 return fold_build2 (tcode
, ctype
,
6462 fold_build2 (code
, ctype
,
6463 fold_convert (ctype
, op0
),
6464 fold_convert (ctype
, c
)),
6470 /* We have a special case here if we are doing something like
6471 (C * 8) % 4 since we know that's zero. */
6472 if ((code
== TRUNC_MOD_EXPR
|| code
== CEIL_MOD_EXPR
6473 || code
== FLOOR_MOD_EXPR
|| code
== ROUND_MOD_EXPR
)
6474 /* If the multiplication can overflow we cannot optimize this. */
6475 && TYPE_OVERFLOW_UNDEFINED (TREE_TYPE (t
))
6476 && TREE_CODE (TREE_OPERAND (t
, 1)) == INTEGER_CST
6477 && wi::multiple_of_p (wi::to_wide (op1
), wi::to_wide (c
),
6480 *strict_overflow_p
= true;
6481 return omit_one_operand (type
, integer_zero_node
, op0
);
6484 /* ... fall through ... */
6486 case TRUNC_DIV_EXPR
: case CEIL_DIV_EXPR
: case FLOOR_DIV_EXPR
:
6487 case ROUND_DIV_EXPR
: case EXACT_DIV_EXPR
:
6488 /* If we can extract our operation from the LHS, do so and return a
6489 new operation. Likewise for the RHS from a MULT_EXPR. Otherwise,
6490 do something only if the second operand is a constant. */
6492 && TYPE_OVERFLOW_WRAPS (ctype
)
6493 && (t1
= extract_muldiv (op0
, c
, code
, wide_type
,
6494 strict_overflow_p
)) != 0)
6495 return fold_build2 (tcode
, ctype
, fold_convert (ctype
, t1
),
6496 fold_convert (ctype
, op1
));
6497 else if (tcode
== MULT_EXPR
&& code
== MULT_EXPR
6498 && TYPE_OVERFLOW_WRAPS (ctype
)
6499 && (t1
= extract_muldiv (op1
, c
, code
, wide_type
,
6500 strict_overflow_p
)) != 0)
6501 return fold_build2 (tcode
, ctype
, fold_convert (ctype
, op0
),
6502 fold_convert (ctype
, t1
));
6503 else if (TREE_CODE (op1
) != INTEGER_CST
)
6506 /* If these are the same operation types, we can associate them
6507 assuming no overflow. */
6510 bool overflow_p
= false;
6511 wi::overflow_type overflow_mul
;
6512 signop sign
= TYPE_SIGN (ctype
);
6513 unsigned prec
= TYPE_PRECISION (ctype
);
6514 wide_int mul
= wi::mul (wi::to_wide (op1
, prec
),
6515 wi::to_wide (c
, prec
),
6516 sign
, &overflow_mul
);
6517 overflow_p
= TREE_OVERFLOW (c
) | TREE_OVERFLOW (op1
);
6519 && ((sign
== UNSIGNED
&& tcode
!= MULT_EXPR
) || sign
== SIGNED
))
6522 return fold_build2 (tcode
, ctype
, fold_convert (ctype
, op0
),
6523 wide_int_to_tree (ctype
, mul
));
6526 /* If these operations "cancel" each other, we have the main
6527 optimizations of this pass, which occur when either constant is a
6528 multiple of the other, in which case we replace this with either an
6529 operation or CODE or TCODE.
6531 If we have an unsigned type, we cannot do this since it will change
6532 the result if the original computation overflowed. */
6533 if (TYPE_OVERFLOW_UNDEFINED (ctype
)
6534 && ((code
== MULT_EXPR
&& tcode
== EXACT_DIV_EXPR
)
6535 || (tcode
== MULT_EXPR
6536 && code
!= TRUNC_MOD_EXPR
&& code
!= CEIL_MOD_EXPR
6537 && code
!= FLOOR_MOD_EXPR
&& code
!= ROUND_MOD_EXPR
6538 && code
!= MULT_EXPR
)))
6540 if (wi::multiple_of_p (wi::to_wide (op1
), wi::to_wide (c
),
6543 if (TYPE_OVERFLOW_UNDEFINED (ctype
))
6544 *strict_overflow_p
= true;
6545 return fold_build2 (tcode
, ctype
, fold_convert (ctype
, op0
),
6546 fold_convert (ctype
,
6547 const_binop (TRUNC_DIV_EXPR
,
6550 else if (wi::multiple_of_p (wi::to_wide (c
), wi::to_wide (op1
),
6553 if (TYPE_OVERFLOW_UNDEFINED (ctype
))
6554 *strict_overflow_p
= true;
6555 return fold_build2 (code
, ctype
, fold_convert (ctype
, op0
),
6556 fold_convert (ctype
,
6557 const_binop (TRUNC_DIV_EXPR
,
6570 /* Return a node which has the indicated constant VALUE (either 0 or
6571 1 for scalars or {-1,-1,..} or {0,0,...} for vectors),
6572 and is of the indicated TYPE. */
6575 constant_boolean_node (bool value
, tree type
)
6577 if (type
== integer_type_node
)
6578 return value
? integer_one_node
: integer_zero_node
;
6579 else if (type
== boolean_type_node
)
6580 return value
? boolean_true_node
: boolean_false_node
;
6581 else if (TREE_CODE (type
) == VECTOR_TYPE
)
6582 return build_vector_from_val (type
,
6583 build_int_cst (TREE_TYPE (type
),
6586 return fold_convert (type
, value
? integer_one_node
: integer_zero_node
);
6590 /* Transform `a + (b ? x : y)' into `b ? (a + x) : (a + y)'.
6591 Transform, `a + (x < y)' into `(x < y) ? (a + 1) : (a + 0)'. Here
6592 CODE corresponds to the `+', COND to the `(b ? x : y)' or `(x < y)'
6593 expression, and ARG to `a'. If COND_FIRST_P is nonzero, then the
6594 COND is the first argument to CODE; otherwise (as in the example
6595 given here), it is the second argument. TYPE is the type of the
6596 original expression. Return NULL_TREE if no simplification is
6600 fold_binary_op_with_conditional_arg (location_t loc
,
6601 enum tree_code code
,
6602 tree type
, tree op0
, tree op1
,
6603 tree cond
, tree arg
, int cond_first_p
)
6605 tree cond_type
= cond_first_p
? TREE_TYPE (op0
) : TREE_TYPE (op1
);
6606 tree arg_type
= cond_first_p
? TREE_TYPE (op1
) : TREE_TYPE (op0
);
6607 tree test
, true_value
, false_value
;
6608 tree lhs
= NULL_TREE
;
6609 tree rhs
= NULL_TREE
;
6610 enum tree_code cond_code
= COND_EXPR
;
6612 /* Do not move possibly trapping operations into the conditional as this
6613 pessimizes code and causes gimplification issues when applied late. */
6614 if (operation_could_trap_p (code
, FLOAT_TYPE_P (type
),
6615 ANY_INTEGRAL_TYPE_P (type
)
6616 && TYPE_OVERFLOW_TRAPS (type
), op1
))
6619 if (TREE_CODE (cond
) == COND_EXPR
6620 || TREE_CODE (cond
) == VEC_COND_EXPR
)
6622 test
= TREE_OPERAND (cond
, 0);
6623 true_value
= TREE_OPERAND (cond
, 1);
6624 false_value
= TREE_OPERAND (cond
, 2);
6625 /* If this operand throws an expression, then it does not make
6626 sense to try to perform a logical or arithmetic operation
6628 if (VOID_TYPE_P (TREE_TYPE (true_value
)))
6630 if (VOID_TYPE_P (TREE_TYPE (false_value
)))
6633 else if (!(TREE_CODE (type
) != VECTOR_TYPE
6634 && TREE_CODE (TREE_TYPE (cond
)) == VECTOR_TYPE
))
6636 tree testtype
= TREE_TYPE (cond
);
6638 true_value
= constant_boolean_node (true, testtype
);
6639 false_value
= constant_boolean_node (false, testtype
);
6642 /* Detect the case of mixing vector and scalar types - bail out. */
6645 if (TREE_CODE (TREE_TYPE (test
)) == VECTOR_TYPE
)
6646 cond_code
= VEC_COND_EXPR
;
6648 /* This transformation is only worthwhile if we don't have to wrap ARG
6649 in a SAVE_EXPR and the operation can be simplified without recursing
6650 on at least one of the branches once its pushed inside the COND_EXPR. */
6651 if (!TREE_CONSTANT (arg
)
6652 && (TREE_SIDE_EFFECTS (arg
)
6653 || TREE_CODE (arg
) == COND_EXPR
|| TREE_CODE (arg
) == VEC_COND_EXPR
6654 || TREE_CONSTANT (true_value
) || TREE_CONSTANT (false_value
)))
6657 arg
= fold_convert_loc (loc
, arg_type
, arg
);
6660 true_value
= fold_convert_loc (loc
, cond_type
, true_value
);
6662 lhs
= fold_build2_loc (loc
, code
, type
, true_value
, arg
);
6664 lhs
= fold_build2_loc (loc
, code
, type
, arg
, true_value
);
6668 false_value
= fold_convert_loc (loc
, cond_type
, false_value
);
6670 rhs
= fold_build2_loc (loc
, code
, type
, false_value
, arg
);
6672 rhs
= fold_build2_loc (loc
, code
, type
, arg
, false_value
);
6675 /* Check that we have simplified at least one of the branches. */
6676 if (!TREE_CONSTANT (arg
) && !TREE_CONSTANT (lhs
) && !TREE_CONSTANT (rhs
))
6679 return fold_build3_loc (loc
, cond_code
, type
, test
, lhs
, rhs
);
6683 /* Subroutine of fold() that checks for the addition of +/- 0.0.
6685 If !NEGATE, return true if ADDEND is +/-0.0 and, for all X of type
6686 TYPE, X + ADDEND is the same as X. If NEGATE, return true if X -
6687 ADDEND is the same as X.
6689 X + 0 and X - 0 both give X when X is NaN, infinite, or nonzero
6690 and finite. The problematic cases are when X is zero, and its mode
6691 has signed zeros. In the case of rounding towards -infinity,
6692 X - 0 is not the same as X because 0 - 0 is -0. In other rounding
6693 modes, X + 0 is not the same as X because -0 + 0 is 0. */
6696 fold_real_zero_addition_p (const_tree type
, const_tree addend
, int negate
)
6698 if (!real_zerop (addend
))
6701 /* Don't allow the fold with -fsignaling-nans. */
6702 if (HONOR_SNANS (element_mode (type
)))
6705 /* Allow the fold if zeros aren't signed, or their sign isn't important. */
6706 if (!HONOR_SIGNED_ZEROS (element_mode (type
)))
6709 /* In a vector or complex, we would need to check the sign of all zeros. */
6710 if (TREE_CODE (addend
) != REAL_CST
)
6713 /* Treat x + -0 as x - 0 and x - -0 as x + 0. */
6714 if (REAL_VALUE_MINUS_ZERO (TREE_REAL_CST (addend
)))
6717 /* The mode has signed zeros, and we have to honor their sign.
6718 In this situation, there is only one case we can return true for.
6719 X - 0 is the same as X unless rounding towards -infinity is
6721 return negate
&& !HONOR_SIGN_DEPENDENT_ROUNDING (element_mode (type
));
6724 /* Subroutine of match.pd that optimizes comparisons of a division by
6725 a nonzero integer constant against an integer constant, i.e.
6728 CODE is the comparison operator: EQ_EXPR, NE_EXPR, GT_EXPR, LT_EXPR,
6729 GE_EXPR or LE_EXPR. ARG01 and ARG1 must be a INTEGER_CST. */
6732 fold_div_compare (enum tree_code code
, tree c1
, tree c2
, tree
*lo
,
6733 tree
*hi
, bool *neg_overflow
)
6735 tree prod
, tmp
, type
= TREE_TYPE (c1
);
6736 signop sign
= TYPE_SIGN (type
);
6737 wi::overflow_type overflow
;
6739 /* We have to do this the hard way to detect unsigned overflow.
6740 prod = int_const_binop (MULT_EXPR, c1, c2); */
6741 wide_int val
= wi::mul (wi::to_wide (c1
), wi::to_wide (c2
), sign
, &overflow
);
6742 prod
= force_fit_type (type
, val
, -1, overflow
);
6743 *neg_overflow
= false;
6745 if (sign
== UNSIGNED
)
6747 tmp
= int_const_binop (MINUS_EXPR
, c1
, build_int_cst (type
, 1));
6750 /* Likewise *hi = int_const_binop (PLUS_EXPR, prod, tmp). */
6751 val
= wi::add (wi::to_wide (prod
), wi::to_wide (tmp
), sign
, &overflow
);
6752 *hi
= force_fit_type (type
, val
, -1, overflow
| TREE_OVERFLOW (prod
));
6754 else if (tree_int_cst_sgn (c1
) >= 0)
6756 tmp
= int_const_binop (MINUS_EXPR
, c1
, build_int_cst (type
, 1));
6757 switch (tree_int_cst_sgn (c2
))
6760 *neg_overflow
= true;
6761 *lo
= int_const_binop (MINUS_EXPR
, prod
, tmp
);
6766 *lo
= fold_negate_const (tmp
, type
);
6771 *hi
= int_const_binop (PLUS_EXPR
, prod
, tmp
);
6781 /* A negative divisor reverses the relational operators. */
6782 code
= swap_tree_comparison (code
);
6784 tmp
= int_const_binop (PLUS_EXPR
, c1
, build_int_cst (type
, 1));
6785 switch (tree_int_cst_sgn (c2
))
6788 *hi
= int_const_binop (MINUS_EXPR
, prod
, tmp
);
6793 *hi
= fold_negate_const (tmp
, type
);
6798 *neg_overflow
= true;
6799 *lo
= int_const_binop (PLUS_EXPR
, prod
, tmp
);
6808 if (code
!= EQ_EXPR
&& code
!= NE_EXPR
)
6811 if (TREE_OVERFLOW (*lo
)
6812 || operand_equal_p (*lo
, TYPE_MIN_VALUE (type
), 0))
6814 if (TREE_OVERFLOW (*hi
)
6815 || operand_equal_p (*hi
, TYPE_MAX_VALUE (type
), 0))
6822 /* If CODE with arguments ARG0 and ARG1 represents a single bit
6823 equality/inequality test, then return a simplified form of the test
6824 using a sign testing. Otherwise return NULL. TYPE is the desired
6828 fold_single_bit_test_into_sign_test (location_t loc
,
6829 enum tree_code code
, tree arg0
, tree arg1
,
6832 /* If this is testing a single bit, we can optimize the test. */
6833 if ((code
== NE_EXPR
|| code
== EQ_EXPR
)
6834 && TREE_CODE (arg0
) == BIT_AND_EXPR
&& integer_zerop (arg1
)
6835 && integer_pow2p (TREE_OPERAND (arg0
, 1)))
6837 /* If we have (A & C) != 0 where C is the sign bit of A, convert
6838 this into A < 0. Similarly for (A & C) == 0 into A >= 0. */
6839 tree arg00
= sign_bit_p (TREE_OPERAND (arg0
, 0), TREE_OPERAND (arg0
, 1));
6841 if (arg00
!= NULL_TREE
6842 /* This is only a win if casting to a signed type is cheap,
6843 i.e. when arg00's type is not a partial mode. */
6844 && type_has_mode_precision_p (TREE_TYPE (arg00
)))
6846 tree stype
= signed_type_for (TREE_TYPE (arg00
));
6847 return fold_build2_loc (loc
, code
== EQ_EXPR
? GE_EXPR
: LT_EXPR
,
6849 fold_convert_loc (loc
, stype
, arg00
),
6850 build_int_cst (stype
, 0));
6857 /* If CODE with arguments ARG0 and ARG1 represents a single bit
6858 equality/inequality test, then return a simplified form of
6859 the test using shifts and logical operations. Otherwise return
6860 NULL. TYPE is the desired result type. */
6863 fold_single_bit_test (location_t loc
, enum tree_code code
,
6864 tree arg0
, tree arg1
, tree result_type
)
6866 /* If this is testing a single bit, we can optimize the test. */
6867 if ((code
== NE_EXPR
|| code
== EQ_EXPR
)
6868 && TREE_CODE (arg0
) == BIT_AND_EXPR
&& integer_zerop (arg1
)
6869 && integer_pow2p (TREE_OPERAND (arg0
, 1)))
6871 tree inner
= TREE_OPERAND (arg0
, 0);
6872 tree type
= TREE_TYPE (arg0
);
6873 int bitnum
= tree_log2 (TREE_OPERAND (arg0
, 1));
6874 scalar_int_mode operand_mode
= SCALAR_INT_TYPE_MODE (type
);
6876 tree signed_type
, unsigned_type
, intermediate_type
;
6879 /* First, see if we can fold the single bit test into a sign-bit
6881 tem
= fold_single_bit_test_into_sign_test (loc
, code
, arg0
, arg1
,
6886 /* Otherwise we have (A & C) != 0 where C is a single bit,
6887 convert that into ((A >> C2) & 1). Where C2 = log2(C).
6888 Similarly for (A & C) == 0. */
6890 /* If INNER is a right shift of a constant and it plus BITNUM does
6891 not overflow, adjust BITNUM and INNER. */
6892 if (TREE_CODE (inner
) == RSHIFT_EXPR
6893 && TREE_CODE (TREE_OPERAND (inner
, 1)) == INTEGER_CST
6894 && bitnum
< TYPE_PRECISION (type
)
6895 && wi::ltu_p (wi::to_wide (TREE_OPERAND (inner
, 1)),
6896 TYPE_PRECISION (type
) - bitnum
))
6898 bitnum
+= tree_to_uhwi (TREE_OPERAND (inner
, 1));
6899 inner
= TREE_OPERAND (inner
, 0);
6902 /* If we are going to be able to omit the AND below, we must do our
6903 operations as unsigned. If we must use the AND, we have a choice.
6904 Normally unsigned is faster, but for some machines signed is. */
6905 ops_unsigned
= (load_extend_op (operand_mode
) == SIGN_EXTEND
6906 && !flag_syntax_only
) ? 0 : 1;
6908 signed_type
= lang_hooks
.types
.type_for_mode (operand_mode
, 0);
6909 unsigned_type
= lang_hooks
.types
.type_for_mode (operand_mode
, 1);
6910 intermediate_type
= ops_unsigned
? unsigned_type
: signed_type
;
6911 inner
= fold_convert_loc (loc
, intermediate_type
, inner
);
6914 inner
= build2 (RSHIFT_EXPR
, intermediate_type
,
6915 inner
, size_int (bitnum
));
6917 one
= build_int_cst (intermediate_type
, 1);
6919 if (code
== EQ_EXPR
)
6920 inner
= fold_build2_loc (loc
, BIT_XOR_EXPR
, intermediate_type
, inner
, one
);
6922 /* Put the AND last so it can combine with more things. */
6923 inner
= build2 (BIT_AND_EXPR
, intermediate_type
, inner
, one
);
6925 /* Make sure to return the proper type. */
6926 inner
= fold_convert_loc (loc
, result_type
, inner
);
6933 /* Test whether it is preferable two swap two operands, ARG0 and
6934 ARG1, for example because ARG0 is an integer constant and ARG1
6938 tree_swap_operands_p (const_tree arg0
, const_tree arg1
)
6940 if (CONSTANT_CLASS_P (arg1
))
6942 if (CONSTANT_CLASS_P (arg0
))
6948 if (TREE_CONSTANT (arg1
))
6950 if (TREE_CONSTANT (arg0
))
6953 /* It is preferable to swap two SSA_NAME to ensure a canonical form
6954 for commutative and comparison operators. Ensuring a canonical
6955 form allows the optimizers to find additional redundancies without
6956 having to explicitly check for both orderings. */
6957 if (TREE_CODE (arg0
) == SSA_NAME
6958 && TREE_CODE (arg1
) == SSA_NAME
6959 && SSA_NAME_VERSION (arg0
) > SSA_NAME_VERSION (arg1
))
6962 /* Put SSA_NAMEs last. */
6963 if (TREE_CODE (arg1
) == SSA_NAME
)
6965 if (TREE_CODE (arg0
) == SSA_NAME
)
6968 /* Put variables last. */
6978 /* Fold A < X && A + 1 > Y to A < X && A >= Y. Normally A + 1 > Y
6979 means A >= Y && A != MAX, but in this case we know that
6980 A < X <= MAX. INEQ is A + 1 > Y, BOUND is A < X. */
6983 fold_to_nonsharp_ineq_using_bound (location_t loc
, tree ineq
, tree bound
)
6985 tree a
, typea
, type
= TREE_TYPE (ineq
), a1
, diff
, y
;
6987 if (TREE_CODE (bound
) == LT_EXPR
)
6988 a
= TREE_OPERAND (bound
, 0);
6989 else if (TREE_CODE (bound
) == GT_EXPR
)
6990 a
= TREE_OPERAND (bound
, 1);
6994 typea
= TREE_TYPE (a
);
6995 if (!INTEGRAL_TYPE_P (typea
)
6996 && !POINTER_TYPE_P (typea
))
6999 if (TREE_CODE (ineq
) == LT_EXPR
)
7001 a1
= TREE_OPERAND (ineq
, 1);
7002 y
= TREE_OPERAND (ineq
, 0);
7004 else if (TREE_CODE (ineq
) == GT_EXPR
)
7006 a1
= TREE_OPERAND (ineq
, 0);
7007 y
= TREE_OPERAND (ineq
, 1);
7012 if (TREE_TYPE (a1
) != typea
)
7015 if (POINTER_TYPE_P (typea
))
7017 /* Convert the pointer types into integer before taking the difference. */
7018 tree ta
= fold_convert_loc (loc
, ssizetype
, a
);
7019 tree ta1
= fold_convert_loc (loc
, ssizetype
, a1
);
7020 diff
= fold_binary_loc (loc
, MINUS_EXPR
, ssizetype
, ta1
, ta
);
7023 diff
= fold_binary_loc (loc
, MINUS_EXPR
, typea
, a1
, a
);
7025 if (!diff
|| !integer_onep (diff
))
7028 return fold_build2_loc (loc
, GE_EXPR
, type
, a
, y
);
7031 /* Fold a sum or difference of at least one multiplication.
7032 Returns the folded tree or NULL if no simplification could be made. */
7035 fold_plusminus_mult_expr (location_t loc
, enum tree_code code
, tree type
,
7036 tree arg0
, tree arg1
)
7038 tree arg00
, arg01
, arg10
, arg11
;
7039 tree alt0
= NULL_TREE
, alt1
= NULL_TREE
, same
;
7041 /* (A * C) +- (B * C) -> (A+-B) * C.
7042 (A * C) +- A -> A * (C+-1).
7043 We are most concerned about the case where C is a constant,
7044 but other combinations show up during loop reduction. Since
7045 it is not difficult, try all four possibilities. */
7047 if (TREE_CODE (arg0
) == MULT_EXPR
)
7049 arg00
= TREE_OPERAND (arg0
, 0);
7050 arg01
= TREE_OPERAND (arg0
, 1);
7052 else if (TREE_CODE (arg0
) == INTEGER_CST
)
7054 arg00
= build_one_cst (type
);
7059 /* We cannot generate constant 1 for fract. */
7060 if (ALL_FRACT_MODE_P (TYPE_MODE (type
)))
7063 arg01
= build_one_cst (type
);
7065 if (TREE_CODE (arg1
) == MULT_EXPR
)
7067 arg10
= TREE_OPERAND (arg1
, 0);
7068 arg11
= TREE_OPERAND (arg1
, 1);
7070 else if (TREE_CODE (arg1
) == INTEGER_CST
)
7072 arg10
= build_one_cst (type
);
7073 /* As we canonicalize A - 2 to A + -2 get rid of that sign for
7074 the purpose of this canonicalization. */
7075 if (wi::neg_p (wi::to_wide (arg1
), TYPE_SIGN (TREE_TYPE (arg1
)))
7076 && negate_expr_p (arg1
)
7077 && code
== PLUS_EXPR
)
7079 arg11
= negate_expr (arg1
);
7087 /* We cannot generate constant 1 for fract. */
7088 if (ALL_FRACT_MODE_P (TYPE_MODE (type
)))
7091 arg11
= build_one_cst (type
);
7095 /* Prefer factoring a common non-constant. */
7096 if (operand_equal_p (arg00
, arg10
, 0))
7097 same
= arg00
, alt0
= arg01
, alt1
= arg11
;
7098 else if (operand_equal_p (arg01
, arg11
, 0))
7099 same
= arg01
, alt0
= arg00
, alt1
= arg10
;
7100 else if (operand_equal_p (arg00
, arg11
, 0))
7101 same
= arg00
, alt0
= arg01
, alt1
= arg10
;
7102 else if (operand_equal_p (arg01
, arg10
, 0))
7103 same
= arg01
, alt0
= arg00
, alt1
= arg11
;
7105 /* No identical multiplicands; see if we can find a common
7106 power-of-two factor in non-power-of-two multiplies. This
7107 can help in multi-dimensional array access. */
7108 else if (tree_fits_shwi_p (arg01
)
7109 && tree_fits_shwi_p (arg11
))
7111 HOST_WIDE_INT int01
, int11
, tmp
;
7114 int01
= tree_to_shwi (arg01
);
7115 int11
= tree_to_shwi (arg11
);
7117 /* Move min of absolute values to int11. */
7118 if (absu_hwi (int01
) < absu_hwi (int11
))
7120 tmp
= int01
, int01
= int11
, int11
= tmp
;
7121 alt0
= arg00
, arg00
= arg10
, arg10
= alt0
;
7128 if (exact_log2 (absu_hwi (int11
)) > 0 && int01
% int11
== 0
7129 /* The remainder should not be a constant, otherwise we
7130 end up folding i * 4 + 2 to (i * 2 + 1) * 2 which has
7131 increased the number of multiplications necessary. */
7132 && TREE_CODE (arg10
) != INTEGER_CST
)
7134 alt0
= fold_build2_loc (loc
, MULT_EXPR
, TREE_TYPE (arg00
), arg00
,
7135 build_int_cst (TREE_TYPE (arg00
),
7140 maybe_same
= alt0
, alt0
= alt1
, alt1
= maybe_same
;
7147 if (! ANY_INTEGRAL_TYPE_P (type
)
7148 || TYPE_OVERFLOW_WRAPS (type
)
7149 /* We are neither factoring zero nor minus one. */
7150 || TREE_CODE (same
) == INTEGER_CST
)
7151 return fold_build2_loc (loc
, MULT_EXPR
, type
,
7152 fold_build2_loc (loc
, code
, type
,
7153 fold_convert_loc (loc
, type
, alt0
),
7154 fold_convert_loc (loc
, type
, alt1
)),
7155 fold_convert_loc (loc
, type
, same
));
7157 /* Same may be zero and thus the operation 'code' may overflow. Likewise
7158 same may be minus one and thus the multiplication may overflow. Perform
7159 the sum operation in an unsigned type. */
7160 tree utype
= unsigned_type_for (type
);
7161 tree tem
= fold_build2_loc (loc
, code
, utype
,
7162 fold_convert_loc (loc
, utype
, alt0
),
7163 fold_convert_loc (loc
, utype
, alt1
));
7164 /* If the sum evaluated to a constant that is not -INF the multiplication
7166 if (TREE_CODE (tem
) == INTEGER_CST
7167 && (wi::to_wide (tem
)
7168 != wi::min_value (TYPE_PRECISION (utype
), SIGNED
)))
7169 return fold_build2_loc (loc
, MULT_EXPR
, type
,
7170 fold_convert (type
, tem
), same
);
7172 /* Do not resort to unsigned multiplication because
7173 we lose the no-overflow property of the expression. */
7177 /* Subroutine of native_encode_expr. Encode the INTEGER_CST
7178 specified by EXPR into the buffer PTR of length LEN bytes.
7179 Return the number of bytes placed in the buffer, or zero
7183 native_encode_int (const_tree expr
, unsigned char *ptr
, int len
, int off
)
7185 tree type
= TREE_TYPE (expr
);
7186 int total_bytes
= GET_MODE_SIZE (SCALAR_INT_TYPE_MODE (type
));
7187 int byte
, offset
, word
, words
;
7188 unsigned char value
;
7190 if ((off
== -1 && total_bytes
> len
) || off
>= total_bytes
)
7197 return MIN (len
, total_bytes
- off
);
7199 words
= total_bytes
/ UNITS_PER_WORD
;
7201 for (byte
= 0; byte
< total_bytes
; byte
++)
7203 int bitpos
= byte
* BITS_PER_UNIT
;
7204 /* Extend EXPR according to TYPE_SIGN if the precision isn't a whole
7206 value
= wi::extract_uhwi (wi::to_widest (expr
), bitpos
, BITS_PER_UNIT
);
7208 if (total_bytes
> UNITS_PER_WORD
)
7210 word
= byte
/ UNITS_PER_WORD
;
7211 if (WORDS_BIG_ENDIAN
)
7212 word
= (words
- 1) - word
;
7213 offset
= word
* UNITS_PER_WORD
;
7214 if (BYTES_BIG_ENDIAN
)
7215 offset
+= (UNITS_PER_WORD
- 1) - (byte
% UNITS_PER_WORD
);
7217 offset
+= byte
% UNITS_PER_WORD
;
7220 offset
= BYTES_BIG_ENDIAN
? (total_bytes
- 1) - byte
: byte
;
7221 if (offset
>= off
&& offset
- off
< len
)
7222 ptr
[offset
- off
] = value
;
7224 return MIN (len
, total_bytes
- off
);
7228 /* Subroutine of native_encode_expr. Encode the FIXED_CST
7229 specified by EXPR into the buffer PTR of length LEN bytes.
7230 Return the number of bytes placed in the buffer, or zero
7234 native_encode_fixed (const_tree expr
, unsigned char *ptr
, int len
, int off
)
7236 tree type
= TREE_TYPE (expr
);
7237 scalar_mode mode
= SCALAR_TYPE_MODE (type
);
7238 int total_bytes
= GET_MODE_SIZE (mode
);
7239 FIXED_VALUE_TYPE value
;
7240 tree i_value
, i_type
;
7242 if (total_bytes
* BITS_PER_UNIT
> HOST_BITS_PER_DOUBLE_INT
)
7245 i_type
= lang_hooks
.types
.type_for_size (GET_MODE_BITSIZE (mode
), 1);
7247 if (NULL_TREE
== i_type
|| TYPE_PRECISION (i_type
) != total_bytes
)
7250 value
= TREE_FIXED_CST (expr
);
7251 i_value
= double_int_to_tree (i_type
, value
.data
);
7253 return native_encode_int (i_value
, ptr
, len
, off
);
7257 /* Subroutine of native_encode_expr. Encode the REAL_CST
7258 specified by EXPR into the buffer PTR of length LEN bytes.
7259 Return the number of bytes placed in the buffer, or zero
7263 native_encode_real (const_tree expr
, unsigned char *ptr
, int len
, int off
)
7265 tree type
= TREE_TYPE (expr
);
7266 int total_bytes
= GET_MODE_SIZE (SCALAR_FLOAT_TYPE_MODE (type
));
7267 int byte
, offset
, word
, words
, bitpos
;
7268 unsigned char value
;
7270 /* There are always 32 bits in each long, no matter the size of
7271 the hosts long. We handle floating point representations with
7275 if ((off
== -1 && total_bytes
> len
) || off
>= total_bytes
)
7282 return MIN (len
, total_bytes
- off
);
7284 words
= (32 / BITS_PER_UNIT
) / UNITS_PER_WORD
;
7286 real_to_target (tmp
, TREE_REAL_CST_PTR (expr
), TYPE_MODE (type
));
7288 for (bitpos
= 0; bitpos
< total_bytes
* BITS_PER_UNIT
;
7289 bitpos
+= BITS_PER_UNIT
)
7291 byte
= (bitpos
/ BITS_PER_UNIT
) & 3;
7292 value
= (unsigned char) (tmp
[bitpos
/ 32] >> (bitpos
& 31));
7294 if (UNITS_PER_WORD
< 4)
7296 word
= byte
/ UNITS_PER_WORD
;
7297 if (WORDS_BIG_ENDIAN
)
7298 word
= (words
- 1) - word
;
7299 offset
= word
* UNITS_PER_WORD
;
7300 if (BYTES_BIG_ENDIAN
)
7301 offset
+= (UNITS_PER_WORD
- 1) - (byte
% UNITS_PER_WORD
);
7303 offset
+= byte
% UNITS_PER_WORD
;
7308 if (BYTES_BIG_ENDIAN
)
7310 /* Reverse bytes within each long, or within the entire float
7311 if it's smaller than a long (for HFmode). */
7312 offset
= MIN (3, total_bytes
- 1) - offset
;
7313 gcc_assert (offset
>= 0);
7316 offset
= offset
+ ((bitpos
/ BITS_PER_UNIT
) & ~3);
7318 && offset
- off
< len
)
7319 ptr
[offset
- off
] = value
;
7321 return MIN (len
, total_bytes
- off
);
7324 /* Subroutine of native_encode_expr. Encode the COMPLEX_CST
7325 specified by EXPR into the buffer PTR of length LEN bytes.
7326 Return the number of bytes placed in the buffer, or zero
7330 native_encode_complex (const_tree expr
, unsigned char *ptr
, int len
, int off
)
7335 part
= TREE_REALPART (expr
);
7336 rsize
= native_encode_expr (part
, ptr
, len
, off
);
7337 if (off
== -1 && rsize
== 0)
7339 part
= TREE_IMAGPART (expr
);
7341 off
= MAX (0, off
- GET_MODE_SIZE (SCALAR_TYPE_MODE (TREE_TYPE (part
))));
7342 isize
= native_encode_expr (part
, ptr
? ptr
+ rsize
: NULL
,
7344 if (off
== -1 && isize
!= rsize
)
7346 return rsize
+ isize
;
7350 /* Subroutine of native_encode_expr. Encode the VECTOR_CST
7351 specified by EXPR into the buffer PTR of length LEN bytes.
7352 Return the number of bytes placed in the buffer, or zero
7356 native_encode_vector (const_tree expr
, unsigned char *ptr
, int len
, int off
)
7358 unsigned HOST_WIDE_INT i
, count
;
7363 if (!VECTOR_CST_NELTS (expr
).is_constant (&count
))
7365 itype
= TREE_TYPE (TREE_TYPE (expr
));
7366 size
= GET_MODE_SIZE (SCALAR_TYPE_MODE (itype
));
7367 for (i
= 0; i
< count
; i
++)
7374 elem
= VECTOR_CST_ELT (expr
, i
);
7375 int res
= native_encode_expr (elem
, ptr
? ptr
+ offset
: NULL
,
7377 if ((off
== -1 && res
!= size
) || res
== 0)
7381 return (off
== -1 && i
< count
- 1) ? 0 : offset
;
7389 /* Subroutine of native_encode_expr. Encode the STRING_CST
7390 specified by EXPR into the buffer PTR of length LEN bytes.
7391 Return the number of bytes placed in the buffer, or zero
7395 native_encode_string (const_tree expr
, unsigned char *ptr
, int len
, int off
)
7397 tree type
= TREE_TYPE (expr
);
7399 /* Wide-char strings are encoded in target byte-order so native
7400 encoding them is trivial. */
7401 if (BITS_PER_UNIT
!= CHAR_BIT
7402 || TREE_CODE (type
) != ARRAY_TYPE
7403 || TREE_CODE (TREE_TYPE (type
)) != INTEGER_TYPE
7404 || !tree_fits_shwi_p (TYPE_SIZE_UNIT (type
)))
7407 HOST_WIDE_INT total_bytes
= tree_to_shwi (TYPE_SIZE_UNIT (TREE_TYPE (expr
)));
7408 if ((off
== -1 && total_bytes
> len
) || off
>= total_bytes
)
7414 else if (TREE_STRING_LENGTH (expr
) - off
< MIN (total_bytes
, len
))
7417 if (off
< TREE_STRING_LENGTH (expr
))
7419 written
= MIN (len
, TREE_STRING_LENGTH (expr
) - off
);
7420 memcpy (ptr
, TREE_STRING_POINTER (expr
) + off
, written
);
7422 memset (ptr
+ written
, 0,
7423 MIN (total_bytes
- written
, len
- written
));
7426 memcpy (ptr
, TREE_STRING_POINTER (expr
) + off
, MIN (total_bytes
, len
));
7427 return MIN (total_bytes
- off
, len
);
7431 /* Subroutine of fold_view_convert_expr. Encode the INTEGER_CST,
7432 REAL_CST, COMPLEX_CST or VECTOR_CST specified by EXPR into the
7433 buffer PTR of length LEN bytes. If PTR is NULL, don't actually store
7434 anything, just do a dry run. If OFF is not -1 then start
7435 the encoding at byte offset OFF and encode at most LEN bytes.
7436 Return the number of bytes placed in the buffer, or zero upon failure. */
7439 native_encode_expr (const_tree expr
, unsigned char *ptr
, int len
, int off
)
7441 /* We don't support starting at negative offset and -1 is special. */
7445 switch (TREE_CODE (expr
))
7448 return native_encode_int (expr
, ptr
, len
, off
);
7451 return native_encode_real (expr
, ptr
, len
, off
);
7454 return native_encode_fixed (expr
, ptr
, len
, off
);
7457 return native_encode_complex (expr
, ptr
, len
, off
);
7460 return native_encode_vector (expr
, ptr
, len
, off
);
7463 return native_encode_string (expr
, ptr
, len
, off
);
7471 /* Subroutine of native_interpret_expr. Interpret the contents of
7472 the buffer PTR of length LEN as an INTEGER_CST of type TYPE.
7473 If the buffer cannot be interpreted, return NULL_TREE. */
7476 native_interpret_int (tree type
, const unsigned char *ptr
, int len
)
7478 int total_bytes
= GET_MODE_SIZE (SCALAR_INT_TYPE_MODE (type
));
7480 if (total_bytes
> len
7481 || total_bytes
* BITS_PER_UNIT
> HOST_BITS_PER_DOUBLE_INT
)
7484 wide_int result
= wi::from_buffer (ptr
, total_bytes
);
7486 return wide_int_to_tree (type
, result
);
7490 /* Subroutine of native_interpret_expr. Interpret the contents of
7491 the buffer PTR of length LEN as a FIXED_CST of type TYPE.
7492 If the buffer cannot be interpreted, return NULL_TREE. */
7495 native_interpret_fixed (tree type
, const unsigned char *ptr
, int len
)
7497 scalar_mode mode
= SCALAR_TYPE_MODE (type
);
7498 int total_bytes
= GET_MODE_SIZE (mode
);
7500 FIXED_VALUE_TYPE fixed_value
;
7502 if (total_bytes
> len
7503 || total_bytes
* BITS_PER_UNIT
> HOST_BITS_PER_DOUBLE_INT
)
7506 result
= double_int::from_buffer (ptr
, total_bytes
);
7507 fixed_value
= fixed_from_double_int (result
, mode
);
7509 return build_fixed (type
, fixed_value
);
7513 /* Subroutine of native_interpret_expr. Interpret the contents of
7514 the buffer PTR of length LEN as a REAL_CST of type TYPE.
7515 If the buffer cannot be interpreted, return NULL_TREE. */
7518 native_interpret_real (tree type
, const unsigned char *ptr
, int len
)
7520 scalar_float_mode mode
= SCALAR_FLOAT_TYPE_MODE (type
);
7521 int total_bytes
= GET_MODE_SIZE (mode
);
7522 unsigned char value
;
7523 /* There are always 32 bits in each long, no matter the size of
7524 the hosts long. We handle floating point representations with
7529 if (total_bytes
> len
|| total_bytes
> 24)
7531 int words
= (32 / BITS_PER_UNIT
) / UNITS_PER_WORD
;
7533 memset (tmp
, 0, sizeof (tmp
));
7534 for (int bitpos
= 0; bitpos
< total_bytes
* BITS_PER_UNIT
;
7535 bitpos
+= BITS_PER_UNIT
)
7537 /* Both OFFSET and BYTE index within a long;
7538 bitpos indexes the whole float. */
7539 int offset
, byte
= (bitpos
/ BITS_PER_UNIT
) & 3;
7540 if (UNITS_PER_WORD
< 4)
7542 int word
= byte
/ UNITS_PER_WORD
;
7543 if (WORDS_BIG_ENDIAN
)
7544 word
= (words
- 1) - word
;
7545 offset
= word
* UNITS_PER_WORD
;
7546 if (BYTES_BIG_ENDIAN
)
7547 offset
+= (UNITS_PER_WORD
- 1) - (byte
% UNITS_PER_WORD
);
7549 offset
+= byte
% UNITS_PER_WORD
;
7554 if (BYTES_BIG_ENDIAN
)
7556 /* Reverse bytes within each long, or within the entire float
7557 if it's smaller than a long (for HFmode). */
7558 offset
= MIN (3, total_bytes
- 1) - offset
;
7559 gcc_assert (offset
>= 0);
7562 value
= ptr
[offset
+ ((bitpos
/ BITS_PER_UNIT
) & ~3)];
7564 tmp
[bitpos
/ 32] |= (unsigned long)value
<< (bitpos
& 31);
7567 real_from_target (&r
, tmp
, mode
);
7568 return build_real (type
, r
);
7572 /* Subroutine of native_interpret_expr. Interpret the contents of
7573 the buffer PTR of length LEN as a COMPLEX_CST of type TYPE.
7574 If the buffer cannot be interpreted, return NULL_TREE. */
7577 native_interpret_complex (tree type
, const unsigned char *ptr
, int len
)
7579 tree etype
, rpart
, ipart
;
7582 etype
= TREE_TYPE (type
);
7583 size
= GET_MODE_SIZE (SCALAR_TYPE_MODE (etype
));
7586 rpart
= native_interpret_expr (etype
, ptr
, size
);
7589 ipart
= native_interpret_expr (etype
, ptr
+size
, size
);
7592 return build_complex (type
, rpart
, ipart
);
7596 /* Subroutine of native_interpret_expr. Interpret the contents of
7597 the buffer PTR of length LEN as a VECTOR_CST of type TYPE.
7598 If the buffer cannot be interpreted, return NULL_TREE. */
7601 native_interpret_vector (tree type
, const unsigned char *ptr
, unsigned int len
)
7604 unsigned int i
, size
;
7605 unsigned HOST_WIDE_INT count
;
7607 etype
= TREE_TYPE (type
);
7608 size
= GET_MODE_SIZE (SCALAR_TYPE_MODE (etype
));
7609 if (!TYPE_VECTOR_SUBPARTS (type
).is_constant (&count
)
7610 || size
* count
> len
)
7613 tree_vector_builder
elements (type
, count
, 1);
7614 for (i
= 0; i
< count
; ++i
)
7616 elem
= native_interpret_expr (etype
, ptr
+(i
*size
), size
);
7619 elements
.quick_push (elem
);
7621 return elements
.build ();
7625 /* Subroutine of fold_view_convert_expr. Interpret the contents of
7626 the buffer PTR of length LEN as a constant of type TYPE. For
7627 INTEGRAL_TYPE_P we return an INTEGER_CST, for SCALAR_FLOAT_TYPE_P
7628 we return a REAL_CST, etc... If the buffer cannot be interpreted,
7629 return NULL_TREE. */
7632 native_interpret_expr (tree type
, const unsigned char *ptr
, int len
)
7634 switch (TREE_CODE (type
))
7640 case REFERENCE_TYPE
:
7641 return native_interpret_int (type
, ptr
, len
);
7644 return native_interpret_real (type
, ptr
, len
);
7646 case FIXED_POINT_TYPE
:
7647 return native_interpret_fixed (type
, ptr
, len
);
7650 return native_interpret_complex (type
, ptr
, len
);
7653 return native_interpret_vector (type
, ptr
, len
);
7660 /* Returns true if we can interpret the contents of a native encoding
7664 can_native_interpret_type_p (tree type
)
7666 switch (TREE_CODE (type
))
7672 case REFERENCE_TYPE
:
7673 case FIXED_POINT_TYPE
:
7684 /* Fold a VIEW_CONVERT_EXPR of a constant expression EXPR to type
7685 TYPE at compile-time. If we're unable to perform the conversion
7686 return NULL_TREE. */
7689 fold_view_convert_expr (tree type
, tree expr
)
7691 /* We support up to 512-bit values (for V8DFmode). */
7692 unsigned char buffer
[64];
7695 /* Check that the host and target are sane. */
7696 if (CHAR_BIT
!= 8 || BITS_PER_UNIT
!= 8)
7699 len
= native_encode_expr (expr
, buffer
, sizeof (buffer
));
7703 return native_interpret_expr (type
, buffer
, len
);
7706 /* Build an expression for the address of T. Folds away INDIRECT_REF
7707 to avoid confusing the gimplify process. */
7710 build_fold_addr_expr_with_type_loc (location_t loc
, tree t
, tree ptrtype
)
7712 /* The size of the object is not relevant when talking about its address. */
7713 if (TREE_CODE (t
) == WITH_SIZE_EXPR
)
7714 t
= TREE_OPERAND (t
, 0);
7716 if (TREE_CODE (t
) == INDIRECT_REF
)
7718 t
= TREE_OPERAND (t
, 0);
7720 if (TREE_TYPE (t
) != ptrtype
)
7721 t
= build1_loc (loc
, NOP_EXPR
, ptrtype
, t
);
7723 else if (TREE_CODE (t
) == MEM_REF
7724 && integer_zerop (TREE_OPERAND (t
, 1)))
7725 return TREE_OPERAND (t
, 0);
7726 else if (TREE_CODE (t
) == MEM_REF
7727 && TREE_CODE (TREE_OPERAND (t
, 0)) == INTEGER_CST
)
7728 return fold_binary (POINTER_PLUS_EXPR
, ptrtype
,
7729 TREE_OPERAND (t
, 0),
7730 convert_to_ptrofftype (TREE_OPERAND (t
, 1)));
7731 else if (TREE_CODE (t
) == VIEW_CONVERT_EXPR
)
7733 t
= build_fold_addr_expr_loc (loc
, TREE_OPERAND (t
, 0));
7735 if (TREE_TYPE (t
) != ptrtype
)
7736 t
= fold_convert_loc (loc
, ptrtype
, t
);
7739 t
= build1_loc (loc
, ADDR_EXPR
, ptrtype
, t
);
7744 /* Build an expression for the address of T. */
7747 build_fold_addr_expr_loc (location_t loc
, tree t
)
7749 tree ptrtype
= build_pointer_type (TREE_TYPE (t
));
7751 return build_fold_addr_expr_with_type_loc (loc
, t
, ptrtype
);
7754 /* Fold a unary expression of code CODE and type TYPE with operand
7755 OP0. Return the folded expression if folding is successful.
7756 Otherwise, return NULL_TREE. */
7759 fold_unary_loc (location_t loc
, enum tree_code code
, tree type
, tree op0
)
7763 enum tree_code_class kind
= TREE_CODE_CLASS (code
);
7765 gcc_assert (IS_EXPR_CODE_CLASS (kind
)
7766 && TREE_CODE_LENGTH (code
) == 1);
7771 if (CONVERT_EXPR_CODE_P (code
)
7772 || code
== FLOAT_EXPR
|| code
== ABS_EXPR
|| code
== NEGATE_EXPR
)
7774 /* Don't use STRIP_NOPS, because signedness of argument type
7776 STRIP_SIGN_NOPS (arg0
);
7780 /* Strip any conversions that don't change the mode. This
7781 is safe for every expression, except for a comparison
7782 expression because its signedness is derived from its
7785 Note that this is done as an internal manipulation within
7786 the constant folder, in order to find the simplest
7787 representation of the arguments so that their form can be
7788 studied. In any cases, the appropriate type conversions
7789 should be put back in the tree that will get out of the
7794 if (CONSTANT_CLASS_P (arg0
))
7796 tree tem
= const_unop (code
, type
, arg0
);
7799 if (TREE_TYPE (tem
) != type
)
7800 tem
= fold_convert_loc (loc
, type
, tem
);
7806 tem
= generic_simplify (loc
, code
, type
, op0
);
7810 if (TREE_CODE_CLASS (code
) == tcc_unary
)
7812 if (TREE_CODE (arg0
) == COMPOUND_EXPR
)
7813 return build2 (COMPOUND_EXPR
, type
, TREE_OPERAND (arg0
, 0),
7814 fold_build1_loc (loc
, code
, type
,
7815 fold_convert_loc (loc
, TREE_TYPE (op0
),
7816 TREE_OPERAND (arg0
, 1))));
7817 else if (TREE_CODE (arg0
) == COND_EXPR
)
7819 tree arg01
= TREE_OPERAND (arg0
, 1);
7820 tree arg02
= TREE_OPERAND (arg0
, 2);
7821 if (! VOID_TYPE_P (TREE_TYPE (arg01
)))
7822 arg01
= fold_build1_loc (loc
, code
, type
,
7823 fold_convert_loc (loc
,
7824 TREE_TYPE (op0
), arg01
));
7825 if (! VOID_TYPE_P (TREE_TYPE (arg02
)))
7826 arg02
= fold_build1_loc (loc
, code
, type
,
7827 fold_convert_loc (loc
,
7828 TREE_TYPE (op0
), arg02
));
7829 tem
= fold_build3_loc (loc
, COND_EXPR
, type
, TREE_OPERAND (arg0
, 0),
7832 /* If this was a conversion, and all we did was to move into
7833 inside the COND_EXPR, bring it back out. But leave it if
7834 it is a conversion from integer to integer and the
7835 result precision is no wider than a word since such a
7836 conversion is cheap and may be optimized away by combine,
7837 while it couldn't if it were outside the COND_EXPR. Then return
7838 so we don't get into an infinite recursion loop taking the
7839 conversion out and then back in. */
7841 if ((CONVERT_EXPR_CODE_P (code
)
7842 || code
== NON_LVALUE_EXPR
)
7843 && TREE_CODE (tem
) == COND_EXPR
7844 && TREE_CODE (TREE_OPERAND (tem
, 1)) == code
7845 && TREE_CODE (TREE_OPERAND (tem
, 2)) == code
7846 && ! VOID_TYPE_P (TREE_OPERAND (tem
, 1))
7847 && ! VOID_TYPE_P (TREE_OPERAND (tem
, 2))
7848 && (TREE_TYPE (TREE_OPERAND (TREE_OPERAND (tem
, 1), 0))
7849 == TREE_TYPE (TREE_OPERAND (TREE_OPERAND (tem
, 2), 0)))
7850 && (! (INTEGRAL_TYPE_P (TREE_TYPE (tem
))
7852 (TREE_TYPE (TREE_OPERAND (TREE_OPERAND (tem
, 1), 0))))
7853 && TYPE_PRECISION (TREE_TYPE (tem
)) <= BITS_PER_WORD
)
7854 || flag_syntax_only
))
7855 tem
= build1_loc (loc
, code
, type
,
7857 TREE_TYPE (TREE_OPERAND
7858 (TREE_OPERAND (tem
, 1), 0)),
7859 TREE_OPERAND (tem
, 0),
7860 TREE_OPERAND (TREE_OPERAND (tem
, 1), 0),
7861 TREE_OPERAND (TREE_OPERAND (tem
, 2),
7869 case NON_LVALUE_EXPR
:
7870 if (!maybe_lvalue_p (op0
))
7871 return fold_convert_loc (loc
, type
, op0
);
7876 case FIX_TRUNC_EXPR
:
7877 if (COMPARISON_CLASS_P (op0
))
7879 /* If we have (type) (a CMP b) and type is an integral type, return
7880 new expression involving the new type. Canonicalize
7881 (type) (a CMP b) to (a CMP b) ? (type) true : (type) false for
7883 Do not fold the result as that would not simplify further, also
7884 folding again results in recursions. */
7885 if (TREE_CODE (type
) == BOOLEAN_TYPE
)
7886 return build2_loc (loc
, TREE_CODE (op0
), type
,
7887 TREE_OPERAND (op0
, 0),
7888 TREE_OPERAND (op0
, 1));
7889 else if (!INTEGRAL_TYPE_P (type
) && !VOID_TYPE_P (type
)
7890 && TREE_CODE (type
) != VECTOR_TYPE
)
7891 return build3_loc (loc
, COND_EXPR
, type
, op0
,
7892 constant_boolean_node (true, type
),
7893 constant_boolean_node (false, type
));
7896 /* Handle (T *)&A.B.C for A being of type T and B and C
7897 living at offset zero. This occurs frequently in
7898 C++ upcasting and then accessing the base. */
7899 if (TREE_CODE (op0
) == ADDR_EXPR
7900 && POINTER_TYPE_P (type
)
7901 && handled_component_p (TREE_OPERAND (op0
, 0)))
7903 poly_int64 bitsize
, bitpos
;
7906 int unsignedp
, reversep
, volatilep
;
7908 = get_inner_reference (TREE_OPERAND (op0
, 0), &bitsize
, &bitpos
,
7909 &offset
, &mode
, &unsignedp
, &reversep
,
7911 /* If the reference was to a (constant) zero offset, we can use
7912 the address of the base if it has the same base type
7913 as the result type and the pointer type is unqualified. */
7915 && known_eq (bitpos
, 0)
7916 && (TYPE_MAIN_VARIANT (TREE_TYPE (type
))
7917 == TYPE_MAIN_VARIANT (TREE_TYPE (base
)))
7918 && TYPE_QUALS (type
) == TYPE_UNQUALIFIED
)
7919 return fold_convert_loc (loc
, type
,
7920 build_fold_addr_expr_loc (loc
, base
));
7923 if (TREE_CODE (op0
) == MODIFY_EXPR
7924 && TREE_CONSTANT (TREE_OPERAND (op0
, 1))
7925 /* Detect assigning a bitfield. */
7926 && !(TREE_CODE (TREE_OPERAND (op0
, 0)) == COMPONENT_REF
7928 (TREE_OPERAND (TREE_OPERAND (op0
, 0), 1))))
7930 /* Don't leave an assignment inside a conversion
7931 unless assigning a bitfield. */
7932 tem
= fold_build1_loc (loc
, code
, type
, TREE_OPERAND (op0
, 1));
7933 /* First do the assignment, then return converted constant. */
7934 tem
= build2_loc (loc
, COMPOUND_EXPR
, TREE_TYPE (tem
), op0
, tem
);
7935 TREE_NO_WARNING (tem
) = 1;
7936 TREE_USED (tem
) = 1;
7940 /* Convert (T)(x & c) into (T)x & (T)c, if c is an integer
7941 constants (if x has signed type, the sign bit cannot be set
7942 in c). This folds extension into the BIT_AND_EXPR.
7943 ??? We don't do it for BOOLEAN_TYPE or ENUMERAL_TYPE because they
7944 very likely don't have maximal range for their precision and this
7945 transformation effectively doesn't preserve non-maximal ranges. */
7946 if (TREE_CODE (type
) == INTEGER_TYPE
7947 && TREE_CODE (op0
) == BIT_AND_EXPR
7948 && TREE_CODE (TREE_OPERAND (op0
, 1)) == INTEGER_CST
)
7950 tree and_expr
= op0
;
7951 tree and0
= TREE_OPERAND (and_expr
, 0);
7952 tree and1
= TREE_OPERAND (and_expr
, 1);
7955 if (TYPE_UNSIGNED (TREE_TYPE (and_expr
))
7956 || (TYPE_PRECISION (type
)
7957 <= TYPE_PRECISION (TREE_TYPE (and_expr
))))
7959 else if (TYPE_PRECISION (TREE_TYPE (and1
))
7960 <= HOST_BITS_PER_WIDE_INT
7961 && tree_fits_uhwi_p (and1
))
7963 unsigned HOST_WIDE_INT cst
;
7965 cst
= tree_to_uhwi (and1
);
7966 cst
&= HOST_WIDE_INT_M1U
7967 << (TYPE_PRECISION (TREE_TYPE (and1
)) - 1);
7968 change
= (cst
== 0);
7970 && !flag_syntax_only
7971 && (load_extend_op (TYPE_MODE (TREE_TYPE (and0
)))
7974 tree uns
= unsigned_type_for (TREE_TYPE (and0
));
7975 and0
= fold_convert_loc (loc
, uns
, and0
);
7976 and1
= fold_convert_loc (loc
, uns
, and1
);
7981 tem
= force_fit_type (type
, wi::to_widest (and1
), 0,
7982 TREE_OVERFLOW (and1
));
7983 return fold_build2_loc (loc
, BIT_AND_EXPR
, type
,
7984 fold_convert_loc (loc
, type
, and0
), tem
);
7988 /* Convert (T1)(X p+ Y) into ((T1)X p+ Y), for pointer type, when the new
7989 cast (T1)X will fold away. We assume that this happens when X itself
7991 if (POINTER_TYPE_P (type
)
7992 && TREE_CODE (arg0
) == POINTER_PLUS_EXPR
7993 && CONVERT_EXPR_P (TREE_OPERAND (arg0
, 0)))
7995 tree arg00
= TREE_OPERAND (arg0
, 0);
7996 tree arg01
= TREE_OPERAND (arg0
, 1);
7998 return fold_build_pointer_plus_loc
7999 (loc
, fold_convert_loc (loc
, type
, arg00
), arg01
);
8002 /* Convert (T1)(~(T2)X) into ~(T1)X if T1 and T2 are integral types
8003 of the same precision, and X is an integer type not narrower than
8004 types T1 or T2, i.e. the cast (T2)X isn't an extension. */
8005 if (INTEGRAL_TYPE_P (type
)
8006 && TREE_CODE (op0
) == BIT_NOT_EXPR
8007 && INTEGRAL_TYPE_P (TREE_TYPE (op0
))
8008 && CONVERT_EXPR_P (TREE_OPERAND (op0
, 0))
8009 && TYPE_PRECISION (type
) == TYPE_PRECISION (TREE_TYPE (op0
)))
8011 tem
= TREE_OPERAND (TREE_OPERAND (op0
, 0), 0);
8012 if (INTEGRAL_TYPE_P (TREE_TYPE (tem
))
8013 && TYPE_PRECISION (type
) <= TYPE_PRECISION (TREE_TYPE (tem
)))
8014 return fold_build1_loc (loc
, BIT_NOT_EXPR
, type
,
8015 fold_convert_loc (loc
, type
, tem
));
8018 /* Convert (T1)(X * Y) into (T1)X * (T1)Y if T1 is narrower than the
8019 type of X and Y (integer types only). */
8020 if (INTEGRAL_TYPE_P (type
)
8021 && TREE_CODE (op0
) == MULT_EXPR
8022 && INTEGRAL_TYPE_P (TREE_TYPE (op0
))
8023 && TYPE_PRECISION (type
) < TYPE_PRECISION (TREE_TYPE (op0
)))
8025 /* Be careful not to introduce new overflows. */
8027 if (TYPE_OVERFLOW_WRAPS (type
))
8030 mult_type
= unsigned_type_for (type
);
8032 if (TYPE_PRECISION (mult_type
) < TYPE_PRECISION (TREE_TYPE (op0
)))
8034 tem
= fold_build2_loc (loc
, MULT_EXPR
, mult_type
,
8035 fold_convert_loc (loc
, mult_type
,
8036 TREE_OPERAND (op0
, 0)),
8037 fold_convert_loc (loc
, mult_type
,
8038 TREE_OPERAND (op0
, 1)));
8039 return fold_convert_loc (loc
, type
, tem
);
8045 case VIEW_CONVERT_EXPR
:
8046 if (TREE_CODE (op0
) == MEM_REF
)
8048 if (TYPE_ALIGN (TREE_TYPE (op0
)) != TYPE_ALIGN (type
))
8049 type
= build_aligned_type (type
, TYPE_ALIGN (TREE_TYPE (op0
)));
8050 tem
= fold_build2_loc (loc
, MEM_REF
, type
,
8051 TREE_OPERAND (op0
, 0), TREE_OPERAND (op0
, 1));
8052 REF_REVERSE_STORAGE_ORDER (tem
) = REF_REVERSE_STORAGE_ORDER (op0
);
8059 tem
= fold_negate_expr (loc
, arg0
);
8061 return fold_convert_loc (loc
, type
, tem
);
8065 /* Convert fabs((double)float) into (double)fabsf(float). */
8066 if (TREE_CODE (arg0
) == NOP_EXPR
8067 && TREE_CODE (type
) == REAL_TYPE
)
8069 tree targ0
= strip_float_extensions (arg0
);
8071 return fold_convert_loc (loc
, type
,
8072 fold_build1_loc (loc
, ABS_EXPR
,
8079 /* Convert ~(X ^ Y) to ~X ^ Y or X ^ ~Y if ~X or ~Y simplify. */
8080 if (TREE_CODE (arg0
) == BIT_XOR_EXPR
8081 && (tem
= fold_unary_loc (loc
, BIT_NOT_EXPR
, type
,
8082 fold_convert_loc (loc
, type
,
8083 TREE_OPERAND (arg0
, 0)))))
8084 return fold_build2_loc (loc
, BIT_XOR_EXPR
, type
, tem
,
8085 fold_convert_loc (loc
, type
,
8086 TREE_OPERAND (arg0
, 1)));
8087 else if (TREE_CODE (arg0
) == BIT_XOR_EXPR
8088 && (tem
= fold_unary_loc (loc
, BIT_NOT_EXPR
, type
,
8089 fold_convert_loc (loc
, type
,
8090 TREE_OPERAND (arg0
, 1)))))
8091 return fold_build2_loc (loc
, BIT_XOR_EXPR
, type
,
8092 fold_convert_loc (loc
, type
,
8093 TREE_OPERAND (arg0
, 0)), tem
);
8097 case TRUTH_NOT_EXPR
:
8098 /* Note that the operand of this must be an int
8099 and its values must be 0 or 1.
8100 ("true" is a fixed value perhaps depending on the language,
8101 but we don't handle values other than 1 correctly yet.) */
8102 tem
= fold_truth_not_expr (loc
, arg0
);
8105 return fold_convert_loc (loc
, type
, tem
);
8108 /* Fold *&X to X if X is an lvalue. */
8109 if (TREE_CODE (op0
) == ADDR_EXPR
)
8111 tree op00
= TREE_OPERAND (op0
, 0);
8113 || TREE_CODE (op00
) == PARM_DECL
8114 || TREE_CODE (op00
) == RESULT_DECL
)
8115 && !TREE_READONLY (op00
))
8122 } /* switch (code) */
8126 /* If the operation was a conversion do _not_ mark a resulting constant
8127 with TREE_OVERFLOW if the original constant was not. These conversions
8128 have implementation defined behavior and retaining the TREE_OVERFLOW
8129 flag here would confuse later passes such as VRP. */
8131 fold_unary_ignore_overflow_loc (location_t loc
, enum tree_code code
,
8132 tree type
, tree op0
)
8134 tree res
= fold_unary_loc (loc
, code
, type
, op0
);
8136 && TREE_CODE (res
) == INTEGER_CST
8137 && TREE_CODE (op0
) == INTEGER_CST
8138 && CONVERT_EXPR_CODE_P (code
))
8139 TREE_OVERFLOW (res
) = TREE_OVERFLOW (op0
);
8144 /* Fold a binary bitwise/truth expression of code CODE and type TYPE with
8145 operands OP0 and OP1. LOC is the location of the resulting expression.
8146 ARG0 and ARG1 are the NOP_STRIPed results of OP0 and OP1.
8147 Return the folded expression if folding is successful. Otherwise,
8148 return NULL_TREE. */
8150 fold_truth_andor (location_t loc
, enum tree_code code
, tree type
,
8151 tree arg0
, tree arg1
, tree op0
, tree op1
)
8155 /* We only do these simplifications if we are optimizing. */
8159 /* Check for things like (A || B) && (A || C). We can convert this
8160 to A || (B && C). Note that either operator can be any of the four
8161 truth and/or operations and the transformation will still be
8162 valid. Also note that we only care about order for the
8163 ANDIF and ORIF operators. If B contains side effects, this
8164 might change the truth-value of A. */
8165 if (TREE_CODE (arg0
) == TREE_CODE (arg1
)
8166 && (TREE_CODE (arg0
) == TRUTH_ANDIF_EXPR
8167 || TREE_CODE (arg0
) == TRUTH_ORIF_EXPR
8168 || TREE_CODE (arg0
) == TRUTH_AND_EXPR
8169 || TREE_CODE (arg0
) == TRUTH_OR_EXPR
)
8170 && ! TREE_SIDE_EFFECTS (TREE_OPERAND (arg0
, 1)))
8172 tree a00
= TREE_OPERAND (arg0
, 0);
8173 tree a01
= TREE_OPERAND (arg0
, 1);
8174 tree a10
= TREE_OPERAND (arg1
, 0);
8175 tree a11
= TREE_OPERAND (arg1
, 1);
8176 int commutative
= ((TREE_CODE (arg0
) == TRUTH_OR_EXPR
8177 || TREE_CODE (arg0
) == TRUTH_AND_EXPR
)
8178 && (code
== TRUTH_AND_EXPR
8179 || code
== TRUTH_OR_EXPR
));
8181 if (operand_equal_p (a00
, a10
, 0))
8182 return fold_build2_loc (loc
, TREE_CODE (arg0
), type
, a00
,
8183 fold_build2_loc (loc
, code
, type
, a01
, a11
));
8184 else if (commutative
&& operand_equal_p (a00
, a11
, 0))
8185 return fold_build2_loc (loc
, TREE_CODE (arg0
), type
, a00
,
8186 fold_build2_loc (loc
, code
, type
, a01
, a10
));
8187 else if (commutative
&& operand_equal_p (a01
, a10
, 0))
8188 return fold_build2_loc (loc
, TREE_CODE (arg0
), type
, a01
,
8189 fold_build2_loc (loc
, code
, type
, a00
, a11
));
8191 /* This case if tricky because we must either have commutative
8192 operators or else A10 must not have side-effects. */
8194 else if ((commutative
|| ! TREE_SIDE_EFFECTS (a10
))
8195 && operand_equal_p (a01
, a11
, 0))
8196 return fold_build2_loc (loc
, TREE_CODE (arg0
), type
,
8197 fold_build2_loc (loc
, code
, type
, a00
, a10
),
8201 /* See if we can build a range comparison. */
8202 if ((tem
= fold_range_test (loc
, code
, type
, op0
, op1
)) != 0)
8205 if ((code
== TRUTH_ANDIF_EXPR
&& TREE_CODE (arg0
) == TRUTH_ORIF_EXPR
)
8206 || (code
== TRUTH_ORIF_EXPR
&& TREE_CODE (arg0
) == TRUTH_ANDIF_EXPR
))
8208 tem
= merge_truthop_with_opposite_arm (loc
, arg0
, arg1
, true);
8210 return fold_build2_loc (loc
, code
, type
, tem
, arg1
);
8213 if ((code
== TRUTH_ANDIF_EXPR
&& TREE_CODE (arg1
) == TRUTH_ORIF_EXPR
)
8214 || (code
== TRUTH_ORIF_EXPR
&& TREE_CODE (arg1
) == TRUTH_ANDIF_EXPR
))
8216 tem
= merge_truthop_with_opposite_arm (loc
, arg1
, arg0
, false);
8218 return fold_build2_loc (loc
, code
, type
, arg0
, tem
);
8221 /* Check for the possibility of merging component references. If our
8222 lhs is another similar operation, try to merge its rhs with our
8223 rhs. Then try to merge our lhs and rhs. */
8224 if (TREE_CODE (arg0
) == code
8225 && (tem
= fold_truth_andor_1 (loc
, code
, type
,
8226 TREE_OPERAND (arg0
, 1), arg1
)) != 0)
8227 return fold_build2_loc (loc
, code
, type
, TREE_OPERAND (arg0
, 0), tem
);
8229 if ((tem
= fold_truth_andor_1 (loc
, code
, type
, arg0
, arg1
)) != 0)
8232 if (LOGICAL_OP_NON_SHORT_CIRCUIT
8233 && !flag_sanitize_coverage
8234 && (code
== TRUTH_AND_EXPR
8235 || code
== TRUTH_ANDIF_EXPR
8236 || code
== TRUTH_OR_EXPR
8237 || code
== TRUTH_ORIF_EXPR
))
8239 enum tree_code ncode
, icode
;
8241 ncode
= (code
== TRUTH_ANDIF_EXPR
|| code
== TRUTH_AND_EXPR
)
8242 ? TRUTH_AND_EXPR
: TRUTH_OR_EXPR
;
8243 icode
= ncode
== TRUTH_AND_EXPR
? TRUTH_ANDIF_EXPR
: TRUTH_ORIF_EXPR
;
8245 /* Transform ((A AND-IF B) AND[-IF] C) into (A AND-IF (B AND C)),
8246 or ((A OR-IF B) OR[-IF] C) into (A OR-IF (B OR C))
8247 We don't want to pack more than two leafs to a non-IF AND/OR
8249 If tree-code of left-hand operand isn't an AND/OR-IF code and not
8250 equal to IF-CODE, then we don't want to add right-hand operand.
8251 If the inner right-hand side of left-hand operand has
8252 side-effects, or isn't simple, then we can't add to it,
8253 as otherwise we might destroy if-sequence. */
8254 if (TREE_CODE (arg0
) == icode
8255 && simple_operand_p_2 (arg1
)
8256 /* Needed for sequence points to handle trappings, and
8258 && simple_operand_p_2 (TREE_OPERAND (arg0
, 1)))
8260 tem
= fold_build2_loc (loc
, ncode
, type
, TREE_OPERAND (arg0
, 1),
8262 return fold_build2_loc (loc
, icode
, type
, TREE_OPERAND (arg0
, 0),
8265 /* Same as above but for (A AND[-IF] (B AND-IF C)) -> ((A AND B) AND-IF C),
8266 or (A OR[-IF] (B OR-IF C) -> ((A OR B) OR-IF C). */
8267 else if (TREE_CODE (arg1
) == icode
8268 && simple_operand_p_2 (arg0
)
8269 /* Needed for sequence points to handle trappings, and
8271 && simple_operand_p_2 (TREE_OPERAND (arg1
, 0)))
8273 tem
= fold_build2_loc (loc
, ncode
, type
,
8274 arg0
, TREE_OPERAND (arg1
, 0));
8275 return fold_build2_loc (loc
, icode
, type
, tem
,
8276 TREE_OPERAND (arg1
, 1));
8278 /* Transform (A AND-IF B) into (A AND B), or (A OR-IF B)
8280 For sequence point consistancy, we need to check for trapping,
8281 and side-effects. */
8282 else if (code
== icode
&& simple_operand_p_2 (arg0
)
8283 && simple_operand_p_2 (arg1
))
8284 return fold_build2_loc (loc
, ncode
, type
, arg0
, arg1
);
8290 /* Helper that tries to canonicalize the comparison ARG0 CODE ARG1
8291 by changing CODE to reduce the magnitude of constants involved in
8292 ARG0 of the comparison.
8293 Returns a canonicalized comparison tree if a simplification was
8294 possible, otherwise returns NULL_TREE.
8295 Set *STRICT_OVERFLOW_P to true if the canonicalization is only
8296 valid if signed overflow is undefined. */
8299 maybe_canonicalize_comparison_1 (location_t loc
, enum tree_code code
, tree type
,
8300 tree arg0
, tree arg1
,
8301 bool *strict_overflow_p
)
8303 enum tree_code code0
= TREE_CODE (arg0
);
8304 tree t
, cst0
= NULL_TREE
;
8307 /* Match A +- CST code arg1. We can change this only if overflow
8309 if (!((ANY_INTEGRAL_TYPE_P (TREE_TYPE (arg0
))
8310 && TYPE_OVERFLOW_UNDEFINED (TREE_TYPE (arg0
)))
8311 /* In principle pointers also have undefined overflow behavior,
8312 but that causes problems elsewhere. */
8313 && !POINTER_TYPE_P (TREE_TYPE (arg0
))
8314 && (code0
== MINUS_EXPR
8315 || code0
== PLUS_EXPR
)
8316 && TREE_CODE (TREE_OPERAND (arg0
, 1)) == INTEGER_CST
))
8319 /* Identify the constant in arg0 and its sign. */
8320 cst0
= TREE_OPERAND (arg0
, 1);
8321 sgn0
= tree_int_cst_sgn (cst0
);
8323 /* Overflowed constants and zero will cause problems. */
8324 if (integer_zerop (cst0
)
8325 || TREE_OVERFLOW (cst0
))
8328 /* See if we can reduce the magnitude of the constant in
8329 arg0 by changing the comparison code. */
8330 /* A - CST < arg1 -> A - CST-1 <= arg1. */
8332 && code0
== ((sgn0
== -1) ? PLUS_EXPR
: MINUS_EXPR
))
8334 /* A + CST > arg1 -> A + CST-1 >= arg1. */
8335 else if (code
== GT_EXPR
8336 && code0
== ((sgn0
== -1) ? MINUS_EXPR
: PLUS_EXPR
))
8338 /* A + CST <= arg1 -> A + CST-1 < arg1. */
8339 else if (code
== LE_EXPR
8340 && code0
== ((sgn0
== -1) ? MINUS_EXPR
: PLUS_EXPR
))
8342 /* A - CST >= arg1 -> A - CST-1 > arg1. */
8343 else if (code
== GE_EXPR
8344 && code0
== ((sgn0
== -1) ? PLUS_EXPR
: MINUS_EXPR
))
8348 *strict_overflow_p
= true;
8350 /* Now build the constant reduced in magnitude. But not if that
8351 would produce one outside of its types range. */
8352 if (INTEGRAL_TYPE_P (TREE_TYPE (cst0
))
8354 && TYPE_MIN_VALUE (TREE_TYPE (cst0
))
8355 && tree_int_cst_equal (cst0
, TYPE_MIN_VALUE (TREE_TYPE (cst0
))))
8357 && TYPE_MAX_VALUE (TREE_TYPE (cst0
))
8358 && tree_int_cst_equal (cst0
, TYPE_MAX_VALUE (TREE_TYPE (cst0
))))))
8361 t
= int_const_binop (sgn0
== -1 ? PLUS_EXPR
: MINUS_EXPR
,
8362 cst0
, build_int_cst (TREE_TYPE (cst0
), 1));
8363 t
= fold_build2_loc (loc
, code0
, TREE_TYPE (arg0
), TREE_OPERAND (arg0
, 0), t
);
8364 t
= fold_convert (TREE_TYPE (arg1
), t
);
8366 return fold_build2_loc (loc
, code
, type
, t
, arg1
);
8369 /* Canonicalize the comparison ARG0 CODE ARG1 with type TYPE with undefined
8370 overflow further. Try to decrease the magnitude of constants involved
8371 by changing LE_EXPR and GE_EXPR to LT_EXPR and GT_EXPR or vice versa
8372 and put sole constants at the second argument position.
8373 Returns the canonicalized tree if changed, otherwise NULL_TREE. */
8376 maybe_canonicalize_comparison (location_t loc
, enum tree_code code
, tree type
,
8377 tree arg0
, tree arg1
)
8380 bool strict_overflow_p
;
8381 const char * const warnmsg
= G_("assuming signed overflow does not occur "
8382 "when reducing constant in comparison");
8384 /* Try canonicalization by simplifying arg0. */
8385 strict_overflow_p
= false;
8386 t
= maybe_canonicalize_comparison_1 (loc
, code
, type
, arg0
, arg1
,
8387 &strict_overflow_p
);
8390 if (strict_overflow_p
)
8391 fold_overflow_warning (warnmsg
, WARN_STRICT_OVERFLOW_MAGNITUDE
);
8395 /* Try canonicalization by simplifying arg1 using the swapped
8397 code
= swap_tree_comparison (code
);
8398 strict_overflow_p
= false;
8399 t
= maybe_canonicalize_comparison_1 (loc
, code
, type
, arg1
, arg0
,
8400 &strict_overflow_p
);
8401 if (t
&& strict_overflow_p
)
8402 fold_overflow_warning (warnmsg
, WARN_STRICT_OVERFLOW_MAGNITUDE
);
8406 /* Return whether BASE + OFFSET + BITPOS may wrap around the address
8407 space. This is used to avoid issuing overflow warnings for
8408 expressions like &p->x which can not wrap. */
8411 pointer_may_wrap_p (tree base
, tree offset
, poly_int64 bitpos
)
8413 if (!POINTER_TYPE_P (TREE_TYPE (base
)))
8416 if (maybe_lt (bitpos
, 0))
8419 poly_wide_int wi_offset
;
8420 int precision
= TYPE_PRECISION (TREE_TYPE (base
));
8421 if (offset
== NULL_TREE
)
8422 wi_offset
= wi::zero (precision
);
8423 else if (!poly_int_tree_p (offset
) || TREE_OVERFLOW (offset
))
8426 wi_offset
= wi::to_poly_wide (offset
);
8428 wi::overflow_type overflow
;
8429 poly_wide_int units
= wi::shwi (bits_to_bytes_round_down (bitpos
),
8431 poly_wide_int total
= wi::add (wi_offset
, units
, UNSIGNED
, &overflow
);
8435 poly_uint64 total_hwi
, size
;
8436 if (!total
.to_uhwi (&total_hwi
)
8437 || !poly_int_tree_p (TYPE_SIZE_UNIT (TREE_TYPE (TREE_TYPE (base
))),
8439 || known_eq (size
, 0U))
8442 if (known_le (total_hwi
, size
))
8445 /* We can do slightly better for SIZE if we have an ADDR_EXPR of an
8447 if (TREE_CODE (base
) == ADDR_EXPR
8448 && poly_int_tree_p (TYPE_SIZE_UNIT (TREE_TYPE (TREE_OPERAND (base
, 0))),
8450 && maybe_ne (size
, 0U)
8451 && known_le (total_hwi
, size
))
8457 /* Return a positive integer when the symbol DECL is known to have
8458 a nonzero address, zero when it's known not to (e.g., it's a weak
8459 symbol), and a negative integer when the symbol is not yet in the
8460 symbol table and so whether or not its address is zero is unknown.
8461 For function local objects always return positive integer. */
8463 maybe_nonzero_address (tree decl
)
8465 if (DECL_P (decl
) && decl_in_symtab_p (decl
))
8466 if (struct symtab_node
*symbol
= symtab_node::get_create (decl
))
8467 return symbol
->nonzero_address ();
8469 /* Function local objects are never NULL. */
8471 && (DECL_CONTEXT (decl
)
8472 && TREE_CODE (DECL_CONTEXT (decl
)) == FUNCTION_DECL
8473 && auto_var_in_fn_p (decl
, DECL_CONTEXT (decl
))))
8479 /* Subroutine of fold_binary. This routine performs all of the
8480 transformations that are common to the equality/inequality
8481 operators (EQ_EXPR and NE_EXPR) and the ordering operators
8482 (LT_EXPR, LE_EXPR, GE_EXPR and GT_EXPR). Callers other than
8483 fold_binary should call fold_binary. Fold a comparison with
8484 tree code CODE and type TYPE with operands OP0 and OP1. Return
8485 the folded comparison or NULL_TREE. */
8488 fold_comparison (location_t loc
, enum tree_code code
, tree type
,
8491 const bool equality_code
= (code
== EQ_EXPR
|| code
== NE_EXPR
);
8492 tree arg0
, arg1
, tem
;
8497 STRIP_SIGN_NOPS (arg0
);
8498 STRIP_SIGN_NOPS (arg1
);
8500 /* For comparisons of pointers we can decompose it to a compile time
8501 comparison of the base objects and the offsets into the object.
8502 This requires at least one operand being an ADDR_EXPR or a
8503 POINTER_PLUS_EXPR to do more than the operand_equal_p test below. */
8504 if (POINTER_TYPE_P (TREE_TYPE (arg0
))
8505 && (TREE_CODE (arg0
) == ADDR_EXPR
8506 || TREE_CODE (arg1
) == ADDR_EXPR
8507 || TREE_CODE (arg0
) == POINTER_PLUS_EXPR
8508 || TREE_CODE (arg1
) == POINTER_PLUS_EXPR
))
8510 tree base0
, base1
, offset0
= NULL_TREE
, offset1
= NULL_TREE
;
8511 poly_int64 bitsize
, bitpos0
= 0, bitpos1
= 0;
8513 int volatilep
, reversep
, unsignedp
;
8514 bool indirect_base0
= false, indirect_base1
= false;
8516 /* Get base and offset for the access. Strip ADDR_EXPR for
8517 get_inner_reference, but put it back by stripping INDIRECT_REF
8518 off the base object if possible. indirect_baseN will be true
8519 if baseN is not an address but refers to the object itself. */
8521 if (TREE_CODE (arg0
) == ADDR_EXPR
)
8524 = get_inner_reference (TREE_OPERAND (arg0
, 0),
8525 &bitsize
, &bitpos0
, &offset0
, &mode
,
8526 &unsignedp
, &reversep
, &volatilep
);
8527 if (TREE_CODE (base0
) == INDIRECT_REF
)
8528 base0
= TREE_OPERAND (base0
, 0);
8530 indirect_base0
= true;
8532 else if (TREE_CODE (arg0
) == POINTER_PLUS_EXPR
)
8534 base0
= TREE_OPERAND (arg0
, 0);
8535 STRIP_SIGN_NOPS (base0
);
8536 if (TREE_CODE (base0
) == ADDR_EXPR
)
8539 = get_inner_reference (TREE_OPERAND (base0
, 0),
8540 &bitsize
, &bitpos0
, &offset0
, &mode
,
8541 &unsignedp
, &reversep
, &volatilep
);
8542 if (TREE_CODE (base0
) == INDIRECT_REF
)
8543 base0
= TREE_OPERAND (base0
, 0);
8545 indirect_base0
= true;
8547 if (offset0
== NULL_TREE
|| integer_zerop (offset0
))
8548 offset0
= TREE_OPERAND (arg0
, 1);
8550 offset0
= size_binop (PLUS_EXPR
, offset0
,
8551 TREE_OPERAND (arg0
, 1));
8552 if (poly_int_tree_p (offset0
))
8554 poly_offset_int tem
= wi::sext (wi::to_poly_offset (offset0
),
8555 TYPE_PRECISION (sizetype
));
8556 tem
<<= LOG2_BITS_PER_UNIT
;
8558 if (tem
.to_shwi (&bitpos0
))
8559 offset0
= NULL_TREE
;
8564 if (TREE_CODE (arg1
) == ADDR_EXPR
)
8567 = get_inner_reference (TREE_OPERAND (arg1
, 0),
8568 &bitsize
, &bitpos1
, &offset1
, &mode
,
8569 &unsignedp
, &reversep
, &volatilep
);
8570 if (TREE_CODE (base1
) == INDIRECT_REF
)
8571 base1
= TREE_OPERAND (base1
, 0);
8573 indirect_base1
= true;
8575 else if (TREE_CODE (arg1
) == POINTER_PLUS_EXPR
)
8577 base1
= TREE_OPERAND (arg1
, 0);
8578 STRIP_SIGN_NOPS (base1
);
8579 if (TREE_CODE (base1
) == ADDR_EXPR
)
8582 = get_inner_reference (TREE_OPERAND (base1
, 0),
8583 &bitsize
, &bitpos1
, &offset1
, &mode
,
8584 &unsignedp
, &reversep
, &volatilep
);
8585 if (TREE_CODE (base1
) == INDIRECT_REF
)
8586 base1
= TREE_OPERAND (base1
, 0);
8588 indirect_base1
= true;
8590 if (offset1
== NULL_TREE
|| integer_zerop (offset1
))
8591 offset1
= TREE_OPERAND (arg1
, 1);
8593 offset1
= size_binop (PLUS_EXPR
, offset1
,
8594 TREE_OPERAND (arg1
, 1));
8595 if (poly_int_tree_p (offset1
))
8597 poly_offset_int tem
= wi::sext (wi::to_poly_offset (offset1
),
8598 TYPE_PRECISION (sizetype
));
8599 tem
<<= LOG2_BITS_PER_UNIT
;
8601 if (tem
.to_shwi (&bitpos1
))
8602 offset1
= NULL_TREE
;
8606 /* If we have equivalent bases we might be able to simplify. */
8607 if (indirect_base0
== indirect_base1
8608 && operand_equal_p (base0
, base1
,
8609 indirect_base0
? OEP_ADDRESS_OF
: 0))
8611 /* We can fold this expression to a constant if the non-constant
8612 offset parts are equal. */
8613 if ((offset0
== offset1
8614 || (offset0
&& offset1
8615 && operand_equal_p (offset0
, offset1
, 0)))
8618 && (DECL_P (base0
) || CONSTANT_CLASS_P (base0
)))
8619 || TYPE_OVERFLOW_UNDEFINED (TREE_TYPE (arg0
))))
8622 && maybe_ne (bitpos0
, bitpos1
)
8623 && (pointer_may_wrap_p (base0
, offset0
, bitpos0
)
8624 || pointer_may_wrap_p (base1
, offset1
, bitpos1
)))
8625 fold_overflow_warning (("assuming pointer wraparound does not "
8626 "occur when comparing P +- C1 with "
8628 WARN_STRICT_OVERFLOW_CONDITIONAL
);
8633 if (known_eq (bitpos0
, bitpos1
))
8634 return constant_boolean_node (true, type
);
8635 if (known_ne (bitpos0
, bitpos1
))
8636 return constant_boolean_node (false, type
);
8639 if (known_ne (bitpos0
, bitpos1
))
8640 return constant_boolean_node (true, type
);
8641 if (known_eq (bitpos0
, bitpos1
))
8642 return constant_boolean_node (false, type
);
8645 if (known_lt (bitpos0
, bitpos1
))
8646 return constant_boolean_node (true, type
);
8647 if (known_ge (bitpos0
, bitpos1
))
8648 return constant_boolean_node (false, type
);
8651 if (known_le (bitpos0
, bitpos1
))
8652 return constant_boolean_node (true, type
);
8653 if (known_gt (bitpos0
, bitpos1
))
8654 return constant_boolean_node (false, type
);
8657 if (known_ge (bitpos0
, bitpos1
))
8658 return constant_boolean_node (true, type
);
8659 if (known_lt (bitpos0
, bitpos1
))
8660 return constant_boolean_node (false, type
);
8663 if (known_gt (bitpos0
, bitpos1
))
8664 return constant_boolean_node (true, type
);
8665 if (known_le (bitpos0
, bitpos1
))
8666 return constant_boolean_node (false, type
);
8671 /* We can simplify the comparison to a comparison of the variable
8672 offset parts if the constant offset parts are equal.
8673 Be careful to use signed sizetype here because otherwise we
8674 mess with array offsets in the wrong way. This is possible
8675 because pointer arithmetic is restricted to retain within an
8676 object and overflow on pointer differences is undefined as of
8677 6.5.6/8 and /9 with respect to the signed ptrdiff_t. */
8678 else if (known_eq (bitpos0
, bitpos1
)
8681 && (DECL_P (base0
) || CONSTANT_CLASS_P (base0
)))
8682 || TYPE_OVERFLOW_UNDEFINED (TREE_TYPE (arg0
))))
8684 /* By converting to signed sizetype we cover middle-end pointer
8685 arithmetic which operates on unsigned pointer types of size
8686 type size and ARRAY_REF offsets which are properly sign or
8687 zero extended from their type in case it is narrower than
8689 if (offset0
== NULL_TREE
)
8690 offset0
= build_int_cst (ssizetype
, 0);
8692 offset0
= fold_convert_loc (loc
, ssizetype
, offset0
);
8693 if (offset1
== NULL_TREE
)
8694 offset1
= build_int_cst (ssizetype
, 0);
8696 offset1
= fold_convert_loc (loc
, ssizetype
, offset1
);
8699 && (pointer_may_wrap_p (base0
, offset0
, bitpos0
)
8700 || pointer_may_wrap_p (base1
, offset1
, bitpos1
)))
8701 fold_overflow_warning (("assuming pointer wraparound does not "
8702 "occur when comparing P +- C1 with "
8704 WARN_STRICT_OVERFLOW_COMPARISON
);
8706 return fold_build2_loc (loc
, code
, type
, offset0
, offset1
);
8709 /* For equal offsets we can simplify to a comparison of the
8711 else if (known_eq (bitpos0
, bitpos1
)
8713 ? base0
!= TREE_OPERAND (arg0
, 0) : base0
!= arg0
)
8715 ? base1
!= TREE_OPERAND (arg1
, 0) : base1
!= arg1
)
8716 && ((offset0
== offset1
)
8717 || (offset0
&& offset1
8718 && operand_equal_p (offset0
, offset1
, 0))))
8721 base0
= build_fold_addr_expr_loc (loc
, base0
);
8723 base1
= build_fold_addr_expr_loc (loc
, base1
);
8724 return fold_build2_loc (loc
, code
, type
, base0
, base1
);
8726 /* Comparison between an ordinary (non-weak) symbol and a null
8727 pointer can be eliminated since such symbols must have a non
8728 null address. In C, relational expressions between pointers
8729 to objects and null pointers are undefined. The results
8730 below follow the C++ rules with the additional property that
8731 every object pointer compares greater than a null pointer.
8733 else if (((DECL_P (base0
)
8734 && maybe_nonzero_address (base0
) > 0
8735 /* Avoid folding references to struct members at offset 0 to
8736 prevent tests like '&ptr->firstmember == 0' from getting
8737 eliminated. When ptr is null, although the -> expression
8738 is strictly speaking invalid, GCC retains it as a matter
8739 of QoI. See PR c/44555. */
8740 && (offset0
== NULL_TREE
&& known_ne (bitpos0
, 0)))
8741 || CONSTANT_CLASS_P (base0
))
8743 /* The caller guarantees that when one of the arguments is
8744 constant (i.e., null in this case) it is second. */
8745 && integer_zerop (arg1
))
8752 return constant_boolean_node (false, type
);
8756 return constant_boolean_node (true, type
);
8763 /* Transform comparisons of the form X +- C1 CMP Y +- C2 to
8764 X CMP Y +- C2 +- C1 for signed X, Y. This is valid if
8765 the resulting offset is smaller in absolute value than the
8766 original one and has the same sign. */
8767 if (ANY_INTEGRAL_TYPE_P (TREE_TYPE (arg0
))
8768 && TYPE_OVERFLOW_UNDEFINED (TREE_TYPE (arg0
))
8769 && (TREE_CODE (arg0
) == PLUS_EXPR
|| TREE_CODE (arg0
) == MINUS_EXPR
)
8770 && (TREE_CODE (TREE_OPERAND (arg0
, 1)) == INTEGER_CST
8771 && !TREE_OVERFLOW (TREE_OPERAND (arg0
, 1)))
8772 && (TREE_CODE (arg1
) == PLUS_EXPR
|| TREE_CODE (arg1
) == MINUS_EXPR
)
8773 && (TREE_CODE (TREE_OPERAND (arg1
, 1)) == INTEGER_CST
8774 && !TREE_OVERFLOW (TREE_OPERAND (arg1
, 1))))
8776 tree const1
= TREE_OPERAND (arg0
, 1);
8777 tree const2
= TREE_OPERAND (arg1
, 1);
8778 tree variable1
= TREE_OPERAND (arg0
, 0);
8779 tree variable2
= TREE_OPERAND (arg1
, 0);
8781 const char * const warnmsg
= G_("assuming signed overflow does not "
8782 "occur when combining constants around "
8785 /* Put the constant on the side where it doesn't overflow and is
8786 of lower absolute value and of same sign than before. */
8787 cst
= int_const_binop (TREE_CODE (arg0
) == TREE_CODE (arg1
)
8788 ? MINUS_EXPR
: PLUS_EXPR
,
8790 if (!TREE_OVERFLOW (cst
)
8791 && tree_int_cst_compare (const2
, cst
) == tree_int_cst_sgn (const2
)
8792 && tree_int_cst_sgn (cst
) == tree_int_cst_sgn (const2
))
8794 fold_overflow_warning (warnmsg
, WARN_STRICT_OVERFLOW_COMPARISON
);
8795 return fold_build2_loc (loc
, code
, type
,
8797 fold_build2_loc (loc
, TREE_CODE (arg1
),
8802 cst
= int_const_binop (TREE_CODE (arg0
) == TREE_CODE (arg1
)
8803 ? MINUS_EXPR
: PLUS_EXPR
,
8805 if (!TREE_OVERFLOW (cst
)
8806 && tree_int_cst_compare (const1
, cst
) == tree_int_cst_sgn (const1
)
8807 && tree_int_cst_sgn (cst
) == tree_int_cst_sgn (const1
))
8809 fold_overflow_warning (warnmsg
, WARN_STRICT_OVERFLOW_COMPARISON
);
8810 return fold_build2_loc (loc
, code
, type
,
8811 fold_build2_loc (loc
, TREE_CODE (arg0
),
8818 tem
= maybe_canonicalize_comparison (loc
, code
, type
, arg0
, arg1
);
8822 /* If we are comparing an expression that just has comparisons
8823 of two integer values, arithmetic expressions of those comparisons,
8824 and constants, we can simplify it. There are only three cases
8825 to check: the two values can either be equal, the first can be
8826 greater, or the second can be greater. Fold the expression for
8827 those three values. Since each value must be 0 or 1, we have
8828 eight possibilities, each of which corresponds to the constant 0
8829 or 1 or one of the six possible comparisons.
8831 This handles common cases like (a > b) == 0 but also handles
8832 expressions like ((x > y) - (y > x)) > 0, which supposedly
8833 occur in macroized code. */
8835 if (TREE_CODE (arg1
) == INTEGER_CST
&& TREE_CODE (arg0
) != INTEGER_CST
)
8837 tree cval1
= 0, cval2
= 0;
8839 if (twoval_comparison_p (arg0
, &cval1
, &cval2
)
8840 /* Don't handle degenerate cases here; they should already
8841 have been handled anyway. */
8842 && cval1
!= 0 && cval2
!= 0
8843 && ! (TREE_CONSTANT (cval1
) && TREE_CONSTANT (cval2
))
8844 && TREE_TYPE (cval1
) == TREE_TYPE (cval2
)
8845 && INTEGRAL_TYPE_P (TREE_TYPE (cval1
))
8846 && TYPE_MAX_VALUE (TREE_TYPE (cval1
))
8847 && TYPE_MAX_VALUE (TREE_TYPE (cval2
))
8848 && ! operand_equal_p (TYPE_MIN_VALUE (TREE_TYPE (cval1
)),
8849 TYPE_MAX_VALUE (TREE_TYPE (cval2
)), 0))
8851 tree maxval
= TYPE_MAX_VALUE (TREE_TYPE (cval1
));
8852 tree minval
= TYPE_MIN_VALUE (TREE_TYPE (cval1
));
8854 /* We can't just pass T to eval_subst in case cval1 or cval2
8855 was the same as ARG1. */
8858 = fold_build2_loc (loc
, code
, type
,
8859 eval_subst (loc
, arg0
, cval1
, maxval
,
8863 = fold_build2_loc (loc
, code
, type
,
8864 eval_subst (loc
, arg0
, cval1
, maxval
,
8868 = fold_build2_loc (loc
, code
, type
,
8869 eval_subst (loc
, arg0
, cval1
, minval
,
8873 /* All three of these results should be 0 or 1. Confirm they are.
8874 Then use those values to select the proper code to use. */
8876 if (TREE_CODE (high_result
) == INTEGER_CST
8877 && TREE_CODE (equal_result
) == INTEGER_CST
8878 && TREE_CODE (low_result
) == INTEGER_CST
)
8880 /* Make a 3-bit mask with the high-order bit being the
8881 value for `>', the next for '=', and the low for '<'. */
8882 switch ((integer_onep (high_result
) * 4)
8883 + (integer_onep (equal_result
) * 2)
8884 + integer_onep (low_result
))
8888 return omit_one_operand_loc (loc
, type
, integer_zero_node
, arg0
);
8909 return omit_one_operand_loc (loc
, type
, integer_one_node
, arg0
);
8912 return fold_build2_loc (loc
, code
, type
, cval1
, cval2
);
8921 /* Subroutine of fold_binary. Optimize complex multiplications of the
8922 form z * conj(z), as pow(realpart(z),2) + pow(imagpart(z),2). The
8923 argument EXPR represents the expression "z" of type TYPE. */
8926 fold_mult_zconjz (location_t loc
, tree type
, tree expr
)
8928 tree itype
= TREE_TYPE (type
);
8929 tree rpart
, ipart
, tem
;
8931 if (TREE_CODE (expr
) == COMPLEX_EXPR
)
8933 rpart
= TREE_OPERAND (expr
, 0);
8934 ipart
= TREE_OPERAND (expr
, 1);
8936 else if (TREE_CODE (expr
) == COMPLEX_CST
)
8938 rpart
= TREE_REALPART (expr
);
8939 ipart
= TREE_IMAGPART (expr
);
8943 expr
= save_expr (expr
);
8944 rpart
= fold_build1_loc (loc
, REALPART_EXPR
, itype
, expr
);
8945 ipart
= fold_build1_loc (loc
, IMAGPART_EXPR
, itype
, expr
);
8948 rpart
= save_expr (rpart
);
8949 ipart
= save_expr (ipart
);
8950 tem
= fold_build2_loc (loc
, PLUS_EXPR
, itype
,
8951 fold_build2_loc (loc
, MULT_EXPR
, itype
, rpart
, rpart
),
8952 fold_build2_loc (loc
, MULT_EXPR
, itype
, ipart
, ipart
));
8953 return fold_build2_loc (loc
, COMPLEX_EXPR
, type
, tem
,
8954 build_zero_cst (itype
));
8958 /* Helper function for fold_vec_perm. Store elements of VECTOR_CST or
8959 CONSTRUCTOR ARG into array ELTS, which has NELTS elements, and return
8960 true if successful. */
8963 vec_cst_ctor_to_array (tree arg
, unsigned int nelts
, tree
*elts
)
8965 unsigned HOST_WIDE_INT i
, nunits
;
8967 if (TREE_CODE (arg
) == VECTOR_CST
8968 && VECTOR_CST_NELTS (arg
).is_constant (&nunits
))
8970 for (i
= 0; i
< nunits
; ++i
)
8971 elts
[i
] = VECTOR_CST_ELT (arg
, i
);
8973 else if (TREE_CODE (arg
) == CONSTRUCTOR
)
8975 constructor_elt
*elt
;
8977 FOR_EACH_VEC_SAFE_ELT (CONSTRUCTOR_ELTS (arg
), i
, elt
)
8978 if (i
>= nelts
|| TREE_CODE (TREE_TYPE (elt
->value
)) == VECTOR_TYPE
)
8981 elts
[i
] = elt
->value
;
8985 for (; i
< nelts
; i
++)
8987 = fold_convert (TREE_TYPE (TREE_TYPE (arg
)), integer_zero_node
);
8991 /* Attempt to fold vector permutation of ARG0 and ARG1 vectors using SEL
8992 selector. Return the folded VECTOR_CST or CONSTRUCTOR if successful,
8993 NULL_TREE otherwise. */
8996 fold_vec_perm (tree type
, tree arg0
, tree arg1
, const vec_perm_indices
&sel
)
8999 unsigned HOST_WIDE_INT nelts
;
9000 bool need_ctor
= false;
9002 if (!sel
.length ().is_constant (&nelts
))
9004 gcc_assert (known_eq (TYPE_VECTOR_SUBPARTS (type
), nelts
)
9005 && known_eq (TYPE_VECTOR_SUBPARTS (TREE_TYPE (arg0
)), nelts
)
9006 && known_eq (TYPE_VECTOR_SUBPARTS (TREE_TYPE (arg1
)), nelts
));
9007 if (TREE_TYPE (TREE_TYPE (arg0
)) != TREE_TYPE (type
)
9008 || TREE_TYPE (TREE_TYPE (arg1
)) != TREE_TYPE (type
))
9011 tree
*in_elts
= XALLOCAVEC (tree
, nelts
* 2);
9012 if (!vec_cst_ctor_to_array (arg0
, nelts
, in_elts
)
9013 || !vec_cst_ctor_to_array (arg1
, nelts
, in_elts
+ nelts
))
9016 tree_vector_builder
out_elts (type
, nelts
, 1);
9017 for (i
= 0; i
< nelts
; i
++)
9019 HOST_WIDE_INT index
;
9020 if (!sel
[i
].is_constant (&index
))
9022 if (!CONSTANT_CLASS_P (in_elts
[index
]))
9024 out_elts
.quick_push (unshare_expr (in_elts
[index
]));
9029 vec
<constructor_elt
, va_gc
> *v
;
9030 vec_alloc (v
, nelts
);
9031 for (i
= 0; i
< nelts
; i
++)
9032 CONSTRUCTOR_APPEND_ELT (v
, NULL_TREE
, out_elts
[i
]);
9033 return build_constructor (type
, v
);
9036 return out_elts
.build ();
9039 /* Try to fold a pointer difference of type TYPE two address expressions of
9040 array references AREF0 and AREF1 using location LOC. Return a
9041 simplified expression for the difference or NULL_TREE. */
9044 fold_addr_of_array_ref_difference (location_t loc
, tree type
,
9045 tree aref0
, tree aref1
,
9046 bool use_pointer_diff
)
9048 tree base0
= TREE_OPERAND (aref0
, 0);
9049 tree base1
= TREE_OPERAND (aref1
, 0);
9050 tree base_offset
= build_int_cst (type
, 0);
9052 /* If the bases are array references as well, recurse. If the bases
9053 are pointer indirections compute the difference of the pointers.
9054 If the bases are equal, we are set. */
9055 if ((TREE_CODE (base0
) == ARRAY_REF
9056 && TREE_CODE (base1
) == ARRAY_REF
9058 = fold_addr_of_array_ref_difference (loc
, type
, base0
, base1
,
9060 || (INDIRECT_REF_P (base0
)
9061 && INDIRECT_REF_P (base1
)
9064 ? fold_binary_loc (loc
, POINTER_DIFF_EXPR
, type
,
9065 TREE_OPERAND (base0
, 0),
9066 TREE_OPERAND (base1
, 0))
9067 : fold_binary_loc (loc
, MINUS_EXPR
, type
,
9069 TREE_OPERAND (base0
, 0)),
9071 TREE_OPERAND (base1
, 0)))))
9072 || operand_equal_p (base0
, base1
, OEP_ADDRESS_OF
))
9074 tree op0
= fold_convert_loc (loc
, type
, TREE_OPERAND (aref0
, 1));
9075 tree op1
= fold_convert_loc (loc
, type
, TREE_OPERAND (aref1
, 1));
9076 tree esz
= fold_convert_loc (loc
, type
, array_ref_element_size (aref0
));
9077 tree diff
= fold_build2_loc (loc
, MINUS_EXPR
, type
, op0
, op1
);
9078 return fold_build2_loc (loc
, PLUS_EXPR
, type
,
9080 fold_build2_loc (loc
, MULT_EXPR
, type
,
9086 /* If the real or vector real constant CST of type TYPE has an exact
9087 inverse, return it, else return NULL. */
9090 exact_inverse (tree type
, tree cst
)
9096 switch (TREE_CODE (cst
))
9099 r
= TREE_REAL_CST (cst
);
9101 if (exact_real_inverse (TYPE_MODE (type
), &r
))
9102 return build_real (type
, r
);
9108 unit_type
= TREE_TYPE (type
);
9109 mode
= TYPE_MODE (unit_type
);
9111 tree_vector_builder elts
;
9112 if (!elts
.new_unary_operation (type
, cst
, false))
9114 unsigned int count
= elts
.encoded_nelts ();
9115 for (unsigned int i
= 0; i
< count
; ++i
)
9117 r
= TREE_REAL_CST (VECTOR_CST_ELT (cst
, i
));
9118 if (!exact_real_inverse (mode
, &r
))
9120 elts
.quick_push (build_real (unit_type
, r
));
9123 return elts
.build ();
9131 /* Mask out the tz least significant bits of X of type TYPE where
9132 tz is the number of trailing zeroes in Y. */
9134 mask_with_tz (tree type
, const wide_int
&x
, const wide_int
&y
)
9136 int tz
= wi::ctz (y
);
9138 return wi::mask (tz
, true, TYPE_PRECISION (type
)) & x
;
9142 /* Return true when T is an address and is known to be nonzero.
9143 For floating point we further ensure that T is not denormal.
9144 Similar logic is present in nonzero_address in rtlanal.h.
9146 If the return value is based on the assumption that signed overflow
9147 is undefined, set *STRICT_OVERFLOW_P to true; otherwise, don't
9148 change *STRICT_OVERFLOW_P. */
9151 tree_expr_nonzero_warnv_p (tree t
, bool *strict_overflow_p
)
9153 tree type
= TREE_TYPE (t
);
9154 enum tree_code code
;
9156 /* Doing something useful for floating point would need more work. */
9157 if (!INTEGRAL_TYPE_P (type
) && !POINTER_TYPE_P (type
))
9160 code
= TREE_CODE (t
);
9161 switch (TREE_CODE_CLASS (code
))
9164 return tree_unary_nonzero_warnv_p (code
, type
, TREE_OPERAND (t
, 0),
9167 case tcc_comparison
:
9168 return tree_binary_nonzero_warnv_p (code
, type
,
9169 TREE_OPERAND (t
, 0),
9170 TREE_OPERAND (t
, 1),
9173 case tcc_declaration
:
9175 return tree_single_nonzero_warnv_p (t
, strict_overflow_p
);
9183 case TRUTH_NOT_EXPR
:
9184 return tree_unary_nonzero_warnv_p (code
, type
, TREE_OPERAND (t
, 0),
9187 case TRUTH_AND_EXPR
:
9189 case TRUTH_XOR_EXPR
:
9190 return tree_binary_nonzero_warnv_p (code
, type
,
9191 TREE_OPERAND (t
, 0),
9192 TREE_OPERAND (t
, 1),
9200 case WITH_SIZE_EXPR
:
9202 return tree_single_nonzero_warnv_p (t
, strict_overflow_p
);
9207 return tree_expr_nonzero_warnv_p (TREE_OPERAND (t
, 1),
9211 return tree_expr_nonzero_warnv_p (TREE_OPERAND (t
, 0),
9216 tree fndecl
= get_callee_fndecl (t
);
9217 if (!fndecl
) return false;
9218 if (flag_delete_null_pointer_checks
&& !flag_check_new
9219 && DECL_IS_OPERATOR_NEW (fndecl
)
9220 && !TREE_NOTHROW (fndecl
))
9222 if (flag_delete_null_pointer_checks
9223 && lookup_attribute ("returns_nonnull",
9224 TYPE_ATTRIBUTES (TREE_TYPE (fndecl
))))
9226 return alloca_call_p (t
);
9235 /* Return true when T is an address and is known to be nonzero.
9236 Handle warnings about undefined signed overflow. */
9239 tree_expr_nonzero_p (tree t
)
9241 bool ret
, strict_overflow_p
;
9243 strict_overflow_p
= false;
9244 ret
= tree_expr_nonzero_warnv_p (t
, &strict_overflow_p
);
9245 if (strict_overflow_p
)
9246 fold_overflow_warning (("assuming signed overflow does not occur when "
9247 "determining that expression is always "
9249 WARN_STRICT_OVERFLOW_MISC
);
9253 /* Return true if T is known not to be equal to an integer W. */
9256 expr_not_equal_to (tree t
, const wide_int
&w
)
9258 wide_int min
, max
, nz
;
9259 value_range_kind rtype
;
9260 switch (TREE_CODE (t
))
9263 return wi::to_wide (t
) != w
;
9266 if (!INTEGRAL_TYPE_P (TREE_TYPE (t
)))
9268 rtype
= get_range_info (t
, &min
, &max
);
9269 if (rtype
== VR_RANGE
)
9271 if (wi::lt_p (max
, w
, TYPE_SIGN (TREE_TYPE (t
))))
9273 if (wi::lt_p (w
, min
, TYPE_SIGN (TREE_TYPE (t
))))
9276 else if (rtype
== VR_ANTI_RANGE
9277 && wi::le_p (min
, w
, TYPE_SIGN (TREE_TYPE (t
)))
9278 && wi::le_p (w
, max
, TYPE_SIGN (TREE_TYPE (t
))))
9280 /* If T has some known zero bits and W has any of those bits set,
9281 then T is known not to be equal to W. */
9282 if (wi::ne_p (wi::zext (wi::bit_and_not (w
, get_nonzero_bits (t
)),
9283 TYPE_PRECISION (TREE_TYPE (t
))), 0))
9292 /* Fold a binary expression of code CODE and type TYPE with operands
9293 OP0 and OP1. LOC is the location of the resulting expression.
9294 Return the folded expression if folding is successful. Otherwise,
9295 return NULL_TREE. */
9298 fold_binary_loc (location_t loc
, enum tree_code code
, tree type
,
9301 enum tree_code_class kind
= TREE_CODE_CLASS (code
);
9302 tree arg0
, arg1
, tem
;
9303 tree t1
= NULL_TREE
;
9304 bool strict_overflow_p
;
9307 gcc_assert (IS_EXPR_CODE_CLASS (kind
)
9308 && TREE_CODE_LENGTH (code
) == 2
9310 && op1
!= NULL_TREE
);
9315 /* Strip any conversions that don't change the mode. This is
9316 safe for every expression, except for a comparison expression
9317 because its signedness is derived from its operands. So, in
9318 the latter case, only strip conversions that don't change the
9319 signedness. MIN_EXPR/MAX_EXPR also need signedness of arguments
9322 Note that this is done as an internal manipulation within the
9323 constant folder, in order to find the simplest representation
9324 of the arguments so that their form can be studied. In any
9325 cases, the appropriate type conversions should be put back in
9326 the tree that will get out of the constant folder. */
9328 if (kind
== tcc_comparison
|| code
== MIN_EXPR
|| code
== MAX_EXPR
)
9330 STRIP_SIGN_NOPS (arg0
);
9331 STRIP_SIGN_NOPS (arg1
);
9339 /* Note that TREE_CONSTANT isn't enough: static var addresses are
9340 constant but we can't do arithmetic on them. */
9341 if (CONSTANT_CLASS_P (arg0
) && CONSTANT_CLASS_P (arg1
))
9343 tem
= const_binop (code
, type
, arg0
, arg1
);
9344 if (tem
!= NULL_TREE
)
9346 if (TREE_TYPE (tem
) != type
)
9347 tem
= fold_convert_loc (loc
, type
, tem
);
9352 /* If this is a commutative operation, and ARG0 is a constant, move it
9353 to ARG1 to reduce the number of tests below. */
9354 if (commutative_tree_code (code
)
9355 && tree_swap_operands_p (arg0
, arg1
))
9356 return fold_build2_loc (loc
, code
, type
, op1
, op0
);
9358 /* Likewise if this is a comparison, and ARG0 is a constant, move it
9359 to ARG1 to reduce the number of tests below. */
9360 if (kind
== tcc_comparison
9361 && tree_swap_operands_p (arg0
, arg1
))
9362 return fold_build2_loc (loc
, swap_tree_comparison (code
), type
, op1
, op0
);
9364 tem
= generic_simplify (loc
, code
, type
, op0
, op1
);
9368 /* ARG0 is the first operand of EXPR, and ARG1 is the second operand.
9370 First check for cases where an arithmetic operation is applied to a
9371 compound, conditional, or comparison operation. Push the arithmetic
9372 operation inside the compound or conditional to see if any folding
9373 can then be done. Convert comparison to conditional for this purpose.
9374 The also optimizes non-constant cases that used to be done in
9377 Before we do that, see if this is a BIT_AND_EXPR or a BIT_IOR_EXPR,
9378 one of the operands is a comparison and the other is a comparison, a
9379 BIT_AND_EXPR with the constant 1, or a truth value. In that case, the
9380 code below would make the expression more complex. Change it to a
9381 TRUTH_{AND,OR}_EXPR. Likewise, convert a similar NE_EXPR to
9382 TRUTH_XOR_EXPR and an EQ_EXPR to the inversion of a TRUTH_XOR_EXPR. */
9384 if ((code
== BIT_AND_EXPR
|| code
== BIT_IOR_EXPR
9385 || code
== EQ_EXPR
|| code
== NE_EXPR
)
9386 && !VECTOR_TYPE_P (TREE_TYPE (arg0
))
9387 && ((truth_value_p (TREE_CODE (arg0
))
9388 && (truth_value_p (TREE_CODE (arg1
))
9389 || (TREE_CODE (arg1
) == BIT_AND_EXPR
9390 && integer_onep (TREE_OPERAND (arg1
, 1)))))
9391 || (truth_value_p (TREE_CODE (arg1
))
9392 && (truth_value_p (TREE_CODE (arg0
))
9393 || (TREE_CODE (arg0
) == BIT_AND_EXPR
9394 && integer_onep (TREE_OPERAND (arg0
, 1)))))))
9396 tem
= fold_build2_loc (loc
, code
== BIT_AND_EXPR
? TRUTH_AND_EXPR
9397 : code
== BIT_IOR_EXPR
? TRUTH_OR_EXPR
9400 fold_convert_loc (loc
, boolean_type_node
, arg0
),
9401 fold_convert_loc (loc
, boolean_type_node
, arg1
));
9403 if (code
== EQ_EXPR
)
9404 tem
= invert_truthvalue_loc (loc
, tem
);
9406 return fold_convert_loc (loc
, type
, tem
);
9409 if (TREE_CODE_CLASS (code
) == tcc_binary
9410 || TREE_CODE_CLASS (code
) == tcc_comparison
)
9412 if (TREE_CODE (arg0
) == COMPOUND_EXPR
)
9414 tem
= fold_build2_loc (loc
, code
, type
,
9415 fold_convert_loc (loc
, TREE_TYPE (op0
),
9416 TREE_OPERAND (arg0
, 1)), op1
);
9417 return build2_loc (loc
, COMPOUND_EXPR
, type
, TREE_OPERAND (arg0
, 0),
9420 if (TREE_CODE (arg1
) == COMPOUND_EXPR
)
9422 tem
= fold_build2_loc (loc
, code
, type
, op0
,
9423 fold_convert_loc (loc
, TREE_TYPE (op1
),
9424 TREE_OPERAND (arg1
, 1)));
9425 return build2_loc (loc
, COMPOUND_EXPR
, type
, TREE_OPERAND (arg1
, 0),
9429 if (TREE_CODE (arg0
) == COND_EXPR
9430 || TREE_CODE (arg0
) == VEC_COND_EXPR
9431 || COMPARISON_CLASS_P (arg0
))
9433 tem
= fold_binary_op_with_conditional_arg (loc
, code
, type
, op0
, op1
,
9435 /*cond_first_p=*/1);
9436 if (tem
!= NULL_TREE
)
9440 if (TREE_CODE (arg1
) == COND_EXPR
9441 || TREE_CODE (arg1
) == VEC_COND_EXPR
9442 || COMPARISON_CLASS_P (arg1
))
9444 tem
= fold_binary_op_with_conditional_arg (loc
, code
, type
, op0
, op1
,
9446 /*cond_first_p=*/0);
9447 if (tem
!= NULL_TREE
)
9455 /* MEM[&MEM[p, CST1], CST2] -> MEM[p, CST1 + CST2]. */
9456 if (TREE_CODE (arg0
) == ADDR_EXPR
9457 && TREE_CODE (TREE_OPERAND (arg0
, 0)) == MEM_REF
)
9459 tree iref
= TREE_OPERAND (arg0
, 0);
9460 return fold_build2 (MEM_REF
, type
,
9461 TREE_OPERAND (iref
, 0),
9462 int_const_binop (PLUS_EXPR
, arg1
,
9463 TREE_OPERAND (iref
, 1)));
9466 /* MEM[&a.b, CST2] -> MEM[&a, offsetof (a, b) + CST2]. */
9467 if (TREE_CODE (arg0
) == ADDR_EXPR
9468 && handled_component_p (TREE_OPERAND (arg0
, 0)))
9472 base
= get_addr_base_and_unit_offset (TREE_OPERAND (arg0
, 0),
9476 return fold_build2 (MEM_REF
, type
,
9477 build_fold_addr_expr (base
),
9478 int_const_binop (PLUS_EXPR
, arg1
,
9479 size_int (coffset
)));
9484 case POINTER_PLUS_EXPR
:
9485 /* INT +p INT -> (PTR)(INT + INT). Stripping types allows for this. */
9486 if (INTEGRAL_TYPE_P (TREE_TYPE (arg1
))
9487 && INTEGRAL_TYPE_P (TREE_TYPE (arg0
)))
9488 return fold_convert_loc (loc
, type
,
9489 fold_build2_loc (loc
, PLUS_EXPR
, sizetype
,
9490 fold_convert_loc (loc
, sizetype
,
9492 fold_convert_loc (loc
, sizetype
,
9498 if (INTEGRAL_TYPE_P (type
) || VECTOR_INTEGER_TYPE_P (type
))
9500 /* X + (X / CST) * -CST is X % CST. */
9501 if (TREE_CODE (arg1
) == MULT_EXPR
9502 && TREE_CODE (TREE_OPERAND (arg1
, 0)) == TRUNC_DIV_EXPR
9503 && operand_equal_p (arg0
,
9504 TREE_OPERAND (TREE_OPERAND (arg1
, 0), 0), 0))
9506 tree cst0
= TREE_OPERAND (TREE_OPERAND (arg1
, 0), 1);
9507 tree cst1
= TREE_OPERAND (arg1
, 1);
9508 tree sum
= fold_binary_loc (loc
, PLUS_EXPR
, TREE_TYPE (cst1
),
9510 if (sum
&& integer_zerop (sum
))
9511 return fold_convert_loc (loc
, type
,
9512 fold_build2_loc (loc
, TRUNC_MOD_EXPR
,
9513 TREE_TYPE (arg0
), arg0
,
9518 /* Handle (A1 * C1) + (A2 * C2) with A1, A2 or C1, C2 being the same or
9519 one. Make sure the type is not saturating and has the signedness of
9520 the stripped operands, as fold_plusminus_mult_expr will re-associate.
9521 ??? The latter condition should use TYPE_OVERFLOW_* flags instead. */
9522 if ((TREE_CODE (arg0
) == MULT_EXPR
9523 || TREE_CODE (arg1
) == MULT_EXPR
)
9524 && !TYPE_SATURATING (type
)
9525 && TYPE_UNSIGNED (type
) == TYPE_UNSIGNED (TREE_TYPE (arg0
))
9526 && TYPE_UNSIGNED (type
) == TYPE_UNSIGNED (TREE_TYPE (arg1
))
9527 && (!FLOAT_TYPE_P (type
) || flag_associative_math
))
9529 tree tem
= fold_plusminus_mult_expr (loc
, code
, type
, arg0
, arg1
);
9534 if (! FLOAT_TYPE_P (type
))
9536 /* Reassociate (plus (plus (mult) (foo)) (mult)) as
9537 (plus (plus (mult) (mult)) (foo)) so that we can
9538 take advantage of the factoring cases below. */
9539 if (ANY_INTEGRAL_TYPE_P (type
)
9540 && TYPE_OVERFLOW_WRAPS (type
)
9541 && (((TREE_CODE (arg0
) == PLUS_EXPR
9542 || TREE_CODE (arg0
) == MINUS_EXPR
)
9543 && TREE_CODE (arg1
) == MULT_EXPR
)
9544 || ((TREE_CODE (arg1
) == PLUS_EXPR
9545 || TREE_CODE (arg1
) == MINUS_EXPR
)
9546 && TREE_CODE (arg0
) == MULT_EXPR
)))
9548 tree parg0
, parg1
, parg
, marg
;
9549 enum tree_code pcode
;
9551 if (TREE_CODE (arg1
) == MULT_EXPR
)
9552 parg
= arg0
, marg
= arg1
;
9554 parg
= arg1
, marg
= arg0
;
9555 pcode
= TREE_CODE (parg
);
9556 parg0
= TREE_OPERAND (parg
, 0);
9557 parg1
= TREE_OPERAND (parg
, 1);
9561 if (TREE_CODE (parg0
) == MULT_EXPR
9562 && TREE_CODE (parg1
) != MULT_EXPR
)
9563 return fold_build2_loc (loc
, pcode
, type
,
9564 fold_build2_loc (loc
, PLUS_EXPR
, type
,
9565 fold_convert_loc (loc
, type
,
9567 fold_convert_loc (loc
, type
,
9569 fold_convert_loc (loc
, type
, parg1
));
9570 if (TREE_CODE (parg0
) != MULT_EXPR
9571 && TREE_CODE (parg1
) == MULT_EXPR
)
9573 fold_build2_loc (loc
, PLUS_EXPR
, type
,
9574 fold_convert_loc (loc
, type
, parg0
),
9575 fold_build2_loc (loc
, pcode
, type
,
9576 fold_convert_loc (loc
, type
, marg
),
9577 fold_convert_loc (loc
, type
,
9583 /* Fold __complex__ ( x, 0 ) + __complex__ ( 0, y )
9584 to __complex__ ( x, y ). This is not the same for SNaNs or
9585 if signed zeros are involved. */
9586 if (!HONOR_SNANS (element_mode (arg0
))
9587 && !HONOR_SIGNED_ZEROS (element_mode (arg0
))
9588 && COMPLEX_FLOAT_TYPE_P (TREE_TYPE (arg0
)))
9590 tree rtype
= TREE_TYPE (TREE_TYPE (arg0
));
9591 tree arg0r
= fold_unary_loc (loc
, REALPART_EXPR
, rtype
, arg0
);
9592 tree arg0i
= fold_unary_loc (loc
, IMAGPART_EXPR
, rtype
, arg0
);
9593 bool arg0rz
= false, arg0iz
= false;
9594 if ((arg0r
&& (arg0rz
= real_zerop (arg0r
)))
9595 || (arg0i
&& (arg0iz
= real_zerop (arg0i
))))
9597 tree arg1r
= fold_unary_loc (loc
, REALPART_EXPR
, rtype
, arg1
);
9598 tree arg1i
= fold_unary_loc (loc
, IMAGPART_EXPR
, rtype
, arg1
);
9599 if (arg0rz
&& arg1i
&& real_zerop (arg1i
))
9601 tree rp
= arg1r
? arg1r
9602 : build1 (REALPART_EXPR
, rtype
, arg1
);
9603 tree ip
= arg0i
? arg0i
9604 : build1 (IMAGPART_EXPR
, rtype
, arg0
);
9605 return fold_build2_loc (loc
, COMPLEX_EXPR
, type
, rp
, ip
);
9607 else if (arg0iz
&& arg1r
&& real_zerop (arg1r
))
9609 tree rp
= arg0r
? arg0r
9610 : build1 (REALPART_EXPR
, rtype
, arg0
);
9611 tree ip
= arg1i
? arg1i
9612 : build1 (IMAGPART_EXPR
, rtype
, arg1
);
9613 return fold_build2_loc (loc
, COMPLEX_EXPR
, type
, rp
, ip
);
9618 /* Convert a + (b*c + d*e) into (a + b*c) + d*e.
9619 We associate floats only if the user has specified
9620 -fassociative-math. */
9621 if (flag_associative_math
9622 && TREE_CODE (arg1
) == PLUS_EXPR
9623 && TREE_CODE (arg0
) != MULT_EXPR
)
9625 tree tree10
= TREE_OPERAND (arg1
, 0);
9626 tree tree11
= TREE_OPERAND (arg1
, 1);
9627 if (TREE_CODE (tree11
) == MULT_EXPR
9628 && TREE_CODE (tree10
) == MULT_EXPR
)
9631 tree0
= fold_build2_loc (loc
, PLUS_EXPR
, type
, arg0
, tree10
);
9632 return fold_build2_loc (loc
, PLUS_EXPR
, type
, tree0
, tree11
);
9635 /* Convert (b*c + d*e) + a into b*c + (d*e +a).
9636 We associate floats only if the user has specified
9637 -fassociative-math. */
9638 if (flag_associative_math
9639 && TREE_CODE (arg0
) == PLUS_EXPR
9640 && TREE_CODE (arg1
) != MULT_EXPR
)
9642 tree tree00
= TREE_OPERAND (arg0
, 0);
9643 tree tree01
= TREE_OPERAND (arg0
, 1);
9644 if (TREE_CODE (tree01
) == MULT_EXPR
9645 && TREE_CODE (tree00
) == MULT_EXPR
)
9648 tree0
= fold_build2_loc (loc
, PLUS_EXPR
, type
, tree01
, arg1
);
9649 return fold_build2_loc (loc
, PLUS_EXPR
, type
, tree00
, tree0
);
9655 /* (A << C1) + (A >> C2) if A is unsigned and C1+C2 is the size of A
9656 is a rotate of A by C1 bits. */
9657 /* (A << B) + (A >> (Z - B)) if A is unsigned and Z is the size of A
9658 is a rotate of A by B bits.
9659 Similarly for (A << B) | (A >> (-B & C3)) where C3 is Z-1,
9660 though in this case CODE must be | and not + or ^, otherwise
9661 it doesn't return A when B is 0. */
9663 enum tree_code code0
, code1
;
9665 code0
= TREE_CODE (arg0
);
9666 code1
= TREE_CODE (arg1
);
9667 if (((code0
== RSHIFT_EXPR
&& code1
== LSHIFT_EXPR
)
9668 || (code1
== RSHIFT_EXPR
&& code0
== LSHIFT_EXPR
))
9669 && operand_equal_p (TREE_OPERAND (arg0
, 0),
9670 TREE_OPERAND (arg1
, 0), 0)
9671 && (rtype
= TREE_TYPE (TREE_OPERAND (arg0
, 0)),
9672 TYPE_UNSIGNED (rtype
))
9673 /* Only create rotates in complete modes. Other cases are not
9674 expanded properly. */
9675 && (element_precision (rtype
)
9676 == GET_MODE_UNIT_PRECISION (TYPE_MODE (rtype
))))
9678 tree tree01
, tree11
;
9679 tree orig_tree01
, orig_tree11
;
9680 enum tree_code code01
, code11
;
9682 tree01
= orig_tree01
= TREE_OPERAND (arg0
, 1);
9683 tree11
= orig_tree11
= TREE_OPERAND (arg1
, 1);
9684 STRIP_NOPS (tree01
);
9685 STRIP_NOPS (tree11
);
9686 code01
= TREE_CODE (tree01
);
9687 code11
= TREE_CODE (tree11
);
9688 if (code11
!= MINUS_EXPR
9689 && (code01
== MINUS_EXPR
|| code01
== BIT_AND_EXPR
))
9691 std::swap (code0
, code1
);
9692 std::swap (code01
, code11
);
9693 std::swap (tree01
, tree11
);
9694 std::swap (orig_tree01
, orig_tree11
);
9696 if (code01
== INTEGER_CST
9697 && code11
== INTEGER_CST
9698 && (wi::to_widest (tree01
) + wi::to_widest (tree11
)
9699 == element_precision (rtype
)))
9701 tem
= build2_loc (loc
, LROTATE_EXPR
,
9702 rtype
, TREE_OPERAND (arg0
, 0),
9703 code0
== LSHIFT_EXPR
9704 ? orig_tree01
: orig_tree11
);
9705 return fold_convert_loc (loc
, type
, tem
);
9707 else if (code11
== MINUS_EXPR
)
9709 tree tree110
, tree111
;
9710 tree110
= TREE_OPERAND (tree11
, 0);
9711 tree111
= TREE_OPERAND (tree11
, 1);
9712 STRIP_NOPS (tree110
);
9713 STRIP_NOPS (tree111
);
9714 if (TREE_CODE (tree110
) == INTEGER_CST
9715 && compare_tree_int (tree110
,
9716 element_precision (rtype
)) == 0
9717 && operand_equal_p (tree01
, tree111
, 0))
9719 tem
= build2_loc (loc
, (code0
== LSHIFT_EXPR
9720 ? LROTATE_EXPR
: RROTATE_EXPR
),
9721 rtype
, TREE_OPERAND (arg0
, 0),
9723 return fold_convert_loc (loc
, type
, tem
);
9726 else if (code
== BIT_IOR_EXPR
9727 && code11
== BIT_AND_EXPR
9728 && pow2p_hwi (element_precision (rtype
)))
9730 tree tree110
, tree111
;
9731 tree110
= TREE_OPERAND (tree11
, 0);
9732 tree111
= TREE_OPERAND (tree11
, 1);
9733 STRIP_NOPS (tree110
);
9734 STRIP_NOPS (tree111
);
9735 if (TREE_CODE (tree110
) == NEGATE_EXPR
9736 && TREE_CODE (tree111
) == INTEGER_CST
9737 && compare_tree_int (tree111
,
9738 element_precision (rtype
) - 1) == 0
9739 && operand_equal_p (tree01
, TREE_OPERAND (tree110
, 0), 0))
9741 tem
= build2_loc (loc
, (code0
== LSHIFT_EXPR
9742 ? LROTATE_EXPR
: RROTATE_EXPR
),
9743 rtype
, TREE_OPERAND (arg0
, 0),
9745 return fold_convert_loc (loc
, type
, tem
);
9752 /* In most languages, can't associate operations on floats through
9753 parentheses. Rather than remember where the parentheses were, we
9754 don't associate floats at all, unless the user has specified
9756 And, we need to make sure type is not saturating. */
9758 if ((! FLOAT_TYPE_P (type
) || flag_associative_math
)
9759 && !TYPE_SATURATING (type
))
9761 tree var0
, minus_var0
, con0
, minus_con0
, lit0
, minus_lit0
;
9762 tree var1
, minus_var1
, con1
, minus_con1
, lit1
, minus_lit1
;
9766 /* Split both trees into variables, constants, and literals. Then
9767 associate each group together, the constants with literals,
9768 then the result with variables. This increases the chances of
9769 literals being recombined later and of generating relocatable
9770 expressions for the sum of a constant and literal. */
9771 var0
= split_tree (arg0
, type
, code
,
9772 &minus_var0
, &con0
, &minus_con0
,
9773 &lit0
, &minus_lit0
, 0);
9774 var1
= split_tree (arg1
, type
, code
,
9775 &minus_var1
, &con1
, &minus_con1
,
9776 &lit1
, &minus_lit1
, code
== MINUS_EXPR
);
9778 /* Recombine MINUS_EXPR operands by using PLUS_EXPR. */
9779 if (code
== MINUS_EXPR
)
9782 /* With undefined overflow prefer doing association in a type
9783 which wraps on overflow, if that is one of the operand types. */
9784 if ((POINTER_TYPE_P (type
) || INTEGRAL_TYPE_P (type
))
9785 && !TYPE_OVERFLOW_WRAPS (type
))
9787 if (INTEGRAL_TYPE_P (TREE_TYPE (arg0
))
9788 && TYPE_OVERFLOW_WRAPS (TREE_TYPE (arg0
)))
9789 atype
= TREE_TYPE (arg0
);
9790 else if (INTEGRAL_TYPE_P (TREE_TYPE (arg1
))
9791 && TYPE_OVERFLOW_WRAPS (TREE_TYPE (arg1
)))
9792 atype
= TREE_TYPE (arg1
);
9793 gcc_assert (TYPE_PRECISION (atype
) == TYPE_PRECISION (type
));
9796 /* With undefined overflow we can only associate constants with one
9797 variable, and constants whose association doesn't overflow. */
9798 if ((POINTER_TYPE_P (atype
) || INTEGRAL_TYPE_P (atype
))
9799 && !TYPE_OVERFLOW_WRAPS (atype
))
9801 if ((var0
&& var1
) || (minus_var0
&& minus_var1
))
9803 /* ??? If split_tree would handle NEGATE_EXPR we could
9804 simply reject these cases and the allowed cases would
9805 be the var0/minus_var1 ones. */
9806 tree tmp0
= var0
? var0
: minus_var0
;
9807 tree tmp1
= var1
? var1
: minus_var1
;
9808 bool one_neg
= false;
9810 if (TREE_CODE (tmp0
) == NEGATE_EXPR
)
9812 tmp0
= TREE_OPERAND (tmp0
, 0);
9815 if (CONVERT_EXPR_P (tmp0
)
9816 && INTEGRAL_TYPE_P (TREE_TYPE (TREE_OPERAND (tmp0
, 0)))
9817 && (TYPE_PRECISION (TREE_TYPE (TREE_OPERAND (tmp0
, 0)))
9818 <= TYPE_PRECISION (atype
)))
9819 tmp0
= TREE_OPERAND (tmp0
, 0);
9820 if (TREE_CODE (tmp1
) == NEGATE_EXPR
)
9822 tmp1
= TREE_OPERAND (tmp1
, 0);
9825 if (CONVERT_EXPR_P (tmp1
)
9826 && INTEGRAL_TYPE_P (TREE_TYPE (TREE_OPERAND (tmp1
, 0)))
9827 && (TYPE_PRECISION (TREE_TYPE (TREE_OPERAND (tmp1
, 0)))
9828 <= TYPE_PRECISION (atype
)))
9829 tmp1
= TREE_OPERAND (tmp1
, 0);
9830 /* The only case we can still associate with two variables
9831 is if they cancel out. */
9833 || !operand_equal_p (tmp0
, tmp1
, 0))
9836 else if ((var0
&& minus_var1
9837 && ! operand_equal_p (var0
, minus_var1
, 0))
9838 || (minus_var0
&& var1
9839 && ! operand_equal_p (minus_var0
, var1
, 0)))
9843 /* Only do something if we found more than two objects. Otherwise,
9844 nothing has changed and we risk infinite recursion. */
9846 && ((var0
!= 0) + (var1
!= 0)
9847 + (minus_var0
!= 0) + (minus_var1
!= 0)
9848 + (con0
!= 0) + (con1
!= 0)
9849 + (minus_con0
!= 0) + (minus_con1
!= 0)
9850 + (lit0
!= 0) + (lit1
!= 0)
9851 + (minus_lit0
!= 0) + (minus_lit1
!= 0)) > 2)
9853 var0
= associate_trees (loc
, var0
, var1
, code
, atype
);
9854 minus_var0
= associate_trees (loc
, minus_var0
, minus_var1
,
9856 con0
= associate_trees (loc
, con0
, con1
, code
, atype
);
9857 minus_con0
= associate_trees (loc
, minus_con0
, minus_con1
,
9859 lit0
= associate_trees (loc
, lit0
, lit1
, code
, atype
);
9860 minus_lit0
= associate_trees (loc
, minus_lit0
, minus_lit1
,
9863 if (minus_var0
&& var0
)
9865 var0
= associate_trees (loc
, var0
, minus_var0
,
9869 if (minus_con0
&& con0
)
9871 con0
= associate_trees (loc
, con0
, minus_con0
,
9876 /* Preserve the MINUS_EXPR if the negative part of the literal is
9877 greater than the positive part. Otherwise, the multiplicative
9878 folding code (i.e extract_muldiv) may be fooled in case
9879 unsigned constants are subtracted, like in the following
9880 example: ((X*2 + 4) - 8U)/2. */
9881 if (minus_lit0
&& lit0
)
9883 if (TREE_CODE (lit0
) == INTEGER_CST
9884 && TREE_CODE (minus_lit0
) == INTEGER_CST
9885 && tree_int_cst_lt (lit0
, minus_lit0
)
9886 /* But avoid ending up with only negated parts. */
9889 minus_lit0
= associate_trees (loc
, minus_lit0
, lit0
,
9895 lit0
= associate_trees (loc
, lit0
, minus_lit0
,
9901 /* Don't introduce overflows through reassociation. */
9902 if ((lit0
&& TREE_OVERFLOW_P (lit0
))
9903 || (minus_lit0
&& TREE_OVERFLOW_P (minus_lit0
)))
9906 /* Eliminate lit0 and minus_lit0 to con0 and minus_con0. */
9907 con0
= associate_trees (loc
, con0
, lit0
, code
, atype
);
9909 minus_con0
= associate_trees (loc
, minus_con0
, minus_lit0
,
9913 /* Eliminate minus_con0. */
9917 con0
= associate_trees (loc
, con0
, minus_con0
,
9920 var0
= associate_trees (loc
, var0
, minus_con0
,
9927 /* Eliminate minus_var0. */
9931 con0
= associate_trees (loc
, con0
, minus_var0
,
9939 fold_convert_loc (loc
, type
, associate_trees (loc
, var0
, con0
,
9946 case POINTER_DIFF_EXPR
:
9948 /* Fold &a[i] - &a[j] to i-j. */
9949 if (TREE_CODE (arg0
) == ADDR_EXPR
9950 && TREE_CODE (TREE_OPERAND (arg0
, 0)) == ARRAY_REF
9951 && TREE_CODE (arg1
) == ADDR_EXPR
9952 && TREE_CODE (TREE_OPERAND (arg1
, 0)) == ARRAY_REF
)
9954 tree tem
= fold_addr_of_array_ref_difference (loc
, type
,
9955 TREE_OPERAND (arg0
, 0),
9956 TREE_OPERAND (arg1
, 0),
9958 == POINTER_DIFF_EXPR
);
9963 /* Further transformations are not for pointers. */
9964 if (code
== POINTER_DIFF_EXPR
)
9967 /* (-A) - B -> (-B) - A where B is easily negated and we can swap. */
9968 if (TREE_CODE (arg0
) == NEGATE_EXPR
9969 && negate_expr_p (op1
)
9970 /* If arg0 is e.g. unsigned int and type is int, then this could
9971 introduce UB, because if A is INT_MIN at runtime, the original
9972 expression can be well defined while the latter is not.
9974 && !(ANY_INTEGRAL_TYPE_P (type
)
9975 && TYPE_OVERFLOW_UNDEFINED (type
)
9976 && ANY_INTEGRAL_TYPE_P (TREE_TYPE (arg0
))
9977 && !TYPE_OVERFLOW_UNDEFINED (TREE_TYPE (arg0
))))
9978 return fold_build2_loc (loc
, MINUS_EXPR
, type
, negate_expr (op1
),
9979 fold_convert_loc (loc
, type
,
9980 TREE_OPERAND (arg0
, 0)));
9982 /* Fold __complex__ ( x, 0 ) - __complex__ ( 0, y ) to
9983 __complex__ ( x, -y ). This is not the same for SNaNs or if
9984 signed zeros are involved. */
9985 if (!HONOR_SNANS (element_mode (arg0
))
9986 && !HONOR_SIGNED_ZEROS (element_mode (arg0
))
9987 && COMPLEX_FLOAT_TYPE_P (TREE_TYPE (arg0
)))
9989 tree rtype
= TREE_TYPE (TREE_TYPE (arg0
));
9990 tree arg0r
= fold_unary_loc (loc
, REALPART_EXPR
, rtype
, arg0
);
9991 tree arg0i
= fold_unary_loc (loc
, IMAGPART_EXPR
, rtype
, arg0
);
9992 bool arg0rz
= false, arg0iz
= false;
9993 if ((arg0r
&& (arg0rz
= real_zerop (arg0r
)))
9994 || (arg0i
&& (arg0iz
= real_zerop (arg0i
))))
9996 tree arg1r
= fold_unary_loc (loc
, REALPART_EXPR
, rtype
, arg1
);
9997 tree arg1i
= fold_unary_loc (loc
, IMAGPART_EXPR
, rtype
, arg1
);
9998 if (arg0rz
&& arg1i
&& real_zerop (arg1i
))
10000 tree rp
= fold_build1_loc (loc
, NEGATE_EXPR
, rtype
,
10002 : build1 (REALPART_EXPR
, rtype
, arg1
));
10003 tree ip
= arg0i
? arg0i
10004 : build1 (IMAGPART_EXPR
, rtype
, arg0
);
10005 return fold_build2_loc (loc
, COMPLEX_EXPR
, type
, rp
, ip
);
10007 else if (arg0iz
&& arg1r
&& real_zerop (arg1r
))
10009 tree rp
= arg0r
? arg0r
10010 : build1 (REALPART_EXPR
, rtype
, arg0
);
10011 tree ip
= fold_build1_loc (loc
, NEGATE_EXPR
, rtype
,
10013 : build1 (IMAGPART_EXPR
, rtype
, arg1
));
10014 return fold_build2_loc (loc
, COMPLEX_EXPR
, type
, rp
, ip
);
10019 /* A - B -> A + (-B) if B is easily negatable. */
10020 if (negate_expr_p (op1
)
10021 && ! TYPE_OVERFLOW_SANITIZED (type
)
10022 && ((FLOAT_TYPE_P (type
)
10023 /* Avoid this transformation if B is a positive REAL_CST. */
10024 && (TREE_CODE (op1
) != REAL_CST
10025 || REAL_VALUE_NEGATIVE (TREE_REAL_CST (op1
))))
10026 || INTEGRAL_TYPE_P (type
)))
10027 return fold_build2_loc (loc
, PLUS_EXPR
, type
,
10028 fold_convert_loc (loc
, type
, arg0
),
10029 negate_expr (op1
));
10031 /* Handle (A1 * C1) - (A2 * C2) with A1, A2 or C1, C2 being the same or
10032 one. Make sure the type is not saturating and has the signedness of
10033 the stripped operands, as fold_plusminus_mult_expr will re-associate.
10034 ??? The latter condition should use TYPE_OVERFLOW_* flags instead. */
10035 if ((TREE_CODE (arg0
) == MULT_EXPR
10036 || TREE_CODE (arg1
) == MULT_EXPR
)
10037 && !TYPE_SATURATING (type
)
10038 && TYPE_UNSIGNED (type
) == TYPE_UNSIGNED (TREE_TYPE (arg0
))
10039 && TYPE_UNSIGNED (type
) == TYPE_UNSIGNED (TREE_TYPE (arg1
))
10040 && (!FLOAT_TYPE_P (type
) || flag_associative_math
))
10042 tree tem
= fold_plusminus_mult_expr (loc
, code
, type
, arg0
, arg1
);
10050 if (! FLOAT_TYPE_P (type
))
10052 /* Transform x * -C into -x * C if x is easily negatable. */
10053 if (TREE_CODE (op1
) == INTEGER_CST
10054 && tree_int_cst_sgn (op1
) == -1
10055 && negate_expr_p (op0
)
10056 && negate_expr_p (op1
)
10057 && (tem
= negate_expr (op1
)) != op1
10058 && ! TREE_OVERFLOW (tem
))
10059 return fold_build2_loc (loc
, MULT_EXPR
, type
,
10060 fold_convert_loc (loc
, type
,
10061 negate_expr (op0
)), tem
);
10063 strict_overflow_p
= false;
10064 if (TREE_CODE (arg1
) == INTEGER_CST
10065 && (tem
= extract_muldiv (op0
, arg1
, code
, NULL_TREE
,
10066 &strict_overflow_p
)) != 0)
10068 if (strict_overflow_p
)
10069 fold_overflow_warning (("assuming signed overflow does not "
10070 "occur when simplifying "
10072 WARN_STRICT_OVERFLOW_MISC
);
10073 return fold_convert_loc (loc
, type
, tem
);
10076 /* Optimize z * conj(z) for integer complex numbers. */
10077 if (TREE_CODE (arg0
) == CONJ_EXPR
10078 && operand_equal_p (TREE_OPERAND (arg0
, 0), arg1
, 0))
10079 return fold_mult_zconjz (loc
, type
, arg1
);
10080 if (TREE_CODE (arg1
) == CONJ_EXPR
10081 && operand_equal_p (arg0
, TREE_OPERAND (arg1
, 0), 0))
10082 return fold_mult_zconjz (loc
, type
, arg0
);
10086 /* Fold z * +-I to __complex__ (-+__imag z, +-__real z).
10087 This is not the same for NaNs or if signed zeros are
10089 if (!HONOR_NANS (arg0
)
10090 && !HONOR_SIGNED_ZEROS (element_mode (arg0
))
10091 && COMPLEX_FLOAT_TYPE_P (TREE_TYPE (arg0
))
10092 && TREE_CODE (arg1
) == COMPLEX_CST
10093 && real_zerop (TREE_REALPART (arg1
)))
10095 tree rtype
= TREE_TYPE (TREE_TYPE (arg0
));
10096 if (real_onep (TREE_IMAGPART (arg1
)))
10098 fold_build2_loc (loc
, COMPLEX_EXPR
, type
,
10099 negate_expr (fold_build1_loc (loc
, IMAGPART_EXPR
,
10101 fold_build1_loc (loc
, REALPART_EXPR
, rtype
, arg0
));
10102 else if (real_minus_onep (TREE_IMAGPART (arg1
)))
10104 fold_build2_loc (loc
, COMPLEX_EXPR
, type
,
10105 fold_build1_loc (loc
, IMAGPART_EXPR
, rtype
, arg0
),
10106 negate_expr (fold_build1_loc (loc
, REALPART_EXPR
,
10110 /* Optimize z * conj(z) for floating point complex numbers.
10111 Guarded by flag_unsafe_math_optimizations as non-finite
10112 imaginary components don't produce scalar results. */
10113 if (flag_unsafe_math_optimizations
10114 && TREE_CODE (arg0
) == CONJ_EXPR
10115 && operand_equal_p (TREE_OPERAND (arg0
, 0), arg1
, 0))
10116 return fold_mult_zconjz (loc
, type
, arg1
);
10117 if (flag_unsafe_math_optimizations
10118 && TREE_CODE (arg1
) == CONJ_EXPR
10119 && operand_equal_p (arg0
, TREE_OPERAND (arg1
, 0), 0))
10120 return fold_mult_zconjz (loc
, type
, arg0
);
10125 /* Canonicalize (X & C1) | C2. */
10126 if (TREE_CODE (arg0
) == BIT_AND_EXPR
10127 && TREE_CODE (arg1
) == INTEGER_CST
10128 && TREE_CODE (TREE_OPERAND (arg0
, 1)) == INTEGER_CST
)
10130 int width
= TYPE_PRECISION (type
), w
;
10131 wide_int c1
= wi::to_wide (TREE_OPERAND (arg0
, 1));
10132 wide_int c2
= wi::to_wide (arg1
);
10134 /* If (C1&C2) == C1, then (X&C1)|C2 becomes (X,C2). */
10135 if ((c1
& c2
) == c1
)
10136 return omit_one_operand_loc (loc
, type
, arg1
,
10137 TREE_OPERAND (arg0
, 0));
10139 wide_int msk
= wi::mask (width
, false,
10140 TYPE_PRECISION (TREE_TYPE (arg1
)));
10142 /* If (C1|C2) == ~0 then (X&C1)|C2 becomes X|C2. */
10143 if (wi::bit_and_not (msk
, c1
| c2
) == 0)
10145 tem
= fold_convert_loc (loc
, type
, TREE_OPERAND (arg0
, 0));
10146 return fold_build2_loc (loc
, BIT_IOR_EXPR
, type
, tem
, arg1
);
10149 /* Minimize the number of bits set in C1, i.e. C1 := C1 & ~C2,
10150 unless (C1 & ~C2) | (C2 & C3) for some C3 is a mask of some
10151 mode which allows further optimizations. */
10154 wide_int c3
= wi::bit_and_not (c1
, c2
);
10155 for (w
= BITS_PER_UNIT
; w
<= width
; w
<<= 1)
10157 wide_int mask
= wi::mask (w
, false,
10158 TYPE_PRECISION (type
));
10159 if (((c1
| c2
) & mask
) == mask
10160 && wi::bit_and_not (c1
, mask
) == 0)
10169 tem
= fold_convert_loc (loc
, type
, TREE_OPERAND (arg0
, 0));
10170 tem
= fold_build2_loc (loc
, BIT_AND_EXPR
, type
, tem
,
10171 wide_int_to_tree (type
, c3
));
10172 return fold_build2_loc (loc
, BIT_IOR_EXPR
, type
, tem
, arg1
);
10176 /* See if this can be simplified into a rotate first. If that
10177 is unsuccessful continue in the association code. */
10181 /* Fold (X & 1) ^ 1 as (X & 1) == 0. */
10182 if (TREE_CODE (arg0
) == BIT_AND_EXPR
10183 && INTEGRAL_TYPE_P (type
)
10184 && integer_onep (TREE_OPERAND (arg0
, 1))
10185 && integer_onep (arg1
))
10186 return fold_build2_loc (loc
, EQ_EXPR
, type
, arg0
,
10187 build_zero_cst (TREE_TYPE (arg0
)));
10189 /* See if this can be simplified into a rotate first. If that
10190 is unsuccessful continue in the association code. */
10194 /* Fold (X ^ 1) & 1 as (X & 1) == 0. */
10195 if (TREE_CODE (arg0
) == BIT_XOR_EXPR
10196 && INTEGRAL_TYPE_P (type
)
10197 && integer_onep (TREE_OPERAND (arg0
, 1))
10198 && integer_onep (arg1
))
10201 tem
= TREE_OPERAND (arg0
, 0);
10202 tem2
= fold_convert_loc (loc
, TREE_TYPE (tem
), arg1
);
10203 tem2
= fold_build2_loc (loc
, BIT_AND_EXPR
, TREE_TYPE (tem
),
10205 return fold_build2_loc (loc
, EQ_EXPR
, type
, tem2
,
10206 build_zero_cst (TREE_TYPE (tem
)));
10208 /* Fold ~X & 1 as (X & 1) == 0. */
10209 if (TREE_CODE (arg0
) == BIT_NOT_EXPR
10210 && INTEGRAL_TYPE_P (type
)
10211 && integer_onep (arg1
))
10214 tem
= TREE_OPERAND (arg0
, 0);
10215 tem2
= fold_convert_loc (loc
, TREE_TYPE (tem
), arg1
);
10216 tem2
= fold_build2_loc (loc
, BIT_AND_EXPR
, TREE_TYPE (tem
),
10218 return fold_build2_loc (loc
, EQ_EXPR
, type
, tem2
,
10219 build_zero_cst (TREE_TYPE (tem
)));
10221 /* Fold !X & 1 as X == 0. */
10222 if (TREE_CODE (arg0
) == TRUTH_NOT_EXPR
10223 && integer_onep (arg1
))
10225 tem
= TREE_OPERAND (arg0
, 0);
10226 return fold_build2_loc (loc
, EQ_EXPR
, type
, tem
,
10227 build_zero_cst (TREE_TYPE (tem
)));
10230 /* Fold (X * Y) & -(1 << CST) to X * Y if Y is a constant
10231 multiple of 1 << CST. */
10232 if (TREE_CODE (arg1
) == INTEGER_CST
)
10234 wi::tree_to_wide_ref cst1
= wi::to_wide (arg1
);
10235 wide_int ncst1
= -cst1
;
10236 if ((cst1
& ncst1
) == ncst1
10237 && multiple_of_p (type
, arg0
,
10238 wide_int_to_tree (TREE_TYPE (arg1
), ncst1
)))
10239 return fold_convert_loc (loc
, type
, arg0
);
10242 /* Fold (X * CST1) & CST2 to zero if we can, or drop known zero
10244 if (TREE_CODE (arg1
) == INTEGER_CST
10245 && TREE_CODE (arg0
) == MULT_EXPR
10246 && TREE_CODE (TREE_OPERAND (arg0
, 1)) == INTEGER_CST
)
10248 wi::tree_to_wide_ref warg1
= wi::to_wide (arg1
);
10250 = mask_with_tz (type
, warg1
, wi::to_wide (TREE_OPERAND (arg0
, 1)));
10253 return omit_two_operands_loc (loc
, type
, build_zero_cst (type
),
10255 else if (masked
!= warg1
)
10257 /* Avoid the transform if arg1 is a mask of some
10258 mode which allows further optimizations. */
10259 int pop
= wi::popcount (warg1
);
10260 if (!(pop
>= BITS_PER_UNIT
10262 && wi::mask (pop
, false, warg1
.get_precision ()) == warg1
))
10263 return fold_build2_loc (loc
, code
, type
, op0
,
10264 wide_int_to_tree (type
, masked
));
10268 /* Simplify ((int)c & 0377) into (int)c, if c is unsigned char. */
10269 if (TREE_CODE (arg1
) == INTEGER_CST
&& TREE_CODE (arg0
) == NOP_EXPR
10270 && TYPE_UNSIGNED (TREE_TYPE (TREE_OPERAND (arg0
, 0))))
10272 prec
= element_precision (TREE_TYPE (TREE_OPERAND (arg0
, 0)));
10274 wide_int mask
= wide_int::from (wi::to_wide (arg1
), prec
, UNSIGNED
);
10277 fold_convert_loc (loc
, type
, TREE_OPERAND (arg0
, 0));
10283 /* Don't touch a floating-point divide by zero unless the mode
10284 of the constant can represent infinity. */
10285 if (TREE_CODE (arg1
) == REAL_CST
10286 && !MODE_HAS_INFINITIES (TYPE_MODE (TREE_TYPE (arg1
)))
10287 && real_zerop (arg1
))
10290 /* (-A) / (-B) -> A / B */
10291 if (TREE_CODE (arg0
) == NEGATE_EXPR
&& negate_expr_p (arg1
))
10292 return fold_build2_loc (loc
, RDIV_EXPR
, type
,
10293 TREE_OPERAND (arg0
, 0),
10294 negate_expr (arg1
));
10295 if (TREE_CODE (arg1
) == NEGATE_EXPR
&& negate_expr_p (arg0
))
10296 return fold_build2_loc (loc
, RDIV_EXPR
, type
,
10297 negate_expr (arg0
),
10298 TREE_OPERAND (arg1
, 0));
10301 case TRUNC_DIV_EXPR
:
10304 case FLOOR_DIV_EXPR
:
10305 /* Simplify A / (B << N) where A and B are positive and B is
10306 a power of 2, to A >> (N + log2(B)). */
10307 strict_overflow_p
= false;
10308 if (TREE_CODE (arg1
) == LSHIFT_EXPR
10309 && (TYPE_UNSIGNED (type
)
10310 || tree_expr_nonnegative_warnv_p (op0
, &strict_overflow_p
)))
10312 tree sval
= TREE_OPERAND (arg1
, 0);
10313 if (integer_pow2p (sval
) && tree_int_cst_sgn (sval
) > 0)
10315 tree sh_cnt
= TREE_OPERAND (arg1
, 1);
10316 tree pow2
= build_int_cst (TREE_TYPE (sh_cnt
),
10317 wi::exact_log2 (wi::to_wide (sval
)));
10319 if (strict_overflow_p
)
10320 fold_overflow_warning (("assuming signed overflow does not "
10321 "occur when simplifying A / (B << N)"),
10322 WARN_STRICT_OVERFLOW_MISC
);
10324 sh_cnt
= fold_build2_loc (loc
, PLUS_EXPR
, TREE_TYPE (sh_cnt
),
10326 return fold_build2_loc (loc
, RSHIFT_EXPR
, type
,
10327 fold_convert_loc (loc
, type
, arg0
), sh_cnt
);
10333 case ROUND_DIV_EXPR
:
10334 case CEIL_DIV_EXPR
:
10335 case EXACT_DIV_EXPR
:
10336 if (integer_zerop (arg1
))
10339 /* Convert -A / -B to A / B when the type is signed and overflow is
10341 if ((!INTEGRAL_TYPE_P (type
) || TYPE_OVERFLOW_UNDEFINED (type
))
10342 && TREE_CODE (op0
) == NEGATE_EXPR
10343 && negate_expr_p (op1
))
10345 if (INTEGRAL_TYPE_P (type
))
10346 fold_overflow_warning (("assuming signed overflow does not occur "
10347 "when distributing negation across "
10349 WARN_STRICT_OVERFLOW_MISC
);
10350 return fold_build2_loc (loc
, code
, type
,
10351 fold_convert_loc (loc
, type
,
10352 TREE_OPERAND (arg0
, 0)),
10353 negate_expr (op1
));
10355 if ((!INTEGRAL_TYPE_P (type
) || TYPE_OVERFLOW_UNDEFINED (type
))
10356 && TREE_CODE (arg1
) == NEGATE_EXPR
10357 && negate_expr_p (op0
))
10359 if (INTEGRAL_TYPE_P (type
))
10360 fold_overflow_warning (("assuming signed overflow does not occur "
10361 "when distributing negation across "
10363 WARN_STRICT_OVERFLOW_MISC
);
10364 return fold_build2_loc (loc
, code
, type
,
10366 fold_convert_loc (loc
, type
,
10367 TREE_OPERAND (arg1
, 0)));
10370 /* If arg0 is a multiple of arg1, then rewrite to the fastest div
10371 operation, EXACT_DIV_EXPR.
10373 Note that only CEIL_DIV_EXPR and FLOOR_DIV_EXPR are rewritten now.
10374 At one time others generated faster code, it's not clear if they do
10375 after the last round to changes to the DIV code in expmed.c. */
10376 if ((code
== CEIL_DIV_EXPR
|| code
== FLOOR_DIV_EXPR
)
10377 && multiple_of_p (type
, arg0
, arg1
))
10378 return fold_build2_loc (loc
, EXACT_DIV_EXPR
, type
,
10379 fold_convert (type
, arg0
),
10380 fold_convert (type
, arg1
));
10382 strict_overflow_p
= false;
10383 if (TREE_CODE (arg1
) == INTEGER_CST
10384 && (tem
= extract_muldiv (op0
, arg1
, code
, NULL_TREE
,
10385 &strict_overflow_p
)) != 0)
10387 if (strict_overflow_p
)
10388 fold_overflow_warning (("assuming signed overflow does not occur "
10389 "when simplifying division"),
10390 WARN_STRICT_OVERFLOW_MISC
);
10391 return fold_convert_loc (loc
, type
, tem
);
10396 case CEIL_MOD_EXPR
:
10397 case FLOOR_MOD_EXPR
:
10398 case ROUND_MOD_EXPR
:
10399 case TRUNC_MOD_EXPR
:
10400 strict_overflow_p
= false;
10401 if (TREE_CODE (arg1
) == INTEGER_CST
10402 && (tem
= extract_muldiv (op0
, arg1
, code
, NULL_TREE
,
10403 &strict_overflow_p
)) != 0)
10405 if (strict_overflow_p
)
10406 fold_overflow_warning (("assuming signed overflow does not occur "
10407 "when simplifying modulus"),
10408 WARN_STRICT_OVERFLOW_MISC
);
10409 return fold_convert_loc (loc
, type
, tem
);
10418 /* Since negative shift count is not well-defined,
10419 don't try to compute it in the compiler. */
10420 if (TREE_CODE (arg1
) == INTEGER_CST
&& tree_int_cst_sgn (arg1
) < 0)
10423 prec
= element_precision (type
);
10425 /* If we have a rotate of a bit operation with the rotate count and
10426 the second operand of the bit operation both constant,
10427 permute the two operations. */
10428 if (code
== RROTATE_EXPR
&& TREE_CODE (arg1
) == INTEGER_CST
10429 && (TREE_CODE (arg0
) == BIT_AND_EXPR
10430 || TREE_CODE (arg0
) == BIT_IOR_EXPR
10431 || TREE_CODE (arg0
) == BIT_XOR_EXPR
)
10432 && TREE_CODE (TREE_OPERAND (arg0
, 1)) == INTEGER_CST
)
10434 tree arg00
= fold_convert_loc (loc
, type
, TREE_OPERAND (arg0
, 0));
10435 tree arg01
= fold_convert_loc (loc
, type
, TREE_OPERAND (arg0
, 1));
10436 return fold_build2_loc (loc
, TREE_CODE (arg0
), type
,
10437 fold_build2_loc (loc
, code
, type
,
10439 fold_build2_loc (loc
, code
, type
,
10443 /* Two consecutive rotates adding up to the some integer
10444 multiple of the precision of the type can be ignored. */
10445 if (code
== RROTATE_EXPR
&& TREE_CODE (arg1
) == INTEGER_CST
10446 && TREE_CODE (arg0
) == RROTATE_EXPR
10447 && TREE_CODE (TREE_OPERAND (arg0
, 1)) == INTEGER_CST
10448 && wi::umod_trunc (wi::to_wide (arg1
)
10449 + wi::to_wide (TREE_OPERAND (arg0
, 1)),
10451 return fold_convert_loc (loc
, type
, TREE_OPERAND (arg0
, 0));
10459 case TRUTH_ANDIF_EXPR
:
10460 /* Note that the operands of this must be ints
10461 and their values must be 0 or 1.
10462 ("true" is a fixed value perhaps depending on the language.) */
10463 /* If first arg is constant zero, return it. */
10464 if (integer_zerop (arg0
))
10465 return fold_convert_loc (loc
, type
, arg0
);
10467 case TRUTH_AND_EXPR
:
10468 /* If either arg is constant true, drop it. */
10469 if (TREE_CODE (arg0
) == INTEGER_CST
&& ! integer_zerop (arg0
))
10470 return non_lvalue_loc (loc
, fold_convert_loc (loc
, type
, arg1
));
10471 if (TREE_CODE (arg1
) == INTEGER_CST
&& ! integer_zerop (arg1
)
10472 /* Preserve sequence points. */
10473 && (code
!= TRUTH_ANDIF_EXPR
|| ! TREE_SIDE_EFFECTS (arg0
)))
10474 return non_lvalue_loc (loc
, fold_convert_loc (loc
, type
, arg0
));
10475 /* If second arg is constant zero, result is zero, but first arg
10476 must be evaluated. */
10477 if (integer_zerop (arg1
))
10478 return omit_one_operand_loc (loc
, type
, arg1
, arg0
);
10479 /* Likewise for first arg, but note that only the TRUTH_AND_EXPR
10480 case will be handled here. */
10481 if (integer_zerop (arg0
))
10482 return omit_one_operand_loc (loc
, type
, arg0
, arg1
);
10484 /* !X && X is always false. */
10485 if (TREE_CODE (arg0
) == TRUTH_NOT_EXPR
10486 && operand_equal_p (TREE_OPERAND (arg0
, 0), arg1
, 0))
10487 return omit_one_operand_loc (loc
, type
, integer_zero_node
, arg1
);
10488 /* X && !X is always false. */
10489 if (TREE_CODE (arg1
) == TRUTH_NOT_EXPR
10490 && operand_equal_p (arg0
, TREE_OPERAND (arg1
, 0), 0))
10491 return omit_one_operand_loc (loc
, type
, integer_zero_node
, arg0
);
10493 /* A < X && A + 1 > Y ==> A < X && A >= Y. Normally A + 1 > Y
10494 means A >= Y && A != MAX, but in this case we know that
10497 if (!TREE_SIDE_EFFECTS (arg0
)
10498 && !TREE_SIDE_EFFECTS (arg1
))
10500 tem
= fold_to_nonsharp_ineq_using_bound (loc
, arg0
, arg1
);
10501 if (tem
&& !operand_equal_p (tem
, arg0
, 0))
10502 return fold_build2_loc (loc
, code
, type
, tem
, arg1
);
10504 tem
= fold_to_nonsharp_ineq_using_bound (loc
, arg1
, arg0
);
10505 if (tem
&& !operand_equal_p (tem
, arg1
, 0))
10506 return fold_build2_loc (loc
, code
, type
, arg0
, tem
);
10509 if ((tem
= fold_truth_andor (loc
, code
, type
, arg0
, arg1
, op0
, op1
))
10515 case TRUTH_ORIF_EXPR
:
10516 /* Note that the operands of this must be ints
10517 and their values must be 0 or true.
10518 ("true" is a fixed value perhaps depending on the language.) */
10519 /* If first arg is constant true, return it. */
10520 if (TREE_CODE (arg0
) == INTEGER_CST
&& ! integer_zerop (arg0
))
10521 return fold_convert_loc (loc
, type
, arg0
);
10523 case TRUTH_OR_EXPR
:
10524 /* If either arg is constant zero, drop it. */
10525 if (TREE_CODE (arg0
) == INTEGER_CST
&& integer_zerop (arg0
))
10526 return non_lvalue_loc (loc
, fold_convert_loc (loc
, type
, arg1
));
10527 if (TREE_CODE (arg1
) == INTEGER_CST
&& integer_zerop (arg1
)
10528 /* Preserve sequence points. */
10529 && (code
!= TRUTH_ORIF_EXPR
|| ! TREE_SIDE_EFFECTS (arg0
)))
10530 return non_lvalue_loc (loc
, fold_convert_loc (loc
, type
, arg0
));
10531 /* If second arg is constant true, result is true, but we must
10532 evaluate first arg. */
10533 if (TREE_CODE (arg1
) == INTEGER_CST
&& ! integer_zerop (arg1
))
10534 return omit_one_operand_loc (loc
, type
, arg1
, arg0
);
10535 /* Likewise for first arg, but note this only occurs here for
10537 if (TREE_CODE (arg0
) == INTEGER_CST
&& ! integer_zerop (arg0
))
10538 return omit_one_operand_loc (loc
, type
, arg0
, arg1
);
10540 /* !X || X is always true. */
10541 if (TREE_CODE (arg0
) == TRUTH_NOT_EXPR
10542 && operand_equal_p (TREE_OPERAND (arg0
, 0), arg1
, 0))
10543 return omit_one_operand_loc (loc
, type
, integer_one_node
, arg1
);
10544 /* X || !X is always true. */
10545 if (TREE_CODE (arg1
) == TRUTH_NOT_EXPR
10546 && operand_equal_p (arg0
, TREE_OPERAND (arg1
, 0), 0))
10547 return omit_one_operand_loc (loc
, type
, integer_one_node
, arg0
);
10549 /* (X && !Y) || (!X && Y) is X ^ Y */
10550 if (TREE_CODE (arg0
) == TRUTH_AND_EXPR
10551 && TREE_CODE (arg1
) == TRUTH_AND_EXPR
)
10553 tree a0
, a1
, l0
, l1
, n0
, n1
;
10555 a0
= fold_convert_loc (loc
, type
, TREE_OPERAND (arg1
, 0));
10556 a1
= fold_convert_loc (loc
, type
, TREE_OPERAND (arg1
, 1));
10558 l0
= fold_convert_loc (loc
, type
, TREE_OPERAND (arg0
, 0));
10559 l1
= fold_convert_loc (loc
, type
, TREE_OPERAND (arg0
, 1));
10561 n0
= fold_build1_loc (loc
, TRUTH_NOT_EXPR
, type
, l0
);
10562 n1
= fold_build1_loc (loc
, TRUTH_NOT_EXPR
, type
, l1
);
10564 if ((operand_equal_p (n0
, a0
, 0)
10565 && operand_equal_p (n1
, a1
, 0))
10566 || (operand_equal_p (n0
, a1
, 0)
10567 && operand_equal_p (n1
, a0
, 0)))
10568 return fold_build2_loc (loc
, TRUTH_XOR_EXPR
, type
, l0
, n1
);
10571 if ((tem
= fold_truth_andor (loc
, code
, type
, arg0
, arg1
, op0
, op1
))
10577 case TRUTH_XOR_EXPR
:
10578 /* If the second arg is constant zero, drop it. */
10579 if (integer_zerop (arg1
))
10580 return non_lvalue_loc (loc
, fold_convert_loc (loc
, type
, arg0
));
10581 /* If the second arg is constant true, this is a logical inversion. */
10582 if (integer_onep (arg1
))
10584 tem
= invert_truthvalue_loc (loc
, arg0
);
10585 return non_lvalue_loc (loc
, fold_convert_loc (loc
, type
, tem
));
10587 /* Identical arguments cancel to zero. */
10588 if (operand_equal_p (arg0
, arg1
, 0))
10589 return omit_one_operand_loc (loc
, type
, integer_zero_node
, arg0
);
10591 /* !X ^ X is always true. */
10592 if (TREE_CODE (arg0
) == TRUTH_NOT_EXPR
10593 && operand_equal_p (TREE_OPERAND (arg0
, 0), arg1
, 0))
10594 return omit_one_operand_loc (loc
, type
, integer_one_node
, arg1
);
10596 /* X ^ !X is always true. */
10597 if (TREE_CODE (arg1
) == TRUTH_NOT_EXPR
10598 && operand_equal_p (arg0
, TREE_OPERAND (arg1
, 0), 0))
10599 return omit_one_operand_loc (loc
, type
, integer_one_node
, arg0
);
10608 tem
= fold_comparison (loc
, code
, type
, op0
, op1
);
10609 if (tem
!= NULL_TREE
)
10612 /* bool_var != 1 becomes !bool_var. */
10613 if (TREE_CODE (TREE_TYPE (arg0
)) == BOOLEAN_TYPE
&& integer_onep (arg1
)
10614 && code
== NE_EXPR
)
10615 return fold_convert_loc (loc
, type
,
10616 fold_build1_loc (loc
, TRUTH_NOT_EXPR
,
10617 TREE_TYPE (arg0
), arg0
));
10619 /* bool_var == 0 becomes !bool_var. */
10620 if (TREE_CODE (TREE_TYPE (arg0
)) == BOOLEAN_TYPE
&& integer_zerop (arg1
)
10621 && code
== EQ_EXPR
)
10622 return fold_convert_loc (loc
, type
,
10623 fold_build1_loc (loc
, TRUTH_NOT_EXPR
,
10624 TREE_TYPE (arg0
), arg0
));
10626 /* !exp != 0 becomes !exp */
10627 if (TREE_CODE (arg0
) == TRUTH_NOT_EXPR
&& integer_zerop (arg1
)
10628 && code
== NE_EXPR
)
10629 return non_lvalue_loc (loc
, fold_convert_loc (loc
, type
, arg0
));
10631 /* If this is an EQ or NE comparison with zero and ARG0 is
10632 (1 << foo) & bar, convert it to (bar >> foo) & 1. Both require
10633 two operations, but the latter can be done in one less insn
10634 on machines that have only two-operand insns or on which a
10635 constant cannot be the first operand. */
10636 if (TREE_CODE (arg0
) == BIT_AND_EXPR
10637 && integer_zerop (arg1
))
10639 tree arg00
= TREE_OPERAND (arg0
, 0);
10640 tree arg01
= TREE_OPERAND (arg0
, 1);
10641 if (TREE_CODE (arg00
) == LSHIFT_EXPR
10642 && integer_onep (TREE_OPERAND (arg00
, 0)))
10644 tree tem
= fold_build2_loc (loc
, RSHIFT_EXPR
, TREE_TYPE (arg00
),
10645 arg01
, TREE_OPERAND (arg00
, 1));
10646 tem
= fold_build2_loc (loc
, BIT_AND_EXPR
, TREE_TYPE (arg0
), tem
,
10647 build_int_cst (TREE_TYPE (arg0
), 1));
10648 return fold_build2_loc (loc
, code
, type
,
10649 fold_convert_loc (loc
, TREE_TYPE (arg1
), tem
),
10652 else if (TREE_CODE (arg01
) == LSHIFT_EXPR
10653 && integer_onep (TREE_OPERAND (arg01
, 0)))
10655 tree tem
= fold_build2_loc (loc
, RSHIFT_EXPR
, TREE_TYPE (arg01
),
10656 arg00
, TREE_OPERAND (arg01
, 1));
10657 tem
= fold_build2_loc (loc
, BIT_AND_EXPR
, TREE_TYPE (arg0
), tem
,
10658 build_int_cst (TREE_TYPE (arg0
), 1));
10659 return fold_build2_loc (loc
, code
, type
,
10660 fold_convert_loc (loc
, TREE_TYPE (arg1
), tem
),
10665 /* Fold ((X >> C1) & C2) == 0 and ((X >> C1) & C2) != 0 where
10666 C1 is a valid shift constant, and C2 is a power of two, i.e.
10668 if (TREE_CODE (arg0
) == BIT_AND_EXPR
10669 && TREE_CODE (TREE_OPERAND (arg0
, 0)) == RSHIFT_EXPR
10670 && TREE_CODE (TREE_OPERAND (TREE_OPERAND (arg0
, 0), 1))
10672 && integer_pow2p (TREE_OPERAND (arg0
, 1))
10673 && integer_zerop (arg1
))
10675 tree itype
= TREE_TYPE (arg0
);
10676 tree arg001
= TREE_OPERAND (TREE_OPERAND (arg0
, 0), 1);
10677 prec
= TYPE_PRECISION (itype
);
10679 /* Check for a valid shift count. */
10680 if (wi::ltu_p (wi::to_wide (arg001
), prec
))
10682 tree arg01
= TREE_OPERAND (arg0
, 1);
10683 tree arg000
= TREE_OPERAND (TREE_OPERAND (arg0
, 0), 0);
10684 unsigned HOST_WIDE_INT log2
= tree_log2 (arg01
);
10685 /* If (C2 << C1) doesn't overflow, then ((X >> C1) & C2) != 0
10686 can be rewritten as (X & (C2 << C1)) != 0. */
10687 if ((log2
+ TREE_INT_CST_LOW (arg001
)) < prec
)
10689 tem
= fold_build2_loc (loc
, LSHIFT_EXPR
, itype
, arg01
, arg001
);
10690 tem
= fold_build2_loc (loc
, BIT_AND_EXPR
, itype
, arg000
, tem
);
10691 return fold_build2_loc (loc
, code
, type
, tem
,
10692 fold_convert_loc (loc
, itype
, arg1
));
10694 /* Otherwise, for signed (arithmetic) shifts,
10695 ((X >> C1) & C2) != 0 is rewritten as X < 0, and
10696 ((X >> C1) & C2) == 0 is rewritten as X >= 0. */
10697 else if (!TYPE_UNSIGNED (itype
))
10698 return fold_build2_loc (loc
, code
== EQ_EXPR
? GE_EXPR
: LT_EXPR
, type
,
10699 arg000
, build_int_cst (itype
, 0));
10700 /* Otherwise, of unsigned (logical) shifts,
10701 ((X >> C1) & C2) != 0 is rewritten as (X,false), and
10702 ((X >> C1) & C2) == 0 is rewritten as (X,true). */
10704 return omit_one_operand_loc (loc
, type
,
10705 code
== EQ_EXPR
? integer_one_node
10706 : integer_zero_node
,
10711 /* If this is a comparison of a field, we may be able to simplify it. */
10712 if ((TREE_CODE (arg0
) == COMPONENT_REF
10713 || TREE_CODE (arg0
) == BIT_FIELD_REF
)
10714 /* Handle the constant case even without -O
10715 to make sure the warnings are given. */
10716 && (optimize
|| TREE_CODE (arg1
) == INTEGER_CST
))
10718 t1
= optimize_bit_field_compare (loc
, code
, type
, arg0
, arg1
);
10723 /* Optimize comparisons of strlen vs zero to a compare of the
10724 first character of the string vs zero. To wit,
10725 strlen(ptr) == 0 => *ptr == 0
10726 strlen(ptr) != 0 => *ptr != 0
10727 Other cases should reduce to one of these two (or a constant)
10728 due to the return value of strlen being unsigned. */
10729 if (TREE_CODE (arg0
) == CALL_EXPR
10730 && integer_zerop (arg1
))
10732 tree fndecl
= get_callee_fndecl (arg0
);
10735 && fndecl_built_in_p (fndecl
, BUILT_IN_STRLEN
)
10736 && call_expr_nargs (arg0
) == 1
10737 && TREE_CODE (TREE_TYPE (CALL_EXPR_ARG (arg0
, 0))) == POINTER_TYPE
)
10739 tree iref
= build_fold_indirect_ref_loc (loc
,
10740 CALL_EXPR_ARG (arg0
, 0));
10741 return fold_build2_loc (loc
, code
, type
, iref
,
10742 build_int_cst (TREE_TYPE (iref
), 0));
10746 /* Fold (X >> C) != 0 into X < 0 if C is one less than the width
10747 of X. Similarly fold (X >> C) == 0 into X >= 0. */
10748 if (TREE_CODE (arg0
) == RSHIFT_EXPR
10749 && integer_zerop (arg1
)
10750 && TREE_CODE (TREE_OPERAND (arg0
, 1)) == INTEGER_CST
)
10752 tree arg00
= TREE_OPERAND (arg0
, 0);
10753 tree arg01
= TREE_OPERAND (arg0
, 1);
10754 tree itype
= TREE_TYPE (arg00
);
10755 if (wi::to_wide (arg01
) == element_precision (itype
) - 1)
10757 if (TYPE_UNSIGNED (itype
))
10759 itype
= signed_type_for (itype
);
10760 arg00
= fold_convert_loc (loc
, itype
, arg00
);
10762 return fold_build2_loc (loc
, code
== EQ_EXPR
? GE_EXPR
: LT_EXPR
,
10763 type
, arg00
, build_zero_cst (itype
));
10767 /* Fold (~X & C) == 0 into (X & C) != 0 and (~X & C) != 0 into
10768 (X & C) == 0 when C is a single bit. */
10769 if (TREE_CODE (arg0
) == BIT_AND_EXPR
10770 && TREE_CODE (TREE_OPERAND (arg0
, 0)) == BIT_NOT_EXPR
10771 && integer_zerop (arg1
)
10772 && integer_pow2p (TREE_OPERAND (arg0
, 1)))
10774 tem
= fold_build2_loc (loc
, BIT_AND_EXPR
, TREE_TYPE (arg0
),
10775 TREE_OPERAND (TREE_OPERAND (arg0
, 0), 0),
10776 TREE_OPERAND (arg0
, 1));
10777 return fold_build2_loc (loc
, code
== EQ_EXPR
? NE_EXPR
: EQ_EXPR
,
10779 fold_convert_loc (loc
, TREE_TYPE (arg0
),
10783 /* Fold ((X & C) ^ C) eq/ne 0 into (X & C) ne/eq 0, when the
10784 constant C is a power of two, i.e. a single bit. */
10785 if (TREE_CODE (arg0
) == BIT_XOR_EXPR
10786 && TREE_CODE (TREE_OPERAND (arg0
, 0)) == BIT_AND_EXPR
10787 && integer_zerop (arg1
)
10788 && integer_pow2p (TREE_OPERAND (arg0
, 1))
10789 && operand_equal_p (TREE_OPERAND (TREE_OPERAND (arg0
, 0), 1),
10790 TREE_OPERAND (arg0
, 1), OEP_ONLY_CONST
))
10792 tree arg00
= TREE_OPERAND (arg0
, 0);
10793 return fold_build2_loc (loc
, code
== EQ_EXPR
? NE_EXPR
: EQ_EXPR
, type
,
10794 arg00
, build_int_cst (TREE_TYPE (arg00
), 0));
10797 /* Likewise, fold ((X ^ C) & C) eq/ne 0 into (X & C) ne/eq 0,
10798 when is C is a power of two, i.e. a single bit. */
10799 if (TREE_CODE (arg0
) == BIT_AND_EXPR
10800 && TREE_CODE (TREE_OPERAND (arg0
, 0)) == BIT_XOR_EXPR
10801 && integer_zerop (arg1
)
10802 && integer_pow2p (TREE_OPERAND (arg0
, 1))
10803 && operand_equal_p (TREE_OPERAND (TREE_OPERAND (arg0
, 0), 1),
10804 TREE_OPERAND (arg0
, 1), OEP_ONLY_CONST
))
10806 tree arg000
= TREE_OPERAND (TREE_OPERAND (arg0
, 0), 0);
10807 tem
= fold_build2_loc (loc
, BIT_AND_EXPR
, TREE_TYPE (arg000
),
10808 arg000
, TREE_OPERAND (arg0
, 1));
10809 return fold_build2_loc (loc
, code
== EQ_EXPR
? NE_EXPR
: EQ_EXPR
, type
,
10810 tem
, build_int_cst (TREE_TYPE (tem
), 0));
10813 if (integer_zerop (arg1
)
10814 && tree_expr_nonzero_p (arg0
))
10816 tree res
= constant_boolean_node (code
==NE_EXPR
, type
);
10817 return omit_one_operand_loc (loc
, type
, res
, arg0
);
10820 /* Fold (X & C) op (Y & C) as (X ^ Y) & C op 0", and symmetries. */
10821 if (TREE_CODE (arg0
) == BIT_AND_EXPR
10822 && TREE_CODE (arg1
) == BIT_AND_EXPR
)
10824 tree arg00
= TREE_OPERAND (arg0
, 0);
10825 tree arg01
= TREE_OPERAND (arg0
, 1);
10826 tree arg10
= TREE_OPERAND (arg1
, 0);
10827 tree arg11
= TREE_OPERAND (arg1
, 1);
10828 tree itype
= TREE_TYPE (arg0
);
10830 if (operand_equal_p (arg01
, arg11
, 0))
10832 tem
= fold_convert_loc (loc
, itype
, arg10
);
10833 tem
= fold_build2_loc (loc
, BIT_XOR_EXPR
, itype
, arg00
, tem
);
10834 tem
= fold_build2_loc (loc
, BIT_AND_EXPR
, itype
, tem
, arg01
);
10835 return fold_build2_loc (loc
, code
, type
, tem
,
10836 build_zero_cst (itype
));
10838 if (operand_equal_p (arg01
, arg10
, 0))
10840 tem
= fold_convert_loc (loc
, itype
, arg11
);
10841 tem
= fold_build2_loc (loc
, BIT_XOR_EXPR
, itype
, arg00
, tem
);
10842 tem
= fold_build2_loc (loc
, BIT_AND_EXPR
, itype
, tem
, arg01
);
10843 return fold_build2_loc (loc
, code
, type
, tem
,
10844 build_zero_cst (itype
));
10846 if (operand_equal_p (arg00
, arg11
, 0))
10848 tem
= fold_convert_loc (loc
, itype
, arg10
);
10849 tem
= fold_build2_loc (loc
, BIT_XOR_EXPR
, itype
, arg01
, tem
);
10850 tem
= fold_build2_loc (loc
, BIT_AND_EXPR
, itype
, tem
, arg00
);
10851 return fold_build2_loc (loc
, code
, type
, tem
,
10852 build_zero_cst (itype
));
10854 if (operand_equal_p (arg00
, arg10
, 0))
10856 tem
= fold_convert_loc (loc
, itype
, arg11
);
10857 tem
= fold_build2_loc (loc
, BIT_XOR_EXPR
, itype
, arg01
, tem
);
10858 tem
= fold_build2_loc (loc
, BIT_AND_EXPR
, itype
, tem
, arg00
);
10859 return fold_build2_loc (loc
, code
, type
, tem
,
10860 build_zero_cst (itype
));
10864 if (TREE_CODE (arg0
) == BIT_XOR_EXPR
10865 && TREE_CODE (arg1
) == BIT_XOR_EXPR
)
10867 tree arg00
= TREE_OPERAND (arg0
, 0);
10868 tree arg01
= TREE_OPERAND (arg0
, 1);
10869 tree arg10
= TREE_OPERAND (arg1
, 0);
10870 tree arg11
= TREE_OPERAND (arg1
, 1);
10871 tree itype
= TREE_TYPE (arg0
);
10873 /* Optimize (X ^ Z) op (Y ^ Z) as X op Y, and symmetries.
10874 operand_equal_p guarantees no side-effects so we don't need
10875 to use omit_one_operand on Z. */
10876 if (operand_equal_p (arg01
, arg11
, 0))
10877 return fold_build2_loc (loc
, code
, type
, arg00
,
10878 fold_convert_loc (loc
, TREE_TYPE (arg00
),
10880 if (operand_equal_p (arg01
, arg10
, 0))
10881 return fold_build2_loc (loc
, code
, type
, arg00
,
10882 fold_convert_loc (loc
, TREE_TYPE (arg00
),
10884 if (operand_equal_p (arg00
, arg11
, 0))
10885 return fold_build2_loc (loc
, code
, type
, arg01
,
10886 fold_convert_loc (loc
, TREE_TYPE (arg01
),
10888 if (operand_equal_p (arg00
, arg10
, 0))
10889 return fold_build2_loc (loc
, code
, type
, arg01
,
10890 fold_convert_loc (loc
, TREE_TYPE (arg01
),
10893 /* Optimize (X ^ C1) op (Y ^ C2) as (X ^ (C1 ^ C2)) op Y. */
10894 if (TREE_CODE (arg01
) == INTEGER_CST
10895 && TREE_CODE (arg11
) == INTEGER_CST
)
10897 tem
= fold_build2_loc (loc
, BIT_XOR_EXPR
, itype
, arg01
,
10898 fold_convert_loc (loc
, itype
, arg11
));
10899 tem
= fold_build2_loc (loc
, BIT_XOR_EXPR
, itype
, arg00
, tem
);
10900 return fold_build2_loc (loc
, code
, type
, tem
,
10901 fold_convert_loc (loc
, itype
, arg10
));
10905 /* Attempt to simplify equality/inequality comparisons of complex
10906 values. Only lower the comparison if the result is known or
10907 can be simplified to a single scalar comparison. */
10908 if ((TREE_CODE (arg0
) == COMPLEX_EXPR
10909 || TREE_CODE (arg0
) == COMPLEX_CST
)
10910 && (TREE_CODE (arg1
) == COMPLEX_EXPR
10911 || TREE_CODE (arg1
) == COMPLEX_CST
))
10913 tree real0
, imag0
, real1
, imag1
;
10916 if (TREE_CODE (arg0
) == COMPLEX_EXPR
)
10918 real0
= TREE_OPERAND (arg0
, 0);
10919 imag0
= TREE_OPERAND (arg0
, 1);
10923 real0
= TREE_REALPART (arg0
);
10924 imag0
= TREE_IMAGPART (arg0
);
10927 if (TREE_CODE (arg1
) == COMPLEX_EXPR
)
10929 real1
= TREE_OPERAND (arg1
, 0);
10930 imag1
= TREE_OPERAND (arg1
, 1);
10934 real1
= TREE_REALPART (arg1
);
10935 imag1
= TREE_IMAGPART (arg1
);
10938 rcond
= fold_binary_loc (loc
, code
, type
, real0
, real1
);
10939 if (rcond
&& TREE_CODE (rcond
) == INTEGER_CST
)
10941 if (integer_zerop (rcond
))
10943 if (code
== EQ_EXPR
)
10944 return omit_two_operands_loc (loc
, type
, boolean_false_node
,
10946 return fold_build2_loc (loc
, NE_EXPR
, type
, imag0
, imag1
);
10950 if (code
== NE_EXPR
)
10951 return omit_two_operands_loc (loc
, type
, boolean_true_node
,
10953 return fold_build2_loc (loc
, EQ_EXPR
, type
, imag0
, imag1
);
10957 icond
= fold_binary_loc (loc
, code
, type
, imag0
, imag1
);
10958 if (icond
&& TREE_CODE (icond
) == INTEGER_CST
)
10960 if (integer_zerop (icond
))
10962 if (code
== EQ_EXPR
)
10963 return omit_two_operands_loc (loc
, type
, boolean_false_node
,
10965 return fold_build2_loc (loc
, NE_EXPR
, type
, real0
, real1
);
10969 if (code
== NE_EXPR
)
10970 return omit_two_operands_loc (loc
, type
, boolean_true_node
,
10972 return fold_build2_loc (loc
, EQ_EXPR
, type
, real0
, real1
);
10983 tem
= fold_comparison (loc
, code
, type
, op0
, op1
);
10984 if (tem
!= NULL_TREE
)
10987 /* Transform comparisons of the form X +- C CMP X. */
10988 if ((TREE_CODE (arg0
) == PLUS_EXPR
|| TREE_CODE (arg0
) == MINUS_EXPR
)
10989 && operand_equal_p (TREE_OPERAND (arg0
, 0), arg1
, 0)
10990 && TREE_CODE (TREE_OPERAND (arg0
, 1)) == REAL_CST
10991 && !HONOR_SNANS (arg0
))
10993 tree arg01
= TREE_OPERAND (arg0
, 1);
10994 enum tree_code code0
= TREE_CODE (arg0
);
10995 int is_positive
= REAL_VALUE_NEGATIVE (TREE_REAL_CST (arg01
)) ? -1 : 1;
10997 /* (X - c) > X becomes false. */
10998 if (code
== GT_EXPR
10999 && ((code0
== MINUS_EXPR
&& is_positive
>= 0)
11000 || (code0
== PLUS_EXPR
&& is_positive
<= 0)))
11001 return constant_boolean_node (0, type
);
11003 /* Likewise (X + c) < X becomes false. */
11004 if (code
== LT_EXPR
11005 && ((code0
== PLUS_EXPR
&& is_positive
>= 0)
11006 || (code0
== MINUS_EXPR
&& is_positive
<= 0)))
11007 return constant_boolean_node (0, type
);
11009 /* Convert (X - c) <= X to true. */
11010 if (!HONOR_NANS (arg1
)
11012 && ((code0
== MINUS_EXPR
&& is_positive
>= 0)
11013 || (code0
== PLUS_EXPR
&& is_positive
<= 0)))
11014 return constant_boolean_node (1, type
);
11016 /* Convert (X + c) >= X to true. */
11017 if (!HONOR_NANS (arg1
)
11019 && ((code0
== PLUS_EXPR
&& is_positive
>= 0)
11020 || (code0
== MINUS_EXPR
&& is_positive
<= 0)))
11021 return constant_boolean_node (1, type
);
11024 /* If we are comparing an ABS_EXPR with a constant, we can
11025 convert all the cases into explicit comparisons, but they may
11026 well not be faster than doing the ABS and one comparison.
11027 But ABS (X) <= C is a range comparison, which becomes a subtraction
11028 and a comparison, and is probably faster. */
11029 if (code
== LE_EXPR
11030 && TREE_CODE (arg1
) == INTEGER_CST
11031 && TREE_CODE (arg0
) == ABS_EXPR
11032 && ! TREE_SIDE_EFFECTS (arg0
)
11033 && (tem
= negate_expr (arg1
)) != 0
11034 && TREE_CODE (tem
) == INTEGER_CST
11035 && !TREE_OVERFLOW (tem
))
11036 return fold_build2_loc (loc
, TRUTH_ANDIF_EXPR
, type
,
11037 build2 (GE_EXPR
, type
,
11038 TREE_OPERAND (arg0
, 0), tem
),
11039 build2 (LE_EXPR
, type
,
11040 TREE_OPERAND (arg0
, 0), arg1
));
11042 /* Convert ABS_EXPR<x> >= 0 to true. */
11043 strict_overflow_p
= false;
11044 if (code
== GE_EXPR
11045 && (integer_zerop (arg1
)
11046 || (! HONOR_NANS (arg0
)
11047 && real_zerop (arg1
)))
11048 && tree_expr_nonnegative_warnv_p (arg0
, &strict_overflow_p
))
11050 if (strict_overflow_p
)
11051 fold_overflow_warning (("assuming signed overflow does not occur "
11052 "when simplifying comparison of "
11053 "absolute value and zero"),
11054 WARN_STRICT_OVERFLOW_CONDITIONAL
);
11055 return omit_one_operand_loc (loc
, type
,
11056 constant_boolean_node (true, type
),
11060 /* Convert ABS_EXPR<x> < 0 to false. */
11061 strict_overflow_p
= false;
11062 if (code
== LT_EXPR
11063 && (integer_zerop (arg1
) || real_zerop (arg1
))
11064 && tree_expr_nonnegative_warnv_p (arg0
, &strict_overflow_p
))
11066 if (strict_overflow_p
)
11067 fold_overflow_warning (("assuming signed overflow does not occur "
11068 "when simplifying comparison of "
11069 "absolute value and zero"),
11070 WARN_STRICT_OVERFLOW_CONDITIONAL
);
11071 return omit_one_operand_loc (loc
, type
,
11072 constant_boolean_node (false, type
),
11076 /* If X is unsigned, convert X < (1 << Y) into X >> Y == 0
11077 and similarly for >= into !=. */
11078 if ((code
== LT_EXPR
|| code
== GE_EXPR
)
11079 && TYPE_UNSIGNED (TREE_TYPE (arg0
))
11080 && TREE_CODE (arg1
) == LSHIFT_EXPR
11081 && integer_onep (TREE_OPERAND (arg1
, 0)))
11082 return build2_loc (loc
, code
== LT_EXPR
? EQ_EXPR
: NE_EXPR
, type
,
11083 build2 (RSHIFT_EXPR
, TREE_TYPE (arg0
), arg0
,
11084 TREE_OPERAND (arg1
, 1)),
11085 build_zero_cst (TREE_TYPE (arg0
)));
11087 /* Similarly for X < (cast) (1 << Y). But cast can't be narrowing,
11088 otherwise Y might be >= # of bits in X's type and thus e.g.
11089 (unsigned char) (1 << Y) for Y 15 might be 0.
11090 If the cast is widening, then 1 << Y should have unsigned type,
11091 otherwise if Y is number of bits in the signed shift type minus 1,
11092 we can't optimize this. E.g. (unsigned long long) (1 << Y) for Y
11093 31 might be 0xffffffff80000000. */
11094 if ((code
== LT_EXPR
|| code
== GE_EXPR
)
11095 && TYPE_UNSIGNED (TREE_TYPE (arg0
))
11096 && CONVERT_EXPR_P (arg1
)
11097 && TREE_CODE (TREE_OPERAND (arg1
, 0)) == LSHIFT_EXPR
11098 && (element_precision (TREE_TYPE (arg1
))
11099 >= element_precision (TREE_TYPE (TREE_OPERAND (arg1
, 0))))
11100 && (TYPE_UNSIGNED (TREE_TYPE (TREE_OPERAND (arg1
, 0)))
11101 || (element_precision (TREE_TYPE (arg1
))
11102 == element_precision (TREE_TYPE (TREE_OPERAND (arg1
, 0)))))
11103 && integer_onep (TREE_OPERAND (TREE_OPERAND (arg1
, 0), 0)))
11105 tem
= build2 (RSHIFT_EXPR
, TREE_TYPE (arg0
), arg0
,
11106 TREE_OPERAND (TREE_OPERAND (arg1
, 0), 1));
11107 return build2_loc (loc
, code
== LT_EXPR
? EQ_EXPR
: NE_EXPR
, type
,
11108 fold_convert_loc (loc
, TREE_TYPE (arg0
), tem
),
11109 build_zero_cst (TREE_TYPE (arg0
)));
11114 case UNORDERED_EXPR
:
11122 /* Fold (double)float1 CMP (double)float2 into float1 CMP float2. */
11124 tree targ0
= strip_float_extensions (arg0
);
11125 tree targ1
= strip_float_extensions (arg1
);
11126 tree newtype
= TREE_TYPE (targ0
);
11128 if (TYPE_PRECISION (TREE_TYPE (targ1
)) > TYPE_PRECISION (newtype
))
11129 newtype
= TREE_TYPE (targ1
);
11131 if (TYPE_PRECISION (newtype
) < TYPE_PRECISION (TREE_TYPE (arg0
)))
11132 return fold_build2_loc (loc
, code
, type
,
11133 fold_convert_loc (loc
, newtype
, targ0
),
11134 fold_convert_loc (loc
, newtype
, targ1
));
11139 case COMPOUND_EXPR
:
11140 /* When pedantic, a compound expression can be neither an lvalue
11141 nor an integer constant expression. */
11142 if (TREE_SIDE_EFFECTS (arg0
) || TREE_CONSTANT (arg1
))
11144 /* Don't let (0, 0) be null pointer constant. */
11145 tem
= integer_zerop (arg1
) ? build1 (NOP_EXPR
, type
, arg1
)
11146 : fold_convert_loc (loc
, type
, arg1
);
11147 return pedantic_non_lvalue_loc (loc
, tem
);
11150 /* An ASSERT_EXPR should never be passed to fold_binary. */
11151 gcc_unreachable ();
11155 } /* switch (code) */
11158 /* For constants M and N, if M == (1LL << cst) - 1 && (N & M) == M,
11159 ((A & N) + B) & M -> (A + B) & M
11160 Similarly if (N & M) == 0,
11161 ((A | N) + B) & M -> (A + B) & M
11162 and for - instead of + (or unary - instead of +)
11163 and/or ^ instead of |.
11164 If B is constant and (B & M) == 0, fold into A & M.
11166 This function is a helper for match.pd patterns. Return non-NULL
11167 type in which the simplified operation should be performed only
11168 if any optimization is possible.
11170 ARG1 is M above, ARG00 is left operand of +/-, if CODE00 is BIT_*_EXPR,
11171 then ARG00{0,1} are operands of that bitop, otherwise CODE00 is ERROR_MARK.
11172 Similarly for ARG01, CODE01 and ARG01{0,1}, just for the right operand of
11175 fold_bit_and_mask (tree type
, tree arg1
, enum tree_code code
,
11176 tree arg00
, enum tree_code code00
, tree arg000
, tree arg001
,
11177 tree arg01
, enum tree_code code01
, tree arg010
, tree arg011
,
11180 gcc_assert (TREE_CODE (arg1
) == INTEGER_CST
);
11181 gcc_assert (code
== PLUS_EXPR
|| code
== MINUS_EXPR
|| code
== NEGATE_EXPR
);
11182 wi::tree_to_wide_ref cst1
= wi::to_wide (arg1
);
11184 || (cst1
& (cst1
+ 1)) != 0
11185 || !INTEGRAL_TYPE_P (type
)
11186 || (!TYPE_OVERFLOW_WRAPS (type
)
11187 && TREE_CODE (type
) != INTEGER_TYPE
)
11188 || (wi::max_value (type
) & cst1
) != cst1
)
11191 enum tree_code codes
[2] = { code00
, code01
};
11192 tree arg0xx
[4] = { arg000
, arg001
, arg010
, arg011
};
11196 /* Now we know that arg0 is (C + D) or (C - D) or -C and
11197 arg1 (M) is == (1LL << cst) - 1.
11198 Store C into PMOP[0] and D into PMOP[1]. */
11201 which
= code
!= NEGATE_EXPR
;
11203 for (; which
>= 0; which
--)
11204 switch (codes
[which
])
11209 gcc_assert (TREE_CODE (arg0xx
[2 * which
+ 1]) == INTEGER_CST
);
11210 cst0
= wi::to_wide (arg0xx
[2 * which
+ 1]) & cst1
;
11211 if (codes
[which
] == BIT_AND_EXPR
)
11216 else if (cst0
!= 0)
11218 /* If C or D is of the form (A & N) where
11219 (N & M) == M, or of the form (A | N) or
11220 (A ^ N) where (N & M) == 0, replace it with A. */
11221 pmop
[which
] = arg0xx
[2 * which
];
11224 if (TREE_CODE (pmop
[which
]) != INTEGER_CST
)
11226 /* If C or D is a N where (N & M) == 0, it can be
11227 omitted (replaced with 0). */
11228 if ((code
== PLUS_EXPR
11229 || (code
== MINUS_EXPR
&& which
== 0))
11230 && (cst1
& wi::to_wide (pmop
[which
])) == 0)
11231 pmop
[which
] = build_int_cst (type
, 0);
11232 /* Similarly, with C - N where (-N & M) == 0. */
11233 if (code
== MINUS_EXPR
11235 && (cst1
& -wi::to_wide (pmop
[which
])) == 0)
11236 pmop
[which
] = build_int_cst (type
, 0);
11239 gcc_unreachable ();
11242 /* Only build anything new if we optimized one or both arguments above. */
11243 if (pmop
[0] == arg00
&& pmop
[1] == arg01
)
11246 if (TYPE_OVERFLOW_WRAPS (type
))
11249 return unsigned_type_for (type
);
11252 /* Used by contains_label_[p1]. */
11254 struct contains_label_data
11256 hash_set
<tree
> *pset
;
11257 bool inside_switch_p
;
11260 /* Callback for walk_tree, looking for LABEL_EXPR. Return *TP if it is
11261 a LABEL_EXPR or CASE_LABEL_EXPR not inside of another SWITCH_EXPR; otherwise
11262 return NULL_TREE. Do not check the subtrees of GOTO_EXPR. */
11265 contains_label_1 (tree
*tp
, int *walk_subtrees
, void *data
)
11267 contains_label_data
*d
= (contains_label_data
*) data
;
11268 switch (TREE_CODE (*tp
))
11273 case CASE_LABEL_EXPR
:
11274 if (!d
->inside_switch_p
)
11279 if (!d
->inside_switch_p
)
11281 if (walk_tree (&SWITCH_COND (*tp
), contains_label_1
, data
, d
->pset
))
11283 d
->inside_switch_p
= true;
11284 if (walk_tree (&SWITCH_BODY (*tp
), contains_label_1
, data
, d
->pset
))
11286 d
->inside_switch_p
= false;
11287 *walk_subtrees
= 0;
11292 *walk_subtrees
= 0;
11300 /* Return whether the sub-tree ST contains a label which is accessible from
11301 outside the sub-tree. */
11304 contains_label_p (tree st
)
11306 hash_set
<tree
> pset
;
11307 contains_label_data data
= { &pset
, false };
11308 return walk_tree (&st
, contains_label_1
, &data
, &pset
) != NULL_TREE
;
11311 /* Fold a ternary expression of code CODE and type TYPE with operands
11312 OP0, OP1, and OP2. Return the folded expression if folding is
11313 successful. Otherwise, return NULL_TREE. */
11316 fold_ternary_loc (location_t loc
, enum tree_code code
, tree type
,
11317 tree op0
, tree op1
, tree op2
)
11320 tree arg0
= NULL_TREE
, arg1
= NULL_TREE
, arg2
= NULL_TREE
;
11321 enum tree_code_class kind
= TREE_CODE_CLASS (code
);
11323 gcc_assert (IS_EXPR_CODE_CLASS (kind
)
11324 && TREE_CODE_LENGTH (code
) == 3);
11326 /* If this is a commutative operation, and OP0 is a constant, move it
11327 to OP1 to reduce the number of tests below. */
11328 if (commutative_ternary_tree_code (code
)
11329 && tree_swap_operands_p (op0
, op1
))
11330 return fold_build3_loc (loc
, code
, type
, op1
, op0
, op2
);
11332 tem
= generic_simplify (loc
, code
, type
, op0
, op1
, op2
);
11336 /* Strip any conversions that don't change the mode. This is safe
11337 for every expression, except for a comparison expression because
11338 its signedness is derived from its operands. So, in the latter
11339 case, only strip conversions that don't change the signedness.
11341 Note that this is done as an internal manipulation within the
11342 constant folder, in order to find the simplest representation of
11343 the arguments so that their form can be studied. In any cases,
11344 the appropriate type conversions should be put back in the tree
11345 that will get out of the constant folder. */
11366 case COMPONENT_REF
:
11367 if (TREE_CODE (arg0
) == CONSTRUCTOR
11368 && ! type_contains_placeholder_p (TREE_TYPE (arg0
)))
11370 unsigned HOST_WIDE_INT idx
;
11372 FOR_EACH_CONSTRUCTOR_ELT (CONSTRUCTOR_ELTS (arg0
), idx
, field
, value
)
11379 case VEC_COND_EXPR
:
11380 /* Pedantic ANSI C says that a conditional expression is never an lvalue,
11381 so all simple results must be passed through pedantic_non_lvalue. */
11382 if (TREE_CODE (arg0
) == INTEGER_CST
)
11384 tree unused_op
= integer_zerop (arg0
) ? op1
: op2
;
11385 tem
= integer_zerop (arg0
) ? op2
: op1
;
11386 /* Only optimize constant conditions when the selected branch
11387 has the same type as the COND_EXPR. This avoids optimizing
11388 away "c ? x : throw", where the throw has a void type.
11389 Avoid throwing away that operand which contains label. */
11390 if ((!TREE_SIDE_EFFECTS (unused_op
)
11391 || !contains_label_p (unused_op
))
11392 && (! VOID_TYPE_P (TREE_TYPE (tem
))
11393 || VOID_TYPE_P (type
)))
11394 return pedantic_non_lvalue_loc (loc
, tem
);
11397 else if (TREE_CODE (arg0
) == VECTOR_CST
)
11399 unsigned HOST_WIDE_INT nelts
;
11400 if ((TREE_CODE (arg1
) == VECTOR_CST
11401 || TREE_CODE (arg1
) == CONSTRUCTOR
)
11402 && (TREE_CODE (arg2
) == VECTOR_CST
11403 || TREE_CODE (arg2
) == CONSTRUCTOR
)
11404 && TYPE_VECTOR_SUBPARTS (type
).is_constant (&nelts
))
11406 vec_perm_builder
sel (nelts
, nelts
, 1);
11407 for (unsigned int i
= 0; i
< nelts
; i
++)
11409 tree val
= VECTOR_CST_ELT (arg0
, i
);
11410 if (integer_all_onesp (val
))
11411 sel
.quick_push (i
);
11412 else if (integer_zerop (val
))
11413 sel
.quick_push (nelts
+ i
);
11414 else /* Currently unreachable. */
11417 vec_perm_indices
indices (sel
, 2, nelts
);
11418 tree t
= fold_vec_perm (type
, arg1
, arg2
, indices
);
11419 if (t
!= NULL_TREE
)
11424 /* If we have A op B ? A : C, we may be able to convert this to a
11425 simpler expression, depending on the operation and the values
11426 of B and C. Signed zeros prevent all of these transformations,
11427 for reasons given above each one.
11429 Also try swapping the arguments and inverting the conditional. */
11430 if (COMPARISON_CLASS_P (arg0
)
11431 && operand_equal_for_comparison_p (TREE_OPERAND (arg0
, 0), op1
)
11432 && !HONOR_SIGNED_ZEROS (element_mode (op1
)))
11434 tem
= fold_cond_expr_with_comparison (loc
, type
, arg0
, op1
, op2
);
11439 if (COMPARISON_CLASS_P (arg0
)
11440 && operand_equal_for_comparison_p (TREE_OPERAND (arg0
, 0), op2
)
11441 && !HONOR_SIGNED_ZEROS (element_mode (op2
)))
11443 location_t loc0
= expr_location_or (arg0
, loc
);
11444 tem
= fold_invert_truthvalue (loc0
, arg0
);
11445 if (tem
&& COMPARISON_CLASS_P (tem
))
11447 tem
= fold_cond_expr_with_comparison (loc
, type
, tem
, op2
, op1
);
11453 /* If the second operand is simpler than the third, swap them
11454 since that produces better jump optimization results. */
11455 if (truth_value_p (TREE_CODE (arg0
))
11456 && tree_swap_operands_p (op1
, op2
))
11458 location_t loc0
= expr_location_or (arg0
, loc
);
11459 /* See if this can be inverted. If it can't, possibly because
11460 it was a floating-point inequality comparison, don't do
11462 tem
= fold_invert_truthvalue (loc0
, arg0
);
11464 return fold_build3_loc (loc
, code
, type
, tem
, op2
, op1
);
11467 /* Convert A ? 1 : 0 to simply A. */
11468 if ((code
== VEC_COND_EXPR
? integer_all_onesp (op1
)
11469 : (integer_onep (op1
)
11470 && !VECTOR_TYPE_P (type
)))
11471 && integer_zerop (op2
)
11472 /* If we try to convert OP0 to our type, the
11473 call to fold will try to move the conversion inside
11474 a COND, which will recurse. In that case, the COND_EXPR
11475 is probably the best choice, so leave it alone. */
11476 && type
== TREE_TYPE (arg0
))
11477 return pedantic_non_lvalue_loc (loc
, arg0
);
11479 /* Convert A ? 0 : 1 to !A. This prefers the use of NOT_EXPR
11480 over COND_EXPR in cases such as floating point comparisons. */
11481 if (integer_zerop (op1
)
11482 && code
== COND_EXPR
11483 && integer_onep (op2
)
11484 && !VECTOR_TYPE_P (type
)
11485 && truth_value_p (TREE_CODE (arg0
)))
11486 return pedantic_non_lvalue_loc (loc
,
11487 fold_convert_loc (loc
, type
,
11488 invert_truthvalue_loc (loc
,
11491 /* A < 0 ? <sign bit of A> : 0 is simply (A & <sign bit of A>). */
11492 if (TREE_CODE (arg0
) == LT_EXPR
11493 && integer_zerop (TREE_OPERAND (arg0
, 1))
11494 && integer_zerop (op2
)
11495 && (tem
= sign_bit_p (TREE_OPERAND (arg0
, 0), arg1
)))
11497 /* sign_bit_p looks through both zero and sign extensions,
11498 but for this optimization only sign extensions are
11500 tree tem2
= TREE_OPERAND (arg0
, 0);
11501 while (tem
!= tem2
)
11503 if (TREE_CODE (tem2
) != NOP_EXPR
11504 || TYPE_UNSIGNED (TREE_TYPE (TREE_OPERAND (tem2
, 0))))
11509 tem2
= TREE_OPERAND (tem2
, 0);
11511 /* sign_bit_p only checks ARG1 bits within A's precision.
11512 If <sign bit of A> has wider type than A, bits outside
11513 of A's precision in <sign bit of A> need to be checked.
11514 If they are all 0, this optimization needs to be done
11515 in unsigned A's type, if they are all 1 in signed A's type,
11516 otherwise this can't be done. */
11518 && TYPE_PRECISION (TREE_TYPE (tem
))
11519 < TYPE_PRECISION (TREE_TYPE (arg1
))
11520 && TYPE_PRECISION (TREE_TYPE (tem
))
11521 < TYPE_PRECISION (type
))
11523 int inner_width
, outer_width
;
11526 inner_width
= TYPE_PRECISION (TREE_TYPE (tem
));
11527 outer_width
= TYPE_PRECISION (TREE_TYPE (arg1
));
11528 if (outer_width
> TYPE_PRECISION (type
))
11529 outer_width
= TYPE_PRECISION (type
);
11531 wide_int mask
= wi::shifted_mask
11532 (inner_width
, outer_width
- inner_width
, false,
11533 TYPE_PRECISION (TREE_TYPE (arg1
)));
11535 wide_int common
= mask
& wi::to_wide (arg1
);
11536 if (common
== mask
)
11538 tem_type
= signed_type_for (TREE_TYPE (tem
));
11539 tem
= fold_convert_loc (loc
, tem_type
, tem
);
11541 else if (common
== 0)
11543 tem_type
= unsigned_type_for (TREE_TYPE (tem
));
11544 tem
= fold_convert_loc (loc
, tem_type
, tem
);
11552 fold_convert_loc (loc
, type
,
11553 fold_build2_loc (loc
, BIT_AND_EXPR
,
11554 TREE_TYPE (tem
), tem
,
11555 fold_convert_loc (loc
,
11560 /* (A >> N) & 1 ? (1 << N) : 0 is simply A & (1 << N). A & 1 was
11561 already handled above. */
11562 if (TREE_CODE (arg0
) == BIT_AND_EXPR
11563 && integer_onep (TREE_OPERAND (arg0
, 1))
11564 && integer_zerop (op2
)
11565 && integer_pow2p (arg1
))
11567 tree tem
= TREE_OPERAND (arg0
, 0);
11569 if (TREE_CODE (tem
) == RSHIFT_EXPR
11570 && tree_fits_uhwi_p (TREE_OPERAND (tem
, 1))
11571 && (unsigned HOST_WIDE_INT
) tree_log2 (arg1
)
11572 == tree_to_uhwi (TREE_OPERAND (tem
, 1)))
11573 return fold_build2_loc (loc
, BIT_AND_EXPR
, type
,
11574 fold_convert_loc (loc
, type
,
11575 TREE_OPERAND (tem
, 0)),
11579 /* A & N ? N : 0 is simply A & N if N is a power of two. This
11580 is probably obsolete because the first operand should be a
11581 truth value (that's why we have the two cases above), but let's
11582 leave it in until we can confirm this for all front-ends. */
11583 if (integer_zerop (op2
)
11584 && TREE_CODE (arg0
) == NE_EXPR
11585 && integer_zerop (TREE_OPERAND (arg0
, 1))
11586 && integer_pow2p (arg1
)
11587 && TREE_CODE (TREE_OPERAND (arg0
, 0)) == BIT_AND_EXPR
11588 && operand_equal_p (TREE_OPERAND (TREE_OPERAND (arg0
, 0), 1),
11589 arg1
, OEP_ONLY_CONST
)
11590 /* operand_equal_p compares just value, not precision, so e.g.
11591 arg1 could be 8-bit -128 and be power of two, but BIT_AND_EXPR
11592 second operand 32-bit -128, which is not a power of two (or vice
11594 && integer_pow2p (TREE_OPERAND (TREE_OPERAND (arg0
, 0), 1)))
11595 return pedantic_non_lvalue_loc (loc
,
11596 fold_convert_loc (loc
, type
,
11597 TREE_OPERAND (arg0
,
11600 /* Disable the transformations below for vectors, since
11601 fold_binary_op_with_conditional_arg may undo them immediately,
11602 yielding an infinite loop. */
11603 if (code
== VEC_COND_EXPR
)
11606 /* Convert A ? B : 0 into A && B if A and B are truth values. */
11607 if (integer_zerop (op2
)
11608 && truth_value_p (TREE_CODE (arg0
))
11609 && truth_value_p (TREE_CODE (arg1
))
11610 && (code
== VEC_COND_EXPR
|| !VECTOR_TYPE_P (type
)))
11611 return fold_build2_loc (loc
, code
== VEC_COND_EXPR
? BIT_AND_EXPR
11612 : TRUTH_ANDIF_EXPR
,
11613 type
, fold_convert_loc (loc
, type
, arg0
), op1
);
11615 /* Convert A ? B : 1 into !A || B if A and B are truth values. */
11616 if (code
== VEC_COND_EXPR
? integer_all_onesp (op2
) : integer_onep (op2
)
11617 && truth_value_p (TREE_CODE (arg0
))
11618 && truth_value_p (TREE_CODE (arg1
))
11619 && (code
== VEC_COND_EXPR
|| !VECTOR_TYPE_P (type
)))
11621 location_t loc0
= expr_location_or (arg0
, loc
);
11622 /* Only perform transformation if ARG0 is easily inverted. */
11623 tem
= fold_invert_truthvalue (loc0
, arg0
);
11625 return fold_build2_loc (loc
, code
== VEC_COND_EXPR
11628 type
, fold_convert_loc (loc
, type
, tem
),
11632 /* Convert A ? 0 : B into !A && B if A and B are truth values. */
11633 if (integer_zerop (arg1
)
11634 && truth_value_p (TREE_CODE (arg0
))
11635 && truth_value_p (TREE_CODE (op2
))
11636 && (code
== VEC_COND_EXPR
|| !VECTOR_TYPE_P (type
)))
11638 location_t loc0
= expr_location_or (arg0
, loc
);
11639 /* Only perform transformation if ARG0 is easily inverted. */
11640 tem
= fold_invert_truthvalue (loc0
, arg0
);
11642 return fold_build2_loc (loc
, code
== VEC_COND_EXPR
11643 ? BIT_AND_EXPR
: TRUTH_ANDIF_EXPR
,
11644 type
, fold_convert_loc (loc
, type
, tem
),
11648 /* Convert A ? 1 : B into A || B if A and B are truth values. */
11649 if (code
== VEC_COND_EXPR
? integer_all_onesp (arg1
) : integer_onep (arg1
)
11650 && truth_value_p (TREE_CODE (arg0
))
11651 && truth_value_p (TREE_CODE (op2
))
11652 && (code
== VEC_COND_EXPR
|| !VECTOR_TYPE_P (type
)))
11653 return fold_build2_loc (loc
, code
== VEC_COND_EXPR
11654 ? BIT_IOR_EXPR
: TRUTH_ORIF_EXPR
,
11655 type
, fold_convert_loc (loc
, type
, arg0
), op2
);
11660 /* CALL_EXPRs used to be ternary exprs. Catch any mistaken uses
11661 of fold_ternary on them. */
11662 gcc_unreachable ();
11664 case BIT_FIELD_REF
:
11665 if (TREE_CODE (arg0
) == VECTOR_CST
11666 && (type
== TREE_TYPE (TREE_TYPE (arg0
))
11667 || (VECTOR_TYPE_P (type
)
11668 && TREE_TYPE (type
) == TREE_TYPE (TREE_TYPE (arg0
))))
11669 && tree_fits_uhwi_p (op1
)
11670 && tree_fits_uhwi_p (op2
))
11672 tree eltype
= TREE_TYPE (TREE_TYPE (arg0
));
11673 unsigned HOST_WIDE_INT width
= tree_to_uhwi (TYPE_SIZE (eltype
));
11674 unsigned HOST_WIDE_INT n
= tree_to_uhwi (arg1
);
11675 unsigned HOST_WIDE_INT idx
= tree_to_uhwi (op2
);
11678 && (idx
% width
) == 0
11679 && (n
% width
) == 0
11680 && known_le ((idx
+ n
) / width
,
11681 TYPE_VECTOR_SUBPARTS (TREE_TYPE (arg0
))))
11686 if (TREE_CODE (arg0
) == VECTOR_CST
)
11690 tem
= VECTOR_CST_ELT (arg0
, idx
);
11691 if (VECTOR_TYPE_P (type
))
11692 tem
= fold_build1 (VIEW_CONVERT_EXPR
, type
, tem
);
11696 tree_vector_builder
vals (type
, n
, 1);
11697 for (unsigned i
= 0; i
< n
; ++i
)
11698 vals
.quick_push (VECTOR_CST_ELT (arg0
, idx
+ i
));
11699 return vals
.build ();
11704 /* On constants we can use native encode/interpret to constant
11705 fold (nearly) all BIT_FIELD_REFs. */
11706 if (CONSTANT_CLASS_P (arg0
)
11707 && can_native_interpret_type_p (type
)
11708 && BITS_PER_UNIT
== 8
11709 && tree_fits_uhwi_p (op1
)
11710 && tree_fits_uhwi_p (op2
))
11712 unsigned HOST_WIDE_INT bitpos
= tree_to_uhwi (op2
);
11713 unsigned HOST_WIDE_INT bitsize
= tree_to_uhwi (op1
);
11714 /* Limit us to a reasonable amount of work. To relax the
11715 other limitations we need bit-shifting of the buffer
11716 and rounding up the size. */
11717 if (bitpos
% BITS_PER_UNIT
== 0
11718 && bitsize
% BITS_PER_UNIT
== 0
11719 && bitsize
<= MAX_BITSIZE_MODE_ANY_MODE
)
11721 unsigned char b
[MAX_BITSIZE_MODE_ANY_MODE
/ BITS_PER_UNIT
];
11722 unsigned HOST_WIDE_INT len
11723 = native_encode_expr (arg0
, b
, bitsize
/ BITS_PER_UNIT
,
11724 bitpos
/ BITS_PER_UNIT
);
11726 && len
* BITS_PER_UNIT
>= bitsize
)
11728 tree v
= native_interpret_expr (type
, b
,
11729 bitsize
/ BITS_PER_UNIT
);
11738 case VEC_PERM_EXPR
:
11739 if (TREE_CODE (arg2
) == VECTOR_CST
)
11741 /* Build a vector of integers from the tree mask. */
11742 vec_perm_builder builder
;
11743 if (!tree_to_vec_perm_builder (&builder
, arg2
))
11746 /* Create a vec_perm_indices for the integer vector. */
11747 poly_uint64 nelts
= TYPE_VECTOR_SUBPARTS (type
);
11748 bool single_arg
= (op0
== op1
);
11749 vec_perm_indices
sel (builder
, single_arg
? 1 : 2, nelts
);
11751 /* Check for cases that fold to OP0 or OP1 in their original
11753 if (sel
.series_p (0, 1, 0, 1))
11755 if (sel
.series_p (0, 1, nelts
, 1))
11760 if (sel
.all_from_input_p (0))
11762 else if (sel
.all_from_input_p (1))
11765 sel
.rotate_inputs (1);
11769 if ((TREE_CODE (op0
) == VECTOR_CST
11770 || TREE_CODE (op0
) == CONSTRUCTOR
)
11771 && (TREE_CODE (op1
) == VECTOR_CST
11772 || TREE_CODE (op1
) == CONSTRUCTOR
))
11774 tree t
= fold_vec_perm (type
, op0
, op1
, sel
);
11775 if (t
!= NULL_TREE
)
11779 bool changed
= (op0
== op1
&& !single_arg
);
11781 /* Generate a canonical form of the selector. */
11782 if (arg2
== op2
&& sel
.encoding () != builder
)
11784 /* Some targets are deficient and fail to expand a single
11785 argument permutation while still allowing an equivalent
11786 2-argument version. */
11787 if (sel
.ninputs () == 2
11788 || can_vec_perm_const_p (TYPE_MODE (type
), sel
, false))
11789 op2
= vec_perm_indices_to_tree (TREE_TYPE (arg2
), sel
);
11792 vec_perm_indices
sel2 (builder
, 2, nelts
);
11793 if (can_vec_perm_const_p (TYPE_MODE (type
), sel2
, false))
11794 op2
= vec_perm_indices_to_tree (TREE_TYPE (arg2
), sel2
);
11796 /* Not directly supported with either encoding,
11797 so use the preferred form. */
11798 op2
= vec_perm_indices_to_tree (TREE_TYPE (arg2
), sel
);
11804 return build3_loc (loc
, VEC_PERM_EXPR
, type
, op0
, op1
, op2
);
11808 case BIT_INSERT_EXPR
:
11809 /* Perform (partial) constant folding of BIT_INSERT_EXPR. */
11810 if (TREE_CODE (arg0
) == INTEGER_CST
11811 && TREE_CODE (arg1
) == INTEGER_CST
)
11813 unsigned HOST_WIDE_INT bitpos
= tree_to_uhwi (op2
);
11814 unsigned bitsize
= TYPE_PRECISION (TREE_TYPE (arg1
));
11815 wide_int tem
= (wi::to_wide (arg0
)
11816 & wi::shifted_mask (bitpos
, bitsize
, true,
11817 TYPE_PRECISION (type
)));
11819 = wi::lshift (wi::zext (wi::to_wide (arg1
, TYPE_PRECISION (type
)),
11821 return wide_int_to_tree (type
, wi::bit_or (tem
, tem2
));
11823 else if (TREE_CODE (arg0
) == VECTOR_CST
11824 && CONSTANT_CLASS_P (arg1
)
11825 && types_compatible_p (TREE_TYPE (TREE_TYPE (arg0
)),
11828 unsigned HOST_WIDE_INT bitpos
= tree_to_uhwi (op2
);
11829 unsigned HOST_WIDE_INT elsize
11830 = tree_to_uhwi (TYPE_SIZE (TREE_TYPE (arg1
)));
11831 if (bitpos
% elsize
== 0)
11833 unsigned k
= bitpos
/ elsize
;
11834 unsigned HOST_WIDE_INT nelts
;
11835 if (operand_equal_p (VECTOR_CST_ELT (arg0
, k
), arg1
, 0))
11837 else if (VECTOR_CST_NELTS (arg0
).is_constant (&nelts
))
11839 tree_vector_builder
elts (type
, nelts
, 1);
11840 elts
.quick_grow (nelts
);
11841 for (unsigned HOST_WIDE_INT i
= 0; i
< nelts
; ++i
)
11842 elts
[i
] = (i
== k
? arg1
: VECTOR_CST_ELT (arg0
, i
));
11843 return elts
.build ();
11851 } /* switch (code) */
11854 /* Gets the element ACCESS_INDEX from CTOR, which must be a CONSTRUCTOR
11855 of an array (or vector). */
11858 get_array_ctor_element_at_index (tree ctor
, offset_int access_index
)
11860 tree index_type
= NULL_TREE
;
11861 offset_int low_bound
= 0;
11863 if (TREE_CODE (TREE_TYPE (ctor
)) == ARRAY_TYPE
)
11865 tree domain_type
= TYPE_DOMAIN (TREE_TYPE (ctor
));
11866 if (domain_type
&& TYPE_MIN_VALUE (domain_type
))
11868 /* Static constructors for variably sized objects makes no sense. */
11869 gcc_assert (TREE_CODE (TYPE_MIN_VALUE (domain_type
)) == INTEGER_CST
);
11870 index_type
= TREE_TYPE (TYPE_MIN_VALUE (domain_type
));
11871 low_bound
= wi::to_offset (TYPE_MIN_VALUE (domain_type
));
11876 access_index
= wi::ext (access_index
, TYPE_PRECISION (index_type
),
11877 TYPE_SIGN (index_type
));
11879 offset_int index
= low_bound
- 1;
11881 index
= wi::ext (index
, TYPE_PRECISION (index_type
),
11882 TYPE_SIGN (index_type
));
11884 offset_int max_index
;
11885 unsigned HOST_WIDE_INT cnt
;
11888 FOR_EACH_CONSTRUCTOR_ELT (CONSTRUCTOR_ELTS (ctor
), cnt
, cfield
, cval
)
11890 /* Array constructor might explicitly set index, or specify a range,
11891 or leave index NULL meaning that it is next index after previous
11895 if (TREE_CODE (cfield
) == INTEGER_CST
)
11896 max_index
= index
= wi::to_offset (cfield
);
11899 gcc_assert (TREE_CODE (cfield
) == RANGE_EXPR
);
11900 index
= wi::to_offset (TREE_OPERAND (cfield
, 0));
11901 max_index
= wi::to_offset (TREE_OPERAND (cfield
, 1));
11908 index
= wi::ext (index
, TYPE_PRECISION (index_type
),
11909 TYPE_SIGN (index_type
));
11913 /* Do we have match? */
11914 if (wi::cmpu (access_index
, index
) >= 0
11915 && wi::cmpu (access_index
, max_index
) <= 0)
11921 /* Perform constant folding and related simplification of EXPR.
11922 The related simplifications include x*1 => x, x*0 => 0, etc.,
11923 and application of the associative law.
11924 NOP_EXPR conversions may be removed freely (as long as we
11925 are careful not to change the type of the overall expression).
11926 We cannot simplify through a CONVERT_EXPR, FIX_EXPR or FLOAT_EXPR,
11927 but we can constant-fold them if they have constant operands. */
11929 #ifdef ENABLE_FOLD_CHECKING
11930 # define fold(x) fold_1 (x)
11931 static tree
fold_1 (tree
);
11937 const tree t
= expr
;
11938 enum tree_code code
= TREE_CODE (t
);
11939 enum tree_code_class kind
= TREE_CODE_CLASS (code
);
11941 location_t loc
= EXPR_LOCATION (expr
);
11943 /* Return right away if a constant. */
11944 if (kind
== tcc_constant
)
11947 /* CALL_EXPR-like objects with variable numbers of operands are
11948 treated specially. */
11949 if (kind
== tcc_vl_exp
)
11951 if (code
== CALL_EXPR
)
11953 tem
= fold_call_expr (loc
, expr
, false);
11954 return tem
? tem
: expr
;
11959 if (IS_EXPR_CODE_CLASS (kind
))
11961 tree type
= TREE_TYPE (t
);
11962 tree op0
, op1
, op2
;
11964 switch (TREE_CODE_LENGTH (code
))
11967 op0
= TREE_OPERAND (t
, 0);
11968 tem
= fold_unary_loc (loc
, code
, type
, op0
);
11969 return tem
? tem
: expr
;
11971 op0
= TREE_OPERAND (t
, 0);
11972 op1
= TREE_OPERAND (t
, 1);
11973 tem
= fold_binary_loc (loc
, code
, type
, op0
, op1
);
11974 return tem
? tem
: expr
;
11976 op0
= TREE_OPERAND (t
, 0);
11977 op1
= TREE_OPERAND (t
, 1);
11978 op2
= TREE_OPERAND (t
, 2);
11979 tem
= fold_ternary_loc (loc
, code
, type
, op0
, op1
, op2
);
11980 return tem
? tem
: expr
;
11990 tree op0
= TREE_OPERAND (t
, 0);
11991 tree op1
= TREE_OPERAND (t
, 1);
11993 if (TREE_CODE (op1
) == INTEGER_CST
11994 && TREE_CODE (op0
) == CONSTRUCTOR
11995 && ! type_contains_placeholder_p (TREE_TYPE (op0
)))
11997 tree val
= get_array_ctor_element_at_index (op0
,
11998 wi::to_offset (op1
));
12006 /* Return a VECTOR_CST if possible. */
12009 tree type
= TREE_TYPE (t
);
12010 if (TREE_CODE (type
) != VECTOR_TYPE
)
12015 FOR_EACH_CONSTRUCTOR_VALUE (CONSTRUCTOR_ELTS (t
), i
, val
)
12016 if (! CONSTANT_CLASS_P (val
))
12019 return build_vector_from_ctor (type
, CONSTRUCTOR_ELTS (t
));
12023 return fold (DECL_INITIAL (t
));
12027 } /* switch (code) */
12030 #ifdef ENABLE_FOLD_CHECKING
12033 static void fold_checksum_tree (const_tree
, struct md5_ctx
*,
12034 hash_table
<nofree_ptr_hash
<const tree_node
> > *);
12035 static void fold_check_failed (const_tree
, const_tree
);
12036 void print_fold_checksum (const_tree
);
12038 /* When --enable-checking=fold, compute a digest of expr before
12039 and after actual fold call to see if fold did not accidentally
12040 change original expr. */
12046 struct md5_ctx ctx
;
12047 unsigned char checksum_before
[16], checksum_after
[16];
12048 hash_table
<nofree_ptr_hash
<const tree_node
> > ht (32);
12050 md5_init_ctx (&ctx
);
12051 fold_checksum_tree (expr
, &ctx
, &ht
);
12052 md5_finish_ctx (&ctx
, checksum_before
);
12055 ret
= fold_1 (expr
);
12057 md5_init_ctx (&ctx
);
12058 fold_checksum_tree (expr
, &ctx
, &ht
);
12059 md5_finish_ctx (&ctx
, checksum_after
);
12061 if (memcmp (checksum_before
, checksum_after
, 16))
12062 fold_check_failed (expr
, ret
);
12068 print_fold_checksum (const_tree expr
)
12070 struct md5_ctx ctx
;
12071 unsigned char checksum
[16], cnt
;
12072 hash_table
<nofree_ptr_hash
<const tree_node
> > ht (32);
12074 md5_init_ctx (&ctx
);
12075 fold_checksum_tree (expr
, &ctx
, &ht
);
12076 md5_finish_ctx (&ctx
, checksum
);
12077 for (cnt
= 0; cnt
< 16; ++cnt
)
12078 fprintf (stderr
, "%02x", checksum
[cnt
]);
12079 putc ('\n', stderr
);
12083 fold_check_failed (const_tree expr ATTRIBUTE_UNUSED
, const_tree ret ATTRIBUTE_UNUSED
)
12085 internal_error ("fold check: original tree changed by fold");
12089 fold_checksum_tree (const_tree expr
, struct md5_ctx
*ctx
,
12090 hash_table
<nofree_ptr_hash
<const tree_node
> > *ht
)
12092 const tree_node
**slot
;
12093 enum tree_code code
;
12094 union tree_node buf
;
12100 slot
= ht
->find_slot (expr
, INSERT
);
12104 code
= TREE_CODE (expr
);
12105 if (TREE_CODE_CLASS (code
) == tcc_declaration
12106 && HAS_DECL_ASSEMBLER_NAME_P (expr
))
12108 /* Allow DECL_ASSEMBLER_NAME and symtab_node to be modified. */
12109 memcpy ((char *) &buf
, expr
, tree_size (expr
));
12110 SET_DECL_ASSEMBLER_NAME ((tree
)&buf
, NULL
);
12111 buf
.decl_with_vis
.symtab_node
= NULL
;
12112 expr
= (tree
) &buf
;
12114 else if (TREE_CODE_CLASS (code
) == tcc_type
12115 && (TYPE_POINTER_TO (expr
)
12116 || TYPE_REFERENCE_TO (expr
)
12117 || TYPE_CACHED_VALUES_P (expr
)
12118 || TYPE_CONTAINS_PLACEHOLDER_INTERNAL (expr
)
12119 || TYPE_NEXT_VARIANT (expr
)
12120 || TYPE_ALIAS_SET_KNOWN_P (expr
)))
12122 /* Allow these fields to be modified. */
12124 memcpy ((char *) &buf
, expr
, tree_size (expr
));
12125 expr
= tmp
= (tree
) &buf
;
12126 TYPE_CONTAINS_PLACEHOLDER_INTERNAL (tmp
) = 0;
12127 TYPE_POINTER_TO (tmp
) = NULL
;
12128 TYPE_REFERENCE_TO (tmp
) = NULL
;
12129 TYPE_NEXT_VARIANT (tmp
) = NULL
;
12130 TYPE_ALIAS_SET (tmp
) = -1;
12131 if (TYPE_CACHED_VALUES_P (tmp
))
12133 TYPE_CACHED_VALUES_P (tmp
) = 0;
12134 TYPE_CACHED_VALUES (tmp
) = NULL
;
12137 md5_process_bytes (expr
, tree_size (expr
), ctx
);
12138 if (CODE_CONTAINS_STRUCT (code
, TS_TYPED
))
12139 fold_checksum_tree (TREE_TYPE (expr
), ctx
, ht
);
12140 if (TREE_CODE_CLASS (code
) != tcc_type
12141 && TREE_CODE_CLASS (code
) != tcc_declaration
12142 && code
!= TREE_LIST
12143 && code
!= SSA_NAME
12144 && CODE_CONTAINS_STRUCT (code
, TS_COMMON
))
12145 fold_checksum_tree (TREE_CHAIN (expr
), ctx
, ht
);
12146 switch (TREE_CODE_CLASS (code
))
12152 md5_process_bytes (TREE_STRING_POINTER (expr
),
12153 TREE_STRING_LENGTH (expr
), ctx
);
12156 fold_checksum_tree (TREE_REALPART (expr
), ctx
, ht
);
12157 fold_checksum_tree (TREE_IMAGPART (expr
), ctx
, ht
);
12160 len
= vector_cst_encoded_nelts (expr
);
12161 for (i
= 0; i
< len
; ++i
)
12162 fold_checksum_tree (VECTOR_CST_ENCODED_ELT (expr
, i
), ctx
, ht
);
12168 case tcc_exceptional
:
12172 fold_checksum_tree (TREE_PURPOSE (expr
), ctx
, ht
);
12173 fold_checksum_tree (TREE_VALUE (expr
), ctx
, ht
);
12174 expr
= TREE_CHAIN (expr
);
12175 goto recursive_label
;
12178 for (i
= 0; i
< TREE_VEC_LENGTH (expr
); ++i
)
12179 fold_checksum_tree (TREE_VEC_ELT (expr
, i
), ctx
, ht
);
12185 case tcc_expression
:
12186 case tcc_reference
:
12187 case tcc_comparison
:
12190 case tcc_statement
:
12192 len
= TREE_OPERAND_LENGTH (expr
);
12193 for (i
= 0; i
< len
; ++i
)
12194 fold_checksum_tree (TREE_OPERAND (expr
, i
), ctx
, ht
);
12196 case tcc_declaration
:
12197 fold_checksum_tree (DECL_NAME (expr
), ctx
, ht
);
12198 fold_checksum_tree (DECL_CONTEXT (expr
), ctx
, ht
);
12199 if (CODE_CONTAINS_STRUCT (TREE_CODE (expr
), TS_DECL_COMMON
))
12201 fold_checksum_tree (DECL_SIZE (expr
), ctx
, ht
);
12202 fold_checksum_tree (DECL_SIZE_UNIT (expr
), ctx
, ht
);
12203 fold_checksum_tree (DECL_INITIAL (expr
), ctx
, ht
);
12204 fold_checksum_tree (DECL_ABSTRACT_ORIGIN (expr
), ctx
, ht
);
12205 fold_checksum_tree (DECL_ATTRIBUTES (expr
), ctx
, ht
);
12208 if (CODE_CONTAINS_STRUCT (TREE_CODE (expr
), TS_DECL_NON_COMMON
))
12210 if (TREE_CODE (expr
) == FUNCTION_DECL
)
12212 fold_checksum_tree (DECL_VINDEX (expr
), ctx
, ht
);
12213 fold_checksum_tree (DECL_ARGUMENTS (expr
), ctx
, ht
);
12215 fold_checksum_tree (DECL_RESULT_FLD (expr
), ctx
, ht
);
12219 if (TREE_CODE (expr
) == ENUMERAL_TYPE
)
12220 fold_checksum_tree (TYPE_VALUES (expr
), ctx
, ht
);
12221 fold_checksum_tree (TYPE_SIZE (expr
), ctx
, ht
);
12222 fold_checksum_tree (TYPE_SIZE_UNIT (expr
), ctx
, ht
);
12223 fold_checksum_tree (TYPE_ATTRIBUTES (expr
), ctx
, ht
);
12224 fold_checksum_tree (TYPE_NAME (expr
), ctx
, ht
);
12225 if (INTEGRAL_TYPE_P (expr
)
12226 || SCALAR_FLOAT_TYPE_P (expr
))
12228 fold_checksum_tree (TYPE_MIN_VALUE (expr
), ctx
, ht
);
12229 fold_checksum_tree (TYPE_MAX_VALUE (expr
), ctx
, ht
);
12231 fold_checksum_tree (TYPE_MAIN_VARIANT (expr
), ctx
, ht
);
12232 if (TREE_CODE (expr
) == RECORD_TYPE
12233 || TREE_CODE (expr
) == UNION_TYPE
12234 || TREE_CODE (expr
) == QUAL_UNION_TYPE
)
12235 fold_checksum_tree (TYPE_BINFO (expr
), ctx
, ht
);
12236 fold_checksum_tree (TYPE_CONTEXT (expr
), ctx
, ht
);
12243 /* Helper function for outputting the checksum of a tree T. When
12244 debugging with gdb, you can "define mynext" to be "next" followed
12245 by "call debug_fold_checksum (op0)", then just trace down till the
12248 DEBUG_FUNCTION
void
12249 debug_fold_checksum (const_tree t
)
12252 unsigned char checksum
[16];
12253 struct md5_ctx ctx
;
12254 hash_table
<nofree_ptr_hash
<const tree_node
> > ht (32);
12256 md5_init_ctx (&ctx
);
12257 fold_checksum_tree (t
, &ctx
, &ht
);
12258 md5_finish_ctx (&ctx
, checksum
);
12261 for (i
= 0; i
< 16; i
++)
12262 fprintf (stderr
, "%d ", checksum
[i
]);
12264 fprintf (stderr
, "\n");
12269 /* Fold a unary tree expression with code CODE of type TYPE with an
12270 operand OP0. LOC is the location of the resulting expression.
12271 Return a folded expression if successful. Otherwise, return a tree
12272 expression with code CODE of type TYPE with an operand OP0. */
12275 fold_build1_loc (location_t loc
,
12276 enum tree_code code
, tree type
, tree op0 MEM_STAT_DECL
)
12279 #ifdef ENABLE_FOLD_CHECKING
12280 unsigned char checksum_before
[16], checksum_after
[16];
12281 struct md5_ctx ctx
;
12282 hash_table
<nofree_ptr_hash
<const tree_node
> > ht (32);
12284 md5_init_ctx (&ctx
);
12285 fold_checksum_tree (op0
, &ctx
, &ht
);
12286 md5_finish_ctx (&ctx
, checksum_before
);
12290 tem
= fold_unary_loc (loc
, code
, type
, op0
);
12292 tem
= build1_loc (loc
, code
, type
, op0 PASS_MEM_STAT
);
12294 #ifdef ENABLE_FOLD_CHECKING
12295 md5_init_ctx (&ctx
);
12296 fold_checksum_tree (op0
, &ctx
, &ht
);
12297 md5_finish_ctx (&ctx
, checksum_after
);
12299 if (memcmp (checksum_before
, checksum_after
, 16))
12300 fold_check_failed (op0
, tem
);
12305 /* Fold a binary tree expression with code CODE of type TYPE with
12306 operands OP0 and OP1. LOC is the location of the resulting
12307 expression. Return a folded expression if successful. Otherwise,
12308 return a tree expression with code CODE of type TYPE with operands
12312 fold_build2_loc (location_t loc
,
12313 enum tree_code code
, tree type
, tree op0
, tree op1
12317 #ifdef ENABLE_FOLD_CHECKING
12318 unsigned char checksum_before_op0
[16],
12319 checksum_before_op1
[16],
12320 checksum_after_op0
[16],
12321 checksum_after_op1
[16];
12322 struct md5_ctx ctx
;
12323 hash_table
<nofree_ptr_hash
<const tree_node
> > ht (32);
12325 md5_init_ctx (&ctx
);
12326 fold_checksum_tree (op0
, &ctx
, &ht
);
12327 md5_finish_ctx (&ctx
, checksum_before_op0
);
12330 md5_init_ctx (&ctx
);
12331 fold_checksum_tree (op1
, &ctx
, &ht
);
12332 md5_finish_ctx (&ctx
, checksum_before_op1
);
12336 tem
= fold_binary_loc (loc
, code
, type
, op0
, op1
);
12338 tem
= build2_loc (loc
, code
, type
, op0
, op1 PASS_MEM_STAT
);
12340 #ifdef ENABLE_FOLD_CHECKING
12341 md5_init_ctx (&ctx
);
12342 fold_checksum_tree (op0
, &ctx
, &ht
);
12343 md5_finish_ctx (&ctx
, checksum_after_op0
);
12346 if (memcmp (checksum_before_op0
, checksum_after_op0
, 16))
12347 fold_check_failed (op0
, tem
);
12349 md5_init_ctx (&ctx
);
12350 fold_checksum_tree (op1
, &ctx
, &ht
);
12351 md5_finish_ctx (&ctx
, checksum_after_op1
);
12353 if (memcmp (checksum_before_op1
, checksum_after_op1
, 16))
12354 fold_check_failed (op1
, tem
);
12359 /* Fold a ternary tree expression with code CODE of type TYPE with
12360 operands OP0, OP1, and OP2. Return a folded expression if
12361 successful. Otherwise, return a tree expression with code CODE of
12362 type TYPE with operands OP0, OP1, and OP2. */
12365 fold_build3_loc (location_t loc
, enum tree_code code
, tree type
,
12366 tree op0
, tree op1
, tree op2 MEM_STAT_DECL
)
12369 #ifdef ENABLE_FOLD_CHECKING
12370 unsigned char checksum_before_op0
[16],
12371 checksum_before_op1
[16],
12372 checksum_before_op2
[16],
12373 checksum_after_op0
[16],
12374 checksum_after_op1
[16],
12375 checksum_after_op2
[16];
12376 struct md5_ctx ctx
;
12377 hash_table
<nofree_ptr_hash
<const tree_node
> > ht (32);
12379 md5_init_ctx (&ctx
);
12380 fold_checksum_tree (op0
, &ctx
, &ht
);
12381 md5_finish_ctx (&ctx
, checksum_before_op0
);
12384 md5_init_ctx (&ctx
);
12385 fold_checksum_tree (op1
, &ctx
, &ht
);
12386 md5_finish_ctx (&ctx
, checksum_before_op1
);
12389 md5_init_ctx (&ctx
);
12390 fold_checksum_tree (op2
, &ctx
, &ht
);
12391 md5_finish_ctx (&ctx
, checksum_before_op2
);
12395 gcc_assert (TREE_CODE_CLASS (code
) != tcc_vl_exp
);
12396 tem
= fold_ternary_loc (loc
, code
, type
, op0
, op1
, op2
);
12398 tem
= build3_loc (loc
, code
, type
, op0
, op1
, op2 PASS_MEM_STAT
);
12400 #ifdef ENABLE_FOLD_CHECKING
12401 md5_init_ctx (&ctx
);
12402 fold_checksum_tree (op0
, &ctx
, &ht
);
12403 md5_finish_ctx (&ctx
, checksum_after_op0
);
12406 if (memcmp (checksum_before_op0
, checksum_after_op0
, 16))
12407 fold_check_failed (op0
, tem
);
12409 md5_init_ctx (&ctx
);
12410 fold_checksum_tree (op1
, &ctx
, &ht
);
12411 md5_finish_ctx (&ctx
, checksum_after_op1
);
12414 if (memcmp (checksum_before_op1
, checksum_after_op1
, 16))
12415 fold_check_failed (op1
, tem
);
12417 md5_init_ctx (&ctx
);
12418 fold_checksum_tree (op2
, &ctx
, &ht
);
12419 md5_finish_ctx (&ctx
, checksum_after_op2
);
12421 if (memcmp (checksum_before_op2
, checksum_after_op2
, 16))
12422 fold_check_failed (op2
, tem
);
12427 /* Fold a CALL_EXPR expression of type TYPE with operands FN and NARGS
12428 arguments in ARGARRAY, and a null static chain.
12429 Return a folded expression if successful. Otherwise, return a CALL_EXPR
12430 of type TYPE from the given operands as constructed by build_call_array. */
12433 fold_build_call_array_loc (location_t loc
, tree type
, tree fn
,
12434 int nargs
, tree
*argarray
)
12437 #ifdef ENABLE_FOLD_CHECKING
12438 unsigned char checksum_before_fn
[16],
12439 checksum_before_arglist
[16],
12440 checksum_after_fn
[16],
12441 checksum_after_arglist
[16];
12442 struct md5_ctx ctx
;
12443 hash_table
<nofree_ptr_hash
<const tree_node
> > ht (32);
12446 md5_init_ctx (&ctx
);
12447 fold_checksum_tree (fn
, &ctx
, &ht
);
12448 md5_finish_ctx (&ctx
, checksum_before_fn
);
12451 md5_init_ctx (&ctx
);
12452 for (i
= 0; i
< nargs
; i
++)
12453 fold_checksum_tree (argarray
[i
], &ctx
, &ht
);
12454 md5_finish_ctx (&ctx
, checksum_before_arglist
);
12458 tem
= fold_builtin_call_array (loc
, type
, fn
, nargs
, argarray
);
12460 tem
= build_call_array_loc (loc
, type
, fn
, nargs
, argarray
);
12462 #ifdef ENABLE_FOLD_CHECKING
12463 md5_init_ctx (&ctx
);
12464 fold_checksum_tree (fn
, &ctx
, &ht
);
12465 md5_finish_ctx (&ctx
, checksum_after_fn
);
12468 if (memcmp (checksum_before_fn
, checksum_after_fn
, 16))
12469 fold_check_failed (fn
, tem
);
12471 md5_init_ctx (&ctx
);
12472 for (i
= 0; i
< nargs
; i
++)
12473 fold_checksum_tree (argarray
[i
], &ctx
, &ht
);
12474 md5_finish_ctx (&ctx
, checksum_after_arglist
);
12476 if (memcmp (checksum_before_arglist
, checksum_after_arglist
, 16))
12477 fold_check_failed (NULL_TREE
, tem
);
12482 /* Perform constant folding and related simplification of initializer
12483 expression EXPR. These behave identically to "fold_buildN" but ignore
12484 potential run-time traps and exceptions that fold must preserve. */
12486 #define START_FOLD_INIT \
12487 int saved_signaling_nans = flag_signaling_nans;\
12488 int saved_trapping_math = flag_trapping_math;\
12489 int saved_rounding_math = flag_rounding_math;\
12490 int saved_trapv = flag_trapv;\
12491 int saved_folding_initializer = folding_initializer;\
12492 flag_signaling_nans = 0;\
12493 flag_trapping_math = 0;\
12494 flag_rounding_math = 0;\
12496 folding_initializer = 1;
12498 #define END_FOLD_INIT \
12499 flag_signaling_nans = saved_signaling_nans;\
12500 flag_trapping_math = saved_trapping_math;\
12501 flag_rounding_math = saved_rounding_math;\
12502 flag_trapv = saved_trapv;\
12503 folding_initializer = saved_folding_initializer;
12506 fold_build1_initializer_loc (location_t loc
, enum tree_code code
,
12507 tree type
, tree op
)
12512 result
= fold_build1_loc (loc
, code
, type
, op
);
12519 fold_build2_initializer_loc (location_t loc
, enum tree_code code
,
12520 tree type
, tree op0
, tree op1
)
12525 result
= fold_build2_loc (loc
, code
, type
, op0
, op1
);
12532 fold_build_call_array_initializer_loc (location_t loc
, tree type
, tree fn
,
12533 int nargs
, tree
*argarray
)
12538 result
= fold_build_call_array_loc (loc
, type
, fn
, nargs
, argarray
);
12544 #undef START_FOLD_INIT
12545 #undef END_FOLD_INIT
12547 /* Determine if first argument is a multiple of second argument. Return 0 if
12548 it is not, or we cannot easily determined it to be.
12550 An example of the sort of thing we care about (at this point; this routine
12551 could surely be made more general, and expanded to do what the *_DIV_EXPR's
12552 fold cases do now) is discovering that
12554 SAVE_EXPR (I) * SAVE_EXPR (J * 8)
12560 when we know that the two SAVE_EXPR (J * 8) nodes are the same node.
12562 This code also handles discovering that
12564 SAVE_EXPR (I) * SAVE_EXPR (J * 8)
12566 is a multiple of 8 so we don't have to worry about dealing with a
12567 possible remainder.
12569 Note that we *look* inside a SAVE_EXPR only to determine how it was
12570 calculated; it is not safe for fold to do much of anything else with the
12571 internals of a SAVE_EXPR, since it cannot know when it will be evaluated
12572 at run time. For example, the latter example above *cannot* be implemented
12573 as SAVE_EXPR (I) * J or any variant thereof, since the value of J at
12574 evaluation time of the original SAVE_EXPR is not necessarily the same at
12575 the time the new expression is evaluated. The only optimization of this
12576 sort that would be valid is changing
12578 SAVE_EXPR (I) * SAVE_EXPR (SAVE_EXPR (J) * 8)
12582 SAVE_EXPR (I) * SAVE_EXPR (J)
12584 (where the same SAVE_EXPR (J) is used in the original and the
12585 transformed version). */
12588 multiple_of_p (tree type
, const_tree top
, const_tree bottom
)
12593 if (operand_equal_p (top
, bottom
, 0))
12596 if (TREE_CODE (type
) != INTEGER_TYPE
)
12599 switch (TREE_CODE (top
))
12602 /* Bitwise and provides a power of two multiple. If the mask is
12603 a multiple of BOTTOM then TOP is a multiple of BOTTOM. */
12604 if (!integer_pow2p (bottom
))
12606 return (multiple_of_p (type
, TREE_OPERAND (top
, 1), bottom
)
12607 || multiple_of_p (type
, TREE_OPERAND (top
, 0), bottom
));
12610 if (TREE_CODE (bottom
) == INTEGER_CST
)
12612 op1
= TREE_OPERAND (top
, 0);
12613 op2
= TREE_OPERAND (top
, 1);
12614 if (TREE_CODE (op1
) == INTEGER_CST
)
12615 std::swap (op1
, op2
);
12616 if (TREE_CODE (op2
) == INTEGER_CST
)
12618 if (multiple_of_p (type
, op2
, bottom
))
12620 /* Handle multiple_of_p ((x * 2 + 2) * 4, 8). */
12621 if (multiple_of_p (type
, bottom
, op2
))
12623 widest_int w
= wi::sdiv_trunc (wi::to_widest (bottom
),
12624 wi::to_widest (op2
));
12625 if (wi::fits_to_tree_p (w
, TREE_TYPE (bottom
)))
12627 op2
= wide_int_to_tree (TREE_TYPE (bottom
), w
);
12628 return multiple_of_p (type
, op1
, op2
);
12631 return multiple_of_p (type
, op1
, bottom
);
12634 return (multiple_of_p (type
, TREE_OPERAND (top
, 1), bottom
)
12635 || multiple_of_p (type
, TREE_OPERAND (top
, 0), bottom
));
12638 /* It is impossible to prove if op0 - op1 is multiple of bottom
12639 precisely, so be conservative here checking if both op0 and op1
12640 are multiple of bottom. Note we check the second operand first
12641 since it's usually simpler. */
12642 return (multiple_of_p (type
, TREE_OPERAND (top
, 1), bottom
)
12643 && multiple_of_p (type
, TREE_OPERAND (top
, 0), bottom
));
12646 /* The same as MINUS_EXPR, but handle cases like op0 + 0xfffffffd
12647 as op0 - 3 if the expression has unsigned type. For example,
12648 (X / 3) + 0xfffffffd is multiple of 3, but 0xfffffffd is not. */
12649 op1
= TREE_OPERAND (top
, 1);
12650 if (TYPE_UNSIGNED (type
)
12651 && TREE_CODE (op1
) == INTEGER_CST
&& tree_int_cst_sign_bit (op1
))
12652 op1
= fold_build1 (NEGATE_EXPR
, type
, op1
);
12653 return (multiple_of_p (type
, op1
, bottom
)
12654 && multiple_of_p (type
, TREE_OPERAND (top
, 0), bottom
));
12657 if (TREE_CODE (TREE_OPERAND (top
, 1)) == INTEGER_CST
)
12659 op1
= TREE_OPERAND (top
, 1);
12660 /* const_binop may not detect overflow correctly,
12661 so check for it explicitly here. */
12662 if (wi::gtu_p (TYPE_PRECISION (TREE_TYPE (size_one_node
)),
12664 && (t1
= fold_convert (type
,
12665 const_binop (LSHIFT_EXPR
, size_one_node
,
12667 && !TREE_OVERFLOW (t1
))
12668 return multiple_of_p (type
, t1
, bottom
);
12673 /* Can't handle conversions from non-integral or wider integral type. */
12674 if ((TREE_CODE (TREE_TYPE (TREE_OPERAND (top
, 0))) != INTEGER_TYPE
)
12675 || (TYPE_PRECISION (type
)
12676 < TYPE_PRECISION (TREE_TYPE (TREE_OPERAND (top
, 0)))))
12682 return multiple_of_p (type
, TREE_OPERAND (top
, 0), bottom
);
12685 return (multiple_of_p (type
, TREE_OPERAND (top
, 1), bottom
)
12686 && multiple_of_p (type
, TREE_OPERAND (top
, 2), bottom
));
12689 if (TREE_CODE (bottom
) != INTEGER_CST
12690 || integer_zerop (bottom
)
12691 || (TYPE_UNSIGNED (type
)
12692 && (tree_int_cst_sgn (top
) < 0
12693 || tree_int_cst_sgn (bottom
) < 0)))
12695 return wi::multiple_of_p (wi::to_widest (top
), wi::to_widest (bottom
),
12699 if (TREE_CODE (bottom
) == INTEGER_CST
12700 && (stmt
= SSA_NAME_DEF_STMT (top
)) != NULL
12701 && gimple_code (stmt
) == GIMPLE_ASSIGN
)
12703 enum tree_code code
= gimple_assign_rhs_code (stmt
);
12705 /* Check for special cases to see if top is defined as multiple
12708 top = (X & ~(bottom - 1) ; bottom is power of 2
12714 if (code
== BIT_AND_EXPR
12715 && (op2
= gimple_assign_rhs2 (stmt
)) != NULL_TREE
12716 && TREE_CODE (op2
) == INTEGER_CST
12717 && integer_pow2p (bottom
)
12718 && wi::multiple_of_p (wi::to_widest (op2
),
12719 wi::to_widest (bottom
), UNSIGNED
))
12722 op1
= gimple_assign_rhs1 (stmt
);
12723 if (code
== MINUS_EXPR
12724 && (op2
= gimple_assign_rhs2 (stmt
)) != NULL_TREE
12725 && TREE_CODE (op2
) == SSA_NAME
12726 && (stmt
= SSA_NAME_DEF_STMT (op2
)) != NULL
12727 && gimple_code (stmt
) == GIMPLE_ASSIGN
12728 && (code
= gimple_assign_rhs_code (stmt
)) == TRUNC_MOD_EXPR
12729 && operand_equal_p (op1
, gimple_assign_rhs1 (stmt
), 0)
12730 && operand_equal_p (bottom
, gimple_assign_rhs2 (stmt
), 0))
12737 if (POLY_INT_CST_P (top
) && poly_int_tree_p (bottom
))
12738 return multiple_p (wi::to_poly_widest (top
),
12739 wi::to_poly_widest (bottom
));
12745 #define tree_expr_nonnegative_warnv_p(X, Y) \
12746 _Pragma ("GCC error \"Use RECURSE for recursive calls\"") 0
12748 #define RECURSE(X) \
12749 ((tree_expr_nonnegative_warnv_p) (X, strict_overflow_p, depth + 1))
12751 /* Return true if CODE or TYPE is known to be non-negative. */
12754 tree_simple_nonnegative_warnv_p (enum tree_code code
, tree type
)
12756 if ((TYPE_PRECISION (type
) != 1 || TYPE_UNSIGNED (type
))
12757 && truth_value_p (code
))
12758 /* Truth values evaluate to 0 or 1, which is nonnegative unless we
12759 have a signed:1 type (where the value is -1 and 0). */
12764 /* Return true if (CODE OP0) is known to be non-negative. If the return
12765 value is based on the assumption that signed overflow is undefined,
12766 set *STRICT_OVERFLOW_P to true; otherwise, don't change
12767 *STRICT_OVERFLOW_P. DEPTH is the current nesting depth of the query. */
12770 tree_unary_nonnegative_warnv_p (enum tree_code code
, tree type
, tree op0
,
12771 bool *strict_overflow_p
, int depth
)
12773 if (TYPE_UNSIGNED (type
))
12779 /* We can't return 1 if flag_wrapv is set because
12780 ABS_EXPR<INT_MIN> = INT_MIN. */
12781 if (!ANY_INTEGRAL_TYPE_P (type
))
12783 if (TYPE_OVERFLOW_UNDEFINED (type
))
12785 *strict_overflow_p
= true;
12790 case NON_LVALUE_EXPR
:
12792 case FIX_TRUNC_EXPR
:
12793 return RECURSE (op0
);
12797 tree inner_type
= TREE_TYPE (op0
);
12798 tree outer_type
= type
;
12800 if (TREE_CODE (outer_type
) == REAL_TYPE
)
12802 if (TREE_CODE (inner_type
) == REAL_TYPE
)
12803 return RECURSE (op0
);
12804 if (INTEGRAL_TYPE_P (inner_type
))
12806 if (TYPE_UNSIGNED (inner_type
))
12808 return RECURSE (op0
);
12811 else if (INTEGRAL_TYPE_P (outer_type
))
12813 if (TREE_CODE (inner_type
) == REAL_TYPE
)
12814 return RECURSE (op0
);
12815 if (INTEGRAL_TYPE_P (inner_type
))
12816 return TYPE_PRECISION (inner_type
) < TYPE_PRECISION (outer_type
)
12817 && TYPE_UNSIGNED (inner_type
);
12823 return tree_simple_nonnegative_warnv_p (code
, type
);
12826 /* We don't know sign of `t', so be conservative and return false. */
12830 /* Return true if (CODE OP0 OP1) is known to be non-negative. If the return
12831 value is based on the assumption that signed overflow is undefined,
12832 set *STRICT_OVERFLOW_P to true; otherwise, don't change
12833 *STRICT_OVERFLOW_P. DEPTH is the current nesting depth of the query. */
12836 tree_binary_nonnegative_warnv_p (enum tree_code code
, tree type
, tree op0
,
12837 tree op1
, bool *strict_overflow_p
,
12840 if (TYPE_UNSIGNED (type
))
12845 case POINTER_PLUS_EXPR
:
12847 if (FLOAT_TYPE_P (type
))
12848 return RECURSE (op0
) && RECURSE (op1
);
12850 /* zero_extend(x) + zero_extend(y) is non-negative if x and y are
12851 both unsigned and at least 2 bits shorter than the result. */
12852 if (TREE_CODE (type
) == INTEGER_TYPE
12853 && TREE_CODE (op0
) == NOP_EXPR
12854 && TREE_CODE (op1
) == NOP_EXPR
)
12856 tree inner1
= TREE_TYPE (TREE_OPERAND (op0
, 0));
12857 tree inner2
= TREE_TYPE (TREE_OPERAND (op1
, 0));
12858 if (TREE_CODE (inner1
) == INTEGER_TYPE
&& TYPE_UNSIGNED (inner1
)
12859 && TREE_CODE (inner2
) == INTEGER_TYPE
&& TYPE_UNSIGNED (inner2
))
12861 unsigned int prec
= MAX (TYPE_PRECISION (inner1
),
12862 TYPE_PRECISION (inner2
)) + 1;
12863 return prec
< TYPE_PRECISION (type
);
12869 if (FLOAT_TYPE_P (type
) || TYPE_OVERFLOW_UNDEFINED (type
))
12871 /* x * x is always non-negative for floating point x
12872 or without overflow. */
12873 if (operand_equal_p (op0
, op1
, 0)
12874 || (RECURSE (op0
) && RECURSE (op1
)))
12876 if (ANY_INTEGRAL_TYPE_P (type
)
12877 && TYPE_OVERFLOW_UNDEFINED (type
))
12878 *strict_overflow_p
= true;
12883 /* zero_extend(x) * zero_extend(y) is non-negative if x and y are
12884 both unsigned and their total bits is shorter than the result. */
12885 if (TREE_CODE (type
) == INTEGER_TYPE
12886 && (TREE_CODE (op0
) == NOP_EXPR
|| TREE_CODE (op0
) == INTEGER_CST
)
12887 && (TREE_CODE (op1
) == NOP_EXPR
|| TREE_CODE (op1
) == INTEGER_CST
))
12889 tree inner0
= (TREE_CODE (op0
) == NOP_EXPR
)
12890 ? TREE_TYPE (TREE_OPERAND (op0
, 0))
12892 tree inner1
= (TREE_CODE (op1
) == NOP_EXPR
)
12893 ? TREE_TYPE (TREE_OPERAND (op1
, 0))
12896 bool unsigned0
= TYPE_UNSIGNED (inner0
);
12897 bool unsigned1
= TYPE_UNSIGNED (inner1
);
12899 if (TREE_CODE (op0
) == INTEGER_CST
)
12900 unsigned0
= unsigned0
|| tree_int_cst_sgn (op0
) >= 0;
12902 if (TREE_CODE (op1
) == INTEGER_CST
)
12903 unsigned1
= unsigned1
|| tree_int_cst_sgn (op1
) >= 0;
12905 if (TREE_CODE (inner0
) == INTEGER_TYPE
&& unsigned0
12906 && TREE_CODE (inner1
) == INTEGER_TYPE
&& unsigned1
)
12908 unsigned int precision0
= (TREE_CODE (op0
) == INTEGER_CST
)
12909 ? tree_int_cst_min_precision (op0
, UNSIGNED
)
12910 : TYPE_PRECISION (inner0
);
12912 unsigned int precision1
= (TREE_CODE (op1
) == INTEGER_CST
)
12913 ? tree_int_cst_min_precision (op1
, UNSIGNED
)
12914 : TYPE_PRECISION (inner1
);
12916 return precision0
+ precision1
< TYPE_PRECISION (type
);
12923 return RECURSE (op0
) || RECURSE (op1
);
12929 case TRUNC_DIV_EXPR
:
12930 case CEIL_DIV_EXPR
:
12931 case FLOOR_DIV_EXPR
:
12932 case ROUND_DIV_EXPR
:
12933 return RECURSE (op0
) && RECURSE (op1
);
12935 case TRUNC_MOD_EXPR
:
12936 return RECURSE (op0
);
12938 case FLOOR_MOD_EXPR
:
12939 return RECURSE (op1
);
12941 case CEIL_MOD_EXPR
:
12942 case ROUND_MOD_EXPR
:
12944 return tree_simple_nonnegative_warnv_p (code
, type
);
12947 /* We don't know sign of `t', so be conservative and return false. */
12951 /* Return true if T is known to be non-negative. If the return
12952 value is based on the assumption that signed overflow is undefined,
12953 set *STRICT_OVERFLOW_P to true; otherwise, don't change
12954 *STRICT_OVERFLOW_P. DEPTH is the current nesting depth of the query. */
12957 tree_single_nonnegative_warnv_p (tree t
, bool *strict_overflow_p
, int depth
)
12959 if (TYPE_UNSIGNED (TREE_TYPE (t
)))
12962 switch (TREE_CODE (t
))
12965 return tree_int_cst_sgn (t
) >= 0;
12968 return ! REAL_VALUE_NEGATIVE (TREE_REAL_CST (t
));
12971 return ! FIXED_VALUE_NEGATIVE (TREE_FIXED_CST (t
));
12974 return RECURSE (TREE_OPERAND (t
, 1)) && RECURSE (TREE_OPERAND (t
, 2));
12977 /* Limit the depth of recursion to avoid quadratic behavior.
12978 This is expected to catch almost all occurrences in practice.
12979 If this code misses important cases that unbounded recursion
12980 would not, passes that need this information could be revised
12981 to provide it through dataflow propagation. */
12982 return (!name_registered_for_update_p (t
)
12983 && depth
< PARAM_VALUE (PARAM_MAX_SSA_NAME_QUERY_DEPTH
)
12984 && gimple_stmt_nonnegative_warnv_p (SSA_NAME_DEF_STMT (t
),
12985 strict_overflow_p
, depth
));
12988 return tree_simple_nonnegative_warnv_p (TREE_CODE (t
), TREE_TYPE (t
));
12992 /* Return true if T is known to be non-negative. If the return
12993 value is based on the assumption that signed overflow is undefined,
12994 set *STRICT_OVERFLOW_P to true; otherwise, don't change
12995 *STRICT_OVERFLOW_P. DEPTH is the current nesting depth of the query. */
12998 tree_call_nonnegative_warnv_p (tree type
, combined_fn fn
, tree arg0
, tree arg1
,
12999 bool *strict_overflow_p
, int depth
)
13020 case CFN_BUILT_IN_BSWAP32
:
13021 case CFN_BUILT_IN_BSWAP64
:
13027 /* sqrt(-0.0) is -0.0. */
13028 if (!HONOR_SIGNED_ZEROS (element_mode (type
)))
13030 return RECURSE (arg0
);
13058 CASE_CFN_NEARBYINT
:
13059 CASE_CFN_NEARBYINT_FN
:
13068 CASE_CFN_SIGNIFICAND
:
13073 /* True if the 1st argument is nonnegative. */
13074 return RECURSE (arg0
);
13078 /* True if the 1st OR 2nd arguments are nonnegative. */
13079 return RECURSE (arg0
) || RECURSE (arg1
);
13083 /* True if the 1st AND 2nd arguments are nonnegative. */
13084 return RECURSE (arg0
) && RECURSE (arg1
);
13087 CASE_CFN_COPYSIGN_FN
:
13088 /* True if the 2nd argument is nonnegative. */
13089 return RECURSE (arg1
);
13092 /* True if the 1st argument is nonnegative or the second
13093 argument is an even integer. */
13094 if (TREE_CODE (arg1
) == INTEGER_CST
13095 && (TREE_INT_CST_LOW (arg1
) & 1) == 0)
13097 return RECURSE (arg0
);
13100 /* True if the 1st argument is nonnegative or the second
13101 argument is an even integer valued real. */
13102 if (TREE_CODE (arg1
) == REAL_CST
)
13107 c
= TREE_REAL_CST (arg1
);
13108 n
= real_to_integer (&c
);
13111 REAL_VALUE_TYPE cint
;
13112 real_from_integer (&cint
, VOIDmode
, n
, SIGNED
);
13113 if (real_identical (&c
, &cint
))
13117 return RECURSE (arg0
);
13122 return tree_simple_nonnegative_warnv_p (CALL_EXPR
, type
);
13125 /* Return true if T is known to be non-negative. If the return
13126 value is based on the assumption that signed overflow is undefined,
13127 set *STRICT_OVERFLOW_P to true; otherwise, don't change
13128 *STRICT_OVERFLOW_P. DEPTH is the current nesting depth of the query. */
13131 tree_invalid_nonnegative_warnv_p (tree t
, bool *strict_overflow_p
, int depth
)
13133 enum tree_code code
= TREE_CODE (t
);
13134 if (TYPE_UNSIGNED (TREE_TYPE (t
)))
13141 tree temp
= TARGET_EXPR_SLOT (t
);
13142 t
= TARGET_EXPR_INITIAL (t
);
13144 /* If the initializer is non-void, then it's a normal expression
13145 that will be assigned to the slot. */
13146 if (!VOID_TYPE_P (t
))
13147 return RECURSE (t
);
13149 /* Otherwise, the initializer sets the slot in some way. One common
13150 way is an assignment statement at the end of the initializer. */
13153 if (TREE_CODE (t
) == BIND_EXPR
)
13154 t
= expr_last (BIND_EXPR_BODY (t
));
13155 else if (TREE_CODE (t
) == TRY_FINALLY_EXPR
13156 || TREE_CODE (t
) == TRY_CATCH_EXPR
)
13157 t
= expr_last (TREE_OPERAND (t
, 0));
13158 else if (TREE_CODE (t
) == STATEMENT_LIST
)
13163 if (TREE_CODE (t
) == MODIFY_EXPR
13164 && TREE_OPERAND (t
, 0) == temp
)
13165 return RECURSE (TREE_OPERAND (t
, 1));
13172 tree arg0
= call_expr_nargs (t
) > 0 ? CALL_EXPR_ARG (t
, 0) : NULL_TREE
;
13173 tree arg1
= call_expr_nargs (t
) > 1 ? CALL_EXPR_ARG (t
, 1) : NULL_TREE
;
13175 return tree_call_nonnegative_warnv_p (TREE_TYPE (t
),
13176 get_call_combined_fn (t
),
13179 strict_overflow_p
, depth
);
13181 case COMPOUND_EXPR
:
13183 return RECURSE (TREE_OPERAND (t
, 1));
13186 return RECURSE (expr_last (TREE_OPERAND (t
, 1)));
13189 return RECURSE (TREE_OPERAND (t
, 0));
13192 return tree_simple_nonnegative_warnv_p (TREE_CODE (t
), TREE_TYPE (t
));
13197 #undef tree_expr_nonnegative_warnv_p
13199 /* Return true if T is known to be non-negative. If the return
13200 value is based on the assumption that signed overflow is undefined,
13201 set *STRICT_OVERFLOW_P to true; otherwise, don't change
13202 *STRICT_OVERFLOW_P. DEPTH is the current nesting depth of the query. */
13205 tree_expr_nonnegative_warnv_p (tree t
, bool *strict_overflow_p
, int depth
)
13207 enum tree_code code
;
13208 if (t
== error_mark_node
)
13211 code
= TREE_CODE (t
);
13212 switch (TREE_CODE_CLASS (code
))
13215 case tcc_comparison
:
13216 return tree_binary_nonnegative_warnv_p (TREE_CODE (t
),
13218 TREE_OPERAND (t
, 0),
13219 TREE_OPERAND (t
, 1),
13220 strict_overflow_p
, depth
);
13223 return tree_unary_nonnegative_warnv_p (TREE_CODE (t
),
13225 TREE_OPERAND (t
, 0),
13226 strict_overflow_p
, depth
);
13229 case tcc_declaration
:
13230 case tcc_reference
:
13231 return tree_single_nonnegative_warnv_p (t
, strict_overflow_p
, depth
);
13239 case TRUTH_AND_EXPR
:
13240 case TRUTH_OR_EXPR
:
13241 case TRUTH_XOR_EXPR
:
13242 return tree_binary_nonnegative_warnv_p (TREE_CODE (t
),
13244 TREE_OPERAND (t
, 0),
13245 TREE_OPERAND (t
, 1),
13246 strict_overflow_p
, depth
);
13247 case TRUTH_NOT_EXPR
:
13248 return tree_unary_nonnegative_warnv_p (TREE_CODE (t
),
13250 TREE_OPERAND (t
, 0),
13251 strict_overflow_p
, depth
);
13258 case WITH_SIZE_EXPR
:
13260 return tree_single_nonnegative_warnv_p (t
, strict_overflow_p
, depth
);
13263 return tree_invalid_nonnegative_warnv_p (t
, strict_overflow_p
, depth
);
13267 /* Return true if `t' is known to be non-negative. Handle warnings
13268 about undefined signed overflow. */
13271 tree_expr_nonnegative_p (tree t
)
13273 bool ret
, strict_overflow_p
;
13275 strict_overflow_p
= false;
13276 ret
= tree_expr_nonnegative_warnv_p (t
, &strict_overflow_p
);
13277 if (strict_overflow_p
)
13278 fold_overflow_warning (("assuming signed overflow does not occur when "
13279 "determining that expression is always "
13281 WARN_STRICT_OVERFLOW_MISC
);
13286 /* Return true when (CODE OP0) is an address and is known to be nonzero.
13287 For floating point we further ensure that T is not denormal.
13288 Similar logic is present in nonzero_address in rtlanal.h.
13290 If the return value is based on the assumption that signed overflow
13291 is undefined, set *STRICT_OVERFLOW_P to true; otherwise, don't
13292 change *STRICT_OVERFLOW_P. */
13295 tree_unary_nonzero_warnv_p (enum tree_code code
, tree type
, tree op0
,
13296 bool *strict_overflow_p
)
13301 return tree_expr_nonzero_warnv_p (op0
,
13302 strict_overflow_p
);
13306 tree inner_type
= TREE_TYPE (op0
);
13307 tree outer_type
= type
;
13309 return (TYPE_PRECISION (outer_type
) >= TYPE_PRECISION (inner_type
)
13310 && tree_expr_nonzero_warnv_p (op0
,
13311 strict_overflow_p
));
13315 case NON_LVALUE_EXPR
:
13316 return tree_expr_nonzero_warnv_p (op0
,
13317 strict_overflow_p
);
13326 /* Return true when (CODE OP0 OP1) is an address and is known to be nonzero.
13327 For floating point we further ensure that T is not denormal.
13328 Similar logic is present in nonzero_address in rtlanal.h.
13330 If the return value is based on the assumption that signed overflow
13331 is undefined, set *STRICT_OVERFLOW_P to true; otherwise, don't
13332 change *STRICT_OVERFLOW_P. */
13335 tree_binary_nonzero_warnv_p (enum tree_code code
,
13338 tree op1
, bool *strict_overflow_p
)
13340 bool sub_strict_overflow_p
;
13343 case POINTER_PLUS_EXPR
:
13345 if (ANY_INTEGRAL_TYPE_P (type
) && TYPE_OVERFLOW_UNDEFINED (type
))
13347 /* With the presence of negative values it is hard
13348 to say something. */
13349 sub_strict_overflow_p
= false;
13350 if (!tree_expr_nonnegative_warnv_p (op0
,
13351 &sub_strict_overflow_p
)
13352 || !tree_expr_nonnegative_warnv_p (op1
,
13353 &sub_strict_overflow_p
))
13355 /* One of operands must be positive and the other non-negative. */
13356 /* We don't set *STRICT_OVERFLOW_P here: even if this value
13357 overflows, on a twos-complement machine the sum of two
13358 nonnegative numbers can never be zero. */
13359 return (tree_expr_nonzero_warnv_p (op0
,
13361 || tree_expr_nonzero_warnv_p (op1
,
13362 strict_overflow_p
));
13367 if (TYPE_OVERFLOW_UNDEFINED (type
))
13369 if (tree_expr_nonzero_warnv_p (op0
,
13371 && tree_expr_nonzero_warnv_p (op1
,
13372 strict_overflow_p
))
13374 *strict_overflow_p
= true;
13381 sub_strict_overflow_p
= false;
13382 if (tree_expr_nonzero_warnv_p (op0
,
13383 &sub_strict_overflow_p
)
13384 && tree_expr_nonzero_warnv_p (op1
,
13385 &sub_strict_overflow_p
))
13387 if (sub_strict_overflow_p
)
13388 *strict_overflow_p
= true;
13393 sub_strict_overflow_p
= false;
13394 if (tree_expr_nonzero_warnv_p (op0
,
13395 &sub_strict_overflow_p
))
13397 if (sub_strict_overflow_p
)
13398 *strict_overflow_p
= true;
13400 /* When both operands are nonzero, then MAX must be too. */
13401 if (tree_expr_nonzero_warnv_p (op1
,
13402 strict_overflow_p
))
13405 /* MAX where operand 0 is positive is positive. */
13406 return tree_expr_nonnegative_warnv_p (op0
,
13407 strict_overflow_p
);
13409 /* MAX where operand 1 is positive is positive. */
13410 else if (tree_expr_nonzero_warnv_p (op1
,
13411 &sub_strict_overflow_p
)
13412 && tree_expr_nonnegative_warnv_p (op1
,
13413 &sub_strict_overflow_p
))
13415 if (sub_strict_overflow_p
)
13416 *strict_overflow_p
= true;
13422 return (tree_expr_nonzero_warnv_p (op1
,
13424 || tree_expr_nonzero_warnv_p (op0
,
13425 strict_overflow_p
));
13434 /* Return true when T is an address and is known to be nonzero.
13435 For floating point we further ensure that T is not denormal.
13436 Similar logic is present in nonzero_address in rtlanal.h.
13438 If the return value is based on the assumption that signed overflow
13439 is undefined, set *STRICT_OVERFLOW_P to true; otherwise, don't
13440 change *STRICT_OVERFLOW_P. */
13443 tree_single_nonzero_warnv_p (tree t
, bool *strict_overflow_p
)
13445 bool sub_strict_overflow_p
;
13446 switch (TREE_CODE (t
))
13449 return !integer_zerop (t
);
13453 tree base
= TREE_OPERAND (t
, 0);
13455 if (!DECL_P (base
))
13456 base
= get_base_address (base
);
13458 if (base
&& TREE_CODE (base
) == TARGET_EXPR
)
13459 base
= TARGET_EXPR_SLOT (base
);
13464 /* For objects in symbol table check if we know they are non-zero.
13465 Don't do anything for variables and functions before symtab is built;
13466 it is quite possible that they will be declared weak later. */
13467 int nonzero_addr
= maybe_nonzero_address (base
);
13468 if (nonzero_addr
>= 0)
13469 return nonzero_addr
;
13471 /* Constants are never weak. */
13472 if (CONSTANT_CLASS_P (base
))
13479 sub_strict_overflow_p
= false;
13480 if (tree_expr_nonzero_warnv_p (TREE_OPERAND (t
, 1),
13481 &sub_strict_overflow_p
)
13482 && tree_expr_nonzero_warnv_p (TREE_OPERAND (t
, 2),
13483 &sub_strict_overflow_p
))
13485 if (sub_strict_overflow_p
)
13486 *strict_overflow_p
= true;
13492 if (!INTEGRAL_TYPE_P (TREE_TYPE (t
)))
13494 return expr_not_equal_to (t
, wi::zero (TYPE_PRECISION (TREE_TYPE (t
))));
13502 #define integer_valued_real_p(X) \
13503 _Pragma ("GCC error \"Use RECURSE for recursive calls\"") 0
13505 #define RECURSE(X) \
13506 ((integer_valued_real_p) (X, depth + 1))
13508 /* Return true if the floating point result of (CODE OP0) has an
13509 integer value. We also allow +Inf, -Inf and NaN to be considered
13510 integer values. Return false for signaling NaN.
13512 DEPTH is the current nesting depth of the query. */
13515 integer_valued_real_unary_p (tree_code code
, tree op0
, int depth
)
13523 return RECURSE (op0
);
13527 tree type
= TREE_TYPE (op0
);
13528 if (TREE_CODE (type
) == INTEGER_TYPE
)
13530 if (TREE_CODE (type
) == REAL_TYPE
)
13531 return RECURSE (op0
);
13541 /* Return true if the floating point result of (CODE OP0 OP1) has an
13542 integer value. We also allow +Inf, -Inf and NaN to be considered
13543 integer values. Return false for signaling NaN.
13545 DEPTH is the current nesting depth of the query. */
13548 integer_valued_real_binary_p (tree_code code
, tree op0
, tree op1
, int depth
)
13557 return RECURSE (op0
) && RECURSE (op1
);
13565 /* Return true if the floating point result of calling FNDECL with arguments
13566 ARG0 and ARG1 has an integer value. We also allow +Inf, -Inf and NaN to be
13567 considered integer values. Return false for signaling NaN. If FNDECL
13568 takes fewer than 2 arguments, the remaining ARGn are null.
13570 DEPTH is the current nesting depth of the query. */
13573 integer_valued_real_call_p (combined_fn fn
, tree arg0
, tree arg1
, int depth
)
13581 CASE_CFN_NEARBYINT
:
13582 CASE_CFN_NEARBYINT_FN
:
13595 return RECURSE (arg0
) && RECURSE (arg1
);
13603 /* Return true if the floating point expression T (a GIMPLE_SINGLE_RHS)
13604 has an integer value. We also allow +Inf, -Inf and NaN to be
13605 considered integer values. Return false for signaling NaN.
13607 DEPTH is the current nesting depth of the query. */
13610 integer_valued_real_single_p (tree t
, int depth
)
13612 switch (TREE_CODE (t
))
13615 return real_isinteger (TREE_REAL_CST_PTR (t
), TYPE_MODE (TREE_TYPE (t
)));
13618 return RECURSE (TREE_OPERAND (t
, 1)) && RECURSE (TREE_OPERAND (t
, 2));
13621 /* Limit the depth of recursion to avoid quadratic behavior.
13622 This is expected to catch almost all occurrences in practice.
13623 If this code misses important cases that unbounded recursion
13624 would not, passes that need this information could be revised
13625 to provide it through dataflow propagation. */
13626 return (!name_registered_for_update_p (t
)
13627 && depth
< PARAM_VALUE (PARAM_MAX_SSA_NAME_QUERY_DEPTH
)
13628 && gimple_stmt_integer_valued_real_p (SSA_NAME_DEF_STMT (t
),
13637 /* Return true if the floating point expression T (a GIMPLE_INVALID_RHS)
13638 has an integer value. We also allow +Inf, -Inf and NaN to be
13639 considered integer values. Return false for signaling NaN.
13641 DEPTH is the current nesting depth of the query. */
13644 integer_valued_real_invalid_p (tree t
, int depth
)
13646 switch (TREE_CODE (t
))
13648 case COMPOUND_EXPR
:
13651 return RECURSE (TREE_OPERAND (t
, 1));
13654 return RECURSE (TREE_OPERAND (t
, 0));
13663 #undef integer_valued_real_p
13665 /* Return true if the floating point expression T has an integer value.
13666 We also allow +Inf, -Inf and NaN to be considered integer values.
13667 Return false for signaling NaN.
13669 DEPTH is the current nesting depth of the query. */
13672 integer_valued_real_p (tree t
, int depth
)
13674 if (t
== error_mark_node
)
13677 tree_code code
= TREE_CODE (t
);
13678 switch (TREE_CODE_CLASS (code
))
13681 case tcc_comparison
:
13682 return integer_valued_real_binary_p (code
, TREE_OPERAND (t
, 0),
13683 TREE_OPERAND (t
, 1), depth
);
13686 return integer_valued_real_unary_p (code
, TREE_OPERAND (t
, 0), depth
);
13689 case tcc_declaration
:
13690 case tcc_reference
:
13691 return integer_valued_real_single_p (t
, depth
);
13701 return integer_valued_real_single_p (t
, depth
);
13705 tree arg0
= (call_expr_nargs (t
) > 0
13706 ? CALL_EXPR_ARG (t
, 0)
13708 tree arg1
= (call_expr_nargs (t
) > 1
13709 ? CALL_EXPR_ARG (t
, 1)
13711 return integer_valued_real_call_p (get_call_combined_fn (t
),
13712 arg0
, arg1
, depth
);
13716 return integer_valued_real_invalid_p (t
, depth
);
13720 /* Given the components of a binary expression CODE, TYPE, OP0 and OP1,
13721 attempt to fold the expression to a constant without modifying TYPE,
13724 If the expression could be simplified to a constant, then return
13725 the constant. If the expression would not be simplified to a
13726 constant, then return NULL_TREE. */
13729 fold_binary_to_constant (enum tree_code code
, tree type
, tree op0
, tree op1
)
13731 tree tem
= fold_binary (code
, type
, op0
, op1
);
13732 return (tem
&& TREE_CONSTANT (tem
)) ? tem
: NULL_TREE
;
13735 /* Given the components of a unary expression CODE, TYPE and OP0,
13736 attempt to fold the expression to a constant without modifying
13739 If the expression could be simplified to a constant, then return
13740 the constant. If the expression would not be simplified to a
13741 constant, then return NULL_TREE. */
13744 fold_unary_to_constant (enum tree_code code
, tree type
, tree op0
)
13746 tree tem
= fold_unary (code
, type
, op0
);
13747 return (tem
&& TREE_CONSTANT (tem
)) ? tem
: NULL_TREE
;
13750 /* If EXP represents referencing an element in a constant string
13751 (either via pointer arithmetic or array indexing), return the
13752 tree representing the value accessed, otherwise return NULL. */
13755 fold_read_from_constant_string (tree exp
)
13757 if ((TREE_CODE (exp
) == INDIRECT_REF
13758 || TREE_CODE (exp
) == ARRAY_REF
)
13759 && TREE_CODE (TREE_TYPE (exp
)) == INTEGER_TYPE
)
13761 tree exp1
= TREE_OPERAND (exp
, 0);
13764 location_t loc
= EXPR_LOCATION (exp
);
13766 if (TREE_CODE (exp
) == INDIRECT_REF
)
13767 string
= string_constant (exp1
, &index
, NULL
, NULL
);
13770 tree low_bound
= array_ref_low_bound (exp
);
13771 index
= fold_convert_loc (loc
, sizetype
, TREE_OPERAND (exp
, 1));
13773 /* Optimize the special-case of a zero lower bound.
13775 We convert the low_bound to sizetype to avoid some problems
13776 with constant folding. (E.g. suppose the lower bound is 1,
13777 and its mode is QI. Without the conversion,l (ARRAY
13778 +(INDEX-(unsigned char)1)) becomes ((ARRAY+(-(unsigned char)1))
13779 +INDEX), which becomes (ARRAY+255+INDEX). Oops!) */
13780 if (! integer_zerop (low_bound
))
13781 index
= size_diffop_loc (loc
, index
,
13782 fold_convert_loc (loc
, sizetype
, low_bound
));
13787 scalar_int_mode char_mode
;
13789 && TYPE_MODE (TREE_TYPE (exp
)) == TYPE_MODE (TREE_TYPE (TREE_TYPE (string
)))
13790 && TREE_CODE (string
) == STRING_CST
13791 && TREE_CODE (index
) == INTEGER_CST
13792 && compare_tree_int (index
, TREE_STRING_LENGTH (string
)) < 0
13793 && is_int_mode (TYPE_MODE (TREE_TYPE (TREE_TYPE (string
))),
13795 && GET_MODE_SIZE (char_mode
) == 1)
13796 return build_int_cst_type (TREE_TYPE (exp
),
13797 (TREE_STRING_POINTER (string
)
13798 [TREE_INT_CST_LOW (index
)]));
13803 /* Return the tree for neg (ARG0) when ARG0 is known to be either
13804 an integer constant, real, or fixed-point constant.
13806 TYPE is the type of the result. */
13809 fold_negate_const (tree arg0
, tree type
)
13811 tree t
= NULL_TREE
;
13813 switch (TREE_CODE (arg0
))
13816 t
= build_real (type
, real_value_negate (&TREE_REAL_CST (arg0
)));
13821 FIXED_VALUE_TYPE f
;
13822 bool overflow_p
= fixed_arithmetic (&f
, NEGATE_EXPR
,
13823 &(TREE_FIXED_CST (arg0
)), NULL
,
13824 TYPE_SATURATING (type
));
13825 t
= build_fixed (type
, f
);
13826 /* Propagate overflow flags. */
13827 if (overflow_p
| TREE_OVERFLOW (arg0
))
13828 TREE_OVERFLOW (t
) = 1;
13833 if (poly_int_tree_p (arg0
))
13835 wi::overflow_type overflow
;
13836 poly_wide_int res
= wi::neg (wi::to_poly_wide (arg0
), &overflow
);
13837 t
= force_fit_type (type
, res
, 1,
13838 (overflow
&& ! TYPE_UNSIGNED (type
))
13839 || TREE_OVERFLOW (arg0
));
13843 gcc_unreachable ();
13849 /* Return the tree for abs (ARG0) when ARG0 is known to be either
13850 an integer constant or real constant.
13852 TYPE is the type of the result. */
13855 fold_abs_const (tree arg0
, tree type
)
13857 tree t
= NULL_TREE
;
13859 switch (TREE_CODE (arg0
))
13863 /* If the value is unsigned or non-negative, then the absolute value
13864 is the same as the ordinary value. */
13865 wide_int val
= wi::to_wide (arg0
);
13866 wi::overflow_type overflow
= wi::OVF_NONE
;
13867 if (!wi::neg_p (val
, TYPE_SIGN (TREE_TYPE (arg0
))))
13870 /* If the value is negative, then the absolute value is
13873 val
= wi::neg (val
, &overflow
);
13875 /* Force to the destination type, set TREE_OVERFLOW for signed
13877 t
= force_fit_type (type
, val
, 1, overflow
| TREE_OVERFLOW (arg0
));
13882 if (REAL_VALUE_NEGATIVE (TREE_REAL_CST (arg0
)))
13883 t
= build_real (type
, real_value_negate (&TREE_REAL_CST (arg0
)));
13889 gcc_unreachable ();
13895 /* Return the tree for not (ARG0) when ARG0 is known to be an integer
13896 constant. TYPE is the type of the result. */
13899 fold_not_const (const_tree arg0
, tree type
)
13901 gcc_assert (TREE_CODE (arg0
) == INTEGER_CST
);
13903 return force_fit_type (type
, ~wi::to_wide (arg0
), 0, TREE_OVERFLOW (arg0
));
13906 /* Given CODE, a relational operator, the target type, TYPE and two
13907 constant operands OP0 and OP1, return the result of the
13908 relational operation. If the result is not a compile time
13909 constant, then return NULL_TREE. */
13912 fold_relational_const (enum tree_code code
, tree type
, tree op0
, tree op1
)
13914 int result
, invert
;
13916 /* From here on, the only cases we handle are when the result is
13917 known to be a constant. */
13919 if (TREE_CODE (op0
) == REAL_CST
&& TREE_CODE (op1
) == REAL_CST
)
13921 const REAL_VALUE_TYPE
*c0
= TREE_REAL_CST_PTR (op0
);
13922 const REAL_VALUE_TYPE
*c1
= TREE_REAL_CST_PTR (op1
);
13924 /* Handle the cases where either operand is a NaN. */
13925 if (real_isnan (c0
) || real_isnan (c1
))
13935 case UNORDERED_EXPR
:
13949 if (flag_trapping_math
)
13955 gcc_unreachable ();
13958 return constant_boolean_node (result
, type
);
13961 return constant_boolean_node (real_compare (code
, c0
, c1
), type
);
13964 if (TREE_CODE (op0
) == FIXED_CST
&& TREE_CODE (op1
) == FIXED_CST
)
13966 const FIXED_VALUE_TYPE
*c0
= TREE_FIXED_CST_PTR (op0
);
13967 const FIXED_VALUE_TYPE
*c1
= TREE_FIXED_CST_PTR (op1
);
13968 return constant_boolean_node (fixed_compare (code
, c0
, c1
), type
);
13971 /* Handle equality/inequality of complex constants. */
13972 if (TREE_CODE (op0
) == COMPLEX_CST
&& TREE_CODE (op1
) == COMPLEX_CST
)
13974 tree rcond
= fold_relational_const (code
, type
,
13975 TREE_REALPART (op0
),
13976 TREE_REALPART (op1
));
13977 tree icond
= fold_relational_const (code
, type
,
13978 TREE_IMAGPART (op0
),
13979 TREE_IMAGPART (op1
));
13980 if (code
== EQ_EXPR
)
13981 return fold_build2 (TRUTH_ANDIF_EXPR
, type
, rcond
, icond
);
13982 else if (code
== NE_EXPR
)
13983 return fold_build2 (TRUTH_ORIF_EXPR
, type
, rcond
, icond
);
13988 if (TREE_CODE (op0
) == VECTOR_CST
&& TREE_CODE (op1
) == VECTOR_CST
)
13990 if (!VECTOR_TYPE_P (type
))
13992 /* Have vector comparison with scalar boolean result. */
13993 gcc_assert ((code
== EQ_EXPR
|| code
== NE_EXPR
)
13994 && known_eq (VECTOR_CST_NELTS (op0
),
13995 VECTOR_CST_NELTS (op1
)));
13996 unsigned HOST_WIDE_INT nunits
;
13997 if (!VECTOR_CST_NELTS (op0
).is_constant (&nunits
))
13999 for (unsigned i
= 0; i
< nunits
; i
++)
14001 tree elem0
= VECTOR_CST_ELT (op0
, i
);
14002 tree elem1
= VECTOR_CST_ELT (op1
, i
);
14003 tree tmp
= fold_relational_const (code
, type
, elem0
, elem1
);
14004 if (tmp
== NULL_TREE
)
14006 if (integer_zerop (tmp
))
14007 return constant_boolean_node (false, type
);
14009 return constant_boolean_node (true, type
);
14011 tree_vector_builder elts
;
14012 if (!elts
.new_binary_operation (type
, op0
, op1
, false))
14014 unsigned int count
= elts
.encoded_nelts ();
14015 for (unsigned i
= 0; i
< count
; i
++)
14017 tree elem_type
= TREE_TYPE (type
);
14018 tree elem0
= VECTOR_CST_ELT (op0
, i
);
14019 tree elem1
= VECTOR_CST_ELT (op1
, i
);
14021 tree tem
= fold_relational_const (code
, elem_type
,
14024 if (tem
== NULL_TREE
)
14027 elts
.quick_push (build_int_cst (elem_type
,
14028 integer_zerop (tem
) ? 0 : -1));
14031 return elts
.build ();
14034 /* From here on we only handle LT, LE, GT, GE, EQ and NE.
14036 To compute GT, swap the arguments and do LT.
14037 To compute GE, do LT and invert the result.
14038 To compute LE, swap the arguments, do LT and invert the result.
14039 To compute NE, do EQ and invert the result.
14041 Therefore, the code below must handle only EQ and LT. */
14043 if (code
== LE_EXPR
|| code
== GT_EXPR
)
14045 std::swap (op0
, op1
);
14046 code
= swap_tree_comparison (code
);
14049 /* Note that it is safe to invert for real values here because we
14050 have already handled the one case that it matters. */
14053 if (code
== NE_EXPR
|| code
== GE_EXPR
)
14056 code
= invert_tree_comparison (code
, false);
14059 /* Compute a result for LT or EQ if args permit;
14060 Otherwise return T. */
14061 if (TREE_CODE (op0
) == INTEGER_CST
&& TREE_CODE (op1
) == INTEGER_CST
)
14063 if (code
== EQ_EXPR
)
14064 result
= tree_int_cst_equal (op0
, op1
);
14066 result
= tree_int_cst_lt (op0
, op1
);
14073 return constant_boolean_node (result
, type
);
14076 /* If necessary, return a CLEANUP_POINT_EXPR for EXPR with the
14077 indicated TYPE. If no CLEANUP_POINT_EXPR is necessary, return EXPR
14081 fold_build_cleanup_point_expr (tree type
, tree expr
)
14083 /* If the expression does not have side effects then we don't have to wrap
14084 it with a cleanup point expression. */
14085 if (!TREE_SIDE_EFFECTS (expr
))
14088 /* If the expression is a return, check to see if the expression inside the
14089 return has no side effects or the right hand side of the modify expression
14090 inside the return. If either don't have side effects set we don't need to
14091 wrap the expression in a cleanup point expression. Note we don't check the
14092 left hand side of the modify because it should always be a return decl. */
14093 if (TREE_CODE (expr
) == RETURN_EXPR
)
14095 tree op
= TREE_OPERAND (expr
, 0);
14096 if (!op
|| !TREE_SIDE_EFFECTS (op
))
14098 op
= TREE_OPERAND (op
, 1);
14099 if (!TREE_SIDE_EFFECTS (op
))
14103 return build1_loc (EXPR_LOCATION (expr
), CLEANUP_POINT_EXPR
, type
, expr
);
14106 /* Given a pointer value OP0 and a type TYPE, return a simplified version
14107 of an indirection through OP0, or NULL_TREE if no simplification is
14111 fold_indirect_ref_1 (location_t loc
, tree type
, tree op0
)
14115 poly_uint64 const_op01
;
14118 subtype
= TREE_TYPE (sub
);
14119 if (!POINTER_TYPE_P (subtype
)
14120 || TYPE_REF_CAN_ALIAS_ALL (TREE_TYPE (op0
)))
14123 if (TREE_CODE (sub
) == ADDR_EXPR
)
14125 tree op
= TREE_OPERAND (sub
, 0);
14126 tree optype
= TREE_TYPE (op
);
14128 /* *&CONST_DECL -> to the value of the const decl. */
14129 if (TREE_CODE (op
) == CONST_DECL
)
14130 return DECL_INITIAL (op
);
14131 /* *&p => p; make sure to handle *&"str"[cst] here. */
14132 if (type
== optype
)
14134 tree fop
= fold_read_from_constant_string (op
);
14140 /* *(foo *)&fooarray => fooarray[0] */
14141 else if (TREE_CODE (optype
) == ARRAY_TYPE
14142 && type
== TREE_TYPE (optype
)
14143 && (!in_gimple_form
14144 || TREE_CODE (TYPE_SIZE (type
)) == INTEGER_CST
))
14146 tree type_domain
= TYPE_DOMAIN (optype
);
14147 tree min_val
= size_zero_node
;
14148 if (type_domain
&& TYPE_MIN_VALUE (type_domain
))
14149 min_val
= TYPE_MIN_VALUE (type_domain
);
14151 && TREE_CODE (min_val
) != INTEGER_CST
)
14153 return build4_loc (loc
, ARRAY_REF
, type
, op
, min_val
,
14154 NULL_TREE
, NULL_TREE
);
14156 /* *(foo *)&complexfoo => __real__ complexfoo */
14157 else if (TREE_CODE (optype
) == COMPLEX_TYPE
14158 && type
== TREE_TYPE (optype
))
14159 return fold_build1_loc (loc
, REALPART_EXPR
, type
, op
);
14160 /* *(foo *)&vectorfoo => BIT_FIELD_REF<vectorfoo,...> */
14161 else if (VECTOR_TYPE_P (optype
)
14162 && type
== TREE_TYPE (optype
))
14164 tree part_width
= TYPE_SIZE (type
);
14165 tree index
= bitsize_int (0);
14166 return fold_build3_loc (loc
, BIT_FIELD_REF
, type
, op
, part_width
,
14171 if (TREE_CODE (sub
) == POINTER_PLUS_EXPR
14172 && poly_int_tree_p (TREE_OPERAND (sub
, 1), &const_op01
))
14174 tree op00
= TREE_OPERAND (sub
, 0);
14175 tree op01
= TREE_OPERAND (sub
, 1);
14178 if (TREE_CODE (op00
) == ADDR_EXPR
)
14181 op00
= TREE_OPERAND (op00
, 0);
14182 op00type
= TREE_TYPE (op00
);
14184 /* ((foo*)&vectorfoo)[1] => BIT_FIELD_REF<vectorfoo,...> */
14185 if (VECTOR_TYPE_P (op00type
)
14186 && type
== TREE_TYPE (op00type
)
14187 /* POINTER_PLUS_EXPR second operand is sizetype, unsigned,
14188 but we want to treat offsets with MSB set as negative.
14189 For the code below negative offsets are invalid and
14190 TYPE_SIZE of the element is something unsigned, so
14191 check whether op01 fits into poly_int64, which implies
14192 it is from 0 to INTTYPE_MAXIMUM (HOST_WIDE_INT), and
14193 then just use poly_uint64 because we want to treat the
14194 value as unsigned. */
14195 && tree_fits_poly_int64_p (op01
))
14197 tree part_width
= TYPE_SIZE (type
);
14198 poly_uint64 max_offset
14199 = (tree_to_uhwi (part_width
) / BITS_PER_UNIT
14200 * TYPE_VECTOR_SUBPARTS (op00type
));
14201 if (known_lt (const_op01
, max_offset
))
14203 tree index
= bitsize_int (const_op01
* BITS_PER_UNIT
);
14204 return fold_build3_loc (loc
,
14205 BIT_FIELD_REF
, type
, op00
,
14206 part_width
, index
);
14209 /* ((foo*)&complexfoo)[1] => __imag__ complexfoo */
14210 else if (TREE_CODE (op00type
) == COMPLEX_TYPE
14211 && type
== TREE_TYPE (op00type
))
14213 if (known_eq (wi::to_poly_offset (TYPE_SIZE_UNIT (type
)),
14215 return fold_build1_loc (loc
, IMAGPART_EXPR
, type
, op00
);
14217 /* ((foo *)&fooarray)[1] => fooarray[1] */
14218 else if (TREE_CODE (op00type
) == ARRAY_TYPE
14219 && type
== TREE_TYPE (op00type
))
14221 tree type_domain
= TYPE_DOMAIN (op00type
);
14222 tree min_val
= size_zero_node
;
14223 if (type_domain
&& TYPE_MIN_VALUE (type_domain
))
14224 min_val
= TYPE_MIN_VALUE (type_domain
);
14225 poly_uint64 type_size
, index
;
14226 if (poly_int_tree_p (min_val
)
14227 && poly_int_tree_p (TYPE_SIZE_UNIT (type
), &type_size
)
14228 && multiple_p (const_op01
, type_size
, &index
))
14230 poly_offset_int off
= index
+ wi::to_poly_offset (min_val
);
14231 op01
= wide_int_to_tree (sizetype
, off
);
14232 return build4_loc (loc
, ARRAY_REF
, type
, op00
, op01
,
14233 NULL_TREE
, NULL_TREE
);
14239 /* *(foo *)fooarrptr => (*fooarrptr)[0] */
14240 if (TREE_CODE (TREE_TYPE (subtype
)) == ARRAY_TYPE
14241 && type
== TREE_TYPE (TREE_TYPE (subtype
))
14242 && (!in_gimple_form
14243 || TREE_CODE (TYPE_SIZE (type
)) == INTEGER_CST
))
14246 tree min_val
= size_zero_node
;
14247 sub
= build_fold_indirect_ref_loc (loc
, sub
);
14248 type_domain
= TYPE_DOMAIN (TREE_TYPE (sub
));
14249 if (type_domain
&& TYPE_MIN_VALUE (type_domain
))
14250 min_val
= TYPE_MIN_VALUE (type_domain
);
14252 && TREE_CODE (min_val
) != INTEGER_CST
)
14254 return build4_loc (loc
, ARRAY_REF
, type
, sub
, min_val
, NULL_TREE
,
14261 /* Builds an expression for an indirection through T, simplifying some
14265 build_fold_indirect_ref_loc (location_t loc
, tree t
)
14267 tree type
= TREE_TYPE (TREE_TYPE (t
));
14268 tree sub
= fold_indirect_ref_1 (loc
, type
, t
);
14273 return build1_loc (loc
, INDIRECT_REF
, type
, t
);
14276 /* Given an INDIRECT_REF T, return either T or a simplified version. */
14279 fold_indirect_ref_loc (location_t loc
, tree t
)
14281 tree sub
= fold_indirect_ref_1 (loc
, TREE_TYPE (t
), TREE_OPERAND (t
, 0));
14289 /* Strip non-trapping, non-side-effecting tree nodes from an expression
14290 whose result is ignored. The type of the returned tree need not be
14291 the same as the original expression. */
14294 fold_ignored_result (tree t
)
14296 if (!TREE_SIDE_EFFECTS (t
))
14297 return integer_zero_node
;
14300 switch (TREE_CODE_CLASS (TREE_CODE (t
)))
14303 t
= TREE_OPERAND (t
, 0);
14307 case tcc_comparison
:
14308 if (!TREE_SIDE_EFFECTS (TREE_OPERAND (t
, 1)))
14309 t
= TREE_OPERAND (t
, 0);
14310 else if (!TREE_SIDE_EFFECTS (TREE_OPERAND (t
, 0)))
14311 t
= TREE_OPERAND (t
, 1);
14316 case tcc_expression
:
14317 switch (TREE_CODE (t
))
14319 case COMPOUND_EXPR
:
14320 if (TREE_SIDE_EFFECTS (TREE_OPERAND (t
, 1)))
14322 t
= TREE_OPERAND (t
, 0);
14326 if (TREE_SIDE_EFFECTS (TREE_OPERAND (t
, 1))
14327 || TREE_SIDE_EFFECTS (TREE_OPERAND (t
, 2)))
14329 t
= TREE_OPERAND (t
, 0);
14342 /* Return the value of VALUE, rounded up to a multiple of DIVISOR. */
14345 round_up_loc (location_t loc
, tree value
, unsigned int divisor
)
14347 tree div
= NULL_TREE
;
14352 /* See if VALUE is already a multiple of DIVISOR. If so, we don't
14353 have to do anything. Only do this when we are not given a const,
14354 because in that case, this check is more expensive than just
14356 if (TREE_CODE (value
) != INTEGER_CST
)
14358 div
= build_int_cst (TREE_TYPE (value
), divisor
);
14360 if (multiple_of_p (TREE_TYPE (value
), value
, div
))
14364 /* If divisor is a power of two, simplify this to bit manipulation. */
14365 if (pow2_or_zerop (divisor
))
14367 if (TREE_CODE (value
) == INTEGER_CST
)
14369 wide_int val
= wi::to_wide (value
);
14372 if ((val
& (divisor
- 1)) == 0)
14375 overflow_p
= TREE_OVERFLOW (value
);
14376 val
+= divisor
- 1;
14377 val
&= (int) -divisor
;
14381 return force_fit_type (TREE_TYPE (value
), val
, -1, overflow_p
);
14387 t
= build_int_cst (TREE_TYPE (value
), divisor
- 1);
14388 value
= size_binop_loc (loc
, PLUS_EXPR
, value
, t
);
14389 t
= build_int_cst (TREE_TYPE (value
), - (int) divisor
);
14390 value
= size_binop_loc (loc
, BIT_AND_EXPR
, value
, t
);
14396 div
= build_int_cst (TREE_TYPE (value
), divisor
);
14397 value
= size_binop_loc (loc
, CEIL_DIV_EXPR
, value
, div
);
14398 value
= size_binop_loc (loc
, MULT_EXPR
, value
, div
);
14404 /* Likewise, but round down. */
14407 round_down_loc (location_t loc
, tree value
, int divisor
)
14409 tree div
= NULL_TREE
;
14411 gcc_assert (divisor
> 0);
14415 /* See if VALUE is already a multiple of DIVISOR. If so, we don't
14416 have to do anything. Only do this when we are not given a const,
14417 because in that case, this check is more expensive than just
14419 if (TREE_CODE (value
) != INTEGER_CST
)
14421 div
= build_int_cst (TREE_TYPE (value
), divisor
);
14423 if (multiple_of_p (TREE_TYPE (value
), value
, div
))
14427 /* If divisor is a power of two, simplify this to bit manipulation. */
14428 if (pow2_or_zerop (divisor
))
14432 t
= build_int_cst (TREE_TYPE (value
), -divisor
);
14433 value
= size_binop_loc (loc
, BIT_AND_EXPR
, value
, t
);
14438 div
= build_int_cst (TREE_TYPE (value
), divisor
);
14439 value
= size_binop_loc (loc
, FLOOR_DIV_EXPR
, value
, div
);
14440 value
= size_binop_loc (loc
, MULT_EXPR
, value
, div
);
14446 /* Returns the pointer to the base of the object addressed by EXP and
14447 extracts the information about the offset of the access, storing it
14448 to PBITPOS and POFFSET. */
14451 split_address_to_core_and_offset (tree exp
,
14452 poly_int64_pod
*pbitpos
, tree
*poffset
)
14456 int unsignedp
, reversep
, volatilep
;
14457 poly_int64 bitsize
;
14458 location_t loc
= EXPR_LOCATION (exp
);
14460 if (TREE_CODE (exp
) == ADDR_EXPR
)
14462 core
= get_inner_reference (TREE_OPERAND (exp
, 0), &bitsize
, pbitpos
,
14463 poffset
, &mode
, &unsignedp
, &reversep
,
14465 core
= build_fold_addr_expr_loc (loc
, core
);
14467 else if (TREE_CODE (exp
) == POINTER_PLUS_EXPR
)
14469 core
= TREE_OPERAND (exp
, 0);
14472 *poffset
= TREE_OPERAND (exp
, 1);
14473 if (poly_int_tree_p (*poffset
))
14475 poly_offset_int tem
14476 = wi::sext (wi::to_poly_offset (*poffset
),
14477 TYPE_PRECISION (TREE_TYPE (*poffset
)));
14478 tem
<<= LOG2_BITS_PER_UNIT
;
14479 if (tem
.to_shwi (pbitpos
))
14480 *poffset
= NULL_TREE
;
14487 *poffset
= NULL_TREE
;
14493 /* Returns true if addresses of E1 and E2 differ by a constant, false
14494 otherwise. If they do, E1 - E2 is stored in *DIFF. */
14497 ptr_difference_const (tree e1
, tree e2
, poly_int64_pod
*diff
)
14500 poly_int64 bitpos1
, bitpos2
;
14501 tree toffset1
, toffset2
, tdiff
, type
;
14503 core1
= split_address_to_core_and_offset (e1
, &bitpos1
, &toffset1
);
14504 core2
= split_address_to_core_and_offset (e2
, &bitpos2
, &toffset2
);
14506 poly_int64 bytepos1
, bytepos2
;
14507 if (!multiple_p (bitpos1
, BITS_PER_UNIT
, &bytepos1
)
14508 || !multiple_p (bitpos2
, BITS_PER_UNIT
, &bytepos2
)
14509 || !operand_equal_p (core1
, core2
, 0))
14512 if (toffset1
&& toffset2
)
14514 type
= TREE_TYPE (toffset1
);
14515 if (type
!= TREE_TYPE (toffset2
))
14516 toffset2
= fold_convert (type
, toffset2
);
14518 tdiff
= fold_build2 (MINUS_EXPR
, type
, toffset1
, toffset2
);
14519 if (!cst_and_fits_in_hwi (tdiff
))
14522 *diff
= int_cst_value (tdiff
);
14524 else if (toffset1
|| toffset2
)
14526 /* If only one of the offsets is non-constant, the difference cannot
14533 *diff
+= bytepos1
- bytepos2
;
14537 /* Return OFF converted to a pointer offset type suitable as offset for
14538 POINTER_PLUS_EXPR. Use location LOC for this conversion. */
14540 convert_to_ptrofftype_loc (location_t loc
, tree off
)
14542 return fold_convert_loc (loc
, sizetype
, off
);
14545 /* Build and fold a POINTER_PLUS_EXPR at LOC offsetting PTR by OFF. */
14547 fold_build_pointer_plus_loc (location_t loc
, tree ptr
, tree off
)
14549 return fold_build2_loc (loc
, POINTER_PLUS_EXPR
, TREE_TYPE (ptr
),
14550 ptr
, convert_to_ptrofftype_loc (loc
, off
));
14553 /* Build and fold a POINTER_PLUS_EXPR at LOC offsetting PTR by OFF. */
14555 fold_build_pointer_plus_hwi_loc (location_t loc
, tree ptr
, HOST_WIDE_INT off
)
14557 return fold_build2_loc (loc
, POINTER_PLUS_EXPR
, TREE_TYPE (ptr
),
14558 ptr
, size_int (off
));
14561 /* Return a pointer P to a NUL-terminated string representing the sequence
14562 of constant characters referred to by SRC (or a subsequence of such
14563 characters within it if SRC is a reference to a string plus some
14564 constant offset). If STRLEN is non-null, store the number of bytes
14565 in the string constant including the terminating NUL char. *STRLEN is
14566 typically strlen(P) + 1 in the absence of embedded NUL characters. */
14569 c_getstr (tree src
, unsigned HOST_WIDE_INT
*strlen
/* = NULL */)
14577 src
= string_constant (src
, &offset_node
, &mem_size
, NULL
);
14581 unsigned HOST_WIDE_INT offset
= 0;
14582 if (offset_node
!= NULL_TREE
)
14584 if (!tree_fits_uhwi_p (offset_node
))
14587 offset
= tree_to_uhwi (offset_node
);
14590 if (!tree_fits_uhwi_p (mem_size
))
14593 /* STRING_LENGTH is the size of the string literal, including any
14594 embedded NULs. STRING_SIZE is the size of the array the string
14595 literal is stored in. */
14596 unsigned HOST_WIDE_INT string_length
= TREE_STRING_LENGTH (src
);
14597 unsigned HOST_WIDE_INT string_size
= tree_to_uhwi (mem_size
);
14599 /* Ideally this would turn into a gcc_checking_assert over time. */
14600 if (string_length
> string_size
)
14601 string_length
= string_size
;
14603 const char *string
= TREE_STRING_POINTER (src
);
14605 /* Ideally this would turn into a gcc_checking_assert over time. */
14606 if (string_length
> string_size
)
14607 string_length
= string_size
;
14609 if (string_length
== 0
14610 || offset
>= string_size
)
14615 /* Compute and store the length of the substring at OFFSET.
14616 All offsets past the initial length refer to null strings. */
14617 if (offset
< string_length
)
14618 *strlen
= string_length
- offset
;
14624 tree eltype
= TREE_TYPE (TREE_TYPE (src
));
14625 /* Support only properly NUL-terminated single byte strings. */
14626 if (tree_to_uhwi (TYPE_SIZE_UNIT (eltype
)) != 1)
14628 if (string
[string_length
- 1] != '\0')
14632 return offset
< string_length
? string
+ offset
: "";
14635 /* Given a tree T, compute which bits in T may be nonzero. */
14638 tree_nonzero_bits (const_tree t
)
14640 switch (TREE_CODE (t
))
14643 return wi::to_wide (t
);
14645 return get_nonzero_bits (t
);
14646 case NON_LVALUE_EXPR
:
14648 return tree_nonzero_bits (TREE_OPERAND (t
, 0));
14650 return wi::bit_and (tree_nonzero_bits (TREE_OPERAND (t
, 0)),
14651 tree_nonzero_bits (TREE_OPERAND (t
, 1)));
14654 return wi::bit_or (tree_nonzero_bits (TREE_OPERAND (t
, 0)),
14655 tree_nonzero_bits (TREE_OPERAND (t
, 1)));
14657 return wi::bit_or (tree_nonzero_bits (TREE_OPERAND (t
, 1)),
14658 tree_nonzero_bits (TREE_OPERAND (t
, 2)));
14660 return wide_int::from (tree_nonzero_bits (TREE_OPERAND (t
, 0)),
14661 TYPE_PRECISION (TREE_TYPE (t
)),
14662 TYPE_SIGN (TREE_TYPE (TREE_OPERAND (t
, 0))));
14664 if (INTEGRAL_TYPE_P (TREE_TYPE (t
)))
14666 wide_int nzbits1
= tree_nonzero_bits (TREE_OPERAND (t
, 0));
14667 wide_int nzbits2
= tree_nonzero_bits (TREE_OPERAND (t
, 1));
14668 if (wi::bit_and (nzbits1
, nzbits2
) == 0)
14669 return wi::bit_or (nzbits1
, nzbits2
);
14673 if (TREE_CODE (TREE_OPERAND (t
, 1)) == INTEGER_CST
)
14675 tree type
= TREE_TYPE (t
);
14676 wide_int nzbits
= tree_nonzero_bits (TREE_OPERAND (t
, 0));
14677 wide_int arg1
= wi::to_wide (TREE_OPERAND (t
, 1),
14678 TYPE_PRECISION (type
));
14679 return wi::neg_p (arg1
)
14680 ? wi::rshift (nzbits
, -arg1
, TYPE_SIGN (type
))
14681 : wi::lshift (nzbits
, arg1
);
14685 if (TREE_CODE (TREE_OPERAND (t
, 1)) == INTEGER_CST
)
14687 tree type
= TREE_TYPE (t
);
14688 wide_int nzbits
= tree_nonzero_bits (TREE_OPERAND (t
, 0));
14689 wide_int arg1
= wi::to_wide (TREE_OPERAND (t
, 1),
14690 TYPE_PRECISION (type
));
14691 return wi::neg_p (arg1
)
14692 ? wi::lshift (nzbits
, -arg1
)
14693 : wi::rshift (nzbits
, arg1
, TYPE_SIGN (type
));
14700 return wi::shwi (-1, TYPE_PRECISION (TREE_TYPE (t
)));
14705 namespace selftest
{
14707 /* Helper functions for writing tests of folding trees. */
14709 /* Verify that the binary op (LHS CODE RHS) folds to CONSTANT. */
14712 assert_binop_folds_to_const (tree lhs
, enum tree_code code
, tree rhs
,
14715 ASSERT_EQ (constant
, fold_build2 (code
, TREE_TYPE (lhs
), lhs
, rhs
));
14718 /* Verify that the binary op (LHS CODE RHS) folds to an NON_LVALUE_EXPR
14719 wrapping WRAPPED_EXPR. */
14722 assert_binop_folds_to_nonlvalue (tree lhs
, enum tree_code code
, tree rhs
,
14725 tree result
= fold_build2 (code
, TREE_TYPE (lhs
), lhs
, rhs
);
14726 ASSERT_NE (wrapped_expr
, result
);
14727 ASSERT_EQ (NON_LVALUE_EXPR
, TREE_CODE (result
));
14728 ASSERT_EQ (wrapped_expr
, TREE_OPERAND (result
, 0));
14731 /* Verify that various arithmetic binary operations are folded
14735 test_arithmetic_folding ()
14737 tree type
= integer_type_node
;
14738 tree x
= create_tmp_var_raw (type
, "x");
14739 tree zero
= build_zero_cst (type
);
14740 tree one
= build_int_cst (type
, 1);
14743 /* 1 <-- (0 + 1) */
14744 assert_binop_folds_to_const (zero
, PLUS_EXPR
, one
,
14746 assert_binop_folds_to_const (one
, PLUS_EXPR
, zero
,
14749 /* (nonlvalue)x <-- (x + 0) */
14750 assert_binop_folds_to_nonlvalue (x
, PLUS_EXPR
, zero
,
14754 /* 0 <-- (x - x) */
14755 assert_binop_folds_to_const (x
, MINUS_EXPR
, x
,
14757 assert_binop_folds_to_nonlvalue (x
, MINUS_EXPR
, zero
,
14760 /* Multiplication. */
14761 /* 0 <-- (x * 0) */
14762 assert_binop_folds_to_const (x
, MULT_EXPR
, zero
,
14765 /* (nonlvalue)x <-- (x * 1) */
14766 assert_binop_folds_to_nonlvalue (x
, MULT_EXPR
, one
,
14770 /* Verify that various binary operations on vectors are folded
14774 test_vector_folding ()
14776 tree inner_type
= integer_type_node
;
14777 tree type
= build_vector_type (inner_type
, 4);
14778 tree zero
= build_zero_cst (type
);
14779 tree one
= build_one_cst (type
);
14781 /* Verify equality tests that return a scalar boolean result. */
14782 tree res_type
= boolean_type_node
;
14783 ASSERT_FALSE (integer_nonzerop (fold_build2 (EQ_EXPR
, res_type
, zero
, one
)));
14784 ASSERT_TRUE (integer_nonzerop (fold_build2 (EQ_EXPR
, res_type
, zero
, zero
)));
14785 ASSERT_TRUE (integer_nonzerop (fold_build2 (NE_EXPR
, res_type
, zero
, one
)));
14786 ASSERT_FALSE (integer_nonzerop (fold_build2 (NE_EXPR
, res_type
, one
, one
)));
14789 /* Verify folding of VEC_DUPLICATE_EXPRs. */
14792 test_vec_duplicate_folding ()
14794 scalar_int_mode int_mode
= SCALAR_INT_TYPE_MODE (ssizetype
);
14795 machine_mode vec_mode
= targetm
.vectorize
.preferred_simd_mode (int_mode
);
14796 /* This will be 1 if VEC_MODE isn't a vector mode. */
14797 poly_uint64 nunits
= GET_MODE_NUNITS (vec_mode
);
14799 tree type
= build_vector_type (ssizetype
, nunits
);
14800 tree dup5_expr
= fold_unary (VEC_DUPLICATE_EXPR
, type
, ssize_int (5));
14801 tree dup5_cst
= build_vector_from_val (type
, ssize_int (5));
14802 ASSERT_TRUE (operand_equal_p (dup5_expr
, dup5_cst
, 0));
14805 /* Run all of the selftests within this file. */
14808 fold_const_c_tests ()
14810 test_arithmetic_folding ();
14811 test_vector_folding ();
14812 test_vec_duplicate_folding ();
14815 } // namespace selftest
14817 #endif /* CHECKING_P */