PR target/17245
[official-gcc.git] / gcc / tree-ssa-operands.c
blob07334b92d7bdace87453c26d71b0e822c3ad3245
1 /* SSA operands management for trees.
2 Copyright (C) 2003, 2004, 2005 Free Software Foundation, Inc.
4 This file is part of GCC.
6 GCC is free software; you can redistribute it and/or modify
7 it under the terms of the GNU General Public License as published by
8 the Free Software Foundation; either version 2, or (at your option)
9 any later version.
11 GCC is distributed in the hope that it will be useful,
12 but WITHOUT ANY WARRANTY; without even the implied warranty of
13 MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
14 GNU General Public License for more details.
16 You should have received a copy of the GNU General Public License
17 along with GCC; see the file COPYING. If not, write to
18 the Free Software Foundation, 59 Temple Place - Suite 330,
19 Boston, MA 02111-1307, USA. */
21 #include "config.h"
22 #include "system.h"
23 #include "coretypes.h"
24 #include "tm.h"
25 #include "tree.h"
26 #include "flags.h"
27 #include "function.h"
28 #include "diagnostic.h"
29 #include "errors.h"
30 #include "tree-flow.h"
31 #include "tree-inline.h"
32 #include "tree-pass.h"
33 #include "ggc.h"
34 #include "timevar.h"
36 #include "langhooks.h"
38 /* This file contains the code required to manage the operands cache of the
39 SSA optimizer. For every stmt, we maintain an operand cache in the stmt
40 annotation. This cache contains operands that will be of interest to
41 optimizers and other passes wishing to manipulate the IL.
43 The operand type are broken up into REAL and VIRTUAL operands. The real
44 operands are represented as pointers into the stmt's operand tree. Thus
45 any manipulation of the real operands will be reflected in the actual tree.
46 Virtual operands are represented solely in the cache, although the base
47 variable for the SSA_NAME may, or may not occur in the stmt's tree.
48 Manipulation of the virtual operands will not be reflected in the stmt tree.
50 The routines in this file are concerned with creating this operand cache
51 from a stmt tree.
53 get_stmt_operands() in the primary entry point.
55 The operand tree is the parsed by the various get_* routines which look
56 through the stmt tree for the occurrence of operands which may be of
57 interest, and calls are made to the append_* routines whenever one is
58 found. There are 5 of these routines, each representing one of the
59 5 types of operands. Defs, Uses, Virtual Uses, Virtual May Defs, and
60 Virtual Must Defs.
62 The append_* routines check for duplication, and simply keep a list of
63 unique objects for each operand type in the build_* extendable vectors.
65 Once the stmt tree is completely parsed, the finalize_ssa_operands()
66 routine is called, which proceeds to perform the finalization routine
67 on each of the 5 operand vectors which have been built up.
69 If the stmt had a previous operand cache, the finalization routines
70 attempt to match up the new operands with the old ones. If its a perfect
71 match, the old vector is simply reused. If it isn't a perfect match, then
72 a new vector is created and the new operands are placed there. For
73 virtual operands, if the previous cache had SSA_NAME version of a
74 variable, and that same variable occurs in the same operands cache, then
75 the new cache vector will also get the same SSA_NAME.
77 i.e., if a stmt had a VUSE of 'a_5', and 'a' occurs in the new operand
78 vector for VUSE, then the new vector will also be modified such that
79 it contains 'a_5' rather than 'a'.
84 /* Flags to describe operand properties in get_stmt_operands and helpers. */
86 /* By default, operands are loaded. */
87 #define opf_none 0
89 /* Operand is the target of an assignment expression or a
90 call-clobbered variable */
91 #define opf_is_def (1 << 0)
93 /* Operand is the target of an assignment expression. */
94 #define opf_kill_def (1 << 1)
96 /* No virtual operands should be created in the expression. This is used
97 when traversing ADDR_EXPR nodes which have different semantics than
98 other expressions. Inside an ADDR_EXPR node, the only operands that we
99 need to consider are indices into arrays. For instance, &a.b[i] should
100 generate a USE of 'i' but it should not generate a VUSE for 'a' nor a
101 VUSE for 'b'. */
102 #define opf_no_vops (1 << 2)
104 /* Array for building all the def operands. */
105 static GTY (()) varray_type build_defs;
107 /* Array for building all the use operands. */
108 static GTY (()) varray_type build_uses;
110 /* Array for building all the v_may_def operands. */
111 static GTY (()) varray_type build_v_may_defs;
113 /* Array for building all the vuse operands. */
114 static GTY (()) varray_type build_vuses;
116 /* Array for building all the v_must_def operands. */
117 static GTY (()) varray_type build_v_must_defs;
119 /* True if the operands for call clobbered vars are cached and valid. */
120 bool ssa_call_clobbered_cache_valid;
121 bool ssa_ro_call_cache_valid;
123 /* These arrays are the cached operand vectors for call clobbered calls. */
124 static GTY (()) varray_type clobbered_v_may_defs;
125 static GTY (()) varray_type clobbered_vuses;
126 static GTY (()) varray_type ro_call_vuses;
127 static bool clobbered_aliased_loads;
128 static bool clobbered_aliased_stores;
129 static bool ro_call_aliased_loads;
130 static stmt_operands_p parse_old_ops = NULL;
132 def_operand_p NULL_DEF_OPERAND_P = { NULL };
134 static void note_addressable (tree, stmt_ann_t);
135 static void get_expr_operands (tree, tree *, int);
136 static void get_asm_expr_operands (tree);
137 static void get_indirect_ref_operands (tree, tree, int);
138 static void get_call_expr_operands (tree, tree);
139 static inline void append_def (tree *);
140 static inline void append_use (tree *);
141 static void append_v_may_def (tree);
142 static void append_v_must_def (tree);
143 static void add_call_clobber_ops (tree);
144 static void add_call_read_ops (tree);
145 static void add_stmt_operand (tree *, stmt_ann_t, int);
147 /* Return a vector of contiguous memory for NUM def operands. */
149 static inline def_optype
150 allocate_def_optype (unsigned num)
152 def_optype def_ops;
153 unsigned size;
154 size = sizeof (struct def_optype_d) + sizeof (tree *) * (num - 1);
155 def_ops = ggc_alloc (size);
156 def_ops->num_defs = num;
157 return def_ops;
161 /* Return a vector of contiguous memory for NUM use operands. */
163 static inline use_optype
164 allocate_use_optype (unsigned num)
166 use_optype use_ops;
167 unsigned size;
168 size = sizeof (struct use_optype_d) + sizeof (use_operand_type_t) * (num - 1);
169 use_ops = ggc_alloc (size);
170 use_ops->num_uses = num;
171 return use_ops;
175 /* Return a vector of contiguous memory for NUM v_may_def operands. */
177 static inline v_may_def_optype
178 allocate_v_may_def_optype (unsigned num)
180 v_may_def_optype v_may_def_ops;
181 unsigned size;
182 size = sizeof (struct v_may_def_optype_d)
183 + sizeof (v_def_use_operand_type_t) * (num - 1);
184 v_may_def_ops = ggc_alloc (size);
185 v_may_def_ops->num_v_may_defs = num;
186 return v_may_def_ops;
190 /* Return a vector of contiguous memory for NUM v_use operands. */
192 static inline vuse_optype
193 allocate_vuse_optype (unsigned num)
195 vuse_optype vuse_ops;
196 unsigned size;
197 size = sizeof (struct vuse_optype_d)
198 + sizeof (vuse_operand_type_t) * (num - 1);
199 vuse_ops = ggc_alloc (size);
200 vuse_ops->num_vuses = num;
201 return vuse_ops;
205 /* Return a vector of contiguous memory for NUM v_must_def operands. */
207 static inline v_must_def_optype
208 allocate_v_must_def_optype (unsigned num)
210 v_must_def_optype v_must_def_ops;
211 unsigned size;
212 size = sizeof (struct v_must_def_optype_d) + sizeof (v_def_use_operand_type_t) * (num - 1);
213 v_must_def_ops = ggc_alloc (size);
214 v_must_def_ops->num_v_must_defs = num;
215 return v_must_def_ops;
219 /* Free memory for USES. */
221 static inline void
222 free_uses (use_optype *uses)
224 if (*uses)
226 unsigned int x;
227 use_optype use = *uses;
228 for (x = 0; x < use->num_uses; x++)
229 delink_imm_use (&(use->uses[x]));
230 ggc_free (*uses);
231 *uses = NULL;
236 /* Free memory for DEFS. */
238 static inline void
239 free_defs (def_optype *defs)
241 if (*defs)
243 ggc_free (*defs);
244 *defs = NULL;
249 /* Free memory for VUSES. */
251 static inline void
252 free_vuses (vuse_optype *vuses)
254 if (*vuses)
256 unsigned int x;
257 vuse_optype vuse = *vuses;
258 for (x = 0; x < vuse->num_vuses; x++)
259 delink_imm_use (&(vuse->vuses[x].imm_use));
260 ggc_free (*vuses);
261 *vuses = NULL;
266 /* Free memory for V_MAY_DEFS. */
268 static inline void
269 free_v_may_defs (v_may_def_optype *v_may_defs)
271 if (*v_may_defs)
273 unsigned int x;
274 v_may_def_optype v_may_def = *v_may_defs;
275 for (x = 0; x < v_may_def->num_v_may_defs; x++)
276 delink_imm_use (&(v_may_def->v_may_defs[x].imm_use));
277 ggc_free (*v_may_defs);
278 *v_may_defs = NULL;
283 /* Free memory for V_MUST_DEFS. */
285 static inline void
286 free_v_must_defs (v_must_def_optype *v_must_defs)
288 if (*v_must_defs)
290 unsigned int x;
291 v_must_def_optype v_must_def = *v_must_defs;
292 for (x = 0; x < v_must_def->num_v_must_defs; x++)
293 delink_imm_use (&(v_must_def->v_must_defs[x].imm_use));
294 ggc_free (*v_must_defs);
295 *v_must_defs = NULL;
300 /* Initialize the operand cache routines. */
302 void
303 init_ssa_operands (void)
305 VARRAY_TREE_PTR_INIT (build_defs, 5, "build defs");
306 VARRAY_TREE_PTR_INIT (build_uses, 10, "build uses");
307 VARRAY_TREE_INIT (build_v_may_defs, 10, "build v_may_defs");
308 VARRAY_TREE_INIT (build_vuses, 10, "build vuses");
309 VARRAY_TREE_INIT (build_v_must_defs, 10, "build v_must_defs");
313 /* Dispose of anything required by the operand routines. */
315 void
316 fini_ssa_operands (void)
318 ggc_free (build_defs);
319 ggc_free (build_uses);
320 ggc_free (build_v_may_defs);
321 ggc_free (build_vuses);
322 ggc_free (build_v_must_defs);
323 build_defs = NULL;
324 build_uses = NULL;
325 build_v_may_defs = NULL;
326 build_vuses = NULL;
327 build_v_must_defs = NULL;
328 if (clobbered_v_may_defs)
330 ggc_free (clobbered_v_may_defs);
331 ggc_free (clobbered_vuses);
332 clobbered_v_may_defs = NULL;
333 clobbered_vuses = NULL;
335 if (ro_call_vuses)
337 ggc_free (ro_call_vuses);
338 ro_call_vuses = NULL;
342 /* Initialize V_USES index INDEX to VAL for STMT. If OLD is present, preserve
343 the position of the may-def in the immediate_use list. */
345 static inline void
346 initialize_vuse_operand (vuse_optype vuses, unsigned int index, tree val,
347 tree stmt, ssa_imm_use_t *old)
349 vuse_operand_type_t *ptr;
350 ptr = &(vuses->vuses[index]);
351 ptr->use = val;
352 ptr->imm_use.use = &(ptr->use);
353 if (old)
354 relink_imm_use_stmt (&(ptr->imm_use), old, stmt);
355 else
356 link_imm_use_stmt (&(ptr->imm_use), ptr->use, stmt);
360 /* Initialize V_MAY_DEF_OPS index X to be DEF = MAY_DEF <USE> for STMT. If
361 OLD is present, preserve the position of the may-def in the immediate_use
362 list. */
364 static inline void
365 initialize_v_may_def_operand (v_may_def_optype v_may_def_ops, unsigned int x,
366 tree def, tree use, tree stmt, ssa_imm_use_t *old)
368 v_def_use_operand_type_t *ptr;
369 ptr = &(v_may_def_ops->v_may_defs[x]);
370 ptr->def = def;
371 ptr->use = use;
372 ptr->imm_use.use = &(ptr->use);
373 if (old)
374 relink_imm_use_stmt (&(ptr->imm_use), old, stmt);
375 else
376 link_imm_use_stmt (&(ptr->imm_use), ptr->use, stmt);
380 /* Initialize V_MUST_DEF_OPS index X to be DEF = MUST_DEF <USE> for STMT. If
381 OLD is present, preserve the position of the may-def in the immediate_use
382 list. */
384 static inline void
385 initialize_v_must_def_operand (v_must_def_optype v_must_def_ops, unsigned int x,
386 tree def, tree use, tree stmt, ssa_imm_use_t *old)
388 v_def_use_operand_type_t *ptr;
389 ptr = &(v_must_def_ops->v_must_defs[x]);
390 ptr->def = def;
391 ptr->use = use;
392 ptr->imm_use.use = &(ptr->use);
393 if (old)
394 relink_imm_use_stmt (&(ptr->imm_use), old, stmt);
395 else
396 link_imm_use_stmt (&(ptr->imm_use), ptr->use, stmt);
399 /* All the finalize_ssa_* routines do the work required to turn the build_
400 VARRAY into an operand_vector of the appropriate type. The original vector,
401 if any, is passed in for comparison and virtual SSA_NAME reuse. If the
402 old vector is reused, the pointer passed in is set to NULL so that
403 the memory is not freed when the old operands are freed. */
405 /* Return a new def operand vector for STMT, comparing to OLD_OPS_P. */
407 static def_optype
408 finalize_ssa_defs (def_optype *old_ops_p, tree stmt)
410 unsigned num, x;
411 def_optype def_ops, old_ops;
412 bool build_diff;
414 num = VARRAY_ACTIVE_SIZE (build_defs);
415 if (num == 0)
416 return NULL;
418 /* There should only be a single real definition per assignment. */
419 gcc_assert ((stmt && TREE_CODE (stmt) != MODIFY_EXPR) || num <= 1);
421 old_ops = *old_ops_p;
423 /* Compare old vector and new array. */
424 build_diff = true;
425 if (stmt && old_ops && old_ops->num_defs == num)
427 build_diff = false;
428 for (x = 0; x < num; x++)
429 if (old_ops->defs[x].def != VARRAY_TREE_PTR (build_defs, x))
431 build_diff = true;
432 break;
436 if (!build_diff)
438 def_ops = old_ops;
439 *old_ops_p = NULL;
441 else
443 def_ops = allocate_def_optype (num);
444 for (x = 0; x < num ; x++)
445 def_ops->defs[x].def = VARRAY_TREE_PTR (build_defs, x);
448 VARRAY_POP_ALL (build_defs);
450 return def_ops;
454 /* Make sure PTR is inn the correct immediate use list. Since uses are simply
455 pointers into the stmt TREE, there is no way of telling if anyone has
456 changed what this pointer points to via TREE_OPERANDS (exp, 0) = <...>.
457 THe contents are different, but the the pointer is still the same. This
458 routine will check to make sure PTR is in the correct list, and if it isn't
459 put it in the correct list. */
461 static inline void
462 correct_use_link (ssa_imm_use_t *ptr, tree stmt)
464 ssa_imm_use_t *prev;
465 tree root;
467 /* Fold_stmt () may have changed the stmt pointers. */
468 if (ptr->stmt != stmt)
469 ptr->stmt = stmt;
471 prev = ptr->prev;
472 if (prev)
474 /* find the root, which has a non-NULL stmt, and a NULL use. */
475 while (prev->stmt == NULL || prev->use != NULL)
476 prev = prev->prev;
477 root = prev->stmt;
478 if (root == *(ptr->use))
479 return;
481 /* Its in the wrong list if we reach here. */
482 delink_imm_use (ptr);
483 link_imm_use (ptr, *(ptr->use));
487 /* Return a new use operand vector for STMT, comparing to OLD_OPS_P. */
489 static use_optype
490 finalize_ssa_uses (use_optype *old_ops_p, tree stmt)
492 unsigned num, x, num_old, i;
493 use_optype use_ops, old_ops;
494 bool build_diff;
496 num = VARRAY_ACTIVE_SIZE (build_uses);
497 if (num == 0)
498 return NULL;
500 #ifdef ENABLE_CHECKING
502 unsigned x;
503 /* If the pointer to the operand is the statement itself, something is
504 wrong. It means that we are pointing to a local variable (the
505 initial call to get_stmt_operands does not pass a pointer to a
506 statement). */
507 for (x = 0; x < num; x++)
508 gcc_assert (*(VARRAY_TREE_PTR (build_uses, x)) != stmt);
510 #endif
511 old_ops = *old_ops_p;
512 num_old = ((stmt && old_ops) ? old_ops->num_uses : 0);
514 /* Check if the old vector and the new array are the same. */
515 build_diff = true;
516 if (stmt && old_ops && num_old == num)
518 build_diff = false;
519 for (x = 0; x < num; x++)
521 tree *var_p = VARRAY_TREE_PTR (build_uses, x);
522 tree *node = old_ops->uses[x].use;
523 /* Check the pointer values to see if they are the same. */
524 if (node != var_p)
526 build_diff = true;
527 break;
532 if (!build_diff)
534 use_ops = old_ops;
535 *old_ops_p = NULL;
536 for (i = 0; i < num_old; i++)
537 correct_use_link (&(use_ops->uses[i]), stmt);
539 else
541 use_ops = allocate_use_optype (num);
542 for (x = 0; x < num ; x++)
544 tree *var = VARRAY_TREE_PTR (build_uses, x);
545 use_ops->uses[x].use = var;
546 for (i = 0; i < num_old; i++)
548 ssa_imm_use_t *ptr = &(old_ops->uses[i]);
549 if (ptr->use == var)
551 relink_imm_use_stmt (&(use_ops->uses[x]), ptr, stmt);
552 correct_use_link (&(use_ops->uses[x]), stmt);
553 break;
556 if (i == num_old)
557 link_imm_use_stmt (&(use_ops->uses[x]), *var, stmt);
560 VARRAY_POP_ALL (build_uses);
562 return use_ops;
566 /* Return a new v_may_def operand vector for STMT, comparing to OLD_OPS_P. */
568 static v_may_def_optype
569 finalize_ssa_v_may_defs (v_may_def_optype *old_ops_p, tree stmt)
571 unsigned num, x, i, old_num;
572 v_may_def_optype v_may_def_ops, old_ops;
573 tree result, var;
574 bool build_diff;
576 num = VARRAY_ACTIVE_SIZE (build_v_may_defs);
577 if (num == 0)
578 return NULL;
580 old_ops = *old_ops_p;
582 /* Check if the old vector and the new array are the same. */
583 build_diff = true;
584 if (stmt && old_ops && old_ops->num_v_may_defs == num)
586 old_num = num;
587 build_diff = false;
588 for (x = 0; x < num; x++)
590 var = old_ops->v_may_defs[x].def;
591 if (TREE_CODE (var) == SSA_NAME)
592 var = SSA_NAME_VAR (var);
593 if (var != VARRAY_TREE (build_v_may_defs, x))
595 build_diff = true;
596 break;
600 else
601 old_num = (old_ops ? old_ops->num_v_may_defs : 0);
603 if (!build_diff)
605 v_may_def_ops = old_ops;
606 *old_ops_p = NULL;
607 for (x = 0; x < num; x++)
608 correct_use_link (&(v_may_def_ops->v_may_defs[x].imm_use), stmt);
610 else
612 v_may_def_ops = allocate_v_may_def_optype (num);
613 for (x = 0; x < num; x++)
615 var = VARRAY_TREE (build_v_may_defs, x);
616 /* Look for VAR in the old operands vector. */
617 for (i = 0; i < old_num; i++)
619 result = old_ops->v_may_defs[i].def;
620 if (TREE_CODE (result) == SSA_NAME)
621 result = SSA_NAME_VAR (result);
622 if (result == var)
624 initialize_v_may_def_operand (v_may_def_ops, x,
625 old_ops->v_may_defs[i].def,
626 old_ops->v_may_defs[i].use,
627 stmt,
628 &(old_ops->v_may_defs[i].imm_use));
629 break;
632 if (i == old_num)
634 initialize_v_may_def_operand (v_may_def_ops, x, var, var, stmt,
635 NULL);
640 /* Empty the V_MAY_DEF build vector after VUSES have been processed. */
642 return v_may_def_ops;
646 /* Clear the in_list bits and empty the build array for v_may_defs. */
648 static inline void
649 cleanup_v_may_defs (void)
651 unsigned x, num;
652 num = VARRAY_ACTIVE_SIZE (build_v_may_defs);
654 for (x = 0; x < num; x++)
656 tree t = VARRAY_TREE (build_v_may_defs, x);
657 var_ann_t ann = var_ann (t);
658 ann->in_v_may_def_list = 0;
660 VARRAY_POP_ALL (build_v_may_defs);
663 /* Return a new vuse operand vector, comparing to OLD_OPS_P. */
665 static vuse_optype
666 finalize_ssa_vuses (vuse_optype *old_ops_p, tree stmt)
668 unsigned num, x, i, num_v_may_defs, old_num;
669 vuse_optype vuse_ops, old_ops;
670 bool build_diff;
672 num = VARRAY_ACTIVE_SIZE (build_vuses);
673 if (num == 0)
675 cleanup_v_may_defs ();
676 return NULL;
679 /* Remove superfluous VUSE operands. If the statement already has a
680 V_MAY_DEF operation for a variable 'a', then a VUSE for 'a' is not
681 needed because V_MAY_DEFs imply a VUSE of the variable. For instance,
682 suppose that variable 'a' is aliased:
684 # VUSE <a_2>
685 # a_3 = V_MAY_DEF <a_2>
686 a = a + 1;
688 The VUSE <a_2> is superfluous because it is implied by the V_MAY_DEF
689 operation. */
691 num_v_may_defs = VARRAY_ACTIVE_SIZE (build_v_may_defs);
693 if (num_v_may_defs > 0)
695 size_t i;
696 tree vuse;
697 for (i = 0; i < VARRAY_ACTIVE_SIZE (build_vuses); i++)
699 vuse = VARRAY_TREE (build_vuses, i);
700 if (TREE_CODE (vuse) != SSA_NAME)
702 var_ann_t ann = var_ann (vuse);
703 ann->in_vuse_list = 0;
704 if (ann->in_v_may_def_list)
706 /* If we found a useless VUSE operand, remove it from the
707 operand array by replacing it with the last active element
708 in the operand array (unless the useless VUSE was the
709 last operand, in which case we simply remove it. */
710 if (i != VARRAY_ACTIVE_SIZE (build_vuses) - 1)
712 VARRAY_TREE (build_vuses, i)
713 = VARRAY_TREE (build_vuses,
714 VARRAY_ACTIVE_SIZE (build_vuses) - 1);
716 VARRAY_POP (build_vuses);
718 /* We want to rescan the element at this index, unless
719 this was the last element, in which case the loop
720 terminates. */
721 i--;
726 else
727 /* Clear out the in_list bits. */
728 for (x = 0; x < num; x++)
730 tree t = VARRAY_TREE (build_vuses, x);
731 if (TREE_CODE (t) != SSA_NAME)
733 var_ann_t ann = var_ann (t);
734 ann->in_vuse_list = 0;
739 num = VARRAY_ACTIVE_SIZE (build_vuses);
740 /* We could have reduced the size to zero now, however. */
741 if (num == 0)
743 cleanup_v_may_defs ();
744 return NULL;
747 old_ops = *old_ops_p;
749 /* Determine whether vuses is the same as the old vector. */
750 build_diff = true;
751 if (stmt && old_ops && old_ops->num_vuses == num)
753 old_num = num;
754 build_diff = false;
755 for (x = 0; x < num ; x++)
757 tree v;
758 v = old_ops->vuses[x].use;
759 if (TREE_CODE (v) == SSA_NAME)
760 v = SSA_NAME_VAR (v);
761 if (v != VARRAY_TREE (build_vuses, x))
763 build_diff = true;
764 break;
768 else
769 old_num = (old_ops ? old_ops->num_vuses : 0);
771 if (!build_diff)
773 vuse_ops = old_ops;
774 *old_ops_p = NULL;
775 for (x = 0; x < num; x++)
776 correct_use_link (&(vuse_ops->vuses[x].imm_use), stmt);
778 else
780 vuse_ops = allocate_vuse_optype (num);
781 for (x = 0; x < num; x++)
783 tree result, var = VARRAY_TREE (build_vuses, x);
784 /* Look for VAR in the old vector, and use that SSA_NAME. */
785 for (i = 0; i < old_num; i++)
787 result = old_ops->vuses[i].use;
788 if (TREE_CODE (result) == SSA_NAME)
789 result = SSA_NAME_VAR (result);
790 if (result == var)
792 initialize_vuse_operand (vuse_ops, x, old_ops->vuses[i].use,
793 stmt, &(old_ops->vuses[i].imm_use));
794 break;
797 if (i == old_num)
798 initialize_vuse_operand (vuse_ops, x, var, stmt, NULL);
802 /* The v_may_def build vector wasn't freed because we needed it here.
803 Free it now with the vuses build vector. */
804 VARRAY_POP_ALL (build_vuses);
805 cleanup_v_may_defs ();
807 return vuse_ops;
810 /* Return a new v_must_def operand vector for STMT, comparing to OLD_OPS_P. */
812 static v_must_def_optype
813 finalize_ssa_v_must_defs (v_must_def_optype *old_ops_p, tree stmt)
815 unsigned num, x, i, old_num = 0;
816 v_must_def_optype v_must_def_ops, old_ops;
817 tree result, var;
818 bool build_diff;
820 num = VARRAY_ACTIVE_SIZE (build_v_must_defs);
821 if (num == 0)
822 return NULL;
824 /* In the presence of subvars, there may be more than one V_MUST_DEF per
825 statement (one for each subvar). It is a bit expensive to verify that
826 all must-defs in a statement belong to subvars if there is more than one
827 MUST-def, so we don't do it. Suffice to say, if you reach here without
828 having subvars, and have num >1, you have hit a bug. */
831 old_ops = *old_ops_p;
833 /* Check if the old vector and the new array are the same. */
834 build_diff = true;
835 if (stmt && old_ops && old_ops->num_v_must_defs == num)
837 old_num = num;
838 build_diff = false;
839 for (x = 0; x < num; x++)
841 tree var = old_ops->v_must_defs[x].def;
842 if (TREE_CODE (var) == SSA_NAME)
843 var = SSA_NAME_VAR (var);
844 if (var != VARRAY_TREE (build_v_must_defs, x))
846 build_diff = true;
847 break;
851 else
852 old_num = (old_ops ? old_ops->num_v_must_defs : 0);
854 if (!build_diff)
856 v_must_def_ops = old_ops;
857 *old_ops_p = NULL;
858 for (x = 0; x < num; x++)
859 correct_use_link (&(v_must_def_ops->v_must_defs[x].imm_use), stmt);
861 else
863 v_must_def_ops = allocate_v_must_def_optype (num);
864 for (x = 0; x < num ; x++)
866 var = VARRAY_TREE (build_v_must_defs, x);
867 /* Look for VAR in the original vector. */
868 for (i = 0; i < old_num; i++)
870 result = old_ops->v_must_defs[i].def;
871 if (TREE_CODE (result) == SSA_NAME)
872 result = SSA_NAME_VAR (result);
873 if (result == var)
875 initialize_v_must_def_operand (v_must_def_ops, x,
876 old_ops->v_must_defs[i].def,
877 old_ops->v_must_defs[i].use,
878 stmt,
879 &(old_ops->v_must_defs[i].imm_use));
880 break;
883 if (i == old_num)
885 initialize_v_must_def_operand (v_must_def_ops, x, var, var, stmt,
886 NULL);
890 VARRAY_POP_ALL (build_v_must_defs);
892 return v_must_def_ops;
896 /* Finalize all the build vectors, fill the new ones into INFO. */
898 static inline void
899 finalize_ssa_stmt_operands (tree stmt, stmt_operands_p old_ops,
900 stmt_operands_p new_ops)
902 new_ops->def_ops = finalize_ssa_defs (&(old_ops->def_ops), stmt);
903 new_ops->use_ops = finalize_ssa_uses (&(old_ops->use_ops), stmt);
904 new_ops->v_must_def_ops
905 = finalize_ssa_v_must_defs (&(old_ops->v_must_def_ops), stmt);
906 new_ops->v_may_def_ops
907 = finalize_ssa_v_may_defs (&(old_ops->v_may_def_ops), stmt);
908 new_ops->vuse_ops = finalize_ssa_vuses (&(old_ops->vuse_ops), stmt);
912 /* Start the process of building up operands vectors in INFO. */
914 static inline void
915 start_ssa_stmt_operands (void)
917 gcc_assert (VARRAY_ACTIVE_SIZE (build_defs) == 0);
918 gcc_assert (VARRAY_ACTIVE_SIZE (build_uses) == 0);
919 gcc_assert (VARRAY_ACTIVE_SIZE (build_vuses) == 0);
920 gcc_assert (VARRAY_ACTIVE_SIZE (build_v_may_defs) == 0);
921 gcc_assert (VARRAY_ACTIVE_SIZE (build_v_must_defs) == 0);
925 /* Add DEF_P to the list of pointers to operands. */
927 static inline void
928 append_def (tree *def_p)
930 VARRAY_PUSH_TREE_PTR (build_defs, def_p);
934 /* Add USE_P to the list of pointers to operands. */
936 static inline void
937 append_use (tree *use_p)
939 VARRAY_PUSH_TREE_PTR (build_uses, use_p);
943 /* Add a new virtual may def for variable VAR to the build array. */
945 static inline void
946 append_v_may_def (tree var)
948 var_ann_t ann = get_var_ann (var);
950 /* Don't allow duplicate entries. */
951 if (ann->in_v_may_def_list)
952 return;
953 ann->in_v_may_def_list = 1;
955 VARRAY_PUSH_TREE (build_v_may_defs, var);
959 /* Add VAR to the list of virtual uses. */
961 static inline void
962 append_vuse (tree var)
965 /* Don't allow duplicate entries. */
966 if (TREE_CODE (var) != SSA_NAME)
968 var_ann_t ann = get_var_ann (var);
970 if (ann->in_vuse_list || ann->in_v_may_def_list)
971 return;
972 ann->in_vuse_list = 1;
975 VARRAY_PUSH_TREE (build_vuses, var);
979 /* Add VAR to the list of virtual must definitions for INFO. */
981 static inline void
982 append_v_must_def (tree var)
984 unsigned i;
986 /* Don't allow duplicate entries. */
987 for (i = 0; i < VARRAY_ACTIVE_SIZE (build_v_must_defs); i++)
988 if (var == VARRAY_TREE (build_v_must_defs, i))
989 return;
991 VARRAY_PUSH_TREE (build_v_must_defs, var);
995 /* Parse STMT looking for operands. OLD_OPS is the original stmt operand
996 cache for STMT, if it exested before. When fniished, the various build_*
997 operand vectors will have potential operands. in them. */
999 static void
1000 parse_ssa_operands (tree stmt)
1002 enum tree_code code;
1004 code = TREE_CODE (stmt);
1005 switch (code)
1007 case MODIFY_EXPR:
1008 /* First get operands from the RHS. For the LHS, we use a V_MAY_DEF if
1009 either only part of LHS is modified or if the RHS might throw,
1010 otherwise, use V_MUST_DEF.
1012 ??? If it might throw, we should represent somehow that it is killed
1013 on the fallthrough path. */
1015 tree lhs = TREE_OPERAND (stmt, 0);
1016 int lhs_flags = opf_is_def;
1018 get_expr_operands (stmt, &TREE_OPERAND (stmt, 1), opf_none);
1020 /* If the LHS is a VIEW_CONVERT_EXPR, it isn't changing whether
1021 or not the entire LHS is modified; that depends on what's
1022 inside the VIEW_CONVERT_EXPR. */
1023 if (TREE_CODE (lhs) == VIEW_CONVERT_EXPR)
1024 lhs = TREE_OPERAND (lhs, 0);
1026 if (TREE_CODE (lhs) != ARRAY_REF && TREE_CODE (lhs) != ARRAY_RANGE_REF
1027 && TREE_CODE (lhs) != BIT_FIELD_REF
1028 && TREE_CODE (lhs) != REALPART_EXPR
1029 && TREE_CODE (lhs) != IMAGPART_EXPR)
1030 lhs_flags |= opf_kill_def;
1032 get_expr_operands (stmt, &TREE_OPERAND (stmt, 0), lhs_flags);
1034 break;
1036 case COND_EXPR:
1037 get_expr_operands (stmt, &COND_EXPR_COND (stmt), opf_none);
1038 break;
1040 case SWITCH_EXPR:
1041 get_expr_operands (stmt, &SWITCH_COND (stmt), opf_none);
1042 break;
1044 case ASM_EXPR:
1045 get_asm_expr_operands (stmt);
1046 break;
1048 case RETURN_EXPR:
1049 get_expr_operands (stmt, &TREE_OPERAND (stmt, 0), opf_none);
1050 break;
1052 case GOTO_EXPR:
1053 get_expr_operands (stmt, &GOTO_DESTINATION (stmt), opf_none);
1054 break;
1056 case LABEL_EXPR:
1057 get_expr_operands (stmt, &LABEL_EXPR_LABEL (stmt), opf_none);
1058 break;
1060 /* These nodes contain no variable references. */
1061 case BIND_EXPR:
1062 case CASE_LABEL_EXPR:
1063 case TRY_CATCH_EXPR:
1064 case TRY_FINALLY_EXPR:
1065 case EH_FILTER_EXPR:
1066 case CATCH_EXPR:
1067 case RESX_EXPR:
1068 break;
1070 default:
1071 /* Notice that if get_expr_operands tries to use &STMT as the operand
1072 pointer (which may only happen for USE operands), we will abort in
1073 append_use. This default will handle statements like empty
1074 statements, or CALL_EXPRs that may appear on the RHS of a statement
1075 or as statements themselves. */
1076 get_expr_operands (stmt, &stmt, opf_none);
1077 break;
1081 /* Create an operands cache for STMT, returning it in NEW_OPS. OLD_OPS are the
1082 original operands, and if ANN is non-null, appropriate stmt flags are set
1083 in the stmt's annotation. If ANN is NULL, this is not considered a "real"
1084 stmt, and none of the operands will be entered into their respective
1085 immediate uses tables. This is to allow stmts to be processed when they
1086 are not actually in the CFG.
1088 Note that some fields in old_ops may change to NULL, although none of the
1089 memory they originally pointed to will be destroyed. It is appropriate
1090 to call free_stmt_operands() on the value returned in old_ops.
1092 The rationale for this: Certain optimizations wish to examine the difference
1093 between new_ops and old_ops after processing. If a set of operands don't
1094 change, new_ops will simply assume the pointer in old_ops, and the old_ops
1095 pointer will be set to NULL, indicating no memory needs to be cleared.
1096 Usage might appear something like:
1098 old_ops_copy = old_ops = stmt_ann(stmt)->operands;
1099 build_ssa_operands (stmt, NULL, &old_ops, &new_ops);
1100 <* compare old_ops_copy and new_ops *>
1101 free_ssa_operands (old_ops); */
1103 static void
1104 build_ssa_operands (tree stmt, stmt_ann_t ann, stmt_operands_p old_ops,
1105 stmt_operands_p new_ops)
1107 tree_ann_t saved_ann = stmt->common.ann;
1109 /* Replace stmt's annotation with the one passed in for the duration
1110 of the operand building process. This allows "fake" stmts to be built
1111 and not be included in other data structures which can be built here. */
1112 stmt->common.ann = (tree_ann_t) ann;
1114 parse_old_ops = old_ops;
1116 /* Initially assume that the statement has no volatile operands, nor
1117 makes aliased loads or stores. */
1118 if (ann)
1120 ann->has_volatile_ops = false;
1121 ann->makes_aliased_stores = false;
1122 ann->makes_aliased_loads = false;
1125 start_ssa_stmt_operands ();
1127 parse_ssa_operands (stmt);
1129 parse_old_ops = NULL;
1131 if (ann)
1132 finalize_ssa_stmt_operands (stmt, old_ops, new_ops);
1133 else
1134 finalize_ssa_stmt_operands (NULL, old_ops, new_ops);
1135 stmt->common.ann = saved_ann;
1139 /* Free any operands vectors in OPS. */
1141 static void
1142 free_ssa_operands (stmt_operands_p ops)
1144 if (ops->def_ops)
1145 free_defs (&(ops->def_ops));
1146 if (ops->use_ops)
1147 free_uses (&(ops->use_ops));
1148 if (ops->vuse_ops)
1149 free_vuses (&(ops->vuse_ops));
1150 if (ops->v_may_def_ops)
1151 free_v_may_defs (&(ops->v_may_def_ops));
1152 if (ops->v_must_def_ops)
1153 free_v_must_defs (&(ops->v_must_def_ops));
1157 /* Swap operands EXP0 and EXP1 in STMT. */
1159 static void
1160 swap_tree_operands (tree *exp0, tree *exp1)
1162 tree op0, op1;
1163 op0 = *exp0;
1164 op1 = *exp1;
1166 /* If the operand cache is active, attempt to preserve the relative positions
1167 of these two operands in their respective immediate use lists. */
1168 if (build_defs != NULL && op0 != op1 && parse_old_ops != NULL)
1170 unsigned x, use0, use1;
1171 use_optype uses = parse_old_ops->use_ops;
1172 use0 = use1 = NUM_USES (uses);
1173 /* Find the 2 operands in the cache, if they are there. */
1174 for (x = 0; x < NUM_USES (uses); x++)
1175 if (USE_OP_PTR (uses, x)->use == exp0)
1177 use0 = x;
1178 break;
1180 for (x = 0; x < NUM_USES (uses); x++)
1181 if (USE_OP_PTR (uses, x)->use == exp1)
1183 use1 = x;
1184 break;
1186 /* If both uses don't have operand entries, there isnt much we can do
1187 at this point. Presumably we dont need to worry about it. */
1188 if (use0 != NUM_USES (uses) && use1 != NUM_USES (uses))
1190 tree *tmp = USE_OP_PTR (uses, use1)->use;
1191 gcc_assert (use0 != use1);
1193 USE_OP_PTR (uses, use1)->use = USE_OP_PTR (uses, use0)->use;
1194 USE_OP_PTR (uses, use0)->use = tmp;
1198 /* Now swap the data. */
1199 *exp0 = op1;
1200 *exp1 = op0;
1203 /* Get the operands of statement STMT. Note that repeated calls to
1204 get_stmt_operands for the same statement will do nothing until the
1205 statement is marked modified by a call to mark_stmt_modified(). */
1207 void
1208 update_stmt_operands (tree stmt)
1210 stmt_ann_t ann;
1211 stmt_operands_t old_operands;
1213 /* If get_stmt_operands is called before SSA is initialized, dont
1214 do anything. */
1215 if (build_defs == NULL)
1216 return;
1217 /* The optimizers cannot handle statements that are nothing but a
1218 _DECL. This indicates a bug in the gimplifier. */
1219 gcc_assert (!SSA_VAR_P (stmt));
1221 ann = get_stmt_ann (stmt);
1223 gcc_assert (ann->modified);
1225 timevar_push (TV_TREE_OPS);
1227 old_operands = ann->operands;
1228 memset (&(ann->operands), 0, sizeof (stmt_operands_t));
1230 build_ssa_operands (stmt, ann, &old_operands, &(ann->operands));
1231 free_ssa_operands (&old_operands);
1233 /* Clear the modified bit for STMT. Subsequent calls to
1234 get_stmt_operands for this statement will do nothing until the
1235 statement is marked modified by a call to mark_stmt_modified(). */
1236 ann->modified = 0;
1238 timevar_pop (TV_TREE_OPS);
1242 /* Recursively scan the expression pointed by EXPR_P in statement referred to
1243 by INFO. FLAGS is one of the OPF_* constants modifying how to interpret the
1244 operands found. */
1246 static void
1247 get_expr_operands (tree stmt, tree *expr_p, int flags)
1249 enum tree_code code;
1250 enum tree_code_class class;
1251 tree expr = *expr_p;
1252 stmt_ann_t s_ann = stmt_ann (stmt);
1254 if (expr == NULL)
1255 return;
1257 code = TREE_CODE (expr);
1258 class = TREE_CODE_CLASS (code);
1260 switch (code)
1262 case ADDR_EXPR:
1263 /* We could have the address of a component, array member,
1264 etc which has interesting variable references. */
1265 /* Taking the address of a variable does not represent a
1266 reference to it, but the fact that the stmt takes its address will be
1267 of interest to some passes (e.g. alias resolution). */
1268 add_stmt_operand (expr_p, s_ann, 0);
1270 /* If the address is invariant, there may be no interesting variable
1271 references inside. */
1272 if (is_gimple_min_invariant (expr))
1273 return;
1275 /* There should be no VUSEs created, since the referenced objects are
1276 not really accessed. The only operands that we should find here
1277 are ARRAY_REF indices which will always be real operands (GIMPLE
1278 does not allow non-registers as array indices). */
1279 flags |= opf_no_vops;
1281 get_expr_operands (stmt, &TREE_OPERAND (expr, 0), flags);
1282 return;
1284 case SSA_NAME:
1285 case VAR_DECL:
1286 case PARM_DECL:
1287 case RESULT_DECL:
1288 case CONST_DECL:
1290 subvar_t svars;
1292 /* Add the subvars for a variable if it has subvars, to DEFS or USES.
1293 Otherwise, add the variable itself.
1294 Whether it goes to USES or DEFS depends on the operand flags. */
1295 if (var_can_have_subvars (expr)
1296 && (svars = get_subvars_for_var (expr)))
1298 subvar_t sv;
1299 for (sv = svars; sv; sv = sv->next)
1300 add_stmt_operand (&sv->var, s_ann, flags);
1302 else
1304 add_stmt_operand (expr_p, s_ann, flags);
1306 return;
1308 case MISALIGNED_INDIRECT_REF:
1309 get_expr_operands (stmt, &TREE_OPERAND (expr, 1), flags);
1310 /* fall through */
1312 case ALIGN_INDIRECT_REF:
1313 case INDIRECT_REF:
1314 get_indirect_ref_operands (stmt, expr, flags);
1315 return;
1317 case ARRAY_REF:
1318 case ARRAY_RANGE_REF:
1319 /* Treat array references as references to the virtual variable
1320 representing the array. The virtual variable for an ARRAY_REF
1321 is the VAR_DECL for the array. */
1323 /* Add the virtual variable for the ARRAY_REF to VDEFS or VUSES
1324 according to the value of IS_DEF. Recurse if the LHS of the
1325 ARRAY_REF node is not a regular variable. */
1326 if (SSA_VAR_P (TREE_OPERAND (expr, 0)))
1327 add_stmt_operand (expr_p, s_ann, flags);
1328 else
1329 get_expr_operands (stmt, &TREE_OPERAND (expr, 0), flags);
1331 get_expr_operands (stmt, &TREE_OPERAND (expr, 1), opf_none);
1332 get_expr_operands (stmt, &TREE_OPERAND (expr, 2), opf_none);
1333 get_expr_operands (stmt, &TREE_OPERAND (expr, 3), opf_none);
1334 return;
1336 case COMPONENT_REF:
1337 case REALPART_EXPR:
1338 case IMAGPART_EXPR:
1340 tree ref;
1341 HOST_WIDE_INT offset, size;
1342 /* This component ref becomes an access to all of the subvariables
1343 it can touch, if we can determine that, but *NOT* the real one.
1344 If we can't determine which fields we could touch, the recursion
1345 will eventually get to a variable and add *all* of its subvars, or
1346 whatever is the minimum correct subset. */
1348 ref = okay_component_ref_for_subvars (expr, &offset, &size);
1349 if (ref)
1351 subvar_t svars = get_subvars_for_var (ref);
1352 subvar_t sv;
1353 for (sv = svars; sv; sv = sv->next)
1355 bool exact;
1356 if (overlap_subvar (offset, size, sv, &exact))
1358 if (exact)
1359 flags &= ~opf_kill_def;
1360 add_stmt_operand (&sv->var, s_ann, flags);
1364 else
1365 get_expr_operands (stmt, &TREE_OPERAND (expr, 0),
1366 flags & ~opf_kill_def);
1368 if (code == COMPONENT_REF)
1369 get_expr_operands (stmt, &TREE_OPERAND (expr, 2), opf_none);
1370 return;
1372 case WITH_SIZE_EXPR:
1373 /* WITH_SIZE_EXPR is a pass-through reference to its first argument,
1374 and an rvalue reference to its second argument. */
1375 get_expr_operands (stmt, &TREE_OPERAND (expr, 1), opf_none);
1376 get_expr_operands (stmt, &TREE_OPERAND (expr, 0), flags);
1377 return;
1379 case CALL_EXPR:
1380 get_call_expr_operands (stmt, expr);
1381 return;
1383 case COND_EXPR:
1384 case VEC_COND_EXPR:
1385 get_expr_operands (stmt, &TREE_OPERAND (expr, 0), opf_none);
1386 get_expr_operands (stmt, &TREE_OPERAND (expr, 1), opf_none);
1387 get_expr_operands (stmt, &TREE_OPERAND (expr, 2), opf_none);
1388 return;
1390 case MODIFY_EXPR:
1392 int subflags;
1393 tree op;
1395 get_expr_operands (stmt, &TREE_OPERAND (expr, 1), opf_none);
1397 op = TREE_OPERAND (expr, 0);
1398 if (TREE_CODE (op) == WITH_SIZE_EXPR)
1399 op = TREE_OPERAND (expr, 0);
1400 if (TREE_CODE (op) == ARRAY_REF
1401 || TREE_CODE (op) == ARRAY_RANGE_REF
1402 || TREE_CODE (op) == REALPART_EXPR
1403 || TREE_CODE (op) == IMAGPART_EXPR)
1404 subflags = opf_is_def;
1405 else
1406 subflags = opf_is_def | opf_kill_def;
1408 get_expr_operands (stmt, &TREE_OPERAND (expr, 0), subflags);
1409 return;
1412 case CONSTRUCTOR:
1414 /* General aggregate CONSTRUCTORs have been decomposed, but they
1415 are still in use as the COMPLEX_EXPR equivalent for vectors. */
1417 tree t;
1418 for (t = TREE_OPERAND (expr, 0); t ; t = TREE_CHAIN (t))
1419 get_expr_operands (stmt, &TREE_VALUE (t), opf_none);
1421 return;
1424 case TRUTH_NOT_EXPR:
1425 case BIT_FIELD_REF:
1426 case VIEW_CONVERT_EXPR:
1427 do_unary:
1428 get_expr_operands (stmt, &TREE_OPERAND (expr, 0), flags);
1429 return;
1431 case TRUTH_AND_EXPR:
1432 case TRUTH_OR_EXPR:
1433 case TRUTH_XOR_EXPR:
1434 case COMPOUND_EXPR:
1435 case OBJ_TYPE_REF:
1436 do_binary:
1438 tree op0 = TREE_OPERAND (expr, 0);
1439 tree op1 = TREE_OPERAND (expr, 1);
1441 /* If it would be profitable to swap the operands, then do so to
1442 canonicalize the statement, enabling better optimization.
1444 By placing canonicalization of such expressions here we
1445 transparently keep statements in canonical form, even
1446 when the statement is modified. */
1447 if (tree_swap_operands_p (op0, op1, false))
1449 /* For relationals we need to swap the operands
1450 and change the code. */
1451 if (code == LT_EXPR
1452 || code == GT_EXPR
1453 || code == LE_EXPR
1454 || code == GE_EXPR)
1456 TREE_SET_CODE (expr, swap_tree_comparison (code));
1457 swap_tree_operands (&TREE_OPERAND (expr, 0),
1458 &TREE_OPERAND (expr, 1));
1461 /* For a commutative operator we can just swap the operands. */
1462 else if (commutative_tree_code (code))
1464 swap_tree_operands (&TREE_OPERAND (expr, 0),
1465 &TREE_OPERAND (expr, 1));
1469 get_expr_operands (stmt, &TREE_OPERAND (expr, 0), flags);
1470 get_expr_operands (stmt, &TREE_OPERAND (expr, 1), flags);
1471 return;
1474 case REALIGN_LOAD_EXPR:
1476 get_expr_operands (stmt, &TREE_OPERAND (expr, 0), flags);
1477 get_expr_operands (stmt, &TREE_OPERAND (expr, 1), flags);
1478 get_expr_operands (stmt, &TREE_OPERAND (expr, 2), flags);
1479 return;
1482 case BLOCK:
1483 case FUNCTION_DECL:
1484 case EXC_PTR_EXPR:
1485 case FILTER_EXPR:
1486 case LABEL_DECL:
1487 /* Expressions that make no memory references. */
1488 return;
1490 default:
1491 if (class == tcc_unary)
1492 goto do_unary;
1493 if (class == tcc_binary || class == tcc_comparison)
1494 goto do_binary;
1495 if (class == tcc_constant || class == tcc_type)
1496 return;
1499 /* If we get here, something has gone wrong. */
1500 #ifdef ENABLE_CHECKING
1501 fprintf (stderr, "unhandled expression in get_expr_operands():\n");
1502 debug_tree (expr);
1503 fputs ("\n", stderr);
1504 internal_error ("internal error");
1505 #endif
1506 gcc_unreachable ();
1510 /* Scan operands in the ASM_EXPR stmt referred to in INFO. */
1512 static void
1513 get_asm_expr_operands (tree stmt)
1515 stmt_ann_t s_ann = stmt_ann (stmt);
1516 int noutputs = list_length (ASM_OUTPUTS (stmt));
1517 const char **oconstraints
1518 = (const char **) alloca ((noutputs) * sizeof (const char *));
1519 int i;
1520 tree link;
1521 const char *constraint;
1522 bool allows_mem, allows_reg, is_inout;
1524 for (i=0, link = ASM_OUTPUTS (stmt); link; ++i, link = TREE_CHAIN (link))
1526 oconstraints[i] = constraint
1527 = TREE_STRING_POINTER (TREE_VALUE (TREE_PURPOSE (link)));
1528 parse_output_constraint (&constraint, i, 0, 0,
1529 &allows_mem, &allows_reg, &is_inout);
1531 /* This should have been split in gimplify_asm_expr. */
1532 gcc_assert (!allows_reg || !is_inout);
1534 /* Memory operands are addressable. Note that STMT needs the
1535 address of this operand. */
1536 if (!allows_reg && allows_mem)
1538 tree t = get_base_address (TREE_VALUE (link));
1539 if (t && DECL_P (t))
1540 note_addressable (t, s_ann);
1543 get_expr_operands (stmt, &TREE_VALUE (link), opf_is_def);
1546 for (link = ASM_INPUTS (stmt); link; link = TREE_CHAIN (link))
1548 constraint
1549 = TREE_STRING_POINTER (TREE_VALUE (TREE_PURPOSE (link)));
1550 parse_input_constraint (&constraint, 0, 0, noutputs, 0,
1551 oconstraints, &allows_mem, &allows_reg);
1553 /* Memory operands are addressable. Note that STMT needs the
1554 address of this operand. */
1555 if (!allows_reg && allows_mem)
1557 tree t = get_base_address (TREE_VALUE (link));
1558 if (t && DECL_P (t))
1559 note_addressable (t, s_ann);
1562 get_expr_operands (stmt, &TREE_VALUE (link), 0);
1566 /* Clobber memory for asm ("" : : : "memory"); */
1567 for (link = ASM_CLOBBERS (stmt); link; link = TREE_CHAIN (link))
1568 if (strcmp (TREE_STRING_POINTER (TREE_VALUE (link)), "memory") == 0)
1570 unsigned i;
1571 bitmap_iterator bi;
1573 /* Clobber all call-clobbered variables (or .GLOBAL_VAR if we
1574 decided to group them). */
1575 if (global_var)
1576 add_stmt_operand (&global_var, s_ann, opf_is_def);
1577 else
1578 EXECUTE_IF_SET_IN_BITMAP (call_clobbered_vars, 0, i, bi)
1580 tree var = referenced_var (i);
1581 add_stmt_operand (&var, s_ann, opf_is_def);
1584 /* Now clobber all addressables. */
1585 EXECUTE_IF_SET_IN_BITMAP (addressable_vars, 0, i, bi)
1587 tree var = referenced_var (i);
1589 /* Subvars are explicitly represented in this list, so
1590 we don't need the original to be added to the clobber
1591 ops, but the original *will* be in this list because
1592 we keep the addressability of the original
1593 variable up-to-date so we don't screw up the rest of
1594 the backend. */
1595 if (var_can_have_subvars (var)
1596 && get_subvars_for_var (var) != NULL)
1597 continue;
1599 add_stmt_operand (&var, s_ann, opf_is_def);
1602 break;
1606 /* A subroutine of get_expr_operands to handle INDIRECT_REF,
1607 ALIGN_INDIRECT_REF and MISALIGNED_INDIRECT_REF. */
1609 static void
1610 get_indirect_ref_operands (tree stmt, tree expr, int flags)
1612 tree *pptr = &TREE_OPERAND (expr, 0);
1613 tree ptr = *pptr;
1614 stmt_ann_t s_ann = stmt_ann (stmt);
1616 /* Stores into INDIRECT_REF operands are never killing definitions. */
1617 flags &= ~opf_kill_def;
1619 if (SSA_VAR_P (ptr))
1621 struct ptr_info_def *pi = NULL;
1623 /* If PTR has flow-sensitive points-to information, use it. */
1624 if (TREE_CODE (ptr) == SSA_NAME
1625 && (pi = SSA_NAME_PTR_INFO (ptr)) != NULL
1626 && pi->name_mem_tag)
1628 /* PTR has its own memory tag. Use it. */
1629 add_stmt_operand (&pi->name_mem_tag, s_ann, flags);
1631 else
1633 /* If PTR is not an SSA_NAME or it doesn't have a name
1634 tag, use its type memory tag. */
1635 var_ann_t v_ann;
1637 /* If we are emitting debugging dumps, display a warning if
1638 PTR is an SSA_NAME with no flow-sensitive alias
1639 information. That means that we may need to compute
1640 aliasing again. */
1641 if (dump_file
1642 && TREE_CODE (ptr) == SSA_NAME
1643 && pi == NULL)
1645 fprintf (dump_file,
1646 "NOTE: no flow-sensitive alias info for ");
1647 print_generic_expr (dump_file, ptr, dump_flags);
1648 fprintf (dump_file, " in ");
1649 print_generic_stmt (dump_file, stmt, dump_flags);
1652 if (TREE_CODE (ptr) == SSA_NAME)
1653 ptr = SSA_NAME_VAR (ptr);
1654 v_ann = var_ann (ptr);
1655 if (v_ann->type_mem_tag)
1656 add_stmt_operand (&v_ann->type_mem_tag, s_ann, flags);
1660 /* If a constant is used as a pointer, we can't generate a real
1661 operand for it but we mark the statement volatile to prevent
1662 optimizations from messing things up. */
1663 else if (TREE_CODE (ptr) == INTEGER_CST)
1665 if (s_ann)
1666 s_ann->has_volatile_ops = true;
1667 return;
1670 /* Everything else *should* have been folded elsewhere, but users
1671 are smarter than we in finding ways to write invalid code. We
1672 cannot just abort here. If we were absolutely certain that we
1673 do handle all valid cases, then we could just do nothing here.
1674 That seems optimistic, so attempt to do something logical... */
1675 else if ((TREE_CODE (ptr) == PLUS_EXPR || TREE_CODE (ptr) == MINUS_EXPR)
1676 && TREE_CODE (TREE_OPERAND (ptr, 0)) == ADDR_EXPR
1677 && TREE_CODE (TREE_OPERAND (ptr, 1)) == INTEGER_CST)
1679 /* Make sure we know the object is addressable. */
1680 pptr = &TREE_OPERAND (ptr, 0);
1681 add_stmt_operand (pptr, s_ann, 0);
1683 /* Mark the object itself with a VUSE. */
1684 pptr = &TREE_OPERAND (*pptr, 0);
1685 get_expr_operands (stmt, pptr, flags);
1686 return;
1689 /* Ok, this isn't even is_gimple_min_invariant. Something's broke. */
1690 else
1691 gcc_unreachable ();
1693 /* Add a USE operand for the base pointer. */
1694 get_expr_operands (stmt, pptr, opf_none);
1697 /* A subroutine of get_expr_operands to handle CALL_EXPR. */
1699 static void
1700 get_call_expr_operands (tree stmt, tree expr)
1702 tree op;
1703 int call_flags = call_expr_flags (expr);
1705 /* If aliases have been computed already, add V_MAY_DEF or V_USE
1706 operands for all the symbols that have been found to be
1707 call-clobbered.
1709 Note that if aliases have not been computed, the global effects
1710 of calls will not be included in the SSA web. This is fine
1711 because no optimizer should run before aliases have been
1712 computed. By not bothering with virtual operands for CALL_EXPRs
1713 we avoid adding superfluous virtual operands, which can be a
1714 significant compile time sink (See PR 15855). */
1715 if (aliases_computed_p
1716 && !bitmap_empty_p (call_clobbered_vars)
1717 && !(call_flags & ECF_NOVOPS))
1719 /* A 'pure' or a 'const' functions never call clobber anything.
1720 A 'noreturn' function might, but since we don't return anyway
1721 there is no point in recording that. */
1722 if (TREE_SIDE_EFFECTS (expr)
1723 && !(call_flags & (ECF_PURE | ECF_CONST | ECF_NORETURN)))
1724 add_call_clobber_ops (stmt);
1725 else if (!(call_flags & ECF_CONST))
1726 add_call_read_ops (stmt);
1729 /* Find uses in the called function. */
1730 get_expr_operands (stmt, &TREE_OPERAND (expr, 0), opf_none);
1732 for (op = TREE_OPERAND (expr, 1); op; op = TREE_CHAIN (op))
1733 get_expr_operands (stmt, &TREE_VALUE (op), opf_none);
1735 get_expr_operands (stmt, &TREE_OPERAND (expr, 2), opf_none);
1740 /* Add *VAR_P to the appropriate operand array for INFO. FLAGS is as in
1741 get_expr_operands. If *VAR_P is a GIMPLE register, it will be added to
1742 the statement's real operands, otherwise it is added to virtual
1743 operands. */
1745 static void
1746 add_stmt_operand (tree *var_p, stmt_ann_t s_ann, int flags)
1748 bool is_real_op;
1749 tree var, sym;
1750 var_ann_t v_ann;
1752 var = *var_p;
1753 STRIP_NOPS (var);
1755 /* If the operand is an ADDR_EXPR, add its operand to the list of
1756 variables that have had their address taken in this statement. */
1757 if (TREE_CODE (var) == ADDR_EXPR)
1759 note_addressable (TREE_OPERAND (var, 0), s_ann);
1760 return;
1763 /* If the original variable is not a scalar, it will be added to the list
1764 of virtual operands. In that case, use its base symbol as the virtual
1765 variable representing it. */
1766 is_real_op = is_gimple_reg (var);
1767 if (!is_real_op && !DECL_P (var))
1768 var = get_virtual_var (var);
1770 /* If VAR is not a variable that we care to optimize, do nothing. */
1771 if (var == NULL_TREE || !SSA_VAR_P (var))
1772 return;
1774 sym = (TREE_CODE (var) == SSA_NAME ? SSA_NAME_VAR (var) : var);
1775 v_ann = var_ann (sym);
1777 /* Mark statements with volatile operands. Optimizers should back
1778 off from statements having volatile operands. */
1779 if (TREE_THIS_VOLATILE (sym) && s_ann)
1780 s_ann->has_volatile_ops = true;
1782 if (is_real_op)
1784 /* The variable is a GIMPLE register. Add it to real operands. */
1785 if (flags & opf_is_def)
1786 append_def (var_p);
1787 else
1788 append_use (var_p);
1790 else
1792 varray_type aliases;
1794 /* The variable is not a GIMPLE register. Add it (or its aliases) to
1795 virtual operands, unless the caller has specifically requested
1796 not to add virtual operands (used when adding operands inside an
1797 ADDR_EXPR expression). */
1798 if (flags & opf_no_vops)
1799 return;
1801 aliases = v_ann->may_aliases;
1803 if (aliases == NULL)
1805 /* The variable is not aliased or it is an alias tag. */
1806 if (flags & opf_is_def)
1808 if (flags & opf_kill_def)
1810 /* Only regular variables or struct fields may get a
1811 V_MUST_DEF operand. */
1812 gcc_assert (v_ann->mem_tag_kind == NOT_A_TAG
1813 || v_ann->mem_tag_kind == STRUCT_FIELD);
1814 /* V_MUST_DEF for non-aliased, non-GIMPLE register
1815 variable definitions. */
1816 append_v_must_def (var);
1818 else
1820 /* Add a V_MAY_DEF for call-clobbered variables and
1821 memory tags. */
1822 append_v_may_def (var);
1825 else
1827 append_vuse (var);
1828 if (s_ann && v_ann->is_alias_tag)
1829 s_ann->makes_aliased_loads = 1;
1832 else
1834 size_t i;
1836 /* The variable is aliased. Add its aliases to the virtual
1837 operands. */
1838 gcc_assert (VARRAY_ACTIVE_SIZE (aliases) != 0);
1840 if (flags & opf_is_def)
1842 /* If the variable is also an alias tag, add a virtual
1843 operand for it, otherwise we will miss representing
1844 references to the members of the variable's alias set.
1845 This fixes the bug in gcc.c-torture/execute/20020503-1.c. */
1846 if (v_ann->is_alias_tag)
1847 append_v_may_def (var);
1849 for (i = 0; i < VARRAY_ACTIVE_SIZE (aliases); i++)
1850 append_v_may_def (VARRAY_TREE (aliases, i));
1852 if (s_ann)
1853 s_ann->makes_aliased_stores = 1;
1855 else
1857 /* Similarly, append a virtual uses for VAR itself, when
1858 it is an alias tag. */
1859 if (v_ann->is_alias_tag)
1860 append_vuse (var);
1862 for (i = 0; i < VARRAY_ACTIVE_SIZE (aliases); i++)
1863 append_vuse (VARRAY_TREE (aliases, i));
1865 if (s_ann)
1866 s_ann->makes_aliased_loads = 1;
1873 /* Record that VAR had its address taken in the statement with annotations
1874 S_ANN. */
1876 static void
1877 note_addressable (tree var, stmt_ann_t s_ann)
1879 tree ref;
1880 subvar_t svars;
1881 HOST_WIDE_INT offset;
1882 HOST_WIDE_INT size;
1884 if (!s_ann)
1885 return;
1887 /* If this is a COMPONENT_REF, and we know exactly what it touches, we only
1888 take the address of the subvariables it will touch.
1889 Otherwise, we take the address of all the subvariables, plus the real
1890 ones. */
1892 if (var && TREE_CODE (var) == COMPONENT_REF
1893 && (ref = okay_component_ref_for_subvars (var, &offset, &size)))
1895 subvar_t sv;
1896 svars = get_subvars_for_var (ref);
1898 if (s_ann->addresses_taken == NULL)
1899 s_ann->addresses_taken = BITMAP_GGC_ALLOC ();
1901 for (sv = svars; sv; sv = sv->next)
1903 if (overlap_subvar (offset, size, sv, NULL))
1904 bitmap_set_bit (s_ann->addresses_taken, var_ann (sv->var)->uid);
1906 return;
1909 var = get_base_address (var);
1910 if (var && SSA_VAR_P (var))
1912 if (s_ann->addresses_taken == NULL)
1913 s_ann->addresses_taken = BITMAP_GGC_ALLOC ();
1916 if (var_can_have_subvars (var)
1917 && (svars = get_subvars_for_var (var)))
1919 subvar_t sv;
1920 for (sv = svars; sv; sv = sv->next)
1921 bitmap_set_bit (s_ann->addresses_taken, var_ann (sv->var)->uid);
1923 else
1924 bitmap_set_bit (s_ann->addresses_taken, var_ann (var)->uid);
1928 /* Add clobbering definitions for .GLOBAL_VAR or for each of the call
1929 clobbered variables in the function. */
1931 static void
1932 add_call_clobber_ops (tree stmt)
1934 unsigned i;
1935 tree t;
1936 bitmap_iterator bi;
1937 stmt_ann_t s_ann = stmt_ann (stmt);
1938 struct stmt_ann_d empty_ann;
1940 /* Functions that are not const, pure or never return may clobber
1941 call-clobbered variables. */
1942 if (s_ann)
1943 s_ann->makes_clobbering_call = true;
1945 /* If we created .GLOBAL_VAR earlier, just use it. See compute_may_aliases
1946 for the heuristic used to decide whether to create .GLOBAL_VAR or not. */
1947 if (global_var)
1949 add_stmt_operand (&global_var, s_ann, opf_is_def);
1950 return;
1953 /* If cache is valid, copy the elements into the build vectors. */
1954 if (ssa_call_clobbered_cache_valid)
1956 for (i = 0; i < VARRAY_ACTIVE_SIZE (clobbered_vuses); i++)
1958 t = VARRAY_TREE (clobbered_vuses, i);
1959 gcc_assert (TREE_CODE (t) != SSA_NAME);
1960 var_ann (t)->in_vuse_list = 1;
1961 VARRAY_PUSH_TREE (build_vuses, t);
1963 for (i = 0; i < VARRAY_ACTIVE_SIZE (clobbered_v_may_defs); i++)
1965 t = VARRAY_TREE (clobbered_v_may_defs, i);
1966 gcc_assert (TREE_CODE (t) != SSA_NAME);
1967 var_ann (t)->in_v_may_def_list = 1;
1968 VARRAY_PUSH_TREE (build_v_may_defs, t);
1970 if (s_ann)
1972 s_ann->makes_aliased_loads = clobbered_aliased_loads;
1973 s_ann->makes_aliased_stores = clobbered_aliased_stores;
1975 return;
1978 memset (&empty_ann, 0, sizeof (struct stmt_ann_d));
1980 /* Add a V_MAY_DEF operand for every call clobbered variable. */
1981 EXECUTE_IF_SET_IN_BITMAP (call_clobbered_vars, 0, i, bi)
1983 tree var = referenced_var (i);
1984 if (TREE_READONLY (var)
1985 && (TREE_STATIC (var) || DECL_EXTERNAL (var)))
1986 add_stmt_operand (&var, &empty_ann, opf_none);
1987 else
1988 add_stmt_operand (&var, &empty_ann, opf_is_def);
1991 clobbered_aliased_loads = empty_ann.makes_aliased_loads;
1992 clobbered_aliased_stores = empty_ann.makes_aliased_stores;
1994 /* Set the flags for a stmt's annotation. */
1995 if (s_ann)
1997 s_ann->makes_aliased_loads = empty_ann.makes_aliased_loads;
1998 s_ann->makes_aliased_stores = empty_ann.makes_aliased_stores;
2001 /* Prepare empty cache vectors. */
2002 if (clobbered_v_may_defs)
2004 VARRAY_POP_ALL (clobbered_vuses);
2005 VARRAY_POP_ALL (clobbered_v_may_defs);
2007 else
2009 VARRAY_TREE_INIT (clobbered_v_may_defs, 10, "clobbered_v_may_defs");
2010 VARRAY_TREE_INIT (clobbered_vuses, 10, "clobbered_vuses");
2013 /* Now fill the clobbered cache with the values that have been found. */
2014 for (i = 0; i < VARRAY_ACTIVE_SIZE (build_vuses); i++)
2015 VARRAY_PUSH_TREE (clobbered_vuses, VARRAY_TREE (build_vuses, i));
2016 for (i = 0; i < VARRAY_ACTIVE_SIZE (build_v_may_defs); i++)
2017 VARRAY_PUSH_TREE (clobbered_v_may_defs, VARRAY_TREE (build_v_may_defs, i));
2019 ssa_call_clobbered_cache_valid = true;
2023 /* Add VUSE operands for .GLOBAL_VAR or all call clobbered variables in the
2024 function. */
2026 static void
2027 add_call_read_ops (tree stmt)
2029 unsigned i;
2030 tree t;
2031 bitmap_iterator bi;
2032 stmt_ann_t s_ann = stmt_ann (stmt);
2033 struct stmt_ann_d empty_ann;
2035 /* if the function is not pure, it may reference memory. Add
2036 a VUSE for .GLOBAL_VAR if it has been created. See add_referenced_var
2037 for the heuristic used to decide whether to create .GLOBAL_VAR. */
2038 if (global_var)
2040 add_stmt_operand (&global_var, s_ann, opf_none);
2041 return;
2044 /* If cache is valid, copy the elements into the build vector. */
2045 if (ssa_ro_call_cache_valid)
2047 for (i = 0; i < VARRAY_ACTIVE_SIZE (ro_call_vuses); i++)
2049 t = VARRAY_TREE (ro_call_vuses, i);
2050 gcc_assert (TREE_CODE (t) != SSA_NAME);
2051 var_ann (t)->in_vuse_list = 1;
2052 VARRAY_PUSH_TREE (build_vuses, t);
2054 if (s_ann)
2055 s_ann->makes_aliased_loads = ro_call_aliased_loads;
2056 return;
2059 memset (&empty_ann, 0, sizeof (struct stmt_ann_d));
2061 /* Add a VUSE for each call-clobbered variable. */
2062 EXECUTE_IF_SET_IN_BITMAP (call_clobbered_vars, 0, i, bi)
2064 tree var = referenced_var (i);
2065 add_stmt_operand (&var, &empty_ann, opf_none);
2068 ro_call_aliased_loads = empty_ann.makes_aliased_loads;
2069 if (s_ann)
2070 s_ann->makes_aliased_loads = empty_ann.makes_aliased_loads;
2072 /* Prepare empty cache vectors. */
2073 if (ro_call_vuses)
2074 VARRAY_POP_ALL (ro_call_vuses);
2075 else
2076 VARRAY_TREE_INIT (ro_call_vuses, 10, "ro_call_vuses");
2078 /* Now fill the clobbered cache with the values that have been found. */
2079 for (i = 0; i < VARRAY_ACTIVE_SIZE (build_vuses); i++)
2080 VARRAY_PUSH_TREE (ro_call_vuses, VARRAY_TREE (build_vuses, i));
2082 ssa_ro_call_cache_valid = true;
2085 /* Copies virtual operands from SRC to DST. */
2087 void
2088 copy_virtual_operands (tree dst, tree src)
2090 unsigned i;
2091 vuse_optype vuses = STMT_VUSE_OPS (src);
2092 v_may_def_optype v_may_defs = STMT_V_MAY_DEF_OPS (src);
2093 v_must_def_optype v_must_defs = STMT_V_MUST_DEF_OPS (src);
2094 vuse_optype *vuses_new = &stmt_ann (dst)->operands.vuse_ops;
2095 v_may_def_optype *v_may_defs_new = &stmt_ann (dst)->operands.v_may_def_ops;
2096 v_must_def_optype *v_must_defs_new = &stmt_ann (dst)->operands.v_must_def_ops;
2098 if (vuses)
2100 *vuses_new = allocate_vuse_optype (NUM_VUSES (vuses));
2101 for (i = 0; i < NUM_VUSES (vuses); i++)
2102 initialize_vuse_operand (*vuses_new, i, VUSE_OP (vuses, i), dst, NULL);
2105 if (v_may_defs)
2107 *v_may_defs_new = allocate_v_may_def_optype (NUM_V_MAY_DEFS (v_may_defs));
2108 for (i = 0; i < NUM_V_MAY_DEFS (v_may_defs); i++)
2110 initialize_v_may_def_operand (*v_may_defs_new, i,
2111 V_MAY_DEF_RESULT (v_may_defs, i),
2112 V_MAY_DEF_OP (v_may_defs, i), dst,
2113 NULL);
2117 if (v_must_defs)
2119 *v_must_defs_new
2120 = allocate_v_must_def_optype (NUM_V_MUST_DEFS (v_must_defs));
2121 for (i = 0; i < NUM_V_MUST_DEFS (v_must_defs); i++)
2123 initialize_v_must_def_operand (*v_must_defs_new, i,
2124 V_MUST_DEF_RESULT (v_must_defs, i),
2125 V_MUST_DEF_KILL (v_must_defs, i), dst,
2126 NULL);
2132 /* Specifically for use in DOM's expression analysis. Given a store, we
2133 create an artificial stmt which looks like a load from the store, this can
2134 be used to eliminate redundant loads. OLD_OPS are the operands from the
2135 store stmt, and NEW_STMT is the new load which represents a load of the
2136 values stored. */
2138 void
2139 create_ssa_artficial_load_stmt (stmt_operands_p old_ops, tree new_stmt)
2141 stmt_ann_t ann;
2142 tree op;
2143 stmt_operands_t tmp;
2144 unsigned j;
2146 memset (&tmp, 0, sizeof (stmt_operands_t));
2147 ann = get_stmt_ann (new_stmt);
2149 /* Free operands just in case is was an existing stmt. */
2150 free_ssa_operands (&(ann->operands));
2152 build_ssa_operands (new_stmt, NULL, &tmp, &(ann->operands));
2153 free_vuses (&(ann->operands.vuse_ops));
2154 free_v_may_defs (&(ann->operands.v_may_def_ops));
2155 free_v_must_defs (&(ann->operands.v_must_def_ops));
2157 /* For each VDEF on the original statement, we want to create a
2158 VUSE of the V_MAY_DEF result or V_MUST_DEF op on the new
2159 statement. */
2160 for (j = 0; j < NUM_V_MAY_DEFS (old_ops->v_may_def_ops); j++)
2162 op = V_MAY_DEF_RESULT (old_ops->v_may_def_ops, j);
2163 append_vuse (op);
2166 for (j = 0; j < NUM_V_MUST_DEFS (old_ops->v_must_def_ops); j++)
2168 op = V_MUST_DEF_RESULT (old_ops->v_must_def_ops, j);
2169 append_vuse (op);
2172 /* Now set the vuses for this new stmt. */
2173 ann->operands.vuse_ops = finalize_ssa_vuses (&(tmp.vuse_ops), NULL);
2178 /* Issue immediate use error for VAR to debug file F. */
2179 static void
2180 verify_abort (FILE *f, ssa_imm_use_t *var)
2182 tree stmt;
2183 stmt = var->stmt;
2184 if (stmt)
2186 if (stmt_modified_p(stmt))
2188 fprintf (f, " STMT MODIFIED. - <%p> ", (void *)stmt);
2189 print_generic_stmt (f, stmt, TDF_SLIM);
2192 fprintf (f, " IMM ERROR : (use_p : tree - %p:%p)", (void *)var,
2193 (void *)var->use);
2194 print_generic_expr (f, USE_FROM_PTR (var), TDF_SLIM);
2195 fprintf(f, "\n");
2199 /* Scan the immediate_use list for VAR making sure its linked properly.
2200 return RTUE iof there is a problem. */
2202 bool
2203 verify_imm_links (FILE *f, tree var)
2205 ssa_imm_use_t *ptr, *prev;
2206 ssa_imm_use_t *list;
2207 int count;
2209 gcc_assert (TREE_CODE (var) == SSA_NAME);
2211 list = &(SSA_NAME_IMM_USE_NODE (var));
2212 gcc_assert (list->use == NULL);
2214 if (list->prev == NULL)
2216 gcc_assert (list->next == NULL);
2217 return false;
2220 prev = list;
2221 count = 0;
2222 for (ptr = list->next; ptr != list; )
2224 if (prev != ptr->prev)
2226 verify_abort (f, ptr);
2227 return true;
2230 if (ptr->use == NULL)
2232 verify_abort (f, ptr); /* 2 roots, or SAFE guard node. */
2233 return true;
2235 else
2236 if (*(ptr->use) != var)
2238 verify_abort (f, ptr);
2239 return true;
2242 prev = ptr;
2243 ptr = ptr->next;
2244 /* Avoid infinite loops. */
2245 if (count++ > 30000)
2247 verify_abort (f, ptr);
2248 return true;
2252 /* Verify list in the other direction. */
2253 prev = list;
2254 for (ptr = list->prev; ptr != list; )
2256 if (prev != ptr->next)
2258 verify_abort (f, ptr);
2259 return true;
2261 prev = ptr;
2262 ptr = ptr->prev;
2263 if (count-- < 0)
2265 verify_abort (f, ptr);
2266 return true;
2270 if (count != 0)
2272 verify_abort (f, ptr);
2273 return true;
2276 return false;
2280 /* Dump all the immediate uses to FILE. */
2282 void
2283 dump_immediate_uses_for (FILE *file, tree var)
2285 imm_use_iterator iter;
2286 use_operand_p use_p;
2288 gcc_assert (var && TREE_CODE (var) == SSA_NAME);
2290 print_generic_expr (file, var, TDF_SLIM);
2291 fprintf (file, " : -->");
2292 if (has_zero_uses (var))
2293 fprintf (file, " no uses.\n");
2294 else
2295 if (has_single_use (var))
2296 fprintf (file, " single use.\n");
2297 else
2298 fprintf (file, "%d uses.\n", num_imm_uses (var));
2300 FOR_EACH_IMM_USE_FAST (use_p, iter, var)
2302 print_generic_stmt (file, USE_STMT (use_p), TDF_SLIM);
2304 fprintf(file, "\n");
2307 /* Dump all the immediate uses to FILE. */
2309 void
2310 dump_immediate_uses (FILE *file)
2312 tree var;
2313 unsigned int x;
2315 fprintf (file, "Immediate_uses: \n\n");
2316 for (x = 1; x < num_ssa_names; x++)
2318 var = ssa_name(x);
2319 if (!var)
2320 continue;
2321 dump_immediate_uses_for (file, var);
2326 /* Dump def-use edges on stderr. */
2328 void
2329 debug_immediate_uses (void)
2331 dump_immediate_uses (stderr);
2334 /* Dump def-use edges on stderr. */
2336 void
2337 debug_immediate_uses_for (tree var)
2339 dump_immediate_uses_for (stderr, var);
2342 #include "gt-tree-ssa-operands.h"