Relocation (= move+destroy)
[official-gcc.git] / gcc / doc / extend.texi
blob25c821df7764dbb3a46a9a2afe200f9fb56ad076
1 c Copyright (C) 1988-2018 Free Software Foundation, Inc.
3 @c This is part of the GCC manual.
4 @c For copying conditions, see the file gcc.texi.
6 @node C Extensions
7 @chapter Extensions to the C Language Family
8 @cindex extensions, C language
9 @cindex C language extensions
11 @opindex pedantic
12 GNU C provides several language features not found in ISO standard C@.
13 (The @option{-pedantic} option directs GCC to print a warning message if
14 any of these features is used.)  To test for the availability of these
15 features in conditional compilation, check for a predefined macro
16 @code{__GNUC__}, which is always defined under GCC@.
18 These extensions are available in C and Objective-C@.  Most of them are
19 also available in C++.  @xref{C++ Extensions,,Extensions to the
20 C++ Language}, for extensions that apply @emph{only} to C++.
22 Some features that are in ISO C99 but not C90 or C++ are also, as
23 extensions, accepted by GCC in C90 mode and in C++.
25 @menu
26 * Statement Exprs::     Putting statements and declarations inside expressions.
27 * Local Labels::        Labels local to a block.
28 * Labels as Values::    Getting pointers to labels, and computed gotos.
29 * Nested Functions::    Nested function in GNU C.
30 * Constructing Calls::  Dispatching a call to another function.
31 * Typeof::              @code{typeof}: referring to the type of an expression.
32 * Conditionals::        Omitting the middle operand of a @samp{?:} expression.
33 * __int128::            128-bit integers---@code{__int128}.
34 * Long Long::           Double-word integers---@code{long long int}.
35 * Complex::             Data types for complex numbers.
36 * Floating Types::      Additional Floating Types.
37 * Half-Precision::      Half-Precision Floating Point.
38 * Decimal Float::       Decimal Floating Types.
39 * Hex Floats::          Hexadecimal floating-point constants.
40 * Fixed-Point::         Fixed-Point Types.
41 * Named Address Spaces::Named address spaces.
42 * Zero Length::         Zero-length arrays.
43 * Empty Structures::    Structures with no members.
44 * Variable Length::     Arrays whose length is computed at run time.
45 * Variadic Macros::     Macros with a variable number of arguments.
46 * Escaped Newlines::    Slightly looser rules for escaped newlines.
47 * Subscripting::        Any array can be subscripted, even if not an lvalue.
48 * Pointer Arith::       Arithmetic on @code{void}-pointers and function pointers.
49 * Pointers to Arrays::  Pointers to arrays with qualifiers work as expected.
50 * Initializers::        Non-constant initializers.
51 * Compound Literals::   Compound literals give structures, unions
52                         or arrays as values.
53 * Designated Inits::    Labeling elements of initializers.
54 * Case Ranges::         `case 1 ... 9' and such.
55 * Cast to Union::       Casting to union type from any member of the union.
56 * Mixed Declarations::  Mixing declarations and code.
57 * Function Attributes:: Declaring that functions have no side effects,
58                         or that they can never return.
59 * Variable Attributes:: Specifying attributes of variables.
60 * Type Attributes::     Specifying attributes of types.
61 * Label Attributes::    Specifying attributes on labels.
62 * Enumerator Attributes:: Specifying attributes on enumerators.
63 * Statement Attributes:: Specifying attributes on statements.
64 * Attribute Syntax::    Formal syntax for attributes.
65 * Function Prototypes:: Prototype declarations and old-style definitions.
66 * C++ Comments::        C++ comments are recognized.
67 * Dollar Signs::        Dollar sign is allowed in identifiers.
68 * Character Escapes::   @samp{\e} stands for the character @key{ESC}.
69 * Alignment::           Inquiring about the alignment of a type or variable.
70 * Inline::              Defining inline functions (as fast as macros).
71 * Volatiles::           What constitutes an access to a volatile object.
72 * Using Assembly Language with C:: Instructions and extensions for interfacing C with assembler.
73 * Alternate Keywords::  @code{__const__}, @code{__asm__}, etc., for header files.
74 * Incomplete Enums::    @code{enum foo;}, with details to follow.
75 * Function Names::      Printable strings which are the name of the current
76                         function.
77 * Return Address::      Getting the return or frame address of a function.
78 * Vector Extensions::   Using vector instructions through built-in functions.
79 * Offsetof::            Special syntax for implementing @code{offsetof}.
80 * __sync Builtins::     Legacy built-in functions for atomic memory access.
81 * __atomic Builtins::   Atomic built-in functions with memory model.
82 * Integer Overflow Builtins:: Built-in functions to perform arithmetics and
83                         arithmetic overflow checking.
84 * x86 specific memory model extensions for transactional memory:: x86 memory models.
85 * Object Size Checking:: Built-in functions for limited buffer overflow
86                         checking.
87 * Other Builtins::      Other built-in functions.
88 * Target Builtins::     Built-in functions specific to particular targets.
89 * Target Format Checks:: Format checks specific to particular targets.
90 * Pragmas::             Pragmas accepted by GCC.
91 * Unnamed Fields::      Unnamed struct/union fields within structs/unions.
92 * Thread-Local::        Per-thread variables.
93 * Binary constants::    Binary constants using the @samp{0b} prefix.
94 @end menu
96 @node Statement Exprs
97 @section Statements and Declarations in Expressions
98 @cindex statements inside expressions
99 @cindex declarations inside expressions
100 @cindex expressions containing statements
101 @cindex macros, statements in expressions
103 @c the above section title wrapped and causes an underfull hbox.. i
104 @c changed it from "within" to "in". --mew 4feb93
105 A compound statement enclosed in parentheses may appear as an expression
106 in GNU C@.  This allows you to use loops, switches, and local variables
107 within an expression.
109 Recall that a compound statement is a sequence of statements surrounded
110 by braces; in this construct, parentheses go around the braces.  For
111 example:
113 @smallexample
114 (@{ int y = foo (); int z;
115    if (y > 0) z = y;
116    else z = - y;
117    z; @})
118 @end smallexample
120 @noindent
121 is a valid (though slightly more complex than necessary) expression
122 for the absolute value of @code{foo ()}.
124 The last thing in the compound statement should be an expression
125 followed by a semicolon; the value of this subexpression serves as the
126 value of the entire construct.  (If you use some other kind of statement
127 last within the braces, the construct has type @code{void}, and thus
128 effectively no value.)
130 This feature is especially useful in making macro definitions ``safe'' (so
131 that they evaluate each operand exactly once).  For example, the
132 ``maximum'' function is commonly defined as a macro in standard C as
133 follows:
135 @smallexample
136 #define max(a,b) ((a) > (b) ? (a) : (b))
137 @end smallexample
139 @noindent
140 @cindex side effects, macro argument
141 But this definition computes either @var{a} or @var{b} twice, with bad
142 results if the operand has side effects.  In GNU C, if you know the
143 type of the operands (here taken as @code{int}), you can define
144 the macro safely as follows:
146 @smallexample
147 #define maxint(a,b) \
148   (@{int _a = (a), _b = (b); _a > _b ? _a : _b; @})
149 @end smallexample
151 Embedded statements are not allowed in constant expressions, such as
152 the value of an enumeration constant, the width of a bit-field, or
153 the initial value of a static variable.
155 If you don't know the type of the operand, you can still do this, but you
156 must use @code{typeof} or @code{__auto_type} (@pxref{Typeof}).
158 In G++, the result value of a statement expression undergoes array and
159 function pointer decay, and is returned by value to the enclosing
160 expression.  For instance, if @code{A} is a class, then
162 @smallexample
163         A a;
165         (@{a;@}).Foo ()
166 @end smallexample
168 @noindent
169 constructs a temporary @code{A} object to hold the result of the
170 statement expression, and that is used to invoke @code{Foo}.
171 Therefore the @code{this} pointer observed by @code{Foo} is not the
172 address of @code{a}.
174 In a statement expression, any temporaries created within a statement
175 are destroyed at that statement's end.  This makes statement
176 expressions inside macros slightly different from function calls.  In
177 the latter case temporaries introduced during argument evaluation are
178 destroyed at the end of the statement that includes the function
179 call.  In the statement expression case they are destroyed during
180 the statement expression.  For instance,
182 @smallexample
183 #define macro(a)  (@{__typeof__(a) b = (a); b + 3; @})
184 template<typename T> T function(T a) @{ T b = a; return b + 3; @}
186 void foo ()
188   macro (X ());
189   function (X ());
191 @end smallexample
193 @noindent
194 has different places where temporaries are destroyed.  For the
195 @code{macro} case, the temporary @code{X} is destroyed just after
196 the initialization of @code{b}.  In the @code{function} case that
197 temporary is destroyed when the function returns.
199 These considerations mean that it is probably a bad idea to use
200 statement expressions of this form in header files that are designed to
201 work with C++.  (Note that some versions of the GNU C Library contained
202 header files using statement expressions that lead to precisely this
203 bug.)
205 Jumping into a statement expression with @code{goto} or using a
206 @code{switch} statement outside the statement expression with a
207 @code{case} or @code{default} label inside the statement expression is
208 not permitted.  Jumping into a statement expression with a computed
209 @code{goto} (@pxref{Labels as Values}) has undefined behavior.
210 Jumping out of a statement expression is permitted, but if the
211 statement expression is part of a larger expression then it is
212 unspecified which other subexpressions of that expression have been
213 evaluated except where the language definition requires certain
214 subexpressions to be evaluated before or after the statement
215 expression.  In any case, as with a function call, the evaluation of a
216 statement expression is not interleaved with the evaluation of other
217 parts of the containing expression.  For example,
219 @smallexample
220   foo (), ((@{ bar1 (); goto a; 0; @}) + bar2 ()), baz();
221 @end smallexample
223 @noindent
224 calls @code{foo} and @code{bar1} and does not call @code{baz} but
225 may or may not call @code{bar2}.  If @code{bar2} is called, it is
226 called after @code{foo} and before @code{bar1}.
228 @node Local Labels
229 @section Locally Declared Labels
230 @cindex local labels
231 @cindex macros, local labels
233 GCC allows you to declare @dfn{local labels} in any nested block
234 scope.  A local label is just like an ordinary label, but you can
235 only reference it (with a @code{goto} statement, or by taking its
236 address) within the block in which it is declared.
238 A local label declaration looks like this:
240 @smallexample
241 __label__ @var{label};
242 @end smallexample
244 @noindent
247 @smallexample
248 __label__ @var{label1}, @var{label2}, /* @r{@dots{}} */;
249 @end smallexample
251 Local label declarations must come at the beginning of the block,
252 before any ordinary declarations or statements.
254 The label declaration defines the label @emph{name}, but does not define
255 the label itself.  You must do this in the usual way, with
256 @code{@var{label}:}, within the statements of the statement expression.
258 The local label feature is useful for complex macros.  If a macro
259 contains nested loops, a @code{goto} can be useful for breaking out of
260 them.  However, an ordinary label whose scope is the whole function
261 cannot be used: if the macro can be expanded several times in one
262 function, the label is multiply defined in that function.  A
263 local label avoids this problem.  For example:
265 @smallexample
266 #define SEARCH(value, array, target)              \
267 do @{                                              \
268   __label__ found;                                \
269   typeof (target) _SEARCH_target = (target);      \
270   typeof (*(array)) *_SEARCH_array = (array);     \
271   int i, j;                                       \
272   int value;                                      \
273   for (i = 0; i < max; i++)                       \
274     for (j = 0; j < max; j++)                     \
275       if (_SEARCH_array[i][j] == _SEARCH_target)  \
276         @{ (value) = i; goto found; @}              \
277   (value) = -1;                                   \
278  found:;                                          \
279 @} while (0)
280 @end smallexample
282 This could also be written using a statement expression:
284 @smallexample
285 #define SEARCH(array, target)                     \
286 (@{                                                \
287   __label__ found;                                \
288   typeof (target) _SEARCH_target = (target);      \
289   typeof (*(array)) *_SEARCH_array = (array);     \
290   int i, j;                                       \
291   int value;                                      \
292   for (i = 0; i < max; i++)                       \
293     for (j = 0; j < max; j++)                     \
294       if (_SEARCH_array[i][j] == _SEARCH_target)  \
295         @{ value = i; goto found; @}                \
296   value = -1;                                     \
297  found:                                           \
298   value;                                          \
300 @end smallexample
302 Local label declarations also make the labels they declare visible to
303 nested functions, if there are any.  @xref{Nested Functions}, for details.
305 @node Labels as Values
306 @section Labels as Values
307 @cindex labels as values
308 @cindex computed gotos
309 @cindex goto with computed label
310 @cindex address of a label
312 You can get the address of a label defined in the current function
313 (or a containing function) with the unary operator @samp{&&}.  The
314 value has type @code{void *}.  This value is a constant and can be used
315 wherever a constant of that type is valid.  For example:
317 @smallexample
318 void *ptr;
319 /* @r{@dots{}} */
320 ptr = &&foo;
321 @end smallexample
323 To use these values, you need to be able to jump to one.  This is done
324 with the computed goto statement@footnote{The analogous feature in
325 Fortran is called an assigned goto, but that name seems inappropriate in
326 C, where one can do more than simply store label addresses in label
327 variables.}, @code{goto *@var{exp};}.  For example,
329 @smallexample
330 goto *ptr;
331 @end smallexample
333 @noindent
334 Any expression of type @code{void *} is allowed.
336 One way of using these constants is in initializing a static array that
337 serves as a jump table:
339 @smallexample
340 static void *array[] = @{ &&foo, &&bar, &&hack @};
341 @end smallexample
343 @noindent
344 Then you can select a label with indexing, like this:
346 @smallexample
347 goto *array[i];
348 @end smallexample
350 @noindent
351 Note that this does not check whether the subscript is in bounds---array
352 indexing in C never does that.
354 Such an array of label values serves a purpose much like that of the
355 @code{switch} statement.  The @code{switch} statement is cleaner, so
356 use that rather than an array unless the problem does not fit a
357 @code{switch} statement very well.
359 Another use of label values is in an interpreter for threaded code.
360 The labels within the interpreter function can be stored in the
361 threaded code for super-fast dispatching.
363 You may not use this mechanism to jump to code in a different function.
364 If you do that, totally unpredictable things happen.  The best way to
365 avoid this is to store the label address only in automatic variables and
366 never pass it as an argument.
368 An alternate way to write the above example is
370 @smallexample
371 static const int array[] = @{ &&foo - &&foo, &&bar - &&foo,
372                              &&hack - &&foo @};
373 goto *(&&foo + array[i]);
374 @end smallexample
376 @noindent
377 This is more friendly to code living in shared libraries, as it reduces
378 the number of dynamic relocations that are needed, and by consequence,
379 allows the data to be read-only.
380 This alternative with label differences is not supported for the AVR target,
381 please use the first approach for AVR programs.
383 The @code{&&foo} expressions for the same label might have different
384 values if the containing function is inlined or cloned.  If a program
385 relies on them being always the same,
386 @code{__attribute__((__noinline__,__noclone__))} should be used to
387 prevent inlining and cloning.  If @code{&&foo} is used in a static
388 variable initializer, inlining and cloning is forbidden.
390 @node Nested Functions
391 @section Nested Functions
392 @cindex nested functions
393 @cindex downward funargs
394 @cindex thunks
396 A @dfn{nested function} is a function defined inside another function.
397 Nested functions are supported as an extension in GNU C, but are not
398 supported by GNU C++.
400 The nested function's name is local to the block where it is defined.
401 For example, here we define a nested function named @code{square}, and
402 call it twice:
404 @smallexample
405 @group
406 foo (double a, double b)
408   double square (double z) @{ return z * z; @}
410   return square (a) + square (b);
412 @end group
413 @end smallexample
415 The nested function can access all the variables of the containing
416 function that are visible at the point of its definition.  This is
417 called @dfn{lexical scoping}.  For example, here we show a nested
418 function which uses an inherited variable named @code{offset}:
420 @smallexample
421 @group
422 bar (int *array, int offset, int size)
424   int access (int *array, int index)
425     @{ return array[index + offset]; @}
426   int i;
427   /* @r{@dots{}} */
428   for (i = 0; i < size; i++)
429     /* @r{@dots{}} */ access (array, i) /* @r{@dots{}} */
431 @end group
432 @end smallexample
434 Nested function definitions are permitted within functions in the places
435 where variable definitions are allowed; that is, in any block, mixed
436 with the other declarations and statements in the block.
438 It is possible to call the nested function from outside the scope of its
439 name by storing its address or passing the address to another function:
441 @smallexample
442 hack (int *array, int size)
444   void store (int index, int value)
445     @{ array[index] = value; @}
447   intermediate (store, size);
449 @end smallexample
451 Here, the function @code{intermediate} receives the address of
452 @code{store} as an argument.  If @code{intermediate} calls @code{store},
453 the arguments given to @code{store} are used to store into @code{array}.
454 But this technique works only so long as the containing function
455 (@code{hack}, in this example) does not exit.
457 If you try to call the nested function through its address after the
458 containing function exits, all hell breaks loose.  If you try
459 to call it after a containing scope level exits, and if it refers
460 to some of the variables that are no longer in scope, you may be lucky,
461 but it's not wise to take the risk.  If, however, the nested function
462 does not refer to anything that has gone out of scope, you should be
463 safe.
465 GCC implements taking the address of a nested function using a technique
466 called @dfn{trampolines}.  This technique was described in
467 @cite{Lexical Closures for C++} (Thomas M. Breuel, USENIX
468 C++ Conference Proceedings, October 17-21, 1988).
470 A nested function can jump to a label inherited from a containing
471 function, provided the label is explicitly declared in the containing
472 function (@pxref{Local Labels}).  Such a jump returns instantly to the
473 containing function, exiting the nested function that did the
474 @code{goto} and any intermediate functions as well.  Here is an example:
476 @smallexample
477 @group
478 bar (int *array, int offset, int size)
480   __label__ failure;
481   int access (int *array, int index)
482     @{
483       if (index > size)
484         goto failure;
485       return array[index + offset];
486     @}
487   int i;
488   /* @r{@dots{}} */
489   for (i = 0; i < size; i++)
490     /* @r{@dots{}} */ access (array, i) /* @r{@dots{}} */
491   /* @r{@dots{}} */
492   return 0;
494  /* @r{Control comes here from @code{access}
495     if it detects an error.}  */
496  failure:
497   return -1;
499 @end group
500 @end smallexample
502 A nested function always has no linkage.  Declaring one with
503 @code{extern} or @code{static} is erroneous.  If you need to declare the nested function
504 before its definition, use @code{auto} (which is otherwise meaningless
505 for function declarations).
507 @smallexample
508 bar (int *array, int offset, int size)
510   __label__ failure;
511   auto int access (int *, int);
512   /* @r{@dots{}} */
513   int access (int *array, int index)
514     @{
515       if (index > size)
516         goto failure;
517       return array[index + offset];
518     @}
519   /* @r{@dots{}} */
521 @end smallexample
523 @node Constructing Calls
524 @section Constructing Function Calls
525 @cindex constructing calls
526 @cindex forwarding calls
528 Using the built-in functions described below, you can record
529 the arguments a function received, and call another function
530 with the same arguments, without knowing the number or types
531 of the arguments.
533 You can also record the return value of that function call,
534 and later return that value, without knowing what data type
535 the function tried to return (as long as your caller expects
536 that data type).
538 However, these built-in functions may interact badly with some
539 sophisticated features or other extensions of the language.  It
540 is, therefore, not recommended to use them outside very simple
541 functions acting as mere forwarders for their arguments.
543 @deftypefn {Built-in Function} {void *} __builtin_apply_args ()
544 This built-in function returns a pointer to data
545 describing how to perform a call with the same arguments as are passed
546 to the current function.
548 The function saves the arg pointer register, structure value address,
549 and all registers that might be used to pass arguments to a function
550 into a block of memory allocated on the stack.  Then it returns the
551 address of that block.
552 @end deftypefn
554 @deftypefn {Built-in Function} {void *} __builtin_apply (void (*@var{function})(), void *@var{arguments}, size_t @var{size})
555 This built-in function invokes @var{function}
556 with a copy of the parameters described by @var{arguments}
557 and @var{size}.
559 The value of @var{arguments} should be the value returned by
560 @code{__builtin_apply_args}.  The argument @var{size} specifies the size
561 of the stack argument data, in bytes.
563 This function returns a pointer to data describing
564 how to return whatever value is returned by @var{function}.  The data
565 is saved in a block of memory allocated on the stack.
567 It is not always simple to compute the proper value for @var{size}.  The
568 value is used by @code{__builtin_apply} to compute the amount of data
569 that should be pushed on the stack and copied from the incoming argument
570 area.
571 @end deftypefn
573 @deftypefn {Built-in Function} {void} __builtin_return (void *@var{result})
574 This built-in function returns the value described by @var{result} from
575 the containing function.  You should specify, for @var{result}, a value
576 returned by @code{__builtin_apply}.
577 @end deftypefn
579 @deftypefn {Built-in Function} {} __builtin_va_arg_pack ()
580 This built-in function represents all anonymous arguments of an inline
581 function.  It can be used only in inline functions that are always
582 inlined, never compiled as a separate function, such as those using
583 @code{__attribute__ ((__always_inline__))} or
584 @code{__attribute__ ((__gnu_inline__))} extern inline functions.
585 It must be only passed as last argument to some other function
586 with variable arguments.  This is useful for writing small wrapper
587 inlines for variable argument functions, when using preprocessor
588 macros is undesirable.  For example:
589 @smallexample
590 extern int myprintf (FILE *f, const char *format, ...);
591 extern inline __attribute__ ((__gnu_inline__)) int
592 myprintf (FILE *f, const char *format, ...)
594   int r = fprintf (f, "myprintf: ");
595   if (r < 0)
596     return r;
597   int s = fprintf (f, format, __builtin_va_arg_pack ());
598   if (s < 0)
599     return s;
600   return r + s;
602 @end smallexample
603 @end deftypefn
605 @deftypefn {Built-in Function} {size_t} __builtin_va_arg_pack_len ()
606 This built-in function returns the number of anonymous arguments of
607 an inline function.  It can be used only in inline functions that
608 are always inlined, never compiled as a separate function, such
609 as those using @code{__attribute__ ((__always_inline__))} or
610 @code{__attribute__ ((__gnu_inline__))} extern inline functions.
611 For example following does link- or run-time checking of open
612 arguments for optimized code:
613 @smallexample
614 #ifdef __OPTIMIZE__
615 extern inline __attribute__((__gnu_inline__)) int
616 myopen (const char *path, int oflag, ...)
618   if (__builtin_va_arg_pack_len () > 1)
619     warn_open_too_many_arguments ();
621   if (__builtin_constant_p (oflag))
622     @{
623       if ((oflag & O_CREAT) != 0 && __builtin_va_arg_pack_len () < 1)
624         @{
625           warn_open_missing_mode ();
626           return __open_2 (path, oflag);
627         @}
628       return open (path, oflag, __builtin_va_arg_pack ());
629     @}
631   if (__builtin_va_arg_pack_len () < 1)
632     return __open_2 (path, oflag);
634   return open (path, oflag, __builtin_va_arg_pack ());
636 #endif
637 @end smallexample
638 @end deftypefn
640 @node Typeof
641 @section Referring to a Type with @code{typeof}
642 @findex typeof
643 @findex sizeof
644 @cindex macros, types of arguments
646 Another way to refer to the type of an expression is with @code{typeof}.
647 The syntax of using of this keyword looks like @code{sizeof}, but the
648 construct acts semantically like a type name defined with @code{typedef}.
650 There are two ways of writing the argument to @code{typeof}: with an
651 expression or with a type.  Here is an example with an expression:
653 @smallexample
654 typeof (x[0](1))
655 @end smallexample
657 @noindent
658 This assumes that @code{x} is an array of pointers to functions;
659 the type described is that of the values of the functions.
661 Here is an example with a typename as the argument:
663 @smallexample
664 typeof (int *)
665 @end smallexample
667 @noindent
668 Here the type described is that of pointers to @code{int}.
670 If you are writing a header file that must work when included in ISO C
671 programs, write @code{__typeof__} instead of @code{typeof}.
672 @xref{Alternate Keywords}.
674 A @code{typeof} construct can be used anywhere a typedef name can be
675 used.  For example, you can use it in a declaration, in a cast, or inside
676 of @code{sizeof} or @code{typeof}.
678 The operand of @code{typeof} is evaluated for its side effects if and
679 only if it is an expression of variably modified type or the name of
680 such a type.
682 @code{typeof} is often useful in conjunction with
683 statement expressions (@pxref{Statement Exprs}).
684 Here is how the two together can
685 be used to define a safe ``maximum'' macro which operates on any
686 arithmetic type and evaluates each of its arguments exactly once:
688 @smallexample
689 #define max(a,b) \
690   (@{ typeof (a) _a = (a); \
691       typeof (b) _b = (b); \
692     _a > _b ? _a : _b; @})
693 @end smallexample
695 @cindex underscores in variables in macros
696 @cindex @samp{_} in variables in macros
697 @cindex local variables in macros
698 @cindex variables, local, in macros
699 @cindex macros, local variables in
701 The reason for using names that start with underscores for the local
702 variables is to avoid conflicts with variable names that occur within the
703 expressions that are substituted for @code{a} and @code{b}.  Eventually we
704 hope to design a new form of declaration syntax that allows you to declare
705 variables whose scopes start only after their initializers; this will be a
706 more reliable way to prevent such conflicts.
708 @noindent
709 Some more examples of the use of @code{typeof}:
711 @itemize @bullet
712 @item
713 This declares @code{y} with the type of what @code{x} points to.
715 @smallexample
716 typeof (*x) y;
717 @end smallexample
719 @item
720 This declares @code{y} as an array of such values.
722 @smallexample
723 typeof (*x) y[4];
724 @end smallexample
726 @item
727 This declares @code{y} as an array of pointers to characters:
729 @smallexample
730 typeof (typeof (char *)[4]) y;
731 @end smallexample
733 @noindent
734 It is equivalent to the following traditional C declaration:
736 @smallexample
737 char *y[4];
738 @end smallexample
740 To see the meaning of the declaration using @code{typeof}, and why it
741 might be a useful way to write, rewrite it with these macros:
743 @smallexample
744 #define pointer(T)  typeof(T *)
745 #define array(T, N) typeof(T [N])
746 @end smallexample
748 @noindent
749 Now the declaration can be rewritten this way:
751 @smallexample
752 array (pointer (char), 4) y;
753 @end smallexample
755 @noindent
756 Thus, @code{array (pointer (char), 4)} is the type of arrays of 4
757 pointers to @code{char}.
758 @end itemize
760 In GNU C, but not GNU C++, you may also declare the type of a variable
761 as @code{__auto_type}.  In that case, the declaration must declare
762 only one variable, whose declarator must just be an identifier, the
763 declaration must be initialized, and the type of the variable is
764 determined by the initializer; the name of the variable is not in
765 scope until after the initializer.  (In C++, you should use C++11
766 @code{auto} for this purpose.)  Using @code{__auto_type}, the
767 ``maximum'' macro above could be written as:
769 @smallexample
770 #define max(a,b) \
771   (@{ __auto_type _a = (a); \
772       __auto_type _b = (b); \
773     _a > _b ? _a : _b; @})
774 @end smallexample
776 Using @code{__auto_type} instead of @code{typeof} has two advantages:
778 @itemize @bullet
779 @item Each argument to the macro appears only once in the expansion of
780 the macro.  This prevents the size of the macro expansion growing
781 exponentially when calls to such macros are nested inside arguments of
782 such macros.
784 @item If the argument to the macro has variably modified type, it is
785 evaluated only once when using @code{__auto_type}, but twice if
786 @code{typeof} is used.
787 @end itemize
789 @node Conditionals
790 @section Conditionals with Omitted Operands
791 @cindex conditional expressions, extensions
792 @cindex omitted middle-operands
793 @cindex middle-operands, omitted
794 @cindex extensions, @code{?:}
795 @cindex @code{?:} extensions
797 The middle operand in a conditional expression may be omitted.  Then
798 if the first operand is nonzero, its value is the value of the conditional
799 expression.
801 Therefore, the expression
803 @smallexample
804 x ? : y
805 @end smallexample
807 @noindent
808 has the value of @code{x} if that is nonzero; otherwise, the value of
809 @code{y}.
811 This example is perfectly equivalent to
813 @smallexample
814 x ? x : y
815 @end smallexample
817 @cindex side effect in @code{?:}
818 @cindex @code{?:} side effect
819 @noindent
820 In this simple case, the ability to omit the middle operand is not
821 especially useful.  When it becomes useful is when the first operand does,
822 or may (if it is a macro argument), contain a side effect.  Then repeating
823 the operand in the middle would perform the side effect twice.  Omitting
824 the middle operand uses the value already computed without the undesirable
825 effects of recomputing it.
827 @node __int128
828 @section 128-bit Integers
829 @cindex @code{__int128} data types
831 As an extension the integer scalar type @code{__int128} is supported for
832 targets which have an integer mode wide enough to hold 128 bits.
833 Simply write @code{__int128} for a signed 128-bit integer, or
834 @code{unsigned __int128} for an unsigned 128-bit integer.  There is no
835 support in GCC for expressing an integer constant of type @code{__int128}
836 for targets with @code{long long} integer less than 128 bits wide.
838 @node Long Long
839 @section Double-Word Integers
840 @cindex @code{long long} data types
841 @cindex double-word arithmetic
842 @cindex multiprecision arithmetic
843 @cindex @code{LL} integer suffix
844 @cindex @code{ULL} integer suffix
846 ISO C99 and ISO C++11 support data types for integers that are at least
847 64 bits wide, and as an extension GCC supports them in C90 and C++98 modes.
848 Simply write @code{long long int} for a signed integer, or
849 @code{unsigned long long int} for an unsigned integer.  To make an
850 integer constant of type @code{long long int}, add the suffix @samp{LL}
851 to the integer.  To make an integer constant of type @code{unsigned long
852 long int}, add the suffix @samp{ULL} to the integer.
854 You can use these types in arithmetic like any other integer types.
855 Addition, subtraction, and bitwise boolean operations on these types
856 are open-coded on all types of machines.  Multiplication is open-coded
857 if the machine supports a fullword-to-doubleword widening multiply
858 instruction.  Division and shifts are open-coded only on machines that
859 provide special support.  The operations that are not open-coded use
860 special library routines that come with GCC@.
862 There may be pitfalls when you use @code{long long} types for function
863 arguments without function prototypes.  If a function
864 expects type @code{int} for its argument, and you pass a value of type
865 @code{long long int}, confusion results because the caller and the
866 subroutine disagree about the number of bytes for the argument.
867 Likewise, if the function expects @code{long long int} and you pass
868 @code{int}.  The best way to avoid such problems is to use prototypes.
870 @node Complex
871 @section Complex Numbers
872 @cindex complex numbers
873 @cindex @code{_Complex} keyword
874 @cindex @code{__complex__} keyword
876 ISO C99 supports complex floating data types, and as an extension GCC
877 supports them in C90 mode and in C++.  GCC also supports complex integer data
878 types which are not part of ISO C99.  You can declare complex types
879 using the keyword @code{_Complex}.  As an extension, the older GNU
880 keyword @code{__complex__} is also supported.
882 For example, @samp{_Complex double x;} declares @code{x} as a
883 variable whose real part and imaginary part are both of type
884 @code{double}.  @samp{_Complex short int y;} declares @code{y} to
885 have real and imaginary parts of type @code{short int}; this is not
886 likely to be useful, but it shows that the set of complex types is
887 complete.
889 To write a constant with a complex data type, use the suffix @samp{i} or
890 @samp{j} (either one; they are equivalent).  For example, @code{2.5fi}
891 has type @code{_Complex float} and @code{3i} has type
892 @code{_Complex int}.  Such a constant always has a pure imaginary
893 value, but you can form any complex value you like by adding one to a
894 real constant.  This is a GNU extension; if you have an ISO C99
895 conforming C library (such as the GNU C Library), and want to construct complex
896 constants of floating type, you should include @code{<complex.h>} and
897 use the macros @code{I} or @code{_Complex_I} instead.
899 The ISO C++14 library also defines the @samp{i} suffix, so C++14 code
900 that includes the @samp{<complex>} header cannot use @samp{i} for the
901 GNU extension.  The @samp{j} suffix still has the GNU meaning.
903 @cindex @code{__real__} keyword
904 @cindex @code{__imag__} keyword
905 To extract the real part of a complex-valued expression @var{exp}, write
906 @code{__real__ @var{exp}}.  Likewise, use @code{__imag__} to
907 extract the imaginary part.  This is a GNU extension; for values of
908 floating type, you should use the ISO C99 functions @code{crealf},
909 @code{creal}, @code{creall}, @code{cimagf}, @code{cimag} and
910 @code{cimagl}, declared in @code{<complex.h>} and also provided as
911 built-in functions by GCC@.
913 @cindex complex conjugation
914 The operator @samp{~} performs complex conjugation when used on a value
915 with a complex type.  This is a GNU extension; for values of
916 floating type, you should use the ISO C99 functions @code{conjf},
917 @code{conj} and @code{conjl}, declared in @code{<complex.h>} and also
918 provided as built-in functions by GCC@.
920 GCC can allocate complex automatic variables in a noncontiguous
921 fashion; it's even possible for the real part to be in a register while
922 the imaginary part is on the stack (or vice versa).  Only the DWARF
923 debug info format can represent this, so use of DWARF is recommended.
924 If you are using the stabs debug info format, GCC describes a noncontiguous
925 complex variable as if it were two separate variables of noncomplex type.
926 If the variable's actual name is @code{foo}, the two fictitious
927 variables are named @code{foo$real} and @code{foo$imag}.  You can
928 examine and set these two fictitious variables with your debugger.
930 @node Floating Types
931 @section Additional Floating Types
932 @cindex additional floating types
933 @cindex @code{_Float@var{n}} data types
934 @cindex @code{_Float@var{n}x} data types
935 @cindex @code{__float80} data type
936 @cindex @code{__float128} data type
937 @cindex @code{__ibm128} data type
938 @cindex @code{w} floating point suffix
939 @cindex @code{q} floating point suffix
940 @cindex @code{W} floating point suffix
941 @cindex @code{Q} floating point suffix
943 ISO/IEC TS 18661-3:2015 defines C support for additional floating
944 types @code{_Float@var{n}} and @code{_Float@var{n}x}, and GCC supports
945 these type names; the set of types supported depends on the target
946 architecture.  These types are not supported when compiling C++.
947 Constants with these types use suffixes @code{f@var{n}} or
948 @code{F@var{n}} and @code{f@var{n}x} or @code{F@var{n}x}.  These type
949 names can be used together with @code{_Complex} to declare complex
950 types.
952 As an extension, GNU C and GNU C++ support additional floating
953 types, which are not supported by all targets.
954 @itemize @bullet
955 @item @code{__float128} is available on i386, x86_64, IA-64, and
956 hppa HP-UX, as well as on PowerPC GNU/Linux targets that enable
957 the vector scalar (VSX) instruction set.  @code{__float128} supports
958 the 128-bit floating type.  On i386, x86_64, PowerPC, and IA-64
959 other than HP-UX, @code{__float128} is an alias for @code{_Float128}.
960 On hppa and IA-64 HP-UX, @code{__float128} is an alias for @code{long
961 double}.
963 @item @code{__float80} is available on the i386, x86_64, and IA-64
964 targets, and supports the 80-bit (@code{XFmode}) floating type.  It is
965 an alias for the type name @code{_Float64x} on these targets.
967 @item @code{__ibm128} is available on PowerPC targets, and provides
968 access to the IBM extended double format which is the current format
969 used for @code{long double}.  When @code{long double} transitions to
970 @code{__float128} on PowerPC in the future, @code{__ibm128} will remain
971 for use in conversions between the two types.
972 @end itemize
974 Support for these additional types includes the arithmetic operators:
975 add, subtract, multiply, divide; unary arithmetic operators;
976 relational operators; equality operators; and conversions to and from
977 integer and other floating types.  Use a suffix @samp{w} or @samp{W}
978 in a literal constant of type @code{__float80} or type
979 @code{__ibm128}.  Use a suffix @samp{q} or @samp{Q} for @code{_float128}.
981 In order to use @code{_Float128}, @code{__float128}, and @code{__ibm128}
982 on PowerPC Linux systems, you must use the @option{-mfloat128} option. It is
983 expected in future versions of GCC that @code{_Float128} and @code{__float128}
984 will be enabled automatically.
986 The @code{_Float128} type is supported on all systems where
987 @code{__float128} is supported or where @code{long double} has the
988 IEEE binary128 format.  The @code{_Float64x} type is supported on all
989 systems where @code{__float128} is supported.  The @code{_Float32}
990 type is supported on all systems supporting IEEE binary32; the
991 @code{_Float64} and @code{_Float32x} types are supported on all systems
992 supporting IEEE binary64.  The @code{_Float16} type is supported on AArch64
993 systems by default, and on ARM systems when the IEEE format for 16-bit
994 floating-point types is selected with @option{-mfp16-format=ieee}.
995 GCC does not currently support @code{_Float128x} on any systems.
997 On the i386, x86_64, IA-64, and HP-UX targets, you can declare complex
998 types using the corresponding internal complex type, @code{XCmode} for
999 @code{__float80} type and @code{TCmode} for @code{__float128} type:
1001 @smallexample
1002 typedef _Complex float __attribute__((mode(TC))) _Complex128;
1003 typedef _Complex float __attribute__((mode(XC))) _Complex80;
1004 @end smallexample
1006 On the PowerPC Linux VSX targets, you can declare complex types using
1007 the corresponding internal complex type, @code{KCmode} for
1008 @code{__float128} type and @code{ICmode} for @code{__ibm128} type:
1010 @smallexample
1011 typedef _Complex float __attribute__((mode(KC))) _Complex_float128;
1012 typedef _Complex float __attribute__((mode(IC))) _Complex_ibm128;
1013 @end smallexample
1015 @node Half-Precision
1016 @section Half-Precision Floating Point
1017 @cindex half-precision floating point
1018 @cindex @code{__fp16} data type
1020 On ARM and AArch64 targets, GCC supports half-precision (16-bit) floating
1021 point via the @code{__fp16} type defined in the ARM C Language Extensions.
1022 On ARM systems, you must enable this type explicitly with the
1023 @option{-mfp16-format} command-line option in order to use it.
1025 ARM targets support two incompatible representations for half-precision
1026 floating-point values.  You must choose one of the representations and
1027 use it consistently in your program.
1029 Specifying @option{-mfp16-format=ieee} selects the IEEE 754-2008 format.
1030 This format can represent normalized values in the range of @math{2^{-14}} to 65504.
1031 There are 11 bits of significand precision, approximately 3
1032 decimal digits.
1034 Specifying @option{-mfp16-format=alternative} selects the ARM
1035 alternative format.  This representation is similar to the IEEE
1036 format, but does not support infinities or NaNs.  Instead, the range
1037 of exponents is extended, so that this format can represent normalized
1038 values in the range of @math{2^{-14}} to 131008.
1040 The GCC port for AArch64 only supports the IEEE 754-2008 format, and does
1041 not require use of the @option{-mfp16-format} command-line option.
1043 The @code{__fp16} type may only be used as an argument to intrinsics defined
1044 in @code{<arm_fp16.h>}, or as a storage format.  For purposes of
1045 arithmetic and other operations, @code{__fp16} values in C or C++
1046 expressions are automatically promoted to @code{float}.
1048 The ARM target provides hardware support for conversions between
1049 @code{__fp16} and @code{float} values
1050 as an extension to VFP and NEON (Advanced SIMD), and from ARMv8-A provides
1051 hardware support for conversions between @code{__fp16} and @code{double}
1052 values.  GCC generates code using these hardware instructions if you
1053 compile with options to select an FPU that provides them;
1054 for example, @option{-mfpu=neon-fp16 -mfloat-abi=softfp},
1055 in addition to the @option{-mfp16-format} option to select
1056 a half-precision format.
1058 Language-level support for the @code{__fp16} data type is
1059 independent of whether GCC generates code using hardware floating-point
1060 instructions.  In cases where hardware support is not specified, GCC
1061 implements conversions between @code{__fp16} and other types as library
1062 calls.
1064 It is recommended that portable code use the @code{_Float16} type defined
1065 by ISO/IEC TS 18661-3:2015.  @xref{Floating Types}.
1067 @node Decimal Float
1068 @section Decimal Floating Types
1069 @cindex decimal floating types
1070 @cindex @code{_Decimal32} data type
1071 @cindex @code{_Decimal64} data type
1072 @cindex @code{_Decimal128} data type
1073 @cindex @code{df} integer suffix
1074 @cindex @code{dd} integer suffix
1075 @cindex @code{dl} integer suffix
1076 @cindex @code{DF} integer suffix
1077 @cindex @code{DD} integer suffix
1078 @cindex @code{DL} integer suffix
1080 As an extension, GNU C supports decimal floating types as
1081 defined in the N1312 draft of ISO/IEC WDTR24732.  Support for decimal
1082 floating types in GCC will evolve as the draft technical report changes.
1083 Calling conventions for any target might also change.  Not all targets
1084 support decimal floating types.
1086 The decimal floating types are @code{_Decimal32}, @code{_Decimal64}, and
1087 @code{_Decimal128}.  They use a radix of ten, unlike the floating types
1088 @code{float}, @code{double}, and @code{long double} whose radix is not
1089 specified by the C standard but is usually two.
1091 Support for decimal floating types includes the arithmetic operators
1092 add, subtract, multiply, divide; unary arithmetic operators;
1093 relational operators; equality operators; and conversions to and from
1094 integer and other floating types.  Use a suffix @samp{df} or
1095 @samp{DF} in a literal constant of type @code{_Decimal32}, @samp{dd}
1096 or @samp{DD} for @code{_Decimal64}, and @samp{dl} or @samp{DL} for
1097 @code{_Decimal128}.
1099 GCC support of decimal float as specified by the draft technical report
1100 is incomplete:
1102 @itemize @bullet
1103 @item
1104 When the value of a decimal floating type cannot be represented in the
1105 integer type to which it is being converted, the result is undefined
1106 rather than the result value specified by the draft technical report.
1108 @item
1109 GCC does not provide the C library functionality associated with
1110 @file{math.h}, @file{fenv.h}, @file{stdio.h}, @file{stdlib.h}, and
1111 @file{wchar.h}, which must come from a separate C library implementation.
1112 Because of this the GNU C compiler does not define macro
1113 @code{__STDC_DEC_FP__} to indicate that the implementation conforms to
1114 the technical report.
1115 @end itemize
1117 Types @code{_Decimal32}, @code{_Decimal64}, and @code{_Decimal128}
1118 are supported by the DWARF debug information format.
1120 @node Hex Floats
1121 @section Hex Floats
1122 @cindex hex floats
1124 ISO C99 and ISO C++17 support floating-point numbers written not only in
1125 the usual decimal notation, such as @code{1.55e1}, but also numbers such as
1126 @code{0x1.fp3} written in hexadecimal format.  As a GNU extension, GCC
1127 supports this in C90 mode (except in some cases when strictly
1128 conforming) and in C++98, C++11 and C++14 modes.  In that format the
1129 @samp{0x} hex introducer and the @samp{p} or @samp{P} exponent field are
1130 mandatory.  The exponent is a decimal number that indicates the power of
1131 2 by which the significant part is multiplied.  Thus @samp{0x1.f} is
1132 @tex
1133 $1 {15\over16}$,
1134 @end tex
1135 @ifnottex
1136 1 15/16,
1137 @end ifnottex
1138 @samp{p3} multiplies it by 8, and the value of @code{0x1.fp3}
1139 is the same as @code{1.55e1}.
1141 Unlike for floating-point numbers in the decimal notation the exponent
1142 is always required in the hexadecimal notation.  Otherwise the compiler
1143 would not be able to resolve the ambiguity of, e.g., @code{0x1.f}.  This
1144 could mean @code{1.0f} or @code{1.9375} since @samp{f} is also the
1145 extension for floating-point constants of type @code{float}.
1147 @node Fixed-Point
1148 @section Fixed-Point Types
1149 @cindex fixed-point types
1150 @cindex @code{_Fract} data type
1151 @cindex @code{_Accum} data type
1152 @cindex @code{_Sat} data type
1153 @cindex @code{hr} fixed-suffix
1154 @cindex @code{r} fixed-suffix
1155 @cindex @code{lr} fixed-suffix
1156 @cindex @code{llr} fixed-suffix
1157 @cindex @code{uhr} fixed-suffix
1158 @cindex @code{ur} fixed-suffix
1159 @cindex @code{ulr} fixed-suffix
1160 @cindex @code{ullr} fixed-suffix
1161 @cindex @code{hk} fixed-suffix
1162 @cindex @code{k} fixed-suffix
1163 @cindex @code{lk} fixed-suffix
1164 @cindex @code{llk} fixed-suffix
1165 @cindex @code{uhk} fixed-suffix
1166 @cindex @code{uk} fixed-suffix
1167 @cindex @code{ulk} fixed-suffix
1168 @cindex @code{ullk} fixed-suffix
1169 @cindex @code{HR} fixed-suffix
1170 @cindex @code{R} fixed-suffix
1171 @cindex @code{LR} fixed-suffix
1172 @cindex @code{LLR} fixed-suffix
1173 @cindex @code{UHR} fixed-suffix
1174 @cindex @code{UR} fixed-suffix
1175 @cindex @code{ULR} fixed-suffix
1176 @cindex @code{ULLR} fixed-suffix
1177 @cindex @code{HK} fixed-suffix
1178 @cindex @code{K} fixed-suffix
1179 @cindex @code{LK} fixed-suffix
1180 @cindex @code{LLK} fixed-suffix
1181 @cindex @code{UHK} fixed-suffix
1182 @cindex @code{UK} fixed-suffix
1183 @cindex @code{ULK} fixed-suffix
1184 @cindex @code{ULLK} fixed-suffix
1186 As an extension, GNU C supports fixed-point types as
1187 defined in the N1169 draft of ISO/IEC DTR 18037.  Support for fixed-point
1188 types in GCC will evolve as the draft technical report changes.
1189 Calling conventions for any target might also change.  Not all targets
1190 support fixed-point types.
1192 The fixed-point types are
1193 @code{short _Fract},
1194 @code{_Fract},
1195 @code{long _Fract},
1196 @code{long long _Fract},
1197 @code{unsigned short _Fract},
1198 @code{unsigned _Fract},
1199 @code{unsigned long _Fract},
1200 @code{unsigned long long _Fract},
1201 @code{_Sat short _Fract},
1202 @code{_Sat _Fract},
1203 @code{_Sat long _Fract},
1204 @code{_Sat long long _Fract},
1205 @code{_Sat unsigned short _Fract},
1206 @code{_Sat unsigned _Fract},
1207 @code{_Sat unsigned long _Fract},
1208 @code{_Sat unsigned long long _Fract},
1209 @code{short _Accum},
1210 @code{_Accum},
1211 @code{long _Accum},
1212 @code{long long _Accum},
1213 @code{unsigned short _Accum},
1214 @code{unsigned _Accum},
1215 @code{unsigned long _Accum},
1216 @code{unsigned long long _Accum},
1217 @code{_Sat short _Accum},
1218 @code{_Sat _Accum},
1219 @code{_Sat long _Accum},
1220 @code{_Sat long long _Accum},
1221 @code{_Sat unsigned short _Accum},
1222 @code{_Sat unsigned _Accum},
1223 @code{_Sat unsigned long _Accum},
1224 @code{_Sat unsigned long long _Accum}.
1226 Fixed-point data values contain fractional and optional integral parts.
1227 The format of fixed-point data varies and depends on the target machine.
1229 Support for fixed-point types includes:
1230 @itemize @bullet
1231 @item
1232 prefix and postfix increment and decrement operators (@code{++}, @code{--})
1233 @item
1234 unary arithmetic operators (@code{+}, @code{-}, @code{!})
1235 @item
1236 binary arithmetic operators (@code{+}, @code{-}, @code{*}, @code{/})
1237 @item
1238 binary shift operators (@code{<<}, @code{>>})
1239 @item
1240 relational operators (@code{<}, @code{<=}, @code{>=}, @code{>})
1241 @item
1242 equality operators (@code{==}, @code{!=})
1243 @item
1244 assignment operators (@code{+=}, @code{-=}, @code{*=}, @code{/=},
1245 @code{<<=}, @code{>>=})
1246 @item
1247 conversions to and from integer, floating-point, or fixed-point types
1248 @end itemize
1250 Use a suffix in a fixed-point literal constant:
1251 @itemize
1252 @item @samp{hr} or @samp{HR} for @code{short _Fract} and
1253 @code{_Sat short _Fract}
1254 @item @samp{r} or @samp{R} for @code{_Fract} and @code{_Sat _Fract}
1255 @item @samp{lr} or @samp{LR} for @code{long _Fract} and
1256 @code{_Sat long _Fract}
1257 @item @samp{llr} or @samp{LLR} for @code{long long _Fract} and
1258 @code{_Sat long long _Fract}
1259 @item @samp{uhr} or @samp{UHR} for @code{unsigned short _Fract} and
1260 @code{_Sat unsigned short _Fract}
1261 @item @samp{ur} or @samp{UR} for @code{unsigned _Fract} and
1262 @code{_Sat unsigned _Fract}
1263 @item @samp{ulr} or @samp{ULR} for @code{unsigned long _Fract} and
1264 @code{_Sat unsigned long _Fract}
1265 @item @samp{ullr} or @samp{ULLR} for @code{unsigned long long _Fract}
1266 and @code{_Sat unsigned long long _Fract}
1267 @item @samp{hk} or @samp{HK} for @code{short _Accum} and
1268 @code{_Sat short _Accum}
1269 @item @samp{k} or @samp{K} for @code{_Accum} and @code{_Sat _Accum}
1270 @item @samp{lk} or @samp{LK} for @code{long _Accum} and
1271 @code{_Sat long _Accum}
1272 @item @samp{llk} or @samp{LLK} for @code{long long _Accum} and
1273 @code{_Sat long long _Accum}
1274 @item @samp{uhk} or @samp{UHK} for @code{unsigned short _Accum} and
1275 @code{_Sat unsigned short _Accum}
1276 @item @samp{uk} or @samp{UK} for @code{unsigned _Accum} and
1277 @code{_Sat unsigned _Accum}
1278 @item @samp{ulk} or @samp{ULK} for @code{unsigned long _Accum} and
1279 @code{_Sat unsigned long _Accum}
1280 @item @samp{ullk} or @samp{ULLK} for @code{unsigned long long _Accum}
1281 and @code{_Sat unsigned long long _Accum}
1282 @end itemize
1284 GCC support of fixed-point types as specified by the draft technical report
1285 is incomplete:
1287 @itemize @bullet
1288 @item
1289 Pragmas to control overflow and rounding behaviors are not implemented.
1290 @end itemize
1292 Fixed-point types are supported by the DWARF debug information format.
1294 @node Named Address Spaces
1295 @section Named Address Spaces
1296 @cindex Named Address Spaces
1298 As an extension, GNU C supports named address spaces as
1299 defined in the N1275 draft of ISO/IEC DTR 18037.  Support for named
1300 address spaces in GCC will evolve as the draft technical report
1301 changes.  Calling conventions for any target might also change.  At
1302 present, only the AVR, SPU, M32C, RL78, and x86 targets support
1303 address spaces other than the generic address space.
1305 Address space identifiers may be used exactly like any other C type
1306 qualifier (e.g., @code{const} or @code{volatile}).  See the N1275
1307 document for more details.
1309 @anchor{AVR Named Address Spaces}
1310 @subsection AVR Named Address Spaces
1312 On the AVR target, there are several address spaces that can be used
1313 in order to put read-only data into the flash memory and access that
1314 data by means of the special instructions @code{LPM} or @code{ELPM}
1315 needed to read from flash.
1317 Devices belonging to @code{avrtiny} and @code{avrxmega3} can access
1318 flash memory by means of @code{LD*} instructions because the flash
1319 memory is mapped into the RAM address space.  There is @emph{no need}
1320 for language extensions like @code{__flash} or attribute
1321 @ref{AVR Variable Attributes,,@code{progmem}}.
1322 The default linker description files for these devices cater for that
1323 feature and @code{.rodata} stays in flash: The compiler just generates
1324 @code{LD*} instructions, and the linker script adds core specific
1325 offsets to all @code{.rodata} symbols: @code{0x4000} in the case of
1326 @code{avrtiny} and @code{0x8000} in the case of @code{avrxmega3}.
1327 See @ref{AVR Options} for a list of respective devices.
1329 For devices not in @code{avrtiny} or @code{avrxmega3},
1330 any data including read-only data is located in RAM (the generic
1331 address space) because flash memory is not visible in the RAM address
1332 space.  In order to locate read-only data in flash memory @emph{and}
1333 to generate the right instructions to access this data without
1334 using (inline) assembler code, special address spaces are needed.
1336 @table @code
1337 @item __flash
1338 @cindex @code{__flash} AVR Named Address Spaces
1339 The @code{__flash} qualifier locates data in the
1340 @code{.progmem.data} section. Data is read using the @code{LPM}
1341 instruction. Pointers to this address space are 16 bits wide.
1343 @item __flash1
1344 @itemx __flash2
1345 @itemx __flash3
1346 @itemx __flash4
1347 @itemx __flash5
1348 @cindex @code{__flash1} AVR Named Address Spaces
1349 @cindex @code{__flash2} AVR Named Address Spaces
1350 @cindex @code{__flash3} AVR Named Address Spaces
1351 @cindex @code{__flash4} AVR Named Address Spaces
1352 @cindex @code{__flash5} AVR Named Address Spaces
1353 These are 16-bit address spaces locating data in section
1354 @code{.progmem@var{N}.data} where @var{N} refers to
1355 address space @code{__flash@var{N}}.
1356 The compiler sets the @code{RAMPZ} segment register appropriately 
1357 before reading data by means of the @code{ELPM} instruction.
1359 @item __memx
1360 @cindex @code{__memx} AVR Named Address Spaces
1361 This is a 24-bit address space that linearizes flash and RAM:
1362 If the high bit of the address is set, data is read from
1363 RAM using the lower two bytes as RAM address.
1364 If the high bit of the address is clear, data is read from flash
1365 with @code{RAMPZ} set according to the high byte of the address.
1366 @xref{AVR Built-in Functions,,@code{__builtin_avr_flash_segment}}.
1368 Objects in this address space are located in @code{.progmemx.data}.
1369 @end table
1371 @b{Example}
1373 @smallexample
1374 char my_read (const __flash char ** p)
1376     /* p is a pointer to RAM that points to a pointer to flash.
1377        The first indirection of p reads that flash pointer
1378        from RAM and the second indirection reads a char from this
1379        flash address.  */
1381     return **p;
1384 /* Locate array[] in flash memory */
1385 const __flash int array[] = @{ 3, 5, 7, 11, 13, 17, 19 @};
1387 int i = 1;
1389 int main (void)
1391    /* Return 17 by reading from flash memory */
1392    return array[array[i]];
1394 @end smallexample
1396 @noindent
1397 For each named address space supported by avr-gcc there is an equally
1398 named but uppercase built-in macro defined. 
1399 The purpose is to facilitate testing if respective address space
1400 support is available or not:
1402 @smallexample
1403 #ifdef __FLASH
1404 const __flash int var = 1;
1406 int read_var (void)
1408     return var;
1410 #else
1411 #include <avr/pgmspace.h> /* From AVR-LibC */
1413 const int var PROGMEM = 1;
1415 int read_var (void)
1417     return (int) pgm_read_word (&var);
1419 #endif /* __FLASH */
1420 @end smallexample
1422 @noindent
1423 Notice that attribute @ref{AVR Variable Attributes,,@code{progmem}}
1424 locates data in flash but
1425 accesses to these data read from generic address space, i.e.@:
1426 from RAM,
1427 so that you need special accessors like @code{pgm_read_byte}
1428 from @w{@uref{http://nongnu.org/avr-libc/user-manual/,AVR-LibC}}
1429 together with attribute @code{progmem}.
1431 @noindent
1432 @b{Limitations and caveats}
1434 @itemize
1435 @item
1436 Reading across the 64@tie{}KiB section boundary of
1437 the @code{__flash} or @code{__flash@var{N}} address spaces
1438 shows undefined behavior. The only address space that
1439 supports reading across the 64@tie{}KiB flash segment boundaries is
1440 @code{__memx}.
1442 @item
1443 If you use one of the @code{__flash@var{N}} address spaces
1444 you must arrange your linker script to locate the
1445 @code{.progmem@var{N}.data} sections according to your needs.
1447 @item
1448 Any data or pointers to the non-generic address spaces must
1449 be qualified as @code{const}, i.e.@: as read-only data.
1450 This still applies if the data in one of these address
1451 spaces like software version number or calibration lookup table are intended to
1452 be changed after load time by, say, a boot loader. In this case
1453 the right qualification is @code{const} @code{volatile} so that the compiler
1454 must not optimize away known values or insert them
1455 as immediates into operands of instructions.
1457 @item
1458 The following code initializes a variable @code{pfoo}
1459 located in static storage with a 24-bit address:
1460 @smallexample
1461 extern const __memx char foo;
1462 const __memx void *pfoo = &foo;
1463 @end smallexample
1465 @item
1466 On the reduced Tiny devices like ATtiny40, no address spaces are supported.
1467 Just use vanilla C / C++ code without overhead as outlined above.
1468 Attribute @code{progmem} is supported but works differently,
1469 see @ref{AVR Variable Attributes}.
1471 @end itemize
1473 @subsection M32C Named Address Spaces
1474 @cindex @code{__far} M32C Named Address Spaces
1476 On the M32C target, with the R8C and M16C CPU variants, variables
1477 qualified with @code{__far} are accessed using 32-bit addresses in
1478 order to access memory beyond the first 64@tie{}Ki bytes.  If
1479 @code{__far} is used with the M32CM or M32C CPU variants, it has no
1480 effect.
1482 @subsection RL78 Named Address Spaces
1483 @cindex @code{__far} RL78 Named Address Spaces
1485 On the RL78 target, variables qualified with @code{__far} are accessed
1486 with 32-bit pointers (20-bit addresses) rather than the default 16-bit
1487 addresses.  Non-far variables are assumed to appear in the topmost
1488 64@tie{}KiB of the address space.
1490 @subsection SPU Named Address Spaces
1491 @cindex @code{__ea} SPU Named Address Spaces
1493 On the SPU target variables may be declared as
1494 belonging to another address space by qualifying the type with the
1495 @code{__ea} address space identifier:
1497 @smallexample
1498 extern int __ea i;
1499 @end smallexample
1501 @noindent 
1502 The compiler generates special code to access the variable @code{i}.
1503 It may use runtime library
1504 support, or generate special machine instructions to access that address
1505 space.
1507 @subsection x86 Named Address Spaces
1508 @cindex x86 named address spaces
1510 On the x86 target, variables may be declared as being relative
1511 to the @code{%fs} or @code{%gs} segments.
1513 @table @code
1514 @item __seg_fs
1515 @itemx __seg_gs
1516 @cindex @code{__seg_fs} x86 named address space
1517 @cindex @code{__seg_gs} x86 named address space
1518 The object is accessed with the respective segment override prefix.
1520 The respective segment base must be set via some method specific to
1521 the operating system.  Rather than require an expensive system call
1522 to retrieve the segment base, these address spaces are not considered
1523 to be subspaces of the generic (flat) address space.  This means that
1524 explicit casts are required to convert pointers between these address
1525 spaces and the generic address space.  In practice the application
1526 should cast to @code{uintptr_t} and apply the segment base offset
1527 that it installed previously.
1529 The preprocessor symbols @code{__SEG_FS} and @code{__SEG_GS} are
1530 defined when these address spaces are supported.
1531 @end table
1533 @node Zero Length
1534 @section Arrays of Length Zero
1535 @cindex arrays of length zero
1536 @cindex zero-length arrays
1537 @cindex length-zero arrays
1538 @cindex flexible array members
1540 Declaring zero-length arrays is allowed in GNU C as an extension.
1541 A zero-length array can be useful as the last element of a structure
1542 that is really a header for a variable-length object:
1544 @smallexample
1545 struct line @{
1546   int length;
1547   char contents[0];
1550 struct line *thisline = (struct line *)
1551   malloc (sizeof (struct line) + this_length);
1552 thisline->length = this_length;
1553 @end smallexample
1555 Although the size of a zero-length array is zero, an array member of
1556 this kind may increase the size of the enclosing type as a result of tail
1557 padding.  The offset of a zero-length array member from the beginning
1558 of the enclosing structure is the same as the offset of an array with
1559 one or more elements of the same type.  The alignment of a zero-length
1560 array is the same as the alignment of its elements.
1562 Declaring zero-length arrays in other contexts, including as interior
1563 members of structure objects or as non-member objects, is discouraged.
1564 Accessing elements of zero-length arrays declared in such contexts is
1565 undefined and may be diagnosed.
1567 In the absence of the zero-length array extension, in ISO C90
1568 the @code{contents} array in the example above would typically be declared
1569 to have a single element.  Unlike a zero-length array which only contributes
1570 to the size of the enclosing structure for the purposes of alignment,
1571 a one-element array always occupies at least as much space as a single
1572 object of the type.  Although using one-element arrays this way is
1573 discouraged, GCC handles accesses to trailing one-element array members
1574 analogously to zero-length arrays.
1576 The preferred mechanism to declare variable-length types like
1577 @code{struct line} above is the ISO C99 @dfn{flexible array member},
1578 with slightly different syntax and semantics:
1580 @itemize @bullet
1581 @item
1582 Flexible array members are written as @code{contents[]} without
1583 the @code{0}.
1585 @item
1586 Flexible array members have incomplete type, and so the @code{sizeof}
1587 operator may not be applied.  As a quirk of the original implementation
1588 of zero-length arrays, @code{sizeof} evaluates to zero.
1590 @item
1591 Flexible array members may only appear as the last member of a
1592 @code{struct} that is otherwise non-empty.
1594 @item
1595 A structure containing a flexible array member, or a union containing
1596 such a structure (possibly recursively), may not be a member of a
1597 structure or an element of an array.  (However, these uses are
1598 permitted by GCC as extensions.)
1599 @end itemize
1601 Non-empty initialization of zero-length
1602 arrays is treated like any case where there are more initializer
1603 elements than the array holds, in that a suitable warning about ``excess
1604 elements in array'' is given, and the excess elements (all of them, in
1605 this case) are ignored.
1607 GCC allows static initialization of flexible array members.
1608 This is equivalent to defining a new structure containing the original
1609 structure followed by an array of sufficient size to contain the data.
1610 E.g.@: in the following, @code{f1} is constructed as if it were declared
1611 like @code{f2}.
1613 @smallexample
1614 struct f1 @{
1615   int x; int y[];
1616 @} f1 = @{ 1, @{ 2, 3, 4 @} @};
1618 struct f2 @{
1619   struct f1 f1; int data[3];
1620 @} f2 = @{ @{ 1 @}, @{ 2, 3, 4 @} @};
1621 @end smallexample
1623 @noindent
1624 The convenience of this extension is that @code{f1} has the desired
1625 type, eliminating the need to consistently refer to @code{f2.f1}.
1627 This has symmetry with normal static arrays, in that an array of
1628 unknown size is also written with @code{[]}.
1630 Of course, this extension only makes sense if the extra data comes at
1631 the end of a top-level object, as otherwise we would be overwriting
1632 data at subsequent offsets.  To avoid undue complication and confusion
1633 with initialization of deeply nested arrays, we simply disallow any
1634 non-empty initialization except when the structure is the top-level
1635 object.  For example:
1637 @smallexample
1638 struct foo @{ int x; int y[]; @};
1639 struct bar @{ struct foo z; @};
1641 struct foo a = @{ 1, @{ 2, 3, 4 @} @};        // @r{Valid.}
1642 struct bar b = @{ @{ 1, @{ 2, 3, 4 @} @} @};    // @r{Invalid.}
1643 struct bar c = @{ @{ 1, @{ @} @} @};            // @r{Valid.}
1644 struct foo d[1] = @{ @{ 1, @{ 2, 3, 4 @} @} @};  // @r{Invalid.}
1645 @end smallexample
1647 @node Empty Structures
1648 @section Structures with No Members
1649 @cindex empty structures
1650 @cindex zero-size structures
1652 GCC permits a C structure to have no members:
1654 @smallexample
1655 struct empty @{
1657 @end smallexample
1659 The structure has size zero.  In C++, empty structures are part
1660 of the language.  G++ treats empty structures as if they had a single
1661 member of type @code{char}.
1663 @node Variable Length
1664 @section Arrays of Variable Length
1665 @cindex variable-length arrays
1666 @cindex arrays of variable length
1667 @cindex VLAs
1669 Variable-length automatic arrays are allowed in ISO C99, and as an
1670 extension GCC accepts them in C90 mode and in C++.  These arrays are
1671 declared like any other automatic arrays, but with a length that is not
1672 a constant expression.  The storage is allocated at the point of
1673 declaration and deallocated when the block scope containing the declaration
1674 exits.  For
1675 example:
1677 @smallexample
1678 FILE *
1679 concat_fopen (char *s1, char *s2, char *mode)
1681   char str[strlen (s1) + strlen (s2) + 1];
1682   strcpy (str, s1);
1683   strcat (str, s2);
1684   return fopen (str, mode);
1686 @end smallexample
1688 @cindex scope of a variable length array
1689 @cindex variable-length array scope
1690 @cindex deallocating variable length arrays
1691 Jumping or breaking out of the scope of the array name deallocates the
1692 storage.  Jumping into the scope is not allowed; you get an error
1693 message for it.
1695 @cindex variable-length array in a structure
1696 As an extension, GCC accepts variable-length arrays as a member of
1697 a structure or a union.  For example:
1699 @smallexample
1700 void
1701 foo (int n)
1703   struct S @{ int x[n]; @};
1705 @end smallexample
1707 @cindex @code{alloca} vs variable-length arrays
1708 You can use the function @code{alloca} to get an effect much like
1709 variable-length arrays.  The function @code{alloca} is available in
1710 many other C implementations (but not in all).  On the other hand,
1711 variable-length arrays are more elegant.
1713 There are other differences between these two methods.  Space allocated
1714 with @code{alloca} exists until the containing @emph{function} returns.
1715 The space for a variable-length array is deallocated as soon as the array
1716 name's scope ends, unless you also use @code{alloca} in this scope.
1718 You can also use variable-length arrays as arguments to functions:
1720 @smallexample
1721 struct entry
1722 tester (int len, char data[len][len])
1724   /* @r{@dots{}} */
1726 @end smallexample
1728 The length of an array is computed once when the storage is allocated
1729 and is remembered for the scope of the array in case you access it with
1730 @code{sizeof}.
1732 If you want to pass the array first and the length afterward, you can
1733 use a forward declaration in the parameter list---another GNU extension.
1735 @smallexample
1736 struct entry
1737 tester (int len; char data[len][len], int len)
1739   /* @r{@dots{}} */
1741 @end smallexample
1743 @cindex parameter forward declaration
1744 The @samp{int len} before the semicolon is a @dfn{parameter forward
1745 declaration}, and it serves the purpose of making the name @code{len}
1746 known when the declaration of @code{data} is parsed.
1748 You can write any number of such parameter forward declarations in the
1749 parameter list.  They can be separated by commas or semicolons, but the
1750 last one must end with a semicolon, which is followed by the ``real''
1751 parameter declarations.  Each forward declaration must match a ``real''
1752 declaration in parameter name and data type.  ISO C99 does not support
1753 parameter forward declarations.
1755 @node Variadic Macros
1756 @section Macros with a Variable Number of Arguments.
1757 @cindex variable number of arguments
1758 @cindex macro with variable arguments
1759 @cindex rest argument (in macro)
1760 @cindex variadic macros
1762 In the ISO C standard of 1999, a macro can be declared to accept a
1763 variable number of arguments much as a function can.  The syntax for
1764 defining the macro is similar to that of a function.  Here is an
1765 example:
1767 @smallexample
1768 #define debug(format, ...) fprintf (stderr, format, __VA_ARGS__)
1769 @end smallexample
1771 @noindent
1772 Here @samp{@dots{}} is a @dfn{variable argument}.  In the invocation of
1773 such a macro, it represents the zero or more tokens until the closing
1774 parenthesis that ends the invocation, including any commas.  This set of
1775 tokens replaces the identifier @code{__VA_ARGS__} in the macro body
1776 wherever it appears.  See the CPP manual for more information.
1778 GCC has long supported variadic macros, and used a different syntax that
1779 allowed you to give a name to the variable arguments just like any other
1780 argument.  Here is an example:
1782 @smallexample
1783 #define debug(format, args...) fprintf (stderr, format, args)
1784 @end smallexample
1786 @noindent
1787 This is in all ways equivalent to the ISO C example above, but arguably
1788 more readable and descriptive.
1790 GNU CPP has two further variadic macro extensions, and permits them to
1791 be used with either of the above forms of macro definition.
1793 In standard C, you are not allowed to leave the variable argument out
1794 entirely; but you are allowed to pass an empty argument.  For example,
1795 this invocation is invalid in ISO C, because there is no comma after
1796 the string:
1798 @smallexample
1799 debug ("A message")
1800 @end smallexample
1802 GNU CPP permits you to completely omit the variable arguments in this
1803 way.  In the above examples, the compiler would complain, though since
1804 the expansion of the macro still has the extra comma after the format
1805 string.
1807 To help solve this problem, CPP behaves specially for variable arguments
1808 used with the token paste operator, @samp{##}.  If instead you write
1810 @smallexample
1811 #define debug(format, ...) fprintf (stderr, format, ## __VA_ARGS__)
1812 @end smallexample
1814 @noindent
1815 and if the variable arguments are omitted or empty, the @samp{##}
1816 operator causes the preprocessor to remove the comma before it.  If you
1817 do provide some variable arguments in your macro invocation, GNU CPP
1818 does not complain about the paste operation and instead places the
1819 variable arguments after the comma.  Just like any other pasted macro
1820 argument, these arguments are not macro expanded.
1822 @node Escaped Newlines
1823 @section Slightly Looser Rules for Escaped Newlines
1824 @cindex escaped newlines
1825 @cindex newlines (escaped)
1827 The preprocessor treatment of escaped newlines is more relaxed 
1828 than that specified by the C90 standard, which requires the newline
1829 to immediately follow a backslash.  
1830 GCC's implementation allows whitespace in the form
1831 of spaces, horizontal and vertical tabs, and form feeds between the
1832 backslash and the subsequent newline.  The preprocessor issues a
1833 warning, but treats it as a valid escaped newline and combines the two
1834 lines to form a single logical line.  This works within comments and
1835 tokens, as well as between tokens.  Comments are @emph{not} treated as
1836 whitespace for the purposes of this relaxation, since they have not
1837 yet been replaced with spaces.
1839 @node Subscripting
1840 @section Non-Lvalue Arrays May Have Subscripts
1841 @cindex subscripting
1842 @cindex arrays, non-lvalue
1844 @cindex subscripting and function values
1845 In ISO C99, arrays that are not lvalues still decay to pointers, and
1846 may be subscripted, although they may not be modified or used after
1847 the next sequence point and the unary @samp{&} operator may not be
1848 applied to them.  As an extension, GNU C allows such arrays to be
1849 subscripted in C90 mode, though otherwise they do not decay to
1850 pointers outside C99 mode.  For example,
1851 this is valid in GNU C though not valid in C90:
1853 @smallexample
1854 @group
1855 struct foo @{int a[4];@};
1857 struct foo f();
1859 bar (int index)
1861   return f().a[index];
1863 @end group
1864 @end smallexample
1866 @node Pointer Arith
1867 @section Arithmetic on @code{void}- and Function-Pointers
1868 @cindex void pointers, arithmetic
1869 @cindex void, size of pointer to
1870 @cindex function pointers, arithmetic
1871 @cindex function, size of pointer to
1873 In GNU C, addition and subtraction operations are supported on pointers to
1874 @code{void} and on pointers to functions.  This is done by treating the
1875 size of a @code{void} or of a function as 1.
1877 A consequence of this is that @code{sizeof} is also allowed on @code{void}
1878 and on function types, and returns 1.
1880 @opindex Wpointer-arith
1881 The option @option{-Wpointer-arith} requests a warning if these extensions
1882 are used.
1884 @node Pointers to Arrays
1885 @section Pointers to Arrays with Qualifiers Work as Expected
1886 @cindex pointers to arrays
1887 @cindex const qualifier
1889 In GNU C, pointers to arrays with qualifiers work similar to pointers
1890 to other qualified types. For example, a value of type @code{int (*)[5]}
1891 can be used to initialize a variable of type @code{const int (*)[5]}.
1892 These types are incompatible in ISO C because the @code{const} qualifier
1893 is formally attached to the element type of the array and not the
1894 array itself.
1896 @smallexample
1897 extern void
1898 transpose (int N, int M, double out[M][N], const double in[N][M]);
1899 double x[3][2];
1900 double y[2][3];
1901 @r{@dots{}}
1902 transpose(3, 2, y, x);
1903 @end smallexample
1905 @node Initializers
1906 @section Non-Constant Initializers
1907 @cindex initializers, non-constant
1908 @cindex non-constant initializers
1910 As in standard C++ and ISO C99, the elements of an aggregate initializer for an
1911 automatic variable are not required to be constant expressions in GNU C@.
1912 Here is an example of an initializer with run-time varying elements:
1914 @smallexample
1915 foo (float f, float g)
1917   float beat_freqs[2] = @{ f-g, f+g @};
1918   /* @r{@dots{}} */
1920 @end smallexample
1922 @node Compound Literals
1923 @section Compound Literals
1924 @cindex constructor expressions
1925 @cindex initializations in expressions
1926 @cindex structures, constructor expression
1927 @cindex expressions, constructor
1928 @cindex compound literals
1929 @c The GNU C name for what C99 calls compound literals was "constructor expressions".
1931 A compound literal looks like a cast of a brace-enclosed aggregate
1932 initializer list.  Its value is an object of the type specified in
1933 the cast, containing the elements specified in the initializer.
1934 Unlike the result of a cast, a compound literal is an lvalue.  ISO
1935 C99 and later support compound literals.  As an extension, GCC
1936 supports compound literals also in C90 mode and in C++, although
1937 as explained below, the C++ semantics are somewhat different.
1939 Usually, the specified type of a compound literal is a structure.  Assume
1940 that @code{struct foo} and @code{structure} are declared as shown:
1942 @smallexample
1943 struct foo @{int a; char b[2];@} structure;
1944 @end smallexample
1946 @noindent
1947 Here is an example of constructing a @code{struct foo} with a compound literal:
1949 @smallexample
1950 structure = ((struct foo) @{x + y, 'a', 0@});
1951 @end smallexample
1953 @noindent
1954 This is equivalent to writing the following:
1956 @smallexample
1958   struct foo temp = @{x + y, 'a', 0@};
1959   structure = temp;
1961 @end smallexample
1963 You can also construct an array, though this is dangerous in C++, as
1964 explained below.  If all the elements of the compound literal are
1965 (made up of) simple constant expressions suitable for use in
1966 initializers of objects of static storage duration, then the compound
1967 literal can be coerced to a pointer to its first element and used in
1968 such an initializer, as shown here:
1970 @smallexample
1971 char **foo = (char *[]) @{ "x", "y", "z" @};
1972 @end smallexample
1974 Compound literals for scalar types and union types are also allowed.  In
1975 the following example the variable @code{i} is initialized to the value
1976 @code{2}, the result of incrementing the unnamed object created by
1977 the compound literal.
1979 @smallexample
1980 int i = ++(int) @{ 1 @};
1981 @end smallexample
1983 As a GNU extension, GCC allows initialization of objects with static storage
1984 duration by compound literals (which is not possible in ISO C99 because
1985 the initializer is not a constant).
1986 It is handled as if the object were initialized only with the brace-enclosed
1987 list if the types of the compound literal and the object match.
1988 The elements of the compound literal must be constant.
1989 If the object being initialized has array type of unknown size, the size is
1990 determined by the size of the compound literal.
1992 @smallexample
1993 static struct foo x = (struct foo) @{1, 'a', 'b'@};
1994 static int y[] = (int []) @{1, 2, 3@};
1995 static int z[] = (int [3]) @{1@};
1996 @end smallexample
1998 @noindent
1999 The above lines are equivalent to the following:
2000 @smallexample
2001 static struct foo x = @{1, 'a', 'b'@};
2002 static int y[] = @{1, 2, 3@};
2003 static int z[] = @{1, 0, 0@};
2004 @end smallexample
2006 In C, a compound literal designates an unnamed object with static or
2007 automatic storage duration.  In C++, a compound literal designates a
2008 temporary object that only lives until the end of its full-expression.
2009 As a result, well-defined C code that takes the address of a subobject
2010 of a compound literal can be undefined in C++, so G++ rejects
2011 the conversion of a temporary array to a pointer.  For instance, if
2012 the array compound literal example above appeared inside a function,
2013 any subsequent use of @code{foo} in C++ would have undefined behavior
2014 because the lifetime of the array ends after the declaration of @code{foo}.
2016 As an optimization, G++ sometimes gives array compound literals longer
2017 lifetimes: when the array either appears outside a function or has
2018 a @code{const}-qualified type.  If @code{foo} and its initializer had
2019 elements of type @code{char *const} rather than @code{char *}, or if
2020 @code{foo} were a global variable, the array would have static storage
2021 duration.  But it is probably safest just to avoid the use of array
2022 compound literals in C++ code.
2024 @node Designated Inits
2025 @section Designated Initializers
2026 @cindex initializers with labeled elements
2027 @cindex labeled elements in initializers
2028 @cindex case labels in initializers
2029 @cindex designated initializers
2031 Standard C90 requires the elements of an initializer to appear in a fixed
2032 order, the same as the order of the elements in the array or structure
2033 being initialized.
2035 In ISO C99 you can give the elements in any order, specifying the array
2036 indices or structure field names they apply to, and GNU C allows this as
2037 an extension in C90 mode as well.  This extension is not
2038 implemented in GNU C++.
2040 To specify an array index, write
2041 @samp{[@var{index}] =} before the element value.  For example,
2043 @smallexample
2044 int a[6] = @{ [4] = 29, [2] = 15 @};
2045 @end smallexample
2047 @noindent
2048 is equivalent to
2050 @smallexample
2051 int a[6] = @{ 0, 0, 15, 0, 29, 0 @};
2052 @end smallexample
2054 @noindent
2055 The index values must be constant expressions, even if the array being
2056 initialized is automatic.
2058 An alternative syntax for this that has been obsolete since GCC 2.5 but
2059 GCC still accepts is to write @samp{[@var{index}]} before the element
2060 value, with no @samp{=}.
2062 To initialize a range of elements to the same value, write
2063 @samp{[@var{first} ... @var{last}] = @var{value}}.  This is a GNU
2064 extension.  For example,
2066 @smallexample
2067 int widths[] = @{ [0 ... 9] = 1, [10 ... 99] = 2, [100] = 3 @};
2068 @end smallexample
2070 @noindent
2071 If the value in it has side effects, the side effects happen only once,
2072 not for each initialized field by the range initializer.
2074 @noindent
2075 Note that the length of the array is the highest value specified
2076 plus one.
2078 In a structure initializer, specify the name of a field to initialize
2079 with @samp{.@var{fieldname} =} before the element value.  For example,
2080 given the following structure,
2082 @smallexample
2083 struct point @{ int x, y; @};
2084 @end smallexample
2086 @noindent
2087 the following initialization
2089 @smallexample
2090 struct point p = @{ .y = yvalue, .x = xvalue @};
2091 @end smallexample
2093 @noindent
2094 is equivalent to
2096 @smallexample
2097 struct point p = @{ xvalue, yvalue @};
2098 @end smallexample
2100 Another syntax that has the same meaning, obsolete since GCC 2.5, is
2101 @samp{@var{fieldname}:}, as shown here:
2103 @smallexample
2104 struct point p = @{ y: yvalue, x: xvalue @};
2105 @end smallexample
2107 Omitted field members are implicitly initialized the same as objects
2108 that have static storage duration.
2110 @cindex designators
2111 The @samp{[@var{index}]} or @samp{.@var{fieldname}} is known as a
2112 @dfn{designator}.  You can also use a designator (or the obsolete colon
2113 syntax) when initializing a union, to specify which element of the union
2114 should be used.  For example,
2116 @smallexample
2117 union foo @{ int i; double d; @};
2119 union foo f = @{ .d = 4 @};
2120 @end smallexample
2122 @noindent
2123 converts 4 to a @code{double} to store it in the union using
2124 the second element.  By contrast, casting 4 to type @code{union foo}
2125 stores it into the union as the integer @code{i}, since it is
2126 an integer.  @xref{Cast to Union}.
2128 You can combine this technique of naming elements with ordinary C
2129 initialization of successive elements.  Each initializer element that
2130 does not have a designator applies to the next consecutive element of the
2131 array or structure.  For example,
2133 @smallexample
2134 int a[6] = @{ [1] = v1, v2, [4] = v4 @};
2135 @end smallexample
2137 @noindent
2138 is equivalent to
2140 @smallexample
2141 int a[6] = @{ 0, v1, v2, 0, v4, 0 @};
2142 @end smallexample
2144 Labeling the elements of an array initializer is especially useful
2145 when the indices are characters or belong to an @code{enum} type.
2146 For example:
2148 @smallexample
2149 int whitespace[256]
2150   = @{ [' '] = 1, ['\t'] = 1, ['\h'] = 1,
2151       ['\f'] = 1, ['\n'] = 1, ['\r'] = 1 @};
2152 @end smallexample
2154 @cindex designator lists
2155 You can also write a series of @samp{.@var{fieldname}} and
2156 @samp{[@var{index}]} designators before an @samp{=} to specify a
2157 nested subobject to initialize; the list is taken relative to the
2158 subobject corresponding to the closest surrounding brace pair.  For
2159 example, with the @samp{struct point} declaration above:
2161 @smallexample
2162 struct point ptarray[10] = @{ [2].y = yv2, [2].x = xv2, [0].x = xv0 @};
2163 @end smallexample
2165 @noindent
2166 If the same field is initialized multiple times, it has the value from
2167 the last initialization.  If any such overridden initialization has
2168 side effect, it is unspecified whether the side effect happens or not.
2169 Currently, GCC discards them and issues a warning.
2171 @node Case Ranges
2172 @section Case Ranges
2173 @cindex case ranges
2174 @cindex ranges in case statements
2176 You can specify a range of consecutive values in a single @code{case} label,
2177 like this:
2179 @smallexample
2180 case @var{low} ... @var{high}:
2181 @end smallexample
2183 @noindent
2184 This has the same effect as the proper number of individual @code{case}
2185 labels, one for each integer value from @var{low} to @var{high}, inclusive.
2187 This feature is especially useful for ranges of ASCII character codes:
2189 @smallexample
2190 case 'A' ... 'Z':
2191 @end smallexample
2193 @strong{Be careful:} Write spaces around the @code{...}, for otherwise
2194 it may be parsed wrong when you use it with integer values.  For example,
2195 write this:
2197 @smallexample
2198 case 1 ... 5:
2199 @end smallexample
2201 @noindent
2202 rather than this:
2204 @smallexample
2205 case 1...5:
2206 @end smallexample
2208 @node Cast to Union
2209 @section Cast to a Union Type
2210 @cindex cast to a union
2211 @cindex union, casting to a
2213 A cast to union type looks similar to other casts, except that the type
2214 specified is a union type.  You can specify the type either with the
2215 @code{union} keyword or with a @code{typedef} name that refers to
2216 a union.  A cast to a union actually creates a compound literal and
2217 yields an lvalue, not an rvalue like true casts do.
2218 @xref{Compound Literals}.
2220 The types that may be cast to the union type are those of the members
2221 of the union.  Thus, given the following union and variables:
2223 @smallexample
2224 union foo @{ int i; double d; @};
2225 int x;
2226 double y;
2227 @end smallexample
2229 @noindent
2230 both @code{x} and @code{y} can be cast to type @code{union foo}.
2232 Using the cast as the right-hand side of an assignment to a variable of
2233 union type is equivalent to storing in a member of the union:
2235 @smallexample
2236 union foo u;
2237 /* @r{@dots{}} */
2238 u = (union foo) x  @equiv{}  u.i = x
2239 u = (union foo) y  @equiv{}  u.d = y
2240 @end smallexample
2242 You can also use the union cast as a function argument:
2244 @smallexample
2245 void hack (union foo);
2246 /* @r{@dots{}} */
2247 hack ((union foo) x);
2248 @end smallexample
2250 @node Mixed Declarations
2251 @section Mixed Declarations and Code
2252 @cindex mixed declarations and code
2253 @cindex declarations, mixed with code
2254 @cindex code, mixed with declarations
2256 ISO C99 and ISO C++ allow declarations and code to be freely mixed
2257 within compound statements.  As an extension, GNU C also allows this in
2258 C90 mode.  For example, you could do:
2260 @smallexample
2261 int i;
2262 /* @r{@dots{}} */
2263 i++;
2264 int j = i + 2;
2265 @end smallexample
2267 Each identifier is visible from where it is declared until the end of
2268 the enclosing block.
2270 @node Function Attributes
2271 @section Declaring Attributes of Functions
2272 @cindex function attributes
2273 @cindex declaring attributes of functions
2274 @cindex @code{volatile} applied to function
2275 @cindex @code{const} applied to function
2277 In GNU C, you can use function attributes to declare certain things
2278 about functions called in your program which help the compiler
2279 optimize calls and check your code more carefully.  For example, you
2280 can use attributes to declare that a function never returns
2281 (@code{noreturn}), returns a value depending only on its arguments
2282 (@code{pure}), or has @code{printf}-style arguments (@code{format}).
2284 You can also use attributes to control memory placement, code
2285 generation options or call/return conventions within the function
2286 being annotated.  Many of these attributes are target-specific.  For
2287 example, many targets support attributes for defining interrupt
2288 handler functions, which typically must follow special register usage
2289 and return conventions.
2291 Function attributes are introduced by the @code{__attribute__} keyword
2292 on a declaration, followed by an attribute specification inside double
2293 parentheses.  You can specify multiple attributes in a declaration by
2294 separating them by commas within the double parentheses or by
2295 immediately following an attribute declaration with another attribute
2296 declaration.  @xref{Attribute Syntax}, for the exact rules on attribute
2297 syntax and placement.  Compatible attribute specifications on distinct
2298 declarations of the same function are merged.  An attribute specification
2299 that is not compatible with attributes already applied to a declaration
2300 of the same function is ignored with a warning.
2302 GCC also supports attributes on
2303 variable declarations (@pxref{Variable Attributes}),
2304 labels (@pxref{Label Attributes}),
2305 enumerators (@pxref{Enumerator Attributes}),
2306 statements (@pxref{Statement Attributes}),
2307 and types (@pxref{Type Attributes}).
2309 There is some overlap between the purposes of attributes and pragmas
2310 (@pxref{Pragmas,,Pragmas Accepted by GCC}).  It has been
2311 found convenient to use @code{__attribute__} to achieve a natural
2312 attachment of attributes to their corresponding declarations, whereas
2313 @code{#pragma} is of use for compatibility with other compilers
2314 or constructs that do not naturally form part of the grammar.
2316 In addition to the attributes documented here,
2317 GCC plugins may provide their own attributes.
2319 @menu
2320 * Common Function Attributes::
2321 * AArch64 Function Attributes::
2322 * ARC Function Attributes::
2323 * ARM Function Attributes::
2324 * AVR Function Attributes::
2325 * Blackfin Function Attributes::
2326 * CR16 Function Attributes::
2327 * C-SKY Function Attributes::
2328 * Epiphany Function Attributes::
2329 * H8/300 Function Attributes::
2330 * IA-64 Function Attributes::
2331 * M32C Function Attributes::
2332 * M32R/D Function Attributes::
2333 * m68k Function Attributes::
2334 * MCORE Function Attributes::
2335 * MeP Function Attributes::
2336 * MicroBlaze Function Attributes::
2337 * Microsoft Windows Function Attributes::
2338 * MIPS Function Attributes::
2339 * MSP430 Function Attributes::
2340 * NDS32 Function Attributes::
2341 * Nios II Function Attributes::
2342 * Nvidia PTX Function Attributes::
2343 * PowerPC Function Attributes::
2344 * RISC-V Function Attributes::
2345 * RL78 Function Attributes::
2346 * RX Function Attributes::
2347 * S/390 Function Attributes::
2348 * SH Function Attributes::
2349 * SPU Function Attributes::
2350 * Symbian OS Function Attributes::
2351 * V850 Function Attributes::
2352 * Visium Function Attributes::
2353 * x86 Function Attributes::
2354 * Xstormy16 Function Attributes::
2355 @end menu
2357 @node Common Function Attributes
2358 @subsection Common Function Attributes
2360 The following attributes are supported on most targets.
2362 @table @code
2363 @c Keep this table alphabetized by attribute name.  Treat _ as space.
2365 @item alias ("@var{target}")
2366 @cindex @code{alias} function attribute
2367 The @code{alias} attribute causes the declaration to be emitted as an
2368 alias for another symbol, which must be specified.  For instance,
2370 @smallexample
2371 void __f () @{ /* @r{Do something.} */; @}
2372 void f () __attribute__ ((weak, alias ("__f")));
2373 @end smallexample
2375 @noindent
2376 defines @samp{f} to be a weak alias for @samp{__f}.  In C++, the
2377 mangled name for the target must be used.  It is an error if @samp{__f}
2378 is not defined in the same translation unit.
2380 This attribute requires assembler and object file support,
2381 and may not be available on all targets.
2383 @item aligned (@var{alignment})
2384 @cindex @code{aligned} function attribute
2385 This attribute specifies a minimum alignment for the function,
2386 measured in bytes.
2388 You cannot use this attribute to decrease the alignment of a function,
2389 only to increase it.  However, when you explicitly specify a function
2390 alignment this overrides the effect of the
2391 @option{-falign-functions} (@pxref{Optimize Options}) option for this
2392 function.
2394 Note that the effectiveness of @code{aligned} attributes may be
2395 limited by inherent limitations in your linker.  On many systems, the
2396 linker is only able to arrange for functions to be aligned up to a
2397 certain maximum alignment.  (For some linkers, the maximum supported
2398 alignment may be very very small.)  See your linker documentation for
2399 further information.
2401 The @code{aligned} attribute can also be used for variables and fields
2402 (@pxref{Variable Attributes}.)
2404 @item alloc_align
2405 @cindex @code{alloc_align} function attribute
2406 The @code{alloc_align} attribute is used to tell the compiler that the
2407 function return value points to memory, where the returned pointer minimum
2408 alignment is given by one of the functions parameters.  GCC uses this
2409 information to improve pointer alignment analysis.
2411 The function parameter denoting the allocated alignment is specified by
2412 one integer argument, whose number is the argument of the attribute.
2413 Argument numbering starts at one.
2415 For instance,
2417 @smallexample
2418 void* my_memalign(size_t, size_t) __attribute__((alloc_align(1)))
2419 @end smallexample
2421 @noindent
2422 declares that @code{my_memalign} returns memory with minimum alignment
2423 given by parameter 1.
2425 @item alloc_size
2426 @cindex @code{alloc_size} function attribute
2427 The @code{alloc_size} attribute is used to tell the compiler that the
2428 function return value points to memory, where the size is given by
2429 one or two of the functions parameters.  GCC uses this
2430 information to improve the correctness of @code{__builtin_object_size}.
2432 The function parameter(s) denoting the allocated size are specified by
2433 one or two integer arguments supplied to the attribute.  The allocated size
2434 is either the value of the single function argument specified or the product
2435 of the two function arguments specified.  Argument numbering starts at
2436 one.
2438 For instance,
2440 @smallexample
2441 void* my_calloc(size_t, size_t) __attribute__((alloc_size(1,2)))
2442 void* my_realloc(void*, size_t) __attribute__((alloc_size(2)))
2443 @end smallexample
2445 @noindent
2446 declares that @code{my_calloc} returns memory of the size given by
2447 the product of parameter 1 and 2 and that @code{my_realloc} returns memory
2448 of the size given by parameter 2.
2450 @item always_inline
2451 @cindex @code{always_inline} function attribute
2452 Generally, functions are not inlined unless optimization is specified.
2453 For functions declared inline, this attribute inlines the function
2454 independent of any restrictions that otherwise apply to inlining.
2455 Failure to inline such a function is diagnosed as an error.
2456 Note that if such a function is called indirectly the compiler may
2457 or may not inline it depending on optimization level and a failure
2458 to inline an indirect call may or may not be diagnosed.
2460 @item artificial
2461 @cindex @code{artificial} function attribute
2462 This attribute is useful for small inline wrappers that if possible
2463 should appear during debugging as a unit.  Depending on the debug
2464 info format it either means marking the function as artificial
2465 or using the caller location for all instructions within the inlined
2466 body.
2468 @item assume_aligned
2469 @cindex @code{assume_aligned} function attribute
2470 The @code{assume_aligned} attribute is used to tell the compiler that the
2471 function return value points to memory, where the returned pointer minimum
2472 alignment is given by the first argument.
2473 If the attribute has two arguments, the second argument is misalignment offset.
2475 For instance
2477 @smallexample
2478 void* my_alloc1(size_t) __attribute__((assume_aligned(16)))
2479 void* my_alloc2(size_t) __attribute__((assume_aligned(32, 8)))
2480 @end smallexample
2482 @noindent
2483 declares that @code{my_alloc1} returns 16-byte aligned pointer and
2484 that @code{my_alloc2} returns a pointer whose value modulo 32 is equal
2485 to 8.
2487 @item cold
2488 @cindex @code{cold} function attribute
2489 The @code{cold} attribute on functions is used to inform the compiler that
2490 the function is unlikely to be executed.  The function is optimized for
2491 size rather than speed and on many targets it is placed into a special
2492 subsection of the text section so all cold functions appear close together,
2493 improving code locality of non-cold parts of program.  The paths leading
2494 to calls of cold functions within code are marked as unlikely by the branch
2495 prediction mechanism.  It is thus useful to mark functions used to handle
2496 unlikely conditions, such as @code{perror}, as cold to improve optimization
2497 of hot functions that do call marked functions in rare occasions.
2499 When profile feedback is available, via @option{-fprofile-use}, cold functions
2500 are automatically detected and this attribute is ignored.
2502 @item const
2503 @cindex @code{const} function attribute
2504 @cindex functions that have no side effects
2505 Many functions do not examine any values except their arguments, and
2506 have no effects except to return a value.  Calls to such functions lend
2507 themselves to optimization such as common subexpression elimination.
2508 The @code{const} attribute imposes greater restrictions on a function's
2509 definition than the similar @code{pure} attribute below because it prohibits
2510 the function from reading global variables.  Consequently, the presence of
2511 the attribute on a function declaration allows GCC to emit more efficient
2512 code for some calls to the function.  Decorating the same function with
2513 both the @code{const} and the @code{pure} attribute is diagnosed.
2515 @cindex pointer arguments
2516 Note that a function that has pointer arguments and examines the data
2517 pointed to must @emph{not} be declared @code{const}.  Likewise, a
2518 function that calls a non-@code{const} function usually must not be
2519 @code{const}.  Because a @code{const} function cannot have any side
2520 effects it does not make sense for such a function to return @code{void}.
2521 Declaring such a function is diagnosed.
2523 @item constructor
2524 @itemx destructor
2525 @itemx constructor (@var{priority})
2526 @itemx destructor (@var{priority})
2527 @cindex @code{constructor} function attribute
2528 @cindex @code{destructor} function attribute
2529 The @code{constructor} attribute causes the function to be called
2530 automatically before execution enters @code{main ()}.  Similarly, the
2531 @code{destructor} attribute causes the function to be called
2532 automatically after @code{main ()} completes or @code{exit ()} is
2533 called.  Functions with these attributes are useful for
2534 initializing data that is used implicitly during the execution of
2535 the program.
2537 You may provide an optional integer priority to control the order in
2538 which constructor and destructor functions are run.  A constructor
2539 with a smaller priority number runs before a constructor with a larger
2540 priority number; the opposite relationship holds for destructors.  So,
2541 if you have a constructor that allocates a resource and a destructor
2542 that deallocates the same resource, both functions typically have the
2543 same priority.  The priorities for constructor and destructor
2544 functions are the same as those specified for namespace-scope C++
2545 objects (@pxref{C++ Attributes}).  However, at present, the order in which
2546 constructors for C++ objects with static storage duration and functions
2547 decorated with attribute @code{constructor} are invoked is unspecified.
2548 In mixed declarations, attribute @code{init_priority} can be used to
2549 impose a specific ordering.
2551 @item deprecated
2552 @itemx deprecated (@var{msg})
2553 @cindex @code{deprecated} function attribute
2554 The @code{deprecated} attribute results in a warning if the function
2555 is used anywhere in the source file.  This is useful when identifying
2556 functions that are expected to be removed in a future version of a
2557 program.  The warning also includes the location of the declaration
2558 of the deprecated function, to enable users to easily find further
2559 information about why the function is deprecated, or what they should
2560 do instead.  Note that the warnings only occurs for uses:
2562 @smallexample
2563 int old_fn () __attribute__ ((deprecated));
2564 int old_fn ();
2565 int (*fn_ptr)() = old_fn;
2566 @end smallexample
2568 @noindent
2569 results in a warning on line 3 but not line 2.  The optional @var{msg}
2570 argument, which must be a string, is printed in the warning if
2571 present.
2573 The @code{deprecated} attribute can also be used for variables and
2574 types (@pxref{Variable Attributes}, @pxref{Type Attributes}.)
2576 The message attached to the attribute is affected by the setting of
2577 the @option{-fmessage-length} option.
2579 @item error ("@var{message}")
2580 @itemx warning ("@var{message}")
2581 @cindex @code{error} function attribute
2582 @cindex @code{warning} function attribute
2583 If the @code{error} or @code{warning} attribute 
2584 is used on a function declaration and a call to such a function
2585 is not eliminated through dead code elimination or other optimizations, 
2586 an error or warning (respectively) that includes @var{message} is diagnosed.  
2587 This is useful
2588 for compile-time checking, especially together with @code{__builtin_constant_p}
2589 and inline functions where checking the inline function arguments is not
2590 possible through @code{extern char [(condition) ? 1 : -1];} tricks.
2592 While it is possible to leave the function undefined and thus invoke
2593 a link failure (to define the function with
2594 a message in @code{.gnu.warning*} section),
2595 when using these attributes the problem is diagnosed
2596 earlier and with exact location of the call even in presence of inline
2597 functions or when not emitting debugging information.
2599 @item externally_visible
2600 @cindex @code{externally_visible} function attribute
2601 This attribute, attached to a global variable or function, nullifies
2602 the effect of the @option{-fwhole-program} command-line option, so the
2603 object remains visible outside the current compilation unit.
2605 If @option{-fwhole-program} is used together with @option{-flto} and 
2606 @command{gold} is used as the linker plugin, 
2607 @code{externally_visible} attributes are automatically added to functions 
2608 (not variable yet due to a current @command{gold} issue) 
2609 that are accessed outside of LTO objects according to resolution file
2610 produced by @command{gold}.
2611 For other linkers that cannot generate resolution file,
2612 explicit @code{externally_visible} attributes are still necessary.
2614 @item flatten
2615 @cindex @code{flatten} function attribute
2616 Generally, inlining into a function is limited.  For a function marked with
2617 this attribute, every call inside this function is inlined, if possible.
2618 Functions declared with attribute @code{noinline} and similar are not
2619 inlined.  Whether the function itself is considered for inlining depends
2620 on its size and the current inlining parameters.
2622 @item format (@var{archetype}, @var{string-index}, @var{first-to-check})
2623 @cindex @code{format} function attribute
2624 @cindex functions with @code{printf}, @code{scanf}, @code{strftime} or @code{strfmon} style arguments
2625 @opindex Wformat
2626 The @code{format} attribute specifies that a function takes @code{printf},
2627 @code{scanf}, @code{strftime} or @code{strfmon} style arguments that
2628 should be type-checked against a format string.  For example, the
2629 declaration:
2631 @smallexample
2632 extern int
2633 my_printf (void *my_object, const char *my_format, ...)
2634       __attribute__ ((format (printf, 2, 3)));
2635 @end smallexample
2637 @noindent
2638 causes the compiler to check the arguments in calls to @code{my_printf}
2639 for consistency with the @code{printf} style format string argument
2640 @code{my_format}.
2642 The parameter @var{archetype} determines how the format string is
2643 interpreted, and should be @code{printf}, @code{scanf}, @code{strftime},
2644 @code{gnu_printf}, @code{gnu_scanf}, @code{gnu_strftime} or
2645 @code{strfmon}.  (You can also use @code{__printf__},
2646 @code{__scanf__}, @code{__strftime__} or @code{__strfmon__}.)  On
2647 MinGW targets, @code{ms_printf}, @code{ms_scanf}, and
2648 @code{ms_strftime} are also present.
2649 @var{archetype} values such as @code{printf} refer to the formats accepted
2650 by the system's C runtime library,
2651 while values prefixed with @samp{gnu_} always refer
2652 to the formats accepted by the GNU C Library.  On Microsoft Windows
2653 targets, values prefixed with @samp{ms_} refer to the formats accepted by the
2654 @file{msvcrt.dll} library.
2655 The parameter @var{string-index}
2656 specifies which argument is the format string argument (starting
2657 from 1), while @var{first-to-check} is the number of the first
2658 argument to check against the format string.  For functions
2659 where the arguments are not available to be checked (such as
2660 @code{vprintf}), specify the third parameter as zero.  In this case the
2661 compiler only checks the format string for consistency.  For
2662 @code{strftime} formats, the third parameter is required to be zero.
2663 Since non-static C++ methods have an implicit @code{this} argument, the
2664 arguments of such methods should be counted from two, not one, when
2665 giving values for @var{string-index} and @var{first-to-check}.
2667 In the example above, the format string (@code{my_format}) is the second
2668 argument of the function @code{my_print}, and the arguments to check
2669 start with the third argument, so the correct parameters for the format
2670 attribute are 2 and 3.
2672 @opindex ffreestanding
2673 @opindex fno-builtin
2674 The @code{format} attribute allows you to identify your own functions
2675 that take format strings as arguments, so that GCC can check the
2676 calls to these functions for errors.  The compiler always (unless
2677 @option{-ffreestanding} or @option{-fno-builtin} is used) checks formats
2678 for the standard library functions @code{printf}, @code{fprintf},
2679 @code{sprintf}, @code{scanf}, @code{fscanf}, @code{sscanf}, @code{strftime},
2680 @code{vprintf}, @code{vfprintf} and @code{vsprintf} whenever such
2681 warnings are requested (using @option{-Wformat}), so there is no need to
2682 modify the header file @file{stdio.h}.  In C99 mode, the functions
2683 @code{snprintf}, @code{vsnprintf}, @code{vscanf}, @code{vfscanf} and
2684 @code{vsscanf} are also checked.  Except in strictly conforming C
2685 standard modes, the X/Open function @code{strfmon} is also checked as
2686 are @code{printf_unlocked} and @code{fprintf_unlocked}.
2687 @xref{C Dialect Options,,Options Controlling C Dialect}.
2689 For Objective-C dialects, @code{NSString} (or @code{__NSString__}) is
2690 recognized in the same context.  Declarations including these format attributes
2691 are parsed for correct syntax, however the result of checking of such format
2692 strings is not yet defined, and is not carried out by this version of the
2693 compiler.
2695 The target may also provide additional types of format checks.
2696 @xref{Target Format Checks,,Format Checks Specific to Particular
2697 Target Machines}.
2699 @item format_arg (@var{string-index})
2700 @cindex @code{format_arg} function attribute
2701 @opindex Wformat-nonliteral
2702 The @code{format_arg} attribute specifies that a function takes one or
2703 more format strings for a @code{printf}, @code{scanf}, @code{strftime} or
2704 @code{strfmon} style function and modifies it (for example, to translate
2705 it into another language), so the result can be passed to a
2706 @code{printf}, @code{scanf}, @code{strftime} or @code{strfmon} style
2707 function (with the remaining arguments to the format function the same
2708 as they would have been for the unmodified string).  Multiple
2709 @code{format_arg} attributes may be applied to the same function, each
2710 designating a distinct parameter as a format string.  For example, the
2711 declaration:
2713 @smallexample
2714 extern char *
2715 my_dgettext (char *my_domain, const char *my_format)
2716       __attribute__ ((format_arg (2)));
2717 @end smallexample
2719 @noindent
2720 causes the compiler to check the arguments in calls to a @code{printf},
2721 @code{scanf}, @code{strftime} or @code{strfmon} type function, whose
2722 format string argument is a call to the @code{my_dgettext} function, for
2723 consistency with the format string argument @code{my_format}.  If the
2724 @code{format_arg} attribute had not been specified, all the compiler
2725 could tell in such calls to format functions would be that the format
2726 string argument is not constant; this would generate a warning when
2727 @option{-Wformat-nonliteral} is used, but the calls could not be checked
2728 without the attribute.
2730 In calls to a function declared with more than one @code{format_arg}
2731 attribute, each with a distinct argument value, the corresponding
2732 actual function arguments are checked against all format strings
2733 designated by the attributes.  This capability is designed to support
2734 the GNU @code{ngettext} family of functions.
2736 The parameter @var{string-index} specifies which argument is the format
2737 string argument (starting from one).  Since non-static C++ methods have
2738 an implicit @code{this} argument, the arguments of such methods should
2739 be counted from two.
2741 The @code{format_arg} attribute allows you to identify your own
2742 functions that modify format strings, so that GCC can check the
2743 calls to @code{printf}, @code{scanf}, @code{strftime} or @code{strfmon}
2744 type function whose operands are a call to one of your own function.
2745 The compiler always treats @code{gettext}, @code{dgettext}, and
2746 @code{dcgettext} in this manner except when strict ISO C support is
2747 requested by @option{-ansi} or an appropriate @option{-std} option, or
2748 @option{-ffreestanding} or @option{-fno-builtin}
2749 is used.  @xref{C Dialect Options,,Options
2750 Controlling C Dialect}.
2752 For Objective-C dialects, the @code{format-arg} attribute may refer to an
2753 @code{NSString} reference for compatibility with the @code{format} attribute
2754 above.
2756 The target may also allow additional types in @code{format-arg} attributes.
2757 @xref{Target Format Checks,,Format Checks Specific to Particular
2758 Target Machines}.
2760 @item gnu_inline
2761 @cindex @code{gnu_inline} function attribute
2762 This attribute should be used with a function that is also declared
2763 with the @code{inline} keyword.  It directs GCC to treat the function
2764 as if it were defined in gnu90 mode even when compiling in C99 or
2765 gnu99 mode.
2767 If the function is declared @code{extern}, then this definition of the
2768 function is used only for inlining.  In no case is the function
2769 compiled as a standalone function, not even if you take its address
2770 explicitly.  Such an address becomes an external reference, as if you
2771 had only declared the function, and had not defined it.  This has
2772 almost the effect of a macro.  The way to use this is to put a
2773 function definition in a header file with this attribute, and put
2774 another copy of the function, without @code{extern}, in a library
2775 file.  The definition in the header file causes most calls to the
2776 function to be inlined.  If any uses of the function remain, they
2777 refer to the single copy in the library.  Note that the two
2778 definitions of the functions need not be precisely the same, although
2779 if they do not have the same effect your program may behave oddly.
2781 In C, if the function is neither @code{extern} nor @code{static}, then
2782 the function is compiled as a standalone function, as well as being
2783 inlined where possible.
2785 This is how GCC traditionally handled functions declared
2786 @code{inline}.  Since ISO C99 specifies a different semantics for
2787 @code{inline}, this function attribute is provided as a transition
2788 measure and as a useful feature in its own right.  This attribute is
2789 available in GCC 4.1.3 and later.  It is available if either of the
2790 preprocessor macros @code{__GNUC_GNU_INLINE__} or
2791 @code{__GNUC_STDC_INLINE__} are defined.  @xref{Inline,,An Inline
2792 Function is As Fast As a Macro}.
2794 In C++, this attribute does not depend on @code{extern} in any way,
2795 but it still requires the @code{inline} keyword to enable its special
2796 behavior.
2798 @item hot
2799 @cindex @code{hot} function attribute
2800 The @code{hot} attribute on a function is used to inform the compiler that
2801 the function is a hot spot of the compiled program.  The function is
2802 optimized more aggressively and on many targets it is placed into a special
2803 subsection of the text section so all hot functions appear close together,
2804 improving locality.
2806 When profile feedback is available, via @option{-fprofile-use}, hot functions
2807 are automatically detected and this attribute is ignored.
2809 @item ifunc ("@var{resolver}")
2810 @cindex @code{ifunc} function attribute
2811 @cindex indirect functions
2812 @cindex functions that are dynamically resolved
2813 The @code{ifunc} attribute is used to mark a function as an indirect
2814 function using the STT_GNU_IFUNC symbol type extension to the ELF
2815 standard.  This allows the resolution of the symbol value to be
2816 determined dynamically at load time, and an optimized version of the
2817 routine to be selected for the particular processor or other system
2818 characteristics determined then.  To use this attribute, first define
2819 the implementation functions available, and a resolver function that
2820 returns a pointer to the selected implementation function.  The
2821 implementation functions' declarations must match the API of the
2822 function being implemented.  The resolver should be declared to
2823 be a function taking no arguments and returning a pointer to
2824 a function of the same type as the implementation.  For example:
2826 @smallexample
2827 void *my_memcpy (void *dst, const void *src, size_t len)
2829   @dots{}
2830   return dst;
2833 static void * (*resolve_memcpy (void))(void *, const void *, size_t)
2835   return my_memcpy; // we will just always select this routine
2837 @end smallexample
2839 @noindent
2840 The exported header file declaring the function the user calls would
2841 contain:
2843 @smallexample
2844 extern void *memcpy (void *, const void *, size_t);
2845 @end smallexample
2847 @noindent
2848 allowing the user to call @code{memcpy} as a regular function, unaware of
2849 the actual implementation.  Finally, the indirect function needs to be
2850 defined in the same translation unit as the resolver function:
2852 @smallexample
2853 void *memcpy (void *, const void *, size_t)
2854      __attribute__ ((ifunc ("resolve_memcpy")));
2855 @end smallexample
2857 In C++, the @code{ifunc} attribute takes a string that is the mangled name
2858 of the resolver function.  A C++ resolver for a non-static member function
2859 of class @code{C} should be declared to return a pointer to a non-member
2860 function taking pointer to @code{C} as the first argument, followed by
2861 the same arguments as of the implementation function.  G++ checks
2862 the signatures of the two functions and issues
2863 a @option{-Wattribute-alias} warning for mismatches.  To suppress a warning
2864 for the necessary cast from a pointer to the implementation member function
2865 to the type of the corresponding non-member function use
2866 the @option{-Wno-pmf-conversions} option.  For example:
2868 @smallexample
2869 class S
2871 private:
2872   int debug_impl (int);
2873   int optimized_impl (int);
2875   typedef int Func (S*, int);
2877   static Func* resolver ();
2878 public:
2880   int interface (int);
2883 int S::debug_impl (int) @{ /* @r{@dots{}} */ @}
2884 int S::optimized_impl (int) @{ /* @r{@dots{}} */ @}
2886 S::Func* S::resolver ()
2888   int (S::*pimpl) (int)
2889     = getenv ("DEBUG") ? &S::debug_impl : &S::optimized_impl;
2891   // Cast triggers -Wno-pmf-conversions.
2892   return reinterpret_cast<Func*>(pimpl);
2895 int S::interface (int) __attribute__ ((ifunc ("_ZN1S8resolverEv")));
2896 @end smallexample
2898 Indirect functions cannot be weak.  Binutils version 2.20.1 or higher
2899 and GNU C Library version 2.11.1 are required to use this feature.
2901 @item interrupt
2902 @itemx interrupt_handler
2903 Many GCC back ends support attributes to indicate that a function is
2904 an interrupt handler, which tells the compiler to generate function
2905 entry and exit sequences that differ from those from regular
2906 functions.  The exact syntax and behavior are target-specific;
2907 refer to the following subsections for details.
2909 @item leaf
2910 @cindex @code{leaf} function attribute
2911 Calls to external functions with this attribute must return to the
2912 current compilation unit only by return or by exception handling.  In
2913 particular, a leaf function is not allowed to invoke callback functions
2914 passed to it from the current compilation unit, directly call functions
2915 exported by the unit, or @code{longjmp} into the unit.  Leaf functions
2916 might still call functions from other compilation units and thus they
2917 are not necessarily leaf in the sense that they contain no function
2918 calls at all.
2920 The attribute is intended for library functions to improve dataflow
2921 analysis.  The compiler takes the hint that any data not escaping the
2922 current compilation unit cannot be used or modified by the leaf
2923 function.  For example, the @code{sin} function is a leaf function, but
2924 @code{qsort} is not.
2926 Note that leaf functions might indirectly run a signal handler defined
2927 in the current compilation unit that uses static variables.  Similarly,
2928 when lazy symbol resolution is in effect, leaf functions might invoke
2929 indirect functions whose resolver function or implementation function is
2930 defined in the current compilation unit and uses static variables.  There
2931 is no standard-compliant way to write such a signal handler, resolver
2932 function, or implementation function, and the best that you can do is to
2933 remove the @code{leaf} attribute or mark all such static variables
2934 @code{volatile}.  Lastly, for ELF-based systems that support symbol
2935 interposition, care should be taken that functions defined in the
2936 current compilation unit do not unexpectedly interpose other symbols
2937 based on the defined standards mode and defined feature test macros;
2938 otherwise an inadvertent callback would be added.
2940 The attribute has no effect on functions defined within the current
2941 compilation unit.  This is to allow easy merging of multiple compilation
2942 units into one, for example, by using the link-time optimization.  For
2943 this reason the attribute is not allowed on types to annotate indirect
2944 calls.
2946 @item malloc
2947 @cindex @code{malloc} function attribute
2948 @cindex functions that behave like malloc
2949 This tells the compiler that a function is @code{malloc}-like, i.e.,
2950 that the pointer @var{P} returned by the function cannot alias any
2951 other pointer valid when the function returns, and moreover no
2952 pointers to valid objects occur in any storage addressed by @var{P}.
2954 Using this attribute can improve optimization.  Compiler predicts
2955 that a function with the attribute returns non-null in most cases.
2956 Functions like
2957 @code{malloc} and @code{calloc} have this property because they return
2958 a pointer to uninitialized or zeroed-out storage.  However, functions
2959 like @code{realloc} do not have this property, as they can return a
2960 pointer to storage containing pointers.
2962 @item no_icf
2963 @cindex @code{no_icf} function attribute
2964 This function attribute prevents a functions from being merged with another
2965 semantically equivalent function.
2967 @item no_instrument_function
2968 @cindex @code{no_instrument_function} function attribute
2969 @opindex finstrument-functions
2970 If @option{-finstrument-functions} is given, profiling function calls are
2971 generated at entry and exit of most user-compiled functions.
2972 Functions with this attribute are not so instrumented.
2974 @item no_profile_instrument_function
2975 @cindex @code{no_profile_instrument_function} function attribute
2976 The @code{no_profile_instrument_function} attribute on functions is used
2977 to inform the compiler that it should not process any profile feedback based
2978 optimization code instrumentation.
2980 @item no_reorder
2981 @cindex @code{no_reorder} function attribute
2982 Do not reorder functions or variables marked @code{no_reorder}
2983 against each other or top level assembler statements the executable.
2984 The actual order in the program will depend on the linker command
2985 line. Static variables marked like this are also not removed.
2986 This has a similar effect
2987 as the @option{-fno-toplevel-reorder} option, but only applies to the
2988 marked symbols.
2990 @item no_sanitize ("@var{sanitize_option}")
2991 @cindex @code{no_sanitize} function attribute
2992 The @code{no_sanitize} attribute on functions is used
2993 to inform the compiler that it should not do sanitization of all options
2994 mentioned in @var{sanitize_option}.  A list of values acceptable by
2995 @option{-fsanitize} option can be provided.
2997 @smallexample
2998 void __attribute__ ((no_sanitize ("alignment", "object-size")))
2999 f () @{ /* @r{Do something.} */; @}
3000 void __attribute__ ((no_sanitize ("alignment,object-size")))
3001 g () @{ /* @r{Do something.} */; @}
3002 @end smallexample
3004 @item no_sanitize_address
3005 @itemx no_address_safety_analysis
3006 @cindex @code{no_sanitize_address} function attribute
3007 The @code{no_sanitize_address} attribute on functions is used
3008 to inform the compiler that it should not instrument memory accesses
3009 in the function when compiling with the @option{-fsanitize=address} option.
3010 The @code{no_address_safety_analysis} is a deprecated alias of the
3011 @code{no_sanitize_address} attribute, new code should use
3012 @code{no_sanitize_address}.
3014 @item no_sanitize_thread
3015 @cindex @code{no_sanitize_thread} function attribute
3016 The @code{no_sanitize_thread} attribute on functions is used
3017 to inform the compiler that it should not instrument memory accesses
3018 in the function when compiling with the @option{-fsanitize=thread} option.
3020 @item no_sanitize_undefined
3021 @cindex @code{no_sanitize_undefined} function attribute
3022 The @code{no_sanitize_undefined} attribute on functions is used
3023 to inform the compiler that it should not check for undefined behavior
3024 in the function when compiling with the @option{-fsanitize=undefined} option.
3026 @item no_split_stack
3027 @cindex @code{no_split_stack} function attribute
3028 @opindex fsplit-stack
3029 If @option{-fsplit-stack} is given, functions have a small
3030 prologue which decides whether to split the stack.  Functions with the
3031 @code{no_split_stack} attribute do not have that prologue, and thus
3032 may run with only a small amount of stack space available.
3034 @item no_stack_limit
3035 @cindex @code{no_stack_limit} function attribute
3036 This attribute locally overrides the @option{-fstack-limit-register}
3037 and @option{-fstack-limit-symbol} command-line options; it has the effect
3038 of disabling stack limit checking in the function it applies to.
3040 @item noclone
3041 @cindex @code{noclone} function attribute
3042 This function attribute prevents a function from being considered for
3043 cloning---a mechanism that produces specialized copies of functions
3044 and which is (currently) performed by interprocedural constant
3045 propagation.
3047 @item noinline
3048 @cindex @code{noinline} function attribute
3049 This function attribute prevents a function from being considered for
3050 inlining.
3051 @c Don't enumerate the optimizations by name here; we try to be
3052 @c future-compatible with this mechanism.
3053 If the function does not have side effects, there are optimizations
3054 other than inlining that cause function calls to be optimized away,
3055 although the function call is live.  To keep such calls from being
3056 optimized away, put
3057 @smallexample
3058 asm ("");
3059 @end smallexample
3061 @noindent
3062 (@pxref{Extended Asm}) in the called function, to serve as a special
3063 side effect.
3065 @item noipa
3066 @cindex @code{noipa} function attribute
3067 Disable interprocedural optimizations between the function with this
3068 attribute and its callers, as if the body of the function is not available
3069 when optimizing callers and the callers are unavailable when optimizing
3070 the body.  This attribute implies @code{noinline}, @code{noclone} and
3071 @code{no_icf} attributes.    However, this attribute is not equivalent
3072 to a combination of other attributes, because its purpose is to suppress
3073 existing and future optimizations employing interprocedural analysis,
3074 including those that do not have an attribute suitable for disabling
3075 them individually.  This attribute is supported mainly for the purpose
3076 of testing the compiler.
3078 @item nonnull
3079 @itemx nonnull (@var{arg-index}, @dots{})
3080 @cindex @code{nonnull} function attribute
3081 @cindex functions with non-null pointer arguments
3082 The @code{nonnull} attribute specifies that some function parameters should
3083 be non-null pointers.  For instance, the declaration:
3085 @smallexample
3086 extern void *
3087 my_memcpy (void *dest, const void *src, size_t len)
3088         __attribute__((nonnull (1, 2)));
3089 @end smallexample
3091 @noindent
3092 causes the compiler to check that, in calls to @code{my_memcpy},
3093 arguments @var{dest} and @var{src} are non-null.  If the compiler
3094 determines that a null pointer is passed in an argument slot marked
3095 as non-null, and the @option{-Wnonnull} option is enabled, a warning
3096 is issued.  @xref{Warning Options}.  Unless disabled by
3097 the @option{-fno-delete-null-pointer-checks} option the compiler may
3098 also perform optimizations based on the knowledge that certain function
3099 arguments cannot be null. In addition,
3100 the @option{-fisolate-erroneous-paths-attribute} option can be specified
3101 to have GCC transform calls with null arguments to non-null functions
3102 into traps. @xref{Optimize Options}.
3104 If no @var{arg-index} is given to the @code{nonnull} attribute,
3105 all pointer arguments are marked as non-null.  To illustrate, the
3106 following declaration is equivalent to the previous example:
3108 @smallexample
3109 extern void *
3110 my_memcpy (void *dest, const void *src, size_t len)
3111         __attribute__((nonnull));
3112 @end smallexample
3114 @item noplt
3115 @cindex @code{noplt} function attribute
3116 The @code{noplt} attribute is the counterpart to option @option{-fno-plt}.
3117 Calls to functions marked with this attribute in position-independent code
3118 do not use the PLT.
3120 @smallexample
3121 @group
3122 /* Externally defined function foo.  */
3123 int foo () __attribute__ ((noplt));
3126 main (/* @r{@dots{}} */)
3128   /* @r{@dots{}} */
3129   foo ();
3130   /* @r{@dots{}} */
3132 @end group
3133 @end smallexample
3135 The @code{noplt} attribute on function @code{foo}
3136 tells the compiler to assume that
3137 the function @code{foo} is externally defined and that the call to
3138 @code{foo} must avoid the PLT
3139 in position-independent code.
3141 In position-dependent code, a few targets also convert calls to
3142 functions that are marked to not use the PLT to use the GOT instead.
3144 @item noreturn
3145 @cindex @code{noreturn} function attribute
3146 @cindex functions that never return
3147 A few standard library functions, such as @code{abort} and @code{exit},
3148 cannot return.  GCC knows this automatically.  Some programs define
3149 their own functions that never return.  You can declare them
3150 @code{noreturn} to tell the compiler this fact.  For example,
3152 @smallexample
3153 @group
3154 void fatal () __attribute__ ((noreturn));
3156 void
3157 fatal (/* @r{@dots{}} */)
3159   /* @r{@dots{}} */ /* @r{Print error message.} */ /* @r{@dots{}} */
3160   exit (1);
3162 @end group
3163 @end smallexample
3165 The @code{noreturn} keyword tells the compiler to assume that
3166 @code{fatal} cannot return.  It can then optimize without regard to what
3167 would happen if @code{fatal} ever did return.  This makes slightly
3168 better code.  More importantly, it helps avoid spurious warnings of
3169 uninitialized variables.
3171 The @code{noreturn} keyword does not affect the exceptional path when that
3172 applies: a @code{noreturn}-marked function may still return to the caller
3173 by throwing an exception or calling @code{longjmp}.
3175 In order to preserve backtraces, GCC will never turn calls to
3176 @code{noreturn} functions into tail calls.
3178 Do not assume that registers saved by the calling function are
3179 restored before calling the @code{noreturn} function.
3181 It does not make sense for a @code{noreturn} function to have a return
3182 type other than @code{void}.
3184 @item nothrow
3185 @cindex @code{nothrow} function attribute
3186 The @code{nothrow} attribute is used to inform the compiler that a
3187 function cannot throw an exception.  For example, most functions in
3188 the standard C library can be guaranteed not to throw an exception
3189 with the notable exceptions of @code{qsort} and @code{bsearch} that
3190 take function pointer arguments.
3192 @item optimize
3193 @cindex @code{optimize} function attribute
3194 The @code{optimize} attribute is used to specify that a function is to
3195 be compiled with different optimization options than specified on the
3196 command line.  Arguments can either be numbers or strings.  Numbers
3197 are assumed to be an optimization level.  Strings that begin with
3198 @code{O} are assumed to be an optimization option, while other options
3199 are assumed to be used with a @code{-f} prefix.  You can also use the
3200 @samp{#pragma GCC optimize} pragma to set the optimization options
3201 that affect more than one function.
3202 @xref{Function Specific Option Pragmas}, for details about the
3203 @samp{#pragma GCC optimize} pragma.
3205 This attribute should be used for debugging purposes only.  It is not
3206 suitable in production code.
3208 @item patchable_function_entry
3209 @cindex @code{patchable_function_entry} function attribute
3210 @cindex extra NOP instructions at the function entry point
3211 In case the target's text segment can be made writable at run time by
3212 any means, padding the function entry with a number of NOPs can be
3213 used to provide a universal tool for instrumentation.
3215 The @code{patchable_function_entry} function attribute can be used to
3216 change the number of NOPs to any desired value.  The two-value syntax
3217 is the same as for the command-line switch
3218 @option{-fpatchable-function-entry=N,M}, generating @var{N} NOPs, with
3219 the function entry point before the @var{M}th NOP instruction.
3220 @var{M} defaults to 0 if omitted e.g. function entry point is before
3221 the first NOP.
3223 If patchable function entries are enabled globally using the command-line
3224 option @option{-fpatchable-function-entry=N,M}, then you must disable
3225 instrumentation on all functions that are part of the instrumentation
3226 framework with the attribute @code{patchable_function_entry (0)}
3227 to prevent recursion.
3229 @item pure
3230 @cindex @code{pure} function attribute
3231 @cindex functions that have no side effects
3232 Many functions have no effects except the return value and their
3233 return value depends only on the parameters and/or global variables.
3234 Calls to such functions can be subject
3235 to common subexpression elimination and loop optimization just as an
3236 arithmetic operator would be.  These functions should be declared
3237 with the attribute @code{pure}.  For example,
3239 @smallexample
3240 int square (int) __attribute__ ((pure));
3241 @end smallexample
3243 @noindent
3244 says that the hypothetical function @code{square} is safe to call
3245 fewer times than the program says.
3247 Some common examples of pure functions are @code{strlen} or @code{memcmp}.
3248 Interesting non-pure functions are functions with infinite loops or those
3249 depending on volatile memory or other system resource, that may change between
3250 two consecutive calls (such as @code{feof} in a multithreading environment).
3252 The @code{pure} attribute imposes similar but looser restrictions on
3253 a function's defintion than the @code{const} attribute: it allows the
3254 function to read global variables.  Decorating the same function with
3255 both the @code{pure} and the @code{const} attribute is diagnosed.
3256 Because a @code{pure} function cannot have any side effects it does not
3257 make sense for such a function to return @code{void}.  Declaring such
3258 a function is diagnosed.
3260 @item returns_nonnull
3261 @cindex @code{returns_nonnull} function attribute
3262 The @code{returns_nonnull} attribute specifies that the function
3263 return value should be a non-null pointer.  For instance, the declaration:
3265 @smallexample
3266 extern void *
3267 mymalloc (size_t len) __attribute__((returns_nonnull));
3268 @end smallexample
3270 @noindent
3271 lets the compiler optimize callers based on the knowledge
3272 that the return value will never be null.
3274 @item returns_twice
3275 @cindex @code{returns_twice} function attribute
3276 @cindex functions that return more than once
3277 The @code{returns_twice} attribute tells the compiler that a function may
3278 return more than one time.  The compiler ensures that all registers
3279 are dead before calling such a function and emits a warning about
3280 the variables that may be clobbered after the second return from the
3281 function.  Examples of such functions are @code{setjmp} and @code{vfork}.
3282 The @code{longjmp}-like counterpart of such function, if any, might need
3283 to be marked with the @code{noreturn} attribute.
3285 @item section ("@var{section-name}")
3286 @cindex @code{section} function attribute
3287 @cindex functions in arbitrary sections
3288 Normally, the compiler places the code it generates in the @code{text} section.
3289 Sometimes, however, you need additional sections, or you need certain
3290 particular functions to appear in special sections.  The @code{section}
3291 attribute specifies that a function lives in a particular section.
3292 For example, the declaration:
3294 @smallexample
3295 extern void foobar (void) __attribute__ ((section ("bar")));
3296 @end smallexample
3298 @noindent
3299 puts the function @code{foobar} in the @code{bar} section.
3301 Some file formats do not support arbitrary sections so the @code{section}
3302 attribute is not available on all platforms.
3303 If you need to map the entire contents of a module to a particular
3304 section, consider using the facilities of the linker instead.
3306 @item sentinel
3307 @cindex @code{sentinel} function attribute
3308 This function attribute ensures that a parameter in a function call is
3309 an explicit @code{NULL}.  The attribute is only valid on variadic
3310 functions.  By default, the sentinel is located at position zero, the
3311 last parameter of the function call.  If an optional integer position
3312 argument P is supplied to the attribute, the sentinel must be located at
3313 position P counting backwards from the end of the argument list.
3315 @smallexample
3316 __attribute__ ((sentinel))
3317 is equivalent to
3318 __attribute__ ((sentinel(0)))
3319 @end smallexample
3321 The attribute is automatically set with a position of 0 for the built-in
3322 functions @code{execl} and @code{execlp}.  The built-in function
3323 @code{execle} has the attribute set with a position of 1.
3325 A valid @code{NULL} in this context is defined as zero with any pointer
3326 type.  If your system defines the @code{NULL} macro with an integer type
3327 then you need to add an explicit cast.  GCC replaces @code{stddef.h}
3328 with a copy that redefines NULL appropriately.
3330 The warnings for missing or incorrect sentinels are enabled with
3331 @option{-Wformat}.
3333 @item simd
3334 @itemx simd("@var{mask}")
3335 @cindex @code{simd} function attribute
3336 This attribute enables creation of one or more function versions that
3337 can process multiple arguments using SIMD instructions from a
3338 single invocation.  Specifying this attribute allows compiler to
3339 assume that such versions are available at link time (provided
3340 in the same or another translation unit).  Generated versions are
3341 target-dependent and described in the corresponding Vector ABI document.  For
3342 x86_64 target this document can be found
3343 @w{@uref{https://sourceware.org/glibc/wiki/libmvec?action=AttachFile&do=view&target=VectorABI.txt,here}}.
3345 The optional argument @var{mask} may have the value
3346 @code{notinbranch} or @code{inbranch},
3347 and instructs the compiler to generate non-masked or masked
3348 clones correspondingly. By default, all clones are generated.
3350 If the attribute is specified and @code{#pragma omp declare simd} is
3351 present on a declaration and the @option{-fopenmp} or @option{-fopenmp-simd}
3352 switch is specified, then the attribute is ignored.
3354 @item stack_protect
3355 @cindex @code{stack_protect} function attribute
3356 This attribute adds stack protection code to the function if 
3357 flags @option{-fstack-protector}, @option{-fstack-protector-strong}
3358 or @option{-fstack-protector-explicit} are set.
3360 @item target (@var{options})
3361 @cindex @code{target} function attribute
3362 Multiple target back ends implement the @code{target} attribute
3363 to specify that a function is to
3364 be compiled with different target options than specified on the
3365 command line.  This can be used for instance to have functions
3366 compiled with a different ISA (instruction set architecture) than the
3367 default.  You can also use the @samp{#pragma GCC target} pragma to set
3368 more than one function to be compiled with specific target options.
3369 @xref{Function Specific Option Pragmas}, for details about the
3370 @samp{#pragma GCC target} pragma.
3372 For instance, on an x86, you could declare one function with the
3373 @code{target("sse4.1,arch=core2")} attribute and another with
3374 @code{target("sse4a,arch=amdfam10")}.  This is equivalent to
3375 compiling the first function with @option{-msse4.1} and
3376 @option{-march=core2} options, and the second function with
3377 @option{-msse4a} and @option{-march=amdfam10} options.  It is up to you
3378 to make sure that a function is only invoked on a machine that
3379 supports the particular ISA it is compiled for (for example by using
3380 @code{cpuid} on x86 to determine what feature bits and architecture
3381 family are used).
3383 @smallexample
3384 int core2_func (void) __attribute__ ((__target__ ("arch=core2")));
3385 int sse3_func (void) __attribute__ ((__target__ ("sse3")));
3386 @end smallexample
3388 You can either use multiple
3389 strings separated by commas to specify multiple options,
3390 or separate the options with a comma (@samp{,}) within a single string.
3392 The options supported are specific to each target; refer to @ref{x86
3393 Function Attributes}, @ref{PowerPC Function Attributes},
3394 @ref{ARM Function Attributes}, @ref{AArch64 Function Attributes},
3395 @ref{Nios II Function Attributes}, and @ref{S/390 Function Attributes}
3396 for details.
3398 @item target_clones (@var{options})
3399 @cindex @code{target_clones} function attribute
3400 The @code{target_clones} attribute is used to specify that a function
3401 be cloned into multiple versions compiled with different target options
3402 than specified on the command line.  The supported options and restrictions
3403 are the same as for @code{target} attribute.
3405 For instance, on an x86, you could compile a function with
3406 @code{target_clones("sse4.1,avx")}.  GCC creates two function clones,
3407 one compiled with @option{-msse4.1} and another with @option{-mavx}.
3409 On a PowerPC, you can compile a function with
3410 @code{target_clones("cpu=power9,default")}.  GCC will create two
3411 function clones, one compiled with @option{-mcpu=power9} and another
3412 with the default options.  GCC must be configured to use GLIBC 2.23 or
3413 newer in order to use the @code{target_clones} attribute.
3415 It also creates a resolver function (see
3416 the @code{ifunc} attribute above) that dynamically selects a clone
3417 suitable for current architecture.  The resolver is created only if there
3418 is a usage of a function with @code{target_clones} attribute.
3420 @item unused
3421 @cindex @code{unused} function attribute
3422 This attribute, attached to a function, means that the function is meant
3423 to be possibly unused.  GCC does not produce a warning for this
3424 function.
3426 @item used
3427 @cindex @code{used} function attribute
3428 This attribute, attached to a function, means that code must be emitted
3429 for the function even if it appears that the function is not referenced.
3430 This is useful, for example, when the function is referenced only in
3431 inline assembly.
3433 When applied to a member function of a C++ class template, the
3434 attribute also means that the function is instantiated if the
3435 class itself is instantiated.
3437 @item visibility ("@var{visibility_type}")
3438 @cindex @code{visibility} function attribute
3439 This attribute affects the linkage of the declaration to which it is attached.
3440 It can be applied to variables (@pxref{Common Variable Attributes}) and types
3441 (@pxref{Common Type Attributes}) as well as functions.
3443 There are four supported @var{visibility_type} values: default,
3444 hidden, protected or internal visibility.
3446 @smallexample
3447 void __attribute__ ((visibility ("protected")))
3448 f () @{ /* @r{Do something.} */; @}
3449 int i __attribute__ ((visibility ("hidden")));
3450 @end smallexample
3452 The possible values of @var{visibility_type} correspond to the
3453 visibility settings in the ELF gABI.
3455 @table @code
3456 @c keep this list of visibilities in alphabetical order.
3458 @item default
3459 Default visibility is the normal case for the object file format.
3460 This value is available for the visibility attribute to override other
3461 options that may change the assumed visibility of entities.
3463 On ELF, default visibility means that the declaration is visible to other
3464 modules and, in shared libraries, means that the declared entity may be
3465 overridden.
3467 On Darwin, default visibility means that the declaration is visible to
3468 other modules.
3470 Default visibility corresponds to ``external linkage'' in the language.
3472 @item hidden
3473 Hidden visibility indicates that the entity declared has a new
3474 form of linkage, which we call ``hidden linkage''.  Two
3475 declarations of an object with hidden linkage refer to the same object
3476 if they are in the same shared object.
3478 @item internal
3479 Internal visibility is like hidden visibility, but with additional
3480 processor specific semantics.  Unless otherwise specified by the
3481 psABI, GCC defines internal visibility to mean that a function is
3482 @emph{never} called from another module.  Compare this with hidden
3483 functions which, while they cannot be referenced directly by other
3484 modules, can be referenced indirectly via function pointers.  By
3485 indicating that a function cannot be called from outside the module,
3486 GCC may for instance omit the load of a PIC register since it is known
3487 that the calling function loaded the correct value.
3489 @item protected
3490 Protected visibility is like default visibility except that it
3491 indicates that references within the defining module bind to the
3492 definition in that module.  That is, the declared entity cannot be
3493 overridden by another module.
3495 @end table
3497 All visibilities are supported on many, but not all, ELF targets
3498 (supported when the assembler supports the @samp{.visibility}
3499 pseudo-op).  Default visibility is supported everywhere.  Hidden
3500 visibility is supported on Darwin targets.
3502 The visibility attribute should be applied only to declarations that
3503 would otherwise have external linkage.  The attribute should be applied
3504 consistently, so that the same entity should not be declared with
3505 different settings of the attribute.
3507 In C++, the visibility attribute applies to types as well as functions
3508 and objects, because in C++ types have linkage.  A class must not have
3509 greater visibility than its non-static data member types and bases,
3510 and class members default to the visibility of their class.  Also, a
3511 declaration without explicit visibility is limited to the visibility
3512 of its type.
3514 In C++, you can mark member functions and static member variables of a
3515 class with the visibility attribute.  This is useful if you know a
3516 particular method or static member variable should only be used from
3517 one shared object; then you can mark it hidden while the rest of the
3518 class has default visibility.  Care must be taken to avoid breaking
3519 the One Definition Rule; for example, it is usually not useful to mark
3520 an inline method as hidden without marking the whole class as hidden.
3522 A C++ namespace declaration can also have the visibility attribute.
3524 @smallexample
3525 namespace nspace1 __attribute__ ((visibility ("protected")))
3526 @{ /* @r{Do something.} */; @}
3527 @end smallexample
3529 This attribute applies only to the particular namespace body, not to
3530 other definitions of the same namespace; it is equivalent to using
3531 @samp{#pragma GCC visibility} before and after the namespace
3532 definition (@pxref{Visibility Pragmas}).
3534 In C++, if a template argument has limited visibility, this
3535 restriction is implicitly propagated to the template instantiation.
3536 Otherwise, template instantiations and specializations default to the
3537 visibility of their template.
3539 If both the template and enclosing class have explicit visibility, the
3540 visibility from the template is used.
3542 @item warn_unused_result
3543 @cindex @code{warn_unused_result} function attribute
3544 The @code{warn_unused_result} attribute causes a warning to be emitted
3545 if a caller of the function with this attribute does not use its
3546 return value.  This is useful for functions where not checking
3547 the result is either a security problem or always a bug, such as
3548 @code{realloc}.
3550 @smallexample
3551 int fn () __attribute__ ((warn_unused_result));
3552 int foo ()
3554   if (fn () < 0) return -1;
3555   fn ();
3556   return 0;
3558 @end smallexample
3560 @noindent
3561 results in warning on line 5.
3563 @item weak
3564 @cindex @code{weak} function attribute
3565 The @code{weak} attribute causes the declaration to be emitted as a weak
3566 symbol rather than a global.  This is primarily useful in defining
3567 library functions that can be overridden in user code, though it can
3568 also be used with non-function declarations.  Weak symbols are supported
3569 for ELF targets, and also for a.out targets when using the GNU assembler
3570 and linker.
3572 @item weakref
3573 @itemx weakref ("@var{target}")
3574 @cindex @code{weakref} function attribute
3575 The @code{weakref} attribute marks a declaration as a weak reference.
3576 Without arguments, it should be accompanied by an @code{alias} attribute
3577 naming the target symbol.  Optionally, the @var{target} may be given as
3578 an argument to @code{weakref} itself.  In either case, @code{weakref}
3579 implicitly marks the declaration as @code{weak}.  Without a
3580 @var{target}, given as an argument to @code{weakref} or to @code{alias},
3581 @code{weakref} is equivalent to @code{weak}.
3583 @smallexample
3584 static int x() __attribute__ ((weakref ("y")));
3585 /* is equivalent to... */
3586 static int x() __attribute__ ((weak, weakref, alias ("y")));
3587 /* and to... */
3588 static int x() __attribute__ ((weakref));
3589 static int x() __attribute__ ((alias ("y")));
3590 @end smallexample
3592 A weak reference is an alias that does not by itself require a
3593 definition to be given for the target symbol.  If the target symbol is
3594 only referenced through weak references, then it becomes a @code{weak}
3595 undefined symbol.  If it is directly referenced, however, then such
3596 strong references prevail, and a definition is required for the
3597 symbol, not necessarily in the same translation unit.
3599 The effect is equivalent to moving all references to the alias to a
3600 separate translation unit, renaming the alias to the aliased symbol,
3601 declaring it as weak, compiling the two separate translation units and
3602 performing a reloadable link on them.
3604 At present, a declaration to which @code{weakref} is attached can
3605 only be @code{static}.
3608 @end table
3610 @c This is the end of the target-independent attribute table
3612 @node AArch64 Function Attributes
3613 @subsection AArch64 Function Attributes
3615 The following target-specific function attributes are available for the
3616 AArch64 target.  For the most part, these options mirror the behavior of
3617 similar command-line options (@pxref{AArch64 Options}), but on a
3618 per-function basis.
3620 @table @code
3621 @item general-regs-only
3622 @cindex @code{general-regs-only} function attribute, AArch64
3623 Indicates that no floating-point or Advanced SIMD registers should be
3624 used when generating code for this function.  If the function explicitly
3625 uses floating-point code, then the compiler gives an error.  This is
3626 the same behavior as that of the command-line option
3627 @option{-mgeneral-regs-only}.
3629 @item fix-cortex-a53-835769
3630 @cindex @code{fix-cortex-a53-835769} function attribute, AArch64
3631 Indicates that the workaround for the Cortex-A53 erratum 835769 should be
3632 applied to this function.  To explicitly disable the workaround for this
3633 function specify the negated form: @code{no-fix-cortex-a53-835769}.
3634 This corresponds to the behavior of the command line options
3635 @option{-mfix-cortex-a53-835769} and @option{-mno-fix-cortex-a53-835769}.
3637 @item cmodel=
3638 @cindex @code{cmodel=} function attribute, AArch64
3639 Indicates that code should be generated for a particular code model for
3640 this function.  The behavior and permissible arguments are the same as
3641 for the command line option @option{-mcmodel=}.
3643 @item strict-align
3644 @itemx no-strict-align
3645 @cindex @code{strict-align} function attribute, AArch64
3646 @code{strict-align} indicates that the compiler should not assume that unaligned
3647 memory references are handled by the system.  To allow the compiler to assume
3648 that aligned memory references are handled by the system, the inverse attribute
3649 @code{no-strict-align} can be specified.  The behavior is same as for the
3650 command-line option @option{-mstrict-align} and @option{-mno-strict-align}.
3652 @item omit-leaf-frame-pointer
3653 @cindex @code{omit-leaf-frame-pointer} function attribute, AArch64
3654 Indicates that the frame pointer should be omitted for a leaf function call.
3655 To keep the frame pointer, the inverse attribute
3656 @code{no-omit-leaf-frame-pointer} can be specified.  These attributes have
3657 the same behavior as the command-line options @option{-momit-leaf-frame-pointer}
3658 and @option{-mno-omit-leaf-frame-pointer}.
3660 @item tls-dialect=
3661 @cindex @code{tls-dialect=} function attribute, AArch64
3662 Specifies the TLS dialect to use for this function.  The behavior and
3663 permissible arguments are the same as for the command-line option
3664 @option{-mtls-dialect=}.
3666 @item arch=
3667 @cindex @code{arch=} function attribute, AArch64
3668 Specifies the architecture version and architectural extensions to use
3669 for this function.  The behavior and permissible arguments are the same as
3670 for the @option{-march=} command-line option.
3672 @item tune=
3673 @cindex @code{tune=} function attribute, AArch64
3674 Specifies the core for which to tune the performance of this function.
3675 The behavior and permissible arguments are the same as for the @option{-mtune=}
3676 command-line option.
3678 @item cpu=
3679 @cindex @code{cpu=} function attribute, AArch64
3680 Specifies the core for which to tune the performance of this function and also
3681 whose architectural features to use.  The behavior and valid arguments are the
3682 same as for the @option{-mcpu=} command-line option.
3684 @item sign-return-address
3685 @cindex @code{sign-return-address} function attribute, AArch64
3686 Select the function scope on which return address signing will be applied.  The
3687 behavior and permissible arguments are the same as for the command-line option
3688 @option{-msign-return-address=}.  The default value is @code{none}.
3690 @end table
3692 The above target attributes can be specified as follows:
3694 @smallexample
3695 __attribute__((target("@var{attr-string}")))
3697 f (int a)
3699   return a + 5;
3701 @end smallexample
3703 where @code{@var{attr-string}} is one of the attribute strings specified above.
3705 Additionally, the architectural extension string may be specified on its
3706 own.  This can be used to turn on and off particular architectural extensions
3707 without having to specify a particular architecture version or core.  Example:
3709 @smallexample
3710 __attribute__((target("+crc+nocrypto")))
3712 foo (int a)
3714   return a + 5;
3716 @end smallexample
3718 In this example @code{target("+crc+nocrypto")} enables the @code{crc}
3719 extension and disables the @code{crypto} extension for the function @code{foo}
3720 without modifying an existing @option{-march=} or @option{-mcpu} option.
3722 Multiple target function attributes can be specified by separating them with
3723 a comma.  For example:
3724 @smallexample
3725 __attribute__((target("arch=armv8-a+crc+crypto,tune=cortex-a53")))
3727 foo (int a)
3729   return a + 5;
3731 @end smallexample
3733 is valid and compiles function @code{foo} for ARMv8-A with @code{crc}
3734 and @code{crypto} extensions and tunes it for @code{cortex-a53}.
3736 @subsubsection Inlining rules
3737 Specifying target attributes on individual functions or performing link-time
3738 optimization across translation units compiled with different target options
3739 can affect function inlining rules:
3741 In particular, a caller function can inline a callee function only if the
3742 architectural features available to the callee are a subset of the features
3743 available to the caller.
3744 For example: A function @code{foo} compiled with @option{-march=armv8-a+crc},
3745 or tagged with the equivalent @code{arch=armv8-a+crc} attribute,
3746 can inline a function @code{bar} compiled with @option{-march=armv8-a+nocrc}
3747 because the all the architectural features that function @code{bar} requires
3748 are available to function @code{foo}.  Conversely, function @code{bar} cannot
3749 inline function @code{foo}.
3751 Additionally inlining a function compiled with @option{-mstrict-align} into a
3752 function compiled without @code{-mstrict-align} is not allowed.
3753 However, inlining a function compiled without @option{-mstrict-align} into a
3754 function compiled with @option{-mstrict-align} is allowed.
3756 Note that CPU tuning options and attributes such as the @option{-mcpu=},
3757 @option{-mtune=} do not inhibit inlining unless the CPU specified by the
3758 @option{-mcpu=} option or the @code{cpu=} attribute conflicts with the
3759 architectural feature rules specified above.
3761 @node ARC Function Attributes
3762 @subsection ARC Function Attributes
3764 These function attributes are supported by the ARC back end:
3766 @table @code
3767 @item interrupt
3768 @cindex @code{interrupt} function attribute, ARC
3769 Use this attribute to indicate
3770 that the specified function is an interrupt handler.  The compiler generates
3771 function entry and exit sequences suitable for use in an interrupt handler
3772 when this attribute is present.
3774 On the ARC, you must specify the kind of interrupt to be handled
3775 in a parameter to the interrupt attribute like this:
3777 @smallexample
3778 void f () __attribute__ ((interrupt ("ilink1")));
3779 @end smallexample
3781 Permissible values for this parameter are: @w{@code{ilink1}} and
3782 @w{@code{ilink2}}.
3784 @item long_call
3785 @itemx medium_call
3786 @itemx short_call
3787 @cindex @code{long_call} function attribute, ARC
3788 @cindex @code{medium_call} function attribute, ARC
3789 @cindex @code{short_call} function attribute, ARC
3790 @cindex indirect calls, ARC
3791 These attributes specify how a particular function is called.
3792 These attributes override the
3793 @option{-mlong-calls} and @option{-mmedium-calls} (@pxref{ARC Options})
3794 command-line switches and @code{#pragma long_calls} settings.
3796 For ARC, a function marked with the @code{long_call} attribute is
3797 always called using register-indirect jump-and-link instructions,
3798 thereby enabling the called function to be placed anywhere within the
3799 32-bit address space.  A function marked with the @code{medium_call}
3800 attribute will always be close enough to be called with an unconditional
3801 branch-and-link instruction, which has a 25-bit offset from
3802 the call site.  A function marked with the @code{short_call}
3803 attribute will always be close enough to be called with a conditional
3804 branch-and-link instruction, which has a 21-bit offset from
3805 the call site.
3807 @item jli_always
3808 @cindex @code{jli_always} function attribute, ARC
3809 Forces a particular function to be called using @code{jli}
3810 instruction.  The @code{jli} instruction makes use of a table stored
3811 into @code{.jlitab} section, which holds the location of the functions
3812 which are addressed using this instruction.
3814 @item jli_fixed
3815 @cindex @code{jli_fixed} function attribute, ARC
3816 Identical like the above one, but the location of the function in the
3817 @code{jli} table is known and given as an attribute parameter.
3819 @item secure_call
3820 @cindex @code{secure_call} function attribute, ARC
3821 This attribute allows one to mark secure-code functions that are
3822 callable from normal mode.  The location of the secure call function
3823 into the @code{sjli} table needs to be passed as argument.
3825 @end table
3827 @node ARM Function Attributes
3828 @subsection ARM Function Attributes
3830 These function attributes are supported for ARM targets:
3832 @table @code
3833 @item interrupt
3834 @cindex @code{interrupt} function attribute, ARM
3835 Use this attribute to indicate
3836 that the specified function is an interrupt handler.  The compiler generates
3837 function entry and exit sequences suitable for use in an interrupt handler
3838 when this attribute is present.
3840 You can specify the kind of interrupt to be handled by
3841 adding an optional parameter to the interrupt attribute like this:
3843 @smallexample
3844 void f () __attribute__ ((interrupt ("IRQ")));
3845 @end smallexample
3847 @noindent
3848 Permissible values for this parameter are: @code{IRQ}, @code{FIQ},
3849 @code{SWI}, @code{ABORT} and @code{UNDEF}.
3851 On ARMv7-M the interrupt type is ignored, and the attribute means the function
3852 may be called with a word-aligned stack pointer.
3854 @item isr
3855 @cindex @code{isr} function attribute, ARM
3856 Use this attribute on ARM to write Interrupt Service Routines. This is an
3857 alias to the @code{interrupt} attribute above.
3859 @item long_call
3860 @itemx short_call
3861 @cindex @code{long_call} function attribute, ARM
3862 @cindex @code{short_call} function attribute, ARM
3863 @cindex indirect calls, ARM
3864 These attributes specify how a particular function is called.
3865 These attributes override the
3866 @option{-mlong-calls} (@pxref{ARM Options})
3867 command-line switch and @code{#pragma long_calls} settings.  For ARM, the
3868 @code{long_call} attribute indicates that the function might be far
3869 away from the call site and require a different (more expensive)
3870 calling sequence.   The @code{short_call} attribute always places
3871 the offset to the function from the call site into the @samp{BL}
3872 instruction directly.
3874 @item naked
3875 @cindex @code{naked} function attribute, ARM
3876 This attribute allows the compiler to construct the
3877 requisite function declaration, while allowing the body of the
3878 function to be assembly code. The specified function will not have
3879 prologue/epilogue sequences generated by the compiler. Only basic
3880 @code{asm} statements can safely be included in naked functions
3881 (@pxref{Basic Asm}). While using extended @code{asm} or a mixture of
3882 basic @code{asm} and C code may appear to work, they cannot be
3883 depended upon to work reliably and are not supported.
3885 @item pcs
3886 @cindex @code{pcs} function attribute, ARM
3888 The @code{pcs} attribute can be used to control the calling convention
3889 used for a function on ARM.  The attribute takes an argument that specifies
3890 the calling convention to use.
3892 When compiling using the AAPCS ABI (or a variant of it) then valid
3893 values for the argument are @code{"aapcs"} and @code{"aapcs-vfp"}.  In
3894 order to use a variant other than @code{"aapcs"} then the compiler must
3895 be permitted to use the appropriate co-processor registers (i.e., the
3896 VFP registers must be available in order to use @code{"aapcs-vfp"}).
3897 For example,
3899 @smallexample
3900 /* Argument passed in r0, and result returned in r0+r1.  */
3901 double f2d (float) __attribute__((pcs("aapcs")));
3902 @end smallexample
3904 Variadic functions always use the @code{"aapcs"} calling convention and
3905 the compiler rejects attempts to specify an alternative.
3907 @item target (@var{options})
3908 @cindex @code{target} function attribute
3909 As discussed in @ref{Common Function Attributes}, this attribute 
3910 allows specification of target-specific compilation options.
3912 On ARM, the following options are allowed:
3914 @table @samp
3915 @item thumb
3916 @cindex @code{target("thumb")} function attribute, ARM
3917 Force code generation in the Thumb (T16/T32) ISA, depending on the
3918 architecture level.
3920 @item arm
3921 @cindex @code{target("arm")} function attribute, ARM
3922 Force code generation in the ARM (A32) ISA.
3924 Functions from different modes can be inlined in the caller's mode.
3926 @item fpu=
3927 @cindex @code{target("fpu=")} function attribute, ARM
3928 Specifies the fpu for which to tune the performance of this function.
3929 The behavior and permissible arguments are the same as for the @option{-mfpu=}
3930 command-line option.
3932 @item arch=
3933 @cindex @code{arch=} function attribute, ARM
3934 Specifies the architecture version and architectural extensions to use
3935 for this function.  The behavior and permissible arguments are the same as
3936 for the @option{-march=} command-line option.
3938 The above target attributes can be specified as follows:
3940 @smallexample
3941 __attribute__((target("arch=armv8-a+crc")))
3943 f (int a)
3945   return a + 5;
3947 @end smallexample
3949 Additionally, the architectural extension string may be specified on its
3950 own.  This can be used to turn on and off particular architectural extensions
3951 without having to specify a particular architecture version or core.  Example:
3953 @smallexample
3954 __attribute__((target("+crc+nocrypto")))
3956 foo (int a)
3958   return a + 5;
3960 @end smallexample
3962 In this example @code{target("+crc+nocrypto")} enables the @code{crc}
3963 extension and disables the @code{crypto} extension for the function @code{foo}
3964 without modifying an existing @option{-march=} or @option{-mcpu} option.
3966 @end table
3968 @end table
3970 @node AVR Function Attributes
3971 @subsection AVR Function Attributes
3973 These function attributes are supported by the AVR back end:
3975 @table @code
3976 @item interrupt
3977 @cindex @code{interrupt} function attribute, AVR
3978 Use this attribute to indicate
3979 that the specified function is an interrupt handler.  The compiler generates
3980 function entry and exit sequences suitable for use in an interrupt handler
3981 when this attribute is present.
3983 On the AVR, the hardware globally disables interrupts when an
3984 interrupt is executed.  The first instruction of an interrupt handler
3985 declared with this attribute is a @code{SEI} instruction to
3986 re-enable interrupts.  See also the @code{signal} function attribute
3987 that does not insert a @code{SEI} instruction.  If both @code{signal} and
3988 @code{interrupt} are specified for the same function, @code{signal}
3989 is silently ignored.
3991 @item naked
3992 @cindex @code{naked} function attribute, AVR
3993 This attribute allows the compiler to construct the
3994 requisite function declaration, while allowing the body of the
3995 function to be assembly code. The specified function will not have
3996 prologue/epilogue sequences generated by the compiler. Only basic
3997 @code{asm} statements can safely be included in naked functions
3998 (@pxref{Basic Asm}). While using extended @code{asm} or a mixture of
3999 basic @code{asm} and C code may appear to work, they cannot be
4000 depended upon to work reliably and are not supported.
4002 @item no_gccisr
4003 @cindex @code{no_gccisr} function attribute, AVR
4004 Do not use @code{__gcc_isr} pseudo instructions in a function with
4005 the @code{interrupt} or @code{signal} attribute aka. interrupt
4006 service routine (ISR).
4007 Use this attribute if the preamble of the ISR prologue should always read
4008 @example
4009 push  __zero_reg__
4010 push  __tmp_reg__
4011 in    __tmp_reg__, __SREG__
4012 push  __tmp_reg__
4013 clr   __zero_reg__
4014 @end example
4015 and accordingly for the postamble of the epilogue --- no matter whether
4016 the mentioned registers are actually used in the ISR or not.
4017 Situations where you might want to use this attribute include:
4018 @itemize @bullet
4019 @item
4020 Code that (effectively) clobbers bits of @code{SREG} other than the
4021 @code{I}-flag by writing to the memory location of @code{SREG}.
4022 @item
4023 Code that uses inline assembler to jump to a different function which
4024 expects (parts of) the prologue code as outlined above to be present.
4025 @end itemize
4026 To disable @code{__gcc_isr} generation for the whole compilation unit,
4027 there is option @option{-mno-gas-isr-prologues}, @pxref{AVR Options}.
4029 @item OS_main
4030 @itemx OS_task
4031 @cindex @code{OS_main} function attribute, AVR
4032 @cindex @code{OS_task} function attribute, AVR
4033 On AVR, functions with the @code{OS_main} or @code{OS_task} attribute
4034 do not save/restore any call-saved register in their prologue/epilogue.
4036 The @code{OS_main} attribute can be used when there @emph{is
4037 guarantee} that interrupts are disabled at the time when the function
4038 is entered.  This saves resources when the stack pointer has to be
4039 changed to set up a frame for local variables.
4041 The @code{OS_task} attribute can be used when there is @emph{no
4042 guarantee} that interrupts are disabled at that time when the function
4043 is entered like for, e@.g@. task functions in a multi-threading operating
4044 system. In that case, changing the stack pointer register is
4045 guarded by save/clear/restore of the global interrupt enable flag.
4047 The differences to the @code{naked} function attribute are:
4048 @itemize @bullet
4049 @item @code{naked} functions do not have a return instruction whereas 
4050 @code{OS_main} and @code{OS_task} functions have a @code{RET} or
4051 @code{RETI} return instruction.
4052 @item @code{naked} functions do not set up a frame for local variables
4053 or a frame pointer whereas @code{OS_main} and @code{OS_task} do this
4054 as needed.
4055 @end itemize
4057 @item signal
4058 @cindex @code{signal} function attribute, AVR
4059 Use this attribute on the AVR to indicate that the specified
4060 function is an interrupt handler.  The compiler generates function
4061 entry and exit sequences suitable for use in an interrupt handler when this
4062 attribute is present.
4064 See also the @code{interrupt} function attribute. 
4066 The AVR hardware globally disables interrupts when an interrupt is executed.
4067 Interrupt handler functions defined with the @code{signal} attribute
4068 do not re-enable interrupts.  It is save to enable interrupts in a
4069 @code{signal} handler.  This ``save'' only applies to the code
4070 generated by the compiler and not to the IRQ layout of the
4071 application which is responsibility of the application.
4073 If both @code{signal} and @code{interrupt} are specified for the same
4074 function, @code{signal} is silently ignored.
4075 @end table
4077 @node Blackfin Function Attributes
4078 @subsection Blackfin Function Attributes
4080 These function attributes are supported by the Blackfin back end:
4082 @table @code
4084 @item exception_handler
4085 @cindex @code{exception_handler} function attribute
4086 @cindex exception handler functions, Blackfin
4087 Use this attribute on the Blackfin to indicate that the specified function
4088 is an exception handler.  The compiler generates function entry and
4089 exit sequences suitable for use in an exception handler when this
4090 attribute is present.
4092 @item interrupt_handler
4093 @cindex @code{interrupt_handler} function attribute, Blackfin
4094 Use this attribute to
4095 indicate that the specified function is an interrupt handler.  The compiler
4096 generates function entry and exit sequences suitable for use in an
4097 interrupt handler when this attribute is present.
4099 @item kspisusp
4100 @cindex @code{kspisusp} function attribute, Blackfin
4101 @cindex User stack pointer in interrupts on the Blackfin
4102 When used together with @code{interrupt_handler}, @code{exception_handler}
4103 or @code{nmi_handler}, code is generated to load the stack pointer
4104 from the USP register in the function prologue.
4106 @item l1_text
4107 @cindex @code{l1_text} function attribute, Blackfin
4108 This attribute specifies a function to be placed into L1 Instruction
4109 SRAM@. The function is put into a specific section named @code{.l1.text}.
4110 With @option{-mfdpic}, function calls with a such function as the callee
4111 or caller uses inlined PLT.
4113 @item l2
4114 @cindex @code{l2} function attribute, Blackfin
4115 This attribute specifies a function to be placed into L2
4116 SRAM. The function is put into a specific section named
4117 @code{.l2.text}. With @option{-mfdpic}, callers of such functions use
4118 an inlined PLT.
4120 @item longcall
4121 @itemx shortcall
4122 @cindex indirect calls, Blackfin
4123 @cindex @code{longcall} function attribute, Blackfin
4124 @cindex @code{shortcall} function attribute, Blackfin
4125 The @code{longcall} attribute
4126 indicates that the function might be far away from the call site and
4127 require a different (more expensive) calling sequence.  The
4128 @code{shortcall} attribute indicates that the function is always close
4129 enough for the shorter calling sequence to be used.  These attributes
4130 override the @option{-mlongcall} switch.
4132 @item nesting
4133 @cindex @code{nesting} function attribute, Blackfin
4134 @cindex Allow nesting in an interrupt handler on the Blackfin processor
4135 Use this attribute together with @code{interrupt_handler},
4136 @code{exception_handler} or @code{nmi_handler} to indicate that the function
4137 entry code should enable nested interrupts or exceptions.
4139 @item nmi_handler
4140 @cindex @code{nmi_handler} function attribute, Blackfin
4141 @cindex NMI handler functions on the Blackfin processor
4142 Use this attribute on the Blackfin to indicate that the specified function
4143 is an NMI handler.  The compiler generates function entry and
4144 exit sequences suitable for use in an NMI handler when this
4145 attribute is present.
4147 @item saveall
4148 @cindex @code{saveall} function attribute, Blackfin
4149 @cindex save all registers on the Blackfin
4150 Use this attribute to indicate that
4151 all registers except the stack pointer should be saved in the prologue
4152 regardless of whether they are used or not.
4153 @end table
4155 @node CR16 Function Attributes
4156 @subsection CR16 Function Attributes
4158 These function attributes are supported by the CR16 back end:
4160 @table @code
4161 @item interrupt
4162 @cindex @code{interrupt} function attribute, CR16
4163 Use this attribute to indicate
4164 that the specified function is an interrupt handler.  The compiler generates
4165 function entry and exit sequences suitable for use in an interrupt handler
4166 when this attribute is present.
4167 @end table
4169 @node C-SKY Function Attributes
4170 @subsection C-SKY Function Attributes
4172 These function attributes are supported by the C-SKY back end:
4174 @table @code
4175 @item interrupt
4176 @itemx isr
4177 @cindex @code{interrupt} function attribute, C-SKY
4178 @cindex @code{isr} function attribute, C-SKY
4179 Use these attributes to indicate that the specified function
4180 is an interrupt handler.
4181 The compiler generates function entry and exit sequences suitable for
4182 use in an interrupt handler when either of these attributes are present.
4184 Use of these options requires the @option{-mistack} command-line option
4185 to enable support for the necessary interrupt stack instructions.  They
4186 are ignored with a warning otherwise.  @xref{C-SKY Options}.
4188 @item naked
4189 @cindex @code{naked} function attribute, C-SKY
4190 This attribute allows the compiler to construct the
4191 requisite function declaration, while allowing the body of the
4192 function to be assembly code. The specified function will not have
4193 prologue/epilogue sequences generated by the compiler. Only basic
4194 @code{asm} statements can safely be included in naked functions
4195 (@pxref{Basic Asm}). While using extended @code{asm} or a mixture of
4196 basic @code{asm} and C code may appear to work, they cannot be
4197 depended upon to work reliably and are not supported.
4198 @end table
4201 @node Epiphany Function Attributes
4202 @subsection Epiphany Function Attributes
4204 These function attributes are supported by the Epiphany back end:
4206 @table @code
4207 @item disinterrupt
4208 @cindex @code{disinterrupt} function attribute, Epiphany
4209 This attribute causes the compiler to emit
4210 instructions to disable interrupts for the duration of the given
4211 function.
4213 @item forwarder_section
4214 @cindex @code{forwarder_section} function attribute, Epiphany
4215 This attribute modifies the behavior of an interrupt handler.
4216 The interrupt handler may be in external memory which cannot be
4217 reached by a branch instruction, so generate a local memory trampoline
4218 to transfer control.  The single parameter identifies the section where
4219 the trampoline is placed.
4221 @item interrupt
4222 @cindex @code{interrupt} function attribute, Epiphany
4223 Use this attribute to indicate
4224 that the specified function is an interrupt handler.  The compiler generates
4225 function entry and exit sequences suitable for use in an interrupt handler
4226 when this attribute is present.  It may also generate
4227 a special section with code to initialize the interrupt vector table.
4229 On Epiphany targets one or more optional parameters can be added like this:
4231 @smallexample
4232 void __attribute__ ((interrupt ("dma0, dma1"))) universal_dma_handler ();
4233 @end smallexample
4235 Permissible values for these parameters are: @w{@code{reset}},
4236 @w{@code{software_exception}}, @w{@code{page_miss}},
4237 @w{@code{timer0}}, @w{@code{timer1}}, @w{@code{message}},
4238 @w{@code{dma0}}, @w{@code{dma1}}, @w{@code{wand}} and @w{@code{swi}}.
4239 Multiple parameters indicate that multiple entries in the interrupt
4240 vector table should be initialized for this function, i.e.@: for each
4241 parameter @w{@var{name}}, a jump to the function is emitted in
4242 the section @w{ivt_entry_@var{name}}.  The parameter(s) may be omitted
4243 entirely, in which case no interrupt vector table entry is provided.
4245 Note that interrupts are enabled inside the function
4246 unless the @code{disinterrupt} attribute is also specified.
4248 The following examples are all valid uses of these attributes on
4249 Epiphany targets:
4250 @smallexample
4251 void __attribute__ ((interrupt)) universal_handler ();
4252 void __attribute__ ((interrupt ("dma1"))) dma1_handler ();
4253 void __attribute__ ((interrupt ("dma0, dma1"))) 
4254   universal_dma_handler ();
4255 void __attribute__ ((interrupt ("timer0"), disinterrupt))
4256   fast_timer_handler ();
4257 void __attribute__ ((interrupt ("dma0, dma1"), 
4258                      forwarder_section ("tramp")))
4259   external_dma_handler ();
4260 @end smallexample
4262 @item long_call
4263 @itemx short_call
4264 @cindex @code{long_call} function attribute, Epiphany
4265 @cindex @code{short_call} function attribute, Epiphany
4266 @cindex indirect calls, Epiphany
4267 These attributes specify how a particular function is called.
4268 These attributes override the
4269 @option{-mlong-calls} (@pxref{Adapteva Epiphany Options})
4270 command-line switch and @code{#pragma long_calls} settings.
4271 @end table
4274 @node H8/300 Function Attributes
4275 @subsection H8/300 Function Attributes
4277 These function attributes are available for H8/300 targets:
4279 @table @code
4280 @item function_vector
4281 @cindex @code{function_vector} function attribute, H8/300
4282 Use this attribute on the H8/300, H8/300H, and H8S to indicate 
4283 that the specified function should be called through the function vector.
4284 Calling a function through the function vector reduces code size; however,
4285 the function vector has a limited size (maximum 128 entries on the H8/300
4286 and 64 entries on the H8/300H and H8S)
4287 and shares space with the interrupt vector.
4289 @item interrupt_handler
4290 @cindex @code{interrupt_handler} function attribute, H8/300
4291 Use this attribute on the H8/300, H8/300H, and H8S to
4292 indicate that the specified function is an interrupt handler.  The compiler
4293 generates function entry and exit sequences suitable for use in an
4294 interrupt handler when this attribute is present.
4296 @item saveall
4297 @cindex @code{saveall} function attribute, H8/300
4298 @cindex save all registers on the H8/300, H8/300H, and H8S
4299 Use this attribute on the H8/300, H8/300H, and H8S to indicate that
4300 all registers except the stack pointer should be saved in the prologue
4301 regardless of whether they are used or not.
4302 @end table
4304 @node IA-64 Function Attributes
4305 @subsection IA-64 Function Attributes
4307 These function attributes are supported on IA-64 targets:
4309 @table @code
4310 @item syscall_linkage
4311 @cindex @code{syscall_linkage} function attribute, IA-64
4312 This attribute is used to modify the IA-64 calling convention by marking
4313 all input registers as live at all function exits.  This makes it possible
4314 to restart a system call after an interrupt without having to save/restore
4315 the input registers.  This also prevents kernel data from leaking into
4316 application code.
4318 @item version_id
4319 @cindex @code{version_id} function attribute, IA-64
4320 This IA-64 HP-UX attribute, attached to a global variable or function, renames a
4321 symbol to contain a version string, thus allowing for function level
4322 versioning.  HP-UX system header files may use function level versioning
4323 for some system calls.
4325 @smallexample
4326 extern int foo () __attribute__((version_id ("20040821")));
4327 @end smallexample
4329 @noindent
4330 Calls to @code{foo} are mapped to calls to @code{foo@{20040821@}}.
4331 @end table
4333 @node M32C Function Attributes
4334 @subsection M32C Function Attributes
4336 These function attributes are supported by the M32C back end:
4338 @table @code
4339 @item bank_switch
4340 @cindex @code{bank_switch} function attribute, M32C
4341 When added to an interrupt handler with the M32C port, causes the
4342 prologue and epilogue to use bank switching to preserve the registers
4343 rather than saving them on the stack.
4345 @item fast_interrupt
4346 @cindex @code{fast_interrupt} function attribute, M32C
4347 Use this attribute on the M32C port to indicate that the specified
4348 function is a fast interrupt handler.  This is just like the
4349 @code{interrupt} attribute, except that @code{freit} is used to return
4350 instead of @code{reit}.
4352 @item function_vector
4353 @cindex @code{function_vector} function attribute, M16C/M32C
4354 On M16C/M32C targets, the @code{function_vector} attribute declares a
4355 special page subroutine call function. Use of this attribute reduces
4356 the code size by 2 bytes for each call generated to the
4357 subroutine. The argument to the attribute is the vector number entry
4358 from the special page vector table which contains the 16 low-order
4359 bits of the subroutine's entry address. Each vector table has special
4360 page number (18 to 255) that is used in @code{jsrs} instructions.
4361 Jump addresses of the routines are generated by adding 0x0F0000 (in
4362 case of M16C targets) or 0xFF0000 (in case of M32C targets), to the
4363 2-byte addresses set in the vector table. Therefore you need to ensure
4364 that all the special page vector routines should get mapped within the
4365 address range 0x0F0000 to 0x0FFFFF (for M16C) and 0xFF0000 to 0xFFFFFF
4366 (for M32C).
4368 In the following example 2 bytes are saved for each call to
4369 function @code{foo}.
4371 @smallexample
4372 void foo (void) __attribute__((function_vector(0x18)));
4373 void foo (void)
4377 void bar (void)
4379     foo();
4381 @end smallexample
4383 If functions are defined in one file and are called in another file,
4384 then be sure to write this declaration in both files.
4386 This attribute is ignored for R8C target.
4388 @item interrupt
4389 @cindex @code{interrupt} function attribute, M32C
4390 Use this attribute to indicate
4391 that the specified function is an interrupt handler.  The compiler generates
4392 function entry and exit sequences suitable for use in an interrupt handler
4393 when this attribute is present.
4394 @end table
4396 @node M32R/D Function Attributes
4397 @subsection M32R/D Function Attributes
4399 These function attributes are supported by the M32R/D back end:
4401 @table @code
4402 @item interrupt
4403 @cindex @code{interrupt} function attribute, M32R/D
4404 Use this attribute to indicate
4405 that the specified function is an interrupt handler.  The compiler generates
4406 function entry and exit sequences suitable for use in an interrupt handler
4407 when this attribute is present.
4409 @item model (@var{model-name})
4410 @cindex @code{model} function attribute, M32R/D
4411 @cindex function addressability on the M32R/D
4413 On the M32R/D, use this attribute to set the addressability of an
4414 object, and of the code generated for a function.  The identifier
4415 @var{model-name} is one of @code{small}, @code{medium}, or
4416 @code{large}, representing each of the code models.
4418 Small model objects live in the lower 16MB of memory (so that their
4419 addresses can be loaded with the @code{ld24} instruction), and are
4420 callable with the @code{bl} instruction.
4422 Medium model objects may live anywhere in the 32-bit address space (the
4423 compiler generates @code{seth/add3} instructions to load their addresses),
4424 and are callable with the @code{bl} instruction.
4426 Large model objects may live anywhere in the 32-bit address space (the
4427 compiler generates @code{seth/add3} instructions to load their addresses),
4428 and may not be reachable with the @code{bl} instruction (the compiler
4429 generates the much slower @code{seth/add3/jl} instruction sequence).
4430 @end table
4432 @node m68k Function Attributes
4433 @subsection m68k Function Attributes
4435 These function attributes are supported by the m68k back end:
4437 @table @code
4438 @item interrupt
4439 @itemx interrupt_handler
4440 @cindex @code{interrupt} function attribute, m68k
4441 @cindex @code{interrupt_handler} function attribute, m68k
4442 Use this attribute to
4443 indicate that the specified function is an interrupt handler.  The compiler
4444 generates function entry and exit sequences suitable for use in an
4445 interrupt handler when this attribute is present.  Either name may be used.
4447 @item interrupt_thread
4448 @cindex @code{interrupt_thread} function attribute, fido
4449 Use this attribute on fido, a subarchitecture of the m68k, to indicate
4450 that the specified function is an interrupt handler that is designed
4451 to run as a thread.  The compiler omits generate prologue/epilogue
4452 sequences and replaces the return instruction with a @code{sleep}
4453 instruction.  This attribute is available only on fido.
4454 @end table
4456 @node MCORE Function Attributes
4457 @subsection MCORE Function Attributes
4459 These function attributes are supported by the MCORE back end:
4461 @table @code
4462 @item naked
4463 @cindex @code{naked} function attribute, MCORE
4464 This attribute allows the compiler to construct the
4465 requisite function declaration, while allowing the body of the
4466 function to be assembly code. The specified function will not have
4467 prologue/epilogue sequences generated by the compiler. Only basic
4468 @code{asm} statements can safely be included in naked functions
4469 (@pxref{Basic Asm}). While using extended @code{asm} or a mixture of
4470 basic @code{asm} and C code may appear to work, they cannot be
4471 depended upon to work reliably and are not supported.
4472 @end table
4474 @node MeP Function Attributes
4475 @subsection MeP Function Attributes
4477 These function attributes are supported by the MeP back end:
4479 @table @code
4480 @item disinterrupt
4481 @cindex @code{disinterrupt} function attribute, MeP
4482 On MeP targets, this attribute causes the compiler to emit
4483 instructions to disable interrupts for the duration of the given
4484 function.
4486 @item interrupt
4487 @cindex @code{interrupt} function attribute, MeP
4488 Use this attribute to indicate
4489 that the specified function is an interrupt handler.  The compiler generates
4490 function entry and exit sequences suitable for use in an interrupt handler
4491 when this attribute is present.
4493 @item near
4494 @cindex @code{near} function attribute, MeP
4495 This attribute causes the compiler to assume the called
4496 function is close enough to use the normal calling convention,
4497 overriding the @option{-mtf} command-line option.
4499 @item far
4500 @cindex @code{far} function attribute, MeP
4501 On MeP targets this causes the compiler to use a calling convention
4502 that assumes the called function is too far away for the built-in
4503 addressing modes.
4505 @item vliw
4506 @cindex @code{vliw} function attribute, MeP
4507 The @code{vliw} attribute tells the compiler to emit
4508 instructions in VLIW mode instead of core mode.  Note that this
4509 attribute is not allowed unless a VLIW coprocessor has been configured
4510 and enabled through command-line options.
4511 @end table
4513 @node MicroBlaze Function Attributes
4514 @subsection MicroBlaze Function Attributes
4516 These function attributes are supported on MicroBlaze targets:
4518 @table @code
4519 @item save_volatiles
4520 @cindex @code{save_volatiles} function attribute, MicroBlaze
4521 Use this attribute to indicate that the function is
4522 an interrupt handler.  All volatile registers (in addition to non-volatile
4523 registers) are saved in the function prologue.  If the function is a leaf
4524 function, only volatiles used by the function are saved.  A normal function
4525 return is generated instead of a return from interrupt.
4527 @item break_handler
4528 @cindex @code{break_handler} function attribute, MicroBlaze
4529 @cindex break handler functions
4530 Use this attribute to indicate that
4531 the specified function is a break handler.  The compiler generates function
4532 entry and exit sequences suitable for use in an break handler when this
4533 attribute is present. The return from @code{break_handler} is done through
4534 the @code{rtbd} instead of @code{rtsd}.
4536 @smallexample
4537 void f () __attribute__ ((break_handler));
4538 @end smallexample
4540 @item interrupt_handler
4541 @itemx fast_interrupt 
4542 @cindex @code{interrupt_handler} function attribute, MicroBlaze
4543 @cindex @code{fast_interrupt} function attribute, MicroBlaze
4544 These attributes indicate that the specified function is an interrupt
4545 handler.  Use the @code{fast_interrupt} attribute to indicate handlers
4546 used in low-latency interrupt mode, and @code{interrupt_handler} for
4547 interrupts that do not use low-latency handlers.  In both cases, GCC
4548 emits appropriate prologue code and generates a return from the handler
4549 using @code{rtid} instead of @code{rtsd}.
4550 @end table
4552 @node Microsoft Windows Function Attributes
4553 @subsection Microsoft Windows Function Attributes
4555 The following attributes are available on Microsoft Windows and Symbian OS
4556 targets.
4558 @table @code
4559 @item dllexport
4560 @cindex @code{dllexport} function attribute
4561 @cindex @code{__declspec(dllexport)}
4562 On Microsoft Windows targets and Symbian OS targets the
4563 @code{dllexport} attribute causes the compiler to provide a global
4564 pointer to a pointer in a DLL, so that it can be referenced with the
4565 @code{dllimport} attribute.  On Microsoft Windows targets, the pointer
4566 name is formed by combining @code{_imp__} and the function or variable
4567 name.
4569 You can use @code{__declspec(dllexport)} as a synonym for
4570 @code{__attribute__ ((dllexport))} for compatibility with other
4571 compilers.
4573 On systems that support the @code{visibility} attribute, this
4574 attribute also implies ``default'' visibility.  It is an error to
4575 explicitly specify any other visibility.
4577 GCC's default behavior is to emit all inline functions with the
4578 @code{dllexport} attribute.  Since this can cause object file-size bloat,
4579 you can use @option{-fno-keep-inline-dllexport}, which tells GCC to
4580 ignore the attribute for inlined functions unless the 
4581 @option{-fkeep-inline-functions} flag is used instead.
4583 The attribute is ignored for undefined symbols.
4585 When applied to C++ classes, the attribute marks defined non-inlined
4586 member functions and static data members as exports.  Static consts
4587 initialized in-class are not marked unless they are also defined
4588 out-of-class.
4590 For Microsoft Windows targets there are alternative methods for
4591 including the symbol in the DLL's export table such as using a
4592 @file{.def} file with an @code{EXPORTS} section or, with GNU ld, using
4593 the @option{--export-all} linker flag.
4595 @item dllimport
4596 @cindex @code{dllimport} function attribute
4597 @cindex @code{__declspec(dllimport)}
4598 On Microsoft Windows and Symbian OS targets, the @code{dllimport}
4599 attribute causes the compiler to reference a function or variable via
4600 a global pointer to a pointer that is set up by the DLL exporting the
4601 symbol.  The attribute implies @code{extern}.  On Microsoft Windows
4602 targets, the pointer name is formed by combining @code{_imp__} and the
4603 function or variable name.
4605 You can use @code{__declspec(dllimport)} as a synonym for
4606 @code{__attribute__ ((dllimport))} for compatibility with other
4607 compilers.
4609 On systems that support the @code{visibility} attribute, this
4610 attribute also implies ``default'' visibility.  It is an error to
4611 explicitly specify any other visibility.
4613 Currently, the attribute is ignored for inlined functions.  If the
4614 attribute is applied to a symbol @emph{definition}, an error is reported.
4615 If a symbol previously declared @code{dllimport} is later defined, the
4616 attribute is ignored in subsequent references, and a warning is emitted.
4617 The attribute is also overridden by a subsequent declaration as
4618 @code{dllexport}.
4620 When applied to C++ classes, the attribute marks non-inlined
4621 member functions and static data members as imports.  However, the
4622 attribute is ignored for virtual methods to allow creation of vtables
4623 using thunks.
4625 On the SH Symbian OS target the @code{dllimport} attribute also has
4626 another affect---it can cause the vtable and run-time type information
4627 for a class to be exported.  This happens when the class has a
4628 dllimported constructor or a non-inline, non-pure virtual function
4629 and, for either of those two conditions, the class also has an inline
4630 constructor or destructor and has a key function that is defined in
4631 the current translation unit.
4633 For Microsoft Windows targets the use of the @code{dllimport}
4634 attribute on functions is not necessary, but provides a small
4635 performance benefit by eliminating a thunk in the DLL@.  The use of the
4636 @code{dllimport} attribute on imported variables can be avoided by passing the
4637 @option{--enable-auto-import} switch to the GNU linker.  As with
4638 functions, using the attribute for a variable eliminates a thunk in
4639 the DLL@.
4641 One drawback to using this attribute is that a pointer to a
4642 @emph{variable} marked as @code{dllimport} cannot be used as a constant
4643 address. However, a pointer to a @emph{function} with the
4644 @code{dllimport} attribute can be used as a constant initializer; in
4645 this case, the address of a stub function in the import lib is
4646 referenced.  On Microsoft Windows targets, the attribute can be disabled
4647 for functions by setting the @option{-mnop-fun-dllimport} flag.
4648 @end table
4650 @node MIPS Function Attributes
4651 @subsection MIPS Function Attributes
4653 These function attributes are supported by the MIPS back end:
4655 @table @code
4656 @item interrupt
4657 @cindex @code{interrupt} function attribute, MIPS
4658 Use this attribute to indicate that the specified function is an interrupt
4659 handler.  The compiler generates function entry and exit sequences suitable
4660 for use in an interrupt handler when this attribute is present.
4661 An optional argument is supported for the interrupt attribute which allows
4662 the interrupt mode to be described.  By default GCC assumes the external
4663 interrupt controller (EIC) mode is in use, this can be explicitly set using
4664 @code{eic}.  When interrupts are non-masked then the requested Interrupt
4665 Priority Level (IPL) is copied to the current IPL which has the effect of only
4666 enabling higher priority interrupts.  To use vectored interrupt mode use
4667 the argument @code{vector=[sw0|sw1|hw0|hw1|hw2|hw3|hw4|hw5]}, this will change
4668 the behavior of the non-masked interrupt support and GCC will arrange to mask
4669 all interrupts from sw0 up to and including the specified interrupt vector.
4671 You can use the following attributes to modify the behavior
4672 of an interrupt handler:
4673 @table @code
4674 @item use_shadow_register_set
4675 @cindex @code{use_shadow_register_set} function attribute, MIPS
4676 Assume that the handler uses a shadow register set, instead of
4677 the main general-purpose registers.  An optional argument @code{intstack} is
4678 supported to indicate that the shadow register set contains a valid stack
4679 pointer.
4681 @item keep_interrupts_masked
4682 @cindex @code{keep_interrupts_masked} function attribute, MIPS
4683 Keep interrupts masked for the whole function.  Without this attribute,
4684 GCC tries to reenable interrupts for as much of the function as it can.
4686 @item use_debug_exception_return
4687 @cindex @code{use_debug_exception_return} function attribute, MIPS
4688 Return using the @code{deret} instruction.  Interrupt handlers that don't
4689 have this attribute return using @code{eret} instead.
4690 @end table
4692 You can use any combination of these attributes, as shown below:
4693 @smallexample
4694 void __attribute__ ((interrupt)) v0 ();
4695 void __attribute__ ((interrupt, use_shadow_register_set)) v1 ();
4696 void __attribute__ ((interrupt, keep_interrupts_masked)) v2 ();
4697 void __attribute__ ((interrupt, use_debug_exception_return)) v3 ();
4698 void __attribute__ ((interrupt, use_shadow_register_set,
4699                      keep_interrupts_masked)) v4 ();
4700 void __attribute__ ((interrupt, use_shadow_register_set,
4701                      use_debug_exception_return)) v5 ();
4702 void __attribute__ ((interrupt, keep_interrupts_masked,
4703                      use_debug_exception_return)) v6 ();
4704 void __attribute__ ((interrupt, use_shadow_register_set,
4705                      keep_interrupts_masked,
4706                      use_debug_exception_return)) v7 ();
4707 void __attribute__ ((interrupt("eic"))) v8 ();
4708 void __attribute__ ((interrupt("vector=hw3"))) v9 ();
4709 @end smallexample
4711 @item long_call
4712 @itemx short_call
4713 @itemx near
4714 @itemx far
4715 @cindex indirect calls, MIPS
4716 @cindex @code{long_call} function attribute, MIPS
4717 @cindex @code{short_call} function attribute, MIPS
4718 @cindex @code{near} function attribute, MIPS
4719 @cindex @code{far} function attribute, MIPS
4720 These attributes specify how a particular function is called on MIPS@.
4721 The attributes override the @option{-mlong-calls} (@pxref{MIPS Options})
4722 command-line switch.  The @code{long_call} and @code{far} attributes are
4723 synonyms, and cause the compiler to always call
4724 the function by first loading its address into a register, and then using
4725 the contents of that register.  The @code{short_call} and @code{near}
4726 attributes are synonyms, and have the opposite
4727 effect; they specify that non-PIC calls should be made using the more
4728 efficient @code{jal} instruction.
4730 @item mips16
4731 @itemx nomips16
4732 @cindex @code{mips16} function attribute, MIPS
4733 @cindex @code{nomips16} function attribute, MIPS
4735 On MIPS targets, you can use the @code{mips16} and @code{nomips16}
4736 function attributes to locally select or turn off MIPS16 code generation.
4737 A function with the @code{mips16} attribute is emitted as MIPS16 code,
4738 while MIPS16 code generation is disabled for functions with the
4739 @code{nomips16} attribute.  These attributes override the
4740 @option{-mips16} and @option{-mno-mips16} options on the command line
4741 (@pxref{MIPS Options}).
4743 When compiling files containing mixed MIPS16 and non-MIPS16 code, the
4744 preprocessor symbol @code{__mips16} reflects the setting on the command line,
4745 not that within individual functions.  Mixed MIPS16 and non-MIPS16 code
4746 may interact badly with some GCC extensions such as @code{__builtin_apply}
4747 (@pxref{Constructing Calls}).
4749 @item micromips, MIPS
4750 @itemx nomicromips, MIPS
4751 @cindex @code{micromips} function attribute
4752 @cindex @code{nomicromips} function attribute
4754 On MIPS targets, you can use the @code{micromips} and @code{nomicromips}
4755 function attributes to locally select or turn off microMIPS code generation.
4756 A function with the @code{micromips} attribute is emitted as microMIPS code,
4757 while microMIPS code generation is disabled for functions with the
4758 @code{nomicromips} attribute.  These attributes override the
4759 @option{-mmicromips} and @option{-mno-micromips} options on the command line
4760 (@pxref{MIPS Options}).
4762 When compiling files containing mixed microMIPS and non-microMIPS code, the
4763 preprocessor symbol @code{__mips_micromips} reflects the setting on the
4764 command line,
4765 not that within individual functions.  Mixed microMIPS and non-microMIPS code
4766 may interact badly with some GCC extensions such as @code{__builtin_apply}
4767 (@pxref{Constructing Calls}).
4769 @item nocompression
4770 @cindex @code{nocompression} function attribute, MIPS
4771 On MIPS targets, you can use the @code{nocompression} function attribute
4772 to locally turn off MIPS16 and microMIPS code generation.  This attribute
4773 overrides the @option{-mips16} and @option{-mmicromips} options on the
4774 command line (@pxref{MIPS Options}).
4775 @end table
4777 @node MSP430 Function Attributes
4778 @subsection MSP430 Function Attributes
4780 These function attributes are supported by the MSP430 back end:
4782 @table @code
4783 @item critical
4784 @cindex @code{critical} function attribute, MSP430
4785 Critical functions disable interrupts upon entry and restore the
4786 previous interrupt state upon exit.  Critical functions cannot also
4787 have the @code{naked} or @code{reentrant} attributes.  They can have
4788 the @code{interrupt} attribute.
4790 @item interrupt
4791 @cindex @code{interrupt} function attribute, MSP430
4792 Use this attribute to indicate
4793 that the specified function is an interrupt handler.  The compiler generates
4794 function entry and exit sequences suitable for use in an interrupt handler
4795 when this attribute is present.
4797 You can provide an argument to the interrupt
4798 attribute which specifies a name or number.  If the argument is a
4799 number it indicates the slot in the interrupt vector table (0 - 31) to
4800 which this handler should be assigned.  If the argument is a name it
4801 is treated as a symbolic name for the vector slot.  These names should
4802 match up with appropriate entries in the linker script.  By default
4803 the names @code{watchdog} for vector 26, @code{nmi} for vector 30 and
4804 @code{reset} for vector 31 are recognized.
4806 @item naked
4807 @cindex @code{naked} function attribute, MSP430
4808 This attribute allows the compiler to construct the
4809 requisite function declaration, while allowing the body of the
4810 function to be assembly code. The specified function will not have
4811 prologue/epilogue sequences generated by the compiler. Only basic
4812 @code{asm} statements can safely be included in naked functions
4813 (@pxref{Basic Asm}). While using extended @code{asm} or a mixture of
4814 basic @code{asm} and C code may appear to work, they cannot be
4815 depended upon to work reliably and are not supported.
4817 @item reentrant
4818 @cindex @code{reentrant} function attribute, MSP430
4819 Reentrant functions disable interrupts upon entry and enable them
4820 upon exit.  Reentrant functions cannot also have the @code{naked}
4821 or @code{critical} attributes.  They can have the @code{interrupt}
4822 attribute.
4824 @item wakeup
4825 @cindex @code{wakeup} function attribute, MSP430
4826 This attribute only applies to interrupt functions.  It is silently
4827 ignored if applied to a non-interrupt function.  A wakeup interrupt
4828 function will rouse the processor from any low-power state that it
4829 might be in when the function exits.
4831 @item lower
4832 @itemx upper
4833 @itemx either
4834 @cindex @code{lower} function attribute, MSP430
4835 @cindex @code{upper} function attribute, MSP430
4836 @cindex @code{either} function attribute, MSP430
4837 On the MSP430 target these attributes can be used to specify whether
4838 the function or variable should be placed into low memory, high
4839 memory, or the placement should be left to the linker to decide.  The
4840 attributes are only significant if compiling for the MSP430X
4841 architecture.
4843 The attributes work in conjunction with a linker script that has been
4844 augmented to specify where to place sections with a @code{.lower} and
4845 a @code{.upper} prefix.  So, for example, as well as placing the
4846 @code{.data} section, the script also specifies the placement of a
4847 @code{.lower.data} and a @code{.upper.data} section.  The intention
4848 is that @code{lower} sections are placed into a small but easier to
4849 access memory region and the upper sections are placed into a larger, but
4850 slower to access, region.
4852 The @code{either} attribute is special.  It tells the linker to place
4853 the object into the corresponding @code{lower} section if there is
4854 room for it.  If there is insufficient room then the object is placed
4855 into the corresponding @code{upper} section instead.  Note that the
4856 placement algorithm is not very sophisticated.  It does not attempt to
4857 find an optimal packing of the @code{lower} sections.  It just makes
4858 one pass over the objects and does the best that it can.  Using the
4859 @option{-ffunction-sections} and @option{-fdata-sections} command-line
4860 options can help the packing, however, since they produce smaller,
4861 easier to pack regions.
4862 @end table
4864 @node NDS32 Function Attributes
4865 @subsection NDS32 Function Attributes
4867 These function attributes are supported by the NDS32 back end:
4869 @table @code
4870 @item exception
4871 @cindex @code{exception} function attribute
4872 @cindex exception handler functions, NDS32
4873 Use this attribute on the NDS32 target to indicate that the specified function
4874 is an exception handler.  The compiler will generate corresponding sections
4875 for use in an exception handler.
4877 @item interrupt
4878 @cindex @code{interrupt} function attribute, NDS32
4879 On NDS32 target, this attribute indicates that the specified function
4880 is an interrupt handler.  The compiler generates corresponding sections
4881 for use in an interrupt handler.  You can use the following attributes
4882 to modify the behavior:
4883 @table @code
4884 @item nested
4885 @cindex @code{nested} function attribute, NDS32
4886 This interrupt service routine is interruptible.
4887 @item not_nested
4888 @cindex @code{not_nested} function attribute, NDS32
4889 This interrupt service routine is not interruptible.
4890 @item nested_ready
4891 @cindex @code{nested_ready} function attribute, NDS32
4892 This interrupt service routine is interruptible after @code{PSW.GIE}
4893 (global interrupt enable) is set.  This allows interrupt service routine to
4894 finish some short critical code before enabling interrupts.
4895 @item save_all
4896 @cindex @code{save_all} function attribute, NDS32
4897 The system will help save all registers into stack before entering
4898 interrupt handler.
4899 @item partial_save
4900 @cindex @code{partial_save} function attribute, NDS32
4901 The system will help save caller registers into stack before entering
4902 interrupt handler.
4903 @end table
4905 @item naked
4906 @cindex @code{naked} function attribute, NDS32
4907 This attribute allows the compiler to construct the
4908 requisite function declaration, while allowing the body of the
4909 function to be assembly code. The specified function will not have
4910 prologue/epilogue sequences generated by the compiler. Only basic
4911 @code{asm} statements can safely be included in naked functions
4912 (@pxref{Basic Asm}). While using extended @code{asm} or a mixture of
4913 basic @code{asm} and C code may appear to work, they cannot be
4914 depended upon to work reliably and are not supported.
4916 @item reset
4917 @cindex @code{reset} function attribute, NDS32
4918 @cindex reset handler functions
4919 Use this attribute on the NDS32 target to indicate that the specified function
4920 is a reset handler.  The compiler will generate corresponding sections
4921 for use in a reset handler.  You can use the following attributes
4922 to provide extra exception handling:
4923 @table @code
4924 @item nmi
4925 @cindex @code{nmi} function attribute, NDS32
4926 Provide a user-defined function to handle NMI exception.
4927 @item warm
4928 @cindex @code{warm} function attribute, NDS32
4929 Provide a user-defined function to handle warm reset exception.
4930 @end table
4931 @end table
4933 @node Nios II Function Attributes
4934 @subsection Nios II Function Attributes
4936 These function attributes are supported by the Nios II back end:
4938 @table @code
4939 @item target (@var{options})
4940 @cindex @code{target} function attribute
4941 As discussed in @ref{Common Function Attributes}, this attribute 
4942 allows specification of target-specific compilation options.
4944 When compiling for Nios II, the following options are allowed:
4946 @table @samp
4947 @item custom-@var{insn}=@var{N}
4948 @itemx no-custom-@var{insn}
4949 @cindex @code{target("custom-@var{insn}=@var{N}")} function attribute, Nios II
4950 @cindex @code{target("no-custom-@var{insn}")} function attribute, Nios II
4951 Each @samp{custom-@var{insn}=@var{N}} attribute locally enables use of a
4952 custom instruction with encoding @var{N} when generating code that uses 
4953 @var{insn}.  Similarly, @samp{no-custom-@var{insn}} locally inhibits use of
4954 the custom instruction @var{insn}.
4955 These target attributes correspond to the
4956 @option{-mcustom-@var{insn}=@var{N}} and @option{-mno-custom-@var{insn}}
4957 command-line options, and support the same set of @var{insn} keywords.
4958 @xref{Nios II Options}, for more information.
4960 @item custom-fpu-cfg=@var{name}
4961 @cindex @code{target("custom-fpu-cfg=@var{name}")} function attribute, Nios II
4962 This attribute corresponds to the @option{-mcustom-fpu-cfg=@var{name}}
4963 command-line option, to select a predefined set of custom instructions
4964 named @var{name}.
4965 @xref{Nios II Options}, for more information.
4966 @end table
4967 @end table
4969 @node Nvidia PTX Function Attributes
4970 @subsection Nvidia PTX Function Attributes
4972 These function attributes are supported by the Nvidia PTX back end:
4974 @table @code
4975 @item kernel
4976 @cindex @code{kernel} attribute, Nvidia PTX
4977 This attribute indicates that the corresponding function should be compiled
4978 as a kernel function, which can be invoked from the host via the CUDA RT 
4979 library.
4980 By default functions are only callable only from other PTX functions.
4982 Kernel functions must have @code{void} return type.
4983 @end table
4985 @node PowerPC Function Attributes
4986 @subsection PowerPC Function Attributes
4988 These function attributes are supported by the PowerPC back end:
4990 @table @code
4991 @item longcall
4992 @itemx shortcall
4993 @cindex indirect calls, PowerPC
4994 @cindex @code{longcall} function attribute, PowerPC
4995 @cindex @code{shortcall} function attribute, PowerPC
4996 The @code{longcall} attribute
4997 indicates that the function might be far away from the call site and
4998 require a different (more expensive) calling sequence.  The
4999 @code{shortcall} attribute indicates that the function is always close
5000 enough for the shorter calling sequence to be used.  These attributes
5001 override both the @option{-mlongcall} switch and
5002 the @code{#pragma longcall} setting.
5004 @xref{RS/6000 and PowerPC Options}, for more information on whether long
5005 calls are necessary.
5007 @item target (@var{options})
5008 @cindex @code{target} function attribute
5009 As discussed in @ref{Common Function Attributes}, this attribute 
5010 allows specification of target-specific compilation options.
5012 On the PowerPC, the following options are allowed:
5014 @table @samp
5015 @item altivec
5016 @itemx no-altivec
5017 @cindex @code{target("altivec")} function attribute, PowerPC
5018 Generate code that uses (does not use) AltiVec instructions.  In
5019 32-bit code, you cannot enable AltiVec instructions unless
5020 @option{-mabi=altivec} is used on the command line.
5022 @item cmpb
5023 @itemx no-cmpb
5024 @cindex @code{target("cmpb")} function attribute, PowerPC
5025 Generate code that uses (does not use) the compare bytes instruction
5026 implemented on the POWER6 processor and other processors that support
5027 the PowerPC V2.05 architecture.
5029 @item dlmzb
5030 @itemx no-dlmzb
5031 @cindex @code{target("dlmzb")} function attribute, PowerPC
5032 Generate code that uses (does not use) the string-search @samp{dlmzb}
5033 instruction on the IBM 405, 440, 464 and 476 processors.  This instruction is
5034 generated by default when targeting those processors.
5036 @item fprnd
5037 @itemx no-fprnd
5038 @cindex @code{target("fprnd")} function attribute, PowerPC
5039 Generate code that uses (does not use) the FP round to integer
5040 instructions implemented on the POWER5+ processor and other processors
5041 that support the PowerPC V2.03 architecture.
5043 @item hard-dfp
5044 @itemx no-hard-dfp
5045 @cindex @code{target("hard-dfp")} function attribute, PowerPC
5046 Generate code that uses (does not use) the decimal floating-point
5047 instructions implemented on some POWER processors.
5049 @item isel
5050 @itemx no-isel
5051 @cindex @code{target("isel")} function attribute, PowerPC
5052 Generate code that uses (does not use) ISEL instruction.
5054 @item mfcrf
5055 @itemx no-mfcrf
5056 @cindex @code{target("mfcrf")} function attribute, PowerPC
5057 Generate code that uses (does not use) the move from condition
5058 register field instruction implemented on the POWER4 processor and
5059 other processors that support the PowerPC V2.01 architecture.
5061 @item mfpgpr
5062 @itemx no-mfpgpr
5063 @cindex @code{target("mfpgpr")} function attribute, PowerPC
5064 Generate code that uses (does not use) the FP move to/from general
5065 purpose register instructions implemented on the POWER6X processor and
5066 other processors that support the extended PowerPC V2.05 architecture.
5068 @item mulhw
5069 @itemx no-mulhw
5070 @cindex @code{target("mulhw")} function attribute, PowerPC
5071 Generate code that uses (does not use) the half-word multiply and
5072 multiply-accumulate instructions on the IBM 405, 440, 464 and 476 processors.
5073 These instructions are generated by default when targeting those
5074 processors.
5076 @item multiple
5077 @itemx no-multiple
5078 @cindex @code{target("multiple")} function attribute, PowerPC
5079 Generate code that uses (does not use) the load multiple word
5080 instructions and the store multiple word instructions.
5082 @item update
5083 @itemx no-update
5084 @cindex @code{target("update")} function attribute, PowerPC
5085 Generate code that uses (does not use) the load or store instructions
5086 that update the base register to the address of the calculated memory
5087 location.
5089 @item popcntb
5090 @itemx no-popcntb
5091 @cindex @code{target("popcntb")} function attribute, PowerPC
5092 Generate code that uses (does not use) the popcount and double-precision
5093 FP reciprocal estimate instruction implemented on the POWER5
5094 processor and other processors that support the PowerPC V2.02
5095 architecture.
5097 @item popcntd
5098 @itemx no-popcntd
5099 @cindex @code{target("popcntd")} function attribute, PowerPC
5100 Generate code that uses (does not use) the popcount instruction
5101 implemented on the POWER7 processor and other processors that support
5102 the PowerPC V2.06 architecture.
5104 @item powerpc-gfxopt
5105 @itemx no-powerpc-gfxopt
5106 @cindex @code{target("powerpc-gfxopt")} function attribute, PowerPC
5107 Generate code that uses (does not use) the optional PowerPC
5108 architecture instructions in the Graphics group, including
5109 floating-point select.
5111 @item powerpc-gpopt
5112 @itemx no-powerpc-gpopt
5113 @cindex @code{target("powerpc-gpopt")} function attribute, PowerPC
5114 Generate code that uses (does not use) the optional PowerPC
5115 architecture instructions in the General Purpose group, including
5116 floating-point square root.
5118 @item recip-precision
5119 @itemx no-recip-precision
5120 @cindex @code{target("recip-precision")} function attribute, PowerPC
5121 Assume (do not assume) that the reciprocal estimate instructions
5122 provide higher-precision estimates than is mandated by the PowerPC
5123 ABI.
5125 @item string
5126 @itemx no-string
5127 @cindex @code{target("string")} function attribute, PowerPC
5128 Generate code that uses (does not use) the load string instructions
5129 and the store string word instructions to save multiple registers and
5130 do small block moves.
5132 @item vsx
5133 @itemx no-vsx
5134 @cindex @code{target("vsx")} function attribute, PowerPC
5135 Generate code that uses (does not use) vector/scalar (VSX)
5136 instructions, and also enable the use of built-in functions that allow
5137 more direct access to the VSX instruction set.  In 32-bit code, you
5138 cannot enable VSX or AltiVec instructions unless
5139 @option{-mabi=altivec} is used on the command line.
5141 @item friz
5142 @itemx no-friz
5143 @cindex @code{target("friz")} function attribute, PowerPC
5144 Generate (do not generate) the @code{friz} instruction when the
5145 @option{-funsafe-math-optimizations} option is used to optimize
5146 rounding a floating-point value to 64-bit integer and back to floating
5147 point.  The @code{friz} instruction does not return the same value if
5148 the floating-point number is too large to fit in an integer.
5150 @item avoid-indexed-addresses
5151 @itemx no-avoid-indexed-addresses
5152 @cindex @code{target("avoid-indexed-addresses")} function attribute, PowerPC
5153 Generate code that tries to avoid (not avoid) the use of indexed load
5154 or store instructions.
5156 @item paired
5157 @itemx no-paired
5158 @cindex @code{target("paired")} function attribute, PowerPC
5159 Generate code that uses (does not use) the generation of PAIRED simd
5160 instructions.
5162 @item longcall
5163 @itemx no-longcall
5164 @cindex @code{target("longcall")} function attribute, PowerPC
5165 Generate code that assumes (does not assume) that all calls are far
5166 away so that a longer more expensive calling sequence is required.
5168 @item cpu=@var{CPU}
5169 @cindex @code{target("cpu=@var{CPU}")} function attribute, PowerPC
5170 Specify the architecture to generate code for when compiling the
5171 function.  If you select the @code{target("cpu=power7")} attribute when
5172 generating 32-bit code, VSX and AltiVec instructions are not generated
5173 unless you use the @option{-mabi=altivec} option on the command line.
5175 @item tune=@var{TUNE}
5176 @cindex @code{target("tune=@var{TUNE}")} function attribute, PowerPC
5177 Specify the architecture to tune for when compiling the function.  If
5178 you do not specify the @code{target("tune=@var{TUNE}")} attribute and
5179 you do specify the @code{target("cpu=@var{CPU}")} attribute,
5180 compilation tunes for the @var{CPU} architecture, and not the
5181 default tuning specified on the command line.
5182 @end table
5184 On the PowerPC, the inliner does not inline a
5185 function that has different target options than the caller, unless the
5186 callee has a subset of the target options of the caller.
5187 @end table
5189 @node RISC-V Function Attributes
5190 @subsection RISC-V Function Attributes
5192 These function attributes are supported by the RISC-V back end:
5194 @table @code
5195 @item naked
5196 @cindex @code{naked} function attribute, RISC-V
5197 This attribute allows the compiler to construct the
5198 requisite function declaration, while allowing the body of the
5199 function to be assembly code. The specified function will not have
5200 prologue/epilogue sequences generated by the compiler. Only basic
5201 @code{asm} statements can safely be included in naked functions
5202 (@pxref{Basic Asm}). While using extended @code{asm} or a mixture of
5203 basic @code{asm} and C code may appear to work, they cannot be
5204 depended upon to work reliably and are not supported.
5206 @item interrupt
5207 @cindex @code{interrupt} function attribute, RISC-V
5208 Use this attribute to indicate that the specified function is an interrupt
5209 handler.  The compiler generates function entry and exit sequences suitable
5210 for use in an interrupt handler when this attribute is present.
5212 You can specify the kind of interrupt to be handled by adding an optional
5213 parameter to the interrupt attribute like this:
5215 @smallexample
5216 void f (void) __attribute__ ((interrupt ("user")));
5217 @end smallexample
5219 Permissible values for this parameter are @code{user}, @code{supervisor},
5220 and @code{machine}.  If there is no parameter, then it defaults to
5221 @code{machine}.
5222 @end table
5224 @node RL78 Function Attributes
5225 @subsection RL78 Function Attributes
5227 These function attributes are supported by the RL78 back end:
5229 @table @code
5230 @item interrupt
5231 @itemx brk_interrupt
5232 @cindex @code{interrupt} function attribute, RL78
5233 @cindex @code{brk_interrupt} function attribute, RL78
5234 These attributes indicate
5235 that the specified function is an interrupt handler.  The compiler generates
5236 function entry and exit sequences suitable for use in an interrupt handler
5237 when this attribute is present.
5239 Use @code{brk_interrupt} instead of @code{interrupt} for
5240 handlers intended to be used with the @code{BRK} opcode (i.e.@: those
5241 that must end with @code{RETB} instead of @code{RETI}).
5243 @item naked
5244 @cindex @code{naked} function attribute, RL78
5245 This attribute allows the compiler to construct the
5246 requisite function declaration, while allowing the body of the
5247 function to be assembly code. The specified function will not have
5248 prologue/epilogue sequences generated by the compiler. Only basic
5249 @code{asm} statements can safely be included in naked functions
5250 (@pxref{Basic Asm}). While using extended @code{asm} or a mixture of
5251 basic @code{asm} and C code may appear to work, they cannot be
5252 depended upon to work reliably and are not supported.
5253 @end table
5255 @node RX Function Attributes
5256 @subsection RX Function Attributes
5258 These function attributes are supported by the RX back end:
5260 @table @code
5261 @item fast_interrupt
5262 @cindex @code{fast_interrupt} function attribute, RX
5263 Use this attribute on the RX port to indicate that the specified
5264 function is a fast interrupt handler.  This is just like the
5265 @code{interrupt} attribute, except that @code{freit} is used to return
5266 instead of @code{reit}.
5268 @item interrupt
5269 @cindex @code{interrupt} function attribute, RX
5270 Use this attribute to indicate
5271 that the specified function is an interrupt handler.  The compiler generates
5272 function entry and exit sequences suitable for use in an interrupt handler
5273 when this attribute is present.
5275 On RX and RL78 targets, you may specify one or more vector numbers as arguments
5276 to the attribute, as well as naming an alternate table name.
5277 Parameters are handled sequentially, so one handler can be assigned to
5278 multiple entries in multiple tables.  One may also pass the magic
5279 string @code{"$default"} which causes the function to be used for any
5280 unfilled slots in the current table.
5282 This example shows a simple assignment of a function to one vector in
5283 the default table (note that preprocessor macros may be used for
5284 chip-specific symbolic vector names):
5285 @smallexample
5286 void __attribute__ ((interrupt (5))) txd1_handler ();
5287 @end smallexample
5289 This example assigns a function to two slots in the default table
5290 (using preprocessor macros defined elsewhere) and makes it the default
5291 for the @code{dct} table:
5292 @smallexample
5293 void __attribute__ ((interrupt (RXD1_VECT,RXD2_VECT,"dct","$default")))
5294         txd1_handler ();
5295 @end smallexample
5297 @item naked
5298 @cindex @code{naked} function attribute, RX
5299 This attribute allows the compiler to construct the
5300 requisite function declaration, while allowing the body of the
5301 function to be assembly code. The specified function will not have
5302 prologue/epilogue sequences generated by the compiler. Only basic
5303 @code{asm} statements can safely be included in naked functions
5304 (@pxref{Basic Asm}). While using extended @code{asm} or a mixture of
5305 basic @code{asm} and C code may appear to work, they cannot be
5306 depended upon to work reliably and are not supported.
5308 @item vector
5309 @cindex @code{vector} function attribute, RX
5310 This RX attribute is similar to the @code{interrupt} attribute, including its
5311 parameters, but does not make the function an interrupt-handler type
5312 function (i.e. it retains the normal C function calling ABI).  See the
5313 @code{interrupt} attribute for a description of its arguments.
5314 @end table
5316 @node S/390 Function Attributes
5317 @subsection S/390 Function Attributes
5319 These function attributes are supported on the S/390:
5321 @table @code
5322 @item hotpatch (@var{halfwords-before-function-label},@var{halfwords-after-function-label})
5323 @cindex @code{hotpatch} function attribute, S/390
5325 On S/390 System z targets, you can use this function attribute to
5326 make GCC generate a ``hot-patching'' function prologue.  If the
5327 @option{-mhotpatch=} command-line option is used at the same time,
5328 the @code{hotpatch} attribute takes precedence.  The first of the
5329 two arguments specifies the number of halfwords to be added before
5330 the function label.  A second argument can be used to specify the
5331 number of halfwords to be added after the function label.  For
5332 both arguments the maximum allowed value is 1000000.
5334 If both arguments are zero, hotpatching is disabled.
5336 @item target (@var{options})
5337 @cindex @code{target} function attribute
5338 As discussed in @ref{Common Function Attributes}, this attribute
5339 allows specification of target-specific compilation options.
5341 On S/390, the following options are supported:
5343 @table @samp
5344 @item arch=
5345 @item tune=
5346 @item stack-guard=
5347 @item stack-size=
5348 @item branch-cost=
5349 @item warn-framesize=
5350 @item backchain
5351 @itemx no-backchain
5352 @item hard-dfp
5353 @itemx no-hard-dfp
5354 @item hard-float
5355 @itemx soft-float
5356 @item htm
5357 @itemx no-htm
5358 @item vx
5359 @itemx no-vx
5360 @item packed-stack
5361 @itemx no-packed-stack
5362 @item small-exec
5363 @itemx no-small-exec
5364 @item mvcle
5365 @itemx no-mvcle
5366 @item warn-dynamicstack
5367 @itemx no-warn-dynamicstack
5368 @end table
5370 The options work exactly like the S/390 specific command line
5371 options (without the prefix @option{-m}) except that they do not
5372 change any feature macros.  For example,
5374 @smallexample
5375 @code{target("no-vx")}
5376 @end smallexample
5378 does not undefine the @code{__VEC__} macro.
5379 @end table
5381 @node SH Function Attributes
5382 @subsection SH Function Attributes
5384 These function attributes are supported on the SH family of processors:
5386 @table @code
5387 @item function_vector
5388 @cindex @code{function_vector} function attribute, SH
5389 @cindex calling functions through the function vector on SH2A
5390 On SH2A targets, this attribute declares a function to be called using the
5391 TBR relative addressing mode.  The argument to this attribute is the entry
5392 number of the same function in a vector table containing all the TBR
5393 relative addressable functions.  For correct operation the TBR must be setup
5394 accordingly to point to the start of the vector table before any functions with
5395 this attribute are invoked.  Usually a good place to do the initialization is
5396 the startup routine.  The TBR relative vector table can have at max 256 function
5397 entries.  The jumps to these functions are generated using a SH2A specific,
5398 non delayed branch instruction JSR/N @@(disp8,TBR).  You must use GAS and GLD
5399 from GNU binutils version 2.7 or later for this attribute to work correctly.
5401 In an application, for a function being called once, this attribute
5402 saves at least 8 bytes of code; and if other successive calls are being
5403 made to the same function, it saves 2 bytes of code per each of these
5404 calls.
5406 @item interrupt_handler
5407 @cindex @code{interrupt_handler} function attribute, SH
5408 Use this attribute to
5409 indicate that the specified function is an interrupt handler.  The compiler
5410 generates function entry and exit sequences suitable for use in an
5411 interrupt handler when this attribute is present.
5413 @item nosave_low_regs
5414 @cindex @code{nosave_low_regs} function attribute, SH
5415 Use this attribute on SH targets to indicate that an @code{interrupt_handler}
5416 function should not save and restore registers R0..R7.  This can be used on SH3*
5417 and SH4* targets that have a second R0..R7 register bank for non-reentrant
5418 interrupt handlers.
5420 @item renesas
5421 @cindex @code{renesas} function attribute, SH
5422 On SH targets this attribute specifies that the function or struct follows the
5423 Renesas ABI.
5425 @item resbank
5426 @cindex @code{resbank} function attribute, SH
5427 On the SH2A target, this attribute enables the high-speed register
5428 saving and restoration using a register bank for @code{interrupt_handler}
5429 routines.  Saving to the bank is performed automatically after the CPU
5430 accepts an interrupt that uses a register bank.
5432 The nineteen 32-bit registers comprising general register R0 to R14,
5433 control register GBR, and system registers MACH, MACL, and PR and the
5434 vector table address offset are saved into a register bank.  Register
5435 banks are stacked in first-in last-out (FILO) sequence.  Restoration
5436 from the bank is executed by issuing a RESBANK instruction.
5438 @item sp_switch
5439 @cindex @code{sp_switch} function attribute, SH
5440 Use this attribute on the SH to indicate an @code{interrupt_handler}
5441 function should switch to an alternate stack.  It expects a string
5442 argument that names a global variable holding the address of the
5443 alternate stack.
5445 @smallexample
5446 void *alt_stack;
5447 void f () __attribute__ ((interrupt_handler,
5448                           sp_switch ("alt_stack")));
5449 @end smallexample
5451 @item trap_exit
5452 @cindex @code{trap_exit} function attribute, SH
5453 Use this attribute on the SH for an @code{interrupt_handler} to return using
5454 @code{trapa} instead of @code{rte}.  This attribute expects an integer
5455 argument specifying the trap number to be used.
5457 @item trapa_handler
5458 @cindex @code{trapa_handler} function attribute, SH
5459 On SH targets this function attribute is similar to @code{interrupt_handler}
5460 but it does not save and restore all registers.
5461 @end table
5463 @node SPU Function Attributes
5464 @subsection SPU Function Attributes
5466 These function attributes are supported by the SPU back end:
5468 @table @code
5469 @item naked
5470 @cindex @code{naked} function attribute, SPU
5471 This attribute allows the compiler to construct the
5472 requisite function declaration, while allowing the body of the
5473 function to be assembly code. The specified function will not have
5474 prologue/epilogue sequences generated by the compiler. Only basic
5475 @code{asm} statements can safely be included in naked functions
5476 (@pxref{Basic Asm}). While using extended @code{asm} or a mixture of
5477 basic @code{asm} and C code may appear to work, they cannot be
5478 depended upon to work reliably and are not supported.
5479 @end table
5481 @node Symbian OS Function Attributes
5482 @subsection Symbian OS Function Attributes
5484 @xref{Microsoft Windows Function Attributes}, for discussion of the
5485 @code{dllexport} and @code{dllimport} attributes.
5487 @node V850 Function Attributes
5488 @subsection V850 Function Attributes
5490 The V850 back end supports these function attributes:
5492 @table @code
5493 @item interrupt
5494 @itemx interrupt_handler
5495 @cindex @code{interrupt} function attribute, V850
5496 @cindex @code{interrupt_handler} function attribute, V850
5497 Use these attributes to indicate
5498 that the specified function is an interrupt handler.  The compiler generates
5499 function entry and exit sequences suitable for use in an interrupt handler
5500 when either attribute is present.
5501 @end table
5503 @node Visium Function Attributes
5504 @subsection Visium Function Attributes
5506 These function attributes are supported by the Visium back end:
5508 @table @code
5509 @item interrupt
5510 @cindex @code{interrupt} function attribute, Visium
5511 Use this attribute to indicate
5512 that the specified function is an interrupt handler.  The compiler generates
5513 function entry and exit sequences suitable for use in an interrupt handler
5514 when this attribute is present.
5515 @end table
5517 @node x86 Function Attributes
5518 @subsection x86 Function Attributes
5520 These function attributes are supported by the x86 back end:
5522 @table @code
5523 @item cdecl
5524 @cindex @code{cdecl} function attribute, x86-32
5525 @cindex functions that pop the argument stack on x86-32
5526 @opindex mrtd
5527 On the x86-32 targets, the @code{cdecl} attribute causes the compiler to
5528 assume that the calling function pops off the stack space used to
5529 pass arguments.  This is
5530 useful to override the effects of the @option{-mrtd} switch.
5532 @item fastcall
5533 @cindex @code{fastcall} function attribute, x86-32
5534 @cindex functions that pop the argument stack on x86-32
5535 On x86-32 targets, the @code{fastcall} attribute causes the compiler to
5536 pass the first argument (if of integral type) in the register ECX and
5537 the second argument (if of integral type) in the register EDX@.  Subsequent
5538 and other typed arguments are passed on the stack.  The called function
5539 pops the arguments off the stack.  If the number of arguments is variable all
5540 arguments are pushed on the stack.
5542 @item thiscall
5543 @cindex @code{thiscall} function attribute, x86-32
5544 @cindex functions that pop the argument stack on x86-32
5545 On x86-32 targets, the @code{thiscall} attribute causes the compiler to
5546 pass the first argument (if of integral type) in the register ECX.
5547 Subsequent and other typed arguments are passed on the stack. The called
5548 function pops the arguments off the stack.
5549 If the number of arguments is variable all arguments are pushed on the
5550 stack.
5551 The @code{thiscall} attribute is intended for C++ non-static member functions.
5552 As a GCC extension, this calling convention can be used for C functions
5553 and for static member methods.
5555 @item ms_abi
5556 @itemx sysv_abi
5557 @cindex @code{ms_abi} function attribute, x86
5558 @cindex @code{sysv_abi} function attribute, x86
5560 On 32-bit and 64-bit x86 targets, you can use an ABI attribute
5561 to indicate which calling convention should be used for a function.  The
5562 @code{ms_abi} attribute tells the compiler to use the Microsoft ABI,
5563 while the @code{sysv_abi} attribute tells the compiler to use the ABI
5564 used on GNU/Linux and other systems.  The default is to use the Microsoft ABI
5565 when targeting Windows.  On all other systems, the default is the x86/AMD ABI.
5567 Note, the @code{ms_abi} attribute for Microsoft Windows 64-bit targets currently
5568 requires the @option{-maccumulate-outgoing-args} option.
5570 @item callee_pop_aggregate_return (@var{number})
5571 @cindex @code{callee_pop_aggregate_return} function attribute, x86
5573 On x86-32 targets, you can use this attribute to control how
5574 aggregates are returned in memory.  If the caller is responsible for
5575 popping the hidden pointer together with the rest of the arguments, specify
5576 @var{number} equal to zero.  If callee is responsible for popping the
5577 hidden pointer, specify @var{number} equal to one.  
5579 The default x86-32 ABI assumes that the callee pops the
5580 stack for hidden pointer.  However, on x86-32 Microsoft Windows targets,
5581 the compiler assumes that the
5582 caller pops the stack for hidden pointer.
5584 @item ms_hook_prologue
5585 @cindex @code{ms_hook_prologue} function attribute, x86
5587 On 32-bit and 64-bit x86 targets, you can use
5588 this function attribute to make GCC generate the ``hot-patching'' function
5589 prologue used in Win32 API functions in Microsoft Windows XP Service Pack 2
5590 and newer.
5592 @item naked
5593 @cindex @code{naked} function attribute, x86
5594 This attribute allows the compiler to construct the
5595 requisite function declaration, while allowing the body of the
5596 function to be assembly code. The specified function will not have
5597 prologue/epilogue sequences generated by the compiler. Only basic
5598 @code{asm} statements can safely be included in naked functions
5599 (@pxref{Basic Asm}). While using extended @code{asm} or a mixture of
5600 basic @code{asm} and C code may appear to work, they cannot be
5601 depended upon to work reliably and are not supported.
5603 @item regparm (@var{number})
5604 @cindex @code{regparm} function attribute, x86
5605 @cindex functions that are passed arguments in registers on x86-32
5606 On x86-32 targets, the @code{regparm} attribute causes the compiler to
5607 pass arguments number one to @var{number} if they are of integral type
5608 in registers EAX, EDX, and ECX instead of on the stack.  Functions that
5609 take a variable number of arguments continue to be passed all of their
5610 arguments on the stack.
5612 Beware that on some ELF systems this attribute is unsuitable for
5613 global functions in shared libraries with lazy binding (which is the
5614 default).  Lazy binding sends the first call via resolving code in
5615 the loader, which might assume EAX, EDX and ECX can be clobbered, as
5616 per the standard calling conventions.  Solaris 8 is affected by this.
5617 Systems with the GNU C Library version 2.1 or higher
5618 and FreeBSD are believed to be
5619 safe since the loaders there save EAX, EDX and ECX.  (Lazy binding can be
5620 disabled with the linker or the loader if desired, to avoid the
5621 problem.)
5623 @item sseregparm
5624 @cindex @code{sseregparm} function attribute, x86
5625 On x86-32 targets with SSE support, the @code{sseregparm} attribute
5626 causes the compiler to pass up to 3 floating-point arguments in
5627 SSE registers instead of on the stack.  Functions that take a
5628 variable number of arguments continue to pass all of their
5629 floating-point arguments on the stack.
5631 @item force_align_arg_pointer
5632 @cindex @code{force_align_arg_pointer} function attribute, x86
5633 On x86 targets, the @code{force_align_arg_pointer} attribute may be
5634 applied to individual function definitions, generating an alternate
5635 prologue and epilogue that realigns the run-time stack if necessary.
5636 This supports mixing legacy codes that run with a 4-byte aligned stack
5637 with modern codes that keep a 16-byte stack for SSE compatibility.
5639 @item stdcall
5640 @cindex @code{stdcall} function attribute, x86-32
5641 @cindex functions that pop the argument stack on x86-32
5642 On x86-32 targets, the @code{stdcall} attribute causes the compiler to
5643 assume that the called function pops off the stack space used to
5644 pass arguments, unless it takes a variable number of arguments.
5646 @item no_caller_saved_registers
5647 @cindex @code{no_caller_saved_registers} function attribute, x86
5648 Use this attribute to indicate that the specified function has no
5649 caller-saved registers. That is, all registers are callee-saved. For
5650 example, this attribute can be used for a function called from an
5651 interrupt handler. The compiler generates proper function entry and
5652 exit sequences to save and restore any modified registers, except for
5653 the EFLAGS register.  Since GCC doesn't preserve SSE, MMX nor x87
5654 states, the GCC option @option{-mgeneral-regs-only} should be used to
5655 compile functions with @code{no_caller_saved_registers} attribute.
5657 @item interrupt
5658 @cindex @code{interrupt} function attribute, x86
5659 Use this attribute to indicate that the specified function is an
5660 interrupt handler or an exception handler (depending on parameters passed
5661 to the function, explained further).  The compiler generates function
5662 entry and exit sequences suitable for use in an interrupt handler when
5663 this attribute is present.  The @code{IRET} instruction, instead of the
5664 @code{RET} instruction, is used to return from interrupt handlers.  All
5665 registers, except for the EFLAGS register which is restored by the
5666 @code{IRET} instruction, are preserved by the compiler.  Since GCC
5667 doesn't preserve SSE, MMX nor x87 states, the GCC option
5668 @option{-mgeneral-regs-only} should be used to compile interrupt and
5669 exception handlers.
5671 Any interruptible-without-stack-switch code must be compiled with
5672 @option{-mno-red-zone} since interrupt handlers can and will, because
5673 of the hardware design, touch the red zone.
5675 An interrupt handler must be declared with a mandatory pointer
5676 argument:
5678 @smallexample
5679 struct interrupt_frame;
5681 __attribute__ ((interrupt))
5682 void
5683 f (struct interrupt_frame *frame)
5686 @end smallexample
5688 @noindent
5689 and you must define @code{struct interrupt_frame} as described in the
5690 processor's manual.
5692 Exception handlers differ from interrupt handlers because the system
5693 pushes an error code on the stack.  An exception handler declaration is
5694 similar to that for an interrupt handler, but with a different mandatory
5695 function signature.  The compiler arranges to pop the error code off the
5696 stack before the @code{IRET} instruction.
5698 @smallexample
5699 #ifdef __x86_64__
5700 typedef unsigned long long int uword_t;
5701 #else
5702 typedef unsigned int uword_t;
5703 #endif
5705 struct interrupt_frame;
5707 __attribute__ ((interrupt))
5708 void
5709 f (struct interrupt_frame *frame, uword_t error_code)
5711   ...
5713 @end smallexample
5715 Exception handlers should only be used for exceptions that push an error
5716 code; you should use an interrupt handler in other cases.  The system
5717 will crash if the wrong kind of handler is used.
5719 @item target (@var{options})
5720 @cindex @code{target} function attribute
5721 As discussed in @ref{Common Function Attributes}, this attribute 
5722 allows specification of target-specific compilation options.
5724 On the x86, the following options are allowed:
5725 @table @samp
5726 @item abm
5727 @itemx no-abm
5728 @cindex @code{target("abm")} function attribute, x86
5729 Enable/disable the generation of the advanced bit instructions.
5731 @item aes
5732 @itemx no-aes
5733 @cindex @code{target("aes")} function attribute, x86
5734 Enable/disable the generation of the AES instructions.
5736 @item default
5737 @cindex @code{target("default")} function attribute, x86
5738 @xref{Function Multiversioning}, where it is used to specify the
5739 default function version.
5741 @item mmx
5742 @itemx no-mmx
5743 @cindex @code{target("mmx")} function attribute, x86
5744 Enable/disable the generation of the MMX instructions.
5746 @item pclmul
5747 @itemx no-pclmul
5748 @cindex @code{target("pclmul")} function attribute, x86
5749 Enable/disable the generation of the PCLMUL instructions.
5751 @item popcnt
5752 @itemx no-popcnt
5753 @cindex @code{target("popcnt")} function attribute, x86
5754 Enable/disable the generation of the POPCNT instruction.
5756 @item sse
5757 @itemx no-sse
5758 @cindex @code{target("sse")} function attribute, x86
5759 Enable/disable the generation of the SSE instructions.
5761 @item sse2
5762 @itemx no-sse2
5763 @cindex @code{target("sse2")} function attribute, x86
5764 Enable/disable the generation of the SSE2 instructions.
5766 @item sse3
5767 @itemx no-sse3
5768 @cindex @code{target("sse3")} function attribute, x86
5769 Enable/disable the generation of the SSE3 instructions.
5771 @item sse4
5772 @itemx no-sse4
5773 @cindex @code{target("sse4")} function attribute, x86
5774 Enable/disable the generation of the SSE4 instructions (both SSE4.1
5775 and SSE4.2).
5777 @item sse4.1
5778 @itemx no-sse4.1
5779 @cindex @code{target("sse4.1")} function attribute, x86
5780 Enable/disable the generation of the sse4.1 instructions.
5782 @item sse4.2
5783 @itemx no-sse4.2
5784 @cindex @code{target("sse4.2")} function attribute, x86
5785 Enable/disable the generation of the sse4.2 instructions.
5787 @item sse4a
5788 @itemx no-sse4a
5789 @cindex @code{target("sse4a")} function attribute, x86
5790 Enable/disable the generation of the SSE4A instructions.
5792 @item fma4
5793 @itemx no-fma4
5794 @cindex @code{target("fma4")} function attribute, x86
5795 Enable/disable the generation of the FMA4 instructions.
5797 @item xop
5798 @itemx no-xop
5799 @cindex @code{target("xop")} function attribute, x86
5800 Enable/disable the generation of the XOP instructions.
5802 @item lwp
5803 @itemx no-lwp
5804 @cindex @code{target("lwp")} function attribute, x86
5805 Enable/disable the generation of the LWP instructions.
5807 @item ssse3
5808 @itemx no-ssse3
5809 @cindex @code{target("ssse3")} function attribute, x86
5810 Enable/disable the generation of the SSSE3 instructions.
5812 @item cld
5813 @itemx no-cld
5814 @cindex @code{target("cld")} function attribute, x86
5815 Enable/disable the generation of the CLD before string moves.
5817 @item fancy-math-387
5818 @itemx no-fancy-math-387
5819 @cindex @code{target("fancy-math-387")} function attribute, x86
5820 Enable/disable the generation of the @code{sin}, @code{cos}, and
5821 @code{sqrt} instructions on the 387 floating-point unit.
5823 @item ieee-fp
5824 @itemx no-ieee-fp
5825 @cindex @code{target("ieee-fp")} function attribute, x86
5826 Enable/disable the generation of floating point that depends on IEEE arithmetic.
5828 @item inline-all-stringops
5829 @itemx no-inline-all-stringops
5830 @cindex @code{target("inline-all-stringops")} function attribute, x86
5831 Enable/disable inlining of string operations.
5833 @item inline-stringops-dynamically
5834 @itemx no-inline-stringops-dynamically
5835 @cindex @code{target("inline-stringops-dynamically")} function attribute, x86
5836 Enable/disable the generation of the inline code to do small string
5837 operations and calling the library routines for large operations.
5839 @item align-stringops
5840 @itemx no-align-stringops
5841 @cindex @code{target("align-stringops")} function attribute, x86
5842 Do/do not align destination of inlined string operations.
5844 @item recip
5845 @itemx no-recip
5846 @cindex @code{target("recip")} function attribute, x86
5847 Enable/disable the generation of RCPSS, RCPPS, RSQRTSS and RSQRTPS
5848 instructions followed an additional Newton-Raphson step instead of
5849 doing a floating-point division.
5851 @item arch=@var{ARCH}
5852 @cindex @code{target("arch=@var{ARCH}")} function attribute, x86
5853 Specify the architecture to generate code for in compiling the function.
5855 @item tune=@var{TUNE}
5856 @cindex @code{target("tune=@var{TUNE}")} function attribute, x86
5857 Specify the architecture to tune for in compiling the function.
5859 @item fpmath=@var{FPMATH}
5860 @cindex @code{target("fpmath=@var{FPMATH}")} function attribute, x86
5861 Specify which floating-point unit to use.  You must specify the
5862 @code{target("fpmath=sse,387")} option as
5863 @code{target("fpmath=sse+387")} because the comma would separate
5864 different options.
5866 @item indirect_branch("@var{choice}")
5867 @cindex @code{indirect_branch} function attribute, x86
5868 On x86 targets, the @code{indirect_branch} attribute causes the compiler
5869 to convert indirect call and jump with @var{choice}.  @samp{keep}
5870 keeps indirect call and jump unmodified.  @samp{thunk} converts indirect
5871 call and jump to call and return thunk.  @samp{thunk-inline} converts
5872 indirect call and jump to inlined call and return thunk.
5873 @samp{thunk-extern} converts indirect call and jump to external call
5874 and return thunk provided in a separate object file.
5876 @item function_return("@var{choice}")
5877 @cindex @code{function_return} function attribute, x86
5878 On x86 targets, the @code{function_return} attribute causes the compiler
5879 to convert function return with @var{choice}.  @samp{keep} keeps function
5880 return unmodified.  @samp{thunk} converts function return to call and
5881 return thunk.  @samp{thunk-inline} converts function return to inlined
5882 call and return thunk.  @samp{thunk-extern} converts function return to
5883 external call and return thunk provided in a separate object file.
5885 @item nocf_check
5886 @cindex @code{nocf_check} function attribute
5887 The @code{nocf_check} attribute on a function is used to inform the
5888 compiler that the function's prologue should not be instrumented when
5889 compiled with the @option{-fcf-protection=branch} option.  The
5890 compiler assumes that the function's address is a valid target for a
5891 control-flow transfer.
5893 The @code{nocf_check} attribute on a type of pointer to function is
5894 used to inform the compiler that a call through the pointer should
5895 not be instrumented when compiled with the
5896 @option{-fcf-protection=branch} option.  The compiler assumes
5897 that the function's address from the pointer is a valid target for
5898 a control-flow transfer.  A direct function call through a function
5899 name is assumed to be a safe call thus direct calls are not
5900 instrumented by the compiler.
5902 The @code{nocf_check} attribute is applied to an object's type.
5903 In case of assignment of a function address or a function pointer to
5904 another pointer, the attribute is not carried over from the right-hand
5905 object's type; the type of left-hand object stays unchanged.  The
5906 compiler checks for @code{nocf_check} attribute mismatch and reports
5907 a warning in case of mismatch.
5909 @smallexample
5911 int foo (void) __attribute__(nocf_check);
5912 void (*foo1)(void) __attribute__(nocf_check);
5913 void (*foo2)(void);
5915 /* foo's address is assumed to be valid.  */
5917 foo (void) 
5919   /* This call site is not checked for control-flow 
5920      validity.  */
5921   (*foo1)();
5923   /* A warning is issued about attribute mismatch.  */
5924   foo1 = foo2; 
5926   /* This call site is still not checked.  */
5927   (*foo1)();
5929   /* This call site is checked.  */
5930   (*foo2)();
5932   /* A warning is issued about attribute mismatch.  */
5933   foo2 = foo1; 
5935   /* This call site is still checked.  */
5936   (*foo2)();
5938   return 0;
5940 @end smallexample
5942 @item indirect_return
5943 @cindex @code{indirect_return} function attribute, x86
5945 The @code{indirect_return} attribute can be applied to a function,
5946 as well as variable or type of function pointer to inform the
5947 compiler that the function may return via indirect branch.
5949 @end table
5951 On the x86, the inliner does not inline a
5952 function that has different target options than the caller, unless the
5953 callee has a subset of the target options of the caller.  For example
5954 a function declared with @code{target("sse3")} can inline a function
5955 with @code{target("sse2")}, since @code{-msse3} implies @code{-msse2}.
5956 @end table
5958 @node Xstormy16 Function Attributes
5959 @subsection Xstormy16 Function Attributes
5961 These function attributes are supported by the Xstormy16 back end:
5963 @table @code
5964 @item interrupt
5965 @cindex @code{interrupt} function attribute, Xstormy16
5966 Use this attribute to indicate
5967 that the specified function is an interrupt handler.  The compiler generates
5968 function entry and exit sequences suitable for use in an interrupt handler
5969 when this attribute is present.
5970 @end table
5972 @node Variable Attributes
5973 @section Specifying Attributes of Variables
5974 @cindex attribute of variables
5975 @cindex variable attributes
5977 The keyword @code{__attribute__} allows you to specify special
5978 attributes of variables or structure fields.  This keyword is followed
5979 by an attribute specification inside double parentheses.  Some
5980 attributes are currently defined generically for variables.
5981 Other attributes are defined for variables on particular target
5982 systems.  Other attributes are available for functions
5983 (@pxref{Function Attributes}), labels (@pxref{Label Attributes}),
5984 enumerators (@pxref{Enumerator Attributes}), statements
5985 (@pxref{Statement Attributes}), and for types (@pxref{Type Attributes}).
5986 Other front ends might define more attributes
5987 (@pxref{C++ Extensions,,Extensions to the C++ Language}).
5989 @xref{Attribute Syntax}, for details of the exact syntax for using
5990 attributes.
5992 @menu
5993 * Common Variable Attributes::
5994 * ARC Variable Attributes::
5995 * AVR Variable Attributes::
5996 * Blackfin Variable Attributes::
5997 * H8/300 Variable Attributes::
5998 * IA-64 Variable Attributes::
5999 * M32R/D Variable Attributes::
6000 * MeP Variable Attributes::
6001 * Microsoft Windows Variable Attributes::
6002 * MSP430 Variable Attributes::
6003 * Nvidia PTX Variable Attributes::
6004 * PowerPC Variable Attributes::
6005 * RL78 Variable Attributes::
6006 * SPU Variable Attributes::
6007 * V850 Variable Attributes::
6008 * x86 Variable Attributes::
6009 * Xstormy16 Variable Attributes::
6010 @end menu
6012 @node Common Variable Attributes
6013 @subsection Common Variable Attributes
6015 The following attributes are supported on most targets.
6017 @table @code
6018 @cindex @code{aligned} variable attribute
6019 @item aligned (@var{alignment})
6020 This attribute specifies a minimum alignment for the variable or
6021 structure field, measured in bytes.  For example, the declaration:
6023 @smallexample
6024 int x __attribute__ ((aligned (16))) = 0;
6025 @end smallexample
6027 @noindent
6028 causes the compiler to allocate the global variable @code{x} on a
6029 16-byte boundary.  On a 68040, this could be used in conjunction with
6030 an @code{asm} expression to access the @code{move16} instruction which
6031 requires 16-byte aligned operands.
6033 You can also specify the alignment of structure fields.  For example, to
6034 create a double-word aligned @code{int} pair, you could write:
6036 @smallexample
6037 struct foo @{ int x[2] __attribute__ ((aligned (8))); @};
6038 @end smallexample
6040 @noindent
6041 This is an alternative to creating a union with a @code{double} member,
6042 which forces the union to be double-word aligned.
6044 As in the preceding examples, you can explicitly specify the alignment
6045 (in bytes) that you wish the compiler to use for a given variable or
6046 structure field.  Alternatively, you can leave out the alignment factor
6047 and just ask the compiler to align a variable or field to the
6048 default alignment for the target architecture you are compiling for.
6049 The default alignment is sufficient for all scalar types, but may not be
6050 enough for all vector types on a target that supports vector operations.
6051 The default alignment is fixed for a particular target ABI.
6053 GCC also provides a target specific macro @code{__BIGGEST_ALIGNMENT__},
6054 which is the largest alignment ever used for any data type on the
6055 target machine you are compiling for.  For example, you could write:
6057 @smallexample
6058 short array[3] __attribute__ ((aligned (__BIGGEST_ALIGNMENT__)));
6059 @end smallexample
6061 The compiler automatically sets the alignment for the declared
6062 variable or field to @code{__BIGGEST_ALIGNMENT__}.  Doing this can
6063 often make copy operations more efficient, because the compiler can
6064 use whatever instructions copy the biggest chunks of memory when
6065 performing copies to or from the variables or fields that you have
6066 aligned this way.  Note that the value of @code{__BIGGEST_ALIGNMENT__}
6067 may change depending on command-line options.
6069 When used on a struct, or struct member, the @code{aligned} attribute can
6070 only increase the alignment; in order to decrease it, the @code{packed}
6071 attribute must be specified as well.  When used as part of a typedef, the
6072 @code{aligned} attribute can both increase and decrease alignment, and
6073 specifying the @code{packed} attribute generates a warning.
6075 Note that the effectiveness of @code{aligned} attributes may be limited
6076 by inherent limitations in your linker.  On many systems, the linker is
6077 only able to arrange for variables to be aligned up to a certain maximum
6078 alignment.  (For some linkers, the maximum supported alignment may
6079 be very very small.)  If your linker is only able to align variables
6080 up to a maximum of 8-byte alignment, then specifying @code{aligned(16)}
6081 in an @code{__attribute__} still only provides you with 8-byte
6082 alignment.  See your linker documentation for further information.
6084 The @code{aligned} attribute can also be used for functions
6085 (@pxref{Common Function Attributes}.)
6087 @cindex @code{warn_if_not_aligned} variable attribute
6088 @item warn_if_not_aligned (@var{alignment})
6089 This attribute specifies a threshold for the structure field, measured
6090 in bytes.  If the structure field is aligned below the threshold, a
6091 warning will be issued.  For example, the declaration:
6093 @smallexample
6094 struct foo
6096   int i1;
6097   int i2;
6098   unsigned long long x __attribute__((warn_if_not_aligned(16)));
6100 @end smallexample
6102 @noindent
6103 causes the compiler to issue an warning on @code{struct foo}, like
6104 @samp{warning: alignment 8 of 'struct foo' is less than 16}.
6105 The compiler also issues a warning, like @samp{warning: 'x' offset
6106 8 in 'struct foo' isn't aligned to 16}, when the structure field has
6107 the misaligned offset:
6109 @smallexample
6110 struct foo
6112   int i1;
6113   int i2;
6114   unsigned long long x __attribute__((warn_if_not_aligned(16)));
6115 @} __attribute__((aligned(16)));
6116 @end smallexample
6118 This warning can be disabled by @option{-Wno-if-not-aligned}.
6119 The @code{warn_if_not_aligned} attribute can also be used for types
6120 (@pxref{Common Type Attributes}.)
6122 @item cleanup (@var{cleanup_function})
6123 @cindex @code{cleanup} variable attribute
6124 The @code{cleanup} attribute runs a function when the variable goes
6125 out of scope.  This attribute can only be applied to auto function
6126 scope variables; it may not be applied to parameters or variables
6127 with static storage duration.  The function must take one parameter,
6128 a pointer to a type compatible with the variable.  The return value
6129 of the function (if any) is ignored.
6131 If @option{-fexceptions} is enabled, then @var{cleanup_function}
6132 is run during the stack unwinding that happens during the
6133 processing of the exception.  Note that the @code{cleanup} attribute
6134 does not allow the exception to be caught, only to perform an action.
6135 It is undefined what happens if @var{cleanup_function} does not
6136 return normally.
6138 @item common
6139 @itemx nocommon
6140 @cindex @code{common} variable attribute
6141 @cindex @code{nocommon} variable attribute
6142 @opindex fcommon
6143 @opindex fno-common
6144 The @code{common} attribute requests GCC to place a variable in
6145 ``common'' storage.  The @code{nocommon} attribute requests the
6146 opposite---to allocate space for it directly.
6148 These attributes override the default chosen by the
6149 @option{-fno-common} and @option{-fcommon} flags respectively.
6151 @item deprecated
6152 @itemx deprecated (@var{msg})
6153 @cindex @code{deprecated} variable attribute
6154 The @code{deprecated} attribute results in a warning if the variable
6155 is used anywhere in the source file.  This is useful when identifying
6156 variables that are expected to be removed in a future version of a
6157 program.  The warning also includes the location of the declaration
6158 of the deprecated variable, to enable users to easily find further
6159 information about why the variable is deprecated, or what they should
6160 do instead.  Note that the warning only occurs for uses:
6162 @smallexample
6163 extern int old_var __attribute__ ((deprecated));
6164 extern int old_var;
6165 int new_fn () @{ return old_var; @}
6166 @end smallexample
6168 @noindent
6169 results in a warning on line 3 but not line 2.  The optional @var{msg}
6170 argument, which must be a string, is printed in the warning if
6171 present.
6173 The @code{deprecated} attribute can also be used for functions and
6174 types (@pxref{Common Function Attributes},
6175 @pxref{Common Type Attributes}).
6177 The message attached to the attribute is affected by the setting of
6178 the @option{-fmessage-length} option.
6180 @item mode (@var{mode})
6181 @cindex @code{mode} variable attribute
6182 This attribute specifies the data type for the declaration---whichever
6183 type corresponds to the mode @var{mode}.  This in effect lets you
6184 request an integer or floating-point type according to its width.
6186 @xref{Machine Modes,,, gccint, GNU Compiler Collection (GCC) Internals},
6187 for a list of the possible keywords for @var{mode}.
6188 You may also specify a mode of @code{byte} or @code{__byte__} to
6189 indicate the mode corresponding to a one-byte integer, @code{word} or
6190 @code{__word__} for the mode of a one-word integer, and @code{pointer}
6191 or @code{__pointer__} for the mode used to represent pointers.
6193 @item nonstring
6194 @cindex @code{nonstring} variable attribute
6195 The @code{nonstring} variable attribute specifies that an object or member
6196 declaration with type array of @code{char}, @code{signed char}, or
6197 @code{unsigned char}, or pointer to such a type is intended to store
6198 character arrays that do not necessarily contain a terminating @code{NUL}.
6199 This is useful in detecting uses of such arrays or pointers with functions
6200 that expect @code{NUL}-terminated strings, and to avoid warnings when such
6201 an array or pointer is used as an argument to a bounded string manipulation
6202 function such as @code{strncpy}.  For example, without the attribute, GCC
6203 will issue a warning for the @code{strncpy} call below because it may
6204 truncate the copy without appending the terminating @code{NUL} character.
6205 Using the attribute makes it possible to suppress the warning.  However,
6206 when the array is declared with the attribute the call to @code{strlen} is
6207 diagnosed because when the array doesn't contain a @code{NUL}-terminated
6208 string the call is undefined.  To copy, compare, of search non-string
6209 character arrays use the @code{memcpy}, @code{memcmp}, @code{memchr},
6210 and other functions that operate on arrays of bytes.  In addition,
6211 calling @code{strnlen} and @code{strndup} with such arrays is safe
6212 provided a suitable bound is specified, and not diagnosed.
6214 @smallexample
6215 struct Data
6217   char name [32] __attribute__ ((nonstring));
6220 int f (struct Data *pd, const char *s)
6222   strncpy (pd->name, s, sizeof pd->name);
6223   @dots{}
6224   return strlen (pd->name);   // unsafe, gets a warning
6226 @end smallexample
6228 @item packed
6229 @cindex @code{packed} variable attribute
6230 The @code{packed} attribute specifies that a structure member should have
6231 the smallest possible alignment---one bit for a bit-field and one byte
6232 otherwise, unless a larger value is specified with the @code{aligned}
6233 attribute.  The attribute does not apply to non-member objects.
6235 For example in the structure below, the member array @code{x} is packed
6236 so that it immediately follows @code{a} with no intervening padding:
6238 @smallexample
6239 struct foo
6241   char a;
6242   int x[2] __attribute__ ((packed));
6244 @end smallexample
6246 @emph{Note:} The 4.1, 4.2 and 4.3 series of GCC ignore the
6247 @code{packed} attribute on bit-fields of type @code{char}.  This has
6248 been fixed in GCC 4.4 but the change can lead to differences in the
6249 structure layout.  See the documentation of
6250 @option{-Wpacked-bitfield-compat} for more information.
6252 @item section ("@var{section-name}")
6253 @cindex @code{section} variable attribute
6254 Normally, the compiler places the objects it generates in sections like
6255 @code{data} and @code{bss}.  Sometimes, however, you need additional sections,
6256 or you need certain particular variables to appear in special sections,
6257 for example to map to special hardware.  The @code{section}
6258 attribute specifies that a variable (or function) lives in a particular
6259 section.  For example, this small program uses several specific section names:
6261 @smallexample
6262 struct duart a __attribute__ ((section ("DUART_A"))) = @{ 0 @};
6263 struct duart b __attribute__ ((section ("DUART_B"))) = @{ 0 @};
6264 char stack[10000] __attribute__ ((section ("STACK"))) = @{ 0 @};
6265 int init_data __attribute__ ((section ("INITDATA")));
6267 main()
6269   /* @r{Initialize stack pointer} */
6270   init_sp (stack + sizeof (stack));
6272   /* @r{Initialize initialized data} */
6273   memcpy (&init_data, &data, &edata - &data);
6275   /* @r{Turn on the serial ports} */
6276   init_duart (&a);
6277   init_duart (&b);
6279 @end smallexample
6281 @noindent
6282 Use the @code{section} attribute with
6283 @emph{global} variables and not @emph{local} variables,
6284 as shown in the example.
6286 You may use the @code{section} attribute with initialized or
6287 uninitialized global variables but the linker requires
6288 each object be defined once, with the exception that uninitialized
6289 variables tentatively go in the @code{common} (or @code{bss}) section
6290 and can be multiply ``defined''.  Using the @code{section} attribute
6291 changes what section the variable goes into and may cause the
6292 linker to issue an error if an uninitialized variable has multiple
6293 definitions.  You can force a variable to be initialized with the
6294 @option{-fno-common} flag or the @code{nocommon} attribute.
6296 Some file formats do not support arbitrary sections so the @code{section}
6297 attribute is not available on all platforms.
6298 If you need to map the entire contents of a module to a particular
6299 section, consider using the facilities of the linker instead.
6301 @item tls_model ("@var{tls_model}")
6302 @cindex @code{tls_model} variable attribute
6303 The @code{tls_model} attribute sets thread-local storage model
6304 (@pxref{Thread-Local}) of a particular @code{__thread} variable,
6305 overriding @option{-ftls-model=} command-line switch on a per-variable
6306 basis.
6307 The @var{tls_model} argument should be one of @code{global-dynamic},
6308 @code{local-dynamic}, @code{initial-exec} or @code{local-exec}.
6310 Not all targets support this attribute.
6312 @item unused
6313 @cindex @code{unused} variable attribute
6314 This attribute, attached to a variable, means that the variable is meant
6315 to be possibly unused.  GCC does not produce a warning for this
6316 variable.
6318 @item used
6319 @cindex @code{used} variable attribute
6320 This attribute, attached to a variable with static storage, means that
6321 the variable must be emitted even if it appears that the variable is not
6322 referenced.
6324 When applied to a static data member of a C++ class template, the
6325 attribute also means that the member is instantiated if the
6326 class itself is instantiated.
6328 @item vector_size (@var{bytes})
6329 @cindex @code{vector_size} variable attribute
6330 This attribute specifies the vector size for the variable, measured in
6331 bytes.  For example, the declaration:
6333 @smallexample
6334 int foo __attribute__ ((vector_size (16)));
6335 @end smallexample
6337 @noindent
6338 causes the compiler to set the mode for @code{foo}, to be 16 bytes,
6339 divided into @code{int} sized units.  Assuming a 32-bit int (a vector of
6340 4 units of 4 bytes), the corresponding mode of @code{foo} is V4SI@.
6342 This attribute is only applicable to integral and float scalars,
6343 although arrays, pointers, and function return values are allowed in
6344 conjunction with this construct.
6346 Aggregates with this attribute are invalid, even if they are of the same
6347 size as a corresponding scalar.  For example, the declaration:
6349 @smallexample
6350 struct S @{ int a; @};
6351 struct S  __attribute__ ((vector_size (16))) foo;
6352 @end smallexample
6354 @noindent
6355 is invalid even if the size of the structure is the same as the size of
6356 the @code{int}.
6358 @item visibility ("@var{visibility_type}")
6359 @cindex @code{visibility} variable attribute
6360 This attribute affects the linkage of the declaration to which it is attached.
6361 The @code{visibility} attribute is described in
6362 @ref{Common Function Attributes}.
6364 @item weak
6365 @cindex @code{weak} variable attribute
6366 The @code{weak} attribute is described in
6367 @ref{Common Function Attributes}.
6369 @end table
6371 @node ARC Variable Attributes
6372 @subsection ARC Variable Attributes
6374 @table @code
6375 @item aux
6376 @cindex @code{aux} variable attribute, ARC
6377 The @code{aux} attribute is used to directly access the ARC's
6378 auxiliary register space from C.  The auxilirary register number is
6379 given via attribute argument.
6381 @end table
6383 @node AVR Variable Attributes
6384 @subsection AVR Variable Attributes
6386 @table @code
6387 @item progmem
6388 @cindex @code{progmem} variable attribute, AVR
6389 The @code{progmem} attribute is used on the AVR to place read-only
6390 data in the non-volatile program memory (flash). The @code{progmem}
6391 attribute accomplishes this by putting respective variables into a
6392 section whose name starts with @code{.progmem}.
6394 This attribute works similar to the @code{section} attribute
6395 but adds additional checking.
6397 @table @asis
6398 @item @bullet{}@tie{} Ordinary AVR cores with 32 general purpose registers:
6399 @code{progmem} affects the location
6400 of the data but not how this data is accessed.
6401 In order to read data located with the @code{progmem} attribute
6402 (inline) assembler must be used.
6403 @smallexample
6404 /* Use custom macros from @w{@uref{http://nongnu.org/avr-libc/user-manual/,AVR-LibC}} */
6405 #include <avr/pgmspace.h> 
6407 /* Locate var in flash memory */
6408 const int var[2] PROGMEM = @{ 1, 2 @};
6410 int read_var (int i)
6412     /* Access var[] by accessor macro from avr/pgmspace.h */
6413     return (int) pgm_read_word (& var[i]);
6415 @end smallexample
6417 AVR is a Harvard architecture processor and data and read-only data
6418 normally resides in the data memory (RAM).
6420 See also the @ref{AVR Named Address Spaces} section for
6421 an alternate way to locate and access data in flash memory.
6423 @item @bullet{}@tie{} AVR cores with flash memory visible in the RAM address range:
6424 On such devices, there is no need for attribute @code{progmem} or
6425 @ref{AVR Named Address Spaces,,@code{__flash}} qualifier at all.
6426 Just use standard C / C++.  The compiler will generate @code{LD*}
6427 instructions.  As flash memory is visible in the RAM address range,
6428 and the default linker script does @emph{not} locate @code{.rodata} in
6429 RAM, no special features are needed in order not to waste RAM for
6430 read-only data or to read from flash.  You might even get slightly better
6431 performance by
6432 avoiding @code{progmem} and @code{__flash}.  This applies to devices from
6433 families @code{avrtiny} and @code{avrxmega3}, see @ref{AVR Options} for
6434 an overview.
6436 @item @bullet{}@tie{}Reduced AVR Tiny cores like ATtiny40:
6437 The compiler adds @code{0x4000}
6438 to the addresses of objects and declarations in @code{progmem} and locates
6439 the objects in flash memory, namely in section @code{.progmem.data}.
6440 The offset is needed because the flash memory is visible in the RAM
6441 address space starting at address @code{0x4000}.
6443 Data in @code{progmem} can be accessed by means of ordinary C@tie{}code,
6444 no special functions or macros are needed.
6446 @smallexample
6447 /* var is located in flash memory */
6448 extern const int var[2] __attribute__((progmem));
6450 int read_var (int i)
6452     return var[i];
6454 @end smallexample
6456 Please notice that on these devices, there is no need for @code{progmem}
6457 at all.
6459 @end table
6461 @item io
6462 @itemx io (@var{addr})
6463 @cindex @code{io} variable attribute, AVR
6464 Variables with the @code{io} attribute are used to address
6465 memory-mapped peripherals in the io address range.
6466 If an address is specified, the variable
6467 is assigned that address, and the value is interpreted as an
6468 address in the data address space.
6469 Example:
6471 @smallexample
6472 volatile int porta __attribute__((io (0x22)));
6473 @end smallexample
6475 The address specified in the address in the data address range.
6477 Otherwise, the variable it is not assigned an address, but the
6478 compiler will still use in/out instructions where applicable,
6479 assuming some other module assigns an address in the io address range.
6480 Example:
6482 @smallexample
6483 extern volatile int porta __attribute__((io));
6484 @end smallexample
6486 @item io_low
6487 @itemx io_low (@var{addr})
6488 @cindex @code{io_low} variable attribute, AVR
6489 This is like the @code{io} attribute, but additionally it informs the
6490 compiler that the object lies in the lower half of the I/O area,
6491 allowing the use of @code{cbi}, @code{sbi}, @code{sbic} and @code{sbis}
6492 instructions.
6494 @item address
6495 @itemx address (@var{addr})
6496 @cindex @code{address} variable attribute, AVR
6497 Variables with the @code{address} attribute are used to address
6498 memory-mapped peripherals that may lie outside the io address range.
6500 @smallexample
6501 volatile int porta __attribute__((address (0x600)));
6502 @end smallexample
6504 @item absdata
6505 @cindex @code{absdata} variable attribute, AVR
6506 Variables in static storage and with the @code{absdata} attribute can
6507 be accessed by the @code{LDS} and @code{STS} instructions which take
6508 absolute addresses.
6510 @itemize @bullet
6511 @item
6512 This attribute is only supported for the reduced AVR Tiny core
6513 like ATtiny40.
6515 @item
6516 You must make sure that respective data is located in the
6517 address range @code{0x40}@dots{}@code{0xbf} accessible by
6518 @code{LDS} and @code{STS}.  One way to achieve this as an
6519 appropriate linker description file.
6521 @item
6522 If the location does not fit the address range of @code{LDS}
6523 and @code{STS}, there is currently (Binutils 2.26) just an unspecific
6524 warning like
6525 @quotation
6526 @code{module.c:(.text+0x1c): warning: internal error: out of range error}
6527 @end quotation
6529 @end itemize
6531 See also the @option{-mabsdata} @ref{AVR Options,command-line option}.
6533 @end table
6535 @node Blackfin Variable Attributes
6536 @subsection Blackfin Variable Attributes
6538 Three attributes are currently defined for the Blackfin.
6540 @table @code
6541 @item l1_data
6542 @itemx l1_data_A
6543 @itemx l1_data_B
6544 @cindex @code{l1_data} variable attribute, Blackfin
6545 @cindex @code{l1_data_A} variable attribute, Blackfin
6546 @cindex @code{l1_data_B} variable attribute, Blackfin
6547 Use these attributes on the Blackfin to place the variable into L1 Data SRAM.
6548 Variables with @code{l1_data} attribute are put into the specific section
6549 named @code{.l1.data}. Those with @code{l1_data_A} attribute are put into
6550 the specific section named @code{.l1.data.A}. Those with @code{l1_data_B}
6551 attribute are put into the specific section named @code{.l1.data.B}.
6553 @item l2
6554 @cindex @code{l2} variable attribute, Blackfin
6555 Use this attribute on the Blackfin to place the variable into L2 SRAM.
6556 Variables with @code{l2} attribute are put into the specific section
6557 named @code{.l2.data}.
6558 @end table
6560 @node H8/300 Variable Attributes
6561 @subsection H8/300 Variable Attributes
6563 These variable attributes are available for H8/300 targets:
6565 @table @code
6566 @item eightbit_data
6567 @cindex @code{eightbit_data} variable attribute, H8/300
6568 @cindex eight-bit data on the H8/300, H8/300H, and H8S
6569 Use this attribute on the H8/300, H8/300H, and H8S to indicate that the specified
6570 variable should be placed into the eight-bit data section.
6571 The compiler generates more efficient code for certain operations
6572 on data in the eight-bit data area.  Note the eight-bit data area is limited to
6573 256 bytes of data.
6575 You must use GAS and GLD from GNU binutils version 2.7 or later for
6576 this attribute to work correctly.
6578 @item tiny_data
6579 @cindex @code{tiny_data} variable attribute, H8/300
6580 @cindex tiny data section on the H8/300H and H8S
6581 Use this attribute on the H8/300H and H8S to indicate that the specified
6582 variable should be placed into the tiny data section.
6583 The compiler generates more efficient code for loads and stores
6584 on data in the tiny data section.  Note the tiny data area is limited to
6585 slightly under 32KB of data.
6587 @end table
6589 @node IA-64 Variable Attributes
6590 @subsection IA-64 Variable Attributes
6592 The IA-64 back end supports the following variable attribute:
6594 @table @code
6595 @item model (@var{model-name})
6596 @cindex @code{model} variable attribute, IA-64
6598 On IA-64, use this attribute to set the addressability of an object.
6599 At present, the only supported identifier for @var{model-name} is
6600 @code{small}, indicating addressability via ``small'' (22-bit)
6601 addresses (so that their addresses can be loaded with the @code{addl}
6602 instruction).  Caveat: such addressing is by definition not position
6603 independent and hence this attribute must not be used for objects
6604 defined by shared libraries.
6606 @end table
6608 @node M32R/D Variable Attributes
6609 @subsection M32R/D Variable Attributes
6611 One attribute is currently defined for the M32R/D@.
6613 @table @code
6614 @item model (@var{model-name})
6615 @cindex @code{model-name} variable attribute, M32R/D
6616 @cindex variable addressability on the M32R/D
6617 Use this attribute on the M32R/D to set the addressability of an object.
6618 The identifier @var{model-name} is one of @code{small}, @code{medium},
6619 or @code{large}, representing each of the code models.
6621 Small model objects live in the lower 16MB of memory (so that their
6622 addresses can be loaded with the @code{ld24} instruction).
6624 Medium and large model objects may live anywhere in the 32-bit address space
6625 (the compiler generates @code{seth/add3} instructions to load their
6626 addresses).
6627 @end table
6629 @node MeP Variable Attributes
6630 @subsection MeP Variable Attributes
6632 The MeP target has a number of addressing modes and busses.  The
6633 @code{near} space spans the standard memory space's first 16 megabytes
6634 (24 bits).  The @code{far} space spans the entire 32-bit memory space.
6635 The @code{based} space is a 128-byte region in the memory space that
6636 is addressed relative to the @code{$tp} register.  The @code{tiny}
6637 space is a 65536-byte region relative to the @code{$gp} register.  In
6638 addition to these memory regions, the MeP target has a separate 16-bit
6639 control bus which is specified with @code{cb} attributes.
6641 @table @code
6643 @item based
6644 @cindex @code{based} variable attribute, MeP
6645 Any variable with the @code{based} attribute is assigned to the
6646 @code{.based} section, and is accessed with relative to the
6647 @code{$tp} register.
6649 @item tiny
6650 @cindex @code{tiny} variable attribute, MeP
6651 Likewise, the @code{tiny} attribute assigned variables to the
6652 @code{.tiny} section, relative to the @code{$gp} register.
6654 @item near
6655 @cindex @code{near} variable attribute, MeP
6656 Variables with the @code{near} attribute are assumed to have addresses
6657 that fit in a 24-bit addressing mode.  This is the default for large
6658 variables (@code{-mtiny=4} is the default) but this attribute can
6659 override @code{-mtiny=} for small variables, or override @code{-ml}.
6661 @item far
6662 @cindex @code{far} variable attribute, MeP
6663 Variables with the @code{far} attribute are addressed using a full
6664 32-bit address.  Since this covers the entire memory space, this
6665 allows modules to make no assumptions about where variables might be
6666 stored.
6668 @item io
6669 @cindex @code{io} variable attribute, MeP
6670 @itemx io (@var{addr})
6671 Variables with the @code{io} attribute are used to address
6672 memory-mapped peripherals.  If an address is specified, the variable
6673 is assigned that address, else it is not assigned an address (it is
6674 assumed some other module assigns an address).  Example:
6676 @smallexample
6677 int timer_count __attribute__((io(0x123)));
6678 @end smallexample
6680 @item cb
6681 @itemx cb (@var{addr})
6682 @cindex @code{cb} variable attribute, MeP
6683 Variables with the @code{cb} attribute are used to access the control
6684 bus, using special instructions.  @code{addr} indicates the control bus
6685 address.  Example:
6687 @smallexample
6688 int cpu_clock __attribute__((cb(0x123)));
6689 @end smallexample
6691 @end table
6693 @node Microsoft Windows Variable Attributes
6694 @subsection Microsoft Windows Variable Attributes
6696 You can use these attributes on Microsoft Windows targets.
6697 @ref{x86 Variable Attributes} for additional Windows compatibility
6698 attributes available on all x86 targets.
6700 @table @code
6701 @item dllimport
6702 @itemx dllexport
6703 @cindex @code{dllimport} variable attribute
6704 @cindex @code{dllexport} variable attribute
6705 The @code{dllimport} and @code{dllexport} attributes are described in
6706 @ref{Microsoft Windows Function Attributes}.
6708 @item selectany
6709 @cindex @code{selectany} variable attribute
6710 The @code{selectany} attribute causes an initialized global variable to
6711 have link-once semantics.  When multiple definitions of the variable are
6712 encountered by the linker, the first is selected and the remainder are
6713 discarded.  Following usage by the Microsoft compiler, the linker is told
6714 @emph{not} to warn about size or content differences of the multiple
6715 definitions.
6717 Although the primary usage of this attribute is for POD types, the
6718 attribute can also be applied to global C++ objects that are initialized
6719 by a constructor.  In this case, the static initialization and destruction
6720 code for the object is emitted in each translation defining the object,
6721 but the calls to the constructor and destructor are protected by a
6722 link-once guard variable.
6724 The @code{selectany} attribute is only available on Microsoft Windows
6725 targets.  You can use @code{__declspec (selectany)} as a synonym for
6726 @code{__attribute__ ((selectany))} for compatibility with other
6727 compilers.
6729 @item shared
6730 @cindex @code{shared} variable attribute
6731 On Microsoft Windows, in addition to putting variable definitions in a named
6732 section, the section can also be shared among all running copies of an
6733 executable or DLL@.  For example, this small program defines shared data
6734 by putting it in a named section @code{shared} and marking the section
6735 shareable:
6737 @smallexample
6738 int foo __attribute__((section ("shared"), shared)) = 0;
6741 main()
6743   /* @r{Read and write foo.  All running
6744      copies see the same value.}  */
6745   return 0;
6747 @end smallexample
6749 @noindent
6750 You may only use the @code{shared} attribute along with @code{section}
6751 attribute with a fully-initialized global definition because of the way
6752 linkers work.  See @code{section} attribute for more information.
6754 The @code{shared} attribute is only available on Microsoft Windows@.
6756 @end table
6758 @node MSP430 Variable Attributes
6759 @subsection MSP430 Variable Attributes
6761 @table @code
6762 @item noinit
6763 @cindex @code{noinit} variable attribute, MSP430 
6764 Any data with the @code{noinit} attribute will not be initialised by
6765 the C runtime startup code, or the program loader.  Not initialising
6766 data in this way can reduce program startup times.
6768 @item persistent
6769 @cindex @code{persistent} variable attribute, MSP430 
6770 Any variable with the @code{persistent} attribute will not be
6771 initialised by the C runtime startup code.  Instead its value will be
6772 set once, when the application is loaded, and then never initialised
6773 again, even if the processor is reset or the program restarts.
6774 Persistent data is intended to be placed into FLASH RAM, where its
6775 value will be retained across resets.  The linker script being used to
6776 create the application should ensure that persistent data is correctly
6777 placed.
6779 @item lower
6780 @itemx upper
6781 @itemx either
6782 @cindex @code{lower} variable attribute, MSP430 
6783 @cindex @code{upper} variable attribute, MSP430 
6784 @cindex @code{either} variable attribute, MSP430 
6785 These attributes are the same as the MSP430 function attributes of the
6786 same name (@pxref{MSP430 Function Attributes}).  
6787 These attributes can be applied to both functions and variables.
6788 @end table
6790 @node Nvidia PTX Variable Attributes
6791 @subsection Nvidia PTX Variable Attributes
6793 These variable attributes are supported by the Nvidia PTX back end:
6795 @table @code
6796 @item shared
6797 @cindex @code{shared} attribute, Nvidia PTX
6798 Use this attribute to place a variable in the @code{.shared} memory space.
6799 This memory space is private to each cooperative thread array; only threads
6800 within one thread block refer to the same instance of the variable.
6801 The runtime does not initialize variables in this memory space.
6802 @end table
6804 @node PowerPC Variable Attributes
6805 @subsection PowerPC Variable Attributes
6807 Three attributes currently are defined for PowerPC configurations:
6808 @code{altivec}, @code{ms_struct} and @code{gcc_struct}.
6810 @cindex @code{ms_struct} variable attribute, PowerPC
6811 @cindex @code{gcc_struct} variable attribute, PowerPC
6812 For full documentation of the struct attributes please see the
6813 documentation in @ref{x86 Variable Attributes}.
6815 @cindex @code{altivec} variable attribute, PowerPC
6816 For documentation of @code{altivec} attribute please see the
6817 documentation in @ref{PowerPC Type Attributes}.
6819 @node RL78 Variable Attributes
6820 @subsection RL78 Variable Attributes
6822 @cindex @code{saddr} variable attribute, RL78
6823 The RL78 back end supports the @code{saddr} variable attribute.  This
6824 specifies placement of the corresponding variable in the SADDR area,
6825 which can be accessed more efficiently than the default memory region.
6827 @node SPU Variable Attributes
6828 @subsection SPU Variable Attributes
6830 @cindex @code{spu_vector} variable attribute, SPU
6831 The SPU supports the @code{spu_vector} attribute for variables.  For
6832 documentation of this attribute please see the documentation in
6833 @ref{SPU Type Attributes}.
6835 @node V850 Variable Attributes
6836 @subsection V850 Variable Attributes
6838 These variable attributes are supported by the V850 back end:
6840 @table @code
6842 @item sda
6843 @cindex @code{sda} variable attribute, V850
6844 Use this attribute to explicitly place a variable in the small data area,
6845 which can hold up to 64 kilobytes.
6847 @item tda
6848 @cindex @code{tda} variable attribute, V850
6849 Use this attribute to explicitly place a variable in the tiny data area,
6850 which can hold up to 256 bytes in total.
6852 @item zda
6853 @cindex @code{zda} variable attribute, V850
6854 Use this attribute to explicitly place a variable in the first 32 kilobytes
6855 of memory.
6856 @end table
6858 @node x86 Variable Attributes
6859 @subsection x86 Variable Attributes
6861 Two attributes are currently defined for x86 configurations:
6862 @code{ms_struct} and @code{gcc_struct}.
6864 @table @code
6865 @item ms_struct
6866 @itemx gcc_struct
6867 @cindex @code{ms_struct} variable attribute, x86
6868 @cindex @code{gcc_struct} variable attribute, x86
6870 If @code{packed} is used on a structure, or if bit-fields are used,
6871 it may be that the Microsoft ABI lays out the structure differently
6872 than the way GCC normally does.  Particularly when moving packed
6873 data between functions compiled with GCC and the native Microsoft compiler
6874 (either via function call or as data in a file), it may be necessary to access
6875 either format.
6877 The @code{ms_struct} and @code{gcc_struct} attributes correspond
6878 to the @option{-mms-bitfields} and @option{-mno-ms-bitfields}
6879 command-line options, respectively;
6880 see @ref{x86 Options}, for details of how structure layout is affected.
6881 @xref{x86 Type Attributes}, for information about the corresponding
6882 attributes on types.
6884 @end table
6886 @node Xstormy16 Variable Attributes
6887 @subsection Xstormy16 Variable Attributes
6889 One attribute is currently defined for xstormy16 configurations:
6890 @code{below100}.
6892 @table @code
6893 @item below100
6894 @cindex @code{below100} variable attribute, Xstormy16
6896 If a variable has the @code{below100} attribute (@code{BELOW100} is
6897 allowed also), GCC places the variable in the first 0x100 bytes of
6898 memory and use special opcodes to access it.  Such variables are
6899 placed in either the @code{.bss_below100} section or the
6900 @code{.data_below100} section.
6902 @end table
6904 @node Type Attributes
6905 @section Specifying Attributes of Types
6906 @cindex attribute of types
6907 @cindex type attributes
6909 The keyword @code{__attribute__} allows you to specify special
6910 attributes of types.  Some type attributes apply only to @code{struct}
6911 and @code{union} types, while others can apply to any type defined
6912 via a @code{typedef} declaration.  Other attributes are defined for
6913 functions (@pxref{Function Attributes}), labels (@pxref{Label 
6914 Attributes}), enumerators (@pxref{Enumerator Attributes}), 
6915 statements (@pxref{Statement Attributes}), and for
6916 variables (@pxref{Variable Attributes}).
6918 The @code{__attribute__} keyword is followed by an attribute specification
6919 inside double parentheses.  
6921 You may specify type attributes in an enum, struct or union type
6922 declaration or definition by placing them immediately after the
6923 @code{struct}, @code{union} or @code{enum} keyword.  A less preferred
6924 syntax is to place them just past the closing curly brace of the
6925 definition.
6927 You can also include type attributes in a @code{typedef} declaration.
6928 @xref{Attribute Syntax}, for details of the exact syntax for using
6929 attributes.
6931 @menu
6932 * Common Type Attributes::
6933 * ARC Type Attributes::
6934 * ARM Type Attributes::
6935 * MeP Type Attributes::
6936 * PowerPC Type Attributes::
6937 * SPU Type Attributes::
6938 * x86 Type Attributes::
6939 @end menu
6941 @node Common Type Attributes
6942 @subsection Common Type Attributes
6944 The following type attributes are supported on most targets.
6946 @table @code
6947 @cindex @code{aligned} type attribute
6948 @item aligned (@var{alignment})
6949 This attribute specifies a minimum alignment (in bytes) for variables
6950 of the specified type.  For example, the declarations:
6952 @smallexample
6953 struct S @{ short f[3]; @} __attribute__ ((aligned (8)));
6954 typedef int more_aligned_int __attribute__ ((aligned (8)));
6955 @end smallexample
6957 @noindent
6958 force the compiler to ensure (as far as it can) that each variable whose
6959 type is @code{struct S} or @code{more_aligned_int} is allocated and
6960 aligned @emph{at least} on a 8-byte boundary.  On a SPARC, having all
6961 variables of type @code{struct S} aligned to 8-byte boundaries allows
6962 the compiler to use the @code{ldd} and @code{std} (doubleword load and
6963 store) instructions when copying one variable of type @code{struct S} to
6964 another, thus improving run-time efficiency.
6966 Note that the alignment of any given @code{struct} or @code{union} type
6967 is required by the ISO C standard to be at least a perfect multiple of
6968 the lowest common multiple of the alignments of all of the members of
6969 the @code{struct} or @code{union} in question.  This means that you @emph{can}
6970 effectively adjust the alignment of a @code{struct} or @code{union}
6971 type by attaching an @code{aligned} attribute to any one of the members
6972 of such a type, but the notation illustrated in the example above is a
6973 more obvious, intuitive, and readable way to request the compiler to
6974 adjust the alignment of an entire @code{struct} or @code{union} type.
6976 As in the preceding example, you can explicitly specify the alignment
6977 (in bytes) that you wish the compiler to use for a given @code{struct}
6978 or @code{union} type.  Alternatively, you can leave out the alignment factor
6979 and just ask the compiler to align a type to the maximum
6980 useful alignment for the target machine you are compiling for.  For
6981 example, you could write:
6983 @smallexample
6984 struct S @{ short f[3]; @} __attribute__ ((aligned));
6985 @end smallexample
6987 Whenever you leave out the alignment factor in an @code{aligned}
6988 attribute specification, the compiler automatically sets the alignment
6989 for the type to the largest alignment that is ever used for any data
6990 type on the target machine you are compiling for.  Doing this can often
6991 make copy operations more efficient, because the compiler can use
6992 whatever instructions copy the biggest chunks of memory when performing
6993 copies to or from the variables that have types that you have aligned
6994 this way.
6996 In the example above, if the size of each @code{short} is 2 bytes, then
6997 the size of the entire @code{struct S} type is 6 bytes.  The smallest
6998 power of two that is greater than or equal to that is 8, so the
6999 compiler sets the alignment for the entire @code{struct S} type to 8
7000 bytes.
7002 Note that although you can ask the compiler to select a time-efficient
7003 alignment for a given type and then declare only individual stand-alone
7004 objects of that type, the compiler's ability to select a time-efficient
7005 alignment is primarily useful only when you plan to create arrays of
7006 variables having the relevant (efficiently aligned) type.  If you
7007 declare or use arrays of variables of an efficiently-aligned type, then
7008 it is likely that your program also does pointer arithmetic (or
7009 subscripting, which amounts to the same thing) on pointers to the
7010 relevant type, and the code that the compiler generates for these
7011 pointer arithmetic operations is often more efficient for
7012 efficiently-aligned types than for other types.
7014 Note that the effectiveness of @code{aligned} attributes may be limited
7015 by inherent limitations in your linker.  On many systems, the linker is
7016 only able to arrange for variables to be aligned up to a certain maximum
7017 alignment.  (For some linkers, the maximum supported alignment may
7018 be very very small.)  If your linker is only able to align variables
7019 up to a maximum of 8-byte alignment, then specifying @code{aligned(16)}
7020 in an @code{__attribute__} still only provides you with 8-byte
7021 alignment.  See your linker documentation for further information.
7023 The @code{aligned} attribute can only increase alignment.  Alignment
7024 can be decreased by specifying the @code{packed} attribute.  See below.
7026 @cindex @code{warn_if_not_aligned} type attribute
7027 @item warn_if_not_aligned (@var{alignment})
7028 This attribute specifies a threshold for the structure field, measured
7029 in bytes.  If the structure field is aligned below the threshold, a
7030 warning will be issued.  For example, the declaration:
7032 @smallexample
7033 typedef unsigned long long __u64
7034    __attribute__((aligned(4),warn_if_not_aligned(8)));
7036 struct foo
7038   int i1;
7039   int i2;
7040   __u64 x;
7042 @end smallexample
7044 @noindent
7045 causes the compiler to issue an warning on @code{struct foo}, like
7046 @samp{warning: alignment 4 of 'struct foo' is less than 8}.
7047 It is used to define @code{struct foo} in such a way that
7048 @code{struct foo} has the same layout and the structure field @code{x}
7049 has the same alignment when @code{__u64} is aligned at either 4 or
7050 8 bytes.  Align @code{struct foo} to 8 bytes:
7052 @smallexample
7053 struct foo
7055   int i1;
7056   int i2;
7057   __u64 x;
7058 @} __attribute__((aligned(8)));
7059 @end smallexample
7061 @noindent
7062 silences the warning.  The compiler also issues a warning, like
7063 @samp{warning: 'x' offset 12 in 'struct foo' isn't aligned to 8},
7064 when the structure field has the misaligned offset:
7066 @smallexample
7067 struct foo
7069   int i1;
7070   int i2;
7071   int i3;
7072   __u64 x;
7073 @} __attribute__((aligned(8)));
7074 @end smallexample
7076 This warning can be disabled by @option{-Wno-if-not-aligned}.
7078 @item deprecated
7079 @itemx deprecated (@var{msg})
7080 @cindex @code{deprecated} type attribute
7081 The @code{deprecated} attribute results in a warning if the type
7082 is used anywhere in the source file.  This is useful when identifying
7083 types that are expected to be removed in a future version of a program.
7084 If possible, the warning also includes the location of the declaration
7085 of the deprecated type, to enable users to easily find further
7086 information about why the type is deprecated, or what they should do
7087 instead.  Note that the warnings only occur for uses and then only
7088 if the type is being applied to an identifier that itself is not being
7089 declared as deprecated.
7091 @smallexample
7092 typedef int T1 __attribute__ ((deprecated));
7093 T1 x;
7094 typedef T1 T2;
7095 T2 y;
7096 typedef T1 T3 __attribute__ ((deprecated));
7097 T3 z __attribute__ ((deprecated));
7098 @end smallexample
7100 @noindent
7101 results in a warning on line 2 and 3 but not lines 4, 5, or 6.  No
7102 warning is issued for line 4 because T2 is not explicitly
7103 deprecated.  Line 5 has no warning because T3 is explicitly
7104 deprecated.  Similarly for line 6.  The optional @var{msg}
7105 argument, which must be a string, is printed in the warning if
7106 present.  Control characters in the string will be replaced with
7107 escape sequences, and if the @option{-fmessage-length} option is set
7108 to 0 (its default value) then any newline characters will be ignored.
7110 The @code{deprecated} attribute can also be used for functions and
7111 variables (@pxref{Function Attributes}, @pxref{Variable Attributes}.)
7113 The message attached to the attribute is affected by the setting of
7114 the @option{-fmessage-length} option.
7116 @item designated_init
7117 @cindex @code{designated_init} type attribute
7118 This attribute may only be applied to structure types.  It indicates
7119 that any initialization of an object of this type must use designated
7120 initializers rather than positional initializers.  The intent of this
7121 attribute is to allow the programmer to indicate that a structure's
7122 layout may change, and that therefore relying on positional
7123 initialization will result in future breakage.
7125 GCC emits warnings based on this attribute by default; use
7126 @option{-Wno-designated-init} to suppress them.
7128 @item may_alias
7129 @cindex @code{may_alias} type attribute
7130 Accesses through pointers to types with this attribute are not subject
7131 to type-based alias analysis, but are instead assumed to be able to alias
7132 any other type of objects.
7133 In the context of section 6.5 paragraph 7 of the C99 standard,
7134 an lvalue expression
7135 dereferencing such a pointer is treated like having a character type.
7136 See @option{-fstrict-aliasing} for more information on aliasing issues.
7137 This extension exists to support some vector APIs, in which pointers to
7138 one vector type are permitted to alias pointers to a different vector type.
7140 Note that an object of a type with this attribute does not have any
7141 special semantics.
7143 Example of use:
7145 @smallexample
7146 typedef short __attribute__((__may_alias__)) short_a;
7149 main (void)
7151   int a = 0x12345678;
7152   short_a *b = (short_a *) &a;
7154   b[1] = 0;
7156   if (a == 0x12345678)
7157     abort();
7159   exit(0);
7161 @end smallexample
7163 @noindent
7164 If you replaced @code{short_a} with @code{short} in the variable
7165 declaration, the above program would abort when compiled with
7166 @option{-fstrict-aliasing}, which is on by default at @option{-O2} or
7167 above.
7169 @item mode (@var{mode})
7170 @cindex @code{mode} type attribute
7171 This attribute specifies the data type for the declaration---whichever
7172 type corresponds to the mode @var{mode}.  This in effect lets you
7173 request an integer or floating-point type according to its width.
7175 @xref{Machine Modes,,, gccint, GNU Compiler Collection (GCC) Internals},
7176 for a list of the possible keywords for @var{mode}.
7177 You may also specify a mode of @code{byte} or @code{__byte__} to
7178 indicate the mode corresponding to a one-byte integer, @code{word} or
7179 @code{__word__} for the mode of a one-word integer, and @code{pointer}
7180 or @code{__pointer__} for the mode used to represent pointers.
7182 @item packed
7183 @cindex @code{packed} type attribute
7184 This attribute, attached to @code{struct} or @code{union} type
7185 definition, specifies that each member (other than zero-width bit-fields)
7186 of the structure or union is placed to minimize the memory required.  When
7187 attached to an @code{enum} definition, it indicates that the smallest
7188 integral type should be used.
7190 @opindex fshort-enums
7191 Specifying the @code{packed} attribute for @code{struct} and @code{union}
7192 types is equivalent to specifying the @code{packed} attribute on each
7193 of the structure or union members.  Specifying the @option{-fshort-enums}
7194 flag on the command line is equivalent to specifying the @code{packed}
7195 attribute on all @code{enum} definitions.
7197 In the following example @code{struct my_packed_struct}'s members are
7198 packed closely together, but the internal layout of its @code{s} member
7199 is not packed---to do that, @code{struct my_unpacked_struct} needs to
7200 be packed too.
7202 @smallexample
7203 struct my_unpacked_struct
7204  @{
7205     char c;
7206     int i;
7207  @};
7209 struct __attribute__ ((__packed__)) my_packed_struct
7210   @{
7211      char c;
7212      int  i;
7213      struct my_unpacked_struct s;
7214   @};
7215 @end smallexample
7217 You may only specify the @code{packed} attribute attribute on the definition
7218 of an @code{enum}, @code{struct} or @code{union}, not on a @code{typedef}
7219 that does not also define the enumerated type, structure or union.
7221 @item scalar_storage_order ("@var{endianness}")
7222 @cindex @code{scalar_storage_order} type attribute
7223 When attached to a @code{union} or a @code{struct}, this attribute sets
7224 the storage order, aka endianness, of the scalar fields of the type, as
7225 well as the array fields whose component is scalar.  The supported
7226 endiannesses are @code{big-endian} and @code{little-endian}.  The attribute
7227 has no effects on fields which are themselves a @code{union}, a @code{struct}
7228 or an array whose component is a @code{union} or a @code{struct}, and it is
7229 possible for these fields to have a different scalar storage order than the
7230 enclosing type.
7232 This attribute is supported only for targets that use a uniform default
7233 scalar storage order (fortunately, most of them), i.e. targets that store
7234 the scalars either all in big-endian or all in little-endian.
7236 Additional restrictions are enforced for types with the reverse scalar
7237 storage order with regard to the scalar storage order of the target:
7239 @itemize
7240 @item Taking the address of a scalar field of a @code{union} or a
7241 @code{struct} with reverse scalar storage order is not permitted and yields
7242 an error.
7243 @item Taking the address of an array field, whose component is scalar, of
7244 a @code{union} or a @code{struct} with reverse scalar storage order is
7245 permitted but yields a warning, unless @option{-Wno-scalar-storage-order}
7246 is specified.
7247 @item Taking the address of a @code{union} or a @code{struct} with reverse
7248 scalar storage order is permitted.
7249 @end itemize
7251 These restrictions exist because the storage order attribute is lost when
7252 the address of a scalar or the address of an array with scalar component is
7253 taken, so storing indirectly through this address generally does not work.
7254 The second case is nevertheless allowed to be able to perform a block copy
7255 from or to the array.
7257 Moreover, the use of type punning or aliasing to toggle the storage order
7258 is not supported; that is to say, a given scalar object cannot be accessed
7259 through distinct types that assign a different storage order to it.
7261 @item transparent_union
7262 @cindex @code{transparent_union} type attribute
7264 This attribute, attached to a @code{union} type definition, indicates
7265 that any function parameter having that union type causes calls to that
7266 function to be treated in a special way.
7268 First, the argument corresponding to a transparent union type can be of
7269 any type in the union; no cast is required.  Also, if the union contains
7270 a pointer type, the corresponding argument can be a null pointer
7271 constant or a void pointer expression; and if the union contains a void
7272 pointer type, the corresponding argument can be any pointer expression.
7273 If the union member type is a pointer, qualifiers like @code{const} on
7274 the referenced type must be respected, just as with normal pointer
7275 conversions.
7277 Second, the argument is passed to the function using the calling
7278 conventions of the first member of the transparent union, not the calling
7279 conventions of the union itself.  All members of the union must have the
7280 same machine representation; this is necessary for this argument passing
7281 to work properly.
7283 Transparent unions are designed for library functions that have multiple
7284 interfaces for compatibility reasons.  For example, suppose the
7285 @code{wait} function must accept either a value of type @code{int *} to
7286 comply with POSIX, or a value of type @code{union wait *} to comply with
7287 the 4.1BSD interface.  If @code{wait}'s parameter were @code{void *},
7288 @code{wait} would accept both kinds of arguments, but it would also
7289 accept any other pointer type and this would make argument type checking
7290 less useful.  Instead, @code{<sys/wait.h>} might define the interface
7291 as follows:
7293 @smallexample
7294 typedef union __attribute__ ((__transparent_union__))
7295   @{
7296     int *__ip;
7297     union wait *__up;
7298   @} wait_status_ptr_t;
7300 pid_t wait (wait_status_ptr_t);
7301 @end smallexample
7303 @noindent
7304 This interface allows either @code{int *} or @code{union wait *}
7305 arguments to be passed, using the @code{int *} calling convention.
7306 The program can call @code{wait} with arguments of either type:
7308 @smallexample
7309 int w1 () @{ int w; return wait (&w); @}
7310 int w2 () @{ union wait w; return wait (&w); @}
7311 @end smallexample
7313 @noindent
7314 With this interface, @code{wait}'s implementation might look like this:
7316 @smallexample
7317 pid_t wait (wait_status_ptr_t p)
7319   return waitpid (-1, p.__ip, 0);
7321 @end smallexample
7323 @item unused
7324 @cindex @code{unused} type attribute
7325 When attached to a type (including a @code{union} or a @code{struct}),
7326 this attribute means that variables of that type are meant to appear
7327 possibly unused.  GCC does not produce a warning for any variables of
7328 that type, even if the variable appears to do nothing.  This is often
7329 the case with lock or thread classes, which are usually defined and then
7330 not referenced, but contain constructors and destructors that have
7331 nontrivial bookkeeping functions.
7333 @item visibility
7334 @cindex @code{visibility} type attribute
7335 In C++, attribute visibility (@pxref{Function Attributes}) can also be
7336 applied to class, struct, union and enum types.  Unlike other type
7337 attributes, the attribute must appear between the initial keyword and
7338 the name of the type; it cannot appear after the body of the type.
7340 Note that the type visibility is applied to vague linkage entities
7341 associated with the class (vtable, typeinfo node, etc.).  In
7342 particular, if a class is thrown as an exception in one shared object
7343 and caught in another, the class must have default visibility.
7344 Otherwise the two shared objects are unable to use the same
7345 typeinfo node and exception handling will break.
7347 @end table
7349 To specify multiple attributes, separate them by commas within the
7350 double parentheses: for example, @samp{__attribute__ ((aligned (16),
7351 packed))}.
7353 @node ARC Type Attributes
7354 @subsection ARC Type Attributes
7356 @cindex @code{uncached} type attribute, ARC
7357 Declaring objects with @code{uncached} allows you to exclude
7358 data-cache participation in load and store operations on those objects
7359 without involving the additional semantic implications of
7360 @code{volatile}.  The @code{.di} instruction suffix is used for all
7361 loads and stores of data declared @code{uncached}.
7363 @node ARM Type Attributes
7364 @subsection ARM Type Attributes
7366 @cindex @code{notshared} type attribute, ARM
7367 On those ARM targets that support @code{dllimport} (such as Symbian
7368 OS), you can use the @code{notshared} attribute to indicate that the
7369 virtual table and other similar data for a class should not be
7370 exported from a DLL@.  For example:
7372 @smallexample
7373 class __declspec(notshared) C @{
7374 public:
7375   __declspec(dllimport) C();
7376   virtual void f();
7379 __declspec(dllexport)
7380 C::C() @{@}
7381 @end smallexample
7383 @noindent
7384 In this code, @code{C::C} is exported from the current DLL, but the
7385 virtual table for @code{C} is not exported.  (You can use
7386 @code{__attribute__} instead of @code{__declspec} if you prefer, but
7387 most Symbian OS code uses @code{__declspec}.)
7389 @node MeP Type Attributes
7390 @subsection MeP Type Attributes
7392 @cindex @code{based} type attribute, MeP
7393 @cindex @code{tiny} type attribute, MeP
7394 @cindex @code{near} type attribute, MeP
7395 @cindex @code{far} type attribute, MeP
7396 Many of the MeP variable attributes may be applied to types as well.
7397 Specifically, the @code{based}, @code{tiny}, @code{near}, and
7398 @code{far} attributes may be applied to either.  The @code{io} and
7399 @code{cb} attributes may not be applied to types.
7401 @node PowerPC Type Attributes
7402 @subsection PowerPC Type Attributes
7404 Three attributes currently are defined for PowerPC configurations:
7405 @code{altivec}, @code{ms_struct} and @code{gcc_struct}.
7407 @cindex @code{ms_struct} type attribute, PowerPC
7408 @cindex @code{gcc_struct} type attribute, PowerPC
7409 For full documentation of the @code{ms_struct} and @code{gcc_struct}
7410 attributes please see the documentation in @ref{x86 Type Attributes}.
7412 @cindex @code{altivec} type attribute, PowerPC
7413 The @code{altivec} attribute allows one to declare AltiVec vector data
7414 types supported by the AltiVec Programming Interface Manual.  The
7415 attribute requires an argument to specify one of three vector types:
7416 @code{vector__}, @code{pixel__} (always followed by unsigned short),
7417 and @code{bool__} (always followed by unsigned).
7419 @smallexample
7420 __attribute__((altivec(vector__)))
7421 __attribute__((altivec(pixel__))) unsigned short
7422 __attribute__((altivec(bool__))) unsigned
7423 @end smallexample
7425 These attributes mainly are intended to support the @code{__vector},
7426 @code{__pixel}, and @code{__bool} AltiVec keywords.
7428 @node SPU Type Attributes
7429 @subsection SPU Type Attributes
7431 @cindex @code{spu_vector} type attribute, SPU
7432 The SPU supports the @code{spu_vector} attribute for types.  This attribute
7433 allows one to declare vector data types supported by the Sony/Toshiba/IBM SPU
7434 Language Extensions Specification.  It is intended to support the
7435 @code{__vector} keyword.
7437 @node x86 Type Attributes
7438 @subsection x86 Type Attributes
7440 Two attributes are currently defined for x86 configurations:
7441 @code{ms_struct} and @code{gcc_struct}.
7443 @table @code
7445 @item ms_struct
7446 @itemx gcc_struct
7447 @cindex @code{ms_struct} type attribute, x86
7448 @cindex @code{gcc_struct} type attribute, x86
7450 If @code{packed} is used on a structure, or if bit-fields are used
7451 it may be that the Microsoft ABI packs them differently
7452 than GCC normally packs them.  Particularly when moving packed
7453 data between functions compiled with GCC and the native Microsoft compiler
7454 (either via function call or as data in a file), it may be necessary to access
7455 either format.
7457 The @code{ms_struct} and @code{gcc_struct} attributes correspond
7458 to the @option{-mms-bitfields} and @option{-mno-ms-bitfields}
7459 command-line options, respectively;
7460 see @ref{x86 Options}, for details of how structure layout is affected.
7461 @xref{x86 Variable Attributes}, for information about the corresponding
7462 attributes on variables.
7464 @end table
7466 @node Label Attributes
7467 @section Label Attributes
7468 @cindex Label Attributes
7470 GCC allows attributes to be set on C labels.  @xref{Attribute Syntax}, for 
7471 details of the exact syntax for using attributes.  Other attributes are 
7472 available for functions (@pxref{Function Attributes}), variables 
7473 (@pxref{Variable Attributes}), enumerators (@pxref{Enumerator Attributes}),
7474 statements (@pxref{Statement Attributes}), and for types
7475 (@pxref{Type Attributes}).
7477 This example uses the @code{cold} label attribute to indicate the 
7478 @code{ErrorHandling} branch is unlikely to be taken and that the
7479 @code{ErrorHandling} label is unused:
7481 @smallexample
7483    asm goto ("some asm" : : : : NoError);
7485 /* This branch (the fall-through from the asm) is less commonly used */
7486 ErrorHandling: 
7487    __attribute__((cold, unused)); /* Semi-colon is required here */
7488    printf("error\n");
7489    return 0;
7491 NoError:
7492    printf("no error\n");
7493    return 1;
7494 @end smallexample
7496 @table @code
7497 @item unused
7498 @cindex @code{unused} label attribute
7499 This feature is intended for program-generated code that may contain 
7500 unused labels, but which is compiled with @option{-Wall}.  It is
7501 not normally appropriate to use in it human-written code, though it
7502 could be useful in cases where the code that jumps to the label is
7503 contained within an @code{#ifdef} conditional.
7505 @item hot
7506 @cindex @code{hot} label attribute
7507 The @code{hot} attribute on a label is used to inform the compiler that
7508 the path following the label is more likely than paths that are not so
7509 annotated.  This attribute is used in cases where @code{__builtin_expect}
7510 cannot be used, for instance with computed goto or @code{asm goto}.
7512 @item cold
7513 @cindex @code{cold} label attribute
7514 The @code{cold} attribute on labels is used to inform the compiler that
7515 the path following the label is unlikely to be executed.  This attribute
7516 is used in cases where @code{__builtin_expect} cannot be used, for instance
7517 with computed goto or @code{asm goto}.
7519 @end table
7521 @node Enumerator Attributes
7522 @section Enumerator Attributes
7523 @cindex Enumerator Attributes
7525 GCC allows attributes to be set on enumerators.  @xref{Attribute Syntax}, for
7526 details of the exact syntax for using attributes.  Other attributes are
7527 available for functions (@pxref{Function Attributes}), variables
7528 (@pxref{Variable Attributes}), labels (@pxref{Label Attributes}), statements
7529 (@pxref{Statement Attributes}), and for types (@pxref{Type Attributes}).
7531 This example uses the @code{deprecated} enumerator attribute to indicate the
7532 @code{oldval} enumerator is deprecated:
7534 @smallexample
7535 enum E @{
7536   oldval __attribute__((deprecated)),
7537   newval
7541 fn (void)
7543   return oldval;
7545 @end smallexample
7547 @table @code
7548 @item deprecated
7549 @cindex @code{deprecated} enumerator attribute
7550 The @code{deprecated} attribute results in a warning if the enumerator
7551 is used anywhere in the source file.  This is useful when identifying
7552 enumerators that are expected to be removed in a future version of a
7553 program.  The warning also includes the location of the declaration
7554 of the deprecated enumerator, to enable users to easily find further
7555 information about why the enumerator is deprecated, or what they should
7556 do instead.  Note that the warnings only occurs for uses.
7558 @end table
7560 @node Statement Attributes
7561 @section Statement Attributes
7562 @cindex Statement Attributes
7564 GCC allows attributes to be set on null statements.  @xref{Attribute Syntax},
7565 for details of the exact syntax for using attributes.  Other attributes are
7566 available for functions (@pxref{Function Attributes}), variables
7567 (@pxref{Variable Attributes}), labels (@pxref{Label Attributes}), enumerators
7568 (@pxref{Enumerator Attributes}), and for types (@pxref{Type Attributes}).
7570 This example uses the @code{fallthrough} statement attribute to indicate that
7571 the @option{-Wimplicit-fallthrough} warning should not be emitted:
7573 @smallexample
7574 switch (cond)
7575   @{
7576   case 1:
7577     bar (1);
7578     __attribute__((fallthrough));
7579   case 2:
7580     @dots{}
7581   @}
7582 @end smallexample
7584 @table @code
7585 @item fallthrough
7586 @cindex @code{fallthrough} statement attribute
7587 The @code{fallthrough} attribute with a null statement serves as a
7588 fallthrough statement.  It hints to the compiler that a statement
7589 that falls through to another case label, or user-defined label
7590 in a switch statement is intentional and thus the
7591 @option{-Wimplicit-fallthrough} warning must not trigger.  The
7592 fallthrough attribute may appear at most once in each attribute
7593 list, and may not be mixed with other attributes.  It can only
7594 be used in a switch statement (the compiler will issue an error
7595 otherwise), after a preceding statement and before a logically
7596 succeeding case label, or user-defined label.
7598 @end table
7600 @node Attribute Syntax
7601 @section Attribute Syntax
7602 @cindex attribute syntax
7604 This section describes the syntax with which @code{__attribute__} may be
7605 used, and the constructs to which attribute specifiers bind, for the C
7606 language.  Some details may vary for C++ and Objective-C@.  Because of
7607 infelicities in the grammar for attributes, some forms described here
7608 may not be successfully parsed in all cases.
7610 There are some problems with the semantics of attributes in C++.  For
7611 example, there are no manglings for attributes, although they may affect
7612 code generation, so problems may arise when attributed types are used in
7613 conjunction with templates or overloading.  Similarly, @code{typeid}
7614 does not distinguish between types with different attributes.  Support
7615 for attributes in C++ may be restricted in future to attributes on
7616 declarations only, but not on nested declarators.
7618 @xref{Function Attributes}, for details of the semantics of attributes
7619 applying to functions.  @xref{Variable Attributes}, for details of the
7620 semantics of attributes applying to variables.  @xref{Type Attributes},
7621 for details of the semantics of attributes applying to structure, union
7622 and enumerated types.
7623 @xref{Label Attributes}, for details of the semantics of attributes 
7624 applying to labels.
7625 @xref{Enumerator Attributes}, for details of the semantics of attributes
7626 applying to enumerators.
7627 @xref{Statement Attributes}, for details of the semantics of attributes
7628 applying to statements.
7630 An @dfn{attribute specifier} is of the form
7631 @code{__attribute__ ((@var{attribute-list}))}.  An @dfn{attribute list}
7632 is a possibly empty comma-separated sequence of @dfn{attributes}, where
7633 each attribute is one of the following:
7635 @itemize @bullet
7636 @item
7637 Empty.  Empty attributes are ignored.
7639 @item
7640 An attribute name
7641 (which may be an identifier such as @code{unused}, or a reserved
7642 word such as @code{const}).
7644 @item
7645 An attribute name followed by a parenthesized list of
7646 parameters for the attribute.
7647 These parameters take one of the following forms:
7649 @itemize @bullet
7650 @item
7651 An identifier.  For example, @code{mode} attributes use this form.
7653 @item
7654 An identifier followed by a comma and a non-empty comma-separated list
7655 of expressions.  For example, @code{format} attributes use this form.
7657 @item
7658 A possibly empty comma-separated list of expressions.  For example,
7659 @code{format_arg} attributes use this form with the list being a single
7660 integer constant expression, and @code{alias} attributes use this form
7661 with the list being a single string constant.
7662 @end itemize
7663 @end itemize
7665 An @dfn{attribute specifier list} is a sequence of one or more attribute
7666 specifiers, not separated by any other tokens.
7668 You may optionally specify attribute names with @samp{__}
7669 preceding and following the name.
7670 This allows you to use them in header files without
7671 being concerned about a possible macro of the same name.  For example,
7672 you may use the attribute name @code{__noreturn__} instead of @code{noreturn}.
7675 @subsubheading Label Attributes
7677 In GNU C, an attribute specifier list may appear after the colon following a
7678 label, other than a @code{case} or @code{default} label.  GNU C++ only permits
7679 attributes on labels if the attribute specifier is immediately
7680 followed by a semicolon (i.e., the label applies to an empty
7681 statement).  If the semicolon is missing, C++ label attributes are
7682 ambiguous, as it is permissible for a declaration, which could begin
7683 with an attribute list, to be labelled in C++.  Declarations cannot be
7684 labelled in C90 or C99, so the ambiguity does not arise there.
7686 @subsubheading Enumerator Attributes
7688 In GNU C, an attribute specifier list may appear as part of an enumerator.
7689 The attribute goes after the enumeration constant, before @code{=}, if
7690 present.  The optional attribute in the enumerator appertains to the
7691 enumeration constant.  It is not possible to place the attribute after
7692 the constant expression, if present.
7694 @subsubheading Statement Attributes
7695 In GNU C, an attribute specifier list may appear as part of a null
7696 statement.  The attribute goes before the semicolon.
7698 @subsubheading Type Attributes
7700 An attribute specifier list may appear as part of a @code{struct},
7701 @code{union} or @code{enum} specifier.  It may go either immediately
7702 after the @code{struct}, @code{union} or @code{enum} keyword, or after
7703 the closing brace.  The former syntax is preferred.
7704 Where attribute specifiers follow the closing brace, they are considered
7705 to relate to the structure, union or enumerated type defined, not to any
7706 enclosing declaration the type specifier appears in, and the type
7707 defined is not complete until after the attribute specifiers.
7708 @c Otherwise, there would be the following problems: a shift/reduce
7709 @c conflict between attributes binding the struct/union/enum and
7710 @c binding to the list of specifiers/qualifiers; and "aligned"
7711 @c attributes could use sizeof for the structure, but the size could be
7712 @c changed later by "packed" attributes.
7715 @subsubheading All other attributes
7717 Otherwise, an attribute specifier appears as part of a declaration,
7718 counting declarations of unnamed parameters and type names, and relates
7719 to that declaration (which may be nested in another declaration, for
7720 example in the case of a parameter declaration), or to a particular declarator
7721 within a declaration.  Where an
7722 attribute specifier is applied to a parameter declared as a function or
7723 an array, it should apply to the function or array rather than the
7724 pointer to which the parameter is implicitly converted, but this is not
7725 yet correctly implemented.
7727 Any list of specifiers and qualifiers at the start of a declaration may
7728 contain attribute specifiers, whether or not such a list may in that
7729 context contain storage class specifiers.  (Some attributes, however,
7730 are essentially in the nature of storage class specifiers, and only make
7731 sense where storage class specifiers may be used; for example,
7732 @code{section}.)  There is one necessary limitation to this syntax: the
7733 first old-style parameter declaration in a function definition cannot
7734 begin with an attribute specifier, because such an attribute applies to
7735 the function instead by syntax described below (which, however, is not
7736 yet implemented in this case).  In some other cases, attribute
7737 specifiers are permitted by this grammar but not yet supported by the
7738 compiler.  All attribute specifiers in this place relate to the
7739 declaration as a whole.  In the obsolescent usage where a type of
7740 @code{int} is implied by the absence of type specifiers, such a list of
7741 specifiers and qualifiers may be an attribute specifier list with no
7742 other specifiers or qualifiers.
7744 At present, the first parameter in a function prototype must have some
7745 type specifier that is not an attribute specifier; this resolves an
7746 ambiguity in the interpretation of @code{void f(int
7747 (__attribute__((foo)) x))}, but is subject to change.  At present, if
7748 the parentheses of a function declarator contain only attributes then
7749 those attributes are ignored, rather than yielding an error or warning
7750 or implying a single parameter of type int, but this is subject to
7751 change.
7753 An attribute specifier list may appear immediately before a declarator
7754 (other than the first) in a comma-separated list of declarators in a
7755 declaration of more than one identifier using a single list of
7756 specifiers and qualifiers.  Such attribute specifiers apply
7757 only to the identifier before whose declarator they appear.  For
7758 example, in
7760 @smallexample
7761 __attribute__((noreturn)) void d0 (void),
7762     __attribute__((format(printf, 1, 2))) d1 (const char *, ...),
7763      d2 (void);
7764 @end smallexample
7766 @noindent
7767 the @code{noreturn} attribute applies to all the functions
7768 declared; the @code{format} attribute only applies to @code{d1}.
7770 An attribute specifier list may appear immediately before the comma,
7771 @code{=} or semicolon terminating the declaration of an identifier other
7772 than a function definition.  Such attribute specifiers apply
7773 to the declared object or function.  Where an
7774 assembler name for an object or function is specified (@pxref{Asm
7775 Labels}), the attribute must follow the @code{asm}
7776 specification.
7778 An attribute specifier list may, in future, be permitted to appear after
7779 the declarator in a function definition (before any old-style parameter
7780 declarations or the function body).
7782 Attribute specifiers may be mixed with type qualifiers appearing inside
7783 the @code{[]} of a parameter array declarator, in the C99 construct by
7784 which such qualifiers are applied to the pointer to which the array is
7785 implicitly converted.  Such attribute specifiers apply to the pointer,
7786 not to the array, but at present this is not implemented and they are
7787 ignored.
7789 An attribute specifier list may appear at the start of a nested
7790 declarator.  At present, there are some limitations in this usage: the
7791 attributes correctly apply to the declarator, but for most individual
7792 attributes the semantics this implies are not implemented.
7793 When attribute specifiers follow the @code{*} of a pointer
7794 declarator, they may be mixed with any type qualifiers present.
7795 The following describes the formal semantics of this syntax.  It makes the
7796 most sense if you are familiar with the formal specification of
7797 declarators in the ISO C standard.
7799 Consider (as in C99 subclause 6.7.5 paragraph 4) a declaration @code{T
7800 D1}, where @code{T} contains declaration specifiers that specify a type
7801 @var{Type} (such as @code{int}) and @code{D1} is a declarator that
7802 contains an identifier @var{ident}.  The type specified for @var{ident}
7803 for derived declarators whose type does not include an attribute
7804 specifier is as in the ISO C standard.
7806 If @code{D1} has the form @code{( @var{attribute-specifier-list} D )},
7807 and the declaration @code{T D} specifies the type
7808 ``@var{derived-declarator-type-list} @var{Type}'' for @var{ident}, then
7809 @code{T D1} specifies the type ``@var{derived-declarator-type-list}
7810 @var{attribute-specifier-list} @var{Type}'' for @var{ident}.
7812 If @code{D1} has the form @code{*
7813 @var{type-qualifier-and-attribute-specifier-list} D}, and the
7814 declaration @code{T D} specifies the type
7815 ``@var{derived-declarator-type-list} @var{Type}'' for @var{ident}, then
7816 @code{T D1} specifies the type ``@var{derived-declarator-type-list}
7817 @var{type-qualifier-and-attribute-specifier-list} pointer to @var{Type}'' for
7818 @var{ident}.
7820 For example,
7822 @smallexample
7823 void (__attribute__((noreturn)) ****f) (void);
7824 @end smallexample
7826 @noindent
7827 specifies the type ``pointer to pointer to pointer to pointer to
7828 non-returning function returning @code{void}''.  As another example,
7830 @smallexample
7831 char *__attribute__((aligned(8))) *f;
7832 @end smallexample
7834 @noindent
7835 specifies the type ``pointer to 8-byte-aligned pointer to @code{char}''.
7836 Note again that this does not work with most attributes; for example,
7837 the usage of @samp{aligned} and @samp{noreturn} attributes given above
7838 is not yet supported.
7840 For compatibility with existing code written for compiler versions that
7841 did not implement attributes on nested declarators, some laxity is
7842 allowed in the placing of attributes.  If an attribute that only applies
7843 to types is applied to a declaration, it is treated as applying to
7844 the type of that declaration.  If an attribute that only applies to
7845 declarations is applied to the type of a declaration, it is treated
7846 as applying to that declaration; and, for compatibility with code
7847 placing the attributes immediately before the identifier declared, such
7848 an attribute applied to a function return type is treated as
7849 applying to the function type, and such an attribute applied to an array
7850 element type is treated as applying to the array type.  If an
7851 attribute that only applies to function types is applied to a
7852 pointer-to-function type, it is treated as applying to the pointer
7853 target type; if such an attribute is applied to a function return type
7854 that is not a pointer-to-function type, it is treated as applying
7855 to the function type.
7857 @node Function Prototypes
7858 @section Prototypes and Old-Style Function Definitions
7859 @cindex function prototype declarations
7860 @cindex old-style function definitions
7861 @cindex promotion of formal parameters
7863 GNU C extends ISO C to allow a function prototype to override a later
7864 old-style non-prototype definition.  Consider the following example:
7866 @smallexample
7867 /* @r{Use prototypes unless the compiler is old-fashioned.}  */
7868 #ifdef __STDC__
7869 #define P(x) x
7870 #else
7871 #define P(x) ()
7872 #endif
7874 /* @r{Prototype function declaration.}  */
7875 int isroot P((uid_t));
7877 /* @r{Old-style function definition.}  */
7879 isroot (x)   /* @r{??? lossage here ???} */
7880      uid_t x;
7882   return x == 0;
7884 @end smallexample
7886 Suppose the type @code{uid_t} happens to be @code{short}.  ISO C does
7887 not allow this example, because subword arguments in old-style
7888 non-prototype definitions are promoted.  Therefore in this example the
7889 function definition's argument is really an @code{int}, which does not
7890 match the prototype argument type of @code{short}.
7892 This restriction of ISO C makes it hard to write code that is portable
7893 to traditional C compilers, because the programmer does not know
7894 whether the @code{uid_t} type is @code{short}, @code{int}, or
7895 @code{long}.  Therefore, in cases like these GNU C allows a prototype
7896 to override a later old-style definition.  More precisely, in GNU C, a
7897 function prototype argument type overrides the argument type specified
7898 by a later old-style definition if the former type is the same as the
7899 latter type before promotion.  Thus in GNU C the above example is
7900 equivalent to the following:
7902 @smallexample
7903 int isroot (uid_t);
7906 isroot (uid_t x)
7908   return x == 0;
7910 @end smallexample
7912 @noindent
7913 GNU C++ does not support old-style function definitions, so this
7914 extension is irrelevant.
7916 @node C++ Comments
7917 @section C++ Style Comments
7918 @cindex @code{//}
7919 @cindex C++ comments
7920 @cindex comments, C++ style
7922 In GNU C, you may use C++ style comments, which start with @samp{//} and
7923 continue until the end of the line.  Many other C implementations allow
7924 such comments, and they are included in the 1999 C standard.  However,
7925 C++ style comments are not recognized if you specify an @option{-std}
7926 option specifying a version of ISO C before C99, or @option{-ansi}
7927 (equivalent to @option{-std=c90}).
7929 @node Dollar Signs
7930 @section Dollar Signs in Identifier Names
7931 @cindex $
7932 @cindex dollar signs in identifier names
7933 @cindex identifier names, dollar signs in
7935 In GNU C, you may normally use dollar signs in identifier names.
7936 This is because many traditional C implementations allow such identifiers.
7937 However, dollar signs in identifiers are not supported on a few target
7938 machines, typically because the target assembler does not allow them.
7940 @node Character Escapes
7941 @section The Character @key{ESC} in Constants
7943 You can use the sequence @samp{\e} in a string or character constant to
7944 stand for the ASCII character @key{ESC}.
7946 @node Alignment
7947 @section Inquiring on Alignment of Types or Variables
7948 @cindex alignment
7949 @cindex type alignment
7950 @cindex variable alignment
7952 The keyword @code{__alignof__} allows you to inquire about how an object
7953 is aligned, or the minimum alignment usually required by a type.  Its
7954 syntax is just like @code{sizeof}.
7956 For example, if the target machine requires a @code{double} value to be
7957 aligned on an 8-byte boundary, then @code{__alignof__ (double)} is 8.
7958 This is true on many RISC machines.  On more traditional machine
7959 designs, @code{__alignof__ (double)} is 4 or even 2.
7961 Some machines never actually require alignment; they allow reference to any
7962 data type even at an odd address.  For these machines, @code{__alignof__}
7963 reports the smallest alignment that GCC gives the data type, usually as
7964 mandated by the target ABI.
7966 If the operand of @code{__alignof__} is an lvalue rather than a type,
7967 its value is the required alignment for its type, taking into account
7968 any minimum alignment specified with GCC's @code{__attribute__}
7969 extension (@pxref{Variable Attributes}).  For example, after this
7970 declaration:
7972 @smallexample
7973 struct foo @{ int x; char y; @} foo1;
7974 @end smallexample
7976 @noindent
7977 the value of @code{__alignof__ (foo1.y)} is 1, even though its actual
7978 alignment is probably 2 or 4, the same as @code{__alignof__ (int)}.
7980 It is an error to ask for the alignment of an incomplete type.
7983 @node Inline
7984 @section An Inline Function is As Fast As a Macro
7985 @cindex inline functions
7986 @cindex integrating function code
7987 @cindex open coding
7988 @cindex macros, inline alternative
7990 By declaring a function inline, you can direct GCC to make
7991 calls to that function faster.  One way GCC can achieve this is to
7992 integrate that function's code into the code for its callers.  This
7993 makes execution faster by eliminating the function-call overhead; in
7994 addition, if any of the actual argument values are constant, their
7995 known values may permit simplifications at compile time so that not
7996 all of the inline function's code needs to be included.  The effect on
7997 code size is less predictable; object code may be larger or smaller
7998 with function inlining, depending on the particular case.  You can
7999 also direct GCC to try to integrate all ``simple enough'' functions
8000 into their callers with the option @option{-finline-functions}.
8002 GCC implements three different semantics of declaring a function
8003 inline.  One is available with @option{-std=gnu89} or
8004 @option{-fgnu89-inline} or when @code{gnu_inline} attribute is present
8005 on all inline declarations, another when
8006 @option{-std=c99},
8007 @option{-std=gnu99} or an option for a later C version is used
8008 (without @option{-fgnu89-inline}), and the third
8009 is used when compiling C++.
8011 To declare a function inline, use the @code{inline} keyword in its
8012 declaration, like this:
8014 @smallexample
8015 static inline int
8016 inc (int *a)
8018   return (*a)++;
8020 @end smallexample
8022 If you are writing a header file to be included in ISO C90 programs, write
8023 @code{__inline__} instead of @code{inline}.  @xref{Alternate Keywords}.
8025 The three types of inlining behave similarly in two important cases:
8026 when the @code{inline} keyword is used on a @code{static} function,
8027 like the example above, and when a function is first declared without
8028 using the @code{inline} keyword and then is defined with
8029 @code{inline}, like this:
8031 @smallexample
8032 extern int inc (int *a);
8033 inline int
8034 inc (int *a)
8036   return (*a)++;
8038 @end smallexample
8040 In both of these common cases, the program behaves the same as if you
8041 had not used the @code{inline} keyword, except for its speed.
8043 @cindex inline functions, omission of
8044 @opindex fkeep-inline-functions
8045 When a function is both inline and @code{static}, if all calls to the
8046 function are integrated into the caller, and the function's address is
8047 never used, then the function's own assembler code is never referenced.
8048 In this case, GCC does not actually output assembler code for the
8049 function, unless you specify the option @option{-fkeep-inline-functions}.
8050 If there is a nonintegrated call, then the function is compiled to
8051 assembler code as usual.  The function must also be compiled as usual if
8052 the program refers to its address, because that cannot be inlined.
8054 @opindex Winline
8055 Note that certain usages in a function definition can make it unsuitable
8056 for inline substitution.  Among these usages are: variadic functions,
8057 use of @code{alloca}, use of computed goto (@pxref{Labels as Values}),
8058 use of nonlocal goto, use of nested functions, use of @code{setjmp}, use
8059 of @code{__builtin_longjmp} and use of @code{__builtin_return} or
8060 @code{__builtin_apply_args}.  Using @option{-Winline} warns when a
8061 function marked @code{inline} could not be substituted, and gives the
8062 reason for the failure.
8064 @cindex automatic @code{inline} for C++ member fns
8065 @cindex @code{inline} automatic for C++ member fns
8066 @cindex member fns, automatically @code{inline}
8067 @cindex C++ member fns, automatically @code{inline}
8068 @opindex fno-default-inline
8069 As required by ISO C++, GCC considers member functions defined within
8070 the body of a class to be marked inline even if they are
8071 not explicitly declared with the @code{inline} keyword.  You can
8072 override this with @option{-fno-default-inline}; @pxref{C++ Dialect
8073 Options,,Options Controlling C++ Dialect}.
8075 GCC does not inline any functions when not optimizing unless you specify
8076 the @samp{always_inline} attribute for the function, like this:
8078 @smallexample
8079 /* @r{Prototype.}  */
8080 inline void foo (const char) __attribute__((always_inline));
8081 @end smallexample
8083 The remainder of this section is specific to GNU C90 inlining.
8085 @cindex non-static inline function
8086 When an inline function is not @code{static}, then the compiler must assume
8087 that there may be calls from other source files; since a global symbol can
8088 be defined only once in any program, the function must not be defined in
8089 the other source files, so the calls therein cannot be integrated.
8090 Therefore, a non-@code{static} inline function is always compiled on its
8091 own in the usual fashion.
8093 If you specify both @code{inline} and @code{extern} in the function
8094 definition, then the definition is used only for inlining.  In no case
8095 is the function compiled on its own, not even if you refer to its
8096 address explicitly.  Such an address becomes an external reference, as
8097 if you had only declared the function, and had not defined it.
8099 This combination of @code{inline} and @code{extern} has almost the
8100 effect of a macro.  The way to use it is to put a function definition in
8101 a header file with these keywords, and put another copy of the
8102 definition (lacking @code{inline} and @code{extern}) in a library file.
8103 The definition in the header file causes most calls to the function
8104 to be inlined.  If any uses of the function remain, they refer to
8105 the single copy in the library.
8107 @node Volatiles
8108 @section When is a Volatile Object Accessed?
8109 @cindex accessing volatiles
8110 @cindex volatile read
8111 @cindex volatile write
8112 @cindex volatile access
8114 C has the concept of volatile objects.  These are normally accessed by
8115 pointers and used for accessing hardware or inter-thread
8116 communication.  The standard encourages compilers to refrain from
8117 optimizations concerning accesses to volatile objects, but leaves it
8118 implementation defined as to what constitutes a volatile access.  The
8119 minimum requirement is that at a sequence point all previous accesses
8120 to volatile objects have stabilized and no subsequent accesses have
8121 occurred.  Thus an implementation is free to reorder and combine
8122 volatile accesses that occur between sequence points, but cannot do
8123 so for accesses across a sequence point.  The use of volatile does
8124 not allow you to violate the restriction on updating objects multiple
8125 times between two sequence points.
8127 Accesses to non-volatile objects are not ordered with respect to
8128 volatile accesses.  You cannot use a volatile object as a memory
8129 barrier to order a sequence of writes to non-volatile memory.  For
8130 instance:
8132 @smallexample
8133 int *ptr = @var{something};
8134 volatile int vobj;
8135 *ptr = @var{something};
8136 vobj = 1;
8137 @end smallexample
8139 @noindent
8140 Unless @var{*ptr} and @var{vobj} can be aliased, it is not guaranteed
8141 that the write to @var{*ptr} occurs by the time the update
8142 of @var{vobj} happens.  If you need this guarantee, you must use
8143 a stronger memory barrier such as:
8145 @smallexample
8146 int *ptr = @var{something};
8147 volatile int vobj;
8148 *ptr = @var{something};
8149 asm volatile ("" : : : "memory");
8150 vobj = 1;
8151 @end smallexample
8153 A scalar volatile object is read when it is accessed in a void context:
8155 @smallexample
8156 volatile int *src = @var{somevalue};
8157 *src;
8158 @end smallexample
8160 Such expressions are rvalues, and GCC implements this as a
8161 read of the volatile object being pointed to.
8163 Assignments are also expressions and have an rvalue.  However when
8164 assigning to a scalar volatile, the volatile object is not reread,
8165 regardless of whether the assignment expression's rvalue is used or
8166 not.  If the assignment's rvalue is used, the value is that assigned
8167 to the volatile object.  For instance, there is no read of @var{vobj}
8168 in all the following cases:
8170 @smallexample
8171 int obj;
8172 volatile int vobj;
8173 vobj = @var{something};
8174 obj = vobj = @var{something};
8175 obj ? vobj = @var{onething} : vobj = @var{anotherthing};
8176 obj = (@var{something}, vobj = @var{anotherthing});
8177 @end smallexample
8179 If you need to read the volatile object after an assignment has
8180 occurred, you must use a separate expression with an intervening
8181 sequence point.
8183 As bit-fields are not individually addressable, volatile bit-fields may
8184 be implicitly read when written to, or when adjacent bit-fields are
8185 accessed.  Bit-field operations may be optimized such that adjacent
8186 bit-fields are only partially accessed, if they straddle a storage unit
8187 boundary.  For these reasons it is unwise to use volatile bit-fields to
8188 access hardware.
8190 @node Using Assembly Language with C
8191 @section How to Use Inline Assembly Language in C Code
8192 @cindex @code{asm} keyword
8193 @cindex assembly language in C
8194 @cindex inline assembly language
8195 @cindex mixing assembly language and C
8197 The @code{asm} keyword allows you to embed assembler instructions
8198 within C code.  GCC provides two forms of inline @code{asm}
8199 statements.  A @dfn{basic @code{asm}} statement is one with no
8200 operands (@pxref{Basic Asm}), while an @dfn{extended @code{asm}}
8201 statement (@pxref{Extended Asm}) includes one or more operands.  
8202 The extended form is preferred for mixing C and assembly language
8203 within a function, but to include assembly language at
8204 top level you must use basic @code{asm}.
8206 You can also use the @code{asm} keyword to override the assembler name
8207 for a C symbol, or to place a C variable in a specific register.
8209 @menu
8210 * Basic Asm::          Inline assembler without operands.
8211 * Extended Asm::       Inline assembler with operands.
8212 * Constraints::        Constraints for @code{asm} operands
8213 * Asm Labels::         Specifying the assembler name to use for a C symbol.
8214 * Explicit Register Variables::  Defining variables residing in specified 
8215                        registers.
8216 * Size of an asm::     How GCC calculates the size of an @code{asm} block.
8217 @end menu
8219 @node Basic Asm
8220 @subsection Basic Asm --- Assembler Instructions Without Operands
8221 @cindex basic @code{asm}
8222 @cindex assembly language in C, basic
8224 A basic @code{asm} statement has the following syntax:
8226 @example
8227 asm @r{[} volatile @r{]} ( @var{AssemblerInstructions} )
8228 @end example
8230 The @code{asm} keyword is a GNU extension.
8231 When writing code that can be compiled with @option{-ansi} and the
8232 various @option{-std} options, use @code{__asm__} instead of 
8233 @code{asm} (@pxref{Alternate Keywords}).
8235 @subsubheading Qualifiers
8236 @table @code
8237 @item volatile
8238 The optional @code{volatile} qualifier has no effect. 
8239 All basic @code{asm} blocks are implicitly volatile.
8240 @end table
8242 @subsubheading Parameters
8243 @table @var
8245 @item AssemblerInstructions
8246 This is a literal string that specifies the assembler code. The string can 
8247 contain any instructions recognized by the assembler, including directives. 
8248 GCC does not parse the assembler instructions themselves and 
8249 does not know what they mean or even whether they are valid assembler input. 
8251 You may place multiple assembler instructions together in a single @code{asm} 
8252 string, separated by the characters normally used in assembly code for the 
8253 system. A combination that works in most places is a newline to break the 
8254 line, plus a tab character (written as @samp{\n\t}).
8255 Some assemblers allow semicolons as a line separator. However, 
8256 note that some assembler dialects use semicolons to start a comment. 
8257 @end table
8259 @subsubheading Remarks
8260 Using extended @code{asm} (@pxref{Extended Asm}) typically produces
8261 smaller, safer, and more efficient code, and in most cases it is a
8262 better solution than basic @code{asm}.  However, there are two
8263 situations where only basic @code{asm} can be used:
8265 @itemize @bullet
8266 @item
8267 Extended @code{asm} statements have to be inside a C
8268 function, so to write inline assembly language at file scope (``top-level''),
8269 outside of C functions, you must use basic @code{asm}.
8270 You can use this technique to emit assembler directives,
8271 define assembly language macros that can be invoked elsewhere in the file,
8272 or write entire functions in assembly language.
8274 @item
8275 Functions declared
8276 with the @code{naked} attribute also require basic @code{asm}
8277 (@pxref{Function Attributes}).
8278 @end itemize
8280 Safely accessing C data and calling functions from basic @code{asm} is more 
8281 complex than it may appear. To access C data, it is better to use extended 
8282 @code{asm}.
8284 Do not expect a sequence of @code{asm} statements to remain perfectly 
8285 consecutive after compilation. If certain instructions need to remain 
8286 consecutive in the output, put them in a single multi-instruction @code{asm}
8287 statement. Note that GCC's optimizers can move @code{asm} statements 
8288 relative to other code, including across jumps.
8290 @code{asm} statements may not perform jumps into other @code{asm} statements. 
8291 GCC does not know about these jumps, and therefore cannot take 
8292 account of them when deciding how to optimize. Jumps from @code{asm} to C 
8293 labels are only supported in extended @code{asm}.
8295 Under certain circumstances, GCC may duplicate (or remove duplicates of) your 
8296 assembly code when optimizing. This can lead to unexpected duplicate 
8297 symbol errors during compilation if your assembly code defines symbols or 
8298 labels.
8300 @strong{Warning:} The C standards do not specify semantics for @code{asm},
8301 making it a potential source of incompatibilities between compilers.  These
8302 incompatibilities may not produce compiler warnings/errors.
8304 GCC does not parse basic @code{asm}'s @var{AssemblerInstructions}, which
8305 means there is no way to communicate to the compiler what is happening
8306 inside them.  GCC has no visibility of symbols in the @code{asm} and may
8307 discard them as unreferenced.  It also does not know about side effects of
8308 the assembler code, such as modifications to memory or registers.  Unlike
8309 some compilers, GCC assumes that no changes to general purpose registers
8310 occur.  This assumption may change in a future release.
8312 To avoid complications from future changes to the semantics and the
8313 compatibility issues between compilers, consider replacing basic @code{asm}
8314 with extended @code{asm}.  See
8315 @uref{https://gcc.gnu.org/wiki/ConvertBasicAsmToExtended, How to convert
8316 from basic asm to extended asm} for information about how to perform this
8317 conversion.
8319 The compiler copies the assembler instructions in a basic @code{asm} 
8320 verbatim to the assembly language output file, without 
8321 processing dialects or any of the @samp{%} operators that are available with
8322 extended @code{asm}. This results in minor differences between basic 
8323 @code{asm} strings and extended @code{asm} templates. For example, to refer to 
8324 registers you might use @samp{%eax} in basic @code{asm} and
8325 @samp{%%eax} in extended @code{asm}.
8327 On targets such as x86 that support multiple assembler dialects,
8328 all basic @code{asm} blocks use the assembler dialect specified by the 
8329 @option{-masm} command-line option (@pxref{x86 Options}).  
8330 Basic @code{asm} provides no
8331 mechanism to provide different assembler strings for different dialects.
8333 For basic @code{asm} with non-empty assembler string GCC assumes
8334 the assembler block does not change any general purpose registers,
8335 but it may read or write any globally accessible variable.
8337 Here is an example of basic @code{asm} for i386:
8339 @example
8340 /* Note that this code will not compile with -masm=intel */
8341 #define DebugBreak() asm("int $3")
8342 @end example
8344 @node Extended Asm
8345 @subsection Extended Asm - Assembler Instructions with C Expression Operands
8346 @cindex extended @code{asm}
8347 @cindex assembly language in C, extended
8349 With extended @code{asm} you can read and write C variables from 
8350 assembler and perform jumps from assembler code to C labels.  
8351 Extended @code{asm} syntax uses colons (@samp{:}) to delimit
8352 the operand parameters after the assembler template:
8354 @example
8355 asm @r{[}volatile@r{]} ( @var{AssemblerTemplate} 
8356                  : @var{OutputOperands} 
8357                  @r{[} : @var{InputOperands}
8358                  @r{[} : @var{Clobbers} @r{]} @r{]})
8360 asm @r{[}volatile@r{]} goto ( @var{AssemblerTemplate} 
8361                       : 
8362                       : @var{InputOperands}
8363                       : @var{Clobbers}
8364                       : @var{GotoLabels})
8365 @end example
8367 The @code{asm} keyword is a GNU extension.
8368 When writing code that can be compiled with @option{-ansi} and the
8369 various @option{-std} options, use @code{__asm__} instead of 
8370 @code{asm} (@pxref{Alternate Keywords}).
8372 @subsubheading Qualifiers
8373 @table @code
8375 @item volatile
8376 The typical use of extended @code{asm} statements is to manipulate input 
8377 values to produce output values. However, your @code{asm} statements may 
8378 also produce side effects. If so, you may need to use the @code{volatile} 
8379 qualifier to disable certain optimizations. @xref{Volatile}.
8381 @item goto
8382 This qualifier informs the compiler that the @code{asm} statement may 
8383 perform a jump to one of the labels listed in the @var{GotoLabels}.
8384 @xref{GotoLabels}.
8385 @end table
8387 @subsubheading Parameters
8388 @table @var
8389 @item AssemblerTemplate
8390 This is a literal string that is the template for the assembler code. It is a 
8391 combination of fixed text and tokens that refer to the input, output, 
8392 and goto parameters. @xref{AssemblerTemplate}.
8394 @item OutputOperands
8395 A comma-separated list of the C variables modified by the instructions in the 
8396 @var{AssemblerTemplate}.  An empty list is permitted.  @xref{OutputOperands}.
8398 @item InputOperands
8399 A comma-separated list of C expressions read by the instructions in the 
8400 @var{AssemblerTemplate}.  An empty list is permitted.  @xref{InputOperands}.
8402 @item Clobbers
8403 A comma-separated list of registers or other values changed by the 
8404 @var{AssemblerTemplate}, beyond those listed as outputs.
8405 An empty list is permitted.  @xref{Clobbers and Scratch Registers}.
8407 @item GotoLabels
8408 When you are using the @code{goto} form of @code{asm}, this section contains 
8409 the list of all C labels to which the code in the 
8410 @var{AssemblerTemplate} may jump. 
8411 @xref{GotoLabels}.
8413 @code{asm} statements may not perform jumps into other @code{asm} statements,
8414 only to the listed @var{GotoLabels}.
8415 GCC's optimizers do not know about other jumps; therefore they cannot take 
8416 account of them when deciding how to optimize.
8417 @end table
8419 The total number of input + output + goto operands is limited to 30.
8421 @subsubheading Remarks
8422 The @code{asm} statement allows you to include assembly instructions directly 
8423 within C code. This may help you to maximize performance in time-sensitive 
8424 code or to access assembly instructions that are not readily available to C 
8425 programs.
8427 Note that extended @code{asm} statements must be inside a function. Only 
8428 basic @code{asm} may be outside functions (@pxref{Basic Asm}).
8429 Functions declared with the @code{naked} attribute also require basic 
8430 @code{asm} (@pxref{Function Attributes}).
8432 While the uses of @code{asm} are many and varied, it may help to think of an 
8433 @code{asm} statement as a series of low-level instructions that convert input 
8434 parameters to output parameters. So a simple (if not particularly useful) 
8435 example for i386 using @code{asm} might look like this:
8437 @example
8438 int src = 1;
8439 int dst;   
8441 asm ("mov %1, %0\n\t"
8442     "add $1, %0"
8443     : "=r" (dst) 
8444     : "r" (src));
8446 printf("%d\n", dst);
8447 @end example
8449 This code copies @code{src} to @code{dst} and add 1 to @code{dst}.
8451 @anchor{Volatile}
8452 @subsubsection Volatile
8453 @cindex volatile @code{asm}
8454 @cindex @code{asm} volatile
8456 GCC's optimizers sometimes discard @code{asm} statements if they determine 
8457 there is no need for the output variables. Also, the optimizers may move 
8458 code out of loops if they believe that the code will always return the same 
8459 result (i.e. none of its input values change between calls). Using the 
8460 @code{volatile} qualifier disables these optimizations. @code{asm} statements 
8461 that have no output operands, including @code{asm goto} statements, 
8462 are implicitly volatile.
8464 This i386 code demonstrates a case that does not use (or require) the 
8465 @code{volatile} qualifier. If it is performing assertion checking, this code 
8466 uses @code{asm} to perform the validation. Otherwise, @code{dwRes} is 
8467 unreferenced by any code. As a result, the optimizers can discard the 
8468 @code{asm} statement, which in turn removes the need for the entire 
8469 @code{DoCheck} routine. By omitting the @code{volatile} qualifier when it 
8470 isn't needed you allow the optimizers to produce the most efficient code 
8471 possible.
8473 @example
8474 void DoCheck(uint32_t dwSomeValue)
8476    uint32_t dwRes;
8478    // Assumes dwSomeValue is not zero.
8479    asm ("bsfl %1,%0"
8480      : "=r" (dwRes)
8481      : "r" (dwSomeValue)
8482      : "cc");
8484    assert(dwRes > 3);
8486 @end example
8488 The next example shows a case where the optimizers can recognize that the input 
8489 (@code{dwSomeValue}) never changes during the execution of the function and can 
8490 therefore move the @code{asm} outside the loop to produce more efficient code. 
8491 Again, using @code{volatile} disables this type of optimization.
8493 @example
8494 void do_print(uint32_t dwSomeValue)
8496    uint32_t dwRes;
8498    for (uint32_t x=0; x < 5; x++)
8499    @{
8500       // Assumes dwSomeValue is not zero.
8501       asm ("bsfl %1,%0"
8502         : "=r" (dwRes)
8503         : "r" (dwSomeValue)
8504         : "cc");
8506       printf("%u: %u %u\n", x, dwSomeValue, dwRes);
8507    @}
8509 @end example
8511 The following example demonstrates a case where you need to use the 
8512 @code{volatile} qualifier. 
8513 It uses the x86 @code{rdtsc} instruction, which reads 
8514 the computer's time-stamp counter. Without the @code{volatile} qualifier, 
8515 the optimizers might assume that the @code{asm} block will always return the 
8516 same value and therefore optimize away the second call.
8518 @example
8519 uint64_t msr;
8521 asm volatile ( "rdtsc\n\t"    // Returns the time in EDX:EAX.
8522         "shl $32, %%rdx\n\t"  // Shift the upper bits left.
8523         "or %%rdx, %0"        // 'Or' in the lower bits.
8524         : "=a" (msr)
8525         : 
8526         : "rdx");
8528 printf("msr: %llx\n", msr);
8530 // Do other work...
8532 // Reprint the timestamp
8533 asm volatile ( "rdtsc\n\t"    // Returns the time in EDX:EAX.
8534         "shl $32, %%rdx\n\t"  // Shift the upper bits left.
8535         "or %%rdx, %0"        // 'Or' in the lower bits.
8536         : "=a" (msr)
8537         : 
8538         : "rdx");
8540 printf("msr: %llx\n", msr);
8541 @end example
8543 GCC's optimizers do not treat this code like the non-volatile code in the 
8544 earlier examples. They do not move it out of loops or omit it on the 
8545 assumption that the result from a previous call is still valid.
8547 Note that the compiler can move even volatile @code{asm} instructions relative 
8548 to other code, including across jump instructions. For example, on many 
8549 targets there is a system register that controls the rounding mode of 
8550 floating-point operations. Setting it with a volatile @code{asm}, as in the 
8551 following PowerPC example, does not work reliably.
8553 @example
8554 asm volatile("mtfsf 255, %0" : : "f" (fpenv));
8555 sum = x + y;
8556 @end example
8558 The compiler may move the addition back before the volatile @code{asm}. To 
8559 make it work as expected, add an artificial dependency to the @code{asm} by 
8560 referencing a variable in the subsequent code, for example: 
8562 @example
8563 asm volatile ("mtfsf 255,%1" : "=X" (sum) : "f" (fpenv));
8564 sum = x + y;
8565 @end example
8567 Under certain circumstances, GCC may duplicate (or remove duplicates of) your 
8568 assembly code when optimizing. This can lead to unexpected duplicate symbol 
8569 errors during compilation if your asm code defines symbols or labels. 
8570 Using @samp{%=} 
8571 (@pxref{AssemblerTemplate}) may help resolve this problem.
8573 @anchor{AssemblerTemplate}
8574 @subsubsection Assembler Template
8575 @cindex @code{asm} assembler template
8577 An assembler template is a literal string containing assembler instructions.
8578 The compiler replaces tokens in the template that refer 
8579 to inputs, outputs, and goto labels,
8580 and then outputs the resulting string to the assembler. The 
8581 string can contain any instructions recognized by the assembler, including 
8582 directives. GCC does not parse the assembler instructions 
8583 themselves and does not know what they mean or even whether they are valid 
8584 assembler input. However, it does count the statements 
8585 (@pxref{Size of an asm}).
8587 You may place multiple assembler instructions together in a single @code{asm} 
8588 string, separated by the characters normally used in assembly code for the 
8589 system. A combination that works in most places is a newline to break the 
8590 line, plus a tab character to move to the instruction field (written as 
8591 @samp{\n\t}). 
8592 Some assemblers allow semicolons as a line separator. However, note 
8593 that some assembler dialects use semicolons to start a comment. 
8595 Do not expect a sequence of @code{asm} statements to remain perfectly 
8596 consecutive after compilation, even when you are using the @code{volatile} 
8597 qualifier. If certain instructions need to remain consecutive in the output, 
8598 put them in a single multi-instruction asm statement.
8600 Accessing data from C programs without using input/output operands (such as 
8601 by using global symbols directly from the assembler template) may not work as 
8602 expected. Similarly, calling functions directly from an assembler template 
8603 requires a detailed understanding of the target assembler and ABI.
8605 Since GCC does not parse the assembler template,
8606 it has no visibility of any 
8607 symbols it references. This may result in GCC discarding those symbols as 
8608 unreferenced unless they are also listed as input, output, or goto operands.
8610 @subsubheading Special format strings
8612 In addition to the tokens described by the input, output, and goto operands, 
8613 these tokens have special meanings in the assembler template:
8615 @table @samp
8616 @item %% 
8617 Outputs a single @samp{%} into the assembler code.
8619 @item %= 
8620 Outputs a number that is unique to each instance of the @code{asm} 
8621 statement in the entire compilation. This option is useful when creating local 
8622 labels and referring to them multiple times in a single template that 
8623 generates multiple assembler instructions. 
8625 @item %@{
8626 @itemx %|
8627 @itemx %@}
8628 Outputs @samp{@{}, @samp{|}, and @samp{@}} characters (respectively)
8629 into the assembler code.  When unescaped, these characters have special
8630 meaning to indicate multiple assembler dialects, as described below.
8631 @end table
8633 @subsubheading Multiple assembler dialects in @code{asm} templates
8635 On targets such as x86, GCC supports multiple assembler dialects.
8636 The @option{-masm} option controls which dialect GCC uses as its 
8637 default for inline assembler. The target-specific documentation for the 
8638 @option{-masm} option contains the list of supported dialects, as well as the 
8639 default dialect if the option is not specified. This information may be 
8640 important to understand, since assembler code that works correctly when 
8641 compiled using one dialect will likely fail if compiled using another.
8642 @xref{x86 Options}.
8644 If your code needs to support multiple assembler dialects (for example, if 
8645 you are writing public headers that need to support a variety of compilation 
8646 options), use constructs of this form:
8648 @example
8649 @{ dialect0 | dialect1 | dialect2... @}
8650 @end example
8652 This construct outputs @code{dialect0} 
8653 when using dialect #0 to compile the code, 
8654 @code{dialect1} for dialect #1, etc. If there are fewer alternatives within the 
8655 braces than the number of dialects the compiler supports, the construct 
8656 outputs nothing.
8658 For example, if an x86 compiler supports two dialects
8659 (@samp{att}, @samp{intel}), an 
8660 assembler template such as this:
8662 @example
8663 "bt@{l %[Offset],%[Base] | %[Base],%[Offset]@}; jc %l2"
8664 @end example
8666 @noindent
8667 is equivalent to one of
8669 @example
8670 "btl %[Offset],%[Base] ; jc %l2"   @r{/* att dialect */}
8671 "bt %[Base],%[Offset]; jc %l2"     @r{/* intel dialect */}
8672 @end example
8674 Using that same compiler, this code:
8676 @example
8677 "xchg@{l@}\t@{%%@}ebx, %1"
8678 @end example
8680 @noindent
8681 corresponds to either
8683 @example
8684 "xchgl\t%%ebx, %1"                 @r{/* att dialect */}
8685 "xchg\tebx, %1"                    @r{/* intel dialect */}
8686 @end example
8688 There is no support for nesting dialect alternatives.
8690 @anchor{OutputOperands}
8691 @subsubsection Output Operands
8692 @cindex @code{asm} output operands
8694 An @code{asm} statement has zero or more output operands indicating the names
8695 of C variables modified by the assembler code.
8697 In this i386 example, @code{old} (referred to in the template string as 
8698 @code{%0}) and @code{*Base} (as @code{%1}) are outputs and @code{Offset} 
8699 (@code{%2}) is an input:
8701 @example
8702 bool old;
8704 __asm__ ("btsl %2,%1\n\t" // Turn on zero-based bit #Offset in Base.
8705          "sbb %0,%0"      // Use the CF to calculate old.
8706    : "=r" (old), "+rm" (*Base)
8707    : "Ir" (Offset)
8708    : "cc");
8710 return old;
8711 @end example
8713 Operands are separated by commas.  Each operand has this format:
8715 @example
8716 @r{[} [@var{asmSymbolicName}] @r{]} @var{constraint} (@var{cvariablename})
8717 @end example
8719 @table @var
8720 @item asmSymbolicName
8721 Specifies a symbolic name for the operand.
8722 Reference the name in the assembler template 
8723 by enclosing it in square brackets 
8724 (i.e. @samp{%[Value]}). The scope of the name is the @code{asm} statement 
8725 that contains the definition. Any valid C variable name is acceptable, 
8726 including names already defined in the surrounding code. No two operands 
8727 within the same @code{asm} statement can use the same symbolic name.
8729 When not using an @var{asmSymbolicName}, use the (zero-based) position
8730 of the operand 
8731 in the list of operands in the assembler template. For example if there are 
8732 three output operands, use @samp{%0} in the template to refer to the first, 
8733 @samp{%1} for the second, and @samp{%2} for the third. 
8735 @item constraint
8736 A string constant specifying constraints on the placement of the operand; 
8737 @xref{Constraints}, for details.
8739 Output constraints must begin with either @samp{=} (a variable overwriting an 
8740 existing value) or @samp{+} (when reading and writing). When using 
8741 @samp{=}, do not assume the location contains the existing value
8742 on entry to the @code{asm}, except 
8743 when the operand is tied to an input; @pxref{InputOperands,,Input Operands}.
8745 After the prefix, there must be one or more additional constraints 
8746 (@pxref{Constraints}) that describe where the value resides. Common 
8747 constraints include @samp{r} for register and @samp{m} for memory. 
8748 When you list more than one possible location (for example, @code{"=rm"}),
8749 the compiler chooses the most efficient one based on the current context. 
8750 If you list as many alternates as the @code{asm} statement allows, you permit 
8751 the optimizers to produce the best possible code. 
8752 If you must use a specific register, but your Machine Constraints do not
8753 provide sufficient control to select the specific register you want, 
8754 local register variables may provide a solution (@pxref{Local Register 
8755 Variables}).
8757 @item cvariablename
8758 Specifies a C lvalue expression to hold the output, typically a variable name.
8759 The enclosing parentheses are a required part of the syntax.
8761 @end table
8763 When the compiler selects the registers to use to 
8764 represent the output operands, it does not use any of the clobbered registers 
8765 (@pxref{Clobbers and Scratch Registers}).
8767 Output operand expressions must be lvalues. The compiler cannot check whether 
8768 the operands have data types that are reasonable for the instruction being 
8769 executed. For output expressions that are not directly addressable (for 
8770 example a bit-field), the constraint must allow a register. In that case, GCC 
8771 uses the register as the output of the @code{asm}, and then stores that 
8772 register into the output. 
8774 Operands using the @samp{+} constraint modifier count as two operands 
8775 (that is, both as input and output) towards the total maximum of 30 operands
8776 per @code{asm} statement.
8778 Use the @samp{&} constraint modifier (@pxref{Modifiers}) on all output
8779 operands that must not overlap an input.  Otherwise, 
8780 GCC may allocate the output operand in the same register as an unrelated 
8781 input operand, on the assumption that the assembler code consumes its 
8782 inputs before producing outputs. This assumption may be false if the assembler 
8783 code actually consists of more than one instruction.
8785 The same problem can occur if one output parameter (@var{a}) allows a register 
8786 constraint and another output parameter (@var{b}) allows a memory constraint.
8787 The code generated by GCC to access the memory address in @var{b} can contain
8788 registers which @emph{might} be shared by @var{a}, and GCC considers those 
8789 registers to be inputs to the asm. As above, GCC assumes that such input
8790 registers are consumed before any outputs are written. This assumption may 
8791 result in incorrect behavior if the asm writes to @var{a} before using 
8792 @var{b}. Combining the @samp{&} modifier with the register constraint on @var{a}
8793 ensures that modifying @var{a} does not affect the address referenced by 
8794 @var{b}. Otherwise, the location of @var{b} 
8795 is undefined if @var{a} is modified before using @var{b}.
8797 @code{asm} supports operand modifiers on operands (for example @samp{%k2} 
8798 instead of simply @samp{%2}). Typically these qualifiers are hardware 
8799 dependent. The list of supported modifiers for x86 is found at 
8800 @ref{x86Operandmodifiers,x86 Operand modifiers}.
8802 If the C code that follows the @code{asm} makes no use of any of the output 
8803 operands, use @code{volatile} for the @code{asm} statement to prevent the 
8804 optimizers from discarding the @code{asm} statement as unneeded 
8805 (see @ref{Volatile}).
8807 This code makes no use of the optional @var{asmSymbolicName}. Therefore it 
8808 references the first output operand as @code{%0} (were there a second, it 
8809 would be @code{%1}, etc). The number of the first input operand is one greater 
8810 than that of the last output operand. In this i386 example, that makes 
8811 @code{Mask} referenced as @code{%1}:
8813 @example
8814 uint32_t Mask = 1234;
8815 uint32_t Index;
8817   asm ("bsfl %1, %0"
8818      : "=r" (Index)
8819      : "r" (Mask)
8820      : "cc");
8821 @end example
8823 That code overwrites the variable @code{Index} (@samp{=}),
8824 placing the value in a register (@samp{r}).
8825 Using the generic @samp{r} constraint instead of a constraint for a specific 
8826 register allows the compiler to pick the register to use, which can result 
8827 in more efficient code. This may not be possible if an assembler instruction 
8828 requires a specific register.
8830 The following i386 example uses the @var{asmSymbolicName} syntax.
8831 It produces the 
8832 same result as the code above, but some may consider it more readable or more 
8833 maintainable since reordering index numbers is not necessary when adding or 
8834 removing operands. The names @code{aIndex} and @code{aMask}
8835 are only used in this example to emphasize which 
8836 names get used where.
8837 It is acceptable to reuse the names @code{Index} and @code{Mask}.
8839 @example
8840 uint32_t Mask = 1234;
8841 uint32_t Index;
8843   asm ("bsfl %[aMask], %[aIndex]"
8844      : [aIndex] "=r" (Index)
8845      : [aMask] "r" (Mask)
8846      : "cc");
8847 @end example
8849 Here are some more examples of output operands.
8851 @example
8852 uint32_t c = 1;
8853 uint32_t d;
8854 uint32_t *e = &c;
8856 asm ("mov %[e], %[d]"
8857    : [d] "=rm" (d)
8858    : [e] "rm" (*e));
8859 @end example
8861 Here, @code{d} may either be in a register or in memory. Since the compiler 
8862 might already have the current value of the @code{uint32_t} location
8863 pointed to by @code{e}
8864 in a register, you can enable it to choose the best location
8865 for @code{d} by specifying both constraints.
8867 @anchor{FlagOutputOperands}
8868 @subsubsection Flag Output Operands
8869 @cindex @code{asm} flag output operands
8871 Some targets have a special register that holds the ``flags'' for the
8872 result of an operation or comparison.  Normally, the contents of that
8873 register are either unmodifed by the asm, or the asm is considered to
8874 clobber the contents.
8876 On some targets, a special form of output operand exists by which
8877 conditions in the flags register may be outputs of the asm.  The set of
8878 conditions supported are target specific, but the general rule is that
8879 the output variable must be a scalar integer, and the value is boolean.
8880 When supported, the target defines the preprocessor symbol
8881 @code{__GCC_ASM_FLAG_OUTPUTS__}.
8883 Because of the special nature of the flag output operands, the constraint
8884 may not include alternatives.
8886 Most often, the target has only one flags register, and thus is an implied
8887 operand of many instructions.  In this case, the operand should not be
8888 referenced within the assembler template via @code{%0} etc, as there's
8889 no corresponding text in the assembly language.
8891 @table @asis
8892 @item x86 family
8893 The flag output constraints for the x86 family are of the form
8894 @samp{=@@cc@var{cond}} where @var{cond} is one of the standard
8895 conditions defined in the ISA manual for @code{j@var{cc}} or
8896 @code{set@var{cc}}.
8898 @table @code
8899 @item a
8900 ``above'' or unsigned greater than
8901 @item ae
8902 ``above or equal'' or unsigned greater than or equal
8903 @item b
8904 ``below'' or unsigned less than
8905 @item be
8906 ``below or equal'' or unsigned less than or equal
8907 @item c
8908 carry flag set
8909 @item e
8910 @itemx z
8911 ``equal'' or zero flag set
8912 @item g
8913 signed greater than
8914 @item ge
8915 signed greater than or equal
8916 @item l
8917 signed less than
8918 @item le
8919 signed less than or equal
8920 @item o
8921 overflow flag set
8922 @item p
8923 parity flag set
8924 @item s
8925 sign flag set
8926 @item na
8927 @itemx nae
8928 @itemx nb
8929 @itemx nbe
8930 @itemx nc
8931 @itemx ne
8932 @itemx ng
8933 @itemx nge
8934 @itemx nl
8935 @itemx nle
8936 @itemx no
8937 @itemx np
8938 @itemx ns
8939 @itemx nz
8940 ``not'' @var{flag}, or inverted versions of those above
8941 @end table
8943 @end table
8945 @anchor{InputOperands}
8946 @subsubsection Input Operands
8947 @cindex @code{asm} input operands
8948 @cindex @code{asm} expressions
8950 Input operands make values from C variables and expressions available to the 
8951 assembly code.
8953 Operands are separated by commas.  Each operand has this format:
8955 @example
8956 @r{[} [@var{asmSymbolicName}] @r{]} @var{constraint} (@var{cexpression})
8957 @end example
8959 @table @var
8960 @item asmSymbolicName
8961 Specifies a symbolic name for the operand.
8962 Reference the name in the assembler template 
8963 by enclosing it in square brackets 
8964 (i.e. @samp{%[Value]}). The scope of the name is the @code{asm} statement 
8965 that contains the definition. Any valid C variable name is acceptable, 
8966 including names already defined in the surrounding code. No two operands 
8967 within the same @code{asm} statement can use the same symbolic name.
8969 When not using an @var{asmSymbolicName}, use the (zero-based) position
8970 of the operand 
8971 in the list of operands in the assembler template. For example if there are
8972 two output operands and three inputs,
8973 use @samp{%2} in the template to refer to the first input operand,
8974 @samp{%3} for the second, and @samp{%4} for the third. 
8976 @item constraint
8977 A string constant specifying constraints on the placement of the operand; 
8978 @xref{Constraints}, for details.
8980 Input constraint strings may not begin with either @samp{=} or @samp{+}.
8981 When you list more than one possible location (for example, @samp{"irm"}), 
8982 the compiler chooses the most efficient one based on the current context.
8983 If you must use a specific register, but your Machine Constraints do not
8984 provide sufficient control to select the specific register you want, 
8985 local register variables may provide a solution (@pxref{Local Register 
8986 Variables}).
8988 Input constraints can also be digits (for example, @code{"0"}). This indicates 
8989 that the specified input must be in the same place as the output constraint 
8990 at the (zero-based) index in the output constraint list. 
8991 When using @var{asmSymbolicName} syntax for the output operands,
8992 you may use these names (enclosed in brackets @samp{[]}) instead of digits.
8994 @item cexpression
8995 This is the C variable or expression being passed to the @code{asm} statement 
8996 as input.  The enclosing parentheses are a required part of the syntax.
8998 @end table
9000 When the compiler selects the registers to use to represent the input 
9001 operands, it does not use any of the clobbered registers
9002 (@pxref{Clobbers and Scratch Registers}).
9004 If there are no output operands but there are input operands, place two 
9005 consecutive colons where the output operands would go:
9007 @example
9008 __asm__ ("some instructions"
9009    : /* No outputs. */
9010    : "r" (Offset / 8));
9011 @end example
9013 @strong{Warning:} Do @emph{not} modify the contents of input-only operands 
9014 (except for inputs tied to outputs). The compiler assumes that on exit from 
9015 the @code{asm} statement these operands contain the same values as they 
9016 had before executing the statement. 
9017 It is @emph{not} possible to use clobbers
9018 to inform the compiler that the values in these inputs are changing. One 
9019 common work-around is to tie the changing input variable to an output variable 
9020 that never gets used. Note, however, that if the code that follows the 
9021 @code{asm} statement makes no use of any of the output operands, the GCC 
9022 optimizers may discard the @code{asm} statement as unneeded 
9023 (see @ref{Volatile}).
9025 @code{asm} supports operand modifiers on operands (for example @samp{%k2} 
9026 instead of simply @samp{%2}). Typically these qualifiers are hardware 
9027 dependent. The list of supported modifiers for x86 is found at 
9028 @ref{x86Operandmodifiers,x86 Operand modifiers}.
9030 In this example using the fictitious @code{combine} instruction, the 
9031 constraint @code{"0"} for input operand 1 says that it must occupy the same 
9032 location as output operand 0. Only input operands may use numbers in 
9033 constraints, and they must each refer to an output operand. Only a number (or 
9034 the symbolic assembler name) in the constraint can guarantee that one operand 
9035 is in the same place as another. The mere fact that @code{foo} is the value of 
9036 both operands is not enough to guarantee that they are in the same place in 
9037 the generated assembler code.
9039 @example
9040 asm ("combine %2, %0" 
9041    : "=r" (foo) 
9042    : "0" (foo), "g" (bar));
9043 @end example
9045 Here is an example using symbolic names.
9047 @example
9048 asm ("cmoveq %1, %2, %[result]" 
9049    : [result] "=r"(result) 
9050    : "r" (test), "r" (new), "[result]" (old));
9051 @end example
9053 @anchor{Clobbers and Scratch Registers}
9054 @subsubsection Clobbers and Scratch Registers
9055 @cindex @code{asm} clobbers
9056 @cindex @code{asm} scratch registers
9058 While the compiler is aware of changes to entries listed in the output 
9059 operands, the inline @code{asm} code may modify more than just the outputs. For 
9060 example, calculations may require additional registers, or the processor may 
9061 overwrite a register as a side effect of a particular assembler instruction. 
9062 In order to inform the compiler of these changes, list them in the clobber 
9063 list. Clobber list items are either register names or the special clobbers 
9064 (listed below). Each clobber list item is a string constant 
9065 enclosed in double quotes and separated by commas.
9067 Clobber descriptions may not in any way overlap with an input or output 
9068 operand. For example, you may not have an operand describing a register class 
9069 with one member when listing that register in the clobber list. Variables 
9070 declared to live in specific registers (@pxref{Explicit Register 
9071 Variables}) and used 
9072 as @code{asm} input or output operands must have no part mentioned in the 
9073 clobber description. In particular, there is no way to specify that input 
9074 operands get modified without also specifying them as output operands.
9076 When the compiler selects which registers to use to represent input and output 
9077 operands, it does not use any of the clobbered registers. As a result, 
9078 clobbered registers are available for any use in the assembler code.
9080 Here is a realistic example for the VAX showing the use of clobbered 
9081 registers: 
9083 @example
9084 asm volatile ("movc3 %0, %1, %2"
9085                    : /* No outputs. */
9086                    : "g" (from), "g" (to), "g" (count)
9087                    : "r0", "r1", "r2", "r3", "r4", "r5", "memory");
9088 @end example
9090 Also, there are two special clobber arguments:
9092 @table @code
9093 @item "cc"
9094 The @code{"cc"} clobber indicates that the assembler code modifies the flags 
9095 register. On some machines, GCC represents the condition codes as a specific 
9096 hardware register; @code{"cc"} serves to name this register.
9097 On other machines, condition code handling is different, 
9098 and specifying @code{"cc"} has no effect. But 
9099 it is valid no matter what the target.
9101 @item "memory"
9102 The @code{"memory"} clobber tells the compiler that the assembly code
9103 performs memory 
9104 reads or writes to items other than those listed in the input and output 
9105 operands (for example, accessing the memory pointed to by one of the input 
9106 parameters). To ensure memory contains correct values, GCC may need to flush 
9107 specific register values to memory before executing the @code{asm}. Further, 
9108 the compiler does not assume that any values read from memory before an 
9109 @code{asm} remain unchanged after that @code{asm}; it reloads them as 
9110 needed.  
9111 Using the @code{"memory"} clobber effectively forms a read/write
9112 memory barrier for the compiler.
9114 Note that this clobber does not prevent the @emph{processor} from doing 
9115 speculative reads past the @code{asm} statement. To prevent that, you need 
9116 processor-specific fence instructions.
9118 @end table
9120 Flushing registers to memory has performance implications and may be
9121 an issue for time-sensitive code.  You can provide better information
9122 to GCC to avoid this, as shown in the following examples.  At a
9123 minimum, aliasing rules allow GCC to know what memory @emph{doesn't}
9124 need to be flushed.
9126 Here is a fictitious sum of squares instruction, that takes two
9127 pointers to floating point values in memory and produces a floating
9128 point register output.
9129 Notice that @code{x}, and @code{y} both appear twice in the @code{asm}
9130 parameters, once to specify memory accessed, and once to specify a
9131 base register used by the @code{asm}.  You won't normally be wasting a
9132 register by doing this as GCC can use the same register for both
9133 purposes.  However, it would be foolish to use both @code{%1} and
9134 @code{%3} for @code{x} in this @code{asm} and expect them to be the
9135 same.  In fact, @code{%3} may well not be a register.  It might be a
9136 symbolic memory reference to the object pointed to by @code{x}.
9138 @smallexample
9139 asm ("sumsq %0, %1, %2"
9140      : "+f" (result)
9141      : "r" (x), "r" (y), "m" (*x), "m" (*y));
9142 @end smallexample
9144 Here is a fictitious @code{*z++ = *x++ * *y++} instruction.
9145 Notice that the @code{x}, @code{y} and @code{z} pointer registers
9146 must be specified as input/output because the @code{asm} modifies
9147 them.
9149 @smallexample
9150 asm ("vecmul %0, %1, %2"
9151      : "+r" (z), "+r" (x), "+r" (y), "=m" (*z)
9152      : "m" (*x), "m" (*y));
9153 @end smallexample
9155 An x86 example where the string memory argument is of unknown length.
9157 @smallexample
9158 asm("repne scasb"
9159     : "=c" (count), "+D" (p)
9160     : "m" (*(const char (*)[]) p), "0" (-1), "a" (0));
9161 @end smallexample
9163 If you know the above will only be reading a ten byte array then you
9164 could instead use a memory input like:
9165 @code{"m" (*(const char (*)[10]) p)}.
9167 Here is an example of a PowerPC vector scale implemented in assembly,
9168 complete with vector and condition code clobbers, and some initialized
9169 offset registers that are unchanged by the @code{asm}.
9171 @smallexample
9172 void
9173 dscal (size_t n, double *x, double alpha)
9175   asm ("/* lots of asm here */"
9176        : "+m" (*(double (*)[n]) x), "+&r" (n), "+b" (x)
9177        : "d" (alpha), "b" (32), "b" (48), "b" (64),
9178          "b" (80), "b" (96), "b" (112)
9179        : "cr0",
9180          "vs32","vs33","vs34","vs35","vs36","vs37","vs38","vs39",
9181          "vs40","vs41","vs42","vs43","vs44","vs45","vs46","vs47");
9183 @end smallexample
9185 Rather than allocating fixed registers via clobbers to provide scratch
9186 registers for an @code{asm} statement, an alternative is to define a
9187 variable and make it an early-clobber output as with @code{a2} and
9188 @code{a3} in the example below.  This gives the compiler register
9189 allocator more freedom.  You can also define a variable and make it an
9190 output tied to an input as with @code{a0} and @code{a1}, tied
9191 respectively to @code{ap} and @code{lda}.  Of course, with tied
9192 outputs your @code{asm} can't use the input value after modifying the
9193 output register since they are one and the same register.  What's
9194 more, if you omit the early-clobber on the output, it is possible that
9195 GCC might allocate the same register to another of the inputs if GCC
9196 could prove they had the same value on entry to the @code{asm}.  This
9197 is why @code{a1} has an early-clobber.  Its tied input, @code{lda}
9198 might conceivably be known to have the value 16 and without an
9199 early-clobber share the same register as @code{%11}.  On the other
9200 hand, @code{ap} can't be the same as any of the other inputs, so an
9201 early-clobber on @code{a0} is not needed.  It is also not desirable in
9202 this case.  An early-clobber on @code{a0} would cause GCC to allocate
9203 a separate register for the @code{"m" (*(const double (*)[]) ap)}
9204 input.  Note that tying an input to an output is the way to set up an
9205 initialized temporary register modified by an @code{asm} statement.
9206 An input not tied to an output is assumed by GCC to be unchanged, for
9207 example @code{"b" (16)} below sets up @code{%11} to 16, and GCC might
9208 use that register in following code if the value 16 happened to be
9209 needed.  You can even use a normal @code{asm} output for a scratch if
9210 all inputs that might share the same register are consumed before the
9211 scratch is used.  The VSX registers clobbered by the @code{asm}
9212 statement could have used this technique except for GCC's limit on the
9213 number of @code{asm} parameters.
9215 @smallexample
9216 static void
9217 dgemv_kernel_4x4 (long n, const double *ap, long lda,
9218                   const double *x, double *y, double alpha)
9220   double *a0;
9221   double *a1;
9222   double *a2;
9223   double *a3;
9225   __asm__
9226     (
9227      /* lots of asm here */
9228      "#n=%1 ap=%8=%12 lda=%13 x=%7=%10 y=%0=%2 alpha=%9 o16=%11\n"
9229      "#a0=%3 a1=%4 a2=%5 a3=%6"
9230      :
9231        "+m" (*(double (*)[n]) y),
9232        "+&r" (n),       // 1
9233        "+b" (y),        // 2
9234        "=b" (a0),       // 3
9235        "=&b" (a1),      // 4
9236        "=&b" (a2),      // 5
9237        "=&b" (a3)       // 6
9238      :
9239        "m" (*(const double (*)[n]) x),
9240        "m" (*(const double (*)[]) ap),
9241        "d" (alpha),     // 9
9242        "r" (x),         // 10
9243        "b" (16),        // 11
9244        "3" (ap),        // 12
9245        "4" (lda)        // 13
9246      :
9247        "cr0",
9248        "vs32","vs33","vs34","vs35","vs36","vs37",
9249        "vs40","vs41","vs42","vs43","vs44","vs45","vs46","vs47"
9250      );
9252 @end smallexample
9254 @anchor{GotoLabels}
9255 @subsubsection Goto Labels
9256 @cindex @code{asm} goto labels
9258 @code{asm goto} allows assembly code to jump to one or more C labels.  The
9259 @var{GotoLabels} section in an @code{asm goto} statement contains 
9260 a comma-separated 
9261 list of all C labels to which the assembler code may jump. GCC assumes that 
9262 @code{asm} execution falls through to the next statement (if this is not the 
9263 case, consider using the @code{__builtin_unreachable} intrinsic after the 
9264 @code{asm} statement). Optimization of @code{asm goto} may be improved by 
9265 using the @code{hot} and @code{cold} label attributes (@pxref{Label 
9266 Attributes}).
9268 An @code{asm goto} statement cannot have outputs.
9269 This is due to an internal restriction of 
9270 the compiler: control transfer instructions cannot have outputs. 
9271 If the assembler code does modify anything, use the @code{"memory"} clobber 
9272 to force the 
9273 optimizers to flush all register values to memory and reload them if 
9274 necessary after the @code{asm} statement.
9276 Also note that an @code{asm goto} statement is always implicitly
9277 considered volatile.
9279 To reference a label in the assembler template,
9280 prefix it with @samp{%l} (lowercase @samp{L}) followed 
9281 by its (zero-based) position in @var{GotoLabels} plus the number of input 
9282 operands.  For example, if the @code{asm} has three inputs and references two 
9283 labels, refer to the first label as @samp{%l3} and the second as @samp{%l4}).
9285 Alternately, you can reference labels using the actual C label name enclosed
9286 in brackets.  For example, to reference a label named @code{carry}, you can
9287 use @samp{%l[carry]}.  The label must still be listed in the @var{GotoLabels}
9288 section when using this approach.
9290 Here is an example of @code{asm goto} for i386:
9292 @example
9293 asm goto (
9294     "btl %1, %0\n\t"
9295     "jc %l2"
9296     : /* No outputs. */
9297     : "r" (p1), "r" (p2) 
9298     : "cc" 
9299     : carry);
9301 return 0;
9303 carry:
9304 return 1;
9305 @end example
9307 The following example shows an @code{asm goto} that uses a memory clobber.
9309 @example
9310 int frob(int x)
9312   int y;
9313   asm goto ("frob %%r5, %1; jc %l[error]; mov (%2), %%r5"
9314             : /* No outputs. */
9315             : "r"(x), "r"(&y)
9316             : "r5", "memory" 
9317             : error);
9318   return y;
9319 error:
9320   return -1;
9322 @end example
9324 @anchor{x86Operandmodifiers}
9325 @subsubsection x86 Operand Modifiers
9327 References to input, output, and goto operands in the assembler template
9328 of extended @code{asm} statements can use 
9329 modifiers to affect the way the operands are formatted in 
9330 the code output to the assembler. For example, the 
9331 following code uses the @samp{h} and @samp{b} modifiers for x86:
9333 @example
9334 uint16_t  num;
9335 asm volatile ("xchg %h0, %b0" : "+a" (num) );
9336 @end example
9338 @noindent
9339 These modifiers generate this assembler code:
9341 @example
9342 xchg %ah, %al
9343 @end example
9345 The rest of this discussion uses the following code for illustrative purposes.
9347 @example
9348 int main()
9350    int iInt = 1;
9352 top:
9354    asm volatile goto ("some assembler instructions here"
9355    : /* No outputs. */
9356    : "q" (iInt), "X" (sizeof(unsigned char) + 1), "i" (42)
9357    : /* No clobbers. */
9358    : top);
9360 @end example
9362 With no modifiers, this is what the output from the operands would be
9363 for the @samp{att} and @samp{intel} dialects of assembler:
9365 @multitable {Operand} {$.L2} {OFFSET FLAT:.L2}
9366 @headitem Operand @tab @samp{att} @tab @samp{intel}
9367 @item @code{%0}
9368 @tab @code{%eax}
9369 @tab @code{eax}
9370 @item @code{%1}
9371 @tab @code{$2}
9372 @tab @code{2}
9373 @item @code{%3}
9374 @tab @code{$.L3}
9375 @tab @code{OFFSET FLAT:.L3}
9376 @end multitable
9378 The table below shows the list of supported modifiers and their effects.
9380 @multitable {Modifier} {Print the opcode suffix for the size of th} {Operand} {@samp{att}} {@samp{intel}}
9381 @headitem Modifier @tab Description @tab Operand @tab @samp{att} @tab @samp{intel}
9382 @item @code{a}
9383 @tab Print an absolute memory reference.
9384 @tab @code{%A0}
9385 @tab @code{*%rax}
9386 @tab @code{rax}
9387 @item @code{b}
9388 @tab Print the QImode name of the register.
9389 @tab @code{%b0}
9390 @tab @code{%al}
9391 @tab @code{al}
9392 @item @code{c}
9393 @tab Require a constant operand and print the constant expression with no punctuation.
9394 @tab @code{%c1}
9395 @tab @code{2}
9396 @tab @code{2}
9397 @item @code{E}
9398 @tab Print the address in Double Integer (DImode) mode (8 bytes) when the target is 64-bit.
9399 Otherwise mode is unspecified (VOIDmode).
9400 @tab @code{%E1}
9401 @tab @code{%(rax)}
9402 @tab @code{[rax]}
9403 @item @code{h}
9404 @tab Print the QImode name for a ``high'' register.
9405 @tab @code{%h0}
9406 @tab @code{%ah}
9407 @tab @code{ah}
9408 @item @code{H}
9409 @tab Add 8 bytes to an offsettable memory reference. Useful when accessing the
9410 high 8 bytes of SSE values. For a memref in (%rax), it generates
9411 @tab @code{%H0}
9412 @tab @code{8(%rax)}
9413 @tab @code{8[rax]}
9414 @item @code{k}
9415 @tab Print the SImode name of the register.
9416 @tab @code{%k0}
9417 @tab @code{%eax}
9418 @tab @code{eax}
9419 @item @code{l}
9420 @tab Print the label name with no punctuation.
9421 @tab @code{%l3}
9422 @tab @code{.L3}
9423 @tab @code{.L3}
9424 @item @code{p}
9425 @tab Print raw symbol name (without syntax-specific prefixes).
9426 @tab @code{%p2}
9427 @tab @code{42}
9428 @tab @code{42}
9429 @item @code{P}
9430 @tab If used for a function, print the PLT suffix and generate PIC code.
9431 For example, emit @code{foo@@PLT} instead of 'foo' for the function
9432 foo(). If used for a constant, drop all syntax-specific prefixes and
9433 issue the bare constant. See @code{p} above.
9434 @item @code{q}
9435 @tab Print the DImode name of the register.
9436 @tab @code{%q0}
9437 @tab @code{%rax}
9438 @tab @code{rax}
9439 @item @code{w}
9440 @tab Print the HImode name of the register.
9441 @tab @code{%w0}
9442 @tab @code{%ax}
9443 @tab @code{ax}
9444 @item @code{z}
9445 @tab Print the opcode suffix for the size of the current integer operand (one of @code{b}/@code{w}/@code{l}/@code{q}).
9446 @tab @code{%z0}
9447 @tab @code{l}
9448 @tab 
9449 @end multitable
9451 @code{V} is a special modifier which prints the name of the full integer
9452 register without @code{%}.
9454 @anchor{x86floatingpointasmoperands}
9455 @subsubsection x86 Floating-Point @code{asm} Operands
9457 On x86 targets, there are several rules on the usage of stack-like registers
9458 in the operands of an @code{asm}.  These rules apply only to the operands
9459 that are stack-like registers:
9461 @enumerate
9462 @item
9463 Given a set of input registers that die in an @code{asm}, it is
9464 necessary to know which are implicitly popped by the @code{asm}, and
9465 which must be explicitly popped by GCC@.
9467 An input register that is implicitly popped by the @code{asm} must be
9468 explicitly clobbered, unless it is constrained to match an
9469 output operand.
9471 @item
9472 For any input register that is implicitly popped by an @code{asm}, it is
9473 necessary to know how to adjust the stack to compensate for the pop.
9474 If any non-popped input is closer to the top of the reg-stack than
9475 the implicitly popped register, it would not be possible to know what the
9476 stack looked like---it's not clear how the rest of the stack ``slides
9477 up''.
9479 All implicitly popped input registers must be closer to the top of
9480 the reg-stack than any input that is not implicitly popped.
9482 It is possible that if an input dies in an @code{asm}, the compiler might
9483 use the input register for an output reload.  Consider this example:
9485 @smallexample
9486 asm ("foo" : "=t" (a) : "f" (b));
9487 @end smallexample
9489 @noindent
9490 This code says that input @code{b} is not popped by the @code{asm}, and that
9491 the @code{asm} pushes a result onto the reg-stack, i.e., the stack is one
9492 deeper after the @code{asm} than it was before.  But, it is possible that
9493 reload may think that it can use the same register for both the input and
9494 the output.
9496 To prevent this from happening,
9497 if any input operand uses the @samp{f} constraint, all output register
9498 constraints must use the @samp{&} early-clobber modifier.
9500 The example above is correctly written as:
9502 @smallexample
9503 asm ("foo" : "=&t" (a) : "f" (b));
9504 @end smallexample
9506 @item
9507 Some operands need to be in particular places on the stack.  All
9508 output operands fall in this category---GCC has no other way to
9509 know which registers the outputs appear in unless you indicate
9510 this in the constraints.
9512 Output operands must specifically indicate which register an output
9513 appears in after an @code{asm}.  @samp{=f} is not allowed: the operand
9514 constraints must select a class with a single register.
9516 @item
9517 Output operands may not be ``inserted'' between existing stack registers.
9518 Since no 387 opcode uses a read/write operand, all output operands
9519 are dead before the @code{asm}, and are pushed by the @code{asm}.
9520 It makes no sense to push anywhere but the top of the reg-stack.
9522 Output operands must start at the top of the reg-stack: output
9523 operands may not ``skip'' a register.
9525 @item
9526 Some @code{asm} statements may need extra stack space for internal
9527 calculations.  This can be guaranteed by clobbering stack registers
9528 unrelated to the inputs and outputs.
9530 @end enumerate
9532 This @code{asm}
9533 takes one input, which is internally popped, and produces two outputs.
9535 @smallexample
9536 asm ("fsincos" : "=t" (cos), "=u" (sin) : "0" (inp));
9537 @end smallexample
9539 @noindent
9540 This @code{asm} takes two inputs, which are popped by the @code{fyl2xp1} opcode,
9541 and replaces them with one output.  The @code{st(1)} clobber is necessary 
9542 for the compiler to know that @code{fyl2xp1} pops both inputs.
9544 @smallexample
9545 asm ("fyl2xp1" : "=t" (result) : "0" (x), "u" (y) : "st(1)");
9546 @end smallexample
9548 @lowersections
9549 @include md.texi
9550 @raisesections
9552 @node Asm Labels
9553 @subsection Controlling Names Used in Assembler Code
9554 @cindex assembler names for identifiers
9555 @cindex names used in assembler code
9556 @cindex identifiers, names in assembler code
9558 You can specify the name to be used in the assembler code for a C
9559 function or variable by writing the @code{asm} (or @code{__asm__})
9560 keyword after the declarator.
9561 It is up to you to make sure that the assembler names you choose do not
9562 conflict with any other assembler symbols, or reference registers.
9564 @subsubheading Assembler names for data:
9566 This sample shows how to specify the assembler name for data:
9568 @smallexample
9569 int foo asm ("myfoo") = 2;
9570 @end smallexample
9572 @noindent
9573 This specifies that the name to be used for the variable @code{foo} in
9574 the assembler code should be @samp{myfoo} rather than the usual
9575 @samp{_foo}.
9577 On systems where an underscore is normally prepended to the name of a C
9578 variable, this feature allows you to define names for the
9579 linker that do not start with an underscore.
9581 GCC does not support using this feature with a non-static local variable 
9582 since such variables do not have assembler names.  If you are
9583 trying to put the variable in a particular register, see 
9584 @ref{Explicit Register Variables}.
9586 @subsubheading Assembler names for functions:
9588 To specify the assembler name for functions, write a declaration for the 
9589 function before its definition and put @code{asm} there, like this:
9591 @smallexample
9592 int func (int x, int y) asm ("MYFUNC");
9593      
9594 int func (int x, int y)
9596    /* @r{@dots{}} */
9597 @end smallexample
9599 @noindent
9600 This specifies that the name to be used for the function @code{func} in
9601 the assembler code should be @code{MYFUNC}.
9603 @node Explicit Register Variables
9604 @subsection Variables in Specified Registers
9605 @anchor{Explicit Reg Vars}
9606 @cindex explicit register variables
9607 @cindex variables in specified registers
9608 @cindex specified registers
9610 GNU C allows you to associate specific hardware registers with C 
9611 variables.  In almost all cases, allowing the compiler to assign
9612 registers produces the best code.  However under certain unusual
9613 circumstances, more precise control over the variable storage is 
9614 required.
9616 Both global and local variables can be associated with a register.  The
9617 consequences of performing this association are very different between
9618 the two, as explained in the sections below.
9620 @menu
9621 * Global Register Variables::   Variables declared at global scope.
9622 * Local Register Variables::    Variables declared within a function.
9623 @end menu
9625 @node Global Register Variables
9626 @subsubsection Defining Global Register Variables
9627 @anchor{Global Reg Vars}
9628 @cindex global register variables
9629 @cindex registers, global variables in
9630 @cindex registers, global allocation
9632 You can define a global register variable and associate it with a specified 
9633 register like this:
9635 @smallexample
9636 register int *foo asm ("r12");
9637 @end smallexample
9639 @noindent
9640 Here @code{r12} is the name of the register that should be used. Note that 
9641 this is the same syntax used for defining local register variables, but for 
9642 a global variable the declaration appears outside a function. The 
9643 @code{register} keyword is required, and cannot be combined with 
9644 @code{static}. The register name must be a valid register name for the
9645 target platform.
9647 Do not use type qualifiers such as @code{const} and @code{volatile}, as
9648 the outcome may be contrary to expectations.  In  particular, using the
9649 @code{volatile} qualifier does not fully prevent the compiler from
9650 optimizing accesses to the register.
9652 Registers are a scarce resource on most systems and allowing the 
9653 compiler to manage their usage usually results in the best code. However, 
9654 under special circumstances it can make sense to reserve some globally.
9655 For example this may be useful in programs such as programming language 
9656 interpreters that have a couple of global variables that are accessed 
9657 very often.
9659 After defining a global register variable, for the current compilation
9660 unit:
9662 @itemize @bullet
9663 @item If the register is a call-saved register, call ABI is affected:
9664 the register will not be restored in function epilogue sequences after
9665 the variable has been assigned.  Therefore, functions cannot safely
9666 return to callers that assume standard ABI.
9667 @item Conversely, if the register is a call-clobbered register, making
9668 calls to functions that use standard ABI may lose contents of the variable.
9669 Such calls may be created by the compiler even if none are evident in
9670 the original program, for example when libgcc functions are used to
9671 make up for unavailable instructions.
9672 @item Accesses to the variable may be optimized as usual and the register
9673 remains available for allocation and use in any computations, provided that
9674 observable values of the variable are not affected.
9675 @item If the variable is referenced in inline assembly, the type of access
9676 must be provided to the compiler via constraints (@pxref{Constraints}).
9677 Accesses from basic asms are not supported.
9678 @end itemize
9680 Note that these points @emph{only} apply to code that is compiled with the
9681 definition. The behavior of code that is merely linked in (for example 
9682 code from libraries) is not affected.
9684 If you want to recompile source files that do not actually use your global 
9685 register variable so they do not use the specified register for any other 
9686 purpose, you need not actually add the global register declaration to 
9687 their source code. It suffices to specify the compiler option 
9688 @option{-ffixed-@var{reg}} (@pxref{Code Gen Options}) to reserve the 
9689 register.
9691 @subsubheading Declaring the variable
9693 Global register variables can not have initial values, because an
9694 executable file has no means to supply initial contents for a register.
9696 When selecting a register, choose one that is normally saved and 
9697 restored by function calls on your machine. This ensures that code
9698 which is unaware of this reservation (such as library routines) will 
9699 restore it before returning.
9701 On machines with register windows, be sure to choose a global
9702 register that is not affected magically by the function call mechanism.
9704 @subsubheading Using the variable
9706 @cindex @code{qsort}, and global register variables
9707 When calling routines that are not aware of the reservation, be 
9708 cautious if those routines call back into code which uses them. As an 
9709 example, if you call the system library version of @code{qsort}, it may 
9710 clobber your registers during execution, but (if you have selected 
9711 appropriate registers) it will restore them before returning. However 
9712 it will @emph{not} restore them before calling @code{qsort}'s comparison 
9713 function. As a result, global values will not reliably be available to 
9714 the comparison function unless the @code{qsort} function itself is rebuilt.
9716 Similarly, it is not safe to access the global register variables from signal
9717 handlers or from more than one thread of control. Unless you recompile 
9718 them specially for the task at hand, the system library routines may 
9719 temporarily use the register for other things.  Furthermore, since the register
9720 is not reserved exclusively for the variable, accessing it from handlers of
9721 asynchronous signals may observe unrelated temporary values residing in the
9722 register.
9724 @cindex register variable after @code{longjmp}
9725 @cindex global register after @code{longjmp}
9726 @cindex value after @code{longjmp}
9727 @findex longjmp
9728 @findex setjmp
9729 On most machines, @code{longjmp} restores to each global register
9730 variable the value it had at the time of the @code{setjmp}. On some
9731 machines, however, @code{longjmp} does not change the value of global
9732 register variables. To be portable, the function that called @code{setjmp}
9733 should make other arrangements to save the values of the global register
9734 variables, and to restore them in a @code{longjmp}. This way, the same
9735 thing happens regardless of what @code{longjmp} does.
9737 @node Local Register Variables
9738 @subsubsection Specifying Registers for Local Variables
9739 @anchor{Local Reg Vars}
9740 @cindex local variables, specifying registers
9741 @cindex specifying registers for local variables
9742 @cindex registers for local variables
9744 You can define a local register variable and associate it with a specified 
9745 register like this:
9747 @smallexample
9748 register int *foo asm ("r12");
9749 @end smallexample
9751 @noindent
9752 Here @code{r12} is the name of the register that should be used.  Note
9753 that this is the same syntax used for defining global register variables, 
9754 but for a local variable the declaration appears within a function.  The 
9755 @code{register} keyword is required, and cannot be combined with 
9756 @code{static}.  The register name must be a valid register name for the
9757 target platform.
9759 Do not use type qualifiers such as @code{const} and @code{volatile}, as
9760 the outcome may be contrary to expectations. In particular, when the
9761 @code{const} qualifier is used, the compiler may substitute the
9762 variable with its initializer in @code{asm} statements, which may cause
9763 the corresponding operand to appear in a different register.
9765 As with global register variables, it is recommended that you choose 
9766 a register that is normally saved and restored by function calls on your 
9767 machine, so that calls to library routines will not clobber it.
9769 The only supported use for this feature is to specify registers
9770 for input and output operands when calling Extended @code{asm} 
9771 (@pxref{Extended Asm}).  This may be necessary if the constraints for a 
9772 particular machine don't provide sufficient control to select the desired 
9773 register.  To force an operand into a register, create a local variable 
9774 and specify the register name after the variable's declaration.  Then use 
9775 the local variable for the @code{asm} operand and specify any constraint 
9776 letter that matches the register:
9778 @smallexample
9779 register int *p1 asm ("r0") = @dots{};
9780 register int *p2 asm ("r1") = @dots{};
9781 register int *result asm ("r0");
9782 asm ("sysint" : "=r" (result) : "0" (p1), "r" (p2));
9783 @end smallexample
9785 @emph{Warning:} In the above example, be aware that a register (for example 
9786 @code{r0}) can be call-clobbered by subsequent code, including function 
9787 calls and library calls for arithmetic operators on other variables (for 
9788 example the initialization of @code{p2}).  In this case, use temporary 
9789 variables for expressions between the register assignments:
9791 @smallexample
9792 int t1 = @dots{};
9793 register int *p1 asm ("r0") = @dots{};
9794 register int *p2 asm ("r1") = t1;
9795 register int *result asm ("r0");
9796 asm ("sysint" : "=r" (result) : "0" (p1), "r" (p2));
9797 @end smallexample
9799 Defining a register variable does not reserve the register.  Other than
9800 when invoking the Extended @code{asm}, the contents of the specified 
9801 register are not guaranteed.  For this reason, the following uses 
9802 are explicitly @emph{not} supported.  If they appear to work, it is only 
9803 happenstance, and may stop working as intended due to (seemingly) 
9804 unrelated changes in surrounding code, or even minor changes in the 
9805 optimization of a future version of gcc:
9807 @itemize @bullet
9808 @item Passing parameters to or from Basic @code{asm}
9809 @item Passing parameters to or from Extended @code{asm} without using input 
9810 or output operands.
9811 @item Passing parameters to or from routines written in assembler (or
9812 other languages) using non-standard calling conventions.
9813 @end itemize
9815 Some developers use Local Register Variables in an attempt to improve 
9816 gcc's allocation of registers, especially in large functions.  In this 
9817 case the register name is essentially a hint to the register allocator.
9818 While in some instances this can generate better code, improvements are
9819 subject to the whims of the allocator/optimizers.  Since there are no
9820 guarantees that your improvements won't be lost, this usage of Local
9821 Register Variables is discouraged.
9823 On the MIPS platform, there is related use for local register variables 
9824 with slightly different characteristics (@pxref{MIPS Coprocessors,, 
9825 Defining coprocessor specifics for MIPS targets, gccint, 
9826 GNU Compiler Collection (GCC) Internals}).
9828 @node Size of an asm
9829 @subsection Size of an @code{asm}
9831 Some targets require that GCC track the size of each instruction used
9832 in order to generate correct code.  Because the final length of the
9833 code produced by an @code{asm} statement is only known by the
9834 assembler, GCC must make an estimate as to how big it will be.  It
9835 does this by counting the number of instructions in the pattern of the
9836 @code{asm} and multiplying that by the length of the longest
9837 instruction supported by that processor.  (When working out the number
9838 of instructions, it assumes that any occurrence of a newline or of
9839 whatever statement separator character is supported by the assembler --
9840 typically @samp{;} --- indicates the end of an instruction.)
9842 Normally, GCC's estimate is adequate to ensure that correct
9843 code is generated, but it is possible to confuse the compiler if you use
9844 pseudo instructions or assembler macros that expand into multiple real
9845 instructions, or if you use assembler directives that expand to more
9846 space in the object file than is needed for a single instruction.
9847 If this happens then the assembler may produce a diagnostic saying that
9848 a label is unreachable.
9850 @node Alternate Keywords
9851 @section Alternate Keywords
9852 @cindex alternate keywords
9853 @cindex keywords, alternate
9855 @option{-ansi} and the various @option{-std} options disable certain
9856 keywords.  This causes trouble when you want to use GNU C extensions, or
9857 a general-purpose header file that should be usable by all programs,
9858 including ISO C programs.  The keywords @code{asm}, @code{typeof} and
9859 @code{inline} are not available in programs compiled with
9860 @option{-ansi} or @option{-std} (although @code{inline} can be used in a
9861 program compiled with @option{-std=c99} or @option{-std=c11}).  The
9862 ISO C99 keyword
9863 @code{restrict} is only available when @option{-std=gnu99} (which will
9864 eventually be the default) or @option{-std=c99} (or the equivalent
9865 @option{-std=iso9899:1999}), or an option for a later standard
9866 version, is used.
9868 The way to solve these problems is to put @samp{__} at the beginning and
9869 end of each problematical keyword.  For example, use @code{__asm__}
9870 instead of @code{asm}, and @code{__inline__} instead of @code{inline}.
9872 Other C compilers won't accept these alternative keywords; if you want to
9873 compile with another compiler, you can define the alternate keywords as
9874 macros to replace them with the customary keywords.  It looks like this:
9876 @smallexample
9877 #ifndef __GNUC__
9878 #define __asm__ asm
9879 #endif
9880 @end smallexample
9882 @findex __extension__
9883 @opindex pedantic
9884 @option{-pedantic} and other options cause warnings for many GNU C extensions.
9885 You can
9886 prevent such warnings within one expression by writing
9887 @code{__extension__} before the expression.  @code{__extension__} has no
9888 effect aside from this.
9890 @node Incomplete Enums
9891 @section Incomplete @code{enum} Types
9893 You can define an @code{enum} tag without specifying its possible values.
9894 This results in an incomplete type, much like what you get if you write
9895 @code{struct foo} without describing the elements.  A later declaration
9896 that does specify the possible values completes the type.
9898 You cannot allocate variables or storage using the type while it is
9899 incomplete.  However, you can work with pointers to that type.
9901 This extension may not be very useful, but it makes the handling of
9902 @code{enum} more consistent with the way @code{struct} and @code{union}
9903 are handled.
9905 This extension is not supported by GNU C++.
9907 @node Function Names
9908 @section Function Names as Strings
9909 @cindex @code{__func__} identifier
9910 @cindex @code{__FUNCTION__} identifier
9911 @cindex @code{__PRETTY_FUNCTION__} identifier
9913 GCC provides three magic constants that hold the name of the current
9914 function as a string.  In C++11 and later modes, all three are treated
9915 as constant expressions and can be used in @code{constexpr} constexts.
9916 The first of these constants is @code{__func__}, which is part of
9917 the C99 standard:
9919 The identifier @code{__func__} is implicitly declared by the translator
9920 as if, immediately following the opening brace of each function
9921 definition, the declaration
9923 @smallexample
9924 static const char __func__[] = "function-name";
9925 @end smallexample
9927 @noindent
9928 appeared, where function-name is the name of the lexically-enclosing
9929 function.  This name is the unadorned name of the function.  As an
9930 extension, at file (or, in C++, namespace scope), @code{__func__}
9931 evaluates to the empty string.
9933 @code{__FUNCTION__} is another name for @code{__func__}, provided for
9934 backward compatibility with old versions of GCC.
9936 In C, @code{__PRETTY_FUNCTION__} is yet another name for
9937 @code{__func__}, except that at file (or, in C++, namespace scope),
9938 it evaluates to the string @code{"top level"}.  In addition, in C++,
9939 @code{__PRETTY_FUNCTION__} contains the signature of the function as
9940 well as its bare name.  For example, this program:
9942 @smallexample
9943 extern "C" int printf (const char *, ...);
9945 class a @{
9946  public:
9947   void sub (int i)
9948     @{
9949       printf ("__FUNCTION__ = %s\n", __FUNCTION__);
9950       printf ("__PRETTY_FUNCTION__ = %s\n", __PRETTY_FUNCTION__);
9951     @}
9955 main (void)
9957   a ax;
9958   ax.sub (0);
9959   return 0;
9961 @end smallexample
9963 @noindent
9964 gives this output:
9966 @smallexample
9967 __FUNCTION__ = sub
9968 __PRETTY_FUNCTION__ = void a::sub(int)
9969 @end smallexample
9971 These identifiers are variables, not preprocessor macros, and may not
9972 be used to initialize @code{char} arrays or be concatenated with string
9973 literals.
9975 @node Return Address
9976 @section Getting the Return or Frame Address of a Function
9978 These functions may be used to get information about the callers of a
9979 function.
9981 @deftypefn {Built-in Function} {void *} __builtin_return_address (unsigned int @var{level})
9982 This function returns the return address of the current function, or of
9983 one of its callers.  The @var{level} argument is number of frames to
9984 scan up the call stack.  A value of @code{0} yields the return address
9985 of the current function, a value of @code{1} yields the return address
9986 of the caller of the current function, and so forth.  When inlining
9987 the expected behavior is that the function returns the address of
9988 the function that is returned to.  To work around this behavior use
9989 the @code{noinline} function attribute.
9991 The @var{level} argument must be a constant integer.
9993 On some machines it may be impossible to determine the return address of
9994 any function other than the current one; in such cases, or when the top
9995 of the stack has been reached, this function returns @code{0} or a
9996 random value.  In addition, @code{__builtin_frame_address} may be used
9997 to determine if the top of the stack has been reached.
9999 Additional post-processing of the returned value may be needed, see
10000 @code{__builtin_extract_return_addr}.
10002 Calling this function with a nonzero argument can have unpredictable
10003 effects, including crashing the calling program.  As a result, calls
10004 that are considered unsafe are diagnosed when the @option{-Wframe-address}
10005 option is in effect.  Such calls should only be made in debugging
10006 situations.
10007 @end deftypefn
10009 @deftypefn {Built-in Function} {void *} __builtin_extract_return_addr (void *@var{addr})
10010 The address as returned by @code{__builtin_return_address} may have to be fed
10011 through this function to get the actual encoded address.  For example, on the
10012 31-bit S/390 platform the highest bit has to be masked out, or on SPARC
10013 platforms an offset has to be added for the true next instruction to be
10014 executed.
10016 If no fixup is needed, this function simply passes through @var{addr}.
10017 @end deftypefn
10019 @deftypefn {Built-in Function} {void *} __builtin_frob_return_address (void *@var{addr})
10020 This function does the reverse of @code{__builtin_extract_return_addr}.
10021 @end deftypefn
10023 @deftypefn {Built-in Function} {void *} __builtin_frame_address (unsigned int @var{level})
10024 This function is similar to @code{__builtin_return_address}, but it
10025 returns the address of the function frame rather than the return address
10026 of the function.  Calling @code{__builtin_frame_address} with a value of
10027 @code{0} yields the frame address of the current function, a value of
10028 @code{1} yields the frame address of the caller of the current function,
10029 and so forth.
10031 The frame is the area on the stack that holds local variables and saved
10032 registers.  The frame address is normally the address of the first word
10033 pushed on to the stack by the function.  However, the exact definition
10034 depends upon the processor and the calling convention.  If the processor
10035 has a dedicated frame pointer register, and the function has a frame,
10036 then @code{__builtin_frame_address} returns the value of the frame
10037 pointer register.
10039 On some machines it may be impossible to determine the frame address of
10040 any function other than the current one; in such cases, or when the top
10041 of the stack has been reached, this function returns @code{0} if
10042 the first frame pointer is properly initialized by the startup code.
10044 Calling this function with a nonzero argument can have unpredictable
10045 effects, including crashing the calling program.  As a result, calls
10046 that are considered unsafe are diagnosed when the @option{-Wframe-address}
10047 option is in effect.  Such calls should only be made in debugging
10048 situations.
10049 @end deftypefn
10051 @node Vector Extensions
10052 @section Using Vector Instructions through Built-in Functions
10054 On some targets, the instruction set contains SIMD vector instructions which
10055 operate on multiple values contained in one large register at the same time.
10056 For example, on the x86 the MMX, 3DNow!@: and SSE extensions can be used
10057 this way.
10059 The first step in using these extensions is to provide the necessary data
10060 types.  This should be done using an appropriate @code{typedef}:
10062 @smallexample
10063 typedef int v4si __attribute__ ((vector_size (16)));
10064 @end smallexample
10066 @noindent
10067 The @code{int} type specifies the base type, while the attribute specifies
10068 the vector size for the variable, measured in bytes.  For example, the
10069 declaration above causes the compiler to set the mode for the @code{v4si}
10070 type to be 16 bytes wide and divided into @code{int} sized units.  For
10071 a 32-bit @code{int} this means a vector of 4 units of 4 bytes, and the
10072 corresponding mode of @code{foo} is @acronym{V4SI}.
10074 The @code{vector_size} attribute is only applicable to integral and
10075 float scalars, although arrays, pointers, and function return values
10076 are allowed in conjunction with this construct. Only sizes that are
10077 a power of two are currently allowed.
10079 All the basic integer types can be used as base types, both as signed
10080 and as unsigned: @code{char}, @code{short}, @code{int}, @code{long},
10081 @code{long long}.  In addition, @code{float} and @code{double} can be
10082 used to build floating-point vector types.
10084 Specifying a combination that is not valid for the current architecture
10085 causes GCC to synthesize the instructions using a narrower mode.
10086 For example, if you specify a variable of type @code{V4SI} and your
10087 architecture does not allow for this specific SIMD type, GCC
10088 produces code that uses 4 @code{SIs}.
10090 The types defined in this manner can be used with a subset of normal C
10091 operations.  Currently, GCC allows using the following operators
10092 on these types: @code{+, -, *, /, unary minus, ^, |, &, ~, %}@.
10094 The operations behave like C++ @code{valarrays}.  Addition is defined as
10095 the addition of the corresponding elements of the operands.  For
10096 example, in the code below, each of the 4 elements in @var{a} is
10097 added to the corresponding 4 elements in @var{b} and the resulting
10098 vector is stored in @var{c}.
10100 @smallexample
10101 typedef int v4si __attribute__ ((vector_size (16)));
10103 v4si a, b, c;
10105 c = a + b;
10106 @end smallexample
10108 Subtraction, multiplication, division, and the logical operations
10109 operate in a similar manner.  Likewise, the result of using the unary
10110 minus or complement operators on a vector type is a vector whose
10111 elements are the negative or complemented values of the corresponding
10112 elements in the operand.
10114 It is possible to use shifting operators @code{<<}, @code{>>} on
10115 integer-type vectors. The operation is defined as following: @code{@{a0,
10116 a1, @dots{}, an@} >> @{b0, b1, @dots{}, bn@} == @{a0 >> b0, a1 >> b1,
10117 @dots{}, an >> bn@}}@. Vector operands must have the same number of
10118 elements. 
10120 For convenience, it is allowed to use a binary vector operation
10121 where one operand is a scalar. In that case the compiler transforms
10122 the scalar operand into a vector where each element is the scalar from
10123 the operation. The transformation happens only if the scalar could be
10124 safely converted to the vector-element type.
10125 Consider the following code.
10127 @smallexample
10128 typedef int v4si __attribute__ ((vector_size (16)));
10130 v4si a, b, c;
10131 long l;
10133 a = b + 1;    /* a = b + @{1,1,1,1@}; */
10134 a = 2 * b;    /* a = @{2,2,2,2@} * b; */
10136 a = l + a;    /* Error, cannot convert long to int. */
10137 @end smallexample
10139 Vectors can be subscripted as if the vector were an array with
10140 the same number of elements and base type.  Out of bound accesses
10141 invoke undefined behavior at run time.  Warnings for out of bound
10142 accesses for vector subscription can be enabled with
10143 @option{-Warray-bounds}.
10145 Vector comparison is supported with standard comparison
10146 operators: @code{==, !=, <, <=, >, >=}. Comparison operands can be
10147 vector expressions of integer-type or real-type. Comparison between
10148 integer-type vectors and real-type vectors are not supported.  The
10149 result of the comparison is a vector of the same width and number of
10150 elements as the comparison operands with a signed integral element
10151 type.
10153 Vectors are compared element-wise producing 0 when comparison is false
10154 and -1 (constant of the appropriate type where all bits are set)
10155 otherwise. Consider the following example.
10157 @smallexample
10158 typedef int v4si __attribute__ ((vector_size (16)));
10160 v4si a = @{1,2,3,4@};
10161 v4si b = @{3,2,1,4@};
10162 v4si c;
10164 c = a >  b;     /* The result would be @{0, 0,-1, 0@}  */
10165 c = a == b;     /* The result would be @{0,-1, 0,-1@}  */
10166 @end smallexample
10168 In C++, the ternary operator @code{?:} is available. @code{a?b:c}, where
10169 @code{b} and @code{c} are vectors of the same type and @code{a} is an
10170 integer vector with the same number of elements of the same size as @code{b}
10171 and @code{c}, computes all three arguments and creates a vector
10172 @code{@{a[0]?b[0]:c[0], a[1]?b[1]:c[1], @dots{}@}}.  Note that unlike in
10173 OpenCL, @code{a} is thus interpreted as @code{a != 0} and not @code{a < 0}.
10174 As in the case of binary operations, this syntax is also accepted when
10175 one of @code{b} or @code{c} is a scalar that is then transformed into a
10176 vector. If both @code{b} and @code{c} are scalars and the type of
10177 @code{true?b:c} has the same size as the element type of @code{a}, then
10178 @code{b} and @code{c} are converted to a vector type whose elements have
10179 this type and with the same number of elements as @code{a}.
10181 In C++, the logic operators @code{!, &&, ||} are available for vectors.
10182 @code{!v} is equivalent to @code{v == 0}, @code{a && b} is equivalent to
10183 @code{a!=0 & b!=0} and @code{a || b} is equivalent to @code{a!=0 | b!=0}.
10184 For mixed operations between a scalar @code{s} and a vector @code{v},
10185 @code{s && v} is equivalent to @code{s?v!=0:0} (the evaluation is
10186 short-circuit) and @code{v && s} is equivalent to @code{v!=0 & (s?-1:0)}.
10188 @findex __builtin_shuffle
10189 Vector shuffling is available using functions
10190 @code{__builtin_shuffle (vec, mask)} and
10191 @code{__builtin_shuffle (vec0, vec1, mask)}.
10192 Both functions construct a permutation of elements from one or two
10193 vectors and return a vector of the same type as the input vector(s).
10194 The @var{mask} is an integral vector with the same width (@var{W})
10195 and element count (@var{N}) as the output vector.
10197 The elements of the input vectors are numbered in memory ordering of
10198 @var{vec0} beginning at 0 and @var{vec1} beginning at @var{N}.  The
10199 elements of @var{mask} are considered modulo @var{N} in the single-operand
10200 case and modulo @math{2*@var{N}} in the two-operand case.
10202 Consider the following example,
10204 @smallexample
10205 typedef int v4si __attribute__ ((vector_size (16)));
10207 v4si a = @{1,2,3,4@};
10208 v4si b = @{5,6,7,8@};
10209 v4si mask1 = @{0,1,1,3@};
10210 v4si mask2 = @{0,4,2,5@};
10211 v4si res;
10213 res = __builtin_shuffle (a, mask1);       /* res is @{1,2,2,4@}  */
10214 res = __builtin_shuffle (a, b, mask2);    /* res is @{1,5,3,6@}  */
10215 @end smallexample
10217 Note that @code{__builtin_shuffle} is intentionally semantically
10218 compatible with the OpenCL @code{shuffle} and @code{shuffle2} functions.
10220 You can declare variables and use them in function calls and returns, as
10221 well as in assignments and some casts.  You can specify a vector type as
10222 a return type for a function.  Vector types can also be used as function
10223 arguments.  It is possible to cast from one vector type to another,
10224 provided they are of the same size (in fact, you can also cast vectors
10225 to and from other datatypes of the same size).
10227 You cannot operate between vectors of different lengths or different
10228 signedness without a cast.
10230 @node Offsetof
10231 @section Support for @code{offsetof}
10232 @findex __builtin_offsetof
10234 GCC implements for both C and C++ a syntactic extension to implement
10235 the @code{offsetof} macro.
10237 @smallexample
10238 primary:
10239         "__builtin_offsetof" "(" @code{typename} "," offsetof_member_designator ")"
10241 offsetof_member_designator:
10242           @code{identifier}
10243         | offsetof_member_designator "." @code{identifier}
10244         | offsetof_member_designator "[" @code{expr} "]"
10245 @end smallexample
10247 This extension is sufficient such that
10249 @smallexample
10250 #define offsetof(@var{type}, @var{member})  __builtin_offsetof (@var{type}, @var{member})
10251 @end smallexample
10253 @noindent
10254 is a suitable definition of the @code{offsetof} macro.  In C++, @var{type}
10255 may be dependent.  In either case, @var{member} may consist of a single
10256 identifier, or a sequence of member accesses and array references.
10258 @node __sync Builtins
10259 @section Legacy @code{__sync} Built-in Functions for Atomic Memory Access
10261 The following built-in functions
10262 are intended to be compatible with those described
10263 in the @cite{Intel Itanium Processor-specific Application Binary Interface},
10264 section 7.4.  As such, they depart from normal GCC practice by not using
10265 the @samp{__builtin_} prefix and also by being overloaded so that they
10266 work on multiple types.
10268 The definition given in the Intel documentation allows only for the use of
10269 the types @code{int}, @code{long}, @code{long long} or their unsigned
10270 counterparts.  GCC allows any scalar type that is 1, 2, 4 or 8 bytes in
10271 size other than the C type @code{_Bool} or the C++ type @code{bool}.
10272 Operations on pointer arguments are performed as if the operands were
10273 of the @code{uintptr_t} type.  That is, they are not scaled by the size
10274 of the type to which the pointer points.
10276 These functions are implemented in terms of the @samp{__atomic}
10277 builtins (@pxref{__atomic Builtins}).  They should not be used for new
10278 code which should use the @samp{__atomic} builtins instead.
10280 Not all operations are supported by all target processors.  If a particular
10281 operation cannot be implemented on the target processor, a warning is
10282 generated and a call to an external function is generated.  The external
10283 function carries the same name as the built-in version,
10284 with an additional suffix
10285 @samp{_@var{n}} where @var{n} is the size of the data type.
10287 @c ??? Should we have a mechanism to suppress this warning?  This is almost
10288 @c useful for implementing the operation under the control of an external
10289 @c mutex.
10291 In most cases, these built-in functions are considered a @dfn{full barrier}.
10292 That is,
10293 no memory operand is moved across the operation, either forward or
10294 backward.  Further, instructions are issued as necessary to prevent the
10295 processor from speculating loads across the operation and from queuing stores
10296 after the operation.
10298 All of the routines are described in the Intel documentation to take
10299 ``an optional list of variables protected by the memory barrier''.  It's
10300 not clear what is meant by that; it could mean that @emph{only} the
10301 listed variables are protected, or it could mean a list of additional
10302 variables to be protected.  The list is ignored by GCC which treats it as
10303 empty.  GCC interprets an empty list as meaning that all globally
10304 accessible variables should be protected.
10306 @table @code
10307 @item @var{type} __sync_fetch_and_add (@var{type} *ptr, @var{type} value, ...)
10308 @itemx @var{type} __sync_fetch_and_sub (@var{type} *ptr, @var{type} value, ...)
10309 @itemx @var{type} __sync_fetch_and_or (@var{type} *ptr, @var{type} value, ...)
10310 @itemx @var{type} __sync_fetch_and_and (@var{type} *ptr, @var{type} value, ...)
10311 @itemx @var{type} __sync_fetch_and_xor (@var{type} *ptr, @var{type} value, ...)
10312 @itemx @var{type} __sync_fetch_and_nand (@var{type} *ptr, @var{type} value, ...)
10313 @findex __sync_fetch_and_add
10314 @findex __sync_fetch_and_sub
10315 @findex __sync_fetch_and_or
10316 @findex __sync_fetch_and_and
10317 @findex __sync_fetch_and_xor
10318 @findex __sync_fetch_and_nand
10319 These built-in functions perform the operation suggested by the name, and
10320 returns the value that had previously been in memory.  That is, operations
10321 on integer operands have the following semantics.  Operations on pointer
10322 arguments are performed as if the operands were of the @code{uintptr_t}
10323 type.  That is, they are not scaled by the size of the type to which
10324 the pointer points.
10326 @smallexample
10327 @{ tmp = *ptr; *ptr @var{op}= value; return tmp; @}
10328 @{ tmp = *ptr; *ptr = ~(tmp & value); return tmp; @}   // nand
10329 @end smallexample
10331 The object pointed to by the first argument must be of integer or pointer
10332 type.  It must not be a boolean type.
10334 @emph{Note:} GCC 4.4 and later implement @code{__sync_fetch_and_nand}
10335 as @code{*ptr = ~(tmp & value)} instead of @code{*ptr = ~tmp & value}.
10337 @item @var{type} __sync_add_and_fetch (@var{type} *ptr, @var{type} value, ...)
10338 @itemx @var{type} __sync_sub_and_fetch (@var{type} *ptr, @var{type} value, ...)
10339 @itemx @var{type} __sync_or_and_fetch (@var{type} *ptr, @var{type} value, ...)
10340 @itemx @var{type} __sync_and_and_fetch (@var{type} *ptr, @var{type} value, ...)
10341 @itemx @var{type} __sync_xor_and_fetch (@var{type} *ptr, @var{type} value, ...)
10342 @itemx @var{type} __sync_nand_and_fetch (@var{type} *ptr, @var{type} value, ...)
10343 @findex __sync_add_and_fetch
10344 @findex __sync_sub_and_fetch
10345 @findex __sync_or_and_fetch
10346 @findex __sync_and_and_fetch
10347 @findex __sync_xor_and_fetch
10348 @findex __sync_nand_and_fetch
10349 These built-in functions perform the operation suggested by the name, and
10350 return the new value.  That is, operations on integer operands have
10351 the following semantics.  Operations on pointer operands are performed as
10352 if the operand's type were @code{uintptr_t}.
10354 @smallexample
10355 @{ *ptr @var{op}= value; return *ptr; @}
10356 @{ *ptr = ~(*ptr & value); return *ptr; @}   // nand
10357 @end smallexample
10359 The same constraints on arguments apply as for the corresponding
10360 @code{__sync_op_and_fetch} built-in functions.
10362 @emph{Note:} GCC 4.4 and later implement @code{__sync_nand_and_fetch}
10363 as @code{*ptr = ~(*ptr & value)} instead of
10364 @code{*ptr = ~*ptr & value}.
10366 @item bool __sync_bool_compare_and_swap (@var{type} *ptr, @var{type} oldval, @var{type} newval, ...)
10367 @itemx @var{type} __sync_val_compare_and_swap (@var{type} *ptr, @var{type} oldval, @var{type} newval, ...)
10368 @findex __sync_bool_compare_and_swap
10369 @findex __sync_val_compare_and_swap
10370 These built-in functions perform an atomic compare and swap.
10371 That is, if the current
10372 value of @code{*@var{ptr}} is @var{oldval}, then write @var{newval} into
10373 @code{*@var{ptr}}.
10375 The ``bool'' version returns true if the comparison is successful and
10376 @var{newval} is written.  The ``val'' version returns the contents
10377 of @code{*@var{ptr}} before the operation.
10379 @item __sync_synchronize (...)
10380 @findex __sync_synchronize
10381 This built-in function issues a full memory barrier.
10383 @item @var{type} __sync_lock_test_and_set (@var{type} *ptr, @var{type} value, ...)
10384 @findex __sync_lock_test_and_set
10385 This built-in function, as described by Intel, is not a traditional test-and-set
10386 operation, but rather an atomic exchange operation.  It writes @var{value}
10387 into @code{*@var{ptr}}, and returns the previous contents of
10388 @code{*@var{ptr}}.
10390 Many targets have only minimal support for such locks, and do not support
10391 a full exchange operation.  In this case, a target may support reduced
10392 functionality here by which the @emph{only} valid value to store is the
10393 immediate constant 1.  The exact value actually stored in @code{*@var{ptr}}
10394 is implementation defined.
10396 This built-in function is not a full barrier,
10397 but rather an @dfn{acquire barrier}.
10398 This means that references after the operation cannot move to (or be
10399 speculated to) before the operation, but previous memory stores may not
10400 be globally visible yet, and previous memory loads may not yet be
10401 satisfied.
10403 @item void __sync_lock_release (@var{type} *ptr, ...)
10404 @findex __sync_lock_release
10405 This built-in function releases the lock acquired by
10406 @code{__sync_lock_test_and_set}.
10407 Normally this means writing the constant 0 to @code{*@var{ptr}}.
10409 This built-in function is not a full barrier,
10410 but rather a @dfn{release barrier}.
10411 This means that all previous memory stores are globally visible, and all
10412 previous memory loads have been satisfied, but following memory reads
10413 are not prevented from being speculated to before the barrier.
10414 @end table
10416 @node __atomic Builtins
10417 @section Built-in Functions for Memory Model Aware Atomic Operations
10419 The following built-in functions approximately match the requirements
10420 for the C++11 memory model.  They are all
10421 identified by being prefixed with @samp{__atomic} and most are
10422 overloaded so that they work with multiple types.
10424 These functions are intended to replace the legacy @samp{__sync}
10425 builtins.  The main difference is that the memory order that is requested
10426 is a parameter to the functions.  New code should always use the
10427 @samp{__atomic} builtins rather than the @samp{__sync} builtins.
10429 Note that the @samp{__atomic} builtins assume that programs will
10430 conform to the C++11 memory model.  In particular, they assume
10431 that programs are free of data races.  See the C++11 standard for
10432 detailed requirements.
10434 The @samp{__atomic} builtins can be used with any integral scalar or
10435 pointer type that is 1, 2, 4, or 8 bytes in length.  16-byte integral
10436 types are also allowed if @samp{__int128} (@pxref{__int128}) is
10437 supported by the architecture.
10439 The four non-arithmetic functions (load, store, exchange, and 
10440 compare_exchange) all have a generic version as well.  This generic
10441 version works on any data type.  It uses the lock-free built-in function
10442 if the specific data type size makes that possible; otherwise, an
10443 external call is left to be resolved at run time.  This external call is
10444 the same format with the addition of a @samp{size_t} parameter inserted
10445 as the first parameter indicating the size of the object being pointed to.
10446 All objects must be the same size.
10448 There are 6 different memory orders that can be specified.  These map
10449 to the C++11 memory orders with the same names, see the C++11 standard
10450 or the @uref{http://gcc.gnu.org/wiki/Atomic/GCCMM/AtomicSync,GCC wiki
10451 on atomic synchronization} for detailed definitions.  Individual
10452 targets may also support additional memory orders for use on specific
10453 architectures.  Refer to the target documentation for details of
10454 these.
10456 An atomic operation can both constrain code motion and
10457 be mapped to hardware instructions for synchronization between threads
10458 (e.g., a fence).  To which extent this happens is controlled by the
10459 memory orders, which are listed here in approximately ascending order of
10460 strength.  The description of each memory order is only meant to roughly
10461 illustrate the effects and is not a specification; see the C++11
10462 memory model for precise semantics.
10464 @table  @code
10465 @item __ATOMIC_RELAXED
10466 Implies no inter-thread ordering constraints.
10467 @item __ATOMIC_CONSUME
10468 This is currently implemented using the stronger @code{__ATOMIC_ACQUIRE}
10469 memory order because of a deficiency in C++11's semantics for
10470 @code{memory_order_consume}.
10471 @item __ATOMIC_ACQUIRE
10472 Creates an inter-thread happens-before constraint from the release (or
10473 stronger) semantic store to this acquire load.  Can prevent hoisting
10474 of code to before the operation.
10475 @item __ATOMIC_RELEASE
10476 Creates an inter-thread happens-before constraint to acquire (or stronger)
10477 semantic loads that read from this release store.  Can prevent sinking
10478 of code to after the operation.
10479 @item __ATOMIC_ACQ_REL
10480 Combines the effects of both @code{__ATOMIC_ACQUIRE} and
10481 @code{__ATOMIC_RELEASE}.
10482 @item __ATOMIC_SEQ_CST
10483 Enforces total ordering with all other @code{__ATOMIC_SEQ_CST} operations.
10484 @end table
10486 Note that in the C++11 memory model, @emph{fences} (e.g.,
10487 @samp{__atomic_thread_fence}) take effect in combination with other
10488 atomic operations on specific memory locations (e.g., atomic loads);
10489 operations on specific memory locations do not necessarily affect other
10490 operations in the same way.
10492 Target architectures are encouraged to provide their own patterns for
10493 each of the atomic built-in functions.  If no target is provided, the original
10494 non-memory model set of @samp{__sync} atomic built-in functions are
10495 used, along with any required synchronization fences surrounding it in
10496 order to achieve the proper behavior.  Execution in this case is subject
10497 to the same restrictions as those built-in functions.
10499 If there is no pattern or mechanism to provide a lock-free instruction
10500 sequence, a call is made to an external routine with the same parameters
10501 to be resolved at run time.
10503 When implementing patterns for these built-in functions, the memory order
10504 parameter can be ignored as long as the pattern implements the most
10505 restrictive @code{__ATOMIC_SEQ_CST} memory order.  Any of the other memory
10506 orders execute correctly with this memory order but they may not execute as
10507 efficiently as they could with a more appropriate implementation of the
10508 relaxed requirements.
10510 Note that the C++11 standard allows for the memory order parameter to be
10511 determined at run time rather than at compile time.  These built-in
10512 functions map any run-time value to @code{__ATOMIC_SEQ_CST} rather
10513 than invoke a runtime library call or inline a switch statement.  This is
10514 standard compliant, safe, and the simplest approach for now.
10516 The memory order parameter is a signed int, but only the lower 16 bits are
10517 reserved for the memory order.  The remainder of the signed int is reserved
10518 for target use and should be 0.  Use of the predefined atomic values
10519 ensures proper usage.
10521 @deftypefn {Built-in Function} @var{type} __atomic_load_n (@var{type} *ptr, int memorder)
10522 This built-in function implements an atomic load operation.  It returns the
10523 contents of @code{*@var{ptr}}.
10525 The valid memory order variants are
10526 @code{__ATOMIC_RELAXED}, @code{__ATOMIC_SEQ_CST}, @code{__ATOMIC_ACQUIRE},
10527 and @code{__ATOMIC_CONSUME}.
10529 @end deftypefn
10531 @deftypefn {Built-in Function} void __atomic_load (@var{type} *ptr, @var{type} *ret, int memorder)
10532 This is the generic version of an atomic load.  It returns the
10533 contents of @code{*@var{ptr}} in @code{*@var{ret}}.
10535 @end deftypefn
10537 @deftypefn {Built-in Function} void __atomic_store_n (@var{type} *ptr, @var{type} val, int memorder)
10538 This built-in function implements an atomic store operation.  It writes 
10539 @code{@var{val}} into @code{*@var{ptr}}.  
10541 The valid memory order variants are
10542 @code{__ATOMIC_RELAXED}, @code{__ATOMIC_SEQ_CST}, and @code{__ATOMIC_RELEASE}.
10544 @end deftypefn
10546 @deftypefn {Built-in Function} void __atomic_store (@var{type} *ptr, @var{type} *val, int memorder)
10547 This is the generic version of an atomic store.  It stores the value
10548 of @code{*@var{val}} into @code{*@var{ptr}}.
10550 @end deftypefn
10552 @deftypefn {Built-in Function} @var{type} __atomic_exchange_n (@var{type} *ptr, @var{type} val, int memorder)
10553 This built-in function implements an atomic exchange operation.  It writes
10554 @var{val} into @code{*@var{ptr}}, and returns the previous contents of
10555 @code{*@var{ptr}}.
10557 The valid memory order variants are
10558 @code{__ATOMIC_RELAXED}, @code{__ATOMIC_SEQ_CST}, @code{__ATOMIC_ACQUIRE},
10559 @code{__ATOMIC_RELEASE}, and @code{__ATOMIC_ACQ_REL}.
10561 @end deftypefn
10563 @deftypefn {Built-in Function} void __atomic_exchange (@var{type} *ptr, @var{type} *val, @var{type} *ret, int memorder)
10564 This is the generic version of an atomic exchange.  It stores the
10565 contents of @code{*@var{val}} into @code{*@var{ptr}}. The original value
10566 of @code{*@var{ptr}} is copied into @code{*@var{ret}}.
10568 @end deftypefn
10570 @deftypefn {Built-in Function} bool __atomic_compare_exchange_n (@var{type} *ptr, @var{type} *expected, @var{type} desired, bool weak, int success_memorder, int failure_memorder)
10571 This built-in function implements an atomic compare and exchange operation.
10572 This compares the contents of @code{*@var{ptr}} with the contents of
10573 @code{*@var{expected}}. If equal, the operation is a @emph{read-modify-write}
10574 operation that writes @var{desired} into @code{*@var{ptr}}.  If they are not
10575 equal, the operation is a @emph{read} and the current contents of
10576 @code{*@var{ptr}} are written into @code{*@var{expected}}.  @var{weak} is true
10577 for weak compare_exchange, which may fail spuriously, and false for
10578 the strong variation, which never fails spuriously.  Many targets
10579 only offer the strong variation and ignore the parameter.  When in doubt, use
10580 the strong variation.
10582 If @var{desired} is written into @code{*@var{ptr}} then true is returned
10583 and memory is affected according to the
10584 memory order specified by @var{success_memorder}.  There are no
10585 restrictions on what memory order can be used here.
10587 Otherwise, false is returned and memory is affected according
10588 to @var{failure_memorder}. This memory order cannot be
10589 @code{__ATOMIC_RELEASE} nor @code{__ATOMIC_ACQ_REL}.  It also cannot be a
10590 stronger order than that specified by @var{success_memorder}.
10592 @end deftypefn
10594 @deftypefn {Built-in Function} bool __atomic_compare_exchange (@var{type} *ptr, @var{type} *expected, @var{type} *desired, bool weak, int success_memorder, int failure_memorder)
10595 This built-in function implements the generic version of
10596 @code{__atomic_compare_exchange}.  The function is virtually identical to
10597 @code{__atomic_compare_exchange_n}, except the desired value is also a
10598 pointer.
10600 @end deftypefn
10602 @deftypefn {Built-in Function} @var{type} __atomic_add_fetch (@var{type} *ptr, @var{type} val, int memorder)
10603 @deftypefnx {Built-in Function} @var{type} __atomic_sub_fetch (@var{type} *ptr, @var{type} val, int memorder)
10604 @deftypefnx {Built-in Function} @var{type} __atomic_and_fetch (@var{type} *ptr, @var{type} val, int memorder)
10605 @deftypefnx {Built-in Function} @var{type} __atomic_xor_fetch (@var{type} *ptr, @var{type} val, int memorder)
10606 @deftypefnx {Built-in Function} @var{type} __atomic_or_fetch (@var{type} *ptr, @var{type} val, int memorder)
10607 @deftypefnx {Built-in Function} @var{type} __atomic_nand_fetch (@var{type} *ptr, @var{type} val, int memorder)
10608 These built-in functions perform the operation suggested by the name, and
10609 return the result of the operation.  Operations on pointer arguments are
10610 performed as if the operands were of the @code{uintptr_t} type.  That is,
10611 they are not scaled by the size of the type to which the pointer points.
10613 @smallexample
10614 @{ *ptr @var{op}= val; return *ptr; @}
10615 @end smallexample
10617 The object pointed to by the first argument must be of integer or pointer
10618 type.  It must not be a boolean type.  All memory orders are valid.
10620 @end deftypefn
10622 @deftypefn {Built-in Function} @var{type} __atomic_fetch_add (@var{type} *ptr, @var{type} val, int memorder)
10623 @deftypefnx {Built-in Function} @var{type} __atomic_fetch_sub (@var{type} *ptr, @var{type} val, int memorder)
10624 @deftypefnx {Built-in Function} @var{type} __atomic_fetch_and (@var{type} *ptr, @var{type} val, int memorder)
10625 @deftypefnx {Built-in Function} @var{type} __atomic_fetch_xor (@var{type} *ptr, @var{type} val, int memorder)
10626 @deftypefnx {Built-in Function} @var{type} __atomic_fetch_or (@var{type} *ptr, @var{type} val, int memorder)
10627 @deftypefnx {Built-in Function} @var{type} __atomic_fetch_nand (@var{type} *ptr, @var{type} val, int memorder)
10628 These built-in functions perform the operation suggested by the name, and
10629 return the value that had previously been in @code{*@var{ptr}}.  Operations
10630 on pointer arguments are performed as if the operands were of
10631 the @code{uintptr_t} type.  That is, they are not scaled by the size of
10632 the type to which the pointer points.
10634 @smallexample
10635 @{ tmp = *ptr; *ptr @var{op}= val; return tmp; @}
10636 @end smallexample
10638 The same constraints on arguments apply as for the corresponding
10639 @code{__atomic_op_fetch} built-in functions.  All memory orders are valid.
10641 @end deftypefn
10643 @deftypefn {Built-in Function} bool __atomic_test_and_set (void *ptr, int memorder)
10645 This built-in function performs an atomic test-and-set operation on
10646 the byte at @code{*@var{ptr}}.  The byte is set to some implementation
10647 defined nonzero ``set'' value and the return value is @code{true} if and only
10648 if the previous contents were ``set''.
10649 It should be only used for operands of type @code{bool} or @code{char}. For 
10650 other types only part of the value may be set.
10652 All memory orders are valid.
10654 @end deftypefn
10656 @deftypefn {Built-in Function} void __atomic_clear (bool *ptr, int memorder)
10658 This built-in function performs an atomic clear operation on
10659 @code{*@var{ptr}}.  After the operation, @code{*@var{ptr}} contains 0.
10660 It should be only used for operands of type @code{bool} or @code{char} and 
10661 in conjunction with @code{__atomic_test_and_set}.
10662 For other types it may only clear partially. If the type is not @code{bool}
10663 prefer using @code{__atomic_store}.
10665 The valid memory order variants are
10666 @code{__ATOMIC_RELAXED}, @code{__ATOMIC_SEQ_CST}, and
10667 @code{__ATOMIC_RELEASE}.
10669 @end deftypefn
10671 @deftypefn {Built-in Function} void __atomic_thread_fence (int memorder)
10673 This built-in function acts as a synchronization fence between threads
10674 based on the specified memory order.
10676 All memory orders are valid.
10678 @end deftypefn
10680 @deftypefn {Built-in Function} void __atomic_signal_fence (int memorder)
10682 This built-in function acts as a synchronization fence between a thread
10683 and signal handlers based in the same thread.
10685 All memory orders are valid.
10687 @end deftypefn
10689 @deftypefn {Built-in Function} bool __atomic_always_lock_free (size_t size,  void *ptr)
10691 This built-in function returns true if objects of @var{size} bytes always
10692 generate lock-free atomic instructions for the target architecture.
10693 @var{size} must resolve to a compile-time constant and the result also
10694 resolves to a compile-time constant.
10696 @var{ptr} is an optional pointer to the object that may be used to determine
10697 alignment.  A value of 0 indicates typical alignment should be used.  The 
10698 compiler may also ignore this parameter.
10700 @smallexample
10701 if (__atomic_always_lock_free (sizeof (long long), 0))
10702 @end smallexample
10704 @end deftypefn
10706 @deftypefn {Built-in Function} bool __atomic_is_lock_free (size_t size, void *ptr)
10708 This built-in function returns true if objects of @var{size} bytes always
10709 generate lock-free atomic instructions for the target architecture.  If
10710 the built-in function is not known to be lock-free, a call is made to a
10711 runtime routine named @code{__atomic_is_lock_free}.
10713 @var{ptr} is an optional pointer to the object that may be used to determine
10714 alignment.  A value of 0 indicates typical alignment should be used.  The 
10715 compiler may also ignore this parameter.
10716 @end deftypefn
10718 @node Integer Overflow Builtins
10719 @section Built-in Functions to Perform Arithmetic with Overflow Checking
10721 The following built-in functions allow performing simple arithmetic operations
10722 together with checking whether the operations overflowed.
10724 @deftypefn {Built-in Function} bool __builtin_add_overflow (@var{type1} a, @var{type2} b, @var{type3} *res)
10725 @deftypefnx {Built-in Function} bool __builtin_sadd_overflow (int a, int b, int *res)
10726 @deftypefnx {Built-in Function} bool __builtin_saddl_overflow (long int a, long int b, long int *res)
10727 @deftypefnx {Built-in Function} bool __builtin_saddll_overflow (long long int a, long long int b, long long int *res)
10728 @deftypefnx {Built-in Function} bool __builtin_uadd_overflow (unsigned int a, unsigned int b, unsigned int *res)
10729 @deftypefnx {Built-in Function} bool __builtin_uaddl_overflow (unsigned long int a, unsigned long int b, unsigned long int *res)
10730 @deftypefnx {Built-in Function} bool __builtin_uaddll_overflow (unsigned long long int a, unsigned long long int b, unsigned long long int *res)
10732 These built-in functions promote the first two operands into infinite precision signed
10733 type and perform addition on those promoted operands.  The result is then
10734 cast to the type the third pointer argument points to and stored there.
10735 If the stored result is equal to the infinite precision result, the built-in
10736 functions return false, otherwise they return true.  As the addition is
10737 performed in infinite signed precision, these built-in functions have fully defined
10738 behavior for all argument values.
10740 The first built-in function allows arbitrary integral types for operands and
10741 the result type must be pointer to some integral type other than enumerated or
10742 boolean type, the rest of the built-in functions have explicit integer types.
10744 The compiler will attempt to use hardware instructions to implement
10745 these built-in functions where possible, like conditional jump on overflow
10746 after addition, conditional jump on carry etc.
10748 @end deftypefn
10750 @deftypefn {Built-in Function} bool __builtin_sub_overflow (@var{type1} a, @var{type2} b, @var{type3} *res)
10751 @deftypefnx {Built-in Function} bool __builtin_ssub_overflow (int a, int b, int *res)
10752 @deftypefnx {Built-in Function} bool __builtin_ssubl_overflow (long int a, long int b, long int *res)
10753 @deftypefnx {Built-in Function} bool __builtin_ssubll_overflow (long long int a, long long int b, long long int *res)
10754 @deftypefnx {Built-in Function} bool __builtin_usub_overflow (unsigned int a, unsigned int b, unsigned int *res)
10755 @deftypefnx {Built-in Function} bool __builtin_usubl_overflow (unsigned long int a, unsigned long int b, unsigned long int *res)
10756 @deftypefnx {Built-in Function} bool __builtin_usubll_overflow (unsigned long long int a, unsigned long long int b, unsigned long long int *res)
10758 These built-in functions are similar to the add overflow checking built-in
10759 functions above, except they perform subtraction, subtract the second argument
10760 from the first one, instead of addition.
10762 @end deftypefn
10764 @deftypefn {Built-in Function} bool __builtin_mul_overflow (@var{type1} a, @var{type2} b, @var{type3} *res)
10765 @deftypefnx {Built-in Function} bool __builtin_smul_overflow (int a, int b, int *res)
10766 @deftypefnx {Built-in Function} bool __builtin_smull_overflow (long int a, long int b, long int *res)
10767 @deftypefnx {Built-in Function} bool __builtin_smulll_overflow (long long int a, long long int b, long long int *res)
10768 @deftypefnx {Built-in Function} bool __builtin_umul_overflow (unsigned int a, unsigned int b, unsigned int *res)
10769 @deftypefnx {Built-in Function} bool __builtin_umull_overflow (unsigned long int a, unsigned long int b, unsigned long int *res)
10770 @deftypefnx {Built-in Function} bool __builtin_umulll_overflow (unsigned long long int a, unsigned long long int b, unsigned long long int *res)
10772 These built-in functions are similar to the add overflow checking built-in
10773 functions above, except they perform multiplication, instead of addition.
10775 @end deftypefn
10777 The following built-in functions allow checking if simple arithmetic operation
10778 would overflow.
10780 @deftypefn {Built-in Function} bool __builtin_add_overflow_p (@var{type1} a, @var{type2} b, @var{type3} c)
10781 @deftypefnx {Built-in Function} bool __builtin_sub_overflow_p (@var{type1} a, @var{type2} b, @var{type3} c)
10782 @deftypefnx {Built-in Function} bool __builtin_mul_overflow_p (@var{type1} a, @var{type2} b, @var{type3} c)
10784 These built-in functions are similar to @code{__builtin_add_overflow},
10785 @code{__builtin_sub_overflow}, or @code{__builtin_mul_overflow}, except that
10786 they don't store the result of the arithmetic operation anywhere and the
10787 last argument is not a pointer, but some expression with integral type other
10788 than enumerated or boolean type.
10790 The built-in functions promote the first two operands into infinite precision signed type
10791 and perform addition on those promoted operands. The result is then
10792 cast to the type of the third argument.  If the cast result is equal to the infinite
10793 precision result, the built-in functions return false, otherwise they return true.
10794 The value of the third argument is ignored, just the side effects in the third argument
10795 are evaluated, and no integral argument promotions are performed on the last argument.
10796 If the third argument is a bit-field, the type used for the result cast has the
10797 precision and signedness of the given bit-field, rather than precision and signedness
10798 of the underlying type.
10800 For example, the following macro can be used to portably check, at
10801 compile-time, whether or not adding two constant integers will overflow,
10802 and perform the addition only when it is known to be safe and not to trigger
10803 a @option{-Woverflow} warning.
10805 @smallexample
10806 #define INT_ADD_OVERFLOW_P(a, b) \
10807    __builtin_add_overflow_p (a, b, (__typeof__ ((a) + (b))) 0)
10809 enum @{
10810     A = INT_MAX, B = 3,
10811     C = INT_ADD_OVERFLOW_P (A, B) ? 0 : A + B,
10812     D = __builtin_add_overflow_p (1, SCHAR_MAX, (signed char) 0)
10814 @end smallexample
10816 The compiler will attempt to use hardware instructions to implement
10817 these built-in functions where possible, like conditional jump on overflow
10818 after addition, conditional jump on carry etc.
10820 @end deftypefn
10822 @node x86 specific memory model extensions for transactional memory
10823 @section x86-Specific Memory Model Extensions for Transactional Memory
10825 The x86 architecture supports additional memory ordering flags
10826 to mark critical sections for hardware lock elision. 
10827 These must be specified in addition to an existing memory order to
10828 atomic intrinsics.
10830 @table @code
10831 @item __ATOMIC_HLE_ACQUIRE
10832 Start lock elision on a lock variable.
10833 Memory order must be @code{__ATOMIC_ACQUIRE} or stronger.
10834 @item __ATOMIC_HLE_RELEASE
10835 End lock elision on a lock variable.
10836 Memory order must be @code{__ATOMIC_RELEASE} or stronger.
10837 @end table
10839 When a lock acquire fails, it is required for good performance to abort
10840 the transaction quickly. This can be done with a @code{_mm_pause}.
10842 @smallexample
10843 #include <immintrin.h> // For _mm_pause
10845 int lockvar;
10847 /* Acquire lock with lock elision */
10848 while (__atomic_exchange_n(&lockvar, 1, __ATOMIC_ACQUIRE|__ATOMIC_HLE_ACQUIRE))
10849     _mm_pause(); /* Abort failed transaction */
10851 /* Free lock with lock elision */
10852 __atomic_store_n(&lockvar, 0, __ATOMIC_RELEASE|__ATOMIC_HLE_RELEASE);
10853 @end smallexample
10855 @node Object Size Checking
10856 @section Object Size Checking Built-in Functions
10857 @findex __builtin_object_size
10858 @findex __builtin___memcpy_chk
10859 @findex __builtin___mempcpy_chk
10860 @findex __builtin___memmove_chk
10861 @findex __builtin___memset_chk
10862 @findex __builtin___strcpy_chk
10863 @findex __builtin___stpcpy_chk
10864 @findex __builtin___strncpy_chk
10865 @findex __builtin___strcat_chk
10866 @findex __builtin___strncat_chk
10867 @findex __builtin___sprintf_chk
10868 @findex __builtin___snprintf_chk
10869 @findex __builtin___vsprintf_chk
10870 @findex __builtin___vsnprintf_chk
10871 @findex __builtin___printf_chk
10872 @findex __builtin___vprintf_chk
10873 @findex __builtin___fprintf_chk
10874 @findex __builtin___vfprintf_chk
10876 GCC implements a limited buffer overflow protection mechanism that can
10877 prevent some buffer overflow attacks by determining the sizes of objects
10878 into which data is about to be written and preventing the writes when
10879 the size isn't sufficient.  The built-in functions described below yield
10880 the best results when used together and when optimization is enabled.
10881 For example, to detect object sizes across function boundaries or to
10882 follow pointer assignments through non-trivial control flow they rely
10883 on various optimization passes enabled with @option{-O2}.  However, to
10884 a limited extent, they can be used without optimization as well.
10886 @deftypefn {Built-in Function} {size_t} __builtin_object_size (const void * @var{ptr}, int @var{type})
10887 is a built-in construct that returns a constant number of bytes from
10888 @var{ptr} to the end of the object @var{ptr} pointer points to
10889 (if known at compile time).  @code{__builtin_object_size} never evaluates
10890 its arguments for side effects.  If there are any side effects in them, it
10891 returns @code{(size_t) -1} for @var{type} 0 or 1 and @code{(size_t) 0}
10892 for @var{type} 2 or 3.  If there are multiple objects @var{ptr} can
10893 point to and all of them are known at compile time, the returned number
10894 is the maximum of remaining byte counts in those objects if @var{type} & 2 is
10895 0 and minimum if nonzero.  If it is not possible to determine which objects
10896 @var{ptr} points to at compile time, @code{__builtin_object_size} should
10897 return @code{(size_t) -1} for @var{type} 0 or 1 and @code{(size_t) 0}
10898 for @var{type} 2 or 3.
10900 @var{type} is an integer constant from 0 to 3.  If the least significant
10901 bit is clear, objects are whole variables, if it is set, a closest
10902 surrounding subobject is considered the object a pointer points to.
10903 The second bit determines if maximum or minimum of remaining bytes
10904 is computed.
10906 @smallexample
10907 struct V @{ char buf1[10]; int b; char buf2[10]; @} var;
10908 char *p = &var.buf1[1], *q = &var.b;
10910 /* Here the object p points to is var.  */
10911 assert (__builtin_object_size (p, 0) == sizeof (var) - 1);
10912 /* The subobject p points to is var.buf1.  */
10913 assert (__builtin_object_size (p, 1) == sizeof (var.buf1) - 1);
10914 /* The object q points to is var.  */
10915 assert (__builtin_object_size (q, 0)
10916         == (char *) (&var + 1) - (char *) &var.b);
10917 /* The subobject q points to is var.b.  */
10918 assert (__builtin_object_size (q, 1) == sizeof (var.b));
10919 @end smallexample
10920 @end deftypefn
10922 There are built-in functions added for many common string operation
10923 functions, e.g., for @code{memcpy} @code{__builtin___memcpy_chk}
10924 built-in is provided.  This built-in has an additional last argument,
10925 which is the number of bytes remaining in the object the @var{dest}
10926 argument points to or @code{(size_t) -1} if the size is not known.
10928 The built-in functions are optimized into the normal string functions
10929 like @code{memcpy} if the last argument is @code{(size_t) -1} or if
10930 it is known at compile time that the destination object will not
10931 be overflowed.  If the compiler can determine at compile time that the
10932 object will always be overflowed, it issues a warning.
10934 The intended use can be e.g.@:
10936 @smallexample
10937 #undef memcpy
10938 #define bos0(dest) __builtin_object_size (dest, 0)
10939 #define memcpy(dest, src, n) \
10940   __builtin___memcpy_chk (dest, src, n, bos0 (dest))
10942 char *volatile p;
10943 char buf[10];
10944 /* It is unknown what object p points to, so this is optimized
10945    into plain memcpy - no checking is possible.  */
10946 memcpy (p, "abcde", n);
10947 /* Destination is known and length too.  It is known at compile
10948    time there will be no overflow.  */
10949 memcpy (&buf[5], "abcde", 5);
10950 /* Destination is known, but the length is not known at compile time.
10951    This will result in __memcpy_chk call that can check for overflow
10952    at run time.  */
10953 memcpy (&buf[5], "abcde", n);
10954 /* Destination is known and it is known at compile time there will
10955    be overflow.  There will be a warning and __memcpy_chk call that
10956    will abort the program at run time.  */
10957 memcpy (&buf[6], "abcde", 5);
10958 @end smallexample
10960 Such built-in functions are provided for @code{memcpy}, @code{mempcpy},
10961 @code{memmove}, @code{memset}, @code{strcpy}, @code{stpcpy}, @code{strncpy},
10962 @code{strcat} and @code{strncat}.
10964 There are also checking built-in functions for formatted output functions.
10965 @smallexample
10966 int __builtin___sprintf_chk (char *s, int flag, size_t os, const char *fmt, ...);
10967 int __builtin___snprintf_chk (char *s, size_t maxlen, int flag, size_t os,
10968                               const char *fmt, ...);
10969 int __builtin___vsprintf_chk (char *s, int flag, size_t os, const char *fmt,
10970                               va_list ap);
10971 int __builtin___vsnprintf_chk (char *s, size_t maxlen, int flag, size_t os,
10972                                const char *fmt, va_list ap);
10973 @end smallexample
10975 The added @var{flag} argument is passed unchanged to @code{__sprintf_chk}
10976 etc.@: functions and can contain implementation specific flags on what
10977 additional security measures the checking function might take, such as
10978 handling @code{%n} differently.
10980 The @var{os} argument is the object size @var{s} points to, like in the
10981 other built-in functions.  There is a small difference in the behavior
10982 though, if @var{os} is @code{(size_t) -1}, the built-in functions are
10983 optimized into the non-checking functions only if @var{flag} is 0, otherwise
10984 the checking function is called with @var{os} argument set to
10985 @code{(size_t) -1}.
10987 In addition to this, there are checking built-in functions
10988 @code{__builtin___printf_chk}, @code{__builtin___vprintf_chk},
10989 @code{__builtin___fprintf_chk} and @code{__builtin___vfprintf_chk}.
10990 These have just one additional argument, @var{flag}, right before
10991 format string @var{fmt}.  If the compiler is able to optimize them to
10992 @code{fputc} etc.@: functions, it does, otherwise the checking function
10993 is called and the @var{flag} argument passed to it.
10995 @node Other Builtins
10996 @section Other Built-in Functions Provided by GCC
10997 @cindex built-in functions
10998 @findex __builtin_alloca
10999 @findex __builtin_alloca_with_align
11000 @findex __builtin_alloca_with_align_and_max
11001 @findex __builtin_call_with_static_chain
11002 @findex __builtin_extend_pointer
11003 @findex __builtin_fpclassify
11004 @findex __builtin_isfinite
11005 @findex __builtin_isnormal
11006 @findex __builtin_isgreater
11007 @findex __builtin_isgreaterequal
11008 @findex __builtin_isinf_sign
11009 @findex __builtin_isless
11010 @findex __builtin_islessequal
11011 @findex __builtin_islessgreater
11012 @findex __builtin_isunordered
11013 @findex __builtin_powi
11014 @findex __builtin_powif
11015 @findex __builtin_powil
11016 @findex __builtin_speculation_safe_value
11017 @findex _Exit
11018 @findex _exit
11019 @findex abort
11020 @findex abs
11021 @findex acos
11022 @findex acosf
11023 @findex acosh
11024 @findex acoshf
11025 @findex acoshl
11026 @findex acosl
11027 @findex alloca
11028 @findex asin
11029 @findex asinf
11030 @findex asinh
11031 @findex asinhf
11032 @findex asinhl
11033 @findex asinl
11034 @findex atan
11035 @findex atan2
11036 @findex atan2f
11037 @findex atan2l
11038 @findex atanf
11039 @findex atanh
11040 @findex atanhf
11041 @findex atanhl
11042 @findex atanl
11043 @findex bcmp
11044 @findex bzero
11045 @findex cabs
11046 @findex cabsf
11047 @findex cabsl
11048 @findex cacos
11049 @findex cacosf
11050 @findex cacosh
11051 @findex cacoshf
11052 @findex cacoshl
11053 @findex cacosl
11054 @findex calloc
11055 @findex carg
11056 @findex cargf
11057 @findex cargl
11058 @findex casin
11059 @findex casinf
11060 @findex casinh
11061 @findex casinhf
11062 @findex casinhl
11063 @findex casinl
11064 @findex catan
11065 @findex catanf
11066 @findex catanh
11067 @findex catanhf
11068 @findex catanhl
11069 @findex catanl
11070 @findex cbrt
11071 @findex cbrtf
11072 @findex cbrtl
11073 @findex ccos
11074 @findex ccosf
11075 @findex ccosh
11076 @findex ccoshf
11077 @findex ccoshl
11078 @findex ccosl
11079 @findex ceil
11080 @findex ceilf
11081 @findex ceill
11082 @findex cexp
11083 @findex cexpf
11084 @findex cexpl
11085 @findex cimag
11086 @findex cimagf
11087 @findex cimagl
11088 @findex clog
11089 @findex clogf
11090 @findex clogl
11091 @findex clog10
11092 @findex clog10f
11093 @findex clog10l
11094 @findex conj
11095 @findex conjf
11096 @findex conjl
11097 @findex copysign
11098 @findex copysignf
11099 @findex copysignl
11100 @findex cos
11101 @findex cosf
11102 @findex cosh
11103 @findex coshf
11104 @findex coshl
11105 @findex cosl
11106 @findex cpow
11107 @findex cpowf
11108 @findex cpowl
11109 @findex cproj
11110 @findex cprojf
11111 @findex cprojl
11112 @findex creal
11113 @findex crealf
11114 @findex creall
11115 @findex csin
11116 @findex csinf
11117 @findex csinh
11118 @findex csinhf
11119 @findex csinhl
11120 @findex csinl
11121 @findex csqrt
11122 @findex csqrtf
11123 @findex csqrtl
11124 @findex ctan
11125 @findex ctanf
11126 @findex ctanh
11127 @findex ctanhf
11128 @findex ctanhl
11129 @findex ctanl
11130 @findex dcgettext
11131 @findex dgettext
11132 @findex drem
11133 @findex dremf
11134 @findex dreml
11135 @findex erf
11136 @findex erfc
11137 @findex erfcf
11138 @findex erfcl
11139 @findex erff
11140 @findex erfl
11141 @findex exit
11142 @findex exp
11143 @findex exp10
11144 @findex exp10f
11145 @findex exp10l
11146 @findex exp2
11147 @findex exp2f
11148 @findex exp2l
11149 @findex expf
11150 @findex expl
11151 @findex expm1
11152 @findex expm1f
11153 @findex expm1l
11154 @findex fabs
11155 @findex fabsf
11156 @findex fabsl
11157 @findex fdim
11158 @findex fdimf
11159 @findex fdiml
11160 @findex ffs
11161 @findex floor
11162 @findex floorf
11163 @findex floorl
11164 @findex fma
11165 @findex fmaf
11166 @findex fmal
11167 @findex fmax
11168 @findex fmaxf
11169 @findex fmaxl
11170 @findex fmin
11171 @findex fminf
11172 @findex fminl
11173 @findex fmod
11174 @findex fmodf
11175 @findex fmodl
11176 @findex fprintf
11177 @findex fprintf_unlocked
11178 @findex fputs
11179 @findex fputs_unlocked
11180 @findex frexp
11181 @findex frexpf
11182 @findex frexpl
11183 @findex fscanf
11184 @findex gamma
11185 @findex gammaf
11186 @findex gammal
11187 @findex gamma_r
11188 @findex gammaf_r
11189 @findex gammal_r
11190 @findex gettext
11191 @findex hypot
11192 @findex hypotf
11193 @findex hypotl
11194 @findex ilogb
11195 @findex ilogbf
11196 @findex ilogbl
11197 @findex imaxabs
11198 @findex index
11199 @findex isalnum
11200 @findex isalpha
11201 @findex isascii
11202 @findex isblank
11203 @findex iscntrl
11204 @findex isdigit
11205 @findex isgraph
11206 @findex islower
11207 @findex isprint
11208 @findex ispunct
11209 @findex isspace
11210 @findex isupper
11211 @findex iswalnum
11212 @findex iswalpha
11213 @findex iswblank
11214 @findex iswcntrl
11215 @findex iswdigit
11216 @findex iswgraph
11217 @findex iswlower
11218 @findex iswprint
11219 @findex iswpunct
11220 @findex iswspace
11221 @findex iswupper
11222 @findex iswxdigit
11223 @findex isxdigit
11224 @findex j0
11225 @findex j0f
11226 @findex j0l
11227 @findex j1
11228 @findex j1f
11229 @findex j1l
11230 @findex jn
11231 @findex jnf
11232 @findex jnl
11233 @findex labs
11234 @findex ldexp
11235 @findex ldexpf
11236 @findex ldexpl
11237 @findex lgamma
11238 @findex lgammaf
11239 @findex lgammal
11240 @findex lgamma_r
11241 @findex lgammaf_r
11242 @findex lgammal_r
11243 @findex llabs
11244 @findex llrint
11245 @findex llrintf
11246 @findex llrintl
11247 @findex llround
11248 @findex llroundf
11249 @findex llroundl
11250 @findex log
11251 @findex log10
11252 @findex log10f
11253 @findex log10l
11254 @findex log1p
11255 @findex log1pf
11256 @findex log1pl
11257 @findex log2
11258 @findex log2f
11259 @findex log2l
11260 @findex logb
11261 @findex logbf
11262 @findex logbl
11263 @findex logf
11264 @findex logl
11265 @findex lrint
11266 @findex lrintf
11267 @findex lrintl
11268 @findex lround
11269 @findex lroundf
11270 @findex lroundl
11271 @findex malloc
11272 @findex memchr
11273 @findex memcmp
11274 @findex memcpy
11275 @findex mempcpy
11276 @findex memset
11277 @findex modf
11278 @findex modff
11279 @findex modfl
11280 @findex nearbyint
11281 @findex nearbyintf
11282 @findex nearbyintl
11283 @findex nextafter
11284 @findex nextafterf
11285 @findex nextafterl
11286 @findex nexttoward
11287 @findex nexttowardf
11288 @findex nexttowardl
11289 @findex pow
11290 @findex pow10
11291 @findex pow10f
11292 @findex pow10l
11293 @findex powf
11294 @findex powl
11295 @findex printf
11296 @findex printf_unlocked
11297 @findex putchar
11298 @findex puts
11299 @findex remainder
11300 @findex remainderf
11301 @findex remainderl
11302 @findex remquo
11303 @findex remquof
11304 @findex remquol
11305 @findex rindex
11306 @findex rint
11307 @findex rintf
11308 @findex rintl
11309 @findex round
11310 @findex roundf
11311 @findex roundl
11312 @findex scalb
11313 @findex scalbf
11314 @findex scalbl
11315 @findex scalbln
11316 @findex scalblnf
11317 @findex scalblnf
11318 @findex scalbn
11319 @findex scalbnf
11320 @findex scanfnl
11321 @findex signbit
11322 @findex signbitf
11323 @findex signbitl
11324 @findex signbitd32
11325 @findex signbitd64
11326 @findex signbitd128
11327 @findex significand
11328 @findex significandf
11329 @findex significandl
11330 @findex sin
11331 @findex sincos
11332 @findex sincosf
11333 @findex sincosl
11334 @findex sinf
11335 @findex sinh
11336 @findex sinhf
11337 @findex sinhl
11338 @findex sinl
11339 @findex snprintf
11340 @findex sprintf
11341 @findex sqrt
11342 @findex sqrtf
11343 @findex sqrtl
11344 @findex sscanf
11345 @findex stpcpy
11346 @findex stpncpy
11347 @findex strcasecmp
11348 @findex strcat
11349 @findex strchr
11350 @findex strcmp
11351 @findex strcpy
11352 @findex strcspn
11353 @findex strdup
11354 @findex strfmon
11355 @findex strftime
11356 @findex strlen
11357 @findex strncasecmp
11358 @findex strncat
11359 @findex strncmp
11360 @findex strncpy
11361 @findex strndup
11362 @findex strnlen
11363 @findex strpbrk
11364 @findex strrchr
11365 @findex strspn
11366 @findex strstr
11367 @findex tan
11368 @findex tanf
11369 @findex tanh
11370 @findex tanhf
11371 @findex tanhl
11372 @findex tanl
11373 @findex tgamma
11374 @findex tgammaf
11375 @findex tgammal
11376 @findex toascii
11377 @findex tolower
11378 @findex toupper
11379 @findex towlower
11380 @findex towupper
11381 @findex trunc
11382 @findex truncf
11383 @findex truncl
11384 @findex vfprintf
11385 @findex vfscanf
11386 @findex vprintf
11387 @findex vscanf
11388 @findex vsnprintf
11389 @findex vsprintf
11390 @findex vsscanf
11391 @findex y0
11392 @findex y0f
11393 @findex y0l
11394 @findex y1
11395 @findex y1f
11396 @findex y1l
11397 @findex yn
11398 @findex ynf
11399 @findex ynl
11401 GCC provides a large number of built-in functions other than the ones
11402 mentioned above.  Some of these are for internal use in the processing
11403 of exceptions or variable-length argument lists and are not
11404 documented here because they may change from time to time; we do not
11405 recommend general use of these functions.
11407 The remaining functions are provided for optimization purposes.
11409 With the exception of built-ins that have library equivalents such as
11410 the standard C library functions discussed below, or that expand to
11411 library calls, GCC built-in functions are always expanded inline and
11412 thus do not have corresponding entry points and their address cannot
11413 be obtained.  Attempting to use them in an expression other than
11414 a function call results in a compile-time error.
11416 @opindex fno-builtin
11417 GCC includes built-in versions of many of the functions in the standard
11418 C library.  These functions come in two forms: one whose names start with
11419 the @code{__builtin_} prefix, and the other without.  Both forms have the
11420 same type (including prototype), the same address (when their address is
11421 taken), and the same meaning as the C library functions even if you specify
11422 the @option{-fno-builtin} option @pxref{C Dialect Options}).  Many of these
11423 functions are only optimized in certain cases; if they are not optimized in
11424 a particular case, a call to the library function is emitted.
11426 @opindex ansi
11427 @opindex std
11428 Outside strict ISO C mode (@option{-ansi}, @option{-std=c90},
11429 @option{-std=c99} or @option{-std=c11}), the functions
11430 @code{_exit}, @code{alloca}, @code{bcmp}, @code{bzero},
11431 @code{dcgettext}, @code{dgettext}, @code{dremf}, @code{dreml},
11432 @code{drem}, @code{exp10f}, @code{exp10l}, @code{exp10}, @code{ffsll},
11433 @code{ffsl}, @code{ffs}, @code{fprintf_unlocked},
11434 @code{fputs_unlocked}, @code{gammaf}, @code{gammal}, @code{gamma},
11435 @code{gammaf_r}, @code{gammal_r}, @code{gamma_r}, @code{gettext},
11436 @code{index}, @code{isascii}, @code{j0f}, @code{j0l}, @code{j0},
11437 @code{j1f}, @code{j1l}, @code{j1}, @code{jnf}, @code{jnl}, @code{jn},
11438 @code{lgammaf_r}, @code{lgammal_r}, @code{lgamma_r}, @code{mempcpy},
11439 @code{pow10f}, @code{pow10l}, @code{pow10}, @code{printf_unlocked},
11440 @code{rindex}, @code{scalbf}, @code{scalbl}, @code{scalb},
11441 @code{signbit}, @code{signbitf}, @code{signbitl}, @code{signbitd32},
11442 @code{signbitd64}, @code{signbitd128}, @code{significandf},
11443 @code{significandl}, @code{significand}, @code{sincosf},
11444 @code{sincosl}, @code{sincos}, @code{stpcpy}, @code{stpncpy},
11445 @code{strcasecmp}, @code{strdup}, @code{strfmon}, @code{strncasecmp},
11446 @code{strndup}, @code{strnlen}, @code{toascii}, @code{y0f}, @code{y0l},
11447 @code{y0}, @code{y1f}, @code{y1l}, @code{y1}, @code{ynf}, @code{ynl} and
11448 @code{yn}
11449 may be handled as built-in functions.
11450 All these functions have corresponding versions
11451 prefixed with @code{__builtin_}, which may be used even in strict C90
11452 mode.
11454 The ISO C99 functions
11455 @code{_Exit}, @code{acoshf}, @code{acoshl}, @code{acosh}, @code{asinhf},
11456 @code{asinhl}, @code{asinh}, @code{atanhf}, @code{atanhl}, @code{atanh},
11457 @code{cabsf}, @code{cabsl}, @code{cabs}, @code{cacosf}, @code{cacoshf},
11458 @code{cacoshl}, @code{cacosh}, @code{cacosl}, @code{cacos},
11459 @code{cargf}, @code{cargl}, @code{carg}, @code{casinf}, @code{casinhf},
11460 @code{casinhl}, @code{casinh}, @code{casinl}, @code{casin},
11461 @code{catanf}, @code{catanhf}, @code{catanhl}, @code{catanh},
11462 @code{catanl}, @code{catan}, @code{cbrtf}, @code{cbrtl}, @code{cbrt},
11463 @code{ccosf}, @code{ccoshf}, @code{ccoshl}, @code{ccosh}, @code{ccosl},
11464 @code{ccos}, @code{cexpf}, @code{cexpl}, @code{cexp}, @code{cimagf},
11465 @code{cimagl}, @code{cimag}, @code{clogf}, @code{clogl}, @code{clog},
11466 @code{conjf}, @code{conjl}, @code{conj}, @code{copysignf}, @code{copysignl},
11467 @code{copysign}, @code{cpowf}, @code{cpowl}, @code{cpow}, @code{cprojf},
11468 @code{cprojl}, @code{cproj}, @code{crealf}, @code{creall}, @code{creal},
11469 @code{csinf}, @code{csinhf}, @code{csinhl}, @code{csinh}, @code{csinl},
11470 @code{csin}, @code{csqrtf}, @code{csqrtl}, @code{csqrt}, @code{ctanf},
11471 @code{ctanhf}, @code{ctanhl}, @code{ctanh}, @code{ctanl}, @code{ctan},
11472 @code{erfcf}, @code{erfcl}, @code{erfc}, @code{erff}, @code{erfl},
11473 @code{erf}, @code{exp2f}, @code{exp2l}, @code{exp2}, @code{expm1f},
11474 @code{expm1l}, @code{expm1}, @code{fdimf}, @code{fdiml}, @code{fdim},
11475 @code{fmaf}, @code{fmal}, @code{fmaxf}, @code{fmaxl}, @code{fmax},
11476 @code{fma}, @code{fminf}, @code{fminl}, @code{fmin}, @code{hypotf},
11477 @code{hypotl}, @code{hypot}, @code{ilogbf}, @code{ilogbl}, @code{ilogb},
11478 @code{imaxabs}, @code{isblank}, @code{iswblank}, @code{lgammaf},
11479 @code{lgammal}, @code{lgamma}, @code{llabs}, @code{llrintf}, @code{llrintl},
11480 @code{llrint}, @code{llroundf}, @code{llroundl}, @code{llround},
11481 @code{log1pf}, @code{log1pl}, @code{log1p}, @code{log2f}, @code{log2l},
11482 @code{log2}, @code{logbf}, @code{logbl}, @code{logb}, @code{lrintf},
11483 @code{lrintl}, @code{lrint}, @code{lroundf}, @code{lroundl},
11484 @code{lround}, @code{nearbyintf}, @code{nearbyintl}, @code{nearbyint},
11485 @code{nextafterf}, @code{nextafterl}, @code{nextafter},
11486 @code{nexttowardf}, @code{nexttowardl}, @code{nexttoward},
11487 @code{remainderf}, @code{remainderl}, @code{remainder}, @code{remquof},
11488 @code{remquol}, @code{remquo}, @code{rintf}, @code{rintl}, @code{rint},
11489 @code{roundf}, @code{roundl}, @code{round}, @code{scalblnf},
11490 @code{scalblnl}, @code{scalbln}, @code{scalbnf}, @code{scalbnl},
11491 @code{scalbn}, @code{snprintf}, @code{tgammaf}, @code{tgammal},
11492 @code{tgamma}, @code{truncf}, @code{truncl}, @code{trunc},
11493 @code{vfscanf}, @code{vscanf}, @code{vsnprintf} and @code{vsscanf}
11494 are handled as built-in functions
11495 except in strict ISO C90 mode (@option{-ansi} or @option{-std=c90}).
11497 There are also built-in versions of the ISO C99 functions
11498 @code{acosf}, @code{acosl}, @code{asinf}, @code{asinl}, @code{atan2f},
11499 @code{atan2l}, @code{atanf}, @code{atanl}, @code{ceilf}, @code{ceill},
11500 @code{cosf}, @code{coshf}, @code{coshl}, @code{cosl}, @code{expf},
11501 @code{expl}, @code{fabsf}, @code{fabsl}, @code{floorf}, @code{floorl},
11502 @code{fmodf}, @code{fmodl}, @code{frexpf}, @code{frexpl}, @code{ldexpf},
11503 @code{ldexpl}, @code{log10f}, @code{log10l}, @code{logf}, @code{logl},
11504 @code{modfl}, @code{modf}, @code{powf}, @code{powl}, @code{sinf},
11505 @code{sinhf}, @code{sinhl}, @code{sinl}, @code{sqrtf}, @code{sqrtl},
11506 @code{tanf}, @code{tanhf}, @code{tanhl} and @code{tanl}
11507 that are recognized in any mode since ISO C90 reserves these names for
11508 the purpose to which ISO C99 puts them.  All these functions have
11509 corresponding versions prefixed with @code{__builtin_}.
11511 There are also built-in functions @code{__builtin_fabsf@var{n}},
11512 @code{__builtin_fabsf@var{n}x}, @code{__builtin_copysignf@var{n}} and
11513 @code{__builtin_copysignf@var{n}x}, corresponding to the TS 18661-3
11514 functions @code{fabsf@var{n}}, @code{fabsf@var{n}x},
11515 @code{copysignf@var{n}} and @code{copysignf@var{n}x}, for supported
11516 types @code{_Float@var{n}} and @code{_Float@var{n}x}.
11518 There are also GNU extension functions @code{clog10}, @code{clog10f} and
11519 @code{clog10l} which names are reserved by ISO C99 for future use.
11520 All these functions have versions prefixed with @code{__builtin_}.
11522 The ISO C94 functions
11523 @code{iswalnum}, @code{iswalpha}, @code{iswcntrl}, @code{iswdigit},
11524 @code{iswgraph}, @code{iswlower}, @code{iswprint}, @code{iswpunct},
11525 @code{iswspace}, @code{iswupper}, @code{iswxdigit}, @code{towlower} and
11526 @code{towupper}
11527 are handled as built-in functions
11528 except in strict ISO C90 mode (@option{-ansi} or @option{-std=c90}).
11530 The ISO C90 functions
11531 @code{abort}, @code{abs}, @code{acos}, @code{asin}, @code{atan2},
11532 @code{atan}, @code{calloc}, @code{ceil}, @code{cosh}, @code{cos},
11533 @code{exit}, @code{exp}, @code{fabs}, @code{floor}, @code{fmod},
11534 @code{fprintf}, @code{fputs}, @code{frexp}, @code{fscanf},
11535 @code{isalnum}, @code{isalpha}, @code{iscntrl}, @code{isdigit},
11536 @code{isgraph}, @code{islower}, @code{isprint}, @code{ispunct},
11537 @code{isspace}, @code{isupper}, @code{isxdigit}, @code{tolower},
11538 @code{toupper}, @code{labs}, @code{ldexp}, @code{log10}, @code{log},
11539 @code{malloc}, @code{memchr}, @code{memcmp}, @code{memcpy},
11540 @code{memset}, @code{modf}, @code{pow}, @code{printf}, @code{putchar},
11541 @code{puts}, @code{scanf}, @code{sinh}, @code{sin}, @code{snprintf},
11542 @code{sprintf}, @code{sqrt}, @code{sscanf}, @code{strcat},
11543 @code{strchr}, @code{strcmp}, @code{strcpy}, @code{strcspn},
11544 @code{strlen}, @code{strncat}, @code{strncmp}, @code{strncpy},
11545 @code{strpbrk}, @code{strrchr}, @code{strspn}, @code{strstr},
11546 @code{tanh}, @code{tan}, @code{vfprintf}, @code{vprintf} and @code{vsprintf}
11547 are all recognized as built-in functions unless
11548 @option{-fno-builtin} is specified (or @option{-fno-builtin-@var{function}}
11549 is specified for an individual function).  All of these functions have
11550 corresponding versions prefixed with @code{__builtin_}.
11552 GCC provides built-in versions of the ISO C99 floating-point comparison
11553 macros that avoid raising exceptions for unordered operands.  They have
11554 the same names as the standard macros ( @code{isgreater},
11555 @code{isgreaterequal}, @code{isless}, @code{islessequal},
11556 @code{islessgreater}, and @code{isunordered}) , with @code{__builtin_}
11557 prefixed.  We intend for a library implementor to be able to simply
11558 @code{#define} each standard macro to its built-in equivalent.
11559 In the same fashion, GCC provides @code{fpclassify}, @code{isfinite},
11560 @code{isinf_sign}, @code{isnormal} and @code{signbit} built-ins used with
11561 @code{__builtin_} prefixed.  The @code{isinf} and @code{isnan}
11562 built-in functions appear both with and without the @code{__builtin_} prefix.
11564 @deftypefn {Built-in Function} void *__builtin_alloca (size_t size)
11565 The @code{__builtin_alloca} function must be called at block scope.
11566 The function allocates an object @var{size} bytes large on the stack
11567 of the calling function.  The object is aligned on the default stack
11568 alignment boundary for the target determined by the
11569 @code{__BIGGEST_ALIGNMENT__} macro.  The @code{__builtin_alloca}
11570 function returns a pointer to the first byte of the allocated object.
11571 The lifetime of the allocated object ends just before the calling
11572 function returns to its caller.   This is so even when
11573 @code{__builtin_alloca} is called within a nested block.
11575 For example, the following function allocates eight objects of @code{n}
11576 bytes each on the stack, storing a pointer to each in consecutive elements
11577 of the array @code{a}.  It then passes the array to function @code{g}
11578 which can safely use the storage pointed to by each of the array elements.
11580 @smallexample
11581 void f (unsigned n)
11583   void *a [8];
11584   for (int i = 0; i != 8; ++i)
11585     a [i] = __builtin_alloca (n);
11587   g (a, n);   // @r{safe}
11589 @end smallexample
11591 Since the @code{__builtin_alloca} function doesn't validate its argument
11592 it is the responsibility of its caller to make sure the argument doesn't
11593 cause it to exceed the stack size limit.
11594 The @code{__builtin_alloca} function is provided to make it possible to
11595 allocate on the stack arrays of bytes with an upper bound that may be
11596 computed at run time.  Since C99 Variable Length Arrays offer
11597 similar functionality under a portable, more convenient, and safer
11598 interface they are recommended instead, in both C99 and C++ programs
11599 where GCC provides them as an extension.
11600 @xref{Variable Length}, for details.
11602 @end deftypefn
11604 @deftypefn {Built-in Function} void *__builtin_alloca_with_align (size_t size, size_t alignment)
11605 The @code{__builtin_alloca_with_align} function must be called at block
11606 scope.  The function allocates an object @var{size} bytes large on
11607 the stack of the calling function.  The allocated object is aligned on
11608 the boundary specified by the argument @var{alignment} whose unit is given
11609 in bits (not bytes).  The @var{size} argument must be positive and not
11610 exceed the stack size limit.  The @var{alignment} argument must be a constant
11611 integer expression that evaluates to a power of 2 greater than or equal to
11612 @code{CHAR_BIT} and less than some unspecified maximum.  Invocations
11613 with other values are rejected with an error indicating the valid bounds.
11614 The function returns a pointer to the first byte of the allocated object.
11615 The lifetime of the allocated object ends at the end of the block in which
11616 the function was called.  The allocated storage is released no later than
11617 just before the calling function returns to its caller, but may be released
11618 at the end of the block in which the function was called.
11620 For example, in the following function the call to @code{g} is unsafe
11621 because when @code{overalign} is non-zero, the space allocated by
11622 @code{__builtin_alloca_with_align} may have been released at the end
11623 of the @code{if} statement in which it was called.
11625 @smallexample
11626 void f (unsigned n, bool overalign)
11628   void *p;
11629   if (overalign)
11630     p = __builtin_alloca_with_align (n, 64 /* bits */);
11631   else
11632     p = __builtin_alloc (n);
11634   g (p, n);   // @r{unsafe}
11636 @end smallexample
11638 Since the @code{__builtin_alloca_with_align} function doesn't validate its
11639 @var{size} argument it is the responsibility of its caller to make sure
11640 the argument doesn't cause it to exceed the stack size limit.
11641 The @code{__builtin_alloca_with_align} function is provided to make
11642 it possible to allocate on the stack overaligned arrays of bytes with
11643 an upper bound that may be computed at run time.  Since C99
11644 Variable Length Arrays offer the same functionality under
11645 a portable, more convenient, and safer interface they are recommended
11646 instead, in both C99 and C++ programs where GCC provides them as
11647 an extension.  @xref{Variable Length}, for details.
11649 @end deftypefn
11651 @deftypefn {Built-in Function} void *__builtin_alloca_with_align_and_max (size_t size, size_t alignment, size_t max_size)
11652 Similar to @code{__builtin_alloca_with_align} but takes an extra argument
11653 specifying an upper bound for @var{size} in case its value cannot be computed
11654 at compile time, for use by @option{-fstack-usage}, @option{-Wstack-usage}
11655 and @option{-Walloca-larger-than}.  @var{max_size} must be a constant integer
11656 expression, it has no effect on code generation and no attempt is made to
11657 check its compatibility with @var{size}.
11659 @end deftypefn
11661 @deftypefn {Built-in Function} @var{type} __builtin_speculation_safe_value (@var{type} val, @var{type} failval)
11663 This built-in function can be used to help mitigate against unsafe
11664 speculative execution.  @var{type} may be any integral type or any
11665 pointer type.
11667 @enumerate
11668 @item
11669 If the CPU is not speculatively executing the code, then @var{val}
11670 is returned.
11671 @item
11672 If the CPU is executing speculatively then either:
11673 @itemize
11674 @item
11675 The function may cause execution to pause until it is known that the
11676 code is no-longer being executed speculatively (in which case
11677 @var{val} can be returned, as above); or
11678 @item
11679 The function may use target-dependent speculation tracking state to cause
11680 @var{failval} to be returned when it is known that speculative
11681 execution has incorrectly predicted a conditional branch operation.
11682 @end itemize
11683 @end enumerate
11685 The second argument, @var{failval}, is optional and defaults to zero
11686 if omitted.
11688 GCC defines the preprocessor macro
11689 @code{__HAVE_BUILTIN_SPECULATION_SAFE_VALUE} for targets that have been
11690 updated to support this builtin.
11692 The built-in function can be used where a variable appears to be used in a
11693 safe way, but the CPU, due to speculative execution may temporarily ignore
11694 the bounds checks.  Consider, for example, the following function:
11696 @smallexample
11697 int array[500];
11698 int f (unsigned untrusted_index)
11700   if (untrusted_index < 500)
11701     return array[untrusted_index];
11702   return 0;
11704 @end smallexample
11706 If the function is called repeatedly with @code{untrusted_index} less
11707 than the limit of 500, then a branch predictor will learn that the
11708 block of code that returns a value stored in @code{array} will be
11709 executed.  If the function is subsequently called with an
11710 out-of-range value it will still try to execute that block of code
11711 first until the CPU determines that the prediction was incorrect
11712 (the CPU will unwind any incorrect operations at that point).
11713 However, depending on how the result of the function is used, it might be
11714 possible to leave traces in the cache that can reveal what was stored
11715 at the out-of-bounds location.  The built-in function can be used to
11716 provide some protection against leaking data in this way by changing
11717 the code to:
11719 @smallexample
11720 int array[500];
11721 int f (unsigned untrusted_index)
11723   if (untrusted_index < 500)
11724     return array[__builtin_speculation_safe_value (untrusted_index)];
11725   return 0;
11727 @end smallexample
11729 The built-in function will either cause execution to stall until the
11730 conditional branch has been fully resolved, or it may permit
11731 speculative execution to continue, but using 0 instead of
11732 @code{untrusted_value} if that exceeds the limit.
11734 If accessing any memory location is potentially unsafe when speculative
11735 execution is incorrect, then the code can be rewritten as
11737 @smallexample
11738 int array[500];
11739 int f (unsigned untrusted_index)
11741   if (untrusted_index < 500)
11742     return *__builtin_speculation_safe_value (&array[untrusted_index], NULL);
11743   return 0;
11745 @end smallexample
11747 which will cause a @code{NULL} pointer to be used for the unsafe case.
11749 @end deftypefn
11751 @deftypefn {Built-in Function} int __builtin_types_compatible_p (@var{type1}, @var{type2})
11753 You can use the built-in function @code{__builtin_types_compatible_p} to
11754 determine whether two types are the same.
11756 This built-in function returns 1 if the unqualified versions of the
11757 types @var{type1} and @var{type2} (which are types, not expressions) are
11758 compatible, 0 otherwise.  The result of this built-in function can be
11759 used in integer constant expressions.
11761 This built-in function ignores top level qualifiers (e.g., @code{const},
11762 @code{volatile}).  For example, @code{int} is equivalent to @code{const
11763 int}.
11765 The type @code{int[]} and @code{int[5]} are compatible.  On the other
11766 hand, @code{int} and @code{char *} are not compatible, even if the size
11767 of their types, on the particular architecture are the same.  Also, the
11768 amount of pointer indirection is taken into account when determining
11769 similarity.  Consequently, @code{short *} is not similar to
11770 @code{short **}.  Furthermore, two types that are typedefed are
11771 considered compatible if their underlying types are compatible.
11773 An @code{enum} type is not considered to be compatible with another
11774 @code{enum} type even if both are compatible with the same integer
11775 type; this is what the C standard specifies.
11776 For example, @code{enum @{foo, bar@}} is not similar to
11777 @code{enum @{hot, dog@}}.
11779 You typically use this function in code whose execution varies
11780 depending on the arguments' types.  For example:
11782 @smallexample
11783 #define foo(x)                                                  \
11784   (@{                                                           \
11785     typeof (x) tmp = (x);                                       \
11786     if (__builtin_types_compatible_p (typeof (x), long double)) \
11787       tmp = foo_long_double (tmp);                              \
11788     else if (__builtin_types_compatible_p (typeof (x), double)) \
11789       tmp = foo_double (tmp);                                   \
11790     else if (__builtin_types_compatible_p (typeof (x), float))  \
11791       tmp = foo_float (tmp);                                    \
11792     else                                                        \
11793       abort ();                                                 \
11794     tmp;                                                        \
11795   @})
11796 @end smallexample
11798 @emph{Note:} This construct is only available for C@.
11800 @end deftypefn
11802 @deftypefn {Built-in Function} @var{type} __builtin_call_with_static_chain (@var{call_exp}, @var{pointer_exp})
11804 The @var{call_exp} expression must be a function call, and the
11805 @var{pointer_exp} expression must be a pointer.  The @var{pointer_exp}
11806 is passed to the function call in the target's static chain location.
11807 The result of builtin is the result of the function call.
11809 @emph{Note:} This builtin is only available for C@.
11810 This builtin can be used to call Go closures from C.
11812 @end deftypefn
11814 @deftypefn {Built-in Function} @var{type} __builtin_choose_expr (@var{const_exp}, @var{exp1}, @var{exp2})
11816 You can use the built-in function @code{__builtin_choose_expr} to
11817 evaluate code depending on the value of a constant expression.  This
11818 built-in function returns @var{exp1} if @var{const_exp}, which is an
11819 integer constant expression, is nonzero.  Otherwise it returns @var{exp2}.
11821 This built-in function is analogous to the @samp{? :} operator in C,
11822 except that the expression returned has its type unaltered by promotion
11823 rules.  Also, the built-in function does not evaluate the expression
11824 that is not chosen.  For example, if @var{const_exp} evaluates to true,
11825 @var{exp2} is not evaluated even if it has side effects.
11827 This built-in function can return an lvalue if the chosen argument is an
11828 lvalue.
11830 If @var{exp1} is returned, the return type is the same as @var{exp1}'s
11831 type.  Similarly, if @var{exp2} is returned, its return type is the same
11832 as @var{exp2}.
11834 Example:
11836 @smallexample
11837 #define foo(x)                                                    \
11838   __builtin_choose_expr (                                         \
11839     __builtin_types_compatible_p (typeof (x), double),            \
11840     foo_double (x),                                               \
11841     __builtin_choose_expr (                                       \
11842       __builtin_types_compatible_p (typeof (x), float),           \
11843       foo_float (x),                                              \
11844       /* @r{The void expression results in a compile-time error}  \
11845          @r{when assigning the result to something.}  */          \
11846       (void)0))
11847 @end smallexample
11849 @emph{Note:} This construct is only available for C@.  Furthermore, the
11850 unused expression (@var{exp1} or @var{exp2} depending on the value of
11851 @var{const_exp}) may still generate syntax errors.  This may change in
11852 future revisions.
11854 @end deftypefn
11856 @deftypefn {Built-in Function} @var{type} __builtin_tgmath (@var{functions}, @var{arguments})
11858 The built-in function @code{__builtin_tgmath}, available only for C
11859 and Objective-C, calls a function determined according to the rules of
11860 @code{<tgmath.h>} macros.  It is intended to be used in
11861 implementations of that header, so that expansions of macros from that
11862 header only expand each of their arguments once, to avoid problems
11863 when calls to such macros are nested inside the arguments of other
11864 calls to such macros; in addition, it results in better diagnostics
11865 for invalid calls to @code{<tgmath.h>} macros than implementations
11866 using other GNU C language features.  For example, the @code{pow}
11867 type-generic macro might be defined as:
11869 @smallexample
11870 #define pow(a, b) __builtin_tgmath (powf, pow, powl, \
11871                                     cpowf, cpow, cpowl, a, b)
11872 @end smallexample
11874 The arguments to @code{__builtin_tgmath} are at least two pointers to
11875 functions, followed by the arguments to the type-generic macro (which
11876 will be passed as arguments to the selected function).  All the
11877 pointers to functions must be pointers to prototyped functions, none
11878 of which may have variable arguments, and all of which must have the
11879 same number of parameters; the number of parameters of the first
11880 function determines how many arguments to @code{__builtin_tgmath} are
11881 interpreted as function pointers, and how many as the arguments to the
11882 called function.
11884 The types of the specified functions must all be different, but
11885 related to each other in the same way as a set of functions that may
11886 be selected between by a macro in @code{<tgmath.h>}.  This means that
11887 the functions are parameterized by a floating-point type @var{t},
11888 different for each such function.  The function return types may all
11889 be the same type, or they may be @var{t} for each function, or they
11890 may be the real type corresponding to @var{t} for each function (if
11891 some of the types @var{t} are complex).  Likewise, for each parameter
11892 position, the type of the parameter in that position may always be the
11893 same type, or may be @var{t} for each function (this case must apply
11894 for at least one parameter position), or may be the real type
11895 corresponding to @var{t} for each function.
11897 The standard rules for @code{<tgmath.h>} macros are used to find a
11898 common type @var{u} from the types of the arguments for parameters
11899 whose types vary between the functions; complex integer types (a GNU
11900 extension) are treated like @code{_Complex double} for this purpose
11901 (or @code{_Complex _Float64} if all the function return types are the
11902 same @code{_Float@var{n}} or @code{_Float@var{n}x} type).
11903 If the function return types vary, or are all the same integer type,
11904 the function called is the one for which @var{t} is @var{u}, and it is
11905 an error if there is no such function.  If the function return types
11906 are all the same floating-point type, the type-generic macro is taken
11907 to be one of those from TS 18661 that rounds the result to a narrower
11908 type; if there is a function for which @var{t} is @var{u}, it is
11909 called, and otherwise the first function, if any, for which @var{t}
11910 has at least the range and precision of @var{u} is called, and it is
11911 an error if there is no such function.
11913 @end deftypefn
11915 @deftypefn {Built-in Function} @var{type} __builtin_complex (@var{real}, @var{imag})
11917 The built-in function @code{__builtin_complex} is provided for use in
11918 implementing the ISO C11 macros @code{CMPLXF}, @code{CMPLX} and
11919 @code{CMPLXL}.  @var{real} and @var{imag} must have the same type, a
11920 real binary floating-point type, and the result has the corresponding
11921 complex type with real and imaginary parts @var{real} and @var{imag}.
11922 Unlike @samp{@var{real} + I * @var{imag}}, this works even when
11923 infinities, NaNs and negative zeros are involved.
11925 @end deftypefn
11927 @deftypefn {Built-in Function} int __builtin_constant_p (@var{exp})
11928 You can use the built-in function @code{__builtin_constant_p} to
11929 determine if a value is known to be constant at compile time and hence
11930 that GCC can perform constant-folding on expressions involving that
11931 value.  The argument of the function is the value to test.  The function
11932 returns the integer 1 if the argument is known to be a compile-time
11933 constant and 0 if it is not known to be a compile-time constant.  A
11934 return of 0 does not indicate that the value is @emph{not} a constant,
11935 but merely that GCC cannot prove it is a constant with the specified
11936 value of the @option{-O} option.
11938 You typically use this function in an embedded application where
11939 memory is a critical resource.  If you have some complex calculation,
11940 you may want it to be folded if it involves constants, but need to call
11941 a function if it does not.  For example:
11943 @smallexample
11944 #define Scale_Value(X)      \
11945   (__builtin_constant_p (X) \
11946   ? ((X) * SCALE + OFFSET) : Scale (X))
11947 @end smallexample
11949 You may use this built-in function in either a macro or an inline
11950 function.  However, if you use it in an inlined function and pass an
11951 argument of the function as the argument to the built-in, GCC 
11952 never returns 1 when you call the inline function with a string constant
11953 or compound literal (@pxref{Compound Literals}) and does not return 1
11954 when you pass a constant numeric value to the inline function unless you
11955 specify the @option{-O} option.
11957 You may also use @code{__builtin_constant_p} in initializers for static
11958 data.  For instance, you can write
11960 @smallexample
11961 static const int table[] = @{
11962    __builtin_constant_p (EXPRESSION) ? (EXPRESSION) : -1,
11963    /* @r{@dots{}} */
11965 @end smallexample
11967 @noindent
11968 This is an acceptable initializer even if @var{EXPRESSION} is not a
11969 constant expression, including the case where
11970 @code{__builtin_constant_p} returns 1 because @var{EXPRESSION} can be
11971 folded to a constant but @var{EXPRESSION} contains operands that are
11972 not otherwise permitted in a static initializer (for example,
11973 @code{0 && foo ()}).  GCC must be more conservative about evaluating the
11974 built-in in this case, because it has no opportunity to perform
11975 optimization.
11976 @end deftypefn
11978 @deftypefn {Built-in Function} long __builtin_expect (long @var{exp}, long @var{c})
11979 @opindex fprofile-arcs
11980 You may use @code{__builtin_expect} to provide the compiler with
11981 branch prediction information.  In general, you should prefer to
11982 use actual profile feedback for this (@option{-fprofile-arcs}), as
11983 programmers are notoriously bad at predicting how their programs
11984 actually perform.  However, there are applications in which this
11985 data is hard to collect.
11987 The return value is the value of @var{exp}, which should be an integral
11988 expression.  The semantics of the built-in are that it is expected that
11989 @var{exp} == @var{c}.  For example:
11991 @smallexample
11992 if (__builtin_expect (x, 0))
11993   foo ();
11994 @end smallexample
11996 @noindent
11997 indicates that we do not expect to call @code{foo}, since
11998 we expect @code{x} to be zero.  Since you are limited to integral
11999 expressions for @var{exp}, you should use constructions such as
12001 @smallexample
12002 if (__builtin_expect (ptr != NULL, 1))
12003   foo (*ptr);
12004 @end smallexample
12006 @noindent
12007 when testing pointer or floating-point values.
12008 @end deftypefn
12010 @deftypefn {Built-in Function} long __builtin_expect_with_probability
12011 (long @var{exp}, long @var{c}, long @var{probability})
12013 The built-in has same semantics as @code{__builtin_expect_with_probability},
12014 but user can provide expected probability (in percent) for value of @var{exp}.
12015 Last argument @var{probability} is of float type and valid values
12016 are in inclusive range 0.0f and 1.0f.
12017 @end deftypefn
12019 @deftypefn {Built-in Function} void __builtin_trap (void)
12020 This function causes the program to exit abnormally.  GCC implements
12021 this function by using a target-dependent mechanism (such as
12022 intentionally executing an illegal instruction) or by calling
12023 @code{abort}.  The mechanism used may vary from release to release so
12024 you should not rely on any particular implementation.
12025 @end deftypefn
12027 @deftypefn {Built-in Function} void __builtin_unreachable (void)
12028 If control flow reaches the point of the @code{__builtin_unreachable},
12029 the program is undefined.  It is useful in situations where the
12030 compiler cannot deduce the unreachability of the code.
12032 One such case is immediately following an @code{asm} statement that
12033 either never terminates, or one that transfers control elsewhere
12034 and never returns.  In this example, without the
12035 @code{__builtin_unreachable}, GCC issues a warning that control
12036 reaches the end of a non-void function.  It also generates code
12037 to return after the @code{asm}.
12039 @smallexample
12040 int f (int c, int v)
12042   if (c)
12043     @{
12044       return v;
12045     @}
12046   else
12047     @{
12048       asm("jmp error_handler");
12049       __builtin_unreachable ();
12050     @}
12052 @end smallexample
12054 @noindent
12055 Because the @code{asm} statement unconditionally transfers control out
12056 of the function, control never reaches the end of the function
12057 body.  The @code{__builtin_unreachable} is in fact unreachable and
12058 communicates this fact to the compiler.
12060 Another use for @code{__builtin_unreachable} is following a call a
12061 function that never returns but that is not declared
12062 @code{__attribute__((noreturn))}, as in this example:
12064 @smallexample
12065 void function_that_never_returns (void);
12067 int g (int c)
12069   if (c)
12070     @{
12071       return 1;
12072     @}
12073   else
12074     @{
12075       function_that_never_returns ();
12076       __builtin_unreachable ();
12077     @}
12079 @end smallexample
12081 @end deftypefn
12083 @deftypefn {Built-in Function} {void *} __builtin_assume_aligned (const void *@var{exp}, size_t @var{align}, ...)
12084 This function returns its first argument, and allows the compiler
12085 to assume that the returned pointer is at least @var{align} bytes
12086 aligned.  This built-in can have either two or three arguments,
12087 if it has three, the third argument should have integer type, and
12088 if it is nonzero means misalignment offset.  For example:
12090 @smallexample
12091 void *x = __builtin_assume_aligned (arg, 16);
12092 @end smallexample
12094 @noindent
12095 means that the compiler can assume @code{x}, set to @code{arg}, is at least
12096 16-byte aligned, while:
12098 @smallexample
12099 void *x = __builtin_assume_aligned (arg, 32, 8);
12100 @end smallexample
12102 @noindent
12103 means that the compiler can assume for @code{x}, set to @code{arg}, that
12104 @code{(char *) x - 8} is 32-byte aligned.
12105 @end deftypefn
12107 @deftypefn {Built-in Function} int __builtin_LINE ()
12108 This function is the equivalent of the preprocessor @code{__LINE__}
12109 macro and returns a constant integer expression that evaluates to
12110 the line number of the invocation of the built-in.  When used as a C++
12111 default argument for a function @var{F}, it returns the line number
12112 of the call to @var{F}.
12113 @end deftypefn
12115 @deftypefn {Built-in Function} {const char *} __builtin_FUNCTION ()
12116 This function is the equivalent of the @code{__FUNCTION__} symbol
12117 and returns an address constant pointing to the name of the function
12118 from which the built-in was invoked, or the empty string if
12119 the invocation is not at function scope.  When used as a C++ default
12120 argument for a function @var{F}, it returns the name of @var{F}'s
12121 caller or the empty string if the call was not made at function
12122 scope.
12123 @end deftypefn
12125 @deftypefn {Built-in Function} {const char *} __builtin_FILE ()
12126 This function is the equivalent of the preprocessor @code{__FILE__}
12127 macro and returns an address constant pointing to the file name
12128 containing the invocation of the built-in, or the empty string if
12129 the invocation is not at function scope.  When used as a C++ default
12130 argument for a function @var{F}, it returns the file name of the call
12131 to @var{F} or the empty string if the call was not made at function
12132 scope.
12134 For example, in the following, each call to function @code{foo} will
12135 print a line similar to @code{"file.c:123: foo: message"} with the name
12136 of the file and the line number of the @code{printf} call, the name of
12137 the function @code{foo}, followed by the word @code{message}.
12139 @smallexample
12140 const char*
12141 function (const char *func = __builtin_FUNCTION ())
12143   return func;
12146 void foo (void)
12148   printf ("%s:%i: %s: message\n", file (), line (), function ());
12150 @end smallexample
12152 @end deftypefn
12154 @deftypefn {Built-in Function} void __builtin___clear_cache (char *@var{begin}, char *@var{end})
12155 This function is used to flush the processor's instruction cache for
12156 the region of memory between @var{begin} inclusive and @var{end}
12157 exclusive.  Some targets require that the instruction cache be
12158 flushed, after modifying memory containing code, in order to obtain
12159 deterministic behavior.
12161 If the target does not require instruction cache flushes,
12162 @code{__builtin___clear_cache} has no effect.  Otherwise either
12163 instructions are emitted in-line to clear the instruction cache or a
12164 call to the @code{__clear_cache} function in libgcc is made.
12165 @end deftypefn
12167 @deftypefn {Built-in Function} void __builtin_prefetch (const void *@var{addr}, ...)
12168 This function is used to minimize cache-miss latency by moving data into
12169 a cache before it is accessed.
12170 You can insert calls to @code{__builtin_prefetch} into code for which
12171 you know addresses of data in memory that is likely to be accessed soon.
12172 If the target supports them, data prefetch instructions are generated.
12173 If the prefetch is done early enough before the access then the data will
12174 be in the cache by the time it is accessed.
12176 The value of @var{addr} is the address of the memory to prefetch.
12177 There are two optional arguments, @var{rw} and @var{locality}.
12178 The value of @var{rw} is a compile-time constant one or zero; one
12179 means that the prefetch is preparing for a write to the memory address
12180 and zero, the default, means that the prefetch is preparing for a read.
12181 The value @var{locality} must be a compile-time constant integer between
12182 zero and three.  A value of zero means that the data has no temporal
12183 locality, so it need not be left in the cache after the access.  A value
12184 of three means that the data has a high degree of temporal locality and
12185 should be left in all levels of cache possible.  Values of one and two
12186 mean, respectively, a low or moderate degree of temporal locality.  The
12187 default is three.
12189 @smallexample
12190 for (i = 0; i < n; i++)
12191   @{
12192     a[i] = a[i] + b[i];
12193     __builtin_prefetch (&a[i+j], 1, 1);
12194     __builtin_prefetch (&b[i+j], 0, 1);
12195     /* @r{@dots{}} */
12196   @}
12197 @end smallexample
12199 Data prefetch does not generate faults if @var{addr} is invalid, but
12200 the address expression itself must be valid.  For example, a prefetch
12201 of @code{p->next} does not fault if @code{p->next} is not a valid
12202 address, but evaluation faults if @code{p} is not a valid address.
12204 If the target does not support data prefetch, the address expression
12205 is evaluated if it includes side effects but no other code is generated
12206 and GCC does not issue a warning.
12207 @end deftypefn
12209 @deftypefn {Built-in Function} double __builtin_huge_val (void)
12210 Returns a positive infinity, if supported by the floating-point format,
12211 else @code{DBL_MAX}.  This function is suitable for implementing the
12212 ISO C macro @code{HUGE_VAL}.
12213 @end deftypefn
12215 @deftypefn {Built-in Function} float __builtin_huge_valf (void)
12216 Similar to @code{__builtin_huge_val}, except the return type is @code{float}.
12217 @end deftypefn
12219 @deftypefn {Built-in Function} {long double} __builtin_huge_vall (void)
12220 Similar to @code{__builtin_huge_val}, except the return
12221 type is @code{long double}.
12222 @end deftypefn
12224 @deftypefn {Built-in Function} _Float@var{n} __builtin_huge_valf@var{n} (void)
12225 Similar to @code{__builtin_huge_val}, except the return type is
12226 @code{_Float@var{n}}.
12227 @end deftypefn
12229 @deftypefn {Built-in Function} _Float@var{n}x __builtin_huge_valf@var{n}x (void)
12230 Similar to @code{__builtin_huge_val}, except the return type is
12231 @code{_Float@var{n}x}.
12232 @end deftypefn
12234 @deftypefn {Built-in Function} int __builtin_fpclassify (int, int, int, int, int, ...)
12235 This built-in implements the C99 fpclassify functionality.  The first
12236 five int arguments should be the target library's notion of the
12237 possible FP classes and are used for return values.  They must be
12238 constant values and they must appear in this order: @code{FP_NAN},
12239 @code{FP_INFINITE}, @code{FP_NORMAL}, @code{FP_SUBNORMAL} and
12240 @code{FP_ZERO}.  The ellipsis is for exactly one floating-point value
12241 to classify.  GCC treats the last argument as type-generic, which
12242 means it does not do default promotion from float to double.
12243 @end deftypefn
12245 @deftypefn {Built-in Function} double __builtin_inf (void)
12246 Similar to @code{__builtin_huge_val}, except a warning is generated
12247 if the target floating-point format does not support infinities.
12248 @end deftypefn
12250 @deftypefn {Built-in Function} _Decimal32 __builtin_infd32 (void)
12251 Similar to @code{__builtin_inf}, except the return type is @code{_Decimal32}.
12252 @end deftypefn
12254 @deftypefn {Built-in Function} _Decimal64 __builtin_infd64 (void)
12255 Similar to @code{__builtin_inf}, except the return type is @code{_Decimal64}.
12256 @end deftypefn
12258 @deftypefn {Built-in Function} _Decimal128 __builtin_infd128 (void)
12259 Similar to @code{__builtin_inf}, except the return type is @code{_Decimal128}.
12260 @end deftypefn
12262 @deftypefn {Built-in Function} float __builtin_inff (void)
12263 Similar to @code{__builtin_inf}, except the return type is @code{float}.
12264 This function is suitable for implementing the ISO C99 macro @code{INFINITY}.
12265 @end deftypefn
12267 @deftypefn {Built-in Function} {long double} __builtin_infl (void)
12268 Similar to @code{__builtin_inf}, except the return
12269 type is @code{long double}.
12270 @end deftypefn
12272 @deftypefn {Built-in Function} _Float@var{n} __builtin_inff@var{n} (void)
12273 Similar to @code{__builtin_inf}, except the return
12274 type is @code{_Float@var{n}}.
12275 @end deftypefn
12277 @deftypefn {Built-in Function} _Float@var{n} __builtin_inff@var{n}x (void)
12278 Similar to @code{__builtin_inf}, except the return
12279 type is @code{_Float@var{n}x}.
12280 @end deftypefn
12282 @deftypefn {Built-in Function} int __builtin_isinf_sign (...)
12283 Similar to @code{isinf}, except the return value is -1 for
12284 an argument of @code{-Inf} and 1 for an argument of @code{+Inf}.
12285 Note while the parameter list is an
12286 ellipsis, this function only accepts exactly one floating-point
12287 argument.  GCC treats this parameter as type-generic, which means it
12288 does not do default promotion from float to double.
12289 @end deftypefn
12291 @deftypefn {Built-in Function} double __builtin_nan (const char *str)
12292 This is an implementation of the ISO C99 function @code{nan}.
12294 Since ISO C99 defines this function in terms of @code{strtod}, which we
12295 do not implement, a description of the parsing is in order.  The string
12296 is parsed as by @code{strtol}; that is, the base is recognized by
12297 leading @samp{0} or @samp{0x} prefixes.  The number parsed is placed
12298 in the significand such that the least significant bit of the number
12299 is at the least significant bit of the significand.  The number is
12300 truncated to fit the significand field provided.  The significand is
12301 forced to be a quiet NaN@.
12303 This function, if given a string literal all of which would have been
12304 consumed by @code{strtol}, is evaluated early enough that it is considered a
12305 compile-time constant.
12306 @end deftypefn
12308 @deftypefn {Built-in Function} _Decimal32 __builtin_nand32 (const char *str)
12309 Similar to @code{__builtin_nan}, except the return type is @code{_Decimal32}.
12310 @end deftypefn
12312 @deftypefn {Built-in Function} _Decimal64 __builtin_nand64 (const char *str)
12313 Similar to @code{__builtin_nan}, except the return type is @code{_Decimal64}.
12314 @end deftypefn
12316 @deftypefn {Built-in Function} _Decimal128 __builtin_nand128 (const char *str)
12317 Similar to @code{__builtin_nan}, except the return type is @code{_Decimal128}.
12318 @end deftypefn
12320 @deftypefn {Built-in Function} float __builtin_nanf (const char *str)
12321 Similar to @code{__builtin_nan}, except the return type is @code{float}.
12322 @end deftypefn
12324 @deftypefn {Built-in Function} {long double} __builtin_nanl (const char *str)
12325 Similar to @code{__builtin_nan}, except the return type is @code{long double}.
12326 @end deftypefn
12328 @deftypefn {Built-in Function} _Float@var{n} __builtin_nanf@var{n} (const char *str)
12329 Similar to @code{__builtin_nan}, except the return type is
12330 @code{_Float@var{n}}.
12331 @end deftypefn
12333 @deftypefn {Built-in Function} _Float@var{n}x __builtin_nanf@var{n}x (const char *str)
12334 Similar to @code{__builtin_nan}, except the return type is
12335 @code{_Float@var{n}x}.
12336 @end deftypefn
12338 @deftypefn {Built-in Function} double __builtin_nans (const char *str)
12339 Similar to @code{__builtin_nan}, except the significand is forced
12340 to be a signaling NaN@.  The @code{nans} function is proposed by
12341 @uref{http://www.open-std.org/jtc1/sc22/wg14/www/docs/n965.htm,,WG14 N965}.
12342 @end deftypefn
12344 @deftypefn {Built-in Function} float __builtin_nansf (const char *str)
12345 Similar to @code{__builtin_nans}, except the return type is @code{float}.
12346 @end deftypefn
12348 @deftypefn {Built-in Function} {long double} __builtin_nansl (const char *str)
12349 Similar to @code{__builtin_nans}, except the return type is @code{long double}.
12350 @end deftypefn
12352 @deftypefn {Built-in Function} _Float@var{n} __builtin_nansf@var{n} (const char *str)
12353 Similar to @code{__builtin_nans}, except the return type is
12354 @code{_Float@var{n}}.
12355 @end deftypefn
12357 @deftypefn {Built-in Function} _Float@var{n}x __builtin_nansf@var{n}x (const char *str)
12358 Similar to @code{__builtin_nans}, except the return type is
12359 @code{_Float@var{n}x}.
12360 @end deftypefn
12362 @deftypefn {Built-in Function} int __builtin_ffs (int x)
12363 Returns one plus the index of the least significant 1-bit of @var{x}, or
12364 if @var{x} is zero, returns zero.
12365 @end deftypefn
12367 @deftypefn {Built-in Function} int __builtin_clz (unsigned int x)
12368 Returns the number of leading 0-bits in @var{x}, starting at the most
12369 significant bit position.  If @var{x} is 0, the result is undefined.
12370 @end deftypefn
12372 @deftypefn {Built-in Function} int __builtin_ctz (unsigned int x)
12373 Returns the number of trailing 0-bits in @var{x}, starting at the least
12374 significant bit position.  If @var{x} is 0, the result is undefined.
12375 @end deftypefn
12377 @deftypefn {Built-in Function} int __builtin_clrsb (int x)
12378 Returns the number of leading redundant sign bits in @var{x}, i.e.@: the
12379 number of bits following the most significant bit that are identical
12380 to it.  There are no special cases for 0 or other values. 
12381 @end deftypefn
12383 @deftypefn {Built-in Function} int __builtin_popcount (unsigned int x)
12384 Returns the number of 1-bits in @var{x}.
12385 @end deftypefn
12387 @deftypefn {Built-in Function} int __builtin_parity (unsigned int x)
12388 Returns the parity of @var{x}, i.e.@: the number of 1-bits in @var{x}
12389 modulo 2.
12390 @end deftypefn
12392 @deftypefn {Built-in Function} int __builtin_ffsl (long)
12393 Similar to @code{__builtin_ffs}, except the argument type is
12394 @code{long}.
12395 @end deftypefn
12397 @deftypefn {Built-in Function} int __builtin_clzl (unsigned long)
12398 Similar to @code{__builtin_clz}, except the argument type is
12399 @code{unsigned long}.
12400 @end deftypefn
12402 @deftypefn {Built-in Function} int __builtin_ctzl (unsigned long)
12403 Similar to @code{__builtin_ctz}, except the argument type is
12404 @code{unsigned long}.
12405 @end deftypefn
12407 @deftypefn {Built-in Function} int __builtin_clrsbl (long)
12408 Similar to @code{__builtin_clrsb}, except the argument type is
12409 @code{long}.
12410 @end deftypefn
12412 @deftypefn {Built-in Function} int __builtin_popcountl (unsigned long)
12413 Similar to @code{__builtin_popcount}, except the argument type is
12414 @code{unsigned long}.
12415 @end deftypefn
12417 @deftypefn {Built-in Function} int __builtin_parityl (unsigned long)
12418 Similar to @code{__builtin_parity}, except the argument type is
12419 @code{unsigned long}.
12420 @end deftypefn
12422 @deftypefn {Built-in Function} int __builtin_ffsll (long long)
12423 Similar to @code{__builtin_ffs}, except the argument type is
12424 @code{long long}.
12425 @end deftypefn
12427 @deftypefn {Built-in Function} int __builtin_clzll (unsigned long long)
12428 Similar to @code{__builtin_clz}, except the argument type is
12429 @code{unsigned long long}.
12430 @end deftypefn
12432 @deftypefn {Built-in Function} int __builtin_ctzll (unsigned long long)
12433 Similar to @code{__builtin_ctz}, except the argument type is
12434 @code{unsigned long long}.
12435 @end deftypefn
12437 @deftypefn {Built-in Function} int __builtin_clrsbll (long long)
12438 Similar to @code{__builtin_clrsb}, except the argument type is
12439 @code{long long}.
12440 @end deftypefn
12442 @deftypefn {Built-in Function} int __builtin_popcountll (unsigned long long)
12443 Similar to @code{__builtin_popcount}, except the argument type is
12444 @code{unsigned long long}.
12445 @end deftypefn
12447 @deftypefn {Built-in Function} int __builtin_parityll (unsigned long long)
12448 Similar to @code{__builtin_parity}, except the argument type is
12449 @code{unsigned long long}.
12450 @end deftypefn
12452 @deftypefn {Built-in Function} double __builtin_powi (double, int)
12453 Returns the first argument raised to the power of the second.  Unlike the
12454 @code{pow} function no guarantees about precision and rounding are made.
12455 @end deftypefn
12457 @deftypefn {Built-in Function} float __builtin_powif (float, int)
12458 Similar to @code{__builtin_powi}, except the argument and return types
12459 are @code{float}.
12460 @end deftypefn
12462 @deftypefn {Built-in Function} {long double} __builtin_powil (long double, int)
12463 Similar to @code{__builtin_powi}, except the argument and return types
12464 are @code{long double}.
12465 @end deftypefn
12467 @deftypefn {Built-in Function} uint16_t __builtin_bswap16 (uint16_t x)
12468 Returns @var{x} with the order of the bytes reversed; for example,
12469 @code{0xaabb} becomes @code{0xbbaa}.  Byte here always means
12470 exactly 8 bits.
12471 @end deftypefn
12473 @deftypefn {Built-in Function} uint32_t __builtin_bswap32 (uint32_t x)
12474 Similar to @code{__builtin_bswap16}, except the argument and return types
12475 are 32 bit.
12476 @end deftypefn
12478 @deftypefn {Built-in Function} uint64_t __builtin_bswap64 (uint64_t x)
12479 Similar to @code{__builtin_bswap32}, except the argument and return types
12480 are 64 bit.
12481 @end deftypefn
12483 @deftypefn {Built-in Function} Pmode __builtin_extend_pointer (void * x)
12484 On targets where the user visible pointer size is smaller than the size
12485 of an actual hardware address this function returns the extended user
12486 pointer.  Targets where this is true included ILP32 mode on x86_64 or
12487 Aarch64.  This function is mainly useful when writing inline assembly
12488 code.
12489 @end deftypefn
12491 @deftypefn {Built-in Function} int __builtin_goacc_parlevel_id (int x)
12492 Returns the openacc gang, worker or vector id depending on whether @var{x} is
12493 0, 1 or 2.
12494 @end deftypefn
12496 @deftypefn {Built-in Function} int __builtin_goacc_parlevel_size (int x)
12497 Returns the openacc gang, worker or vector size depending on whether @var{x} is
12498 0, 1 or 2.
12499 @end deftypefn
12501 @node Target Builtins
12502 @section Built-in Functions Specific to Particular Target Machines
12504 On some target machines, GCC supports many built-in functions specific
12505 to those machines.  Generally these generate calls to specific machine
12506 instructions, but allow the compiler to schedule those calls.
12508 @menu
12509 * AArch64 Built-in Functions::
12510 * Alpha Built-in Functions::
12511 * Altera Nios II Built-in Functions::
12512 * ARC Built-in Functions::
12513 * ARC SIMD Built-in Functions::
12514 * ARM iWMMXt Built-in Functions::
12515 * ARM C Language Extensions (ACLE)::
12516 * ARM Floating Point Status and Control Intrinsics::
12517 * ARM ARMv8-M Security Extensions::
12518 * AVR Built-in Functions::
12519 * Blackfin Built-in Functions::
12520 * FR-V Built-in Functions::
12521 * MIPS DSP Built-in Functions::
12522 * MIPS Paired-Single Support::
12523 * MIPS Loongson Built-in Functions::
12524 * MIPS SIMD Architecture (MSA) Support::
12525 * Other MIPS Built-in Functions::
12526 * MSP430 Built-in Functions::
12527 * NDS32 Built-in Functions::
12528 * picoChip Built-in Functions::
12529 * Basic PowerPC Built-in Functions::
12530 * PowerPC AltiVec/VSX Built-in Functions::
12531 * PowerPC Hardware Transactional Memory Built-in Functions::
12532 * PowerPC Atomic Memory Operation Functions::
12533 * RX Built-in Functions::
12534 * S/390 System z Built-in Functions::
12535 * SH Built-in Functions::
12536 * SPARC VIS Built-in Functions::
12537 * SPU Built-in Functions::
12538 * TI C6X Built-in Functions::
12539 * TILE-Gx Built-in Functions::
12540 * TILEPro Built-in Functions::
12541 * x86 Built-in Functions::
12542 * x86 transactional memory intrinsics::
12543 * x86 control-flow protection intrinsics::
12544 @end menu
12546 @node AArch64 Built-in Functions
12547 @subsection AArch64 Built-in Functions
12549 These built-in functions are available for the AArch64 family of
12550 processors.
12551 @smallexample
12552 unsigned int __builtin_aarch64_get_fpcr ()
12553 void __builtin_aarch64_set_fpcr (unsigned int)
12554 unsigned int __builtin_aarch64_get_fpsr ()
12555 void __builtin_aarch64_set_fpsr (unsigned int)
12556 @end smallexample
12558 @node Alpha Built-in Functions
12559 @subsection Alpha Built-in Functions
12561 These built-in functions are available for the Alpha family of
12562 processors, depending on the command-line switches used.
12564 The following built-in functions are always available.  They
12565 all generate the machine instruction that is part of the name.
12567 @smallexample
12568 long __builtin_alpha_implver (void)
12569 long __builtin_alpha_rpcc (void)
12570 long __builtin_alpha_amask (long)
12571 long __builtin_alpha_cmpbge (long, long)
12572 long __builtin_alpha_extbl (long, long)
12573 long __builtin_alpha_extwl (long, long)
12574 long __builtin_alpha_extll (long, long)
12575 long __builtin_alpha_extql (long, long)
12576 long __builtin_alpha_extwh (long, long)
12577 long __builtin_alpha_extlh (long, long)
12578 long __builtin_alpha_extqh (long, long)
12579 long __builtin_alpha_insbl (long, long)
12580 long __builtin_alpha_inswl (long, long)
12581 long __builtin_alpha_insll (long, long)
12582 long __builtin_alpha_insql (long, long)
12583 long __builtin_alpha_inswh (long, long)
12584 long __builtin_alpha_inslh (long, long)
12585 long __builtin_alpha_insqh (long, long)
12586 long __builtin_alpha_mskbl (long, long)
12587 long __builtin_alpha_mskwl (long, long)
12588 long __builtin_alpha_mskll (long, long)
12589 long __builtin_alpha_mskql (long, long)
12590 long __builtin_alpha_mskwh (long, long)
12591 long __builtin_alpha_msklh (long, long)
12592 long __builtin_alpha_mskqh (long, long)
12593 long __builtin_alpha_umulh (long, long)
12594 long __builtin_alpha_zap (long, long)
12595 long __builtin_alpha_zapnot (long, long)
12596 @end smallexample
12598 The following built-in functions are always with @option{-mmax}
12599 or @option{-mcpu=@var{cpu}} where @var{cpu} is @code{pca56} or
12600 later.  They all generate the machine instruction that is part
12601 of the name.
12603 @smallexample
12604 long __builtin_alpha_pklb (long)
12605 long __builtin_alpha_pkwb (long)
12606 long __builtin_alpha_unpkbl (long)
12607 long __builtin_alpha_unpkbw (long)
12608 long __builtin_alpha_minub8 (long, long)
12609 long __builtin_alpha_minsb8 (long, long)
12610 long __builtin_alpha_minuw4 (long, long)
12611 long __builtin_alpha_minsw4 (long, long)
12612 long __builtin_alpha_maxub8 (long, long)
12613 long __builtin_alpha_maxsb8 (long, long)
12614 long __builtin_alpha_maxuw4 (long, long)
12615 long __builtin_alpha_maxsw4 (long, long)
12616 long __builtin_alpha_perr (long, long)
12617 @end smallexample
12619 The following built-in functions are always with @option{-mcix}
12620 or @option{-mcpu=@var{cpu}} where @var{cpu} is @code{ev67} or
12621 later.  They all generate the machine instruction that is part
12622 of the name.
12624 @smallexample
12625 long __builtin_alpha_cttz (long)
12626 long __builtin_alpha_ctlz (long)
12627 long __builtin_alpha_ctpop (long)
12628 @end smallexample
12630 The following built-in functions are available on systems that use the OSF/1
12631 PALcode.  Normally they invoke the @code{rduniq} and @code{wruniq}
12632 PAL calls, but when invoked with @option{-mtls-kernel}, they invoke
12633 @code{rdval} and @code{wrval}.
12635 @smallexample
12636 void *__builtin_thread_pointer (void)
12637 void __builtin_set_thread_pointer (void *)
12638 @end smallexample
12640 @node Altera Nios II Built-in Functions
12641 @subsection Altera Nios II Built-in Functions
12643 These built-in functions are available for the Altera Nios II
12644 family of processors.
12646 The following built-in functions are always available.  They
12647 all generate the machine instruction that is part of the name.
12649 @example
12650 int __builtin_ldbio (volatile const void *)
12651 int __builtin_ldbuio (volatile const void *)
12652 int __builtin_ldhio (volatile const void *)
12653 int __builtin_ldhuio (volatile const void *)
12654 int __builtin_ldwio (volatile const void *)
12655 void __builtin_stbio (volatile void *, int)
12656 void __builtin_sthio (volatile void *, int)
12657 void __builtin_stwio (volatile void *, int)
12658 void __builtin_sync (void)
12659 int __builtin_rdctl (int) 
12660 int __builtin_rdprs (int, int)
12661 void __builtin_wrctl (int, int)
12662 void __builtin_flushd (volatile void *)
12663 void __builtin_flushda (volatile void *)
12664 int __builtin_wrpie (int);
12665 void __builtin_eni (int);
12666 int __builtin_ldex (volatile const void *)
12667 int __builtin_stex (volatile void *, int)
12668 int __builtin_ldsex (volatile const void *)
12669 int __builtin_stsex (volatile void *, int)
12670 @end example
12672 The following built-in functions are always available.  They
12673 all generate a Nios II Custom Instruction. The name of the
12674 function represents the types that the function takes and
12675 returns. The letter before the @code{n} is the return type
12676 or void if absent. The @code{n} represents the first parameter
12677 to all the custom instructions, the custom instruction number.
12678 The two letters after the @code{n} represent the up to two
12679 parameters to the function.
12681 The letters represent the following data types:
12682 @table @code
12683 @item <no letter>
12684 @code{void} for return type and no parameter for parameter types.
12686 @item i
12687 @code{int} for return type and parameter type
12689 @item f
12690 @code{float} for return type and parameter type
12692 @item p
12693 @code{void *} for return type and parameter type
12695 @end table
12697 And the function names are:
12698 @example
12699 void __builtin_custom_n (void)
12700 void __builtin_custom_ni (int)
12701 void __builtin_custom_nf (float)
12702 void __builtin_custom_np (void *)
12703 void __builtin_custom_nii (int, int)
12704 void __builtin_custom_nif (int, float)
12705 void __builtin_custom_nip (int, void *)
12706 void __builtin_custom_nfi (float, int)
12707 void __builtin_custom_nff (float, float)
12708 void __builtin_custom_nfp (float, void *)
12709 void __builtin_custom_npi (void *, int)
12710 void __builtin_custom_npf (void *, float)
12711 void __builtin_custom_npp (void *, void *)
12712 int __builtin_custom_in (void)
12713 int __builtin_custom_ini (int)
12714 int __builtin_custom_inf (float)
12715 int __builtin_custom_inp (void *)
12716 int __builtin_custom_inii (int, int)
12717 int __builtin_custom_inif (int, float)
12718 int __builtin_custom_inip (int, void *)
12719 int __builtin_custom_infi (float, int)
12720 int __builtin_custom_inff (float, float)
12721 int __builtin_custom_infp (float, void *)
12722 int __builtin_custom_inpi (void *, int)
12723 int __builtin_custom_inpf (void *, float)
12724 int __builtin_custom_inpp (void *, void *)
12725 float __builtin_custom_fn (void)
12726 float __builtin_custom_fni (int)
12727 float __builtin_custom_fnf (float)
12728 float __builtin_custom_fnp (void *)
12729 float __builtin_custom_fnii (int, int)
12730 float __builtin_custom_fnif (int, float)
12731 float __builtin_custom_fnip (int, void *)
12732 float __builtin_custom_fnfi (float, int)
12733 float __builtin_custom_fnff (float, float)
12734 float __builtin_custom_fnfp (float, void *)
12735 float __builtin_custom_fnpi (void *, int)
12736 float __builtin_custom_fnpf (void *, float)
12737 float __builtin_custom_fnpp (void *, void *)
12738 void * __builtin_custom_pn (void)
12739 void * __builtin_custom_pni (int)
12740 void * __builtin_custom_pnf (float)
12741 void * __builtin_custom_pnp (void *)
12742 void * __builtin_custom_pnii (int, int)
12743 void * __builtin_custom_pnif (int, float)
12744 void * __builtin_custom_pnip (int, void *)
12745 void * __builtin_custom_pnfi (float, int)
12746 void * __builtin_custom_pnff (float, float)
12747 void * __builtin_custom_pnfp (float, void *)
12748 void * __builtin_custom_pnpi (void *, int)
12749 void * __builtin_custom_pnpf (void *, float)
12750 void * __builtin_custom_pnpp (void *, void *)
12751 @end example
12753 @node ARC Built-in Functions
12754 @subsection ARC Built-in Functions
12756 The following built-in functions are provided for ARC targets.  The
12757 built-ins generate the corresponding assembly instructions.  In the
12758 examples given below, the generated code often requires an operand or
12759 result to be in a register.  Where necessary further code will be
12760 generated to ensure this is true, but for brevity this is not
12761 described in each case.
12763 @emph{Note:} Using a built-in to generate an instruction not supported
12764 by a target may cause problems. At present the compiler is not
12765 guaranteed to detect such misuse, and as a result an internal compiler
12766 error may be generated.
12768 @deftypefn {Built-in Function} int __builtin_arc_aligned (void *@var{val}, int @var{alignval})
12769 Return 1 if @var{val} is known to have the byte alignment given
12770 by @var{alignval}, otherwise return 0.
12771 Note that this is different from
12772 @smallexample
12773 __alignof__(*(char *)@var{val}) >= alignval
12774 @end smallexample
12775 because __alignof__ sees only the type of the dereference, whereas
12776 __builtin_arc_align uses alignment information from the pointer
12777 as well as from the pointed-to type.
12778 The information available will depend on optimization level.
12779 @end deftypefn
12781 @deftypefn {Built-in Function} void __builtin_arc_brk (void)
12782 Generates
12783 @example
12785 @end example
12786 @end deftypefn
12788 @deftypefn {Built-in Function} {unsigned int} __builtin_arc_core_read (unsigned int @var{regno})
12789 The operand is the number of a register to be read.  Generates:
12790 @example
12791 mov  @var{dest}, r@var{regno}
12792 @end example
12793 where the value in @var{dest} will be the result returned from the
12794 built-in.
12795 @end deftypefn
12797 @deftypefn {Built-in Function} void __builtin_arc_core_write (unsigned int @var{regno}, unsigned int @var{val})
12798 The first operand is the number of a register to be written, the
12799 second operand is a compile time constant to write into that
12800 register.  Generates:
12801 @example
12802 mov  r@var{regno}, @var{val}
12803 @end example
12804 @end deftypefn
12806 @deftypefn {Built-in Function} int __builtin_arc_divaw (int @var{a}, int @var{b})
12807 Only available if either @option{-mcpu=ARC700} or @option{-meA} is set.
12808 Generates:
12809 @example
12810 divaw  @var{dest}, @var{a}, @var{b}
12811 @end example
12812 where the value in @var{dest} will be the result returned from the
12813 built-in.
12814 @end deftypefn
12816 @deftypefn {Built-in Function} void __builtin_arc_flag (unsigned int @var{a})
12817 Generates
12818 @example
12819 flag  @var{a}
12820 @end example
12821 @end deftypefn
12823 @deftypefn {Built-in Function} {unsigned int} __builtin_arc_lr (unsigned int @var{auxr})
12824 The operand, @var{auxv}, is the address of an auxiliary register and
12825 must be a compile time constant.  Generates:
12826 @example
12827 lr  @var{dest}, [@var{auxr}]
12828 @end example
12829 Where the value in @var{dest} will be the result returned from the
12830 built-in.
12831 @end deftypefn
12833 @deftypefn {Built-in Function} void __builtin_arc_mul64 (int @var{a}, int @var{b})
12834 Only available with @option{-mmul64}.  Generates:
12835 @example
12836 mul64  @var{a}, @var{b}
12837 @end example
12838 @end deftypefn
12840 @deftypefn {Built-in Function} void __builtin_arc_mulu64 (unsigned int @var{a}, unsigned int @var{b})
12841 Only available with @option{-mmul64}.  Generates:
12842 @example
12843 mulu64  @var{a}, @var{b}
12844 @end example
12845 @end deftypefn
12847 @deftypefn {Built-in Function} void __builtin_arc_nop (void)
12848 Generates:
12849 @example
12851 @end example
12852 @end deftypefn
12854 @deftypefn {Built-in Function} int __builtin_arc_norm (int @var{src})
12855 Only valid if the @samp{norm} instruction is available through the
12856 @option{-mnorm} option or by default with @option{-mcpu=ARC700}.
12857 Generates:
12858 @example
12859 norm  @var{dest}, @var{src}
12860 @end example
12861 Where the value in @var{dest} will be the result returned from the
12862 built-in.
12863 @end deftypefn
12865 @deftypefn {Built-in Function}  {short int} __builtin_arc_normw (short int @var{src})
12866 Only valid if the @samp{normw} instruction is available through the
12867 @option{-mnorm} option or by default with @option{-mcpu=ARC700}.
12868 Generates:
12869 @example
12870 normw  @var{dest}, @var{src}
12871 @end example
12872 Where the value in @var{dest} will be the result returned from the
12873 built-in.
12874 @end deftypefn
12876 @deftypefn {Built-in Function}  void __builtin_arc_rtie (void)
12877 Generates:
12878 @example
12879 rtie
12880 @end example
12881 @end deftypefn
12883 @deftypefn {Built-in Function}  void __builtin_arc_sleep (int @var{a}
12884 Generates:
12885 @example
12886 sleep  @var{a}
12887 @end example
12888 @end deftypefn
12890 @deftypefn {Built-in Function}  void __builtin_arc_sr (unsigned int @var{auxr}, unsigned int @var{val})
12891 The first argument, @var{auxv}, is the address of an auxiliary
12892 register, the second argument, @var{val}, is a compile time constant
12893 to be written to the register.  Generates:
12894 @example
12895 sr  @var{auxr}, [@var{val}]
12896 @end example
12897 @end deftypefn
12899 @deftypefn {Built-in Function}  int __builtin_arc_swap (int @var{src})
12900 Only valid with @option{-mswap}.  Generates:
12901 @example
12902 swap  @var{dest}, @var{src}
12903 @end example
12904 Where the value in @var{dest} will be the result returned from the
12905 built-in.
12906 @end deftypefn
12908 @deftypefn {Built-in Function}  void __builtin_arc_swi (void)
12909 Generates:
12910 @example
12912 @end example
12913 @end deftypefn
12915 @deftypefn {Built-in Function}  void __builtin_arc_sync (void)
12916 Only available with @option{-mcpu=ARC700}.  Generates:
12917 @example
12918 sync
12919 @end example
12920 @end deftypefn
12922 @deftypefn {Built-in Function}  void __builtin_arc_trap_s (unsigned int @var{c})
12923 Only available with @option{-mcpu=ARC700}.  Generates:
12924 @example
12925 trap_s  @var{c}
12926 @end example
12927 @end deftypefn
12929 @deftypefn {Built-in Function}  void __builtin_arc_unimp_s (void)
12930 Only available with @option{-mcpu=ARC700}.  Generates:
12931 @example
12932 unimp_s
12933 @end example
12934 @end deftypefn
12936 The instructions generated by the following builtins are not
12937 considered as candidates for scheduling.  They are not moved around by
12938 the compiler during scheduling, and thus can be expected to appear
12939 where they are put in the C code:
12940 @example
12941 __builtin_arc_brk()
12942 __builtin_arc_core_read()
12943 __builtin_arc_core_write()
12944 __builtin_arc_flag()
12945 __builtin_arc_lr()
12946 __builtin_arc_sleep()
12947 __builtin_arc_sr()
12948 __builtin_arc_swi()
12949 @end example
12951 @node ARC SIMD Built-in Functions
12952 @subsection ARC SIMD Built-in Functions
12954 SIMD builtins provided by the compiler can be used to generate the
12955 vector instructions.  This section describes the available builtins
12956 and their usage in programs.  With the @option{-msimd} option, the
12957 compiler provides 128-bit vector types, which can be specified using
12958 the @code{vector_size} attribute.  The header file @file{arc-simd.h}
12959 can be included to use the following predefined types:
12960 @example
12961 typedef int __v4si   __attribute__((vector_size(16)));
12962 typedef short __v8hi __attribute__((vector_size(16)));
12963 @end example
12965 These types can be used to define 128-bit variables.  The built-in
12966 functions listed in the following section can be used on these
12967 variables to generate the vector operations.
12969 For all builtins, @code{__builtin_arc_@var{someinsn}}, the header file
12970 @file{arc-simd.h} also provides equivalent macros called
12971 @code{_@var{someinsn}} that can be used for programming ease and
12972 improved readability.  The following macros for DMA control are also
12973 provided:
12974 @example
12975 #define _setup_dma_in_channel_reg _vdiwr
12976 #define _setup_dma_out_channel_reg _vdowr
12977 @end example
12979 The following is a complete list of all the SIMD built-ins provided
12980 for ARC, grouped by calling signature.
12982 The following take two @code{__v8hi} arguments and return a
12983 @code{__v8hi} result:
12984 @example
12985 __v8hi __builtin_arc_vaddaw (__v8hi, __v8hi)
12986 __v8hi __builtin_arc_vaddw (__v8hi, __v8hi)
12987 __v8hi __builtin_arc_vand (__v8hi, __v8hi)
12988 __v8hi __builtin_arc_vandaw (__v8hi, __v8hi)
12989 __v8hi __builtin_arc_vavb (__v8hi, __v8hi)
12990 __v8hi __builtin_arc_vavrb (__v8hi, __v8hi)
12991 __v8hi __builtin_arc_vbic (__v8hi, __v8hi)
12992 __v8hi __builtin_arc_vbicaw (__v8hi, __v8hi)
12993 __v8hi __builtin_arc_vdifaw (__v8hi, __v8hi)
12994 __v8hi __builtin_arc_vdifw (__v8hi, __v8hi)
12995 __v8hi __builtin_arc_veqw (__v8hi, __v8hi)
12996 __v8hi __builtin_arc_vh264f (__v8hi, __v8hi)
12997 __v8hi __builtin_arc_vh264ft (__v8hi, __v8hi)
12998 __v8hi __builtin_arc_vh264fw (__v8hi, __v8hi)
12999 __v8hi __builtin_arc_vlew (__v8hi, __v8hi)
13000 __v8hi __builtin_arc_vltw (__v8hi, __v8hi)
13001 __v8hi __builtin_arc_vmaxaw (__v8hi, __v8hi)
13002 __v8hi __builtin_arc_vmaxw (__v8hi, __v8hi)
13003 __v8hi __builtin_arc_vminaw (__v8hi, __v8hi)
13004 __v8hi __builtin_arc_vminw (__v8hi, __v8hi)
13005 __v8hi __builtin_arc_vmr1aw (__v8hi, __v8hi)
13006 __v8hi __builtin_arc_vmr1w (__v8hi, __v8hi)
13007 __v8hi __builtin_arc_vmr2aw (__v8hi, __v8hi)
13008 __v8hi __builtin_arc_vmr2w (__v8hi, __v8hi)
13009 __v8hi __builtin_arc_vmr3aw (__v8hi, __v8hi)
13010 __v8hi __builtin_arc_vmr3w (__v8hi, __v8hi)
13011 __v8hi __builtin_arc_vmr4aw (__v8hi, __v8hi)
13012 __v8hi __builtin_arc_vmr4w (__v8hi, __v8hi)
13013 __v8hi __builtin_arc_vmr5aw (__v8hi, __v8hi)
13014 __v8hi __builtin_arc_vmr5w (__v8hi, __v8hi)
13015 __v8hi __builtin_arc_vmr6aw (__v8hi, __v8hi)
13016 __v8hi __builtin_arc_vmr6w (__v8hi, __v8hi)
13017 __v8hi __builtin_arc_vmr7aw (__v8hi, __v8hi)
13018 __v8hi __builtin_arc_vmr7w (__v8hi, __v8hi)
13019 __v8hi __builtin_arc_vmrb (__v8hi, __v8hi)
13020 __v8hi __builtin_arc_vmulaw (__v8hi, __v8hi)
13021 __v8hi __builtin_arc_vmulfaw (__v8hi, __v8hi)
13022 __v8hi __builtin_arc_vmulfw (__v8hi, __v8hi)
13023 __v8hi __builtin_arc_vmulw (__v8hi, __v8hi)
13024 __v8hi __builtin_arc_vnew (__v8hi, __v8hi)
13025 __v8hi __builtin_arc_vor (__v8hi, __v8hi)
13026 __v8hi __builtin_arc_vsubaw (__v8hi, __v8hi)
13027 __v8hi __builtin_arc_vsubw (__v8hi, __v8hi)
13028 __v8hi __builtin_arc_vsummw (__v8hi, __v8hi)
13029 __v8hi __builtin_arc_vvc1f (__v8hi, __v8hi)
13030 __v8hi __builtin_arc_vvc1ft (__v8hi, __v8hi)
13031 __v8hi __builtin_arc_vxor (__v8hi, __v8hi)
13032 __v8hi __builtin_arc_vxoraw (__v8hi, __v8hi)
13033 @end example
13035 The following take one @code{__v8hi} and one @code{int} argument and return a
13036 @code{__v8hi} result:
13038 @example
13039 __v8hi __builtin_arc_vbaddw (__v8hi, int)
13040 __v8hi __builtin_arc_vbmaxw (__v8hi, int)
13041 __v8hi __builtin_arc_vbminw (__v8hi, int)
13042 __v8hi __builtin_arc_vbmulaw (__v8hi, int)
13043 __v8hi __builtin_arc_vbmulfw (__v8hi, int)
13044 __v8hi __builtin_arc_vbmulw (__v8hi, int)
13045 __v8hi __builtin_arc_vbrsubw (__v8hi, int)
13046 __v8hi __builtin_arc_vbsubw (__v8hi, int)
13047 @end example
13049 The following take one @code{__v8hi} argument and one @code{int} argument which
13050 must be a 3-bit compile time constant indicating a register number
13051 I0-I7.  They return a @code{__v8hi} result.
13052 @example
13053 __v8hi __builtin_arc_vasrw (__v8hi, const int)
13054 __v8hi __builtin_arc_vsr8 (__v8hi, const int)
13055 __v8hi __builtin_arc_vsr8aw (__v8hi, const int)
13056 @end example
13058 The following take one @code{__v8hi} argument and one @code{int}
13059 argument which must be a 6-bit compile time constant.  They return a
13060 @code{__v8hi} result.
13061 @example
13062 __v8hi __builtin_arc_vasrpwbi (__v8hi, const int)
13063 __v8hi __builtin_arc_vasrrpwbi (__v8hi, const int)
13064 __v8hi __builtin_arc_vasrrwi (__v8hi, const int)
13065 __v8hi __builtin_arc_vasrsrwi (__v8hi, const int)
13066 __v8hi __builtin_arc_vasrwi (__v8hi, const int)
13067 __v8hi __builtin_arc_vsr8awi (__v8hi, const int)
13068 __v8hi __builtin_arc_vsr8i (__v8hi, const int)
13069 @end example
13071 The following take one @code{__v8hi} argument and one @code{int} argument which
13072 must be a 8-bit compile time constant.  They return a @code{__v8hi}
13073 result.
13074 @example
13075 __v8hi __builtin_arc_vd6tapf (__v8hi, const int)
13076 __v8hi __builtin_arc_vmvaw (__v8hi, const int)
13077 __v8hi __builtin_arc_vmvw (__v8hi, const int)
13078 __v8hi __builtin_arc_vmvzw (__v8hi, const int)
13079 @end example
13081 The following take two @code{int} arguments, the second of which which
13082 must be a 8-bit compile time constant.  They return a @code{__v8hi}
13083 result:
13084 @example
13085 __v8hi __builtin_arc_vmovaw (int, const int)
13086 __v8hi __builtin_arc_vmovw (int, const int)
13087 __v8hi __builtin_arc_vmovzw (int, const int)
13088 @end example
13090 The following take a single @code{__v8hi} argument and return a
13091 @code{__v8hi} result:
13092 @example
13093 __v8hi __builtin_arc_vabsaw (__v8hi)
13094 __v8hi __builtin_arc_vabsw (__v8hi)
13095 __v8hi __builtin_arc_vaddsuw (__v8hi)
13096 __v8hi __builtin_arc_vexch1 (__v8hi)
13097 __v8hi __builtin_arc_vexch2 (__v8hi)
13098 __v8hi __builtin_arc_vexch4 (__v8hi)
13099 __v8hi __builtin_arc_vsignw (__v8hi)
13100 __v8hi __builtin_arc_vupbaw (__v8hi)
13101 __v8hi __builtin_arc_vupbw (__v8hi)
13102 __v8hi __builtin_arc_vupsbaw (__v8hi)
13103 __v8hi __builtin_arc_vupsbw (__v8hi)
13104 @end example
13106 The following take two @code{int} arguments and return no result:
13107 @example
13108 void __builtin_arc_vdirun (int, int)
13109 void __builtin_arc_vdorun (int, int)
13110 @end example
13112 The following take two @code{int} arguments and return no result.  The
13113 first argument must a 3-bit compile time constant indicating one of
13114 the DR0-DR7 DMA setup channels:
13115 @example
13116 void __builtin_arc_vdiwr (const int, int)
13117 void __builtin_arc_vdowr (const int, int)
13118 @end example
13120 The following take an @code{int} argument and return no result:
13121 @example
13122 void __builtin_arc_vendrec (int)
13123 void __builtin_arc_vrec (int)
13124 void __builtin_arc_vrecrun (int)
13125 void __builtin_arc_vrun (int)
13126 @end example
13128 The following take a @code{__v8hi} argument and two @code{int}
13129 arguments and return a @code{__v8hi} result.  The second argument must
13130 be a 3-bit compile time constants, indicating one the registers I0-I7,
13131 and the third argument must be an 8-bit compile time constant.
13133 @emph{Note:} Although the equivalent hardware instructions do not take
13134 an SIMD register as an operand, these builtins overwrite the relevant
13135 bits of the @code{__v8hi} register provided as the first argument with
13136 the value loaded from the @code{[Ib, u8]} location in the SDM.
13138 @example
13139 __v8hi __builtin_arc_vld32 (__v8hi, const int, const int)
13140 __v8hi __builtin_arc_vld32wh (__v8hi, const int, const int)
13141 __v8hi __builtin_arc_vld32wl (__v8hi, const int, const int)
13142 __v8hi __builtin_arc_vld64 (__v8hi, const int, const int)
13143 @end example
13145 The following take two @code{int} arguments and return a @code{__v8hi}
13146 result.  The first argument must be a 3-bit compile time constants,
13147 indicating one the registers I0-I7, and the second argument must be an
13148 8-bit compile time constant.
13150 @example
13151 __v8hi __builtin_arc_vld128 (const int, const int)
13152 __v8hi __builtin_arc_vld64w (const int, const int)
13153 @end example
13155 The following take a @code{__v8hi} argument and two @code{int}
13156 arguments and return no result.  The second argument must be a 3-bit
13157 compile time constants, indicating one the registers I0-I7, and the
13158 third argument must be an 8-bit compile time constant.
13160 @example
13161 void __builtin_arc_vst128 (__v8hi, const int, const int)
13162 void __builtin_arc_vst64 (__v8hi, const int, const int)
13163 @end example
13165 The following take a @code{__v8hi} argument and three @code{int}
13166 arguments and return no result.  The second argument must be a 3-bit
13167 compile-time constant, identifying the 16-bit sub-register to be
13168 stored, the third argument must be a 3-bit compile time constants,
13169 indicating one the registers I0-I7, and the fourth argument must be an
13170 8-bit compile time constant.
13172 @example
13173 void __builtin_arc_vst16_n (__v8hi, const int, const int, const int)
13174 void __builtin_arc_vst32_n (__v8hi, const int, const int, const int)
13175 @end example
13177 @node ARM iWMMXt Built-in Functions
13178 @subsection ARM iWMMXt Built-in Functions
13180 These built-in functions are available for the ARM family of
13181 processors when the @option{-mcpu=iwmmxt} switch is used:
13183 @smallexample
13184 typedef int v2si __attribute__ ((vector_size (8)));
13185 typedef short v4hi __attribute__ ((vector_size (8)));
13186 typedef char v8qi __attribute__ ((vector_size (8)));
13188 int __builtin_arm_getwcgr0 (void)
13189 void __builtin_arm_setwcgr0 (int)
13190 int __builtin_arm_getwcgr1 (void)
13191 void __builtin_arm_setwcgr1 (int)
13192 int __builtin_arm_getwcgr2 (void)
13193 void __builtin_arm_setwcgr2 (int)
13194 int __builtin_arm_getwcgr3 (void)
13195 void __builtin_arm_setwcgr3 (int)
13196 int __builtin_arm_textrmsb (v8qi, int)
13197 int __builtin_arm_textrmsh (v4hi, int)
13198 int __builtin_arm_textrmsw (v2si, int)
13199 int __builtin_arm_textrmub (v8qi, int)
13200 int __builtin_arm_textrmuh (v4hi, int)
13201 int __builtin_arm_textrmuw (v2si, int)
13202 v8qi __builtin_arm_tinsrb (v8qi, int, int)
13203 v4hi __builtin_arm_tinsrh (v4hi, int, int)
13204 v2si __builtin_arm_tinsrw (v2si, int, int)
13205 long long __builtin_arm_tmia (long long, int, int)
13206 long long __builtin_arm_tmiabb (long long, int, int)
13207 long long __builtin_arm_tmiabt (long long, int, int)
13208 long long __builtin_arm_tmiaph (long long, int, int)
13209 long long __builtin_arm_tmiatb (long long, int, int)
13210 long long __builtin_arm_tmiatt (long long, int, int)
13211 int __builtin_arm_tmovmskb (v8qi)
13212 int __builtin_arm_tmovmskh (v4hi)
13213 int __builtin_arm_tmovmskw (v2si)
13214 long long __builtin_arm_waccb (v8qi)
13215 long long __builtin_arm_wacch (v4hi)
13216 long long __builtin_arm_waccw (v2si)
13217 v8qi __builtin_arm_waddb (v8qi, v8qi)
13218 v8qi __builtin_arm_waddbss (v8qi, v8qi)
13219 v8qi __builtin_arm_waddbus (v8qi, v8qi)
13220 v4hi __builtin_arm_waddh (v4hi, v4hi)
13221 v4hi __builtin_arm_waddhss (v4hi, v4hi)
13222 v4hi __builtin_arm_waddhus (v4hi, v4hi)
13223 v2si __builtin_arm_waddw (v2si, v2si)
13224 v2si __builtin_arm_waddwss (v2si, v2si)
13225 v2si __builtin_arm_waddwus (v2si, v2si)
13226 v8qi __builtin_arm_walign (v8qi, v8qi, int)
13227 long long __builtin_arm_wand(long long, long long)
13228 long long __builtin_arm_wandn (long long, long long)
13229 v8qi __builtin_arm_wavg2b (v8qi, v8qi)
13230 v8qi __builtin_arm_wavg2br (v8qi, v8qi)
13231 v4hi __builtin_arm_wavg2h (v4hi, v4hi)
13232 v4hi __builtin_arm_wavg2hr (v4hi, v4hi)
13233 v8qi __builtin_arm_wcmpeqb (v8qi, v8qi)
13234 v4hi __builtin_arm_wcmpeqh (v4hi, v4hi)
13235 v2si __builtin_arm_wcmpeqw (v2si, v2si)
13236 v8qi __builtin_arm_wcmpgtsb (v8qi, v8qi)
13237 v4hi __builtin_arm_wcmpgtsh (v4hi, v4hi)
13238 v2si __builtin_arm_wcmpgtsw (v2si, v2si)
13239 v8qi __builtin_arm_wcmpgtub (v8qi, v8qi)
13240 v4hi __builtin_arm_wcmpgtuh (v4hi, v4hi)
13241 v2si __builtin_arm_wcmpgtuw (v2si, v2si)
13242 long long __builtin_arm_wmacs (long long, v4hi, v4hi)
13243 long long __builtin_arm_wmacsz (v4hi, v4hi)
13244 long long __builtin_arm_wmacu (long long, v4hi, v4hi)
13245 long long __builtin_arm_wmacuz (v4hi, v4hi)
13246 v4hi __builtin_arm_wmadds (v4hi, v4hi)
13247 v4hi __builtin_arm_wmaddu (v4hi, v4hi)
13248 v8qi __builtin_arm_wmaxsb (v8qi, v8qi)
13249 v4hi __builtin_arm_wmaxsh (v4hi, v4hi)
13250 v2si __builtin_arm_wmaxsw (v2si, v2si)
13251 v8qi __builtin_arm_wmaxub (v8qi, v8qi)
13252 v4hi __builtin_arm_wmaxuh (v4hi, v4hi)
13253 v2si __builtin_arm_wmaxuw (v2si, v2si)
13254 v8qi __builtin_arm_wminsb (v8qi, v8qi)
13255 v4hi __builtin_arm_wminsh (v4hi, v4hi)
13256 v2si __builtin_arm_wminsw (v2si, v2si)
13257 v8qi __builtin_arm_wminub (v8qi, v8qi)
13258 v4hi __builtin_arm_wminuh (v4hi, v4hi)
13259 v2si __builtin_arm_wminuw (v2si, v2si)
13260 v4hi __builtin_arm_wmulsm (v4hi, v4hi)
13261 v4hi __builtin_arm_wmulul (v4hi, v4hi)
13262 v4hi __builtin_arm_wmulum (v4hi, v4hi)
13263 long long __builtin_arm_wor (long long, long long)
13264 v2si __builtin_arm_wpackdss (long long, long long)
13265 v2si __builtin_arm_wpackdus (long long, long long)
13266 v8qi __builtin_arm_wpackhss (v4hi, v4hi)
13267 v8qi __builtin_arm_wpackhus (v4hi, v4hi)
13268 v4hi __builtin_arm_wpackwss (v2si, v2si)
13269 v4hi __builtin_arm_wpackwus (v2si, v2si)
13270 long long __builtin_arm_wrord (long long, long long)
13271 long long __builtin_arm_wrordi (long long, int)
13272 v4hi __builtin_arm_wrorh (v4hi, long long)
13273 v4hi __builtin_arm_wrorhi (v4hi, int)
13274 v2si __builtin_arm_wrorw (v2si, long long)
13275 v2si __builtin_arm_wrorwi (v2si, int)
13276 v2si __builtin_arm_wsadb (v2si, v8qi, v8qi)
13277 v2si __builtin_arm_wsadbz (v8qi, v8qi)
13278 v2si __builtin_arm_wsadh (v2si, v4hi, v4hi)
13279 v2si __builtin_arm_wsadhz (v4hi, v4hi)
13280 v4hi __builtin_arm_wshufh (v4hi, int)
13281 long long __builtin_arm_wslld (long long, long long)
13282 long long __builtin_arm_wslldi (long long, int)
13283 v4hi __builtin_arm_wsllh (v4hi, long long)
13284 v4hi __builtin_arm_wsllhi (v4hi, int)
13285 v2si __builtin_arm_wsllw (v2si, long long)
13286 v2si __builtin_arm_wsllwi (v2si, int)
13287 long long __builtin_arm_wsrad (long long, long long)
13288 long long __builtin_arm_wsradi (long long, int)
13289 v4hi __builtin_arm_wsrah (v4hi, long long)
13290 v4hi __builtin_arm_wsrahi (v4hi, int)
13291 v2si __builtin_arm_wsraw (v2si, long long)
13292 v2si __builtin_arm_wsrawi (v2si, int)
13293 long long __builtin_arm_wsrld (long long, long long)
13294 long long __builtin_arm_wsrldi (long long, int)
13295 v4hi __builtin_arm_wsrlh (v4hi, long long)
13296 v4hi __builtin_arm_wsrlhi (v4hi, int)
13297 v2si __builtin_arm_wsrlw (v2si, long long)
13298 v2si __builtin_arm_wsrlwi (v2si, int)
13299 v8qi __builtin_arm_wsubb (v8qi, v8qi)
13300 v8qi __builtin_arm_wsubbss (v8qi, v8qi)
13301 v8qi __builtin_arm_wsubbus (v8qi, v8qi)
13302 v4hi __builtin_arm_wsubh (v4hi, v4hi)
13303 v4hi __builtin_arm_wsubhss (v4hi, v4hi)
13304 v4hi __builtin_arm_wsubhus (v4hi, v4hi)
13305 v2si __builtin_arm_wsubw (v2si, v2si)
13306 v2si __builtin_arm_wsubwss (v2si, v2si)
13307 v2si __builtin_arm_wsubwus (v2si, v2si)
13308 v4hi __builtin_arm_wunpckehsb (v8qi)
13309 v2si __builtin_arm_wunpckehsh (v4hi)
13310 long long __builtin_arm_wunpckehsw (v2si)
13311 v4hi __builtin_arm_wunpckehub (v8qi)
13312 v2si __builtin_arm_wunpckehuh (v4hi)
13313 long long __builtin_arm_wunpckehuw (v2si)
13314 v4hi __builtin_arm_wunpckelsb (v8qi)
13315 v2si __builtin_arm_wunpckelsh (v4hi)
13316 long long __builtin_arm_wunpckelsw (v2si)
13317 v4hi __builtin_arm_wunpckelub (v8qi)
13318 v2si __builtin_arm_wunpckeluh (v4hi)
13319 long long __builtin_arm_wunpckeluw (v2si)
13320 v8qi __builtin_arm_wunpckihb (v8qi, v8qi)
13321 v4hi __builtin_arm_wunpckihh (v4hi, v4hi)
13322 v2si __builtin_arm_wunpckihw (v2si, v2si)
13323 v8qi __builtin_arm_wunpckilb (v8qi, v8qi)
13324 v4hi __builtin_arm_wunpckilh (v4hi, v4hi)
13325 v2si __builtin_arm_wunpckilw (v2si, v2si)
13326 long long __builtin_arm_wxor (long long, long long)
13327 long long __builtin_arm_wzero ()
13328 @end smallexample
13331 @node ARM C Language Extensions (ACLE)
13332 @subsection ARM C Language Extensions (ACLE)
13334 GCC implements extensions for C as described in the ARM C Language
13335 Extensions (ACLE) specification, which can be found at
13336 @uref{http://infocenter.arm.com/help/topic/com.arm.doc.ihi0053c/IHI0053C_acle_2_0.pdf}.
13338 As a part of ACLE, GCC implements extensions for Advanced SIMD as described in
13339 the ARM C Language Extensions Specification.  The complete list of Advanced SIMD
13340 intrinsics can be found at
13341 @uref{http://infocenter.arm.com/help/topic/com.arm.doc.ihi0073a/IHI0073A_arm_neon_intrinsics_ref.pdf}.
13342 The built-in intrinsics for the Advanced SIMD extension are available when
13343 NEON is enabled.
13345 Currently, ARM and AArch64 back ends do not support ACLE 2.0 fully.  Both
13346 back ends support CRC32 intrinsics and the ARM back end supports the
13347 Coprocessor intrinsics, all from @file{arm_acle.h}.  The ARM back end's 16-bit
13348 floating-point Advanced SIMD intrinsics currently comply to ACLE v1.1.
13349 AArch64's back end does not have support for 16-bit floating point Advanced SIMD
13350 intrinsics yet.
13352 See @ref{ARM Options} and @ref{AArch64 Options} for more information on the
13353 availability of extensions.
13355 @node ARM Floating Point Status and Control Intrinsics
13356 @subsection ARM Floating Point Status and Control Intrinsics
13358 These built-in functions are available for the ARM family of
13359 processors with floating-point unit.
13361 @smallexample
13362 unsigned int __builtin_arm_get_fpscr ()
13363 void __builtin_arm_set_fpscr (unsigned int)
13364 @end smallexample
13366 @node ARM ARMv8-M Security Extensions
13367 @subsection ARM ARMv8-M Security Extensions
13369 GCC implements the ARMv8-M Security Extensions as described in the ARMv8-M
13370 Security Extensions: Requirements on Development Tools Engineering
13371 Specification, which can be found at
13372 @uref{http://infocenter.arm.com/help/topic/com.arm.doc.ecm0359818/ECM0359818_armv8m_security_extensions_reqs_on_dev_tools_1_0.pdf}.
13374 As part of the Security Extensions GCC implements two new function attributes:
13375 @code{cmse_nonsecure_entry} and @code{cmse_nonsecure_call}.
13377 As part of the Security Extensions GCC implements the intrinsics below.  FPTR
13378 is used here to mean any function pointer type.
13380 @smallexample
13381 cmse_address_info_t cmse_TT (void *)
13382 cmse_address_info_t cmse_TT_fptr (FPTR)
13383 cmse_address_info_t cmse_TTT (void *)
13384 cmse_address_info_t cmse_TTT_fptr (FPTR)
13385 cmse_address_info_t cmse_TTA (void *)
13386 cmse_address_info_t cmse_TTA_fptr (FPTR)
13387 cmse_address_info_t cmse_TTAT (void *)
13388 cmse_address_info_t cmse_TTAT_fptr (FPTR)
13389 void * cmse_check_address_range (void *, size_t, int)
13390 typeof(p) cmse_nsfptr_create (FPTR p)
13391 intptr_t cmse_is_nsfptr (FPTR)
13392 int cmse_nonsecure_caller (void)
13393 @end smallexample
13395 @node AVR Built-in Functions
13396 @subsection AVR Built-in Functions
13398 For each built-in function for AVR, there is an equally named,
13399 uppercase built-in macro defined. That way users can easily query if
13400 or if not a specific built-in is implemented or not. For example, if
13401 @code{__builtin_avr_nop} is available the macro
13402 @code{__BUILTIN_AVR_NOP} is defined to @code{1} and undefined otherwise.
13404 @table @code
13406 @item void __builtin_avr_nop (void)
13407 @itemx void __builtin_avr_sei (void)
13408 @itemx void __builtin_avr_cli (void)
13409 @itemx void __builtin_avr_sleep (void)
13410 @itemx void __builtin_avr_wdr (void)
13411 @itemx unsigned char __builtin_avr_swap (unsigned char)
13412 @itemx unsigned int __builtin_avr_fmul (unsigned char, unsigned char)
13413 @itemx int __builtin_avr_fmuls (char, char)
13414 @itemx int __builtin_avr_fmulsu (char, unsigned char)
13415 These built-in functions map to the respective machine
13416 instruction, i.e.@: @code{nop}, @code{sei}, @code{cli}, @code{sleep},
13417 @code{wdr}, @code{swap}, @code{fmul}, @code{fmuls}
13418 resp. @code{fmulsu}. The three @code{fmul*} built-ins are implemented
13419 as library call if no hardware multiplier is available.
13421 @item void __builtin_avr_delay_cycles (unsigned long ticks)
13422 Delay execution for @var{ticks} cycles. Note that this
13423 built-in does not take into account the effect of interrupts that
13424 might increase delay time. @var{ticks} must be a compile-time
13425 integer constant; delays with a variable number of cycles are not supported.
13427 @item char __builtin_avr_flash_segment (const __memx void*)
13428 This built-in takes a byte address to the 24-bit
13429 @ref{AVR Named Address Spaces,address space} @code{__memx} and returns
13430 the number of the flash segment (the 64 KiB chunk) where the address
13431 points to.  Counting starts at @code{0}.
13432 If the address does not point to flash memory, return @code{-1}.
13434 @item uint8_t __builtin_avr_insert_bits (uint32_t map, uint8_t bits, uint8_t val)
13435 Insert bits from @var{bits} into @var{val} and return the resulting
13436 value. The nibbles of @var{map} determine how the insertion is
13437 performed: Let @var{X} be the @var{n}-th nibble of @var{map}
13438 @enumerate
13439 @item If @var{X} is @code{0xf},
13440 then the @var{n}-th bit of @var{val} is returned unaltered.
13442 @item If X is in the range 0@dots{}7,
13443 then the @var{n}-th result bit is set to the @var{X}-th bit of @var{bits}
13445 @item If X is in the range 8@dots{}@code{0xe},
13446 then the @var{n}-th result bit is undefined.
13447 @end enumerate
13449 @noindent
13450 One typical use case for this built-in is adjusting input and
13451 output values to non-contiguous port layouts. Some examples:
13453 @smallexample
13454 // same as val, bits is unused
13455 __builtin_avr_insert_bits (0xffffffff, bits, val)
13456 @end smallexample
13458 @smallexample
13459 // same as bits, val is unused
13460 __builtin_avr_insert_bits (0x76543210, bits, val)
13461 @end smallexample
13463 @smallexample
13464 // same as rotating bits by 4
13465 __builtin_avr_insert_bits (0x32107654, bits, 0)
13466 @end smallexample
13468 @smallexample
13469 // high nibble of result is the high nibble of val
13470 // low nibble of result is the low nibble of bits
13471 __builtin_avr_insert_bits (0xffff3210, bits, val)
13472 @end smallexample
13474 @smallexample
13475 // reverse the bit order of bits
13476 __builtin_avr_insert_bits (0x01234567, bits, 0)
13477 @end smallexample
13479 @item void __builtin_avr_nops (unsigned count)
13480 Insert @var{count} @code{NOP} instructions.
13481 The number of instructions must be a compile-time integer constant.
13483 @end table
13485 @noindent
13486 There are many more AVR-specific built-in functions that are used to
13487 implement the ISO/IEC TR 18037 ``Embedded C'' fixed-point functions of
13488 section 7.18a.6.  You don't need to use these built-ins directly.
13489 Instead, use the declarations as supplied by the @code{stdfix.h} header
13490 with GNU-C99:
13492 @smallexample
13493 #include <stdfix.h>
13495 // Re-interpret the bit representation of unsigned 16-bit
13496 // integer @var{uval} as Q-format 0.16 value.
13497 unsigned fract get_bits (uint_ur_t uval)
13499     return urbits (uval);
13501 @end smallexample
13503 @node Blackfin Built-in Functions
13504 @subsection Blackfin Built-in Functions
13506 Currently, there are two Blackfin-specific built-in functions.  These are
13507 used for generating @code{CSYNC} and @code{SSYNC} machine insns without
13508 using inline assembly; by using these built-in functions the compiler can
13509 automatically add workarounds for hardware errata involving these
13510 instructions.  These functions are named as follows:
13512 @smallexample
13513 void __builtin_bfin_csync (void)
13514 void __builtin_bfin_ssync (void)
13515 @end smallexample
13517 @node FR-V Built-in Functions
13518 @subsection FR-V Built-in Functions
13520 GCC provides many FR-V-specific built-in functions.  In general,
13521 these functions are intended to be compatible with those described
13522 by @cite{FR-V Family, Softune C/C++ Compiler Manual (V6), Fujitsu
13523 Semiconductor}.  The two exceptions are @code{__MDUNPACKH} and
13524 @code{__MBTOHE}, the GCC forms of which pass 128-bit values by
13525 pointer rather than by value.
13527 Most of the functions are named after specific FR-V instructions.
13528 Such functions are said to be ``directly mapped'' and are summarized
13529 here in tabular form.
13531 @menu
13532 * Argument Types::
13533 * Directly-mapped Integer Functions::
13534 * Directly-mapped Media Functions::
13535 * Raw read/write Functions::
13536 * Other Built-in Functions::
13537 @end menu
13539 @node Argument Types
13540 @subsubsection Argument Types
13542 The arguments to the built-in functions can be divided into three groups:
13543 register numbers, compile-time constants and run-time values.  In order
13544 to make this classification clear at a glance, the arguments and return
13545 values are given the following pseudo types:
13547 @multitable @columnfractions .20 .30 .15 .35
13548 @item Pseudo type @tab Real C type @tab Constant? @tab Description
13549 @item @code{uh} @tab @code{unsigned short} @tab No @tab an unsigned halfword
13550 @item @code{uw1} @tab @code{unsigned int} @tab No @tab an unsigned word
13551 @item @code{sw1} @tab @code{int} @tab No @tab a signed word
13552 @item @code{uw2} @tab @code{unsigned long long} @tab No
13553 @tab an unsigned doubleword
13554 @item @code{sw2} @tab @code{long long} @tab No @tab a signed doubleword
13555 @item @code{const} @tab @code{int} @tab Yes @tab an integer constant
13556 @item @code{acc} @tab @code{int} @tab Yes @tab an ACC register number
13557 @item @code{iacc} @tab @code{int} @tab Yes @tab an IACC register number
13558 @end multitable
13560 These pseudo types are not defined by GCC, they are simply a notational
13561 convenience used in this manual.
13563 Arguments of type @code{uh}, @code{uw1}, @code{sw1}, @code{uw2}
13564 and @code{sw2} are evaluated at run time.  They correspond to
13565 register operands in the underlying FR-V instructions.
13567 @code{const} arguments represent immediate operands in the underlying
13568 FR-V instructions.  They must be compile-time constants.
13570 @code{acc} arguments are evaluated at compile time and specify the number
13571 of an accumulator register.  For example, an @code{acc} argument of 2
13572 selects the ACC2 register.
13574 @code{iacc} arguments are similar to @code{acc} arguments but specify the
13575 number of an IACC register.  See @pxref{Other Built-in Functions}
13576 for more details.
13578 @node Directly-mapped Integer Functions
13579 @subsubsection Directly-Mapped Integer Functions
13581 The functions listed below map directly to FR-V I-type instructions.
13583 @multitable @columnfractions .45 .32 .23
13584 @item Function prototype @tab Example usage @tab Assembly output
13585 @item @code{sw1 __ADDSS (sw1, sw1)}
13586 @tab @code{@var{c} = __ADDSS (@var{a}, @var{b})}
13587 @tab @code{ADDSS @var{a},@var{b},@var{c}}
13588 @item @code{sw1 __SCAN (sw1, sw1)}
13589 @tab @code{@var{c} = __SCAN (@var{a}, @var{b})}
13590 @tab @code{SCAN @var{a},@var{b},@var{c}}
13591 @item @code{sw1 __SCUTSS (sw1)}
13592 @tab @code{@var{b} = __SCUTSS (@var{a})}
13593 @tab @code{SCUTSS @var{a},@var{b}}
13594 @item @code{sw1 __SLASS (sw1, sw1)}
13595 @tab @code{@var{c} = __SLASS (@var{a}, @var{b})}
13596 @tab @code{SLASS @var{a},@var{b},@var{c}}
13597 @item @code{void __SMASS (sw1, sw1)}
13598 @tab @code{__SMASS (@var{a}, @var{b})}
13599 @tab @code{SMASS @var{a},@var{b}}
13600 @item @code{void __SMSSS (sw1, sw1)}
13601 @tab @code{__SMSSS (@var{a}, @var{b})}
13602 @tab @code{SMSSS @var{a},@var{b}}
13603 @item @code{void __SMU (sw1, sw1)}
13604 @tab @code{__SMU (@var{a}, @var{b})}
13605 @tab @code{SMU @var{a},@var{b}}
13606 @item @code{sw2 __SMUL (sw1, sw1)}
13607 @tab @code{@var{c} = __SMUL (@var{a}, @var{b})}
13608 @tab @code{SMUL @var{a},@var{b},@var{c}}
13609 @item @code{sw1 __SUBSS (sw1, sw1)}
13610 @tab @code{@var{c} = __SUBSS (@var{a}, @var{b})}
13611 @tab @code{SUBSS @var{a},@var{b},@var{c}}
13612 @item @code{uw2 __UMUL (uw1, uw1)}
13613 @tab @code{@var{c} = __UMUL (@var{a}, @var{b})}
13614 @tab @code{UMUL @var{a},@var{b},@var{c}}
13615 @end multitable
13617 @node Directly-mapped Media Functions
13618 @subsubsection Directly-Mapped Media Functions
13620 The functions listed below map directly to FR-V M-type instructions.
13622 @multitable @columnfractions .45 .32 .23
13623 @item Function prototype @tab Example usage @tab Assembly output
13624 @item @code{uw1 __MABSHS (sw1)}
13625 @tab @code{@var{b} = __MABSHS (@var{a})}
13626 @tab @code{MABSHS @var{a},@var{b}}
13627 @item @code{void __MADDACCS (acc, acc)}
13628 @tab @code{__MADDACCS (@var{b}, @var{a})}
13629 @tab @code{MADDACCS @var{a},@var{b}}
13630 @item @code{sw1 __MADDHSS (sw1, sw1)}
13631 @tab @code{@var{c} = __MADDHSS (@var{a}, @var{b})}
13632 @tab @code{MADDHSS @var{a},@var{b},@var{c}}
13633 @item @code{uw1 __MADDHUS (uw1, uw1)}
13634 @tab @code{@var{c} = __MADDHUS (@var{a}, @var{b})}
13635 @tab @code{MADDHUS @var{a},@var{b},@var{c}}
13636 @item @code{uw1 __MAND (uw1, uw1)}
13637 @tab @code{@var{c} = __MAND (@var{a}, @var{b})}
13638 @tab @code{MAND @var{a},@var{b},@var{c}}
13639 @item @code{void __MASACCS (acc, acc)}
13640 @tab @code{__MASACCS (@var{b}, @var{a})}
13641 @tab @code{MASACCS @var{a},@var{b}}
13642 @item @code{uw1 __MAVEH (uw1, uw1)}
13643 @tab @code{@var{c} = __MAVEH (@var{a}, @var{b})}
13644 @tab @code{MAVEH @var{a},@var{b},@var{c}}
13645 @item @code{uw2 __MBTOH (uw1)}
13646 @tab @code{@var{b} = __MBTOH (@var{a})}
13647 @tab @code{MBTOH @var{a},@var{b}}
13648 @item @code{void __MBTOHE (uw1 *, uw1)}
13649 @tab @code{__MBTOHE (&@var{b}, @var{a})}
13650 @tab @code{MBTOHE @var{a},@var{b}}
13651 @item @code{void __MCLRACC (acc)}
13652 @tab @code{__MCLRACC (@var{a})}
13653 @tab @code{MCLRACC @var{a}}
13654 @item @code{void __MCLRACCA (void)}
13655 @tab @code{__MCLRACCA ()}
13656 @tab @code{MCLRACCA}
13657 @item @code{uw1 __Mcop1 (uw1, uw1)}
13658 @tab @code{@var{c} = __Mcop1 (@var{a}, @var{b})}
13659 @tab @code{Mcop1 @var{a},@var{b},@var{c}}
13660 @item @code{uw1 __Mcop2 (uw1, uw1)}
13661 @tab @code{@var{c} = __Mcop2 (@var{a}, @var{b})}
13662 @tab @code{Mcop2 @var{a},@var{b},@var{c}}
13663 @item @code{uw1 __MCPLHI (uw2, const)}
13664 @tab @code{@var{c} = __MCPLHI (@var{a}, @var{b})}
13665 @tab @code{MCPLHI @var{a},#@var{b},@var{c}}
13666 @item @code{uw1 __MCPLI (uw2, const)}
13667 @tab @code{@var{c} = __MCPLI (@var{a}, @var{b})}
13668 @tab @code{MCPLI @var{a},#@var{b},@var{c}}
13669 @item @code{void __MCPXIS (acc, sw1, sw1)}
13670 @tab @code{__MCPXIS (@var{c}, @var{a}, @var{b})}
13671 @tab @code{MCPXIS @var{a},@var{b},@var{c}}
13672 @item @code{void __MCPXIU (acc, uw1, uw1)}
13673 @tab @code{__MCPXIU (@var{c}, @var{a}, @var{b})}
13674 @tab @code{MCPXIU @var{a},@var{b},@var{c}}
13675 @item @code{void __MCPXRS (acc, sw1, sw1)}
13676 @tab @code{__MCPXRS (@var{c}, @var{a}, @var{b})}
13677 @tab @code{MCPXRS @var{a},@var{b},@var{c}}
13678 @item @code{void __MCPXRU (acc, uw1, uw1)}
13679 @tab @code{__MCPXRU (@var{c}, @var{a}, @var{b})}
13680 @tab @code{MCPXRU @var{a},@var{b},@var{c}}
13681 @item @code{uw1 __MCUT (acc, uw1)}
13682 @tab @code{@var{c} = __MCUT (@var{a}, @var{b})}
13683 @tab @code{MCUT @var{a},@var{b},@var{c}}
13684 @item @code{uw1 __MCUTSS (acc, sw1)}
13685 @tab @code{@var{c} = __MCUTSS (@var{a}, @var{b})}
13686 @tab @code{MCUTSS @var{a},@var{b},@var{c}}
13687 @item @code{void __MDADDACCS (acc, acc)}
13688 @tab @code{__MDADDACCS (@var{b}, @var{a})}
13689 @tab @code{MDADDACCS @var{a},@var{b}}
13690 @item @code{void __MDASACCS (acc, acc)}
13691 @tab @code{__MDASACCS (@var{b}, @var{a})}
13692 @tab @code{MDASACCS @var{a},@var{b}}
13693 @item @code{uw2 __MDCUTSSI (acc, const)}
13694 @tab @code{@var{c} = __MDCUTSSI (@var{a}, @var{b})}
13695 @tab @code{MDCUTSSI @var{a},#@var{b},@var{c}}
13696 @item @code{uw2 __MDPACKH (uw2, uw2)}
13697 @tab @code{@var{c} = __MDPACKH (@var{a}, @var{b})}
13698 @tab @code{MDPACKH @var{a},@var{b},@var{c}}
13699 @item @code{uw2 __MDROTLI (uw2, const)}
13700 @tab @code{@var{c} = __MDROTLI (@var{a}, @var{b})}
13701 @tab @code{MDROTLI @var{a},#@var{b},@var{c}}
13702 @item @code{void __MDSUBACCS (acc, acc)}
13703 @tab @code{__MDSUBACCS (@var{b}, @var{a})}
13704 @tab @code{MDSUBACCS @var{a},@var{b}}
13705 @item @code{void __MDUNPACKH (uw1 *, uw2)}
13706 @tab @code{__MDUNPACKH (&@var{b}, @var{a})}
13707 @tab @code{MDUNPACKH @var{a},@var{b}}
13708 @item @code{uw2 __MEXPDHD (uw1, const)}
13709 @tab @code{@var{c} = __MEXPDHD (@var{a}, @var{b})}
13710 @tab @code{MEXPDHD @var{a},#@var{b},@var{c}}
13711 @item @code{uw1 __MEXPDHW (uw1, const)}
13712 @tab @code{@var{c} = __MEXPDHW (@var{a}, @var{b})}
13713 @tab @code{MEXPDHW @var{a},#@var{b},@var{c}}
13714 @item @code{uw1 __MHDSETH (uw1, const)}
13715 @tab @code{@var{c} = __MHDSETH (@var{a}, @var{b})}
13716 @tab @code{MHDSETH @var{a},#@var{b},@var{c}}
13717 @item @code{sw1 __MHDSETS (const)}
13718 @tab @code{@var{b} = __MHDSETS (@var{a})}
13719 @tab @code{MHDSETS #@var{a},@var{b}}
13720 @item @code{uw1 __MHSETHIH (uw1, const)}
13721 @tab @code{@var{b} = __MHSETHIH (@var{b}, @var{a})}
13722 @tab @code{MHSETHIH #@var{a},@var{b}}
13723 @item @code{sw1 __MHSETHIS (sw1, const)}
13724 @tab @code{@var{b} = __MHSETHIS (@var{b}, @var{a})}
13725 @tab @code{MHSETHIS #@var{a},@var{b}}
13726 @item @code{uw1 __MHSETLOH (uw1, const)}
13727 @tab @code{@var{b} = __MHSETLOH (@var{b}, @var{a})}
13728 @tab @code{MHSETLOH #@var{a},@var{b}}
13729 @item @code{sw1 __MHSETLOS (sw1, const)}
13730 @tab @code{@var{b} = __MHSETLOS (@var{b}, @var{a})}
13731 @tab @code{MHSETLOS #@var{a},@var{b}}
13732 @item @code{uw1 __MHTOB (uw2)}
13733 @tab @code{@var{b} = __MHTOB (@var{a})}
13734 @tab @code{MHTOB @var{a},@var{b}}
13735 @item @code{void __MMACHS (acc, sw1, sw1)}
13736 @tab @code{__MMACHS (@var{c}, @var{a}, @var{b})}
13737 @tab @code{MMACHS @var{a},@var{b},@var{c}}
13738 @item @code{void __MMACHU (acc, uw1, uw1)}
13739 @tab @code{__MMACHU (@var{c}, @var{a}, @var{b})}
13740 @tab @code{MMACHU @var{a},@var{b},@var{c}}
13741 @item @code{void __MMRDHS (acc, sw1, sw1)}
13742 @tab @code{__MMRDHS (@var{c}, @var{a}, @var{b})}
13743 @tab @code{MMRDHS @var{a},@var{b},@var{c}}
13744 @item @code{void __MMRDHU (acc, uw1, uw1)}
13745 @tab @code{__MMRDHU (@var{c}, @var{a}, @var{b})}
13746 @tab @code{MMRDHU @var{a},@var{b},@var{c}}
13747 @item @code{void __MMULHS (acc, sw1, sw1)}
13748 @tab @code{__MMULHS (@var{c}, @var{a}, @var{b})}
13749 @tab @code{MMULHS @var{a},@var{b},@var{c}}
13750 @item @code{void __MMULHU (acc, uw1, uw1)}
13751 @tab @code{__MMULHU (@var{c}, @var{a}, @var{b})}
13752 @tab @code{MMULHU @var{a},@var{b},@var{c}}
13753 @item @code{void __MMULXHS (acc, sw1, sw1)}
13754 @tab @code{__MMULXHS (@var{c}, @var{a}, @var{b})}
13755 @tab @code{MMULXHS @var{a},@var{b},@var{c}}
13756 @item @code{void __MMULXHU (acc, uw1, uw1)}
13757 @tab @code{__MMULXHU (@var{c}, @var{a}, @var{b})}
13758 @tab @code{MMULXHU @var{a},@var{b},@var{c}}
13759 @item @code{uw1 __MNOT (uw1)}
13760 @tab @code{@var{b} = __MNOT (@var{a})}
13761 @tab @code{MNOT @var{a},@var{b}}
13762 @item @code{uw1 __MOR (uw1, uw1)}
13763 @tab @code{@var{c} = __MOR (@var{a}, @var{b})}
13764 @tab @code{MOR @var{a},@var{b},@var{c}}
13765 @item @code{uw1 __MPACKH (uh, uh)}
13766 @tab @code{@var{c} = __MPACKH (@var{a}, @var{b})}
13767 @tab @code{MPACKH @var{a},@var{b},@var{c}}
13768 @item @code{sw2 __MQADDHSS (sw2, sw2)}
13769 @tab @code{@var{c} = __MQADDHSS (@var{a}, @var{b})}
13770 @tab @code{MQADDHSS @var{a},@var{b},@var{c}}
13771 @item @code{uw2 __MQADDHUS (uw2, uw2)}
13772 @tab @code{@var{c} = __MQADDHUS (@var{a}, @var{b})}
13773 @tab @code{MQADDHUS @var{a},@var{b},@var{c}}
13774 @item @code{void __MQCPXIS (acc, sw2, sw2)}
13775 @tab @code{__MQCPXIS (@var{c}, @var{a}, @var{b})}
13776 @tab @code{MQCPXIS @var{a},@var{b},@var{c}}
13777 @item @code{void __MQCPXIU (acc, uw2, uw2)}
13778 @tab @code{__MQCPXIU (@var{c}, @var{a}, @var{b})}
13779 @tab @code{MQCPXIU @var{a},@var{b},@var{c}}
13780 @item @code{void __MQCPXRS (acc, sw2, sw2)}
13781 @tab @code{__MQCPXRS (@var{c}, @var{a}, @var{b})}
13782 @tab @code{MQCPXRS @var{a},@var{b},@var{c}}
13783 @item @code{void __MQCPXRU (acc, uw2, uw2)}
13784 @tab @code{__MQCPXRU (@var{c}, @var{a}, @var{b})}
13785 @tab @code{MQCPXRU @var{a},@var{b},@var{c}}
13786 @item @code{sw2 __MQLCLRHS (sw2, sw2)}
13787 @tab @code{@var{c} = __MQLCLRHS (@var{a}, @var{b})}
13788 @tab @code{MQLCLRHS @var{a},@var{b},@var{c}}
13789 @item @code{sw2 __MQLMTHS (sw2, sw2)}
13790 @tab @code{@var{c} = __MQLMTHS (@var{a}, @var{b})}
13791 @tab @code{MQLMTHS @var{a},@var{b},@var{c}}
13792 @item @code{void __MQMACHS (acc, sw2, sw2)}
13793 @tab @code{__MQMACHS (@var{c}, @var{a}, @var{b})}
13794 @tab @code{MQMACHS @var{a},@var{b},@var{c}}
13795 @item @code{void __MQMACHU (acc, uw2, uw2)}
13796 @tab @code{__MQMACHU (@var{c}, @var{a}, @var{b})}
13797 @tab @code{MQMACHU @var{a},@var{b},@var{c}}
13798 @item @code{void __MQMACXHS (acc, sw2, sw2)}
13799 @tab @code{__MQMACXHS (@var{c}, @var{a}, @var{b})}
13800 @tab @code{MQMACXHS @var{a},@var{b},@var{c}}
13801 @item @code{void __MQMULHS (acc, sw2, sw2)}
13802 @tab @code{__MQMULHS (@var{c}, @var{a}, @var{b})}
13803 @tab @code{MQMULHS @var{a},@var{b},@var{c}}
13804 @item @code{void __MQMULHU (acc, uw2, uw2)}
13805 @tab @code{__MQMULHU (@var{c}, @var{a}, @var{b})}
13806 @tab @code{MQMULHU @var{a},@var{b},@var{c}}
13807 @item @code{void __MQMULXHS (acc, sw2, sw2)}
13808 @tab @code{__MQMULXHS (@var{c}, @var{a}, @var{b})}
13809 @tab @code{MQMULXHS @var{a},@var{b},@var{c}}
13810 @item @code{void __MQMULXHU (acc, uw2, uw2)}
13811 @tab @code{__MQMULXHU (@var{c}, @var{a}, @var{b})}
13812 @tab @code{MQMULXHU @var{a},@var{b},@var{c}}
13813 @item @code{sw2 __MQSATHS (sw2, sw2)}
13814 @tab @code{@var{c} = __MQSATHS (@var{a}, @var{b})}
13815 @tab @code{MQSATHS @var{a},@var{b},@var{c}}
13816 @item @code{uw2 __MQSLLHI (uw2, int)}
13817 @tab @code{@var{c} = __MQSLLHI (@var{a}, @var{b})}
13818 @tab @code{MQSLLHI @var{a},@var{b},@var{c}}
13819 @item @code{sw2 __MQSRAHI (sw2, int)}
13820 @tab @code{@var{c} = __MQSRAHI (@var{a}, @var{b})}
13821 @tab @code{MQSRAHI @var{a},@var{b},@var{c}}
13822 @item @code{sw2 __MQSUBHSS (sw2, sw2)}
13823 @tab @code{@var{c} = __MQSUBHSS (@var{a}, @var{b})}
13824 @tab @code{MQSUBHSS @var{a},@var{b},@var{c}}
13825 @item @code{uw2 __MQSUBHUS (uw2, uw2)}
13826 @tab @code{@var{c} = __MQSUBHUS (@var{a}, @var{b})}
13827 @tab @code{MQSUBHUS @var{a},@var{b},@var{c}}
13828 @item @code{void __MQXMACHS (acc, sw2, sw2)}
13829 @tab @code{__MQXMACHS (@var{c}, @var{a}, @var{b})}
13830 @tab @code{MQXMACHS @var{a},@var{b},@var{c}}
13831 @item @code{void __MQXMACXHS (acc, sw2, sw2)}
13832 @tab @code{__MQXMACXHS (@var{c}, @var{a}, @var{b})}
13833 @tab @code{MQXMACXHS @var{a},@var{b},@var{c}}
13834 @item @code{uw1 __MRDACC (acc)}
13835 @tab @code{@var{b} = __MRDACC (@var{a})}
13836 @tab @code{MRDACC @var{a},@var{b}}
13837 @item @code{uw1 __MRDACCG (acc)}
13838 @tab @code{@var{b} = __MRDACCG (@var{a})}
13839 @tab @code{MRDACCG @var{a},@var{b}}
13840 @item @code{uw1 __MROTLI (uw1, const)}
13841 @tab @code{@var{c} = __MROTLI (@var{a}, @var{b})}
13842 @tab @code{MROTLI @var{a},#@var{b},@var{c}}
13843 @item @code{uw1 __MROTRI (uw1, const)}
13844 @tab @code{@var{c} = __MROTRI (@var{a}, @var{b})}
13845 @tab @code{MROTRI @var{a},#@var{b},@var{c}}
13846 @item @code{sw1 __MSATHS (sw1, sw1)}
13847 @tab @code{@var{c} = __MSATHS (@var{a}, @var{b})}
13848 @tab @code{MSATHS @var{a},@var{b},@var{c}}
13849 @item @code{uw1 __MSATHU (uw1, uw1)}
13850 @tab @code{@var{c} = __MSATHU (@var{a}, @var{b})}
13851 @tab @code{MSATHU @var{a},@var{b},@var{c}}
13852 @item @code{uw1 __MSLLHI (uw1, const)}
13853 @tab @code{@var{c} = __MSLLHI (@var{a}, @var{b})}
13854 @tab @code{MSLLHI @var{a},#@var{b},@var{c}}
13855 @item @code{sw1 __MSRAHI (sw1, const)}
13856 @tab @code{@var{c} = __MSRAHI (@var{a}, @var{b})}
13857 @tab @code{MSRAHI @var{a},#@var{b},@var{c}}
13858 @item @code{uw1 __MSRLHI (uw1, const)}
13859 @tab @code{@var{c} = __MSRLHI (@var{a}, @var{b})}
13860 @tab @code{MSRLHI @var{a},#@var{b},@var{c}}
13861 @item @code{void __MSUBACCS (acc, acc)}
13862 @tab @code{__MSUBACCS (@var{b}, @var{a})}
13863 @tab @code{MSUBACCS @var{a},@var{b}}
13864 @item @code{sw1 __MSUBHSS (sw1, sw1)}
13865 @tab @code{@var{c} = __MSUBHSS (@var{a}, @var{b})}
13866 @tab @code{MSUBHSS @var{a},@var{b},@var{c}}
13867 @item @code{uw1 __MSUBHUS (uw1, uw1)}
13868 @tab @code{@var{c} = __MSUBHUS (@var{a}, @var{b})}
13869 @tab @code{MSUBHUS @var{a},@var{b},@var{c}}
13870 @item @code{void __MTRAP (void)}
13871 @tab @code{__MTRAP ()}
13872 @tab @code{MTRAP}
13873 @item @code{uw2 __MUNPACKH (uw1)}
13874 @tab @code{@var{b} = __MUNPACKH (@var{a})}
13875 @tab @code{MUNPACKH @var{a},@var{b}}
13876 @item @code{uw1 __MWCUT (uw2, uw1)}
13877 @tab @code{@var{c} = __MWCUT (@var{a}, @var{b})}
13878 @tab @code{MWCUT @var{a},@var{b},@var{c}}
13879 @item @code{void __MWTACC (acc, uw1)}
13880 @tab @code{__MWTACC (@var{b}, @var{a})}
13881 @tab @code{MWTACC @var{a},@var{b}}
13882 @item @code{void __MWTACCG (acc, uw1)}
13883 @tab @code{__MWTACCG (@var{b}, @var{a})}
13884 @tab @code{MWTACCG @var{a},@var{b}}
13885 @item @code{uw1 __MXOR (uw1, uw1)}
13886 @tab @code{@var{c} = __MXOR (@var{a}, @var{b})}
13887 @tab @code{MXOR @var{a},@var{b},@var{c}}
13888 @end multitable
13890 @node Raw read/write Functions
13891 @subsubsection Raw Read/Write Functions
13893 This sections describes built-in functions related to read and write
13894 instructions to access memory.  These functions generate
13895 @code{membar} instructions to flush the I/O load and stores where
13896 appropriate, as described in Fujitsu's manual described above.
13898 @table @code
13900 @item unsigned char __builtin_read8 (void *@var{data})
13901 @item unsigned short __builtin_read16 (void *@var{data})
13902 @item unsigned long __builtin_read32 (void *@var{data})
13903 @item unsigned long long __builtin_read64 (void *@var{data})
13905 @item void __builtin_write8 (void *@var{data}, unsigned char @var{datum})
13906 @item void __builtin_write16 (void *@var{data}, unsigned short @var{datum})
13907 @item void __builtin_write32 (void *@var{data}, unsigned long @var{datum})
13908 @item void __builtin_write64 (void *@var{data}, unsigned long long @var{datum})
13909 @end table
13911 @node Other Built-in Functions
13912 @subsubsection Other Built-in Functions
13914 This section describes built-in functions that are not named after
13915 a specific FR-V instruction.
13917 @table @code
13918 @item sw2 __IACCreadll (iacc @var{reg})
13919 Return the full 64-bit value of IACC0@.  The @var{reg} argument is reserved
13920 for future expansion and must be 0.
13922 @item sw1 __IACCreadl (iacc @var{reg})
13923 Return the value of IACC0H if @var{reg} is 0 and IACC0L if @var{reg} is 1.
13924 Other values of @var{reg} are rejected as invalid.
13926 @item void __IACCsetll (iacc @var{reg}, sw2 @var{x})
13927 Set the full 64-bit value of IACC0 to @var{x}.  The @var{reg} argument
13928 is reserved for future expansion and must be 0.
13930 @item void __IACCsetl (iacc @var{reg}, sw1 @var{x})
13931 Set IACC0H to @var{x} if @var{reg} is 0 and IACC0L to @var{x} if @var{reg}
13932 is 1.  Other values of @var{reg} are rejected as invalid.
13934 @item void __data_prefetch0 (const void *@var{x})
13935 Use the @code{dcpl} instruction to load the contents of address @var{x}
13936 into the data cache.
13938 @item void __data_prefetch (const void *@var{x})
13939 Use the @code{nldub} instruction to load the contents of address @var{x}
13940 into the data cache.  The instruction is issued in slot I1@.
13941 @end table
13943 @node MIPS DSP Built-in Functions
13944 @subsection MIPS DSP Built-in Functions
13946 The MIPS DSP Application-Specific Extension (ASE) includes new
13947 instructions that are designed to improve the performance of DSP and
13948 media applications.  It provides instructions that operate on packed
13949 8-bit/16-bit integer data, Q7, Q15 and Q31 fractional data.
13951 GCC supports MIPS DSP operations using both the generic
13952 vector extensions (@pxref{Vector Extensions}) and a collection of
13953 MIPS-specific built-in functions.  Both kinds of support are
13954 enabled by the @option{-mdsp} command-line option.
13956 Revision 2 of the ASE was introduced in the second half of 2006.
13957 This revision adds extra instructions to the original ASE, but is
13958 otherwise backwards-compatible with it.  You can select revision 2
13959 using the command-line option @option{-mdspr2}; this option implies
13960 @option{-mdsp}.
13962 The SCOUNT and POS bits of the DSP control register are global.  The
13963 WRDSP, EXTPDP, EXTPDPV and MTHLIP instructions modify the SCOUNT and
13964 POS bits.  During optimization, the compiler does not delete these
13965 instructions and it does not delete calls to functions containing
13966 these instructions.
13968 At present, GCC only provides support for operations on 32-bit
13969 vectors.  The vector type associated with 8-bit integer data is
13970 usually called @code{v4i8}, the vector type associated with Q7
13971 is usually called @code{v4q7}, the vector type associated with 16-bit
13972 integer data is usually called @code{v2i16}, and the vector type
13973 associated with Q15 is usually called @code{v2q15}.  They can be
13974 defined in C as follows:
13976 @smallexample
13977 typedef signed char v4i8 __attribute__ ((vector_size(4)));
13978 typedef signed char v4q7 __attribute__ ((vector_size(4)));
13979 typedef short v2i16 __attribute__ ((vector_size(4)));
13980 typedef short v2q15 __attribute__ ((vector_size(4)));
13981 @end smallexample
13983 @code{v4i8}, @code{v4q7}, @code{v2i16} and @code{v2q15} values are
13984 initialized in the same way as aggregates.  For example:
13986 @smallexample
13987 v4i8 a = @{1, 2, 3, 4@};
13988 v4i8 b;
13989 b = (v4i8) @{5, 6, 7, 8@};
13991 v2q15 c = @{0x0fcb, 0x3a75@};
13992 v2q15 d;
13993 d = (v2q15) @{0.1234 * 0x1.0p15, 0.4567 * 0x1.0p15@};
13994 @end smallexample
13996 @emph{Note:} The CPU's endianness determines the order in which values
13997 are packed.  On little-endian targets, the first value is the least
13998 significant and the last value is the most significant.  The opposite
13999 order applies to big-endian targets.  For example, the code above
14000 sets the lowest byte of @code{a} to @code{1} on little-endian targets
14001 and @code{4} on big-endian targets.
14003 @emph{Note:} Q7, Q15 and Q31 values must be initialized with their integer
14004 representation.  As shown in this example, the integer representation
14005 of a Q7 value can be obtained by multiplying the fractional value by
14006 @code{0x1.0p7}.  The equivalent for Q15 values is to multiply by
14007 @code{0x1.0p15}.  The equivalent for Q31 values is to multiply by
14008 @code{0x1.0p31}.
14010 The table below lists the @code{v4i8} and @code{v2q15} operations for which
14011 hardware support exists.  @code{a} and @code{b} are @code{v4i8} values,
14012 and @code{c} and @code{d} are @code{v2q15} values.
14014 @multitable @columnfractions .50 .50
14015 @item C code @tab MIPS instruction
14016 @item @code{a + b} @tab @code{addu.qb}
14017 @item @code{c + d} @tab @code{addq.ph}
14018 @item @code{a - b} @tab @code{subu.qb}
14019 @item @code{c - d} @tab @code{subq.ph}
14020 @end multitable
14022 The table below lists the @code{v2i16} operation for which
14023 hardware support exists for the DSP ASE REV 2.  @code{e} and @code{f} are
14024 @code{v2i16} values.
14026 @multitable @columnfractions .50 .50
14027 @item C code @tab MIPS instruction
14028 @item @code{e * f} @tab @code{mul.ph}
14029 @end multitable
14031 It is easier to describe the DSP built-in functions if we first define
14032 the following types:
14034 @smallexample
14035 typedef int q31;
14036 typedef int i32;
14037 typedef unsigned int ui32;
14038 typedef long long a64;
14039 @end smallexample
14041 @code{q31} and @code{i32} are actually the same as @code{int}, but we
14042 use @code{q31} to indicate a Q31 fractional value and @code{i32} to
14043 indicate a 32-bit integer value.  Similarly, @code{a64} is the same as
14044 @code{long long}, but we use @code{a64} to indicate values that are
14045 placed in one of the four DSP accumulators (@code{$ac0},
14046 @code{$ac1}, @code{$ac2} or @code{$ac3}).
14048 Also, some built-in functions prefer or require immediate numbers as
14049 parameters, because the corresponding DSP instructions accept both immediate
14050 numbers and register operands, or accept immediate numbers only.  The
14051 immediate parameters are listed as follows.
14053 @smallexample
14054 imm0_3: 0 to 3.
14055 imm0_7: 0 to 7.
14056 imm0_15: 0 to 15.
14057 imm0_31: 0 to 31.
14058 imm0_63: 0 to 63.
14059 imm0_255: 0 to 255.
14060 imm_n32_31: -32 to 31.
14061 imm_n512_511: -512 to 511.
14062 @end smallexample
14064 The following built-in functions map directly to a particular MIPS DSP
14065 instruction.  Please refer to the architecture specification
14066 for details on what each instruction does.
14068 @smallexample
14069 v2q15 __builtin_mips_addq_ph (v2q15, v2q15)
14070 v2q15 __builtin_mips_addq_s_ph (v2q15, v2q15)
14071 q31 __builtin_mips_addq_s_w (q31, q31)
14072 v4i8 __builtin_mips_addu_qb (v4i8, v4i8)
14073 v4i8 __builtin_mips_addu_s_qb (v4i8, v4i8)
14074 v2q15 __builtin_mips_subq_ph (v2q15, v2q15)
14075 v2q15 __builtin_mips_subq_s_ph (v2q15, v2q15)
14076 q31 __builtin_mips_subq_s_w (q31, q31)
14077 v4i8 __builtin_mips_subu_qb (v4i8, v4i8)
14078 v4i8 __builtin_mips_subu_s_qb (v4i8, v4i8)
14079 i32 __builtin_mips_addsc (i32, i32)
14080 i32 __builtin_mips_addwc (i32, i32)
14081 i32 __builtin_mips_modsub (i32, i32)
14082 i32 __builtin_mips_raddu_w_qb (v4i8)
14083 v2q15 __builtin_mips_absq_s_ph (v2q15)
14084 q31 __builtin_mips_absq_s_w (q31)
14085 v4i8 __builtin_mips_precrq_qb_ph (v2q15, v2q15)
14086 v2q15 __builtin_mips_precrq_ph_w (q31, q31)
14087 v2q15 __builtin_mips_precrq_rs_ph_w (q31, q31)
14088 v4i8 __builtin_mips_precrqu_s_qb_ph (v2q15, v2q15)
14089 q31 __builtin_mips_preceq_w_phl (v2q15)
14090 q31 __builtin_mips_preceq_w_phr (v2q15)
14091 v2q15 __builtin_mips_precequ_ph_qbl (v4i8)
14092 v2q15 __builtin_mips_precequ_ph_qbr (v4i8)
14093 v2q15 __builtin_mips_precequ_ph_qbla (v4i8)
14094 v2q15 __builtin_mips_precequ_ph_qbra (v4i8)
14095 v2q15 __builtin_mips_preceu_ph_qbl (v4i8)
14096 v2q15 __builtin_mips_preceu_ph_qbr (v4i8)
14097 v2q15 __builtin_mips_preceu_ph_qbla (v4i8)
14098 v2q15 __builtin_mips_preceu_ph_qbra (v4i8)
14099 v4i8 __builtin_mips_shll_qb (v4i8, imm0_7)
14100 v4i8 __builtin_mips_shll_qb (v4i8, i32)
14101 v2q15 __builtin_mips_shll_ph (v2q15, imm0_15)
14102 v2q15 __builtin_mips_shll_ph (v2q15, i32)
14103 v2q15 __builtin_mips_shll_s_ph (v2q15, imm0_15)
14104 v2q15 __builtin_mips_shll_s_ph (v2q15, i32)
14105 q31 __builtin_mips_shll_s_w (q31, imm0_31)
14106 q31 __builtin_mips_shll_s_w (q31, i32)
14107 v4i8 __builtin_mips_shrl_qb (v4i8, imm0_7)
14108 v4i8 __builtin_mips_shrl_qb (v4i8, i32)
14109 v2q15 __builtin_mips_shra_ph (v2q15, imm0_15)
14110 v2q15 __builtin_mips_shra_ph (v2q15, i32)
14111 v2q15 __builtin_mips_shra_r_ph (v2q15, imm0_15)
14112 v2q15 __builtin_mips_shra_r_ph (v2q15, i32)
14113 q31 __builtin_mips_shra_r_w (q31, imm0_31)
14114 q31 __builtin_mips_shra_r_w (q31, i32)
14115 v2q15 __builtin_mips_muleu_s_ph_qbl (v4i8, v2q15)
14116 v2q15 __builtin_mips_muleu_s_ph_qbr (v4i8, v2q15)
14117 v2q15 __builtin_mips_mulq_rs_ph (v2q15, v2q15)
14118 q31 __builtin_mips_muleq_s_w_phl (v2q15, v2q15)
14119 q31 __builtin_mips_muleq_s_w_phr (v2q15, v2q15)
14120 a64 __builtin_mips_dpau_h_qbl (a64, v4i8, v4i8)
14121 a64 __builtin_mips_dpau_h_qbr (a64, v4i8, v4i8)
14122 a64 __builtin_mips_dpsu_h_qbl (a64, v4i8, v4i8)
14123 a64 __builtin_mips_dpsu_h_qbr (a64, v4i8, v4i8)
14124 a64 __builtin_mips_dpaq_s_w_ph (a64, v2q15, v2q15)
14125 a64 __builtin_mips_dpaq_sa_l_w (a64, q31, q31)
14126 a64 __builtin_mips_dpsq_s_w_ph (a64, v2q15, v2q15)
14127 a64 __builtin_mips_dpsq_sa_l_w (a64, q31, q31)
14128 a64 __builtin_mips_mulsaq_s_w_ph (a64, v2q15, v2q15)
14129 a64 __builtin_mips_maq_s_w_phl (a64, v2q15, v2q15)
14130 a64 __builtin_mips_maq_s_w_phr (a64, v2q15, v2q15)
14131 a64 __builtin_mips_maq_sa_w_phl (a64, v2q15, v2q15)
14132 a64 __builtin_mips_maq_sa_w_phr (a64, v2q15, v2q15)
14133 i32 __builtin_mips_bitrev (i32)
14134 i32 __builtin_mips_insv (i32, i32)
14135 v4i8 __builtin_mips_repl_qb (imm0_255)
14136 v4i8 __builtin_mips_repl_qb (i32)
14137 v2q15 __builtin_mips_repl_ph (imm_n512_511)
14138 v2q15 __builtin_mips_repl_ph (i32)
14139 void __builtin_mips_cmpu_eq_qb (v4i8, v4i8)
14140 void __builtin_mips_cmpu_lt_qb (v4i8, v4i8)
14141 void __builtin_mips_cmpu_le_qb (v4i8, v4i8)
14142 i32 __builtin_mips_cmpgu_eq_qb (v4i8, v4i8)
14143 i32 __builtin_mips_cmpgu_lt_qb (v4i8, v4i8)
14144 i32 __builtin_mips_cmpgu_le_qb (v4i8, v4i8)
14145 void __builtin_mips_cmp_eq_ph (v2q15, v2q15)
14146 void __builtin_mips_cmp_lt_ph (v2q15, v2q15)
14147 void __builtin_mips_cmp_le_ph (v2q15, v2q15)
14148 v4i8 __builtin_mips_pick_qb (v4i8, v4i8)
14149 v2q15 __builtin_mips_pick_ph (v2q15, v2q15)
14150 v2q15 __builtin_mips_packrl_ph (v2q15, v2q15)
14151 i32 __builtin_mips_extr_w (a64, imm0_31)
14152 i32 __builtin_mips_extr_w (a64, i32)
14153 i32 __builtin_mips_extr_r_w (a64, imm0_31)
14154 i32 __builtin_mips_extr_s_h (a64, i32)
14155 i32 __builtin_mips_extr_rs_w (a64, imm0_31)
14156 i32 __builtin_mips_extr_rs_w (a64, i32)
14157 i32 __builtin_mips_extr_s_h (a64, imm0_31)
14158 i32 __builtin_mips_extr_r_w (a64, i32)
14159 i32 __builtin_mips_extp (a64, imm0_31)
14160 i32 __builtin_mips_extp (a64, i32)
14161 i32 __builtin_mips_extpdp (a64, imm0_31)
14162 i32 __builtin_mips_extpdp (a64, i32)
14163 a64 __builtin_mips_shilo (a64, imm_n32_31)
14164 a64 __builtin_mips_shilo (a64, i32)
14165 a64 __builtin_mips_mthlip (a64, i32)
14166 void __builtin_mips_wrdsp (i32, imm0_63)
14167 i32 __builtin_mips_rddsp (imm0_63)
14168 i32 __builtin_mips_lbux (void *, i32)
14169 i32 __builtin_mips_lhx (void *, i32)
14170 i32 __builtin_mips_lwx (void *, i32)
14171 a64 __builtin_mips_ldx (void *, i32) [MIPS64 only]
14172 i32 __builtin_mips_bposge32 (void)
14173 a64 __builtin_mips_madd (a64, i32, i32);
14174 a64 __builtin_mips_maddu (a64, ui32, ui32);
14175 a64 __builtin_mips_msub (a64, i32, i32);
14176 a64 __builtin_mips_msubu (a64, ui32, ui32);
14177 a64 __builtin_mips_mult (i32, i32);
14178 a64 __builtin_mips_multu (ui32, ui32);
14179 @end smallexample
14181 The following built-in functions map directly to a particular MIPS DSP REV 2
14182 instruction.  Please refer to the architecture specification
14183 for details on what each instruction does.
14185 @smallexample
14186 v4q7 __builtin_mips_absq_s_qb (v4q7);
14187 v2i16 __builtin_mips_addu_ph (v2i16, v2i16);
14188 v2i16 __builtin_mips_addu_s_ph (v2i16, v2i16);
14189 v4i8 __builtin_mips_adduh_qb (v4i8, v4i8);
14190 v4i8 __builtin_mips_adduh_r_qb (v4i8, v4i8);
14191 i32 __builtin_mips_append (i32, i32, imm0_31);
14192 i32 __builtin_mips_balign (i32, i32, imm0_3);
14193 i32 __builtin_mips_cmpgdu_eq_qb (v4i8, v4i8);
14194 i32 __builtin_mips_cmpgdu_lt_qb (v4i8, v4i8);
14195 i32 __builtin_mips_cmpgdu_le_qb (v4i8, v4i8);
14196 a64 __builtin_mips_dpa_w_ph (a64, v2i16, v2i16);
14197 a64 __builtin_mips_dps_w_ph (a64, v2i16, v2i16);
14198 v2i16 __builtin_mips_mul_ph (v2i16, v2i16);
14199 v2i16 __builtin_mips_mul_s_ph (v2i16, v2i16);
14200 q31 __builtin_mips_mulq_rs_w (q31, q31);
14201 v2q15 __builtin_mips_mulq_s_ph (v2q15, v2q15);
14202 q31 __builtin_mips_mulq_s_w (q31, q31);
14203 a64 __builtin_mips_mulsa_w_ph (a64, v2i16, v2i16);
14204 v4i8 __builtin_mips_precr_qb_ph (v2i16, v2i16);
14205 v2i16 __builtin_mips_precr_sra_ph_w (i32, i32, imm0_31);
14206 v2i16 __builtin_mips_precr_sra_r_ph_w (i32, i32, imm0_31);
14207 i32 __builtin_mips_prepend (i32, i32, imm0_31);
14208 v4i8 __builtin_mips_shra_qb (v4i8, imm0_7);
14209 v4i8 __builtin_mips_shra_r_qb (v4i8, imm0_7);
14210 v4i8 __builtin_mips_shra_qb (v4i8, i32);
14211 v4i8 __builtin_mips_shra_r_qb (v4i8, i32);
14212 v2i16 __builtin_mips_shrl_ph (v2i16, imm0_15);
14213 v2i16 __builtin_mips_shrl_ph (v2i16, i32);
14214 v2i16 __builtin_mips_subu_ph (v2i16, v2i16);
14215 v2i16 __builtin_mips_subu_s_ph (v2i16, v2i16);
14216 v4i8 __builtin_mips_subuh_qb (v4i8, v4i8);
14217 v4i8 __builtin_mips_subuh_r_qb (v4i8, v4i8);
14218 v2q15 __builtin_mips_addqh_ph (v2q15, v2q15);
14219 v2q15 __builtin_mips_addqh_r_ph (v2q15, v2q15);
14220 q31 __builtin_mips_addqh_w (q31, q31);
14221 q31 __builtin_mips_addqh_r_w (q31, q31);
14222 v2q15 __builtin_mips_subqh_ph (v2q15, v2q15);
14223 v2q15 __builtin_mips_subqh_r_ph (v2q15, v2q15);
14224 q31 __builtin_mips_subqh_w (q31, q31);
14225 q31 __builtin_mips_subqh_r_w (q31, q31);
14226 a64 __builtin_mips_dpax_w_ph (a64, v2i16, v2i16);
14227 a64 __builtin_mips_dpsx_w_ph (a64, v2i16, v2i16);
14228 a64 __builtin_mips_dpaqx_s_w_ph (a64, v2q15, v2q15);
14229 a64 __builtin_mips_dpaqx_sa_w_ph (a64, v2q15, v2q15);
14230 a64 __builtin_mips_dpsqx_s_w_ph (a64, v2q15, v2q15);
14231 a64 __builtin_mips_dpsqx_sa_w_ph (a64, v2q15, v2q15);
14232 @end smallexample
14235 @node MIPS Paired-Single Support
14236 @subsection MIPS Paired-Single Support
14238 The MIPS64 architecture includes a number of instructions that
14239 operate on pairs of single-precision floating-point values.
14240 Each pair is packed into a 64-bit floating-point register,
14241 with one element being designated the ``upper half'' and
14242 the other being designated the ``lower half''.
14244 GCC supports paired-single operations using both the generic
14245 vector extensions (@pxref{Vector Extensions}) and a collection of
14246 MIPS-specific built-in functions.  Both kinds of support are
14247 enabled by the @option{-mpaired-single} command-line option.
14249 The vector type associated with paired-single values is usually
14250 called @code{v2sf}.  It can be defined in C as follows:
14252 @smallexample
14253 typedef float v2sf __attribute__ ((vector_size (8)));
14254 @end smallexample
14256 @code{v2sf} values are initialized in the same way as aggregates.
14257 For example:
14259 @smallexample
14260 v2sf a = @{1.5, 9.1@};
14261 v2sf b;
14262 float e, f;
14263 b = (v2sf) @{e, f@};
14264 @end smallexample
14266 @emph{Note:} The CPU's endianness determines which value is stored in
14267 the upper half of a register and which value is stored in the lower half.
14268 On little-endian targets, the first value is the lower one and the second
14269 value is the upper one.  The opposite order applies to big-endian targets.
14270 For example, the code above sets the lower half of @code{a} to
14271 @code{1.5} on little-endian targets and @code{9.1} on big-endian targets.
14273 @node MIPS Loongson Built-in Functions
14274 @subsection MIPS Loongson Built-in Functions
14276 GCC provides intrinsics to access the SIMD instructions provided by the
14277 ST Microelectronics Loongson-2E and -2F processors.  These intrinsics,
14278 available after inclusion of the @code{loongson.h} header file,
14279 operate on the following 64-bit vector types:
14281 @itemize
14282 @item @code{uint8x8_t}, a vector of eight unsigned 8-bit integers;
14283 @item @code{uint16x4_t}, a vector of four unsigned 16-bit integers;
14284 @item @code{uint32x2_t}, a vector of two unsigned 32-bit integers;
14285 @item @code{int8x8_t}, a vector of eight signed 8-bit integers;
14286 @item @code{int16x4_t}, a vector of four signed 16-bit integers;
14287 @item @code{int32x2_t}, a vector of two signed 32-bit integers.
14288 @end itemize
14290 The intrinsics provided are listed below; each is named after the
14291 machine instruction to which it corresponds, with suffixes added as
14292 appropriate to distinguish intrinsics that expand to the same machine
14293 instruction yet have different argument types.  Refer to the architecture
14294 documentation for a description of the functionality of each
14295 instruction.
14297 @smallexample
14298 int16x4_t packsswh (int32x2_t s, int32x2_t t);
14299 int8x8_t packsshb (int16x4_t s, int16x4_t t);
14300 uint8x8_t packushb (uint16x4_t s, uint16x4_t t);
14301 uint32x2_t paddw_u (uint32x2_t s, uint32x2_t t);
14302 uint16x4_t paddh_u (uint16x4_t s, uint16x4_t t);
14303 uint8x8_t paddb_u (uint8x8_t s, uint8x8_t t);
14304 int32x2_t paddw_s (int32x2_t s, int32x2_t t);
14305 int16x4_t paddh_s (int16x4_t s, int16x4_t t);
14306 int8x8_t paddb_s (int8x8_t s, int8x8_t t);
14307 uint64_t paddd_u (uint64_t s, uint64_t t);
14308 int64_t paddd_s (int64_t s, int64_t t);
14309 int16x4_t paddsh (int16x4_t s, int16x4_t t);
14310 int8x8_t paddsb (int8x8_t s, int8x8_t t);
14311 uint16x4_t paddush (uint16x4_t s, uint16x4_t t);
14312 uint8x8_t paddusb (uint8x8_t s, uint8x8_t t);
14313 uint64_t pandn_ud (uint64_t s, uint64_t t);
14314 uint32x2_t pandn_uw (uint32x2_t s, uint32x2_t t);
14315 uint16x4_t pandn_uh (uint16x4_t s, uint16x4_t t);
14316 uint8x8_t pandn_ub (uint8x8_t s, uint8x8_t t);
14317 int64_t pandn_sd (int64_t s, int64_t t);
14318 int32x2_t pandn_sw (int32x2_t s, int32x2_t t);
14319 int16x4_t pandn_sh (int16x4_t s, int16x4_t t);
14320 int8x8_t pandn_sb (int8x8_t s, int8x8_t t);
14321 uint16x4_t pavgh (uint16x4_t s, uint16x4_t t);
14322 uint8x8_t pavgb (uint8x8_t s, uint8x8_t t);
14323 uint32x2_t pcmpeqw_u (uint32x2_t s, uint32x2_t t);
14324 uint16x4_t pcmpeqh_u (uint16x4_t s, uint16x4_t t);
14325 uint8x8_t pcmpeqb_u (uint8x8_t s, uint8x8_t t);
14326 int32x2_t pcmpeqw_s (int32x2_t s, int32x2_t t);
14327 int16x4_t pcmpeqh_s (int16x4_t s, int16x4_t t);
14328 int8x8_t pcmpeqb_s (int8x8_t s, int8x8_t t);
14329 uint32x2_t pcmpgtw_u (uint32x2_t s, uint32x2_t t);
14330 uint16x4_t pcmpgth_u (uint16x4_t s, uint16x4_t t);
14331 uint8x8_t pcmpgtb_u (uint8x8_t s, uint8x8_t t);
14332 int32x2_t pcmpgtw_s (int32x2_t s, int32x2_t t);
14333 int16x4_t pcmpgth_s (int16x4_t s, int16x4_t t);
14334 int8x8_t pcmpgtb_s (int8x8_t s, int8x8_t t);
14335 uint16x4_t pextrh_u (uint16x4_t s, int field);
14336 int16x4_t pextrh_s (int16x4_t s, int field);
14337 uint16x4_t pinsrh_0_u (uint16x4_t s, uint16x4_t t);
14338 uint16x4_t pinsrh_1_u (uint16x4_t s, uint16x4_t t);
14339 uint16x4_t pinsrh_2_u (uint16x4_t s, uint16x4_t t);
14340 uint16x4_t pinsrh_3_u (uint16x4_t s, uint16x4_t t);
14341 int16x4_t pinsrh_0_s (int16x4_t s, int16x4_t t);
14342 int16x4_t pinsrh_1_s (int16x4_t s, int16x4_t t);
14343 int16x4_t pinsrh_2_s (int16x4_t s, int16x4_t t);
14344 int16x4_t pinsrh_3_s (int16x4_t s, int16x4_t t);
14345 int32x2_t pmaddhw (int16x4_t s, int16x4_t t);
14346 int16x4_t pmaxsh (int16x4_t s, int16x4_t t);
14347 uint8x8_t pmaxub (uint8x8_t s, uint8x8_t t);
14348 int16x4_t pminsh (int16x4_t s, int16x4_t t);
14349 uint8x8_t pminub (uint8x8_t s, uint8x8_t t);
14350 uint8x8_t pmovmskb_u (uint8x8_t s);
14351 int8x8_t pmovmskb_s (int8x8_t s);
14352 uint16x4_t pmulhuh (uint16x4_t s, uint16x4_t t);
14353 int16x4_t pmulhh (int16x4_t s, int16x4_t t);
14354 int16x4_t pmullh (int16x4_t s, int16x4_t t);
14355 int64_t pmuluw (uint32x2_t s, uint32x2_t t);
14356 uint8x8_t pasubub (uint8x8_t s, uint8x8_t t);
14357 uint16x4_t biadd (uint8x8_t s);
14358 uint16x4_t psadbh (uint8x8_t s, uint8x8_t t);
14359 uint16x4_t pshufh_u (uint16x4_t dest, uint16x4_t s, uint8_t order);
14360 int16x4_t pshufh_s (int16x4_t dest, int16x4_t s, uint8_t order);
14361 uint16x4_t psllh_u (uint16x4_t s, uint8_t amount);
14362 int16x4_t psllh_s (int16x4_t s, uint8_t amount);
14363 uint32x2_t psllw_u (uint32x2_t s, uint8_t amount);
14364 int32x2_t psllw_s (int32x2_t s, uint8_t amount);
14365 uint16x4_t psrlh_u (uint16x4_t s, uint8_t amount);
14366 int16x4_t psrlh_s (int16x4_t s, uint8_t amount);
14367 uint32x2_t psrlw_u (uint32x2_t s, uint8_t amount);
14368 int32x2_t psrlw_s (int32x2_t s, uint8_t amount);
14369 uint16x4_t psrah_u (uint16x4_t s, uint8_t amount);
14370 int16x4_t psrah_s (int16x4_t s, uint8_t amount);
14371 uint32x2_t psraw_u (uint32x2_t s, uint8_t amount);
14372 int32x2_t psraw_s (int32x2_t s, uint8_t amount);
14373 uint32x2_t psubw_u (uint32x2_t s, uint32x2_t t);
14374 uint16x4_t psubh_u (uint16x4_t s, uint16x4_t t);
14375 uint8x8_t psubb_u (uint8x8_t s, uint8x8_t t);
14376 int32x2_t psubw_s (int32x2_t s, int32x2_t t);
14377 int16x4_t psubh_s (int16x4_t s, int16x4_t t);
14378 int8x8_t psubb_s (int8x8_t s, int8x8_t t);
14379 uint64_t psubd_u (uint64_t s, uint64_t t);
14380 int64_t psubd_s (int64_t s, int64_t t);
14381 int16x4_t psubsh (int16x4_t s, int16x4_t t);
14382 int8x8_t psubsb (int8x8_t s, int8x8_t t);
14383 uint16x4_t psubush (uint16x4_t s, uint16x4_t t);
14384 uint8x8_t psubusb (uint8x8_t s, uint8x8_t t);
14385 uint32x2_t punpckhwd_u (uint32x2_t s, uint32x2_t t);
14386 uint16x4_t punpckhhw_u (uint16x4_t s, uint16x4_t t);
14387 uint8x8_t punpckhbh_u (uint8x8_t s, uint8x8_t t);
14388 int32x2_t punpckhwd_s (int32x2_t s, int32x2_t t);
14389 int16x4_t punpckhhw_s (int16x4_t s, int16x4_t t);
14390 int8x8_t punpckhbh_s (int8x8_t s, int8x8_t t);
14391 uint32x2_t punpcklwd_u (uint32x2_t s, uint32x2_t t);
14392 uint16x4_t punpcklhw_u (uint16x4_t s, uint16x4_t t);
14393 uint8x8_t punpcklbh_u (uint8x8_t s, uint8x8_t t);
14394 int32x2_t punpcklwd_s (int32x2_t s, int32x2_t t);
14395 int16x4_t punpcklhw_s (int16x4_t s, int16x4_t t);
14396 int8x8_t punpcklbh_s (int8x8_t s, int8x8_t t);
14397 @end smallexample
14399 @menu
14400 * Paired-Single Arithmetic::
14401 * Paired-Single Built-in Functions::
14402 * MIPS-3D Built-in Functions::
14403 @end menu
14405 @node Paired-Single Arithmetic
14406 @subsubsection Paired-Single Arithmetic
14408 The table below lists the @code{v2sf} operations for which hardware
14409 support exists.  @code{a}, @code{b} and @code{c} are @code{v2sf}
14410 values and @code{x} is an integral value.
14412 @multitable @columnfractions .50 .50
14413 @item C code @tab MIPS instruction
14414 @item @code{a + b} @tab @code{add.ps}
14415 @item @code{a - b} @tab @code{sub.ps}
14416 @item @code{-a} @tab @code{neg.ps}
14417 @item @code{a * b} @tab @code{mul.ps}
14418 @item @code{a * b + c} @tab @code{madd.ps}
14419 @item @code{a * b - c} @tab @code{msub.ps}
14420 @item @code{-(a * b + c)} @tab @code{nmadd.ps}
14421 @item @code{-(a * b - c)} @tab @code{nmsub.ps}
14422 @item @code{x ? a : b} @tab @code{movn.ps}/@code{movz.ps}
14423 @end multitable
14425 Note that the multiply-accumulate instructions can be disabled
14426 using the command-line option @code{-mno-fused-madd}.
14428 @node Paired-Single Built-in Functions
14429 @subsubsection Paired-Single Built-in Functions
14431 The following paired-single functions map directly to a particular
14432 MIPS instruction.  Please refer to the architecture specification
14433 for details on what each instruction does.
14435 @table @code
14436 @item v2sf __builtin_mips_pll_ps (v2sf, v2sf)
14437 Pair lower lower (@code{pll.ps}).
14439 @item v2sf __builtin_mips_pul_ps (v2sf, v2sf)
14440 Pair upper lower (@code{pul.ps}).
14442 @item v2sf __builtin_mips_plu_ps (v2sf, v2sf)
14443 Pair lower upper (@code{plu.ps}).
14445 @item v2sf __builtin_mips_puu_ps (v2sf, v2sf)
14446 Pair upper upper (@code{puu.ps}).
14448 @item v2sf __builtin_mips_cvt_ps_s (float, float)
14449 Convert pair to paired single (@code{cvt.ps.s}).
14451 @item float __builtin_mips_cvt_s_pl (v2sf)
14452 Convert pair lower to single (@code{cvt.s.pl}).
14454 @item float __builtin_mips_cvt_s_pu (v2sf)
14455 Convert pair upper to single (@code{cvt.s.pu}).
14457 @item v2sf __builtin_mips_abs_ps (v2sf)
14458 Absolute value (@code{abs.ps}).
14460 @item v2sf __builtin_mips_alnv_ps (v2sf, v2sf, int)
14461 Align variable (@code{alnv.ps}).
14463 @emph{Note:} The value of the third parameter must be 0 or 4
14464 modulo 8, otherwise the result is unpredictable.  Please read the
14465 instruction description for details.
14466 @end table
14468 The following multi-instruction functions are also available.
14469 In each case, @var{cond} can be any of the 16 floating-point conditions:
14470 @code{f}, @code{un}, @code{eq}, @code{ueq}, @code{olt}, @code{ult},
14471 @code{ole}, @code{ule}, @code{sf}, @code{ngle}, @code{seq}, @code{ngl},
14472 @code{lt}, @code{nge}, @code{le} or @code{ngt}.
14474 @table @code
14475 @item v2sf __builtin_mips_movt_c_@var{cond}_ps (v2sf @var{a}, v2sf @var{b}, v2sf @var{c}, v2sf @var{d})
14476 @itemx v2sf __builtin_mips_movf_c_@var{cond}_ps (v2sf @var{a}, v2sf @var{b}, v2sf @var{c}, v2sf @var{d})
14477 Conditional move based on floating-point comparison (@code{c.@var{cond}.ps},
14478 @code{movt.ps}/@code{movf.ps}).
14480 The @code{movt} functions return the value @var{x} computed by:
14482 @smallexample
14483 c.@var{cond}.ps @var{cc},@var{a},@var{b}
14484 mov.ps @var{x},@var{c}
14485 movt.ps @var{x},@var{d},@var{cc}
14486 @end smallexample
14488 The @code{movf} functions are similar but use @code{movf.ps} instead
14489 of @code{movt.ps}.
14491 @item int __builtin_mips_upper_c_@var{cond}_ps (v2sf @var{a}, v2sf @var{b})
14492 @itemx int __builtin_mips_lower_c_@var{cond}_ps (v2sf @var{a}, v2sf @var{b})
14493 Comparison of two paired-single values (@code{c.@var{cond}.ps},
14494 @code{bc1t}/@code{bc1f}).
14496 These functions compare @var{a} and @var{b} using @code{c.@var{cond}.ps}
14497 and return either the upper or lower half of the result.  For example:
14499 @smallexample
14500 v2sf a, b;
14501 if (__builtin_mips_upper_c_eq_ps (a, b))
14502   upper_halves_are_equal ();
14503 else
14504   upper_halves_are_unequal ();
14506 if (__builtin_mips_lower_c_eq_ps (a, b))
14507   lower_halves_are_equal ();
14508 else
14509   lower_halves_are_unequal ();
14510 @end smallexample
14511 @end table
14513 @node MIPS-3D Built-in Functions
14514 @subsubsection MIPS-3D Built-in Functions
14516 The MIPS-3D Application-Specific Extension (ASE) includes additional
14517 paired-single instructions that are designed to improve the performance
14518 of 3D graphics operations.  Support for these instructions is controlled
14519 by the @option{-mips3d} command-line option.
14521 The functions listed below map directly to a particular MIPS-3D
14522 instruction.  Please refer to the architecture specification for
14523 more details on what each instruction does.
14525 @table @code
14526 @item v2sf __builtin_mips_addr_ps (v2sf, v2sf)
14527 Reduction add (@code{addr.ps}).
14529 @item v2sf __builtin_mips_mulr_ps (v2sf, v2sf)
14530 Reduction multiply (@code{mulr.ps}).
14532 @item v2sf __builtin_mips_cvt_pw_ps (v2sf)
14533 Convert paired single to paired word (@code{cvt.pw.ps}).
14535 @item v2sf __builtin_mips_cvt_ps_pw (v2sf)
14536 Convert paired word to paired single (@code{cvt.ps.pw}).
14538 @item float __builtin_mips_recip1_s (float)
14539 @itemx double __builtin_mips_recip1_d (double)
14540 @itemx v2sf __builtin_mips_recip1_ps (v2sf)
14541 Reduced-precision reciprocal (sequence step 1) (@code{recip1.@var{fmt}}).
14543 @item float __builtin_mips_recip2_s (float, float)
14544 @itemx double __builtin_mips_recip2_d (double, double)
14545 @itemx v2sf __builtin_mips_recip2_ps (v2sf, v2sf)
14546 Reduced-precision reciprocal (sequence step 2) (@code{recip2.@var{fmt}}).
14548 @item float __builtin_mips_rsqrt1_s (float)
14549 @itemx double __builtin_mips_rsqrt1_d (double)
14550 @itemx v2sf __builtin_mips_rsqrt1_ps (v2sf)
14551 Reduced-precision reciprocal square root (sequence step 1)
14552 (@code{rsqrt1.@var{fmt}}).
14554 @item float __builtin_mips_rsqrt2_s (float, float)
14555 @itemx double __builtin_mips_rsqrt2_d (double, double)
14556 @itemx v2sf __builtin_mips_rsqrt2_ps (v2sf, v2sf)
14557 Reduced-precision reciprocal square root (sequence step 2)
14558 (@code{rsqrt2.@var{fmt}}).
14559 @end table
14561 The following multi-instruction functions are also available.
14562 In each case, @var{cond} can be any of the 16 floating-point conditions:
14563 @code{f}, @code{un}, @code{eq}, @code{ueq}, @code{olt}, @code{ult},
14564 @code{ole}, @code{ule}, @code{sf}, @code{ngle}, @code{seq},
14565 @code{ngl}, @code{lt}, @code{nge}, @code{le} or @code{ngt}.
14567 @table @code
14568 @item int __builtin_mips_cabs_@var{cond}_s (float @var{a}, float @var{b})
14569 @itemx int __builtin_mips_cabs_@var{cond}_d (double @var{a}, double @var{b})
14570 Absolute comparison of two scalar values (@code{cabs.@var{cond}.@var{fmt}},
14571 @code{bc1t}/@code{bc1f}).
14573 These functions compare @var{a} and @var{b} using @code{cabs.@var{cond}.s}
14574 or @code{cabs.@var{cond}.d} and return the result as a boolean value.
14575 For example:
14577 @smallexample
14578 float a, b;
14579 if (__builtin_mips_cabs_eq_s (a, b))
14580   true ();
14581 else
14582   false ();
14583 @end smallexample
14585 @item int __builtin_mips_upper_cabs_@var{cond}_ps (v2sf @var{a}, v2sf @var{b})
14586 @itemx int __builtin_mips_lower_cabs_@var{cond}_ps (v2sf @var{a}, v2sf @var{b})
14587 Absolute comparison of two paired-single values (@code{cabs.@var{cond}.ps},
14588 @code{bc1t}/@code{bc1f}).
14590 These functions compare @var{a} and @var{b} using @code{cabs.@var{cond}.ps}
14591 and return either the upper or lower half of the result.  For example:
14593 @smallexample
14594 v2sf a, b;
14595 if (__builtin_mips_upper_cabs_eq_ps (a, b))
14596   upper_halves_are_equal ();
14597 else
14598   upper_halves_are_unequal ();
14600 if (__builtin_mips_lower_cabs_eq_ps (a, b))
14601   lower_halves_are_equal ();
14602 else
14603   lower_halves_are_unequal ();
14604 @end smallexample
14606 @item v2sf __builtin_mips_movt_cabs_@var{cond}_ps (v2sf @var{a}, v2sf @var{b}, v2sf @var{c}, v2sf @var{d})
14607 @itemx v2sf __builtin_mips_movf_cabs_@var{cond}_ps (v2sf @var{a}, v2sf @var{b}, v2sf @var{c}, v2sf @var{d})
14608 Conditional move based on absolute comparison (@code{cabs.@var{cond}.ps},
14609 @code{movt.ps}/@code{movf.ps}).
14611 The @code{movt} functions return the value @var{x} computed by:
14613 @smallexample
14614 cabs.@var{cond}.ps @var{cc},@var{a},@var{b}
14615 mov.ps @var{x},@var{c}
14616 movt.ps @var{x},@var{d},@var{cc}
14617 @end smallexample
14619 The @code{movf} functions are similar but use @code{movf.ps} instead
14620 of @code{movt.ps}.
14622 @item int __builtin_mips_any_c_@var{cond}_ps (v2sf @var{a}, v2sf @var{b})
14623 @itemx int __builtin_mips_all_c_@var{cond}_ps (v2sf @var{a}, v2sf @var{b})
14624 @itemx int __builtin_mips_any_cabs_@var{cond}_ps (v2sf @var{a}, v2sf @var{b})
14625 @itemx int __builtin_mips_all_cabs_@var{cond}_ps (v2sf @var{a}, v2sf @var{b})
14626 Comparison of two paired-single values
14627 (@code{c.@var{cond}.ps}/@code{cabs.@var{cond}.ps},
14628 @code{bc1any2t}/@code{bc1any2f}).
14630 These functions compare @var{a} and @var{b} using @code{c.@var{cond}.ps}
14631 or @code{cabs.@var{cond}.ps}.  The @code{any} forms return true if either
14632 result is true and the @code{all} forms return true if both results are true.
14633 For example:
14635 @smallexample
14636 v2sf a, b;
14637 if (__builtin_mips_any_c_eq_ps (a, b))
14638   one_is_true ();
14639 else
14640   both_are_false ();
14642 if (__builtin_mips_all_c_eq_ps (a, b))
14643   both_are_true ();
14644 else
14645   one_is_false ();
14646 @end smallexample
14648 @item int __builtin_mips_any_c_@var{cond}_4s (v2sf @var{a}, v2sf @var{b}, v2sf @var{c}, v2sf @var{d})
14649 @itemx int __builtin_mips_all_c_@var{cond}_4s (v2sf @var{a}, v2sf @var{b}, v2sf @var{c}, v2sf @var{d})
14650 @itemx int __builtin_mips_any_cabs_@var{cond}_4s (v2sf @var{a}, v2sf @var{b}, v2sf @var{c}, v2sf @var{d})
14651 @itemx int __builtin_mips_all_cabs_@var{cond}_4s (v2sf @var{a}, v2sf @var{b}, v2sf @var{c}, v2sf @var{d})
14652 Comparison of four paired-single values
14653 (@code{c.@var{cond}.ps}/@code{cabs.@var{cond}.ps},
14654 @code{bc1any4t}/@code{bc1any4f}).
14656 These functions use @code{c.@var{cond}.ps} or @code{cabs.@var{cond}.ps}
14657 to compare @var{a} with @var{b} and to compare @var{c} with @var{d}.
14658 The @code{any} forms return true if any of the four results are true
14659 and the @code{all} forms return true if all four results are true.
14660 For example:
14662 @smallexample
14663 v2sf a, b, c, d;
14664 if (__builtin_mips_any_c_eq_4s (a, b, c, d))
14665   some_are_true ();
14666 else
14667   all_are_false ();
14669 if (__builtin_mips_all_c_eq_4s (a, b, c, d))
14670   all_are_true ();
14671 else
14672   some_are_false ();
14673 @end smallexample
14674 @end table
14676 @node MIPS SIMD Architecture (MSA) Support
14677 @subsection MIPS SIMD Architecture (MSA) Support
14679 @menu
14680 * MIPS SIMD Architecture Built-in Functions::
14681 @end menu
14683 GCC provides intrinsics to access the SIMD instructions provided by the
14684 MSA MIPS SIMD Architecture.  The interface is made available by including
14685 @code{<msa.h>} and using @option{-mmsa -mhard-float -mfp64 -mnan=2008}.
14686 For each @code{__builtin_msa_*}, there is a shortened name of the intrinsic,
14687 @code{__msa_*}.
14689 MSA implements 128-bit wide vector registers, operating on 8-, 16-, 32- and
14690 64-bit integer, 16- and 32-bit fixed-point, or 32- and 64-bit floating point
14691 data elements.  The following vectors typedefs are included in @code{msa.h}:
14692 @itemize
14693 @item @code{v16i8}, a vector of sixteen signed 8-bit integers;
14694 @item @code{v16u8}, a vector of sixteen unsigned 8-bit integers;
14695 @item @code{v8i16}, a vector of eight signed 16-bit integers;
14696 @item @code{v8u16}, a vector of eight unsigned 16-bit integers;
14697 @item @code{v4i32}, a vector of four signed 32-bit integers;
14698 @item @code{v4u32}, a vector of four unsigned 32-bit integers;
14699 @item @code{v2i64}, a vector of two signed 64-bit integers;
14700 @item @code{v2u64}, a vector of two unsigned 64-bit integers;
14701 @item @code{v4f32}, a vector of four 32-bit floats;
14702 @item @code{v2f64}, a vector of two 64-bit doubles.
14703 @end itemize
14705 Instructions and corresponding built-ins may have additional restrictions and/or
14706 input/output values manipulated:
14707 @itemize
14708 @item @code{imm0_1}, an integer literal in range 0 to 1;
14709 @item @code{imm0_3}, an integer literal in range 0 to 3;
14710 @item @code{imm0_7}, an integer literal in range 0 to 7;
14711 @item @code{imm0_15}, an integer literal in range 0 to 15;
14712 @item @code{imm0_31}, an integer literal in range 0 to 31;
14713 @item @code{imm0_63}, an integer literal in range 0 to 63;
14714 @item @code{imm0_255}, an integer literal in range 0 to 255;
14715 @item @code{imm_n16_15}, an integer literal in range -16 to 15;
14716 @item @code{imm_n512_511}, an integer literal in range -512 to 511;
14717 @item @code{imm_n1024_1022}, an integer literal in range -512 to 511 left
14718 shifted by 1 bit, i.e., -1024, -1022, @dots{}, 1020, 1022;
14719 @item @code{imm_n2048_2044}, an integer literal in range -512 to 511 left
14720 shifted by 2 bits, i.e., -2048, -2044, @dots{}, 2040, 2044;
14721 @item @code{imm_n4096_4088}, an integer literal in range -512 to 511 left
14722 shifted by 3 bits, i.e., -4096, -4088, @dots{}, 4080, 4088;
14723 @item @code{imm1_4}, an integer literal in range 1 to 4;
14724 @item @code{i32, i64, u32, u64, f32, f64}, defined as follows:
14725 @end itemize
14727 @smallexample
14729 typedef int i32;
14730 #if __LONG_MAX__ == __LONG_LONG_MAX__
14731 typedef long i64;
14732 #else
14733 typedef long long i64;
14734 #endif
14736 typedef unsigned int u32;
14737 #if __LONG_MAX__ == __LONG_LONG_MAX__
14738 typedef unsigned long u64;
14739 #else
14740 typedef unsigned long long u64;
14741 #endif
14743 typedef double f64;
14744 typedef float f32;
14746 @end smallexample
14748 @node MIPS SIMD Architecture Built-in Functions
14749 @subsubsection MIPS SIMD Architecture Built-in Functions
14751 The intrinsics provided are listed below; each is named after the
14752 machine instruction.
14754 @smallexample
14755 v16i8 __builtin_msa_add_a_b (v16i8, v16i8);
14756 v8i16 __builtin_msa_add_a_h (v8i16, v8i16);
14757 v4i32 __builtin_msa_add_a_w (v4i32, v4i32);
14758 v2i64 __builtin_msa_add_a_d (v2i64, v2i64);
14760 v16i8 __builtin_msa_adds_a_b (v16i8, v16i8);
14761 v8i16 __builtin_msa_adds_a_h (v8i16, v8i16);
14762 v4i32 __builtin_msa_adds_a_w (v4i32, v4i32);
14763 v2i64 __builtin_msa_adds_a_d (v2i64, v2i64);
14765 v16i8 __builtin_msa_adds_s_b (v16i8, v16i8);
14766 v8i16 __builtin_msa_adds_s_h (v8i16, v8i16);
14767 v4i32 __builtin_msa_adds_s_w (v4i32, v4i32);
14768 v2i64 __builtin_msa_adds_s_d (v2i64, v2i64);
14770 v16u8 __builtin_msa_adds_u_b (v16u8, v16u8);
14771 v8u16 __builtin_msa_adds_u_h (v8u16, v8u16);
14772 v4u32 __builtin_msa_adds_u_w (v4u32, v4u32);
14773 v2u64 __builtin_msa_adds_u_d (v2u64, v2u64);
14775 v16i8 __builtin_msa_addv_b (v16i8, v16i8);
14776 v8i16 __builtin_msa_addv_h (v8i16, v8i16);
14777 v4i32 __builtin_msa_addv_w (v4i32, v4i32);
14778 v2i64 __builtin_msa_addv_d (v2i64, v2i64);
14780 v16i8 __builtin_msa_addvi_b (v16i8, imm0_31);
14781 v8i16 __builtin_msa_addvi_h (v8i16, imm0_31);
14782 v4i32 __builtin_msa_addvi_w (v4i32, imm0_31);
14783 v2i64 __builtin_msa_addvi_d (v2i64, imm0_31);
14785 v16u8 __builtin_msa_and_v (v16u8, v16u8);
14787 v16u8 __builtin_msa_andi_b (v16u8, imm0_255);
14789 v16i8 __builtin_msa_asub_s_b (v16i8, v16i8);
14790 v8i16 __builtin_msa_asub_s_h (v8i16, v8i16);
14791 v4i32 __builtin_msa_asub_s_w (v4i32, v4i32);
14792 v2i64 __builtin_msa_asub_s_d (v2i64, v2i64);
14794 v16u8 __builtin_msa_asub_u_b (v16u8, v16u8);
14795 v8u16 __builtin_msa_asub_u_h (v8u16, v8u16);
14796 v4u32 __builtin_msa_asub_u_w (v4u32, v4u32);
14797 v2u64 __builtin_msa_asub_u_d (v2u64, v2u64);
14799 v16i8 __builtin_msa_ave_s_b (v16i8, v16i8);
14800 v8i16 __builtin_msa_ave_s_h (v8i16, v8i16);
14801 v4i32 __builtin_msa_ave_s_w (v4i32, v4i32);
14802 v2i64 __builtin_msa_ave_s_d (v2i64, v2i64);
14804 v16u8 __builtin_msa_ave_u_b (v16u8, v16u8);
14805 v8u16 __builtin_msa_ave_u_h (v8u16, v8u16);
14806 v4u32 __builtin_msa_ave_u_w (v4u32, v4u32);
14807 v2u64 __builtin_msa_ave_u_d (v2u64, v2u64);
14809 v16i8 __builtin_msa_aver_s_b (v16i8, v16i8);
14810 v8i16 __builtin_msa_aver_s_h (v8i16, v8i16);
14811 v4i32 __builtin_msa_aver_s_w (v4i32, v4i32);
14812 v2i64 __builtin_msa_aver_s_d (v2i64, v2i64);
14814 v16u8 __builtin_msa_aver_u_b (v16u8, v16u8);
14815 v8u16 __builtin_msa_aver_u_h (v8u16, v8u16);
14816 v4u32 __builtin_msa_aver_u_w (v4u32, v4u32);
14817 v2u64 __builtin_msa_aver_u_d (v2u64, v2u64);
14819 v16u8 __builtin_msa_bclr_b (v16u8, v16u8);
14820 v8u16 __builtin_msa_bclr_h (v8u16, v8u16);
14821 v4u32 __builtin_msa_bclr_w (v4u32, v4u32);
14822 v2u64 __builtin_msa_bclr_d (v2u64, v2u64);
14824 v16u8 __builtin_msa_bclri_b (v16u8, imm0_7);
14825 v8u16 __builtin_msa_bclri_h (v8u16, imm0_15);
14826 v4u32 __builtin_msa_bclri_w (v4u32, imm0_31);
14827 v2u64 __builtin_msa_bclri_d (v2u64, imm0_63);
14829 v16u8 __builtin_msa_binsl_b (v16u8, v16u8, v16u8);
14830 v8u16 __builtin_msa_binsl_h (v8u16, v8u16, v8u16);
14831 v4u32 __builtin_msa_binsl_w (v4u32, v4u32, v4u32);
14832 v2u64 __builtin_msa_binsl_d (v2u64, v2u64, v2u64);
14834 v16u8 __builtin_msa_binsli_b (v16u8, v16u8, imm0_7);
14835 v8u16 __builtin_msa_binsli_h (v8u16, v8u16, imm0_15);
14836 v4u32 __builtin_msa_binsli_w (v4u32, v4u32, imm0_31);
14837 v2u64 __builtin_msa_binsli_d (v2u64, v2u64, imm0_63);
14839 v16u8 __builtin_msa_binsr_b (v16u8, v16u8, v16u8);
14840 v8u16 __builtin_msa_binsr_h (v8u16, v8u16, v8u16);
14841 v4u32 __builtin_msa_binsr_w (v4u32, v4u32, v4u32);
14842 v2u64 __builtin_msa_binsr_d (v2u64, v2u64, v2u64);
14844 v16u8 __builtin_msa_binsri_b (v16u8, v16u8, imm0_7);
14845 v8u16 __builtin_msa_binsri_h (v8u16, v8u16, imm0_15);
14846 v4u32 __builtin_msa_binsri_w (v4u32, v4u32, imm0_31);
14847 v2u64 __builtin_msa_binsri_d (v2u64, v2u64, imm0_63);
14849 v16u8 __builtin_msa_bmnz_v (v16u8, v16u8, v16u8);
14851 v16u8 __builtin_msa_bmnzi_b (v16u8, v16u8, imm0_255);
14853 v16u8 __builtin_msa_bmz_v (v16u8, v16u8, v16u8);
14855 v16u8 __builtin_msa_bmzi_b (v16u8, v16u8, imm0_255);
14857 v16u8 __builtin_msa_bneg_b (v16u8, v16u8);
14858 v8u16 __builtin_msa_bneg_h (v8u16, v8u16);
14859 v4u32 __builtin_msa_bneg_w (v4u32, v4u32);
14860 v2u64 __builtin_msa_bneg_d (v2u64, v2u64);
14862 v16u8 __builtin_msa_bnegi_b (v16u8, imm0_7);
14863 v8u16 __builtin_msa_bnegi_h (v8u16, imm0_15);
14864 v4u32 __builtin_msa_bnegi_w (v4u32, imm0_31);
14865 v2u64 __builtin_msa_bnegi_d (v2u64, imm0_63);
14867 i32 __builtin_msa_bnz_b (v16u8);
14868 i32 __builtin_msa_bnz_h (v8u16);
14869 i32 __builtin_msa_bnz_w (v4u32);
14870 i32 __builtin_msa_bnz_d (v2u64);
14872 i32 __builtin_msa_bnz_v (v16u8);
14874 v16u8 __builtin_msa_bsel_v (v16u8, v16u8, v16u8);
14876 v16u8 __builtin_msa_bseli_b (v16u8, v16u8, imm0_255);
14878 v16u8 __builtin_msa_bset_b (v16u8, v16u8);
14879 v8u16 __builtin_msa_bset_h (v8u16, v8u16);
14880 v4u32 __builtin_msa_bset_w (v4u32, v4u32);
14881 v2u64 __builtin_msa_bset_d (v2u64, v2u64);
14883 v16u8 __builtin_msa_bseti_b (v16u8, imm0_7);
14884 v8u16 __builtin_msa_bseti_h (v8u16, imm0_15);
14885 v4u32 __builtin_msa_bseti_w (v4u32, imm0_31);
14886 v2u64 __builtin_msa_bseti_d (v2u64, imm0_63);
14888 i32 __builtin_msa_bz_b (v16u8);
14889 i32 __builtin_msa_bz_h (v8u16);
14890 i32 __builtin_msa_bz_w (v4u32);
14891 i32 __builtin_msa_bz_d (v2u64);
14893 i32 __builtin_msa_bz_v (v16u8);
14895 v16i8 __builtin_msa_ceq_b (v16i8, v16i8);
14896 v8i16 __builtin_msa_ceq_h (v8i16, v8i16);
14897 v4i32 __builtin_msa_ceq_w (v4i32, v4i32);
14898 v2i64 __builtin_msa_ceq_d (v2i64, v2i64);
14900 v16i8 __builtin_msa_ceqi_b (v16i8, imm_n16_15);
14901 v8i16 __builtin_msa_ceqi_h (v8i16, imm_n16_15);
14902 v4i32 __builtin_msa_ceqi_w (v4i32, imm_n16_15);
14903 v2i64 __builtin_msa_ceqi_d (v2i64, imm_n16_15);
14905 i32 __builtin_msa_cfcmsa (imm0_31);
14907 v16i8 __builtin_msa_cle_s_b (v16i8, v16i8);
14908 v8i16 __builtin_msa_cle_s_h (v8i16, v8i16);
14909 v4i32 __builtin_msa_cle_s_w (v4i32, v4i32);
14910 v2i64 __builtin_msa_cle_s_d (v2i64, v2i64);
14912 v16i8 __builtin_msa_cle_u_b (v16u8, v16u8);
14913 v8i16 __builtin_msa_cle_u_h (v8u16, v8u16);
14914 v4i32 __builtin_msa_cle_u_w (v4u32, v4u32);
14915 v2i64 __builtin_msa_cle_u_d (v2u64, v2u64);
14917 v16i8 __builtin_msa_clei_s_b (v16i8, imm_n16_15);
14918 v8i16 __builtin_msa_clei_s_h (v8i16, imm_n16_15);
14919 v4i32 __builtin_msa_clei_s_w (v4i32, imm_n16_15);
14920 v2i64 __builtin_msa_clei_s_d (v2i64, imm_n16_15);
14922 v16i8 __builtin_msa_clei_u_b (v16u8, imm0_31);
14923 v8i16 __builtin_msa_clei_u_h (v8u16, imm0_31);
14924 v4i32 __builtin_msa_clei_u_w (v4u32, imm0_31);
14925 v2i64 __builtin_msa_clei_u_d (v2u64, imm0_31);
14927 v16i8 __builtin_msa_clt_s_b (v16i8, v16i8);
14928 v8i16 __builtin_msa_clt_s_h (v8i16, v8i16);
14929 v4i32 __builtin_msa_clt_s_w (v4i32, v4i32);
14930 v2i64 __builtin_msa_clt_s_d (v2i64, v2i64);
14932 v16i8 __builtin_msa_clt_u_b (v16u8, v16u8);
14933 v8i16 __builtin_msa_clt_u_h (v8u16, v8u16);
14934 v4i32 __builtin_msa_clt_u_w (v4u32, v4u32);
14935 v2i64 __builtin_msa_clt_u_d (v2u64, v2u64);
14937 v16i8 __builtin_msa_clti_s_b (v16i8, imm_n16_15);
14938 v8i16 __builtin_msa_clti_s_h (v8i16, imm_n16_15);
14939 v4i32 __builtin_msa_clti_s_w (v4i32, imm_n16_15);
14940 v2i64 __builtin_msa_clti_s_d (v2i64, imm_n16_15);
14942 v16i8 __builtin_msa_clti_u_b (v16u8, imm0_31);
14943 v8i16 __builtin_msa_clti_u_h (v8u16, imm0_31);
14944 v4i32 __builtin_msa_clti_u_w (v4u32, imm0_31);
14945 v2i64 __builtin_msa_clti_u_d (v2u64, imm0_31);
14947 i32 __builtin_msa_copy_s_b (v16i8, imm0_15);
14948 i32 __builtin_msa_copy_s_h (v8i16, imm0_7);
14949 i32 __builtin_msa_copy_s_w (v4i32, imm0_3);
14950 i64 __builtin_msa_copy_s_d (v2i64, imm0_1);
14952 u32 __builtin_msa_copy_u_b (v16i8, imm0_15);
14953 u32 __builtin_msa_copy_u_h (v8i16, imm0_7);
14954 u32 __builtin_msa_copy_u_w (v4i32, imm0_3);
14955 u64 __builtin_msa_copy_u_d (v2i64, imm0_1);
14957 void __builtin_msa_ctcmsa (imm0_31, i32);
14959 v16i8 __builtin_msa_div_s_b (v16i8, v16i8);
14960 v8i16 __builtin_msa_div_s_h (v8i16, v8i16);
14961 v4i32 __builtin_msa_div_s_w (v4i32, v4i32);
14962 v2i64 __builtin_msa_div_s_d (v2i64, v2i64);
14964 v16u8 __builtin_msa_div_u_b (v16u8, v16u8);
14965 v8u16 __builtin_msa_div_u_h (v8u16, v8u16);
14966 v4u32 __builtin_msa_div_u_w (v4u32, v4u32);
14967 v2u64 __builtin_msa_div_u_d (v2u64, v2u64);
14969 v8i16 __builtin_msa_dotp_s_h (v16i8, v16i8);
14970 v4i32 __builtin_msa_dotp_s_w (v8i16, v8i16);
14971 v2i64 __builtin_msa_dotp_s_d (v4i32, v4i32);
14973 v8u16 __builtin_msa_dotp_u_h (v16u8, v16u8);
14974 v4u32 __builtin_msa_dotp_u_w (v8u16, v8u16);
14975 v2u64 __builtin_msa_dotp_u_d (v4u32, v4u32);
14977 v8i16 __builtin_msa_dpadd_s_h (v8i16, v16i8, v16i8);
14978 v4i32 __builtin_msa_dpadd_s_w (v4i32, v8i16, v8i16);
14979 v2i64 __builtin_msa_dpadd_s_d (v2i64, v4i32, v4i32);
14981 v8u16 __builtin_msa_dpadd_u_h (v8u16, v16u8, v16u8);
14982 v4u32 __builtin_msa_dpadd_u_w (v4u32, v8u16, v8u16);
14983 v2u64 __builtin_msa_dpadd_u_d (v2u64, v4u32, v4u32);
14985 v8i16 __builtin_msa_dpsub_s_h (v8i16, v16i8, v16i8);
14986 v4i32 __builtin_msa_dpsub_s_w (v4i32, v8i16, v8i16);
14987 v2i64 __builtin_msa_dpsub_s_d (v2i64, v4i32, v4i32);
14989 v8i16 __builtin_msa_dpsub_u_h (v8i16, v16u8, v16u8);
14990 v4i32 __builtin_msa_dpsub_u_w (v4i32, v8u16, v8u16);
14991 v2i64 __builtin_msa_dpsub_u_d (v2i64, v4u32, v4u32);
14993 v4f32 __builtin_msa_fadd_w (v4f32, v4f32);
14994 v2f64 __builtin_msa_fadd_d (v2f64, v2f64);
14996 v4i32 __builtin_msa_fcaf_w (v4f32, v4f32);
14997 v2i64 __builtin_msa_fcaf_d (v2f64, v2f64);
14999 v4i32 __builtin_msa_fceq_w (v4f32, v4f32);
15000 v2i64 __builtin_msa_fceq_d (v2f64, v2f64);
15002 v4i32 __builtin_msa_fclass_w (v4f32);
15003 v2i64 __builtin_msa_fclass_d (v2f64);
15005 v4i32 __builtin_msa_fcle_w (v4f32, v4f32);
15006 v2i64 __builtin_msa_fcle_d (v2f64, v2f64);
15008 v4i32 __builtin_msa_fclt_w (v4f32, v4f32);
15009 v2i64 __builtin_msa_fclt_d (v2f64, v2f64);
15011 v4i32 __builtin_msa_fcne_w (v4f32, v4f32);
15012 v2i64 __builtin_msa_fcne_d (v2f64, v2f64);
15014 v4i32 __builtin_msa_fcor_w (v4f32, v4f32);
15015 v2i64 __builtin_msa_fcor_d (v2f64, v2f64);
15017 v4i32 __builtin_msa_fcueq_w (v4f32, v4f32);
15018 v2i64 __builtin_msa_fcueq_d (v2f64, v2f64);
15020 v4i32 __builtin_msa_fcule_w (v4f32, v4f32);
15021 v2i64 __builtin_msa_fcule_d (v2f64, v2f64);
15023 v4i32 __builtin_msa_fcult_w (v4f32, v4f32);
15024 v2i64 __builtin_msa_fcult_d (v2f64, v2f64);
15026 v4i32 __builtin_msa_fcun_w (v4f32, v4f32);
15027 v2i64 __builtin_msa_fcun_d (v2f64, v2f64);
15029 v4i32 __builtin_msa_fcune_w (v4f32, v4f32);
15030 v2i64 __builtin_msa_fcune_d (v2f64, v2f64);
15032 v4f32 __builtin_msa_fdiv_w (v4f32, v4f32);
15033 v2f64 __builtin_msa_fdiv_d (v2f64, v2f64);
15035 v8i16 __builtin_msa_fexdo_h (v4f32, v4f32);
15036 v4f32 __builtin_msa_fexdo_w (v2f64, v2f64);
15038 v4f32 __builtin_msa_fexp2_w (v4f32, v4i32);
15039 v2f64 __builtin_msa_fexp2_d (v2f64, v2i64);
15041 v4f32 __builtin_msa_fexupl_w (v8i16);
15042 v2f64 __builtin_msa_fexupl_d (v4f32);
15044 v4f32 __builtin_msa_fexupr_w (v8i16);
15045 v2f64 __builtin_msa_fexupr_d (v4f32);
15047 v4f32 __builtin_msa_ffint_s_w (v4i32);
15048 v2f64 __builtin_msa_ffint_s_d (v2i64);
15050 v4f32 __builtin_msa_ffint_u_w (v4u32);
15051 v2f64 __builtin_msa_ffint_u_d (v2u64);
15053 v4f32 __builtin_msa_ffql_w (v8i16);
15054 v2f64 __builtin_msa_ffql_d (v4i32);
15056 v4f32 __builtin_msa_ffqr_w (v8i16);
15057 v2f64 __builtin_msa_ffqr_d (v4i32);
15059 v16i8 __builtin_msa_fill_b (i32);
15060 v8i16 __builtin_msa_fill_h (i32);
15061 v4i32 __builtin_msa_fill_w (i32);
15062 v2i64 __builtin_msa_fill_d (i64);
15064 v4f32 __builtin_msa_flog2_w (v4f32);
15065 v2f64 __builtin_msa_flog2_d (v2f64);
15067 v4f32 __builtin_msa_fmadd_w (v4f32, v4f32, v4f32);
15068 v2f64 __builtin_msa_fmadd_d (v2f64, v2f64, v2f64);
15070 v4f32 __builtin_msa_fmax_w (v4f32, v4f32);
15071 v2f64 __builtin_msa_fmax_d (v2f64, v2f64);
15073 v4f32 __builtin_msa_fmax_a_w (v4f32, v4f32);
15074 v2f64 __builtin_msa_fmax_a_d (v2f64, v2f64);
15076 v4f32 __builtin_msa_fmin_w (v4f32, v4f32);
15077 v2f64 __builtin_msa_fmin_d (v2f64, v2f64);
15079 v4f32 __builtin_msa_fmin_a_w (v4f32, v4f32);
15080 v2f64 __builtin_msa_fmin_a_d (v2f64, v2f64);
15082 v4f32 __builtin_msa_fmsub_w (v4f32, v4f32, v4f32);
15083 v2f64 __builtin_msa_fmsub_d (v2f64, v2f64, v2f64);
15085 v4f32 __builtin_msa_fmul_w (v4f32, v4f32);
15086 v2f64 __builtin_msa_fmul_d (v2f64, v2f64);
15088 v4f32 __builtin_msa_frint_w (v4f32);
15089 v2f64 __builtin_msa_frint_d (v2f64);
15091 v4f32 __builtin_msa_frcp_w (v4f32);
15092 v2f64 __builtin_msa_frcp_d (v2f64);
15094 v4f32 __builtin_msa_frsqrt_w (v4f32);
15095 v2f64 __builtin_msa_frsqrt_d (v2f64);
15097 v4i32 __builtin_msa_fsaf_w (v4f32, v4f32);
15098 v2i64 __builtin_msa_fsaf_d (v2f64, v2f64);
15100 v4i32 __builtin_msa_fseq_w (v4f32, v4f32);
15101 v2i64 __builtin_msa_fseq_d (v2f64, v2f64);
15103 v4i32 __builtin_msa_fsle_w (v4f32, v4f32);
15104 v2i64 __builtin_msa_fsle_d (v2f64, v2f64);
15106 v4i32 __builtin_msa_fslt_w (v4f32, v4f32);
15107 v2i64 __builtin_msa_fslt_d (v2f64, v2f64);
15109 v4i32 __builtin_msa_fsne_w (v4f32, v4f32);
15110 v2i64 __builtin_msa_fsne_d (v2f64, v2f64);
15112 v4i32 __builtin_msa_fsor_w (v4f32, v4f32);
15113 v2i64 __builtin_msa_fsor_d (v2f64, v2f64);
15115 v4f32 __builtin_msa_fsqrt_w (v4f32);
15116 v2f64 __builtin_msa_fsqrt_d (v2f64);
15118 v4f32 __builtin_msa_fsub_w (v4f32, v4f32);
15119 v2f64 __builtin_msa_fsub_d (v2f64, v2f64);
15121 v4i32 __builtin_msa_fsueq_w (v4f32, v4f32);
15122 v2i64 __builtin_msa_fsueq_d (v2f64, v2f64);
15124 v4i32 __builtin_msa_fsule_w (v4f32, v4f32);
15125 v2i64 __builtin_msa_fsule_d (v2f64, v2f64);
15127 v4i32 __builtin_msa_fsult_w (v4f32, v4f32);
15128 v2i64 __builtin_msa_fsult_d (v2f64, v2f64);
15130 v4i32 __builtin_msa_fsun_w (v4f32, v4f32);
15131 v2i64 __builtin_msa_fsun_d (v2f64, v2f64);
15133 v4i32 __builtin_msa_fsune_w (v4f32, v4f32);
15134 v2i64 __builtin_msa_fsune_d (v2f64, v2f64);
15136 v4i32 __builtin_msa_ftint_s_w (v4f32);
15137 v2i64 __builtin_msa_ftint_s_d (v2f64);
15139 v4u32 __builtin_msa_ftint_u_w (v4f32);
15140 v2u64 __builtin_msa_ftint_u_d (v2f64);
15142 v8i16 __builtin_msa_ftq_h (v4f32, v4f32);
15143 v4i32 __builtin_msa_ftq_w (v2f64, v2f64);
15145 v4i32 __builtin_msa_ftrunc_s_w (v4f32);
15146 v2i64 __builtin_msa_ftrunc_s_d (v2f64);
15148 v4u32 __builtin_msa_ftrunc_u_w (v4f32);
15149 v2u64 __builtin_msa_ftrunc_u_d (v2f64);
15151 v8i16 __builtin_msa_hadd_s_h (v16i8, v16i8);
15152 v4i32 __builtin_msa_hadd_s_w (v8i16, v8i16);
15153 v2i64 __builtin_msa_hadd_s_d (v4i32, v4i32);
15155 v8u16 __builtin_msa_hadd_u_h (v16u8, v16u8);
15156 v4u32 __builtin_msa_hadd_u_w (v8u16, v8u16);
15157 v2u64 __builtin_msa_hadd_u_d (v4u32, v4u32);
15159 v8i16 __builtin_msa_hsub_s_h (v16i8, v16i8);
15160 v4i32 __builtin_msa_hsub_s_w (v8i16, v8i16);
15161 v2i64 __builtin_msa_hsub_s_d (v4i32, v4i32);
15163 v8i16 __builtin_msa_hsub_u_h (v16u8, v16u8);
15164 v4i32 __builtin_msa_hsub_u_w (v8u16, v8u16);
15165 v2i64 __builtin_msa_hsub_u_d (v4u32, v4u32);
15167 v16i8 __builtin_msa_ilvev_b (v16i8, v16i8);
15168 v8i16 __builtin_msa_ilvev_h (v8i16, v8i16);
15169 v4i32 __builtin_msa_ilvev_w (v4i32, v4i32);
15170 v2i64 __builtin_msa_ilvev_d (v2i64, v2i64);
15172 v16i8 __builtin_msa_ilvl_b (v16i8, v16i8);
15173 v8i16 __builtin_msa_ilvl_h (v8i16, v8i16);
15174 v4i32 __builtin_msa_ilvl_w (v4i32, v4i32);
15175 v2i64 __builtin_msa_ilvl_d (v2i64, v2i64);
15177 v16i8 __builtin_msa_ilvod_b (v16i8, v16i8);
15178 v8i16 __builtin_msa_ilvod_h (v8i16, v8i16);
15179 v4i32 __builtin_msa_ilvod_w (v4i32, v4i32);
15180 v2i64 __builtin_msa_ilvod_d (v2i64, v2i64);
15182 v16i8 __builtin_msa_ilvr_b (v16i8, v16i8);
15183 v8i16 __builtin_msa_ilvr_h (v8i16, v8i16);
15184 v4i32 __builtin_msa_ilvr_w (v4i32, v4i32);
15185 v2i64 __builtin_msa_ilvr_d (v2i64, v2i64);
15187 v16i8 __builtin_msa_insert_b (v16i8, imm0_15, i32);
15188 v8i16 __builtin_msa_insert_h (v8i16, imm0_7, i32);
15189 v4i32 __builtin_msa_insert_w (v4i32, imm0_3, i32);
15190 v2i64 __builtin_msa_insert_d (v2i64, imm0_1, i64);
15192 v16i8 __builtin_msa_insve_b (v16i8, imm0_15, v16i8);
15193 v8i16 __builtin_msa_insve_h (v8i16, imm0_7, v8i16);
15194 v4i32 __builtin_msa_insve_w (v4i32, imm0_3, v4i32);
15195 v2i64 __builtin_msa_insve_d (v2i64, imm0_1, v2i64);
15197 v16i8 __builtin_msa_ld_b (void *, imm_n512_511);
15198 v8i16 __builtin_msa_ld_h (void *, imm_n1024_1022);
15199 v4i32 __builtin_msa_ld_w (void *, imm_n2048_2044);
15200 v2i64 __builtin_msa_ld_d (void *, imm_n4096_4088);
15202 v16i8 __builtin_msa_ldi_b (imm_n512_511);
15203 v8i16 __builtin_msa_ldi_h (imm_n512_511);
15204 v4i32 __builtin_msa_ldi_w (imm_n512_511);
15205 v2i64 __builtin_msa_ldi_d (imm_n512_511);
15207 v8i16 __builtin_msa_madd_q_h (v8i16, v8i16, v8i16);
15208 v4i32 __builtin_msa_madd_q_w (v4i32, v4i32, v4i32);
15210 v8i16 __builtin_msa_maddr_q_h (v8i16, v8i16, v8i16);
15211 v4i32 __builtin_msa_maddr_q_w (v4i32, v4i32, v4i32);
15213 v16i8 __builtin_msa_maddv_b (v16i8, v16i8, v16i8);
15214 v8i16 __builtin_msa_maddv_h (v8i16, v8i16, v8i16);
15215 v4i32 __builtin_msa_maddv_w (v4i32, v4i32, v4i32);
15216 v2i64 __builtin_msa_maddv_d (v2i64, v2i64, v2i64);
15218 v16i8 __builtin_msa_max_a_b (v16i8, v16i8);
15219 v8i16 __builtin_msa_max_a_h (v8i16, v8i16);
15220 v4i32 __builtin_msa_max_a_w (v4i32, v4i32);
15221 v2i64 __builtin_msa_max_a_d (v2i64, v2i64);
15223 v16i8 __builtin_msa_max_s_b (v16i8, v16i8);
15224 v8i16 __builtin_msa_max_s_h (v8i16, v8i16);
15225 v4i32 __builtin_msa_max_s_w (v4i32, v4i32);
15226 v2i64 __builtin_msa_max_s_d (v2i64, v2i64);
15228 v16u8 __builtin_msa_max_u_b (v16u8, v16u8);
15229 v8u16 __builtin_msa_max_u_h (v8u16, v8u16);
15230 v4u32 __builtin_msa_max_u_w (v4u32, v4u32);
15231 v2u64 __builtin_msa_max_u_d (v2u64, v2u64);
15233 v16i8 __builtin_msa_maxi_s_b (v16i8, imm_n16_15);
15234 v8i16 __builtin_msa_maxi_s_h (v8i16, imm_n16_15);
15235 v4i32 __builtin_msa_maxi_s_w (v4i32, imm_n16_15);
15236 v2i64 __builtin_msa_maxi_s_d (v2i64, imm_n16_15);
15238 v16u8 __builtin_msa_maxi_u_b (v16u8, imm0_31);
15239 v8u16 __builtin_msa_maxi_u_h (v8u16, imm0_31);
15240 v4u32 __builtin_msa_maxi_u_w (v4u32, imm0_31);
15241 v2u64 __builtin_msa_maxi_u_d (v2u64, imm0_31);
15243 v16i8 __builtin_msa_min_a_b (v16i8, v16i8);
15244 v8i16 __builtin_msa_min_a_h (v8i16, v8i16);
15245 v4i32 __builtin_msa_min_a_w (v4i32, v4i32);
15246 v2i64 __builtin_msa_min_a_d (v2i64, v2i64);
15248 v16i8 __builtin_msa_min_s_b (v16i8, v16i8);
15249 v8i16 __builtin_msa_min_s_h (v8i16, v8i16);
15250 v4i32 __builtin_msa_min_s_w (v4i32, v4i32);
15251 v2i64 __builtin_msa_min_s_d (v2i64, v2i64);
15253 v16u8 __builtin_msa_min_u_b (v16u8, v16u8);
15254 v8u16 __builtin_msa_min_u_h (v8u16, v8u16);
15255 v4u32 __builtin_msa_min_u_w (v4u32, v4u32);
15256 v2u64 __builtin_msa_min_u_d (v2u64, v2u64);
15258 v16i8 __builtin_msa_mini_s_b (v16i8, imm_n16_15);
15259 v8i16 __builtin_msa_mini_s_h (v8i16, imm_n16_15);
15260 v4i32 __builtin_msa_mini_s_w (v4i32, imm_n16_15);
15261 v2i64 __builtin_msa_mini_s_d (v2i64, imm_n16_15);
15263 v16u8 __builtin_msa_mini_u_b (v16u8, imm0_31);
15264 v8u16 __builtin_msa_mini_u_h (v8u16, imm0_31);
15265 v4u32 __builtin_msa_mini_u_w (v4u32, imm0_31);
15266 v2u64 __builtin_msa_mini_u_d (v2u64, imm0_31);
15268 v16i8 __builtin_msa_mod_s_b (v16i8, v16i8);
15269 v8i16 __builtin_msa_mod_s_h (v8i16, v8i16);
15270 v4i32 __builtin_msa_mod_s_w (v4i32, v4i32);
15271 v2i64 __builtin_msa_mod_s_d (v2i64, v2i64);
15273 v16u8 __builtin_msa_mod_u_b (v16u8, v16u8);
15274 v8u16 __builtin_msa_mod_u_h (v8u16, v8u16);
15275 v4u32 __builtin_msa_mod_u_w (v4u32, v4u32);
15276 v2u64 __builtin_msa_mod_u_d (v2u64, v2u64);
15278 v16i8 __builtin_msa_move_v (v16i8);
15280 v8i16 __builtin_msa_msub_q_h (v8i16, v8i16, v8i16);
15281 v4i32 __builtin_msa_msub_q_w (v4i32, v4i32, v4i32);
15283 v8i16 __builtin_msa_msubr_q_h (v8i16, v8i16, v8i16);
15284 v4i32 __builtin_msa_msubr_q_w (v4i32, v4i32, v4i32);
15286 v16i8 __builtin_msa_msubv_b (v16i8, v16i8, v16i8);
15287 v8i16 __builtin_msa_msubv_h (v8i16, v8i16, v8i16);
15288 v4i32 __builtin_msa_msubv_w (v4i32, v4i32, v4i32);
15289 v2i64 __builtin_msa_msubv_d (v2i64, v2i64, v2i64);
15291 v8i16 __builtin_msa_mul_q_h (v8i16, v8i16);
15292 v4i32 __builtin_msa_mul_q_w (v4i32, v4i32);
15294 v8i16 __builtin_msa_mulr_q_h (v8i16, v8i16);
15295 v4i32 __builtin_msa_mulr_q_w (v4i32, v4i32);
15297 v16i8 __builtin_msa_mulv_b (v16i8, v16i8);
15298 v8i16 __builtin_msa_mulv_h (v8i16, v8i16);
15299 v4i32 __builtin_msa_mulv_w (v4i32, v4i32);
15300 v2i64 __builtin_msa_mulv_d (v2i64, v2i64);
15302 v16i8 __builtin_msa_nloc_b (v16i8);
15303 v8i16 __builtin_msa_nloc_h (v8i16);
15304 v4i32 __builtin_msa_nloc_w (v4i32);
15305 v2i64 __builtin_msa_nloc_d (v2i64);
15307 v16i8 __builtin_msa_nlzc_b (v16i8);
15308 v8i16 __builtin_msa_nlzc_h (v8i16);
15309 v4i32 __builtin_msa_nlzc_w (v4i32);
15310 v2i64 __builtin_msa_nlzc_d (v2i64);
15312 v16u8 __builtin_msa_nor_v (v16u8, v16u8);
15314 v16u8 __builtin_msa_nori_b (v16u8, imm0_255);
15316 v16u8 __builtin_msa_or_v (v16u8, v16u8);
15318 v16u8 __builtin_msa_ori_b (v16u8, imm0_255);
15320 v16i8 __builtin_msa_pckev_b (v16i8, v16i8);
15321 v8i16 __builtin_msa_pckev_h (v8i16, v8i16);
15322 v4i32 __builtin_msa_pckev_w (v4i32, v4i32);
15323 v2i64 __builtin_msa_pckev_d (v2i64, v2i64);
15325 v16i8 __builtin_msa_pckod_b (v16i8, v16i8);
15326 v8i16 __builtin_msa_pckod_h (v8i16, v8i16);
15327 v4i32 __builtin_msa_pckod_w (v4i32, v4i32);
15328 v2i64 __builtin_msa_pckod_d (v2i64, v2i64);
15330 v16i8 __builtin_msa_pcnt_b (v16i8);
15331 v8i16 __builtin_msa_pcnt_h (v8i16);
15332 v4i32 __builtin_msa_pcnt_w (v4i32);
15333 v2i64 __builtin_msa_pcnt_d (v2i64);
15335 v16i8 __builtin_msa_sat_s_b (v16i8, imm0_7);
15336 v8i16 __builtin_msa_sat_s_h (v8i16, imm0_15);
15337 v4i32 __builtin_msa_sat_s_w (v4i32, imm0_31);
15338 v2i64 __builtin_msa_sat_s_d (v2i64, imm0_63);
15340 v16u8 __builtin_msa_sat_u_b (v16u8, imm0_7);
15341 v8u16 __builtin_msa_sat_u_h (v8u16, imm0_15);
15342 v4u32 __builtin_msa_sat_u_w (v4u32, imm0_31);
15343 v2u64 __builtin_msa_sat_u_d (v2u64, imm0_63);
15345 v16i8 __builtin_msa_shf_b (v16i8, imm0_255);
15346 v8i16 __builtin_msa_shf_h (v8i16, imm0_255);
15347 v4i32 __builtin_msa_shf_w (v4i32, imm0_255);
15349 v16i8 __builtin_msa_sld_b (v16i8, v16i8, i32);
15350 v8i16 __builtin_msa_sld_h (v8i16, v8i16, i32);
15351 v4i32 __builtin_msa_sld_w (v4i32, v4i32, i32);
15352 v2i64 __builtin_msa_sld_d (v2i64, v2i64, i32);
15354 v16i8 __builtin_msa_sldi_b (v16i8, v16i8, imm0_15);
15355 v8i16 __builtin_msa_sldi_h (v8i16, v8i16, imm0_7);
15356 v4i32 __builtin_msa_sldi_w (v4i32, v4i32, imm0_3);
15357 v2i64 __builtin_msa_sldi_d (v2i64, v2i64, imm0_1);
15359 v16i8 __builtin_msa_sll_b (v16i8, v16i8);
15360 v8i16 __builtin_msa_sll_h (v8i16, v8i16);
15361 v4i32 __builtin_msa_sll_w (v4i32, v4i32);
15362 v2i64 __builtin_msa_sll_d (v2i64, v2i64);
15364 v16i8 __builtin_msa_slli_b (v16i8, imm0_7);
15365 v8i16 __builtin_msa_slli_h (v8i16, imm0_15);
15366 v4i32 __builtin_msa_slli_w (v4i32, imm0_31);
15367 v2i64 __builtin_msa_slli_d (v2i64, imm0_63);
15369 v16i8 __builtin_msa_splat_b (v16i8, i32);
15370 v8i16 __builtin_msa_splat_h (v8i16, i32);
15371 v4i32 __builtin_msa_splat_w (v4i32, i32);
15372 v2i64 __builtin_msa_splat_d (v2i64, i32);
15374 v16i8 __builtin_msa_splati_b (v16i8, imm0_15);
15375 v8i16 __builtin_msa_splati_h (v8i16, imm0_7);
15376 v4i32 __builtin_msa_splati_w (v4i32, imm0_3);
15377 v2i64 __builtin_msa_splati_d (v2i64, imm0_1);
15379 v16i8 __builtin_msa_sra_b (v16i8, v16i8);
15380 v8i16 __builtin_msa_sra_h (v8i16, v8i16);
15381 v4i32 __builtin_msa_sra_w (v4i32, v4i32);
15382 v2i64 __builtin_msa_sra_d (v2i64, v2i64);
15384 v16i8 __builtin_msa_srai_b (v16i8, imm0_7);
15385 v8i16 __builtin_msa_srai_h (v8i16, imm0_15);
15386 v4i32 __builtin_msa_srai_w (v4i32, imm0_31);
15387 v2i64 __builtin_msa_srai_d (v2i64, imm0_63);
15389 v16i8 __builtin_msa_srar_b (v16i8, v16i8);
15390 v8i16 __builtin_msa_srar_h (v8i16, v8i16);
15391 v4i32 __builtin_msa_srar_w (v4i32, v4i32);
15392 v2i64 __builtin_msa_srar_d (v2i64, v2i64);
15394 v16i8 __builtin_msa_srari_b (v16i8, imm0_7);
15395 v8i16 __builtin_msa_srari_h (v8i16, imm0_15);
15396 v4i32 __builtin_msa_srari_w (v4i32, imm0_31);
15397 v2i64 __builtin_msa_srari_d (v2i64, imm0_63);
15399 v16i8 __builtin_msa_srl_b (v16i8, v16i8);
15400 v8i16 __builtin_msa_srl_h (v8i16, v8i16);
15401 v4i32 __builtin_msa_srl_w (v4i32, v4i32);
15402 v2i64 __builtin_msa_srl_d (v2i64, v2i64);
15404 v16i8 __builtin_msa_srli_b (v16i8, imm0_7);
15405 v8i16 __builtin_msa_srli_h (v8i16, imm0_15);
15406 v4i32 __builtin_msa_srli_w (v4i32, imm0_31);
15407 v2i64 __builtin_msa_srli_d (v2i64, imm0_63);
15409 v16i8 __builtin_msa_srlr_b (v16i8, v16i8);
15410 v8i16 __builtin_msa_srlr_h (v8i16, v8i16);
15411 v4i32 __builtin_msa_srlr_w (v4i32, v4i32);
15412 v2i64 __builtin_msa_srlr_d (v2i64, v2i64);
15414 v16i8 __builtin_msa_srlri_b (v16i8, imm0_7);
15415 v8i16 __builtin_msa_srlri_h (v8i16, imm0_15);
15416 v4i32 __builtin_msa_srlri_w (v4i32, imm0_31);
15417 v2i64 __builtin_msa_srlri_d (v2i64, imm0_63);
15419 void __builtin_msa_st_b (v16i8, void *, imm_n512_511);
15420 void __builtin_msa_st_h (v8i16, void *, imm_n1024_1022);
15421 void __builtin_msa_st_w (v4i32, void *, imm_n2048_2044);
15422 void __builtin_msa_st_d (v2i64, void *, imm_n4096_4088);
15424 v16i8 __builtin_msa_subs_s_b (v16i8, v16i8);
15425 v8i16 __builtin_msa_subs_s_h (v8i16, v8i16);
15426 v4i32 __builtin_msa_subs_s_w (v4i32, v4i32);
15427 v2i64 __builtin_msa_subs_s_d (v2i64, v2i64);
15429 v16u8 __builtin_msa_subs_u_b (v16u8, v16u8);
15430 v8u16 __builtin_msa_subs_u_h (v8u16, v8u16);
15431 v4u32 __builtin_msa_subs_u_w (v4u32, v4u32);
15432 v2u64 __builtin_msa_subs_u_d (v2u64, v2u64);
15434 v16u8 __builtin_msa_subsus_u_b (v16u8, v16i8);
15435 v8u16 __builtin_msa_subsus_u_h (v8u16, v8i16);
15436 v4u32 __builtin_msa_subsus_u_w (v4u32, v4i32);
15437 v2u64 __builtin_msa_subsus_u_d (v2u64, v2i64);
15439 v16i8 __builtin_msa_subsuu_s_b (v16u8, v16u8);
15440 v8i16 __builtin_msa_subsuu_s_h (v8u16, v8u16);
15441 v4i32 __builtin_msa_subsuu_s_w (v4u32, v4u32);
15442 v2i64 __builtin_msa_subsuu_s_d (v2u64, v2u64);
15444 v16i8 __builtin_msa_subv_b (v16i8, v16i8);
15445 v8i16 __builtin_msa_subv_h (v8i16, v8i16);
15446 v4i32 __builtin_msa_subv_w (v4i32, v4i32);
15447 v2i64 __builtin_msa_subv_d (v2i64, v2i64);
15449 v16i8 __builtin_msa_subvi_b (v16i8, imm0_31);
15450 v8i16 __builtin_msa_subvi_h (v8i16, imm0_31);
15451 v4i32 __builtin_msa_subvi_w (v4i32, imm0_31);
15452 v2i64 __builtin_msa_subvi_d (v2i64, imm0_31);
15454 v16i8 __builtin_msa_vshf_b (v16i8, v16i8, v16i8);
15455 v8i16 __builtin_msa_vshf_h (v8i16, v8i16, v8i16);
15456 v4i32 __builtin_msa_vshf_w (v4i32, v4i32, v4i32);
15457 v2i64 __builtin_msa_vshf_d (v2i64, v2i64, v2i64);
15459 v16u8 __builtin_msa_xor_v (v16u8, v16u8);
15461 v16u8 __builtin_msa_xori_b (v16u8, imm0_255);
15462 @end smallexample
15464 @node Other MIPS Built-in Functions
15465 @subsection Other MIPS Built-in Functions
15467 GCC provides other MIPS-specific built-in functions:
15469 @table @code
15470 @item void __builtin_mips_cache (int @var{op}, const volatile void *@var{addr})
15471 Insert a @samp{cache} instruction with operands @var{op} and @var{addr}.
15472 GCC defines the preprocessor macro @code{___GCC_HAVE_BUILTIN_MIPS_CACHE}
15473 when this function is available.
15475 @item unsigned int __builtin_mips_get_fcsr (void)
15476 @itemx void __builtin_mips_set_fcsr (unsigned int @var{value})
15477 Get and set the contents of the floating-point control and status register
15478 (FPU control register 31).  These functions are only available in hard-float
15479 code but can be called in both MIPS16 and non-MIPS16 contexts.
15481 @code{__builtin_mips_set_fcsr} can be used to change any bit of the
15482 register except the condition codes, which GCC assumes are preserved.
15483 @end table
15485 @node MSP430 Built-in Functions
15486 @subsection MSP430 Built-in Functions
15488 GCC provides a couple of special builtin functions to aid in the
15489 writing of interrupt handlers in C.
15491 @table @code
15492 @item __bic_SR_register_on_exit (int @var{mask})
15493 This clears the indicated bits in the saved copy of the status register
15494 currently residing on the stack.  This only works inside interrupt
15495 handlers and the changes to the status register will only take affect
15496 once the handler returns.
15498 @item __bis_SR_register_on_exit (int @var{mask})
15499 This sets the indicated bits in the saved copy of the status register
15500 currently residing on the stack.  This only works inside interrupt
15501 handlers and the changes to the status register will only take affect
15502 once the handler returns.
15504 @item __delay_cycles (long long @var{cycles})
15505 This inserts an instruction sequence that takes exactly @var{cycles}
15506 cycles (between 0 and about 17E9) to complete.  The inserted sequence
15507 may use jumps, loops, or no-ops, and does not interfere with any other
15508 instructions.  Note that @var{cycles} must be a compile-time constant
15509 integer - that is, you must pass a number, not a variable that may be
15510 optimized to a constant later.  The number of cycles delayed by this
15511 builtin is exact.
15512 @end table
15514 @node NDS32 Built-in Functions
15515 @subsection NDS32 Built-in Functions
15517 These built-in functions are available for the NDS32 target:
15519 @deftypefn {Built-in Function} void __builtin_nds32_isync (int *@var{addr})
15520 Insert an ISYNC instruction into the instruction stream where
15521 @var{addr} is an instruction address for serialization.
15522 @end deftypefn
15524 @deftypefn {Built-in Function} void __builtin_nds32_isb (void)
15525 Insert an ISB instruction into the instruction stream.
15526 @end deftypefn
15528 @deftypefn {Built-in Function} int __builtin_nds32_mfsr (int @var{sr})
15529 Return the content of a system register which is mapped by @var{sr}.
15530 @end deftypefn
15532 @deftypefn {Built-in Function} int __builtin_nds32_mfusr (int @var{usr})
15533 Return the content of a user space register which is mapped by @var{usr}.
15534 @end deftypefn
15536 @deftypefn {Built-in Function} void __builtin_nds32_mtsr (int @var{value}, int @var{sr})
15537 Move the @var{value} to a system register which is mapped by @var{sr}.
15538 @end deftypefn
15540 @deftypefn {Built-in Function} void __builtin_nds32_mtusr (int @var{value}, int @var{usr})
15541 Move the @var{value} to a user space register which is mapped by @var{usr}.
15542 @end deftypefn
15544 @deftypefn {Built-in Function} void __builtin_nds32_setgie_en (void)
15545 Enable global interrupt.
15546 @end deftypefn
15548 @deftypefn {Built-in Function} void __builtin_nds32_setgie_dis (void)
15549 Disable global interrupt.
15550 @end deftypefn
15552 @node picoChip Built-in Functions
15553 @subsection picoChip Built-in Functions
15555 GCC provides an interface to selected machine instructions from the
15556 picoChip instruction set.
15558 @table @code
15559 @item int __builtin_sbc (int @var{value})
15560 Sign bit count.  Return the number of consecutive bits in @var{value}
15561 that have the same value as the sign bit.  The result is the number of
15562 leading sign bits minus one, giving the number of redundant sign bits in
15563 @var{value}.
15565 @item int __builtin_byteswap (int @var{value})
15566 Byte swap.  Return the result of swapping the upper and lower bytes of
15567 @var{value}.
15569 @item int __builtin_brev (int @var{value})
15570 Bit reversal.  Return the result of reversing the bits in
15571 @var{value}.  Bit 15 is swapped with bit 0, bit 14 is swapped with bit 1,
15572 and so on.
15574 @item int __builtin_adds (int @var{x}, int @var{y})
15575 Saturating addition.  Return the result of adding @var{x} and @var{y},
15576 storing the value 32767 if the result overflows.
15578 @item int __builtin_subs (int @var{x}, int @var{y})
15579 Saturating subtraction.  Return the result of subtracting @var{y} from
15580 @var{x}, storing the value @minus{}32768 if the result overflows.
15582 @item void __builtin_halt (void)
15583 Halt.  The processor stops execution.  This built-in is useful for
15584 implementing assertions.
15586 @end table
15588 @node Basic PowerPC Built-in Functions
15589 @subsection Basic PowerPC Built-in Functions
15591 @menu
15592 * Basic PowerPC Built-in Functions Available on all Configurations::
15593 * Basic PowerPC Built-in Functions Available on ISA 2.05::
15594 * Basic PowerPC Built-in Functions Available on ISA 2.06::
15595 * Basic PowerPC Built-in Functions Available on ISA 2.07::
15596 * Basic PowerPC Built-in Functions Available on ISA 3.0::
15597 @end menu
15599 This section describes PowerPC built-in functions that do not require
15600 the inclusion of any special header files to declare prototypes or
15601 provide macro definitions.  The sections that follow describe
15602 additional PowerPC built-in functions.
15604 @node Basic PowerPC Built-in Functions Available on all Configurations
15605 @subsubsection Basic PowerPC Built-in Functions Available on all Configurations
15607 @deftypefn {Built-in Function} void __builtin_cpu_init (void)
15608 This function is a @code{nop} on the PowerPC platform and is included solely
15609 to maintain API compatibility with the x86 builtins.
15610 @end deftypefn
15612 @deftypefn {Built-in Function} int __builtin_cpu_is (const char *@var{cpuname})
15613 This function returns a value of @code{1} if the run-time CPU is of type
15614 @var{cpuname} and returns @code{0} otherwise
15616 The @code{__builtin_cpu_is} function requires GLIBC 2.23 or newer
15617 which exports the hardware capability bits.  GCC defines the macro
15618 @code{__BUILTIN_CPU_SUPPORTS__} if the @code{__builtin_cpu_supports}
15619 built-in function is fully supported.
15621 If GCC was configured to use a GLIBC before 2.23, the built-in
15622 function @code{__builtin_cpu_is} always returns a 0 and the compiler
15623 issues a warning.
15625 The following CPU names can be detected:
15627 @table @samp
15628 @item power9
15629 IBM POWER9 Server CPU.
15630 @item power8
15631 IBM POWER8 Server CPU.
15632 @item power7
15633 IBM POWER7 Server CPU.
15634 @item power6x
15635 IBM POWER6 Server CPU (RAW mode).
15636 @item power6
15637 IBM POWER6 Server CPU (Architected mode).
15638 @item power5+
15639 IBM POWER5+ Server CPU.
15640 @item power5
15641 IBM POWER5 Server CPU.
15642 @item ppc970
15643 IBM 970 Server CPU (ie, Apple G5).
15644 @item power4
15645 IBM POWER4 Server CPU.
15646 @item ppca2
15647 IBM A2 64-bit Embedded CPU
15648 @item ppc476
15649 IBM PowerPC 476FP 32-bit Embedded CPU.
15650 @item ppc464
15651 IBM PowerPC 464 32-bit Embedded CPU.
15652 @item ppc440
15653 PowerPC 440 32-bit Embedded CPU.
15654 @item ppc405
15655 PowerPC 405 32-bit Embedded CPU.
15656 @item ppc-cell-be
15657 IBM PowerPC Cell Broadband Engine Architecture CPU.
15658 @end table
15660 Here is an example:
15661 @smallexample
15662 #ifdef __BUILTIN_CPU_SUPPORTS__
15663   if (__builtin_cpu_is ("power8"))
15664     @{
15665        do_power8 (); // POWER8 specific implementation.
15666     @}
15667   else
15668 #endif
15669     @{
15670        do_generic (); // Generic implementation.
15671     @}
15672 @end smallexample
15673 @end deftypefn
15675 @deftypefn {Built-in Function} int __builtin_cpu_supports (const char *@var{feature})
15676 This function returns a value of @code{1} if the run-time CPU supports the HWCAP
15677 feature @var{feature} and returns @code{0} otherwise.
15679 The @code{__builtin_cpu_supports} function requires GLIBC 2.23 or
15680 newer which exports the hardware capability bits.  GCC defines the
15681 macro @code{__BUILTIN_CPU_SUPPORTS__} if the
15682 @code{__builtin_cpu_supports} built-in function is fully supported.
15684 If GCC was configured to use a GLIBC before 2.23, the built-in
15685 function @code{__builtin_cpu_suports} always returns a 0 and the
15686 compiler issues a warning.
15688 The following features can be
15689 detected:
15691 @table @samp
15692 @item 4xxmac
15693 4xx CPU has a Multiply Accumulator.
15694 @item altivec
15695 CPU has a SIMD/Vector Unit.
15696 @item arch_2_05
15697 CPU supports ISA 2.05 (eg, POWER6)
15698 @item arch_2_06
15699 CPU supports ISA 2.06 (eg, POWER7)
15700 @item arch_2_07
15701 CPU supports ISA 2.07 (eg, POWER8)
15702 @item arch_3_00
15703 CPU supports ISA 3.0 (eg, POWER9)
15704 @item archpmu
15705 CPU supports the set of compatible performance monitoring events.
15706 @item booke
15707 CPU supports the Embedded ISA category.
15708 @item cellbe
15709 CPU has a CELL broadband engine.
15710 @item darn
15711 CPU supports the @code{darn} (deliver a random number) instruction.
15712 @item dfp
15713 CPU has a decimal floating point unit.
15714 @item dscr
15715 CPU supports the data stream control register.
15716 @item ebb
15717 CPU supports event base branching.
15718 @item efpdouble
15719 CPU has a SPE double precision floating point unit.
15720 @item efpsingle
15721 CPU has a SPE single precision floating point unit.
15722 @item fpu
15723 CPU has a floating point unit.
15724 @item htm
15725 CPU has hardware transaction memory instructions.
15726 @item htm-nosc
15727 Kernel aborts hardware transactions when a syscall is made.
15728 @item htm-no-suspend
15729 CPU supports hardware transaction memory but does not support the
15730 @code{tsuspend.} instruction.
15731 @item ic_snoop
15732 CPU supports icache snooping capabilities.
15733 @item ieee128
15734 CPU supports 128-bit IEEE binary floating point instructions.
15735 @item isel
15736 CPU supports the integer select instruction.
15737 @item mmu
15738 CPU has a memory management unit.
15739 @item notb
15740 CPU does not have a timebase (eg, 601 and 403gx).
15741 @item pa6t
15742 CPU supports the PA Semi 6T CORE ISA.
15743 @item power4
15744 CPU supports ISA 2.00 (eg, POWER4)
15745 @item power5
15746 CPU supports ISA 2.02 (eg, POWER5)
15747 @item power5+
15748 CPU supports ISA 2.03 (eg, POWER5+)
15749 @item power6x
15750 CPU supports ISA 2.05 (eg, POWER6) extended opcodes mffgpr and mftgpr.
15751 @item ppc32
15752 CPU supports 32-bit mode execution.
15753 @item ppc601
15754 CPU supports the old POWER ISA (eg, 601)
15755 @item ppc64
15756 CPU supports 64-bit mode execution.
15757 @item ppcle
15758 CPU supports a little-endian mode that uses address swizzling.
15759 @item scv
15760 Kernel supports system call vectored.
15761 @item smt
15762 CPU support simultaneous multi-threading.
15763 @item spe
15764 CPU has a signal processing extension unit.
15765 @item tar
15766 CPU supports the target address register.
15767 @item true_le
15768 CPU supports true little-endian mode.
15769 @item ucache
15770 CPU has unified I/D cache.
15771 @item vcrypto
15772 CPU supports the vector cryptography instructions.
15773 @item vsx
15774 CPU supports the vector-scalar extension.
15775 @end table
15777 Here is an example:
15778 @smallexample
15779 #ifdef __BUILTIN_CPU_SUPPORTS__
15780   if (__builtin_cpu_supports ("fpu"))
15781     @{
15782        asm("fadd %0,%1,%2" : "=d"(dst) : "d"(src1), "d"(src2));
15783     @}
15784   else
15785 #endif
15786     @{
15787        dst = __fadd (src1, src2); // Software FP addition function.
15788     @}
15789 @end smallexample
15790 @end deftypefn
15792 The following built-in functions are also available on all PowerPC
15793 processors:
15794 @smallexample
15795 uint64_t __builtin_ppc_get_timebase ();
15796 unsigned long __builtin_ppc_mftb ();
15797 __ibm128 __builtin_unpack_ibm128 (__ibm128, int);
15798 __ibm128 __builtin_pack_ibm128 (double, double);
15799 double __builtin_mffs (void);
15800 void __builtin_mtfsb0 (const int);
15801 void __builtin_mtfsb1 (const int);
15802 void __builtin_set_fpscr_rn (int);
15803 @end smallexample
15805 The @code{__builtin_ppc_get_timebase} and @code{__builtin_ppc_mftb}
15806 functions generate instructions to read the Time Base Register.  The
15807 @code{__builtin_ppc_get_timebase} function may generate multiple
15808 instructions and always returns the 64 bits of the Time Base Register.
15809 The @code{__builtin_ppc_mftb} function always generates one instruction and
15810 returns the Time Base Register value as an unsigned long, throwing away
15811 the most significant word on 32-bit environments.  The @code{__builtin_mffs}
15812 return the value of the FPSCR register.  Note, ISA 3.0 supports the
15813 @code{__builtin_mffsl()} which permits software to read the control and
15814 non-sticky status bits in the FSPCR without the higher latency associated with
15815 accessing the sticky status bits.  The
15816 @code{__builtin_mtfsb0} and @code{__builtin_mtfsb1} take the bit to change
15817 as an argument.  The valid bit range is between 0 and 31.  The builtins map to
15818 the @code{mtfsb0} and @code{mtfsb1} instructions which take the argument and
15819 add 32.  Hence these instructions only modify the FPSCR[32:63] bits by
15820 changing the specified bit to a zero or one respectively.  The
15821 @code{__builtin_set_fpscr_rn} builtin allows changing both of the floating
15822 point rounding mode bits.  The argument is a 2-bit value.  The argument can
15823 either be a const int or stored in a variable. The builtin uses the ISA 3.0
15824 instruction @code{mffscrn} if available, otherwise it reads the FPSCR, masks
15825 the current rounding mode bits out and OR's in the new value.
15827 @node Basic PowerPC Built-in Functions Available on ISA 2.05
15828 @subsubsection Basic PowerPC Built-in Functions Available on ISA 2.05
15830 The basic built-in functions described in this section are
15831 available on the PowerPC family of processors starting with ISA 2.05
15832 or later.  Unless specific options are explicitly disabled on the
15833 command line, specifying option @option{-mcpu=power6} has the effect of
15834 enabling the @option{-mpowerpc64}, @option{-mpowerpc-gpopt},
15835 @option{-mpowerpc-gfxopt}, @option{-mmfcrf}, @option{-mpopcntb},
15836 @option{-mfprnd}, @option{-mcmpb}, @option{-mhard-dfp}, and
15837 @option{-mrecip-precision} options.  Specify the
15838 @option{-maltivec} and @option{-mfpgpr} options explicitly in
15839 combination with the above options if they are desired.
15841 The following functions require option @option{-mcmpb}.
15842 @smallexample
15843 unsigned long long __builtin_cmpb (unsigned long long int, unsigned long long int);
15844 unsigned int __builtin_cmpb (unsigned int, unsigned int);
15845 @end smallexample
15847 The @code{__builtin_cmpb} function
15848 performs a byte-wise compare on the contents of its two arguments,
15849 returning the result of the byte-wise comparison as the returned
15850 value.  For each byte comparison, the corresponding byte of the return
15851 value holds 0xff if the input bytes are equal and 0 if the input bytes
15852 are not equal.  If either of the arguments to this built-in function
15853 is wider than 32 bits, the function call expands into the form that
15854 expects @code{unsigned long long int} arguments
15855 which is only available on 64-bit targets.
15857 The following built-in functions are available
15858 when hardware decimal floating point
15859 (@option{-mhard-dfp}) is available:
15860 @smallexample
15861 void __builtin_set_fpscr_drn(int);
15862 _Decimal64 __builtin_ddedpd (int, _Decimal64);
15863 _Decimal128 __builtin_ddedpdq (int, _Decimal128);
15864 _Decimal64 __builtin_denbcd (int, _Decimal64);
15865 _Decimal128 __builtin_denbcdq (int, _Decimal128);
15866 _Decimal64 __builtin_diex (long long, _Decimal64);
15867 _Decimal128 _builtin_diexq (long long, _Decimal128);
15868 _Decimal64 __builtin_dscli (_Decimal64, int);
15869 _Decimal128 __builtin_dscliq (_Decimal128, int);
15870 _Decimal64 __builtin_dscri (_Decimal64, int);
15871 _Decimal128 __builtin_dscriq (_Decimal128, int);
15872 long long __builtin_dxex (_Decimal64);
15873 long long __builtin_dxexq (_Decimal128);
15874 _Decimal128 __builtin_pack_dec128 (unsigned long long, unsigned long long);
15875 unsigned long long __builtin_unpack_dec128 (_Decimal128, int);
15877 The @code{__builtin_set_fpscr_drn} builtin allows changing the three decimal
15878 floating point rounding mode bits.  The argument is a 3-bit value.  The
15879 argument can either be a const int or the value can be stored in a variable.
15880 The builtin uses the ISA 3.0 instruction @code{mffscdrn} if available.
15881 Otherwise the builtin reads the FPSCR, masks the current decimal rounding
15882 mode bits out and OR's in the new value.
15884 @end smallexample
15886 The following functions require @option{-mhard-float},
15887 @option{-mpowerpc-gfxopt}, and @option{-mpopcntb} options.
15889 @smallexample
15890 double __builtin_recipdiv (double, double);
15891 float __builtin_recipdivf (float, float);
15892 double __builtin_rsqrt (double);
15893 float __builtin_rsqrtf (float);
15894 @end smallexample
15896 The @code{vec_rsqrt}, @code{__builtin_rsqrt}, and
15897 @code{__builtin_rsqrtf} functions generate multiple instructions to
15898 implement the reciprocal sqrt functionality using reciprocal sqrt
15899 estimate instructions.
15901 The @code{__builtin_recipdiv}, and @code{__builtin_recipdivf}
15902 functions generate multiple instructions to implement division using
15903 the reciprocal estimate instructions.
15905 The following functions require @option{-mhard-float} and
15906 @option{-mmultiple} options.
15908 The @code{__builtin_unpack_longdouble} function takes a
15909 @code{long double} argument and a compile time constant of 0 or 1.  If
15910 the constant is 0, the first @code{double} within the
15911 @code{long double} is returned, otherwise the second @code{double}
15912 is returned.  The @code{__builtin_unpack_longdouble} function is only
15913 availble if @code{long double} uses the IBM extended double
15914 representation.
15916 The @code{__builtin_pack_longdouble} function takes two @code{double}
15917 arguments and returns a @code{long double} value that combines the two
15918 arguments.  The @code{__builtin_pack_longdouble} function is only
15919 availble if @code{long double} uses the IBM extended double
15920 representation.
15922 The @code{__builtin_unpack_ibm128} function takes a @code{__ibm128}
15923 argument and a compile time constant of 0 or 1.  If the constant is 0,
15924 the first @code{double} within the @code{__ibm128} is returned,
15925 otherwise the second @code{double} is returned.
15927 The @code{__builtin_pack_ibm128} function takes two @code{double}
15928 arguments and returns a @code{__ibm128} value that combines the two
15929 arguments.
15931 Additional built-in functions are available for the 64-bit PowerPC
15932 family of processors, for efficient use of 128-bit floating point
15933 (@code{__float128}) values.
15935 @node Basic PowerPC Built-in Functions Available on ISA 2.06
15936 @subsubsection Basic PowerPC Built-in Functions Available on ISA 2.06
15938 The basic built-in functions described in this section are
15939 available on the PowerPC family of processors starting with ISA 2.05
15940 or later.  Unless specific options are explicitly disabled on the
15941 command line, specifying option @option{-mcpu=power7} has the effect of
15942 enabling all the same options as for @option{-mcpu=power6} in
15943 addition to the @option{-maltivec}, @option{-mpopcntd}, and
15944 @option{-mvsx} options.
15946 The following basic built-in functions require @option{-mpopcntd}:
15947 @smallexample
15948 unsigned int __builtin_addg6s (unsigned int, unsigned int);
15949 long long __builtin_bpermd (long long, long long);
15950 unsigned int __builtin_cbcdtd (unsigned int);
15951 unsigned int __builtin_cdtbcd (unsigned int);
15952 long long __builtin_divde (long long, long long);
15953 unsigned long long __builtin_divdeu (unsigned long long, unsigned long long);
15954 int __builtin_divwe (int, int);
15955 unsigned int __builtin_divweu (unsigned int, unsigned int);
15956 vector __int128 __builtin_pack_vector_int128 (long long, long long);
15957 void __builtin_rs6000_speculation_barrier (void);
15958 long long __builtin_unpack_vector_int128 (vector __int128, signed char);
15959 @end smallexample
15961 Of these, the @code{__builtin_divde} and @code{__builtin_divdeu} functions
15962 require a 64-bit environment.
15964 The following basic built-in functions, which are also supported on
15965 x86 targets, require @option{-mfloat128}.
15966 @smallexample
15967 __float128 __builtin_fabsq (__float128);
15968 __float128 __builtin_copysignq (__float128, __float128);
15969 __float128 __builtin_infq (void);
15970 __float128 __builtin_huge_valq (void);
15971 __float128 __builtin_nanq (void);
15972 __float128 __builtin_nansq (void);
15974 __float128 __builtin_sqrtf128 (__float128);
15975 __float128 __builtin_fmaf128 (__float128, __float128, __float128);
15976 @end smallexample
15978 @node Basic PowerPC Built-in Functions Available on ISA 2.07
15979 @subsubsection Basic PowerPC Built-in Functions Available on ISA 2.07
15981 The basic built-in functions described in this section are
15982 available on the PowerPC family of processors starting with ISA 2.07
15983 or later.  Unless specific options are explicitly disabled on the
15984 command line, specifying option @option{-mcpu=power8} has the effect of
15985 enabling all the same options as for @option{-mcpu=power7} in
15986 addition to the @option{-mpower8-fusion}, @option{-mpower8-vector},
15987 @option{-mcrypto}, @option{-mhtm}, @option{-mquad-memory}, and
15988 @option{-mquad-memory-atomic} options.
15990 This section intentionally empty.
15992 @node Basic PowerPC Built-in Functions Available on ISA 3.0
15993 @subsubsection Basic PowerPC Built-in Functions Available on ISA 3.0
15995 The basic built-in functions described in this section are
15996 available on the PowerPC family of processors starting with ISA 3.0
15997 or later.  Unless specific options are explicitly disabled on the
15998 command line, specifying option @option{-mcpu=power9} has the effect of
15999 enabling all the same options as for @option{-mcpu=power8} in
16000 addition to the @option{-misel} option.
16002 The following built-in functions are available on Linux 64-bit systems
16003 that use the ISA 3.0 instruction set (@option{-mcpu=power9}):
16005 @table @code
16006 @item __float128 __builtin_addf128_round_to_odd (__float128, __float128)
16007 Perform a 128-bit IEEE floating point add using round to odd as the
16008 rounding mode.
16009 @findex __builtin_addf128_round_to_odd
16011 @item __float128 __builtin_subf128_round_to_odd (__float128, __float128)
16012 Perform a 128-bit IEEE floating point subtract using round to odd as
16013 the rounding mode.
16014 @findex __builtin_subf128_round_to_odd
16016 @item __float128 __builtin_mulf128_round_to_odd (__float128, __float128)
16017 Perform a 128-bit IEEE floating point multiply using round to odd as
16018 the rounding mode.
16019 @findex __builtin_mulf128_round_to_odd
16021 @item __float128 __builtin_divf128_round_to_odd (__float128, __float128)
16022 Perform a 128-bit IEEE floating point divide using round to odd as
16023 the rounding mode.
16024 @findex __builtin_divf128_round_to_odd
16026 @item __float128 __builtin_sqrtf128_round_to_odd (__float128)
16027 Perform a 128-bit IEEE floating point square root using round to odd
16028 as the rounding mode.
16029 @findex __builtin_sqrtf128_round_to_odd
16031 @item __float128 __builtin_fmaf128_round_to_odd (__float128, __float128, __float128)
16032 Perform a 128-bit IEEE floating point fused multiply and add operation
16033 using round to odd as the rounding mode.
16034 @findex __builtin_fmaf128_round_to_odd
16036 @item double __builtin_truncf128_round_to_odd (__float128)
16037 Convert a 128-bit IEEE floating point value to @code{double} using
16038 round to odd as the rounding mode.
16039 @findex __builtin_truncf128_round_to_odd
16040 @end table
16042 The following additional built-in functions are also available for the
16043 PowerPC family of processors, starting with ISA 3.0 or later:
16044 @smallexample
16045 long long __builtin_darn (void);
16046 long long __builtin_darn_raw (void);
16047 int __builtin_darn_32 (void);
16048 @end smallexample
16050 The @code{__builtin_darn} and @code{__builtin_darn_raw}
16051 functions require a
16052 64-bit environment supporting ISA 3.0 or later.
16053 The @code{__builtin_darn} function provides a 64-bit conditioned
16054 random number.  The @code{__builtin_darn_raw} function provides a
16055 64-bit raw random number.  The @code{__builtin_darn_32} function
16056 provides a 32-bit conditioned random number.
16058 The following additional built-in functions are also available for the
16059 PowerPC family of processors, starting with ISA 3.0 or later:
16061 @smallexample
16062 int __builtin_byte_in_set (unsigned char u, unsigned long long set);
16063 int __builtin_byte_in_range (unsigned char u, unsigned int range);
16064 int __builtin_byte_in_either_range (unsigned char u, unsigned int ranges);
16066 int __builtin_dfp_dtstsfi_lt (unsigned int comparison, _Decimal64 value);
16067 int __builtin_dfp_dtstsfi_lt (unsigned int comparison, _Decimal128 value);
16068 int __builtin_dfp_dtstsfi_lt_dd (unsigned int comparison, _Decimal64 value);
16069 int __builtin_dfp_dtstsfi_lt_td (unsigned int comparison, _Decimal128 value);
16071 int __builtin_dfp_dtstsfi_gt (unsigned int comparison, _Decimal64 value);
16072 int __builtin_dfp_dtstsfi_gt (unsigned int comparison, _Decimal128 value);
16073 int __builtin_dfp_dtstsfi_gt_dd (unsigned int comparison, _Decimal64 value);
16074 int __builtin_dfp_dtstsfi_gt_td (unsigned int comparison, _Decimal128 value);
16076 int __builtin_dfp_dtstsfi_eq (unsigned int comparison, _Decimal64 value);
16077 int __builtin_dfp_dtstsfi_eq (unsigned int comparison, _Decimal128 value);
16078 int __builtin_dfp_dtstsfi_eq_dd (unsigned int comparison, _Decimal64 value);
16079 int __builtin_dfp_dtstsfi_eq_td (unsigned int comparison, _Decimal128 value);
16081 int __builtin_dfp_dtstsfi_ov (unsigned int comparison, _Decimal64 value);
16082 int __builtin_dfp_dtstsfi_ov (unsigned int comparison, _Decimal128 value);
16083 int __builtin_dfp_dtstsfi_ov_dd (unsigned int comparison, _Decimal64 value);
16084 int __builtin_dfp_dtstsfi_ov_td (unsigned int comparison, _Decimal128 value);
16086 double __builtin_mffsl(void);
16088 @end smallexample
16089 The @code{__builtin_byte_in_set} function requires a
16090 64-bit environment supporting ISA 3.0 or later.  This function returns
16091 a non-zero value if and only if its @code{u} argument exactly equals one of
16092 the eight bytes contained within its 64-bit @code{set} argument.
16094 The @code{__builtin_byte_in_range} and
16095 @code{__builtin_byte_in_either_range} require an environment
16096 supporting ISA 3.0 or later.  For these two functions, the
16097 @code{range} argument is encoded as 4 bytes, organized as
16098 @code{hi_1:lo_1:hi_2:lo_2}.
16099 The @code{__builtin_byte_in_range} function returns a
16100 non-zero value if and only if its @code{u} argument is within the
16101 range bounded between @code{lo_2} and @code{hi_2} inclusive.
16102 The @code{__builtin_byte_in_either_range} function returns non-zero if
16103 and only if its @code{u} argument is within either the range bounded
16104 between @code{lo_1} and @code{hi_1} inclusive or the range bounded
16105 between @code{lo_2} and @code{hi_2} inclusive.
16107 The @code{__builtin_dfp_dtstsfi_lt} function returns a non-zero value
16108 if and only if the number of signficant digits of its @code{value} argument
16109 is less than its @code{comparison} argument.  The
16110 @code{__builtin_dfp_dtstsfi_lt_dd} and
16111 @code{__builtin_dfp_dtstsfi_lt_td} functions behave similarly, but
16112 require that the type of the @code{value} argument be
16113 @code{__Decimal64} and @code{__Decimal128} respectively.
16115 The @code{__builtin_dfp_dtstsfi_gt} function returns a non-zero value
16116 if and only if the number of signficant digits of its @code{value} argument
16117 is greater than its @code{comparison} argument.  The
16118 @code{__builtin_dfp_dtstsfi_gt_dd} and
16119 @code{__builtin_dfp_dtstsfi_gt_td} functions behave similarly, but
16120 require that the type of the @code{value} argument be
16121 @code{__Decimal64} and @code{__Decimal128} respectively.
16123 The @code{__builtin_dfp_dtstsfi_eq} function returns a non-zero value
16124 if and only if the number of signficant digits of its @code{value} argument
16125 equals its @code{comparison} argument.  The
16126 @code{__builtin_dfp_dtstsfi_eq_dd} and
16127 @code{__builtin_dfp_dtstsfi_eq_td} functions behave similarly, but
16128 require that the type of the @code{value} argument be
16129 @code{__Decimal64} and @code{__Decimal128} respectively.
16131 The @code{__builtin_dfp_dtstsfi_ov} function returns a non-zero value
16132 if and only if its @code{value} argument has an undefined number of
16133 significant digits, such as when @code{value} is an encoding of @code{NaN}.
16134 The @code{__builtin_dfp_dtstsfi_ov_dd} and
16135 @code{__builtin_dfp_dtstsfi_ov_td} functions behave similarly, but
16136 require that the type of the @code{value} argument be
16137 @code{__Decimal64} and @code{__Decimal128} respectively.
16139 The @code{__builtin_mffsl} uses the ISA 3.0 @code{mffsl} instruction to read
16140 the FPSCR.  The instruction is a lower latency version of the @code{mffs}
16141 instruction.  If the @code{mffsl} instruction is not available, then the
16142 builtin uses the older @code{mffs} instruction to read the FPSCR.
16145 @node PowerPC AltiVec/VSX Built-in Functions
16146 @subsection PowerPC AltiVec/VSX Built-in Functions
16148 GCC provides an interface for the PowerPC family of processors to access
16149 the AltiVec operations described in Motorola's AltiVec Programming
16150 Interface Manual.  The interface is made available by including
16151 @code{<altivec.h>} and using @option{-maltivec} and
16152 @option{-mabi=altivec}.  The interface supports the following vector
16153 types.
16155 @smallexample
16156 vector unsigned char
16157 vector signed char
16158 vector bool char
16160 vector unsigned short
16161 vector signed short
16162 vector bool short
16163 vector pixel
16165 vector unsigned int
16166 vector signed int
16167 vector bool int
16168 vector float
16169 @end smallexample
16171 GCC's implementation of the high-level language interface available from
16172 C and C++ code differs from Motorola's documentation in several ways.
16174 @itemize @bullet
16176 @item
16177 A vector constant is a list of constant expressions within curly braces.
16179 @item
16180 A vector initializer requires no cast if the vector constant is of the
16181 same type as the variable it is initializing.
16183 @item
16184 If @code{signed} or @code{unsigned} is omitted, the signedness of the
16185 vector type is the default signedness of the base type.  The default
16186 varies depending on the operating system, so a portable program should
16187 always specify the signedness.
16189 @item
16190 Compiling with @option{-maltivec} adds keywords @code{__vector},
16191 @code{vector}, @code{__pixel}, @code{pixel}, @code{__bool} and
16192 @code{bool}.  When compiling ISO C, the context-sensitive substitution
16193 of the keywords @code{vector}, @code{pixel} and @code{bool} is
16194 disabled.  To use them, you must include @code{<altivec.h>} instead.
16196 @item
16197 GCC allows using a @code{typedef} name as the type specifier for a
16198 vector type.
16200 @item
16201 For C, overloaded functions are implemented with macros so the following
16202 does not work:
16204 @smallexample
16205   vec_add ((vector signed int)@{1, 2, 3, 4@}, foo);
16206 @end smallexample
16208 @noindent
16209 Since @code{vec_add} is a macro, the vector constant in the example
16210 is treated as four separate arguments.  Wrap the entire argument in
16211 parentheses for this to work.
16212 @end itemize
16214 @emph{Note:} Only the @code{<altivec.h>} interface is supported.
16215 Internally, GCC uses built-in functions to achieve the functionality in
16216 the aforementioned header file, but they are not supported and are
16217 subject to change without notice.
16219 GCC complies with the OpenPOWER 64-Bit ELF V2 ABI Specification,
16220 which may be found at
16221 @uref{http://openpowerfoundation.org/wp-content/uploads/resources/leabi-prd/content/index.html}.
16222 Appendix A of this document lists the vector API interfaces that must be
16223 provided by compliant compilers.  Programmers should preferentially use
16224 the interfaces described therein.  However, historically GCC has provided
16225 additional interfaces for access to vector instructions.  These are
16226 briefly described below.
16228 @menu
16229 * PowerPC AltiVec Built-in Functions on ISA 2.05::
16230 * PowerPC AltiVec Built-in Functions Available on ISA 2.06::
16231 * PowerPC AltiVec Built-in Functions Available on ISA 2.07::
16232 * PowerPC AltiVec Built-in Functions Available on ISA 3.0::
16233 @end menu
16235 @node PowerPC AltiVec Built-in Functions on ISA 2.05
16236 @subsubsection PowerPC AltiVec Built-in Functions on ISA 2.05
16238 The following interfaces are supported for the generic and specific
16239 AltiVec operations and the AltiVec predicates.  In cases where there
16240 is a direct mapping between generic and specific operations, only the
16241 generic names are shown here, although the specific operations can also
16242 be used.
16244 Arguments that are documented as @code{const int} require literal
16245 integral values within the range required for that operation.
16247 @smallexample
16248 vector signed char vec_abs (vector signed char);
16249 vector signed short vec_abs (vector signed short);
16250 vector signed int vec_abs (vector signed int);
16251 vector float vec_abs (vector float);
16253 vector signed char vec_abss (vector signed char);
16254 vector signed short vec_abss (vector signed short);
16255 vector signed int vec_abss (vector signed int);
16257 vector signed char vec_add (vector bool char, vector signed char);
16258 vector signed char vec_add (vector signed char, vector bool char);
16259 vector signed char vec_add (vector signed char, vector signed char);
16260 vector unsigned char vec_add (vector bool char, vector unsigned char);
16261 vector unsigned char vec_add (vector unsigned char, vector bool char);
16262 vector unsigned char vec_add (vector unsigned char, vector unsigned char);
16263 vector signed short vec_add (vector bool short, vector signed short);
16264 vector signed short vec_add (vector signed short, vector bool short);
16265 vector signed short vec_add (vector signed short, vector signed short);
16266 vector unsigned short vec_add (vector bool short, vector unsigned short);
16267 vector unsigned short vec_add (vector unsigned short, vector bool short);
16268 vector unsigned short vec_add (vector unsigned short, vector unsigned short);
16269 vector signed int vec_add (vector bool int, vector signed int);
16270 vector signed int vec_add (vector signed int, vector bool int);
16271 vector signed int vec_add (vector signed int, vector signed int);
16272 vector unsigned int vec_add (vector bool int, vector unsigned int);
16273 vector unsigned int vec_add (vector unsigned int, vector bool int);
16274 vector unsigned int vec_add (vector unsigned int, vector unsigned int);
16275 vector float vec_add (vector float, vector float);
16277 vector unsigned int vec_addc (vector unsigned int, vector unsigned int);
16279 vector unsigned char vec_adds (vector bool char, vector unsigned char);
16280 vector unsigned char vec_adds (vector unsigned char, vector bool char);
16281 vector unsigned char vec_adds (vector unsigned char, vector unsigned char);
16282 vector signed char vec_adds (vector bool char, vector signed char);
16283 vector signed char vec_adds (vector signed char, vector bool char);
16284 vector signed char vec_adds (vector signed char, vector signed char);
16285 vector unsigned short vec_adds (vector bool short, vector unsigned short);
16286 vector unsigned short vec_adds (vector unsigned short, vector bool short);
16287 vector unsigned short vec_adds (vector unsigned short, vector unsigned short);
16288 vector signed short vec_adds (vector bool short, vector signed short);
16289 vector signed short vec_adds (vector signed short, vector bool short);
16290 vector signed short vec_adds (vector signed short, vector signed short);
16291 vector unsigned int vec_adds (vector bool int, vector unsigned int);
16292 vector unsigned int vec_adds (vector unsigned int, vector bool int);
16293 vector unsigned int vec_adds (vector unsigned int, vector unsigned int);
16294 vector signed int vec_adds (vector bool int, vector signed int);
16295 vector signed int vec_adds (vector signed int, vector bool int);
16296 vector signed int vec_adds (vector signed int, vector signed int);
16298 int vec_all_eq (vector signed char, vector bool char);
16299 int vec_all_eq (vector signed char, vector signed char);
16300 int vec_all_eq (vector unsigned char, vector bool char);
16301 int vec_all_eq (vector unsigned char, vector unsigned char);
16302 int vec_all_eq (vector bool char, vector bool char);
16303 int vec_all_eq (vector bool char, vector unsigned char);
16304 int vec_all_eq (vector bool char, vector signed char);
16305 int vec_all_eq (vector signed short, vector bool short);
16306 int vec_all_eq (vector signed short, vector signed short);
16307 int vec_all_eq (vector unsigned short, vector bool short);
16308 int vec_all_eq (vector unsigned short, vector unsigned short);
16309 int vec_all_eq (vector bool short, vector bool short);
16310 int vec_all_eq (vector bool short, vector unsigned short);
16311 int vec_all_eq (vector bool short, vector signed short);
16312 int vec_all_eq (vector pixel, vector pixel);
16313 int vec_all_eq (vector signed int, vector bool int);
16314 int vec_all_eq (vector signed int, vector signed int);
16315 int vec_all_eq (vector unsigned int, vector bool int);
16316 int vec_all_eq (vector unsigned int, vector unsigned int);
16317 int vec_all_eq (vector bool int, vector bool int);
16318 int vec_all_eq (vector bool int, vector unsigned int);
16319 int vec_all_eq (vector bool int, vector signed int);
16320 int vec_all_eq (vector float, vector float);
16322 int vec_all_ge (vector bool char, vector unsigned char);
16323 int vec_all_ge (vector unsigned char, vector bool char);
16324 int vec_all_ge (vector unsigned char, vector unsigned char);
16325 int vec_all_ge (vector bool char, vector signed char);
16326 int vec_all_ge (vector signed char, vector bool char);
16327 int vec_all_ge (vector signed char, vector signed char);
16328 int vec_all_ge (vector bool short, vector unsigned short);
16329 int vec_all_ge (vector unsigned short, vector bool short);
16330 int vec_all_ge (vector unsigned short, vector unsigned short);
16331 int vec_all_ge (vector signed short, vector signed short);
16332 int vec_all_ge (vector bool short, vector signed short);
16333 int vec_all_ge (vector signed short, vector bool short);
16334 int vec_all_ge (vector bool int, vector unsigned int);
16335 int vec_all_ge (vector unsigned int, vector bool int);
16336 int vec_all_ge (vector unsigned int, vector unsigned int);
16337 int vec_all_ge (vector bool int, vector signed int);
16338 int vec_all_ge (vector signed int, vector bool int);
16339 int vec_all_ge (vector signed int, vector signed int);
16340 int vec_all_ge (vector float, vector float);
16342 int vec_all_gt (vector bool char, vector unsigned char);
16343 int vec_all_gt (vector unsigned char, vector bool char);
16344 int vec_all_gt (vector unsigned char, vector unsigned char);
16345 int vec_all_gt (vector bool char, vector signed char);
16346 int vec_all_gt (vector signed char, vector bool char);
16347 int vec_all_gt (vector signed char, vector signed char);
16348 int vec_all_gt (vector bool short, vector unsigned short);
16349 int vec_all_gt (vector unsigned short, vector bool short);
16350 int vec_all_gt (vector unsigned short, vector unsigned short);
16351 int vec_all_gt (vector bool short, vector signed short);
16352 int vec_all_gt (vector signed short, vector bool short);
16353 int vec_all_gt (vector signed short, vector signed short);
16354 int vec_all_gt (vector bool int, vector unsigned int);
16355 int vec_all_gt (vector unsigned int, vector bool int);
16356 int vec_all_gt (vector unsigned int, vector unsigned int);
16357 int vec_all_gt (vector bool int, vector signed int);
16358 int vec_all_gt (vector signed int, vector bool int);
16359 int vec_all_gt (vector signed int, vector signed int);
16360 int vec_all_gt (vector float, vector float);
16362 int vec_all_in (vector float, vector float);
16364 int vec_all_le (vector bool char, vector unsigned char);
16365 int vec_all_le (vector unsigned char, vector bool char);
16366 int vec_all_le (vector unsigned char, vector unsigned char);
16367 int vec_all_le (vector bool char, vector signed char);
16368 int vec_all_le (vector signed char, vector bool char);
16369 int vec_all_le (vector signed char, vector signed char);
16370 int vec_all_le (vector bool short, vector unsigned short);
16371 int vec_all_le (vector unsigned short, vector bool short);
16372 int vec_all_le (vector unsigned short, vector unsigned short);
16373 int vec_all_le (vector bool short, vector signed short);
16374 int vec_all_le (vector signed short, vector bool short);
16375 int vec_all_le (vector signed short, vector signed short);
16376 int vec_all_le (vector bool int, vector unsigned int);
16377 int vec_all_le (vector unsigned int, vector bool int);
16378 int vec_all_le (vector unsigned int, vector unsigned int);
16379 int vec_all_le (vector bool int, vector signed int);
16380 int vec_all_le (vector signed int, vector bool int);
16381 int vec_all_le (vector signed int, vector signed int);
16382 int vec_all_le (vector float, vector float);
16384 int vec_all_lt (vector bool char, vector unsigned char);
16385 int vec_all_lt (vector unsigned char, vector bool char);
16386 int vec_all_lt (vector unsigned char, vector unsigned char);
16387 int vec_all_lt (vector bool char, vector signed char);
16388 int vec_all_lt (vector signed char, vector bool char);
16389 int vec_all_lt (vector signed char, vector signed char);
16390 int vec_all_lt (vector bool short, vector unsigned short);
16391 int vec_all_lt (vector unsigned short, vector bool short);
16392 int vec_all_lt (vector unsigned short, vector unsigned short);
16393 int vec_all_lt (vector bool short, vector signed short);
16394 int vec_all_lt (vector signed short, vector bool short);
16395 int vec_all_lt (vector signed short, vector signed short);
16396 int vec_all_lt (vector bool int, vector unsigned int);
16397 int vec_all_lt (vector unsigned int, vector bool int);
16398 int vec_all_lt (vector unsigned int, vector unsigned int);
16399 int vec_all_lt (vector bool int, vector signed int);
16400 int vec_all_lt (vector signed int, vector bool int);
16401 int vec_all_lt (vector signed int, vector signed int);
16402 int vec_all_lt (vector float, vector float);
16404 int vec_all_nan (vector float);
16406 int vec_all_ne (vector signed char, vector bool char);
16407 int vec_all_ne (vector signed char, vector signed char);
16408 int vec_all_ne (vector unsigned char, vector bool char);
16409 int vec_all_ne (vector unsigned char, vector unsigned char);
16410 int vec_all_ne (vector bool char, vector bool char);
16411 int vec_all_ne (vector bool char, vector unsigned char);
16412 int vec_all_ne (vector bool char, vector signed char);
16413 int vec_all_ne (vector signed short, vector bool short);
16414 int vec_all_ne (vector signed short, vector signed short);
16415 int vec_all_ne (vector unsigned short, vector bool short);
16416 int vec_all_ne (vector unsigned short, vector unsigned short);
16417 int vec_all_ne (vector bool short, vector bool short);
16418 int vec_all_ne (vector bool short, vector unsigned short);
16419 int vec_all_ne (vector bool short, vector signed short);
16420 int vec_all_ne (vector pixel, vector pixel);
16421 int vec_all_ne (vector signed int, vector bool int);
16422 int vec_all_ne (vector signed int, vector signed int);
16423 int vec_all_ne (vector unsigned int, vector bool int);
16424 int vec_all_ne (vector unsigned int, vector unsigned int);
16425 int vec_all_ne (vector bool int, vector bool int);
16426 int vec_all_ne (vector bool int, vector unsigned int);
16427 int vec_all_ne (vector bool int, vector signed int);
16428 int vec_all_ne (vector float, vector float);
16430 int vec_all_nge (vector float, vector float);
16432 int vec_all_ngt (vector float, vector float);
16434 int vec_all_nle (vector float, vector float);
16436 int vec_all_nlt (vector float, vector float);
16438 int vec_all_numeric (vector float);
16440 vector float vec_and (vector float, vector float);
16441 vector float vec_and (vector float, vector bool int);
16442 vector float vec_and (vector bool int, vector float);
16443 vector bool int vec_and (vector bool int, vector bool int);
16444 vector signed int vec_and (vector bool int, vector signed int);
16445 vector signed int vec_and (vector signed int, vector bool int);
16446 vector signed int vec_and (vector signed int, vector signed int);
16447 vector unsigned int vec_and (vector bool int, vector unsigned int);
16448 vector unsigned int vec_and (vector unsigned int, vector bool int);
16449 vector unsigned int vec_and (vector unsigned int, vector unsigned int);
16450 vector bool short vec_and (vector bool short, vector bool short);
16451 vector signed short vec_and (vector bool short, vector signed short);
16452 vector signed short vec_and (vector signed short, vector bool short);
16453 vector signed short vec_and (vector signed short, vector signed short);
16454 vector unsigned short vec_and (vector bool short, vector unsigned short);
16455 vector unsigned short vec_and (vector unsigned short, vector bool short);
16456 vector unsigned short vec_and (vector unsigned short, vector unsigned short);
16457 vector signed char vec_and (vector bool char, vector signed char);
16458 vector bool char vec_and (vector bool char, vector bool char);
16459 vector signed char vec_and (vector signed char, vector bool char);
16460 vector signed char vec_and (vector signed char, vector signed char);
16461 vector unsigned char vec_and (vector bool char, vector unsigned char);
16462 vector unsigned char vec_and (vector unsigned char, vector bool char);
16463 vector unsigned char vec_and (vector unsigned char, vector unsigned char);
16465 vector float vec_andc (vector float, vector float);
16466 vector float vec_andc (vector float, vector bool int);
16467 vector float vec_andc (vector bool int, vector float);
16468 vector bool int vec_andc (vector bool int, vector bool int);
16469 vector signed int vec_andc (vector bool int, vector signed int);
16470 vector signed int vec_andc (vector signed int, vector bool int);
16471 vector signed int vec_andc (vector signed int, vector signed int);
16472 vector unsigned int vec_andc (vector bool int, vector unsigned int);
16473 vector unsigned int vec_andc (vector unsigned int, vector bool int);
16474 vector unsigned int vec_andc (vector unsigned int, vector unsigned int);
16475 vector bool short vec_andc (vector bool short, vector bool short);
16476 vector signed short vec_andc (vector bool short, vector signed short);
16477 vector signed short vec_andc (vector signed short, vector bool short);
16478 vector signed short vec_andc (vector signed short, vector signed short);
16479 vector unsigned short vec_andc (vector bool short, vector unsigned short);
16480 vector unsigned short vec_andc (vector unsigned short, vector bool short);
16481 vector unsigned short vec_andc (vector unsigned short, vector unsigned short);
16482 vector signed char vec_andc (vector bool char, vector signed char);
16483 vector bool char vec_andc (vector bool char, vector bool char);
16484 vector signed char vec_andc (vector signed char, vector bool char);
16485 vector signed char vec_andc (vector signed char, vector signed char);
16486 vector unsigned char vec_andc (vector bool char, vector unsigned char);
16487 vector unsigned char vec_andc (vector unsigned char, vector bool char);
16488 vector unsigned char vec_andc (vector unsigned char, vector unsigned char);
16490 int vec_any_eq (vector signed char, vector bool char);
16491 int vec_any_eq (vector signed char, vector signed char);
16492 int vec_any_eq (vector unsigned char, vector bool char);
16493 int vec_any_eq (vector unsigned char, vector unsigned char);
16494 int vec_any_eq (vector bool char, vector bool char);
16495 int vec_any_eq (vector bool char, vector unsigned char);
16496 int vec_any_eq (vector bool char, vector signed char);
16497 int vec_any_eq (vector signed short, vector bool short);
16498 int vec_any_eq (vector signed short, vector signed short);
16499 int vec_any_eq (vector unsigned short, vector bool short);
16500 int vec_any_eq (vector unsigned short, vector unsigned short);
16501 int vec_any_eq (vector bool short, vector bool short);
16502 int vec_any_eq (vector bool short, vector unsigned short);
16503 int vec_any_eq (vector bool short, vector signed short);
16504 int vec_any_eq (vector pixel, vector pixel);
16505 int vec_any_eq (vector signed int, vector bool int);
16506 int vec_any_eq (vector signed int, vector signed int);
16507 int vec_any_eq (vector unsigned int, vector bool int);
16508 int vec_any_eq (vector unsigned int, vector unsigned int);
16509 int vec_any_eq (vector bool int, vector bool int);
16510 int vec_any_eq (vector bool int, vector unsigned int);
16511 int vec_any_eq (vector bool int, vector signed int);
16512 int vec_any_eq (vector float, vector float);
16514 int vec_any_ge (vector signed char, vector bool char);
16515 int vec_any_ge (vector unsigned char, vector bool char);
16516 int vec_any_ge (vector unsigned char, vector unsigned char);
16517 int vec_any_ge (vector signed char, vector signed char);
16518 int vec_any_ge (vector bool char, vector unsigned char);
16519 int vec_any_ge (vector bool char, vector signed char);
16520 int vec_any_ge (vector unsigned short, vector bool short);
16521 int vec_any_ge (vector unsigned short, vector unsigned short);
16522 int vec_any_ge (vector signed short, vector signed short);
16523 int vec_any_ge (vector signed short, vector bool short);
16524 int vec_any_ge (vector bool short, vector unsigned short);
16525 int vec_any_ge (vector bool short, vector signed short);
16526 int vec_any_ge (vector signed int, vector bool int);
16527 int vec_any_ge (vector unsigned int, vector bool int);
16528 int vec_any_ge (vector unsigned int, vector unsigned int);
16529 int vec_any_ge (vector signed int, vector signed int);
16530 int vec_any_ge (vector bool int, vector unsigned int);
16531 int vec_any_ge (vector bool int, vector signed int);
16532 int vec_any_ge (vector float, vector float);
16534 int vec_any_gt (vector bool char, vector unsigned char);
16535 int vec_any_gt (vector unsigned char, vector bool char);
16536 int vec_any_gt (vector unsigned char, vector unsigned char);
16537 int vec_any_gt (vector bool char, vector signed char);
16538 int vec_any_gt (vector signed char, vector bool char);
16539 int vec_any_gt (vector signed char, vector signed char);
16540 int vec_any_gt (vector bool short, vector unsigned short);
16541 int vec_any_gt (vector unsigned short, vector bool short);
16542 int vec_any_gt (vector unsigned short, vector unsigned short);
16543 int vec_any_gt (vector bool short, vector signed short);
16544 int vec_any_gt (vector signed short, vector bool short);
16545 int vec_any_gt (vector signed short, vector signed short);
16546 int vec_any_gt (vector bool int, vector unsigned int);
16547 int vec_any_gt (vector unsigned int, vector bool int);
16548 int vec_any_gt (vector unsigned int, vector unsigned int);
16549 int vec_any_gt (vector bool int, vector signed int);
16550 int vec_any_gt (vector signed int, vector bool int);
16551 int vec_any_gt (vector signed int, vector signed int);
16552 int vec_any_gt (vector float, vector float);
16554 int vec_any_le (vector bool char, vector unsigned char);
16555 int vec_any_le (vector unsigned char, vector bool char);
16556 int vec_any_le (vector unsigned char, vector unsigned char);
16557 int vec_any_le (vector bool char, vector signed char);
16558 int vec_any_le (vector signed char, vector bool char);
16559 int vec_any_le (vector signed char, vector signed char);
16560 int vec_any_le (vector bool short, vector unsigned short);
16561 int vec_any_le (vector unsigned short, vector bool short);
16562 int vec_any_le (vector unsigned short, vector unsigned short);
16563 int vec_any_le (vector bool short, vector signed short);
16564 int vec_any_le (vector signed short, vector bool short);
16565 int vec_any_le (vector signed short, vector signed short);
16566 int vec_any_le (vector bool int, vector unsigned int);
16567 int vec_any_le (vector unsigned int, vector bool int);
16568 int vec_any_le (vector unsigned int, vector unsigned int);
16569 int vec_any_le (vector bool int, vector signed int);
16570 int vec_any_le (vector signed int, vector bool int);
16571 int vec_any_le (vector signed int, vector signed int);
16572 int vec_any_le (vector float, vector float);
16574 int vec_any_lt (vector bool char, vector unsigned char);
16575 int vec_any_lt (vector unsigned char, vector bool char);
16576 int vec_any_lt (vector unsigned char, vector unsigned char);
16577 int vec_any_lt (vector bool char, vector signed char);
16578 int vec_any_lt (vector signed char, vector bool char);
16579 int vec_any_lt (vector signed char, vector signed char);
16580 int vec_any_lt (vector bool short, vector unsigned short);
16581 int vec_any_lt (vector unsigned short, vector bool short);
16582 int vec_any_lt (vector unsigned short, vector unsigned short);
16583 int vec_any_lt (vector bool short, vector signed short);
16584 int vec_any_lt (vector signed short, vector bool short);
16585 int vec_any_lt (vector signed short, vector signed short);
16586 int vec_any_lt (vector bool int, vector unsigned int);
16587 int vec_any_lt (vector unsigned int, vector bool int);
16588 int vec_any_lt (vector unsigned int, vector unsigned int);
16589 int vec_any_lt (vector bool int, vector signed int);
16590 int vec_any_lt (vector signed int, vector bool int);
16591 int vec_any_lt (vector signed int, vector signed int);
16592 int vec_any_lt (vector float, vector float);
16594 int vec_any_nan (vector float);
16596 int vec_any_ne (vector signed char, vector bool char);
16597 int vec_any_ne (vector signed char, vector signed char);
16598 int vec_any_ne (vector unsigned char, vector bool char);
16599 int vec_any_ne (vector unsigned char, vector unsigned char);
16600 int vec_any_ne (vector bool char, vector bool char);
16601 int vec_any_ne (vector bool char, vector unsigned char);
16602 int vec_any_ne (vector bool char, vector signed char);
16603 int vec_any_ne (vector signed short, vector bool short);
16604 int vec_any_ne (vector signed short, vector signed short);
16605 int vec_any_ne (vector unsigned short, vector bool short);
16606 int vec_any_ne (vector unsigned short, vector unsigned short);
16607 int vec_any_ne (vector bool short, vector bool short);
16608 int vec_any_ne (vector bool short, vector unsigned short);
16609 int vec_any_ne (vector bool short, vector signed short);
16610 int vec_any_ne (vector pixel, vector pixel);
16611 int vec_any_ne (vector signed int, vector bool int);
16612 int vec_any_ne (vector signed int, vector signed int);
16613 int vec_any_ne (vector unsigned int, vector bool int);
16614 int vec_any_ne (vector unsigned int, vector unsigned int);
16615 int vec_any_ne (vector bool int, vector bool int);
16616 int vec_any_ne (vector bool int, vector unsigned int);
16617 int vec_any_ne (vector bool int, vector signed int);
16618 int vec_any_ne (vector float, vector float);
16620 int vec_any_nge (vector float, vector float);
16622 int vec_any_ngt (vector float, vector float);
16624 int vec_any_nle (vector float, vector float);
16626 int vec_any_nlt (vector float, vector float);
16628 int vec_any_numeric (vector float);
16630 int vec_any_out (vector float, vector float);
16632 vector unsigned char vec_avg (vector unsigned char, vector unsigned char);
16633 vector signed char vec_avg (vector signed char, vector signed char);
16634 vector unsigned short vec_avg (vector unsigned short, vector unsigned short);
16635 vector signed short vec_avg (vector signed short, vector signed short);
16636 vector unsigned int vec_avg (vector unsigned int, vector unsigned int);
16637 vector signed int vec_avg (vector signed int, vector signed int);
16639 vector float vec_ceil (vector float);
16641 vector signed int vec_cmpb (vector float, vector float);
16643 vector bool char vec_cmpeq (vector bool char, vector bool char);
16644 vector bool short vec_cmpeq (vector bool short, vector bool short);
16645 vector bool int vec_cmpeq (vector bool int, vector bool int);
16646 vector bool char vec_cmpeq (vector signed char, vector signed char);
16647 vector bool char vec_cmpeq (vector unsigned char, vector unsigned char);
16648 vector bool short vec_cmpeq (vector signed short, vector signed short);
16649 vector bool short vec_cmpeq (vector unsigned short, vector unsigned short);
16650 vector bool int vec_cmpeq (vector signed int, vector signed int);
16651 vector bool int vec_cmpeq (vector unsigned int, vector unsigned int);
16652 vector bool int vec_cmpeq (vector float, vector float);
16654 vector bool int vec_cmpge (vector float, vector float);
16656 vector bool char vec_cmpgt (vector unsigned char, vector unsigned char);
16657 vector bool char vec_cmpgt (vector signed char, vector signed char);
16658 vector bool short vec_cmpgt (vector unsigned short, vector unsigned short);
16659 vector bool short vec_cmpgt (vector signed short, vector signed short);
16660 vector bool int vec_cmpgt (vector unsigned int, vector unsigned int);
16661 vector bool int vec_cmpgt (vector signed int, vector signed int);
16662 vector bool int vec_cmpgt (vector float, vector float);
16664 vector bool int vec_cmple (vector float, vector float);
16666 vector bool char vec_cmplt (vector unsigned char, vector unsigned char);
16667 vector bool char vec_cmplt (vector signed char, vector signed char);
16668 vector bool short vec_cmplt (vector unsigned short, vector unsigned short);
16669 vector bool short vec_cmplt (vector signed short, vector signed short);
16670 vector bool int vec_cmplt (vector unsigned int, vector unsigned int);
16671 vector bool int vec_cmplt (vector signed int, vector signed int);
16672 vector bool int vec_cmplt (vector float, vector float);
16674 vector float vec_cpsgn (vector float, vector float);
16676 vector float vec_ctf (vector unsigned int, const int);
16677 vector float vec_ctf (vector signed int, const int);
16679 vector signed int vec_cts (vector float, const int);
16681 vector unsigned int vec_ctu (vector float, const int);
16683 void vec_dss (const int);
16685 void vec_dssall (void);
16687 void vec_dst (const vector unsigned char *, int, const int);
16688 void vec_dst (const vector signed char *, int, const int);
16689 void vec_dst (const vector bool char *, int, const int);
16690 void vec_dst (const vector unsigned short *, int, const int);
16691 void vec_dst (const vector signed short *, int, const int);
16692 void vec_dst (const vector bool short *, int, const int);
16693 void vec_dst (const vector pixel *, int, const int);
16694 void vec_dst (const vector unsigned int *, int, const int);
16695 void vec_dst (const vector signed int *, int, const int);
16696 void vec_dst (const vector bool int *, int, const int);
16697 void vec_dst (const vector float *, int, const int);
16698 void vec_dst (const unsigned char *, int, const int);
16699 void vec_dst (const signed char *, int, const int);
16700 void vec_dst (const unsigned short *, int, const int);
16701 void vec_dst (const short *, int, const int);
16702 void vec_dst (const unsigned int *, int, const int);
16703 void vec_dst (const int *, int, const int);
16704 void vec_dst (const float *, int, const int);
16706 void vec_dstst (const vector unsigned char *, int, const int);
16707 void vec_dstst (const vector signed char *, int, const int);
16708 void vec_dstst (const vector bool char *, int, const int);
16709 void vec_dstst (const vector unsigned short *, int, const int);
16710 void vec_dstst (const vector signed short *, int, const int);
16711 void vec_dstst (const vector bool short *, int, const int);
16712 void vec_dstst (const vector pixel *, int, const int);
16713 void vec_dstst (const vector unsigned int *, int, const int);
16714 void vec_dstst (const vector signed int *, int, const int);
16715 void vec_dstst (const vector bool int *, int, const int);
16716 void vec_dstst (const vector float *, int, const int);
16717 void vec_dstst (const unsigned char *, int, const int);
16718 void vec_dstst (const signed char *, int, const int);
16719 void vec_dstst (const unsigned short *, int, const int);
16720 void vec_dstst (const short *, int, const int);
16721 void vec_dstst (const unsigned int *, int, const int);
16722 void vec_dstst (const int *, int, const int);
16723 void vec_dstst (const unsigned long *, int, const int);
16724 void vec_dstst (const long *, int, const int);
16725 void vec_dstst (const float *, int, const int);
16727 void vec_dststt (const vector unsigned char *, int, const int);
16728 void vec_dststt (const vector signed char *, int, const int);
16729 void vec_dststt (const vector bool char *, int, const int);
16730 void vec_dststt (const vector unsigned short *, int, const int);
16731 void vec_dststt (const vector signed short *, int, const int);
16732 void vec_dststt (const vector bool short *, int, const int);
16733 void vec_dststt (const vector pixel *, int, const int);
16734 void vec_dststt (const vector unsigned int *, int, const int);
16735 void vec_dststt (const vector signed int *, int, const int);
16736 void vec_dststt (const vector bool int *, int, const int);
16737 void vec_dststt (const vector float *, int, const int);
16738 void vec_dststt (const unsigned char *, int, const int);
16739 void vec_dststt (const signed char *, int, const int);
16740 void vec_dststt (const unsigned short *, int, const int);
16741 void vec_dststt (const short *, int, const int);
16742 void vec_dststt (const unsigned int *, int, const int);
16743 void vec_dststt (const int *, int, const int);
16744 void vec_dststt (const float *, int, const int);
16746 void vec_dstt (const vector unsigned char *, int, const int);
16747 void vec_dstt (const vector signed char *, int, const int);
16748 void vec_dstt (const vector bool char *, int, const int);
16749 void vec_dstt (const vector unsigned short *, int, const int);
16750 void vec_dstt (const vector signed short *, int, const int);
16751 void vec_dstt (const vector bool short *, int, const int);
16752 void vec_dstt (const vector pixel *, int, const int);
16753 void vec_dstt (const vector unsigned int *, int, const int);
16754 void vec_dstt (const vector signed int *, int, const int);
16755 void vec_dstt (const vector bool int *, int, const int);
16756 void vec_dstt (const vector float *, int, const int);
16757 void vec_dstt (const unsigned char *, int, const int);
16758 void vec_dstt (const signed char *, int, const int);
16759 void vec_dstt (const unsigned short *, int, const int);
16760 void vec_dstt (const short *, int, const int);
16761 void vec_dstt (const unsigned int *, int, const int);
16762 void vec_dstt (const int *, int, const int);
16763 void vec_dstt (const float *, int, const int);
16765 vector float vec_expte (vector float);
16767 vector float vec_floor (vector float);
16769 vector float vec_ld (int, const vector float *);
16770 vector float vec_ld (int, const float *);
16771 vector bool int vec_ld (int, const vector bool int *);
16772 vector signed int vec_ld (int, const vector signed int *);
16773 vector signed int vec_ld (int, const int *);
16774 vector unsigned int vec_ld (int, const vector unsigned int *);
16775 vector unsigned int vec_ld (int, const unsigned int *);
16776 vector bool short vec_ld (int, const vector bool short *);
16777 vector pixel vec_ld (int, const vector pixel *);
16778 vector signed short vec_ld (int, const vector signed short *);
16779 vector signed short vec_ld (int, const short *);
16780 vector unsigned short vec_ld (int, const vector unsigned short *);
16781 vector unsigned short vec_ld (int, const unsigned short *);
16782 vector bool char vec_ld (int, const vector bool char *);
16783 vector signed char vec_ld (int, const vector signed char *);
16784 vector signed char vec_ld (int, const signed char *);
16785 vector unsigned char vec_ld (int, const vector unsigned char *);
16786 vector unsigned char vec_ld (int, const unsigned char *);
16788 vector signed char vec_lde (int, const signed char *);
16789 vector unsigned char vec_lde (int, const unsigned char *);
16790 vector signed short vec_lde (int, const short *);
16791 vector unsigned short vec_lde (int, const unsigned short *);
16792 vector float vec_lde (int, const float *);
16793 vector signed int vec_lde (int, const int *);
16794 vector unsigned int vec_lde (int, const unsigned int *);
16796 vector float vec_ldl (int, const vector float *);
16797 vector float vec_ldl (int, const float *);
16798 vector bool int vec_ldl (int, const vector bool int *);
16799 vector signed int vec_ldl (int, const vector signed int *);
16800 vector signed int vec_ldl (int, const int *);
16801 vector unsigned int vec_ldl (int, const vector unsigned int *);
16802 vector unsigned int vec_ldl (int, const unsigned int *);
16803 vector bool short vec_ldl (int, const vector bool short *);
16804 vector pixel vec_ldl (int, const vector pixel *);
16805 vector signed short vec_ldl (int, const vector signed short *);
16806 vector signed short vec_ldl (int, const short *);
16807 vector unsigned short vec_ldl (int, const vector unsigned short *);
16808 vector unsigned short vec_ldl (int, const unsigned short *);
16809 vector bool char vec_ldl (int, const vector bool char *);
16810 vector signed char vec_ldl (int, const vector signed char *);
16811 vector signed char vec_ldl (int, const signed char *);
16812 vector unsigned char vec_ldl (int, const vector unsigned char *);
16813 vector unsigned char vec_ldl (int, const unsigned char *);
16815 vector float vec_loge (vector float);
16817 vector signed char vec_lvebx (int, char *);
16818 vector unsigned char vec_lvebx (int, unsigned char *);
16820 vector signed short vec_lvehx (int, short *);
16821 vector unsigned short vec_lvehx (int, unsigned short *);
16823 vector float vec_lvewx (int, float *);
16824 vector signed int vec_lvewx (int, int *);
16825 vector unsigned int vec_lvewx (int, unsigned int *);
16827 vector unsigned char vec_lvsl (int, const unsigned char *);
16828 vector unsigned char vec_lvsl (int, const signed char *);
16829 vector unsigned char vec_lvsl (int, const unsigned short *);
16830 vector unsigned char vec_lvsl (int, const short *);
16831 vector unsigned char vec_lvsl (int, const unsigned int *);
16832 vector unsigned char vec_lvsl (int, const int *);
16833 vector unsigned char vec_lvsl (int, const float *);
16835 vector unsigned char vec_lvsr (int, const unsigned char *);
16836 vector unsigned char vec_lvsr (int, const signed char *);
16837 vector unsigned char vec_lvsr (int, const unsigned short *);
16838 vector unsigned char vec_lvsr (int, const short *);
16839 vector unsigned char vec_lvsr (int, const unsigned int *);
16840 vector unsigned char vec_lvsr (int, const int *);
16841 vector unsigned char vec_lvsr (int, const float *);
16843 vector float vec_madd (vector float, vector float, vector float);
16845 vector signed short vec_madds (vector signed short, vector signed short,
16846                                vector signed short);
16848 vector unsigned char vec_max (vector bool char, vector unsigned char);
16849 vector unsigned char vec_max (vector unsigned char, vector bool char);
16850 vector unsigned char vec_max (vector unsigned char, vector unsigned char);
16851 vector signed char vec_max (vector bool char, vector signed char);
16852 vector signed char vec_max (vector signed char, vector bool char);
16853 vector signed char vec_max (vector signed char, vector signed char);
16854 vector unsigned short vec_max (vector bool short, vector unsigned short);
16855 vector unsigned short vec_max (vector unsigned short, vector bool short);
16856 vector unsigned short vec_max (vector unsigned short, vector unsigned short);
16857 vector signed short vec_max (vector bool short, vector signed short);
16858 vector signed short vec_max (vector signed short, vector bool short);
16859 vector signed short vec_max (vector signed short, vector signed short);
16860 vector unsigned int vec_max (vector bool int, vector unsigned int);
16861 vector unsigned int vec_max (vector unsigned int, vector bool int);
16862 vector unsigned int vec_max (vector unsigned int, vector unsigned int);
16863 vector signed int vec_max (vector bool int, vector signed int);
16864 vector signed int vec_max (vector signed int, vector bool int);
16865 vector signed int vec_max (vector signed int, vector signed int);
16866 vector float vec_max (vector float, vector float);
16868 vector bool char vec_mergeh (vector bool char, vector bool char);
16869 vector signed char vec_mergeh (vector signed char, vector signed char);
16870 vector unsigned char vec_mergeh (vector unsigned char, vector unsigned char);
16871 vector bool short vec_mergeh (vector bool short, vector bool short);
16872 vector pixel vec_mergeh (vector pixel, vector pixel);
16873 vector signed short vec_mergeh (vector signed short, vector signed short);
16874 vector unsigned short vec_mergeh (vector unsigned short, vector unsigned short);
16875 vector float vec_mergeh (vector float, vector float);
16876 vector bool int vec_mergeh (vector bool int, vector bool int);
16877 vector signed int vec_mergeh (vector signed int, vector signed int);
16878 vector unsigned int vec_mergeh (vector unsigned int, vector unsigned int);
16880 vector bool char vec_mergel (vector bool char, vector bool char);
16881 vector signed char vec_mergel (vector signed char, vector signed char);
16882 vector unsigned char vec_mergel (vector unsigned char, vector unsigned char);
16883 vector bool short vec_mergel (vector bool short, vector bool short);
16884 vector pixel vec_mergel (vector pixel, vector pixel);
16885 vector signed short vec_mergel (vector signed short, vector signed short);
16886 vector unsigned short vec_mergel (vector unsigned short, vector unsigned short);
16887 vector float vec_mergel (vector float, vector float);
16888 vector bool int vec_mergel (vector bool int, vector bool int);
16889 vector signed int vec_mergel (vector signed int, vector signed int);
16890 vector unsigned int vec_mergel (vector unsigned int, vector unsigned int);
16892 vector unsigned short vec_mfvscr (void);
16894 vector unsigned char vec_min (vector bool char, vector unsigned char);
16895 vector unsigned char vec_min (vector unsigned char, vector bool char);
16896 vector unsigned char vec_min (vector unsigned char, vector unsigned char);
16897 vector signed char vec_min (vector bool char, vector signed char);
16898 vector signed char vec_min (vector signed char, vector bool char);
16899 vector signed char vec_min (vector signed char, vector signed char);
16900 vector unsigned short vec_min (vector bool short, vector unsigned short);
16901 vector unsigned short vec_min (vector unsigned short, vector bool short);
16902 vector unsigned short vec_min (vector unsigned short, vector unsigned short);
16903 vector signed short vec_min (vector bool short, vector signed short);
16904 vector signed short vec_min (vector signed short, vector bool short);
16905 vector signed short vec_min (vector signed short, vector signed short);
16906 vector unsigned int vec_min (vector bool int, vector unsigned int);
16907 vector unsigned int vec_min (vector unsigned int, vector bool int);
16908 vector unsigned int vec_min (vector unsigned int, vector unsigned int);
16909 vector signed int vec_min (vector bool int, vector signed int);
16910 vector signed int vec_min (vector signed int, vector bool int);
16911 vector signed int vec_min (vector signed int, vector signed int);
16912 vector float vec_min (vector float, vector float);
16914 vector signed short vec_mladd (vector signed short, vector signed short,
16915                                vector signed short);
16916 vector signed short vec_mladd (vector signed short, vector unsigned short,
16917                                vector unsigned short);
16918 vector signed short vec_mladd (vector unsigned short, vector signed short,
16919                                vector signed short);
16920 vector unsigned short vec_mladd (vector unsigned short, vector unsigned short,
16921                                  vector unsigned short);
16923 vector signed short vec_mradds (vector signed short, vector signed short,
16924                                 vector signed short);
16926 vector unsigned int vec_msum (vector unsigned char, vector unsigned char,
16927                               vector unsigned int);
16928 vector signed int vec_msum (vector signed char, vector unsigned char,
16929                             vector signed int);
16930 vector unsigned int vec_msum (vector unsigned short, vector unsigned short,
16931                               vector unsigned int);
16932 vector signed int vec_msum (vector signed short, vector signed short,
16933                             vector signed int);
16935 vector unsigned int vec_msums (vector unsigned short, vector unsigned short,
16936                                vector unsigned int);
16937 vector signed int vec_msums (vector signed short, vector signed short,
16938                              vector signed int);
16940 void vec_mtvscr (vector signed int);
16941 void vec_mtvscr (vector unsigned int);
16942 void vec_mtvscr (vector bool int);
16943 void vec_mtvscr (vector signed short);
16944 void vec_mtvscr (vector unsigned short);
16945 void vec_mtvscr (vector bool short);
16946 void vec_mtvscr (vector pixel);
16947 void vec_mtvscr (vector signed char);
16948 void vec_mtvscr (vector unsigned char);
16949 void vec_mtvscr (vector bool char);
16951 vector float vec_mul (vector float, vector float);
16953 vector unsigned short vec_mule (vector unsigned char, vector unsigned char);
16954 vector signed short vec_mule (vector signed char, vector signed char);
16955 vector unsigned int vec_mule (vector unsigned short, vector unsigned short);
16956 vector signed int vec_mule (vector signed short, vector signed short);
16958 vector unsigned short vec_mulo (vector unsigned char, vector unsigned char);
16959 vector signed short vec_mulo (vector signed char, vector signed char);
16960 vector unsigned int vec_mulo (vector unsigned short, vector unsigned short);
16961 vector signed int vec_mulo (vector signed short, vector signed short);
16963 vector signed char vec_nabs (vector signed char);
16964 vector signed short vec_nabs (vector signed short);
16965 vector signed int vec_nabs (vector signed int);
16966 vector float vec_nabs (vector float);
16968 vector float vec_nmsub (vector float, vector float, vector float);
16970 vector float vec_nor (vector float, vector float);
16971 vector signed int vec_nor (vector signed int, vector signed int);
16972 vector unsigned int vec_nor (vector unsigned int, vector unsigned int);
16973 vector bool int vec_nor (vector bool int, vector bool int);
16974 vector signed short vec_nor (vector signed short, vector signed short);
16975 vector unsigned short vec_nor (vector unsigned short, vector unsigned short);
16976 vector bool short vec_nor (vector bool short, vector bool short);
16977 vector signed char vec_nor (vector signed char, vector signed char);
16978 vector unsigned char vec_nor (vector unsigned char, vector unsigned char);
16979 vector bool char vec_nor (vector bool char, vector bool char);
16981 vector float vec_or (vector float, vector float);
16982 vector float vec_or (vector float, vector bool int);
16983 vector float vec_or (vector bool int, vector float);
16984 vector bool int vec_or (vector bool int, vector bool int);
16985 vector signed int vec_or (vector bool int, vector signed int);
16986 vector signed int vec_or (vector signed int, vector bool int);
16987 vector signed int vec_or (vector signed int, vector signed int);
16988 vector unsigned int vec_or (vector bool int, vector unsigned int);
16989 vector unsigned int vec_or (vector unsigned int, vector bool int);
16990 vector unsigned int vec_or (vector unsigned int, vector unsigned int);
16991 vector bool short vec_or (vector bool short, vector bool short);
16992 vector signed short vec_or (vector bool short, vector signed short);
16993 vector signed short vec_or (vector signed short, vector bool short);
16994 vector signed short vec_or (vector signed short, vector signed short);
16995 vector unsigned short vec_or (vector bool short, vector unsigned short);
16996 vector unsigned short vec_or (vector unsigned short, vector bool short);
16997 vector unsigned short vec_or (vector unsigned short, vector unsigned short);
16998 vector signed char vec_or (vector bool char, vector signed char);
16999 vector bool char vec_or (vector bool char, vector bool char);
17000 vector signed char vec_or (vector signed char, vector bool char);
17001 vector signed char vec_or (vector signed char, vector signed char);
17002 vector unsigned char vec_or (vector bool char, vector unsigned char);
17003 vector unsigned char vec_or (vector unsigned char, vector bool char);
17004 vector unsigned char vec_or (vector unsigned char, vector unsigned char);
17006 vector signed char vec_pack (vector signed short, vector signed short);
17007 vector unsigned char vec_pack (vector unsigned short, vector unsigned short);
17008 vector bool char vec_pack (vector bool short, vector bool short);
17009 vector signed short vec_pack (vector signed int, vector signed int);
17010 vector unsigned short vec_pack (vector unsigned int, vector unsigned int);
17011 vector bool short vec_pack (vector bool int, vector bool int);
17013 vector pixel vec_packpx (vector unsigned int, vector unsigned int);
17015 vector unsigned char vec_packs (vector unsigned short, vector unsigned short);
17016 vector signed char vec_packs (vector signed short, vector signed short);
17017 vector unsigned short vec_packs (vector unsigned int, vector unsigned int);
17018 vector signed short vec_packs (vector signed int, vector signed int);
17020 vector unsigned char vec_packsu (vector unsigned short, vector unsigned short);
17021 vector unsigned char vec_packsu (vector signed short, vector signed short);
17022 vector unsigned short vec_packsu (vector unsigned int, vector unsigned int);
17023 vector unsigned short vec_packsu (vector signed int, vector signed int);
17025 vector float vec_perm (vector float, vector float, vector unsigned char);
17026 vector signed int vec_perm (vector signed int, vector signed int, vector unsigned char);
17027 vector unsigned int vec_perm (vector unsigned int, vector unsigned int,
17028                               vector unsigned char);
17029 vector bool int vec_perm (vector bool int, vector bool int, vector unsigned char);
17030 vector signed short vec_perm (vector signed short, vector signed short,
17031                               vector unsigned char);
17032 vector unsigned short vec_perm (vector unsigned short, vector unsigned short,
17033                                 vector unsigned char);
17034 vector bool short vec_perm (vector bool short, vector bool short, vector unsigned char);
17035 vector pixel vec_perm (vector pixel, vector pixel, vector unsigned char);
17036 vector signed char vec_perm (vector signed char, vector signed char,
17037                              vector unsigned char);
17038 vector unsigned char vec_perm (vector unsigned char, vector unsigned char,
17039                                vector unsigned char);
17040 vector bool char vec_perm (vector bool char, vector bool char, vector unsigned char);
17042 vector float vec_re (vector float);
17044 vector bool char vec_reve (vector bool char);
17045 vector signed char vec_reve (vector signed char);
17046 vector unsigned char vec_reve (vector unsigned char);
17047 vector bool int vec_reve (vector bool int);
17048 vector signed int vec_reve (vector signed int);
17049 vector unsigned int vec_reve (vector unsigned int);
17050 vector bool short vec_reve (vector bool short);
17051 vector signed short vec_reve (vector signed short);
17052 vector unsigned short vec_reve (vector unsigned short);
17054 vector signed char vec_rl (vector signed char, vector unsigned char);
17055 vector unsigned char vec_rl (vector unsigned char, vector unsigned char);
17056 vector signed short vec_rl (vector signed short, vector unsigned short);
17057 vector unsigned short vec_rl (vector unsigned short, vector unsigned short);
17058 vector signed int vec_rl (vector signed int, vector unsigned int);
17059 vector unsigned int vec_rl (vector unsigned int, vector unsigned int);
17061 vector float vec_round (vector float);
17063 vector float vec_rsqrt (vector float);
17065 vector float vec_rsqrte (vector float);
17067 vector float vec_sel (vector float, vector float, vector bool int);
17068 vector float vec_sel (vector float, vector float, vector unsigned int);
17069 vector signed int vec_sel (vector signed int, vector signed int, vector bool int);
17070 vector signed int vec_sel (vector signed int, vector signed int, vector unsigned int);
17071 vector unsigned int vec_sel (vector unsigned int, vector unsigned int, vector bool int);
17072 vector unsigned int vec_sel (vector unsigned int, vector unsigned int,
17073                              vector unsigned int);
17074 vector bool int vec_sel (vector bool int, vector bool int, vector bool int);
17075 vector bool int vec_sel (vector bool int, vector bool int, vector unsigned int);
17076 vector signed short vec_sel (vector signed short, vector signed short,
17077                              vector bool short);
17078 vector signed short vec_sel (vector signed short, vector signed short,
17079                              vector unsigned short);
17080 vector unsigned short vec_sel (vector unsigned short, vector unsigned short,
17081                                vector bool short);
17082 vector unsigned short vec_sel (vector unsigned short, vector unsigned short,
17083                                vector unsigned short);
17084 vector bool short vec_sel (vector bool short, vector bool short, vector bool short);
17085 vector bool short vec_sel (vector bool short, vector bool short, vector unsigned short);
17086 vector signed char vec_sel (vector signed char, vector signed char, vector bool char);
17087 vector signed char vec_sel (vector signed char, vector signed char,
17088                             vector unsigned char);
17089 vector unsigned char vec_sel (vector unsigned char, vector unsigned char,
17090                               vector bool char);
17091 vector unsigned char vec_sel (vector unsigned char, vector unsigned char,
17092                               vector unsigned char);
17093 vector bool char vec_sel (vector bool char, vector bool char, vector bool char);
17094 vector bool char vec_sel (vector bool char, vector bool char, vector unsigned char);
17096 vector signed char vec_sl (vector signed char, vector unsigned char);
17097 vector unsigned char vec_sl (vector unsigned char, vector unsigned char);
17098 vector signed short vec_sl (vector signed short, vector unsigned short);
17099 vector unsigned short vec_sl (vector unsigned short, vector unsigned short);
17100 vector signed int vec_sl (vector signed int, vector unsigned int);
17101 vector unsigned int vec_sl (vector unsigned int, vector unsigned int);
17103 vector float vec_sld (vector float, vector float, const int);
17104 vector signed int vec_sld (vector signed int, vector signed int, const int);
17105 vector unsigned int vec_sld (vector unsigned int, vector unsigned int, const int);
17106 vector bool int vec_sld (vector bool int, vector bool int, const int);
17107 vector signed short vec_sld (vector signed short, vector signed short, const int);
17108 vector unsigned short vec_sld (vector unsigned short, vector unsigned short, const int);
17109 vector bool short vec_sld (vector bool short, vector bool short, const int);
17110 vector pixel vec_sld (vector pixel, vector pixel, const int);
17111 vector signed char vec_sld (vector signed char, vector signed char, const int);
17112 vector unsigned char vec_sld (vector unsigned char, vector unsigned char, const int);
17113 vector bool char vec_sld (vector bool char, vector bool char, const int);
17115 vector signed int vec_sll (vector signed int, vector unsigned int);
17116 vector signed int vec_sll (vector signed int, vector unsigned short);
17117 vector signed int vec_sll (vector signed int, vector unsigned char);
17118 vector unsigned int vec_sll (vector unsigned int, vector unsigned int);
17119 vector unsigned int vec_sll (vector unsigned int, vector unsigned short);
17120 vector unsigned int vec_sll (vector unsigned int, vector unsigned char);
17121 vector bool int vec_sll (vector bool int, vector unsigned int);
17122 vector bool int vec_sll (vector bool int, vector unsigned short);
17123 vector bool int vec_sll (vector bool int, vector unsigned char);
17124 vector signed short vec_sll (vector signed short, vector unsigned int);
17125 vector signed short vec_sll (vector signed short, vector unsigned short);
17126 vector signed short vec_sll (vector signed short, vector unsigned char);
17127 vector unsigned short vec_sll (vector unsigned short, vector unsigned int);
17128 vector unsigned short vec_sll (vector unsigned short, vector unsigned short);
17129 vector unsigned short vec_sll (vector unsigned short, vector unsigned char);
17130 vector bool short vec_sll (vector bool short, vector unsigned int);
17131 vector bool short vec_sll (vector bool short, vector unsigned short);
17132 vector bool short vec_sll (vector bool short, vector unsigned char);
17133 vector pixel vec_sll (vector pixel, vector unsigned int);
17134 vector pixel vec_sll (vector pixel, vector unsigned short);
17135 vector pixel vec_sll (vector pixel, vector unsigned char);
17136 vector signed char vec_sll (vector signed char, vector unsigned int);
17137 vector signed char vec_sll (vector signed char, vector unsigned short);
17138 vector signed char vec_sll (vector signed char, vector unsigned char);
17139 vector unsigned char vec_sll (vector unsigned char, vector unsigned int);
17140 vector unsigned char vec_sll (vector unsigned char, vector unsigned short);
17141 vector unsigned char vec_sll (vector unsigned char, vector unsigned char);
17142 vector bool char vec_sll (vector bool char, vector unsigned int);
17143 vector bool char vec_sll (vector bool char, vector unsigned short);
17144 vector bool char vec_sll (vector bool char, vector unsigned char);
17146 vector float vec_slo (vector float, vector signed char);
17147 vector float vec_slo (vector float, vector unsigned char);
17148 vector signed int vec_slo (vector signed int, vector signed char);
17149 vector signed int vec_slo (vector signed int, vector unsigned char);
17150 vector unsigned int vec_slo (vector unsigned int, vector signed char);
17151 vector unsigned int vec_slo (vector unsigned int, vector unsigned char);
17152 vector signed short vec_slo (vector signed short, vector signed char);
17153 vector signed short vec_slo (vector signed short, vector unsigned char);
17154 vector unsigned short vec_slo (vector unsigned short, vector signed char);
17155 vector unsigned short vec_slo (vector unsigned short, vector unsigned char);
17156 vector pixel vec_slo (vector pixel, vector signed char);
17157 vector pixel vec_slo (vector pixel, vector unsigned char);
17158 vector signed char vec_slo (vector signed char, vector signed char);
17159 vector signed char vec_slo (vector signed char, vector unsigned char);
17160 vector unsigned char vec_slo (vector unsigned char, vector signed char);
17161 vector unsigned char vec_slo (vector unsigned char, vector unsigned char);
17163 vector signed char vec_splat (vector signed char, const int);
17164 vector unsigned char vec_splat (vector unsigned char, const int);
17165 vector bool char vec_splat (vector bool char, const int);
17166 vector signed short vec_splat (vector signed short, const int);
17167 vector unsigned short vec_splat (vector unsigned short, const int);
17168 vector bool short vec_splat (vector bool short, const int);
17169 vector pixel vec_splat (vector pixel, const int);
17170 vector float vec_splat (vector float, const int);
17171 vector signed int vec_splat (vector signed int, const int);
17172 vector unsigned int vec_splat (vector unsigned int, const int);
17173 vector bool int vec_splat (vector bool int, const int);
17175 vector signed short vec_splat_s16 (const int);
17177 vector signed int vec_splat_s32 (const int);
17179 vector signed char vec_splat_s8 (const int);
17181 vector unsigned short vec_splat_u16 (const int);
17183 vector unsigned int vec_splat_u32 (const int);
17185 vector unsigned char vec_splat_u8 (const int);
17187 vector signed char vec_splats (signed char);
17188 vector unsigned char vec_splats (unsigned char);
17189 vector signed short vec_splats (signed short);
17190 vector unsigned short vec_splats (unsigned short);
17191 vector signed int vec_splats (signed int);
17192 vector unsigned int vec_splats (unsigned int);
17193 vector float vec_splats (float);
17195 vector signed char vec_sr (vector signed char, vector unsigned char);
17196 vector unsigned char vec_sr (vector unsigned char, vector unsigned char);
17197 vector signed short vec_sr (vector signed short, vector unsigned short);
17198 vector unsigned short vec_sr (vector unsigned short, vector unsigned short);
17199 vector signed int vec_sr (vector signed int, vector unsigned int);
17200 vector unsigned int vec_sr (vector unsigned int, vector unsigned int);
17202 vector signed char vec_sra (vector signed char, vector unsigned char);
17203 vector unsigned char vec_sra (vector unsigned char, vector unsigned char);
17204 vector signed short vec_sra (vector signed short, vector unsigned short);
17205 vector unsigned short vec_sra (vector unsigned short, vector unsigned short);
17206 vector signed int vec_sra (vector signed int, vector unsigned int);
17207 vector unsigned int vec_sra (vector unsigned int, vector unsigned int);
17209 vector signed int vec_srl (vector signed int, vector unsigned int);
17210 vector signed int vec_srl (vector signed int, vector unsigned short);
17211 vector signed int vec_srl (vector signed int, vector unsigned char);
17212 vector unsigned int vec_srl (vector unsigned int, vector unsigned int);
17213 vector unsigned int vec_srl (vector unsigned int, vector unsigned short);
17214 vector unsigned int vec_srl (vector unsigned int, vector unsigned char);
17215 vector bool int vec_srl (vector bool int, vector unsigned int);
17216 vector bool int vec_srl (vector bool int, vector unsigned short);
17217 vector bool int vec_srl (vector bool int, vector unsigned char);
17218 vector signed short vec_srl (vector signed short, vector unsigned int);
17219 vector signed short vec_srl (vector signed short, vector unsigned short);
17220 vector signed short vec_srl (vector signed short, vector unsigned char);
17221 vector unsigned short vec_srl (vector unsigned short, vector unsigned int);
17222 vector unsigned short vec_srl (vector unsigned short, vector unsigned short);
17223 vector unsigned short vec_srl (vector unsigned short, vector unsigned char);
17224 vector bool short vec_srl (vector bool short, vector unsigned int);
17225 vector bool short vec_srl (vector bool short, vector unsigned short);
17226 vector bool short vec_srl (vector bool short, vector unsigned char);
17227 vector pixel vec_srl (vector pixel, vector unsigned int);
17228 vector pixel vec_srl (vector pixel, vector unsigned short);
17229 vector pixel vec_srl (vector pixel, vector unsigned char);
17230 vector signed char vec_srl (vector signed char, vector unsigned int);
17231 vector signed char vec_srl (vector signed char, vector unsigned short);
17232 vector signed char vec_srl (vector signed char, vector unsigned char);
17233 vector unsigned char vec_srl (vector unsigned char, vector unsigned int);
17234 vector unsigned char vec_srl (vector unsigned char, vector unsigned short);
17235 vector unsigned char vec_srl (vector unsigned char, vector unsigned char);
17236 vector bool char vec_srl (vector bool char, vector unsigned int);
17237 vector bool char vec_srl (vector bool char, vector unsigned short);
17238 vector bool char vec_srl (vector bool char, vector unsigned char);
17240 vector float vec_sro (vector float, vector signed char);
17241 vector float vec_sro (vector float, vector unsigned char);
17242 vector signed int vec_sro (vector signed int, vector signed char);
17243 vector signed int vec_sro (vector signed int, vector unsigned char);
17244 vector unsigned int vec_sro (vector unsigned int, vector signed char);
17245 vector unsigned int vec_sro (vector unsigned int, vector unsigned char);
17246 vector signed short vec_sro (vector signed short, vector signed char);
17247 vector signed short vec_sro (vector signed short, vector unsigned char);
17248 vector unsigned short vec_sro (vector unsigned short, vector signed char);
17249 vector unsigned short vec_sro (vector unsigned short, vector unsigned char);
17250 vector pixel vec_sro (vector pixel, vector signed char);
17251 vector pixel vec_sro (vector pixel, vector unsigned char);
17252 vector signed char vec_sro (vector signed char, vector signed char);
17253 vector signed char vec_sro (vector signed char, vector unsigned char);
17254 vector unsigned char vec_sro (vector unsigned char, vector signed char);
17255 vector unsigned char vec_sro (vector unsigned char, vector unsigned char);
17257 void vec_st (vector float, int, vector float *);
17258 void vec_st (vector float, int, float *);
17259 void vec_st (vector signed int, int, vector signed int *);
17260 void vec_st (vector signed int, int, int *);
17261 void vec_st (vector unsigned int, int, vector unsigned int *);
17262 void vec_st (vector unsigned int, int, unsigned int *);
17263 void vec_st (vector bool int, int, vector bool int *);
17264 void vec_st (vector bool int, int, unsigned int *);
17265 void vec_st (vector bool int, int, int *);
17266 void vec_st (vector signed short, int, vector signed short *);
17267 void vec_st (vector signed short, int, short *);
17268 void vec_st (vector unsigned short, int, vector unsigned short *);
17269 void vec_st (vector unsigned short, int, unsigned short *);
17270 void vec_st (vector bool short, int, vector bool short *);
17271 void vec_st (vector bool short, int, unsigned short *);
17272 void vec_st (vector pixel, int, vector pixel *);
17273 void vec_st (vector bool short, int, short *);
17274 void vec_st (vector signed char, int, vector signed char *);
17275 void vec_st (vector signed char, int, signed char *);
17276 void vec_st (vector unsigned char, int, vector unsigned char *);
17277 void vec_st (vector unsigned char, int, unsigned char *);
17278 void vec_st (vector bool char, int, vector bool char *);
17279 void vec_st (vector bool char, int, unsigned char *);
17280 void vec_st (vector bool char, int, signed char *);
17282 void vec_ste (vector signed char, int, signed char *);
17283 void vec_ste (vector unsigned char, int, unsigned char *);
17284 void vec_ste (vector bool char, int, signed char *);
17285 void vec_ste (vector bool char, int, unsigned char *);
17286 void vec_ste (vector signed short, int, short *);
17287 void vec_ste (vector unsigned short, int, unsigned short *);
17288 void vec_ste (vector bool short, int, short *);
17289 void vec_ste (vector bool short, int, unsigned short *);
17290 void vec_ste (vector pixel, int, short *);
17291 void vec_ste (vector pixel, int, unsigned short *);
17292 void vec_ste (vector float, int, float *);
17293 void vec_ste (vector signed int, int, int *);
17294 void vec_ste (vector unsigned int, int, unsigned int *);
17295 void vec_ste (vector bool int, int, int *);
17296 void vec_ste (vector bool int, int, unsigned int *);
17298 void vec_stl (vector float, int, vector float *);
17299 void vec_stl (vector float, int, float *);
17300 void vec_stl (vector signed int, int, vector signed int *);
17301 void vec_stl (vector signed int, int, int *);
17302 void vec_stl (vector unsigned int, int, vector unsigned int *);
17303 void vec_stl (vector unsigned int, int, unsigned int *);
17304 void vec_stl (vector bool int, int, vector bool int *);
17305 void vec_stl (vector bool int, int, unsigned int *);
17306 void vec_stl (vector bool int, int, int *);
17307 void vec_stl (vector signed short, int, vector signed short *);
17308 void vec_stl (vector signed short, int, short *);
17309 void vec_stl (vector unsigned short, int, vector unsigned short *);
17310 void vec_stl (vector unsigned short, int, unsigned short *);
17311 void vec_stl (vector bool short, int, vector bool short *);
17312 void vec_stl (vector bool short, int, unsigned short *);
17313 void vec_stl (vector bool short, int, short *);
17314 void vec_stl (vector pixel, int, vector pixel *);
17315 void vec_stl (vector signed char, int, vector signed char *);
17316 void vec_stl (vector signed char, int, signed char *);
17317 void vec_stl (vector unsigned char, int, vector unsigned char *);
17318 void vec_stl (vector unsigned char, int, unsigned char *);
17319 void vec_stl (vector bool char, int, vector bool char *);
17320 void vec_stl (vector bool char, int, unsigned char *);
17321 void vec_stl (vector bool char, int, signed char *);
17323 void vec_stvebx (vector signed char, int, signed char *);
17324 void vec_stvebx (vector unsigned char, int, unsigned char *);
17325 void vec_stvebx (vector bool char, int, signed char *);
17326 void vec_stvebx (vector bool char, int, unsigned char *);
17328 void vec_stvehx (vector signed short, int, short *);
17329 void vec_stvehx (vector unsigned short, int, unsigned short *);
17330 void vec_stvehx (vector bool short, int, short *);
17331 void vec_stvehx (vector bool short, int, unsigned short *);
17333 void vec_stvewx (vector float, int, float *);
17334 void vec_stvewx (vector signed int, int, int *);
17335 void vec_stvewx (vector unsigned int, int, unsigned int *);
17336 void vec_stvewx (vector bool int, int, int *);
17337 void vec_stvewx (vector bool int, int, unsigned int *);
17339 vector signed char vec_sub (vector bool char, vector signed char);
17340 vector signed char vec_sub (vector signed char, vector bool char);
17341 vector signed char vec_sub (vector signed char, vector signed char);
17342 vector unsigned char vec_sub (vector bool char, vector unsigned char);
17343 vector unsigned char vec_sub (vector unsigned char, vector bool char);
17344 vector unsigned char vec_sub (vector unsigned char, vector unsigned char);
17345 vector signed short vec_sub (vector bool short, vector signed short);
17346 vector signed short vec_sub (vector signed short, vector bool short);
17347 vector signed short vec_sub (vector signed short, vector signed short);
17348 vector unsigned short vec_sub (vector bool short, vector unsigned short);
17349 vector unsigned short vec_sub (vector unsigned short, vector bool short);
17350 vector unsigned short vec_sub (vector unsigned short, vector unsigned short);
17351 vector signed int vec_sub (vector bool int, vector signed int);
17352 vector signed int vec_sub (vector signed int, vector bool int);
17353 vector signed int vec_sub (vector signed int, vector signed int);
17354 vector unsigned int vec_sub (vector bool int, vector unsigned int);
17355 vector unsigned int vec_sub (vector unsigned int, vector bool int);
17356 vector unsigned int vec_sub (vector unsigned int, vector unsigned int);
17357 vector float vec_sub (vector float, vector float);
17359 vector signed int vec_subc (vector signed int, vector signed int);
17360 vector unsigned int vec_subc (vector unsigned int, vector unsigned int);
17362 vector signed int vec_sube (vector signed int, vector signed int,
17363                             vector signed int);
17364 vector unsigned int vec_sube (vector unsigned int, vector unsigned int,
17365                               vector unsigned int);
17367 vector signed int vec_subec (vector signed int, vector signed int,
17368                              vector signed int);
17369 vector unsigned int vec_subec (vector unsigned int, vector unsigned int,
17370                                vector unsigned int);
17372 vector unsigned char vec_subs (vector bool char, vector unsigned char);
17373 vector unsigned char vec_subs (vector unsigned char, vector bool char);
17374 vector unsigned char vec_subs (vector unsigned char, vector unsigned char);
17375 vector signed char vec_subs (vector bool char, vector signed char);
17376 vector signed char vec_subs (vector signed char, vector bool char);
17377 vector signed char vec_subs (vector signed char, vector signed char);
17378 vector unsigned short vec_subs (vector bool short, vector unsigned short);
17379 vector unsigned short vec_subs (vector unsigned short, vector bool short);
17380 vector unsigned short vec_subs (vector unsigned short, vector unsigned short);
17381 vector signed short vec_subs (vector bool short, vector signed short);
17382 vector signed short vec_subs (vector signed short, vector bool short);
17383 vector signed short vec_subs (vector signed short, vector signed short);
17384 vector unsigned int vec_subs (vector bool int, vector unsigned int);
17385 vector unsigned int vec_subs (vector unsigned int, vector bool int);
17386 vector unsigned int vec_subs (vector unsigned int, vector unsigned int);
17387 vector signed int vec_subs (vector bool int, vector signed int);
17388 vector signed int vec_subs (vector signed int, vector bool int);
17389 vector signed int vec_subs (vector signed int, vector signed int);
17391 vector signed int vec_sum2s (vector signed int, vector signed int);
17393 vector unsigned int vec_sum4s (vector unsigned char, vector unsigned int);
17394 vector signed int vec_sum4s (vector signed char, vector signed int);
17395 vector signed int vec_sum4s (vector signed short, vector signed int);
17397 vector signed int vec_sums (vector signed int, vector signed int);
17399 vector float vec_trunc (vector float);
17401 vector signed short vec_unpackh (vector signed char);
17402 vector bool short vec_unpackh (vector bool char);
17403 vector signed int vec_unpackh (vector signed short);
17404 vector bool int vec_unpackh (vector bool short);
17405 vector unsigned int vec_unpackh (vector pixel);
17407 vector signed short vec_unpackl (vector signed char);
17408 vector bool short vec_unpackl (vector bool char);
17409 vector unsigned int vec_unpackl (vector pixel);
17410 vector signed int vec_unpackl (vector signed short);
17411 vector bool int vec_unpackl (vector bool short);
17413 vector float vec_vaddfp (vector float, vector float);
17415 vector signed char vec_vaddsbs (vector bool char, vector signed char);
17416 vector signed char vec_vaddsbs (vector signed char, vector bool char);
17417 vector signed char vec_vaddsbs (vector signed char, vector signed char);
17419 vector signed short vec_vaddshs (vector bool short, vector signed short);
17420 vector signed short vec_vaddshs (vector signed short, vector bool short);
17421 vector signed short vec_vaddshs (vector signed short, vector signed short);
17423 vector signed int vec_vaddsws (vector bool int, vector signed int);
17424 vector signed int vec_vaddsws (vector signed int, vector bool int);
17425 vector signed int vec_vaddsws (vector signed int, vector signed int);
17427 vector signed char vec_vaddubm (vector bool char, vector signed char);
17428 vector signed char vec_vaddubm (vector signed char, vector bool char);
17429 vector signed char vec_vaddubm (vector signed char, vector signed char);
17430 vector unsigned char vec_vaddubm (vector bool char, vector unsigned char);
17431 vector unsigned char vec_vaddubm (vector unsigned char, vector bool char);
17432 vector unsigned char vec_vaddubm (vector unsigned char, vector unsigned char);
17434 vector unsigned char vec_vaddubs (vector bool char, vector unsigned char);
17435 vector unsigned char vec_vaddubs (vector unsigned char, vector bool char);
17436 vector unsigned char vec_vaddubs (vector unsigned char, vector unsigned char);
17438 vector signed short vec_vadduhm (vector bool short, vector signed short);
17439 vector signed short vec_vadduhm (vector signed short, vector bool short);
17440 vector signed short vec_vadduhm (vector signed short, vector signed short);
17441 vector unsigned short vec_vadduhm (vector bool short, vector unsigned short);
17442 vector unsigned short vec_vadduhm (vector unsigned short, vector bool short);
17443 vector unsigned short vec_vadduhm (vector unsigned short, vector unsigned short);
17445 vector unsigned short vec_vadduhs (vector bool short, vector unsigned short);
17446 vector unsigned short vec_vadduhs (vector unsigned short, vector bool short);
17447 vector unsigned short vec_vadduhs (vector unsigned short, vector unsigned short);
17449 vector signed int vec_vadduwm (vector bool int, vector signed int);
17450 vector signed int vec_vadduwm (vector signed int, vector bool int);
17451 vector signed int vec_vadduwm (vector signed int, vector signed int);
17452 vector unsigned int vec_vadduwm (vector bool int, vector unsigned int);
17453 vector unsigned int vec_vadduwm (vector unsigned int, vector bool int);
17454 vector unsigned int vec_vadduwm (vector unsigned int, vector unsigned int);
17456 vector unsigned int vec_vadduws (vector bool int, vector unsigned int);
17457 vector unsigned int vec_vadduws (vector unsigned int, vector bool int);
17458 vector unsigned int vec_vadduws (vector unsigned int, vector unsigned int);
17460 vector signed char vec_vavgsb (vector signed char, vector signed char);
17462 vector signed short vec_vavgsh (vector signed short, vector signed short);
17464 vector signed int vec_vavgsw (vector signed int, vector signed int);
17466 vector unsigned char vec_vavgub (vector unsigned char, vector unsigned char);
17468 vector unsigned short vec_vavguh (vector unsigned short, vector unsigned short);
17470 vector unsigned int vec_vavguw (vector unsigned int, vector unsigned int);
17472 vector float vec_vcfsx (vector signed int, const int);
17474 vector float vec_vcfux (vector unsigned int, const int);
17476 vector bool int vec_vcmpeqfp (vector float, vector float);
17478 vector bool char vec_vcmpequb (vector signed char, vector signed char);
17479 vector bool char vec_vcmpequb (vector unsigned char, vector unsigned char);
17481 vector bool short vec_vcmpequh (vector signed short, vector signed short);
17482 vector bool short vec_vcmpequh (vector unsigned short, vector unsigned short);
17484 vector bool int vec_vcmpequw (vector signed int, vector signed int);
17485 vector bool int vec_vcmpequw (vector unsigned int, vector unsigned int);
17487 vector bool int vec_vcmpgtfp (vector float, vector float);
17489 vector bool char vec_vcmpgtsb (vector signed char, vector signed char);
17491 vector bool short vec_vcmpgtsh (vector signed short, vector signed short);
17493 vector bool int vec_vcmpgtsw (vector signed int, vector signed int);
17495 vector bool char vec_vcmpgtub (vector unsigned char, vector unsigned char);
17497 vector bool short vec_vcmpgtuh (vector unsigned short, vector unsigned short);
17499 vector bool int vec_vcmpgtuw (vector unsigned int, vector unsigned int);
17501 vector float vec_vmaxfp (vector float, vector float);
17503 vector signed char vec_vmaxsb (vector bool char, vector signed char);
17504 vector signed char vec_vmaxsb (vector signed char, vector bool char);
17505 vector signed char vec_vmaxsb (vector signed char, vector signed char);
17507 vector signed short vec_vmaxsh (vector bool short, vector signed short);
17508 vector signed short vec_vmaxsh (vector signed short, vector bool short);
17509 vector signed short vec_vmaxsh (vector signed short, vector signed short);
17511 vector signed int vec_vmaxsw (vector bool int, vector signed int);
17512 vector signed int vec_vmaxsw (vector signed int, vector bool int);
17513 vector signed int vec_vmaxsw (vector signed int, vector signed int);
17515 vector unsigned char vec_vmaxub (vector bool char, vector unsigned char);
17516 vector unsigned char vec_vmaxub (vector unsigned char, vector bool char);
17517 vector unsigned char vec_vmaxub (vector unsigned char, vector unsigned char);
17519 vector unsigned short vec_vmaxuh (vector bool short, vector unsigned short);
17520 vector unsigned short vec_vmaxuh (vector unsigned short, vector bool short);
17521 vector unsigned short vec_vmaxuh (vector unsigned short, vector unsigned short);
17523 vector unsigned int vec_vmaxuw (vector bool int, vector unsigned int);
17524 vector unsigned int vec_vmaxuw (vector unsigned int, vector bool int);
17525 vector unsigned int vec_vmaxuw (vector unsigned int, vector unsigned int);
17527 vector float vec_vminfp (vector float, vector float);
17529 vector signed char vec_vminsb (vector bool char, vector signed char);
17530 vector signed char vec_vminsb (vector signed char, vector bool char);
17531 vector signed char vec_vminsb (vector signed char, vector signed char);
17533 vector signed short vec_vminsh (vector bool short, vector signed short);
17534 vector signed short vec_vminsh (vector signed short, vector bool short);
17535 vector signed short vec_vminsh (vector signed short, vector signed short);
17537 vector signed int vec_vminsw (vector bool int, vector signed int);
17538 vector signed int vec_vminsw (vector signed int, vector bool int);
17539 vector signed int vec_vminsw (vector signed int, vector signed int);
17541 vector unsigned char vec_vminub (vector bool char, vector unsigned char);
17542 vector unsigned char vec_vminub (vector unsigned char, vector bool char);
17543 vector unsigned char vec_vminub (vector unsigned char, vector unsigned char);
17545 vector unsigned short vec_vminuh (vector bool short, vector unsigned short);
17546 vector unsigned short vec_vminuh (vector unsigned short, vector bool short);
17547 vector unsigned short vec_vminuh (vector unsigned short, vector unsigned short);
17549 vector unsigned int vec_vminuw (vector bool int, vector unsigned int);
17550 vector unsigned int vec_vminuw (vector unsigned int, vector bool int);
17551 vector unsigned int vec_vminuw (vector unsigned int, vector unsigned int);
17553 vector bool char vec_vmrghb (vector bool char, vector bool char);
17554 vector signed char vec_vmrghb (vector signed char, vector signed char);
17555 vector unsigned char vec_vmrghb (vector unsigned char, vector unsigned char);
17557 vector bool short vec_vmrghh (vector bool short, vector bool short);
17558 vector signed short vec_vmrghh (vector signed short, vector signed short);
17559 vector unsigned short vec_vmrghh (vector unsigned short, vector unsigned short);
17560 vector pixel vec_vmrghh (vector pixel, vector pixel);
17562 vector float vec_vmrghw (vector float, vector float);
17563 vector bool int vec_vmrghw (vector bool int, vector bool int);
17564 vector signed int vec_vmrghw (vector signed int, vector signed int);
17565 vector unsigned int vec_vmrghw (vector unsigned int, vector unsigned int);
17567 vector bool char vec_vmrglb (vector bool char, vector bool char);
17568 vector signed char vec_vmrglb (vector signed char, vector signed char);
17569 vector unsigned char vec_vmrglb (vector unsigned char, vector unsigned char);
17571 vector bool short vec_vmrglh (vector bool short, vector bool short);
17572 vector signed short vec_vmrglh (vector signed short, vector signed short);
17573 vector unsigned short vec_vmrglh (vector unsigned short, vector unsigned short);
17574 vector pixel vec_vmrglh (vector pixel, vector pixel);
17576 vector float vec_vmrglw (vector float, vector float);
17577 vector signed int vec_vmrglw (vector signed int, vector signed int);
17578 vector unsigned int vec_vmrglw (vector unsigned int, vector unsigned int);
17579 vector bool int vec_vmrglw (vector bool int, vector bool int);
17581 vector signed int vec_vmsummbm (vector signed char, vector unsigned char,
17582                                 vector signed int);
17584 vector signed int vec_vmsumshm (vector signed short, vector signed short,
17585                                 vector signed int);
17587 vector signed int vec_vmsumshs (vector signed short, vector signed short,
17588                                 vector signed int);
17590 vector unsigned int vec_vmsumubm (vector unsigned char, vector unsigned char,
17591                                   vector unsigned int);
17593 vector unsigned int vec_vmsumuhm (vector unsigned short, vector unsigned short,
17594                                   vector unsigned int);
17596 vector unsigned int vec_vmsumuhs (vector unsigned short, vector unsigned short,
17597                                   vector unsigned int);
17599 vector signed short vec_vmulesb (vector signed char, vector signed char);
17601 vector signed int vec_vmulesh (vector signed short, vector signed short);
17603 vector unsigned short vec_vmuleub (vector unsigned char, vector unsigned char);
17605 vector unsigned int vec_vmuleuh (vector unsigned short, vector unsigned short);
17607 vector signed short vec_vmulosb (vector signed char, vector signed char);
17609 vector signed int vec_vmulosh (vector signed short, vector signed short);
17611 vector unsigned short vec_vmuloub (vector unsigned char, vector unsigned char);
17613 vector unsigned int vec_vmulouh (vector unsigned short, vector unsigned short);
17615 vector signed char vec_vpkshss (vector signed short, vector signed short);
17617 vector unsigned char vec_vpkshus (vector signed short, vector signed short);
17619 vector signed short vec_vpkswss (vector signed int, vector signed int);
17621 vector unsigned short vec_vpkswus (vector signed int, vector signed int);
17623 vector bool char vec_vpkuhum (vector bool short, vector bool short);
17624 vector signed char vec_vpkuhum (vector signed short, vector signed short);
17625 vector unsigned char vec_vpkuhum (vector unsigned short, vector unsigned short);
17627 vector unsigned char vec_vpkuhus (vector unsigned short, vector unsigned short);
17629 vector bool short vec_vpkuwum (vector bool int, vector bool int);
17630 vector signed short vec_vpkuwum (vector signed int, vector signed int);
17631 vector unsigned short vec_vpkuwum (vector unsigned int, vector unsigned int);
17633 vector unsigned short vec_vpkuwus (vector unsigned int, vector unsigned int);
17635 vector signed char vec_vrlb (vector signed char, vector unsigned char);
17636 vector unsigned char vec_vrlb (vector unsigned char, vector unsigned char);
17638 vector signed short vec_vrlh (vector signed short, vector unsigned short);
17639 vector unsigned short vec_vrlh (vector unsigned short, vector unsigned short);
17641 vector signed int vec_vrlw (vector signed int, vector unsigned int);
17642 vector unsigned int vec_vrlw (vector unsigned int, vector unsigned int);
17644 vector signed char vec_vslb (vector signed char, vector unsigned char);
17645 vector unsigned char vec_vslb (vector unsigned char, vector unsigned char);
17647 vector signed short vec_vslh (vector signed short, vector unsigned short);
17648 vector unsigned short vec_vslh (vector unsigned short, vector unsigned short);
17650 vector signed int vec_vslw (vector signed int, vector unsigned int);
17651 vector unsigned int vec_vslw (vector unsigned int, vector unsigned int);
17653 vector signed char vec_vspltb (vector signed char, const int);
17654 vector unsigned char vec_vspltb (vector unsigned char, const int);
17655 vector bool char vec_vspltb (vector bool char, const int);
17657 vector bool short vec_vsplth (vector bool short, const int);
17658 vector signed short vec_vsplth (vector signed short, const int);
17659 vector unsigned short vec_vsplth (vector unsigned short, const int);
17660 vector pixel vec_vsplth (vector pixel, const int);
17662 vector float vec_vspltw (vector float, const int);
17663 vector signed int vec_vspltw (vector signed int, const int);
17664 vector unsigned int vec_vspltw (vector unsigned int, const int);
17665 vector bool int vec_vspltw (vector bool int, const int);
17667 vector signed char vec_vsrab (vector signed char, vector unsigned char);
17668 vector unsigned char vec_vsrab (vector unsigned char, vector unsigned char);
17670 vector signed short vec_vsrah (vector signed short, vector unsigned short);
17671 vector unsigned short vec_vsrah (vector unsigned short, vector unsigned short);
17673 vector signed int vec_vsraw (vector signed int, vector unsigned int);
17674 vector unsigned int vec_vsraw (vector unsigned int, vector unsigned int);
17676 vector signed char vec_vsrb (vector signed char, vector unsigned char);
17677 vector unsigned char vec_vsrb (vector unsigned char, vector unsigned char);
17679 vector signed short vec_vsrh (vector signed short, vector unsigned short);
17680 vector unsigned short vec_vsrh (vector unsigned short, vector unsigned short);
17682 vector signed int vec_vsrw (vector signed int, vector unsigned int);
17683 vector unsigned int vec_vsrw (vector unsigned int, vector unsigned int);
17685 vector float vec_vsubfp (vector float, vector float);
17687 vector signed char vec_vsubsbs (vector bool char, vector signed char);
17688 vector signed char vec_vsubsbs (vector signed char, vector bool char);
17689 vector signed char vec_vsubsbs (vector signed char, vector signed char);
17691 vector signed short vec_vsubshs (vector bool short, vector signed short);
17692 vector signed short vec_vsubshs (vector signed short, vector bool short);
17693 vector signed short vec_vsubshs (vector signed short, vector signed short);
17695 vector signed int vec_vsubsws (vector bool int, vector signed int);
17696 vector signed int vec_vsubsws (vector signed int, vector bool int);
17697 vector signed int vec_vsubsws (vector signed int, vector signed int);
17699 vector signed char vec_vsububm (vector bool char, vector signed char);
17700 vector signed char vec_vsububm (vector signed char, vector bool char);
17701 vector signed char vec_vsububm (vector signed char, vector signed char);
17702 vector unsigned char vec_vsububm (vector bool char, vector unsigned char);
17703 vector unsigned char vec_vsububm (vector unsigned char, vector bool char);
17704 vector unsigned char vec_vsububm (vector unsigned char, vector unsigned char);
17706 vector unsigned char vec_vsububs (vector bool char, vector unsigned char);
17707 vector unsigned char vec_vsububs (vector unsigned char, vector bool char);
17708 vector unsigned char vec_vsububs (vector unsigned char, vector unsigned char);
17710 vector signed short vec_vsubuhm (vector bool short, vector signed short);
17711 vector signed short vec_vsubuhm (vector signed short, vector bool short);
17712 vector signed short vec_vsubuhm (vector signed short, vector signed short);
17713 vector unsigned short vec_vsubuhm (vector bool short, vector unsigned short);
17714 vector unsigned short vec_vsubuhm (vector unsigned short, vector bool short);
17715 vector unsigned short vec_vsubuhm (vector unsigned short, vector unsigned short);
17717 vector unsigned short vec_vsubuhs (vector bool short, vector unsigned short);
17718 vector unsigned short vec_vsubuhs (vector unsigned short, vector bool short);
17719 vector unsigned short vec_vsubuhs (vector unsigned short, vector unsigned short);
17721 vector signed int vec_vsubuwm (vector bool int, vector signed int);
17722 vector signed int vec_vsubuwm (vector signed int, vector bool int);
17723 vector signed int vec_vsubuwm (vector signed int, vector signed int);
17724 vector unsigned int vec_vsubuwm (vector bool int, vector unsigned int);
17725 vector unsigned int vec_vsubuwm (vector unsigned int, vector bool int);
17726 vector unsigned int vec_vsubuwm (vector unsigned int, vector unsigned int);
17728 vector unsigned int vec_vsubuws (vector bool int, vector unsigned int);
17729 vector unsigned int vec_vsubuws (vector unsigned int, vector bool int);
17730 vector unsigned int vec_vsubuws (vector unsigned int, vector unsigned int);
17732 vector signed int vec_vsum4sbs (vector signed char, vector signed int);
17734 vector signed int vec_vsum4shs (vector signed short, vector signed int);
17736 vector unsigned int vec_vsum4ubs (vector unsigned char, vector unsigned int);
17738 vector unsigned int vec_vupkhpx (vector pixel);
17740 vector bool short vec_vupkhsb (vector bool char);
17741 vector signed short vec_vupkhsb (vector signed char);
17743 vector bool int vec_vupkhsh (vector bool short);
17744 vector signed int vec_vupkhsh (vector signed short);
17746 vector unsigned int vec_vupklpx (vector pixel);
17748 vector bool short vec_vupklsb (vector bool char);
17749 vector signed short vec_vupklsb (vector signed char);
17751 vector bool int vec_vupklsh (vector bool short);
17752 vector signed int vec_vupklsh (vector signed short);
17754 vector float vec_xor (vector float, vector float);
17755 vector float vec_xor (vector float, vector bool int);
17756 vector float vec_xor (vector bool int, vector float);
17757 vector bool int vec_xor (vector bool int, vector bool int);
17758 vector signed int vec_xor (vector bool int, vector signed int);
17759 vector signed int vec_xor (vector signed int, vector bool int);
17760 vector signed int vec_xor (vector signed int, vector signed int);
17761 vector unsigned int vec_xor (vector bool int, vector unsigned int);
17762 vector unsigned int vec_xor (vector unsigned int, vector bool int);
17763 vector unsigned int vec_xor (vector unsigned int, vector unsigned int);
17764 vector bool short vec_xor (vector bool short, vector bool short);
17765 vector signed short vec_xor (vector bool short, vector signed short);
17766 vector signed short vec_xor (vector signed short, vector bool short);
17767 vector signed short vec_xor (vector signed short, vector signed short);
17768 vector unsigned short vec_xor (vector bool short, vector unsigned short);
17769 vector unsigned short vec_xor (vector unsigned short, vector bool short);
17770 vector unsigned short vec_xor (vector unsigned short, vector unsigned short);
17771 vector signed char vec_xor (vector bool char, vector signed char);
17772 vector bool char vec_xor (vector bool char, vector bool char);
17773 vector signed char vec_xor (vector signed char, vector bool char);
17774 vector signed char vec_xor (vector signed char, vector signed char);
17775 vector unsigned char vec_xor (vector bool char, vector unsigned char);
17776 vector unsigned char vec_xor (vector unsigned char, vector bool char);
17777 vector unsigned char vec_xor (vector unsigned char, vector unsigned char);
17778 @end smallexample
17780 @node PowerPC AltiVec Built-in Functions Available on ISA 2.06
17781 @subsubsection PowerPC AltiVec Built-in Functions Available on ISA 2.06
17783 The AltiVec built-in functions described in this section are
17784 available on the PowerPC family of processors starting with ISA 2.06
17785 or later.  These are normally enabled by adding @option{-mvsx} to the
17786 command line.
17788 When @option{-mvsx} is used, the following additional vector types are
17789 implemented.
17791 @smallexample
17792 vector unsigned __int128
17793 vector signed __int128
17794 vector unsigned long long int
17795 vector signed long long int
17796 vector double
17797 @end smallexample
17799 The long long types are only implemented for 64-bit code generation.
17801 @smallexample
17803 vector bool long long vec_and (vector bool long long int, vector bool long long);
17805 vector double vec_ctf (vector unsigned long, const int);
17806 vector double vec_ctf (vector signed long, const int);
17808 vector signed long vec_cts (vector double, const int);
17810 vector unsigned long vec_ctu (vector double, const int);
17812 void vec_dst (const unsigned long *, int, const int);
17813 void vec_dst (const long *, int, const int);
17815 void vec_dststt (const unsigned long *, int, const int);
17816 void vec_dststt (const long *, int, const int);
17818 void vec_dstt (const unsigned long *, int, const int);
17819 void vec_dstt (const long *, int, const int);
17821 vector unsigned char vec_lvsl (int, const unsigned long *);
17822 vector unsigned char vec_lvsl (int, const long *);
17824 vector unsigned char vec_lvsr (int, const unsigned long *);
17825 vector unsigned char vec_lvsr (int, const long *);
17827 vector double vec_mul (vector double, vector double);
17828 vector long vec_mul (vector long, vector long);
17829 vector unsigned long vec_mul (vector unsigned long, vector unsigned long);
17831 vector unsigned long long vec_mule (vector unsigned int, vector unsigned int);
17832 vector signed long long vec_mule (vector signed int, vector signed int);
17834 vector unsigned long long vec_mulo (vector unsigned int, vector unsigned int);
17835 vector signed long long vec_mulo (vector signed int, vector signed int);
17837 vector double vec_nabs (vector double);
17839 vector bool long long vec_reve (vector bool long long);
17840 vector signed long long vec_reve (vector signed long long);
17841 vector unsigned long long vec_reve (vector unsigned long long);
17842 vector double vec_sld (vector double, vector double, const int);
17844 vector bool long long int vec_sld (vector bool long long int,
17845                                    vector bool long long int, const int);
17846 vector long long int vec_sld (vector long long int, vector  long long int, const int);
17847 vector unsigned long long int vec_sld (vector unsigned long long int,
17848                                        vector unsigned long long int, const int);
17850 vector long long int vec_sll (vector long long int, vector unsigned char);
17851 vector unsigned long long int vec_sll (vector unsigned long long int,
17852                                        vector unsigned char);
17854 vector signed long long vec_slo (vector signed long long, vector signed char);
17855 vector signed long long vec_slo (vector signed long long, vector unsigned char);
17856 vector unsigned long long vec_slo (vector unsigned long long, vector signed char);
17857 vector unsigned long long vec_slo (vector unsigned long long, vector unsigned char);
17859 vector signed long vec_splat (vector signed long, const int);
17860 vector unsigned long vec_splat (vector unsigned long, const int);
17862 vector long long int vec_srl (vector long long int, vector unsigned char);
17863 vector unsigned long long int vec_srl (vector unsigned long long int,
17864                                        vector unsigned char);
17866 vector long long int vec_sro (vector long long int, vector char);
17867 vector long long int vec_sro (vector long long int, vector unsigned char);
17868 vector unsigned long long int vec_sro (vector unsigned long long int, vector char);
17869 vector unsigned long long int vec_sro (vector unsigned long long int,
17870                                        vector unsigned char);
17872 vector signed __int128 vec_subc (vector signed __int128, vector signed __int128);
17873 vector unsigned __int128 vec_subc (vector unsigned __int128, vector unsigned __int128);
17875 vector signed __int128 vec_sube (vector signed __int128, vector signed __int128,
17876                                  vector signed __int128);
17877 vector unsigned __int128 vec_sube (vector unsigned __int128, vector unsigned __int128,
17878                                    vector unsigned __int128);
17880 vector signed __int128 vec_subec (vector signed __int128, vector signed __int128,
17881                                   vector signed __int128);
17882 vector unsigned __int128 vec_subec (vector unsigned __int128, vector unsigned __int128,
17883                                     vector unsigned __int128);
17885 vector double vec_unpackh (vector float);
17887 vector double vec_unpackl (vector float);
17889 vector double vec_doublee (vector float);
17890 vector double vec_doublee (vector signed int);
17891 vector double vec_doublee (vector unsigned int);
17893 vector double vec_doubleo (vector float);
17894 vector double vec_doubleo (vector signed int);
17895 vector double vec_doubleo (vector unsigned int);
17897 vector double vec_doubleh (vector float);
17898 vector double vec_doubleh (vector signed int);
17899 vector double vec_doubleh (vector unsigned int);
17901 vector double vec_doublel (vector float);
17902 vector double vec_doublel (vector signed int);
17903 vector double vec_doublel (vector unsigned int);
17905 vector float vec_float (vector signed int);
17906 vector float vec_float (vector unsigned int);
17908 vector float vec_float2 (vector signed long long, vector signed long long);
17909 vector float vec_float2 (vector unsigned long long, vector signed long long);
17911 vector float vec_floate (vector double);
17912 vector float vec_floate (vector signed long long);
17913 vector float vec_floate (vector unsigned long long);
17915 vector float vec_floato (vector double);
17916 vector float vec_floato (vector signed long long);
17917 vector float vec_floato (vector unsigned long long);
17919 vector signed long long vec_signed (vector double);
17920 vector signed int vec_signed (vector float);
17922 vector signed int vec_signede (vector double);
17924 vector signed int vec_signedo (vector double);
17926 vector signed char vec_sldw (vector signed char, vector signed char, const int);
17927 vector unsigned char vec_sldw (vector unsigned char, vector unsigned char, const int);
17928 vector signed short vec_sldw (vector signed short, vector signed short, const int);
17929 vector unsigned short vec_sldw (vector unsigned short,
17930                                 vector unsigned short, const int);
17931 vector signed int vec_sldw (vector signed int, vector signed int, const int);
17932 vector unsigned int vec_sldw (vector unsigned int, vector unsigned int, const int);
17933 vector signed long long vec_sldw (vector signed long long,
17934                                   vector signed long long, const int);
17935 vector unsigned long long vec_sldw (vector unsigned long long,
17936                                     vector unsigned long long, const int);
17938 vector signed long long vec_unsigned (vector double);
17939 vector signed int vec_unsigned (vector float);
17941 vector signed int vec_unsignede (vector double);
17943 vector signed int vec_unsignedo (vector double);
17945 vector double vec_abs (vector double);
17946 vector double vec_add (vector double, vector double);
17947 vector double vec_and (vector double, vector double);
17948 vector double vec_and (vector double, vector bool long);
17949 vector double vec_and (vector bool long, vector double);
17950 vector long vec_and (vector long, vector long);
17951 vector long vec_and (vector long, vector bool long);
17952 vector long vec_and (vector bool long, vector long);
17953 vector unsigned long vec_and (vector unsigned long, vector unsigned long);
17954 vector unsigned long vec_and (vector unsigned long, vector bool long);
17955 vector unsigned long vec_and (vector bool long, vector unsigned long);
17956 vector double vec_andc (vector double, vector double);
17957 vector double vec_andc (vector double, vector bool long);
17958 vector double vec_andc (vector bool long, vector double);
17959 vector long vec_andc (vector long, vector long);
17960 vector long vec_andc (vector long, vector bool long);
17961 vector long vec_andc (vector bool long, vector long);
17962 vector unsigned long vec_andc (vector unsigned long, vector unsigned long);
17963 vector unsigned long vec_andc (vector unsigned long, vector bool long);
17964 vector unsigned long vec_andc (vector bool long, vector unsigned long);
17965 vector double vec_ceil (vector double);
17966 vector bool long vec_cmpeq (vector double, vector double);
17967 vector bool long vec_cmpge (vector double, vector double);
17968 vector bool long vec_cmpgt (vector double, vector double);
17969 vector bool long vec_cmple (vector double, vector double);
17970 vector bool long vec_cmplt (vector double, vector double);
17971 vector double vec_cpsgn (vector double, vector double);
17972 vector float vec_div (vector float, vector float);
17973 vector double vec_div (vector double, vector double);
17974 vector long vec_div (vector long, vector long);
17975 vector unsigned long vec_div (vector unsigned long, vector unsigned long);
17976 vector double vec_floor (vector double);
17977 vector __int128 vec_ld (int, const vector __int128 *);
17978 vector unsigned __int128 vec_ld (int, const vector unsigned __int128 *);
17979 vector __int128 vec_ld (int, const __int128 *);
17980 vector unsigned __int128 vec_ld (int, const unsigned __int128 *);
17981 vector double vec_ld (int, const vector double *);
17982 vector double vec_ld (int, const double *);
17983 vector double vec_ldl (int, const vector double *);
17984 vector double vec_ldl (int, const double *);
17985 vector unsigned char vec_lvsl (int, const double *);
17986 vector unsigned char vec_lvsr (int, const double *);
17987 vector double vec_madd (vector double, vector double, vector double);
17988 vector double vec_max (vector double, vector double);
17989 vector signed long vec_mergeh (vector signed long, vector signed long);
17990 vector signed long vec_mergeh (vector signed long, vector bool long);
17991 vector signed long vec_mergeh (vector bool long, vector signed long);
17992 vector unsigned long vec_mergeh (vector unsigned long, vector unsigned long);
17993 vector unsigned long vec_mergeh (vector unsigned long, vector bool long);
17994 vector unsigned long vec_mergeh (vector bool long, vector unsigned long);
17995 vector signed long vec_mergel (vector signed long, vector signed long);
17996 vector signed long vec_mergel (vector signed long, vector bool long);
17997 vector signed long vec_mergel (vector bool long, vector signed long);
17998 vector unsigned long vec_mergel (vector unsigned long, vector unsigned long);
17999 vector unsigned long vec_mergel (vector unsigned long, vector bool long);
18000 vector unsigned long vec_mergel (vector bool long, vector unsigned long);
18001 vector double vec_min (vector double, vector double);
18002 vector float vec_msub (vector float, vector float, vector float);
18003 vector double vec_msub (vector double, vector double, vector double);
18004 vector float vec_nearbyint (vector float);
18005 vector double vec_nearbyint (vector double);
18006 vector float vec_nmadd (vector float, vector float, vector float);
18007 vector double vec_nmadd (vector double, vector double, vector double);
18008 vector double vec_nmsub (vector double, vector double, vector double);
18009 vector double vec_nor (vector double, vector double);
18010 vector long vec_nor (vector long, vector long);
18011 vector long vec_nor (vector long, vector bool long);
18012 vector long vec_nor (vector bool long, vector long);
18013 vector unsigned long vec_nor (vector unsigned long, vector unsigned long);
18014 vector unsigned long vec_nor (vector unsigned long, vector bool long);
18015 vector unsigned long vec_nor (vector bool long, vector unsigned long);
18016 vector double vec_or (vector double, vector double);
18017 vector double vec_or (vector double, vector bool long);
18018 vector double vec_or (vector bool long, vector double);
18019 vector long vec_or (vector long, vector long);
18020 vector long vec_or (vector long, vector bool long);
18021 vector long vec_or (vector bool long, vector long);
18022 vector unsigned long vec_or (vector unsigned long, vector unsigned long);
18023 vector unsigned long vec_or (vector unsigned long, vector bool long);
18024 vector unsigned long vec_or (vector bool long, vector unsigned long);
18025 vector double vec_perm (vector double, vector double, vector unsigned char);
18026 vector long vec_perm (vector long, vector long, vector unsigned char);
18027 vector unsigned long vec_perm (vector unsigned long, vector unsigned long,
18028                                vector unsigned char);
18029 vector bool char vec_permxor (vector bool char, vector bool char,
18030                               vector bool char);
18031 vector unsigned char vec_permxor (vector signed char, vector signed char,
18032                                   vector signed char);
18033 vector unsigned char vec_permxor (vector unsigned char, vector unsigned char,
18034                                   vector unsigned char);
18035 vector double vec_rint (vector double);
18036 vector double vec_recip (vector double, vector double);
18037 vector double vec_rsqrt (vector double);
18038 vector double vec_rsqrte (vector double);
18039 vector double vec_sel (vector double, vector double, vector bool long);
18040 vector double vec_sel (vector double, vector double, vector unsigned long);
18041 vector long vec_sel (vector long, vector long, vector long);
18042 vector long vec_sel (vector long, vector long, vector unsigned long);
18043 vector long vec_sel (vector long, vector long, vector bool long);
18044 vector unsigned long vec_sel (vector unsigned long, vector unsigned long,
18045                               vector long);
18046 vector unsigned long vec_sel (vector unsigned long, vector unsigned long,
18047                               vector unsigned long);
18048 vector unsigned long vec_sel (vector unsigned long, vector unsigned long,
18049                               vector bool long);
18050 vector double vec_splats (double);
18051 vector signed long vec_splats (signed long);
18052 vector unsigned long vec_splats (unsigned long);
18053 vector float vec_sqrt (vector float);
18054 vector double vec_sqrt (vector double);
18055 void vec_st (vector double, int, vector double *);
18056 void vec_st (vector double, int, double *);
18057 vector double vec_sub (vector double, vector double);
18058 vector double vec_trunc (vector double);
18059 vector double vec_xl (int, vector double *);
18060 vector double vec_xl (int, double *);
18061 vector long long vec_xl (int, vector long long *);
18062 vector long long vec_xl (int, long long *);
18063 vector unsigned long long vec_xl (int, vector unsigned long long *);
18064 vector unsigned long long vec_xl (int, unsigned long long *);
18065 vector float vec_xl (int, vector float *);
18066 vector float vec_xl (int, float *);
18067 vector int vec_xl (int, vector int *);
18068 vector int vec_xl (int, int *);
18069 vector unsigned int vec_xl (int, vector unsigned int *);
18070 vector unsigned int vec_xl (int, unsigned int *);
18071 vector double vec_xor (vector double, vector double);
18072 vector double vec_xor (vector double, vector bool long);
18073 vector double vec_xor (vector bool long, vector double);
18074 vector long vec_xor (vector long, vector long);
18075 vector long vec_xor (vector long, vector bool long);
18076 vector long vec_xor (vector bool long, vector long);
18077 vector unsigned long vec_xor (vector unsigned long, vector unsigned long);
18078 vector unsigned long vec_xor (vector unsigned long, vector bool long);
18079 vector unsigned long vec_xor (vector bool long, vector unsigned long);
18080 void vec_xst (vector double, int, vector double *);
18081 void vec_xst (vector double, int, double *);
18082 void vec_xst (vector long long, int, vector long long *);
18083 void vec_xst (vector long long, int, long long *);
18084 void vec_xst (vector unsigned long long, int, vector unsigned long long *);
18085 void vec_xst (vector unsigned long long, int, unsigned long long *);
18086 void vec_xst (vector float, int, vector float *);
18087 void vec_xst (vector float, int, float *);
18088 void vec_xst (vector int, int, vector int *);
18089 void vec_xst (vector int, int, int *);
18090 void vec_xst (vector unsigned int, int, vector unsigned int *);
18091 void vec_xst (vector unsigned int, int, unsigned int *);
18092 int vec_all_eq (vector double, vector double);
18093 int vec_all_ge (vector double, vector double);
18094 int vec_all_gt (vector double, vector double);
18095 int vec_all_le (vector double, vector double);
18096 int vec_all_lt (vector double, vector double);
18097 int vec_all_nan (vector double);
18098 int vec_all_ne (vector double, vector double);
18099 int vec_all_nge (vector double, vector double);
18100 int vec_all_ngt (vector double, vector double);
18101 int vec_all_nle (vector double, vector double);
18102 int vec_all_nlt (vector double, vector double);
18103 int vec_all_numeric (vector double);
18104 int vec_any_eq (vector double, vector double);
18105 int vec_any_ge (vector double, vector double);
18106 int vec_any_gt (vector double, vector double);
18107 int vec_any_le (vector double, vector double);
18108 int vec_any_lt (vector double, vector double);
18109 int vec_any_nan (vector double);
18110 int vec_any_ne (vector double, vector double);
18111 int vec_any_nge (vector double, vector double);
18112 int vec_any_ngt (vector double, vector double);
18113 int vec_any_nle (vector double, vector double);
18114 int vec_any_nlt (vector double, vector double);
18115 int vec_any_numeric (vector double);
18117 vector double vec_vsx_ld (int, const vector double *);
18118 vector double vec_vsx_ld (int, const double *);
18119 vector float vec_vsx_ld (int, const vector float *);
18120 vector float vec_vsx_ld (int, const float *);
18121 vector bool int vec_vsx_ld (int, const vector bool int *);
18122 vector signed int vec_vsx_ld (int, const vector signed int *);
18123 vector signed int vec_vsx_ld (int, const int *);
18124 vector signed int vec_vsx_ld (int, const long *);
18125 vector unsigned int vec_vsx_ld (int, const vector unsigned int *);
18126 vector unsigned int vec_vsx_ld (int, const unsigned int *);
18127 vector unsigned int vec_vsx_ld (int, const unsigned long *);
18128 vector bool short vec_vsx_ld (int, const vector bool short *);
18129 vector pixel vec_vsx_ld (int, const vector pixel *);
18130 vector signed short vec_vsx_ld (int, const vector signed short *);
18131 vector signed short vec_vsx_ld (int, const short *);
18132 vector unsigned short vec_vsx_ld (int, const vector unsigned short *);
18133 vector unsigned short vec_vsx_ld (int, const unsigned short *);
18134 vector bool char vec_vsx_ld (int, const vector bool char *);
18135 vector signed char vec_vsx_ld (int, const vector signed char *);
18136 vector signed char vec_vsx_ld (int, const signed char *);
18137 vector unsigned char vec_vsx_ld (int, const vector unsigned char *);
18138 vector unsigned char vec_vsx_ld (int, const unsigned char *);
18140 void vec_vsx_st (vector double, int, vector double *);
18141 void vec_vsx_st (vector double, int, double *);
18142 void vec_vsx_st (vector float, int, vector float *);
18143 void vec_vsx_st (vector float, int, float *);
18144 void vec_vsx_st (vector signed int, int, vector signed int *);
18145 void vec_vsx_st (vector signed int, int, int *);
18146 void vec_vsx_st (vector unsigned int, int, vector unsigned int *);
18147 void vec_vsx_st (vector unsigned int, int, unsigned int *);
18148 void vec_vsx_st (vector bool int, int, vector bool int *);
18149 void vec_vsx_st (vector bool int, int, unsigned int *);
18150 void vec_vsx_st (vector bool int, int, int *);
18151 void vec_vsx_st (vector signed short, int, vector signed short *);
18152 void vec_vsx_st (vector signed short, int, short *);
18153 void vec_vsx_st (vector unsigned short, int, vector unsigned short *);
18154 void vec_vsx_st (vector unsigned short, int, unsigned short *);
18155 void vec_vsx_st (vector bool short, int, vector bool short *);
18156 void vec_vsx_st (vector bool short, int, unsigned short *);
18157 void vec_vsx_st (vector pixel, int, vector pixel *);
18158 void vec_vsx_st (vector pixel, int, unsigned short *);
18159 void vec_vsx_st (vector pixel, int, short *);
18160 void vec_vsx_st (vector bool short, int, short *);
18161 void vec_vsx_st (vector signed char, int, vector signed char *);
18162 void vec_vsx_st (vector signed char, int, signed char *);
18163 void vec_vsx_st (vector unsigned char, int, vector unsigned char *);
18164 void vec_vsx_st (vector unsigned char, int, unsigned char *);
18165 void vec_vsx_st (vector bool char, int, vector bool char *);
18166 void vec_vsx_st (vector bool char, int, unsigned char *);
18167 void vec_vsx_st (vector bool char, int, signed char *);
18169 vector double vec_xxpermdi (vector double, vector double, const int);
18170 vector float vec_xxpermdi (vector float, vector float, const int);
18171 vector long long vec_xxpermdi (vector long long, vector long long, const int);
18172 vector unsigned long long vec_xxpermdi (vector unsigned long long,
18173                                         vector unsigned long long, const int);
18174 vector int vec_xxpermdi (vector int, vector int, const int);
18175 vector unsigned int vec_xxpermdi (vector unsigned int,
18176                                   vector unsigned int, const int);
18177 vector short vec_xxpermdi (vector short, vector short, const int);
18178 vector unsigned short vec_xxpermdi (vector unsigned short,
18179                                     vector unsigned short, const int);
18180 vector signed char vec_xxpermdi (vector signed char, vector signed char,
18181                                  const int);
18182 vector unsigned char vec_xxpermdi (vector unsigned char,
18183                                    vector unsigned char, const int);
18185 vector double vec_xxsldi (vector double, vector double, int);
18186 vector float vec_xxsldi (vector float, vector float, int);
18187 vector long long vec_xxsldi (vector long long, vector long long, int);
18188 vector unsigned long long vec_xxsldi (vector unsigned long long,
18189                                       vector unsigned long long, int);
18190 vector int vec_xxsldi (vector int, vector int, int);
18191 vector unsigned int vec_xxsldi (vector unsigned int, vector unsigned int, int);
18192 vector short vec_xxsldi (vector short, vector short, int);
18193 vector unsigned short vec_xxsldi (vector unsigned short,
18194                                   vector unsigned short, int);
18195 vector signed char vec_xxsldi (vector signed char, vector signed char, int);
18196 vector unsigned char vec_xxsldi (vector unsigned char,
18197                                  vector unsigned char, int);
18198 @end smallexample
18200 Note that the @samp{vec_ld} and @samp{vec_st} built-in functions always
18201 generate the AltiVec @samp{LVX} and @samp{STVX} instructions even
18202 if the VSX instruction set is available.  The @samp{vec_vsx_ld} and
18203 @samp{vec_vsx_st} built-in functions always generate the VSX @samp{LXVD2X},
18204 @samp{LXVW4X}, @samp{STXVD2X}, and @samp{STXVW4X} instructions.
18206 @node PowerPC AltiVec Built-in Functions Available on ISA 2.07
18207 @subsubsection PowerPC AltiVec Built-in Functions Available on ISA 2.07
18209 If the ISA 2.07 additions to the vector/scalar (power8-vector)
18210 instruction set are available, the following additional functions are
18211 available for both 32-bit and 64-bit targets.  For 64-bit targets, you
18212 can use @var{vector long} instead of @var{vector long long},
18213 @var{vector bool long} instead of @var{vector bool long long}, and
18214 @var{vector unsigned long} instead of @var{vector unsigned long long}.
18216 @smallexample
18217 vector signed char vec_neg (vector signed char);
18218 vector signed short vec_neg (vector signed short);
18219 vector signed int vec_neg (vector signed int);
18220 vector signed long long vec_neg (vector signed long long);
18221 vector float  char vec_neg (vector float);
18222 vector double vec_neg (vector double);
18224 vector signed int vec_signed2 (vector double, vector double);
18226 vector signed int vec_unsigned2 (vector double, vector double);
18228 vector long long vec_abs (vector long long);
18230 vector long long vec_add (vector long long, vector long long);
18231 vector unsigned long long vec_add (vector unsigned long long,
18232                                    vector unsigned long long);
18234 int vec_all_eq (vector long long, vector long long);
18235 int vec_all_eq (vector unsigned long long, vector unsigned long long);
18236 int vec_all_ge (vector long long, vector long long);
18237 int vec_all_ge (vector unsigned long long, vector unsigned long long);
18238 int vec_all_gt (vector long long, vector long long);
18239 int vec_all_gt (vector unsigned long long, vector unsigned long long);
18240 int vec_all_le (vector long long, vector long long);
18241 int vec_all_le (vector unsigned long long, vector unsigned long long);
18242 int vec_all_lt (vector long long, vector long long);
18243 int vec_all_lt (vector unsigned long long, vector unsigned long long);
18244 int vec_all_ne (vector long long, vector long long);
18245 int vec_all_ne (vector unsigned long long, vector unsigned long long);
18247 int vec_any_eq (vector long long, vector long long);
18248 int vec_any_eq (vector unsigned long long, vector unsigned long long);
18249 int vec_any_ge (vector long long, vector long long);
18250 int vec_any_ge (vector unsigned long long, vector unsigned long long);
18251 int vec_any_gt (vector long long, vector long long);
18252 int vec_any_gt (vector unsigned long long, vector unsigned long long);
18253 int vec_any_le (vector long long, vector long long);
18254 int vec_any_le (vector unsigned long long, vector unsigned long long);
18255 int vec_any_lt (vector long long, vector long long);
18256 int vec_any_lt (vector unsigned long long, vector unsigned long long);
18257 int vec_any_ne (vector long long, vector long long);
18258 int vec_any_ne (vector unsigned long long, vector unsigned long long);
18260 vector bool long long vec_cmpeq (vector bool long long, vector bool long long);
18262 vector long long vec_eqv (vector long long, vector long long);
18263 vector long long vec_eqv (vector bool long long, vector long long);
18264 vector long long vec_eqv (vector long long, vector bool long long);
18265 vector unsigned long long vec_eqv (vector unsigned long long, vector unsigned long long);
18266 vector unsigned long long vec_eqv (vector bool long long, vector unsigned long long);
18267 vector unsigned long long vec_eqv (vector unsigned long long,
18268                                    vector bool long long);
18269 vector int vec_eqv (vector int, vector int);
18270 vector int vec_eqv (vector bool int, vector int);
18271 vector int vec_eqv (vector int, vector bool int);
18272 vector unsigned int vec_eqv (vector unsigned int, vector unsigned int);
18273 vector unsigned int vec_eqv (vector bool unsigned int, vector unsigned int);
18274 vector unsigned int vec_eqv (vector unsigned int, vector bool unsigned int);
18275 vector short vec_eqv (vector short, vector short);
18276 vector short vec_eqv (vector bool short, vector short);
18277 vector short vec_eqv (vector short, vector bool short);
18278 vector unsigned short vec_eqv (vector unsigned short, vector unsigned short);
18279 vector unsigned short vec_eqv (vector bool unsigned short, vector unsigned short);
18280 vector unsigned short vec_eqv (vector unsigned short, vector bool unsigned short);
18281 vector signed char vec_eqv (vector signed char, vector signed char);
18282 vector signed char vec_eqv (vector bool signed char, vector signed char);
18283 vector signed char vec_eqv (vector signed char, vector bool signed char);
18284 vector unsigned char vec_eqv (vector unsigned char, vector unsigned char);
18285 vector unsigned char vec_eqv (vector bool unsigned char, vector unsigned char);
18286 vector unsigned char vec_eqv (vector unsigned char, vector bool unsigned char);
18288 vector long long vec_max (vector long long, vector long long);
18289 vector unsigned long long vec_max (vector unsigned long long,
18290                                    vector unsigned long long);
18292 vector signed int vec_mergee (vector signed int, vector signed int);
18293 vector unsigned int vec_mergee (vector unsigned int, vector unsigned int);
18294 vector bool int vec_mergee (vector bool int, vector bool int);
18296 vector signed int vec_mergeo (vector signed int, vector signed int);
18297 vector unsigned int vec_mergeo (vector unsigned int, vector unsigned int);
18298 vector bool int vec_mergeo (vector bool int, vector bool int);
18300 vector long long vec_min (vector long long, vector long long);
18301 vector unsigned long long vec_min (vector unsigned long long,
18302                                    vector unsigned long long);
18304 vector signed long long vec_nabs (vector signed long long);
18306 vector long long vec_nand (vector long long, vector long long);
18307 vector long long vec_nand (vector bool long long, vector long long);
18308 vector long long vec_nand (vector long long, vector bool long long);
18309 vector unsigned long long vec_nand (vector unsigned long long,
18310                                     vector unsigned long long);
18311 vector unsigned long long vec_nand (vector bool long long, vector unsigned long long);
18312 vector unsigned long long vec_nand (vector unsigned long long, vector bool long long);
18313 vector int vec_nand (vector int, vector int);
18314 vector int vec_nand (vector bool int, vector int);
18315 vector int vec_nand (vector int, vector bool int);
18316 vector unsigned int vec_nand (vector unsigned int, vector unsigned int);
18317 vector unsigned int vec_nand (vector bool unsigned int, vector unsigned int);
18318 vector unsigned int vec_nand (vector unsigned int, vector bool unsigned int);
18319 vector short vec_nand (vector short, vector short);
18320 vector short vec_nand (vector bool short, vector short);
18321 vector short vec_nand (vector short, vector bool short);
18322 vector unsigned short vec_nand (vector unsigned short, vector unsigned short);
18323 vector unsigned short vec_nand (vector bool unsigned short, vector unsigned short);
18324 vector unsigned short vec_nand (vector unsigned short, vector bool unsigned short);
18325 vector signed char vec_nand (vector signed char, vector signed char);
18326 vector signed char vec_nand (vector bool signed char, vector signed char);
18327 vector signed char vec_nand (vector signed char, vector bool signed char);
18328 vector unsigned char vec_nand (vector unsigned char, vector unsigned char);
18329 vector unsigned char vec_nand (vector bool unsigned char, vector unsigned char);
18330 vector unsigned char vec_nand (vector unsigned char, vector bool unsigned char);
18332 vector long long vec_orc (vector long long, vector long long);
18333 vector long long vec_orc (vector bool long long, vector long long);
18334 vector long long vec_orc (vector long long, vector bool long long);
18335 vector unsigned long long vec_orc (vector unsigned long long,
18336                                    vector unsigned long long);
18337 vector unsigned long long vec_orc (vector bool long long, vector unsigned long long);
18338 vector unsigned long long vec_orc (vector unsigned long long, vector bool long long);
18339 vector int vec_orc (vector int, vector int);
18340 vector int vec_orc (vector bool int, vector int);
18341 vector int vec_orc (vector int, vector bool int);
18342 vector unsigned int vec_orc (vector unsigned int, vector unsigned int);
18343 vector unsigned int vec_orc (vector bool unsigned int, vector unsigned int);
18344 vector unsigned int vec_orc (vector unsigned int, vector bool unsigned int);
18345 vector short vec_orc (vector short, vector short);
18346 vector short vec_orc (vector bool short, vector short);
18347 vector short vec_orc (vector short, vector bool short);
18348 vector unsigned short vec_orc (vector unsigned short, vector unsigned short);
18349 vector unsigned short vec_orc (vector bool unsigned short, vector unsigned short);
18350 vector unsigned short vec_orc (vector unsigned short, vector bool unsigned short);
18351 vector signed char vec_orc (vector signed char, vector signed char);
18352 vector signed char vec_orc (vector bool signed char, vector signed char);
18353 vector signed char vec_orc (vector signed char, vector bool signed char);
18354 vector unsigned char vec_orc (vector unsigned char, vector unsigned char);
18355 vector unsigned char vec_orc (vector bool unsigned char, vector unsigned char);
18356 vector unsigned char vec_orc (vector unsigned char, vector bool unsigned char);
18358 vector int vec_pack (vector long long, vector long long);
18359 vector unsigned int vec_pack (vector unsigned long long, vector unsigned long long);
18360 vector bool int vec_pack (vector bool long long, vector bool long long);
18361 vector float vec_pack (vector double, vector double);
18363 vector int vec_packs (vector long long, vector long long);
18364 vector unsigned int vec_packs (vector unsigned long long, vector unsigned long long);
18366 vector unsigned char vec_packsu (vector signed short, vector signed short)
18367 vector unsigned char vec_packsu (vector unsigned short, vector unsigned short)
18368 vector unsigned short int vec_packsu (vector signed int, vector signed int);
18369 vector unsigned short int vec_packsu (vector unsigned int, vector unsigned int);
18370 vector unsigned int vec_packsu (vector long long, vector long long);
18371 vector unsigned int vec_packsu (vector unsigned long long, vector unsigned long long);
18372 vector unsigned int vec_packsu (vector signed long long, vector signed long long);
18374 vector unsigned char vec_popcnt (vector signed char);
18375 vector unsigned char vec_popcnt (vector unsigned char);
18376 vector unsigned short vec_popcnt (vector signed short);
18377 vector unsigned short vec_popcnt (vector unsigned short);
18378 vector unsigned int vec_popcnt (vector signed int);
18379 vector unsigned int vec_popcnt (vector unsigned int);
18380 vector unsigned long long vec_popcnt (vector signed long long);
18381 vector unsigned long long vec_popcnt (vector unsigned long long);
18383 vector long long vec_rl (vector long long, vector unsigned long long);
18384 vector long long vec_rl (vector unsigned long long, vector unsigned long long);
18386 vector long long vec_sl (vector long long, vector unsigned long long);
18387 vector long long vec_sl (vector unsigned long long, vector unsigned long long);
18389 vector long long vec_sr (vector long long, vector unsigned long long);
18390 vector unsigned long long char vec_sr (vector unsigned long long,
18391                                        vector unsigned long long);
18393 vector long long vec_sra (vector long long, vector unsigned long long);
18394 vector unsigned long long vec_sra (vector unsigned long long,
18395                                    vector unsigned long long);
18397 vector long long vec_sub (vector long long, vector long long);
18398 vector unsigned long long vec_sub (vector unsigned long long,
18399                                    vector unsigned long long);
18401 vector long long vec_unpackh (vector int);
18402 vector unsigned long long vec_unpackh (vector unsigned int);
18404 vector long long vec_unpackl (vector int);
18405 vector unsigned long long vec_unpackl (vector unsigned int);
18407 vector long long vec_vaddudm (vector long long, vector long long);
18408 vector long long vec_vaddudm (vector bool long long, vector long long);
18409 vector long long vec_vaddudm (vector long long, vector bool long long);
18410 vector unsigned long long vec_vaddudm (vector unsigned long long,
18411                                        vector unsigned long long);
18412 vector unsigned long long vec_vaddudm (vector bool unsigned long long,
18413                                        vector unsigned long long);
18414 vector unsigned long long vec_vaddudm (vector unsigned long long,
18415                                        vector bool unsigned long long);
18417 vector long long vec_vbpermq (vector signed char, vector signed char);
18418 vector long long vec_vbpermq (vector unsigned char, vector unsigned char);
18420 vector unsigned char vec_bperm (vector unsigned char, vector unsigned char);
18421 vector unsigned char vec_bperm (vector unsigned long long, vector unsigned char);
18422 vector unsigned long long vec_bperm (vector unsigned __int128, vector unsigned char);
18424 vector long long vec_cntlz (vector long long);
18425 vector unsigned long long vec_cntlz (vector unsigned long long);
18426 vector int vec_cntlz (vector int);
18427 vector unsigned int vec_cntlz (vector int);
18428 vector short vec_cntlz (vector short);
18429 vector unsigned short vec_cntlz (vector unsigned short);
18430 vector signed char vec_cntlz (vector signed char);
18431 vector unsigned char vec_cntlz (vector unsigned char);
18433 vector long long vec_vclz (vector long long);
18434 vector unsigned long long vec_vclz (vector unsigned long long);
18435 vector int vec_vclz (vector int);
18436 vector unsigned int vec_vclz (vector int);
18437 vector short vec_vclz (vector short);
18438 vector unsigned short vec_vclz (vector unsigned short);
18439 vector signed char vec_vclz (vector signed char);
18440 vector unsigned char vec_vclz (vector unsigned char);
18442 vector signed char vec_vclzb (vector signed char);
18443 vector unsigned char vec_vclzb (vector unsigned char);
18445 vector long long vec_vclzd (vector long long);
18446 vector unsigned long long vec_vclzd (vector unsigned long long);
18448 vector short vec_vclzh (vector short);
18449 vector unsigned short vec_vclzh (vector unsigned short);
18451 vector int vec_vclzw (vector int);
18452 vector unsigned int vec_vclzw (vector int);
18454 vector signed char vec_vgbbd (vector signed char);
18455 vector unsigned char vec_vgbbd (vector unsigned char);
18457 vector long long vec_vmaxsd (vector long long, vector long long);
18459 vector unsigned long long vec_vmaxud (vector unsigned long long,
18460                                       unsigned vector long long);
18462 vector long long vec_vminsd (vector long long, vector long long);
18464 vector unsigned long long vec_vminud (vector long long, vector long long);
18466 vector int vec_vpksdss (vector long long, vector long long);
18467 vector unsigned int vec_vpksdss (vector long long, vector long long);
18469 vector unsigned int vec_vpkudus (vector unsigned long long,
18470                                  vector unsigned long long);
18472 vector int vec_vpkudum (vector long long, vector long long);
18473 vector unsigned int vec_vpkudum (vector unsigned long long,
18474                                  vector unsigned long long);
18475 vector bool int vec_vpkudum (vector bool long long, vector bool long long);
18477 vector long long vec_vpopcnt (vector long long);
18478 vector unsigned long long vec_vpopcnt (vector unsigned long long);
18479 vector int vec_vpopcnt (vector int);
18480 vector unsigned int vec_vpopcnt (vector int);
18481 vector short vec_vpopcnt (vector short);
18482 vector unsigned short vec_vpopcnt (vector unsigned short);
18483 vector signed char vec_vpopcnt (vector signed char);
18484 vector unsigned char vec_vpopcnt (vector unsigned char);
18486 vector signed char vec_vpopcntb (vector signed char);
18487 vector unsigned char vec_vpopcntb (vector unsigned char);
18489 vector long long vec_vpopcntd (vector long long);
18490 vector unsigned long long vec_vpopcntd (vector unsigned long long);
18492 vector short vec_vpopcnth (vector short);
18493 vector unsigned short vec_vpopcnth (vector unsigned short);
18495 vector int vec_vpopcntw (vector int);
18496 vector unsigned int vec_vpopcntw (vector int);
18498 vector long long vec_vrld (vector long long, vector unsigned long long);
18499 vector unsigned long long vec_vrld (vector unsigned long long,
18500                                     vector unsigned long long);
18502 vector long long vec_vsld (vector long long, vector unsigned long long);
18503 vector long long vec_vsld (vector unsigned long long,
18504                            vector unsigned long long);
18506 vector long long vec_vsrad (vector long long, vector unsigned long long);
18507 vector unsigned long long vec_vsrad (vector unsigned long long,
18508                                      vector unsigned long long);
18510 vector long long vec_vsrd (vector long long, vector unsigned long long);
18511 vector unsigned long long char vec_vsrd (vector unsigned long long,
18512                                          vector unsigned long long);
18514 vector long long vec_vsubudm (vector long long, vector long long);
18515 vector long long vec_vsubudm (vector bool long long, vector long long);
18516 vector long long vec_vsubudm (vector long long, vector bool long long);
18517 vector unsigned long long vec_vsubudm (vector unsigned long long,
18518                                        vector unsigned long long);
18519 vector unsigned long long vec_vsubudm (vector bool long long,
18520                                        vector unsigned long long);
18521 vector unsigned long long vec_vsubudm (vector unsigned long long,
18522                                        vector bool long long);
18524 vector long long vec_vupkhsw (vector int);
18525 vector unsigned long long vec_vupkhsw (vector unsigned int);
18527 vector long long vec_vupklsw (vector int);
18528 vector unsigned long long vec_vupklsw (vector int);
18529 @end smallexample
18531 If the ISA 2.07 additions to the vector/scalar (power8-vector)
18532 instruction set are available, the following additional functions are
18533 available for 64-bit targets.  New vector types
18534 (@var{vector __int128} and @var{vector __uint128}) are available
18535 to hold the @var{__int128} and @var{__uint128} types to use these
18536 builtins.
18538 The normal vector extract, and set operations work on
18539 @var{vector __int128} and @var{vector __uint128} types,
18540 but the index value must be 0.
18542 @smallexample
18543 vector __int128 vec_vaddcuq (vector __int128, vector __int128);
18544 vector __uint128 vec_vaddcuq (vector __uint128, vector __uint128);
18546 vector __int128 vec_vadduqm (vector __int128, vector __int128);
18547 vector __uint128 vec_vadduqm (vector __uint128, vector __uint128);
18549 vector __int128 vec_vaddecuq (vector __int128, vector __int128,
18550                                 vector __int128);
18551 vector __uint128 vec_vaddecuq (vector __uint128, vector __uint128,
18552                                  vector __uint128);
18554 vector __int128 vec_vaddeuqm (vector __int128, vector __int128,
18555                                 vector __int128);
18556 vector __uint128 vec_vaddeuqm (vector __uint128, vector __uint128,
18557                                  vector __uint128);
18559 vector __int128 vec_vsubecuq (vector __int128, vector __int128,
18560                                 vector __int128);
18561 vector __uint128 vec_vsubecuq (vector __uint128, vector __uint128,
18562                                  vector __uint128);
18564 vector __int128 vec_vsubeuqm (vector __int128, vector __int128,
18565                                 vector __int128);
18566 vector __uint128 vec_vsubeuqm (vector __uint128, vector __uint128,
18567                                  vector __uint128);
18569 vector __int128 vec_vsubcuq (vector __int128, vector __int128);
18570 vector __uint128 vec_vsubcuq (vector __uint128, vector __uint128);
18572 __int128 vec_vsubuqm (__int128, __int128);
18573 __uint128 vec_vsubuqm (__uint128, __uint128);
18575 vector __int128 __builtin_bcdadd (vector __int128, vector __int128, const int);
18576 int __builtin_bcdadd_lt (vector __int128, vector __int128, const int);
18577 int __builtin_bcdadd_eq (vector __int128, vector __int128, const int);
18578 int __builtin_bcdadd_gt (vector __int128, vector __int128, const int);
18579 int __builtin_bcdadd_ov (vector __int128, vector __int128, const int);
18580 vector __int128 __builtin_bcdsub (vector __int128, vector __int128, const int);
18581 int __builtin_bcdsub_lt (vector __int128, vector __int128, const int);
18582 int __builtin_bcdsub_eq (vector __int128, vector __int128, const int);
18583 int __builtin_bcdsub_gt (vector __int128, vector __int128, const int);
18584 int __builtin_bcdsub_ov (vector __int128, vector __int128, const int);
18585 @end smallexample
18587 @node PowerPC AltiVec Built-in Functions Available on ISA 3.0
18588 @subsubsection PowerPC AltiVec Built-in Functions Available on ISA 3.0
18590 The following additional built-in functions are also available for the
18591 PowerPC family of processors, starting with ISA 3.0
18592 (@option{-mcpu=power9}) or later:
18593 @smallexample
18594 unsigned int scalar_extract_exp (double source);
18595 unsigned long long int scalar_extract_exp (__ieee128 source);
18597 unsigned long long int scalar_extract_sig (double source);
18598 unsigned __int128 scalar_extract_sig (__ieee128 source);
18600 double scalar_insert_exp (unsigned long long int significand,
18601                           unsigned long long int exponent);
18602 double scalar_insert_exp (double significand, unsigned long long int exponent);
18604 ieee_128 scalar_insert_exp (unsigned __int128 significand,
18605                             unsigned long long int exponent);
18606 ieee_128 scalar_insert_exp (ieee_128 significand, unsigned long long int exponent);
18608 int scalar_cmp_exp_gt (double arg1, double arg2);
18609 int scalar_cmp_exp_lt (double arg1, double arg2);
18610 int scalar_cmp_exp_eq (double arg1, double arg2);
18611 int scalar_cmp_exp_unordered (double arg1, double arg2);
18613 bool scalar_test_data_class (float source, const int condition);
18614 bool scalar_test_data_class (double source, const int condition);
18615 bool scalar_test_data_class (__ieee128 source, const int condition);
18617 bool scalar_test_neg (float source);
18618 bool scalar_test_neg (double source);
18619 bool scalar_test_neg (__ieee128 source);
18620 @end smallexample
18622 The @code{scalar_extract_exp} and @code{scalar_extract_sig}
18623 functions require a 64-bit environment supporting ISA 3.0 or later.
18624 The @code{scalar_extract_exp} and @code{scalar_extract_sig} built-in
18625 functions return the significand and the biased exponent value
18626 respectively of their @code{source} arguments.
18627 When supplied with a 64-bit @code{source} argument, the
18628 result returned by @code{scalar_extract_sig} has
18629 the @code{0x0010000000000000} bit set if the
18630 function's @code{source} argument is in normalized form.
18631 Otherwise, this bit is set to 0.
18632 When supplied with a 128-bit @code{source} argument, the
18633 @code{0x00010000000000000000000000000000} bit of the result is
18634 treated similarly.
18635 Note that the sign of the significand is not represented in the result
18636 returned from the @code{scalar_extract_sig} function.  Use the
18637 @code{scalar_test_neg} function to test the sign of its @code{double}
18638 argument.
18640 The @code{scalar_insert_exp}
18641 functions require a 64-bit environment supporting ISA 3.0 or later.
18642 When supplied with a 64-bit first argument, the
18643 @code{scalar_insert_exp} built-in function returns a double-precision
18644 floating point value that is constructed by assembling the values of its
18645 @code{significand} and @code{exponent} arguments.  The sign of the
18646 result is copied from the most significant bit of the
18647 @code{significand} argument.  The significand and exponent components
18648 of the result are composed of the least significant 11 bits of the
18649 @code{exponent} argument and the least significant 52 bits of the
18650 @code{significand} argument respectively.
18652 When supplied with a 128-bit first argument, the
18653 @code{scalar_insert_exp} built-in function returns a quad-precision
18654 ieee floating point value.  The sign bit of the result is copied from
18655 the most significant bit of the @code{significand} argument.
18656 The significand and exponent components of the result are composed of
18657 the least significant 15 bits of the @code{exponent} argument and the
18658 least significant 112 bits of the @code{significand} argument respectively.
18660 The @code{scalar_cmp_exp_gt}, @code{scalar_cmp_exp_lt},
18661 @code{scalar_cmp_exp_eq}, and @code{scalar_cmp_exp_unordered} built-in
18662 functions return a non-zero value if @code{arg1} is greater than, less
18663 than, equal to, or not comparable to @code{arg2} respectively.  The
18664 arguments are not comparable if one or the other equals NaN (not a
18665 number). 
18667 The @code{scalar_test_data_class} built-in function returns 1
18668 if any of the condition tests enabled by the value of the
18669 @code{condition} variable are true, and 0 otherwise.  The
18670 @code{condition} argument must be a compile-time constant integer with
18671 value not exceeding 127.  The
18672 @code{condition} argument is encoded as a bitmask with each bit
18673 enabling the testing of a different condition, as characterized by the
18674 following:
18675 @smallexample
18676 0x40    Test for NaN
18677 0x20    Test for +Infinity
18678 0x10    Test for -Infinity
18679 0x08    Test for +Zero
18680 0x04    Test for -Zero
18681 0x02    Test for +Denormal
18682 0x01    Test for -Denormal
18683 @end smallexample
18685 The @code{scalar_test_neg} built-in function returns 1 if its
18686 @code{source} argument holds a negative value, 0 otherwise.
18688 The following built-in functions are also available for the PowerPC family
18689 of processors, starting with ISA 3.0 or later
18690 (@option{-mcpu=power9}).  These string functions are described
18691 separately in order to group the descriptions closer to the function
18692 prototypes:
18693 @smallexample
18694 int vec_all_nez (vector signed char, vector signed char);
18695 int vec_all_nez (vector unsigned char, vector unsigned char);
18696 int vec_all_nez (vector signed short, vector signed short);
18697 int vec_all_nez (vector unsigned short, vector unsigned short);
18698 int vec_all_nez (vector signed int, vector signed int);
18699 int vec_all_nez (vector unsigned int, vector unsigned int);
18701 int vec_any_eqz (vector signed char, vector signed char);
18702 int vec_any_eqz (vector unsigned char, vector unsigned char);
18703 int vec_any_eqz (vector signed short, vector signed short);
18704 int vec_any_eqz (vector unsigned short, vector unsigned short);
18705 int vec_any_eqz (vector signed int, vector signed int);
18706 int vec_any_eqz (vector unsigned int, vector unsigned int);
18708 vector bool char vec_cmpnez (vector signed char arg1, vector signed char arg2);
18709 vector bool char vec_cmpnez (vector unsigned char arg1, vector unsigned char arg2);
18710 vector bool short vec_cmpnez (vector signed short arg1, vector signed short arg2);
18711 vector bool short vec_cmpnez (vector unsigned short arg1, vector unsigned short arg2);
18712 vector bool int vec_cmpnez (vector signed int arg1, vector signed int arg2);
18713 vector bool int vec_cmpnez (vector unsigned int, vector unsigned int);
18715 vector signed char vec_cnttz (vector signed char);
18716 vector unsigned char vec_cnttz (vector unsigned char);
18717 vector signed short vec_cnttz (vector signed short);
18718 vector unsigned short vec_cnttz (vector unsigned short);
18719 vector signed int vec_cnttz (vector signed int);
18720 vector unsigned int vec_cnttz (vector unsigned int);
18721 vector signed long long vec_cnttz (vector signed long long);
18722 vector unsigned long long vec_cnttz (vector unsigned long long);
18724 signed int vec_cntlz_lsbb (vector signed char);
18725 signed int vec_cntlz_lsbb (vector unsigned char);
18727 signed int vec_cnttz_lsbb (vector signed char);
18728 signed int vec_cnttz_lsbb (vector unsigned char);
18730 unsigned int vec_first_match_index (vector signed char, vector signed char);
18731 unsigned int vec_first_match_index (vector unsigned char, vector unsigned char);
18732 unsigned int vec_first_match_index (vector signed int, vector signed int);
18733 unsigned int vec_first_match_index (vector unsigned int, vector unsigned int);
18734 unsigned int vec_first_match_index (vector signed short, vector signed short);
18735 unsigned int vec_first_match_index (vector unsigned short, vector unsigned short);
18736 unsigned int vec_first_match_or_eos_index (vector signed char, vector signed char);
18737 unsigned int vec_first_match_or_eos_index (vector unsigned char, vector unsigned char);
18738 unsigned int vec_first_match_or_eos_index (vector signed int, vector signed int);
18739 unsigned int vec_first_match_or_eos_index (vector unsigned int, vector unsigned int);
18740 unsigned int vec_first_match_or_eos_index (vector signed short, vector signed short);
18741 unsigned int vec_first_match_or_eos_index (vector unsigned short,
18742                                            vector unsigned short);
18743 unsigned int vec_first_mismatch_index (vector signed char, vector signed char);
18744 unsigned int vec_first_mismatch_index (vector unsigned char, vector unsigned char);
18745 unsigned int vec_first_mismatch_index (vector signed int, vector signed int);
18746 unsigned int vec_first_mismatch_index (vector unsigned int, vector unsigned int);
18747 unsigned int vec_first_mismatch_index (vector signed short, vector signed short);
18748 unsigned int vec_first_mismatch_index (vector unsigned short, vector unsigned short);
18749 unsigned int vec_first_mismatch_or_eos_index (vector signed char, vector signed char);
18750 unsigned int vec_first_mismatch_or_eos_index (vector unsigned char,
18751                                               vector unsigned char);
18752 unsigned int vec_first_mismatch_or_eos_index (vector signed int, vector signed int);
18753 unsigned int vec_first_mismatch_or_eos_index (vector unsigned int, vector unsigned int);
18754 unsigned int vec_first_mismatch_or_eos_index (vector signed short, vector signed short);
18755 unsigned int vec_first_mismatch_or_eos_index (vector unsigned short,
18756                                               vector unsigned short);
18758 vector unsigned short vec_pack_to_short_fp32 (vector float, vector float);
18760 vector signed char vec_xl_be (signed long long, signed char *);
18761 vector unsigned char vec_xl_be (signed long long, unsigned char *);
18762 vector signed int vec_xl_be (signed long long, signed int *);
18763 vector unsigned int vec_xl_be (signed long long, unsigned int *);
18764 vector signed __int128 vec_xl_be (signed long long, signed __int128 *);
18765 vector unsigned __int128 vec_xl_be (signed long long, unsigned __int128 *);
18766 vector signed long long vec_xl_be (signed long long, signed long long *);
18767 vector unsigned long long vec_xl_be (signed long long, unsigned long long *);
18768 vector signed short vec_xl_be (signed long long, signed short *);
18769 vector unsigned short vec_xl_be (signed long long, unsigned short *);
18770 vector double vec_xl_be (signed long long, double *);
18771 vector float vec_xl_be (signed long long, float *);
18773 vector signed char vec_xl_len (signed char *addr, size_t len);
18774 vector unsigned char vec_xl_len (unsigned char *addr, size_t len);
18775 vector signed int vec_xl_len (signed int *addr, size_t len);
18776 vector unsigned int vec_xl_len (unsigned int *addr, size_t len);
18777 vector signed __int128 vec_xl_len (signed __int128 *addr, size_t len);
18778 vector unsigned __int128 vec_xl_len (unsigned __int128 *addr, size_t len);
18779 vector signed long long vec_xl_len (signed long long *addr, size_t len);
18780 vector unsigned long long vec_xl_len (unsigned long long *addr, size_t len);
18781 vector signed short vec_xl_len (signed short *addr, size_t len);
18782 vector unsigned short vec_xl_len (unsigned short *addr, size_t len);
18783 vector double vec_xl_len (double *addr, size_t len);
18784 vector float vec_xl_len (float *addr, size_t len);
18786 vector unsigned char vec_xl_len_r (unsigned char *addr, size_t len);
18788 void vec_xst_len (vector signed char data, signed char *addr, size_t len);
18789 void vec_xst_len (vector unsigned char data, unsigned char *addr, size_t len);
18790 void vec_xst_len (vector signed int data, signed int *addr, size_t len);
18791 void vec_xst_len (vector unsigned int data, unsigned int *addr, size_t len);
18792 void vec_xst_len (vector unsigned __int128 data, unsigned __int128 *addr, size_t len);
18793 void vec_xst_len (vector signed long long data, signed long long *addr, size_t len);
18794 void vec_xst_len (vector unsigned long long data, unsigned long long *addr, size_t len);
18795 void vec_xst_len (vector signed short data, signed short *addr, size_t len);
18796 void vec_xst_len (vector unsigned short data, unsigned short *addr, size_t len);
18797 void vec_xst_len (vector signed __int128 data, signed __int128 *addr, size_t len);
18798 void vec_xst_len (vector double data, double *addr, size_t len);
18799 void vec_xst_len (vector float data, float *addr, size_t len);
18801 void vec_xst_len_r (vector unsigned char data, unsigned char *addr, size_t len);
18803 signed char vec_xlx (unsigned int index, vector signed char data);
18804 unsigned char vec_xlx (unsigned int index, vector unsigned char data);
18805 signed short vec_xlx (unsigned int index, vector signed short data);
18806 unsigned short vec_xlx (unsigned int index, vector unsigned short data);
18807 signed int vec_xlx (unsigned int index, vector signed int data);
18808 unsigned int vec_xlx (unsigned int index, vector unsigned int data);
18809 float vec_xlx (unsigned int index, vector float data);
18811 signed char vec_xrx (unsigned int index, vector signed char data);
18812 unsigned char vec_xrx (unsigned int index, vector unsigned char data);
18813 signed short vec_xrx (unsigned int index, vector signed short data);
18814 unsigned short vec_xrx (unsigned int index, vector unsigned short data);
18815 signed int vec_xrx (unsigned int index, vector signed int data);
18816 unsigned int vec_xrx (unsigned int index, vector unsigned int data);
18817 float vec_xrx (unsigned int index, vector float data);
18818 @end smallexample
18820 The @code{vec_all_nez}, @code{vec_any_eqz}, and @code{vec_cmpnez}
18821 perform pairwise comparisons between the elements at the same
18822 positions within their two vector arguments.
18823 The @code{vec_all_nez} function returns a
18824 non-zero value if and only if all pairwise comparisons are not
18825 equal and no element of either vector argument contains a zero.
18826 The @code{vec_any_eqz} function returns a
18827 non-zero value if and only if at least one pairwise comparison is equal
18828 or if at least one element of either vector argument contains a zero.
18829 The @code{vec_cmpnez} function returns a vector of the same type as
18830 its two arguments, within which each element consists of all ones to
18831 denote that either the corresponding elements of the incoming arguments are
18832 not equal or that at least one of the corresponding elements contains
18833 zero.  Otherwise, the element of the returned vector contains all zeros.
18835 The @code{vec_cntlz_lsbb} function returns the count of the number of
18836 consecutive leading byte elements (starting from position 0 within the
18837 supplied vector argument) for which the least-significant bit
18838 equals zero.  The @code{vec_cnttz_lsbb} function returns the count of
18839 the number of consecutive trailing byte elements (starting from
18840 position 15 and counting backwards within the supplied vector
18841 argument) for which the least-significant bit equals zero.
18843 The @code{vec_xl_len} and @code{vec_xst_len} functions require a
18844 64-bit environment supporting ISA 3.0 or later.  The @code{vec_xl_len}
18845 function loads a variable length vector from memory.  The
18846 @code{vec_xst_len} function stores a variable length vector to memory.
18847 With both the @code{vec_xl_len} and @code{vec_xst_len} functions, the
18848 @code{addr} argument represents the memory address to or from which
18849 data will be transferred, and the
18850 @code{len} argument represents the number of bytes to be
18851 transferred, as computed by the C expression @code{min((len & 0xff), 16)}.
18852 If this expression's value is not a multiple of the vector element's
18853 size, the behavior of this function is undefined.
18854 In the case that the underlying computer is configured to run in
18855 big-endian mode, the data transfer moves bytes 0 to @code{(len - 1)} of
18856 the corresponding vector.  In little-endian mode, the data transfer
18857 moves bytes @code{(16 - len)} to @code{15} of the corresponding
18858 vector.  For the load function, any bytes of the result vector that
18859 are not loaded from memory are set to zero.
18860 The value of the @code{addr} argument need not be aligned on a
18861 multiple of the vector's element size.
18863 The @code{vec_xlx} and @code{vec_xrx} functions extract the single
18864 element selected by the @code{index} argument from the vector
18865 represented by the @code{data} argument.  The @code{index} argument
18866 always specifies a byte offset, regardless of the size of the vector
18867 element.  With @code{vec_xlx}, @code{index} is the offset of the first
18868 byte of the element to be extracted.  With @code{vec_xrx}, @code{index}
18869 represents the last byte of the element to be extracted, measured
18870 from the right end of the vector.  In other words, the last byte of
18871 the element to be extracted is found at position @code{(15 - index)}.
18872 There is no requirement that @code{index} be a multiple of the vector
18873 element size.  However, if the size of the vector element added to
18874 @code{index} is greater than 15, the content of the returned value is
18875 undefined.
18877 If the ISA 3.0 instruction set additions (@option{-mcpu=power9})
18878 are available:
18880 @smallexample
18881 vector unsigned long long vec_bperm (vector unsigned long long, vector unsigned char);
18883 vector bool char vec_cmpne (vector bool char, vector bool char);
18884 vector bool char vec_cmpne (vector signed char, vector signed char);
18885 vector bool char vec_cmpne (vector unsigned char, vector unsigned char);
18886 vector bool int vec_cmpne (vector bool int, vector bool int);
18887 vector bool int vec_cmpne (vector signed int, vector signed int);
18888 vector bool int vec_cmpne (vector unsigned int, vector unsigned int);
18889 vector bool long long vec_cmpne (vector bool long long, vector bool long long);
18890 vector bool long long vec_cmpne (vector signed long long, vector signed long long);
18891 vector bool long long vec_cmpne (vector unsigned long long, vector unsigned long long);
18892 vector bool short vec_cmpne (vector bool short, vector bool short);
18893 vector bool short vec_cmpne (vector signed short, vector signed short);
18894 vector bool short vec_cmpne (vector unsigned short, vector unsigned short);
18895 vector bool long long vec_cmpne (vector double, vector double);
18896 vector bool int vec_cmpne (vector float, vector float);
18898 vector float vec_extract_fp32_from_shorth (vector unsigned short);
18899 vector float vec_extract_fp32_from_shortl (vector unsigned short);
18901 vector long long vec_vctz (vector long long);
18902 vector unsigned long long vec_vctz (vector unsigned long long);
18903 vector int vec_vctz (vector int);
18904 vector unsigned int vec_vctz (vector int);
18905 vector short vec_vctz (vector short);
18906 vector unsigned short vec_vctz (vector unsigned short);
18907 vector signed char vec_vctz (vector signed char);
18908 vector unsigned char vec_vctz (vector unsigned char);
18910 vector signed char vec_vctzb (vector signed char);
18911 vector unsigned char vec_vctzb (vector unsigned char);
18913 vector long long vec_vctzd (vector long long);
18914 vector unsigned long long vec_vctzd (vector unsigned long long);
18916 vector short vec_vctzh (vector short);
18917 vector unsigned short vec_vctzh (vector unsigned short);
18919 vector int vec_vctzw (vector int);
18920 vector unsigned int vec_vctzw (vector int);
18922 vector unsigned long long vec_extract4b (vector unsigned char, const int);
18924 vector unsigned char vec_insert4b (vector signed int, vector unsigned char,
18925                                    const int);
18926 vector unsigned char vec_insert4b (vector unsigned int, vector unsigned char,
18927                                    const int);
18929 vector unsigned int vec_parity_lsbb (vector signed int);
18930 vector unsigned int vec_parity_lsbb (vector unsigned int);
18931 vector unsigned __int128 vec_parity_lsbb (vector signed __int128);
18932 vector unsigned __int128 vec_parity_lsbb (vector unsigned __int128);
18933 vector unsigned long long vec_parity_lsbb (vector signed long long);
18934 vector unsigned long long vec_parity_lsbb (vector unsigned long long);
18936 vector int vec_vprtyb (vector int);
18937 vector unsigned int vec_vprtyb (vector unsigned int);
18938 vector long long vec_vprtyb (vector long long);
18939 vector unsigned long long vec_vprtyb (vector unsigned long long);
18941 vector int vec_vprtybw (vector int);
18942 vector unsigned int vec_vprtybw (vector unsigned int);
18944 vector long long vec_vprtybd (vector long long);
18945 vector unsigned long long vec_vprtybd (vector unsigned long long);
18946 @end smallexample
18948 On 64-bit targets, if the ISA 3.0 additions (@option{-mcpu=power9})
18949 are available:
18951 @smallexample
18952 vector long vec_vprtyb (vector long);
18953 vector unsigned long vec_vprtyb (vector unsigned long);
18954 vector __int128 vec_vprtyb (vector __int128);
18955 vector __uint128 vec_vprtyb (vector __uint128);
18957 vector long vec_vprtybd (vector long);
18958 vector unsigned long vec_vprtybd (vector unsigned long);
18960 vector __int128 vec_vprtybq (vector __int128);
18961 vector __uint128 vec_vprtybd (vector __uint128);
18962 @end smallexample
18964 The following built-in vector functions are available for the PowerPC family
18965 of processors, starting with ISA 3.0 or later (@option{-mcpu=power9}):
18966 @smallexample
18967 __vector unsigned char
18968 vec_slv (__vector unsigned char src, __vector unsigned char shift_distance);
18969 __vector unsigned char
18970 vec_srv (__vector unsigned char src, __vector unsigned char shift_distance);
18971 @end smallexample
18973 The @code{vec_slv} and @code{vec_srv} functions operate on
18974 all of the bytes of their @code{src} and @code{shift_distance}
18975 arguments in parallel.  The behavior of the @code{vec_slv} is as if
18976 there existed a temporary array of 17 unsigned characters
18977 @code{slv_array} within which elements 0 through 15 are the same as
18978 the entries in the @code{src} array and element 16 equals 0.  The
18979 result returned from the @code{vec_slv} function is a
18980 @code{__vector} of 16 unsigned characters within which element
18981 @code{i} is computed using the C expression
18982 @code{0xff & (*((unsigned short *)(slv_array + i)) << (0x07 &
18983 shift_distance[i]))},
18984 with this resulting value coerced to the @code{unsigned char} type.
18985 The behavior of the @code{vec_srv} is as if
18986 there existed a temporary array of 17 unsigned characters
18987 @code{srv_array} within which element 0 equals zero and
18988 elements 1 through 16 equal the elements 0 through 15 of
18989 the @code{src} array.  The
18990 result returned from the @code{vec_srv} function is a
18991 @code{__vector} of 16 unsigned characters within which element
18992 @code{i} is computed using the C expression
18993 @code{0xff & (*((unsigned short *)(srv_array + i)) >>
18994 (0x07 & shift_distance[i]))},
18995 with this resulting value coerced to the @code{unsigned char} type.
18997 The following built-in functions are available for the PowerPC family
18998 of processors, starting with ISA 3.0 or later (@option{-mcpu=power9}):
18999 @smallexample
19000 __vector unsigned char
19001 vec_absd (__vector unsigned char arg1, __vector unsigned char arg2);
19002 __vector unsigned short
19003 vec_absd (__vector unsigned short arg1, __vector unsigned short arg2);
19004 __vector unsigned int
19005 vec_absd (__vector unsigned int arg1, __vector unsigned int arg2);
19007 __vector unsigned char
19008 vec_absdb (__vector unsigned char arg1, __vector unsigned char arg2);
19009 __vector unsigned short
19010 vec_absdh (__vector unsigned short arg1, __vector unsigned short arg2);
19011 __vector unsigned int
19012 vec_absdw (__vector unsigned int arg1, __vector unsigned int arg2);
19013 @end smallexample
19015 The @code{vec_absd}, @code{vec_absdb}, @code{vec_absdh}, and
19016 @code{vec_absdw} built-in functions each computes the absolute
19017 differences of the pairs of vector elements supplied in its two vector
19018 arguments, placing the absolute differences into the corresponding
19019 elements of the vector result.
19021 The following built-in functions are available for the PowerPC family
19022 of processors, starting with ISA 3.0 or later (@option{-mcpu=power9}):
19023 @smallexample
19024 __vector unsigned int vec_extract_exp (__vector float source);
19025 __vector unsigned long long int vec_extract_exp (__vector double source);
19027 __vector unsigned int vec_extract_sig (__vector float source);
19028 __vector unsigned long long int vec_extract_sig (__vector double source);
19030 __vector float vec_insert_exp (__vector unsigned int significands,
19031                                __vector unsigned int exponents);
19032 __vector float vec_insert_exp (__vector unsigned float significands,
19033                                __vector unsigned int exponents);
19034 __vector double vec_insert_exp (__vector unsigned long long int significands,
19035                                 __vector unsigned long long int exponents);
19036 __vector double vec_insert_exp (__vector unsigned double significands,
19037                                 __vector unsigned long long int exponents);
19039 __vector bool int vec_test_data_class (__vector float source, const int condition);
19040 __vector bool long long int vec_test_data_class (__vector double source,
19041                                                  const int condition);
19042 @end smallexample
19044 The @code{vec_extract_sig} and @code{vec_extract_exp} built-in
19045 functions return vectors representing the significands and biased
19046 exponent values of their @code{source} arguments respectively.
19047 Within the result vector returned by @code{vec_extract_sig}, the
19048 @code{0x800000} bit of each vector element returned when the
19049 function's @code{source} argument is of type @code{float} is set to 1
19050 if the corresponding floating point value is in normalized form.
19051 Otherwise, this bit is set to 0.  When the @code{source} argument is
19052 of type @code{double}, the @code{0x10000000000000} bit within each of
19053 the result vector's elements is set according to the same rules.
19054 Note that the sign of the significand is not represented in the result
19055 returned from the @code{vec_extract_sig} function.  To extract the
19056 sign bits, use the
19057 @code{vec_cpsgn} function, which returns a new vector within which all
19058 of the sign bits of its second argument vector are overwritten with the
19059 sign bits copied from the coresponding elements of its first argument
19060 vector, and all other (non-sign) bits of the second argument vector
19061 are copied unchanged into the result vector.
19063 The @code{vec_insert_exp} built-in functions return a vector of
19064 single- or double-precision floating
19065 point values constructed by assembling the values of their
19066 @code{significands} and @code{exponents} arguments into the
19067 corresponding elements of the returned vector.
19068 The sign of each
19069 element of the result is copied from the most significant bit of the
19070 corresponding entry within the @code{significands} argument.
19071 Note that the relevant
19072 bits of the @code{significands} argument are the same, for both integer
19073 and floating point types.
19075 significand and exponent components of each element of the result are
19076 composed of the least significant bits of the corresponding
19077 @code{significands} element and the least significant bits of the
19078 corresponding @code{exponents} element.
19080 The @code{vec_test_data_class} built-in function returns a vector
19081 representing the results of testing the @code{source} vector for the
19082 condition selected by the @code{condition} argument.  The
19083 @code{condition} argument must be a compile-time constant integer with
19084 value not exceeding 127.  The
19085 @code{condition} argument is encoded as a bitmask with each bit
19086 enabling the testing of a different condition, as characterized by the
19087 following:
19088 @smallexample
19089 0x40    Test for NaN
19090 0x20    Test for +Infinity
19091 0x10    Test for -Infinity
19092 0x08    Test for +Zero
19093 0x04    Test for -Zero
19094 0x02    Test for +Denormal
19095 0x01    Test for -Denormal
19096 @end smallexample
19098 If any of the enabled test conditions is true, the corresponding entry
19099 in the result vector is -1.  Otherwise (all of the enabled test
19100 conditions are false), the corresponding entry of the result vector is 0.
19102 The following built-in functions are available for the PowerPC family
19103 of processors, starting with ISA 3.0 or later (@option{-mcpu=power9}):
19104 @smallexample
19105 vector unsigned int vec_rlmi (vector unsigned int, vector unsigned int,
19106                               vector unsigned int);
19107 vector unsigned long long vec_rlmi (vector unsigned long long,
19108                                     vector unsigned long long,
19109                                     vector unsigned long long);
19110 vector unsigned int vec_rlnm (vector unsigned int, vector unsigned int,
19111                               vector unsigned int);
19112 vector unsigned long long vec_rlnm (vector unsigned long long,
19113                                     vector unsigned long long,
19114                                     vector unsigned long long);
19115 vector unsigned int vec_vrlnm (vector unsigned int, vector unsigned int);
19116 vector unsigned long long vec_vrlnm (vector unsigned long long,
19117                                      vector unsigned long long);
19118 @end smallexample
19120 The result of @code{vec_rlmi} is obtained by rotating each element of
19121 the first argument vector left and inserting it under mask into the
19122 second argument vector.  The third argument vector contains the mask
19123 beginning in bits 11:15, the mask end in bits 19:23, and the shift
19124 count in bits 27:31, of each element.
19126 The result of @code{vec_rlnm} is obtained by rotating each element of
19127 the first argument vector left and ANDing it with a mask specified by
19128 the second and third argument vectors.  The second argument vector
19129 contains the shift count for each element in the low-order byte.  The
19130 third argument vector contains the mask end for each element in the
19131 low-order byte, with the mask begin in the next higher byte.
19133 The result of @code{vec_vrlnm} is obtained by rotating each element
19134 of the first argument vector left and ANDing it with a mask.  The
19135 second argument vector contains the mask  beginning in bits 11:15,
19136 the mask end in bits 19:23, and the shift count in bits 27:31,
19137 of each element.
19139 If the ISA 3.0 instruction set additions (@option{-mcpu=power9})
19140 are available:
19141 @smallexample
19142 vector signed bool char vec_revb (vector signed char);
19143 vector signed char vec_revb (vector signed char);
19144 vector unsigned char vec_revb (vector unsigned char);
19145 vector bool short vec_revb (vector bool short);
19146 vector short vec_revb (vector short);
19147 vector unsigned short vec_revb (vector unsigned short);
19148 vector bool int vec_revb (vector bool int);
19149 vector int vec_revb (vector int);
19150 vector unsigned int vec_revb (vector unsigned int);
19151 vector float vec_revb (vector float);
19152 vector bool long long vec_revb (vector bool long long);
19153 vector long long vec_revb (vector long long);
19154 vector unsigned long long vec_revb (vector unsigned long long);
19155 vector double vec_revb (vector double);
19156 @end smallexample
19158 On 64-bit targets, if the ISA 3.0 additions (@option{-mcpu=power9})
19159 are available:
19160 @smallexample
19161 vector long vec_revb (vector long);
19162 vector unsigned long vec_revb (vector unsigned long);
19163 vector __int128 vec_revb (vector __int128);
19164 vector __uint128 vec_revb (vector __uint128);
19165 @end smallexample
19167 The @code{vec_revb} built-in function reverses the bytes on an element
19168 by element basis.  A vector of @code{vector unsigned char} or
19169 @code{vector signed char} reverses the bytes in the whole word.
19171 If the cryptographic instructions are enabled (@option{-mcrypto} or
19172 @option{-mcpu=power8}), the following builtins are enabled.
19174 @smallexample
19175 vector unsigned long long __builtin_crypto_vsbox (vector unsigned long long);
19177 vector unsigned long long __builtin_crypto_vcipher (vector unsigned long long,
19178                                                     vector unsigned long long);
19180 vector unsigned long long __builtin_crypto_vcipherlast
19181                                      (vector unsigned long long,
19182                                       vector unsigned long long);
19184 vector unsigned long long __builtin_crypto_vncipher (vector unsigned long long,
19185                                                      vector unsigned long long);
19187 vector unsigned long long __builtin_crypto_vncipherlast (vector unsigned long long,
19188                                                          vector unsigned long long);
19190 vector unsigned char __builtin_crypto_vpermxor (vector unsigned char,
19191                                                 vector unsigned char,
19192                                                 vector unsigned char);
19194 vector unsigned short __builtin_crypto_vpermxor (vector unsigned short,
19195                                                  vector unsigned short,
19196                                                  vector unsigned short);
19198 vector unsigned int __builtin_crypto_vpermxor (vector unsigned int,
19199                                                vector unsigned int,
19200                                                vector unsigned int);
19202 vector unsigned long long __builtin_crypto_vpermxor (vector unsigned long long,
19203                                                      vector unsigned long long,
19204                                                      vector unsigned long long);
19206 vector unsigned char __builtin_crypto_vpmsumb (vector unsigned char,
19207                                                vector unsigned char);
19209 vector unsigned short __builtin_crypto_vpmsumb (vector unsigned short,
19210                                                 vector unsigned short);
19212 vector unsigned int __builtin_crypto_vpmsumb (vector unsigned int,
19213                                               vector unsigned int);
19215 vector unsigned long long __builtin_crypto_vpmsumb (vector unsigned long long,
19216                                                     vector unsigned long long);
19218 vector unsigned long long __builtin_crypto_vshasigmad (vector unsigned long long,
19219                                                        int, int);
19221 vector unsigned int __builtin_crypto_vshasigmaw (vector unsigned int, int, int);
19222 @end smallexample
19224 The second argument to @var{__builtin_crypto_vshasigmad} and
19225 @var{__builtin_crypto_vshasigmaw} must be a constant
19226 integer that is 0 or 1.  The third argument to these built-in functions
19227 must be a constant integer in the range of 0 to 15.
19229 If the ISA 3.0 instruction set additions 
19230 are enabled (@option{-mcpu=power9}), the following additional
19231 functions are available for both 32-bit and 64-bit targets.
19232 @smallexample
19233 vector short vec_xl (int, vector short *);
19234 vector short vec_xl (int, short *);
19235 vector unsigned short vec_xl (int, vector unsigned short *);
19236 vector unsigned short vec_xl (int, unsigned short *);
19237 vector char vec_xl (int, vector char *);
19238 vector char vec_xl (int, char *);
19239 vector unsigned char vec_xl (int, vector unsigned char *);
19240 vector unsigned char vec_xl (int, unsigned char *);
19242 void vec_xst (vector short, int, vector short *);
19243 void vec_xst (vector short, int, short *);
19244 void vec_xst (vector unsigned short, int, vector unsigned short *);
19245 void vec_xst (vector unsigned short, int, unsigned short *);
19246 void vec_xst (vector char, int, vector char *);
19247 void vec_xst (vector char, int, char *);
19248 void vec_xst (vector unsigned char, int, vector unsigned char *);
19249 void vec_xst (vector unsigned char, int, unsigned char *);
19250 @end smallexample
19251 @node PowerPC Hardware Transactional Memory Built-in Functions
19252 @subsection PowerPC Hardware Transactional Memory Built-in Functions
19253 GCC provides two interfaces for accessing the Hardware Transactional
19254 Memory (HTM) instructions available on some of the PowerPC family
19255 of processors (eg, POWER8).  The two interfaces come in a low level
19256 interface, consisting of built-in functions specific to PowerPC and a
19257 higher level interface consisting of inline functions that are common
19258 between PowerPC and S/390.
19260 @subsubsection PowerPC HTM Low Level Built-in Functions
19262 The following low level built-in functions are available with
19263 @option{-mhtm} or @option{-mcpu=CPU} where CPU is `power8' or later.
19264 They all generate the machine instruction that is part of the name.
19266 The HTM builtins (with the exception of @code{__builtin_tbegin}) return
19267 the full 4-bit condition register value set by their associated hardware
19268 instruction.  The header file @code{htmintrin.h} defines some macros that can
19269 be used to decipher the return value.  The @code{__builtin_tbegin} builtin
19270 returns a simple true or false value depending on whether a transaction was
19271 successfully started or not.  The arguments of the builtins match exactly the
19272 type and order of the associated hardware instruction's operands, except for
19273 the @code{__builtin_tcheck} builtin, which does not take any input arguments.
19274 Refer to the ISA manual for a description of each instruction's operands.
19276 @smallexample
19277 unsigned int __builtin_tbegin (unsigned int)
19278 unsigned int __builtin_tend (unsigned int)
19280 unsigned int __builtin_tabort (unsigned int)
19281 unsigned int __builtin_tabortdc (unsigned int, unsigned int, unsigned int)
19282 unsigned int __builtin_tabortdci (unsigned int, unsigned int, int)
19283 unsigned int __builtin_tabortwc (unsigned int, unsigned int, unsigned int)
19284 unsigned int __builtin_tabortwci (unsigned int, unsigned int, int)
19286 unsigned int __builtin_tcheck (void)
19287 unsigned int __builtin_treclaim (unsigned int)
19288 unsigned int __builtin_trechkpt (void)
19289 unsigned int __builtin_tsr (unsigned int)
19290 @end smallexample
19292 In addition to the above HTM built-ins, we have added built-ins for
19293 some common extended mnemonics of the HTM instructions:
19295 @smallexample
19296 unsigned int __builtin_tendall (void)
19297 unsigned int __builtin_tresume (void)
19298 unsigned int __builtin_tsuspend (void)
19299 @end smallexample
19301 Note that the semantics of the above HTM builtins are required to mimic
19302 the locking semantics used for critical sections.  Builtins that are used
19303 to create a new transaction or restart a suspended transaction must have
19304 lock acquisition like semantics while those builtins that end or suspend a
19305 transaction must have lock release like semantics.  Specifically, this must
19306 mimic lock semantics as specified by C++11, for example: Lock acquisition is
19307 as-if an execution of __atomic_exchange_n(&globallock,1,__ATOMIC_ACQUIRE)
19308 that returns 0, and lock release is as-if an execution of
19309 __atomic_store(&globallock,0,__ATOMIC_RELEASE), with globallock being an
19310 implicit implementation-defined lock used for all transactions.  The HTM
19311 instructions associated with with the builtins inherently provide the
19312 correct acquisition and release hardware barriers required.  However,
19313 the compiler must also be prohibited from moving loads and stores across
19314 the builtins in a way that would violate their semantics.  This has been
19315 accomplished by adding memory barriers to the associated HTM instructions
19316 (which is a conservative approach to provide acquire and release semantics).
19317 Earlier versions of the compiler did not treat the HTM instructions as
19318 memory barriers.  A @code{__TM_FENCE__} macro has been added, which can
19319 be used to determine whether the current compiler treats HTM instructions
19320 as memory barriers or not.  This allows the user to explicitly add memory
19321 barriers to their code when using an older version of the compiler.
19323 The following set of built-in functions are available to gain access
19324 to the HTM specific special purpose registers.
19326 @smallexample
19327 unsigned long __builtin_get_texasr (void)
19328 unsigned long __builtin_get_texasru (void)
19329 unsigned long __builtin_get_tfhar (void)
19330 unsigned long __builtin_get_tfiar (void)
19332 void __builtin_set_texasr (unsigned long);
19333 void __builtin_set_texasru (unsigned long);
19334 void __builtin_set_tfhar (unsigned long);
19335 void __builtin_set_tfiar (unsigned long);
19336 @end smallexample
19338 Example usage of these low level built-in functions may look like:
19340 @smallexample
19341 #include <htmintrin.h>
19343 int num_retries = 10;
19345 while (1)
19346   @{
19347     if (__builtin_tbegin (0))
19348       @{
19349         /* Transaction State Initiated.  */
19350         if (is_locked (lock))
19351           __builtin_tabort (0);
19352         ... transaction code...
19353         __builtin_tend (0);
19354         break;
19355       @}
19356     else
19357       @{
19358         /* Transaction State Failed.  Use locks if the transaction
19359            failure is "persistent" or we've tried too many times.  */
19360         if (num_retries-- <= 0
19361             || _TEXASRU_FAILURE_PERSISTENT (__builtin_get_texasru ()))
19362           @{
19363             acquire_lock (lock);
19364             ... non transactional fallback path...
19365             release_lock (lock);
19366             break;
19367           @}
19368       @}
19369   @}
19370 @end smallexample
19372 One final built-in function has been added that returns the value of
19373 the 2-bit Transaction State field of the Machine Status Register (MSR)
19374 as stored in @code{CR0}.
19376 @smallexample
19377 unsigned long __builtin_ttest (void)
19378 @end smallexample
19380 This built-in can be used to determine the current transaction state
19381 using the following code example:
19383 @smallexample
19384 #include <htmintrin.h>
19386 unsigned char tx_state = _HTM_STATE (__builtin_ttest ());
19388 if (tx_state == _HTM_TRANSACTIONAL)
19389   @{
19390     /* Code to use in transactional state.  */
19391   @}
19392 else if (tx_state == _HTM_NONTRANSACTIONAL)
19393   @{
19394     /* Code to use in non-transactional state.  */
19395   @}
19396 else if (tx_state == _HTM_SUSPENDED)
19397   @{
19398     /* Code to use in transaction suspended state.  */
19399   @}
19400 @end smallexample
19402 @subsubsection PowerPC HTM High Level Inline Functions
19404 The following high level HTM interface is made available by including
19405 @code{<htmxlintrin.h>} and using @option{-mhtm} or @option{-mcpu=CPU}
19406 where CPU is `power8' or later.  This interface is common between PowerPC
19407 and S/390, allowing users to write one HTM source implementation that
19408 can be compiled and executed on either system.
19410 @smallexample
19411 long __TM_simple_begin (void)
19412 long __TM_begin (void* const TM_buff)
19413 long __TM_end (void)
19414 void __TM_abort (void)
19415 void __TM_named_abort (unsigned char const code)
19416 void __TM_resume (void)
19417 void __TM_suspend (void)
19419 long __TM_is_user_abort (void* const TM_buff)
19420 long __TM_is_named_user_abort (void* const TM_buff, unsigned char *code)
19421 long __TM_is_illegal (void* const TM_buff)
19422 long __TM_is_footprint_exceeded (void* const TM_buff)
19423 long __TM_nesting_depth (void* const TM_buff)
19424 long __TM_is_nested_too_deep(void* const TM_buff)
19425 long __TM_is_conflict(void* const TM_buff)
19426 long __TM_is_failure_persistent(void* const TM_buff)
19427 long __TM_failure_address(void* const TM_buff)
19428 long long __TM_failure_code(void* const TM_buff)
19429 @end smallexample
19431 Using these common set of HTM inline functions, we can create
19432 a more portable version of the HTM example in the previous
19433 section that will work on either PowerPC or S/390:
19435 @smallexample
19436 #include <htmxlintrin.h>
19438 int num_retries = 10;
19439 TM_buff_type TM_buff;
19441 while (1)
19442   @{
19443     if (__TM_begin (TM_buff) == _HTM_TBEGIN_STARTED)
19444       @{
19445         /* Transaction State Initiated.  */
19446         if (is_locked (lock))
19447           __TM_abort ();
19448         ... transaction code...
19449         __TM_end ();
19450         break;
19451       @}
19452     else
19453       @{
19454         /* Transaction State Failed.  Use locks if the transaction
19455            failure is "persistent" or we've tried too many times.  */
19456         if (num_retries-- <= 0
19457             || __TM_is_failure_persistent (TM_buff))
19458           @{
19459             acquire_lock (lock);
19460             ... non transactional fallback path...
19461             release_lock (lock);
19462             break;
19463           @}
19464       @}
19465   @}
19466 @end smallexample
19468 @node PowerPC Atomic Memory Operation Functions
19469 @subsection PowerPC Atomic Memory Operation Functions
19470 ISA 3.0 of the PowerPC added new atomic memory operation (amo)
19471 instructions.  GCC provides support for these instructions in 64-bit
19472 environments.  All of the functions are declared in the include file
19473 @code{amo.h}.
19475 The functions supported are:
19477 @smallexample
19478 #include <amo.h>
19480 uint32_t amo_lwat_add (uint32_t *, uint32_t);
19481 uint32_t amo_lwat_xor (uint32_t *, uint32_t);
19482 uint32_t amo_lwat_ior (uint32_t *, uint32_t);
19483 uint32_t amo_lwat_and (uint32_t *, uint32_t);
19484 uint32_t amo_lwat_umax (uint32_t *, uint32_t);
19485 uint32_t amo_lwat_umin (uint32_t *, uint32_t);
19486 uint32_t amo_lwat_swap (uint32_t *, uint32_t);
19488 int32_t amo_lwat_sadd (int32_t *, int32_t);
19489 int32_t amo_lwat_smax (int32_t *, int32_t);
19490 int32_t amo_lwat_smin (int32_t *, int32_t);
19491 int32_t amo_lwat_sswap (int32_t *, int32_t);
19493 uint64_t amo_ldat_add (uint64_t *, uint64_t);
19494 uint64_t amo_ldat_xor (uint64_t *, uint64_t);
19495 uint64_t amo_ldat_ior (uint64_t *, uint64_t);
19496 uint64_t amo_ldat_and (uint64_t *, uint64_t);
19497 uint64_t amo_ldat_umax (uint64_t *, uint64_t);
19498 uint64_t amo_ldat_umin (uint64_t *, uint64_t);
19499 uint64_t amo_ldat_swap (uint64_t *, uint64_t);
19501 int64_t amo_ldat_sadd (int64_t *, int64_t);
19502 int64_t amo_ldat_smax (int64_t *, int64_t);
19503 int64_t amo_ldat_smin (int64_t *, int64_t);
19504 int64_t amo_ldat_sswap (int64_t *, int64_t);
19506 void amo_stwat_add (uint32_t *, uint32_t);
19507 void amo_stwat_xor (uint32_t *, uint32_t);
19508 void amo_stwat_ior (uint32_t *, uint32_t);
19509 void amo_stwat_and (uint32_t *, uint32_t);
19510 void amo_stwat_umax (uint32_t *, uint32_t);
19511 void amo_stwat_umin (uint32_t *, uint32_t);
19513 void amo_stwat_sadd (int32_t *, int32_t);
19514 void amo_stwat_smax (int32_t *, int32_t);
19515 void amo_stwat_smin (int32_t *, int32_t);
19517 void amo_stdat_add (uint64_t *, uint64_t);
19518 void amo_stdat_xor (uint64_t *, uint64_t);
19519 void amo_stdat_ior (uint64_t *, uint64_t);
19520 void amo_stdat_and (uint64_t *, uint64_t);
19521 void amo_stdat_umax (uint64_t *, uint64_t);
19522 void amo_stdat_umin (uint64_t *, uint64_t);
19524 void amo_stdat_sadd (int64_t *, int64_t);
19525 void amo_stdat_smax (int64_t *, int64_t);
19526 void amo_stdat_smin (int64_t *, int64_t);
19527 @end smallexample
19529 @node RX Built-in Functions
19530 @subsection RX Built-in Functions
19531 GCC supports some of the RX instructions which cannot be expressed in
19532 the C programming language via the use of built-in functions.  The
19533 following functions are supported:
19535 @deftypefn {Built-in Function}  void __builtin_rx_brk (void)
19536 Generates the @code{brk} machine instruction.
19537 @end deftypefn
19539 @deftypefn {Built-in Function}  void __builtin_rx_clrpsw (int)
19540 Generates the @code{clrpsw} machine instruction to clear the specified
19541 bit in the processor status word.
19542 @end deftypefn
19544 @deftypefn {Built-in Function}  void __builtin_rx_int (int)
19545 Generates the @code{int} machine instruction to generate an interrupt
19546 with the specified value.
19547 @end deftypefn
19549 @deftypefn {Built-in Function}  void __builtin_rx_machi (int, int)
19550 Generates the @code{machi} machine instruction to add the result of
19551 multiplying the top 16 bits of the two arguments into the
19552 accumulator.
19553 @end deftypefn
19555 @deftypefn {Built-in Function}  void __builtin_rx_maclo (int, int)
19556 Generates the @code{maclo} machine instruction to add the result of
19557 multiplying the bottom 16 bits of the two arguments into the
19558 accumulator.
19559 @end deftypefn
19561 @deftypefn {Built-in Function}  void __builtin_rx_mulhi (int, int)
19562 Generates the @code{mulhi} machine instruction to place the result of
19563 multiplying the top 16 bits of the two arguments into the
19564 accumulator.
19565 @end deftypefn
19567 @deftypefn {Built-in Function}  void __builtin_rx_mullo (int, int)
19568 Generates the @code{mullo} machine instruction to place the result of
19569 multiplying the bottom 16 bits of the two arguments into the
19570 accumulator.
19571 @end deftypefn
19573 @deftypefn {Built-in Function}  int  __builtin_rx_mvfachi (void)
19574 Generates the @code{mvfachi} machine instruction to read the top
19575 32 bits of the accumulator.
19576 @end deftypefn
19578 @deftypefn {Built-in Function}  int  __builtin_rx_mvfacmi (void)
19579 Generates the @code{mvfacmi} machine instruction to read the middle
19580 32 bits of the accumulator.
19581 @end deftypefn
19583 @deftypefn {Built-in Function}  int __builtin_rx_mvfc (int)
19584 Generates the @code{mvfc} machine instruction which reads the control
19585 register specified in its argument and returns its value.
19586 @end deftypefn
19588 @deftypefn {Built-in Function}  void __builtin_rx_mvtachi (int)
19589 Generates the @code{mvtachi} machine instruction to set the top
19590 32 bits of the accumulator.
19591 @end deftypefn
19593 @deftypefn {Built-in Function}  void __builtin_rx_mvtaclo (int)
19594 Generates the @code{mvtaclo} machine instruction to set the bottom
19595 32 bits of the accumulator.
19596 @end deftypefn
19598 @deftypefn {Built-in Function}  void __builtin_rx_mvtc (int reg, int val)
19599 Generates the @code{mvtc} machine instruction which sets control
19600 register number @code{reg} to @code{val}.
19601 @end deftypefn
19603 @deftypefn {Built-in Function}  void __builtin_rx_mvtipl (int)
19604 Generates the @code{mvtipl} machine instruction set the interrupt
19605 priority level.
19606 @end deftypefn
19608 @deftypefn {Built-in Function}  void __builtin_rx_racw (int)
19609 Generates the @code{racw} machine instruction to round the accumulator
19610 according to the specified mode.
19611 @end deftypefn
19613 @deftypefn {Built-in Function}  int __builtin_rx_revw (int)
19614 Generates the @code{revw} machine instruction which swaps the bytes in
19615 the argument so that bits 0--7 now occupy bits 8--15 and vice versa,
19616 and also bits 16--23 occupy bits 24--31 and vice versa.
19617 @end deftypefn
19619 @deftypefn {Built-in Function}  void __builtin_rx_rmpa (void)
19620 Generates the @code{rmpa} machine instruction which initiates a
19621 repeated multiply and accumulate sequence.
19622 @end deftypefn
19624 @deftypefn {Built-in Function}  void __builtin_rx_round (float)
19625 Generates the @code{round} machine instruction which returns the
19626 floating-point argument rounded according to the current rounding mode
19627 set in the floating-point status word register.
19628 @end deftypefn
19630 @deftypefn {Built-in Function}  int __builtin_rx_sat (int)
19631 Generates the @code{sat} machine instruction which returns the
19632 saturated value of the argument.
19633 @end deftypefn
19635 @deftypefn {Built-in Function}  void __builtin_rx_setpsw (int)
19636 Generates the @code{setpsw} machine instruction to set the specified
19637 bit in the processor status word.
19638 @end deftypefn
19640 @deftypefn {Built-in Function}  void __builtin_rx_wait (void)
19641 Generates the @code{wait} machine instruction.
19642 @end deftypefn
19644 @node S/390 System z Built-in Functions
19645 @subsection S/390 System z Built-in Functions
19646 @deftypefn {Built-in Function} int __builtin_tbegin (void*)
19647 Generates the @code{tbegin} machine instruction starting a
19648 non-constrained hardware transaction.  If the parameter is non-NULL the
19649 memory area is used to store the transaction diagnostic buffer and
19650 will be passed as first operand to @code{tbegin}.  This buffer can be
19651 defined using the @code{struct __htm_tdb} C struct defined in
19652 @code{htmintrin.h} and must reside on a double-word boundary.  The
19653 second tbegin operand is set to @code{0xff0c}. This enables
19654 save/restore of all GPRs and disables aborts for FPR and AR
19655 manipulations inside the transaction body.  The condition code set by
19656 the tbegin instruction is returned as integer value.  The tbegin
19657 instruction by definition overwrites the content of all FPRs.  The
19658 compiler will generate code which saves and restores the FPRs.  For
19659 soft-float code it is recommended to used the @code{*_nofloat}
19660 variant.  In order to prevent a TDB from being written it is required
19661 to pass a constant zero value as parameter.  Passing a zero value
19662 through a variable is not sufficient.  Although modifications of
19663 access registers inside the transaction will not trigger an
19664 transaction abort it is not supported to actually modify them.  Access
19665 registers do not get saved when entering a transaction. They will have
19666 undefined state when reaching the abort code.
19667 @end deftypefn
19669 Macros for the possible return codes of tbegin are defined in the
19670 @code{htmintrin.h} header file:
19672 @table @code
19673 @item _HTM_TBEGIN_STARTED
19674 @code{tbegin} has been executed as part of normal processing.  The
19675 transaction body is supposed to be executed.
19676 @item _HTM_TBEGIN_INDETERMINATE
19677 The transaction was aborted due to an indeterminate condition which
19678 might be persistent.
19679 @item _HTM_TBEGIN_TRANSIENT
19680 The transaction aborted due to a transient failure.  The transaction
19681 should be re-executed in that case.
19682 @item _HTM_TBEGIN_PERSISTENT
19683 The transaction aborted due to a persistent failure.  Re-execution
19684 under same circumstances will not be productive.
19685 @end table
19687 @defmac _HTM_FIRST_USER_ABORT_CODE
19688 The @code{_HTM_FIRST_USER_ABORT_CODE} defined in @code{htmintrin.h}
19689 specifies the first abort code which can be used for
19690 @code{__builtin_tabort}.  Values below this threshold are reserved for
19691 machine use.
19692 @end defmac
19694 @deftp {Data type} {struct __htm_tdb}
19695 The @code{struct __htm_tdb} defined in @code{htmintrin.h} describes
19696 the structure of the transaction diagnostic block as specified in the
19697 Principles of Operation manual chapter 5-91.
19698 @end deftp
19700 @deftypefn {Built-in Function} int __builtin_tbegin_nofloat (void*)
19701 Same as @code{__builtin_tbegin} but without FPR saves and restores.
19702 Using this variant in code making use of FPRs will leave the FPRs in
19703 undefined state when entering the transaction abort handler code.
19704 @end deftypefn
19706 @deftypefn {Built-in Function} int __builtin_tbegin_retry (void*, int)
19707 In addition to @code{__builtin_tbegin} a loop for transient failures
19708 is generated.  If tbegin returns a condition code of 2 the transaction
19709 will be retried as often as specified in the second argument.  The
19710 perform processor assist instruction is used to tell the CPU about the
19711 number of fails so far.
19712 @end deftypefn
19714 @deftypefn {Built-in Function} int __builtin_tbegin_retry_nofloat (void*, int)
19715 Same as @code{__builtin_tbegin_retry} but without FPR saves and
19716 restores.  Using this variant in code making use of FPRs will leave
19717 the FPRs in undefined state when entering the transaction abort
19718 handler code.
19719 @end deftypefn
19721 @deftypefn {Built-in Function} void __builtin_tbeginc (void)
19722 Generates the @code{tbeginc} machine instruction starting a constrained
19723 hardware transaction.  The second operand is set to @code{0xff08}.
19724 @end deftypefn
19726 @deftypefn {Built-in Function} int __builtin_tend (void)
19727 Generates the @code{tend} machine instruction finishing a transaction
19728 and making the changes visible to other threads.  The condition code
19729 generated by tend is returned as integer value.
19730 @end deftypefn
19732 @deftypefn {Built-in Function} void __builtin_tabort (int)
19733 Generates the @code{tabort} machine instruction with the specified
19734 abort code.  Abort codes from 0 through 255 are reserved and will
19735 result in an error message.
19736 @end deftypefn
19738 @deftypefn {Built-in Function} void __builtin_tx_assist (int)
19739 Generates the @code{ppa rX,rY,1} machine instruction.  Where the
19740 integer parameter is loaded into rX and a value of zero is loaded into
19741 rY.  The integer parameter specifies the number of times the
19742 transaction repeatedly aborted.
19743 @end deftypefn
19745 @deftypefn {Built-in Function} int __builtin_tx_nesting_depth (void)
19746 Generates the @code{etnd} machine instruction.  The current nesting
19747 depth is returned as integer value.  For a nesting depth of 0 the code
19748 is not executed as part of an transaction.
19749 @end deftypefn
19751 @deftypefn {Built-in Function} void __builtin_non_tx_store (uint64_t *, uint64_t)
19753 Generates the @code{ntstg} machine instruction.  The second argument
19754 is written to the first arguments location.  The store operation will
19755 not be rolled-back in case of an transaction abort.
19756 @end deftypefn
19758 @node SH Built-in Functions
19759 @subsection SH Built-in Functions
19760 The following built-in functions are supported on the SH1, SH2, SH3 and SH4
19761 families of processors:
19763 @deftypefn {Built-in Function} {void} __builtin_set_thread_pointer (void *@var{ptr})
19764 Sets the @samp{GBR} register to the specified value @var{ptr}.  This is usually
19765 used by system code that manages threads and execution contexts.  The compiler
19766 normally does not generate code that modifies the contents of @samp{GBR} and
19767 thus the value is preserved across function calls.  Changing the @samp{GBR}
19768 value in user code must be done with caution, since the compiler might use
19769 @samp{GBR} in order to access thread local variables.
19771 @end deftypefn
19773 @deftypefn {Built-in Function} {void *} __builtin_thread_pointer (void)
19774 Returns the value that is currently set in the @samp{GBR} register.
19775 Memory loads and stores that use the thread pointer as a base address are
19776 turned into @samp{GBR} based displacement loads and stores, if possible.
19777 For example:
19778 @smallexample
19779 struct my_tcb
19781    int a, b, c, d, e;
19784 int get_tcb_value (void)
19786   // Generate @samp{mov.l @@(8,gbr),r0} instruction
19787   return ((my_tcb*)__builtin_thread_pointer ())->c;
19790 @end smallexample
19791 @end deftypefn
19793 @deftypefn {Built-in Function} {unsigned int} __builtin_sh_get_fpscr (void)
19794 Returns the value that is currently set in the @samp{FPSCR} register.
19795 @end deftypefn
19797 @deftypefn {Built-in Function} {void} __builtin_sh_set_fpscr (unsigned int @var{val})
19798 Sets the @samp{FPSCR} register to the specified value @var{val}, while
19799 preserving the current values of the FR, SZ and PR bits.
19800 @end deftypefn
19802 @node SPARC VIS Built-in Functions
19803 @subsection SPARC VIS Built-in Functions
19805 GCC supports SIMD operations on the SPARC using both the generic vector
19806 extensions (@pxref{Vector Extensions}) as well as built-in functions for
19807 the SPARC Visual Instruction Set (VIS).  When you use the @option{-mvis}
19808 switch, the VIS extension is exposed as the following built-in functions:
19810 @smallexample
19811 typedef int v1si __attribute__ ((vector_size (4)));
19812 typedef int v2si __attribute__ ((vector_size (8)));
19813 typedef short v4hi __attribute__ ((vector_size (8)));
19814 typedef short v2hi __attribute__ ((vector_size (4)));
19815 typedef unsigned char v8qi __attribute__ ((vector_size (8)));
19816 typedef unsigned char v4qi __attribute__ ((vector_size (4)));
19818 void __builtin_vis_write_gsr (int64_t);
19819 int64_t __builtin_vis_read_gsr (void);
19821 void * __builtin_vis_alignaddr (void *, long);
19822 void * __builtin_vis_alignaddrl (void *, long);
19823 int64_t __builtin_vis_faligndatadi (int64_t, int64_t);
19824 v2si __builtin_vis_faligndatav2si (v2si, v2si);
19825 v4hi __builtin_vis_faligndatav4hi (v4si, v4si);
19826 v8qi __builtin_vis_faligndatav8qi (v8qi, v8qi);
19828 v4hi __builtin_vis_fexpand (v4qi);
19830 v4hi __builtin_vis_fmul8x16 (v4qi, v4hi);
19831 v4hi __builtin_vis_fmul8x16au (v4qi, v2hi);
19832 v4hi __builtin_vis_fmul8x16al (v4qi, v2hi);
19833 v4hi __builtin_vis_fmul8sux16 (v8qi, v4hi);
19834 v4hi __builtin_vis_fmul8ulx16 (v8qi, v4hi);
19835 v2si __builtin_vis_fmuld8sux16 (v4qi, v2hi);
19836 v2si __builtin_vis_fmuld8ulx16 (v4qi, v2hi);
19838 v4qi __builtin_vis_fpack16 (v4hi);
19839 v8qi __builtin_vis_fpack32 (v2si, v8qi);
19840 v2hi __builtin_vis_fpackfix (v2si);
19841 v8qi __builtin_vis_fpmerge (v4qi, v4qi);
19843 int64_t __builtin_vis_pdist (v8qi, v8qi, int64_t);
19845 long __builtin_vis_edge8 (void *, void *);
19846 long __builtin_vis_edge8l (void *, void *);
19847 long __builtin_vis_edge16 (void *, void *);
19848 long __builtin_vis_edge16l (void *, void *);
19849 long __builtin_vis_edge32 (void *, void *);
19850 long __builtin_vis_edge32l (void *, void *);
19852 long __builtin_vis_fcmple16 (v4hi, v4hi);
19853 long __builtin_vis_fcmple32 (v2si, v2si);
19854 long __builtin_vis_fcmpne16 (v4hi, v4hi);
19855 long __builtin_vis_fcmpne32 (v2si, v2si);
19856 long __builtin_vis_fcmpgt16 (v4hi, v4hi);
19857 long __builtin_vis_fcmpgt32 (v2si, v2si);
19858 long __builtin_vis_fcmpeq16 (v4hi, v4hi);
19859 long __builtin_vis_fcmpeq32 (v2si, v2si);
19861 v4hi __builtin_vis_fpadd16 (v4hi, v4hi);
19862 v2hi __builtin_vis_fpadd16s (v2hi, v2hi);
19863 v2si __builtin_vis_fpadd32 (v2si, v2si);
19864 v1si __builtin_vis_fpadd32s (v1si, v1si);
19865 v4hi __builtin_vis_fpsub16 (v4hi, v4hi);
19866 v2hi __builtin_vis_fpsub16s (v2hi, v2hi);
19867 v2si __builtin_vis_fpsub32 (v2si, v2si);
19868 v1si __builtin_vis_fpsub32s (v1si, v1si);
19870 long __builtin_vis_array8 (long, long);
19871 long __builtin_vis_array16 (long, long);
19872 long __builtin_vis_array32 (long, long);
19873 @end smallexample
19875 When you use the @option{-mvis2} switch, the VIS version 2.0 built-in
19876 functions also become available:
19878 @smallexample
19879 long __builtin_vis_bmask (long, long);
19880 int64_t __builtin_vis_bshuffledi (int64_t, int64_t);
19881 v2si __builtin_vis_bshufflev2si (v2si, v2si);
19882 v4hi __builtin_vis_bshufflev2si (v4hi, v4hi);
19883 v8qi __builtin_vis_bshufflev2si (v8qi, v8qi);
19885 long __builtin_vis_edge8n (void *, void *);
19886 long __builtin_vis_edge8ln (void *, void *);
19887 long __builtin_vis_edge16n (void *, void *);
19888 long __builtin_vis_edge16ln (void *, void *);
19889 long __builtin_vis_edge32n (void *, void *);
19890 long __builtin_vis_edge32ln (void *, void *);
19891 @end smallexample
19893 When you use the @option{-mvis3} switch, the VIS version 3.0 built-in
19894 functions also become available:
19896 @smallexample
19897 void __builtin_vis_cmask8 (long);
19898 void __builtin_vis_cmask16 (long);
19899 void __builtin_vis_cmask32 (long);
19901 v4hi __builtin_vis_fchksm16 (v4hi, v4hi);
19903 v4hi __builtin_vis_fsll16 (v4hi, v4hi);
19904 v4hi __builtin_vis_fslas16 (v4hi, v4hi);
19905 v4hi __builtin_vis_fsrl16 (v4hi, v4hi);
19906 v4hi __builtin_vis_fsra16 (v4hi, v4hi);
19907 v2si __builtin_vis_fsll16 (v2si, v2si);
19908 v2si __builtin_vis_fslas16 (v2si, v2si);
19909 v2si __builtin_vis_fsrl16 (v2si, v2si);
19910 v2si __builtin_vis_fsra16 (v2si, v2si);
19912 long __builtin_vis_pdistn (v8qi, v8qi);
19914 v4hi __builtin_vis_fmean16 (v4hi, v4hi);
19916 int64_t __builtin_vis_fpadd64 (int64_t, int64_t);
19917 int64_t __builtin_vis_fpsub64 (int64_t, int64_t);
19919 v4hi __builtin_vis_fpadds16 (v4hi, v4hi);
19920 v2hi __builtin_vis_fpadds16s (v2hi, v2hi);
19921 v4hi __builtin_vis_fpsubs16 (v4hi, v4hi);
19922 v2hi __builtin_vis_fpsubs16s (v2hi, v2hi);
19923 v2si __builtin_vis_fpadds32 (v2si, v2si);
19924 v1si __builtin_vis_fpadds32s (v1si, v1si);
19925 v2si __builtin_vis_fpsubs32 (v2si, v2si);
19926 v1si __builtin_vis_fpsubs32s (v1si, v1si);
19928 long __builtin_vis_fucmple8 (v8qi, v8qi);
19929 long __builtin_vis_fucmpne8 (v8qi, v8qi);
19930 long __builtin_vis_fucmpgt8 (v8qi, v8qi);
19931 long __builtin_vis_fucmpeq8 (v8qi, v8qi);
19933 float __builtin_vis_fhadds (float, float);
19934 double __builtin_vis_fhaddd (double, double);
19935 float __builtin_vis_fhsubs (float, float);
19936 double __builtin_vis_fhsubd (double, double);
19937 float __builtin_vis_fnhadds (float, float);
19938 double __builtin_vis_fnhaddd (double, double);
19940 int64_t __builtin_vis_umulxhi (int64_t, int64_t);
19941 int64_t __builtin_vis_xmulx (int64_t, int64_t);
19942 int64_t __builtin_vis_xmulxhi (int64_t, int64_t);
19943 @end smallexample
19945 When you use the @option{-mvis4} switch, the VIS version 4.0 built-in
19946 functions also become available:
19948 @smallexample
19949 v8qi __builtin_vis_fpadd8 (v8qi, v8qi);
19950 v8qi __builtin_vis_fpadds8 (v8qi, v8qi);
19951 v8qi __builtin_vis_fpaddus8 (v8qi, v8qi);
19952 v4hi __builtin_vis_fpaddus16 (v4hi, v4hi);
19954 v8qi __builtin_vis_fpsub8 (v8qi, v8qi);
19955 v8qi __builtin_vis_fpsubs8 (v8qi, v8qi);
19956 v8qi __builtin_vis_fpsubus8 (v8qi, v8qi);
19957 v4hi __builtin_vis_fpsubus16 (v4hi, v4hi);
19959 long __builtin_vis_fpcmple8 (v8qi, v8qi);
19960 long __builtin_vis_fpcmpgt8 (v8qi, v8qi);
19961 long __builtin_vis_fpcmpule16 (v4hi, v4hi);
19962 long __builtin_vis_fpcmpugt16 (v4hi, v4hi);
19963 long __builtin_vis_fpcmpule32 (v2si, v2si);
19964 long __builtin_vis_fpcmpugt32 (v2si, v2si);
19966 v8qi __builtin_vis_fpmax8 (v8qi, v8qi);
19967 v4hi __builtin_vis_fpmax16 (v4hi, v4hi);
19968 v2si __builtin_vis_fpmax32 (v2si, v2si);
19970 v8qi __builtin_vis_fpmaxu8 (v8qi, v8qi);
19971 v4hi __builtin_vis_fpmaxu16 (v4hi, v4hi);
19972 v2si __builtin_vis_fpmaxu32 (v2si, v2si);
19975 v8qi __builtin_vis_fpmin8 (v8qi, v8qi);
19976 v4hi __builtin_vis_fpmin16 (v4hi, v4hi);
19977 v2si __builtin_vis_fpmin32 (v2si, v2si);
19979 v8qi __builtin_vis_fpminu8 (v8qi, v8qi);
19980 v4hi __builtin_vis_fpminu16 (v4hi, v4hi);
19981 v2si __builtin_vis_fpminu32 (v2si, v2si);
19982 @end smallexample
19984 When you use the @option{-mvis4b} switch, the VIS version 4.0B
19985 built-in functions also become available:
19987 @smallexample
19988 v8qi __builtin_vis_dictunpack8 (double, int);
19989 v4hi __builtin_vis_dictunpack16 (double, int);
19990 v2si __builtin_vis_dictunpack32 (double, int);
19992 long __builtin_vis_fpcmple8shl (v8qi, v8qi, int);
19993 long __builtin_vis_fpcmpgt8shl (v8qi, v8qi, int);
19994 long __builtin_vis_fpcmpeq8shl (v8qi, v8qi, int);
19995 long __builtin_vis_fpcmpne8shl (v8qi, v8qi, int);
19997 long __builtin_vis_fpcmple16shl (v4hi, v4hi, int);
19998 long __builtin_vis_fpcmpgt16shl (v4hi, v4hi, int);
19999 long __builtin_vis_fpcmpeq16shl (v4hi, v4hi, int);
20000 long __builtin_vis_fpcmpne16shl (v4hi, v4hi, int);
20002 long __builtin_vis_fpcmple32shl (v2si, v2si, int);
20003 long __builtin_vis_fpcmpgt32shl (v2si, v2si, int);
20004 long __builtin_vis_fpcmpeq32shl (v2si, v2si, int);
20005 long __builtin_vis_fpcmpne32shl (v2si, v2si, int);
20007 long __builtin_vis_fpcmpule8shl (v8qi, v8qi, int);
20008 long __builtin_vis_fpcmpugt8shl (v8qi, v8qi, int);
20009 long __builtin_vis_fpcmpule16shl (v4hi, v4hi, int);
20010 long __builtin_vis_fpcmpugt16shl (v4hi, v4hi, int);
20011 long __builtin_vis_fpcmpule32shl (v2si, v2si, int);
20012 long __builtin_vis_fpcmpugt32shl (v2si, v2si, int);
20014 long __builtin_vis_fpcmpde8shl (v8qi, v8qi, int);
20015 long __builtin_vis_fpcmpde16shl (v4hi, v4hi, int);
20016 long __builtin_vis_fpcmpde32shl (v2si, v2si, int);
20018 long __builtin_vis_fpcmpur8shl (v8qi, v8qi, int);
20019 long __builtin_vis_fpcmpur16shl (v4hi, v4hi, int);
20020 long __builtin_vis_fpcmpur32shl (v2si, v2si, int);
20021 @end smallexample
20023 @node SPU Built-in Functions
20024 @subsection SPU Built-in Functions
20026 GCC provides extensions for the SPU processor as described in the
20027 Sony/Toshiba/IBM SPU Language Extensions Specification.  GCC's
20028 implementation differs in several ways.
20030 @itemize @bullet
20032 @item
20033 The optional extension of specifying vector constants in parentheses is
20034 not supported.
20036 @item
20037 A vector initializer requires no cast if the vector constant is of the
20038 same type as the variable it is initializing.
20040 @item
20041 If @code{signed} or @code{unsigned} is omitted, the signedness of the
20042 vector type is the default signedness of the base type.  The default
20043 varies depending on the operating system, so a portable program should
20044 always specify the signedness.
20046 @item
20047 By default, the keyword @code{__vector} is added. The macro
20048 @code{vector} is defined in @code{<spu_intrinsics.h>} and can be
20049 undefined.
20051 @item
20052 GCC allows using a @code{typedef} name as the type specifier for a
20053 vector type.
20055 @item
20056 For C, overloaded functions are implemented with macros so the following
20057 does not work:
20059 @smallexample
20060   spu_add ((vector signed int)@{1, 2, 3, 4@}, foo);
20061 @end smallexample
20063 @noindent
20064 Since @code{spu_add} is a macro, the vector constant in the example
20065 is treated as four separate arguments.  Wrap the entire argument in
20066 parentheses for this to work.
20068 @item
20069 The extended version of @code{__builtin_expect} is not supported.
20071 @end itemize
20073 @emph{Note:} Only the interface described in the aforementioned
20074 specification is supported. Internally, GCC uses built-in functions to
20075 implement the required functionality, but these are not supported and
20076 are subject to change without notice.
20078 @node TI C6X Built-in Functions
20079 @subsection TI C6X Built-in Functions
20081 GCC provides intrinsics to access certain instructions of the TI C6X
20082 processors.  These intrinsics, listed below, are available after
20083 inclusion of the @code{c6x_intrinsics.h} header file.  They map directly
20084 to C6X instructions.
20086 @smallexample
20088 int _sadd (int, int)
20089 int _ssub (int, int)
20090 int _sadd2 (int, int)
20091 int _ssub2 (int, int)
20092 long long _mpy2 (int, int)
20093 long long _smpy2 (int, int)
20094 int _add4 (int, int)
20095 int _sub4 (int, int)
20096 int _saddu4 (int, int)
20098 int _smpy (int, int)
20099 int _smpyh (int, int)
20100 int _smpyhl (int, int)
20101 int _smpylh (int, int)
20103 int _sshl (int, int)
20104 int _subc (int, int)
20106 int _avg2 (int, int)
20107 int _avgu4 (int, int)
20109 int _clrr (int, int)
20110 int _extr (int, int)
20111 int _extru (int, int)
20112 int _abs (int)
20113 int _abs2 (int)
20115 @end smallexample
20117 @node TILE-Gx Built-in Functions
20118 @subsection TILE-Gx Built-in Functions
20120 GCC provides intrinsics to access every instruction of the TILE-Gx
20121 processor.  The intrinsics are of the form:
20123 @smallexample
20125 unsigned long long __insn_@var{op} (...)
20127 @end smallexample
20129 Where @var{op} is the name of the instruction.  Refer to the ISA manual
20130 for the complete list of instructions.
20132 GCC also provides intrinsics to directly access the network registers.
20133 The intrinsics are:
20135 @smallexample
20137 unsigned long long __tile_idn0_receive (void)
20138 unsigned long long __tile_idn1_receive (void)
20139 unsigned long long __tile_udn0_receive (void)
20140 unsigned long long __tile_udn1_receive (void)
20141 unsigned long long __tile_udn2_receive (void)
20142 unsigned long long __tile_udn3_receive (void)
20143 void __tile_idn_send (unsigned long long)
20144 void __tile_udn_send (unsigned long long)
20146 @end smallexample
20148 The intrinsic @code{void __tile_network_barrier (void)} is used to
20149 guarantee that no network operations before it are reordered with
20150 those after it.
20152 @node TILEPro Built-in Functions
20153 @subsection TILEPro Built-in Functions
20155 GCC provides intrinsics to access every instruction of the TILEPro
20156 processor.  The intrinsics are of the form:
20158 @smallexample
20160 unsigned __insn_@var{op} (...)
20162 @end smallexample
20164 @noindent
20165 where @var{op} is the name of the instruction.  Refer to the ISA manual
20166 for the complete list of instructions.
20168 GCC also provides intrinsics to directly access the network registers.
20169 The intrinsics are:
20171 @smallexample
20173 unsigned __tile_idn0_receive (void)
20174 unsigned __tile_idn1_receive (void)
20175 unsigned __tile_sn_receive (void)
20176 unsigned __tile_udn0_receive (void)
20177 unsigned __tile_udn1_receive (void)
20178 unsigned __tile_udn2_receive (void)
20179 unsigned __tile_udn3_receive (void)
20180 void __tile_idn_send (unsigned)
20181 void __tile_sn_send (unsigned)
20182 void __tile_udn_send (unsigned)
20184 @end smallexample
20186 The intrinsic @code{void __tile_network_barrier (void)} is used to
20187 guarantee that no network operations before it are reordered with
20188 those after it.
20190 @node x86 Built-in Functions
20191 @subsection x86 Built-in Functions
20193 These built-in functions are available for the x86-32 and x86-64 family
20194 of computers, depending on the command-line switches used.
20196 If you specify command-line switches such as @option{-msse},
20197 the compiler could use the extended instruction sets even if the built-ins
20198 are not used explicitly in the program.  For this reason, applications
20199 that perform run-time CPU detection must compile separate files for each
20200 supported architecture, using the appropriate flags.  In particular,
20201 the file containing the CPU detection code should be compiled without
20202 these options.
20204 The following machine modes are available for use with MMX built-in functions
20205 (@pxref{Vector Extensions}): @code{V2SI} for a vector of two 32-bit integers,
20206 @code{V4HI} for a vector of four 16-bit integers, and @code{V8QI} for a
20207 vector of eight 8-bit integers.  Some of the built-in functions operate on
20208 MMX registers as a whole 64-bit entity, these use @code{V1DI} as their mode.
20210 If 3DNow!@: extensions are enabled, @code{V2SF} is used as a mode for a vector
20211 of two 32-bit floating-point values.
20213 If SSE extensions are enabled, @code{V4SF} is used for a vector of four 32-bit
20214 floating-point values.  Some instructions use a vector of four 32-bit
20215 integers, these use @code{V4SI}.  Finally, some instructions operate on an
20216 entire vector register, interpreting it as a 128-bit integer, these use mode
20217 @code{TI}.
20219 The x86-32 and x86-64 family of processors use additional built-in
20220 functions for efficient use of @code{TF} (@code{__float128}) 128-bit
20221 floating point and @code{TC} 128-bit complex floating-point values.
20223 The following floating-point built-in functions are always available.  All
20224 of them implement the function that is part of the name.
20226 @smallexample
20227 __float128 __builtin_fabsq (__float128)
20228 __float128 __builtin_copysignq (__float128, __float128)
20229 @end smallexample
20231 The following built-in functions are always available.
20233 @table @code
20234 @item __float128 __builtin_infq (void)
20235 Similar to @code{__builtin_inf}, except the return type is @code{__float128}.
20236 @findex __builtin_infq
20238 @item __float128 __builtin_huge_valq (void)
20239 Similar to @code{__builtin_huge_val}, except the return type is @code{__float128}.
20240 @findex __builtin_huge_valq
20242 @item __float128 __builtin_nanq (void)
20243 Similar to @code{__builtin_nan}, except the return type is @code{__float128}.
20244 @findex __builtin_nanq
20246 @item __float128 __builtin_nansq (void)
20247 Similar to @code{__builtin_nans}, except the return type is @code{__float128}.
20248 @findex __builtin_nansq
20249 @end table
20251 The following built-in function is always available.
20253 @table @code
20254 @item void __builtin_ia32_pause (void)
20255 Generates the @code{pause} machine instruction with a compiler memory
20256 barrier.
20257 @end table
20259 The following built-in functions are always available and can be used to
20260 check the target platform type.
20262 @deftypefn {Built-in Function} void __builtin_cpu_init (void)
20263 This function runs the CPU detection code to check the type of CPU and the
20264 features supported.  This built-in function needs to be invoked along with the built-in functions
20265 to check CPU type and features, @code{__builtin_cpu_is} and
20266 @code{__builtin_cpu_supports}, only when used in a function that is
20267 executed before any constructors are called.  The CPU detection code is
20268 automatically executed in a very high priority constructor.
20270 For example, this function has to be used in @code{ifunc} resolvers that
20271 check for CPU type using the built-in functions @code{__builtin_cpu_is}
20272 and @code{__builtin_cpu_supports}, or in constructors on targets that
20273 don't support constructor priority.
20274 @smallexample
20276 static void (*resolve_memcpy (void)) (void)
20278   // ifunc resolvers fire before constructors, explicitly call the init
20279   // function.
20280   __builtin_cpu_init ();
20281   if (__builtin_cpu_supports ("ssse3"))
20282     return ssse3_memcpy; // super fast memcpy with ssse3 instructions.
20283   else
20284     return default_memcpy;
20287 void *memcpy (void *, const void *, size_t)
20288      __attribute__ ((ifunc ("resolve_memcpy")));
20289 @end smallexample
20291 @end deftypefn
20293 @deftypefn {Built-in Function} int __builtin_cpu_is (const char *@var{cpuname})
20294 This function returns a positive integer if the run-time CPU
20295 is of type @var{cpuname}
20296 and returns @code{0} otherwise. The following CPU names can be detected:
20298 @table @samp
20299 @item intel
20300 Intel CPU.
20302 @item atom
20303 Intel Atom CPU.
20305 @item core2
20306 Intel Core 2 CPU.
20308 @item corei7
20309 Intel Core i7 CPU.
20311 @item nehalem
20312 Intel Core i7 Nehalem CPU.
20314 @item westmere
20315 Intel Core i7 Westmere CPU.
20317 @item sandybridge
20318 Intel Core i7 Sandy Bridge CPU.
20320 @item amd
20321 AMD CPU.
20323 @item amdfam10h
20324 AMD Family 10h CPU.
20326 @item barcelona
20327 AMD Family 10h Barcelona CPU.
20329 @item shanghai
20330 AMD Family 10h Shanghai CPU.
20332 @item istanbul
20333 AMD Family 10h Istanbul CPU.
20335 @item btver1
20336 AMD Family 14h CPU.
20338 @item amdfam15h
20339 AMD Family 15h CPU.
20341 @item bdver1
20342 AMD Family 15h Bulldozer version 1.
20344 @item bdver2
20345 AMD Family 15h Bulldozer version 2.
20347 @item bdver3
20348 AMD Family 15h Bulldozer version 3.
20350 @item bdver4
20351 AMD Family 15h Bulldozer version 4.
20353 @item btver2
20354 AMD Family 16h CPU.
20356 @item amdfam17h
20357 AMD Family 17h CPU.
20359 @item znver1
20360 AMD Family 17h Zen version 1.
20361 @end table
20363 Here is an example:
20364 @smallexample
20365 if (__builtin_cpu_is ("corei7"))
20366   @{
20367      do_corei7 (); // Core i7 specific implementation.
20368   @}
20369 else
20370   @{
20371      do_generic (); // Generic implementation.
20372   @}
20373 @end smallexample
20374 @end deftypefn
20376 @deftypefn {Built-in Function} int __builtin_cpu_supports (const char *@var{feature})
20377 This function returns a positive integer if the run-time CPU
20378 supports @var{feature}
20379 and returns @code{0} otherwise. The following features can be detected:
20381 @table @samp
20382 @item cmov
20383 CMOV instruction.
20384 @item mmx
20385 MMX instructions.
20386 @item popcnt
20387 POPCNT instruction.
20388 @item sse
20389 SSE instructions.
20390 @item sse2
20391 SSE2 instructions.
20392 @item sse3
20393 SSE3 instructions.
20394 @item ssse3
20395 SSSE3 instructions.
20396 @item sse4.1
20397 SSE4.1 instructions.
20398 @item sse4.2
20399 SSE4.2 instructions.
20400 @item avx
20401 AVX instructions.
20402 @item avx2
20403 AVX2 instructions.
20404 @item avx512f
20405 AVX512F instructions.
20406 @end table
20408 Here is an example:
20409 @smallexample
20410 if (__builtin_cpu_supports ("popcnt"))
20411   @{
20412      asm("popcnt %1,%0" : "=r"(count) : "rm"(n) : "cc");
20413   @}
20414 else
20415   @{
20416      count = generic_countbits (n); //generic implementation.
20417   @}
20418 @end smallexample
20419 @end deftypefn
20422 The following built-in functions are made available by @option{-mmmx}.
20423 All of them generate the machine instruction that is part of the name.
20425 @smallexample
20426 v8qi __builtin_ia32_paddb (v8qi, v8qi)
20427 v4hi __builtin_ia32_paddw (v4hi, v4hi)
20428 v2si __builtin_ia32_paddd (v2si, v2si)
20429 v8qi __builtin_ia32_psubb (v8qi, v8qi)
20430 v4hi __builtin_ia32_psubw (v4hi, v4hi)
20431 v2si __builtin_ia32_psubd (v2si, v2si)
20432 v8qi __builtin_ia32_paddsb (v8qi, v8qi)
20433 v4hi __builtin_ia32_paddsw (v4hi, v4hi)
20434 v8qi __builtin_ia32_psubsb (v8qi, v8qi)
20435 v4hi __builtin_ia32_psubsw (v4hi, v4hi)
20436 v8qi __builtin_ia32_paddusb (v8qi, v8qi)
20437 v4hi __builtin_ia32_paddusw (v4hi, v4hi)
20438 v8qi __builtin_ia32_psubusb (v8qi, v8qi)
20439 v4hi __builtin_ia32_psubusw (v4hi, v4hi)
20440 v4hi __builtin_ia32_pmullw (v4hi, v4hi)
20441 v4hi __builtin_ia32_pmulhw (v4hi, v4hi)
20442 di __builtin_ia32_pand (di, di)
20443 di __builtin_ia32_pandn (di,di)
20444 di __builtin_ia32_por (di, di)
20445 di __builtin_ia32_pxor (di, di)
20446 v8qi __builtin_ia32_pcmpeqb (v8qi, v8qi)
20447 v4hi __builtin_ia32_pcmpeqw (v4hi, v4hi)
20448 v2si __builtin_ia32_pcmpeqd (v2si, v2si)
20449 v8qi __builtin_ia32_pcmpgtb (v8qi, v8qi)
20450 v4hi __builtin_ia32_pcmpgtw (v4hi, v4hi)
20451 v2si __builtin_ia32_pcmpgtd (v2si, v2si)
20452 v8qi __builtin_ia32_punpckhbw (v8qi, v8qi)
20453 v4hi __builtin_ia32_punpckhwd (v4hi, v4hi)
20454 v2si __builtin_ia32_punpckhdq (v2si, v2si)
20455 v8qi __builtin_ia32_punpcklbw (v8qi, v8qi)
20456 v4hi __builtin_ia32_punpcklwd (v4hi, v4hi)
20457 v2si __builtin_ia32_punpckldq (v2si, v2si)
20458 v8qi __builtin_ia32_packsswb (v4hi, v4hi)
20459 v4hi __builtin_ia32_packssdw (v2si, v2si)
20460 v8qi __builtin_ia32_packuswb (v4hi, v4hi)
20462 v4hi __builtin_ia32_psllw (v4hi, v4hi)
20463 v2si __builtin_ia32_pslld (v2si, v2si)
20464 v1di __builtin_ia32_psllq (v1di, v1di)
20465 v4hi __builtin_ia32_psrlw (v4hi, v4hi)
20466 v2si __builtin_ia32_psrld (v2si, v2si)
20467 v1di __builtin_ia32_psrlq (v1di, v1di)
20468 v4hi __builtin_ia32_psraw (v4hi, v4hi)
20469 v2si __builtin_ia32_psrad (v2si, v2si)
20470 v4hi __builtin_ia32_psllwi (v4hi, int)
20471 v2si __builtin_ia32_pslldi (v2si, int)
20472 v1di __builtin_ia32_psllqi (v1di, int)
20473 v4hi __builtin_ia32_psrlwi (v4hi, int)
20474 v2si __builtin_ia32_psrldi (v2si, int)
20475 v1di __builtin_ia32_psrlqi (v1di, int)
20476 v4hi __builtin_ia32_psrawi (v4hi, int)
20477 v2si __builtin_ia32_psradi (v2si, int)
20479 @end smallexample
20481 The following built-in functions are made available either with
20482 @option{-msse}, or with @option{-m3dnowa}.  All of them generate
20483 the machine instruction that is part of the name.
20485 @smallexample
20486 v4hi __builtin_ia32_pmulhuw (v4hi, v4hi)
20487 v8qi __builtin_ia32_pavgb (v8qi, v8qi)
20488 v4hi __builtin_ia32_pavgw (v4hi, v4hi)
20489 v1di __builtin_ia32_psadbw (v8qi, v8qi)
20490 v8qi __builtin_ia32_pmaxub (v8qi, v8qi)
20491 v4hi __builtin_ia32_pmaxsw (v4hi, v4hi)
20492 v8qi __builtin_ia32_pminub (v8qi, v8qi)
20493 v4hi __builtin_ia32_pminsw (v4hi, v4hi)
20494 int __builtin_ia32_pmovmskb (v8qi)
20495 void __builtin_ia32_maskmovq (v8qi, v8qi, char *)
20496 void __builtin_ia32_movntq (di *, di)
20497 void __builtin_ia32_sfence (void)
20498 @end smallexample
20500 The following built-in functions are available when @option{-msse} is used.
20501 All of them generate the machine instruction that is part of the name.
20503 @smallexample
20504 int __builtin_ia32_comieq (v4sf, v4sf)
20505 int __builtin_ia32_comineq (v4sf, v4sf)
20506 int __builtin_ia32_comilt (v4sf, v4sf)
20507 int __builtin_ia32_comile (v4sf, v4sf)
20508 int __builtin_ia32_comigt (v4sf, v4sf)
20509 int __builtin_ia32_comige (v4sf, v4sf)
20510 int __builtin_ia32_ucomieq (v4sf, v4sf)
20511 int __builtin_ia32_ucomineq (v4sf, v4sf)
20512 int __builtin_ia32_ucomilt (v4sf, v4sf)
20513 int __builtin_ia32_ucomile (v4sf, v4sf)
20514 int __builtin_ia32_ucomigt (v4sf, v4sf)
20515 int __builtin_ia32_ucomige (v4sf, v4sf)
20516 v4sf __builtin_ia32_addps (v4sf, v4sf)
20517 v4sf __builtin_ia32_subps (v4sf, v4sf)
20518 v4sf __builtin_ia32_mulps (v4sf, v4sf)
20519 v4sf __builtin_ia32_divps (v4sf, v4sf)
20520 v4sf __builtin_ia32_addss (v4sf, v4sf)
20521 v4sf __builtin_ia32_subss (v4sf, v4sf)
20522 v4sf __builtin_ia32_mulss (v4sf, v4sf)
20523 v4sf __builtin_ia32_divss (v4sf, v4sf)
20524 v4sf __builtin_ia32_cmpeqps (v4sf, v4sf)
20525 v4sf __builtin_ia32_cmpltps (v4sf, v4sf)
20526 v4sf __builtin_ia32_cmpleps (v4sf, v4sf)
20527 v4sf __builtin_ia32_cmpgtps (v4sf, v4sf)
20528 v4sf __builtin_ia32_cmpgeps (v4sf, v4sf)
20529 v4sf __builtin_ia32_cmpunordps (v4sf, v4sf)
20530 v4sf __builtin_ia32_cmpneqps (v4sf, v4sf)
20531 v4sf __builtin_ia32_cmpnltps (v4sf, v4sf)
20532 v4sf __builtin_ia32_cmpnleps (v4sf, v4sf)
20533 v4sf __builtin_ia32_cmpngtps (v4sf, v4sf)
20534 v4sf __builtin_ia32_cmpngeps (v4sf, v4sf)
20535 v4sf __builtin_ia32_cmpordps (v4sf, v4sf)
20536 v4sf __builtin_ia32_cmpeqss (v4sf, v4sf)
20537 v4sf __builtin_ia32_cmpltss (v4sf, v4sf)
20538 v4sf __builtin_ia32_cmpless (v4sf, v4sf)
20539 v4sf __builtin_ia32_cmpunordss (v4sf, v4sf)
20540 v4sf __builtin_ia32_cmpneqss (v4sf, v4sf)
20541 v4sf __builtin_ia32_cmpnltss (v4sf, v4sf)
20542 v4sf __builtin_ia32_cmpnless (v4sf, v4sf)
20543 v4sf __builtin_ia32_cmpordss (v4sf, v4sf)
20544 v4sf __builtin_ia32_maxps (v4sf, v4sf)
20545 v4sf __builtin_ia32_maxss (v4sf, v4sf)
20546 v4sf __builtin_ia32_minps (v4sf, v4sf)
20547 v4sf __builtin_ia32_minss (v4sf, v4sf)
20548 v4sf __builtin_ia32_andps (v4sf, v4sf)
20549 v4sf __builtin_ia32_andnps (v4sf, v4sf)
20550 v4sf __builtin_ia32_orps (v4sf, v4sf)
20551 v4sf __builtin_ia32_xorps (v4sf, v4sf)
20552 v4sf __builtin_ia32_movss (v4sf, v4sf)
20553 v4sf __builtin_ia32_movhlps (v4sf, v4sf)
20554 v4sf __builtin_ia32_movlhps (v4sf, v4sf)
20555 v4sf __builtin_ia32_unpckhps (v4sf, v4sf)
20556 v4sf __builtin_ia32_unpcklps (v4sf, v4sf)
20557 v4sf __builtin_ia32_cvtpi2ps (v4sf, v2si)
20558 v4sf __builtin_ia32_cvtsi2ss (v4sf, int)
20559 v2si __builtin_ia32_cvtps2pi (v4sf)
20560 int __builtin_ia32_cvtss2si (v4sf)
20561 v2si __builtin_ia32_cvttps2pi (v4sf)
20562 int __builtin_ia32_cvttss2si (v4sf)
20563 v4sf __builtin_ia32_rcpps (v4sf)
20564 v4sf __builtin_ia32_rsqrtps (v4sf)
20565 v4sf __builtin_ia32_sqrtps (v4sf)
20566 v4sf __builtin_ia32_rcpss (v4sf)
20567 v4sf __builtin_ia32_rsqrtss (v4sf)
20568 v4sf __builtin_ia32_sqrtss (v4sf)
20569 v4sf __builtin_ia32_shufps (v4sf, v4sf, int)
20570 void __builtin_ia32_movntps (float *, v4sf)
20571 int __builtin_ia32_movmskps (v4sf)
20572 @end smallexample
20574 The following built-in functions are available when @option{-msse} is used.
20576 @table @code
20577 @item v4sf __builtin_ia32_loadups (float *)
20578 Generates the @code{movups} machine instruction as a load from memory.
20579 @item void __builtin_ia32_storeups (float *, v4sf)
20580 Generates the @code{movups} machine instruction as a store to memory.
20581 @item v4sf __builtin_ia32_loadss (float *)
20582 Generates the @code{movss} machine instruction as a load from memory.
20583 @item v4sf __builtin_ia32_loadhps (v4sf, const v2sf *)
20584 Generates the @code{movhps} machine instruction as a load from memory.
20585 @item v4sf __builtin_ia32_loadlps (v4sf, const v2sf *)
20586 Generates the @code{movlps} machine instruction as a load from memory
20587 @item void __builtin_ia32_storehps (v2sf *, v4sf)
20588 Generates the @code{movhps} machine instruction as a store to memory.
20589 @item void __builtin_ia32_storelps (v2sf *, v4sf)
20590 Generates the @code{movlps} machine instruction as a store to memory.
20591 @end table
20593 The following built-in functions are available when @option{-msse2} is used.
20594 All of them generate the machine instruction that is part of the name.
20596 @smallexample
20597 int __builtin_ia32_comisdeq (v2df, v2df)
20598 int __builtin_ia32_comisdlt (v2df, v2df)
20599 int __builtin_ia32_comisdle (v2df, v2df)
20600 int __builtin_ia32_comisdgt (v2df, v2df)
20601 int __builtin_ia32_comisdge (v2df, v2df)
20602 int __builtin_ia32_comisdneq (v2df, v2df)
20603 int __builtin_ia32_ucomisdeq (v2df, v2df)
20604 int __builtin_ia32_ucomisdlt (v2df, v2df)
20605 int __builtin_ia32_ucomisdle (v2df, v2df)
20606 int __builtin_ia32_ucomisdgt (v2df, v2df)
20607 int __builtin_ia32_ucomisdge (v2df, v2df)
20608 int __builtin_ia32_ucomisdneq (v2df, v2df)
20609 v2df __builtin_ia32_cmpeqpd (v2df, v2df)
20610 v2df __builtin_ia32_cmpltpd (v2df, v2df)
20611 v2df __builtin_ia32_cmplepd (v2df, v2df)
20612 v2df __builtin_ia32_cmpgtpd (v2df, v2df)
20613 v2df __builtin_ia32_cmpgepd (v2df, v2df)
20614 v2df __builtin_ia32_cmpunordpd (v2df, v2df)
20615 v2df __builtin_ia32_cmpneqpd (v2df, v2df)
20616 v2df __builtin_ia32_cmpnltpd (v2df, v2df)
20617 v2df __builtin_ia32_cmpnlepd (v2df, v2df)
20618 v2df __builtin_ia32_cmpngtpd (v2df, v2df)
20619 v2df __builtin_ia32_cmpngepd (v2df, v2df)
20620 v2df __builtin_ia32_cmpordpd (v2df, v2df)
20621 v2df __builtin_ia32_cmpeqsd (v2df, v2df)
20622 v2df __builtin_ia32_cmpltsd (v2df, v2df)
20623 v2df __builtin_ia32_cmplesd (v2df, v2df)
20624 v2df __builtin_ia32_cmpunordsd (v2df, v2df)
20625 v2df __builtin_ia32_cmpneqsd (v2df, v2df)
20626 v2df __builtin_ia32_cmpnltsd (v2df, v2df)
20627 v2df __builtin_ia32_cmpnlesd (v2df, v2df)
20628 v2df __builtin_ia32_cmpordsd (v2df, v2df)
20629 v2di __builtin_ia32_paddq (v2di, v2di)
20630 v2di __builtin_ia32_psubq (v2di, v2di)
20631 v2df __builtin_ia32_addpd (v2df, v2df)
20632 v2df __builtin_ia32_subpd (v2df, v2df)
20633 v2df __builtin_ia32_mulpd (v2df, v2df)
20634 v2df __builtin_ia32_divpd (v2df, v2df)
20635 v2df __builtin_ia32_addsd (v2df, v2df)
20636 v2df __builtin_ia32_subsd (v2df, v2df)
20637 v2df __builtin_ia32_mulsd (v2df, v2df)
20638 v2df __builtin_ia32_divsd (v2df, v2df)
20639 v2df __builtin_ia32_minpd (v2df, v2df)
20640 v2df __builtin_ia32_maxpd (v2df, v2df)
20641 v2df __builtin_ia32_minsd (v2df, v2df)
20642 v2df __builtin_ia32_maxsd (v2df, v2df)
20643 v2df __builtin_ia32_andpd (v2df, v2df)
20644 v2df __builtin_ia32_andnpd (v2df, v2df)
20645 v2df __builtin_ia32_orpd (v2df, v2df)
20646 v2df __builtin_ia32_xorpd (v2df, v2df)
20647 v2df __builtin_ia32_movsd (v2df, v2df)
20648 v2df __builtin_ia32_unpckhpd (v2df, v2df)
20649 v2df __builtin_ia32_unpcklpd (v2df, v2df)
20650 v16qi __builtin_ia32_paddb128 (v16qi, v16qi)
20651 v8hi __builtin_ia32_paddw128 (v8hi, v8hi)
20652 v4si __builtin_ia32_paddd128 (v4si, v4si)
20653 v2di __builtin_ia32_paddq128 (v2di, v2di)
20654 v16qi __builtin_ia32_psubb128 (v16qi, v16qi)
20655 v8hi __builtin_ia32_psubw128 (v8hi, v8hi)
20656 v4si __builtin_ia32_psubd128 (v4si, v4si)
20657 v2di __builtin_ia32_psubq128 (v2di, v2di)
20658 v8hi __builtin_ia32_pmullw128 (v8hi, v8hi)
20659 v8hi __builtin_ia32_pmulhw128 (v8hi, v8hi)
20660 v2di __builtin_ia32_pand128 (v2di, v2di)
20661 v2di __builtin_ia32_pandn128 (v2di, v2di)
20662 v2di __builtin_ia32_por128 (v2di, v2di)
20663 v2di __builtin_ia32_pxor128 (v2di, v2di)
20664 v16qi __builtin_ia32_pavgb128 (v16qi, v16qi)
20665 v8hi __builtin_ia32_pavgw128 (v8hi, v8hi)
20666 v16qi __builtin_ia32_pcmpeqb128 (v16qi, v16qi)
20667 v8hi __builtin_ia32_pcmpeqw128 (v8hi, v8hi)
20668 v4si __builtin_ia32_pcmpeqd128 (v4si, v4si)
20669 v16qi __builtin_ia32_pcmpgtb128 (v16qi, v16qi)
20670 v8hi __builtin_ia32_pcmpgtw128 (v8hi, v8hi)
20671 v4si __builtin_ia32_pcmpgtd128 (v4si, v4si)
20672 v16qi __builtin_ia32_pmaxub128 (v16qi, v16qi)
20673 v8hi __builtin_ia32_pmaxsw128 (v8hi, v8hi)
20674 v16qi __builtin_ia32_pminub128 (v16qi, v16qi)
20675 v8hi __builtin_ia32_pminsw128 (v8hi, v8hi)
20676 v16qi __builtin_ia32_punpckhbw128 (v16qi, v16qi)
20677 v8hi __builtin_ia32_punpckhwd128 (v8hi, v8hi)
20678 v4si __builtin_ia32_punpckhdq128 (v4si, v4si)
20679 v2di __builtin_ia32_punpckhqdq128 (v2di, v2di)
20680 v16qi __builtin_ia32_punpcklbw128 (v16qi, v16qi)
20681 v8hi __builtin_ia32_punpcklwd128 (v8hi, v8hi)
20682 v4si __builtin_ia32_punpckldq128 (v4si, v4si)
20683 v2di __builtin_ia32_punpcklqdq128 (v2di, v2di)
20684 v16qi __builtin_ia32_packsswb128 (v8hi, v8hi)
20685 v8hi __builtin_ia32_packssdw128 (v4si, v4si)
20686 v16qi __builtin_ia32_packuswb128 (v8hi, v8hi)
20687 v8hi __builtin_ia32_pmulhuw128 (v8hi, v8hi)
20688 void __builtin_ia32_maskmovdqu (v16qi, v16qi)
20689 v2df __builtin_ia32_loadupd (double *)
20690 void __builtin_ia32_storeupd (double *, v2df)
20691 v2df __builtin_ia32_loadhpd (v2df, double const *)
20692 v2df __builtin_ia32_loadlpd (v2df, double const *)
20693 int __builtin_ia32_movmskpd (v2df)
20694 int __builtin_ia32_pmovmskb128 (v16qi)
20695 void __builtin_ia32_movnti (int *, int)
20696 void __builtin_ia32_movnti64 (long long int *, long long int)
20697 void __builtin_ia32_movntpd (double *, v2df)
20698 void __builtin_ia32_movntdq (v2df *, v2df)
20699 v4si __builtin_ia32_pshufd (v4si, int)
20700 v8hi __builtin_ia32_pshuflw (v8hi, int)
20701 v8hi __builtin_ia32_pshufhw (v8hi, int)
20702 v2di __builtin_ia32_psadbw128 (v16qi, v16qi)
20703 v2df __builtin_ia32_sqrtpd (v2df)
20704 v2df __builtin_ia32_sqrtsd (v2df)
20705 v2df __builtin_ia32_shufpd (v2df, v2df, int)
20706 v2df __builtin_ia32_cvtdq2pd (v4si)
20707 v4sf __builtin_ia32_cvtdq2ps (v4si)
20708 v4si __builtin_ia32_cvtpd2dq (v2df)
20709 v2si __builtin_ia32_cvtpd2pi (v2df)
20710 v4sf __builtin_ia32_cvtpd2ps (v2df)
20711 v4si __builtin_ia32_cvttpd2dq (v2df)
20712 v2si __builtin_ia32_cvttpd2pi (v2df)
20713 v2df __builtin_ia32_cvtpi2pd (v2si)
20714 int __builtin_ia32_cvtsd2si (v2df)
20715 int __builtin_ia32_cvttsd2si (v2df)
20716 long long __builtin_ia32_cvtsd2si64 (v2df)
20717 long long __builtin_ia32_cvttsd2si64 (v2df)
20718 v4si __builtin_ia32_cvtps2dq (v4sf)
20719 v2df __builtin_ia32_cvtps2pd (v4sf)
20720 v4si __builtin_ia32_cvttps2dq (v4sf)
20721 v2df __builtin_ia32_cvtsi2sd (v2df, int)
20722 v2df __builtin_ia32_cvtsi642sd (v2df, long long)
20723 v4sf __builtin_ia32_cvtsd2ss (v4sf, v2df)
20724 v2df __builtin_ia32_cvtss2sd (v2df, v4sf)
20725 void __builtin_ia32_clflush (const void *)
20726 void __builtin_ia32_lfence (void)
20727 void __builtin_ia32_mfence (void)
20728 v16qi __builtin_ia32_loaddqu (const char *)
20729 void __builtin_ia32_storedqu (char *, v16qi)
20730 v1di __builtin_ia32_pmuludq (v2si, v2si)
20731 v2di __builtin_ia32_pmuludq128 (v4si, v4si)
20732 v8hi __builtin_ia32_psllw128 (v8hi, v8hi)
20733 v4si __builtin_ia32_pslld128 (v4si, v4si)
20734 v2di __builtin_ia32_psllq128 (v2di, v2di)
20735 v8hi __builtin_ia32_psrlw128 (v8hi, v8hi)
20736 v4si __builtin_ia32_psrld128 (v4si, v4si)
20737 v2di __builtin_ia32_psrlq128 (v2di, v2di)
20738 v8hi __builtin_ia32_psraw128 (v8hi, v8hi)
20739 v4si __builtin_ia32_psrad128 (v4si, v4si)
20740 v2di __builtin_ia32_pslldqi128 (v2di, int)
20741 v8hi __builtin_ia32_psllwi128 (v8hi, int)
20742 v4si __builtin_ia32_pslldi128 (v4si, int)
20743 v2di __builtin_ia32_psllqi128 (v2di, int)
20744 v2di __builtin_ia32_psrldqi128 (v2di, int)
20745 v8hi __builtin_ia32_psrlwi128 (v8hi, int)
20746 v4si __builtin_ia32_psrldi128 (v4si, int)
20747 v2di __builtin_ia32_psrlqi128 (v2di, int)
20748 v8hi __builtin_ia32_psrawi128 (v8hi, int)
20749 v4si __builtin_ia32_psradi128 (v4si, int)
20750 v4si __builtin_ia32_pmaddwd128 (v8hi, v8hi)
20751 v2di __builtin_ia32_movq128 (v2di)
20752 @end smallexample
20754 The following built-in functions are available when @option{-msse3} is used.
20755 All of them generate the machine instruction that is part of the name.
20757 @smallexample
20758 v2df __builtin_ia32_addsubpd (v2df, v2df)
20759 v4sf __builtin_ia32_addsubps (v4sf, v4sf)
20760 v2df __builtin_ia32_haddpd (v2df, v2df)
20761 v4sf __builtin_ia32_haddps (v4sf, v4sf)
20762 v2df __builtin_ia32_hsubpd (v2df, v2df)
20763 v4sf __builtin_ia32_hsubps (v4sf, v4sf)
20764 v16qi __builtin_ia32_lddqu (char const *)
20765 void __builtin_ia32_monitor (void *, unsigned int, unsigned int)
20766 v4sf __builtin_ia32_movshdup (v4sf)
20767 v4sf __builtin_ia32_movsldup (v4sf)
20768 void __builtin_ia32_mwait (unsigned int, unsigned int)
20769 @end smallexample
20771 The following built-in functions are available when @option{-mssse3} is used.
20772 All of them generate the machine instruction that is part of the name.
20774 @smallexample
20775 v2si __builtin_ia32_phaddd (v2si, v2si)
20776 v4hi __builtin_ia32_phaddw (v4hi, v4hi)
20777 v4hi __builtin_ia32_phaddsw (v4hi, v4hi)
20778 v2si __builtin_ia32_phsubd (v2si, v2si)
20779 v4hi __builtin_ia32_phsubw (v4hi, v4hi)
20780 v4hi __builtin_ia32_phsubsw (v4hi, v4hi)
20781 v4hi __builtin_ia32_pmaddubsw (v8qi, v8qi)
20782 v4hi __builtin_ia32_pmulhrsw (v4hi, v4hi)
20783 v8qi __builtin_ia32_pshufb (v8qi, v8qi)
20784 v8qi __builtin_ia32_psignb (v8qi, v8qi)
20785 v2si __builtin_ia32_psignd (v2si, v2si)
20786 v4hi __builtin_ia32_psignw (v4hi, v4hi)
20787 v1di __builtin_ia32_palignr (v1di, v1di, int)
20788 v8qi __builtin_ia32_pabsb (v8qi)
20789 v2si __builtin_ia32_pabsd (v2si)
20790 v4hi __builtin_ia32_pabsw (v4hi)
20791 @end smallexample
20793 The following built-in functions are available when @option{-mssse3} is used.
20794 All of them generate the machine instruction that is part of the name.
20796 @smallexample
20797 v4si __builtin_ia32_phaddd128 (v4si, v4si)
20798 v8hi __builtin_ia32_phaddw128 (v8hi, v8hi)
20799 v8hi __builtin_ia32_phaddsw128 (v8hi, v8hi)
20800 v4si __builtin_ia32_phsubd128 (v4si, v4si)
20801 v8hi __builtin_ia32_phsubw128 (v8hi, v8hi)
20802 v8hi __builtin_ia32_phsubsw128 (v8hi, v8hi)
20803 v8hi __builtin_ia32_pmaddubsw128 (v16qi, v16qi)
20804 v8hi __builtin_ia32_pmulhrsw128 (v8hi, v8hi)
20805 v16qi __builtin_ia32_pshufb128 (v16qi, v16qi)
20806 v16qi __builtin_ia32_psignb128 (v16qi, v16qi)
20807 v4si __builtin_ia32_psignd128 (v4si, v4si)
20808 v8hi __builtin_ia32_psignw128 (v8hi, v8hi)
20809 v2di __builtin_ia32_palignr128 (v2di, v2di, int)
20810 v16qi __builtin_ia32_pabsb128 (v16qi)
20811 v4si __builtin_ia32_pabsd128 (v4si)
20812 v8hi __builtin_ia32_pabsw128 (v8hi)
20813 @end smallexample
20815 The following built-in functions are available when @option{-msse4.1} is
20816 used.  All of them generate the machine instruction that is part of the
20817 name.
20819 @smallexample
20820 v2df __builtin_ia32_blendpd (v2df, v2df, const int)
20821 v4sf __builtin_ia32_blendps (v4sf, v4sf, const int)
20822 v2df __builtin_ia32_blendvpd (v2df, v2df, v2df)
20823 v4sf __builtin_ia32_blendvps (v4sf, v4sf, v4sf)
20824 v2df __builtin_ia32_dppd (v2df, v2df, const int)
20825 v4sf __builtin_ia32_dpps (v4sf, v4sf, const int)
20826 v4sf __builtin_ia32_insertps128 (v4sf, v4sf, const int)
20827 v2di __builtin_ia32_movntdqa (v2di *);
20828 v16qi __builtin_ia32_mpsadbw128 (v16qi, v16qi, const int)
20829 v8hi __builtin_ia32_packusdw128 (v4si, v4si)
20830 v16qi __builtin_ia32_pblendvb128 (v16qi, v16qi, v16qi)
20831 v8hi __builtin_ia32_pblendw128 (v8hi, v8hi, const int)
20832 v2di __builtin_ia32_pcmpeqq (v2di, v2di)
20833 v8hi __builtin_ia32_phminposuw128 (v8hi)
20834 v16qi __builtin_ia32_pmaxsb128 (v16qi, v16qi)
20835 v4si __builtin_ia32_pmaxsd128 (v4si, v4si)
20836 v4si __builtin_ia32_pmaxud128 (v4si, v4si)
20837 v8hi __builtin_ia32_pmaxuw128 (v8hi, v8hi)
20838 v16qi __builtin_ia32_pminsb128 (v16qi, v16qi)
20839 v4si __builtin_ia32_pminsd128 (v4si, v4si)
20840 v4si __builtin_ia32_pminud128 (v4si, v4si)
20841 v8hi __builtin_ia32_pminuw128 (v8hi, v8hi)
20842 v4si __builtin_ia32_pmovsxbd128 (v16qi)
20843 v2di __builtin_ia32_pmovsxbq128 (v16qi)
20844 v8hi __builtin_ia32_pmovsxbw128 (v16qi)
20845 v2di __builtin_ia32_pmovsxdq128 (v4si)
20846 v4si __builtin_ia32_pmovsxwd128 (v8hi)
20847 v2di __builtin_ia32_pmovsxwq128 (v8hi)
20848 v4si __builtin_ia32_pmovzxbd128 (v16qi)
20849 v2di __builtin_ia32_pmovzxbq128 (v16qi)
20850 v8hi __builtin_ia32_pmovzxbw128 (v16qi)
20851 v2di __builtin_ia32_pmovzxdq128 (v4si)
20852 v4si __builtin_ia32_pmovzxwd128 (v8hi)
20853 v2di __builtin_ia32_pmovzxwq128 (v8hi)
20854 v2di __builtin_ia32_pmuldq128 (v4si, v4si)
20855 v4si __builtin_ia32_pmulld128 (v4si, v4si)
20856 int __builtin_ia32_ptestc128 (v2di, v2di)
20857 int __builtin_ia32_ptestnzc128 (v2di, v2di)
20858 int __builtin_ia32_ptestz128 (v2di, v2di)
20859 v2df __builtin_ia32_roundpd (v2df, const int)
20860 v4sf __builtin_ia32_roundps (v4sf, const int)
20861 v2df __builtin_ia32_roundsd (v2df, v2df, const int)
20862 v4sf __builtin_ia32_roundss (v4sf, v4sf, const int)
20863 @end smallexample
20865 The following built-in functions are available when @option{-msse4.1} is
20866 used.
20868 @table @code
20869 @item v4sf __builtin_ia32_vec_set_v4sf (v4sf, float, const int)
20870 Generates the @code{insertps} machine instruction.
20871 @item int __builtin_ia32_vec_ext_v16qi (v16qi, const int)
20872 Generates the @code{pextrb} machine instruction.
20873 @item v16qi __builtin_ia32_vec_set_v16qi (v16qi, int, const int)
20874 Generates the @code{pinsrb} machine instruction.
20875 @item v4si __builtin_ia32_vec_set_v4si (v4si, int, const int)
20876 Generates the @code{pinsrd} machine instruction.
20877 @item v2di __builtin_ia32_vec_set_v2di (v2di, long long, const int)
20878 Generates the @code{pinsrq} machine instruction in 64bit mode.
20879 @end table
20881 The following built-in functions are changed to generate new SSE4.1
20882 instructions when @option{-msse4.1} is used.
20884 @table @code
20885 @item float __builtin_ia32_vec_ext_v4sf (v4sf, const int)
20886 Generates the @code{extractps} machine instruction.
20887 @item int __builtin_ia32_vec_ext_v4si (v4si, const int)
20888 Generates the @code{pextrd} machine instruction.
20889 @item long long __builtin_ia32_vec_ext_v2di (v2di, const int)
20890 Generates the @code{pextrq} machine instruction in 64bit mode.
20891 @end table
20893 The following built-in functions are available when @option{-msse4.2} is
20894 used.  All of them generate the machine instruction that is part of the
20895 name.
20897 @smallexample
20898 v16qi __builtin_ia32_pcmpestrm128 (v16qi, int, v16qi, int, const int)
20899 int __builtin_ia32_pcmpestri128 (v16qi, int, v16qi, int, const int)
20900 int __builtin_ia32_pcmpestria128 (v16qi, int, v16qi, int, const int)
20901 int __builtin_ia32_pcmpestric128 (v16qi, int, v16qi, int, const int)
20902 int __builtin_ia32_pcmpestrio128 (v16qi, int, v16qi, int, const int)
20903 int __builtin_ia32_pcmpestris128 (v16qi, int, v16qi, int, const int)
20904 int __builtin_ia32_pcmpestriz128 (v16qi, int, v16qi, int, const int)
20905 v16qi __builtin_ia32_pcmpistrm128 (v16qi, v16qi, const int)
20906 int __builtin_ia32_pcmpistri128 (v16qi, v16qi, const int)
20907 int __builtin_ia32_pcmpistria128 (v16qi, v16qi, const int)
20908 int __builtin_ia32_pcmpistric128 (v16qi, v16qi, const int)
20909 int __builtin_ia32_pcmpistrio128 (v16qi, v16qi, const int)
20910 int __builtin_ia32_pcmpistris128 (v16qi, v16qi, const int)
20911 int __builtin_ia32_pcmpistriz128 (v16qi, v16qi, const int)
20912 v2di __builtin_ia32_pcmpgtq (v2di, v2di)
20913 @end smallexample
20915 The following built-in functions are available when @option{-msse4.2} is
20916 used.
20918 @table @code
20919 @item unsigned int __builtin_ia32_crc32qi (unsigned int, unsigned char)
20920 Generates the @code{crc32b} machine instruction.
20921 @item unsigned int __builtin_ia32_crc32hi (unsigned int, unsigned short)
20922 Generates the @code{crc32w} machine instruction.
20923 @item unsigned int __builtin_ia32_crc32si (unsigned int, unsigned int)
20924 Generates the @code{crc32l} machine instruction.
20925 @item unsigned long long __builtin_ia32_crc32di (unsigned long long, unsigned long long)
20926 Generates the @code{crc32q} machine instruction.
20927 @end table
20929 The following built-in functions are changed to generate new SSE4.2
20930 instructions when @option{-msse4.2} is used.
20932 @table @code
20933 @item int __builtin_popcount (unsigned int)
20934 Generates the @code{popcntl} machine instruction.
20935 @item int __builtin_popcountl (unsigned long)
20936 Generates the @code{popcntl} or @code{popcntq} machine instruction,
20937 depending on the size of @code{unsigned long}.
20938 @item int __builtin_popcountll (unsigned long long)
20939 Generates the @code{popcntq} machine instruction.
20940 @end table
20942 The following built-in functions are available when @option{-mavx} is
20943 used. All of them generate the machine instruction that is part of the
20944 name.
20946 @smallexample
20947 v4df __builtin_ia32_addpd256 (v4df,v4df)
20948 v8sf __builtin_ia32_addps256 (v8sf,v8sf)
20949 v4df __builtin_ia32_addsubpd256 (v4df,v4df)
20950 v8sf __builtin_ia32_addsubps256 (v8sf,v8sf)
20951 v4df __builtin_ia32_andnpd256 (v4df,v4df)
20952 v8sf __builtin_ia32_andnps256 (v8sf,v8sf)
20953 v4df __builtin_ia32_andpd256 (v4df,v4df)
20954 v8sf __builtin_ia32_andps256 (v8sf,v8sf)
20955 v4df __builtin_ia32_blendpd256 (v4df,v4df,int)
20956 v8sf __builtin_ia32_blendps256 (v8sf,v8sf,int)
20957 v4df __builtin_ia32_blendvpd256 (v4df,v4df,v4df)
20958 v8sf __builtin_ia32_blendvps256 (v8sf,v8sf,v8sf)
20959 v2df __builtin_ia32_cmppd (v2df,v2df,int)
20960 v4df __builtin_ia32_cmppd256 (v4df,v4df,int)
20961 v4sf __builtin_ia32_cmpps (v4sf,v4sf,int)
20962 v8sf __builtin_ia32_cmpps256 (v8sf,v8sf,int)
20963 v2df __builtin_ia32_cmpsd (v2df,v2df,int)
20964 v4sf __builtin_ia32_cmpss (v4sf,v4sf,int)
20965 v4df __builtin_ia32_cvtdq2pd256 (v4si)
20966 v8sf __builtin_ia32_cvtdq2ps256 (v8si)
20967 v4si __builtin_ia32_cvtpd2dq256 (v4df)
20968 v4sf __builtin_ia32_cvtpd2ps256 (v4df)
20969 v8si __builtin_ia32_cvtps2dq256 (v8sf)
20970 v4df __builtin_ia32_cvtps2pd256 (v4sf)
20971 v4si __builtin_ia32_cvttpd2dq256 (v4df)
20972 v8si __builtin_ia32_cvttps2dq256 (v8sf)
20973 v4df __builtin_ia32_divpd256 (v4df,v4df)
20974 v8sf __builtin_ia32_divps256 (v8sf,v8sf)
20975 v8sf __builtin_ia32_dpps256 (v8sf,v8sf,int)
20976 v4df __builtin_ia32_haddpd256 (v4df,v4df)
20977 v8sf __builtin_ia32_haddps256 (v8sf,v8sf)
20978 v4df __builtin_ia32_hsubpd256 (v4df,v4df)
20979 v8sf __builtin_ia32_hsubps256 (v8sf,v8sf)
20980 v32qi __builtin_ia32_lddqu256 (pcchar)
20981 v32qi __builtin_ia32_loaddqu256 (pcchar)
20982 v4df __builtin_ia32_loadupd256 (pcdouble)
20983 v8sf __builtin_ia32_loadups256 (pcfloat)
20984 v2df __builtin_ia32_maskloadpd (pcv2df,v2df)
20985 v4df __builtin_ia32_maskloadpd256 (pcv4df,v4df)
20986 v4sf __builtin_ia32_maskloadps (pcv4sf,v4sf)
20987 v8sf __builtin_ia32_maskloadps256 (pcv8sf,v8sf)
20988 void __builtin_ia32_maskstorepd (pv2df,v2df,v2df)
20989 void __builtin_ia32_maskstorepd256 (pv4df,v4df,v4df)
20990 void __builtin_ia32_maskstoreps (pv4sf,v4sf,v4sf)
20991 void __builtin_ia32_maskstoreps256 (pv8sf,v8sf,v8sf)
20992 v4df __builtin_ia32_maxpd256 (v4df,v4df)
20993 v8sf __builtin_ia32_maxps256 (v8sf,v8sf)
20994 v4df __builtin_ia32_minpd256 (v4df,v4df)
20995 v8sf __builtin_ia32_minps256 (v8sf,v8sf)
20996 v4df __builtin_ia32_movddup256 (v4df)
20997 int __builtin_ia32_movmskpd256 (v4df)
20998 int __builtin_ia32_movmskps256 (v8sf)
20999 v8sf __builtin_ia32_movshdup256 (v8sf)
21000 v8sf __builtin_ia32_movsldup256 (v8sf)
21001 v4df __builtin_ia32_mulpd256 (v4df,v4df)
21002 v8sf __builtin_ia32_mulps256 (v8sf,v8sf)
21003 v4df __builtin_ia32_orpd256 (v4df,v4df)
21004 v8sf __builtin_ia32_orps256 (v8sf,v8sf)
21005 v2df __builtin_ia32_pd_pd256 (v4df)
21006 v4df __builtin_ia32_pd256_pd (v2df)
21007 v4sf __builtin_ia32_ps_ps256 (v8sf)
21008 v8sf __builtin_ia32_ps256_ps (v4sf)
21009 int __builtin_ia32_ptestc256 (v4di,v4di,ptest)
21010 int __builtin_ia32_ptestnzc256 (v4di,v4di,ptest)
21011 int __builtin_ia32_ptestz256 (v4di,v4di,ptest)
21012 v8sf __builtin_ia32_rcpps256 (v8sf)
21013 v4df __builtin_ia32_roundpd256 (v4df,int)
21014 v8sf __builtin_ia32_roundps256 (v8sf,int)
21015 v8sf __builtin_ia32_rsqrtps_nr256 (v8sf)
21016 v8sf __builtin_ia32_rsqrtps256 (v8sf)
21017 v4df __builtin_ia32_shufpd256 (v4df,v4df,int)
21018 v8sf __builtin_ia32_shufps256 (v8sf,v8sf,int)
21019 v4si __builtin_ia32_si_si256 (v8si)
21020 v8si __builtin_ia32_si256_si (v4si)
21021 v4df __builtin_ia32_sqrtpd256 (v4df)
21022 v8sf __builtin_ia32_sqrtps_nr256 (v8sf)
21023 v8sf __builtin_ia32_sqrtps256 (v8sf)
21024 void __builtin_ia32_storedqu256 (pchar,v32qi)
21025 void __builtin_ia32_storeupd256 (pdouble,v4df)
21026 void __builtin_ia32_storeups256 (pfloat,v8sf)
21027 v4df __builtin_ia32_subpd256 (v4df,v4df)
21028 v8sf __builtin_ia32_subps256 (v8sf,v8sf)
21029 v4df __builtin_ia32_unpckhpd256 (v4df,v4df)
21030 v8sf __builtin_ia32_unpckhps256 (v8sf,v8sf)
21031 v4df __builtin_ia32_unpcklpd256 (v4df,v4df)
21032 v8sf __builtin_ia32_unpcklps256 (v8sf,v8sf)
21033 v4df __builtin_ia32_vbroadcastf128_pd256 (pcv2df)
21034 v8sf __builtin_ia32_vbroadcastf128_ps256 (pcv4sf)
21035 v4df __builtin_ia32_vbroadcastsd256 (pcdouble)
21036 v4sf __builtin_ia32_vbroadcastss (pcfloat)
21037 v8sf __builtin_ia32_vbroadcastss256 (pcfloat)
21038 v2df __builtin_ia32_vextractf128_pd256 (v4df,int)
21039 v4sf __builtin_ia32_vextractf128_ps256 (v8sf,int)
21040 v4si __builtin_ia32_vextractf128_si256 (v8si,int)
21041 v4df __builtin_ia32_vinsertf128_pd256 (v4df,v2df,int)
21042 v8sf __builtin_ia32_vinsertf128_ps256 (v8sf,v4sf,int)
21043 v8si __builtin_ia32_vinsertf128_si256 (v8si,v4si,int)
21044 v4df __builtin_ia32_vperm2f128_pd256 (v4df,v4df,int)
21045 v8sf __builtin_ia32_vperm2f128_ps256 (v8sf,v8sf,int)
21046 v8si __builtin_ia32_vperm2f128_si256 (v8si,v8si,int)
21047 v2df __builtin_ia32_vpermil2pd (v2df,v2df,v2di,int)
21048 v4df __builtin_ia32_vpermil2pd256 (v4df,v4df,v4di,int)
21049 v4sf __builtin_ia32_vpermil2ps (v4sf,v4sf,v4si,int)
21050 v8sf __builtin_ia32_vpermil2ps256 (v8sf,v8sf,v8si,int)
21051 v2df __builtin_ia32_vpermilpd (v2df,int)
21052 v4df __builtin_ia32_vpermilpd256 (v4df,int)
21053 v4sf __builtin_ia32_vpermilps (v4sf,int)
21054 v8sf __builtin_ia32_vpermilps256 (v8sf,int)
21055 v2df __builtin_ia32_vpermilvarpd (v2df,v2di)
21056 v4df __builtin_ia32_vpermilvarpd256 (v4df,v4di)
21057 v4sf __builtin_ia32_vpermilvarps (v4sf,v4si)
21058 v8sf __builtin_ia32_vpermilvarps256 (v8sf,v8si)
21059 int __builtin_ia32_vtestcpd (v2df,v2df,ptest)
21060 int __builtin_ia32_vtestcpd256 (v4df,v4df,ptest)
21061 int __builtin_ia32_vtestcps (v4sf,v4sf,ptest)
21062 int __builtin_ia32_vtestcps256 (v8sf,v8sf,ptest)
21063 int __builtin_ia32_vtestnzcpd (v2df,v2df,ptest)
21064 int __builtin_ia32_vtestnzcpd256 (v4df,v4df,ptest)
21065 int __builtin_ia32_vtestnzcps (v4sf,v4sf,ptest)
21066 int __builtin_ia32_vtestnzcps256 (v8sf,v8sf,ptest)
21067 int __builtin_ia32_vtestzpd (v2df,v2df,ptest)
21068 int __builtin_ia32_vtestzpd256 (v4df,v4df,ptest)
21069 int __builtin_ia32_vtestzps (v4sf,v4sf,ptest)
21070 int __builtin_ia32_vtestzps256 (v8sf,v8sf,ptest)
21071 void __builtin_ia32_vzeroall (void)
21072 void __builtin_ia32_vzeroupper (void)
21073 v4df __builtin_ia32_xorpd256 (v4df,v4df)
21074 v8sf __builtin_ia32_xorps256 (v8sf,v8sf)
21075 @end smallexample
21077 The following built-in functions are available when @option{-mavx2} is
21078 used. All of them generate the machine instruction that is part of the
21079 name.
21081 @smallexample
21082 v32qi __builtin_ia32_mpsadbw256 (v32qi,v32qi,int)
21083 v32qi __builtin_ia32_pabsb256 (v32qi)
21084 v16hi __builtin_ia32_pabsw256 (v16hi)
21085 v8si __builtin_ia32_pabsd256 (v8si)
21086 v16hi __builtin_ia32_packssdw256 (v8si,v8si)
21087 v32qi __builtin_ia32_packsswb256 (v16hi,v16hi)
21088 v16hi __builtin_ia32_packusdw256 (v8si,v8si)
21089 v32qi __builtin_ia32_packuswb256 (v16hi,v16hi)
21090 v32qi __builtin_ia32_paddb256 (v32qi,v32qi)
21091 v16hi __builtin_ia32_paddw256 (v16hi,v16hi)
21092 v8si __builtin_ia32_paddd256 (v8si,v8si)
21093 v4di __builtin_ia32_paddq256 (v4di,v4di)
21094 v32qi __builtin_ia32_paddsb256 (v32qi,v32qi)
21095 v16hi __builtin_ia32_paddsw256 (v16hi,v16hi)
21096 v32qi __builtin_ia32_paddusb256 (v32qi,v32qi)
21097 v16hi __builtin_ia32_paddusw256 (v16hi,v16hi)
21098 v4di __builtin_ia32_palignr256 (v4di,v4di,int)
21099 v4di __builtin_ia32_andsi256 (v4di,v4di)
21100 v4di __builtin_ia32_andnotsi256 (v4di,v4di)
21101 v32qi __builtin_ia32_pavgb256 (v32qi,v32qi)
21102 v16hi __builtin_ia32_pavgw256 (v16hi,v16hi)
21103 v32qi __builtin_ia32_pblendvb256 (v32qi,v32qi,v32qi)
21104 v16hi __builtin_ia32_pblendw256 (v16hi,v16hi,int)
21105 v32qi __builtin_ia32_pcmpeqb256 (v32qi,v32qi)
21106 v16hi __builtin_ia32_pcmpeqw256 (v16hi,v16hi)
21107 v8si __builtin_ia32_pcmpeqd256 (c8si,v8si)
21108 v4di __builtin_ia32_pcmpeqq256 (v4di,v4di)
21109 v32qi __builtin_ia32_pcmpgtb256 (v32qi,v32qi)
21110 v16hi __builtin_ia32_pcmpgtw256 (16hi,v16hi)
21111 v8si __builtin_ia32_pcmpgtd256 (v8si,v8si)
21112 v4di __builtin_ia32_pcmpgtq256 (v4di,v4di)
21113 v16hi __builtin_ia32_phaddw256 (v16hi,v16hi)
21114 v8si __builtin_ia32_phaddd256 (v8si,v8si)
21115 v16hi __builtin_ia32_phaddsw256 (v16hi,v16hi)
21116 v16hi __builtin_ia32_phsubw256 (v16hi,v16hi)
21117 v8si __builtin_ia32_phsubd256 (v8si,v8si)
21118 v16hi __builtin_ia32_phsubsw256 (v16hi,v16hi)
21119 v32qi __builtin_ia32_pmaddubsw256 (v32qi,v32qi)
21120 v16hi __builtin_ia32_pmaddwd256 (v16hi,v16hi)
21121 v32qi __builtin_ia32_pmaxsb256 (v32qi,v32qi)
21122 v16hi __builtin_ia32_pmaxsw256 (v16hi,v16hi)
21123 v8si __builtin_ia32_pmaxsd256 (v8si,v8si)
21124 v32qi __builtin_ia32_pmaxub256 (v32qi,v32qi)
21125 v16hi __builtin_ia32_pmaxuw256 (v16hi,v16hi)
21126 v8si __builtin_ia32_pmaxud256 (v8si,v8si)
21127 v32qi __builtin_ia32_pminsb256 (v32qi,v32qi)
21128 v16hi __builtin_ia32_pminsw256 (v16hi,v16hi)
21129 v8si __builtin_ia32_pminsd256 (v8si,v8si)
21130 v32qi __builtin_ia32_pminub256 (v32qi,v32qi)
21131 v16hi __builtin_ia32_pminuw256 (v16hi,v16hi)
21132 v8si __builtin_ia32_pminud256 (v8si,v8si)
21133 int __builtin_ia32_pmovmskb256 (v32qi)
21134 v16hi __builtin_ia32_pmovsxbw256 (v16qi)
21135 v8si __builtin_ia32_pmovsxbd256 (v16qi)
21136 v4di __builtin_ia32_pmovsxbq256 (v16qi)
21137 v8si __builtin_ia32_pmovsxwd256 (v8hi)
21138 v4di __builtin_ia32_pmovsxwq256 (v8hi)
21139 v4di __builtin_ia32_pmovsxdq256 (v4si)
21140 v16hi __builtin_ia32_pmovzxbw256 (v16qi)
21141 v8si __builtin_ia32_pmovzxbd256 (v16qi)
21142 v4di __builtin_ia32_pmovzxbq256 (v16qi)
21143 v8si __builtin_ia32_pmovzxwd256 (v8hi)
21144 v4di __builtin_ia32_pmovzxwq256 (v8hi)
21145 v4di __builtin_ia32_pmovzxdq256 (v4si)
21146 v4di __builtin_ia32_pmuldq256 (v8si,v8si)
21147 v16hi __builtin_ia32_pmulhrsw256 (v16hi, v16hi)
21148 v16hi __builtin_ia32_pmulhuw256 (v16hi,v16hi)
21149 v16hi __builtin_ia32_pmulhw256 (v16hi,v16hi)
21150 v16hi __builtin_ia32_pmullw256 (v16hi,v16hi)
21151 v8si __builtin_ia32_pmulld256 (v8si,v8si)
21152 v4di __builtin_ia32_pmuludq256 (v8si,v8si)
21153 v4di __builtin_ia32_por256 (v4di,v4di)
21154 v16hi __builtin_ia32_psadbw256 (v32qi,v32qi)
21155 v32qi __builtin_ia32_pshufb256 (v32qi,v32qi)
21156 v8si __builtin_ia32_pshufd256 (v8si,int)
21157 v16hi __builtin_ia32_pshufhw256 (v16hi,int)
21158 v16hi __builtin_ia32_pshuflw256 (v16hi,int)
21159 v32qi __builtin_ia32_psignb256 (v32qi,v32qi)
21160 v16hi __builtin_ia32_psignw256 (v16hi,v16hi)
21161 v8si __builtin_ia32_psignd256 (v8si,v8si)
21162 v4di __builtin_ia32_pslldqi256 (v4di,int)
21163 v16hi __builtin_ia32_psllwi256 (16hi,int)
21164 v16hi __builtin_ia32_psllw256(v16hi,v8hi)
21165 v8si __builtin_ia32_pslldi256 (v8si,int)
21166 v8si __builtin_ia32_pslld256(v8si,v4si)
21167 v4di __builtin_ia32_psllqi256 (v4di,int)
21168 v4di __builtin_ia32_psllq256(v4di,v2di)
21169 v16hi __builtin_ia32_psrawi256 (v16hi,int)
21170 v16hi __builtin_ia32_psraw256 (v16hi,v8hi)
21171 v8si __builtin_ia32_psradi256 (v8si,int)
21172 v8si __builtin_ia32_psrad256 (v8si,v4si)
21173 v4di __builtin_ia32_psrldqi256 (v4di, int)
21174 v16hi __builtin_ia32_psrlwi256 (v16hi,int)
21175 v16hi __builtin_ia32_psrlw256 (v16hi,v8hi)
21176 v8si __builtin_ia32_psrldi256 (v8si,int)
21177 v8si __builtin_ia32_psrld256 (v8si,v4si)
21178 v4di __builtin_ia32_psrlqi256 (v4di,int)
21179 v4di __builtin_ia32_psrlq256(v4di,v2di)
21180 v32qi __builtin_ia32_psubb256 (v32qi,v32qi)
21181 v32hi __builtin_ia32_psubw256 (v16hi,v16hi)
21182 v8si __builtin_ia32_psubd256 (v8si,v8si)
21183 v4di __builtin_ia32_psubq256 (v4di,v4di)
21184 v32qi __builtin_ia32_psubsb256 (v32qi,v32qi)
21185 v16hi __builtin_ia32_psubsw256 (v16hi,v16hi)
21186 v32qi __builtin_ia32_psubusb256 (v32qi,v32qi)
21187 v16hi __builtin_ia32_psubusw256 (v16hi,v16hi)
21188 v32qi __builtin_ia32_punpckhbw256 (v32qi,v32qi)
21189 v16hi __builtin_ia32_punpckhwd256 (v16hi,v16hi)
21190 v8si __builtin_ia32_punpckhdq256 (v8si,v8si)
21191 v4di __builtin_ia32_punpckhqdq256 (v4di,v4di)
21192 v32qi __builtin_ia32_punpcklbw256 (v32qi,v32qi)
21193 v16hi __builtin_ia32_punpcklwd256 (v16hi,v16hi)
21194 v8si __builtin_ia32_punpckldq256 (v8si,v8si)
21195 v4di __builtin_ia32_punpcklqdq256 (v4di,v4di)
21196 v4di __builtin_ia32_pxor256 (v4di,v4di)
21197 v4di __builtin_ia32_movntdqa256 (pv4di)
21198 v4sf __builtin_ia32_vbroadcastss_ps (v4sf)
21199 v8sf __builtin_ia32_vbroadcastss_ps256 (v4sf)
21200 v4df __builtin_ia32_vbroadcastsd_pd256 (v2df)
21201 v4di __builtin_ia32_vbroadcastsi256 (v2di)
21202 v4si __builtin_ia32_pblendd128 (v4si,v4si)
21203 v8si __builtin_ia32_pblendd256 (v8si,v8si)
21204 v32qi __builtin_ia32_pbroadcastb256 (v16qi)
21205 v16hi __builtin_ia32_pbroadcastw256 (v8hi)
21206 v8si __builtin_ia32_pbroadcastd256 (v4si)
21207 v4di __builtin_ia32_pbroadcastq256 (v2di)
21208 v16qi __builtin_ia32_pbroadcastb128 (v16qi)
21209 v8hi __builtin_ia32_pbroadcastw128 (v8hi)
21210 v4si __builtin_ia32_pbroadcastd128 (v4si)
21211 v2di __builtin_ia32_pbroadcastq128 (v2di)
21212 v8si __builtin_ia32_permvarsi256 (v8si,v8si)
21213 v4df __builtin_ia32_permdf256 (v4df,int)
21214 v8sf __builtin_ia32_permvarsf256 (v8sf,v8sf)
21215 v4di __builtin_ia32_permdi256 (v4di,int)
21216 v4di __builtin_ia32_permti256 (v4di,v4di,int)
21217 v4di __builtin_ia32_extract128i256 (v4di,int)
21218 v4di __builtin_ia32_insert128i256 (v4di,v2di,int)
21219 v8si __builtin_ia32_maskloadd256 (pcv8si,v8si)
21220 v4di __builtin_ia32_maskloadq256 (pcv4di,v4di)
21221 v4si __builtin_ia32_maskloadd (pcv4si,v4si)
21222 v2di __builtin_ia32_maskloadq (pcv2di,v2di)
21223 void __builtin_ia32_maskstored256 (pv8si,v8si,v8si)
21224 void __builtin_ia32_maskstoreq256 (pv4di,v4di,v4di)
21225 void __builtin_ia32_maskstored (pv4si,v4si,v4si)
21226 void __builtin_ia32_maskstoreq (pv2di,v2di,v2di)
21227 v8si __builtin_ia32_psllv8si (v8si,v8si)
21228 v4si __builtin_ia32_psllv4si (v4si,v4si)
21229 v4di __builtin_ia32_psllv4di (v4di,v4di)
21230 v2di __builtin_ia32_psllv2di (v2di,v2di)
21231 v8si __builtin_ia32_psrav8si (v8si,v8si)
21232 v4si __builtin_ia32_psrav4si (v4si,v4si)
21233 v8si __builtin_ia32_psrlv8si (v8si,v8si)
21234 v4si __builtin_ia32_psrlv4si (v4si,v4si)
21235 v4di __builtin_ia32_psrlv4di (v4di,v4di)
21236 v2di __builtin_ia32_psrlv2di (v2di,v2di)
21237 v2df __builtin_ia32_gathersiv2df (v2df, pcdouble,v4si,v2df,int)
21238 v4df __builtin_ia32_gathersiv4df (v4df, pcdouble,v4si,v4df,int)
21239 v2df __builtin_ia32_gatherdiv2df (v2df, pcdouble,v2di,v2df,int)
21240 v4df __builtin_ia32_gatherdiv4df (v4df, pcdouble,v4di,v4df,int)
21241 v4sf __builtin_ia32_gathersiv4sf (v4sf, pcfloat,v4si,v4sf,int)
21242 v8sf __builtin_ia32_gathersiv8sf (v8sf, pcfloat,v8si,v8sf,int)
21243 v4sf __builtin_ia32_gatherdiv4sf (v4sf, pcfloat,v2di,v4sf,int)
21244 v4sf __builtin_ia32_gatherdiv4sf256 (v4sf, pcfloat,v4di,v4sf,int)
21245 v2di __builtin_ia32_gathersiv2di (v2di, pcint64,v4si,v2di,int)
21246 v4di __builtin_ia32_gathersiv4di (v4di, pcint64,v4si,v4di,int)
21247 v2di __builtin_ia32_gatherdiv2di (v2di, pcint64,v2di,v2di,int)
21248 v4di __builtin_ia32_gatherdiv4di (v4di, pcint64,v4di,v4di,int)
21249 v4si __builtin_ia32_gathersiv4si (v4si, pcint,v4si,v4si,int)
21250 v8si __builtin_ia32_gathersiv8si (v8si, pcint,v8si,v8si,int)
21251 v4si __builtin_ia32_gatherdiv4si (v4si, pcint,v2di,v4si,int)
21252 v4si __builtin_ia32_gatherdiv4si256 (v4si, pcint,v4di,v4si,int)
21253 @end smallexample
21255 The following built-in functions are available when @option{-maes} is
21256 used.  All of them generate the machine instruction that is part of the
21257 name.
21259 @smallexample
21260 v2di __builtin_ia32_aesenc128 (v2di, v2di)
21261 v2di __builtin_ia32_aesenclast128 (v2di, v2di)
21262 v2di __builtin_ia32_aesdec128 (v2di, v2di)
21263 v2di __builtin_ia32_aesdeclast128 (v2di, v2di)
21264 v2di __builtin_ia32_aeskeygenassist128 (v2di, const int)
21265 v2di __builtin_ia32_aesimc128 (v2di)
21266 @end smallexample
21268 The following built-in function is available when @option{-mpclmul} is
21269 used.
21271 @table @code
21272 @item v2di __builtin_ia32_pclmulqdq128 (v2di, v2di, const int)
21273 Generates the @code{pclmulqdq} machine instruction.
21274 @end table
21276 The following built-in function is available when @option{-mfsgsbase} is
21277 used.  All of them generate the machine instruction that is part of the
21278 name.
21280 @smallexample
21281 unsigned int __builtin_ia32_rdfsbase32 (void)
21282 unsigned long long __builtin_ia32_rdfsbase64 (void)
21283 unsigned int __builtin_ia32_rdgsbase32 (void)
21284 unsigned long long __builtin_ia32_rdgsbase64 (void)
21285 void _writefsbase_u32 (unsigned int)
21286 void _writefsbase_u64 (unsigned long long)
21287 void _writegsbase_u32 (unsigned int)
21288 void _writegsbase_u64 (unsigned long long)
21289 @end smallexample
21291 The following built-in function is available when @option{-mrdrnd} is
21292 used.  All of them generate the machine instruction that is part of the
21293 name.
21295 @smallexample
21296 unsigned int __builtin_ia32_rdrand16_step (unsigned short *)
21297 unsigned int __builtin_ia32_rdrand32_step (unsigned int *)
21298 unsigned int __builtin_ia32_rdrand64_step (unsigned long long *)
21299 @end smallexample
21301 The following built-in functions are available when @option{-msse4a} is used.
21302 All of them generate the machine instruction that is part of the name.
21304 @smallexample
21305 void __builtin_ia32_movntsd (double *, v2df)
21306 void __builtin_ia32_movntss (float *, v4sf)
21307 v2di __builtin_ia32_extrq  (v2di, v16qi)
21308 v2di __builtin_ia32_extrqi (v2di, const unsigned int, const unsigned int)
21309 v2di __builtin_ia32_insertq (v2di, v2di)
21310 v2di __builtin_ia32_insertqi (v2di, v2di, const unsigned int, const unsigned int)
21311 @end smallexample
21313 The following built-in functions are available when @option{-mxop} is used.
21314 @smallexample
21315 v2df __builtin_ia32_vfrczpd (v2df)
21316 v4sf __builtin_ia32_vfrczps (v4sf)
21317 v2df __builtin_ia32_vfrczsd (v2df)
21318 v4sf __builtin_ia32_vfrczss (v4sf)
21319 v4df __builtin_ia32_vfrczpd256 (v4df)
21320 v8sf __builtin_ia32_vfrczps256 (v8sf)
21321 v2di __builtin_ia32_vpcmov (v2di, v2di, v2di)
21322 v2di __builtin_ia32_vpcmov_v2di (v2di, v2di, v2di)
21323 v4si __builtin_ia32_vpcmov_v4si (v4si, v4si, v4si)
21324 v8hi __builtin_ia32_vpcmov_v8hi (v8hi, v8hi, v8hi)
21325 v16qi __builtin_ia32_vpcmov_v16qi (v16qi, v16qi, v16qi)
21326 v2df __builtin_ia32_vpcmov_v2df (v2df, v2df, v2df)
21327 v4sf __builtin_ia32_vpcmov_v4sf (v4sf, v4sf, v4sf)
21328 v4di __builtin_ia32_vpcmov_v4di256 (v4di, v4di, v4di)
21329 v8si __builtin_ia32_vpcmov_v8si256 (v8si, v8si, v8si)
21330 v16hi __builtin_ia32_vpcmov_v16hi256 (v16hi, v16hi, v16hi)
21331 v32qi __builtin_ia32_vpcmov_v32qi256 (v32qi, v32qi, v32qi)
21332 v4df __builtin_ia32_vpcmov_v4df256 (v4df, v4df, v4df)
21333 v8sf __builtin_ia32_vpcmov_v8sf256 (v8sf, v8sf, v8sf)
21334 v16qi __builtin_ia32_vpcomeqb (v16qi, v16qi)
21335 v8hi __builtin_ia32_vpcomeqw (v8hi, v8hi)
21336 v4si __builtin_ia32_vpcomeqd (v4si, v4si)
21337 v2di __builtin_ia32_vpcomeqq (v2di, v2di)
21338 v16qi __builtin_ia32_vpcomequb (v16qi, v16qi)
21339 v4si __builtin_ia32_vpcomequd (v4si, v4si)
21340 v2di __builtin_ia32_vpcomequq (v2di, v2di)
21341 v8hi __builtin_ia32_vpcomequw (v8hi, v8hi)
21342 v8hi __builtin_ia32_vpcomeqw (v8hi, v8hi)
21343 v16qi __builtin_ia32_vpcomfalseb (v16qi, v16qi)
21344 v4si __builtin_ia32_vpcomfalsed (v4si, v4si)
21345 v2di __builtin_ia32_vpcomfalseq (v2di, v2di)
21346 v16qi __builtin_ia32_vpcomfalseub (v16qi, v16qi)
21347 v4si __builtin_ia32_vpcomfalseud (v4si, v4si)
21348 v2di __builtin_ia32_vpcomfalseuq (v2di, v2di)
21349 v8hi __builtin_ia32_vpcomfalseuw (v8hi, v8hi)
21350 v8hi __builtin_ia32_vpcomfalsew (v8hi, v8hi)
21351 v16qi __builtin_ia32_vpcomgeb (v16qi, v16qi)
21352 v4si __builtin_ia32_vpcomged (v4si, v4si)
21353 v2di __builtin_ia32_vpcomgeq (v2di, v2di)
21354 v16qi __builtin_ia32_vpcomgeub (v16qi, v16qi)
21355 v4si __builtin_ia32_vpcomgeud (v4si, v4si)
21356 v2di __builtin_ia32_vpcomgeuq (v2di, v2di)
21357 v8hi __builtin_ia32_vpcomgeuw (v8hi, v8hi)
21358 v8hi __builtin_ia32_vpcomgew (v8hi, v8hi)
21359 v16qi __builtin_ia32_vpcomgtb (v16qi, v16qi)
21360 v4si __builtin_ia32_vpcomgtd (v4si, v4si)
21361 v2di __builtin_ia32_vpcomgtq (v2di, v2di)
21362 v16qi __builtin_ia32_vpcomgtub (v16qi, v16qi)
21363 v4si __builtin_ia32_vpcomgtud (v4si, v4si)
21364 v2di __builtin_ia32_vpcomgtuq (v2di, v2di)
21365 v8hi __builtin_ia32_vpcomgtuw (v8hi, v8hi)
21366 v8hi __builtin_ia32_vpcomgtw (v8hi, v8hi)
21367 v16qi __builtin_ia32_vpcomleb (v16qi, v16qi)
21368 v4si __builtin_ia32_vpcomled (v4si, v4si)
21369 v2di __builtin_ia32_vpcomleq (v2di, v2di)
21370 v16qi __builtin_ia32_vpcomleub (v16qi, v16qi)
21371 v4si __builtin_ia32_vpcomleud (v4si, v4si)
21372 v2di __builtin_ia32_vpcomleuq (v2di, v2di)
21373 v8hi __builtin_ia32_vpcomleuw (v8hi, v8hi)
21374 v8hi __builtin_ia32_vpcomlew (v8hi, v8hi)
21375 v16qi __builtin_ia32_vpcomltb (v16qi, v16qi)
21376 v4si __builtin_ia32_vpcomltd (v4si, v4si)
21377 v2di __builtin_ia32_vpcomltq (v2di, v2di)
21378 v16qi __builtin_ia32_vpcomltub (v16qi, v16qi)
21379 v4si __builtin_ia32_vpcomltud (v4si, v4si)
21380 v2di __builtin_ia32_vpcomltuq (v2di, v2di)
21381 v8hi __builtin_ia32_vpcomltuw (v8hi, v8hi)
21382 v8hi __builtin_ia32_vpcomltw (v8hi, v8hi)
21383 v16qi __builtin_ia32_vpcomneb (v16qi, v16qi)
21384 v4si __builtin_ia32_vpcomned (v4si, v4si)
21385 v2di __builtin_ia32_vpcomneq (v2di, v2di)
21386 v16qi __builtin_ia32_vpcomneub (v16qi, v16qi)
21387 v4si __builtin_ia32_vpcomneud (v4si, v4si)
21388 v2di __builtin_ia32_vpcomneuq (v2di, v2di)
21389 v8hi __builtin_ia32_vpcomneuw (v8hi, v8hi)
21390 v8hi __builtin_ia32_vpcomnew (v8hi, v8hi)
21391 v16qi __builtin_ia32_vpcomtrueb (v16qi, v16qi)
21392 v4si __builtin_ia32_vpcomtrued (v4si, v4si)
21393 v2di __builtin_ia32_vpcomtrueq (v2di, v2di)
21394 v16qi __builtin_ia32_vpcomtrueub (v16qi, v16qi)
21395 v4si __builtin_ia32_vpcomtrueud (v4si, v4si)
21396 v2di __builtin_ia32_vpcomtrueuq (v2di, v2di)
21397 v8hi __builtin_ia32_vpcomtrueuw (v8hi, v8hi)
21398 v8hi __builtin_ia32_vpcomtruew (v8hi, v8hi)
21399 v4si __builtin_ia32_vphaddbd (v16qi)
21400 v2di __builtin_ia32_vphaddbq (v16qi)
21401 v8hi __builtin_ia32_vphaddbw (v16qi)
21402 v2di __builtin_ia32_vphadddq (v4si)
21403 v4si __builtin_ia32_vphaddubd (v16qi)
21404 v2di __builtin_ia32_vphaddubq (v16qi)
21405 v8hi __builtin_ia32_vphaddubw (v16qi)
21406 v2di __builtin_ia32_vphaddudq (v4si)
21407 v4si __builtin_ia32_vphadduwd (v8hi)
21408 v2di __builtin_ia32_vphadduwq (v8hi)
21409 v4si __builtin_ia32_vphaddwd (v8hi)
21410 v2di __builtin_ia32_vphaddwq (v8hi)
21411 v8hi __builtin_ia32_vphsubbw (v16qi)
21412 v2di __builtin_ia32_vphsubdq (v4si)
21413 v4si __builtin_ia32_vphsubwd (v8hi)
21414 v4si __builtin_ia32_vpmacsdd (v4si, v4si, v4si)
21415 v2di __builtin_ia32_vpmacsdqh (v4si, v4si, v2di)
21416 v2di __builtin_ia32_vpmacsdql (v4si, v4si, v2di)
21417 v4si __builtin_ia32_vpmacssdd (v4si, v4si, v4si)
21418 v2di __builtin_ia32_vpmacssdqh (v4si, v4si, v2di)
21419 v2di __builtin_ia32_vpmacssdql (v4si, v4si, v2di)
21420 v4si __builtin_ia32_vpmacsswd (v8hi, v8hi, v4si)
21421 v8hi __builtin_ia32_vpmacssww (v8hi, v8hi, v8hi)
21422 v4si __builtin_ia32_vpmacswd (v8hi, v8hi, v4si)
21423 v8hi __builtin_ia32_vpmacsww (v8hi, v8hi, v8hi)
21424 v4si __builtin_ia32_vpmadcsswd (v8hi, v8hi, v4si)
21425 v4si __builtin_ia32_vpmadcswd (v8hi, v8hi, v4si)
21426 v16qi __builtin_ia32_vpperm (v16qi, v16qi, v16qi)
21427 v16qi __builtin_ia32_vprotb (v16qi, v16qi)
21428 v4si __builtin_ia32_vprotd (v4si, v4si)
21429 v2di __builtin_ia32_vprotq (v2di, v2di)
21430 v8hi __builtin_ia32_vprotw (v8hi, v8hi)
21431 v16qi __builtin_ia32_vpshab (v16qi, v16qi)
21432 v4si __builtin_ia32_vpshad (v4si, v4si)
21433 v2di __builtin_ia32_vpshaq (v2di, v2di)
21434 v8hi __builtin_ia32_vpshaw (v8hi, v8hi)
21435 v16qi __builtin_ia32_vpshlb (v16qi, v16qi)
21436 v4si __builtin_ia32_vpshld (v4si, v4si)
21437 v2di __builtin_ia32_vpshlq (v2di, v2di)
21438 v8hi __builtin_ia32_vpshlw (v8hi, v8hi)
21439 @end smallexample
21441 The following built-in functions are available when @option{-mfma4} is used.
21442 All of them generate the machine instruction that is part of the name.
21444 @smallexample
21445 v2df __builtin_ia32_vfmaddpd (v2df, v2df, v2df)
21446 v4sf __builtin_ia32_vfmaddps (v4sf, v4sf, v4sf)
21447 v2df __builtin_ia32_vfmaddsd (v2df, v2df, v2df)
21448 v4sf __builtin_ia32_vfmaddss (v4sf, v4sf, v4sf)
21449 v2df __builtin_ia32_vfmsubpd (v2df, v2df, v2df)
21450 v4sf __builtin_ia32_vfmsubps (v4sf, v4sf, v4sf)
21451 v2df __builtin_ia32_vfmsubsd (v2df, v2df, v2df)
21452 v4sf __builtin_ia32_vfmsubss (v4sf, v4sf, v4sf)
21453 v2df __builtin_ia32_vfnmaddpd (v2df, v2df, v2df)
21454 v4sf __builtin_ia32_vfnmaddps (v4sf, v4sf, v4sf)
21455 v2df __builtin_ia32_vfnmaddsd (v2df, v2df, v2df)
21456 v4sf __builtin_ia32_vfnmaddss (v4sf, v4sf, v4sf)
21457 v2df __builtin_ia32_vfnmsubpd (v2df, v2df, v2df)
21458 v4sf __builtin_ia32_vfnmsubps (v4sf, v4sf, v4sf)
21459 v2df __builtin_ia32_vfnmsubsd (v2df, v2df, v2df)
21460 v4sf __builtin_ia32_vfnmsubss (v4sf, v4sf, v4sf)
21461 v2df __builtin_ia32_vfmaddsubpd  (v2df, v2df, v2df)
21462 v4sf __builtin_ia32_vfmaddsubps  (v4sf, v4sf, v4sf)
21463 v2df __builtin_ia32_vfmsubaddpd  (v2df, v2df, v2df)
21464 v4sf __builtin_ia32_vfmsubaddps  (v4sf, v4sf, v4sf)
21465 v4df __builtin_ia32_vfmaddpd256 (v4df, v4df, v4df)
21466 v8sf __builtin_ia32_vfmaddps256 (v8sf, v8sf, v8sf)
21467 v4df __builtin_ia32_vfmsubpd256 (v4df, v4df, v4df)
21468 v8sf __builtin_ia32_vfmsubps256 (v8sf, v8sf, v8sf)
21469 v4df __builtin_ia32_vfnmaddpd256 (v4df, v4df, v4df)
21470 v8sf __builtin_ia32_vfnmaddps256 (v8sf, v8sf, v8sf)
21471 v4df __builtin_ia32_vfnmsubpd256 (v4df, v4df, v4df)
21472 v8sf __builtin_ia32_vfnmsubps256 (v8sf, v8sf, v8sf)
21473 v4df __builtin_ia32_vfmaddsubpd256 (v4df, v4df, v4df)
21474 v8sf __builtin_ia32_vfmaddsubps256 (v8sf, v8sf, v8sf)
21475 v4df __builtin_ia32_vfmsubaddpd256 (v4df, v4df, v4df)
21476 v8sf __builtin_ia32_vfmsubaddps256 (v8sf, v8sf, v8sf)
21478 @end smallexample
21480 The following built-in functions are available when @option{-mlwp} is used.
21482 @smallexample
21483 void __builtin_ia32_llwpcb16 (void *);
21484 void __builtin_ia32_llwpcb32 (void *);
21485 void __builtin_ia32_llwpcb64 (void *);
21486 void * __builtin_ia32_llwpcb16 (void);
21487 void * __builtin_ia32_llwpcb32 (void);
21488 void * __builtin_ia32_llwpcb64 (void);
21489 void __builtin_ia32_lwpval16 (unsigned short, unsigned int, unsigned short)
21490 void __builtin_ia32_lwpval32 (unsigned int, unsigned int, unsigned int)
21491 void __builtin_ia32_lwpval64 (unsigned __int64, unsigned int, unsigned int)
21492 unsigned char __builtin_ia32_lwpins16 (unsigned short, unsigned int, unsigned short)
21493 unsigned char __builtin_ia32_lwpins32 (unsigned int, unsigned int, unsigned int)
21494 unsigned char __builtin_ia32_lwpins64 (unsigned __int64, unsigned int, unsigned int)
21495 @end smallexample
21497 The following built-in functions are available when @option{-mbmi} is used.
21498 All of them generate the machine instruction that is part of the name.
21499 @smallexample
21500 unsigned int __builtin_ia32_bextr_u32(unsigned int, unsigned int);
21501 unsigned long long __builtin_ia32_bextr_u64 (unsigned long long, unsigned long long);
21502 @end smallexample
21504 The following built-in functions are available when @option{-mbmi2} is used.
21505 All of them generate the machine instruction that is part of the name.
21506 @smallexample
21507 unsigned int _bzhi_u32 (unsigned int, unsigned int)
21508 unsigned int _pdep_u32 (unsigned int, unsigned int)
21509 unsigned int _pext_u32 (unsigned int, unsigned int)
21510 unsigned long long _bzhi_u64 (unsigned long long, unsigned long long)
21511 unsigned long long _pdep_u64 (unsigned long long, unsigned long long)
21512 unsigned long long _pext_u64 (unsigned long long, unsigned long long)
21513 @end smallexample
21515 The following built-in functions are available when @option{-mlzcnt} is used.
21516 All of them generate the machine instruction that is part of the name.
21517 @smallexample
21518 unsigned short __builtin_ia32_lzcnt_u16(unsigned short);
21519 unsigned int __builtin_ia32_lzcnt_u32(unsigned int);
21520 unsigned long long __builtin_ia32_lzcnt_u64 (unsigned long long);
21521 @end smallexample
21523 The following built-in functions are available when @option{-mfxsr} is used.
21524 All of them generate the machine instruction that is part of the name.
21525 @smallexample
21526 void __builtin_ia32_fxsave (void *)
21527 void __builtin_ia32_fxrstor (void *)
21528 void __builtin_ia32_fxsave64 (void *)
21529 void __builtin_ia32_fxrstor64 (void *)
21530 @end smallexample
21532 The following built-in functions are available when @option{-mxsave} is used.
21533 All of them generate the machine instruction that is part of the name.
21534 @smallexample
21535 void __builtin_ia32_xsave (void *, long long)
21536 void __builtin_ia32_xrstor (void *, long long)
21537 void __builtin_ia32_xsave64 (void *, long long)
21538 void __builtin_ia32_xrstor64 (void *, long long)
21539 @end smallexample
21541 The following built-in functions are available when @option{-mxsaveopt} is used.
21542 All of them generate the machine instruction that is part of the name.
21543 @smallexample
21544 void __builtin_ia32_xsaveopt (void *, long long)
21545 void __builtin_ia32_xsaveopt64 (void *, long long)
21546 @end smallexample
21548 The following built-in functions are available when @option{-mtbm} is used.
21549 Both of them generate the immediate form of the bextr machine instruction.
21550 @smallexample
21551 unsigned int __builtin_ia32_bextri_u32 (unsigned int,
21552                                         const unsigned int);
21553 unsigned long long __builtin_ia32_bextri_u64 (unsigned long long,
21554                                               const unsigned long long);
21555 @end smallexample
21558 The following built-in functions are available when @option{-m3dnow} is used.
21559 All of them generate the machine instruction that is part of the name.
21561 @smallexample
21562 void __builtin_ia32_femms (void)
21563 v8qi __builtin_ia32_pavgusb (v8qi, v8qi)
21564 v2si __builtin_ia32_pf2id (v2sf)
21565 v2sf __builtin_ia32_pfacc (v2sf, v2sf)
21566 v2sf __builtin_ia32_pfadd (v2sf, v2sf)
21567 v2si __builtin_ia32_pfcmpeq (v2sf, v2sf)
21568 v2si __builtin_ia32_pfcmpge (v2sf, v2sf)
21569 v2si __builtin_ia32_pfcmpgt (v2sf, v2sf)
21570 v2sf __builtin_ia32_pfmax (v2sf, v2sf)
21571 v2sf __builtin_ia32_pfmin (v2sf, v2sf)
21572 v2sf __builtin_ia32_pfmul (v2sf, v2sf)
21573 v2sf __builtin_ia32_pfrcp (v2sf)
21574 v2sf __builtin_ia32_pfrcpit1 (v2sf, v2sf)
21575 v2sf __builtin_ia32_pfrcpit2 (v2sf, v2sf)
21576 v2sf __builtin_ia32_pfrsqrt (v2sf)
21577 v2sf __builtin_ia32_pfsub (v2sf, v2sf)
21578 v2sf __builtin_ia32_pfsubr (v2sf, v2sf)
21579 v2sf __builtin_ia32_pi2fd (v2si)
21580 v4hi __builtin_ia32_pmulhrw (v4hi, v4hi)
21581 @end smallexample
21583 The following built-in functions are available when @option{-m3dnowa} is used.
21584 All of them generate the machine instruction that is part of the name.
21586 @smallexample
21587 v2si __builtin_ia32_pf2iw (v2sf)
21588 v2sf __builtin_ia32_pfnacc (v2sf, v2sf)
21589 v2sf __builtin_ia32_pfpnacc (v2sf, v2sf)
21590 v2sf __builtin_ia32_pi2fw (v2si)
21591 v2sf __builtin_ia32_pswapdsf (v2sf)
21592 v2si __builtin_ia32_pswapdsi (v2si)
21593 @end smallexample
21595 The following built-in functions are available when @option{-mrtm} is used
21596 They are used for restricted transactional memory. These are the internal
21597 low level functions. Normally the functions in 
21598 @ref{x86 transactional memory intrinsics} should be used instead.
21600 @smallexample
21601 int __builtin_ia32_xbegin ()
21602 void __builtin_ia32_xend ()
21603 void __builtin_ia32_xabort (status)
21604 int __builtin_ia32_xtest ()
21605 @end smallexample
21607 The following built-in functions are available when @option{-mmwaitx} is used.
21608 All of them generate the machine instruction that is part of the name.
21609 @smallexample
21610 void __builtin_ia32_monitorx (void *, unsigned int, unsigned int)
21611 void __builtin_ia32_mwaitx (unsigned int, unsigned int, unsigned int)
21612 @end smallexample
21614 The following built-in functions are available when @option{-mclzero} is used.
21615 All of them generate the machine instruction that is part of the name.
21616 @smallexample
21617 void __builtin_i32_clzero (void *)
21618 @end smallexample
21620 The following built-in functions are available when @option{-mpku} is used.
21621 They generate reads and writes to PKRU.
21622 @smallexample
21623 void __builtin_ia32_wrpkru (unsigned int)
21624 unsigned int __builtin_ia32_rdpkru ()
21625 @end smallexample
21627 The following built-in functions are available when @option{-mcet} or
21628 @option{-mshstk} option is used.  They support shadow stack
21629 machine instructions from Intel Control-flow Enforcement Technology (CET).
21630 Each built-in function generates the  machine instruction that is part
21631 of the function's name.  These are the internal low-level functions.
21632 Normally the functions in @ref{x86 control-flow protection intrinsics}
21633 should be used instead.
21635 @smallexample
21636 unsigned int __builtin_ia32_rdsspd (void)
21637 unsigned long long __builtin_ia32_rdsspq (void)
21638 void __builtin_ia32_incsspd (unsigned int)
21639 void __builtin_ia32_incsspq (unsigned long long)
21640 void __builtin_ia32_saveprevssp(void);
21641 void __builtin_ia32_rstorssp(void *);
21642 void __builtin_ia32_wrssd(unsigned int, void *);
21643 void __builtin_ia32_wrssq(unsigned long long, void *);
21644 void __builtin_ia32_wrussd(unsigned int, void *);
21645 void __builtin_ia32_wrussq(unsigned long long, void *);
21646 void __builtin_ia32_setssbsy(void);
21647 void __builtin_ia32_clrssbsy(void *);
21648 @end smallexample
21650 @node x86 transactional memory intrinsics
21651 @subsection x86 Transactional Memory Intrinsics
21653 These hardware transactional memory intrinsics for x86 allow you to use
21654 memory transactions with RTM (Restricted Transactional Memory).
21655 This support is enabled with the @option{-mrtm} option.
21656 For using HLE (Hardware Lock Elision) see 
21657 @ref{x86 specific memory model extensions for transactional memory} instead.
21659 A memory transaction commits all changes to memory in an atomic way,
21660 as visible to other threads. If the transaction fails it is rolled back
21661 and all side effects discarded.
21663 Generally there is no guarantee that a memory transaction ever succeeds
21664 and suitable fallback code always needs to be supplied.
21666 @deftypefn {RTM Function} {unsigned} _xbegin ()
21667 Start a RTM (Restricted Transactional Memory) transaction. 
21668 Returns @code{_XBEGIN_STARTED} when the transaction
21669 started successfully (note this is not 0, so the constant has to be 
21670 explicitly tested).  
21672 If the transaction aborts, all side effects
21673 are undone and an abort code encoded as a bit mask is returned.
21674 The following macros are defined:
21676 @table @code
21677 @item _XABORT_EXPLICIT
21678 Transaction was explicitly aborted with @code{_xabort}.  The parameter passed
21679 to @code{_xabort} is available with @code{_XABORT_CODE(status)}.
21680 @item _XABORT_RETRY
21681 Transaction retry is possible.
21682 @item _XABORT_CONFLICT
21683 Transaction abort due to a memory conflict with another thread.
21684 @item _XABORT_CAPACITY
21685 Transaction abort due to the transaction using too much memory.
21686 @item _XABORT_DEBUG
21687 Transaction abort due to a debug trap.
21688 @item _XABORT_NESTED
21689 Transaction abort in an inner nested transaction.
21690 @end table
21692 There is no guarantee
21693 any transaction ever succeeds, so there always needs to be a valid
21694 fallback path.
21695 @end deftypefn
21697 @deftypefn {RTM Function} {void} _xend ()
21698 Commit the current transaction. When no transaction is active this faults.
21699 All memory side effects of the transaction become visible
21700 to other threads in an atomic manner.
21701 @end deftypefn
21703 @deftypefn {RTM Function} {int} _xtest ()
21704 Return a nonzero value if a transaction is currently active, otherwise 0.
21705 @end deftypefn
21707 @deftypefn {RTM Function} {void} _xabort (status)
21708 Abort the current transaction. When no transaction is active this is a no-op.
21709 The @var{status} is an 8-bit constant; its value is encoded in the return 
21710 value from @code{_xbegin}.
21711 @end deftypefn
21713 Here is an example showing handling for @code{_XABORT_RETRY}
21714 and a fallback path for other failures:
21716 @smallexample
21717 #include <immintrin.h>
21719 int n_tries, max_tries;
21720 unsigned status = _XABORT_EXPLICIT;
21723 for (n_tries = 0; n_tries < max_tries; n_tries++) 
21724   @{
21725     status = _xbegin ();
21726     if (status == _XBEGIN_STARTED || !(status & _XABORT_RETRY))
21727       break;
21728   @}
21729 if (status == _XBEGIN_STARTED) 
21730   @{
21731     ... transaction code...
21732     _xend ();
21733   @} 
21734 else 
21735   @{
21736     ... non-transactional fallback path...
21737   @}
21738 @end smallexample
21740 @noindent
21741 Note that, in most cases, the transactional and non-transactional code
21742 must synchronize together to ensure consistency.
21744 @node x86 control-flow protection intrinsics
21745 @subsection x86 Control-Flow Protection Intrinsics
21747 @deftypefn {CET Function} {ret_type} _get_ssp (void)
21748 Get the current value of shadow stack pointer if shadow stack support
21749 from Intel CET is enabled in the hardware or @code{0} otherwise.
21750 The @code{ret_type} is @code{unsigned long long} for 64-bit targets 
21751 and @code{unsigned int} for 32-bit targets.
21752 @end deftypefn
21754 @deftypefn {CET Function} void _inc_ssp (unsigned int)
21755 Increment the current shadow stack pointer by the size specified by the
21756 function argument.  The argument is masked to a byte value for security
21757 reasons, so to increment by more than 255 bytes you must call the function
21758 multiple times.
21759 @end deftypefn
21761 The shadow stack unwind code looks like:
21763 @smallexample
21764 #include <immintrin.h>
21766 /* Unwind the shadow stack for EH.  */
21767 #define _Unwind_Frames_Extra(x)       \
21768   do                                  \
21769     @{                                \
21770       _Unwind_Word ssp = _get_ssp (); \
21771       if (ssp != 0)                   \
21772         @{                            \
21773           _Unwind_Word tmp = (x);     \
21774           while (tmp > 255)           \
21775             @{                        \
21776               _inc_ssp (tmp);         \
21777               tmp -= 255;             \
21778             @}                        \
21779           _inc_ssp (tmp);             \
21780         @}                            \
21781     @}                                \
21782     while (0)
21783 @end smallexample
21785 @noindent
21786 This code runs unconditionally on all 64-bit processors.  For 32-bit
21787 processors the code runs on those that support multi-byte NOP instructions.
21789 @node Target Format Checks
21790 @section Format Checks Specific to Particular Target Machines
21792 For some target machines, GCC supports additional options to the
21793 format attribute
21794 (@pxref{Function Attributes,,Declaring Attributes of Functions}).
21796 @menu
21797 * Solaris Format Checks::
21798 * Darwin Format Checks::
21799 @end menu
21801 @node Solaris Format Checks
21802 @subsection Solaris Format Checks
21804 Solaris targets support the @code{cmn_err} (or @code{__cmn_err__}) format
21805 check.  @code{cmn_err} accepts a subset of the standard @code{printf}
21806 conversions, and the two-argument @code{%b} conversion for displaying
21807 bit-fields.  See the Solaris man page for @code{cmn_err} for more information.
21809 @node Darwin Format Checks
21810 @subsection Darwin Format Checks
21812 Darwin targets support the @code{CFString} (or @code{__CFString__}) in the format
21813 attribute context.  Declarations made with such attribution are parsed for correct syntax
21814 and format argument types.  However, parsing of the format string itself is currently undefined
21815 and is not carried out by this version of the compiler.
21817 Additionally, @code{CFStringRefs} (defined by the @code{CoreFoundation} headers) may
21818 also be used as format arguments.  Note that the relevant headers are only likely to be
21819 available on Darwin (OSX) installations.  On such installations, the XCode and system
21820 documentation provide descriptions of @code{CFString}, @code{CFStringRefs} and
21821 associated functions.
21823 @node Pragmas
21824 @section Pragmas Accepted by GCC
21825 @cindex pragmas
21826 @cindex @code{#pragma}
21828 GCC supports several types of pragmas, primarily in order to compile
21829 code originally written for other compilers.  Note that in general
21830 we do not recommend the use of pragmas; @xref{Function Attributes},
21831 for further explanation.
21833 @menu
21834 * AArch64 Pragmas::
21835 * ARM Pragmas::
21836 * M32C Pragmas::
21837 * MeP Pragmas::
21838 * RS/6000 and PowerPC Pragmas::
21839 * S/390 Pragmas::
21840 * Darwin Pragmas::
21841 * Solaris Pragmas::
21842 * Symbol-Renaming Pragmas::
21843 * Structure-Layout Pragmas::
21844 * Weak Pragmas::
21845 * Diagnostic Pragmas::
21846 * Visibility Pragmas::
21847 * Push/Pop Macro Pragmas::
21848 * Function Specific Option Pragmas::
21849 * Loop-Specific Pragmas::
21850 @end menu
21852 @node AArch64 Pragmas
21853 @subsection AArch64 Pragmas
21855 The pragmas defined by the AArch64 target correspond to the AArch64
21856 target function attributes.  They can be specified as below:
21857 @smallexample
21858 #pragma GCC target("string")
21859 @end smallexample
21861 where @code{@var{string}} can be any string accepted as an AArch64 target
21862 attribute.  @xref{AArch64 Function Attributes}, for more details
21863 on the permissible values of @code{string}.
21865 @node ARM Pragmas
21866 @subsection ARM Pragmas
21868 The ARM target defines pragmas for controlling the default addition of
21869 @code{long_call} and @code{short_call} attributes to functions.
21870 @xref{Function Attributes}, for information about the effects of these
21871 attributes.
21873 @table @code
21874 @item long_calls
21875 @cindex pragma, long_calls
21876 Set all subsequent functions to have the @code{long_call} attribute.
21878 @item no_long_calls
21879 @cindex pragma, no_long_calls
21880 Set all subsequent functions to have the @code{short_call} attribute.
21882 @item long_calls_off
21883 @cindex pragma, long_calls_off
21884 Do not affect the @code{long_call} or @code{short_call} attributes of
21885 subsequent functions.
21886 @end table
21888 @node M32C Pragmas
21889 @subsection M32C Pragmas
21891 @table @code
21892 @item GCC memregs @var{number}
21893 @cindex pragma, memregs
21894 Overrides the command-line option @code{-memregs=} for the current
21895 file.  Use with care!  This pragma must be before any function in the
21896 file, and mixing different memregs values in different objects may
21897 make them incompatible.  This pragma is useful when a
21898 performance-critical function uses a memreg for temporary values,
21899 as it may allow you to reduce the number of memregs used.
21901 @item ADDRESS @var{name} @var{address}
21902 @cindex pragma, address
21903 For any declared symbols matching @var{name}, this does three things
21904 to that symbol: it forces the symbol to be located at the given
21905 address (a number), it forces the symbol to be volatile, and it
21906 changes the symbol's scope to be static.  This pragma exists for
21907 compatibility with other compilers, but note that the common
21908 @code{1234H} numeric syntax is not supported (use @code{0x1234}
21909 instead).  Example:
21911 @smallexample
21912 #pragma ADDRESS port3 0x103
21913 char port3;
21914 @end smallexample
21916 @end table
21918 @node MeP Pragmas
21919 @subsection MeP Pragmas
21921 @table @code
21923 @item custom io_volatile (on|off)
21924 @cindex pragma, custom io_volatile
21925 Overrides the command-line option @code{-mio-volatile} for the current
21926 file.  Note that for compatibility with future GCC releases, this
21927 option should only be used once before any @code{io} variables in each
21928 file.
21930 @item GCC coprocessor available @var{registers}
21931 @cindex pragma, coprocessor available
21932 Specifies which coprocessor registers are available to the register
21933 allocator.  @var{registers} may be a single register, register range
21934 separated by ellipses, or comma-separated list of those.  Example:
21936 @smallexample
21937 #pragma GCC coprocessor available $c0...$c10, $c28
21938 @end smallexample
21940 @item GCC coprocessor call_saved @var{registers}
21941 @cindex pragma, coprocessor call_saved
21942 Specifies which coprocessor registers are to be saved and restored by
21943 any function using them.  @var{registers} may be a single register,
21944 register range separated by ellipses, or comma-separated list of
21945 those.  Example:
21947 @smallexample
21948 #pragma GCC coprocessor call_saved $c4...$c6, $c31
21949 @end smallexample
21951 @item GCC coprocessor subclass '(A|B|C|D)' = @var{registers}
21952 @cindex pragma, coprocessor subclass
21953 Creates and defines a register class.  These register classes can be
21954 used by inline @code{asm} constructs.  @var{registers} may be a single
21955 register, register range separated by ellipses, or comma-separated
21956 list of those.  Example:
21958 @smallexample
21959 #pragma GCC coprocessor subclass 'B' = $c2, $c4, $c6
21961 asm ("cpfoo %0" : "=B" (x));
21962 @end smallexample
21964 @item GCC disinterrupt @var{name} , @var{name} @dots{}
21965 @cindex pragma, disinterrupt
21966 For the named functions, the compiler adds code to disable interrupts
21967 for the duration of those functions.  If any functions so named 
21968 are not encountered in the source, a warning is emitted that the pragma is
21969 not used.  Examples:
21971 @smallexample
21972 #pragma disinterrupt foo
21973 #pragma disinterrupt bar, grill
21974 int foo () @{ @dots{} @}
21975 @end smallexample
21977 @item GCC call @var{name} , @var{name} @dots{}
21978 @cindex pragma, call
21979 For the named functions, the compiler always uses a register-indirect
21980 call model when calling the named functions.  Examples:
21982 @smallexample
21983 extern int foo ();
21984 #pragma call foo
21985 @end smallexample
21987 @end table
21989 @node RS/6000 and PowerPC Pragmas
21990 @subsection RS/6000 and PowerPC Pragmas
21992 The RS/6000 and PowerPC targets define one pragma for controlling
21993 whether or not the @code{longcall} attribute is added to function
21994 declarations by default.  This pragma overrides the @option{-mlongcall}
21995 option, but not the @code{longcall} and @code{shortcall} attributes.
21996 @xref{RS/6000 and PowerPC Options}, for more information about when long
21997 calls are and are not necessary.
21999 @table @code
22000 @item longcall (1)
22001 @cindex pragma, longcall
22002 Apply the @code{longcall} attribute to all subsequent function
22003 declarations.
22005 @item longcall (0)
22006 Do not apply the @code{longcall} attribute to subsequent function
22007 declarations.
22008 @end table
22010 @c Describe h8300 pragmas here.
22011 @c Describe sh pragmas here.
22012 @c Describe v850 pragmas here.
22014 @node S/390 Pragmas
22015 @subsection S/390 Pragmas
22017 The pragmas defined by the S/390 target correspond to the S/390
22018 target function attributes and some the additional options:
22020 @table @samp
22021 @item zvector
22022 @itemx no-zvector
22023 @end table
22025 Note that options of the pragma, unlike options of the target
22026 attribute, do change the value of preprocessor macros like
22027 @code{__VEC__}.  They can be specified as below:
22029 @smallexample
22030 #pragma GCC target("string[,string]...")
22031 #pragma GCC target("string"[,"string"]...)
22032 @end smallexample
22034 @node Darwin Pragmas
22035 @subsection Darwin Pragmas
22037 The following pragmas are available for all architectures running the
22038 Darwin operating system.  These are useful for compatibility with other
22039 Mac OS compilers.
22041 @table @code
22042 @item mark @var{tokens}@dots{}
22043 @cindex pragma, mark
22044 This pragma is accepted, but has no effect.
22046 @item options align=@var{alignment}
22047 @cindex pragma, options align
22048 This pragma sets the alignment of fields in structures.  The values of
22049 @var{alignment} may be @code{mac68k}, to emulate m68k alignment, or
22050 @code{power}, to emulate PowerPC alignment.  Uses of this pragma nest
22051 properly; to restore the previous setting, use @code{reset} for the
22052 @var{alignment}.
22054 @item segment @var{tokens}@dots{}
22055 @cindex pragma, segment
22056 This pragma is accepted, but has no effect.
22058 @item unused (@var{var} [, @var{var}]@dots{})
22059 @cindex pragma, unused
22060 This pragma declares variables to be possibly unused.  GCC does not
22061 produce warnings for the listed variables.  The effect is similar to
22062 that of the @code{unused} attribute, except that this pragma may appear
22063 anywhere within the variables' scopes.
22064 @end table
22066 @node Solaris Pragmas
22067 @subsection Solaris Pragmas
22069 The Solaris target supports @code{#pragma redefine_extname}
22070 (@pxref{Symbol-Renaming Pragmas}).  It also supports additional
22071 @code{#pragma} directives for compatibility with the system compiler.
22073 @table @code
22074 @item align @var{alignment} (@var{variable} [, @var{variable}]...)
22075 @cindex pragma, align
22077 Increase the minimum alignment of each @var{variable} to @var{alignment}.
22078 This is the same as GCC's @code{aligned} attribute @pxref{Variable
22079 Attributes}).  Macro expansion occurs on the arguments to this pragma
22080 when compiling C and Objective-C@.  It does not currently occur when
22081 compiling C++, but this is a bug which may be fixed in a future
22082 release.
22084 @item fini (@var{function} [, @var{function}]...)
22085 @cindex pragma, fini
22087 This pragma causes each listed @var{function} to be called after
22088 main, or during shared module unloading, by adding a call to the
22089 @code{.fini} section.
22091 @item init (@var{function} [, @var{function}]...)
22092 @cindex pragma, init
22094 This pragma causes each listed @var{function} to be called during
22095 initialization (before @code{main}) or during shared module loading, by
22096 adding a call to the @code{.init} section.
22098 @end table
22100 @node Symbol-Renaming Pragmas
22101 @subsection Symbol-Renaming Pragmas
22103 GCC supports a @code{#pragma} directive that changes the name used in
22104 assembly for a given declaration. While this pragma is supported on all
22105 platforms, it is intended primarily to provide compatibility with the
22106 Solaris system headers. This effect can also be achieved using the asm
22107 labels extension (@pxref{Asm Labels}).
22109 @table @code
22110 @item redefine_extname @var{oldname} @var{newname}
22111 @cindex pragma, redefine_extname
22113 This pragma gives the C function @var{oldname} the assembly symbol
22114 @var{newname}.  The preprocessor macro @code{__PRAGMA_REDEFINE_EXTNAME}
22115 is defined if this pragma is available (currently on all platforms).
22116 @end table
22118 This pragma and the asm labels extension interact in a complicated
22119 manner.  Here are some corner cases you may want to be aware of:
22121 @enumerate
22122 @item This pragma silently applies only to declarations with external
22123 linkage.  Asm labels do not have this restriction.
22125 @item In C++, this pragma silently applies only to declarations with
22126 ``C'' linkage.  Again, asm labels do not have this restriction.
22128 @item If either of the ways of changing the assembly name of a
22129 declaration are applied to a declaration whose assembly name has
22130 already been determined (either by a previous use of one of these
22131 features, or because the compiler needed the assembly name in order to
22132 generate code), and the new name is different, a warning issues and
22133 the name does not change.
22135 @item The @var{oldname} used by @code{#pragma redefine_extname} is
22136 always the C-language name.
22137 @end enumerate
22139 @node Structure-Layout Pragmas
22140 @subsection Structure-Layout Pragmas
22142 For compatibility with Microsoft Windows compilers, GCC supports a
22143 set of @code{#pragma} directives that change the maximum alignment of
22144 members of structures (other than zero-width bit-fields), unions, and
22145 classes subsequently defined. The @var{n} value below always is required
22146 to be a small power of two and specifies the new alignment in bytes.
22148 @enumerate
22149 @item @code{#pragma pack(@var{n})} simply sets the new alignment.
22150 @item @code{#pragma pack()} sets the alignment to the one that was in
22151 effect when compilation started (see also command-line option
22152 @option{-fpack-struct[=@var{n}]} @pxref{Code Gen Options}).
22153 @item @code{#pragma pack(push[,@var{n}])} pushes the current alignment
22154 setting on an internal stack and then optionally sets the new alignment.
22155 @item @code{#pragma pack(pop)} restores the alignment setting to the one
22156 saved at the top of the internal stack (and removes that stack entry).
22157 Note that @code{#pragma pack([@var{n}])} does not influence this internal
22158 stack; thus it is possible to have @code{#pragma pack(push)} followed by
22159 multiple @code{#pragma pack(@var{n})} instances and finalized by a single
22160 @code{#pragma pack(pop)}.
22161 @end enumerate
22163 Some targets, e.g.@: x86 and PowerPC, support the @code{#pragma ms_struct}
22164 directive which lays out structures and unions subsequently defined as the
22165 documented @code{__attribute__ ((ms_struct))}.
22167 @enumerate
22168 @item @code{#pragma ms_struct on} turns on the Microsoft layout.
22169 @item @code{#pragma ms_struct off} turns off the Microsoft layout.
22170 @item @code{#pragma ms_struct reset} goes back to the default layout.
22171 @end enumerate
22173 Most targets also support the @code{#pragma scalar_storage_order} directive
22174 which lays out structures and unions subsequently defined as the documented
22175 @code{__attribute__ ((scalar_storage_order))}.
22177 @enumerate
22178 @item @code{#pragma scalar_storage_order big-endian} sets the storage order
22179 of the scalar fields to big-endian.
22180 @item @code{#pragma scalar_storage_order little-endian} sets the storage order
22181 of the scalar fields to little-endian.
22182 @item @code{#pragma scalar_storage_order default} goes back to the endianness
22183 that was in effect when compilation started (see also command-line option
22184 @option{-fsso-struct=@var{endianness}} @pxref{C Dialect Options}).
22185 @end enumerate
22187 @node Weak Pragmas
22188 @subsection Weak Pragmas
22190 For compatibility with SVR4, GCC supports a set of @code{#pragma}
22191 directives for declaring symbols to be weak, and defining weak
22192 aliases.
22194 @table @code
22195 @item #pragma weak @var{symbol}
22196 @cindex pragma, weak
22197 This pragma declares @var{symbol} to be weak, as if the declaration
22198 had the attribute of the same name.  The pragma may appear before
22199 or after the declaration of @var{symbol}.  It is not an error for
22200 @var{symbol} to never be defined at all.
22202 @item #pragma weak @var{symbol1} = @var{symbol2}
22203 This pragma declares @var{symbol1} to be a weak alias of @var{symbol2}.
22204 It is an error if @var{symbol2} is not defined in the current
22205 translation unit.
22206 @end table
22208 @node Diagnostic Pragmas
22209 @subsection Diagnostic Pragmas
22211 GCC allows the user to selectively enable or disable certain types of
22212 diagnostics, and change the kind of the diagnostic.  For example, a
22213 project's policy might require that all sources compile with
22214 @option{-Werror} but certain files might have exceptions allowing
22215 specific types of warnings.  Or, a project might selectively enable
22216 diagnostics and treat them as errors depending on which preprocessor
22217 macros are defined.
22219 @table @code
22220 @item #pragma GCC diagnostic @var{kind} @var{option}
22221 @cindex pragma, diagnostic
22223 Modifies the disposition of a diagnostic.  Note that not all
22224 diagnostics are modifiable; at the moment only warnings (normally
22225 controlled by @samp{-W@dots{}}) can be controlled, and not all of them.
22226 Use @option{-fdiagnostics-show-option} to determine which diagnostics
22227 are controllable and which option controls them.
22229 @var{kind} is @samp{error} to treat this diagnostic as an error,
22230 @samp{warning} to treat it like a warning (even if @option{-Werror} is
22231 in effect), or @samp{ignored} if the diagnostic is to be ignored.
22232 @var{option} is a double quoted string that matches the command-line
22233 option.
22235 @smallexample
22236 #pragma GCC diagnostic warning "-Wformat"
22237 #pragma GCC diagnostic error "-Wformat"
22238 #pragma GCC diagnostic ignored "-Wformat"
22239 @end smallexample
22241 Note that these pragmas override any command-line options.  GCC keeps
22242 track of the location of each pragma, and issues diagnostics according
22243 to the state as of that point in the source file.  Thus, pragmas occurring
22244 after a line do not affect diagnostics caused by that line.
22246 @item #pragma GCC diagnostic push
22247 @itemx #pragma GCC diagnostic pop
22249 Causes GCC to remember the state of the diagnostics as of each
22250 @code{push}, and restore to that point at each @code{pop}.  If a
22251 @code{pop} has no matching @code{push}, the command-line options are
22252 restored.
22254 @smallexample
22255 #pragma GCC diagnostic error "-Wuninitialized"
22256   foo(a);                       /* error is given for this one */
22257 #pragma GCC diagnostic push
22258 #pragma GCC diagnostic ignored "-Wuninitialized"
22259   foo(b);                       /* no diagnostic for this one */
22260 #pragma GCC diagnostic pop
22261   foo(c);                       /* error is given for this one */
22262 #pragma GCC diagnostic pop
22263   foo(d);                       /* depends on command-line options */
22264 @end smallexample
22266 @end table
22268 GCC also offers a simple mechanism for printing messages during
22269 compilation.
22271 @table @code
22272 @item #pragma message @var{string}
22273 @cindex pragma, diagnostic
22275 Prints @var{string} as a compiler message on compilation.  The message
22276 is informational only, and is neither a compilation warning nor an
22277 error.  Newlines can be included in the string by using the @samp{\n}
22278 escape sequence.
22280 @smallexample
22281 #pragma message "Compiling " __FILE__ "..."
22282 @end smallexample
22284 @var{string} may be parenthesized, and is printed with location
22285 information.  For example,
22287 @smallexample
22288 #define DO_PRAGMA(x) _Pragma (#x)
22289 #define TODO(x) DO_PRAGMA(message ("TODO - " #x))
22291 TODO(Remember to fix this)
22292 @end smallexample
22294 @noindent
22295 prints @samp{/tmp/file.c:4: note: #pragma message:
22296 TODO - Remember to fix this}.
22298 @item #pragma GCC error @var{message}
22299 @cindex pragma, diagnostic
22300 Generates an error message.  This pragma @emph{is} considered to
22301 indicate an error in the compilation, and it will be treated as such.
22303 Newlines can be included in the string by using the @samp{\n}
22304 escape sequence.  They will be displayed as newlines even if the
22305 @option{-fmessage-length} option is set to zero.
22307 The error is only generated if the pragma is present in the code after
22308 pre-processing has been completed.  It does not matter however if the
22309 code containing the pragma is unreachable:
22311 @smallexample
22312 #if 0
22313 #pragma GCC error "this error is not seen"
22314 #endif
22315 void foo (void)
22317   return;
22318 #pragma GCC error "this error is seen"
22320 @end smallexample
22322 @item #pragma GCC warning @var{message}
22323 @cindex pragma, diagnostic
22324 This is just like @samp{pragma GCC error} except that a warning
22325 message is issued instead of an error message.  Unless
22326 @option{-Werror} is in effect, in which case this pragma will generate
22327 an error as well.
22329 @end table
22331 @node Visibility Pragmas
22332 @subsection Visibility Pragmas
22334 @table @code
22335 @item #pragma GCC visibility push(@var{visibility})
22336 @itemx #pragma GCC visibility pop
22337 @cindex pragma, visibility
22339 This pragma allows the user to set the visibility for multiple
22340 declarations without having to give each a visibility attribute
22341 (@pxref{Function Attributes}).
22343 In C++, @samp{#pragma GCC visibility} affects only namespace-scope
22344 declarations.  Class members and template specializations are not
22345 affected; if you want to override the visibility for a particular
22346 member or instantiation, you must use an attribute.
22348 @end table
22351 @node Push/Pop Macro Pragmas
22352 @subsection Push/Pop Macro Pragmas
22354 For compatibility with Microsoft Windows compilers, GCC supports
22355 @samp{#pragma push_macro(@var{"macro_name"})}
22356 and @samp{#pragma pop_macro(@var{"macro_name"})}.
22358 @table @code
22359 @item #pragma push_macro(@var{"macro_name"})
22360 @cindex pragma, push_macro
22361 This pragma saves the value of the macro named as @var{macro_name} to
22362 the top of the stack for this macro.
22364 @item #pragma pop_macro(@var{"macro_name"})
22365 @cindex pragma, pop_macro
22366 This pragma sets the value of the macro named as @var{macro_name} to
22367 the value on top of the stack for this macro. If the stack for
22368 @var{macro_name} is empty, the value of the macro remains unchanged.
22369 @end table
22371 For example:
22373 @smallexample
22374 #define X  1
22375 #pragma push_macro("X")
22376 #undef X
22377 #define X -1
22378 #pragma pop_macro("X")
22379 int x [X];
22380 @end smallexample
22382 @noindent
22383 In this example, the definition of X as 1 is saved by @code{#pragma
22384 push_macro} and restored by @code{#pragma pop_macro}.
22386 @node Function Specific Option Pragmas
22387 @subsection Function Specific Option Pragmas
22389 @table @code
22390 @item #pragma GCC target (@var{"string"}...)
22391 @cindex pragma GCC target
22393 This pragma allows you to set target specific options for functions
22394 defined later in the source file.  One or more strings can be
22395 specified.  Each function that is defined after this point is as
22396 if @code{attribute((target("STRING")))} was specified for that
22397 function.  The parenthesis around the options is optional.
22398 @xref{Function Attributes}, for more information about the
22399 @code{target} attribute and the attribute syntax.
22401 The @code{#pragma GCC target} pragma is presently implemented for
22402 x86, ARM, AArch64, PowerPC, S/390, and Nios II targets only.
22404 @item #pragma GCC optimize (@var{"string"}...)
22405 @cindex pragma GCC optimize
22407 This pragma allows you to set global optimization options for functions
22408 defined later in the source file.  One or more strings can be
22409 specified.  Each function that is defined after this point is as
22410 if @code{attribute((optimize("STRING")))} was specified for that
22411 function.  The parenthesis around the options is optional.
22412 @xref{Function Attributes}, for more information about the
22413 @code{optimize} attribute and the attribute syntax.
22415 @item #pragma GCC push_options
22416 @itemx #pragma GCC pop_options
22417 @cindex pragma GCC push_options
22418 @cindex pragma GCC pop_options
22420 These pragmas maintain a stack of the current target and optimization
22421 options.  It is intended for include files where you temporarily want
22422 to switch to using a different @samp{#pragma GCC target} or
22423 @samp{#pragma GCC optimize} and then to pop back to the previous
22424 options.
22426 @item #pragma GCC reset_options
22427 @cindex pragma GCC reset_options
22429 This pragma clears the current @code{#pragma GCC target} and
22430 @code{#pragma GCC optimize} to use the default switches as specified
22431 on the command line.
22433 @end table
22435 @node Loop-Specific Pragmas
22436 @subsection Loop-Specific Pragmas
22438 @table @code
22439 @item #pragma GCC ivdep
22440 @cindex pragma GCC ivdep
22442 With this pragma, the programmer asserts that there are no loop-carried
22443 dependencies which would prevent consecutive iterations of
22444 the following loop from executing concurrently with SIMD
22445 (single instruction multiple data) instructions.
22447 For example, the compiler can only unconditionally vectorize the following
22448 loop with the pragma:
22450 @smallexample
22451 void foo (int n, int *a, int *b, int *c)
22453   int i, j;
22454 #pragma GCC ivdep
22455   for (i = 0; i < n; ++i)
22456     a[i] = b[i] + c[i];
22458 @end smallexample
22460 @noindent
22461 In this example, using the @code{restrict} qualifier had the same
22462 effect. In the following example, that would not be possible. Assume
22463 @math{k < -m} or @math{k >= m}. Only with the pragma, the compiler knows
22464 that it can unconditionally vectorize the following loop:
22466 @smallexample
22467 void ignore_vec_dep (int *a, int k, int c, int m)
22469 #pragma GCC ivdep
22470   for (int i = 0; i < m; i++)
22471     a[i] = a[i + k] * c;
22473 @end smallexample
22475 @item #pragma GCC unroll @var{n}
22476 @cindex pragma GCC unroll @var{n}
22478 You can use this pragma to control how many times a loop should be unrolled.
22479 It must be placed immediately before a @code{for}, @code{while} or @code{do}
22480 loop or a @code{#pragma GCC ivdep}, and applies only to the loop that follows.
22481 @var{n} is an integer constant expression specifying the unrolling factor.
22482 The values of @math{0} and @math{1} block any unrolling of the loop.
22484 @end table
22486 @node Unnamed Fields
22487 @section Unnamed Structure and Union Fields
22488 @cindex @code{struct}
22489 @cindex @code{union}
22491 As permitted by ISO C11 and for compatibility with other compilers,
22492 GCC allows you to define
22493 a structure or union that contains, as fields, structures and unions
22494 without names.  For example:
22496 @smallexample
22497 struct @{
22498   int a;
22499   union @{
22500     int b;
22501     float c;
22502   @};
22503   int d;
22504 @} foo;
22505 @end smallexample
22507 @noindent
22508 In this example, you are able to access members of the unnamed
22509 union with code like @samp{foo.b}.  Note that only unnamed structs and
22510 unions are allowed, you may not have, for example, an unnamed
22511 @code{int}.
22513 You must never create such structures that cause ambiguous field definitions.
22514 For example, in this structure:
22516 @smallexample
22517 struct @{
22518   int a;
22519   struct @{
22520     int a;
22521   @};
22522 @} foo;
22523 @end smallexample
22525 @noindent
22526 it is ambiguous which @code{a} is being referred to with @samp{foo.a}.
22527 The compiler gives errors for such constructs.
22529 @opindex fms-extensions
22530 Unless @option{-fms-extensions} is used, the unnamed field must be a
22531 structure or union definition without a tag (for example, @samp{struct
22532 @{ int a; @};}).  If @option{-fms-extensions} is used, the field may
22533 also be a definition with a tag such as @samp{struct foo @{ int a;
22534 @};}, a reference to a previously defined structure or union such as
22535 @samp{struct foo;}, or a reference to a @code{typedef} name for a
22536 previously defined structure or union type.
22538 @opindex fplan9-extensions
22539 The option @option{-fplan9-extensions} enables
22540 @option{-fms-extensions} as well as two other extensions.  First, a
22541 pointer to a structure is automatically converted to a pointer to an
22542 anonymous field for assignments and function calls.  For example:
22544 @smallexample
22545 struct s1 @{ int a; @};
22546 struct s2 @{ struct s1; @};
22547 extern void f1 (struct s1 *);
22548 void f2 (struct s2 *p) @{ f1 (p); @}
22549 @end smallexample
22551 @noindent
22552 In the call to @code{f1} inside @code{f2}, the pointer @code{p} is
22553 converted into a pointer to the anonymous field.
22555 Second, when the type of an anonymous field is a @code{typedef} for a
22556 @code{struct} or @code{union}, code may refer to the field using the
22557 name of the @code{typedef}.
22559 @smallexample
22560 typedef struct @{ int a; @} s1;
22561 struct s2 @{ s1; @};
22562 s1 f1 (struct s2 *p) @{ return p->s1; @}
22563 @end smallexample
22565 These usages are only permitted when they are not ambiguous.
22567 @node Thread-Local
22568 @section Thread-Local Storage
22569 @cindex Thread-Local Storage
22570 @cindex @acronym{TLS}
22571 @cindex @code{__thread}
22573 Thread-local storage (@acronym{TLS}) is a mechanism by which variables
22574 are allocated such that there is one instance of the variable per extant
22575 thread.  The runtime model GCC uses to implement this originates
22576 in the IA-64 processor-specific ABI, but has since been migrated
22577 to other processors as well.  It requires significant support from
22578 the linker (@command{ld}), dynamic linker (@command{ld.so}), and
22579 system libraries (@file{libc.so} and @file{libpthread.so}), so it
22580 is not available everywhere.
22582 At the user level, the extension is visible with a new storage
22583 class keyword: @code{__thread}.  For example:
22585 @smallexample
22586 __thread int i;
22587 extern __thread struct state s;
22588 static __thread char *p;
22589 @end smallexample
22591 The @code{__thread} specifier may be used alone, with the @code{extern}
22592 or @code{static} specifiers, but with no other storage class specifier.
22593 When used with @code{extern} or @code{static}, @code{__thread} must appear
22594 immediately after the other storage class specifier.
22596 The @code{__thread} specifier may be applied to any global, file-scoped
22597 static, function-scoped static, or static data member of a class.  It may
22598 not be applied to block-scoped automatic or non-static data member.
22600 When the address-of operator is applied to a thread-local variable, it is
22601 evaluated at run time and returns the address of the current thread's
22602 instance of that variable.  An address so obtained may be used by any
22603 thread.  When a thread terminates, any pointers to thread-local variables
22604 in that thread become invalid.
22606 No static initialization may refer to the address of a thread-local variable.
22608 In C++, if an initializer is present for a thread-local variable, it must
22609 be a @var{constant-expression}, as defined in 5.19.2 of the ANSI/ISO C++
22610 standard.
22612 See @uref{https://www.akkadia.org/drepper/tls.pdf,
22613 ELF Handling For Thread-Local Storage} for a detailed explanation of
22614 the four thread-local storage addressing models, and how the runtime
22615 is expected to function.
22617 @menu
22618 * C99 Thread-Local Edits::
22619 * C++98 Thread-Local Edits::
22620 @end menu
22622 @node C99 Thread-Local Edits
22623 @subsection ISO/IEC 9899:1999 Edits for Thread-Local Storage
22625 The following are a set of changes to ISO/IEC 9899:1999 (aka C99)
22626 that document the exact semantics of the language extension.
22628 @itemize @bullet
22629 @item
22630 @cite{5.1.2  Execution environments}
22632 Add new text after paragraph 1
22634 @quotation
22635 Within either execution environment, a @dfn{thread} is a flow of
22636 control within a program.  It is implementation defined whether
22637 or not there may be more than one thread associated with a program.
22638 It is implementation defined how threads beyond the first are
22639 created, the name and type of the function called at thread
22640 startup, and how threads may be terminated.  However, objects
22641 with thread storage duration shall be initialized before thread
22642 startup.
22643 @end quotation
22645 @item
22646 @cite{6.2.4  Storage durations of objects}
22648 Add new text before paragraph 3
22650 @quotation
22651 An object whose identifier is declared with the storage-class
22652 specifier @w{@code{__thread}} has @dfn{thread storage duration}.
22653 Its lifetime is the entire execution of the thread, and its
22654 stored value is initialized only once, prior to thread startup.
22655 @end quotation
22657 @item
22658 @cite{6.4.1  Keywords}
22660 Add @code{__thread}.
22662 @item
22663 @cite{6.7.1  Storage-class specifiers}
22665 Add @code{__thread} to the list of storage class specifiers in
22666 paragraph 1.
22668 Change paragraph 2 to
22670 @quotation
22671 With the exception of @code{__thread}, at most one storage-class
22672 specifier may be given [@dots{}].  The @code{__thread} specifier may
22673 be used alone, or immediately following @code{extern} or
22674 @code{static}.
22675 @end quotation
22677 Add new text after paragraph 6
22679 @quotation
22680 The declaration of an identifier for a variable that has
22681 block scope that specifies @code{__thread} shall also
22682 specify either @code{extern} or @code{static}.
22684 The @code{__thread} specifier shall be used only with
22685 variables.
22686 @end quotation
22687 @end itemize
22689 @node C++98 Thread-Local Edits
22690 @subsection ISO/IEC 14882:1998 Edits for Thread-Local Storage
22692 The following are a set of changes to ISO/IEC 14882:1998 (aka C++98)
22693 that document the exact semantics of the language extension.
22695 @itemize @bullet
22696 @item
22697 @b{[intro.execution]}
22699 New text after paragraph 4
22701 @quotation
22702 A @dfn{thread} is a flow of control within the abstract machine.
22703 It is implementation defined whether or not there may be more than
22704 one thread.
22705 @end quotation
22707 New text after paragraph 7
22709 @quotation
22710 It is unspecified whether additional action must be taken to
22711 ensure when and whether side effects are visible to other threads.
22712 @end quotation
22714 @item
22715 @b{[lex.key]}
22717 Add @code{__thread}.
22719 @item
22720 @b{[basic.start.main]}
22722 Add after paragraph 5
22724 @quotation
22725 The thread that begins execution at the @code{main} function is called
22726 the @dfn{main thread}.  It is implementation defined how functions
22727 beginning threads other than the main thread are designated or typed.
22728 A function so designated, as well as the @code{main} function, is called
22729 a @dfn{thread startup function}.  It is implementation defined what
22730 happens if a thread startup function returns.  It is implementation
22731 defined what happens to other threads when any thread calls @code{exit}.
22732 @end quotation
22734 @item
22735 @b{[basic.start.init]}
22737 Add after paragraph 4
22739 @quotation
22740 The storage for an object of thread storage duration shall be
22741 statically initialized before the first statement of the thread startup
22742 function.  An object of thread storage duration shall not require
22743 dynamic initialization.
22744 @end quotation
22746 @item
22747 @b{[basic.start.term]}
22749 Add after paragraph 3
22751 @quotation
22752 The type of an object with thread storage duration shall not have a
22753 non-trivial destructor, nor shall it be an array type whose elements
22754 (directly or indirectly) have non-trivial destructors.
22755 @end quotation
22757 @item
22758 @b{[basic.stc]}
22760 Add ``thread storage duration'' to the list in paragraph 1.
22762 Change paragraph 2
22764 @quotation
22765 Thread, static, and automatic storage durations are associated with
22766 objects introduced by declarations [@dots{}].
22767 @end quotation
22769 Add @code{__thread} to the list of specifiers in paragraph 3.
22771 @item
22772 @b{[basic.stc.thread]}
22774 New section before @b{[basic.stc.static]}
22776 @quotation
22777 The keyword @code{__thread} applied to a non-local object gives the
22778 object thread storage duration.
22780 A local variable or class data member declared both @code{static}
22781 and @code{__thread} gives the variable or member thread storage
22782 duration.
22783 @end quotation
22785 @item
22786 @b{[basic.stc.static]}
22788 Change paragraph 1
22790 @quotation
22791 All objects that have neither thread storage duration, dynamic
22792 storage duration nor are local [@dots{}].
22793 @end quotation
22795 @item
22796 @b{[dcl.stc]}
22798 Add @code{__thread} to the list in paragraph 1.
22800 Change paragraph 1
22802 @quotation
22803 With the exception of @code{__thread}, at most one
22804 @var{storage-class-specifier} shall appear in a given
22805 @var{decl-specifier-seq}.  The @code{__thread} specifier may
22806 be used alone, or immediately following the @code{extern} or
22807 @code{static} specifiers.  [@dots{}]
22808 @end quotation
22810 Add after paragraph 5
22812 @quotation
22813 The @code{__thread} specifier can be applied only to the names of objects
22814 and to anonymous unions.
22815 @end quotation
22817 @item
22818 @b{[class.mem]}
22820 Add after paragraph 6
22822 @quotation
22823 Non-@code{static} members shall not be @code{__thread}.
22824 @end quotation
22825 @end itemize
22827 @node Binary constants
22828 @section Binary Constants using the @samp{0b} Prefix
22829 @cindex Binary constants using the @samp{0b} prefix
22831 Integer constants can be written as binary constants, consisting of a
22832 sequence of @samp{0} and @samp{1} digits, prefixed by @samp{0b} or
22833 @samp{0B}.  This is particularly useful in environments that operate a
22834 lot on the bit level (like microcontrollers).
22836 The following statements are identical:
22838 @smallexample
22839 i =       42;
22840 i =     0x2a;
22841 i =      052;
22842 i = 0b101010;
22843 @end smallexample
22845 The type of these constants follows the same rules as for octal or
22846 hexadecimal integer constants, so suffixes like @samp{L} or @samp{UL}
22847 can be applied.
22849 @node C++ Extensions
22850 @chapter Extensions to the C++ Language
22851 @cindex extensions, C++ language
22852 @cindex C++ language extensions
22854 The GNU compiler provides these extensions to the C++ language (and you
22855 can also use most of the C language extensions in your C++ programs).  If you
22856 want to write code that checks whether these features are available, you can
22857 test for the GNU compiler the same way as for C programs: check for a
22858 predefined macro @code{__GNUC__}.  You can also use @code{__GNUG__} to
22859 test specifically for GNU C++ (@pxref{Common Predefined Macros,,
22860 Predefined Macros,cpp,The GNU C Preprocessor}).
22862 @menu
22863 * C++ Volatiles::       What constitutes an access to a volatile object.
22864 * Restricted Pointers:: C99 restricted pointers and references.
22865 * Vague Linkage::       Where G++ puts inlines, vtables and such.
22866 * C++ Interface::       You can use a single C++ header file for both
22867                         declarations and definitions.
22868 * Template Instantiation:: Methods for ensuring that exactly one copy of
22869                         each needed template instantiation is emitted.
22870 * Bound member functions:: You can extract a function pointer to the
22871                         method denoted by a @samp{->*} or @samp{.*} expression.
22872 * C++ Attributes::      Variable, function, and type attributes for C++ only.
22873 * Function Multiversioning::   Declaring multiple function versions.
22874 * Type Traits::         Compiler support for type traits.
22875 * C++ Concepts::        Improved support for generic programming.
22876 * Deprecated Features:: Things will disappear from G++.
22877 * Backwards Compatibility:: Compatibilities with earlier definitions of C++.
22878 @end menu
22880 @node C++ Volatiles
22881 @section When is a Volatile C++ Object Accessed?
22882 @cindex accessing volatiles
22883 @cindex volatile read
22884 @cindex volatile write
22885 @cindex volatile access
22887 The C++ standard differs from the C standard in its treatment of
22888 volatile objects.  It fails to specify what constitutes a volatile
22889 access, except to say that C++ should behave in a similar manner to C
22890 with respect to volatiles, where possible.  However, the different
22891 lvalueness of expressions between C and C++ complicate the behavior.
22892 G++ behaves the same as GCC for volatile access, @xref{C
22893 Extensions,,Volatiles}, for a description of GCC's behavior.
22895 The C and C++ language specifications differ when an object is
22896 accessed in a void context:
22898 @smallexample
22899 volatile int *src = @var{somevalue};
22900 *src;
22901 @end smallexample
22903 The C++ standard specifies that such expressions do not undergo lvalue
22904 to rvalue conversion, and that the type of the dereferenced object may
22905 be incomplete.  The C++ standard does not specify explicitly that it
22906 is lvalue to rvalue conversion that is responsible for causing an
22907 access.  There is reason to believe that it is, because otherwise
22908 certain simple expressions become undefined.  However, because it
22909 would surprise most programmers, G++ treats dereferencing a pointer to
22910 volatile object of complete type as GCC would do for an equivalent
22911 type in C@.  When the object has incomplete type, G++ issues a
22912 warning; if you wish to force an error, you must force a conversion to
22913 rvalue with, for instance, a static cast.
22915 When using a reference to volatile, G++ does not treat equivalent
22916 expressions as accesses to volatiles, but instead issues a warning that
22917 no volatile is accessed.  The rationale for this is that otherwise it
22918 becomes difficult to determine where volatile access occur, and not
22919 possible to ignore the return value from functions returning volatile
22920 references.  Again, if you wish to force a read, cast the reference to
22921 an rvalue.
22923 G++ implements the same behavior as GCC does when assigning to a
22924 volatile object---there is no reread of the assigned-to object, the
22925 assigned rvalue is reused.  Note that in C++ assignment expressions
22926 are lvalues, and if used as an lvalue, the volatile object is
22927 referred to.  For instance, @var{vref} refers to @var{vobj}, as
22928 expected, in the following example:
22930 @smallexample
22931 volatile int vobj;
22932 volatile int &vref = vobj = @var{something};
22933 @end smallexample
22935 @node Restricted Pointers
22936 @section Restricting Pointer Aliasing
22937 @cindex restricted pointers
22938 @cindex restricted references
22939 @cindex restricted this pointer
22941 As with the C front end, G++ understands the C99 feature of restricted pointers,
22942 specified with the @code{__restrict__}, or @code{__restrict} type
22943 qualifier.  Because you cannot compile C++ by specifying the @option{-std=c99}
22944 language flag, @code{restrict} is not a keyword in C++.
22946 In addition to allowing restricted pointers, you can specify restricted
22947 references, which indicate that the reference is not aliased in the local
22948 context.
22950 @smallexample
22951 void fn (int *__restrict__ rptr, int &__restrict__ rref)
22953   /* @r{@dots{}} */
22955 @end smallexample
22957 @noindent
22958 In the body of @code{fn}, @var{rptr} points to an unaliased integer and
22959 @var{rref} refers to a (different) unaliased integer.
22961 You may also specify whether a member function's @var{this} pointer is
22962 unaliased by using @code{__restrict__} as a member function qualifier.
22964 @smallexample
22965 void T::fn () __restrict__
22967   /* @r{@dots{}} */
22969 @end smallexample
22971 @noindent
22972 Within the body of @code{T::fn}, @var{this} has the effective
22973 definition @code{T *__restrict__ const this}.  Notice that the
22974 interpretation of a @code{__restrict__} member function qualifier is
22975 different to that of @code{const} or @code{volatile} qualifier, in that it
22976 is applied to the pointer rather than the object.  This is consistent with
22977 other compilers that implement restricted pointers.
22979 As with all outermost parameter qualifiers, @code{__restrict__} is
22980 ignored in function definition matching.  This means you only need to
22981 specify @code{__restrict__} in a function definition, rather than
22982 in a function prototype as well.
22984 @node Vague Linkage
22985 @section Vague Linkage
22986 @cindex vague linkage
22988 There are several constructs in C++ that require space in the object
22989 file but are not clearly tied to a single translation unit.  We say that
22990 these constructs have ``vague linkage''.  Typically such constructs are
22991 emitted wherever they are needed, though sometimes we can be more
22992 clever.
22994 @table @asis
22995 @item Inline Functions
22996 Inline functions are typically defined in a header file which can be
22997 included in many different compilations.  Hopefully they can usually be
22998 inlined, but sometimes an out-of-line copy is necessary, if the address
22999 of the function is taken or if inlining fails.  In general, we emit an
23000 out-of-line copy in all translation units where one is needed.  As an
23001 exception, we only emit inline virtual functions with the vtable, since
23002 it always requires a copy.
23004 Local static variables and string constants used in an inline function
23005 are also considered to have vague linkage, since they must be shared
23006 between all inlined and out-of-line instances of the function.
23008 @item VTables
23009 @cindex vtable
23010 C++ virtual functions are implemented in most compilers using a lookup
23011 table, known as a vtable.  The vtable contains pointers to the virtual
23012 functions provided by a class, and each object of the class contains a
23013 pointer to its vtable (or vtables, in some multiple-inheritance
23014 situations).  If the class declares any non-inline, non-pure virtual
23015 functions, the first one is chosen as the ``key method'' for the class,
23016 and the vtable is only emitted in the translation unit where the key
23017 method is defined.
23019 @emph{Note:} If the chosen key method is later defined as inline, the
23020 vtable is still emitted in every translation unit that defines it.
23021 Make sure that any inline virtuals are declared inline in the class
23022 body, even if they are not defined there.
23024 @item @code{type_info} objects
23025 @cindex @code{type_info}
23026 @cindex RTTI
23027 C++ requires information about types to be written out in order to
23028 implement @samp{dynamic_cast}, @samp{typeid} and exception handling.
23029 For polymorphic classes (classes with virtual functions), the @samp{type_info}
23030 object is written out along with the vtable so that @samp{dynamic_cast}
23031 can determine the dynamic type of a class object at run time.  For all
23032 other types, we write out the @samp{type_info} object when it is used: when
23033 applying @samp{typeid} to an expression, throwing an object, or
23034 referring to a type in a catch clause or exception specification.
23036 @item Template Instantiations
23037 Most everything in this section also applies to template instantiations,
23038 but there are other options as well.
23039 @xref{Template Instantiation,,Where's the Template?}.
23041 @end table
23043 When used with GNU ld version 2.8 or later on an ELF system such as
23044 GNU/Linux or Solaris 2, or on Microsoft Windows, duplicate copies of
23045 these constructs will be discarded at link time.  This is known as
23046 COMDAT support.
23048 On targets that don't support COMDAT, but do support weak symbols, GCC
23049 uses them.  This way one copy overrides all the others, but
23050 the unused copies still take up space in the executable.
23052 For targets that do not support either COMDAT or weak symbols,
23053 most entities with vague linkage are emitted as local symbols to
23054 avoid duplicate definition errors from the linker.  This does not happen
23055 for local statics in inlines, however, as having multiple copies
23056 almost certainly breaks things.
23058 @xref{C++ Interface,,Declarations and Definitions in One Header}, for
23059 another way to control placement of these constructs.
23061 @node C++ Interface
23062 @section C++ Interface and Implementation Pragmas
23064 @cindex interface and implementation headers, C++
23065 @cindex C++ interface and implementation headers
23066 @cindex pragmas, interface and implementation
23068 @code{#pragma interface} and @code{#pragma implementation} provide the
23069 user with a way of explicitly directing the compiler to emit entities
23070 with vague linkage (and debugging information) in a particular
23071 translation unit.
23073 @emph{Note:} These @code{#pragma}s have been superceded as of GCC 2.7.2
23074 by COMDAT support and the ``key method'' heuristic
23075 mentioned in @ref{Vague Linkage}.  Using them can actually cause your
23076 program to grow due to unnecessary out-of-line copies of inline
23077 functions.
23079 @table @code
23080 @item #pragma interface
23081 @itemx #pragma interface "@var{subdir}/@var{objects}.h"
23082 @kindex #pragma interface
23083 Use this directive in @emph{header files} that define object classes, to save
23084 space in most of the object files that use those classes.  Normally,
23085 local copies of certain information (backup copies of inline member
23086 functions, debugging information, and the internal tables that implement
23087 virtual functions) must be kept in each object file that includes class
23088 definitions.  You can use this pragma to avoid such duplication.  When a
23089 header file containing @samp{#pragma interface} is included in a
23090 compilation, this auxiliary information is not generated (unless
23091 the main input source file itself uses @samp{#pragma implementation}).
23092 Instead, the object files contain references to be resolved at link
23093 time.
23095 The second form of this directive is useful for the case where you have
23096 multiple headers with the same name in different directories.  If you
23097 use this form, you must specify the same string to @samp{#pragma
23098 implementation}.
23100 @item #pragma implementation
23101 @itemx #pragma implementation "@var{objects}.h"
23102 @kindex #pragma implementation
23103 Use this pragma in a @emph{main input file}, when you want full output from
23104 included header files to be generated (and made globally visible).  The
23105 included header file, in turn, should use @samp{#pragma interface}.
23106 Backup copies of inline member functions, debugging information, and the
23107 internal tables used to implement virtual functions are all generated in
23108 implementation files.
23110 @cindex implied @code{#pragma implementation}
23111 @cindex @code{#pragma implementation}, implied
23112 @cindex naming convention, implementation headers
23113 If you use @samp{#pragma implementation} with no argument, it applies to
23114 an include file with the same basename@footnote{A file's @dfn{basename}
23115 is the name stripped of all leading path information and of trailing
23116 suffixes, such as @samp{.h} or @samp{.C} or @samp{.cc}.} as your source
23117 file.  For example, in @file{allclass.cc}, giving just
23118 @samp{#pragma implementation}
23119 by itself is equivalent to @samp{#pragma implementation "allclass.h"}.
23121 Use the string argument if you want a single implementation file to
23122 include code from multiple header files.  (You must also use
23123 @samp{#include} to include the header file; @samp{#pragma
23124 implementation} only specifies how to use the file---it doesn't actually
23125 include it.)
23127 There is no way to split up the contents of a single header file into
23128 multiple implementation files.
23129 @end table
23131 @cindex inlining and C++ pragmas
23132 @cindex C++ pragmas, effect on inlining
23133 @cindex pragmas in C++, effect on inlining
23134 @samp{#pragma implementation} and @samp{#pragma interface} also have an
23135 effect on function inlining.
23137 If you define a class in a header file marked with @samp{#pragma
23138 interface}, the effect on an inline function defined in that class is
23139 similar to an explicit @code{extern} declaration---the compiler emits
23140 no code at all to define an independent version of the function.  Its
23141 definition is used only for inlining with its callers.
23143 @opindex fno-implement-inlines
23144 Conversely, when you include the same header file in a main source file
23145 that declares it as @samp{#pragma implementation}, the compiler emits
23146 code for the function itself; this defines a version of the function
23147 that can be found via pointers (or by callers compiled without
23148 inlining).  If all calls to the function can be inlined, you can avoid
23149 emitting the function by compiling with @option{-fno-implement-inlines}.
23150 If any calls are not inlined, you will get linker errors.
23152 @node Template Instantiation
23153 @section Where's the Template?
23154 @cindex template instantiation
23156 C++ templates were the first language feature to require more
23157 intelligence from the environment than was traditionally found on a UNIX
23158 system.  Somehow the compiler and linker have to make sure that each
23159 template instance occurs exactly once in the executable if it is needed,
23160 and not at all otherwise.  There are two basic approaches to this
23161 problem, which are referred to as the Borland model and the Cfront model.
23163 @table @asis
23164 @item Borland model
23165 Borland C++ solved the template instantiation problem by adding the code
23166 equivalent of common blocks to their linker; the compiler emits template
23167 instances in each translation unit that uses them, and the linker
23168 collapses them together.  The advantage of this model is that the linker
23169 only has to consider the object files themselves; there is no external
23170 complexity to worry about.  The disadvantage is that compilation time
23171 is increased because the template code is being compiled repeatedly.
23172 Code written for this model tends to include definitions of all
23173 templates in the header file, since they must be seen to be
23174 instantiated.
23176 @item Cfront model
23177 The AT&T C++ translator, Cfront, solved the template instantiation
23178 problem by creating the notion of a template repository, an
23179 automatically maintained place where template instances are stored.  A
23180 more modern version of the repository works as follows: As individual
23181 object files are built, the compiler places any template definitions and
23182 instantiations encountered in the repository.  At link time, the link
23183 wrapper adds in the objects in the repository and compiles any needed
23184 instances that were not previously emitted.  The advantages of this
23185 model are more optimal compilation speed and the ability to use the
23186 system linker; to implement the Borland model a compiler vendor also
23187 needs to replace the linker.  The disadvantages are vastly increased
23188 complexity, and thus potential for error; for some code this can be
23189 just as transparent, but in practice it can been very difficult to build
23190 multiple programs in one directory and one program in multiple
23191 directories.  Code written for this model tends to separate definitions
23192 of non-inline member templates into a separate file, which should be
23193 compiled separately.
23194 @end table
23196 G++ implements the Borland model on targets where the linker supports it,
23197 including ELF targets (such as GNU/Linux), Mac OS X and Microsoft Windows.
23198 Otherwise G++ implements neither automatic model.
23200 You have the following options for dealing with template instantiations:
23202 @enumerate
23203 @item
23204 Do nothing.  Code written for the Borland model works fine, but
23205 each translation unit contains instances of each of the templates it
23206 uses.  The duplicate instances will be discarded by the linker, but in
23207 a large program, this can lead to an unacceptable amount of code
23208 duplication in object files or shared libraries.
23210 Duplicate instances of a template can be avoided by defining an explicit
23211 instantiation in one object file, and preventing the compiler from doing
23212 implicit instantiations in any other object files by using an explicit
23213 instantiation declaration, using the @code{extern template} syntax:
23215 @smallexample
23216 extern template int max (int, int);
23217 @end smallexample
23219 This syntax is defined in the C++ 2011 standard, but has been supported by
23220 G++ and other compilers since well before 2011.
23222 Explicit instantiations can be used for the largest or most frequently
23223 duplicated instances, without having to know exactly which other instances
23224 are used in the rest of the program.  You can scatter the explicit
23225 instantiations throughout your program, perhaps putting them in the
23226 translation units where the instances are used or the translation units
23227 that define the templates themselves; you can put all of the explicit
23228 instantiations you need into one big file; or you can create small files
23229 like
23231 @smallexample
23232 #include "Foo.h"
23233 #include "Foo.cc"
23235 template class Foo<int>;
23236 template ostream& operator <<
23237                 (ostream&, const Foo<int>&);
23238 @end smallexample
23240 @noindent
23241 for each of the instances you need, and create a template instantiation
23242 library from those.
23244 This is the simplest option, but also offers flexibility and
23245 fine-grained control when necessary. It is also the most portable
23246 alternative and programs using this approach will work with most modern
23247 compilers.
23249 @item
23250 @opindex frepo
23251 Compile your template-using code with @option{-frepo}.  The compiler
23252 generates files with the extension @samp{.rpo} listing all of the
23253 template instantiations used in the corresponding object files that
23254 could be instantiated there; the link wrapper, @samp{collect2},
23255 then updates the @samp{.rpo} files to tell the compiler where to place
23256 those instantiations and rebuild any affected object files.  The
23257 link-time overhead is negligible after the first pass, as the compiler
23258 continues to place the instantiations in the same files.
23260 This can be a suitable option for application code written for the Borland
23261 model, as it usually just works.  Code written for the Cfront model 
23262 needs to be modified so that the template definitions are available at
23263 one or more points of instantiation; usually this is as simple as adding
23264 @code{#include <tmethods.cc>} to the end of each template header.
23266 For library code, if you want the library to provide all of the template
23267 instantiations it needs, just try to link all of its object files
23268 together; the link will fail, but cause the instantiations to be
23269 generated as a side effect.  Be warned, however, that this may cause
23270 conflicts if multiple libraries try to provide the same instantiations.
23271 For greater control, use explicit instantiation as described in the next
23272 option.
23274 @item
23275 @opindex fno-implicit-templates
23276 Compile your code with @option{-fno-implicit-templates} to disable the
23277 implicit generation of template instances, and explicitly instantiate
23278 all the ones you use.  This approach requires more knowledge of exactly
23279 which instances you need than do the others, but it's less
23280 mysterious and allows greater control if you want to ensure that only
23281 the intended instances are used.
23283 If you are using Cfront-model code, you can probably get away with not
23284 using @option{-fno-implicit-templates} when compiling files that don't
23285 @samp{#include} the member template definitions.
23287 If you use one big file to do the instantiations, you may want to
23288 compile it without @option{-fno-implicit-templates} so you get all of the
23289 instances required by your explicit instantiations (but not by any
23290 other files) without having to specify them as well.
23292 In addition to forward declaration of explicit instantiations
23293 (with @code{extern}), G++ has extended the template instantiation
23294 syntax to support instantiation of the compiler support data for a
23295 template class (i.e.@: the vtable) without instantiating any of its
23296 members (with @code{inline}), and instantiation of only the static data
23297 members of a template class, without the support data or member
23298 functions (with @code{static}):
23300 @smallexample
23301 inline template class Foo<int>;
23302 static template class Foo<int>;
23303 @end smallexample
23304 @end enumerate
23306 @node Bound member functions
23307 @section Extracting the Function Pointer from a Bound Pointer to Member Function
23308 @cindex pmf
23309 @cindex pointer to member function
23310 @cindex bound pointer to member function
23312 In C++, pointer to member functions (PMFs) are implemented using a wide
23313 pointer of sorts to handle all the possible call mechanisms; the PMF
23314 needs to store information about how to adjust the @samp{this} pointer,
23315 and if the function pointed to is virtual, where to find the vtable, and
23316 where in the vtable to look for the member function.  If you are using
23317 PMFs in an inner loop, you should really reconsider that decision.  If
23318 that is not an option, you can extract the pointer to the function that
23319 would be called for a given object/PMF pair and call it directly inside
23320 the inner loop, to save a bit of time.
23322 Note that you still pay the penalty for the call through a
23323 function pointer; on most modern architectures, such a call defeats the
23324 branch prediction features of the CPU@.  This is also true of normal
23325 virtual function calls.
23327 The syntax for this extension is
23329 @smallexample
23330 extern A a;
23331 extern int (A::*fp)();
23332 typedef int (*fptr)(A *);
23334 fptr p = (fptr)(a.*fp);
23335 @end smallexample
23337 For PMF constants (i.e.@: expressions of the form @samp{&Klasse::Member}),
23338 no object is needed to obtain the address of the function.  They can be
23339 converted to function pointers directly:
23341 @smallexample
23342 fptr p1 = (fptr)(&A::foo);
23343 @end smallexample
23345 @opindex Wno-pmf-conversions
23346 You must specify @option{-Wno-pmf-conversions} to use this extension.
23348 @node C++ Attributes
23349 @section C++-Specific Variable, Function, and Type Attributes
23351 Some attributes only make sense for C++ programs.
23353 @table @code
23354 @item abi_tag ("@var{tag}", ...)
23355 @cindex @code{abi_tag} function attribute
23356 @cindex @code{abi_tag} variable attribute
23357 @cindex @code{abi_tag} type attribute
23358 The @code{abi_tag} attribute can be applied to a function, variable, or class
23359 declaration.  It modifies the mangled name of the entity to
23360 incorporate the tag name, in order to distinguish the function or
23361 class from an earlier version with a different ABI; perhaps the class
23362 has changed size, or the function has a different return type that is
23363 not encoded in the mangled name.
23365 The attribute can also be applied to an inline namespace, but does not
23366 affect the mangled name of the namespace; in this case it is only used
23367 for @option{-Wabi-tag} warnings and automatic tagging of functions and
23368 variables.  Tagging inline namespaces is generally preferable to
23369 tagging individual declarations, but the latter is sometimes
23370 necessary, such as when only certain members of a class need to be
23371 tagged.
23373 The argument can be a list of strings of arbitrary length.  The
23374 strings are sorted on output, so the order of the list is
23375 unimportant.
23377 A redeclaration of an entity must not add new ABI tags,
23378 since doing so would change the mangled name.
23380 The ABI tags apply to a name, so all instantiations and
23381 specializations of a template have the same tags.  The attribute will
23382 be ignored if applied to an explicit specialization or instantiation.
23384 The @option{-Wabi-tag} flag enables a warning about a class which does
23385 not have all the ABI tags used by its subobjects and virtual functions; for users with code
23386 that needs to coexist with an earlier ABI, using this option can help
23387 to find all affected types that need to be tagged.
23389 When a type involving an ABI tag is used as the type of a variable or
23390 return type of a function where that tag is not already present in the
23391 signature of the function, the tag is automatically applied to the
23392 variable or function.  @option{-Wabi-tag} also warns about this
23393 situation; this warning can be avoided by explicitly tagging the
23394 variable or function or moving it into a tagged inline namespace.
23396 @item init_priority (@var{priority})
23397 @cindex @code{init_priority} variable attribute
23399 In Standard C++, objects defined at namespace scope are guaranteed to be
23400 initialized in an order in strict accordance with that of their definitions
23401 @emph{in a given translation unit}.  No guarantee is made for initializations
23402 across translation units.  However, GNU C++ allows users to control the
23403 order of initialization of objects defined at namespace scope with the
23404 @code{init_priority} attribute by specifying a relative @var{priority},
23405 a constant integral expression currently bounded between 101 and 65535
23406 inclusive.  Lower numbers indicate a higher priority.
23408 In the following example, @code{A} would normally be created before
23409 @code{B}, but the @code{init_priority} attribute reverses that order:
23411 @smallexample
23412 Some_Class  A  __attribute__ ((init_priority (2000)));
23413 Some_Class  B  __attribute__ ((init_priority (543)));
23414 @end smallexample
23416 @noindent
23417 Note that the particular values of @var{priority} do not matter; only their
23418 relative ordering.
23420 @item warn_unused
23421 @cindex @code{warn_unused} type attribute
23423 For C++ types with non-trivial constructors and/or destructors it is
23424 impossible for the compiler to determine whether a variable of this
23425 type is truly unused if it is not referenced. This type attribute
23426 informs the compiler that variables of this type should be warned
23427 about if they appear to be unused, just like variables of fundamental
23428 types.
23430 This attribute is appropriate for types which just represent a value,
23431 such as @code{std::string}; it is not appropriate for types which
23432 control a resource, such as @code{std::lock_guard}.
23434 This attribute is also accepted in C, but it is unnecessary because C
23435 does not have constructors or destructors.
23437 @end table
23439 @node Function Multiversioning
23440 @section Function Multiversioning
23441 @cindex function versions
23443 With the GNU C++ front end, for x86 targets, you may specify multiple
23444 versions of a function, where each function is specialized for a
23445 specific target feature.  At runtime, the appropriate version of the
23446 function is automatically executed depending on the characteristics of
23447 the execution platform.  Here is an example.
23449 @smallexample
23450 __attribute__ ((target ("default")))
23451 int foo ()
23453   // The default version of foo.
23454   return 0;
23457 __attribute__ ((target ("sse4.2")))
23458 int foo ()
23460   // foo version for SSE4.2
23461   return 1;
23464 __attribute__ ((target ("arch=atom")))
23465 int foo ()
23467   // foo version for the Intel ATOM processor
23468   return 2;
23471 __attribute__ ((target ("arch=amdfam10")))
23472 int foo ()
23474   // foo version for the AMD Family 0x10 processors.
23475   return 3;
23478 int main ()
23480   int (*p)() = &foo;
23481   assert ((*p) () == foo ());
23482   return 0;
23484 @end smallexample
23486 In the above example, four versions of function foo are created. The
23487 first version of foo with the target attribute "default" is the default
23488 version.  This version gets executed when no other target specific
23489 version qualifies for execution on a particular platform. A new version
23490 of foo is created by using the same function signature but with a
23491 different target string.  Function foo is called or a pointer to it is
23492 taken just like a regular function.  GCC takes care of doing the
23493 dispatching to call the right version at runtime.  Refer to the
23494 @uref{http://gcc.gnu.org/wiki/FunctionMultiVersioning, GCC wiki on
23495 Function Multiversioning} for more details.
23497 @node Type Traits
23498 @section Type Traits
23500 The C++ front end implements syntactic extensions that allow
23501 compile-time determination of 
23502 various characteristics of a type (or of a
23503 pair of types).
23505 @table @code
23506 @item __has_nothrow_assign (type)
23507 If @code{type} is const qualified or is a reference type then the trait is
23508 false.  Otherwise if @code{__has_trivial_assign (type)} is true then the trait
23509 is true, else if @code{type} is a cv class or union type with copy assignment
23510 operators that are known not to throw an exception then the trait is true,
23511 else it is false.  Requires: @code{type} shall be a complete type,
23512 (possibly cv-qualified) @code{void}, or an array of unknown bound.
23514 @item __has_nothrow_copy (type)
23515 If @code{__has_trivial_copy (type)} is true then the trait is true, else if
23516 @code{type} is a cv class or union type with copy constructors that
23517 are known not to throw an exception then the trait is true, else it is false.
23518 Requires: @code{type} shall be a complete type, (possibly cv-qualified)
23519 @code{void}, or an array of unknown bound.
23521 @item __has_nothrow_constructor (type)
23522 If @code{__has_trivial_constructor (type)} is true then the trait is
23523 true, else if @code{type} is a cv class or union type (or array
23524 thereof) with a default constructor that is known not to throw an
23525 exception then the trait is true, else it is false.  Requires:
23526 @code{type} shall be a complete type, (possibly cv-qualified)
23527 @code{void}, or an array of unknown bound.
23529 @item __has_trivial_assign (type)
23530 If @code{type} is const qualified or is a reference type then the trait is
23531 false.  Otherwise if @code{__is_pod (type)} is true then the trait is
23532 true, else if @code{type} is a cv class or union type with a trivial
23533 copy assignment ([class.copy]) then the trait is true, else it is
23534 false.  Requires: @code{type} shall be a complete type, (possibly
23535 cv-qualified) @code{void}, or an array of unknown bound.
23537 @item __has_trivial_copy (type)
23538 If @code{__is_pod (type)} is true or @code{type} is a reference type
23539 then the trait is true, else if @code{type} is a cv class or union type
23540 with a trivial copy constructor ([class.copy]) then the trait
23541 is true, else it is false.  Requires: @code{type} shall be a complete
23542 type, (possibly cv-qualified) @code{void}, or an array of unknown bound.
23544 @item __has_trivial_constructor (type)
23545 If @code{__is_pod (type)} is true then the trait is true, else if
23546 @code{type} is a cv class or union type (or array thereof) with a
23547 trivial default constructor ([class.ctor]) then the trait is true,
23548 else it is false.  Requires: @code{type} shall be a complete
23549 type, (possibly cv-qualified) @code{void}, or an array of unknown bound.
23551 @item __has_trivial_destructor (type)
23552 If @code{__is_pod (type)} is true or @code{type} is a reference type then
23553 the trait is true, else if @code{type} is a cv class or union type (or
23554 array thereof) with a trivial destructor ([class.dtor]) then the trait
23555 is true, else it is false.  Requires: @code{type} shall be a complete
23556 type, (possibly cv-qualified) @code{void}, or an array of unknown bound.
23558 @item __has_virtual_destructor (type)
23559 If @code{type} is a class type with a virtual destructor
23560 ([class.dtor]) then the trait is true, else it is false.  Requires:
23561 @code{type} shall be a complete type, (possibly cv-qualified)
23562 @code{void}, or an array of unknown bound.
23564 @item __is_abstract (type)
23565 If @code{type} is an abstract class ([class.abstract]) then the trait
23566 is true, else it is false.  Requires: @code{type} shall be a complete
23567 type, (possibly cv-qualified) @code{void}, or an array of unknown bound.
23569 @item __is_base_of (base_type, derived_type)
23570 If @code{base_type} is a base class of @code{derived_type}
23571 ([class.derived]) then the trait is true, otherwise it is false.
23572 Top-level cv qualifications of @code{base_type} and
23573 @code{derived_type} are ignored.  For the purposes of this trait, a
23574 class type is considered is own base.  Requires: if @code{__is_class
23575 (base_type)} and @code{__is_class (derived_type)} are true and
23576 @code{base_type} and @code{derived_type} are not the same type
23577 (disregarding cv-qualifiers), @code{derived_type} shall be a complete
23578 type.  A diagnostic is produced if this requirement is not met.
23580 @item __is_class (type)
23581 If @code{type} is a cv class type, and not a union type
23582 ([basic.compound]) the trait is true, else it is false.
23584 @item __is_empty (type)
23585 If @code{__is_class (type)} is false then the trait is false.
23586 Otherwise @code{type} is considered empty if and only if: @code{type}
23587 has no non-static data members, or all non-static data members, if
23588 any, are bit-fields of length 0, and @code{type} has no virtual
23589 members, and @code{type} has no virtual base classes, and @code{type}
23590 has no base classes @code{base_type} for which
23591 @code{__is_empty (base_type)} is false.  Requires: @code{type} shall
23592 be a complete type, (possibly cv-qualified) @code{void}, or an array
23593 of unknown bound.
23595 @item __is_enum (type)
23596 If @code{type} is a cv enumeration type ([basic.compound]) the trait is
23597 true, else it is false.
23599 @item __is_literal_type (type)
23600 If @code{type} is a literal type ([basic.types]) the trait is
23601 true, else it is false.  Requires: @code{type} shall be a complete type,
23602 (possibly cv-qualified) @code{void}, or an array of unknown bound.
23604 @item __is_pod (type)
23605 If @code{type} is a cv POD type ([basic.types]) then the trait is true,
23606 else it is false.  Requires: @code{type} shall be a complete type,
23607 (possibly cv-qualified) @code{void}, or an array of unknown bound.
23609 @item __is_polymorphic (type)
23610 If @code{type} is a polymorphic class ([class.virtual]) then the trait
23611 is true, else it is false.  Requires: @code{type} shall be a complete
23612 type, (possibly cv-qualified) @code{void}, or an array of unknown bound.
23614 @item __is_standard_layout (type)
23615 If @code{type} is a standard-layout type ([basic.types]) the trait is
23616 true, else it is false.  Requires: @code{type} shall be a complete
23617 type, (possibly cv-qualified) @code{void}, or an array of unknown bound.
23619 @item __is_trivial (type)
23620 If @code{type} is a trivial type ([basic.types]) the trait is
23621 true, else it is false.  Requires: @code{type} shall be a complete
23622 type, (possibly cv-qualified) @code{void}, or an array of unknown bound.
23624 @item __is_union (type)
23625 If @code{type} is a cv union type ([basic.compound]) the trait is
23626 true, else it is false.
23628 @item __underlying_type (type)
23629 The underlying type of @code{type}.  Requires: @code{type} shall be
23630 an enumeration type ([dcl.enum]).
23632 @item __integer_pack (length)
23633 When used as the pattern of a pack expansion within a template
23634 definition, expands to a template argument pack containing integers
23635 from @code{0} to @code{length-1}.  This is provided for efficient
23636 implementation of @code{std::make_integer_sequence}.
23638 @end table
23641 @node C++ Concepts
23642 @section C++ Concepts
23644 C++ concepts provide much-improved support for generic programming. In
23645 particular, they allow the specification of constraints on template arguments.
23646 The constraints are used to extend the usual overloading and partial
23647 specialization capabilities of the language, allowing generic data structures
23648 and algorithms to be ``refined'' based on their properties rather than their
23649 type names.
23651 The following keywords are reserved for concepts.
23653 @table @code
23654 @item assumes
23655 States an expression as an assumption, and if possible, verifies that the
23656 assumption is valid. For example, @code{assume(n > 0)}.
23658 @item axiom
23659 Introduces an axiom definition. Axioms introduce requirements on values.
23661 @item forall
23662 Introduces a universally quantified object in an axiom. For example,
23663 @code{forall (int n) n + 0 == n}).
23665 @item concept
23666 Introduces a concept definition. Concepts are sets of syntactic and semantic
23667 requirements on types and their values.
23669 @item requires
23670 Introduces constraints on template arguments or requirements for a member
23671 function of a class template.
23673 @end table
23675 The front end also exposes a number of internal mechanism that can be used
23676 to simplify the writing of type traits. Note that some of these traits are
23677 likely to be removed in the future.
23679 @table @code
23680 @item __is_same (type1, type2)
23681 A binary type trait: true whenever the type arguments are the same.
23683 @end table
23686 @node Deprecated Features
23687 @section Deprecated Features
23689 In the past, the GNU C++ compiler was extended to experiment with new
23690 features, at a time when the C++ language was still evolving.  Now that
23691 the C++ standard is complete, some of those features are superseded by
23692 superior alternatives.  Using the old features might cause a warning in
23693 some cases that the feature will be dropped in the future.  In other
23694 cases, the feature might be gone already.
23696 G++ allows a virtual function returning @samp{void *} to be overridden
23697 by one returning a different pointer type.  This extension to the
23698 covariant return type rules is now deprecated and will be removed from a
23699 future version.
23701 The use of default arguments in function pointers, function typedefs
23702 and other places where they are not permitted by the standard is
23703 deprecated and will be removed from a future version of G++.
23705 G++ allows floating-point literals to appear in integral constant expressions,
23706 e.g.@: @samp{ enum E @{ e = int(2.2 * 3.7) @} }
23707 This extension is deprecated and will be removed from a future version.
23709 G++ allows static data members of const floating-point type to be declared
23710 with an initializer in a class definition. The standard only allows
23711 initializers for static members of const integral types and const
23712 enumeration types so this extension has been deprecated and will be removed
23713 from a future version.
23715 G++ allows attributes to follow a parenthesized direct initializer,
23716 e.g.@: @samp{ int f (0) __attribute__ ((something)); } This extension
23717 has been ignored since G++ 3.3 and is deprecated.
23719 G++ allows anonymous structs and unions to have members that are not
23720 public non-static data members (i.e.@: fields).  These extensions are
23721 deprecated.
23723 @node Backwards Compatibility
23724 @section Backwards Compatibility
23725 @cindex Backwards Compatibility
23726 @cindex ARM [Annotated C++ Reference Manual]
23728 Now that there is a definitive ISO standard C++, G++ has a specification
23729 to adhere to.  The C++ language evolved over time, and features that
23730 used to be acceptable in previous drafts of the standard, such as the ARM
23731 [Annotated C++ Reference Manual], are no longer accepted.  In order to allow
23732 compilation of C++ written to such drafts, G++ contains some backwards
23733 compatibilities.  @emph{All such backwards compatibility features are
23734 liable to disappear in future versions of G++.} They should be considered
23735 deprecated.   @xref{Deprecated Features}.
23737 @table @code
23739 @item Implicit C language
23740 Old C system header files did not contain an @code{extern "C" @{@dots{}@}}
23741 scope to set the language.  On such systems, all system header files are
23742 implicitly scoped inside a C language scope.  Such headers must
23743 correctly prototype function argument types, there is no leeway for
23744 @code{()} to indicate an unspecified set of arguments.
23746 @end table
23748 @c  LocalWords:  emph deftypefn builtin ARCv2EM SIMD builtins msimd
23749 @c  LocalWords:  typedef v4si v8hi DMA dma vdiwr vdowr