Fix memory barrier patterns for pre PA8800 processors
[official-gcc.git] / gcc / gimple-range-cache.cc
blob3c819933c4ed3bcb1f0e448a789bb6debe23dacd
1 /* Gimple ranger SSA cache implementation.
2 Copyright (C) 2017-2023 Free Software Foundation, Inc.
3 Contributed by Andrew MacLeod <amacleod@redhat.com>.
5 This file is part of GCC.
7 GCC is free software; you can redistribute it and/or modify
8 it under the terms of the GNU General Public License as published by
9 the Free Software Foundation; either version 3, or (at your option)
10 any later version.
12 GCC is distributed in the hope that it will be useful,
13 but WITHOUT ANY WARRANTY; without even the implied warranty of
14 MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
15 GNU General Public License for more details.
17 You should have received a copy of the GNU General Public License
18 along with GCC; see the file COPYING3. If not see
19 <http://www.gnu.org/licenses/>. */
21 #include "config.h"
22 #include "system.h"
23 #include "coretypes.h"
24 #include "backend.h"
25 #include "insn-codes.h"
26 #include "tree.h"
27 #include "gimple.h"
28 #include "ssa.h"
29 #include "gimple-pretty-print.h"
30 #include "gimple-range.h"
31 #include "value-range-storage.h"
32 #include "tree-cfg.h"
33 #include "target.h"
34 #include "attribs.h"
35 #include "gimple-iterator.h"
36 #include "gimple-walk.h"
37 #include "cfganal.h"
39 #define DEBUG_RANGE_CACHE (dump_file \
40 && (param_ranger_debug & RANGER_DEBUG_CACHE))
42 // This class represents the API into a cache of ranges for an SSA_NAME.
43 // Routines must be implemented to set, get, and query if a value is set.
45 class ssa_block_ranges
47 public:
48 ssa_block_ranges (tree t) : m_type (t) { }
49 virtual bool set_bb_range (const_basic_block bb, const vrange &r) = 0;
50 virtual bool get_bb_range (vrange &r, const_basic_block bb) = 0;
51 virtual bool bb_range_p (const_basic_block bb) = 0;
53 void dump(FILE *f);
54 private:
55 tree m_type;
58 // Print the list of known ranges for file F in a nice format.
60 void
61 ssa_block_ranges::dump (FILE *f)
63 basic_block bb;
64 Value_Range r (m_type);
66 FOR_EACH_BB_FN (bb, cfun)
67 if (get_bb_range (r, bb))
69 fprintf (f, "BB%d -> ", bb->index);
70 r.dump (f);
71 fprintf (f, "\n");
75 // This class implements the range cache as a linear vector, indexed by BB.
76 // It caches a varying and undefined range which are used instead of
77 // allocating new ones each time.
79 class sbr_vector : public ssa_block_ranges
81 public:
82 sbr_vector (tree t, vrange_allocator *allocator, bool zero_p = true);
84 virtual bool set_bb_range (const_basic_block bb, const vrange &r) override;
85 virtual bool get_bb_range (vrange &r, const_basic_block bb) override;
86 virtual bool bb_range_p (const_basic_block bb) override;
87 protected:
88 vrange_storage **m_tab; // Non growing vector.
89 int m_tab_size;
90 vrange_storage *m_varying;
91 vrange_storage *m_undefined;
92 tree m_type;
93 vrange_allocator *m_range_allocator;
94 bool m_zero_p;
95 void grow ();
99 // Initialize a block cache for an ssa_name of type T.
101 sbr_vector::sbr_vector (tree t, vrange_allocator *allocator, bool zero_p)
102 : ssa_block_ranges (t)
104 gcc_checking_assert (TYPE_P (t));
105 m_type = t;
106 m_zero_p = zero_p;
107 m_range_allocator = allocator;
108 m_tab_size = last_basic_block_for_fn (cfun) + 1;
109 m_tab = static_cast <vrange_storage **>
110 (allocator->alloc (m_tab_size * sizeof (vrange_storage *)));
111 if (zero_p)
112 memset (m_tab, 0, m_tab_size * sizeof (vrange *));
114 // Create the cached type range.
115 m_varying = m_range_allocator->clone_varying (t);
116 m_undefined = m_range_allocator->clone_undefined (t);
119 // Grow the vector when the CFG has increased in size.
121 void
122 sbr_vector::grow ()
124 int curr_bb_size = last_basic_block_for_fn (cfun);
125 gcc_checking_assert (curr_bb_size > m_tab_size);
127 // Increase the max of a)128, b)needed increase * 2, c)10% of current_size.
128 int inc = MAX ((curr_bb_size - m_tab_size) * 2, 128);
129 inc = MAX (inc, curr_bb_size / 10);
130 int new_size = inc + curr_bb_size;
132 // Allocate new memory, copy the old vector and clear the new space.
133 vrange_storage **t = static_cast <vrange_storage **>
134 (m_range_allocator->alloc (new_size * sizeof (vrange_storage *)));
135 memcpy (t, m_tab, m_tab_size * sizeof (vrange_storage *));
136 if (m_zero_p)
137 memset (t + m_tab_size, 0, (new_size - m_tab_size) * sizeof (vrange_storage *));
139 m_tab = t;
140 m_tab_size = new_size;
143 // Set the range for block BB to be R.
145 bool
146 sbr_vector::set_bb_range (const_basic_block bb, const vrange &r)
148 vrange_storage *m;
149 if (bb->index >= m_tab_size)
150 grow ();
151 if (r.varying_p ())
152 m = m_varying;
153 else if (r.undefined_p ())
154 m = m_undefined;
155 else
156 m = m_range_allocator->clone (r);
157 m_tab[bb->index] = m;
158 return true;
161 // Return the range associated with block BB in R. Return false if
162 // there is no range.
164 bool
165 sbr_vector::get_bb_range (vrange &r, const_basic_block bb)
167 if (bb->index >= m_tab_size)
168 return false;
169 vrange_storage *m = m_tab[bb->index];
170 if (m)
172 m->get_vrange (r, m_type);
173 return true;
175 return false;
178 // Return true if a range is present.
180 bool
181 sbr_vector::bb_range_p (const_basic_block bb)
183 if (bb->index < m_tab_size)
184 return m_tab[bb->index] != NULL;
185 return false;
188 // Like an sbr_vector, except it uses a bitmap to manage whetehr vale is set
189 // or not rather than cleared memory.
191 class sbr_lazy_vector : public sbr_vector
193 public:
194 sbr_lazy_vector (tree t, vrange_allocator *allocator, bitmap_obstack *bm);
196 virtual bool set_bb_range (const_basic_block bb, const vrange &r) override;
197 virtual bool get_bb_range (vrange &r, const_basic_block bb) override;
198 virtual bool bb_range_p (const_basic_block bb) override;
199 protected:
200 bitmap m_has_value;
203 sbr_lazy_vector::sbr_lazy_vector (tree t, vrange_allocator *allocator,
204 bitmap_obstack *bm)
205 : sbr_vector (t, allocator, false)
207 m_has_value = BITMAP_ALLOC (bm);
210 bool
211 sbr_lazy_vector::set_bb_range (const_basic_block bb, const vrange &r)
213 sbr_vector::set_bb_range (bb, r);
214 bitmap_set_bit (m_has_value, bb->index);
215 return true;
218 bool
219 sbr_lazy_vector::get_bb_range (vrange &r, const_basic_block bb)
221 if (bitmap_bit_p (m_has_value, bb->index))
222 return sbr_vector::get_bb_range (r, bb);
223 return false;
226 bool
227 sbr_lazy_vector::bb_range_p (const_basic_block bb)
229 return bitmap_bit_p (m_has_value, bb->index);
232 // This class implements the on entry cache via a sparse bitmap.
233 // It uses the quad bit routines to access 4 bits at a time.
234 // A value of 0 (the default) means there is no entry, and a value of
235 // 1 thru SBR_NUM represents an element in the m_range vector.
236 // Varying is given the first value (1) and pre-cached.
237 // SBR_NUM + 1 represents the value of UNDEFINED, and is never stored.
238 // SBR_NUM is the number of values that can be cached.
239 // Indexes are 1..SBR_NUM and are stored locally at m_range[0..SBR_NUM-1]
241 #define SBR_NUM 14
242 #define SBR_UNDEF SBR_NUM + 1
243 #define SBR_VARYING 1
245 class sbr_sparse_bitmap : public ssa_block_ranges
247 public:
248 sbr_sparse_bitmap (tree t, vrange_allocator *allocator, bitmap_obstack *bm);
249 virtual bool set_bb_range (const_basic_block bb, const vrange &r) override;
250 virtual bool get_bb_range (vrange &r, const_basic_block bb) override;
251 virtual bool bb_range_p (const_basic_block bb) override;
252 private:
253 void bitmap_set_quad (bitmap head, int quad, int quad_value);
254 int bitmap_get_quad (const_bitmap head, int quad);
255 vrange_allocator *m_range_allocator;
256 vrange_storage *m_range[SBR_NUM];
257 bitmap_head bitvec;
258 tree m_type;
261 // Initialize a block cache for an ssa_name of type T.
263 sbr_sparse_bitmap::sbr_sparse_bitmap (tree t, vrange_allocator *allocator,
264 bitmap_obstack *bm)
265 : ssa_block_ranges (t)
267 gcc_checking_assert (TYPE_P (t));
268 m_type = t;
269 bitmap_initialize (&bitvec, bm);
270 bitmap_tree_view (&bitvec);
271 m_range_allocator = allocator;
272 // Pre-cache varying.
273 m_range[0] = m_range_allocator->clone_varying (t);
274 // Pre-cache zero and non-zero values for pointers.
275 if (POINTER_TYPE_P (t))
277 int_range<2> nonzero;
278 nonzero.set_nonzero (t);
279 m_range[1] = m_range_allocator->clone (nonzero);
280 int_range<2> zero;
281 zero.set_zero (t);
282 m_range[2] = m_range_allocator->clone (zero);
284 else
285 m_range[1] = m_range[2] = NULL;
286 // Clear SBR_NUM entries.
287 for (int x = 3; x < SBR_NUM; x++)
288 m_range[x] = 0;
291 // Set 4 bit values in a sparse bitmap. This allows a bitmap to
292 // function as a sparse array of 4 bit values.
293 // QUAD is the index, QUAD_VALUE is the 4 bit value to set.
295 inline void
296 sbr_sparse_bitmap::bitmap_set_quad (bitmap head, int quad, int quad_value)
298 bitmap_set_aligned_chunk (head, quad, 4, (BITMAP_WORD) quad_value);
301 // Get a 4 bit value from a sparse bitmap. This allows a bitmap to
302 // function as a sparse array of 4 bit values.
303 // QUAD is the index.
304 inline int
305 sbr_sparse_bitmap::bitmap_get_quad (const_bitmap head, int quad)
307 return (int) bitmap_get_aligned_chunk (head, quad, 4);
310 // Set the range on entry to basic block BB to R.
312 bool
313 sbr_sparse_bitmap::set_bb_range (const_basic_block bb, const vrange &r)
315 if (r.undefined_p ())
317 bitmap_set_quad (&bitvec, bb->index, SBR_UNDEF);
318 return true;
321 // Loop thru the values to see if R is already present.
322 for (int x = 0; x < SBR_NUM; x++)
323 if (!m_range[x] || m_range[x]->equal_p (r))
325 if (!m_range[x])
326 m_range[x] = m_range_allocator->clone (r);
327 bitmap_set_quad (&bitvec, bb->index, x + 1);
328 return true;
330 // All values are taken, default to VARYING.
331 bitmap_set_quad (&bitvec, bb->index, SBR_VARYING);
332 return false;
335 // Return the range associated with block BB in R. Return false if
336 // there is no range.
338 bool
339 sbr_sparse_bitmap::get_bb_range (vrange &r, const_basic_block bb)
341 int value = bitmap_get_quad (&bitvec, bb->index);
343 if (!value)
344 return false;
346 gcc_checking_assert (value <= SBR_UNDEF);
347 if (value == SBR_UNDEF)
348 r.set_undefined ();
349 else
350 m_range[value - 1]->get_vrange (r, m_type);
351 return true;
354 // Return true if a range is present.
356 bool
357 sbr_sparse_bitmap::bb_range_p (const_basic_block bb)
359 return (bitmap_get_quad (&bitvec, bb->index) != 0);
362 // -------------------------------------------------------------------------
364 // Initialize the block cache.
366 block_range_cache::block_range_cache ()
368 bitmap_obstack_initialize (&m_bitmaps);
369 m_ssa_ranges.create (0);
370 m_ssa_ranges.safe_grow_cleared (num_ssa_names);
371 m_range_allocator = new vrange_allocator;
374 // Remove any m_block_caches which have been created.
376 block_range_cache::~block_range_cache ()
378 delete m_range_allocator;
379 // Release the vector itself.
380 m_ssa_ranges.release ();
381 bitmap_obstack_release (&m_bitmaps);
384 // Set the range for NAME on entry to block BB to R.
385 // If it has not been accessed yet, allocate it first.
387 bool
388 block_range_cache::set_bb_range (tree name, const_basic_block bb,
389 const vrange &r)
391 unsigned v = SSA_NAME_VERSION (name);
392 if (v >= m_ssa_ranges.length ())
393 m_ssa_ranges.safe_grow_cleared (num_ssa_names + 1);
395 if (!m_ssa_ranges[v])
397 // Use sparse bitmap representation if there are too many basic blocks.
398 if (last_basic_block_for_fn (cfun) > param_vrp_sparse_threshold)
400 void *r = m_range_allocator->alloc (sizeof (sbr_sparse_bitmap));
401 m_ssa_ranges[v] = new (r) sbr_sparse_bitmap (TREE_TYPE (name),
402 m_range_allocator,
403 &m_bitmaps);
405 else if (last_basic_block_for_fn (cfun) < param_vrp_vector_threshold)
407 // For small CFGs use the basic vector implemntation.
408 void *r = m_range_allocator->alloc (sizeof (sbr_vector));
409 m_ssa_ranges[v] = new (r) sbr_vector (TREE_TYPE (name),
410 m_range_allocator);
412 else
414 // Otherwise use the sparse vector implementation.
415 void *r = m_range_allocator->alloc (sizeof (sbr_lazy_vector));
416 m_ssa_ranges[v] = new (r) sbr_lazy_vector (TREE_TYPE (name),
417 m_range_allocator,
418 &m_bitmaps);
421 return m_ssa_ranges[v]->set_bb_range (bb, r);
425 // Return a pointer to the ssa_block_cache for NAME. If it has not been
426 // accessed yet, return NULL.
428 inline ssa_block_ranges *
429 block_range_cache::query_block_ranges (tree name)
431 unsigned v = SSA_NAME_VERSION (name);
432 if (v >= m_ssa_ranges.length () || !m_ssa_ranges[v])
433 return NULL;
434 return m_ssa_ranges[v];
439 // Return the range for NAME on entry to BB in R. Return true if there
440 // is one.
442 bool
443 block_range_cache::get_bb_range (vrange &r, tree name, const_basic_block bb)
445 ssa_block_ranges *ptr = query_block_ranges (name);
446 if (ptr)
447 return ptr->get_bb_range (r, bb);
448 return false;
451 // Return true if NAME has a range set in block BB.
453 bool
454 block_range_cache::bb_range_p (tree name, const_basic_block bb)
456 ssa_block_ranges *ptr = query_block_ranges (name);
457 if (ptr)
458 return ptr->bb_range_p (bb);
459 return false;
462 // Print all known block caches to file F.
464 void
465 block_range_cache::dump (FILE *f)
467 unsigned x;
468 for (x = 0; x < m_ssa_ranges.length (); ++x)
470 if (m_ssa_ranges[x])
472 fprintf (f, " Ranges for ");
473 print_generic_expr (f, ssa_name (x), TDF_NONE);
474 fprintf (f, ":\n");
475 m_ssa_ranges[x]->dump (f);
476 fprintf (f, "\n");
481 // Print all known ranges on entry to block BB to file F.
483 void
484 block_range_cache::dump (FILE *f, basic_block bb, bool print_varying)
486 unsigned x;
487 bool summarize_varying = false;
488 for (x = 1; x < m_ssa_ranges.length (); ++x)
490 if (!gimple_range_ssa_p (ssa_name (x)))
491 continue;
493 Value_Range r (TREE_TYPE (ssa_name (x)));
494 if (m_ssa_ranges[x] && m_ssa_ranges[x]->get_bb_range (r, bb))
496 if (!print_varying && r.varying_p ())
498 summarize_varying = true;
499 continue;
501 print_generic_expr (f, ssa_name (x), TDF_NONE);
502 fprintf (f, "\t");
503 r.dump(f);
504 fprintf (f, "\n");
507 // If there were any varying entries, lump them all together.
508 if (summarize_varying)
510 fprintf (f, "VARYING_P on entry : ");
511 for (x = 1; x < num_ssa_names; ++x)
513 if (!gimple_range_ssa_p (ssa_name (x)))
514 continue;
516 Value_Range r (TREE_TYPE (ssa_name (x)));
517 if (m_ssa_ranges[x] && m_ssa_ranges[x]->get_bb_range (r, bb))
519 if (r.varying_p ())
521 print_generic_expr (f, ssa_name (x), TDF_NONE);
522 fprintf (f, " ");
526 fprintf (f, "\n");
530 // -------------------------------------------------------------------------
532 // Initialize an ssa cache.
534 ssa_cache::ssa_cache ()
536 m_tab.create (0);
537 m_range_allocator = new vrange_allocator;
540 // Deconstruct an ssa cache.
542 ssa_cache::~ssa_cache ()
544 m_tab.release ();
545 delete m_range_allocator;
548 // Enable a query to evaluate staements/ramnges based on picking up ranges
549 // from just an ssa-cache.
551 bool
552 ssa_cache::range_of_expr (vrange &r, tree expr, gimple *stmt)
554 if (!gimple_range_ssa_p (expr))
555 return get_tree_range (r, expr, stmt);
557 if (!get_range (r, expr))
558 gimple_range_global (r, expr, cfun);
559 return true;
562 // Return TRUE if the global range of NAME has a cache entry.
564 bool
565 ssa_cache::has_range (tree name) const
567 unsigned v = SSA_NAME_VERSION (name);
568 if (v >= m_tab.length ())
569 return false;
570 return m_tab[v] != NULL;
573 // Retrieve the global range of NAME from cache memory if it exists.
574 // Return the value in R.
576 bool
577 ssa_cache::get_range (vrange &r, tree name) const
579 unsigned v = SSA_NAME_VERSION (name);
580 if (v >= m_tab.length ())
581 return false;
583 vrange_storage *stow = m_tab[v];
584 if (!stow)
585 return false;
586 stow->get_vrange (r, TREE_TYPE (name));
587 return true;
590 // Set the range for NAME to R in the ssa cache.
591 // Return TRUE if there was already a range set, otherwise false.
593 bool
594 ssa_cache::set_range (tree name, const vrange &r)
596 unsigned v = SSA_NAME_VERSION (name);
597 if (v >= m_tab.length ())
598 m_tab.safe_grow_cleared (num_ssa_names + 1);
600 vrange_storage *m = m_tab[v];
601 if (m && m->fits_p (r))
602 m->set_vrange (r);
603 else
604 m_tab[v] = m_range_allocator->clone (r);
605 return m != NULL;
608 // If NAME has a range, intersect it with R, otherwise set it to R.
609 // Return TRUE if the range is new or changes.
611 bool
612 ssa_cache::merge_range (tree name, const vrange &r)
614 unsigned v = SSA_NAME_VERSION (name);
615 if (v >= m_tab.length ())
616 m_tab.safe_grow_cleared (num_ssa_names + 1);
618 vrange_storage *m = m_tab[v];
619 // Check if this is a new value.
620 if (!m)
621 m_tab[v] = m_range_allocator->clone (r);
622 else
624 Value_Range curr (TREE_TYPE (name));
625 m->get_vrange (curr, TREE_TYPE (name));
626 // If there is no change, return false.
627 if (!curr.intersect (r))
628 return false;
630 if (m->fits_p (curr))
631 m->set_vrange (curr);
632 else
633 m_tab[v] = m_range_allocator->clone (curr);
635 return true;
638 // Set the range for NAME to R in the ssa cache.
640 void
641 ssa_cache::clear_range (tree name)
643 unsigned v = SSA_NAME_VERSION (name);
644 if (v >= m_tab.length ())
645 return;
646 m_tab[v] = NULL;
649 // Clear the ssa cache.
651 void
652 ssa_cache::clear ()
654 if (m_tab.address ())
655 memset (m_tab.address(), 0, m_tab.length () * sizeof (vrange *));
658 // Dump the contents of the ssa cache to F.
660 void
661 ssa_cache::dump (FILE *f)
663 for (unsigned x = 1; x < num_ssa_names; x++)
665 if (!gimple_range_ssa_p (ssa_name (x)))
666 continue;
667 Value_Range r (TREE_TYPE (ssa_name (x)));
668 // Dump all non-varying ranges.
669 if (get_range (r, ssa_name (x)) && !r.varying_p ())
671 print_generic_expr (f, ssa_name (x), TDF_NONE);
672 fprintf (f, " : ");
673 r.dump (f);
674 fprintf (f, "\n");
680 // Return true if NAME has an active range in the cache.
682 bool
683 ssa_lazy_cache::has_range (tree name) const
685 return bitmap_bit_p (active_p, SSA_NAME_VERSION (name));
688 // Set range of NAME to R in a lazy cache. Return FALSE if it did not already
689 // have a range.
691 bool
692 ssa_lazy_cache::set_range (tree name, const vrange &r)
694 unsigned v = SSA_NAME_VERSION (name);
695 if (!bitmap_set_bit (active_p, v))
697 // There is already an entry, simply set it.
698 gcc_checking_assert (v < m_tab.length ());
699 return ssa_cache::set_range (name, r);
701 if (v >= m_tab.length ())
702 m_tab.safe_grow (num_ssa_names + 1);
703 m_tab[v] = m_range_allocator->clone (r);
704 return false;
707 // If NAME has a range, intersect it with R, otherwise set it to R.
708 // Return TRUE if the range is new or changes.
710 bool
711 ssa_lazy_cache::merge_range (tree name, const vrange &r)
713 unsigned v = SSA_NAME_VERSION (name);
714 if (!bitmap_set_bit (active_p, v))
716 // There is already an entry, simply merge it.
717 gcc_checking_assert (v < m_tab.length ());
718 return ssa_cache::merge_range (name, r);
720 if (v >= m_tab.length ())
721 m_tab.safe_grow (num_ssa_names + 1);
722 m_tab[v] = m_range_allocator->clone (r);
723 return true;
726 // Return TRUE if NAME has a range, and return it in R.
728 bool
729 ssa_lazy_cache::get_range (vrange &r, tree name) const
731 if (!bitmap_bit_p (active_p, SSA_NAME_VERSION (name)))
732 return false;
733 return ssa_cache::get_range (r, name);
736 // Remove NAME from the active range list.
738 void
739 ssa_lazy_cache::clear_range (tree name)
741 bitmap_clear_bit (active_p, SSA_NAME_VERSION (name));
744 // Remove all ranges from the active range list.
746 void
747 ssa_lazy_cache::clear ()
749 bitmap_clear (active_p);
752 // --------------------------------------------------------------------------
755 // This class will manage the timestamps for each ssa_name.
756 // When a value is calculated, the timestamp is set to the current time.
757 // Current time is then incremented. Any dependencies will already have
758 // been calculated, and will thus have older timestamps.
759 // If one of those values is ever calculated again, it will get a newer
760 // timestamp, and the "current_p" check will fail.
762 class temporal_cache
764 public:
765 temporal_cache ();
766 ~temporal_cache ();
767 bool current_p (tree name, tree dep1, tree dep2) const;
768 void set_timestamp (tree name);
769 void set_always_current (tree name, bool value);
770 bool always_current_p (tree name) const;
771 private:
772 int temporal_value (unsigned ssa) const;
773 int m_current_time;
774 vec <int> m_timestamp;
777 inline
778 temporal_cache::temporal_cache ()
780 m_current_time = 1;
781 m_timestamp.create (0);
782 m_timestamp.safe_grow_cleared (num_ssa_names);
785 inline
786 temporal_cache::~temporal_cache ()
788 m_timestamp.release ();
791 // Return the timestamp value for SSA, or 0 if there isn't one.
793 inline int
794 temporal_cache::temporal_value (unsigned ssa) const
796 if (ssa >= m_timestamp.length ())
797 return 0;
798 return abs (m_timestamp[ssa]);
801 // Return TRUE if the timestamp for NAME is newer than any of its dependents.
802 // Up to 2 dependencies can be checked.
804 bool
805 temporal_cache::current_p (tree name, tree dep1, tree dep2) const
807 if (always_current_p (name))
808 return true;
810 // Any non-registered dependencies will have a value of 0 and thus be older.
811 // Return true if time is newer than either dependent.
812 int ts = temporal_value (SSA_NAME_VERSION (name));
813 if (dep1 && ts < temporal_value (SSA_NAME_VERSION (dep1)))
814 return false;
815 if (dep2 && ts < temporal_value (SSA_NAME_VERSION (dep2)))
816 return false;
818 return true;
821 // This increments the global timer and sets the timestamp for NAME.
823 inline void
824 temporal_cache::set_timestamp (tree name)
826 unsigned v = SSA_NAME_VERSION (name);
827 if (v >= m_timestamp.length ())
828 m_timestamp.safe_grow_cleared (num_ssa_names + 20);
829 m_timestamp[v] = ++m_current_time;
832 // Set the timestamp to 0, marking it as "always up to date".
834 inline void
835 temporal_cache::set_always_current (tree name, bool value)
837 unsigned v = SSA_NAME_VERSION (name);
838 if (v >= m_timestamp.length ())
839 m_timestamp.safe_grow_cleared (num_ssa_names + 20);
841 int ts = abs (m_timestamp[v]);
842 // If this does not have a timestamp, create one.
843 if (ts == 0)
844 ts = ++m_current_time;
845 m_timestamp[v] = value ? -ts : ts;
848 // Return true if NAME is always current.
850 inline bool
851 temporal_cache::always_current_p (tree name) const
853 unsigned v = SSA_NAME_VERSION (name);
854 if (v >= m_timestamp.length ())
855 return false;
856 return m_timestamp[v] <= 0;
859 // --------------------------------------------------------------------------
861 // This class provides an abstraction of a list of blocks to be updated
862 // by the cache. It is currently a stack but could be changed. It also
863 // maintains a list of blocks which have failed propagation, and does not
864 // enter any of those blocks into the list.
866 // A vector over the BBs is maintained, and an entry of 0 means it is not in
867 // a list. Otherwise, the entry is the next block in the list. -1 terminates
868 // the list. m_head points to the top of the list, -1 if the list is empty.
870 class update_list
872 public:
873 update_list ();
874 ~update_list ();
875 void add (basic_block bb);
876 basic_block pop ();
877 inline bool empty_p () { return m_update_head == -1; }
878 inline void clear_failures () { bitmap_clear (m_propfail); }
879 inline void propagation_failed (basic_block bb)
880 { bitmap_set_bit (m_propfail, bb->index); }
881 private:
882 vec<int> m_update_list;
883 int m_update_head;
884 bitmap m_propfail;
887 // Create an update list.
889 update_list::update_list ()
891 m_update_list.create (0);
892 m_update_list.safe_grow_cleared (last_basic_block_for_fn (cfun) + 64);
893 m_update_head = -1;
894 m_propfail = BITMAP_ALLOC (NULL);
897 // Destroy an update list.
899 update_list::~update_list ()
901 m_update_list.release ();
902 BITMAP_FREE (m_propfail);
905 // Add BB to the list of blocks to update, unless it's already in the list.
907 void
908 update_list::add (basic_block bb)
910 int i = bb->index;
911 // If propagation has failed for BB, or its already in the list, don't
912 // add it again.
913 if ((unsigned)i >= m_update_list.length ())
914 m_update_list.safe_grow_cleared (i + 64);
915 if (!m_update_list[i] && !bitmap_bit_p (m_propfail, i))
917 if (empty_p ())
919 m_update_head = i;
920 m_update_list[i] = -1;
922 else
924 gcc_checking_assert (m_update_head > 0);
925 m_update_list[i] = m_update_head;
926 m_update_head = i;
931 // Remove a block from the list.
933 basic_block
934 update_list::pop ()
936 gcc_checking_assert (!empty_p ());
937 basic_block bb = BASIC_BLOCK_FOR_FN (cfun, m_update_head);
938 int pop = m_update_head;
939 m_update_head = m_update_list[pop];
940 m_update_list[pop] = 0;
941 return bb;
944 // --------------------------------------------------------------------------
946 ranger_cache::ranger_cache (int not_executable_flag, bool use_imm_uses)
947 : m_gori (not_executable_flag),
948 m_exit (use_imm_uses)
950 m_workback.create (0);
951 m_workback.safe_grow_cleared (last_basic_block_for_fn (cfun));
952 m_workback.truncate (0);
953 m_temporal = new temporal_cache;
954 // If DOM info is available, spawn an oracle as well.
955 if (dom_info_available_p (CDI_DOMINATORS))
956 m_oracle = new dom_oracle ();
957 else
958 m_oracle = NULL;
960 unsigned x, lim = last_basic_block_for_fn (cfun);
961 // Calculate outgoing range info upfront. This will fully populate the
962 // m_maybe_variant bitmap which will help eliminate processing of names
963 // which never have their ranges adjusted.
964 for (x = 0; x < lim ; x++)
966 basic_block bb = BASIC_BLOCK_FOR_FN (cfun, x);
967 if (bb)
968 m_gori.exports (bb);
970 m_update = new update_list ();
973 ranger_cache::~ranger_cache ()
975 delete m_update;
976 if (m_oracle)
977 delete m_oracle;
978 delete m_temporal;
979 m_workback.release ();
982 // Dump the global caches to file F. if GORI_DUMP is true, dump the
983 // gori map as well.
985 void
986 ranger_cache::dump (FILE *f)
988 fprintf (f, "Non-varying global ranges:\n");
989 fprintf (f, "=========================:\n");
990 m_globals.dump (f);
991 fprintf (f, "\n");
994 // Dump the caches for basic block BB to file F.
996 void
997 ranger_cache::dump_bb (FILE *f, basic_block bb)
999 m_gori.gori_map::dump (f, bb, false);
1000 m_on_entry.dump (f, bb);
1001 if (m_oracle)
1002 m_oracle->dump (f, bb);
1005 // Get the global range for NAME, and return in R. Return false if the
1006 // global range is not set, and return the legacy global value in R.
1008 bool
1009 ranger_cache::get_global_range (vrange &r, tree name) const
1011 if (m_globals.get_range (r, name))
1012 return true;
1013 gimple_range_global (r, name);
1014 return false;
1017 // Get the global range for NAME, and return in R. Return false if the
1018 // global range is not set, and R will contain the legacy global value.
1019 // CURRENT_P is set to true if the value was in cache and not stale.
1020 // Otherwise, set CURRENT_P to false and mark as it always current.
1021 // If the global cache did not have a value, initialize it as well.
1022 // After this call, the global cache will have a value.
1024 bool
1025 ranger_cache::get_global_range (vrange &r, tree name, bool &current_p)
1027 bool had_global = get_global_range (r, name);
1029 // If there was a global value, set current flag, otherwise set a value.
1030 current_p = false;
1031 if (had_global)
1032 current_p = r.singleton_p ()
1033 || m_temporal->current_p (name, m_gori.depend1 (name),
1034 m_gori.depend2 (name));
1035 else
1037 // If no global value has been set and value is VARYING, fold the stmt
1038 // using just global ranges to get a better initial value.
1039 // After inlining we tend to decide some things are constant, so
1040 // so not do this evaluation after inlining.
1041 if (r.varying_p () && !cfun->after_inlining)
1043 gimple *s = SSA_NAME_DEF_STMT (name);
1044 if (gimple_get_lhs (s) == name)
1046 if (!fold_range (r, s, get_global_range_query ()))
1047 gimple_range_global (r, name);
1050 m_globals.set_range (name, r);
1053 // If the existing value was not current, mark it as always current.
1054 if (!current_p)
1055 m_temporal->set_always_current (name, true);
1056 return had_global;
1059 // Set the global range of NAME to R and give it a timestamp.
1061 void
1062 ranger_cache::set_global_range (tree name, const vrange &r, bool changed)
1064 // Setting a range always clears the always_current flag.
1065 m_temporal->set_always_current (name, false);
1066 if (!changed)
1068 // If there are dependencies, make sure this is not out of date.
1069 if (!m_temporal->current_p (name, m_gori.depend1 (name),
1070 m_gori.depend2 (name)))
1071 m_temporal->set_timestamp (name);
1072 return;
1074 if (m_globals.set_range (name, r))
1076 // If there was already a range set, propagate the new value.
1077 basic_block bb = gimple_bb (SSA_NAME_DEF_STMT (name));
1078 if (!bb)
1079 bb = ENTRY_BLOCK_PTR_FOR_FN (cfun);
1081 if (DEBUG_RANGE_CACHE)
1082 fprintf (dump_file, " GLOBAL :");
1084 propagate_updated_value (name, bb);
1086 // Constants no longer need to tracked. Any further refinement has to be
1087 // undefined. Propagation works better with constants. PR 100512.
1088 // Pointers which resolve to non-zero also do not need
1089 // tracking in the cache as they will never change. See PR 98866.
1090 // Timestamp must always be updated, or dependent calculations may
1091 // not include this latest value. PR 100774.
1093 if (r.singleton_p ()
1094 || (POINTER_TYPE_P (TREE_TYPE (name)) && r.nonzero_p ()))
1095 m_gori.set_range_invariant (name);
1096 m_temporal->set_timestamp (name);
1099 // Provide lookup for the gori-computes class to access the best known range
1100 // of an ssa_name in any given basic block. Note, this does no additional
1101 // lookups, just accesses the data that is already known.
1103 // Get the range of NAME when the def occurs in block BB. If BB is NULL
1104 // get the best global value available.
1106 void
1107 ranger_cache::range_of_def (vrange &r, tree name, basic_block bb)
1109 gcc_checking_assert (gimple_range_ssa_p (name));
1110 gcc_checking_assert (!bb || bb == gimple_bb (SSA_NAME_DEF_STMT (name)));
1112 // Pick up the best global range available.
1113 if (!m_globals.get_range (r, name))
1115 // If that fails, try to calculate the range using just global values.
1116 gimple *s = SSA_NAME_DEF_STMT (name);
1117 if (gimple_get_lhs (s) == name)
1118 fold_range (r, s, get_global_range_query ());
1119 else
1120 gimple_range_global (r, name);
1124 // Get the range of NAME as it occurs on entry to block BB. Use MODE for
1125 // lookups.
1127 void
1128 ranger_cache::entry_range (vrange &r, tree name, basic_block bb,
1129 enum rfd_mode mode)
1131 if (bb == ENTRY_BLOCK_PTR_FOR_FN (cfun))
1133 gimple_range_global (r, name);
1134 return;
1137 // Look for the on-entry value of name in BB from the cache.
1138 // Otherwise pick up the best available global value.
1139 if (!m_on_entry.get_bb_range (r, name, bb))
1140 if (!range_from_dom (r, name, bb, mode))
1141 range_of_def (r, name);
1144 // Get the range of NAME as it occurs on exit from block BB. Use MODE for
1145 // lookups.
1147 void
1148 ranger_cache::exit_range (vrange &r, tree name, basic_block bb,
1149 enum rfd_mode mode)
1151 if (bb == ENTRY_BLOCK_PTR_FOR_FN (cfun))
1153 gimple_range_global (r, name);
1154 return;
1157 gimple *s = SSA_NAME_DEF_STMT (name);
1158 basic_block def_bb = gimple_bb (s);
1159 if (def_bb == bb)
1160 range_of_def (r, name, bb);
1161 else
1162 entry_range (r, name, bb, mode);
1165 // Get the range of NAME on edge E using MODE, return the result in R.
1166 // Always returns a range and true.
1168 bool
1169 ranger_cache::edge_range (vrange &r, edge e, tree name, enum rfd_mode mode)
1171 exit_range (r, name, e->src, mode);
1172 // If this is not an abnormal edge, check for inferred ranges on exit.
1173 if ((e->flags & (EDGE_EH | EDGE_ABNORMAL)) == 0)
1174 m_exit.maybe_adjust_range (r, name, e->src);
1175 Value_Range er (TREE_TYPE (name));
1176 if (m_gori.outgoing_edge_range_p (er, e, name, *this))
1177 r.intersect (er);
1178 return true;
1183 // Implement range_of_expr.
1185 bool
1186 ranger_cache::range_of_expr (vrange &r, tree name, gimple *stmt)
1188 if (!gimple_range_ssa_p (name))
1190 get_tree_range (r, name, stmt);
1191 return true;
1194 basic_block bb = gimple_bb (stmt);
1195 gimple *def_stmt = SSA_NAME_DEF_STMT (name);
1196 basic_block def_bb = gimple_bb (def_stmt);
1198 if (bb == def_bb)
1199 range_of_def (r, name, bb);
1200 else
1201 entry_range (r, name, bb, RFD_NONE);
1202 return true;
1206 // Implement range_on_edge. Always return the best available range using
1207 // the current cache values.
1209 bool
1210 ranger_cache::range_on_edge (vrange &r, edge e, tree expr)
1212 if (gimple_range_ssa_p (expr))
1213 return edge_range (r, e, expr, RFD_NONE);
1214 return get_tree_range (r, expr, NULL);
1217 // Return a static range for NAME on entry to basic block BB in R. If
1218 // calc is true, fill any cache entries required between BB and the
1219 // def block for NAME. Otherwise, return false if the cache is empty.
1221 bool
1222 ranger_cache::block_range (vrange &r, basic_block bb, tree name, bool calc)
1224 gcc_checking_assert (gimple_range_ssa_p (name));
1226 // If there are no range calculations anywhere in the IL, global range
1227 // applies everywhere, so don't bother caching it.
1228 if (!m_gori.has_edge_range_p (name))
1229 return false;
1231 if (calc)
1233 gimple *def_stmt = SSA_NAME_DEF_STMT (name);
1234 basic_block def_bb = NULL;
1235 if (def_stmt)
1236 def_bb = gimple_bb (def_stmt);;
1237 if (!def_bb)
1239 // If we get to the entry block, this better be a default def
1240 // or range_on_entry was called for a block not dominated by
1241 // the def.
1242 gcc_checking_assert (SSA_NAME_IS_DEFAULT_DEF (name));
1243 def_bb = ENTRY_BLOCK_PTR_FOR_FN (cfun);
1246 // There is no range on entry for the definition block.
1247 if (def_bb == bb)
1248 return false;
1250 // Otherwise, go figure out what is known in predecessor blocks.
1251 fill_block_cache (name, bb, def_bb);
1252 gcc_checking_assert (m_on_entry.bb_range_p (name, bb));
1254 return m_on_entry.get_bb_range (r, name, bb);
1257 // If there is anything in the propagation update_list, continue
1258 // processing NAME until the list of blocks is empty.
1260 void
1261 ranger_cache::propagate_cache (tree name)
1263 basic_block bb;
1264 edge_iterator ei;
1265 edge e;
1266 tree type = TREE_TYPE (name);
1267 Value_Range new_range (type);
1268 Value_Range current_range (type);
1269 Value_Range e_range (type);
1271 // Process each block by seeing if its calculated range on entry is
1272 // the same as its cached value. If there is a difference, update
1273 // the cache to reflect the new value, and check to see if any
1274 // successors have cache entries which may need to be checked for
1275 // updates.
1277 while (!m_update->empty_p ())
1279 bb = m_update->pop ();
1280 gcc_checking_assert (m_on_entry.bb_range_p (name, bb));
1281 m_on_entry.get_bb_range (current_range, name, bb);
1283 if (DEBUG_RANGE_CACHE)
1285 fprintf (dump_file, "FWD visiting block %d for ", bb->index);
1286 print_generic_expr (dump_file, name, TDF_SLIM);
1287 fprintf (dump_file, " starting range : ");
1288 current_range.dump (dump_file);
1289 fprintf (dump_file, "\n");
1292 // Calculate the "new" range on entry by unioning the pred edges.
1293 new_range.set_undefined ();
1294 FOR_EACH_EDGE (e, ei, bb->preds)
1296 edge_range (e_range, e, name, RFD_READ_ONLY);
1297 if (DEBUG_RANGE_CACHE)
1299 fprintf (dump_file, " edge %d->%d :", e->src->index, bb->index);
1300 e_range.dump (dump_file);
1301 fprintf (dump_file, "\n");
1303 new_range.union_ (e_range);
1304 if (new_range.varying_p ())
1305 break;
1308 // If the range on entry has changed, update it.
1309 if (new_range != current_range)
1311 bool ok_p = m_on_entry.set_bb_range (name, bb, new_range);
1312 // If the cache couldn't set the value, mark it as failed.
1313 if (!ok_p)
1314 m_update->propagation_failed (bb);
1315 if (DEBUG_RANGE_CACHE)
1317 if (!ok_p)
1319 fprintf (dump_file, " Cache failure to store value:");
1320 print_generic_expr (dump_file, name, TDF_SLIM);
1321 fprintf (dump_file, " ");
1323 else
1325 fprintf (dump_file, " Updating range to ");
1326 new_range.dump (dump_file);
1328 fprintf (dump_file, "\n Updating blocks :");
1330 // Mark each successor that has a range to re-check its range
1331 FOR_EACH_EDGE (e, ei, bb->succs)
1332 if (m_on_entry.bb_range_p (name, e->dest))
1334 if (DEBUG_RANGE_CACHE)
1335 fprintf (dump_file, " bb%d",e->dest->index);
1336 m_update->add (e->dest);
1338 if (DEBUG_RANGE_CACHE)
1339 fprintf (dump_file, "\n");
1342 if (DEBUG_RANGE_CACHE)
1344 fprintf (dump_file, "DONE visiting blocks for ");
1345 print_generic_expr (dump_file, name, TDF_SLIM);
1346 fprintf (dump_file, "\n");
1348 m_update->clear_failures ();
1351 // Check to see if an update to the value for NAME in BB has any effect
1352 // on values already in the on-entry cache for successor blocks.
1353 // If it does, update them. Don't visit any blocks which don't have a cache
1354 // entry.
1356 void
1357 ranger_cache::propagate_updated_value (tree name, basic_block bb)
1359 edge e;
1360 edge_iterator ei;
1362 // The update work list should be empty at this point.
1363 gcc_checking_assert (m_update->empty_p ());
1364 gcc_checking_assert (bb);
1366 if (DEBUG_RANGE_CACHE)
1368 fprintf (dump_file, " UPDATE cache for ");
1369 print_generic_expr (dump_file, name, TDF_SLIM);
1370 fprintf (dump_file, " in BB %d : successors : ", bb->index);
1372 FOR_EACH_EDGE (e, ei, bb->succs)
1374 // Only update active cache entries.
1375 if (m_on_entry.bb_range_p (name, e->dest))
1377 m_update->add (e->dest);
1378 if (DEBUG_RANGE_CACHE)
1379 fprintf (dump_file, " UPDATE: bb%d", e->dest->index);
1382 if (!m_update->empty_p ())
1384 if (DEBUG_RANGE_CACHE)
1385 fprintf (dump_file, "\n");
1386 propagate_cache (name);
1388 else
1390 if (DEBUG_RANGE_CACHE)
1391 fprintf (dump_file, " : No updates!\n");
1395 // Make sure that the range-on-entry cache for NAME is set for block BB.
1396 // Work back through the CFG to DEF_BB ensuring the range is calculated
1397 // on the block/edges leading back to that point.
1399 void
1400 ranger_cache::fill_block_cache (tree name, basic_block bb, basic_block def_bb)
1402 edge_iterator ei;
1403 edge e;
1404 tree type = TREE_TYPE (name);
1405 Value_Range block_result (type);
1406 Value_Range undefined (type);
1408 // At this point we shouldn't be looking at the def, entry block.
1409 gcc_checking_assert (bb != def_bb && bb != ENTRY_BLOCK_PTR_FOR_FN (cfun));
1410 gcc_checking_assert (m_workback.length () == 0);
1412 // If the block cache is set, then we've already visited this block.
1413 if (m_on_entry.bb_range_p (name, bb))
1414 return;
1416 if (DEBUG_RANGE_CACHE)
1418 fprintf (dump_file, "\n");
1419 print_generic_expr (dump_file, name, TDF_SLIM);
1420 fprintf (dump_file, " : ");
1423 // Check if a dominators can supply the range.
1424 if (range_from_dom (block_result, name, bb, RFD_FILL))
1426 if (DEBUG_RANGE_CACHE)
1428 fprintf (dump_file, "Filled from dominator! : ");
1429 block_result.dump (dump_file);
1430 fprintf (dump_file, "\n");
1432 // See if any equivalences can refine it.
1433 // PR 109462, like 108139 below, a one way equivalence introduced
1434 // by a PHI node can also be through the definition side. Disallow it.
1435 if (m_oracle)
1437 tree equiv_name;
1438 relation_kind rel;
1439 int prec = TYPE_PRECISION (type);
1440 FOR_EACH_PARTIAL_AND_FULL_EQUIV (m_oracle, bb, name, equiv_name, rel)
1442 basic_block equiv_bb = gimple_bb (SSA_NAME_DEF_STMT (equiv_name));
1444 // Ignore partial equivs that are smaller than this object.
1445 if (rel != VREL_EQ && prec > pe_to_bits (rel))
1446 continue;
1448 // Check if the equiv has any ranges calculated.
1449 if (!m_gori.has_edge_range_p (equiv_name))
1450 continue;
1452 // Check if the equiv definition dominates this block
1453 if (equiv_bb == bb ||
1454 (equiv_bb && !dominated_by_p (CDI_DOMINATORS, bb, equiv_bb)))
1455 continue;
1457 if (DEBUG_RANGE_CACHE)
1459 if (rel == VREL_EQ)
1460 fprintf (dump_file, "Checking Equivalence (");
1461 else
1462 fprintf (dump_file, "Checking Partial equiv (");
1463 print_relation (dump_file, rel);
1464 fprintf (dump_file, ") ");
1465 print_generic_expr (dump_file, equiv_name, TDF_SLIM);
1466 fprintf (dump_file, "\n");
1468 Value_Range equiv_range (TREE_TYPE (equiv_name));
1469 if (range_from_dom (equiv_range, equiv_name, bb, RFD_READ_ONLY))
1471 if (rel != VREL_EQ)
1472 range_cast (equiv_range, type);
1473 if (block_result.intersect (equiv_range))
1475 if (DEBUG_RANGE_CACHE)
1477 if (rel == VREL_EQ)
1478 fprintf (dump_file, "Equivalence update! : ");
1479 else
1480 fprintf (dump_file, "Partial equiv update! : ");
1481 print_generic_expr (dump_file, equiv_name, TDF_SLIM);
1482 fprintf (dump_file, " has range : ");
1483 equiv_range.dump (dump_file);
1484 fprintf (dump_file, " refining range to :");
1485 block_result.dump (dump_file);
1486 fprintf (dump_file, "\n");
1493 m_on_entry.set_bb_range (name, bb, block_result);
1494 gcc_checking_assert (m_workback.length () == 0);
1495 return;
1498 // Visit each block back to the DEF. Initialize each one to UNDEFINED.
1499 // m_visited at the end will contain all the blocks that we needed to set
1500 // the range_on_entry cache for.
1501 m_workback.quick_push (bb);
1502 undefined.set_undefined ();
1503 m_on_entry.set_bb_range (name, bb, undefined);
1504 gcc_checking_assert (m_update->empty_p ());
1506 while (m_workback.length () > 0)
1508 basic_block node = m_workback.pop ();
1509 if (DEBUG_RANGE_CACHE)
1511 fprintf (dump_file, "BACK visiting block %d for ", node->index);
1512 print_generic_expr (dump_file, name, TDF_SLIM);
1513 fprintf (dump_file, "\n");
1516 FOR_EACH_EDGE (e, ei, node->preds)
1518 basic_block pred = e->src;
1519 Value_Range r (TREE_TYPE (name));
1521 if (DEBUG_RANGE_CACHE)
1522 fprintf (dump_file, " %d->%d ",e->src->index, e->dest->index);
1524 // If the pred block is the def block add this BB to update list.
1525 if (pred == def_bb)
1527 m_update->add (node);
1528 continue;
1531 // If the pred is entry but NOT def, then it is used before
1532 // defined, it'll get set to [] and no need to update it.
1533 if (pred == ENTRY_BLOCK_PTR_FOR_FN (cfun))
1535 if (DEBUG_RANGE_CACHE)
1536 fprintf (dump_file, "entry: bail.");
1537 continue;
1540 // Regardless of whether we have visited pred or not, if the
1541 // pred has inferred ranges, revisit this block.
1542 // Don't search the DOM tree.
1543 if (m_exit.has_range_p (name, pred))
1545 if (DEBUG_RANGE_CACHE)
1546 fprintf (dump_file, "Inferred range: update ");
1547 m_update->add (node);
1550 // If the pred block already has a range, or if it can contribute
1551 // something new. Ie, the edge generates a range of some sort.
1552 if (m_on_entry.get_bb_range (r, name, pred))
1554 if (DEBUG_RANGE_CACHE)
1556 fprintf (dump_file, "has cache, ");
1557 r.dump (dump_file);
1558 fprintf (dump_file, ", ");
1560 if (!r.undefined_p () || m_gori.has_edge_range_p (name, e))
1562 m_update->add (node);
1563 if (DEBUG_RANGE_CACHE)
1564 fprintf (dump_file, "update. ");
1566 continue;
1569 if (DEBUG_RANGE_CACHE)
1570 fprintf (dump_file, "pushing undefined pred block.\n");
1571 // If the pred hasn't been visited (has no range), add it to
1572 // the list.
1573 gcc_checking_assert (!m_on_entry.bb_range_p (name, pred));
1574 m_on_entry.set_bb_range (name, pred, undefined);
1575 m_workback.quick_push (pred);
1579 if (DEBUG_RANGE_CACHE)
1580 fprintf (dump_file, "\n");
1582 // Now fill in the marked blocks with values.
1583 propagate_cache (name);
1584 if (DEBUG_RANGE_CACHE)
1585 fprintf (dump_file, " Propagation update done.\n");
1588 // Resolve the range of BB if the dominators range is R by calculating incoming
1589 // edges to this block. All lead back to the dominator so should be cheap.
1590 // The range for BB is set and returned in R.
1592 void
1593 ranger_cache::resolve_dom (vrange &r, tree name, basic_block bb)
1595 basic_block def_bb = gimple_bb (SSA_NAME_DEF_STMT (name));
1596 basic_block dom_bb = get_immediate_dominator (CDI_DOMINATORS, bb);
1598 // if it doesn't already have a value, store the incoming range.
1599 if (!m_on_entry.bb_range_p (name, dom_bb) && def_bb != dom_bb)
1601 // If the range can't be store, don't try to accumulate
1602 // the range in PREV_BB due to excessive recalculations.
1603 if (!m_on_entry.set_bb_range (name, dom_bb, r))
1604 return;
1606 // With the dominator set, we should be able to cheaply query
1607 // each incoming edge now and accumulate the results.
1608 r.set_undefined ();
1609 edge e;
1610 edge_iterator ei;
1611 Value_Range er (TREE_TYPE (name));
1612 FOR_EACH_EDGE (e, ei, bb->preds)
1614 // If the predecessor is dominated by this block, then there is a back
1615 // edge, and won't provide anything useful. We'll actually end up with
1616 // VARYING as we will not resolve this node.
1617 if (dominated_by_p (CDI_DOMINATORS, e->src, bb))
1618 continue;
1619 edge_range (er, e, name, RFD_READ_ONLY);
1620 r.union_ (er);
1622 // Set the cache in PREV_BB so it is not calculated again.
1623 m_on_entry.set_bb_range (name, bb, r);
1626 // Get the range of NAME from dominators of BB and return it in R. Search the
1627 // dominator tree based on MODE.
1629 bool
1630 ranger_cache::range_from_dom (vrange &r, tree name, basic_block start_bb,
1631 enum rfd_mode mode)
1633 if (mode == RFD_NONE || !dom_info_available_p (CDI_DOMINATORS))
1634 return false;
1636 // Search back to the definition block or entry block.
1637 basic_block def_bb = gimple_bb (SSA_NAME_DEF_STMT (name));
1638 if (def_bb == NULL)
1639 def_bb = ENTRY_BLOCK_PTR_FOR_FN (cfun);
1641 basic_block bb;
1642 basic_block prev_bb = start_bb;
1644 // Track any inferred ranges seen.
1645 Value_Range infer (TREE_TYPE (name));
1646 infer.set_varying (TREE_TYPE (name));
1648 // Range on entry to the DEF block should not be queried.
1649 gcc_checking_assert (start_bb != def_bb);
1650 unsigned start_limit = m_workback.length ();
1652 // Default value is global range.
1653 get_global_range (r, name);
1655 // The dominator of EXIT_BLOCK doesn't seem to be set, so at least handle
1656 // the common single exit cases.
1657 if (start_bb == EXIT_BLOCK_PTR_FOR_FN (cfun) && single_pred_p (start_bb))
1658 bb = single_pred_edge (start_bb)->src;
1659 else
1660 bb = get_immediate_dominator (CDI_DOMINATORS, start_bb);
1662 // Search until a value is found, pushing blocks which may need calculating.
1663 for ( ; bb; prev_bb = bb, bb = get_immediate_dominator (CDI_DOMINATORS, bb))
1665 // Accumulate any block exit inferred ranges.
1666 m_exit.maybe_adjust_range (infer, name, bb);
1668 // This block has an outgoing range.
1669 if (m_gori.has_edge_range_p (name, bb))
1670 m_workback.quick_push (prev_bb);
1671 else
1673 // Normally join blocks don't carry any new range information on
1674 // incoming edges. If the first incoming edge to this block does
1675 // generate a range, calculate the ranges if all incoming edges
1676 // are also dominated by the dominator. (Avoids backedges which
1677 // will break the rule of moving only upward in the dominator tree).
1678 // If the first pred does not generate a range, then we will be
1679 // using the dominator range anyway, so that's all the check needed.
1680 if (EDGE_COUNT (prev_bb->preds) > 1
1681 && m_gori.has_edge_range_p (name, EDGE_PRED (prev_bb, 0)->src))
1683 edge e;
1684 edge_iterator ei;
1685 bool all_dom = true;
1686 FOR_EACH_EDGE (e, ei, prev_bb->preds)
1687 if (e->src != bb
1688 && !dominated_by_p (CDI_DOMINATORS, e->src, bb))
1690 all_dom = false;
1691 break;
1693 if (all_dom)
1694 m_workback.quick_push (prev_bb);
1698 if (def_bb == bb)
1699 break;
1701 if (m_on_entry.get_bb_range (r, name, bb))
1702 break;
1705 if (DEBUG_RANGE_CACHE)
1707 fprintf (dump_file, "CACHE: BB %d DOM query for ", start_bb->index);
1708 print_generic_expr (dump_file, name, TDF_SLIM);
1709 fprintf (dump_file, ", found ");
1710 r.dump (dump_file);
1711 if (bb)
1712 fprintf (dump_file, " at BB%d\n", bb->index);
1713 else
1714 fprintf (dump_file, " at function top\n");
1717 // Now process any blocks wit incoming edges that nay have adjustments.
1718 while (m_workback.length () > start_limit)
1720 Value_Range er (TREE_TYPE (name));
1721 prev_bb = m_workback.pop ();
1722 if (!single_pred_p (prev_bb))
1724 // Non single pred means we need to cache a value in the dominator
1725 // so we can cheaply calculate incoming edges to this block, and
1726 // then store the resulting value. If processing mode is not
1727 // RFD_FILL, then the cache cant be stored to, so don't try.
1728 // Otherwise this becomes a quadratic timed calculation.
1729 if (mode == RFD_FILL)
1730 resolve_dom (r, name, prev_bb);
1731 continue;
1734 edge e = single_pred_edge (prev_bb);
1735 bb = e->src;
1736 if (m_gori.outgoing_edge_range_p (er, e, name, *this))
1738 r.intersect (er);
1739 // If this is a normal edge, apply any inferred ranges.
1740 if ((e->flags & (EDGE_EH | EDGE_ABNORMAL)) == 0)
1741 m_exit.maybe_adjust_range (r, name, bb);
1743 if (DEBUG_RANGE_CACHE)
1745 fprintf (dump_file, "CACHE: Adjusted edge range for %d->%d : ",
1746 bb->index, prev_bb->index);
1747 r.dump (dump_file);
1748 fprintf (dump_file, "\n");
1753 // Apply non-null if appropriate.
1754 if (!has_abnormal_call_or_eh_pred_edge_p (start_bb))
1755 r.intersect (infer);
1757 if (DEBUG_RANGE_CACHE)
1759 fprintf (dump_file, "CACHE: Range for DOM returns : ");
1760 r.dump (dump_file);
1761 fprintf (dump_file, "\n");
1763 return true;
1766 // This routine will register an inferred value in block BB, and possibly
1767 // update the on-entry cache if appropriate.
1769 void
1770 ranger_cache::register_inferred_value (const vrange &ir, tree name,
1771 basic_block bb)
1773 Value_Range r (TREE_TYPE (name));
1774 if (!m_on_entry.get_bb_range (r, name, bb))
1775 exit_range (r, name, bb, RFD_READ_ONLY);
1776 if (r.intersect (ir))
1778 m_on_entry.set_bb_range (name, bb, r);
1779 // If this range was invariant before, remove invariant.
1780 if (!m_gori.has_edge_range_p (name))
1781 m_gori.set_range_invariant (name, false);
1785 // This routine is used during a block walk to adjust any inferred ranges
1786 // of operands on stmt S.
1788 void
1789 ranger_cache::apply_inferred_ranges (gimple *s)
1791 bool update = true;
1793 basic_block bb = gimple_bb (s);
1794 gimple_infer_range infer(s);
1795 if (infer.num () == 0)
1796 return;
1798 // Do not update the on-entry cache for block ending stmts.
1799 if (stmt_ends_bb_p (s))
1801 edge_iterator ei;
1802 edge e;
1803 FOR_EACH_EDGE (e, ei, gimple_bb (s)->succs)
1804 if (!(e->flags & (EDGE_ABNORMAL|EDGE_EH)))
1805 break;
1806 if (e == NULL)
1807 update = false;
1810 for (unsigned x = 0; x < infer.num (); x++)
1812 tree name = infer.name (x);
1813 m_exit.add_range (name, bb, infer.range (x));
1814 if (update)
1815 register_inferred_value (infer.range (x), name, bb);