PR target/17245
[official-gcc.git] / gcc / combine.c
blob313a3d90d235ea441db112fa4c9b932306670fe5
1 /* Optimize by combining instructions for GNU compiler.
2 Copyright (C) 1987, 1988, 1992, 1993, 1994, 1995, 1996, 1997, 1998,
3 1999, 2000, 2001, 2002, 2003, 2004, 2005 Free Software Foundation, Inc.
5 This file is part of GCC.
7 GCC is free software; you can redistribute it and/or modify it under
8 the terms of the GNU General Public License as published by the Free
9 Software Foundation; either version 2, or (at your option) any later
10 version.
12 GCC is distributed in the hope that it will be useful, but WITHOUT ANY
13 WARRANTY; without even the implied warranty of MERCHANTABILITY or
14 FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License
15 for more details.
17 You should have received a copy of the GNU General Public License
18 along with GCC; see the file COPYING. If not, write to the Free
19 Software Foundation, 59 Temple Place - Suite 330, Boston, MA
20 02111-1307, USA. */
22 /* This module is essentially the "combiner" phase of the U. of Arizona
23 Portable Optimizer, but redone to work on our list-structured
24 representation for RTL instead of their string representation.
26 The LOG_LINKS of each insn identify the most recent assignment
27 to each REG used in the insn. It is a list of previous insns,
28 each of which contains a SET for a REG that is used in this insn
29 and not used or set in between. LOG_LINKs never cross basic blocks.
30 They were set up by the preceding pass (lifetime analysis).
32 We try to combine each pair of insns joined by a logical link.
33 We also try to combine triples of insns A, B and C when
34 C has a link back to B and B has a link back to A.
36 LOG_LINKS does not have links for use of the CC0. They don't
37 need to, because the insn that sets the CC0 is always immediately
38 before the insn that tests it. So we always regard a branch
39 insn as having a logical link to the preceding insn. The same is true
40 for an insn explicitly using CC0.
42 We check (with use_crosses_set_p) to avoid combining in such a way
43 as to move a computation to a place where its value would be different.
45 Combination is done by mathematically substituting the previous
46 insn(s) values for the regs they set into the expressions in
47 the later insns that refer to these regs. If the result is a valid insn
48 for our target machine, according to the machine description,
49 we install it, delete the earlier insns, and update the data flow
50 information (LOG_LINKS and REG_NOTES) for what we did.
52 There are a few exceptions where the dataflow information created by
53 flow.c aren't completely updated:
55 - reg_live_length is not updated
56 - a LOG_LINKS entry that refers to an insn with multiple SETs may be
57 removed because there is no way to know which register it was
58 linking
60 To simplify substitution, we combine only when the earlier insn(s)
61 consist of only a single assignment. To simplify updating afterward,
62 we never combine when a subroutine call appears in the middle.
64 Since we do not represent assignments to CC0 explicitly except when that
65 is all an insn does, there is no LOG_LINKS entry in an insn that uses
66 the condition code for the insn that set the condition code.
67 Fortunately, these two insns must be consecutive.
68 Therefore, every JUMP_INSN is taken to have an implicit logical link
69 to the preceding insn. This is not quite right, since non-jumps can
70 also use the condition code; but in practice such insns would not
71 combine anyway. */
73 #include "config.h"
74 #include "system.h"
75 #include "coretypes.h"
76 #include "tm.h"
77 #include "rtl.h"
78 #include "tree.h"
79 #include "tm_p.h"
80 #include "flags.h"
81 #include "regs.h"
82 #include "hard-reg-set.h"
83 #include "basic-block.h"
84 #include "insn-config.h"
85 #include "function.h"
86 /* Include expr.h after insn-config.h so we get HAVE_conditional_move. */
87 #include "expr.h"
88 #include "insn-attr.h"
89 #include "recog.h"
90 #include "real.h"
91 #include "toplev.h"
92 #include "target.h"
93 #include "optabs.h"
94 #include "insn-codes.h"
95 #include "rtlhooks-def.h"
96 /* Include output.h for dump_file. */
97 #include "output.h"
98 #include "params.h"
100 /* Number of attempts to combine instructions in this function. */
102 static int combine_attempts;
104 /* Number of attempts that got as far as substitution in this function. */
106 static int combine_merges;
108 /* Number of instructions combined with added SETs in this function. */
110 static int combine_extras;
112 /* Number of instructions combined in this function. */
114 static int combine_successes;
116 /* Totals over entire compilation. */
118 static int total_attempts, total_merges, total_extras, total_successes;
121 /* Vector mapping INSN_UIDs to cuids.
122 The cuids are like uids but increase monotonically always.
123 Combine always uses cuids so that it can compare them.
124 But actually renumbering the uids, which we used to do,
125 proves to be a bad idea because it makes it hard to compare
126 the dumps produced by earlier passes with those from later passes. */
128 static int *uid_cuid;
129 static int max_uid_cuid;
131 /* Get the cuid of an insn. */
133 #define INSN_CUID(INSN) \
134 (INSN_UID (INSN) > max_uid_cuid ? insn_cuid (INSN) : uid_cuid[INSN_UID (INSN)])
136 /* In case BITS_PER_WORD == HOST_BITS_PER_WIDE_INT, shifting by
137 BITS_PER_WORD would invoke undefined behavior. Work around it. */
139 #define UWIDE_SHIFT_LEFT_BY_BITS_PER_WORD(val) \
140 (((unsigned HOST_WIDE_INT) (val) << (BITS_PER_WORD - 1)) << 1)
142 /* Maximum register number, which is the size of the tables below. */
144 static unsigned int combine_max_regno;
146 struct reg_stat {
147 /* Record last point of death of (hard or pseudo) register n. */
148 rtx last_death;
150 /* Record last point of modification of (hard or pseudo) register n. */
151 rtx last_set;
153 /* The next group of fields allows the recording of the last value assigned
154 to (hard or pseudo) register n. We use this information to see if an
155 operation being processed is redundant given a prior operation performed
156 on the register. For example, an `and' with a constant is redundant if
157 all the zero bits are already known to be turned off.
159 We use an approach similar to that used by cse, but change it in the
160 following ways:
162 (1) We do not want to reinitialize at each label.
163 (2) It is useful, but not critical, to know the actual value assigned
164 to a register. Often just its form is helpful.
166 Therefore, we maintain the following fields:
168 last_set_value the last value assigned
169 last_set_label records the value of label_tick when the
170 register was assigned
171 last_set_table_tick records the value of label_tick when a
172 value using the register is assigned
173 last_set_invalid set to nonzero when it is not valid
174 to use the value of this register in some
175 register's value
177 To understand the usage of these tables, it is important to understand
178 the distinction between the value in last_set_value being valid and
179 the register being validly contained in some other expression in the
180 table.
182 (The next two parameters are out of date).
184 reg_stat[i].last_set_value is valid if it is nonzero, and either
185 reg_n_sets[i] is 1 or reg_stat[i].last_set_label == label_tick.
187 Register I may validly appear in any expression returned for the value
188 of another register if reg_n_sets[i] is 1. It may also appear in the
189 value for register J if reg_stat[j].last_set_invalid is zero, or
190 reg_stat[i].last_set_label < reg_stat[j].last_set_label.
192 If an expression is found in the table containing a register which may
193 not validly appear in an expression, the register is replaced by
194 something that won't match, (clobber (const_int 0)). */
196 /* Record last value assigned to (hard or pseudo) register n. */
198 rtx last_set_value;
200 /* Record the value of label_tick when an expression involving register n
201 is placed in last_set_value. */
203 int last_set_table_tick;
205 /* Record the value of label_tick when the value for register n is placed in
206 last_set_value. */
208 int last_set_label;
210 /* These fields are maintained in parallel with last_set_value and are
211 used to store the mode in which the register was last set, the bits
212 that were known to be zero when it was last set, and the number of
213 sign bits copies it was known to have when it was last set. */
215 unsigned HOST_WIDE_INT last_set_nonzero_bits;
216 char last_set_sign_bit_copies;
217 ENUM_BITFIELD(machine_mode) last_set_mode : 8;
219 /* Set nonzero if references to register n in expressions should not be
220 used. last_set_invalid is set nonzero when this register is being
221 assigned to and last_set_table_tick == label_tick. */
223 char last_set_invalid;
225 /* Some registers that are set more than once and used in more than one
226 basic block are nevertheless always set in similar ways. For example,
227 a QImode register may be loaded from memory in two places on a machine
228 where byte loads zero extend.
230 We record in the following fields if a register has some leading bits
231 that are always equal to the sign bit, and what we know about the
232 nonzero bits of a register, specifically which bits are known to be
233 zero.
235 If an entry is zero, it means that we don't know anything special. */
237 unsigned char sign_bit_copies;
239 unsigned HOST_WIDE_INT nonzero_bits;
242 static struct reg_stat *reg_stat;
244 /* Record the cuid of the last insn that invalidated memory
245 (anything that writes memory, and subroutine calls, but not pushes). */
247 static int mem_last_set;
249 /* Record the cuid of the last CALL_INSN
250 so we can tell whether a potential combination crosses any calls. */
252 static int last_call_cuid;
254 /* When `subst' is called, this is the insn that is being modified
255 (by combining in a previous insn). The PATTERN of this insn
256 is still the old pattern partially modified and it should not be
257 looked at, but this may be used to examine the successors of the insn
258 to judge whether a simplification is valid. */
260 static rtx subst_insn;
262 /* This is the lowest CUID that `subst' is currently dealing with.
263 get_last_value will not return a value if the register was set at or
264 after this CUID. If not for this mechanism, we could get confused if
265 I2 or I1 in try_combine were an insn that used the old value of a register
266 to obtain a new value. In that case, we might erroneously get the
267 new value of the register when we wanted the old one. */
269 static int subst_low_cuid;
271 /* This contains any hard registers that are used in newpat; reg_dead_at_p
272 must consider all these registers to be always live. */
274 static HARD_REG_SET newpat_used_regs;
276 /* This is an insn to which a LOG_LINKS entry has been added. If this
277 insn is the earlier than I2 or I3, combine should rescan starting at
278 that location. */
280 static rtx added_links_insn;
282 /* Basic block in which we are performing combines. */
283 static basic_block this_basic_block;
285 /* A bitmap indicating which blocks had registers go dead at entry.
286 After combine, we'll need to re-do global life analysis with
287 those blocks as starting points. */
288 static sbitmap refresh_blocks;
290 /* The following array records the insn_rtx_cost for every insn
291 in the instruction stream. */
293 static int *uid_insn_cost;
295 /* Length of the currently allocated uid_insn_cost array. */
297 static int last_insn_cost;
299 /* Incremented for each label. */
301 static int label_tick;
303 /* Mode used to compute significance in reg_stat[].nonzero_bits. It is the
304 largest integer mode that can fit in HOST_BITS_PER_WIDE_INT. */
306 static enum machine_mode nonzero_bits_mode;
308 /* Nonzero when reg_stat[].nonzero_bits and reg_stat[].sign_bit_copies can
309 be safely used. It is zero while computing them and after combine has
310 completed. This former test prevents propagating values based on
311 previously set values, which can be incorrect if a variable is modified
312 in a loop. */
314 static int nonzero_sign_valid;
317 /* Record one modification to rtl structure
318 to be undone by storing old_contents into *where.
319 is_int is 1 if the contents are an int. */
321 struct undo
323 struct undo *next;
324 int is_int;
325 union {rtx r; int i;} old_contents;
326 union {rtx *r; int *i;} where;
329 /* Record a bunch of changes to be undone, up to MAX_UNDO of them.
330 num_undo says how many are currently recorded.
332 other_insn is nonzero if we have modified some other insn in the process
333 of working on subst_insn. It must be verified too. */
335 struct undobuf
337 struct undo *undos;
338 struct undo *frees;
339 rtx other_insn;
342 static struct undobuf undobuf;
344 /* Number of times the pseudo being substituted for
345 was found and replaced. */
347 static int n_occurrences;
349 static rtx reg_nonzero_bits_for_combine (rtx, enum machine_mode, rtx,
350 enum machine_mode,
351 unsigned HOST_WIDE_INT,
352 unsigned HOST_WIDE_INT *);
353 static rtx reg_num_sign_bit_copies_for_combine (rtx, enum machine_mode, rtx,
354 enum machine_mode,
355 unsigned int, unsigned int *);
356 static void do_SUBST (rtx *, rtx);
357 static void do_SUBST_INT (int *, int);
358 static void init_reg_last (void);
359 static void setup_incoming_promotions (void);
360 static void set_nonzero_bits_and_sign_copies (rtx, rtx, void *);
361 static int cant_combine_insn_p (rtx);
362 static int can_combine_p (rtx, rtx, rtx, rtx, rtx *, rtx *);
363 static int combinable_i3pat (rtx, rtx *, rtx, rtx, int, rtx *);
364 static int contains_muldiv (rtx);
365 static rtx try_combine (rtx, rtx, rtx, int *);
366 static void undo_all (void);
367 static void undo_commit (void);
368 static rtx *find_split_point (rtx *, rtx);
369 static rtx subst (rtx, rtx, rtx, int, int);
370 static rtx combine_simplify_rtx (rtx, enum machine_mode, int);
371 static rtx simplify_if_then_else (rtx);
372 static rtx simplify_set (rtx);
373 static rtx simplify_logical (rtx);
374 static rtx expand_compound_operation (rtx);
375 static rtx expand_field_assignment (rtx);
376 static rtx make_extraction (enum machine_mode, rtx, HOST_WIDE_INT,
377 rtx, unsigned HOST_WIDE_INT, int, int, int);
378 static rtx extract_left_shift (rtx, int);
379 static rtx make_compound_operation (rtx, enum rtx_code);
380 static int get_pos_from_mask (unsigned HOST_WIDE_INT,
381 unsigned HOST_WIDE_INT *);
382 static rtx force_to_mode (rtx, enum machine_mode,
383 unsigned HOST_WIDE_INT, rtx, int);
384 static rtx if_then_else_cond (rtx, rtx *, rtx *);
385 static rtx known_cond (rtx, enum rtx_code, rtx, rtx);
386 static int rtx_equal_for_field_assignment_p (rtx, rtx);
387 static rtx make_field_assignment (rtx);
388 static rtx apply_distributive_law (rtx);
389 static rtx distribute_and_simplify_rtx (rtx, int);
390 static rtx simplify_and_const_int (rtx, enum machine_mode, rtx,
391 unsigned HOST_WIDE_INT);
392 static int merge_outer_ops (enum rtx_code *, HOST_WIDE_INT *, enum rtx_code,
393 HOST_WIDE_INT, enum machine_mode, int *);
394 static rtx simplify_shift_const (rtx, enum rtx_code, enum machine_mode, rtx,
395 int);
396 static int recog_for_combine (rtx *, rtx, rtx *);
397 static rtx gen_lowpart_for_combine (enum machine_mode, rtx);
398 static enum rtx_code simplify_comparison (enum rtx_code, rtx *, rtx *);
399 static void update_table_tick (rtx);
400 static void record_value_for_reg (rtx, rtx, rtx);
401 static void check_promoted_subreg (rtx, rtx);
402 static void record_dead_and_set_regs_1 (rtx, rtx, void *);
403 static void record_dead_and_set_regs (rtx);
404 static int get_last_value_validate (rtx *, rtx, int, int);
405 static rtx get_last_value (rtx);
406 static int use_crosses_set_p (rtx, int);
407 static void reg_dead_at_p_1 (rtx, rtx, void *);
408 static int reg_dead_at_p (rtx, rtx);
409 static void move_deaths (rtx, rtx, int, rtx, rtx *);
410 static int reg_bitfield_target_p (rtx, rtx);
411 static void distribute_notes (rtx, rtx, rtx, rtx);
412 static void distribute_links (rtx);
413 static void mark_used_regs_combine (rtx);
414 static int insn_cuid (rtx);
415 static void record_promoted_value (rtx, rtx);
416 static int unmentioned_reg_p_1 (rtx *, void *);
417 static bool unmentioned_reg_p (rtx, rtx);
420 /* It is not safe to use ordinary gen_lowpart in combine.
421 See comments in gen_lowpart_for_combine. */
422 #undef RTL_HOOKS_GEN_LOWPART
423 #define RTL_HOOKS_GEN_LOWPART gen_lowpart_for_combine
425 /* Our implementation of gen_lowpart never emits a new pseudo. */
426 #undef RTL_HOOKS_GEN_LOWPART_NO_EMIT
427 #define RTL_HOOKS_GEN_LOWPART_NO_EMIT gen_lowpart_for_combine
429 #undef RTL_HOOKS_REG_NONZERO_REG_BITS
430 #define RTL_HOOKS_REG_NONZERO_REG_BITS reg_nonzero_bits_for_combine
432 #undef RTL_HOOKS_REG_NUM_SIGN_BIT_COPIES
433 #define RTL_HOOKS_REG_NUM_SIGN_BIT_COPIES reg_num_sign_bit_copies_for_combine
435 static const struct rtl_hooks combine_rtl_hooks = RTL_HOOKS_INITIALIZER;
438 /* Substitute NEWVAL, an rtx expression, into INTO, a place in some
439 insn. The substitution can be undone by undo_all. If INTO is already
440 set to NEWVAL, do not record this change. Because computing NEWVAL might
441 also call SUBST, we have to compute it before we put anything into
442 the undo table. */
444 static void
445 do_SUBST (rtx *into, rtx newval)
447 struct undo *buf;
448 rtx oldval = *into;
450 if (oldval == newval)
451 return;
453 /* We'd like to catch as many invalid transformations here as
454 possible. Unfortunately, there are way too many mode changes
455 that are perfectly valid, so we'd waste too much effort for
456 little gain doing the checks here. Focus on catching invalid
457 transformations involving integer constants. */
458 if (GET_MODE_CLASS (GET_MODE (oldval)) == MODE_INT
459 && GET_CODE (newval) == CONST_INT)
461 /* Sanity check that we're replacing oldval with a CONST_INT
462 that is a valid sign-extension for the original mode. */
463 gcc_assert (INTVAL (newval)
464 == trunc_int_for_mode (INTVAL (newval), GET_MODE (oldval)));
466 /* Replacing the operand of a SUBREG or a ZERO_EXTEND with a
467 CONST_INT is not valid, because after the replacement, the
468 original mode would be gone. Unfortunately, we can't tell
469 when do_SUBST is called to replace the operand thereof, so we
470 perform this test on oldval instead, checking whether an
471 invalid replacement took place before we got here. */
472 gcc_assert (!(GET_CODE (oldval) == SUBREG
473 && GET_CODE (SUBREG_REG (oldval)) == CONST_INT));
474 gcc_assert (!(GET_CODE (oldval) == ZERO_EXTEND
475 && GET_CODE (XEXP (oldval, 0)) == CONST_INT));
478 if (undobuf.frees)
479 buf = undobuf.frees, undobuf.frees = buf->next;
480 else
481 buf = xmalloc (sizeof (struct undo));
483 buf->is_int = 0;
484 buf->where.r = into;
485 buf->old_contents.r = oldval;
486 *into = newval;
488 buf->next = undobuf.undos, undobuf.undos = buf;
491 #define SUBST(INTO, NEWVAL) do_SUBST(&(INTO), (NEWVAL))
493 /* Similar to SUBST, but NEWVAL is an int expression. Note that substitution
494 for the value of a HOST_WIDE_INT value (including CONST_INT) is
495 not safe. */
497 static void
498 do_SUBST_INT (int *into, int newval)
500 struct undo *buf;
501 int oldval = *into;
503 if (oldval == newval)
504 return;
506 if (undobuf.frees)
507 buf = undobuf.frees, undobuf.frees = buf->next;
508 else
509 buf = xmalloc (sizeof (struct undo));
511 buf->is_int = 1;
512 buf->where.i = into;
513 buf->old_contents.i = oldval;
514 *into = newval;
516 buf->next = undobuf.undos, undobuf.undos = buf;
519 #define SUBST_INT(INTO, NEWVAL) do_SUBST_INT(&(INTO), (NEWVAL))
521 /* Subroutine of try_combine. Determine whether the combine replacement
522 patterns NEWPAT and NEWI2PAT are cheaper according to insn_rtx_cost
523 that the original instruction sequence I1, I2 and I3. Note that I1
524 and/or NEWI2PAT may be NULL_RTX. This function returns false, if the
525 costs of all instructions can be estimated, and the replacements are
526 more expensive than the original sequence. */
528 static bool
529 combine_validate_cost (rtx i1, rtx i2, rtx i3, rtx newpat, rtx newi2pat)
531 int i1_cost, i2_cost, i3_cost;
532 int new_i2_cost, new_i3_cost;
533 int old_cost, new_cost;
535 /* Lookup the original insn_rtx_costs. */
536 i2_cost = INSN_UID (i2) <= last_insn_cost
537 ? uid_insn_cost[INSN_UID (i2)] : 0;
538 i3_cost = INSN_UID (i3) <= last_insn_cost
539 ? uid_insn_cost[INSN_UID (i3)] : 0;
541 if (i1)
543 i1_cost = INSN_UID (i1) <= last_insn_cost
544 ? uid_insn_cost[INSN_UID (i1)] : 0;
545 old_cost = (i1_cost > 0 && i2_cost > 0 && i3_cost > 0)
546 ? i1_cost + i2_cost + i3_cost : 0;
548 else
550 old_cost = (i2_cost > 0 && i3_cost > 0) ? i2_cost + i3_cost : 0;
551 i1_cost = 0;
554 /* Calculate the replacement insn_rtx_costs. */
555 new_i3_cost = insn_rtx_cost (newpat);
556 if (newi2pat)
558 new_i2_cost = insn_rtx_cost (newi2pat);
559 new_cost = (new_i2_cost > 0 && new_i3_cost > 0)
560 ? new_i2_cost + new_i3_cost : 0;
562 else
564 new_cost = new_i3_cost;
565 new_i2_cost = 0;
568 if (undobuf.other_insn)
570 int old_other_cost, new_other_cost;
572 old_other_cost = (INSN_UID (undobuf.other_insn) <= last_insn_cost
573 ? uid_insn_cost[INSN_UID (undobuf.other_insn)] : 0);
574 new_other_cost = insn_rtx_cost (PATTERN (undobuf.other_insn));
575 if (old_other_cost > 0 && new_other_cost > 0)
577 old_cost += old_other_cost;
578 new_cost += new_other_cost;
580 else
581 old_cost = 0;
584 /* Disallow this recombination if both new_cost and old_cost are
585 greater than zero, and new_cost is greater than old cost. */
586 if (old_cost > 0
587 && new_cost > old_cost)
589 if (dump_file)
591 if (i1)
593 fprintf (dump_file,
594 "rejecting combination of insns %d, %d and %d\n",
595 INSN_UID (i1), INSN_UID (i2), INSN_UID (i3));
596 fprintf (dump_file, "original costs %d + %d + %d = %d\n",
597 i1_cost, i2_cost, i3_cost, old_cost);
599 else
601 fprintf (dump_file,
602 "rejecting combination of insns %d and %d\n",
603 INSN_UID (i2), INSN_UID (i3));
604 fprintf (dump_file, "original costs %d + %d = %d\n",
605 i2_cost, i3_cost, old_cost);
608 if (newi2pat)
610 fprintf (dump_file, "replacement costs %d + %d = %d\n",
611 new_i2_cost, new_i3_cost, new_cost);
613 else
614 fprintf (dump_file, "replacement cost %d\n", new_cost);
617 return false;
620 /* Update the uid_insn_cost array with the replacement costs. */
621 uid_insn_cost[INSN_UID (i2)] = new_i2_cost;
622 uid_insn_cost[INSN_UID (i3)] = new_i3_cost;
623 if (i1)
624 uid_insn_cost[INSN_UID (i1)] = 0;
626 return true;
629 /* Main entry point for combiner. F is the first insn of the function.
630 NREGS is the first unused pseudo-reg number.
632 Return nonzero if the combiner has turned an indirect jump
633 instruction into a direct jump. */
635 combine_instructions (rtx f, unsigned int nregs)
637 rtx insn, next;
638 #ifdef HAVE_cc0
639 rtx prev;
640 #endif
641 int i;
642 rtx links, nextlinks;
644 int new_direct_jump_p = 0;
646 combine_attempts = 0;
647 combine_merges = 0;
648 combine_extras = 0;
649 combine_successes = 0;
651 combine_max_regno = nregs;
653 rtl_hooks = combine_rtl_hooks;
655 reg_stat = xcalloc (nregs, sizeof (struct reg_stat));
657 init_recog_no_volatile ();
659 /* Compute maximum uid value so uid_cuid can be allocated. */
661 for (insn = f, i = 0; insn; insn = NEXT_INSN (insn))
662 if (INSN_UID (insn) > i)
663 i = INSN_UID (insn);
665 uid_cuid = xmalloc ((i + 1) * sizeof (int));
666 max_uid_cuid = i;
668 nonzero_bits_mode = mode_for_size (HOST_BITS_PER_WIDE_INT, MODE_INT, 0);
670 /* Don't use reg_stat[].nonzero_bits when computing it. This can cause
671 problems when, for example, we have j <<= 1 in a loop. */
673 nonzero_sign_valid = 0;
675 /* Compute the mapping from uids to cuids.
676 Cuids are numbers assigned to insns, like uids,
677 except that cuids increase monotonically through the code.
679 Scan all SETs and see if we can deduce anything about what
680 bits are known to be zero for some registers and how many copies
681 of the sign bit are known to exist for those registers.
683 Also set any known values so that we can use it while searching
684 for what bits are known to be set. */
686 label_tick = 1;
688 setup_incoming_promotions ();
690 refresh_blocks = sbitmap_alloc (last_basic_block);
691 sbitmap_zero (refresh_blocks);
693 /* Allocate array of current insn_rtx_costs. */
694 uid_insn_cost = xcalloc (max_uid_cuid + 1, sizeof (int));
695 last_insn_cost = max_uid_cuid;
697 for (insn = f, i = 0; insn; insn = NEXT_INSN (insn))
699 uid_cuid[INSN_UID (insn)] = ++i;
700 subst_low_cuid = i;
701 subst_insn = insn;
703 if (INSN_P (insn))
705 note_stores (PATTERN (insn), set_nonzero_bits_and_sign_copies,
706 NULL);
707 record_dead_and_set_regs (insn);
709 #ifdef AUTO_INC_DEC
710 for (links = REG_NOTES (insn); links; links = XEXP (links, 1))
711 if (REG_NOTE_KIND (links) == REG_INC)
712 set_nonzero_bits_and_sign_copies (XEXP (links, 0), NULL_RTX,
713 NULL);
714 #endif
716 /* Record the current insn_rtx_cost of this instruction. */
717 if (NONJUMP_INSN_P (insn))
718 uid_insn_cost[INSN_UID (insn)] = insn_rtx_cost (PATTERN (insn));
719 if (dump_file)
720 fprintf(dump_file, "insn_cost %d: %d\n",
721 INSN_UID (insn), uid_insn_cost[INSN_UID (insn)]);
724 if (LABEL_P (insn))
725 label_tick++;
728 nonzero_sign_valid = 1;
730 /* Now scan all the insns in forward order. */
732 label_tick = 1;
733 last_call_cuid = 0;
734 mem_last_set = 0;
735 init_reg_last ();
736 setup_incoming_promotions ();
738 FOR_EACH_BB (this_basic_block)
740 for (insn = BB_HEAD (this_basic_block);
741 insn != NEXT_INSN (BB_END (this_basic_block));
742 insn = next ? next : NEXT_INSN (insn))
744 next = 0;
746 if (LABEL_P (insn))
747 label_tick++;
749 else if (INSN_P (insn))
751 /* See if we know about function return values before this
752 insn based upon SUBREG flags. */
753 check_promoted_subreg (insn, PATTERN (insn));
755 /* Try this insn with each insn it links back to. */
757 for (links = LOG_LINKS (insn); links; links = XEXP (links, 1))
758 if ((next = try_combine (insn, XEXP (links, 0),
759 NULL_RTX, &new_direct_jump_p)) != 0)
760 goto retry;
762 /* Try each sequence of three linked insns ending with this one. */
764 for (links = LOG_LINKS (insn); links; links = XEXP (links, 1))
766 rtx link = XEXP (links, 0);
768 /* If the linked insn has been replaced by a note, then there
769 is no point in pursuing this chain any further. */
770 if (NOTE_P (link))
771 continue;
773 for (nextlinks = LOG_LINKS (link);
774 nextlinks;
775 nextlinks = XEXP (nextlinks, 1))
776 if ((next = try_combine (insn, link,
777 XEXP (nextlinks, 0),
778 &new_direct_jump_p)) != 0)
779 goto retry;
782 #ifdef HAVE_cc0
783 /* Try to combine a jump insn that uses CC0
784 with a preceding insn that sets CC0, and maybe with its
785 logical predecessor as well.
786 This is how we make decrement-and-branch insns.
787 We need this special code because data flow connections
788 via CC0 do not get entered in LOG_LINKS. */
790 if (JUMP_P (insn)
791 && (prev = prev_nonnote_insn (insn)) != 0
792 && NONJUMP_INSN_P (prev)
793 && sets_cc0_p (PATTERN (prev)))
795 if ((next = try_combine (insn, prev,
796 NULL_RTX, &new_direct_jump_p)) != 0)
797 goto retry;
799 for (nextlinks = LOG_LINKS (prev); nextlinks;
800 nextlinks = XEXP (nextlinks, 1))
801 if ((next = try_combine (insn, prev,
802 XEXP (nextlinks, 0),
803 &new_direct_jump_p)) != 0)
804 goto retry;
807 /* Do the same for an insn that explicitly references CC0. */
808 if (NONJUMP_INSN_P (insn)
809 && (prev = prev_nonnote_insn (insn)) != 0
810 && NONJUMP_INSN_P (prev)
811 && sets_cc0_p (PATTERN (prev))
812 && GET_CODE (PATTERN (insn)) == SET
813 && reg_mentioned_p (cc0_rtx, SET_SRC (PATTERN (insn))))
815 if ((next = try_combine (insn, prev,
816 NULL_RTX, &new_direct_jump_p)) != 0)
817 goto retry;
819 for (nextlinks = LOG_LINKS (prev); nextlinks;
820 nextlinks = XEXP (nextlinks, 1))
821 if ((next = try_combine (insn, prev,
822 XEXP (nextlinks, 0),
823 &new_direct_jump_p)) != 0)
824 goto retry;
827 /* Finally, see if any of the insns that this insn links to
828 explicitly references CC0. If so, try this insn, that insn,
829 and its predecessor if it sets CC0. */
830 for (links = LOG_LINKS (insn); links; links = XEXP (links, 1))
831 if (NONJUMP_INSN_P (XEXP (links, 0))
832 && GET_CODE (PATTERN (XEXP (links, 0))) == SET
833 && reg_mentioned_p (cc0_rtx, SET_SRC (PATTERN (XEXP (links, 0))))
834 && (prev = prev_nonnote_insn (XEXP (links, 0))) != 0
835 && NONJUMP_INSN_P (prev)
836 && sets_cc0_p (PATTERN (prev))
837 && (next = try_combine (insn, XEXP (links, 0),
838 prev, &new_direct_jump_p)) != 0)
839 goto retry;
840 #endif
842 /* Try combining an insn with two different insns whose results it
843 uses. */
844 for (links = LOG_LINKS (insn); links; links = XEXP (links, 1))
845 for (nextlinks = XEXP (links, 1); nextlinks;
846 nextlinks = XEXP (nextlinks, 1))
847 if ((next = try_combine (insn, XEXP (links, 0),
848 XEXP (nextlinks, 0),
849 &new_direct_jump_p)) != 0)
850 goto retry;
852 /* Try this insn with each REG_EQUAL note it links back to. */
853 for (links = LOG_LINKS (insn); links; links = XEXP (links, 1))
855 rtx set, note;
856 rtx temp = XEXP (links, 0);
857 if ((set = single_set (temp)) != 0
858 && (note = find_reg_equal_equiv_note (temp)) != 0
859 && GET_CODE (XEXP (note, 0)) != EXPR_LIST
860 /* Avoid using a register that may already been marked
861 dead by an earlier instruction. */
862 && ! unmentioned_reg_p (XEXP (note, 0), SET_SRC (set)))
864 /* Temporarily replace the set's source with the
865 contents of the REG_EQUAL note. The insn will
866 be deleted or recognized by try_combine. */
867 rtx orig = SET_SRC (set);
868 SET_SRC (set) = XEXP (note, 0);
869 next = try_combine (insn, temp, NULL_RTX,
870 &new_direct_jump_p);
871 if (next)
872 goto retry;
873 SET_SRC (set) = orig;
877 if (!NOTE_P (insn))
878 record_dead_and_set_regs (insn);
880 retry:
885 clear_bb_flags ();
887 EXECUTE_IF_SET_IN_SBITMAP (refresh_blocks, 0, i,
888 BASIC_BLOCK (i)->flags |= BB_DIRTY);
889 new_direct_jump_p |= purge_all_dead_edges (0);
890 delete_noop_moves ();
892 update_life_info_in_dirty_blocks (UPDATE_LIFE_GLOBAL_RM_NOTES,
893 PROP_DEATH_NOTES | PROP_SCAN_DEAD_CODE
894 | PROP_KILL_DEAD_CODE);
896 /* Clean up. */
897 sbitmap_free (refresh_blocks);
898 free (uid_insn_cost);
899 free (reg_stat);
900 free (uid_cuid);
903 struct undo *undo, *next;
904 for (undo = undobuf.frees; undo; undo = next)
906 next = undo->next;
907 free (undo);
909 undobuf.frees = 0;
912 total_attempts += combine_attempts;
913 total_merges += combine_merges;
914 total_extras += combine_extras;
915 total_successes += combine_successes;
917 nonzero_sign_valid = 0;
918 rtl_hooks = general_rtl_hooks;
920 /* Make recognizer allow volatile MEMs again. */
921 init_recog ();
923 return new_direct_jump_p;
926 /* Wipe the last_xxx fields of reg_stat in preparation for another pass. */
928 static void
929 init_reg_last (void)
931 unsigned int i;
932 for (i = 0; i < combine_max_regno; i++)
933 memset (reg_stat + i, 0, offsetof (struct reg_stat, sign_bit_copies));
936 /* Set up any promoted values for incoming argument registers. */
938 static void
939 setup_incoming_promotions (void)
941 unsigned int regno;
942 rtx reg;
943 enum machine_mode mode;
944 int unsignedp;
945 rtx first = get_insns ();
947 if (targetm.calls.promote_function_args (TREE_TYPE (cfun->decl)))
949 for (regno = 0; regno < FIRST_PSEUDO_REGISTER; regno++)
950 /* Check whether this register can hold an incoming pointer
951 argument. FUNCTION_ARG_REGNO_P tests outgoing register
952 numbers, so translate if necessary due to register windows. */
953 if (FUNCTION_ARG_REGNO_P (OUTGOING_REGNO (regno))
954 && (reg = promoted_input_arg (regno, &mode, &unsignedp)) != 0)
956 record_value_for_reg
957 (reg, first, gen_rtx_fmt_e ((unsignedp ? ZERO_EXTEND
958 : SIGN_EXTEND),
959 GET_MODE (reg),
960 gen_rtx_CLOBBER (mode, const0_rtx)));
965 /* Called via note_stores. If X is a pseudo that is narrower than
966 HOST_BITS_PER_WIDE_INT and is being set, record what bits are known zero.
968 If we are setting only a portion of X and we can't figure out what
969 portion, assume all bits will be used since we don't know what will
970 be happening.
972 Similarly, set how many bits of X are known to be copies of the sign bit
973 at all locations in the function. This is the smallest number implied
974 by any set of X. */
976 static void
977 set_nonzero_bits_and_sign_copies (rtx x, rtx set,
978 void *data ATTRIBUTE_UNUSED)
980 unsigned int num;
982 if (REG_P (x)
983 && REGNO (x) >= FIRST_PSEUDO_REGISTER
984 /* If this register is undefined at the start of the file, we can't
985 say what its contents were. */
986 && ! REGNO_REG_SET_P (ENTRY_BLOCK_PTR->next_bb->global_live_at_start, REGNO (x))
987 && GET_MODE_BITSIZE (GET_MODE (x)) <= HOST_BITS_PER_WIDE_INT)
989 if (set == 0 || GET_CODE (set) == CLOBBER)
991 reg_stat[REGNO (x)].nonzero_bits = GET_MODE_MASK (GET_MODE (x));
992 reg_stat[REGNO (x)].sign_bit_copies = 1;
993 return;
996 /* If this is a complex assignment, see if we can convert it into a
997 simple assignment. */
998 set = expand_field_assignment (set);
1000 /* If this is a simple assignment, or we have a paradoxical SUBREG,
1001 set what we know about X. */
1003 if (SET_DEST (set) == x
1004 || (GET_CODE (SET_DEST (set)) == SUBREG
1005 && (GET_MODE_SIZE (GET_MODE (SET_DEST (set)))
1006 > GET_MODE_SIZE (GET_MODE (SUBREG_REG (SET_DEST (set)))))
1007 && SUBREG_REG (SET_DEST (set)) == x))
1009 rtx src = SET_SRC (set);
1011 #ifdef SHORT_IMMEDIATES_SIGN_EXTEND
1012 /* If X is narrower than a word and SRC is a non-negative
1013 constant that would appear negative in the mode of X,
1014 sign-extend it for use in reg_stat[].nonzero_bits because some
1015 machines (maybe most) will actually do the sign-extension
1016 and this is the conservative approach.
1018 ??? For 2.5, try to tighten up the MD files in this regard
1019 instead of this kludge. */
1021 if (GET_MODE_BITSIZE (GET_MODE (x)) < BITS_PER_WORD
1022 && GET_CODE (src) == CONST_INT
1023 && INTVAL (src) > 0
1024 && 0 != (INTVAL (src)
1025 & ((HOST_WIDE_INT) 1
1026 << (GET_MODE_BITSIZE (GET_MODE (x)) - 1))))
1027 src = GEN_INT (INTVAL (src)
1028 | ((HOST_WIDE_INT) (-1)
1029 << GET_MODE_BITSIZE (GET_MODE (x))));
1030 #endif
1032 /* Don't call nonzero_bits if it cannot change anything. */
1033 if (reg_stat[REGNO (x)].nonzero_bits != ~(unsigned HOST_WIDE_INT) 0)
1034 reg_stat[REGNO (x)].nonzero_bits
1035 |= nonzero_bits (src, nonzero_bits_mode);
1036 num = num_sign_bit_copies (SET_SRC (set), GET_MODE (x));
1037 if (reg_stat[REGNO (x)].sign_bit_copies == 0
1038 || reg_stat[REGNO (x)].sign_bit_copies > num)
1039 reg_stat[REGNO (x)].sign_bit_copies = num;
1041 else
1043 reg_stat[REGNO (x)].nonzero_bits = GET_MODE_MASK (GET_MODE (x));
1044 reg_stat[REGNO (x)].sign_bit_copies = 1;
1049 /* See if INSN can be combined into I3. PRED and SUCC are optionally
1050 insns that were previously combined into I3 or that will be combined
1051 into the merger of INSN and I3.
1053 Return 0 if the combination is not allowed for any reason.
1055 If the combination is allowed, *PDEST will be set to the single
1056 destination of INSN and *PSRC to the single source, and this function
1057 will return 1. */
1059 static int
1060 can_combine_p (rtx insn, rtx i3, rtx pred ATTRIBUTE_UNUSED, rtx succ,
1061 rtx *pdest, rtx *psrc)
1063 int i;
1064 rtx set = 0, src, dest;
1065 rtx p;
1066 #ifdef AUTO_INC_DEC
1067 rtx link;
1068 #endif
1069 int all_adjacent = (succ ? (next_active_insn (insn) == succ
1070 && next_active_insn (succ) == i3)
1071 : next_active_insn (insn) == i3);
1073 /* Can combine only if previous insn is a SET of a REG, a SUBREG or CC0.
1074 or a PARALLEL consisting of such a SET and CLOBBERs.
1076 If INSN has CLOBBER parallel parts, ignore them for our processing.
1077 By definition, these happen during the execution of the insn. When it
1078 is merged with another insn, all bets are off. If they are, in fact,
1079 needed and aren't also supplied in I3, they may be added by
1080 recog_for_combine. Otherwise, it won't match.
1082 We can also ignore a SET whose SET_DEST is mentioned in a REG_UNUSED
1083 note.
1085 Get the source and destination of INSN. If more than one, can't
1086 combine. */
1088 if (GET_CODE (PATTERN (insn)) == SET)
1089 set = PATTERN (insn);
1090 else if (GET_CODE (PATTERN (insn)) == PARALLEL
1091 && GET_CODE (XVECEXP (PATTERN (insn), 0, 0)) == SET)
1093 for (i = 0; i < XVECLEN (PATTERN (insn), 0); i++)
1095 rtx elt = XVECEXP (PATTERN (insn), 0, i);
1096 rtx note;
1098 switch (GET_CODE (elt))
1100 /* This is important to combine floating point insns
1101 for the SH4 port. */
1102 case USE:
1103 /* Combining an isolated USE doesn't make sense.
1104 We depend here on combinable_i3pat to reject them. */
1105 /* The code below this loop only verifies that the inputs of
1106 the SET in INSN do not change. We call reg_set_between_p
1107 to verify that the REG in the USE does not change between
1108 I3 and INSN.
1109 If the USE in INSN was for a pseudo register, the matching
1110 insn pattern will likely match any register; combining this
1111 with any other USE would only be safe if we knew that the
1112 used registers have identical values, or if there was
1113 something to tell them apart, e.g. different modes. For
1114 now, we forgo such complicated tests and simply disallow
1115 combining of USES of pseudo registers with any other USE. */
1116 if (REG_P (XEXP (elt, 0))
1117 && GET_CODE (PATTERN (i3)) == PARALLEL)
1119 rtx i3pat = PATTERN (i3);
1120 int i = XVECLEN (i3pat, 0) - 1;
1121 unsigned int regno = REGNO (XEXP (elt, 0));
1125 rtx i3elt = XVECEXP (i3pat, 0, i);
1127 if (GET_CODE (i3elt) == USE
1128 && REG_P (XEXP (i3elt, 0))
1129 && (REGNO (XEXP (i3elt, 0)) == regno
1130 ? reg_set_between_p (XEXP (elt, 0),
1131 PREV_INSN (insn), i3)
1132 : regno >= FIRST_PSEUDO_REGISTER))
1133 return 0;
1135 while (--i >= 0);
1137 break;
1139 /* We can ignore CLOBBERs. */
1140 case CLOBBER:
1141 break;
1143 case SET:
1144 /* Ignore SETs whose result isn't used but not those that
1145 have side-effects. */
1146 if (find_reg_note (insn, REG_UNUSED, SET_DEST (elt))
1147 && (!(note = find_reg_note (insn, REG_EH_REGION, NULL_RTX))
1148 || INTVAL (XEXP (note, 0)) <= 0)
1149 && ! side_effects_p (elt))
1150 break;
1152 /* If we have already found a SET, this is a second one and
1153 so we cannot combine with this insn. */
1154 if (set)
1155 return 0;
1157 set = elt;
1158 break;
1160 default:
1161 /* Anything else means we can't combine. */
1162 return 0;
1166 if (set == 0
1167 /* If SET_SRC is an ASM_OPERANDS we can't throw away these CLOBBERs,
1168 so don't do anything with it. */
1169 || GET_CODE (SET_SRC (set)) == ASM_OPERANDS)
1170 return 0;
1172 else
1173 return 0;
1175 if (set == 0)
1176 return 0;
1178 set = expand_field_assignment (set);
1179 src = SET_SRC (set), dest = SET_DEST (set);
1181 /* Don't eliminate a store in the stack pointer. */
1182 if (dest == stack_pointer_rtx
1183 /* Don't combine with an insn that sets a register to itself if it has
1184 a REG_EQUAL note. This may be part of a REG_NO_CONFLICT sequence. */
1185 || (rtx_equal_p (src, dest) && find_reg_note (insn, REG_EQUAL, NULL_RTX))
1186 /* Can't merge an ASM_OPERANDS. */
1187 || GET_CODE (src) == ASM_OPERANDS
1188 /* Can't merge a function call. */
1189 || GET_CODE (src) == CALL
1190 /* Don't eliminate a function call argument. */
1191 || (CALL_P (i3)
1192 && (find_reg_fusage (i3, USE, dest)
1193 || (REG_P (dest)
1194 && REGNO (dest) < FIRST_PSEUDO_REGISTER
1195 && global_regs[REGNO (dest)])))
1196 /* Don't substitute into an incremented register. */
1197 || FIND_REG_INC_NOTE (i3, dest)
1198 || (succ && FIND_REG_INC_NOTE (succ, dest))
1199 /* Don't substitute into a non-local goto, this confuses CFG. */
1200 || (JUMP_P (i3) && find_reg_note (i3, REG_NON_LOCAL_GOTO, NULL_RTX))
1201 #if 0
1202 /* Don't combine the end of a libcall into anything. */
1203 /* ??? This gives worse code, and appears to be unnecessary, since no
1204 pass after flow uses REG_LIBCALL/REG_RETVAL notes. Local-alloc does
1205 use REG_RETVAL notes for noconflict blocks, but other code here
1206 makes sure that those insns don't disappear. */
1207 || find_reg_note (insn, REG_RETVAL, NULL_RTX)
1208 #endif
1209 /* Make sure that DEST is not used after SUCC but before I3. */
1210 || (succ && ! all_adjacent
1211 && reg_used_between_p (dest, succ, i3))
1212 /* Make sure that the value that is to be substituted for the register
1213 does not use any registers whose values alter in between. However,
1214 If the insns are adjacent, a use can't cross a set even though we
1215 think it might (this can happen for a sequence of insns each setting
1216 the same destination; last_set of that register might point to
1217 a NOTE). If INSN has a REG_EQUIV note, the register is always
1218 equivalent to the memory so the substitution is valid even if there
1219 are intervening stores. Also, don't move a volatile asm or
1220 UNSPEC_VOLATILE across any other insns. */
1221 || (! all_adjacent
1222 && (((!MEM_P (src)
1223 || ! find_reg_note (insn, REG_EQUIV, src))
1224 && use_crosses_set_p (src, INSN_CUID (insn)))
1225 || (GET_CODE (src) == ASM_OPERANDS && MEM_VOLATILE_P (src))
1226 || GET_CODE (src) == UNSPEC_VOLATILE))
1227 /* If there is a REG_NO_CONFLICT note for DEST in I3 or SUCC, we get
1228 better register allocation by not doing the combine. */
1229 || find_reg_note (i3, REG_NO_CONFLICT, dest)
1230 || (succ && find_reg_note (succ, REG_NO_CONFLICT, dest))
1231 /* Don't combine across a CALL_INSN, because that would possibly
1232 change whether the life span of some REGs crosses calls or not,
1233 and it is a pain to update that information.
1234 Exception: if source is a constant, moving it later can't hurt.
1235 Accept that special case, because it helps -fforce-addr a lot. */
1236 || (INSN_CUID (insn) < last_call_cuid && ! CONSTANT_P (src)))
1237 return 0;
1239 /* DEST must either be a REG or CC0. */
1240 if (REG_P (dest))
1242 /* If register alignment is being enforced for multi-word items in all
1243 cases except for parameters, it is possible to have a register copy
1244 insn referencing a hard register that is not allowed to contain the
1245 mode being copied and which would not be valid as an operand of most
1246 insns. Eliminate this problem by not combining with such an insn.
1248 Also, on some machines we don't want to extend the life of a hard
1249 register. */
1251 if (REG_P (src)
1252 && ((REGNO (dest) < FIRST_PSEUDO_REGISTER
1253 && ! HARD_REGNO_MODE_OK (REGNO (dest), GET_MODE (dest)))
1254 /* Don't extend the life of a hard register unless it is
1255 user variable (if we have few registers) or it can't
1256 fit into the desired register (meaning something special
1257 is going on).
1258 Also avoid substituting a return register into I3, because
1259 reload can't handle a conflict with constraints of other
1260 inputs. */
1261 || (REGNO (src) < FIRST_PSEUDO_REGISTER
1262 && ! HARD_REGNO_MODE_OK (REGNO (src), GET_MODE (src)))))
1263 return 0;
1265 else if (GET_CODE (dest) != CC0)
1266 return 0;
1269 if (GET_CODE (PATTERN (i3)) == PARALLEL)
1270 for (i = XVECLEN (PATTERN (i3), 0) - 1; i >= 0; i--)
1271 if (GET_CODE (XVECEXP (PATTERN (i3), 0, i)) == CLOBBER)
1273 /* Don't substitute for a register intended as a clobberable
1274 operand. */
1275 rtx reg = XEXP (XVECEXP (PATTERN (i3), 0, i), 0);
1276 if (rtx_equal_p (reg, dest))
1277 return 0;
1279 /* If the clobber represents an earlyclobber operand, we must not
1280 substitute an expression containing the clobbered register.
1281 As we do not analyze the constraint strings here, we have to
1282 make the conservative assumption. However, if the register is
1283 a fixed hard reg, the clobber cannot represent any operand;
1284 we leave it up to the machine description to either accept or
1285 reject use-and-clobber patterns. */
1286 if (!REG_P (reg)
1287 || REGNO (reg) >= FIRST_PSEUDO_REGISTER
1288 || !fixed_regs[REGNO (reg)])
1289 if (reg_overlap_mentioned_p (reg, src))
1290 return 0;
1293 /* If INSN contains anything volatile, or is an `asm' (whether volatile
1294 or not), reject, unless nothing volatile comes between it and I3 */
1296 if (GET_CODE (src) == ASM_OPERANDS || volatile_refs_p (src))
1298 /* Make sure succ doesn't contain a volatile reference. */
1299 if (succ != 0 && volatile_refs_p (PATTERN (succ)))
1300 return 0;
1302 for (p = NEXT_INSN (insn); p != i3; p = NEXT_INSN (p))
1303 if (INSN_P (p) && p != succ && volatile_refs_p (PATTERN (p)))
1304 return 0;
1307 /* If INSN is an asm, and DEST is a hard register, reject, since it has
1308 to be an explicit register variable, and was chosen for a reason. */
1310 if (GET_CODE (src) == ASM_OPERANDS
1311 && REG_P (dest) && REGNO (dest) < FIRST_PSEUDO_REGISTER)
1312 return 0;
1314 /* If there are any volatile insns between INSN and I3, reject, because
1315 they might affect machine state. */
1317 for (p = NEXT_INSN (insn); p != i3; p = NEXT_INSN (p))
1318 if (INSN_P (p) && p != succ && volatile_insn_p (PATTERN (p)))
1319 return 0;
1321 /* If INSN contains an autoincrement or autodecrement, make sure that
1322 register is not used between there and I3, and not already used in
1323 I3 either. Neither must it be used in PRED or SUCC, if they exist.
1324 Also insist that I3 not be a jump; if it were one
1325 and the incremented register were spilled, we would lose. */
1327 #ifdef AUTO_INC_DEC
1328 for (link = REG_NOTES (insn); link; link = XEXP (link, 1))
1329 if (REG_NOTE_KIND (link) == REG_INC
1330 && (JUMP_P (i3)
1331 || reg_used_between_p (XEXP (link, 0), insn, i3)
1332 || (pred != NULL_RTX
1333 && reg_overlap_mentioned_p (XEXP (link, 0), PATTERN (pred)))
1334 || (succ != NULL_RTX
1335 && reg_overlap_mentioned_p (XEXP (link, 0), PATTERN (succ)))
1336 || reg_overlap_mentioned_p (XEXP (link, 0), PATTERN (i3))))
1337 return 0;
1338 #endif
1340 #ifdef HAVE_cc0
1341 /* Don't combine an insn that follows a CC0-setting insn.
1342 An insn that uses CC0 must not be separated from the one that sets it.
1343 We do, however, allow I2 to follow a CC0-setting insn if that insn
1344 is passed as I1; in that case it will be deleted also.
1345 We also allow combining in this case if all the insns are adjacent
1346 because that would leave the two CC0 insns adjacent as well.
1347 It would be more logical to test whether CC0 occurs inside I1 or I2,
1348 but that would be much slower, and this ought to be equivalent. */
1350 p = prev_nonnote_insn (insn);
1351 if (p && p != pred && NONJUMP_INSN_P (p) && sets_cc0_p (PATTERN (p))
1352 && ! all_adjacent)
1353 return 0;
1354 #endif
1356 /* If we get here, we have passed all the tests and the combination is
1357 to be allowed. */
1359 *pdest = dest;
1360 *psrc = src;
1362 return 1;
1365 /* LOC is the location within I3 that contains its pattern or the component
1366 of a PARALLEL of the pattern. We validate that it is valid for combining.
1368 One problem is if I3 modifies its output, as opposed to replacing it
1369 entirely, we can't allow the output to contain I2DEST or I1DEST as doing
1370 so would produce an insn that is not equivalent to the original insns.
1372 Consider:
1374 (set (reg:DI 101) (reg:DI 100))
1375 (set (subreg:SI (reg:DI 101) 0) <foo>)
1377 This is NOT equivalent to:
1379 (parallel [(set (subreg:SI (reg:DI 100) 0) <foo>)
1380 (set (reg:DI 101) (reg:DI 100))])
1382 Not only does this modify 100 (in which case it might still be valid
1383 if 100 were dead in I2), it sets 101 to the ORIGINAL value of 100.
1385 We can also run into a problem if I2 sets a register that I1
1386 uses and I1 gets directly substituted into I3 (not via I2). In that
1387 case, we would be getting the wrong value of I2DEST into I3, so we
1388 must reject the combination. This case occurs when I2 and I1 both
1389 feed into I3, rather than when I1 feeds into I2, which feeds into I3.
1390 If I1_NOT_IN_SRC is nonzero, it means that finding I1 in the source
1391 of a SET must prevent combination from occurring.
1393 Before doing the above check, we first try to expand a field assignment
1394 into a set of logical operations.
1396 If PI3_DEST_KILLED is nonzero, it is a pointer to a location in which
1397 we place a register that is both set and used within I3. If more than one
1398 such register is detected, we fail.
1400 Return 1 if the combination is valid, zero otherwise. */
1402 static int
1403 combinable_i3pat (rtx i3, rtx *loc, rtx i2dest, rtx i1dest,
1404 int i1_not_in_src, rtx *pi3dest_killed)
1406 rtx x = *loc;
1408 if (GET_CODE (x) == SET)
1410 rtx set = x ;
1411 rtx dest = SET_DEST (set);
1412 rtx src = SET_SRC (set);
1413 rtx inner_dest = dest;
1415 while (GET_CODE (inner_dest) == STRICT_LOW_PART
1416 || GET_CODE (inner_dest) == SUBREG
1417 || GET_CODE (inner_dest) == ZERO_EXTRACT)
1418 inner_dest = XEXP (inner_dest, 0);
1420 /* Check for the case where I3 modifies its output, as discussed
1421 above. We don't want to prevent pseudos from being combined
1422 into the address of a MEM, so only prevent the combination if
1423 i1 or i2 set the same MEM. */
1424 if ((inner_dest != dest &&
1425 (!MEM_P (inner_dest)
1426 || rtx_equal_p (i2dest, inner_dest)
1427 || (i1dest && rtx_equal_p (i1dest, inner_dest)))
1428 && (reg_overlap_mentioned_p (i2dest, inner_dest)
1429 || (i1dest && reg_overlap_mentioned_p (i1dest, inner_dest))))
1431 /* This is the same test done in can_combine_p except we can't test
1432 all_adjacent; we don't have to, since this instruction will stay
1433 in place, thus we are not considering increasing the lifetime of
1434 INNER_DEST.
1436 Also, if this insn sets a function argument, combining it with
1437 something that might need a spill could clobber a previous
1438 function argument; the all_adjacent test in can_combine_p also
1439 checks this; here, we do a more specific test for this case. */
1441 || (REG_P (inner_dest)
1442 && REGNO (inner_dest) < FIRST_PSEUDO_REGISTER
1443 && (! HARD_REGNO_MODE_OK (REGNO (inner_dest),
1444 GET_MODE (inner_dest))))
1445 || (i1_not_in_src && reg_overlap_mentioned_p (i1dest, src)))
1446 return 0;
1448 /* If DEST is used in I3, it is being killed in this insn,
1449 so record that for later.
1450 Never add REG_DEAD notes for the FRAME_POINTER_REGNUM or the
1451 STACK_POINTER_REGNUM, since these are always considered to be
1452 live. Similarly for ARG_POINTER_REGNUM if it is fixed. */
1453 if (pi3dest_killed && REG_P (dest)
1454 && reg_referenced_p (dest, PATTERN (i3))
1455 && REGNO (dest) != FRAME_POINTER_REGNUM
1456 #if HARD_FRAME_POINTER_REGNUM != FRAME_POINTER_REGNUM
1457 && REGNO (dest) != HARD_FRAME_POINTER_REGNUM
1458 #endif
1459 #if ARG_POINTER_REGNUM != FRAME_POINTER_REGNUM
1460 && (REGNO (dest) != ARG_POINTER_REGNUM
1461 || ! fixed_regs [REGNO (dest)])
1462 #endif
1463 && REGNO (dest) != STACK_POINTER_REGNUM)
1465 if (*pi3dest_killed)
1466 return 0;
1468 *pi3dest_killed = dest;
1472 else if (GET_CODE (x) == PARALLEL)
1474 int i;
1476 for (i = 0; i < XVECLEN (x, 0); i++)
1477 if (! combinable_i3pat (i3, &XVECEXP (x, 0, i), i2dest, i1dest,
1478 i1_not_in_src, pi3dest_killed))
1479 return 0;
1482 return 1;
1485 /* Return 1 if X is an arithmetic expression that contains a multiplication
1486 and division. We don't count multiplications by powers of two here. */
1488 static int
1489 contains_muldiv (rtx x)
1491 switch (GET_CODE (x))
1493 case MOD: case DIV: case UMOD: case UDIV:
1494 return 1;
1496 case MULT:
1497 return ! (GET_CODE (XEXP (x, 1)) == CONST_INT
1498 && exact_log2 (INTVAL (XEXP (x, 1))) >= 0);
1499 default:
1500 if (BINARY_P (x))
1501 return contains_muldiv (XEXP (x, 0))
1502 || contains_muldiv (XEXP (x, 1));
1504 if (UNARY_P (x))
1505 return contains_muldiv (XEXP (x, 0));
1507 return 0;
1511 /* Determine whether INSN can be used in a combination. Return nonzero if
1512 not. This is used in try_combine to detect early some cases where we
1513 can't perform combinations. */
1515 static int
1516 cant_combine_insn_p (rtx insn)
1518 rtx set;
1519 rtx src, dest;
1521 /* If this isn't really an insn, we can't do anything.
1522 This can occur when flow deletes an insn that it has merged into an
1523 auto-increment address. */
1524 if (! INSN_P (insn))
1525 return 1;
1527 /* Never combine loads and stores involving hard regs that are likely
1528 to be spilled. The register allocator can usually handle such
1529 reg-reg moves by tying. If we allow the combiner to make
1530 substitutions of likely-spilled regs, we may abort in reload.
1531 As an exception, we allow combinations involving fixed regs; these are
1532 not available to the register allocator so there's no risk involved. */
1534 set = single_set (insn);
1535 if (! set)
1536 return 0;
1537 src = SET_SRC (set);
1538 dest = SET_DEST (set);
1539 if (GET_CODE (src) == SUBREG)
1540 src = SUBREG_REG (src);
1541 if (GET_CODE (dest) == SUBREG)
1542 dest = SUBREG_REG (dest);
1543 if (REG_P (src) && REG_P (dest)
1544 && ((REGNO (src) < FIRST_PSEUDO_REGISTER
1545 && ! fixed_regs[REGNO (src)]
1546 && CLASS_LIKELY_SPILLED_P (REGNO_REG_CLASS (REGNO (src))))
1547 || (REGNO (dest) < FIRST_PSEUDO_REGISTER
1548 && ! fixed_regs[REGNO (dest)]
1549 && CLASS_LIKELY_SPILLED_P (REGNO_REG_CLASS (REGNO (dest))))))
1550 return 1;
1552 return 0;
1555 /* Adjust INSN after we made a change to its destination.
1557 Changing the destination can invalidate notes that say something about
1558 the results of the insn and a LOG_LINK pointing to the insn. */
1560 static void
1561 adjust_for_new_dest (rtx insn)
1563 rtx *loc;
1565 /* For notes, be conservative and simply remove them. */
1566 loc = &REG_NOTES (insn);
1567 while (*loc)
1569 enum reg_note kind = REG_NOTE_KIND (*loc);
1570 if (kind == REG_EQUAL || kind == REG_EQUIV)
1571 *loc = XEXP (*loc, 1);
1572 else
1573 loc = &XEXP (*loc, 1);
1576 /* The new insn will have a destination that was previously the destination
1577 of an insn just above it. Call distribute_links to make a LOG_LINK from
1578 the next use of that destination. */
1579 distribute_links (gen_rtx_INSN_LIST (VOIDmode, insn, NULL_RTX));
1582 /* Try to combine the insns I1 and I2 into I3.
1583 Here I1 and I2 appear earlier than I3.
1584 I1 can be zero; then we combine just I2 into I3.
1586 If we are combining three insns and the resulting insn is not recognized,
1587 try splitting it into two insns. If that happens, I2 and I3 are retained
1588 and I1 is pseudo-deleted by turning it into a NOTE. Otherwise, I1 and I2
1589 are pseudo-deleted.
1591 Return 0 if the combination does not work. Then nothing is changed.
1592 If we did the combination, return the insn at which combine should
1593 resume scanning.
1595 Set NEW_DIRECT_JUMP_P to a nonzero value if try_combine creates a
1596 new direct jump instruction. */
1598 static rtx
1599 try_combine (rtx i3, rtx i2, rtx i1, int *new_direct_jump_p)
1601 /* New patterns for I3 and I2, respectively. */
1602 rtx newpat, newi2pat = 0;
1603 rtvec newpat_vec_with_clobbers = 0;
1604 int substed_i2 = 0, substed_i1 = 0;
1605 /* Indicates need to preserve SET in I1 or I2 in I3 if it is not dead. */
1606 int added_sets_1, added_sets_2;
1607 /* Total number of SETs to put into I3. */
1608 int total_sets;
1609 /* Nonzero if I2's body now appears in I3. */
1610 int i2_is_used;
1611 /* INSN_CODEs for new I3, new I2, and user of condition code. */
1612 int insn_code_number, i2_code_number = 0, other_code_number = 0;
1613 /* Contains I3 if the destination of I3 is used in its source, which means
1614 that the old life of I3 is being killed. If that usage is placed into
1615 I2 and not in I3, a REG_DEAD note must be made. */
1616 rtx i3dest_killed = 0;
1617 /* SET_DEST and SET_SRC of I2 and I1. */
1618 rtx i2dest, i2src, i1dest = 0, i1src = 0;
1619 /* PATTERN (I2), or a copy of it in certain cases. */
1620 rtx i2pat;
1621 /* Indicates if I2DEST or I1DEST is in I2SRC or I1_SRC. */
1622 int i2dest_in_i2src = 0, i1dest_in_i1src = 0, i2dest_in_i1src = 0;
1623 int i1_feeds_i3 = 0;
1624 /* Notes that must be added to REG_NOTES in I3 and I2. */
1625 rtx new_i3_notes, new_i2_notes;
1626 /* Notes that we substituted I3 into I2 instead of the normal case. */
1627 int i3_subst_into_i2 = 0;
1628 /* Notes that I1, I2 or I3 is a MULT operation. */
1629 int have_mult = 0;
1630 int swap_i2i3 = 0;
1632 int maxreg;
1633 rtx temp;
1634 rtx link;
1635 int i;
1637 /* Exit early if one of the insns involved can't be used for
1638 combinations. */
1639 if (cant_combine_insn_p (i3)
1640 || cant_combine_insn_p (i2)
1641 || (i1 && cant_combine_insn_p (i1))
1642 /* We also can't do anything if I3 has a
1643 REG_LIBCALL note since we don't want to disrupt the contiguity of a
1644 libcall. */
1645 #if 0
1646 /* ??? This gives worse code, and appears to be unnecessary, since no
1647 pass after flow uses REG_LIBCALL/REG_RETVAL notes. */
1648 || find_reg_note (i3, REG_LIBCALL, NULL_RTX)
1649 #endif
1651 return 0;
1653 combine_attempts++;
1654 undobuf.other_insn = 0;
1656 /* Reset the hard register usage information. */
1657 CLEAR_HARD_REG_SET (newpat_used_regs);
1659 /* If I1 and I2 both feed I3, they can be in any order. To simplify the
1660 code below, set I1 to be the earlier of the two insns. */
1661 if (i1 && INSN_CUID (i1) > INSN_CUID (i2))
1662 temp = i1, i1 = i2, i2 = temp;
1664 added_links_insn = 0;
1666 /* First check for one important special-case that the code below will
1667 not handle. Namely, the case where I1 is zero, I2 is a PARALLEL
1668 and I3 is a SET whose SET_SRC is a SET_DEST in I2. In that case,
1669 we may be able to replace that destination with the destination of I3.
1670 This occurs in the common code where we compute both a quotient and
1671 remainder into a structure, in which case we want to do the computation
1672 directly into the structure to avoid register-register copies.
1674 Note that this case handles both multiple sets in I2 and also
1675 cases where I2 has a number of CLOBBER or PARALLELs.
1677 We make very conservative checks below and only try to handle the
1678 most common cases of this. For example, we only handle the case
1679 where I2 and I3 are adjacent to avoid making difficult register
1680 usage tests. */
1682 if (i1 == 0 && NONJUMP_INSN_P (i3) && GET_CODE (PATTERN (i3)) == SET
1683 && REG_P (SET_SRC (PATTERN (i3)))
1684 && REGNO (SET_SRC (PATTERN (i3))) >= FIRST_PSEUDO_REGISTER
1685 && find_reg_note (i3, REG_DEAD, SET_SRC (PATTERN (i3)))
1686 && GET_CODE (PATTERN (i2)) == PARALLEL
1687 && ! side_effects_p (SET_DEST (PATTERN (i3)))
1688 /* If the dest of I3 is a ZERO_EXTRACT or STRICT_LOW_PART, the code
1689 below would need to check what is inside (and reg_overlap_mentioned_p
1690 doesn't support those codes anyway). Don't allow those destinations;
1691 the resulting insn isn't likely to be recognized anyway. */
1692 && GET_CODE (SET_DEST (PATTERN (i3))) != ZERO_EXTRACT
1693 && GET_CODE (SET_DEST (PATTERN (i3))) != STRICT_LOW_PART
1694 && ! reg_overlap_mentioned_p (SET_SRC (PATTERN (i3)),
1695 SET_DEST (PATTERN (i3)))
1696 && next_real_insn (i2) == i3)
1698 rtx p2 = PATTERN (i2);
1700 /* Make sure that the destination of I3,
1701 which we are going to substitute into one output of I2,
1702 is not used within another output of I2. We must avoid making this:
1703 (parallel [(set (mem (reg 69)) ...)
1704 (set (reg 69) ...)])
1705 which is not well-defined as to order of actions.
1706 (Besides, reload can't handle output reloads for this.)
1708 The problem can also happen if the dest of I3 is a memory ref,
1709 if another dest in I2 is an indirect memory ref. */
1710 for (i = 0; i < XVECLEN (p2, 0); i++)
1711 if ((GET_CODE (XVECEXP (p2, 0, i)) == SET
1712 || GET_CODE (XVECEXP (p2, 0, i)) == CLOBBER)
1713 && reg_overlap_mentioned_p (SET_DEST (PATTERN (i3)),
1714 SET_DEST (XVECEXP (p2, 0, i))))
1715 break;
1717 if (i == XVECLEN (p2, 0))
1718 for (i = 0; i < XVECLEN (p2, 0); i++)
1719 if ((GET_CODE (XVECEXP (p2, 0, i)) == SET
1720 || GET_CODE (XVECEXP (p2, 0, i)) == CLOBBER)
1721 && SET_DEST (XVECEXP (p2, 0, i)) == SET_SRC (PATTERN (i3)))
1723 combine_merges++;
1725 subst_insn = i3;
1726 subst_low_cuid = INSN_CUID (i2);
1728 added_sets_2 = added_sets_1 = 0;
1729 i2dest = SET_SRC (PATTERN (i3));
1731 /* Replace the dest in I2 with our dest and make the resulting
1732 insn the new pattern for I3. Then skip to where we
1733 validate the pattern. Everything was set up above. */
1734 SUBST (SET_DEST (XVECEXP (p2, 0, i)),
1735 SET_DEST (PATTERN (i3)));
1737 newpat = p2;
1738 i3_subst_into_i2 = 1;
1739 goto validate_replacement;
1743 /* If I2 is setting a double-word pseudo to a constant and I3 is setting
1744 one of those words to another constant, merge them by making a new
1745 constant. */
1746 if (i1 == 0
1747 && (temp = single_set (i2)) != 0
1748 && (GET_CODE (SET_SRC (temp)) == CONST_INT
1749 || GET_CODE (SET_SRC (temp)) == CONST_DOUBLE)
1750 && REG_P (SET_DEST (temp))
1751 && GET_MODE_CLASS (GET_MODE (SET_DEST (temp))) == MODE_INT
1752 && GET_MODE_SIZE (GET_MODE (SET_DEST (temp))) == 2 * UNITS_PER_WORD
1753 && GET_CODE (PATTERN (i3)) == SET
1754 && GET_CODE (SET_DEST (PATTERN (i3))) == SUBREG
1755 && SUBREG_REG (SET_DEST (PATTERN (i3))) == SET_DEST (temp)
1756 && GET_MODE_CLASS (GET_MODE (SET_DEST (PATTERN (i3)))) == MODE_INT
1757 && GET_MODE_SIZE (GET_MODE (SET_DEST (PATTERN (i3)))) == UNITS_PER_WORD
1758 && GET_CODE (SET_SRC (PATTERN (i3))) == CONST_INT)
1760 HOST_WIDE_INT lo, hi;
1762 if (GET_CODE (SET_SRC (temp)) == CONST_INT)
1763 lo = INTVAL (SET_SRC (temp)), hi = lo < 0 ? -1 : 0;
1764 else
1766 lo = CONST_DOUBLE_LOW (SET_SRC (temp));
1767 hi = CONST_DOUBLE_HIGH (SET_SRC (temp));
1770 if (subreg_lowpart_p (SET_DEST (PATTERN (i3))))
1772 /* We don't handle the case of the target word being wider
1773 than a host wide int. */
1774 gcc_assert (HOST_BITS_PER_WIDE_INT >= BITS_PER_WORD);
1776 lo &= ~(UWIDE_SHIFT_LEFT_BY_BITS_PER_WORD (1) - 1);
1777 lo |= (INTVAL (SET_SRC (PATTERN (i3)))
1778 & (UWIDE_SHIFT_LEFT_BY_BITS_PER_WORD (1) - 1));
1780 else if (HOST_BITS_PER_WIDE_INT == BITS_PER_WORD)
1781 hi = INTVAL (SET_SRC (PATTERN (i3)));
1782 else if (HOST_BITS_PER_WIDE_INT >= 2 * BITS_PER_WORD)
1784 int sign = -(int) ((unsigned HOST_WIDE_INT) lo
1785 >> (HOST_BITS_PER_WIDE_INT - 1));
1787 lo &= ~ (UWIDE_SHIFT_LEFT_BY_BITS_PER_WORD
1788 (UWIDE_SHIFT_LEFT_BY_BITS_PER_WORD (1) - 1));
1789 lo |= (UWIDE_SHIFT_LEFT_BY_BITS_PER_WORD
1790 (INTVAL (SET_SRC (PATTERN (i3)))));
1791 if (hi == sign)
1792 hi = lo < 0 ? -1 : 0;
1794 else
1795 /* We don't handle the case of the higher word not fitting
1796 entirely in either hi or lo. */
1797 gcc_unreachable ();
1799 combine_merges++;
1800 subst_insn = i3;
1801 subst_low_cuid = INSN_CUID (i2);
1802 added_sets_2 = added_sets_1 = 0;
1803 i2dest = SET_DEST (temp);
1805 SUBST (SET_SRC (temp),
1806 immed_double_const (lo, hi, GET_MODE (SET_DEST (temp))));
1808 newpat = PATTERN (i2);
1809 goto validate_replacement;
1812 #ifndef HAVE_cc0
1813 /* If we have no I1 and I2 looks like:
1814 (parallel [(set (reg:CC X) (compare:CC OP (const_int 0)))
1815 (set Y OP)])
1816 make up a dummy I1 that is
1817 (set Y OP)
1818 and change I2 to be
1819 (set (reg:CC X) (compare:CC Y (const_int 0)))
1821 (We can ignore any trailing CLOBBERs.)
1823 This undoes a previous combination and allows us to match a branch-and-
1824 decrement insn. */
1826 if (i1 == 0 && GET_CODE (PATTERN (i2)) == PARALLEL
1827 && XVECLEN (PATTERN (i2), 0) >= 2
1828 && GET_CODE (XVECEXP (PATTERN (i2), 0, 0)) == SET
1829 && (GET_MODE_CLASS (GET_MODE (SET_DEST (XVECEXP (PATTERN (i2), 0, 0))))
1830 == MODE_CC)
1831 && GET_CODE (SET_SRC (XVECEXP (PATTERN (i2), 0, 0))) == COMPARE
1832 && XEXP (SET_SRC (XVECEXP (PATTERN (i2), 0, 0)), 1) == const0_rtx
1833 && GET_CODE (XVECEXP (PATTERN (i2), 0, 1)) == SET
1834 && REG_P (SET_DEST (XVECEXP (PATTERN (i2), 0, 1)))
1835 && rtx_equal_p (XEXP (SET_SRC (XVECEXP (PATTERN (i2), 0, 0)), 0),
1836 SET_SRC (XVECEXP (PATTERN (i2), 0, 1))))
1838 for (i = XVECLEN (PATTERN (i2), 0) - 1; i >= 2; i--)
1839 if (GET_CODE (XVECEXP (PATTERN (i2), 0, i)) != CLOBBER)
1840 break;
1842 if (i == 1)
1844 /* We make I1 with the same INSN_UID as I2. This gives it
1845 the same INSN_CUID for value tracking. Our fake I1 will
1846 never appear in the insn stream so giving it the same INSN_UID
1847 as I2 will not cause a problem. */
1849 i1 = gen_rtx_INSN (VOIDmode, INSN_UID (i2), NULL_RTX, i2,
1850 BLOCK_FOR_INSN (i2), INSN_LOCATOR (i2),
1851 XVECEXP (PATTERN (i2), 0, 1), -1, NULL_RTX,
1852 NULL_RTX);
1854 SUBST (PATTERN (i2), XVECEXP (PATTERN (i2), 0, 0));
1855 SUBST (XEXP (SET_SRC (PATTERN (i2)), 0),
1856 SET_DEST (PATTERN (i1)));
1859 #endif
1861 /* Verify that I2 and I1 are valid for combining. */
1862 if (! can_combine_p (i2, i3, i1, NULL_RTX, &i2dest, &i2src)
1863 || (i1 && ! can_combine_p (i1, i3, NULL_RTX, i2, &i1dest, &i1src)))
1865 undo_all ();
1866 return 0;
1869 /* Record whether I2DEST is used in I2SRC and similarly for the other
1870 cases. Knowing this will help in register status updating below. */
1871 i2dest_in_i2src = reg_overlap_mentioned_p (i2dest, i2src);
1872 i1dest_in_i1src = i1 && reg_overlap_mentioned_p (i1dest, i1src);
1873 i2dest_in_i1src = i1 && reg_overlap_mentioned_p (i2dest, i1src);
1875 /* See if I1 directly feeds into I3. It does if I1DEST is not used
1876 in I2SRC. */
1877 i1_feeds_i3 = i1 && ! reg_overlap_mentioned_p (i1dest, i2src);
1879 /* Ensure that I3's pattern can be the destination of combines. */
1880 if (! combinable_i3pat (i3, &PATTERN (i3), i2dest, i1dest,
1881 i1 && i2dest_in_i1src && i1_feeds_i3,
1882 &i3dest_killed))
1884 undo_all ();
1885 return 0;
1888 /* See if any of the insns is a MULT operation. Unless one is, we will
1889 reject a combination that is, since it must be slower. Be conservative
1890 here. */
1891 if (GET_CODE (i2src) == MULT
1892 || (i1 != 0 && GET_CODE (i1src) == MULT)
1893 || (GET_CODE (PATTERN (i3)) == SET
1894 && GET_CODE (SET_SRC (PATTERN (i3))) == MULT))
1895 have_mult = 1;
1897 /* If I3 has an inc, then give up if I1 or I2 uses the reg that is inc'd.
1898 We used to do this EXCEPT in one case: I3 has a post-inc in an
1899 output operand. However, that exception can give rise to insns like
1900 mov r3,(r3)+
1901 which is a famous insn on the PDP-11 where the value of r3 used as the
1902 source was model-dependent. Avoid this sort of thing. */
1904 #if 0
1905 if (!(GET_CODE (PATTERN (i3)) == SET
1906 && REG_P (SET_SRC (PATTERN (i3)))
1907 && MEM_P (SET_DEST (PATTERN (i3)))
1908 && (GET_CODE (XEXP (SET_DEST (PATTERN (i3)), 0)) == POST_INC
1909 || GET_CODE (XEXP (SET_DEST (PATTERN (i3)), 0)) == POST_DEC)))
1910 /* It's not the exception. */
1911 #endif
1912 #ifdef AUTO_INC_DEC
1913 for (link = REG_NOTES (i3); link; link = XEXP (link, 1))
1914 if (REG_NOTE_KIND (link) == REG_INC
1915 && (reg_overlap_mentioned_p (XEXP (link, 0), PATTERN (i2))
1916 || (i1 != 0
1917 && reg_overlap_mentioned_p (XEXP (link, 0), PATTERN (i1)))))
1919 undo_all ();
1920 return 0;
1922 #endif
1924 /* See if the SETs in I1 or I2 need to be kept around in the merged
1925 instruction: whenever the value set there is still needed past I3.
1926 For the SETs in I2, this is easy: we see if I2DEST dies or is set in I3.
1928 For the SET in I1, we have two cases: If I1 and I2 independently
1929 feed into I3, the set in I1 needs to be kept around if I1DEST dies
1930 or is set in I3. Otherwise (if I1 feeds I2 which feeds I3), the set
1931 in I1 needs to be kept around unless I1DEST dies or is set in either
1932 I2 or I3. We can distinguish these cases by seeing if I2SRC mentions
1933 I1DEST. If so, we know I1 feeds into I2. */
1935 added_sets_2 = ! dead_or_set_p (i3, i2dest);
1937 added_sets_1
1938 = i1 && ! (i1_feeds_i3 ? dead_or_set_p (i3, i1dest)
1939 : (dead_or_set_p (i3, i1dest) || dead_or_set_p (i2, i1dest)));
1941 /* If the set in I2 needs to be kept around, we must make a copy of
1942 PATTERN (I2), so that when we substitute I1SRC for I1DEST in
1943 PATTERN (I2), we are only substituting for the original I1DEST, not into
1944 an already-substituted copy. This also prevents making self-referential
1945 rtx. If I2 is a PARALLEL, we just need the piece that assigns I2SRC to
1946 I2DEST. */
1948 i2pat = (GET_CODE (PATTERN (i2)) == PARALLEL
1949 ? gen_rtx_SET (VOIDmode, i2dest, i2src)
1950 : PATTERN (i2));
1952 if (added_sets_2)
1953 i2pat = copy_rtx (i2pat);
1955 combine_merges++;
1957 /* Substitute in the latest insn for the regs set by the earlier ones. */
1959 maxreg = max_reg_num ();
1961 subst_insn = i3;
1963 /* It is possible that the source of I2 or I1 may be performing an
1964 unneeded operation, such as a ZERO_EXTEND of something that is known
1965 to have the high part zero. Handle that case by letting subst look at
1966 the innermost one of them.
1968 Another way to do this would be to have a function that tries to
1969 simplify a single insn instead of merging two or more insns. We don't
1970 do this because of the potential of infinite loops and because
1971 of the potential extra memory required. However, doing it the way
1972 we are is a bit of a kludge and doesn't catch all cases.
1974 But only do this if -fexpensive-optimizations since it slows things down
1975 and doesn't usually win. */
1977 if (flag_expensive_optimizations)
1979 /* Pass pc_rtx so no substitutions are done, just simplifications. */
1980 if (i1)
1982 subst_low_cuid = INSN_CUID (i1);
1983 i1src = subst (i1src, pc_rtx, pc_rtx, 0, 0);
1985 else
1987 subst_low_cuid = INSN_CUID (i2);
1988 i2src = subst (i2src, pc_rtx, pc_rtx, 0, 0);
1992 #ifndef HAVE_cc0
1993 /* Many machines that don't use CC0 have insns that can both perform an
1994 arithmetic operation and set the condition code. These operations will
1995 be represented as a PARALLEL with the first element of the vector
1996 being a COMPARE of an arithmetic operation with the constant zero.
1997 The second element of the vector will set some pseudo to the result
1998 of the same arithmetic operation. If we simplify the COMPARE, we won't
1999 match such a pattern and so will generate an extra insn. Here we test
2000 for this case, where both the comparison and the operation result are
2001 needed, and make the PARALLEL by just replacing I2DEST in I3SRC with
2002 I2SRC. Later we will make the PARALLEL that contains I2. */
2004 if (i1 == 0 && added_sets_2 && GET_CODE (PATTERN (i3)) == SET
2005 && GET_CODE (SET_SRC (PATTERN (i3))) == COMPARE
2006 && XEXP (SET_SRC (PATTERN (i3)), 1) == const0_rtx
2007 && rtx_equal_p (XEXP (SET_SRC (PATTERN (i3)), 0), i2dest))
2009 #ifdef SELECT_CC_MODE
2010 rtx *cc_use;
2011 enum machine_mode compare_mode;
2012 #endif
2014 newpat = PATTERN (i3);
2015 SUBST (XEXP (SET_SRC (newpat), 0), i2src);
2017 i2_is_used = 1;
2019 #ifdef SELECT_CC_MODE
2020 /* See if a COMPARE with the operand we substituted in should be done
2021 with the mode that is currently being used. If not, do the same
2022 processing we do in `subst' for a SET; namely, if the destination
2023 is used only once, try to replace it with a register of the proper
2024 mode and also replace the COMPARE. */
2025 if (undobuf.other_insn == 0
2026 && (cc_use = find_single_use (SET_DEST (newpat), i3,
2027 &undobuf.other_insn))
2028 && ((compare_mode = SELECT_CC_MODE (GET_CODE (*cc_use),
2029 i2src, const0_rtx))
2030 != GET_MODE (SET_DEST (newpat))))
2032 unsigned int regno = REGNO (SET_DEST (newpat));
2033 rtx new_dest = gen_rtx_REG (compare_mode, regno);
2035 if (regno < FIRST_PSEUDO_REGISTER
2036 || (REG_N_SETS (regno) == 1 && ! added_sets_2
2037 && ! REG_USERVAR_P (SET_DEST (newpat))))
2039 if (regno >= FIRST_PSEUDO_REGISTER)
2040 SUBST (regno_reg_rtx[regno], new_dest);
2042 SUBST (SET_DEST (newpat), new_dest);
2043 SUBST (XEXP (*cc_use, 0), new_dest);
2044 SUBST (SET_SRC (newpat),
2045 gen_rtx_COMPARE (compare_mode, i2src, const0_rtx));
2047 else
2048 undobuf.other_insn = 0;
2050 #endif
2052 else
2053 #endif
2055 n_occurrences = 0; /* `subst' counts here */
2057 /* If I1 feeds into I2 (not into I3) and I1DEST is in I1SRC, we
2058 need to make a unique copy of I2SRC each time we substitute it
2059 to avoid self-referential rtl. */
2061 subst_low_cuid = INSN_CUID (i2);
2062 newpat = subst (PATTERN (i3), i2dest, i2src, 0,
2063 ! i1_feeds_i3 && i1dest_in_i1src);
2064 substed_i2 = 1;
2066 /* Record whether i2's body now appears within i3's body. */
2067 i2_is_used = n_occurrences;
2070 /* If we already got a failure, don't try to do more. Otherwise,
2071 try to substitute in I1 if we have it. */
2073 if (i1 && GET_CODE (newpat) != CLOBBER)
2075 /* Before we can do this substitution, we must redo the test done
2076 above (see detailed comments there) that ensures that I1DEST
2077 isn't mentioned in any SETs in NEWPAT that are field assignments. */
2079 if (! combinable_i3pat (NULL_RTX, &newpat, i1dest, NULL_RTX,
2080 0, (rtx*) 0))
2082 undo_all ();
2083 return 0;
2086 n_occurrences = 0;
2087 subst_low_cuid = INSN_CUID (i1);
2088 newpat = subst (newpat, i1dest, i1src, 0, 0);
2089 substed_i1 = 1;
2092 /* Fail if an autoincrement side-effect has been duplicated. Be careful
2093 to count all the ways that I2SRC and I1SRC can be used. */
2094 if ((FIND_REG_INC_NOTE (i2, NULL_RTX) != 0
2095 && i2_is_used + added_sets_2 > 1)
2096 || (i1 != 0 && FIND_REG_INC_NOTE (i1, NULL_RTX) != 0
2097 && (n_occurrences + added_sets_1 + (added_sets_2 && ! i1_feeds_i3)
2098 > 1))
2099 /* Fail if we tried to make a new register (we used to abort, but there's
2100 really no reason to). */
2101 || max_reg_num () != maxreg
2102 /* Fail if we couldn't do something and have a CLOBBER. */
2103 || GET_CODE (newpat) == CLOBBER
2104 /* Fail if this new pattern is a MULT and we didn't have one before
2105 at the outer level. */
2106 || (GET_CODE (newpat) == SET && GET_CODE (SET_SRC (newpat)) == MULT
2107 && ! have_mult))
2109 undo_all ();
2110 return 0;
2113 /* If the actions of the earlier insns must be kept
2114 in addition to substituting them into the latest one,
2115 we must make a new PARALLEL for the latest insn
2116 to hold additional the SETs. */
2118 if (added_sets_1 || added_sets_2)
2120 combine_extras++;
2122 if (GET_CODE (newpat) == PARALLEL)
2124 rtvec old = XVEC (newpat, 0);
2125 total_sets = XVECLEN (newpat, 0) + added_sets_1 + added_sets_2;
2126 newpat = gen_rtx_PARALLEL (VOIDmode, rtvec_alloc (total_sets));
2127 memcpy (XVEC (newpat, 0)->elem, &old->elem[0],
2128 sizeof (old->elem[0]) * old->num_elem);
2130 else
2132 rtx old = newpat;
2133 total_sets = 1 + added_sets_1 + added_sets_2;
2134 newpat = gen_rtx_PARALLEL (VOIDmode, rtvec_alloc (total_sets));
2135 XVECEXP (newpat, 0, 0) = old;
2138 if (added_sets_1)
2139 XVECEXP (newpat, 0, --total_sets)
2140 = (GET_CODE (PATTERN (i1)) == PARALLEL
2141 ? gen_rtx_SET (VOIDmode, i1dest, i1src) : PATTERN (i1));
2143 if (added_sets_2)
2145 /* If there is no I1, use I2's body as is. We used to also not do
2146 the subst call below if I2 was substituted into I3,
2147 but that could lose a simplification. */
2148 if (i1 == 0)
2149 XVECEXP (newpat, 0, --total_sets) = i2pat;
2150 else
2151 /* See comment where i2pat is assigned. */
2152 XVECEXP (newpat, 0, --total_sets)
2153 = subst (i2pat, i1dest, i1src, 0, 0);
2157 /* We come here when we are replacing a destination in I2 with the
2158 destination of I3. */
2159 validate_replacement:
2161 /* Note which hard regs this insn has as inputs. */
2162 mark_used_regs_combine (newpat);
2164 /* If recog_for_combine fails, it strips existing clobbers. If we'll
2165 consider splitting this pattern, we might need these clobbers. */
2166 if (i1 && GET_CODE (newpat) == PARALLEL
2167 && GET_CODE (XVECEXP (newpat, 0, XVECLEN (newpat, 0) - 1)) == CLOBBER)
2169 int len = XVECLEN (newpat, 0);
2171 newpat_vec_with_clobbers = rtvec_alloc (len);
2172 for (i = 0; i < len; i++)
2173 RTVEC_ELT (newpat_vec_with_clobbers, i) = XVECEXP (newpat, 0, i);
2176 /* Is the result of combination a valid instruction? */
2177 insn_code_number = recog_for_combine (&newpat, i3, &new_i3_notes);
2179 /* If the result isn't valid, see if it is a PARALLEL of two SETs where
2180 the second SET's destination is a register that is unused and isn't
2181 marked as an instruction that might trap in an EH region. In that case,
2182 we just need the first SET. This can occur when simplifying a divmod
2183 insn. We *must* test for this case here because the code below that
2184 splits two independent SETs doesn't handle this case correctly when it
2185 updates the register status.
2187 It's pointless doing this if we originally had two sets, one from
2188 i3, and one from i2. Combining then splitting the parallel results
2189 in the original i2 again plus an invalid insn (which we delete).
2190 The net effect is only to move instructions around, which makes
2191 debug info less accurate.
2193 Also check the case where the first SET's destination is unused.
2194 That would not cause incorrect code, but does cause an unneeded
2195 insn to remain. */
2197 if (insn_code_number < 0
2198 && !(added_sets_2 && i1 == 0)
2199 && GET_CODE (newpat) == PARALLEL
2200 && XVECLEN (newpat, 0) == 2
2201 && GET_CODE (XVECEXP (newpat, 0, 0)) == SET
2202 && GET_CODE (XVECEXP (newpat, 0, 1)) == SET
2203 && asm_noperands (newpat) < 0)
2205 rtx set0 = XVECEXP (newpat, 0, 0);
2206 rtx set1 = XVECEXP (newpat, 0, 1);
2207 rtx note;
2209 if (((REG_P (SET_DEST (set1))
2210 && find_reg_note (i3, REG_UNUSED, SET_DEST (set1)))
2211 || (GET_CODE (SET_DEST (set1)) == SUBREG
2212 && find_reg_note (i3, REG_UNUSED, SUBREG_REG (SET_DEST (set1)))))
2213 && (!(note = find_reg_note (i3, REG_EH_REGION, NULL_RTX))
2214 || INTVAL (XEXP (note, 0)) <= 0)
2215 && ! side_effects_p (SET_SRC (set1)))
2217 newpat = set0;
2218 insn_code_number = recog_for_combine (&newpat, i3, &new_i3_notes);
2221 else if (((REG_P (SET_DEST (set0))
2222 && find_reg_note (i3, REG_UNUSED, SET_DEST (set0)))
2223 || (GET_CODE (SET_DEST (set0)) == SUBREG
2224 && find_reg_note (i3, REG_UNUSED,
2225 SUBREG_REG (SET_DEST (set0)))))
2226 && (!(note = find_reg_note (i3, REG_EH_REGION, NULL_RTX))
2227 || INTVAL (XEXP (note, 0)) <= 0)
2228 && ! side_effects_p (SET_SRC (set0)))
2230 newpat = set1;
2231 insn_code_number = recog_for_combine (&newpat, i3, &new_i3_notes);
2233 if (insn_code_number >= 0)
2235 /* If we will be able to accept this, we have made a
2236 change to the destination of I3. This requires us to
2237 do a few adjustments. */
2239 PATTERN (i3) = newpat;
2240 adjust_for_new_dest (i3);
2245 /* If we were combining three insns and the result is a simple SET
2246 with no ASM_OPERANDS that wasn't recognized, try to split it into two
2247 insns. There are two ways to do this. It can be split using a
2248 machine-specific method (like when you have an addition of a large
2249 constant) or by combine in the function find_split_point. */
2251 if (i1 && insn_code_number < 0 && GET_CODE (newpat) == SET
2252 && asm_noperands (newpat) < 0)
2254 rtx m_split, *split;
2255 rtx ni2dest = i2dest;
2257 /* See if the MD file can split NEWPAT. If it can't, see if letting it
2258 use I2DEST as a scratch register will help. In the latter case,
2259 convert I2DEST to the mode of the source of NEWPAT if we can. */
2261 m_split = split_insns (newpat, i3);
2263 /* We can only use I2DEST as a scratch reg if it doesn't overlap any
2264 inputs of NEWPAT. */
2266 /* ??? If I2DEST is not safe, and I1DEST exists, then it would be
2267 possible to try that as a scratch reg. This would require adding
2268 more code to make it work though. */
2270 if (m_split == 0 && ! reg_overlap_mentioned_p (ni2dest, newpat))
2272 /* If I2DEST is a hard register or the only use of a pseudo,
2273 we can change its mode. */
2274 if (GET_MODE (SET_DEST (newpat)) != GET_MODE (i2dest)
2275 && GET_MODE (SET_DEST (newpat)) != VOIDmode
2276 && REG_P (i2dest)
2277 && (REGNO (i2dest) < FIRST_PSEUDO_REGISTER
2278 || (REG_N_SETS (REGNO (i2dest)) == 1 && ! added_sets_2
2279 && ! REG_USERVAR_P (i2dest))))
2280 ni2dest = gen_rtx_REG (GET_MODE (SET_DEST (newpat)),
2281 REGNO (i2dest));
2283 m_split = split_insns (gen_rtx_PARALLEL
2284 (VOIDmode,
2285 gen_rtvec (2, newpat,
2286 gen_rtx_CLOBBER (VOIDmode,
2287 ni2dest))),
2288 i3);
2289 /* If the split with the mode-changed register didn't work, try
2290 the original register. */
2291 if (! m_split && ni2dest != i2dest)
2293 ni2dest = i2dest;
2294 m_split = split_insns (gen_rtx_PARALLEL
2295 (VOIDmode,
2296 gen_rtvec (2, newpat,
2297 gen_rtx_CLOBBER (VOIDmode,
2298 i2dest))),
2299 i3);
2303 /* If recog_for_combine has discarded clobbers, try to use them
2304 again for the split. */
2305 if (m_split == 0 && newpat_vec_with_clobbers)
2306 m_split
2307 = split_insns (gen_rtx_PARALLEL (VOIDmode,
2308 newpat_vec_with_clobbers), i3);
2310 if (m_split && NEXT_INSN (m_split) == NULL_RTX)
2312 m_split = PATTERN (m_split);
2313 insn_code_number = recog_for_combine (&m_split, i3, &new_i3_notes);
2314 if (insn_code_number >= 0)
2315 newpat = m_split;
2317 else if (m_split && NEXT_INSN (NEXT_INSN (m_split)) == NULL_RTX
2318 && (next_real_insn (i2) == i3
2319 || ! use_crosses_set_p (PATTERN (m_split), INSN_CUID (i2))))
2321 rtx i2set, i3set;
2322 rtx newi3pat = PATTERN (NEXT_INSN (m_split));
2323 newi2pat = PATTERN (m_split);
2325 i3set = single_set (NEXT_INSN (m_split));
2326 i2set = single_set (m_split);
2328 /* In case we changed the mode of I2DEST, replace it in the
2329 pseudo-register table here. We can't do it above in case this
2330 code doesn't get executed and we do a split the other way. */
2332 if (REGNO (i2dest) >= FIRST_PSEUDO_REGISTER)
2333 SUBST (regno_reg_rtx[REGNO (i2dest)], ni2dest);
2335 i2_code_number = recog_for_combine (&newi2pat, i2, &new_i2_notes);
2337 /* If I2 or I3 has multiple SETs, we won't know how to track
2338 register status, so don't use these insns. If I2's destination
2339 is used between I2 and I3, we also can't use these insns. */
2341 if (i2_code_number >= 0 && i2set && i3set
2342 && (next_real_insn (i2) == i3
2343 || ! reg_used_between_p (SET_DEST (i2set), i2, i3)))
2344 insn_code_number = recog_for_combine (&newi3pat, i3,
2345 &new_i3_notes);
2346 if (insn_code_number >= 0)
2347 newpat = newi3pat;
2349 /* It is possible that both insns now set the destination of I3.
2350 If so, we must show an extra use of it. */
2352 if (insn_code_number >= 0)
2354 rtx new_i3_dest = SET_DEST (i3set);
2355 rtx new_i2_dest = SET_DEST (i2set);
2357 while (GET_CODE (new_i3_dest) == ZERO_EXTRACT
2358 || GET_CODE (new_i3_dest) == STRICT_LOW_PART
2359 || GET_CODE (new_i3_dest) == SUBREG)
2360 new_i3_dest = XEXP (new_i3_dest, 0);
2362 while (GET_CODE (new_i2_dest) == ZERO_EXTRACT
2363 || GET_CODE (new_i2_dest) == STRICT_LOW_PART
2364 || GET_CODE (new_i2_dest) == SUBREG)
2365 new_i2_dest = XEXP (new_i2_dest, 0);
2367 if (REG_P (new_i3_dest)
2368 && REG_P (new_i2_dest)
2369 && REGNO (new_i3_dest) == REGNO (new_i2_dest))
2370 REG_N_SETS (REGNO (new_i2_dest))++;
2374 /* If we can split it and use I2DEST, go ahead and see if that
2375 helps things be recognized. Verify that none of the registers
2376 are set between I2 and I3. */
2377 if (insn_code_number < 0 && (split = find_split_point (&newpat, i3)) != 0
2378 #ifdef HAVE_cc0
2379 && REG_P (i2dest)
2380 #endif
2381 /* We need I2DEST in the proper mode. If it is a hard register
2382 or the only use of a pseudo, we can change its mode.
2383 Make sure we don't change a hard register to have a mode that
2384 isn't valid for it, or change the number of registers. */
2385 && (GET_MODE (*split) == GET_MODE (i2dest)
2386 || GET_MODE (*split) == VOIDmode
2387 || (REGNO (i2dest) < FIRST_PSEUDO_REGISTER
2388 && HARD_REGNO_MODE_OK (REGNO (i2dest), GET_MODE (*split))
2389 && (HARD_REGNO_NREGS (REGNO (i2dest), GET_MODE (i2dest))
2390 == HARD_REGNO_NREGS (REGNO (i2dest), GET_MODE (*split))))
2391 || (REGNO (i2dest) >= FIRST_PSEUDO_REGISTER
2392 && REG_N_SETS (REGNO (i2dest)) == 1 && ! added_sets_2
2393 && ! REG_USERVAR_P (i2dest)))
2394 && (next_real_insn (i2) == i3
2395 || ! use_crosses_set_p (*split, INSN_CUID (i2)))
2396 /* We can't overwrite I2DEST if its value is still used by
2397 NEWPAT. */
2398 && ! reg_referenced_p (i2dest, newpat))
2400 rtx newdest = i2dest;
2401 enum rtx_code split_code = GET_CODE (*split);
2402 enum machine_mode split_mode = GET_MODE (*split);
2404 /* Get NEWDEST as a register in the proper mode. We have already
2405 validated that we can do this. */
2406 if (GET_MODE (i2dest) != split_mode && split_mode != VOIDmode)
2408 newdest = gen_rtx_REG (split_mode, REGNO (i2dest));
2410 if (REGNO (i2dest) >= FIRST_PSEUDO_REGISTER)
2411 SUBST (regno_reg_rtx[REGNO (i2dest)], newdest);
2414 /* If *SPLIT is a (mult FOO (const_int pow2)), convert it to
2415 an ASHIFT. This can occur if it was inside a PLUS and hence
2416 appeared to be a memory address. This is a kludge. */
2417 if (split_code == MULT
2418 && GET_CODE (XEXP (*split, 1)) == CONST_INT
2419 && INTVAL (XEXP (*split, 1)) > 0
2420 && (i = exact_log2 (INTVAL (XEXP (*split, 1)))) >= 0)
2422 SUBST (*split, gen_rtx_ASHIFT (split_mode,
2423 XEXP (*split, 0), GEN_INT (i)));
2424 /* Update split_code because we may not have a multiply
2425 anymore. */
2426 split_code = GET_CODE (*split);
2429 #ifdef INSN_SCHEDULING
2430 /* If *SPLIT is a paradoxical SUBREG, when we split it, it should
2431 be written as a ZERO_EXTEND. */
2432 if (split_code == SUBREG && MEM_P (SUBREG_REG (*split)))
2434 #ifdef LOAD_EXTEND_OP
2435 /* Or as a SIGN_EXTEND if LOAD_EXTEND_OP says that that's
2436 what it really is. */
2437 if (LOAD_EXTEND_OP (GET_MODE (SUBREG_REG (*split)))
2438 == SIGN_EXTEND)
2439 SUBST (*split, gen_rtx_SIGN_EXTEND (split_mode,
2440 SUBREG_REG (*split)));
2441 else
2442 #endif
2443 SUBST (*split, gen_rtx_ZERO_EXTEND (split_mode,
2444 SUBREG_REG (*split)));
2446 #endif
2448 newi2pat = gen_rtx_SET (VOIDmode, newdest, *split);
2449 SUBST (*split, newdest);
2450 i2_code_number = recog_for_combine (&newi2pat, i2, &new_i2_notes);
2452 /* recog_for_combine might have added CLOBBERs to newi2pat.
2453 Make sure NEWPAT does not depend on the clobbered regs. */
2454 if (GET_CODE (newi2pat) == PARALLEL)
2455 for (i = XVECLEN (newi2pat, 0) - 1; i >= 0; i--)
2456 if (GET_CODE (XVECEXP (newi2pat, 0, i)) == CLOBBER)
2458 rtx reg = XEXP (XVECEXP (newi2pat, 0, i), 0);
2459 if (reg_overlap_mentioned_p (reg, newpat))
2461 undo_all ();
2462 return 0;
2466 /* If the split point was a MULT and we didn't have one before,
2467 don't use one now. */
2468 if (i2_code_number >= 0 && ! (split_code == MULT && ! have_mult))
2469 insn_code_number = recog_for_combine (&newpat, i3, &new_i3_notes);
2473 /* Check for a case where we loaded from memory in a narrow mode and
2474 then sign extended it, but we need both registers. In that case,
2475 we have a PARALLEL with both loads from the same memory location.
2476 We can split this into a load from memory followed by a register-register
2477 copy. This saves at least one insn, more if register allocation can
2478 eliminate the copy.
2480 We cannot do this if the destination of the first assignment is a
2481 condition code register or cc0. We eliminate this case by making sure
2482 the SET_DEST and SET_SRC have the same mode.
2484 We cannot do this if the destination of the second assignment is
2485 a register that we have already assumed is zero-extended. Similarly
2486 for a SUBREG of such a register. */
2488 else if (i1 && insn_code_number < 0 && asm_noperands (newpat) < 0
2489 && GET_CODE (newpat) == PARALLEL
2490 && XVECLEN (newpat, 0) == 2
2491 && GET_CODE (XVECEXP (newpat, 0, 0)) == SET
2492 && GET_CODE (SET_SRC (XVECEXP (newpat, 0, 0))) == SIGN_EXTEND
2493 && (GET_MODE (SET_DEST (XVECEXP (newpat, 0, 0)))
2494 == GET_MODE (SET_SRC (XVECEXP (newpat, 0, 0))))
2495 && GET_CODE (XVECEXP (newpat, 0, 1)) == SET
2496 && rtx_equal_p (SET_SRC (XVECEXP (newpat, 0, 1)),
2497 XEXP (SET_SRC (XVECEXP (newpat, 0, 0)), 0))
2498 && ! use_crosses_set_p (SET_SRC (XVECEXP (newpat, 0, 1)),
2499 INSN_CUID (i2))
2500 && GET_CODE (SET_DEST (XVECEXP (newpat, 0, 1))) != ZERO_EXTRACT
2501 && GET_CODE (SET_DEST (XVECEXP (newpat, 0, 1))) != STRICT_LOW_PART
2502 && ! (temp = SET_DEST (XVECEXP (newpat, 0, 1)),
2503 (REG_P (temp)
2504 && reg_stat[REGNO (temp)].nonzero_bits != 0
2505 && GET_MODE_BITSIZE (GET_MODE (temp)) < BITS_PER_WORD
2506 && GET_MODE_BITSIZE (GET_MODE (temp)) < HOST_BITS_PER_INT
2507 && (reg_stat[REGNO (temp)].nonzero_bits
2508 != GET_MODE_MASK (word_mode))))
2509 && ! (GET_CODE (SET_DEST (XVECEXP (newpat, 0, 1))) == SUBREG
2510 && (temp = SUBREG_REG (SET_DEST (XVECEXP (newpat, 0, 1))),
2511 (REG_P (temp)
2512 && reg_stat[REGNO (temp)].nonzero_bits != 0
2513 && GET_MODE_BITSIZE (GET_MODE (temp)) < BITS_PER_WORD
2514 && GET_MODE_BITSIZE (GET_MODE (temp)) < HOST_BITS_PER_INT
2515 && (reg_stat[REGNO (temp)].nonzero_bits
2516 != GET_MODE_MASK (word_mode)))))
2517 && ! reg_overlap_mentioned_p (SET_DEST (XVECEXP (newpat, 0, 1)),
2518 SET_SRC (XVECEXP (newpat, 0, 1)))
2519 && ! find_reg_note (i3, REG_UNUSED,
2520 SET_DEST (XVECEXP (newpat, 0, 0))))
2522 rtx ni2dest;
2524 newi2pat = XVECEXP (newpat, 0, 0);
2525 ni2dest = SET_DEST (XVECEXP (newpat, 0, 0));
2526 newpat = XVECEXP (newpat, 0, 1);
2527 SUBST (SET_SRC (newpat),
2528 gen_lowpart (GET_MODE (SET_SRC (newpat)), ni2dest));
2529 i2_code_number = recog_for_combine (&newi2pat, i2, &new_i2_notes);
2531 if (i2_code_number >= 0)
2532 insn_code_number = recog_for_combine (&newpat, i3, &new_i3_notes);
2534 if (insn_code_number >= 0)
2535 swap_i2i3 = 1;
2538 /* Similarly, check for a case where we have a PARALLEL of two independent
2539 SETs but we started with three insns. In this case, we can do the sets
2540 as two separate insns. This case occurs when some SET allows two
2541 other insns to combine, but the destination of that SET is still live. */
2543 else if (i1 && insn_code_number < 0 && asm_noperands (newpat) < 0
2544 && GET_CODE (newpat) == PARALLEL
2545 && XVECLEN (newpat, 0) == 2
2546 && GET_CODE (XVECEXP (newpat, 0, 0)) == SET
2547 && GET_CODE (SET_DEST (XVECEXP (newpat, 0, 0))) != ZERO_EXTRACT
2548 && GET_CODE (SET_DEST (XVECEXP (newpat, 0, 0))) != STRICT_LOW_PART
2549 && GET_CODE (XVECEXP (newpat, 0, 1)) == SET
2550 && GET_CODE (SET_DEST (XVECEXP (newpat, 0, 1))) != ZERO_EXTRACT
2551 && GET_CODE (SET_DEST (XVECEXP (newpat, 0, 1))) != STRICT_LOW_PART
2552 && ! use_crosses_set_p (SET_SRC (XVECEXP (newpat, 0, 1)),
2553 INSN_CUID (i2))
2554 /* Don't pass sets with (USE (MEM ...)) dests to the following. */
2555 && GET_CODE (SET_DEST (XVECEXP (newpat, 0, 1))) != USE
2556 && GET_CODE (SET_DEST (XVECEXP (newpat, 0, 0))) != USE
2557 && ! reg_referenced_p (SET_DEST (XVECEXP (newpat, 0, 1)),
2558 XVECEXP (newpat, 0, 0))
2559 && ! reg_referenced_p (SET_DEST (XVECEXP (newpat, 0, 0)),
2560 XVECEXP (newpat, 0, 1))
2561 && ! (contains_muldiv (SET_SRC (XVECEXP (newpat, 0, 0)))
2562 && contains_muldiv (SET_SRC (XVECEXP (newpat, 0, 1)))))
2564 /* Normally, it doesn't matter which of the two is done first,
2565 but it does if one references cc0. In that case, it has to
2566 be first. */
2567 #ifdef HAVE_cc0
2568 if (reg_referenced_p (cc0_rtx, XVECEXP (newpat, 0, 0)))
2570 newi2pat = XVECEXP (newpat, 0, 0);
2571 newpat = XVECEXP (newpat, 0, 1);
2573 else
2574 #endif
2576 newi2pat = XVECEXP (newpat, 0, 1);
2577 newpat = XVECEXP (newpat, 0, 0);
2580 i2_code_number = recog_for_combine (&newi2pat, i2, &new_i2_notes);
2582 if (i2_code_number >= 0)
2583 insn_code_number = recog_for_combine (&newpat, i3, &new_i3_notes);
2586 /* If it still isn't recognized, fail and change things back the way they
2587 were. */
2588 if ((insn_code_number < 0
2589 /* Is the result a reasonable ASM_OPERANDS? */
2590 && (! check_asm_operands (newpat) || added_sets_1 || added_sets_2)))
2592 undo_all ();
2593 return 0;
2596 /* If we had to change another insn, make sure it is valid also. */
2597 if (undobuf.other_insn)
2599 rtx other_pat = PATTERN (undobuf.other_insn);
2600 rtx new_other_notes;
2601 rtx note, next;
2603 CLEAR_HARD_REG_SET (newpat_used_regs);
2605 other_code_number = recog_for_combine (&other_pat, undobuf.other_insn,
2606 &new_other_notes);
2608 if (other_code_number < 0 && ! check_asm_operands (other_pat))
2610 undo_all ();
2611 return 0;
2614 PATTERN (undobuf.other_insn) = other_pat;
2616 /* If any of the notes in OTHER_INSN were REG_UNUSED, ensure that they
2617 are still valid. Then add any non-duplicate notes added by
2618 recog_for_combine. */
2619 for (note = REG_NOTES (undobuf.other_insn); note; note = next)
2621 next = XEXP (note, 1);
2623 if (REG_NOTE_KIND (note) == REG_UNUSED
2624 && ! reg_set_p (XEXP (note, 0), PATTERN (undobuf.other_insn)))
2626 if (REG_P (XEXP (note, 0)))
2627 REG_N_DEATHS (REGNO (XEXP (note, 0)))--;
2629 remove_note (undobuf.other_insn, note);
2633 for (note = new_other_notes; note; note = XEXP (note, 1))
2634 if (REG_P (XEXP (note, 0)))
2635 REG_N_DEATHS (REGNO (XEXP (note, 0)))++;
2637 distribute_notes (new_other_notes, undobuf.other_insn,
2638 undobuf.other_insn, NULL_RTX);
2640 #ifdef HAVE_cc0
2641 /* If I2 is the CC0 setter and I3 is the CC0 user then check whether
2642 they are adjacent to each other or not. */
2644 rtx p = prev_nonnote_insn (i3);
2645 if (p && p != i2 && NONJUMP_INSN_P (p) && newi2pat
2646 && sets_cc0_p (newi2pat))
2648 undo_all ();
2649 return 0;
2652 #endif
2654 /* Only allow this combination if insn_rtx_costs reports that the
2655 replacement instructions are cheaper than the originals. */
2656 if (!combine_validate_cost (i1, i2, i3, newpat, newi2pat))
2658 undo_all ();
2659 return 0;
2662 /* We now know that we can do this combination. Merge the insns and
2663 update the status of registers and LOG_LINKS. */
2665 if (swap_i2i3)
2667 rtx insn;
2668 rtx link;
2669 rtx ni2dest;
2671 /* I3 now uses what used to be its destination and which is now
2672 I2's destination. This requires us to do a few adjustments. */
2673 PATTERN (i3) = newpat;
2674 adjust_for_new_dest (i3);
2676 /* We need a LOG_LINK from I3 to I2. But we used to have one,
2677 so we still will.
2679 However, some later insn might be using I2's dest and have
2680 a LOG_LINK pointing at I3. We must remove this link.
2681 The simplest way to remove the link is to point it at I1,
2682 which we know will be a NOTE. */
2684 /* newi2pat is usually a SET here; however, recog_for_combine might
2685 have added some clobbers. */
2686 if (GET_CODE (newi2pat) == PARALLEL)
2687 ni2dest = SET_DEST (XVECEXP (newi2pat, 0, 0));
2688 else
2689 ni2dest = SET_DEST (newi2pat);
2691 for (insn = NEXT_INSN (i3);
2692 insn && (this_basic_block->next_bb == EXIT_BLOCK_PTR
2693 || insn != BB_HEAD (this_basic_block->next_bb));
2694 insn = NEXT_INSN (insn))
2696 if (INSN_P (insn) && reg_referenced_p (ni2dest, PATTERN (insn)))
2698 for (link = LOG_LINKS (insn); link;
2699 link = XEXP (link, 1))
2700 if (XEXP (link, 0) == i3)
2701 XEXP (link, 0) = i1;
2703 break;
2709 rtx i3notes, i2notes, i1notes = 0;
2710 rtx i3links, i2links, i1links = 0;
2711 rtx midnotes = 0;
2712 unsigned int regno;
2714 /* Get the old REG_NOTES and LOG_LINKS from all our insns and
2715 clear them. */
2716 i3notes = REG_NOTES (i3), i3links = LOG_LINKS (i3);
2717 i2notes = REG_NOTES (i2), i2links = LOG_LINKS (i2);
2718 if (i1)
2719 i1notes = REG_NOTES (i1), i1links = LOG_LINKS (i1);
2721 /* Ensure that we do not have something that should not be shared but
2722 occurs multiple times in the new insns. Check this by first
2723 resetting all the `used' flags and then copying anything is shared. */
2725 reset_used_flags (i3notes);
2726 reset_used_flags (i2notes);
2727 reset_used_flags (i1notes);
2728 reset_used_flags (newpat);
2729 reset_used_flags (newi2pat);
2730 if (undobuf.other_insn)
2731 reset_used_flags (PATTERN (undobuf.other_insn));
2733 i3notes = copy_rtx_if_shared (i3notes);
2734 i2notes = copy_rtx_if_shared (i2notes);
2735 i1notes = copy_rtx_if_shared (i1notes);
2736 newpat = copy_rtx_if_shared (newpat);
2737 newi2pat = copy_rtx_if_shared (newi2pat);
2738 if (undobuf.other_insn)
2739 reset_used_flags (PATTERN (undobuf.other_insn));
2741 INSN_CODE (i3) = insn_code_number;
2742 PATTERN (i3) = newpat;
2744 if (CALL_P (i3) && CALL_INSN_FUNCTION_USAGE (i3))
2746 rtx call_usage = CALL_INSN_FUNCTION_USAGE (i3);
2748 reset_used_flags (call_usage);
2749 call_usage = copy_rtx (call_usage);
2751 if (substed_i2)
2752 replace_rtx (call_usage, i2dest, i2src);
2754 if (substed_i1)
2755 replace_rtx (call_usage, i1dest, i1src);
2757 CALL_INSN_FUNCTION_USAGE (i3) = call_usage;
2760 if (undobuf.other_insn)
2761 INSN_CODE (undobuf.other_insn) = other_code_number;
2763 /* We had one special case above where I2 had more than one set and
2764 we replaced a destination of one of those sets with the destination
2765 of I3. In that case, we have to update LOG_LINKS of insns later
2766 in this basic block. Note that this (expensive) case is rare.
2768 Also, in this case, we must pretend that all REG_NOTEs for I2
2769 actually came from I3, so that REG_UNUSED notes from I2 will be
2770 properly handled. */
2772 if (i3_subst_into_i2)
2774 for (i = 0; i < XVECLEN (PATTERN (i2), 0); i++)
2775 if (GET_CODE (XVECEXP (PATTERN (i2), 0, i)) != USE
2776 && REG_P (SET_DEST (XVECEXP (PATTERN (i2), 0, i)))
2777 && SET_DEST (XVECEXP (PATTERN (i2), 0, i)) != i2dest
2778 && ! find_reg_note (i2, REG_UNUSED,
2779 SET_DEST (XVECEXP (PATTERN (i2), 0, i))))
2780 for (temp = NEXT_INSN (i2);
2781 temp && (this_basic_block->next_bb == EXIT_BLOCK_PTR
2782 || BB_HEAD (this_basic_block) != temp);
2783 temp = NEXT_INSN (temp))
2784 if (temp != i3 && INSN_P (temp))
2785 for (link = LOG_LINKS (temp); link; link = XEXP (link, 1))
2786 if (XEXP (link, 0) == i2)
2787 XEXP (link, 0) = i3;
2789 if (i3notes)
2791 rtx link = i3notes;
2792 while (XEXP (link, 1))
2793 link = XEXP (link, 1);
2794 XEXP (link, 1) = i2notes;
2796 else
2797 i3notes = i2notes;
2798 i2notes = 0;
2801 LOG_LINKS (i3) = 0;
2802 REG_NOTES (i3) = 0;
2803 LOG_LINKS (i2) = 0;
2804 REG_NOTES (i2) = 0;
2806 if (newi2pat)
2808 INSN_CODE (i2) = i2_code_number;
2809 PATTERN (i2) = newi2pat;
2811 else
2812 SET_INSN_DELETED (i2);
2814 if (i1)
2816 LOG_LINKS (i1) = 0;
2817 REG_NOTES (i1) = 0;
2818 SET_INSN_DELETED (i1);
2821 /* Get death notes for everything that is now used in either I3 or
2822 I2 and used to die in a previous insn. If we built two new
2823 patterns, move from I1 to I2 then I2 to I3 so that we get the
2824 proper movement on registers that I2 modifies. */
2826 if (newi2pat)
2828 move_deaths (newi2pat, NULL_RTX, INSN_CUID (i1), i2, &midnotes);
2829 move_deaths (newpat, newi2pat, INSN_CUID (i1), i3, &midnotes);
2831 else
2832 move_deaths (newpat, NULL_RTX, i1 ? INSN_CUID (i1) : INSN_CUID (i2),
2833 i3, &midnotes);
2835 /* Distribute all the LOG_LINKS and REG_NOTES from I1, I2, and I3. */
2836 if (i3notes)
2837 distribute_notes (i3notes, i3, i3, newi2pat ? i2 : NULL_RTX);
2838 if (i2notes)
2839 distribute_notes (i2notes, i2, i3, newi2pat ? i2 : NULL_RTX);
2840 if (i1notes)
2841 distribute_notes (i1notes, i1, i3, newi2pat ? i2 : NULL_RTX);
2842 if (midnotes)
2843 distribute_notes (midnotes, NULL_RTX, i3, newi2pat ? i2 : NULL_RTX);
2845 /* Distribute any notes added to I2 or I3 by recog_for_combine. We
2846 know these are REG_UNUSED and want them to go to the desired insn,
2847 so we always pass it as i3. We have not counted the notes in
2848 reg_n_deaths yet, so we need to do so now. */
2850 if (newi2pat && new_i2_notes)
2852 for (temp = new_i2_notes; temp; temp = XEXP (temp, 1))
2853 if (REG_P (XEXP (temp, 0)))
2854 REG_N_DEATHS (REGNO (XEXP (temp, 0)))++;
2856 distribute_notes (new_i2_notes, i2, i2, NULL_RTX);
2859 if (new_i3_notes)
2861 for (temp = new_i3_notes; temp; temp = XEXP (temp, 1))
2862 if (REG_P (XEXP (temp, 0)))
2863 REG_N_DEATHS (REGNO (XEXP (temp, 0)))++;
2865 distribute_notes (new_i3_notes, i3, i3, NULL_RTX);
2868 /* If I3DEST was used in I3SRC, it really died in I3. We may need to
2869 put a REG_DEAD note for it somewhere. If NEWI2PAT exists and sets
2870 I3DEST, the death must be somewhere before I2, not I3. If we passed I3
2871 in that case, it might delete I2. Similarly for I2 and I1.
2872 Show an additional death due to the REG_DEAD note we make here. If
2873 we discard it in distribute_notes, we will decrement it again. */
2875 if (i3dest_killed)
2877 if (REG_P (i3dest_killed))
2878 REG_N_DEATHS (REGNO (i3dest_killed))++;
2880 if (newi2pat && reg_set_p (i3dest_killed, newi2pat))
2881 distribute_notes (gen_rtx_EXPR_LIST (REG_DEAD, i3dest_killed,
2882 NULL_RTX),
2883 NULL_RTX, i2, NULL_RTX);
2884 else
2885 distribute_notes (gen_rtx_EXPR_LIST (REG_DEAD, i3dest_killed,
2886 NULL_RTX),
2887 NULL_RTX, i3, newi2pat ? i2 : NULL_RTX);
2890 if (i2dest_in_i2src)
2892 if (REG_P (i2dest))
2893 REG_N_DEATHS (REGNO (i2dest))++;
2895 if (newi2pat && reg_set_p (i2dest, newi2pat))
2896 distribute_notes (gen_rtx_EXPR_LIST (REG_DEAD, i2dest, NULL_RTX),
2897 NULL_RTX, i2, NULL_RTX);
2898 else
2899 distribute_notes (gen_rtx_EXPR_LIST (REG_DEAD, i2dest, NULL_RTX),
2900 NULL_RTX, i3, newi2pat ? i2 : NULL_RTX);
2903 if (i1dest_in_i1src)
2905 if (REG_P (i1dest))
2906 REG_N_DEATHS (REGNO (i1dest))++;
2908 if (newi2pat && reg_set_p (i1dest, newi2pat))
2909 distribute_notes (gen_rtx_EXPR_LIST (REG_DEAD, i1dest, NULL_RTX),
2910 NULL_RTX, i2, NULL_RTX);
2911 else
2912 distribute_notes (gen_rtx_EXPR_LIST (REG_DEAD, i1dest, NULL_RTX),
2913 NULL_RTX, i3, newi2pat ? i2 : NULL_RTX);
2916 distribute_links (i3links);
2917 distribute_links (i2links);
2918 distribute_links (i1links);
2920 if (REG_P (i2dest))
2922 rtx link;
2923 rtx i2_insn = 0, i2_val = 0, set;
2925 /* The insn that used to set this register doesn't exist, and
2926 this life of the register may not exist either. See if one of
2927 I3's links points to an insn that sets I2DEST. If it does,
2928 that is now the last known value for I2DEST. If we don't update
2929 this and I2 set the register to a value that depended on its old
2930 contents, we will get confused. If this insn is used, thing
2931 will be set correctly in combine_instructions. */
2933 for (link = LOG_LINKS (i3); link; link = XEXP (link, 1))
2934 if ((set = single_set (XEXP (link, 0))) != 0
2935 && rtx_equal_p (i2dest, SET_DEST (set)))
2936 i2_insn = XEXP (link, 0), i2_val = SET_SRC (set);
2938 record_value_for_reg (i2dest, i2_insn, i2_val);
2940 /* If the reg formerly set in I2 died only once and that was in I3,
2941 zero its use count so it won't make `reload' do any work. */
2942 if (! added_sets_2
2943 && (newi2pat == 0 || ! reg_mentioned_p (i2dest, newi2pat))
2944 && ! i2dest_in_i2src)
2946 regno = REGNO (i2dest);
2947 REG_N_SETS (regno)--;
2951 if (i1 && REG_P (i1dest))
2953 rtx link;
2954 rtx i1_insn = 0, i1_val = 0, set;
2956 for (link = LOG_LINKS (i3); link; link = XEXP (link, 1))
2957 if ((set = single_set (XEXP (link, 0))) != 0
2958 && rtx_equal_p (i1dest, SET_DEST (set)))
2959 i1_insn = XEXP (link, 0), i1_val = SET_SRC (set);
2961 record_value_for_reg (i1dest, i1_insn, i1_val);
2963 regno = REGNO (i1dest);
2964 if (! added_sets_1 && ! i1dest_in_i1src)
2965 REG_N_SETS (regno)--;
2968 /* Update reg_stat[].nonzero_bits et al for any changes that may have
2969 been made to this insn. The order of
2970 set_nonzero_bits_and_sign_copies() is important. Because newi2pat
2971 can affect nonzero_bits of newpat */
2972 if (newi2pat)
2973 note_stores (newi2pat, set_nonzero_bits_and_sign_copies, NULL);
2974 note_stores (newpat, set_nonzero_bits_and_sign_copies, NULL);
2976 /* Set new_direct_jump_p if a new return or simple jump instruction
2977 has been created.
2979 If I3 is now an unconditional jump, ensure that it has a
2980 BARRIER following it since it may have initially been a
2981 conditional jump. It may also be the last nonnote insn. */
2983 if (returnjump_p (i3) || any_uncondjump_p (i3))
2985 *new_direct_jump_p = 1;
2986 mark_jump_label (PATTERN (i3), i3, 0);
2988 if ((temp = next_nonnote_insn (i3)) == NULL_RTX
2989 || !BARRIER_P (temp))
2990 emit_barrier_after (i3);
2993 if (undobuf.other_insn != NULL_RTX
2994 && (returnjump_p (undobuf.other_insn)
2995 || any_uncondjump_p (undobuf.other_insn)))
2997 *new_direct_jump_p = 1;
2999 if ((temp = next_nonnote_insn (undobuf.other_insn)) == NULL_RTX
3000 || !BARRIER_P (temp))
3001 emit_barrier_after (undobuf.other_insn);
3004 /* An NOOP jump does not need barrier, but it does need cleaning up
3005 of CFG. */
3006 if (GET_CODE (newpat) == SET
3007 && SET_SRC (newpat) == pc_rtx
3008 && SET_DEST (newpat) == pc_rtx)
3009 *new_direct_jump_p = 1;
3012 combine_successes++;
3013 undo_commit ();
3015 if (added_links_insn
3016 && (newi2pat == 0 || INSN_CUID (added_links_insn) < INSN_CUID (i2))
3017 && INSN_CUID (added_links_insn) < INSN_CUID (i3))
3018 return added_links_insn;
3019 else
3020 return newi2pat ? i2 : i3;
3023 /* Undo all the modifications recorded in undobuf. */
3025 static void
3026 undo_all (void)
3028 struct undo *undo, *next;
3030 for (undo = undobuf.undos; undo; undo = next)
3032 next = undo->next;
3033 if (undo->is_int)
3034 *undo->where.i = undo->old_contents.i;
3035 else
3036 *undo->where.r = undo->old_contents.r;
3038 undo->next = undobuf.frees;
3039 undobuf.frees = undo;
3042 undobuf.undos = 0;
3045 /* We've committed to accepting the changes we made. Move all
3046 of the undos to the free list. */
3048 static void
3049 undo_commit (void)
3051 struct undo *undo, *next;
3053 for (undo = undobuf.undos; undo; undo = next)
3055 next = undo->next;
3056 undo->next = undobuf.frees;
3057 undobuf.frees = undo;
3059 undobuf.undos = 0;
3063 /* Find the innermost point within the rtx at LOC, possibly LOC itself,
3064 where we have an arithmetic expression and return that point. LOC will
3065 be inside INSN.
3067 try_combine will call this function to see if an insn can be split into
3068 two insns. */
3070 static rtx *
3071 find_split_point (rtx *loc, rtx insn)
3073 rtx x = *loc;
3074 enum rtx_code code = GET_CODE (x);
3075 rtx *split;
3076 unsigned HOST_WIDE_INT len = 0;
3077 HOST_WIDE_INT pos = 0;
3078 int unsignedp = 0;
3079 rtx inner = NULL_RTX;
3081 /* First special-case some codes. */
3082 switch (code)
3084 case SUBREG:
3085 #ifdef INSN_SCHEDULING
3086 /* If we are making a paradoxical SUBREG invalid, it becomes a split
3087 point. */
3088 if (MEM_P (SUBREG_REG (x)))
3089 return loc;
3090 #endif
3091 return find_split_point (&SUBREG_REG (x), insn);
3093 case MEM:
3094 #ifdef HAVE_lo_sum
3095 /* If we have (mem (const ..)) or (mem (symbol_ref ...)), split it
3096 using LO_SUM and HIGH. */
3097 if (GET_CODE (XEXP (x, 0)) == CONST
3098 || GET_CODE (XEXP (x, 0)) == SYMBOL_REF)
3100 SUBST (XEXP (x, 0),
3101 gen_rtx_LO_SUM (Pmode,
3102 gen_rtx_HIGH (Pmode, XEXP (x, 0)),
3103 XEXP (x, 0)));
3104 return &XEXP (XEXP (x, 0), 0);
3106 #endif
3108 /* If we have a PLUS whose second operand is a constant and the
3109 address is not valid, perhaps will can split it up using
3110 the machine-specific way to split large constants. We use
3111 the first pseudo-reg (one of the virtual regs) as a placeholder;
3112 it will not remain in the result. */
3113 if (GET_CODE (XEXP (x, 0)) == PLUS
3114 && GET_CODE (XEXP (XEXP (x, 0), 1)) == CONST_INT
3115 && ! memory_address_p (GET_MODE (x), XEXP (x, 0)))
3117 rtx reg = regno_reg_rtx[FIRST_PSEUDO_REGISTER];
3118 rtx seq = split_insns (gen_rtx_SET (VOIDmode, reg, XEXP (x, 0)),
3119 subst_insn);
3121 /* This should have produced two insns, each of which sets our
3122 placeholder. If the source of the second is a valid address,
3123 we can make put both sources together and make a split point
3124 in the middle. */
3126 if (seq
3127 && NEXT_INSN (seq) != NULL_RTX
3128 && NEXT_INSN (NEXT_INSN (seq)) == NULL_RTX
3129 && NONJUMP_INSN_P (seq)
3130 && GET_CODE (PATTERN (seq)) == SET
3131 && SET_DEST (PATTERN (seq)) == reg
3132 && ! reg_mentioned_p (reg,
3133 SET_SRC (PATTERN (seq)))
3134 && NONJUMP_INSN_P (NEXT_INSN (seq))
3135 && GET_CODE (PATTERN (NEXT_INSN (seq))) == SET
3136 && SET_DEST (PATTERN (NEXT_INSN (seq))) == reg
3137 && memory_address_p (GET_MODE (x),
3138 SET_SRC (PATTERN (NEXT_INSN (seq)))))
3140 rtx src1 = SET_SRC (PATTERN (seq));
3141 rtx src2 = SET_SRC (PATTERN (NEXT_INSN (seq)));
3143 /* Replace the placeholder in SRC2 with SRC1. If we can
3144 find where in SRC2 it was placed, that can become our
3145 split point and we can replace this address with SRC2.
3146 Just try two obvious places. */
3148 src2 = replace_rtx (src2, reg, src1);
3149 split = 0;
3150 if (XEXP (src2, 0) == src1)
3151 split = &XEXP (src2, 0);
3152 else if (GET_RTX_FORMAT (GET_CODE (XEXP (src2, 0)))[0] == 'e'
3153 && XEXP (XEXP (src2, 0), 0) == src1)
3154 split = &XEXP (XEXP (src2, 0), 0);
3156 if (split)
3158 SUBST (XEXP (x, 0), src2);
3159 return split;
3163 /* If that didn't work, perhaps the first operand is complex and
3164 needs to be computed separately, so make a split point there.
3165 This will occur on machines that just support REG + CONST
3166 and have a constant moved through some previous computation. */
3168 else if (!OBJECT_P (XEXP (XEXP (x, 0), 0))
3169 && ! (GET_CODE (XEXP (XEXP (x, 0), 0)) == SUBREG
3170 && OBJECT_P (SUBREG_REG (XEXP (XEXP (x, 0), 0)))))
3171 return &XEXP (XEXP (x, 0), 0);
3173 break;
3175 case SET:
3176 #ifdef HAVE_cc0
3177 /* If SET_DEST is CC0 and SET_SRC is not an operand, a COMPARE, or a
3178 ZERO_EXTRACT, the most likely reason why this doesn't match is that
3179 we need to put the operand into a register. So split at that
3180 point. */
3182 if (SET_DEST (x) == cc0_rtx
3183 && GET_CODE (SET_SRC (x)) != COMPARE
3184 && GET_CODE (SET_SRC (x)) != ZERO_EXTRACT
3185 && !OBJECT_P (SET_SRC (x))
3186 && ! (GET_CODE (SET_SRC (x)) == SUBREG
3187 && OBJECT_P (SUBREG_REG (SET_SRC (x)))))
3188 return &SET_SRC (x);
3189 #endif
3191 /* See if we can split SET_SRC as it stands. */
3192 split = find_split_point (&SET_SRC (x), insn);
3193 if (split && split != &SET_SRC (x))
3194 return split;
3196 /* See if we can split SET_DEST as it stands. */
3197 split = find_split_point (&SET_DEST (x), insn);
3198 if (split && split != &SET_DEST (x))
3199 return split;
3201 /* See if this is a bitfield assignment with everything constant. If
3202 so, this is an IOR of an AND, so split it into that. */
3203 if (GET_CODE (SET_DEST (x)) == ZERO_EXTRACT
3204 && (GET_MODE_BITSIZE (GET_MODE (XEXP (SET_DEST (x), 0)))
3205 <= HOST_BITS_PER_WIDE_INT)
3206 && GET_CODE (XEXP (SET_DEST (x), 1)) == CONST_INT
3207 && GET_CODE (XEXP (SET_DEST (x), 2)) == CONST_INT
3208 && GET_CODE (SET_SRC (x)) == CONST_INT
3209 && ((INTVAL (XEXP (SET_DEST (x), 1))
3210 + INTVAL (XEXP (SET_DEST (x), 2)))
3211 <= GET_MODE_BITSIZE (GET_MODE (XEXP (SET_DEST (x), 0))))
3212 && ! side_effects_p (XEXP (SET_DEST (x), 0)))
3214 HOST_WIDE_INT pos = INTVAL (XEXP (SET_DEST (x), 2));
3215 unsigned HOST_WIDE_INT len = INTVAL (XEXP (SET_DEST (x), 1));
3216 unsigned HOST_WIDE_INT src = INTVAL (SET_SRC (x));
3217 rtx dest = XEXP (SET_DEST (x), 0);
3218 enum machine_mode mode = GET_MODE (dest);
3219 unsigned HOST_WIDE_INT mask = ((HOST_WIDE_INT) 1 << len) - 1;
3221 if (BITS_BIG_ENDIAN)
3222 pos = GET_MODE_BITSIZE (mode) - len - pos;
3224 if (src == mask)
3225 SUBST (SET_SRC (x),
3226 simplify_gen_binary (IOR, mode, dest, GEN_INT (src << pos)));
3227 else
3229 rtx negmask = gen_int_mode (~(mask << pos), mode);
3230 SUBST (SET_SRC (x),
3231 simplify_gen_binary (IOR, mode,
3232 simplify_gen_binary (AND, mode,
3233 dest, negmask),
3234 GEN_INT (src << pos)));
3237 SUBST (SET_DEST (x), dest);
3239 split = find_split_point (&SET_SRC (x), insn);
3240 if (split && split != &SET_SRC (x))
3241 return split;
3244 /* Otherwise, see if this is an operation that we can split into two.
3245 If so, try to split that. */
3246 code = GET_CODE (SET_SRC (x));
3248 switch (code)
3250 case AND:
3251 /* If we are AND'ing with a large constant that is only a single
3252 bit and the result is only being used in a context where we
3253 need to know if it is zero or nonzero, replace it with a bit
3254 extraction. This will avoid the large constant, which might
3255 have taken more than one insn to make. If the constant were
3256 not a valid argument to the AND but took only one insn to make,
3257 this is no worse, but if it took more than one insn, it will
3258 be better. */
3260 if (GET_CODE (XEXP (SET_SRC (x), 1)) == CONST_INT
3261 && REG_P (XEXP (SET_SRC (x), 0))
3262 && (pos = exact_log2 (INTVAL (XEXP (SET_SRC (x), 1)))) >= 7
3263 && REG_P (SET_DEST (x))
3264 && (split = find_single_use (SET_DEST (x), insn, (rtx*) 0)) != 0
3265 && (GET_CODE (*split) == EQ || GET_CODE (*split) == NE)
3266 && XEXP (*split, 0) == SET_DEST (x)
3267 && XEXP (*split, 1) == const0_rtx)
3269 rtx extraction = make_extraction (GET_MODE (SET_DEST (x)),
3270 XEXP (SET_SRC (x), 0),
3271 pos, NULL_RTX, 1, 1, 0, 0);
3272 if (extraction != 0)
3274 SUBST (SET_SRC (x), extraction);
3275 return find_split_point (loc, insn);
3278 break;
3280 case NE:
3281 /* If STORE_FLAG_VALUE is -1, this is (NE X 0) and only one bit of X
3282 is known to be on, this can be converted into a NEG of a shift. */
3283 if (STORE_FLAG_VALUE == -1 && XEXP (SET_SRC (x), 1) == const0_rtx
3284 && GET_MODE (SET_SRC (x)) == GET_MODE (XEXP (SET_SRC (x), 0))
3285 && 1 <= (pos = exact_log2
3286 (nonzero_bits (XEXP (SET_SRC (x), 0),
3287 GET_MODE (XEXP (SET_SRC (x), 0))))))
3289 enum machine_mode mode = GET_MODE (XEXP (SET_SRC (x), 0));
3291 SUBST (SET_SRC (x),
3292 gen_rtx_NEG (mode,
3293 gen_rtx_LSHIFTRT (mode,
3294 XEXP (SET_SRC (x), 0),
3295 GEN_INT (pos))));
3297 split = find_split_point (&SET_SRC (x), insn);
3298 if (split && split != &SET_SRC (x))
3299 return split;
3301 break;
3303 case SIGN_EXTEND:
3304 inner = XEXP (SET_SRC (x), 0);
3306 /* We can't optimize if either mode is a partial integer
3307 mode as we don't know how many bits are significant
3308 in those modes. */
3309 if (GET_MODE_CLASS (GET_MODE (inner)) == MODE_PARTIAL_INT
3310 || GET_MODE_CLASS (GET_MODE (SET_SRC (x))) == MODE_PARTIAL_INT)
3311 break;
3313 pos = 0;
3314 len = GET_MODE_BITSIZE (GET_MODE (inner));
3315 unsignedp = 0;
3316 break;
3318 case SIGN_EXTRACT:
3319 case ZERO_EXTRACT:
3320 if (GET_CODE (XEXP (SET_SRC (x), 1)) == CONST_INT
3321 && GET_CODE (XEXP (SET_SRC (x), 2)) == CONST_INT)
3323 inner = XEXP (SET_SRC (x), 0);
3324 len = INTVAL (XEXP (SET_SRC (x), 1));
3325 pos = INTVAL (XEXP (SET_SRC (x), 2));
3327 if (BITS_BIG_ENDIAN)
3328 pos = GET_MODE_BITSIZE (GET_MODE (inner)) - len - pos;
3329 unsignedp = (code == ZERO_EXTRACT);
3331 break;
3333 default:
3334 break;
3337 if (len && pos >= 0 && pos + len <= GET_MODE_BITSIZE (GET_MODE (inner)))
3339 enum machine_mode mode = GET_MODE (SET_SRC (x));
3341 /* For unsigned, we have a choice of a shift followed by an
3342 AND or two shifts. Use two shifts for field sizes where the
3343 constant might be too large. We assume here that we can
3344 always at least get 8-bit constants in an AND insn, which is
3345 true for every current RISC. */
3347 if (unsignedp && len <= 8)
3349 SUBST (SET_SRC (x),
3350 gen_rtx_AND (mode,
3351 gen_rtx_LSHIFTRT
3352 (mode, gen_lowpart (mode, inner),
3353 GEN_INT (pos)),
3354 GEN_INT (((HOST_WIDE_INT) 1 << len) - 1)));
3356 split = find_split_point (&SET_SRC (x), insn);
3357 if (split && split != &SET_SRC (x))
3358 return split;
3360 else
3362 SUBST (SET_SRC (x),
3363 gen_rtx_fmt_ee
3364 (unsignedp ? LSHIFTRT : ASHIFTRT, mode,
3365 gen_rtx_ASHIFT (mode,
3366 gen_lowpart (mode, inner),
3367 GEN_INT (GET_MODE_BITSIZE (mode)
3368 - len - pos)),
3369 GEN_INT (GET_MODE_BITSIZE (mode) - len)));
3371 split = find_split_point (&SET_SRC (x), insn);
3372 if (split && split != &SET_SRC (x))
3373 return split;
3377 /* See if this is a simple operation with a constant as the second
3378 operand. It might be that this constant is out of range and hence
3379 could be used as a split point. */
3380 if (BINARY_P (SET_SRC (x))
3381 && CONSTANT_P (XEXP (SET_SRC (x), 1))
3382 && (OBJECT_P (XEXP (SET_SRC (x), 0))
3383 || (GET_CODE (XEXP (SET_SRC (x), 0)) == SUBREG
3384 && OBJECT_P (SUBREG_REG (XEXP (SET_SRC (x), 0))))))
3385 return &XEXP (SET_SRC (x), 1);
3387 /* Finally, see if this is a simple operation with its first operand
3388 not in a register. The operation might require this operand in a
3389 register, so return it as a split point. We can always do this
3390 because if the first operand were another operation, we would have
3391 already found it as a split point. */
3392 if ((BINARY_P (SET_SRC (x)) || UNARY_P (SET_SRC (x)))
3393 && ! register_operand (XEXP (SET_SRC (x), 0), VOIDmode))
3394 return &XEXP (SET_SRC (x), 0);
3396 return 0;
3398 case AND:
3399 case IOR:
3400 /* We write NOR as (and (not A) (not B)), but if we don't have a NOR,
3401 it is better to write this as (not (ior A B)) so we can split it.
3402 Similarly for IOR. */
3403 if (GET_CODE (XEXP (x, 0)) == NOT && GET_CODE (XEXP (x, 1)) == NOT)
3405 SUBST (*loc,
3406 gen_rtx_NOT (GET_MODE (x),
3407 gen_rtx_fmt_ee (code == IOR ? AND : IOR,
3408 GET_MODE (x),
3409 XEXP (XEXP (x, 0), 0),
3410 XEXP (XEXP (x, 1), 0))));
3411 return find_split_point (loc, insn);
3414 /* Many RISC machines have a large set of logical insns. If the
3415 second operand is a NOT, put it first so we will try to split the
3416 other operand first. */
3417 if (GET_CODE (XEXP (x, 1)) == NOT)
3419 rtx tem = XEXP (x, 0);
3420 SUBST (XEXP (x, 0), XEXP (x, 1));
3421 SUBST (XEXP (x, 1), tem);
3423 break;
3425 default:
3426 break;
3429 /* Otherwise, select our actions depending on our rtx class. */
3430 switch (GET_RTX_CLASS (code))
3432 case RTX_BITFIELD_OPS: /* This is ZERO_EXTRACT and SIGN_EXTRACT. */
3433 case RTX_TERNARY:
3434 split = find_split_point (&XEXP (x, 2), insn);
3435 if (split)
3436 return split;
3437 /* ... fall through ... */
3438 case RTX_BIN_ARITH:
3439 case RTX_COMM_ARITH:
3440 case RTX_COMPARE:
3441 case RTX_COMM_COMPARE:
3442 split = find_split_point (&XEXP (x, 1), insn);
3443 if (split)
3444 return split;
3445 /* ... fall through ... */
3446 case RTX_UNARY:
3447 /* Some machines have (and (shift ...) ...) insns. If X is not
3448 an AND, but XEXP (X, 0) is, use it as our split point. */
3449 if (GET_CODE (x) != AND && GET_CODE (XEXP (x, 0)) == AND)
3450 return &XEXP (x, 0);
3452 split = find_split_point (&XEXP (x, 0), insn);
3453 if (split)
3454 return split;
3455 return loc;
3457 default:
3458 /* Otherwise, we don't have a split point. */
3459 return 0;
3463 /* Throughout X, replace FROM with TO, and return the result.
3464 The result is TO if X is FROM;
3465 otherwise the result is X, but its contents may have been modified.
3466 If they were modified, a record was made in undobuf so that
3467 undo_all will (among other things) return X to its original state.
3469 If the number of changes necessary is too much to record to undo,
3470 the excess changes are not made, so the result is invalid.
3471 The changes already made can still be undone.
3472 undobuf.num_undo is incremented for such changes, so by testing that
3473 the caller can tell whether the result is valid.
3475 `n_occurrences' is incremented each time FROM is replaced.
3477 IN_DEST is nonzero if we are processing the SET_DEST of a SET.
3479 UNIQUE_COPY is nonzero if each substitution must be unique. We do this
3480 by copying if `n_occurrences' is nonzero. */
3482 static rtx
3483 subst (rtx x, rtx from, rtx to, int in_dest, int unique_copy)
3485 enum rtx_code code = GET_CODE (x);
3486 enum machine_mode op0_mode = VOIDmode;
3487 const char *fmt;
3488 int len, i;
3489 rtx new;
3491 /* Two expressions are equal if they are identical copies of a shared
3492 RTX or if they are both registers with the same register number
3493 and mode. */
3495 #define COMBINE_RTX_EQUAL_P(X,Y) \
3496 ((X) == (Y) \
3497 || (REG_P (X) && REG_P (Y) \
3498 && REGNO (X) == REGNO (Y) && GET_MODE (X) == GET_MODE (Y)))
3500 if (! in_dest && COMBINE_RTX_EQUAL_P (x, from))
3502 n_occurrences++;
3503 return (unique_copy && n_occurrences > 1 ? copy_rtx (to) : to);
3506 /* If X and FROM are the same register but different modes, they will
3507 not have been seen as equal above. However, flow.c will make a
3508 LOG_LINKS entry for that case. If we do nothing, we will try to
3509 rerecognize our original insn and, when it succeeds, we will
3510 delete the feeding insn, which is incorrect.
3512 So force this insn not to match in this (rare) case. */
3513 if (! in_dest && code == REG && REG_P (from)
3514 && REGNO (x) == REGNO (from))
3515 return gen_rtx_CLOBBER (GET_MODE (x), const0_rtx);
3517 /* If this is an object, we are done unless it is a MEM or LO_SUM, both
3518 of which may contain things that can be combined. */
3519 if (code != MEM && code != LO_SUM && OBJECT_P (x))
3520 return x;
3522 /* It is possible to have a subexpression appear twice in the insn.
3523 Suppose that FROM is a register that appears within TO.
3524 Then, after that subexpression has been scanned once by `subst',
3525 the second time it is scanned, TO may be found. If we were
3526 to scan TO here, we would find FROM within it and create a
3527 self-referent rtl structure which is completely wrong. */
3528 if (COMBINE_RTX_EQUAL_P (x, to))
3529 return to;
3531 /* Parallel asm_operands need special attention because all of the
3532 inputs are shared across the arms. Furthermore, unsharing the
3533 rtl results in recognition failures. Failure to handle this case
3534 specially can result in circular rtl.
3536 Solve this by doing a normal pass across the first entry of the
3537 parallel, and only processing the SET_DESTs of the subsequent
3538 entries. Ug. */
3540 if (code == PARALLEL
3541 && GET_CODE (XVECEXP (x, 0, 0)) == SET
3542 && GET_CODE (SET_SRC (XVECEXP (x, 0, 0))) == ASM_OPERANDS)
3544 new = subst (XVECEXP (x, 0, 0), from, to, 0, unique_copy);
3546 /* If this substitution failed, this whole thing fails. */
3547 if (GET_CODE (new) == CLOBBER
3548 && XEXP (new, 0) == const0_rtx)
3549 return new;
3551 SUBST (XVECEXP (x, 0, 0), new);
3553 for (i = XVECLEN (x, 0) - 1; i >= 1; i--)
3555 rtx dest = SET_DEST (XVECEXP (x, 0, i));
3557 if (!REG_P (dest)
3558 && GET_CODE (dest) != CC0
3559 && GET_CODE (dest) != PC)
3561 new = subst (dest, from, to, 0, unique_copy);
3563 /* If this substitution failed, this whole thing fails. */
3564 if (GET_CODE (new) == CLOBBER
3565 && XEXP (new, 0) == const0_rtx)
3566 return new;
3568 SUBST (SET_DEST (XVECEXP (x, 0, i)), new);
3572 else
3574 len = GET_RTX_LENGTH (code);
3575 fmt = GET_RTX_FORMAT (code);
3577 /* We don't need to process a SET_DEST that is a register, CC0,
3578 or PC, so set up to skip this common case. All other cases
3579 where we want to suppress replacing something inside a
3580 SET_SRC are handled via the IN_DEST operand. */
3581 if (code == SET
3582 && (REG_P (SET_DEST (x))
3583 || GET_CODE (SET_DEST (x)) == CC0
3584 || GET_CODE (SET_DEST (x)) == PC))
3585 fmt = "ie";
3587 /* Get the mode of operand 0 in case X is now a SIGN_EXTEND of a
3588 constant. */
3589 if (fmt[0] == 'e')
3590 op0_mode = GET_MODE (XEXP (x, 0));
3592 for (i = 0; i < len; i++)
3594 if (fmt[i] == 'E')
3596 int j;
3597 for (j = XVECLEN (x, i) - 1; j >= 0; j--)
3599 if (COMBINE_RTX_EQUAL_P (XVECEXP (x, i, j), from))
3601 new = (unique_copy && n_occurrences
3602 ? copy_rtx (to) : to);
3603 n_occurrences++;
3605 else
3607 new = subst (XVECEXP (x, i, j), from, to, 0,
3608 unique_copy);
3610 /* If this substitution failed, this whole thing
3611 fails. */
3612 if (GET_CODE (new) == CLOBBER
3613 && XEXP (new, 0) == const0_rtx)
3614 return new;
3617 SUBST (XVECEXP (x, i, j), new);
3620 else if (fmt[i] == 'e')
3622 /* If this is a register being set, ignore it. */
3623 new = XEXP (x, i);
3624 if (in_dest
3625 && i == 0
3626 && (((code == SUBREG || code == ZERO_EXTRACT)
3627 && REG_P (new))
3628 || code == STRICT_LOW_PART))
3631 else if (COMBINE_RTX_EQUAL_P (XEXP (x, i), from))
3633 /* In general, don't install a subreg involving two
3634 modes not tieable. It can worsen register
3635 allocation, and can even make invalid reload
3636 insns, since the reg inside may need to be copied
3637 from in the outside mode, and that may be invalid
3638 if it is an fp reg copied in integer mode.
3640 We allow two exceptions to this: It is valid if
3641 it is inside another SUBREG and the mode of that
3642 SUBREG and the mode of the inside of TO is
3643 tieable and it is valid if X is a SET that copies
3644 FROM to CC0. */
3646 if (GET_CODE (to) == SUBREG
3647 && ! MODES_TIEABLE_P (GET_MODE (to),
3648 GET_MODE (SUBREG_REG (to)))
3649 && ! (code == SUBREG
3650 && MODES_TIEABLE_P (GET_MODE (x),
3651 GET_MODE (SUBREG_REG (to))))
3652 #ifdef HAVE_cc0
3653 && ! (code == SET && i == 1 && XEXP (x, 0) == cc0_rtx)
3654 #endif
3656 return gen_rtx_CLOBBER (VOIDmode, const0_rtx);
3658 #ifdef CANNOT_CHANGE_MODE_CLASS
3659 if (code == SUBREG
3660 && REG_P (to)
3661 && REGNO (to) < FIRST_PSEUDO_REGISTER
3662 && REG_CANNOT_CHANGE_MODE_P (REGNO (to),
3663 GET_MODE (to),
3664 GET_MODE (x)))
3665 return gen_rtx_CLOBBER (VOIDmode, const0_rtx);
3666 #endif
3668 new = (unique_copy && n_occurrences ? copy_rtx (to) : to);
3669 n_occurrences++;
3671 else
3672 /* If we are in a SET_DEST, suppress most cases unless we
3673 have gone inside a MEM, in which case we want to
3674 simplify the address. We assume here that things that
3675 are actually part of the destination have their inner
3676 parts in the first expression. This is true for SUBREG,
3677 STRICT_LOW_PART, and ZERO_EXTRACT, which are the only
3678 things aside from REG and MEM that should appear in a
3679 SET_DEST. */
3680 new = subst (XEXP (x, i), from, to,
3681 (((in_dest
3682 && (code == SUBREG || code == STRICT_LOW_PART
3683 || code == ZERO_EXTRACT))
3684 || code == SET)
3685 && i == 0), unique_copy);
3687 /* If we found that we will have to reject this combination,
3688 indicate that by returning the CLOBBER ourselves, rather than
3689 an expression containing it. This will speed things up as
3690 well as prevent accidents where two CLOBBERs are considered
3691 to be equal, thus producing an incorrect simplification. */
3693 if (GET_CODE (new) == CLOBBER && XEXP (new, 0) == const0_rtx)
3694 return new;
3696 if (GET_CODE (x) == SUBREG
3697 && (GET_CODE (new) == CONST_INT
3698 || GET_CODE (new) == CONST_DOUBLE))
3700 enum machine_mode mode = GET_MODE (x);
3702 x = simplify_subreg (GET_MODE (x), new,
3703 GET_MODE (SUBREG_REG (x)),
3704 SUBREG_BYTE (x));
3705 if (! x)
3706 x = gen_rtx_CLOBBER (mode, const0_rtx);
3708 else if (GET_CODE (new) == CONST_INT
3709 && GET_CODE (x) == ZERO_EXTEND)
3711 x = simplify_unary_operation (ZERO_EXTEND, GET_MODE (x),
3712 new, GET_MODE (XEXP (x, 0)));
3713 gcc_assert (x);
3715 else
3716 SUBST (XEXP (x, i), new);
3721 /* Try to simplify X. If the simplification changed the code, it is likely
3722 that further simplification will help, so loop, but limit the number
3723 of repetitions that will be performed. */
3725 for (i = 0; i < 4; i++)
3727 /* If X is sufficiently simple, don't bother trying to do anything
3728 with it. */
3729 if (code != CONST_INT && code != REG && code != CLOBBER)
3730 x = combine_simplify_rtx (x, op0_mode, in_dest);
3732 if (GET_CODE (x) == code)
3733 break;
3735 code = GET_CODE (x);
3737 /* We no longer know the original mode of operand 0 since we
3738 have changed the form of X) */
3739 op0_mode = VOIDmode;
3742 return x;
3745 /* Simplify X, a piece of RTL. We just operate on the expression at the
3746 outer level; call `subst' to simplify recursively. Return the new
3747 expression.
3749 OP0_MODE is the original mode of XEXP (x, 0). IN_DEST is nonzero
3750 if we are inside a SET_DEST. */
3752 static rtx
3753 combine_simplify_rtx (rtx x, enum machine_mode op0_mode, int in_dest)
3755 enum rtx_code code = GET_CODE (x);
3756 enum machine_mode mode = GET_MODE (x);
3757 rtx temp;
3758 rtx reversed;
3759 int i;
3761 /* If this is a commutative operation, put a constant last and a complex
3762 expression first. We don't need to do this for comparisons here. */
3763 if (COMMUTATIVE_ARITH_P (x)
3764 && swap_commutative_operands_p (XEXP (x, 0), XEXP (x, 1)))
3766 temp = XEXP (x, 0);
3767 SUBST (XEXP (x, 0), XEXP (x, 1));
3768 SUBST (XEXP (x, 1), temp);
3771 /* If this is a PLUS, MINUS, or MULT, and the first operand is the
3772 sign extension of a PLUS with a constant, reverse the order of the sign
3773 extension and the addition. Note that this not the same as the original
3774 code, but overflow is undefined for signed values. Also note that the
3775 PLUS will have been partially moved "inside" the sign-extension, so that
3776 the first operand of X will really look like:
3777 (ashiftrt (plus (ashift A C4) C5) C4).
3778 We convert this to
3779 (plus (ashiftrt (ashift A C4) C2) C4)
3780 and replace the first operand of X with that expression. Later parts
3781 of this function may simplify the expression further.
3783 For example, if we start with (mult (sign_extend (plus A C1)) C2),
3784 we swap the SIGN_EXTEND and PLUS. Later code will apply the
3785 distributive law to produce (plus (mult (sign_extend X) C1) C3).
3787 We do this to simplify address expressions. */
3789 if ((code == PLUS || code == MINUS || code == MULT)
3790 && GET_CODE (XEXP (x, 0)) == ASHIFTRT
3791 && GET_CODE (XEXP (XEXP (x, 0), 0)) == PLUS
3792 && GET_CODE (XEXP (XEXP (XEXP (x, 0), 0), 0)) == ASHIFT
3793 && GET_CODE (XEXP (XEXP (XEXP (XEXP (x, 0), 0), 0), 1)) == CONST_INT
3794 && GET_CODE (XEXP (XEXP (x, 0), 1)) == CONST_INT
3795 && XEXP (XEXP (XEXP (XEXP (x, 0), 0), 0), 1) == XEXP (XEXP (x, 0), 1)
3796 && GET_CODE (XEXP (XEXP (XEXP (x, 0), 0), 1)) == CONST_INT
3797 && (temp = simplify_binary_operation (ASHIFTRT, mode,
3798 XEXP (XEXP (XEXP (x, 0), 0), 1),
3799 XEXP (XEXP (x, 0), 1))) != 0)
3801 rtx new
3802 = simplify_shift_const (NULL_RTX, ASHIFT, mode,
3803 XEXP (XEXP (XEXP (XEXP (x, 0), 0), 0), 0),
3804 INTVAL (XEXP (XEXP (x, 0), 1)));
3806 new = simplify_shift_const (NULL_RTX, ASHIFTRT, mode, new,
3807 INTVAL (XEXP (XEXP (x, 0), 1)));
3809 SUBST (XEXP (x, 0), simplify_gen_binary (PLUS, mode, new, temp));
3812 /* If this is a simple operation applied to an IF_THEN_ELSE, try
3813 applying it to the arms of the IF_THEN_ELSE. This often simplifies
3814 things. Check for cases where both arms are testing the same
3815 condition.
3817 Don't do anything if all operands are very simple. */
3819 if ((BINARY_P (x)
3820 && ((!OBJECT_P (XEXP (x, 0))
3821 && ! (GET_CODE (XEXP (x, 0)) == SUBREG
3822 && OBJECT_P (SUBREG_REG (XEXP (x, 0)))))
3823 || (!OBJECT_P (XEXP (x, 1))
3824 && ! (GET_CODE (XEXP (x, 1)) == SUBREG
3825 && OBJECT_P (SUBREG_REG (XEXP (x, 1)))))))
3826 || (UNARY_P (x)
3827 && (!OBJECT_P (XEXP (x, 0))
3828 && ! (GET_CODE (XEXP (x, 0)) == SUBREG
3829 && OBJECT_P (SUBREG_REG (XEXP (x, 0)))))))
3831 rtx cond, true_rtx, false_rtx;
3833 cond = if_then_else_cond (x, &true_rtx, &false_rtx);
3834 if (cond != 0
3835 /* If everything is a comparison, what we have is highly unlikely
3836 to be simpler, so don't use it. */
3837 && ! (COMPARISON_P (x)
3838 && (COMPARISON_P (true_rtx) || COMPARISON_P (false_rtx))))
3840 rtx cop1 = const0_rtx;
3841 enum rtx_code cond_code = simplify_comparison (NE, &cond, &cop1);
3843 if (cond_code == NE && COMPARISON_P (cond))
3844 return x;
3846 /* Simplify the alternative arms; this may collapse the true and
3847 false arms to store-flag values. Be careful to use copy_rtx
3848 here since true_rtx or false_rtx might share RTL with x as a
3849 result of the if_then_else_cond call above. */
3850 true_rtx = subst (copy_rtx (true_rtx), pc_rtx, pc_rtx, 0, 0);
3851 false_rtx = subst (copy_rtx (false_rtx), pc_rtx, pc_rtx, 0, 0);
3853 /* If true_rtx and false_rtx are not general_operands, an if_then_else
3854 is unlikely to be simpler. */
3855 if (general_operand (true_rtx, VOIDmode)
3856 && general_operand (false_rtx, VOIDmode))
3858 enum rtx_code reversed;
3860 /* Restarting if we generate a store-flag expression will cause
3861 us to loop. Just drop through in this case. */
3863 /* If the result values are STORE_FLAG_VALUE and zero, we can
3864 just make the comparison operation. */
3865 if (true_rtx == const_true_rtx && false_rtx == const0_rtx)
3866 x = simplify_gen_relational (cond_code, mode, VOIDmode,
3867 cond, cop1);
3868 else if (true_rtx == const0_rtx && false_rtx == const_true_rtx
3869 && ((reversed = reversed_comparison_code_parts
3870 (cond_code, cond, cop1, NULL))
3871 != UNKNOWN))
3872 x = simplify_gen_relational (reversed, mode, VOIDmode,
3873 cond, cop1);
3875 /* Likewise, we can make the negate of a comparison operation
3876 if the result values are - STORE_FLAG_VALUE and zero. */
3877 else if (GET_CODE (true_rtx) == CONST_INT
3878 && INTVAL (true_rtx) == - STORE_FLAG_VALUE
3879 && false_rtx == const0_rtx)
3880 x = simplify_gen_unary (NEG, mode,
3881 simplify_gen_relational (cond_code,
3882 mode, VOIDmode,
3883 cond, cop1),
3884 mode);
3885 else if (GET_CODE (false_rtx) == CONST_INT
3886 && INTVAL (false_rtx) == - STORE_FLAG_VALUE
3887 && true_rtx == const0_rtx
3888 && ((reversed = reversed_comparison_code_parts
3889 (cond_code, cond, cop1, NULL))
3890 != UNKNOWN))
3891 x = simplify_gen_unary (NEG, mode,
3892 simplify_gen_relational (reversed,
3893 mode, VOIDmode,
3894 cond, cop1),
3895 mode);
3896 else
3897 return gen_rtx_IF_THEN_ELSE (mode,
3898 simplify_gen_relational (cond_code,
3899 mode,
3900 VOIDmode,
3901 cond,
3902 cop1),
3903 true_rtx, false_rtx);
3905 code = GET_CODE (x);
3906 op0_mode = VOIDmode;
3911 /* Try to fold this expression in case we have constants that weren't
3912 present before. */
3913 temp = 0;
3914 switch (GET_RTX_CLASS (code))
3916 case RTX_UNARY:
3917 if (op0_mode == VOIDmode)
3918 op0_mode = GET_MODE (XEXP (x, 0));
3919 temp = simplify_unary_operation (code, mode, XEXP (x, 0), op0_mode);
3920 break;
3921 case RTX_COMPARE:
3922 case RTX_COMM_COMPARE:
3924 enum machine_mode cmp_mode = GET_MODE (XEXP (x, 0));
3925 if (cmp_mode == VOIDmode)
3927 cmp_mode = GET_MODE (XEXP (x, 1));
3928 if (cmp_mode == VOIDmode)
3929 cmp_mode = op0_mode;
3931 temp = simplify_relational_operation (code, mode, cmp_mode,
3932 XEXP (x, 0), XEXP (x, 1));
3934 break;
3935 case RTX_COMM_ARITH:
3936 case RTX_BIN_ARITH:
3937 temp = simplify_binary_operation (code, mode, XEXP (x, 0), XEXP (x, 1));
3938 break;
3939 case RTX_BITFIELD_OPS:
3940 case RTX_TERNARY:
3941 temp = simplify_ternary_operation (code, mode, op0_mode, XEXP (x, 0),
3942 XEXP (x, 1), XEXP (x, 2));
3943 break;
3944 default:
3945 break;
3948 if (temp)
3950 x = temp;
3951 code = GET_CODE (temp);
3952 op0_mode = VOIDmode;
3953 mode = GET_MODE (temp);
3956 /* First see if we can apply the inverse distributive law. */
3957 if (code == PLUS || code == MINUS
3958 || code == AND || code == IOR || code == XOR)
3960 x = apply_distributive_law (x);
3961 code = GET_CODE (x);
3962 op0_mode = VOIDmode;
3965 /* If CODE is an associative operation not otherwise handled, see if we
3966 can associate some operands. This can win if they are constants or
3967 if they are logically related (i.e. (a & b) & a). */
3968 if ((code == PLUS || code == MINUS || code == MULT || code == DIV
3969 || code == AND || code == IOR || code == XOR
3970 || code == SMAX || code == SMIN || code == UMAX || code == UMIN)
3971 && ((INTEGRAL_MODE_P (mode) && code != DIV)
3972 || (flag_unsafe_math_optimizations && FLOAT_MODE_P (mode))))
3974 if (GET_CODE (XEXP (x, 0)) == code)
3976 rtx other = XEXP (XEXP (x, 0), 0);
3977 rtx inner_op0 = XEXP (XEXP (x, 0), 1);
3978 rtx inner_op1 = XEXP (x, 1);
3979 rtx inner;
3981 /* Make sure we pass the constant operand if any as the second
3982 one if this is a commutative operation. */
3983 if (CONSTANT_P (inner_op0) && COMMUTATIVE_ARITH_P (x))
3985 rtx tem = inner_op0;
3986 inner_op0 = inner_op1;
3987 inner_op1 = tem;
3989 inner = simplify_binary_operation (code == MINUS ? PLUS
3990 : code == DIV ? MULT
3991 : code,
3992 mode, inner_op0, inner_op1);
3994 /* For commutative operations, try the other pair if that one
3995 didn't simplify. */
3996 if (inner == 0 && COMMUTATIVE_ARITH_P (x))
3998 other = XEXP (XEXP (x, 0), 1);
3999 inner = simplify_binary_operation (code, mode,
4000 XEXP (XEXP (x, 0), 0),
4001 XEXP (x, 1));
4004 if (inner)
4005 return simplify_gen_binary (code, mode, other, inner);
4009 /* A little bit of algebraic simplification here. */
4010 switch (code)
4012 case MEM:
4013 /* Ensure that our address has any ASHIFTs converted to MULT in case
4014 address-recognizing predicates are called later. */
4015 temp = make_compound_operation (XEXP (x, 0), MEM);
4016 SUBST (XEXP (x, 0), temp);
4017 break;
4019 case SUBREG:
4020 if (op0_mode == VOIDmode)
4021 op0_mode = GET_MODE (SUBREG_REG (x));
4023 /* See if this can be moved to simplify_subreg. */
4024 if (CONSTANT_P (SUBREG_REG (x))
4025 && subreg_lowpart_offset (mode, op0_mode) == SUBREG_BYTE (x)
4026 /* Don't call gen_lowpart if the inner mode
4027 is VOIDmode and we cannot simplify it, as SUBREG without
4028 inner mode is invalid. */
4029 && (GET_MODE (SUBREG_REG (x)) != VOIDmode
4030 || gen_lowpart_common (mode, SUBREG_REG (x))))
4031 return gen_lowpart (mode, SUBREG_REG (x));
4033 if (GET_MODE_CLASS (GET_MODE (SUBREG_REG (x))) == MODE_CC)
4034 break;
4036 rtx temp;
4037 temp = simplify_subreg (mode, SUBREG_REG (x), op0_mode,
4038 SUBREG_BYTE (x));
4039 if (temp)
4040 return temp;
4043 /* Don't change the mode of the MEM if that would change the meaning
4044 of the address. */
4045 if (MEM_P (SUBREG_REG (x))
4046 && (MEM_VOLATILE_P (SUBREG_REG (x))
4047 || mode_dependent_address_p (XEXP (SUBREG_REG (x), 0))))
4048 return gen_rtx_CLOBBER (mode, const0_rtx);
4050 /* Note that we cannot do any narrowing for non-constants since
4051 we might have been counting on using the fact that some bits were
4052 zero. We now do this in the SET. */
4054 break;
4056 case NOT:
4057 if (GET_CODE (XEXP (x, 0)) == SUBREG
4058 && subreg_lowpart_p (XEXP (x, 0))
4059 && (GET_MODE_SIZE (GET_MODE (XEXP (x, 0)))
4060 < GET_MODE_SIZE (GET_MODE (SUBREG_REG (XEXP (x, 0)))))
4061 && GET_CODE (SUBREG_REG (XEXP (x, 0))) == ASHIFT
4062 && XEXP (SUBREG_REG (XEXP (x, 0)), 0) == const1_rtx)
4064 enum machine_mode inner_mode = GET_MODE (SUBREG_REG (XEXP (x, 0)));
4066 x = gen_rtx_ROTATE (inner_mode,
4067 simplify_gen_unary (NOT, inner_mode, const1_rtx,
4068 inner_mode),
4069 XEXP (SUBREG_REG (XEXP (x, 0)), 1));
4070 return gen_lowpart (mode, x);
4073 /* Apply De Morgan's laws to reduce number of patterns for machines
4074 with negating logical insns (and-not, nand, etc.). If result has
4075 only one NOT, put it first, since that is how the patterns are
4076 coded. */
4078 if (GET_CODE (XEXP (x, 0)) == IOR || GET_CODE (XEXP (x, 0)) == AND)
4080 rtx in1 = XEXP (XEXP (x, 0), 0), in2 = XEXP (XEXP (x, 0), 1);
4081 enum machine_mode op_mode;
4083 op_mode = GET_MODE (in1);
4084 in1 = simplify_gen_unary (NOT, op_mode, in1, op_mode);
4086 op_mode = GET_MODE (in2);
4087 if (op_mode == VOIDmode)
4088 op_mode = mode;
4089 in2 = simplify_gen_unary (NOT, op_mode, in2, op_mode);
4091 if (GET_CODE (in2) == NOT && GET_CODE (in1) != NOT)
4093 rtx tem = in2;
4094 in2 = in1; in1 = tem;
4097 return gen_rtx_fmt_ee (GET_CODE (XEXP (x, 0)) == IOR ? AND : IOR,
4098 mode, in1, in2);
4100 break;
4102 case NEG:
4103 /* (neg (xor A 1)) is (plus A -1) if A is known to be either 0 or 1. */
4104 if (GET_CODE (XEXP (x, 0)) == XOR
4105 && XEXP (XEXP (x, 0), 1) == const1_rtx
4106 && nonzero_bits (XEXP (XEXP (x, 0), 0), mode) == 1)
4107 return simplify_gen_binary (PLUS, mode, XEXP (XEXP (x, 0), 0),
4108 constm1_rtx);
4110 temp = expand_compound_operation (XEXP (x, 0));
4112 /* For C equal to the width of MODE minus 1, (neg (ashiftrt X C)) can be
4113 replaced by (lshiftrt X C). This will convert
4114 (neg (sign_extract X 1 Y)) to (zero_extract X 1 Y). */
4116 if (GET_CODE (temp) == ASHIFTRT
4117 && GET_CODE (XEXP (temp, 1)) == CONST_INT
4118 && INTVAL (XEXP (temp, 1)) == GET_MODE_BITSIZE (mode) - 1)
4119 return simplify_shift_const (temp, LSHIFTRT, mode, XEXP (temp, 0),
4120 INTVAL (XEXP (temp, 1)));
4122 /* If X has only a single bit that might be nonzero, say, bit I, convert
4123 (neg X) to (ashiftrt (ashift X C-I) C-I) where C is the bitsize of
4124 MODE minus 1. This will convert (neg (zero_extract X 1 Y)) to
4125 (sign_extract X 1 Y). But only do this if TEMP isn't a register
4126 or a SUBREG of one since we'd be making the expression more
4127 complex if it was just a register. */
4129 if (!REG_P (temp)
4130 && ! (GET_CODE (temp) == SUBREG
4131 && REG_P (SUBREG_REG (temp)))
4132 && (i = exact_log2 (nonzero_bits (temp, mode))) >= 0)
4134 rtx temp1 = simplify_shift_const
4135 (NULL_RTX, ASHIFTRT, mode,
4136 simplify_shift_const (NULL_RTX, ASHIFT, mode, temp,
4137 GET_MODE_BITSIZE (mode) - 1 - i),
4138 GET_MODE_BITSIZE (mode) - 1 - i);
4140 /* If all we did was surround TEMP with the two shifts, we
4141 haven't improved anything, so don't use it. Otherwise,
4142 we are better off with TEMP1. */
4143 if (GET_CODE (temp1) != ASHIFTRT
4144 || GET_CODE (XEXP (temp1, 0)) != ASHIFT
4145 || XEXP (XEXP (temp1, 0), 0) != temp)
4146 return temp1;
4148 break;
4150 case TRUNCATE:
4151 /* We can't handle truncation to a partial integer mode here
4152 because we don't know the real bitsize of the partial
4153 integer mode. */
4154 if (GET_MODE_CLASS (mode) == MODE_PARTIAL_INT)
4155 break;
4157 if (GET_MODE_BITSIZE (mode) <= HOST_BITS_PER_WIDE_INT
4158 && TRULY_NOOP_TRUNCATION (GET_MODE_BITSIZE (mode),
4159 GET_MODE_BITSIZE (GET_MODE (XEXP (x, 0)))))
4160 SUBST (XEXP (x, 0),
4161 force_to_mode (XEXP (x, 0), GET_MODE (XEXP (x, 0)),
4162 GET_MODE_MASK (mode), NULL_RTX, 0));
4164 /* (truncate:SI ({sign,zero}_extend:DI foo:SI)) == foo:SI. */
4165 if ((GET_CODE (XEXP (x, 0)) == SIGN_EXTEND
4166 || GET_CODE (XEXP (x, 0)) == ZERO_EXTEND)
4167 && GET_MODE (XEXP (XEXP (x, 0), 0)) == mode)
4168 return XEXP (XEXP (x, 0), 0);
4170 /* (truncate:SI (OP:DI ({sign,zero}_extend:DI foo:SI))) is
4171 (OP:SI foo:SI) if OP is NEG or ABS. */
4172 if ((GET_CODE (XEXP (x, 0)) == ABS
4173 || GET_CODE (XEXP (x, 0)) == NEG)
4174 && (GET_CODE (XEXP (XEXP (x, 0), 0)) == SIGN_EXTEND
4175 || GET_CODE (XEXP (XEXP (x, 0), 0)) == ZERO_EXTEND)
4176 && GET_MODE (XEXP (XEXP (XEXP (x, 0), 0), 0)) == mode)
4177 return simplify_gen_unary (GET_CODE (XEXP (x, 0)), mode,
4178 XEXP (XEXP (XEXP (x, 0), 0), 0), mode);
4180 /* (truncate:SI (subreg:DI (truncate:SI X) 0)) is
4181 (truncate:SI x). */
4182 if (GET_CODE (XEXP (x, 0)) == SUBREG
4183 && GET_CODE (SUBREG_REG (XEXP (x, 0))) == TRUNCATE
4184 && subreg_lowpart_p (XEXP (x, 0)))
4185 return SUBREG_REG (XEXP (x, 0));
4187 /* If we know that the value is already truncated, we can
4188 replace the TRUNCATE with a SUBREG if TRULY_NOOP_TRUNCATION
4189 is nonzero for the corresponding modes. But don't do this
4190 for an (LSHIFTRT (MULT ...)) since this will cause problems
4191 with the umulXi3_highpart patterns. */
4192 if (TRULY_NOOP_TRUNCATION (GET_MODE_BITSIZE (mode),
4193 GET_MODE_BITSIZE (GET_MODE (XEXP (x, 0))))
4194 && num_sign_bit_copies (XEXP (x, 0), GET_MODE (XEXP (x, 0)))
4195 >= (unsigned int) (GET_MODE_BITSIZE (mode) + 1)
4196 && ! (GET_CODE (XEXP (x, 0)) == LSHIFTRT
4197 && GET_CODE (XEXP (XEXP (x, 0), 0)) == MULT))
4198 return gen_lowpart (mode, XEXP (x, 0));
4200 /* A truncate of a comparison can be replaced with a subreg if
4201 STORE_FLAG_VALUE permits. This is like the previous test,
4202 but it works even if the comparison is done in a mode larger
4203 than HOST_BITS_PER_WIDE_INT. */
4204 if (GET_MODE_BITSIZE (mode) <= HOST_BITS_PER_WIDE_INT
4205 && COMPARISON_P (XEXP (x, 0))
4206 && ((HOST_WIDE_INT) STORE_FLAG_VALUE & ~GET_MODE_MASK (mode)) == 0)
4207 return gen_lowpart (mode, XEXP (x, 0));
4209 /* Similarly, a truncate of a register whose value is a
4210 comparison can be replaced with a subreg if STORE_FLAG_VALUE
4211 permits. */
4212 if (GET_MODE_BITSIZE (mode) <= HOST_BITS_PER_WIDE_INT
4213 && ((HOST_WIDE_INT) STORE_FLAG_VALUE & ~GET_MODE_MASK (mode)) == 0
4214 && (temp = get_last_value (XEXP (x, 0)))
4215 && COMPARISON_P (temp))
4216 return gen_lowpart (mode, XEXP (x, 0));
4218 break;
4220 case FLOAT_TRUNCATE:
4221 /* (float_truncate:SF (float_extend:DF foo:SF)) = foo:SF. */
4222 if (GET_CODE (XEXP (x, 0)) == FLOAT_EXTEND
4223 && GET_MODE (XEXP (XEXP (x, 0), 0)) == mode)
4224 return XEXP (XEXP (x, 0), 0);
4226 /* (float_truncate:SF (float_truncate:DF foo:XF))
4227 = (float_truncate:SF foo:XF).
4228 This may eliminate double rounding, so it is unsafe.
4230 (float_truncate:SF (float_extend:XF foo:DF))
4231 = (float_truncate:SF foo:DF).
4233 (float_truncate:DF (float_extend:XF foo:SF))
4234 = (float_extend:SF foo:DF). */
4235 if ((GET_CODE (XEXP (x, 0)) == FLOAT_TRUNCATE
4236 && flag_unsafe_math_optimizations)
4237 || GET_CODE (XEXP (x, 0)) == FLOAT_EXTEND)
4238 return simplify_gen_unary (GET_MODE_SIZE (GET_MODE (XEXP (XEXP (x, 0),
4239 0)))
4240 > GET_MODE_SIZE (mode)
4241 ? FLOAT_TRUNCATE : FLOAT_EXTEND,
4242 mode,
4243 XEXP (XEXP (x, 0), 0), mode);
4245 /* (float_truncate (float x)) is (float x) */
4246 if (GET_CODE (XEXP (x, 0)) == FLOAT
4247 && (flag_unsafe_math_optimizations
4248 || ((unsigned)significand_size (GET_MODE (XEXP (x, 0)))
4249 >= (GET_MODE_BITSIZE (GET_MODE (XEXP (XEXP (x, 0), 0)))
4250 - num_sign_bit_copies (XEXP (XEXP (x, 0), 0),
4251 GET_MODE (XEXP (XEXP (x, 0), 0)))))))
4252 return simplify_gen_unary (FLOAT, mode,
4253 XEXP (XEXP (x, 0), 0),
4254 GET_MODE (XEXP (XEXP (x, 0), 0)));
4256 /* (float_truncate:SF (OP:DF (float_extend:DF foo:sf))) is
4257 (OP:SF foo:SF) if OP is NEG or ABS. */
4258 if ((GET_CODE (XEXP (x, 0)) == ABS
4259 || GET_CODE (XEXP (x, 0)) == NEG)
4260 && GET_CODE (XEXP (XEXP (x, 0), 0)) == FLOAT_EXTEND
4261 && GET_MODE (XEXP (XEXP (XEXP (x, 0), 0), 0)) == mode)
4262 return simplify_gen_unary (GET_CODE (XEXP (x, 0)), mode,
4263 XEXP (XEXP (XEXP (x, 0), 0), 0), mode);
4265 /* (float_truncate:SF (subreg:DF (float_truncate:SF X) 0))
4266 is (float_truncate:SF x). */
4267 if (GET_CODE (XEXP (x, 0)) == SUBREG
4268 && subreg_lowpart_p (XEXP (x, 0))
4269 && GET_CODE (SUBREG_REG (XEXP (x, 0))) == FLOAT_TRUNCATE)
4270 return SUBREG_REG (XEXP (x, 0));
4271 break;
4272 case FLOAT_EXTEND:
4273 /* (float_extend (float_extend x)) is (float_extend x)
4275 (float_extend (float x)) is (float x) assuming that double
4276 rounding can't happen.
4278 if (GET_CODE (XEXP (x, 0)) == FLOAT_EXTEND
4279 || (GET_CODE (XEXP (x, 0)) == FLOAT
4280 && ((unsigned)significand_size (GET_MODE (XEXP (x, 0)))
4281 >= (GET_MODE_BITSIZE (GET_MODE (XEXP (XEXP (x, 0), 0)))
4282 - num_sign_bit_copies (XEXP (XEXP (x, 0), 0),
4283 GET_MODE (XEXP (XEXP (x, 0), 0)))))))
4284 return simplify_gen_unary (GET_CODE (XEXP (x, 0)), mode,
4285 XEXP (XEXP (x, 0), 0),
4286 GET_MODE (XEXP (XEXP (x, 0), 0)));
4288 break;
4289 #ifdef HAVE_cc0
4290 case COMPARE:
4291 /* Convert (compare FOO (const_int 0)) to FOO unless we aren't
4292 using cc0, in which case we want to leave it as a COMPARE
4293 so we can distinguish it from a register-register-copy. */
4294 if (XEXP (x, 1) == const0_rtx)
4295 return XEXP (x, 0);
4297 /* x - 0 is the same as x unless x's mode has signed zeros and
4298 allows rounding towards -infinity. Under those conditions,
4299 0 - 0 is -0. */
4300 if (!(HONOR_SIGNED_ZEROS (GET_MODE (XEXP (x, 0)))
4301 && HONOR_SIGN_DEPENDENT_ROUNDING (GET_MODE (XEXP (x, 0))))
4302 && XEXP (x, 1) == CONST0_RTX (GET_MODE (XEXP (x, 0))))
4303 return XEXP (x, 0);
4304 break;
4305 #endif
4307 case CONST:
4308 /* (const (const X)) can become (const X). Do it this way rather than
4309 returning the inner CONST since CONST can be shared with a
4310 REG_EQUAL note. */
4311 if (GET_CODE (XEXP (x, 0)) == CONST)
4312 SUBST (XEXP (x, 0), XEXP (XEXP (x, 0), 0));
4313 break;
4315 #ifdef HAVE_lo_sum
4316 case LO_SUM:
4317 /* Convert (lo_sum (high FOO) FOO) to FOO. This is necessary so we
4318 can add in an offset. find_split_point will split this address up
4319 again if it doesn't match. */
4320 if (GET_CODE (XEXP (x, 0)) == HIGH
4321 && rtx_equal_p (XEXP (XEXP (x, 0), 0), XEXP (x, 1)))
4322 return XEXP (x, 1);
4323 break;
4324 #endif
4326 case PLUS:
4327 /* Canonicalize (plus (mult (neg B) C) A) to (minus A (mult B C)).
4329 if (GET_CODE (XEXP (x, 0)) == MULT
4330 && GET_CODE (XEXP (XEXP (x, 0), 0)) == NEG)
4332 rtx in1, in2;
4334 in1 = XEXP (XEXP (XEXP (x, 0), 0), 0);
4335 in2 = XEXP (XEXP (x, 0), 1);
4336 return simplify_gen_binary (MINUS, mode, XEXP (x, 1),
4337 simplify_gen_binary (MULT, mode,
4338 in1, in2));
4341 /* If we have (plus (plus (A const) B)), associate it so that CONST is
4342 outermost. That's because that's the way indexed addresses are
4343 supposed to appear. This code used to check many more cases, but
4344 they are now checked elsewhere. */
4345 if (GET_CODE (XEXP (x, 0)) == PLUS
4346 && CONSTANT_ADDRESS_P (XEXP (XEXP (x, 0), 1)))
4347 return simplify_gen_binary (PLUS, mode,
4348 simplify_gen_binary (PLUS, mode,
4349 XEXP (XEXP (x, 0), 0),
4350 XEXP (x, 1)),
4351 XEXP (XEXP (x, 0), 1));
4353 /* (plus (xor (and <foo> (const_int pow2 - 1)) <c>) <-c>)
4354 when c is (const_int (pow2 + 1) / 2) is a sign extension of a
4355 bit-field and can be replaced by either a sign_extend or a
4356 sign_extract. The `and' may be a zero_extend and the two
4357 <c>, -<c> constants may be reversed. */
4358 if (GET_CODE (XEXP (x, 0)) == XOR
4359 && GET_CODE (XEXP (x, 1)) == CONST_INT
4360 && GET_CODE (XEXP (XEXP (x, 0), 1)) == CONST_INT
4361 && INTVAL (XEXP (x, 1)) == -INTVAL (XEXP (XEXP (x, 0), 1))
4362 && ((i = exact_log2 (INTVAL (XEXP (XEXP (x, 0), 1)))) >= 0
4363 || (i = exact_log2 (INTVAL (XEXP (x, 1)))) >= 0)
4364 && GET_MODE_BITSIZE (mode) <= HOST_BITS_PER_WIDE_INT
4365 && ((GET_CODE (XEXP (XEXP (x, 0), 0)) == AND
4366 && GET_CODE (XEXP (XEXP (XEXP (x, 0), 0), 1)) == CONST_INT
4367 && (INTVAL (XEXP (XEXP (XEXP (x, 0), 0), 1))
4368 == ((HOST_WIDE_INT) 1 << (i + 1)) - 1))
4369 || (GET_CODE (XEXP (XEXP (x, 0), 0)) == ZERO_EXTEND
4370 && (GET_MODE_BITSIZE (GET_MODE (XEXP (XEXP (XEXP (x, 0), 0), 0)))
4371 == (unsigned int) i + 1))))
4372 return simplify_shift_const
4373 (NULL_RTX, ASHIFTRT, mode,
4374 simplify_shift_const (NULL_RTX, ASHIFT, mode,
4375 XEXP (XEXP (XEXP (x, 0), 0), 0),
4376 GET_MODE_BITSIZE (mode) - (i + 1)),
4377 GET_MODE_BITSIZE (mode) - (i + 1));
4379 /* (plus (comparison A B) C) can become (neg (rev-comp A B)) if
4380 C is 1 and STORE_FLAG_VALUE is -1 or if C is -1 and STORE_FLAG_VALUE
4381 is 1. This produces better code than the alternative immediately
4382 below. */
4383 if (COMPARISON_P (XEXP (x, 0))
4384 && ((STORE_FLAG_VALUE == -1 && XEXP (x, 1) == const1_rtx)
4385 || (STORE_FLAG_VALUE == 1 && XEXP (x, 1) == constm1_rtx))
4386 && (reversed = reversed_comparison (XEXP (x, 0), mode)))
4387 return
4388 simplify_gen_unary (NEG, mode, reversed, mode);
4390 /* If only the low-order bit of X is possibly nonzero, (plus x -1)
4391 can become (ashiftrt (ashift (xor x 1) C) C) where C is
4392 the bitsize of the mode - 1. This allows simplification of
4393 "a = (b & 8) == 0;" */
4394 if (XEXP (x, 1) == constm1_rtx
4395 && !REG_P (XEXP (x, 0))
4396 && ! (GET_CODE (XEXP (x, 0)) == SUBREG
4397 && REG_P (SUBREG_REG (XEXP (x, 0))))
4398 && nonzero_bits (XEXP (x, 0), mode) == 1)
4399 return simplify_shift_const (NULL_RTX, ASHIFTRT, mode,
4400 simplify_shift_const (NULL_RTX, ASHIFT, mode,
4401 gen_rtx_XOR (mode, XEXP (x, 0), const1_rtx),
4402 GET_MODE_BITSIZE (mode) - 1),
4403 GET_MODE_BITSIZE (mode) - 1);
4405 /* If we are adding two things that have no bits in common, convert
4406 the addition into an IOR. This will often be further simplified,
4407 for example in cases like ((a & 1) + (a & 2)), which can
4408 become a & 3. */
4410 if (GET_MODE_BITSIZE (mode) <= HOST_BITS_PER_WIDE_INT
4411 && (nonzero_bits (XEXP (x, 0), mode)
4412 & nonzero_bits (XEXP (x, 1), mode)) == 0)
4414 /* Try to simplify the expression further. */
4415 rtx tor = simplify_gen_binary (IOR, mode, XEXP (x, 0), XEXP (x, 1));
4416 temp = combine_simplify_rtx (tor, mode, in_dest);
4418 /* If we could, great. If not, do not go ahead with the IOR
4419 replacement, since PLUS appears in many special purpose
4420 address arithmetic instructions. */
4421 if (GET_CODE (temp) != CLOBBER && temp != tor)
4422 return temp;
4424 break;
4426 case MINUS:
4427 /* If STORE_FLAG_VALUE is 1, (minus 1 (comparison foo bar)) can be done
4428 by reversing the comparison code if valid. */
4429 if (STORE_FLAG_VALUE == 1
4430 && XEXP (x, 0) == const1_rtx
4431 && COMPARISON_P (XEXP (x, 1))
4432 && (reversed = reversed_comparison (XEXP (x, 1), mode)))
4433 return reversed;
4435 /* (minus <foo> (and <foo> (const_int -pow2))) becomes
4436 (and <foo> (const_int pow2-1)) */
4437 if (GET_CODE (XEXP (x, 1)) == AND
4438 && GET_CODE (XEXP (XEXP (x, 1), 1)) == CONST_INT
4439 && exact_log2 (-INTVAL (XEXP (XEXP (x, 1), 1))) >= 0
4440 && rtx_equal_p (XEXP (XEXP (x, 1), 0), XEXP (x, 0)))
4441 return simplify_and_const_int (NULL_RTX, mode, XEXP (x, 0),
4442 -INTVAL (XEXP (XEXP (x, 1), 1)) - 1);
4444 /* Canonicalize (minus A (mult (neg B) C)) to (plus (mult B C) A).
4446 if (GET_CODE (XEXP (x, 1)) == MULT
4447 && GET_CODE (XEXP (XEXP (x, 1), 0)) == NEG)
4449 rtx in1, in2;
4451 in1 = XEXP (XEXP (XEXP (x, 1), 0), 0);
4452 in2 = XEXP (XEXP (x, 1), 1);
4453 return simplify_gen_binary (PLUS, mode,
4454 simplify_gen_binary (MULT, mode,
4455 in1, in2),
4456 XEXP (x, 0));
4459 /* Canonicalize (minus (neg A) (mult B C)) to
4460 (minus (mult (neg B) C) A). */
4461 if (GET_CODE (XEXP (x, 1)) == MULT
4462 && GET_CODE (XEXP (x, 0)) == NEG)
4464 rtx in1, in2;
4466 in1 = simplify_gen_unary (NEG, mode, XEXP (XEXP (x, 1), 0), mode);
4467 in2 = XEXP (XEXP (x, 1), 1);
4468 return simplify_gen_binary (MINUS, mode,
4469 simplify_gen_binary (MULT, mode,
4470 in1, in2),
4471 XEXP (XEXP (x, 0), 0));
4474 /* Canonicalize (minus A (plus B C)) to (minus (minus A B) C) for
4475 integers. */
4476 if (GET_CODE (XEXP (x, 1)) == PLUS && INTEGRAL_MODE_P (mode))
4477 return simplify_gen_binary (MINUS, mode,
4478 simplify_gen_binary (MINUS, mode,
4479 XEXP (x, 0),
4480 XEXP (XEXP (x, 1), 0)),
4481 XEXP (XEXP (x, 1), 1));
4482 break;
4484 case MULT:
4485 /* If we have (mult (plus A B) C), apply the distributive law and then
4486 the inverse distributive law to see if things simplify. This
4487 occurs mostly in addresses, often when unrolling loops. */
4489 if (GET_CODE (XEXP (x, 0)) == PLUS)
4491 rtx result = distribute_and_simplify_rtx (x, 0);
4492 if (result)
4493 return result;
4496 /* Try simplify a*(b/c) as (a*b)/c. */
4497 if (FLOAT_MODE_P (mode) && flag_unsafe_math_optimizations
4498 && GET_CODE (XEXP (x, 0)) == DIV)
4500 rtx tem = simplify_binary_operation (MULT, mode,
4501 XEXP (XEXP (x, 0), 0),
4502 XEXP (x, 1));
4503 if (tem)
4504 return simplify_gen_binary (DIV, mode, tem, XEXP (XEXP (x, 0), 1));
4506 break;
4508 case UDIV:
4509 /* If this is a divide by a power of two, treat it as a shift if
4510 its first operand is a shift. */
4511 if (GET_CODE (XEXP (x, 1)) == CONST_INT
4512 && (i = exact_log2 (INTVAL (XEXP (x, 1)))) >= 0
4513 && (GET_CODE (XEXP (x, 0)) == ASHIFT
4514 || GET_CODE (XEXP (x, 0)) == LSHIFTRT
4515 || GET_CODE (XEXP (x, 0)) == ASHIFTRT
4516 || GET_CODE (XEXP (x, 0)) == ROTATE
4517 || GET_CODE (XEXP (x, 0)) == ROTATERT))
4518 return simplify_shift_const (NULL_RTX, LSHIFTRT, mode, XEXP (x, 0), i);
4519 break;
4521 case EQ: case NE:
4522 case GT: case GTU: case GE: case GEU:
4523 case LT: case LTU: case LE: case LEU:
4524 case UNEQ: case LTGT:
4525 case UNGT: case UNGE:
4526 case UNLT: case UNLE:
4527 case UNORDERED: case ORDERED:
4528 /* If the first operand is a condition code, we can't do anything
4529 with it. */
4530 if (GET_CODE (XEXP (x, 0)) == COMPARE
4531 || (GET_MODE_CLASS (GET_MODE (XEXP (x, 0))) != MODE_CC
4532 && ! CC0_P (XEXP (x, 0))))
4534 rtx op0 = XEXP (x, 0);
4535 rtx op1 = XEXP (x, 1);
4536 enum rtx_code new_code;
4538 if (GET_CODE (op0) == COMPARE)
4539 op1 = XEXP (op0, 1), op0 = XEXP (op0, 0);
4541 /* Simplify our comparison, if possible. */
4542 new_code = simplify_comparison (code, &op0, &op1);
4544 /* If STORE_FLAG_VALUE is 1, we can convert (ne x 0) to simply X
4545 if only the low-order bit is possibly nonzero in X (such as when
4546 X is a ZERO_EXTRACT of one bit). Similarly, we can convert EQ to
4547 (xor X 1) or (minus 1 X); we use the former. Finally, if X is
4548 known to be either 0 or -1, NE becomes a NEG and EQ becomes
4549 (plus X 1).
4551 Remove any ZERO_EXTRACT we made when thinking this was a
4552 comparison. It may now be simpler to use, e.g., an AND. If a
4553 ZERO_EXTRACT is indeed appropriate, it will be placed back by
4554 the call to make_compound_operation in the SET case. */
4556 if (STORE_FLAG_VALUE == 1
4557 && new_code == NE && GET_MODE_CLASS (mode) == MODE_INT
4558 && op1 == const0_rtx
4559 && mode == GET_MODE (op0)
4560 && nonzero_bits (op0, mode) == 1)
4561 return gen_lowpart (mode,
4562 expand_compound_operation (op0));
4564 else if (STORE_FLAG_VALUE == 1
4565 && new_code == NE && GET_MODE_CLASS (mode) == MODE_INT
4566 && op1 == const0_rtx
4567 && mode == GET_MODE (op0)
4568 && (num_sign_bit_copies (op0, mode)
4569 == GET_MODE_BITSIZE (mode)))
4571 op0 = expand_compound_operation (op0);
4572 return simplify_gen_unary (NEG, mode,
4573 gen_lowpart (mode, op0),
4574 mode);
4577 else if (STORE_FLAG_VALUE == 1
4578 && new_code == EQ && GET_MODE_CLASS (mode) == MODE_INT
4579 && op1 == const0_rtx
4580 && mode == GET_MODE (op0)
4581 && nonzero_bits (op0, mode) == 1)
4583 op0 = expand_compound_operation (op0);
4584 return simplify_gen_binary (XOR, mode,
4585 gen_lowpart (mode, op0),
4586 const1_rtx);
4589 else if (STORE_FLAG_VALUE == 1
4590 && new_code == EQ && GET_MODE_CLASS (mode) == MODE_INT
4591 && op1 == const0_rtx
4592 && mode == GET_MODE (op0)
4593 && (num_sign_bit_copies (op0, mode)
4594 == GET_MODE_BITSIZE (mode)))
4596 op0 = expand_compound_operation (op0);
4597 return plus_constant (gen_lowpart (mode, op0), 1);
4600 /* If STORE_FLAG_VALUE is -1, we have cases similar to
4601 those above. */
4602 if (STORE_FLAG_VALUE == -1
4603 && new_code == NE && GET_MODE_CLASS (mode) == MODE_INT
4604 && op1 == const0_rtx
4605 && (num_sign_bit_copies (op0, mode)
4606 == GET_MODE_BITSIZE (mode)))
4607 return gen_lowpart (mode,
4608 expand_compound_operation (op0));
4610 else if (STORE_FLAG_VALUE == -1
4611 && new_code == NE && GET_MODE_CLASS (mode) == MODE_INT
4612 && op1 == const0_rtx
4613 && mode == GET_MODE (op0)
4614 && nonzero_bits (op0, mode) == 1)
4616 op0 = expand_compound_operation (op0);
4617 return simplify_gen_unary (NEG, mode,
4618 gen_lowpart (mode, op0),
4619 mode);
4622 else if (STORE_FLAG_VALUE == -1
4623 && new_code == EQ && GET_MODE_CLASS (mode) == MODE_INT
4624 && op1 == const0_rtx
4625 && mode == GET_MODE (op0)
4626 && (num_sign_bit_copies (op0, mode)
4627 == GET_MODE_BITSIZE (mode)))
4629 op0 = expand_compound_operation (op0);
4630 return simplify_gen_unary (NOT, mode,
4631 gen_lowpart (mode, op0),
4632 mode);
4635 /* If X is 0/1, (eq X 0) is X-1. */
4636 else if (STORE_FLAG_VALUE == -1
4637 && new_code == EQ && GET_MODE_CLASS (mode) == MODE_INT
4638 && op1 == const0_rtx
4639 && mode == GET_MODE (op0)
4640 && nonzero_bits (op0, mode) == 1)
4642 op0 = expand_compound_operation (op0);
4643 return plus_constant (gen_lowpart (mode, op0), -1);
4646 /* If STORE_FLAG_VALUE says to just test the sign bit and X has just
4647 one bit that might be nonzero, we can convert (ne x 0) to
4648 (ashift x c) where C puts the bit in the sign bit. Remove any
4649 AND with STORE_FLAG_VALUE when we are done, since we are only
4650 going to test the sign bit. */
4651 if (new_code == NE && GET_MODE_CLASS (mode) == MODE_INT
4652 && GET_MODE_BITSIZE (mode) <= HOST_BITS_PER_WIDE_INT
4653 && ((STORE_FLAG_VALUE & GET_MODE_MASK (mode))
4654 == (unsigned HOST_WIDE_INT) 1 << (GET_MODE_BITSIZE (mode) - 1))
4655 && op1 == const0_rtx
4656 && mode == GET_MODE (op0)
4657 && (i = exact_log2 (nonzero_bits (op0, mode))) >= 0)
4659 x = simplify_shift_const (NULL_RTX, ASHIFT, mode,
4660 expand_compound_operation (op0),
4661 GET_MODE_BITSIZE (mode) - 1 - i);
4662 if (GET_CODE (x) == AND && XEXP (x, 1) == const_true_rtx)
4663 return XEXP (x, 0);
4664 else
4665 return x;
4668 /* If the code changed, return a whole new comparison. */
4669 if (new_code != code)
4670 return gen_rtx_fmt_ee (new_code, mode, op0, op1);
4672 /* Otherwise, keep this operation, but maybe change its operands.
4673 This also converts (ne (compare FOO BAR) 0) to (ne FOO BAR). */
4674 SUBST (XEXP (x, 0), op0);
4675 SUBST (XEXP (x, 1), op1);
4677 break;
4679 case IF_THEN_ELSE:
4680 return simplify_if_then_else (x);
4682 case ZERO_EXTRACT:
4683 case SIGN_EXTRACT:
4684 case ZERO_EXTEND:
4685 case SIGN_EXTEND:
4686 /* If we are processing SET_DEST, we are done. */
4687 if (in_dest)
4688 return x;
4690 return expand_compound_operation (x);
4692 case SET:
4693 return simplify_set (x);
4695 case AND:
4696 case IOR:
4697 case XOR:
4698 return simplify_logical (x);
4700 case ABS:
4701 /* (abs (neg <foo>)) -> (abs <foo>) */
4702 if (GET_CODE (XEXP (x, 0)) == NEG)
4703 SUBST (XEXP (x, 0), XEXP (XEXP (x, 0), 0));
4705 /* If the mode of the operand is VOIDmode (i.e. if it is ASM_OPERANDS),
4706 do nothing. */
4707 if (GET_MODE (XEXP (x, 0)) == VOIDmode)
4708 break;
4710 /* If operand is something known to be positive, ignore the ABS. */
4711 if (GET_CODE (XEXP (x, 0)) == FFS || GET_CODE (XEXP (x, 0)) == ABS
4712 || ((GET_MODE_BITSIZE (GET_MODE (XEXP (x, 0)))
4713 <= HOST_BITS_PER_WIDE_INT)
4714 && ((nonzero_bits (XEXP (x, 0), GET_MODE (XEXP (x, 0)))
4715 & ((HOST_WIDE_INT) 1
4716 << (GET_MODE_BITSIZE (GET_MODE (XEXP (x, 0))) - 1)))
4717 == 0)))
4718 return XEXP (x, 0);
4720 /* If operand is known to be only -1 or 0, convert ABS to NEG. */
4721 if (num_sign_bit_copies (XEXP (x, 0), mode) == GET_MODE_BITSIZE (mode))
4722 return gen_rtx_NEG (mode, XEXP (x, 0));
4724 break;
4726 case FFS:
4727 /* (ffs (*_extend <X>)) = (ffs <X>) */
4728 if (GET_CODE (XEXP (x, 0)) == SIGN_EXTEND
4729 || GET_CODE (XEXP (x, 0)) == ZERO_EXTEND)
4730 SUBST (XEXP (x, 0), XEXP (XEXP (x, 0), 0));
4731 break;
4733 case POPCOUNT:
4734 case PARITY:
4735 /* (pop* (zero_extend <X>)) = (pop* <X>) */
4736 if (GET_CODE (XEXP (x, 0)) == ZERO_EXTEND)
4737 SUBST (XEXP (x, 0), XEXP (XEXP (x, 0), 0));
4738 break;
4740 case FLOAT:
4741 /* (float (sign_extend <X>)) = (float <X>). */
4742 if (GET_CODE (XEXP (x, 0)) == SIGN_EXTEND)
4743 SUBST (XEXP (x, 0), XEXP (XEXP (x, 0), 0));
4744 break;
4746 case ASHIFT:
4747 case LSHIFTRT:
4748 case ASHIFTRT:
4749 case ROTATE:
4750 case ROTATERT:
4751 /* If this is a shift by a constant amount, simplify it. */
4752 if (GET_CODE (XEXP (x, 1)) == CONST_INT)
4753 return simplify_shift_const (x, code, mode, XEXP (x, 0),
4754 INTVAL (XEXP (x, 1)));
4756 else if (SHIFT_COUNT_TRUNCATED && !REG_P (XEXP (x, 1)))
4757 SUBST (XEXP (x, 1),
4758 force_to_mode (XEXP (x, 1), GET_MODE (XEXP (x, 1)),
4759 ((HOST_WIDE_INT) 1
4760 << exact_log2 (GET_MODE_BITSIZE (GET_MODE (x))))
4761 - 1,
4762 NULL_RTX, 0));
4763 break;
4765 case VEC_SELECT:
4767 rtx op0 = XEXP (x, 0);
4768 rtx op1 = XEXP (x, 1);
4769 int len;
4771 gcc_assert (GET_CODE (op1) == PARALLEL);
4772 len = XVECLEN (op1, 0);
4773 if (len == 1
4774 && GET_CODE (XVECEXP (op1, 0, 0)) == CONST_INT
4775 && GET_CODE (op0) == VEC_CONCAT)
4777 int offset = INTVAL (XVECEXP (op1, 0, 0)) * GET_MODE_SIZE (GET_MODE (x));
4779 /* Try to find the element in the VEC_CONCAT. */
4780 for (;;)
4782 if (GET_MODE (op0) == GET_MODE (x))
4783 return op0;
4784 if (GET_CODE (op0) == VEC_CONCAT)
4786 HOST_WIDE_INT op0_size = GET_MODE_SIZE (GET_MODE (XEXP (op0, 0)));
4787 if (op0_size < offset)
4788 op0 = XEXP (op0, 0);
4789 else
4791 offset -= op0_size;
4792 op0 = XEXP (op0, 1);
4795 else
4796 break;
4801 break;
4803 default:
4804 break;
4807 return x;
4810 /* Simplify X, an IF_THEN_ELSE expression. Return the new expression. */
4812 static rtx
4813 simplify_if_then_else (rtx x)
4815 enum machine_mode mode = GET_MODE (x);
4816 rtx cond = XEXP (x, 0);
4817 rtx true_rtx = XEXP (x, 1);
4818 rtx false_rtx = XEXP (x, 2);
4819 enum rtx_code true_code = GET_CODE (cond);
4820 int comparison_p = COMPARISON_P (cond);
4821 rtx temp;
4822 int i;
4823 enum rtx_code false_code;
4824 rtx reversed;
4826 /* Simplify storing of the truth value. */
4827 if (comparison_p && true_rtx == const_true_rtx && false_rtx == const0_rtx)
4828 return simplify_gen_relational (true_code, mode, VOIDmode,
4829 XEXP (cond, 0), XEXP (cond, 1));
4831 /* Also when the truth value has to be reversed. */
4832 if (comparison_p
4833 && true_rtx == const0_rtx && false_rtx == const_true_rtx
4834 && (reversed = reversed_comparison (cond, mode)))
4835 return reversed;
4837 /* Sometimes we can simplify the arm of an IF_THEN_ELSE if a register used
4838 in it is being compared against certain values. Get the true and false
4839 comparisons and see if that says anything about the value of each arm. */
4841 if (comparison_p
4842 && ((false_code = reversed_comparison_code (cond, NULL))
4843 != UNKNOWN)
4844 && REG_P (XEXP (cond, 0)))
4846 HOST_WIDE_INT nzb;
4847 rtx from = XEXP (cond, 0);
4848 rtx true_val = XEXP (cond, 1);
4849 rtx false_val = true_val;
4850 int swapped = 0;
4852 /* If FALSE_CODE is EQ, swap the codes and arms. */
4854 if (false_code == EQ)
4856 swapped = 1, true_code = EQ, false_code = NE;
4857 temp = true_rtx, true_rtx = false_rtx, false_rtx = temp;
4860 /* If we are comparing against zero and the expression being tested has
4861 only a single bit that might be nonzero, that is its value when it is
4862 not equal to zero. Similarly if it is known to be -1 or 0. */
4864 if (true_code == EQ && true_val == const0_rtx
4865 && exact_log2 (nzb = nonzero_bits (from, GET_MODE (from))) >= 0)
4866 false_code = EQ, false_val = GEN_INT (nzb);
4867 else if (true_code == EQ && true_val == const0_rtx
4868 && (num_sign_bit_copies (from, GET_MODE (from))
4869 == GET_MODE_BITSIZE (GET_MODE (from))))
4870 false_code = EQ, false_val = constm1_rtx;
4872 /* Now simplify an arm if we know the value of the register in the
4873 branch and it is used in the arm. Be careful due to the potential
4874 of locally-shared RTL. */
4876 if (reg_mentioned_p (from, true_rtx))
4877 true_rtx = subst (known_cond (copy_rtx (true_rtx), true_code,
4878 from, true_val),
4879 pc_rtx, pc_rtx, 0, 0);
4880 if (reg_mentioned_p (from, false_rtx))
4881 false_rtx = subst (known_cond (copy_rtx (false_rtx), false_code,
4882 from, false_val),
4883 pc_rtx, pc_rtx, 0, 0);
4885 SUBST (XEXP (x, 1), swapped ? false_rtx : true_rtx);
4886 SUBST (XEXP (x, 2), swapped ? true_rtx : false_rtx);
4888 true_rtx = XEXP (x, 1);
4889 false_rtx = XEXP (x, 2);
4890 true_code = GET_CODE (cond);
4893 /* If we have (if_then_else FOO (pc) (label_ref BAR)) and FOO can be
4894 reversed, do so to avoid needing two sets of patterns for
4895 subtract-and-branch insns. Similarly if we have a constant in the true
4896 arm, the false arm is the same as the first operand of the comparison, or
4897 the false arm is more complicated than the true arm. */
4899 if (comparison_p
4900 && reversed_comparison_code (cond, NULL) != UNKNOWN
4901 && (true_rtx == pc_rtx
4902 || (CONSTANT_P (true_rtx)
4903 && GET_CODE (false_rtx) != CONST_INT && false_rtx != pc_rtx)
4904 || true_rtx == const0_rtx
4905 || (OBJECT_P (true_rtx) && !OBJECT_P (false_rtx))
4906 || (GET_CODE (true_rtx) == SUBREG && OBJECT_P (SUBREG_REG (true_rtx))
4907 && !OBJECT_P (false_rtx))
4908 || reg_mentioned_p (true_rtx, false_rtx)
4909 || rtx_equal_p (false_rtx, XEXP (cond, 0))))
4911 true_code = reversed_comparison_code (cond, NULL);
4912 SUBST (XEXP (x, 0), reversed_comparison (cond, GET_MODE (cond)));
4913 SUBST (XEXP (x, 1), false_rtx);
4914 SUBST (XEXP (x, 2), true_rtx);
4916 temp = true_rtx, true_rtx = false_rtx, false_rtx = temp;
4917 cond = XEXP (x, 0);
4919 /* It is possible that the conditional has been simplified out. */
4920 true_code = GET_CODE (cond);
4921 comparison_p = COMPARISON_P (cond);
4924 /* If the two arms are identical, we don't need the comparison. */
4926 if (rtx_equal_p (true_rtx, false_rtx) && ! side_effects_p (cond))
4927 return true_rtx;
4929 /* Convert a == b ? b : a to "a". */
4930 if (true_code == EQ && ! side_effects_p (cond)
4931 && !HONOR_NANS (mode)
4932 && rtx_equal_p (XEXP (cond, 0), false_rtx)
4933 && rtx_equal_p (XEXP (cond, 1), true_rtx))
4934 return false_rtx;
4935 else if (true_code == NE && ! side_effects_p (cond)
4936 && !HONOR_NANS (mode)
4937 && rtx_equal_p (XEXP (cond, 0), true_rtx)
4938 && rtx_equal_p (XEXP (cond, 1), false_rtx))
4939 return true_rtx;
4941 /* Look for cases where we have (abs x) or (neg (abs X)). */
4943 if (GET_MODE_CLASS (mode) == MODE_INT
4944 && GET_CODE (false_rtx) == NEG
4945 && rtx_equal_p (true_rtx, XEXP (false_rtx, 0))
4946 && comparison_p
4947 && rtx_equal_p (true_rtx, XEXP (cond, 0))
4948 && ! side_effects_p (true_rtx))
4949 switch (true_code)
4951 case GT:
4952 case GE:
4953 return simplify_gen_unary (ABS, mode, true_rtx, mode);
4954 case LT:
4955 case LE:
4956 return
4957 simplify_gen_unary (NEG, mode,
4958 simplify_gen_unary (ABS, mode, true_rtx, mode),
4959 mode);
4960 default:
4961 break;
4964 /* Look for MIN or MAX. */
4966 if ((! FLOAT_MODE_P (mode) || flag_unsafe_math_optimizations)
4967 && comparison_p
4968 && rtx_equal_p (XEXP (cond, 0), true_rtx)
4969 && rtx_equal_p (XEXP (cond, 1), false_rtx)
4970 && ! side_effects_p (cond))
4971 switch (true_code)
4973 case GE:
4974 case GT:
4975 return simplify_gen_binary (SMAX, mode, true_rtx, false_rtx);
4976 case LE:
4977 case LT:
4978 return simplify_gen_binary (SMIN, mode, true_rtx, false_rtx);
4979 case GEU:
4980 case GTU:
4981 return simplify_gen_binary (UMAX, mode, true_rtx, false_rtx);
4982 case LEU:
4983 case LTU:
4984 return simplify_gen_binary (UMIN, mode, true_rtx, false_rtx);
4985 default:
4986 break;
4989 /* If we have (if_then_else COND (OP Z C1) Z) and OP is an identity when its
4990 second operand is zero, this can be done as (OP Z (mult COND C2)) where
4991 C2 = C1 * STORE_FLAG_VALUE. Similarly if OP has an outer ZERO_EXTEND or
4992 SIGN_EXTEND as long as Z is already extended (so we don't destroy it).
4993 We can do this kind of thing in some cases when STORE_FLAG_VALUE is
4994 neither 1 or -1, but it isn't worth checking for. */
4996 if ((STORE_FLAG_VALUE == 1 || STORE_FLAG_VALUE == -1)
4997 && comparison_p
4998 && GET_MODE_CLASS (mode) == MODE_INT
4999 && ! side_effects_p (x))
5001 rtx t = make_compound_operation (true_rtx, SET);
5002 rtx f = make_compound_operation (false_rtx, SET);
5003 rtx cond_op0 = XEXP (cond, 0);
5004 rtx cond_op1 = XEXP (cond, 1);
5005 enum rtx_code op = UNKNOWN, extend_op = UNKNOWN;
5006 enum machine_mode m = mode;
5007 rtx z = 0, c1 = NULL_RTX;
5009 if ((GET_CODE (t) == PLUS || GET_CODE (t) == MINUS
5010 || GET_CODE (t) == IOR || GET_CODE (t) == XOR
5011 || GET_CODE (t) == ASHIFT
5012 || GET_CODE (t) == LSHIFTRT || GET_CODE (t) == ASHIFTRT)
5013 && rtx_equal_p (XEXP (t, 0), f))
5014 c1 = XEXP (t, 1), op = GET_CODE (t), z = f;
5016 /* If an identity-zero op is commutative, check whether there
5017 would be a match if we swapped the operands. */
5018 else if ((GET_CODE (t) == PLUS || GET_CODE (t) == IOR
5019 || GET_CODE (t) == XOR)
5020 && rtx_equal_p (XEXP (t, 1), f))
5021 c1 = XEXP (t, 0), op = GET_CODE (t), z = f;
5022 else if (GET_CODE (t) == SIGN_EXTEND
5023 && (GET_CODE (XEXP (t, 0)) == PLUS
5024 || GET_CODE (XEXP (t, 0)) == MINUS
5025 || GET_CODE (XEXP (t, 0)) == IOR
5026 || GET_CODE (XEXP (t, 0)) == XOR
5027 || GET_CODE (XEXP (t, 0)) == ASHIFT
5028 || GET_CODE (XEXP (t, 0)) == LSHIFTRT
5029 || GET_CODE (XEXP (t, 0)) == ASHIFTRT)
5030 && GET_CODE (XEXP (XEXP (t, 0), 0)) == SUBREG
5031 && subreg_lowpart_p (XEXP (XEXP (t, 0), 0))
5032 && rtx_equal_p (SUBREG_REG (XEXP (XEXP (t, 0), 0)), f)
5033 && (num_sign_bit_copies (f, GET_MODE (f))
5034 > (unsigned int)
5035 (GET_MODE_BITSIZE (mode)
5036 - GET_MODE_BITSIZE (GET_MODE (XEXP (XEXP (t, 0), 0))))))
5038 c1 = XEXP (XEXP (t, 0), 1); z = f; op = GET_CODE (XEXP (t, 0));
5039 extend_op = SIGN_EXTEND;
5040 m = GET_MODE (XEXP (t, 0));
5042 else if (GET_CODE (t) == SIGN_EXTEND
5043 && (GET_CODE (XEXP (t, 0)) == PLUS
5044 || GET_CODE (XEXP (t, 0)) == IOR
5045 || GET_CODE (XEXP (t, 0)) == XOR)
5046 && GET_CODE (XEXP (XEXP (t, 0), 1)) == SUBREG
5047 && subreg_lowpart_p (XEXP (XEXP (t, 0), 1))
5048 && rtx_equal_p (SUBREG_REG (XEXP (XEXP (t, 0), 1)), f)
5049 && (num_sign_bit_copies (f, GET_MODE (f))
5050 > (unsigned int)
5051 (GET_MODE_BITSIZE (mode)
5052 - GET_MODE_BITSIZE (GET_MODE (XEXP (XEXP (t, 0), 1))))))
5054 c1 = XEXP (XEXP (t, 0), 0); z = f; op = GET_CODE (XEXP (t, 0));
5055 extend_op = SIGN_EXTEND;
5056 m = GET_MODE (XEXP (t, 0));
5058 else if (GET_CODE (t) == ZERO_EXTEND
5059 && (GET_CODE (XEXP (t, 0)) == PLUS
5060 || GET_CODE (XEXP (t, 0)) == MINUS
5061 || GET_CODE (XEXP (t, 0)) == IOR
5062 || GET_CODE (XEXP (t, 0)) == XOR
5063 || GET_CODE (XEXP (t, 0)) == ASHIFT
5064 || GET_CODE (XEXP (t, 0)) == LSHIFTRT
5065 || GET_CODE (XEXP (t, 0)) == ASHIFTRT)
5066 && GET_CODE (XEXP (XEXP (t, 0), 0)) == SUBREG
5067 && GET_MODE_BITSIZE (mode) <= HOST_BITS_PER_WIDE_INT
5068 && subreg_lowpart_p (XEXP (XEXP (t, 0), 0))
5069 && rtx_equal_p (SUBREG_REG (XEXP (XEXP (t, 0), 0)), f)
5070 && ((nonzero_bits (f, GET_MODE (f))
5071 & ~GET_MODE_MASK (GET_MODE (XEXP (XEXP (t, 0), 0))))
5072 == 0))
5074 c1 = XEXP (XEXP (t, 0), 1); z = f; op = GET_CODE (XEXP (t, 0));
5075 extend_op = ZERO_EXTEND;
5076 m = GET_MODE (XEXP (t, 0));
5078 else if (GET_CODE (t) == ZERO_EXTEND
5079 && (GET_CODE (XEXP (t, 0)) == PLUS
5080 || GET_CODE (XEXP (t, 0)) == IOR
5081 || GET_CODE (XEXP (t, 0)) == XOR)
5082 && GET_CODE (XEXP (XEXP (t, 0), 1)) == SUBREG
5083 && GET_MODE_BITSIZE (mode) <= HOST_BITS_PER_WIDE_INT
5084 && subreg_lowpart_p (XEXP (XEXP (t, 0), 1))
5085 && rtx_equal_p (SUBREG_REG (XEXP (XEXP (t, 0), 1)), f)
5086 && ((nonzero_bits (f, GET_MODE (f))
5087 & ~GET_MODE_MASK (GET_MODE (XEXP (XEXP (t, 0), 1))))
5088 == 0))
5090 c1 = XEXP (XEXP (t, 0), 0); z = f; op = GET_CODE (XEXP (t, 0));
5091 extend_op = ZERO_EXTEND;
5092 m = GET_MODE (XEXP (t, 0));
5095 if (z)
5097 temp = subst (simplify_gen_relational (true_code, m, VOIDmode,
5098 cond_op0, cond_op1),
5099 pc_rtx, pc_rtx, 0, 0);
5100 temp = simplify_gen_binary (MULT, m, temp,
5101 simplify_gen_binary (MULT, m, c1,
5102 const_true_rtx));
5103 temp = subst (temp, pc_rtx, pc_rtx, 0, 0);
5104 temp = simplify_gen_binary (op, m, gen_lowpart (m, z), temp);
5106 if (extend_op != UNKNOWN)
5107 temp = simplify_gen_unary (extend_op, mode, temp, m);
5109 return temp;
5113 /* If we have (if_then_else (ne A 0) C1 0) and either A is known to be 0 or
5114 1 and C1 is a single bit or A is known to be 0 or -1 and C1 is the
5115 negation of a single bit, we can convert this operation to a shift. We
5116 can actually do this more generally, but it doesn't seem worth it. */
5118 if (true_code == NE && XEXP (cond, 1) == const0_rtx
5119 && false_rtx == const0_rtx && GET_CODE (true_rtx) == CONST_INT
5120 && ((1 == nonzero_bits (XEXP (cond, 0), mode)
5121 && (i = exact_log2 (INTVAL (true_rtx))) >= 0)
5122 || ((num_sign_bit_copies (XEXP (cond, 0), mode)
5123 == GET_MODE_BITSIZE (mode))
5124 && (i = exact_log2 (-INTVAL (true_rtx))) >= 0)))
5125 return
5126 simplify_shift_const (NULL_RTX, ASHIFT, mode,
5127 gen_lowpart (mode, XEXP (cond, 0)), i);
5129 /* (IF_THEN_ELSE (NE REG 0) (0) (8)) is REG for nonzero_bits (REG) == 8. */
5130 if (true_code == NE && XEXP (cond, 1) == const0_rtx
5131 && false_rtx == const0_rtx && GET_CODE (true_rtx) == CONST_INT
5132 && GET_MODE (XEXP (cond, 0)) == mode
5133 && (INTVAL (true_rtx) & GET_MODE_MASK (mode))
5134 == nonzero_bits (XEXP (cond, 0), mode)
5135 && (i = exact_log2 (INTVAL (true_rtx) & GET_MODE_MASK (mode))) >= 0)
5136 return XEXP (cond, 0);
5138 return x;
5141 /* Simplify X, a SET expression. Return the new expression. */
5143 static rtx
5144 simplify_set (rtx x)
5146 rtx src = SET_SRC (x);
5147 rtx dest = SET_DEST (x);
5148 enum machine_mode mode
5149 = GET_MODE (src) != VOIDmode ? GET_MODE (src) : GET_MODE (dest);
5150 rtx other_insn;
5151 rtx *cc_use;
5153 /* (set (pc) (return)) gets written as (return). */
5154 if (GET_CODE (dest) == PC && GET_CODE (src) == RETURN)
5155 return src;
5157 /* Now that we know for sure which bits of SRC we are using, see if we can
5158 simplify the expression for the object knowing that we only need the
5159 low-order bits. */
5161 if (GET_MODE_CLASS (mode) == MODE_INT
5162 && GET_MODE_BITSIZE (mode) <= HOST_BITS_PER_WIDE_INT)
5164 src = force_to_mode (src, mode, ~(HOST_WIDE_INT) 0, NULL_RTX, 0);
5165 SUBST (SET_SRC (x), src);
5168 /* If we are setting CC0 or if the source is a COMPARE, look for the use of
5169 the comparison result and try to simplify it unless we already have used
5170 undobuf.other_insn. */
5171 if ((GET_MODE_CLASS (mode) == MODE_CC
5172 || GET_CODE (src) == COMPARE
5173 || CC0_P (dest))
5174 && (cc_use = find_single_use (dest, subst_insn, &other_insn)) != 0
5175 && (undobuf.other_insn == 0 || other_insn == undobuf.other_insn)
5176 && COMPARISON_P (*cc_use)
5177 && rtx_equal_p (XEXP (*cc_use, 0), dest))
5179 enum rtx_code old_code = GET_CODE (*cc_use);
5180 enum rtx_code new_code;
5181 rtx op0, op1, tmp;
5182 int other_changed = 0;
5183 enum machine_mode compare_mode = GET_MODE (dest);
5185 if (GET_CODE (src) == COMPARE)
5186 op0 = XEXP (src, 0), op1 = XEXP (src, 1);
5187 else
5188 op0 = src, op1 = CONST0_RTX (GET_MODE (src));
5190 tmp = simplify_relational_operation (old_code, compare_mode, VOIDmode,
5191 op0, op1);
5192 if (!tmp)
5193 new_code = old_code;
5194 else if (!CONSTANT_P (tmp))
5196 new_code = GET_CODE (tmp);
5197 op0 = XEXP (tmp, 0);
5198 op1 = XEXP (tmp, 1);
5200 else
5202 rtx pat = PATTERN (other_insn);
5203 undobuf.other_insn = other_insn;
5204 SUBST (*cc_use, tmp);
5206 /* Attempt to simplify CC user. */
5207 if (GET_CODE (pat) == SET)
5209 rtx new = simplify_rtx (SET_SRC (pat));
5210 if (new != NULL_RTX)
5211 SUBST (SET_SRC (pat), new);
5214 /* Convert X into a no-op move. */
5215 SUBST (SET_DEST (x), pc_rtx);
5216 SUBST (SET_SRC (x), pc_rtx);
5217 return x;
5220 /* Simplify our comparison, if possible. */
5221 new_code = simplify_comparison (new_code, &op0, &op1);
5223 #ifdef SELECT_CC_MODE
5224 /* If this machine has CC modes other than CCmode, check to see if we
5225 need to use a different CC mode here. */
5226 if (GET_MODE_CLASS (GET_MODE (op0)) == MODE_CC)
5227 compare_mode = GET_MODE (op0);
5228 else
5229 compare_mode = SELECT_CC_MODE (new_code, op0, op1);
5231 #ifndef HAVE_cc0
5232 /* If the mode changed, we have to change SET_DEST, the mode in the
5233 compare, and the mode in the place SET_DEST is used. If SET_DEST is
5234 a hard register, just build new versions with the proper mode. If it
5235 is a pseudo, we lose unless it is only time we set the pseudo, in
5236 which case we can safely change its mode. */
5237 if (compare_mode != GET_MODE (dest))
5239 unsigned int regno = REGNO (dest);
5240 rtx new_dest = gen_rtx_REG (compare_mode, regno);
5242 if (regno < FIRST_PSEUDO_REGISTER
5243 || (REG_N_SETS (regno) == 1 && ! REG_USERVAR_P (dest)))
5245 if (regno >= FIRST_PSEUDO_REGISTER)
5246 SUBST (regno_reg_rtx[regno], new_dest);
5248 SUBST (SET_DEST (x), new_dest);
5249 SUBST (XEXP (*cc_use, 0), new_dest);
5250 other_changed = 1;
5252 dest = new_dest;
5255 #endif /* cc0 */
5256 #endif /* SELECT_CC_MODE */
5258 /* If the code changed, we have to build a new comparison in
5259 undobuf.other_insn. */
5260 if (new_code != old_code)
5262 int other_changed_previously = other_changed;
5263 unsigned HOST_WIDE_INT mask;
5265 SUBST (*cc_use, gen_rtx_fmt_ee (new_code, GET_MODE (*cc_use),
5266 dest, const0_rtx));
5267 other_changed = 1;
5269 /* If the only change we made was to change an EQ into an NE or
5270 vice versa, OP0 has only one bit that might be nonzero, and OP1
5271 is zero, check if changing the user of the condition code will
5272 produce a valid insn. If it won't, we can keep the original code
5273 in that insn by surrounding our operation with an XOR. */
5275 if (((old_code == NE && new_code == EQ)
5276 || (old_code == EQ && new_code == NE))
5277 && ! other_changed_previously && op1 == const0_rtx
5278 && GET_MODE_BITSIZE (GET_MODE (op0)) <= HOST_BITS_PER_WIDE_INT
5279 && exact_log2 (mask = nonzero_bits (op0, GET_MODE (op0))) >= 0)
5281 rtx pat = PATTERN (other_insn), note = 0;
5283 if ((recog_for_combine (&pat, other_insn, &note) < 0
5284 && ! check_asm_operands (pat)))
5286 PUT_CODE (*cc_use, old_code);
5287 other_changed = 0;
5289 op0 = simplify_gen_binary (XOR, GET_MODE (op0),
5290 op0, GEN_INT (mask));
5295 if (other_changed)
5296 undobuf.other_insn = other_insn;
5298 #ifdef HAVE_cc0
5299 /* If we are now comparing against zero, change our source if
5300 needed. If we do not use cc0, we always have a COMPARE. */
5301 if (op1 == const0_rtx && dest == cc0_rtx)
5303 SUBST (SET_SRC (x), op0);
5304 src = op0;
5306 else
5307 #endif
5309 /* Otherwise, if we didn't previously have a COMPARE in the
5310 correct mode, we need one. */
5311 if (GET_CODE (src) != COMPARE || GET_MODE (src) != compare_mode)
5313 SUBST (SET_SRC (x), gen_rtx_COMPARE (compare_mode, op0, op1));
5314 src = SET_SRC (x);
5316 else
5318 /* Otherwise, update the COMPARE if needed. */
5319 SUBST (XEXP (src, 0), op0);
5320 SUBST (XEXP (src, 1), op1);
5323 else
5325 /* Get SET_SRC in a form where we have placed back any
5326 compound expressions. Then do the checks below. */
5327 src = make_compound_operation (src, SET);
5328 SUBST (SET_SRC (x), src);
5331 /* If we have (set x (subreg:m1 (op:m2 ...) 0)) with OP being some operation,
5332 and X being a REG or (subreg (reg)), we may be able to convert this to
5333 (set (subreg:m2 x) (op)).
5335 We can always do this if M1 is narrower than M2 because that means that
5336 we only care about the low bits of the result.
5338 However, on machines without WORD_REGISTER_OPERATIONS defined, we cannot
5339 perform a narrower operation than requested since the high-order bits will
5340 be undefined. On machine where it is defined, this transformation is safe
5341 as long as M1 and M2 have the same number of words. */
5343 if (GET_CODE (src) == SUBREG && subreg_lowpart_p (src)
5344 && !OBJECT_P (SUBREG_REG (src))
5345 && (((GET_MODE_SIZE (GET_MODE (src)) + (UNITS_PER_WORD - 1))
5346 / UNITS_PER_WORD)
5347 == ((GET_MODE_SIZE (GET_MODE (SUBREG_REG (src)))
5348 + (UNITS_PER_WORD - 1)) / UNITS_PER_WORD))
5349 #ifndef WORD_REGISTER_OPERATIONS
5350 && (GET_MODE_SIZE (GET_MODE (src))
5351 < GET_MODE_SIZE (GET_MODE (SUBREG_REG (src))))
5352 #endif
5353 #ifdef CANNOT_CHANGE_MODE_CLASS
5354 && ! (REG_P (dest) && REGNO (dest) < FIRST_PSEUDO_REGISTER
5355 && REG_CANNOT_CHANGE_MODE_P (REGNO (dest),
5356 GET_MODE (SUBREG_REG (src)),
5357 GET_MODE (src)))
5358 #endif
5359 && (REG_P (dest)
5360 || (GET_CODE (dest) == SUBREG
5361 && REG_P (SUBREG_REG (dest)))))
5363 SUBST (SET_DEST (x),
5364 gen_lowpart (GET_MODE (SUBREG_REG (src)),
5365 dest));
5366 SUBST (SET_SRC (x), SUBREG_REG (src));
5368 src = SET_SRC (x), dest = SET_DEST (x);
5371 #ifdef HAVE_cc0
5372 /* If we have (set (cc0) (subreg ...)), we try to remove the subreg
5373 in SRC. */
5374 if (dest == cc0_rtx
5375 && GET_CODE (src) == SUBREG
5376 && subreg_lowpart_p (src)
5377 && (GET_MODE_BITSIZE (GET_MODE (src))
5378 < GET_MODE_BITSIZE (GET_MODE (SUBREG_REG (src)))))
5380 rtx inner = SUBREG_REG (src);
5381 enum machine_mode inner_mode = GET_MODE (inner);
5383 /* Here we make sure that we don't have a sign bit on. */
5384 if (GET_MODE_BITSIZE (inner_mode) <= HOST_BITS_PER_WIDE_INT
5385 && (nonzero_bits (inner, inner_mode)
5386 < ((unsigned HOST_WIDE_INT) 1
5387 << (GET_MODE_BITSIZE (GET_MODE (src)) - 1))))
5389 SUBST (SET_SRC (x), inner);
5390 src = SET_SRC (x);
5393 #endif
5395 #ifdef LOAD_EXTEND_OP
5396 /* If we have (set FOO (subreg:M (mem:N BAR) 0)) with M wider than N, this
5397 would require a paradoxical subreg. Replace the subreg with a
5398 zero_extend to avoid the reload that would otherwise be required. */
5400 if (GET_CODE (src) == SUBREG && subreg_lowpart_p (src)
5401 && LOAD_EXTEND_OP (GET_MODE (SUBREG_REG (src))) != UNKNOWN
5402 && SUBREG_BYTE (src) == 0
5403 && (GET_MODE_SIZE (GET_MODE (src))
5404 > GET_MODE_SIZE (GET_MODE (SUBREG_REG (src))))
5405 && MEM_P (SUBREG_REG (src)))
5407 SUBST (SET_SRC (x),
5408 gen_rtx_fmt_e (LOAD_EXTEND_OP (GET_MODE (SUBREG_REG (src))),
5409 GET_MODE (src), SUBREG_REG (src)));
5411 src = SET_SRC (x);
5413 #endif
5415 /* If we don't have a conditional move, SET_SRC is an IF_THEN_ELSE, and we
5416 are comparing an item known to be 0 or -1 against 0, use a logical
5417 operation instead. Check for one of the arms being an IOR of the other
5418 arm with some value. We compute three terms to be IOR'ed together. In
5419 practice, at most two will be nonzero. Then we do the IOR's. */
5421 if (GET_CODE (dest) != PC
5422 && GET_CODE (src) == IF_THEN_ELSE
5423 && GET_MODE_CLASS (GET_MODE (src)) == MODE_INT
5424 && (GET_CODE (XEXP (src, 0)) == EQ || GET_CODE (XEXP (src, 0)) == NE)
5425 && XEXP (XEXP (src, 0), 1) == const0_rtx
5426 && GET_MODE (src) == GET_MODE (XEXP (XEXP (src, 0), 0))
5427 #ifdef HAVE_conditional_move
5428 && ! can_conditionally_move_p (GET_MODE (src))
5429 #endif
5430 && (num_sign_bit_copies (XEXP (XEXP (src, 0), 0),
5431 GET_MODE (XEXP (XEXP (src, 0), 0)))
5432 == GET_MODE_BITSIZE (GET_MODE (XEXP (XEXP (src, 0), 0))))
5433 && ! side_effects_p (src))
5435 rtx true_rtx = (GET_CODE (XEXP (src, 0)) == NE
5436 ? XEXP (src, 1) : XEXP (src, 2));
5437 rtx false_rtx = (GET_CODE (XEXP (src, 0)) == NE
5438 ? XEXP (src, 2) : XEXP (src, 1));
5439 rtx term1 = const0_rtx, term2, term3;
5441 if (GET_CODE (true_rtx) == IOR
5442 && rtx_equal_p (XEXP (true_rtx, 0), false_rtx))
5443 term1 = false_rtx, true_rtx = XEXP (true_rtx, 1), false_rtx = const0_rtx;
5444 else if (GET_CODE (true_rtx) == IOR
5445 && rtx_equal_p (XEXP (true_rtx, 1), false_rtx))
5446 term1 = false_rtx, true_rtx = XEXP (true_rtx, 0), false_rtx = const0_rtx;
5447 else if (GET_CODE (false_rtx) == IOR
5448 && rtx_equal_p (XEXP (false_rtx, 0), true_rtx))
5449 term1 = true_rtx, false_rtx = XEXP (false_rtx, 1), true_rtx = const0_rtx;
5450 else if (GET_CODE (false_rtx) == IOR
5451 && rtx_equal_p (XEXP (false_rtx, 1), true_rtx))
5452 term1 = true_rtx, false_rtx = XEXP (false_rtx, 0), true_rtx = const0_rtx;
5454 term2 = simplify_gen_binary (AND, GET_MODE (src),
5455 XEXP (XEXP (src, 0), 0), true_rtx);
5456 term3 = simplify_gen_binary (AND, GET_MODE (src),
5457 simplify_gen_unary (NOT, GET_MODE (src),
5458 XEXP (XEXP (src, 0), 0),
5459 GET_MODE (src)),
5460 false_rtx);
5462 SUBST (SET_SRC (x),
5463 simplify_gen_binary (IOR, GET_MODE (src),
5464 simplify_gen_binary (IOR, GET_MODE (src),
5465 term1, term2),
5466 term3));
5468 src = SET_SRC (x);
5471 /* If either SRC or DEST is a CLOBBER of (const_int 0), make this
5472 whole thing fail. */
5473 if (GET_CODE (src) == CLOBBER && XEXP (src, 0) == const0_rtx)
5474 return src;
5475 else if (GET_CODE (dest) == CLOBBER && XEXP (dest, 0) == const0_rtx)
5476 return dest;
5477 else
5478 /* Convert this into a field assignment operation, if possible. */
5479 return make_field_assignment (x);
5482 /* Simplify, X, and AND, IOR, or XOR operation, and return the simplified
5483 result. */
5485 static rtx
5486 simplify_logical (rtx x)
5488 enum machine_mode mode = GET_MODE (x);
5489 rtx op0 = XEXP (x, 0);
5490 rtx op1 = XEXP (x, 1);
5491 rtx reversed;
5493 switch (GET_CODE (x))
5495 case AND:
5496 /* Convert (A ^ B) & A to A & (~B) since the latter is often a single
5497 insn (and may simplify more). */
5498 if (GET_CODE (op0) == XOR
5499 && rtx_equal_p (XEXP (op0, 0), op1)
5500 && ! side_effects_p (op1))
5501 x = simplify_gen_binary (AND, mode,
5502 simplify_gen_unary (NOT, mode,
5503 XEXP (op0, 1), mode),
5504 op1);
5506 if (GET_CODE (op0) == XOR
5507 && rtx_equal_p (XEXP (op0, 1), op1)
5508 && ! side_effects_p (op1))
5509 x = simplify_gen_binary (AND, mode,
5510 simplify_gen_unary (NOT, mode,
5511 XEXP (op0, 0), mode),
5512 op1);
5514 /* Similarly for (~(A ^ B)) & A. */
5515 if (GET_CODE (op0) == NOT
5516 && GET_CODE (XEXP (op0, 0)) == XOR
5517 && rtx_equal_p (XEXP (XEXP (op0, 0), 0), op1)
5518 && ! side_effects_p (op1))
5519 x = simplify_gen_binary (AND, mode, XEXP (XEXP (op0, 0), 1), op1);
5521 if (GET_CODE (op0) == NOT
5522 && GET_CODE (XEXP (op0, 0)) == XOR
5523 && rtx_equal_p (XEXP (XEXP (op0, 0), 1), op1)
5524 && ! side_effects_p (op1))
5525 x = simplify_gen_binary (AND, mode, XEXP (XEXP (op0, 0), 0), op1);
5527 /* We can call simplify_and_const_int only if we don't lose
5528 any (sign) bits when converting INTVAL (op1) to
5529 "unsigned HOST_WIDE_INT". */
5530 if (GET_CODE (op1) == CONST_INT
5531 && (GET_MODE_BITSIZE (mode) <= HOST_BITS_PER_WIDE_INT
5532 || INTVAL (op1) > 0))
5534 x = simplify_and_const_int (x, mode, op0, INTVAL (op1));
5536 /* If we have (ior (and (X C1) C2)) and the next restart would be
5537 the last, simplify this by making C1 as small as possible
5538 and then exit. Only do this if C1 actually changes: for now
5539 this only saves memory but, should this transformation be
5540 moved to simplify-rtx.c, we'd risk unbounded recursion there. */
5541 if (GET_CODE (x) == IOR && GET_CODE (op0) == AND
5542 && GET_CODE (XEXP (op0, 1)) == CONST_INT
5543 && GET_CODE (op1) == CONST_INT
5544 && (INTVAL (XEXP (op0, 1)) & INTVAL (op1)) != 0)
5545 return simplify_gen_binary (IOR, mode,
5546 simplify_gen_binary
5547 (AND, mode, XEXP (op0, 0),
5548 GEN_INT (INTVAL (XEXP (op0, 1))
5549 & ~INTVAL (op1))), op1);
5551 if (GET_CODE (x) != AND)
5552 return x;
5554 op0 = XEXP (x, 0);
5555 op1 = XEXP (x, 1);
5558 /* Convert (A | B) & A to A. */
5559 if (GET_CODE (op0) == IOR
5560 && (rtx_equal_p (XEXP (op0, 0), op1)
5561 || rtx_equal_p (XEXP (op0, 1), op1))
5562 && ! side_effects_p (XEXP (op0, 0))
5563 && ! side_effects_p (XEXP (op0, 1)))
5564 return op1;
5566 /* If we have any of (and (ior A B) C) or (and (xor A B) C),
5567 apply the distributive law and then the inverse distributive
5568 law to see if things simplify. */
5569 if (GET_CODE (op0) == IOR || GET_CODE (op0) == XOR)
5571 rtx result = distribute_and_simplify_rtx (x, 0);
5572 if (result)
5573 return result;
5575 if (GET_CODE (op1) == IOR || GET_CODE (op1) == XOR)
5577 rtx result = distribute_and_simplify_rtx (x, 1);
5578 if (result)
5579 return result;
5581 break;
5583 case IOR:
5584 /* (ior A C) is C if all bits of A that might be nonzero are on in C. */
5585 if (GET_CODE (op1) == CONST_INT
5586 && GET_MODE_BITSIZE (mode) <= HOST_BITS_PER_WIDE_INT
5587 && (nonzero_bits (op0, mode) & ~INTVAL (op1)) == 0)
5588 return op1;
5590 /* Convert (A & B) | A to A. */
5591 if (GET_CODE (op0) == AND
5592 && (rtx_equal_p (XEXP (op0, 0), op1)
5593 || rtx_equal_p (XEXP (op0, 1), op1))
5594 && ! side_effects_p (XEXP (op0, 0))
5595 && ! side_effects_p (XEXP (op0, 1)))
5596 return op1;
5598 /* If we have (ior (and A B) C), apply the distributive law and then
5599 the inverse distributive law to see if things simplify. */
5601 if (GET_CODE (op0) == AND)
5603 rtx result = distribute_and_simplify_rtx (x, 0);
5604 if (result)
5605 return result;
5608 if (GET_CODE (op1) == AND)
5610 rtx result = distribute_and_simplify_rtx (x, 1);
5611 if (result)
5612 return result;
5615 /* Convert (ior (ashift A CX) (lshiftrt A CY)) where CX+CY equals the
5616 mode size to (rotate A CX). */
5618 if (((GET_CODE (op0) == ASHIFT && GET_CODE (op1) == LSHIFTRT)
5619 || (GET_CODE (op1) == ASHIFT && GET_CODE (op0) == LSHIFTRT))
5620 && rtx_equal_p (XEXP (op0, 0), XEXP (op1, 0))
5621 && GET_CODE (XEXP (op0, 1)) == CONST_INT
5622 && GET_CODE (XEXP (op1, 1)) == CONST_INT
5623 && (INTVAL (XEXP (op0, 1)) + INTVAL (XEXP (op1, 1))
5624 == GET_MODE_BITSIZE (mode)))
5625 return gen_rtx_ROTATE (mode, XEXP (op0, 0),
5626 (GET_CODE (op0) == ASHIFT
5627 ? XEXP (op0, 1) : XEXP (op1, 1)));
5629 /* If OP0 is (ashiftrt (plus ...) C), it might actually be
5630 a (sign_extend (plus ...)). If so, OP1 is a CONST_INT, and the PLUS
5631 does not affect any of the bits in OP1, it can really be done
5632 as a PLUS and we can associate. We do this by seeing if OP1
5633 can be safely shifted left C bits. */
5634 if (GET_CODE (op1) == CONST_INT && GET_CODE (op0) == ASHIFTRT
5635 && GET_CODE (XEXP (op0, 0)) == PLUS
5636 && GET_CODE (XEXP (XEXP (op0, 0), 1)) == CONST_INT
5637 && GET_CODE (XEXP (op0, 1)) == CONST_INT
5638 && INTVAL (XEXP (op0, 1)) < HOST_BITS_PER_WIDE_INT)
5640 int count = INTVAL (XEXP (op0, 1));
5641 HOST_WIDE_INT mask = INTVAL (op1) << count;
5643 if (mask >> count == INTVAL (op1)
5644 && (mask & nonzero_bits (XEXP (op0, 0), mode)) == 0)
5646 SUBST (XEXP (XEXP (op0, 0), 1),
5647 GEN_INT (INTVAL (XEXP (XEXP (op0, 0), 1)) | mask));
5648 return op0;
5651 break;
5653 case XOR:
5654 /* If we are XORing two things that have no bits in common,
5655 convert them into an IOR. This helps to detect rotation encoded
5656 using those methods and possibly other simplifications. */
5658 if (GET_MODE_BITSIZE (mode) <= HOST_BITS_PER_WIDE_INT
5659 && (nonzero_bits (op0, mode)
5660 & nonzero_bits (op1, mode)) == 0)
5661 return (simplify_gen_binary (IOR, mode, op0, op1));
5663 /* Convert (XOR (NOT x) (NOT y)) to (XOR x y).
5664 Also convert (XOR (NOT x) y) to (NOT (XOR x y)), similarly for
5665 (NOT y). */
5667 int num_negated = 0;
5669 if (GET_CODE (op0) == NOT)
5670 num_negated++, op0 = XEXP (op0, 0);
5671 if (GET_CODE (op1) == NOT)
5672 num_negated++, op1 = XEXP (op1, 0);
5674 if (num_negated == 2)
5676 SUBST (XEXP (x, 0), op0);
5677 SUBST (XEXP (x, 1), op1);
5679 else if (num_negated == 1)
5680 return
5681 simplify_gen_unary (NOT, mode,
5682 simplify_gen_binary (XOR, mode, op0, op1),
5683 mode);
5686 /* Convert (xor (and A B) B) to (and (not A) B). The latter may
5687 correspond to a machine insn or result in further simplifications
5688 if B is a constant. */
5690 if (GET_CODE (op0) == AND
5691 && rtx_equal_p (XEXP (op0, 1), op1)
5692 && ! side_effects_p (op1))
5693 return simplify_gen_binary (AND, mode,
5694 simplify_gen_unary (NOT, mode,
5695 XEXP (op0, 0), mode),
5696 op1);
5698 else if (GET_CODE (op0) == AND
5699 && rtx_equal_p (XEXP (op0, 0), op1)
5700 && ! side_effects_p (op1))
5701 return simplify_gen_binary (AND, mode,
5702 simplify_gen_unary (NOT, mode,
5703 XEXP (op0, 1), mode),
5704 op1);
5706 /* (xor (comparison foo bar) (const_int 1)) can become the reversed
5707 comparison if STORE_FLAG_VALUE is 1. */
5708 if (STORE_FLAG_VALUE == 1
5709 && op1 == const1_rtx
5710 && COMPARISON_P (op0)
5711 && (reversed = reversed_comparison (op0, mode)))
5712 return reversed;
5714 /* (lshiftrt foo C) where C is the number of bits in FOO minus 1
5715 is (lt foo (const_int 0)), so we can perform the above
5716 simplification if STORE_FLAG_VALUE is 1. */
5718 if (STORE_FLAG_VALUE == 1
5719 && op1 == const1_rtx
5720 && GET_CODE (op0) == LSHIFTRT
5721 && GET_CODE (XEXP (op0, 1)) == CONST_INT
5722 && INTVAL (XEXP (op0, 1)) == GET_MODE_BITSIZE (mode) - 1)
5723 return gen_rtx_GE (mode, XEXP (op0, 0), const0_rtx);
5725 /* (xor (comparison foo bar) (const_int sign-bit))
5726 when STORE_FLAG_VALUE is the sign bit. */
5727 if (GET_MODE_BITSIZE (mode) <= HOST_BITS_PER_WIDE_INT
5728 && ((STORE_FLAG_VALUE & GET_MODE_MASK (mode))
5729 == (unsigned HOST_WIDE_INT) 1 << (GET_MODE_BITSIZE (mode) - 1))
5730 && op1 == const_true_rtx
5731 && COMPARISON_P (op0)
5732 && (reversed = reversed_comparison (op0, mode)))
5733 return reversed;
5735 break;
5737 default:
5738 gcc_unreachable ();
5741 return x;
5744 /* We consider ZERO_EXTRACT, SIGN_EXTRACT, and SIGN_EXTEND as "compound
5745 operations" because they can be replaced with two more basic operations.
5746 ZERO_EXTEND is also considered "compound" because it can be replaced with
5747 an AND operation, which is simpler, though only one operation.
5749 The function expand_compound_operation is called with an rtx expression
5750 and will convert it to the appropriate shifts and AND operations,
5751 simplifying at each stage.
5753 The function make_compound_operation is called to convert an expression
5754 consisting of shifts and ANDs into the equivalent compound expression.
5755 It is the inverse of this function, loosely speaking. */
5757 static rtx
5758 expand_compound_operation (rtx x)
5760 unsigned HOST_WIDE_INT pos = 0, len;
5761 int unsignedp = 0;
5762 unsigned int modewidth;
5763 rtx tem;
5765 switch (GET_CODE (x))
5767 case ZERO_EXTEND:
5768 unsignedp = 1;
5769 case SIGN_EXTEND:
5770 /* We can't necessarily use a const_int for a multiword mode;
5771 it depends on implicitly extending the value.
5772 Since we don't know the right way to extend it,
5773 we can't tell whether the implicit way is right.
5775 Even for a mode that is no wider than a const_int,
5776 we can't win, because we need to sign extend one of its bits through
5777 the rest of it, and we don't know which bit. */
5778 if (GET_CODE (XEXP (x, 0)) == CONST_INT)
5779 return x;
5781 /* Return if (subreg:MODE FROM 0) is not a safe replacement for
5782 (zero_extend:MODE FROM) or (sign_extend:MODE FROM). It is for any MEM
5783 because (SUBREG (MEM...)) is guaranteed to cause the MEM to be
5784 reloaded. If not for that, MEM's would very rarely be safe.
5786 Reject MODEs bigger than a word, because we might not be able
5787 to reference a two-register group starting with an arbitrary register
5788 (and currently gen_lowpart might crash for a SUBREG). */
5790 if (GET_MODE_SIZE (GET_MODE (XEXP (x, 0))) > UNITS_PER_WORD)
5791 return x;
5793 /* Reject MODEs that aren't scalar integers because turning vector
5794 or complex modes into shifts causes problems. */
5796 if (! SCALAR_INT_MODE_P (GET_MODE (XEXP (x, 0))))
5797 return x;
5799 len = GET_MODE_BITSIZE (GET_MODE (XEXP (x, 0)));
5800 /* If the inner object has VOIDmode (the only way this can happen
5801 is if it is an ASM_OPERANDS), we can't do anything since we don't
5802 know how much masking to do. */
5803 if (len == 0)
5804 return x;
5806 break;
5808 case ZERO_EXTRACT:
5809 unsignedp = 1;
5811 /* ... fall through ... */
5813 case SIGN_EXTRACT:
5814 /* If the operand is a CLOBBER, just return it. */
5815 if (GET_CODE (XEXP (x, 0)) == CLOBBER)
5816 return XEXP (x, 0);
5818 if (GET_CODE (XEXP (x, 1)) != CONST_INT
5819 || GET_CODE (XEXP (x, 2)) != CONST_INT
5820 || GET_MODE (XEXP (x, 0)) == VOIDmode)
5821 return x;
5823 /* Reject MODEs that aren't scalar integers because turning vector
5824 or complex modes into shifts causes problems. */
5826 if (! SCALAR_INT_MODE_P (GET_MODE (XEXP (x, 0))))
5827 return x;
5829 len = INTVAL (XEXP (x, 1));
5830 pos = INTVAL (XEXP (x, 2));
5832 /* If this goes outside the object being extracted, replace the object
5833 with a (use (mem ...)) construct that only combine understands
5834 and is used only for this purpose. */
5835 if (len + pos > GET_MODE_BITSIZE (GET_MODE (XEXP (x, 0))))
5836 SUBST (XEXP (x, 0), gen_rtx_USE (GET_MODE (x), XEXP (x, 0)));
5838 if (BITS_BIG_ENDIAN)
5839 pos = GET_MODE_BITSIZE (GET_MODE (XEXP (x, 0))) - len - pos;
5841 break;
5843 default:
5844 return x;
5846 /* Convert sign extension to zero extension, if we know that the high
5847 bit is not set, as this is easier to optimize. It will be converted
5848 back to cheaper alternative in make_extraction. */
5849 if (GET_CODE (x) == SIGN_EXTEND
5850 && (GET_MODE_BITSIZE (GET_MODE (x)) <= HOST_BITS_PER_WIDE_INT
5851 && ((nonzero_bits (XEXP (x, 0), GET_MODE (XEXP (x, 0)))
5852 & ~(((unsigned HOST_WIDE_INT)
5853 GET_MODE_MASK (GET_MODE (XEXP (x, 0))))
5854 >> 1))
5855 == 0)))
5857 rtx temp = gen_rtx_ZERO_EXTEND (GET_MODE (x), XEXP (x, 0));
5858 rtx temp2 = expand_compound_operation (temp);
5860 /* Make sure this is a profitable operation. */
5861 if (rtx_cost (x, SET) > rtx_cost (temp2, SET))
5862 return temp2;
5863 else if (rtx_cost (x, SET) > rtx_cost (temp, SET))
5864 return temp;
5865 else
5866 return x;
5869 /* We can optimize some special cases of ZERO_EXTEND. */
5870 if (GET_CODE (x) == ZERO_EXTEND)
5872 /* (zero_extend:DI (truncate:SI foo:DI)) is just foo:DI if we
5873 know that the last value didn't have any inappropriate bits
5874 set. */
5875 if (GET_CODE (XEXP (x, 0)) == TRUNCATE
5876 && GET_MODE (XEXP (XEXP (x, 0), 0)) == GET_MODE (x)
5877 && GET_MODE_BITSIZE (GET_MODE (x)) <= HOST_BITS_PER_WIDE_INT
5878 && (nonzero_bits (XEXP (XEXP (x, 0), 0), GET_MODE (x))
5879 & ~GET_MODE_MASK (GET_MODE (XEXP (x, 0)))) == 0)
5880 return XEXP (XEXP (x, 0), 0);
5882 /* Likewise for (zero_extend:DI (subreg:SI foo:DI 0)). */
5883 if (GET_CODE (XEXP (x, 0)) == SUBREG
5884 && GET_MODE (SUBREG_REG (XEXP (x, 0))) == GET_MODE (x)
5885 && subreg_lowpart_p (XEXP (x, 0))
5886 && GET_MODE_BITSIZE (GET_MODE (x)) <= HOST_BITS_PER_WIDE_INT
5887 && (nonzero_bits (SUBREG_REG (XEXP (x, 0)), GET_MODE (x))
5888 & ~GET_MODE_MASK (GET_MODE (XEXP (x, 0)))) == 0)
5889 return SUBREG_REG (XEXP (x, 0));
5891 /* (zero_extend:DI (truncate:SI foo:DI)) is just foo:DI when foo
5892 is a comparison and STORE_FLAG_VALUE permits. This is like
5893 the first case, but it works even when GET_MODE (x) is larger
5894 than HOST_WIDE_INT. */
5895 if (GET_CODE (XEXP (x, 0)) == TRUNCATE
5896 && GET_MODE (XEXP (XEXP (x, 0), 0)) == GET_MODE (x)
5897 && COMPARISON_P (XEXP (XEXP (x, 0), 0))
5898 && (GET_MODE_BITSIZE (GET_MODE (XEXP (x, 0)))
5899 <= HOST_BITS_PER_WIDE_INT)
5900 && ((HOST_WIDE_INT) STORE_FLAG_VALUE
5901 & ~GET_MODE_MASK (GET_MODE (XEXP (x, 0)))) == 0)
5902 return XEXP (XEXP (x, 0), 0);
5904 /* Likewise for (zero_extend:DI (subreg:SI foo:DI 0)). */
5905 if (GET_CODE (XEXP (x, 0)) == SUBREG
5906 && GET_MODE (SUBREG_REG (XEXP (x, 0))) == GET_MODE (x)
5907 && subreg_lowpart_p (XEXP (x, 0))
5908 && COMPARISON_P (SUBREG_REG (XEXP (x, 0)))
5909 && (GET_MODE_BITSIZE (GET_MODE (XEXP (x, 0)))
5910 <= HOST_BITS_PER_WIDE_INT)
5911 && ((HOST_WIDE_INT) STORE_FLAG_VALUE
5912 & ~GET_MODE_MASK (GET_MODE (XEXP (x, 0)))) == 0)
5913 return SUBREG_REG (XEXP (x, 0));
5917 /* If we reach here, we want to return a pair of shifts. The inner
5918 shift is a left shift of BITSIZE - POS - LEN bits. The outer
5919 shift is a right shift of BITSIZE - LEN bits. It is arithmetic or
5920 logical depending on the value of UNSIGNEDP.
5922 If this was a ZERO_EXTEND or ZERO_EXTRACT, this pair of shifts will be
5923 converted into an AND of a shift.
5925 We must check for the case where the left shift would have a negative
5926 count. This can happen in a case like (x >> 31) & 255 on machines
5927 that can't shift by a constant. On those machines, we would first
5928 combine the shift with the AND to produce a variable-position
5929 extraction. Then the constant of 31 would be substituted in to produce
5930 a such a position. */
5932 modewidth = GET_MODE_BITSIZE (GET_MODE (x));
5933 if (modewidth + len >= pos)
5934 tem = simplify_shift_const (NULL_RTX, unsignedp ? LSHIFTRT : ASHIFTRT,
5935 GET_MODE (x),
5936 simplify_shift_const (NULL_RTX, ASHIFT,
5937 GET_MODE (x),
5938 XEXP (x, 0),
5939 modewidth - pos - len),
5940 modewidth - len);
5942 else if (unsignedp && len < HOST_BITS_PER_WIDE_INT)
5943 tem = simplify_and_const_int (NULL_RTX, GET_MODE (x),
5944 simplify_shift_const (NULL_RTX, LSHIFTRT,
5945 GET_MODE (x),
5946 XEXP (x, 0), pos),
5947 ((HOST_WIDE_INT) 1 << len) - 1);
5948 else
5949 /* Any other cases we can't handle. */
5950 return x;
5952 /* If we couldn't do this for some reason, return the original
5953 expression. */
5954 if (GET_CODE (tem) == CLOBBER)
5955 return x;
5957 return tem;
5960 /* X is a SET which contains an assignment of one object into
5961 a part of another (such as a bit-field assignment, STRICT_LOW_PART,
5962 or certain SUBREGS). If possible, convert it into a series of
5963 logical operations.
5965 We half-heartedly support variable positions, but do not at all
5966 support variable lengths. */
5968 static rtx
5969 expand_field_assignment (rtx x)
5971 rtx inner;
5972 rtx pos; /* Always counts from low bit. */
5973 int len;
5974 rtx mask, cleared, masked;
5975 enum machine_mode compute_mode;
5977 /* Loop until we find something we can't simplify. */
5978 while (1)
5980 if (GET_CODE (SET_DEST (x)) == STRICT_LOW_PART
5981 && GET_CODE (XEXP (SET_DEST (x), 0)) == SUBREG)
5983 inner = SUBREG_REG (XEXP (SET_DEST (x), 0));
5984 len = GET_MODE_BITSIZE (GET_MODE (XEXP (SET_DEST (x), 0)));
5985 pos = GEN_INT (subreg_lsb (XEXP (SET_DEST (x), 0)));
5987 else if (GET_CODE (SET_DEST (x)) == ZERO_EXTRACT
5988 && GET_CODE (XEXP (SET_DEST (x), 1)) == CONST_INT)
5990 inner = XEXP (SET_DEST (x), 0);
5991 len = INTVAL (XEXP (SET_DEST (x), 1));
5992 pos = XEXP (SET_DEST (x), 2);
5994 /* If the position is constant and spans the width of INNER,
5995 surround INNER with a USE to indicate this. */
5996 if (GET_CODE (pos) == CONST_INT
5997 && INTVAL (pos) + len > GET_MODE_BITSIZE (GET_MODE (inner)))
5998 inner = gen_rtx_USE (GET_MODE (SET_DEST (x)), inner);
6000 if (BITS_BIG_ENDIAN)
6002 if (GET_CODE (pos) == CONST_INT)
6003 pos = GEN_INT (GET_MODE_BITSIZE (GET_MODE (inner)) - len
6004 - INTVAL (pos));
6005 else if (GET_CODE (pos) == MINUS
6006 && GET_CODE (XEXP (pos, 1)) == CONST_INT
6007 && (INTVAL (XEXP (pos, 1))
6008 == GET_MODE_BITSIZE (GET_MODE (inner)) - len))
6009 /* If position is ADJUST - X, new position is X. */
6010 pos = XEXP (pos, 0);
6011 else
6012 pos = simplify_gen_binary (MINUS, GET_MODE (pos),
6013 GEN_INT (GET_MODE_BITSIZE (
6014 GET_MODE (inner))
6015 - len),
6016 pos);
6020 /* A SUBREG between two modes that occupy the same numbers of words
6021 can be done by moving the SUBREG to the source. */
6022 else if (GET_CODE (SET_DEST (x)) == SUBREG
6023 /* We need SUBREGs to compute nonzero_bits properly. */
6024 && nonzero_sign_valid
6025 && (((GET_MODE_SIZE (GET_MODE (SET_DEST (x)))
6026 + (UNITS_PER_WORD - 1)) / UNITS_PER_WORD)
6027 == ((GET_MODE_SIZE (GET_MODE (SUBREG_REG (SET_DEST (x))))
6028 + (UNITS_PER_WORD - 1)) / UNITS_PER_WORD)))
6030 x = gen_rtx_SET (VOIDmode, SUBREG_REG (SET_DEST (x)),
6031 gen_lowpart
6032 (GET_MODE (SUBREG_REG (SET_DEST (x))),
6033 SET_SRC (x)));
6034 continue;
6036 else
6037 break;
6039 while (GET_CODE (inner) == SUBREG && subreg_lowpart_p (inner))
6040 inner = SUBREG_REG (inner);
6042 compute_mode = GET_MODE (inner);
6044 /* Don't attempt bitwise arithmetic on non scalar integer modes. */
6045 if (! SCALAR_INT_MODE_P (compute_mode))
6047 enum machine_mode imode;
6049 /* Don't do anything for vector or complex integral types. */
6050 if (! FLOAT_MODE_P (compute_mode))
6051 break;
6053 /* Try to find an integral mode to pun with. */
6054 imode = mode_for_size (GET_MODE_BITSIZE (compute_mode), MODE_INT, 0);
6055 if (imode == BLKmode)
6056 break;
6058 compute_mode = imode;
6059 inner = gen_lowpart (imode, inner);
6062 /* Compute a mask of LEN bits, if we can do this on the host machine. */
6063 if (len >= HOST_BITS_PER_WIDE_INT)
6064 break;
6066 /* Now compute the equivalent expression. Make a copy of INNER
6067 for the SET_DEST in case it is a MEM into which we will substitute;
6068 we don't want shared RTL in that case. */
6069 mask = GEN_INT (((HOST_WIDE_INT) 1 << len) - 1);
6070 cleared = simplify_gen_binary (AND, compute_mode,
6071 simplify_gen_unary (NOT, compute_mode,
6072 simplify_gen_binary (ASHIFT,
6073 compute_mode,
6074 mask, pos),
6075 compute_mode),
6076 inner);
6077 masked = simplify_gen_binary (ASHIFT, compute_mode,
6078 simplify_gen_binary (
6079 AND, compute_mode,
6080 gen_lowpart (compute_mode, SET_SRC (x)),
6081 mask),
6082 pos);
6084 x = gen_rtx_SET (VOIDmode, copy_rtx (inner),
6085 simplify_gen_binary (IOR, compute_mode,
6086 cleared, masked));
6089 return x;
6092 /* Return an RTX for a reference to LEN bits of INNER. If POS_RTX is nonzero,
6093 it is an RTX that represents a variable starting position; otherwise,
6094 POS is the (constant) starting bit position (counted from the LSB).
6096 INNER may be a USE. This will occur when we started with a bitfield
6097 that went outside the boundary of the object in memory, which is
6098 allowed on most machines. To isolate this case, we produce a USE
6099 whose mode is wide enough and surround the MEM with it. The only
6100 code that understands the USE is this routine. If it is not removed,
6101 it will cause the resulting insn not to match.
6103 UNSIGNEDP is nonzero for an unsigned reference and zero for a
6104 signed reference.
6106 IN_DEST is nonzero if this is a reference in the destination of a
6107 SET. This is used when a ZERO_ or SIGN_EXTRACT isn't needed. If nonzero,
6108 a STRICT_LOW_PART will be used, if zero, ZERO_EXTEND or SIGN_EXTEND will
6109 be used.
6111 IN_COMPARE is nonzero if we are in a COMPARE. This means that a
6112 ZERO_EXTRACT should be built even for bits starting at bit 0.
6114 MODE is the desired mode of the result (if IN_DEST == 0).
6116 The result is an RTX for the extraction or NULL_RTX if the target
6117 can't handle it. */
6119 static rtx
6120 make_extraction (enum machine_mode mode, rtx inner, HOST_WIDE_INT pos,
6121 rtx pos_rtx, unsigned HOST_WIDE_INT len, int unsignedp,
6122 int in_dest, int in_compare)
6124 /* This mode describes the size of the storage area
6125 to fetch the overall value from. Within that, we
6126 ignore the POS lowest bits, etc. */
6127 enum machine_mode is_mode = GET_MODE (inner);
6128 enum machine_mode inner_mode;
6129 enum machine_mode wanted_inner_mode = byte_mode;
6130 enum machine_mode wanted_inner_reg_mode = word_mode;
6131 enum machine_mode pos_mode = word_mode;
6132 enum machine_mode extraction_mode = word_mode;
6133 enum machine_mode tmode = mode_for_size (len, MODE_INT, 1);
6134 int spans_byte = 0;
6135 rtx new = 0;
6136 rtx orig_pos_rtx = pos_rtx;
6137 HOST_WIDE_INT orig_pos;
6139 /* Get some information about INNER and get the innermost object. */
6140 if (GET_CODE (inner) == USE)
6141 /* (use:SI (mem:QI foo)) stands for (mem:SI foo). */
6142 /* We don't need to adjust the position because we set up the USE
6143 to pretend that it was a full-word object. */
6144 spans_byte = 1, inner = XEXP (inner, 0);
6145 else if (GET_CODE (inner) == SUBREG && subreg_lowpart_p (inner))
6147 /* If going from (subreg:SI (mem:QI ...)) to (mem:QI ...),
6148 consider just the QI as the memory to extract from.
6149 The subreg adds or removes high bits; its mode is
6150 irrelevant to the meaning of this extraction,
6151 since POS and LEN count from the lsb. */
6152 if (MEM_P (SUBREG_REG (inner)))
6153 is_mode = GET_MODE (SUBREG_REG (inner));
6154 inner = SUBREG_REG (inner);
6156 else if (GET_CODE (inner) == ASHIFT
6157 && GET_CODE (XEXP (inner, 1)) == CONST_INT
6158 && pos_rtx == 0 && pos == 0
6159 && len > (unsigned HOST_WIDE_INT) INTVAL (XEXP (inner, 1)))
6161 /* We're extracting the least significant bits of an rtx
6162 (ashift X (const_int C)), where LEN > C. Extract the
6163 least significant (LEN - C) bits of X, giving an rtx
6164 whose mode is MODE, then shift it left C times. */
6165 new = make_extraction (mode, XEXP (inner, 0),
6166 0, 0, len - INTVAL (XEXP (inner, 1)),
6167 unsignedp, in_dest, in_compare);
6168 if (new != 0)
6169 return gen_rtx_ASHIFT (mode, new, XEXP (inner, 1));
6172 inner_mode = GET_MODE (inner);
6174 if (pos_rtx && GET_CODE (pos_rtx) == CONST_INT)
6175 pos = INTVAL (pos_rtx), pos_rtx = 0;
6177 /* See if this can be done without an extraction. We never can if the
6178 width of the field is not the same as that of some integer mode. For
6179 registers, we can only avoid the extraction if the position is at the
6180 low-order bit and this is either not in the destination or we have the
6181 appropriate STRICT_LOW_PART operation available.
6183 For MEM, we can avoid an extract if the field starts on an appropriate
6184 boundary and we can change the mode of the memory reference. However,
6185 we cannot directly access the MEM if we have a USE and the underlying
6186 MEM is not TMODE. This combination means that MEM was being used in a
6187 context where bits outside its mode were being referenced; that is only
6188 valid in bit-field insns. */
6190 if (tmode != BLKmode
6191 && ! (spans_byte && inner_mode != tmode)
6192 && ((pos_rtx == 0 && (pos % BITS_PER_WORD) == 0
6193 && !MEM_P (inner)
6194 && (! in_dest
6195 || (REG_P (inner)
6196 && have_insn_for (STRICT_LOW_PART, tmode))))
6197 || (MEM_P (inner) && pos_rtx == 0
6198 && (pos
6199 % (STRICT_ALIGNMENT ? GET_MODE_ALIGNMENT (tmode)
6200 : BITS_PER_UNIT)) == 0
6201 /* We can't do this if we are widening INNER_MODE (it
6202 may not be aligned, for one thing). */
6203 && GET_MODE_BITSIZE (inner_mode) >= GET_MODE_BITSIZE (tmode)
6204 && (inner_mode == tmode
6205 || (! mode_dependent_address_p (XEXP (inner, 0))
6206 && ! MEM_VOLATILE_P (inner))))))
6208 /* If INNER is a MEM, make a new MEM that encompasses just the desired
6209 field. If the original and current mode are the same, we need not
6210 adjust the offset. Otherwise, we do if bytes big endian.
6212 If INNER is not a MEM, get a piece consisting of just the field
6213 of interest (in this case POS % BITS_PER_WORD must be 0). */
6215 if (MEM_P (inner))
6217 HOST_WIDE_INT offset;
6219 /* POS counts from lsb, but make OFFSET count in memory order. */
6220 if (BYTES_BIG_ENDIAN)
6221 offset = (GET_MODE_BITSIZE (is_mode) - len - pos) / BITS_PER_UNIT;
6222 else
6223 offset = pos / BITS_PER_UNIT;
6225 new = adjust_address_nv (inner, tmode, offset);
6227 else if (REG_P (inner))
6229 if (tmode != inner_mode)
6231 /* We can't call gen_lowpart in a DEST since we
6232 always want a SUBREG (see below) and it would sometimes
6233 return a new hard register. */
6234 if (pos || in_dest)
6236 HOST_WIDE_INT final_word = pos / BITS_PER_WORD;
6238 if (WORDS_BIG_ENDIAN
6239 && GET_MODE_SIZE (inner_mode) > UNITS_PER_WORD)
6240 final_word = ((GET_MODE_SIZE (inner_mode)
6241 - GET_MODE_SIZE (tmode))
6242 / UNITS_PER_WORD) - final_word;
6244 final_word *= UNITS_PER_WORD;
6245 if (BYTES_BIG_ENDIAN &&
6246 GET_MODE_SIZE (inner_mode) > GET_MODE_SIZE (tmode))
6247 final_word += (GET_MODE_SIZE (inner_mode)
6248 - GET_MODE_SIZE (tmode)) % UNITS_PER_WORD;
6250 /* Avoid creating invalid subregs, for example when
6251 simplifying (x>>32)&255. */
6252 if (final_word >= GET_MODE_SIZE (inner_mode))
6253 return NULL_RTX;
6255 new = gen_rtx_SUBREG (tmode, inner, final_word);
6257 else
6258 new = gen_lowpart (tmode, inner);
6260 else
6261 new = inner;
6263 else
6264 new = force_to_mode (inner, tmode,
6265 len >= HOST_BITS_PER_WIDE_INT
6266 ? ~(unsigned HOST_WIDE_INT) 0
6267 : ((unsigned HOST_WIDE_INT) 1 << len) - 1,
6268 NULL_RTX, 0);
6270 /* If this extraction is going into the destination of a SET,
6271 make a STRICT_LOW_PART unless we made a MEM. */
6273 if (in_dest)
6274 return (MEM_P (new) ? new
6275 : (GET_CODE (new) != SUBREG
6276 ? gen_rtx_CLOBBER (tmode, const0_rtx)
6277 : gen_rtx_STRICT_LOW_PART (VOIDmode, new)));
6279 if (mode == tmode)
6280 return new;
6282 if (GET_CODE (new) == CONST_INT)
6283 return gen_int_mode (INTVAL (new), mode);
6285 /* If we know that no extraneous bits are set, and that the high
6286 bit is not set, convert the extraction to the cheaper of
6287 sign and zero extension, that are equivalent in these cases. */
6288 if (flag_expensive_optimizations
6289 && (GET_MODE_BITSIZE (tmode) <= HOST_BITS_PER_WIDE_INT
6290 && ((nonzero_bits (new, tmode)
6291 & ~(((unsigned HOST_WIDE_INT)
6292 GET_MODE_MASK (tmode))
6293 >> 1))
6294 == 0)))
6296 rtx temp = gen_rtx_ZERO_EXTEND (mode, new);
6297 rtx temp1 = gen_rtx_SIGN_EXTEND (mode, new);
6299 /* Prefer ZERO_EXTENSION, since it gives more information to
6300 backends. */
6301 if (rtx_cost (temp, SET) <= rtx_cost (temp1, SET))
6302 return temp;
6303 return temp1;
6306 /* Otherwise, sign- or zero-extend unless we already are in the
6307 proper mode. */
6309 return (gen_rtx_fmt_e (unsignedp ? ZERO_EXTEND : SIGN_EXTEND,
6310 mode, new));
6313 /* Unless this is a COMPARE or we have a funny memory reference,
6314 don't do anything with zero-extending field extracts starting at
6315 the low-order bit since they are simple AND operations. */
6316 if (pos_rtx == 0 && pos == 0 && ! in_dest
6317 && ! in_compare && ! spans_byte && unsignedp)
6318 return 0;
6320 /* Unless we are allowed to span bytes or INNER is not MEM, reject this if
6321 we would be spanning bytes or if the position is not a constant and the
6322 length is not 1. In all other cases, we would only be going outside
6323 our object in cases when an original shift would have been
6324 undefined. */
6325 if (! spans_byte && MEM_P (inner)
6326 && ((pos_rtx == 0 && pos + len > GET_MODE_BITSIZE (is_mode))
6327 || (pos_rtx != 0 && len != 1)))
6328 return 0;
6330 /* Get the mode to use should INNER not be a MEM, the mode for the position,
6331 and the mode for the result. */
6332 if (in_dest && mode_for_extraction (EP_insv, -1) != MAX_MACHINE_MODE)
6334 wanted_inner_reg_mode = mode_for_extraction (EP_insv, 0);
6335 pos_mode = mode_for_extraction (EP_insv, 2);
6336 extraction_mode = mode_for_extraction (EP_insv, 3);
6339 if (! in_dest && unsignedp
6340 && mode_for_extraction (EP_extzv, -1) != MAX_MACHINE_MODE)
6342 wanted_inner_reg_mode = mode_for_extraction (EP_extzv, 1);
6343 pos_mode = mode_for_extraction (EP_extzv, 3);
6344 extraction_mode = mode_for_extraction (EP_extzv, 0);
6347 if (! in_dest && ! unsignedp
6348 && mode_for_extraction (EP_extv, -1) != MAX_MACHINE_MODE)
6350 wanted_inner_reg_mode = mode_for_extraction (EP_extv, 1);
6351 pos_mode = mode_for_extraction (EP_extv, 3);
6352 extraction_mode = mode_for_extraction (EP_extv, 0);
6355 /* Never narrow an object, since that might not be safe. */
6357 if (mode != VOIDmode
6358 && GET_MODE_SIZE (extraction_mode) < GET_MODE_SIZE (mode))
6359 extraction_mode = mode;
6361 if (pos_rtx && GET_MODE (pos_rtx) != VOIDmode
6362 && GET_MODE_SIZE (pos_mode) < GET_MODE_SIZE (GET_MODE (pos_rtx)))
6363 pos_mode = GET_MODE (pos_rtx);
6365 /* If this is not from memory, the desired mode is wanted_inner_reg_mode;
6366 if we have to change the mode of memory and cannot, the desired mode is
6367 EXTRACTION_MODE. */
6368 if (!MEM_P (inner))
6369 wanted_inner_mode = wanted_inner_reg_mode;
6370 else if (inner_mode != wanted_inner_mode
6371 && (mode_dependent_address_p (XEXP (inner, 0))
6372 || MEM_VOLATILE_P (inner)))
6373 wanted_inner_mode = extraction_mode;
6375 orig_pos = pos;
6377 if (BITS_BIG_ENDIAN)
6379 /* POS is passed as if BITS_BIG_ENDIAN == 0, so we need to convert it to
6380 BITS_BIG_ENDIAN style. If position is constant, compute new
6381 position. Otherwise, build subtraction.
6382 Note that POS is relative to the mode of the original argument.
6383 If it's a MEM we need to recompute POS relative to that.
6384 However, if we're extracting from (or inserting into) a register,
6385 we want to recompute POS relative to wanted_inner_mode. */
6386 int width = (MEM_P (inner)
6387 ? GET_MODE_BITSIZE (is_mode)
6388 : GET_MODE_BITSIZE (wanted_inner_mode));
6390 if (pos_rtx == 0)
6391 pos = width - len - pos;
6392 else
6393 pos_rtx
6394 = gen_rtx_MINUS (GET_MODE (pos_rtx), GEN_INT (width - len), pos_rtx);
6395 /* POS may be less than 0 now, but we check for that below.
6396 Note that it can only be less than 0 if !MEM_P (inner). */
6399 /* If INNER has a wider mode, make it smaller. If this is a constant
6400 extract, try to adjust the byte to point to the byte containing
6401 the value. */
6402 if (wanted_inner_mode != VOIDmode
6403 && GET_MODE_SIZE (wanted_inner_mode) < GET_MODE_SIZE (is_mode)
6404 && ((MEM_P (inner)
6405 && (inner_mode == wanted_inner_mode
6406 || (! mode_dependent_address_p (XEXP (inner, 0))
6407 && ! MEM_VOLATILE_P (inner))))))
6409 int offset = 0;
6411 /* The computations below will be correct if the machine is big
6412 endian in both bits and bytes or little endian in bits and bytes.
6413 If it is mixed, we must adjust. */
6415 /* If bytes are big endian and we had a paradoxical SUBREG, we must
6416 adjust OFFSET to compensate. */
6417 if (BYTES_BIG_ENDIAN
6418 && ! spans_byte
6419 && GET_MODE_SIZE (inner_mode) < GET_MODE_SIZE (is_mode))
6420 offset -= GET_MODE_SIZE (is_mode) - GET_MODE_SIZE (inner_mode);
6422 /* If this is a constant position, we can move to the desired byte. */
6423 if (pos_rtx == 0)
6425 offset += pos / BITS_PER_UNIT;
6426 pos %= GET_MODE_BITSIZE (wanted_inner_mode);
6429 if (BYTES_BIG_ENDIAN != BITS_BIG_ENDIAN
6430 && ! spans_byte
6431 && is_mode != wanted_inner_mode)
6432 offset = (GET_MODE_SIZE (is_mode)
6433 - GET_MODE_SIZE (wanted_inner_mode) - offset);
6435 if (offset != 0 || inner_mode != wanted_inner_mode)
6436 inner = adjust_address_nv (inner, wanted_inner_mode, offset);
6439 /* If INNER is not memory, we can always get it into the proper mode. If we
6440 are changing its mode, POS must be a constant and smaller than the size
6441 of the new mode. */
6442 else if (!MEM_P (inner))
6444 if (GET_MODE (inner) != wanted_inner_mode
6445 && (pos_rtx != 0
6446 || orig_pos + len > GET_MODE_BITSIZE (wanted_inner_mode)))
6447 return 0;
6449 inner = force_to_mode (inner, wanted_inner_mode,
6450 pos_rtx
6451 || len + orig_pos >= HOST_BITS_PER_WIDE_INT
6452 ? ~(unsigned HOST_WIDE_INT) 0
6453 : ((((unsigned HOST_WIDE_INT) 1 << len) - 1)
6454 << orig_pos),
6455 NULL_RTX, 0);
6458 /* Adjust mode of POS_RTX, if needed. If we want a wider mode, we
6459 have to zero extend. Otherwise, we can just use a SUBREG. */
6460 if (pos_rtx != 0
6461 && GET_MODE_SIZE (pos_mode) > GET_MODE_SIZE (GET_MODE (pos_rtx)))
6463 rtx temp = gen_rtx_ZERO_EXTEND (pos_mode, pos_rtx);
6465 /* If we know that no extraneous bits are set, and that the high
6466 bit is not set, convert extraction to cheaper one - either
6467 SIGN_EXTENSION or ZERO_EXTENSION, that are equivalent in these
6468 cases. */
6469 if (flag_expensive_optimizations
6470 && (GET_MODE_BITSIZE (GET_MODE (pos_rtx)) <= HOST_BITS_PER_WIDE_INT
6471 && ((nonzero_bits (pos_rtx, GET_MODE (pos_rtx))
6472 & ~(((unsigned HOST_WIDE_INT)
6473 GET_MODE_MASK (GET_MODE (pos_rtx)))
6474 >> 1))
6475 == 0)))
6477 rtx temp1 = gen_rtx_SIGN_EXTEND (pos_mode, pos_rtx);
6479 /* Prefer ZERO_EXTENSION, since it gives more information to
6480 backends. */
6481 if (rtx_cost (temp1, SET) < rtx_cost (temp, SET))
6482 temp = temp1;
6484 pos_rtx = temp;
6486 else if (pos_rtx != 0
6487 && GET_MODE_SIZE (pos_mode) < GET_MODE_SIZE (GET_MODE (pos_rtx)))
6488 pos_rtx = gen_lowpart (pos_mode, pos_rtx);
6490 /* Make POS_RTX unless we already have it and it is correct. If we don't
6491 have a POS_RTX but we do have an ORIG_POS_RTX, the latter must
6492 be a CONST_INT. */
6493 if (pos_rtx == 0 && orig_pos_rtx != 0 && INTVAL (orig_pos_rtx) == pos)
6494 pos_rtx = orig_pos_rtx;
6496 else if (pos_rtx == 0)
6497 pos_rtx = GEN_INT (pos);
6499 /* Make the required operation. See if we can use existing rtx. */
6500 new = gen_rtx_fmt_eee (unsignedp ? ZERO_EXTRACT : SIGN_EXTRACT,
6501 extraction_mode, inner, GEN_INT (len), pos_rtx);
6502 if (! in_dest)
6503 new = gen_lowpart (mode, new);
6505 return new;
6508 /* See if X contains an ASHIFT of COUNT or more bits that can be commuted
6509 with any other operations in X. Return X without that shift if so. */
6511 static rtx
6512 extract_left_shift (rtx x, int count)
6514 enum rtx_code code = GET_CODE (x);
6515 enum machine_mode mode = GET_MODE (x);
6516 rtx tem;
6518 switch (code)
6520 case ASHIFT:
6521 /* This is the shift itself. If it is wide enough, we will return
6522 either the value being shifted if the shift count is equal to
6523 COUNT or a shift for the difference. */
6524 if (GET_CODE (XEXP (x, 1)) == CONST_INT
6525 && INTVAL (XEXP (x, 1)) >= count)
6526 return simplify_shift_const (NULL_RTX, ASHIFT, mode, XEXP (x, 0),
6527 INTVAL (XEXP (x, 1)) - count);
6528 break;
6530 case NEG: case NOT:
6531 if ((tem = extract_left_shift (XEXP (x, 0), count)) != 0)
6532 return simplify_gen_unary (code, mode, tem, mode);
6534 break;
6536 case PLUS: case IOR: case XOR: case AND:
6537 /* If we can safely shift this constant and we find the inner shift,
6538 make a new operation. */
6539 if (GET_CODE (XEXP (x, 1)) == CONST_INT
6540 && (INTVAL (XEXP (x, 1)) & ((((HOST_WIDE_INT) 1 << count)) - 1)) == 0
6541 && (tem = extract_left_shift (XEXP (x, 0), count)) != 0)
6542 return simplify_gen_binary (code, mode, tem,
6543 GEN_INT (INTVAL (XEXP (x, 1)) >> count));
6545 break;
6547 default:
6548 break;
6551 return 0;
6554 /* Look at the expression rooted at X. Look for expressions
6555 equivalent to ZERO_EXTRACT, SIGN_EXTRACT, ZERO_EXTEND, SIGN_EXTEND.
6556 Form these expressions.
6558 Return the new rtx, usually just X.
6560 Also, for machines like the VAX that don't have logical shift insns,
6561 try to convert logical to arithmetic shift operations in cases where
6562 they are equivalent. This undoes the canonicalizations to logical
6563 shifts done elsewhere.
6565 We try, as much as possible, to re-use rtl expressions to save memory.
6567 IN_CODE says what kind of expression we are processing. Normally, it is
6568 SET. In a memory address (inside a MEM, PLUS or minus, the latter two
6569 being kludges), it is MEM. When processing the arguments of a comparison
6570 or a COMPARE against zero, it is COMPARE. */
6572 static rtx
6573 make_compound_operation (rtx x, enum rtx_code in_code)
6575 enum rtx_code code = GET_CODE (x);
6576 enum machine_mode mode = GET_MODE (x);
6577 int mode_width = GET_MODE_BITSIZE (mode);
6578 rtx rhs, lhs;
6579 enum rtx_code next_code;
6580 int i;
6581 rtx new = 0;
6582 rtx tem;
6583 const char *fmt;
6585 /* Select the code to be used in recursive calls. Once we are inside an
6586 address, we stay there. If we have a comparison, set to COMPARE,
6587 but once inside, go back to our default of SET. */
6589 next_code = (code == MEM || code == PLUS || code == MINUS ? MEM
6590 : ((code == COMPARE || COMPARISON_P (x))
6591 && XEXP (x, 1) == const0_rtx) ? COMPARE
6592 : in_code == COMPARE ? SET : in_code);
6594 /* Process depending on the code of this operation. If NEW is set
6595 nonzero, it will be returned. */
6597 switch (code)
6599 case ASHIFT:
6600 /* Convert shifts by constants into multiplications if inside
6601 an address. */
6602 if (in_code == MEM && GET_CODE (XEXP (x, 1)) == CONST_INT
6603 && INTVAL (XEXP (x, 1)) < HOST_BITS_PER_WIDE_INT
6604 && INTVAL (XEXP (x, 1)) >= 0)
6606 new = make_compound_operation (XEXP (x, 0), next_code);
6607 new = gen_rtx_MULT (mode, new,
6608 GEN_INT ((HOST_WIDE_INT) 1
6609 << INTVAL (XEXP (x, 1))));
6611 break;
6613 case AND:
6614 /* If the second operand is not a constant, we can't do anything
6615 with it. */
6616 if (GET_CODE (XEXP (x, 1)) != CONST_INT)
6617 break;
6619 /* If the constant is a power of two minus one and the first operand
6620 is a logical right shift, make an extraction. */
6621 if (GET_CODE (XEXP (x, 0)) == LSHIFTRT
6622 && (i = exact_log2 (INTVAL (XEXP (x, 1)) + 1)) >= 0)
6624 new = make_compound_operation (XEXP (XEXP (x, 0), 0), next_code);
6625 new = make_extraction (mode, new, 0, XEXP (XEXP (x, 0), 1), i, 1,
6626 0, in_code == COMPARE);
6629 /* Same as previous, but for (subreg (lshiftrt ...)) in first op. */
6630 else if (GET_CODE (XEXP (x, 0)) == SUBREG
6631 && subreg_lowpart_p (XEXP (x, 0))
6632 && GET_CODE (SUBREG_REG (XEXP (x, 0))) == LSHIFTRT
6633 && (i = exact_log2 (INTVAL (XEXP (x, 1)) + 1)) >= 0)
6635 new = make_compound_operation (XEXP (SUBREG_REG (XEXP (x, 0)), 0),
6636 next_code);
6637 new = make_extraction (GET_MODE (SUBREG_REG (XEXP (x, 0))), new, 0,
6638 XEXP (SUBREG_REG (XEXP (x, 0)), 1), i, 1,
6639 0, in_code == COMPARE);
6641 /* Same as previous, but for (xor/ior (lshiftrt...) (lshiftrt...)). */
6642 else if ((GET_CODE (XEXP (x, 0)) == XOR
6643 || GET_CODE (XEXP (x, 0)) == IOR)
6644 && GET_CODE (XEXP (XEXP (x, 0), 0)) == LSHIFTRT
6645 && GET_CODE (XEXP (XEXP (x, 0), 1)) == LSHIFTRT
6646 && (i = exact_log2 (INTVAL (XEXP (x, 1)) + 1)) >= 0)
6648 /* Apply the distributive law, and then try to make extractions. */
6649 new = gen_rtx_fmt_ee (GET_CODE (XEXP (x, 0)), mode,
6650 gen_rtx_AND (mode, XEXP (XEXP (x, 0), 0),
6651 XEXP (x, 1)),
6652 gen_rtx_AND (mode, XEXP (XEXP (x, 0), 1),
6653 XEXP (x, 1)));
6654 new = make_compound_operation (new, in_code);
6657 /* If we are have (and (rotate X C) M) and C is larger than the number
6658 of bits in M, this is an extraction. */
6660 else if (GET_CODE (XEXP (x, 0)) == ROTATE
6661 && GET_CODE (XEXP (XEXP (x, 0), 1)) == CONST_INT
6662 && (i = exact_log2 (INTVAL (XEXP (x, 1)) + 1)) >= 0
6663 && i <= INTVAL (XEXP (XEXP (x, 0), 1)))
6665 new = make_compound_operation (XEXP (XEXP (x, 0), 0), next_code);
6666 new = make_extraction (mode, new,
6667 (GET_MODE_BITSIZE (mode)
6668 - INTVAL (XEXP (XEXP (x, 0), 1))),
6669 NULL_RTX, i, 1, 0, in_code == COMPARE);
6672 /* On machines without logical shifts, if the operand of the AND is
6673 a logical shift and our mask turns off all the propagated sign
6674 bits, we can replace the logical shift with an arithmetic shift. */
6675 else if (GET_CODE (XEXP (x, 0)) == LSHIFTRT
6676 && !have_insn_for (LSHIFTRT, mode)
6677 && have_insn_for (ASHIFTRT, mode)
6678 && GET_CODE (XEXP (XEXP (x, 0), 1)) == CONST_INT
6679 && INTVAL (XEXP (XEXP (x, 0), 1)) >= 0
6680 && INTVAL (XEXP (XEXP (x, 0), 1)) < HOST_BITS_PER_WIDE_INT
6681 && mode_width <= HOST_BITS_PER_WIDE_INT)
6683 unsigned HOST_WIDE_INT mask = GET_MODE_MASK (mode);
6685 mask >>= INTVAL (XEXP (XEXP (x, 0), 1));
6686 if ((INTVAL (XEXP (x, 1)) & ~mask) == 0)
6687 SUBST (XEXP (x, 0),
6688 gen_rtx_ASHIFTRT (mode,
6689 make_compound_operation
6690 (XEXP (XEXP (x, 0), 0), next_code),
6691 XEXP (XEXP (x, 0), 1)));
6694 /* If the constant is one less than a power of two, this might be
6695 representable by an extraction even if no shift is present.
6696 If it doesn't end up being a ZERO_EXTEND, we will ignore it unless
6697 we are in a COMPARE. */
6698 else if ((i = exact_log2 (INTVAL (XEXP (x, 1)) + 1)) >= 0)
6699 new = make_extraction (mode,
6700 make_compound_operation (XEXP (x, 0),
6701 next_code),
6702 0, NULL_RTX, i, 1, 0, in_code == COMPARE);
6704 /* If we are in a comparison and this is an AND with a power of two,
6705 convert this into the appropriate bit extract. */
6706 else if (in_code == COMPARE
6707 && (i = exact_log2 (INTVAL (XEXP (x, 1)))) >= 0)
6708 new = make_extraction (mode,
6709 make_compound_operation (XEXP (x, 0),
6710 next_code),
6711 i, NULL_RTX, 1, 1, 0, 1);
6713 break;
6715 case LSHIFTRT:
6716 /* If the sign bit is known to be zero, replace this with an
6717 arithmetic shift. */
6718 if (have_insn_for (ASHIFTRT, mode)
6719 && ! have_insn_for (LSHIFTRT, mode)
6720 && mode_width <= HOST_BITS_PER_WIDE_INT
6721 && (nonzero_bits (XEXP (x, 0), mode) & (1 << (mode_width - 1))) == 0)
6723 new = gen_rtx_ASHIFTRT (mode,
6724 make_compound_operation (XEXP (x, 0),
6725 next_code),
6726 XEXP (x, 1));
6727 break;
6730 /* ... fall through ... */
6732 case ASHIFTRT:
6733 lhs = XEXP (x, 0);
6734 rhs = XEXP (x, 1);
6736 /* If we have (ashiftrt (ashift foo C1) C2) with C2 >= C1,
6737 this is a SIGN_EXTRACT. */
6738 if (GET_CODE (rhs) == CONST_INT
6739 && GET_CODE (lhs) == ASHIFT
6740 && GET_CODE (XEXP (lhs, 1)) == CONST_INT
6741 && INTVAL (rhs) >= INTVAL (XEXP (lhs, 1)))
6743 new = make_compound_operation (XEXP (lhs, 0), next_code);
6744 new = make_extraction (mode, new,
6745 INTVAL (rhs) - INTVAL (XEXP (lhs, 1)),
6746 NULL_RTX, mode_width - INTVAL (rhs),
6747 code == LSHIFTRT, 0, in_code == COMPARE);
6748 break;
6751 /* See if we have operations between an ASHIFTRT and an ASHIFT.
6752 If so, try to merge the shifts into a SIGN_EXTEND. We could
6753 also do this for some cases of SIGN_EXTRACT, but it doesn't
6754 seem worth the effort; the case checked for occurs on Alpha. */
6756 if (!OBJECT_P (lhs)
6757 && ! (GET_CODE (lhs) == SUBREG
6758 && (OBJECT_P (SUBREG_REG (lhs))))
6759 && GET_CODE (rhs) == CONST_INT
6760 && INTVAL (rhs) < HOST_BITS_PER_WIDE_INT
6761 && (new = extract_left_shift (lhs, INTVAL (rhs))) != 0)
6762 new = make_extraction (mode, make_compound_operation (new, next_code),
6763 0, NULL_RTX, mode_width - INTVAL (rhs),
6764 code == LSHIFTRT, 0, in_code == COMPARE);
6766 break;
6768 case SUBREG:
6769 /* Call ourselves recursively on the inner expression. If we are
6770 narrowing the object and it has a different RTL code from
6771 what it originally did, do this SUBREG as a force_to_mode. */
6773 tem = make_compound_operation (SUBREG_REG (x), in_code);
6774 if (GET_CODE (tem) != GET_CODE (SUBREG_REG (x))
6775 && GET_MODE_SIZE (mode) < GET_MODE_SIZE (GET_MODE (tem))
6776 && subreg_lowpart_p (x))
6778 rtx newer = force_to_mode (tem, mode, ~(HOST_WIDE_INT) 0,
6779 NULL_RTX, 0);
6781 /* If we have something other than a SUBREG, we might have
6782 done an expansion, so rerun ourselves. */
6783 if (GET_CODE (newer) != SUBREG)
6784 newer = make_compound_operation (newer, in_code);
6786 return newer;
6789 /* If this is a paradoxical subreg, and the new code is a sign or
6790 zero extension, omit the subreg and widen the extension. If it
6791 is a regular subreg, we can still get rid of the subreg by not
6792 widening so much, or in fact removing the extension entirely. */
6793 if ((GET_CODE (tem) == SIGN_EXTEND
6794 || GET_CODE (tem) == ZERO_EXTEND)
6795 && subreg_lowpart_p (x))
6797 if (GET_MODE_SIZE (mode) > GET_MODE_SIZE (GET_MODE (tem))
6798 || (GET_MODE_SIZE (mode) >
6799 GET_MODE_SIZE (GET_MODE (XEXP (tem, 0)))))
6801 if (! SCALAR_INT_MODE_P (mode))
6802 break;
6803 tem = gen_rtx_fmt_e (GET_CODE (tem), mode, XEXP (tem, 0));
6805 else
6806 tem = gen_lowpart (mode, XEXP (tem, 0));
6807 return tem;
6809 break;
6811 default:
6812 break;
6815 if (new)
6817 x = gen_lowpart (mode, new);
6818 code = GET_CODE (x);
6821 /* Now recursively process each operand of this operation. */
6822 fmt = GET_RTX_FORMAT (code);
6823 for (i = 0; i < GET_RTX_LENGTH (code); i++)
6824 if (fmt[i] == 'e')
6826 new = make_compound_operation (XEXP (x, i), next_code);
6827 SUBST (XEXP (x, i), new);
6830 return x;
6833 /* Given M see if it is a value that would select a field of bits
6834 within an item, but not the entire word. Return -1 if not.
6835 Otherwise, return the starting position of the field, where 0 is the
6836 low-order bit.
6838 *PLEN is set to the length of the field. */
6840 static int
6841 get_pos_from_mask (unsigned HOST_WIDE_INT m, unsigned HOST_WIDE_INT *plen)
6843 /* Get the bit number of the first 1 bit from the right, -1 if none. */
6844 int pos = exact_log2 (m & -m);
6845 int len = 0;
6847 if (pos >= 0)
6848 /* Now shift off the low-order zero bits and see if we have a
6849 power of two minus 1. */
6850 len = exact_log2 ((m >> pos) + 1);
6852 if (len <= 0)
6853 pos = -1;
6855 *plen = len;
6856 return pos;
6859 /* See if X can be simplified knowing that we will only refer to it in
6860 MODE and will only refer to those bits that are nonzero in MASK.
6861 If other bits are being computed or if masking operations are done
6862 that select a superset of the bits in MASK, they can sometimes be
6863 ignored.
6865 Return a possibly simplified expression, but always convert X to
6866 MODE. If X is a CONST_INT, AND the CONST_INT with MASK.
6868 Also, if REG is nonzero and X is a register equal in value to REG,
6869 replace X with REG.
6871 If JUST_SELECT is nonzero, don't optimize by noticing that bits in MASK
6872 are all off in X. This is used when X will be complemented, by either
6873 NOT, NEG, or XOR. */
6875 static rtx
6876 force_to_mode (rtx x, enum machine_mode mode, unsigned HOST_WIDE_INT mask,
6877 rtx reg, int just_select)
6879 enum rtx_code code = GET_CODE (x);
6880 int next_select = just_select || code == XOR || code == NOT || code == NEG;
6881 enum machine_mode op_mode;
6882 unsigned HOST_WIDE_INT fuller_mask, nonzero;
6883 rtx op0, op1, temp;
6885 /* If this is a CALL or ASM_OPERANDS, don't do anything. Some of the
6886 code below will do the wrong thing since the mode of such an
6887 expression is VOIDmode.
6889 Also do nothing if X is a CLOBBER; this can happen if X was
6890 the return value from a call to gen_lowpart. */
6891 if (code == CALL || code == ASM_OPERANDS || code == CLOBBER)
6892 return x;
6894 /* We want to perform the operation is its present mode unless we know
6895 that the operation is valid in MODE, in which case we do the operation
6896 in MODE. */
6897 op_mode = ((GET_MODE_CLASS (mode) == GET_MODE_CLASS (GET_MODE (x))
6898 && have_insn_for (code, mode))
6899 ? mode : GET_MODE (x));
6901 /* It is not valid to do a right-shift in a narrower mode
6902 than the one it came in with. */
6903 if ((code == LSHIFTRT || code == ASHIFTRT)
6904 && GET_MODE_BITSIZE (mode) < GET_MODE_BITSIZE (GET_MODE (x)))
6905 op_mode = GET_MODE (x);
6907 /* Truncate MASK to fit OP_MODE. */
6908 if (op_mode)
6909 mask &= GET_MODE_MASK (op_mode);
6911 /* When we have an arithmetic operation, or a shift whose count we
6912 do not know, we need to assume that all bits up to the highest-order
6913 bit in MASK will be needed. This is how we form such a mask. */
6914 if (mask & ((unsigned HOST_WIDE_INT) 1 << (HOST_BITS_PER_WIDE_INT - 1)))
6915 fuller_mask = ~(unsigned HOST_WIDE_INT) 0;
6916 else
6917 fuller_mask = (((unsigned HOST_WIDE_INT) 1 << (floor_log2 (mask) + 1))
6918 - 1);
6920 /* Determine what bits of X are guaranteed to be (non)zero. */
6921 nonzero = nonzero_bits (x, mode);
6923 /* If none of the bits in X are needed, return a zero. */
6924 if (! just_select && (nonzero & mask) == 0)
6925 x = const0_rtx;
6927 /* If X is a CONST_INT, return a new one. Do this here since the
6928 test below will fail. */
6929 if (GET_CODE (x) == CONST_INT)
6931 if (SCALAR_INT_MODE_P (mode))
6932 return gen_int_mode (INTVAL (x) & mask, mode);
6933 else
6935 x = GEN_INT (INTVAL (x) & mask);
6936 return gen_lowpart_common (mode, x);
6940 /* If X is narrower than MODE and we want all the bits in X's mode, just
6941 get X in the proper mode. */
6942 if (GET_MODE_SIZE (GET_MODE (x)) < GET_MODE_SIZE (mode)
6943 && (GET_MODE_MASK (GET_MODE (x)) & ~mask) == 0)
6944 return gen_lowpart (mode, x);
6946 switch (code)
6948 case CLOBBER:
6949 /* If X is a (clobber (const_int)), return it since we know we are
6950 generating something that won't match. */
6951 return x;
6953 case USE:
6954 /* X is a (use (mem ..)) that was made from a bit-field extraction that
6955 spanned the boundary of the MEM. If we are now masking so it is
6956 within that boundary, we don't need the USE any more. */
6957 if (! BITS_BIG_ENDIAN
6958 && (mask & ~GET_MODE_MASK (GET_MODE (XEXP (x, 0)))) == 0)
6959 return force_to_mode (XEXP (x, 0), mode, mask, reg, next_select);
6960 break;
6962 case SIGN_EXTEND:
6963 case ZERO_EXTEND:
6964 case ZERO_EXTRACT:
6965 case SIGN_EXTRACT:
6966 x = expand_compound_operation (x);
6967 if (GET_CODE (x) != code)
6968 return force_to_mode (x, mode, mask, reg, next_select);
6969 break;
6971 case REG:
6972 if (reg != 0 && (rtx_equal_p (get_last_value (reg), x)
6973 || rtx_equal_p (reg, get_last_value (x))))
6974 x = reg;
6975 break;
6977 case SUBREG:
6978 if (subreg_lowpart_p (x)
6979 /* We can ignore the effect of this SUBREG if it narrows the mode or
6980 if the constant masks to zero all the bits the mode doesn't
6981 have. */
6982 && ((GET_MODE_SIZE (GET_MODE (x))
6983 < GET_MODE_SIZE (GET_MODE (SUBREG_REG (x))))
6984 || (0 == (mask
6985 & GET_MODE_MASK (GET_MODE (x))
6986 & ~GET_MODE_MASK (GET_MODE (SUBREG_REG (x)))))))
6987 return force_to_mode (SUBREG_REG (x), mode, mask, reg, next_select);
6988 break;
6990 case AND:
6991 /* If this is an AND with a constant, convert it into an AND
6992 whose constant is the AND of that constant with MASK. If it
6993 remains an AND of MASK, delete it since it is redundant. */
6995 if (GET_CODE (XEXP (x, 1)) == CONST_INT)
6997 x = simplify_and_const_int (x, op_mode, XEXP (x, 0),
6998 mask & INTVAL (XEXP (x, 1)));
7000 /* If X is still an AND, see if it is an AND with a mask that
7001 is just some low-order bits. If so, and it is MASK, we don't
7002 need it. */
7004 if (GET_CODE (x) == AND && GET_CODE (XEXP (x, 1)) == CONST_INT
7005 && ((INTVAL (XEXP (x, 1)) & GET_MODE_MASK (GET_MODE (x)))
7006 == mask))
7007 x = XEXP (x, 0);
7009 /* If it remains an AND, try making another AND with the bits
7010 in the mode mask that aren't in MASK turned on. If the
7011 constant in the AND is wide enough, this might make a
7012 cheaper constant. */
7014 if (GET_CODE (x) == AND && GET_CODE (XEXP (x, 1)) == CONST_INT
7015 && GET_MODE_MASK (GET_MODE (x)) != mask
7016 && GET_MODE_BITSIZE (GET_MODE (x)) <= HOST_BITS_PER_WIDE_INT)
7018 HOST_WIDE_INT cval = (INTVAL (XEXP (x, 1))
7019 | (GET_MODE_MASK (GET_MODE (x)) & ~mask));
7020 int width = GET_MODE_BITSIZE (GET_MODE (x));
7021 rtx y;
7023 /* If MODE is narrower than HOST_WIDE_INT and CVAL is a negative
7024 number, sign extend it. */
7025 if (width > 0 && width < HOST_BITS_PER_WIDE_INT
7026 && (cval & ((HOST_WIDE_INT) 1 << (width - 1))) != 0)
7027 cval |= (HOST_WIDE_INT) -1 << width;
7029 y = simplify_gen_binary (AND, GET_MODE (x),
7030 XEXP (x, 0), GEN_INT (cval));
7031 if (rtx_cost (y, SET) < rtx_cost (x, SET))
7032 x = y;
7035 break;
7038 goto binop;
7040 case PLUS:
7041 /* In (and (plus FOO C1) M), if M is a mask that just turns off
7042 low-order bits (as in an alignment operation) and FOO is already
7043 aligned to that boundary, mask C1 to that boundary as well.
7044 This may eliminate that PLUS and, later, the AND. */
7047 unsigned int width = GET_MODE_BITSIZE (mode);
7048 unsigned HOST_WIDE_INT smask = mask;
7050 /* If MODE is narrower than HOST_WIDE_INT and mask is a negative
7051 number, sign extend it. */
7053 if (width < HOST_BITS_PER_WIDE_INT
7054 && (smask & ((HOST_WIDE_INT) 1 << (width - 1))) != 0)
7055 smask |= (HOST_WIDE_INT) -1 << width;
7057 if (GET_CODE (XEXP (x, 1)) == CONST_INT
7058 && exact_log2 (- smask) >= 0
7059 && (nonzero_bits (XEXP (x, 0), mode) & ~smask) == 0
7060 && (INTVAL (XEXP (x, 1)) & ~smask) != 0)
7061 return force_to_mode (plus_constant (XEXP (x, 0),
7062 (INTVAL (XEXP (x, 1)) & smask)),
7063 mode, smask, reg, next_select);
7066 /* ... fall through ... */
7068 case MULT:
7069 /* For PLUS, MINUS and MULT, we need any bits less significant than the
7070 most significant bit in MASK since carries from those bits will
7071 affect the bits we are interested in. */
7072 mask = fuller_mask;
7073 goto binop;
7075 case MINUS:
7076 /* If X is (minus C Y) where C's least set bit is larger than any bit
7077 in the mask, then we may replace with (neg Y). */
7078 if (GET_CODE (XEXP (x, 0)) == CONST_INT
7079 && (((unsigned HOST_WIDE_INT) (INTVAL (XEXP (x, 0))
7080 & -INTVAL (XEXP (x, 0))))
7081 > mask))
7083 x = simplify_gen_unary (NEG, GET_MODE (x), XEXP (x, 1),
7084 GET_MODE (x));
7085 return force_to_mode (x, mode, mask, reg, next_select);
7088 /* Similarly, if C contains every bit in the fuller_mask, then we may
7089 replace with (not Y). */
7090 if (GET_CODE (XEXP (x, 0)) == CONST_INT
7091 && ((INTVAL (XEXP (x, 0)) | (HOST_WIDE_INT) fuller_mask)
7092 == INTVAL (XEXP (x, 0))))
7094 x = simplify_gen_unary (NOT, GET_MODE (x),
7095 XEXP (x, 1), GET_MODE (x));
7096 return force_to_mode (x, mode, mask, reg, next_select);
7099 mask = fuller_mask;
7100 goto binop;
7102 case IOR:
7103 case XOR:
7104 /* If X is (ior (lshiftrt FOO C1) C2), try to commute the IOR and
7105 LSHIFTRT so we end up with an (and (lshiftrt (ior ...) ...) ...)
7106 operation which may be a bitfield extraction. Ensure that the
7107 constant we form is not wider than the mode of X. */
7109 if (GET_CODE (XEXP (x, 0)) == LSHIFTRT
7110 && GET_CODE (XEXP (XEXP (x, 0), 1)) == CONST_INT
7111 && INTVAL (XEXP (XEXP (x, 0), 1)) >= 0
7112 && INTVAL (XEXP (XEXP (x, 0), 1)) < HOST_BITS_PER_WIDE_INT
7113 && GET_CODE (XEXP (x, 1)) == CONST_INT
7114 && ((INTVAL (XEXP (XEXP (x, 0), 1))
7115 + floor_log2 (INTVAL (XEXP (x, 1))))
7116 < GET_MODE_BITSIZE (GET_MODE (x)))
7117 && (INTVAL (XEXP (x, 1))
7118 & ~nonzero_bits (XEXP (x, 0), GET_MODE (x))) == 0)
7120 temp = GEN_INT ((INTVAL (XEXP (x, 1)) & mask)
7121 << INTVAL (XEXP (XEXP (x, 0), 1)));
7122 temp = simplify_gen_binary (GET_CODE (x), GET_MODE (x),
7123 XEXP (XEXP (x, 0), 0), temp);
7124 x = simplify_gen_binary (LSHIFTRT, GET_MODE (x), temp,
7125 XEXP (XEXP (x, 0), 1));
7126 return force_to_mode (x, mode, mask, reg, next_select);
7129 binop:
7130 /* For most binary operations, just propagate into the operation and
7131 change the mode if we have an operation of that mode. */
7133 op0 = gen_lowpart (op_mode,
7134 force_to_mode (XEXP (x, 0), mode, mask,
7135 reg, next_select));
7136 op1 = gen_lowpart (op_mode,
7137 force_to_mode (XEXP (x, 1), mode, mask,
7138 reg, next_select));
7140 if (op_mode != GET_MODE (x) || op0 != XEXP (x, 0) || op1 != XEXP (x, 1))
7141 x = simplify_gen_binary (code, op_mode, op0, op1);
7142 break;
7144 case ASHIFT:
7145 /* For left shifts, do the same, but just for the first operand.
7146 However, we cannot do anything with shifts where we cannot
7147 guarantee that the counts are smaller than the size of the mode
7148 because such a count will have a different meaning in a
7149 wider mode. */
7151 if (! (GET_CODE (XEXP (x, 1)) == CONST_INT
7152 && INTVAL (XEXP (x, 1)) >= 0
7153 && INTVAL (XEXP (x, 1)) < GET_MODE_BITSIZE (mode))
7154 && ! (GET_MODE (XEXP (x, 1)) != VOIDmode
7155 && (nonzero_bits (XEXP (x, 1), GET_MODE (XEXP (x, 1)))
7156 < (unsigned HOST_WIDE_INT) GET_MODE_BITSIZE (mode))))
7157 break;
7159 /* If the shift count is a constant and we can do arithmetic in
7160 the mode of the shift, refine which bits we need. Otherwise, use the
7161 conservative form of the mask. */
7162 if (GET_CODE (XEXP (x, 1)) == CONST_INT
7163 && INTVAL (XEXP (x, 1)) >= 0
7164 && INTVAL (XEXP (x, 1)) < GET_MODE_BITSIZE (op_mode)
7165 && GET_MODE_BITSIZE (op_mode) <= HOST_BITS_PER_WIDE_INT)
7166 mask >>= INTVAL (XEXP (x, 1));
7167 else
7168 mask = fuller_mask;
7170 op0 = gen_lowpart (op_mode,
7171 force_to_mode (XEXP (x, 0), op_mode,
7172 mask, reg, next_select));
7174 if (op_mode != GET_MODE (x) || op0 != XEXP (x, 0))
7175 x = simplify_gen_binary (code, op_mode, op0, XEXP (x, 1));
7176 break;
7178 case LSHIFTRT:
7179 /* Here we can only do something if the shift count is a constant,
7180 this shift constant is valid for the host, and we can do arithmetic
7181 in OP_MODE. */
7183 if (GET_CODE (XEXP (x, 1)) == CONST_INT
7184 && INTVAL (XEXP (x, 1)) < HOST_BITS_PER_WIDE_INT
7185 && GET_MODE_BITSIZE (op_mode) <= HOST_BITS_PER_WIDE_INT)
7187 rtx inner = XEXP (x, 0);
7188 unsigned HOST_WIDE_INT inner_mask;
7190 /* Select the mask of the bits we need for the shift operand. */
7191 inner_mask = mask << INTVAL (XEXP (x, 1));
7193 /* We can only change the mode of the shift if we can do arithmetic
7194 in the mode of the shift and INNER_MASK is no wider than the
7195 width of X's mode. */
7196 if ((inner_mask & ~GET_MODE_MASK (GET_MODE (x))) != 0)
7197 op_mode = GET_MODE (x);
7199 inner = force_to_mode (inner, op_mode, inner_mask, reg, next_select);
7201 if (GET_MODE (x) != op_mode || inner != XEXP (x, 0))
7202 x = simplify_gen_binary (LSHIFTRT, op_mode, inner, XEXP (x, 1));
7205 /* If we have (and (lshiftrt FOO C1) C2) where the combination of the
7206 shift and AND produces only copies of the sign bit (C2 is one less
7207 than a power of two), we can do this with just a shift. */
7209 if (GET_CODE (x) == LSHIFTRT
7210 && GET_CODE (XEXP (x, 1)) == CONST_INT
7211 /* The shift puts one of the sign bit copies in the least significant
7212 bit. */
7213 && ((INTVAL (XEXP (x, 1))
7214 + num_sign_bit_copies (XEXP (x, 0), GET_MODE (XEXP (x, 0))))
7215 >= GET_MODE_BITSIZE (GET_MODE (x)))
7216 && exact_log2 (mask + 1) >= 0
7217 /* Number of bits left after the shift must be more than the mask
7218 needs. */
7219 && ((INTVAL (XEXP (x, 1)) + exact_log2 (mask + 1))
7220 <= GET_MODE_BITSIZE (GET_MODE (x)))
7221 /* Must be more sign bit copies than the mask needs. */
7222 && ((int) num_sign_bit_copies (XEXP (x, 0), GET_MODE (XEXP (x, 0)))
7223 >= exact_log2 (mask + 1)))
7224 x = simplify_gen_binary (LSHIFTRT, GET_MODE (x), XEXP (x, 0),
7225 GEN_INT (GET_MODE_BITSIZE (GET_MODE (x))
7226 - exact_log2 (mask + 1)));
7228 goto shiftrt;
7230 case ASHIFTRT:
7231 /* If we are just looking for the sign bit, we don't need this shift at
7232 all, even if it has a variable count. */
7233 if (GET_MODE_BITSIZE (GET_MODE (x)) <= HOST_BITS_PER_WIDE_INT
7234 && (mask == ((unsigned HOST_WIDE_INT) 1
7235 << (GET_MODE_BITSIZE (GET_MODE (x)) - 1))))
7236 return force_to_mode (XEXP (x, 0), mode, mask, reg, next_select);
7238 /* If this is a shift by a constant, get a mask that contains those bits
7239 that are not copies of the sign bit. We then have two cases: If
7240 MASK only includes those bits, this can be a logical shift, which may
7241 allow simplifications. If MASK is a single-bit field not within
7242 those bits, we are requesting a copy of the sign bit and hence can
7243 shift the sign bit to the appropriate location. */
7245 if (GET_CODE (XEXP (x, 1)) == CONST_INT && INTVAL (XEXP (x, 1)) >= 0
7246 && INTVAL (XEXP (x, 1)) < HOST_BITS_PER_WIDE_INT)
7248 int i = -1;
7250 /* If the considered data is wider than HOST_WIDE_INT, we can't
7251 represent a mask for all its bits in a single scalar.
7252 But we only care about the lower bits, so calculate these. */
7254 if (GET_MODE_BITSIZE (GET_MODE (x)) > HOST_BITS_PER_WIDE_INT)
7256 nonzero = ~(HOST_WIDE_INT) 0;
7258 /* GET_MODE_BITSIZE (GET_MODE (x)) - INTVAL (XEXP (x, 1))
7259 is the number of bits a full-width mask would have set.
7260 We need only shift if these are fewer than nonzero can
7261 hold. If not, we must keep all bits set in nonzero. */
7263 if (GET_MODE_BITSIZE (GET_MODE (x)) - INTVAL (XEXP (x, 1))
7264 < HOST_BITS_PER_WIDE_INT)
7265 nonzero >>= INTVAL (XEXP (x, 1))
7266 + HOST_BITS_PER_WIDE_INT
7267 - GET_MODE_BITSIZE (GET_MODE (x)) ;
7269 else
7271 nonzero = GET_MODE_MASK (GET_MODE (x));
7272 nonzero >>= INTVAL (XEXP (x, 1));
7275 if ((mask & ~nonzero) == 0
7276 || (i = exact_log2 (mask)) >= 0)
7278 x = simplify_shift_const
7279 (x, LSHIFTRT, GET_MODE (x), XEXP (x, 0),
7280 i < 0 ? INTVAL (XEXP (x, 1))
7281 : GET_MODE_BITSIZE (GET_MODE (x)) - 1 - i);
7283 if (GET_CODE (x) != ASHIFTRT)
7284 return force_to_mode (x, mode, mask, reg, next_select);
7288 /* If MASK is 1, convert this to an LSHIFTRT. This can be done
7289 even if the shift count isn't a constant. */
7290 if (mask == 1)
7291 x = simplify_gen_binary (LSHIFTRT, GET_MODE (x),
7292 XEXP (x, 0), XEXP (x, 1));
7294 shiftrt:
7296 /* If this is a zero- or sign-extension operation that just affects bits
7297 we don't care about, remove it. Be sure the call above returned
7298 something that is still a shift. */
7300 if ((GET_CODE (x) == LSHIFTRT || GET_CODE (x) == ASHIFTRT)
7301 && GET_CODE (XEXP (x, 1)) == CONST_INT
7302 && INTVAL (XEXP (x, 1)) >= 0
7303 && (INTVAL (XEXP (x, 1))
7304 <= GET_MODE_BITSIZE (GET_MODE (x)) - (floor_log2 (mask) + 1))
7305 && GET_CODE (XEXP (x, 0)) == ASHIFT
7306 && XEXP (XEXP (x, 0), 1) == XEXP (x, 1))
7307 return force_to_mode (XEXP (XEXP (x, 0), 0), mode, mask,
7308 reg, next_select);
7310 break;
7312 case ROTATE:
7313 case ROTATERT:
7314 /* If the shift count is constant and we can do computations
7315 in the mode of X, compute where the bits we care about are.
7316 Otherwise, we can't do anything. Don't change the mode of
7317 the shift or propagate MODE into the shift, though. */
7318 if (GET_CODE (XEXP (x, 1)) == CONST_INT
7319 && INTVAL (XEXP (x, 1)) >= 0)
7321 temp = simplify_binary_operation (code == ROTATE ? ROTATERT : ROTATE,
7322 GET_MODE (x), GEN_INT (mask),
7323 XEXP (x, 1));
7324 if (temp && GET_CODE (temp) == CONST_INT)
7325 SUBST (XEXP (x, 0),
7326 force_to_mode (XEXP (x, 0), GET_MODE (x),
7327 INTVAL (temp), reg, next_select));
7329 break;
7331 case NEG:
7332 /* If we just want the low-order bit, the NEG isn't needed since it
7333 won't change the low-order bit. */
7334 if (mask == 1)
7335 return force_to_mode (XEXP (x, 0), mode, mask, reg, just_select);
7337 /* We need any bits less significant than the most significant bit in
7338 MASK since carries from those bits will affect the bits we are
7339 interested in. */
7340 mask = fuller_mask;
7341 goto unop;
7343 case NOT:
7344 /* (not FOO) is (xor FOO CONST), so if FOO is an LSHIFTRT, we can do the
7345 same as the XOR case above. Ensure that the constant we form is not
7346 wider than the mode of X. */
7348 if (GET_CODE (XEXP (x, 0)) == LSHIFTRT
7349 && GET_CODE (XEXP (XEXP (x, 0), 1)) == CONST_INT
7350 && INTVAL (XEXP (XEXP (x, 0), 1)) >= 0
7351 && (INTVAL (XEXP (XEXP (x, 0), 1)) + floor_log2 (mask)
7352 < GET_MODE_BITSIZE (GET_MODE (x)))
7353 && INTVAL (XEXP (XEXP (x, 0), 1)) < HOST_BITS_PER_WIDE_INT)
7355 temp = gen_int_mode (mask << INTVAL (XEXP (XEXP (x, 0), 1)),
7356 GET_MODE (x));
7357 temp = simplify_gen_binary (XOR, GET_MODE (x),
7358 XEXP (XEXP (x, 0), 0), temp);
7359 x = simplify_gen_binary (LSHIFTRT, GET_MODE (x),
7360 temp, XEXP (XEXP (x, 0), 1));
7362 return force_to_mode (x, mode, mask, reg, next_select);
7365 /* (and (not FOO) CONST) is (not (or FOO (not CONST))), so we must
7366 use the full mask inside the NOT. */
7367 mask = fuller_mask;
7369 unop:
7370 op0 = gen_lowpart (op_mode,
7371 force_to_mode (XEXP (x, 0), mode, mask,
7372 reg, next_select));
7373 if (op_mode != GET_MODE (x) || op0 != XEXP (x, 0))
7374 x = simplify_gen_unary (code, op_mode, op0, op_mode);
7375 break;
7377 case NE:
7378 /* (and (ne FOO 0) CONST) can be (and FOO CONST) if CONST is included
7379 in STORE_FLAG_VALUE and FOO has a single bit that might be nonzero,
7380 which is equal to STORE_FLAG_VALUE. */
7381 if ((mask & ~STORE_FLAG_VALUE) == 0 && XEXP (x, 1) == const0_rtx
7382 && GET_MODE (XEXP (x, 0)) == mode
7383 && exact_log2 (nonzero_bits (XEXP (x, 0), mode)) >= 0
7384 && (nonzero_bits (XEXP (x, 0), mode)
7385 == (unsigned HOST_WIDE_INT) STORE_FLAG_VALUE))
7386 return force_to_mode (XEXP (x, 0), mode, mask, reg, next_select);
7388 break;
7390 case IF_THEN_ELSE:
7391 /* We have no way of knowing if the IF_THEN_ELSE can itself be
7392 written in a narrower mode. We play it safe and do not do so. */
7394 SUBST (XEXP (x, 1),
7395 gen_lowpart (GET_MODE (x),
7396 force_to_mode (XEXP (x, 1), mode,
7397 mask, reg, next_select)));
7398 SUBST (XEXP (x, 2),
7399 gen_lowpart (GET_MODE (x),
7400 force_to_mode (XEXP (x, 2), mode,
7401 mask, reg, next_select)));
7402 break;
7404 default:
7405 break;
7408 /* Ensure we return a value of the proper mode. */
7409 return gen_lowpart (mode, x);
7412 /* Return nonzero if X is an expression that has one of two values depending on
7413 whether some other value is zero or nonzero. In that case, we return the
7414 value that is being tested, *PTRUE is set to the value if the rtx being
7415 returned has a nonzero value, and *PFALSE is set to the other alternative.
7417 If we return zero, we set *PTRUE and *PFALSE to X. */
7419 static rtx
7420 if_then_else_cond (rtx x, rtx *ptrue, rtx *pfalse)
7422 enum machine_mode mode = GET_MODE (x);
7423 enum rtx_code code = GET_CODE (x);
7424 rtx cond0, cond1, true0, true1, false0, false1;
7425 unsigned HOST_WIDE_INT nz;
7427 /* If we are comparing a value against zero, we are done. */
7428 if ((code == NE || code == EQ)
7429 && XEXP (x, 1) == const0_rtx)
7431 *ptrue = (code == NE) ? const_true_rtx : const0_rtx;
7432 *pfalse = (code == NE) ? const0_rtx : const_true_rtx;
7433 return XEXP (x, 0);
7436 /* If this is a unary operation whose operand has one of two values, apply
7437 our opcode to compute those values. */
7438 else if (UNARY_P (x)
7439 && (cond0 = if_then_else_cond (XEXP (x, 0), &true0, &false0)) != 0)
7441 *ptrue = simplify_gen_unary (code, mode, true0, GET_MODE (XEXP (x, 0)));
7442 *pfalse = simplify_gen_unary (code, mode, false0,
7443 GET_MODE (XEXP (x, 0)));
7444 return cond0;
7447 /* If this is a COMPARE, do nothing, since the IF_THEN_ELSE we would
7448 make can't possibly match and would suppress other optimizations. */
7449 else if (code == COMPARE)
7452 /* If this is a binary operation, see if either side has only one of two
7453 values. If either one does or if both do and they are conditional on
7454 the same value, compute the new true and false values. */
7455 else if (BINARY_P (x))
7457 cond0 = if_then_else_cond (XEXP (x, 0), &true0, &false0);
7458 cond1 = if_then_else_cond (XEXP (x, 1), &true1, &false1);
7460 if ((cond0 != 0 || cond1 != 0)
7461 && ! (cond0 != 0 && cond1 != 0 && ! rtx_equal_p (cond0, cond1)))
7463 /* If if_then_else_cond returned zero, then true/false are the
7464 same rtl. We must copy one of them to prevent invalid rtl
7465 sharing. */
7466 if (cond0 == 0)
7467 true0 = copy_rtx (true0);
7468 else if (cond1 == 0)
7469 true1 = copy_rtx (true1);
7471 if (COMPARISON_P (x))
7473 *ptrue = simplify_gen_relational (code, mode, VOIDmode,
7474 true0, true1);
7475 *pfalse = simplify_gen_relational (code, mode, VOIDmode,
7476 false0, false1);
7478 else
7480 *ptrue = simplify_gen_binary (code, mode, true0, true1);
7481 *pfalse = simplify_gen_binary (code, mode, false0, false1);
7484 return cond0 ? cond0 : cond1;
7487 /* See if we have PLUS, IOR, XOR, MINUS or UMAX, where one of the
7488 operands is zero when the other is nonzero, and vice-versa,
7489 and STORE_FLAG_VALUE is 1 or -1. */
7491 if ((STORE_FLAG_VALUE == 1 || STORE_FLAG_VALUE == -1)
7492 && (code == PLUS || code == IOR || code == XOR || code == MINUS
7493 || code == UMAX)
7494 && GET_CODE (XEXP (x, 0)) == MULT && GET_CODE (XEXP (x, 1)) == MULT)
7496 rtx op0 = XEXP (XEXP (x, 0), 1);
7497 rtx op1 = XEXP (XEXP (x, 1), 1);
7499 cond0 = XEXP (XEXP (x, 0), 0);
7500 cond1 = XEXP (XEXP (x, 1), 0);
7502 if (COMPARISON_P (cond0)
7503 && COMPARISON_P (cond1)
7504 && ((GET_CODE (cond0) == reversed_comparison_code (cond1, NULL)
7505 && rtx_equal_p (XEXP (cond0, 0), XEXP (cond1, 0))
7506 && rtx_equal_p (XEXP (cond0, 1), XEXP (cond1, 1)))
7507 || ((swap_condition (GET_CODE (cond0))
7508 == reversed_comparison_code (cond1, NULL))
7509 && rtx_equal_p (XEXP (cond0, 0), XEXP (cond1, 1))
7510 && rtx_equal_p (XEXP (cond0, 1), XEXP (cond1, 0))))
7511 && ! side_effects_p (x))
7513 *ptrue = simplify_gen_binary (MULT, mode, op0, const_true_rtx);
7514 *pfalse = simplify_gen_binary (MULT, mode,
7515 (code == MINUS
7516 ? simplify_gen_unary (NEG, mode,
7517 op1, mode)
7518 : op1),
7519 const_true_rtx);
7520 return cond0;
7524 /* Similarly for MULT, AND and UMIN, except that for these the result
7525 is always zero. */
7526 if ((STORE_FLAG_VALUE == 1 || STORE_FLAG_VALUE == -1)
7527 && (code == MULT || code == AND || code == UMIN)
7528 && GET_CODE (XEXP (x, 0)) == MULT && GET_CODE (XEXP (x, 1)) == MULT)
7530 cond0 = XEXP (XEXP (x, 0), 0);
7531 cond1 = XEXP (XEXP (x, 1), 0);
7533 if (COMPARISON_P (cond0)
7534 && COMPARISON_P (cond1)
7535 && ((GET_CODE (cond0) == reversed_comparison_code (cond1, NULL)
7536 && rtx_equal_p (XEXP (cond0, 0), XEXP (cond1, 0))
7537 && rtx_equal_p (XEXP (cond0, 1), XEXP (cond1, 1)))
7538 || ((swap_condition (GET_CODE (cond0))
7539 == reversed_comparison_code (cond1, NULL))
7540 && rtx_equal_p (XEXP (cond0, 0), XEXP (cond1, 1))
7541 && rtx_equal_p (XEXP (cond0, 1), XEXP (cond1, 0))))
7542 && ! side_effects_p (x))
7544 *ptrue = *pfalse = const0_rtx;
7545 return cond0;
7550 else if (code == IF_THEN_ELSE)
7552 /* If we have IF_THEN_ELSE already, extract the condition and
7553 canonicalize it if it is NE or EQ. */
7554 cond0 = XEXP (x, 0);
7555 *ptrue = XEXP (x, 1), *pfalse = XEXP (x, 2);
7556 if (GET_CODE (cond0) == NE && XEXP (cond0, 1) == const0_rtx)
7557 return XEXP (cond0, 0);
7558 else if (GET_CODE (cond0) == EQ && XEXP (cond0, 1) == const0_rtx)
7560 *ptrue = XEXP (x, 2), *pfalse = XEXP (x, 1);
7561 return XEXP (cond0, 0);
7563 else
7564 return cond0;
7567 /* If X is a SUBREG, we can narrow both the true and false values
7568 if the inner expression, if there is a condition. */
7569 else if (code == SUBREG
7570 && 0 != (cond0 = if_then_else_cond (SUBREG_REG (x),
7571 &true0, &false0)))
7573 true0 = simplify_gen_subreg (mode, true0,
7574 GET_MODE (SUBREG_REG (x)), SUBREG_BYTE (x));
7575 false0 = simplify_gen_subreg (mode, false0,
7576 GET_MODE (SUBREG_REG (x)), SUBREG_BYTE (x));
7577 if (true0 && false0)
7579 *ptrue = true0;
7580 *pfalse = false0;
7581 return cond0;
7585 /* If X is a constant, this isn't special and will cause confusions
7586 if we treat it as such. Likewise if it is equivalent to a constant. */
7587 else if (CONSTANT_P (x)
7588 || ((cond0 = get_last_value (x)) != 0 && CONSTANT_P (cond0)))
7591 /* If we're in BImode, canonicalize on 0 and STORE_FLAG_VALUE, as that
7592 will be least confusing to the rest of the compiler. */
7593 else if (mode == BImode)
7595 *ptrue = GEN_INT (STORE_FLAG_VALUE), *pfalse = const0_rtx;
7596 return x;
7599 /* If X is known to be either 0 or -1, those are the true and
7600 false values when testing X. */
7601 else if (x == constm1_rtx || x == const0_rtx
7602 || (mode != VOIDmode
7603 && num_sign_bit_copies (x, mode) == GET_MODE_BITSIZE (mode)))
7605 *ptrue = constm1_rtx, *pfalse = const0_rtx;
7606 return x;
7609 /* Likewise for 0 or a single bit. */
7610 else if (SCALAR_INT_MODE_P (mode)
7611 && GET_MODE_BITSIZE (mode) <= HOST_BITS_PER_WIDE_INT
7612 && exact_log2 (nz = nonzero_bits (x, mode)) >= 0)
7614 *ptrue = gen_int_mode (nz, mode), *pfalse = const0_rtx;
7615 return x;
7618 /* Otherwise fail; show no condition with true and false values the same. */
7619 *ptrue = *pfalse = x;
7620 return 0;
7623 /* Return the value of expression X given the fact that condition COND
7624 is known to be true when applied to REG as its first operand and VAL
7625 as its second. X is known to not be shared and so can be modified in
7626 place.
7628 We only handle the simplest cases, and specifically those cases that
7629 arise with IF_THEN_ELSE expressions. */
7631 static rtx
7632 known_cond (rtx x, enum rtx_code cond, rtx reg, rtx val)
7634 enum rtx_code code = GET_CODE (x);
7635 rtx temp;
7636 const char *fmt;
7637 int i, j;
7639 if (side_effects_p (x))
7640 return x;
7642 /* If either operand of the condition is a floating point value,
7643 then we have to avoid collapsing an EQ comparison. */
7644 if (cond == EQ
7645 && rtx_equal_p (x, reg)
7646 && ! FLOAT_MODE_P (GET_MODE (x))
7647 && ! FLOAT_MODE_P (GET_MODE (val)))
7648 return val;
7650 if (cond == UNEQ && rtx_equal_p (x, reg))
7651 return val;
7653 /* If X is (abs REG) and we know something about REG's relationship
7654 with zero, we may be able to simplify this. */
7656 if (code == ABS && rtx_equal_p (XEXP (x, 0), reg) && val == const0_rtx)
7657 switch (cond)
7659 case GE: case GT: case EQ:
7660 return XEXP (x, 0);
7661 case LT: case LE:
7662 return simplify_gen_unary (NEG, GET_MODE (XEXP (x, 0)),
7663 XEXP (x, 0),
7664 GET_MODE (XEXP (x, 0)));
7665 default:
7666 break;
7669 /* The only other cases we handle are MIN, MAX, and comparisons if the
7670 operands are the same as REG and VAL. */
7672 else if (COMPARISON_P (x) || COMMUTATIVE_ARITH_P (x))
7674 if (rtx_equal_p (XEXP (x, 0), val))
7675 cond = swap_condition (cond), temp = val, val = reg, reg = temp;
7677 if (rtx_equal_p (XEXP (x, 0), reg) && rtx_equal_p (XEXP (x, 1), val))
7679 if (COMPARISON_P (x))
7681 if (comparison_dominates_p (cond, code))
7682 return const_true_rtx;
7684 code = reversed_comparison_code (x, NULL);
7685 if (code != UNKNOWN
7686 && comparison_dominates_p (cond, code))
7687 return const0_rtx;
7688 else
7689 return x;
7691 else if (code == SMAX || code == SMIN
7692 || code == UMIN || code == UMAX)
7694 int unsignedp = (code == UMIN || code == UMAX);
7696 /* Do not reverse the condition when it is NE or EQ.
7697 This is because we cannot conclude anything about
7698 the value of 'SMAX (x, y)' when x is not equal to y,
7699 but we can when x equals y. */
7700 if ((code == SMAX || code == UMAX)
7701 && ! (cond == EQ || cond == NE))
7702 cond = reverse_condition (cond);
7704 switch (cond)
7706 case GE: case GT:
7707 return unsignedp ? x : XEXP (x, 1);
7708 case LE: case LT:
7709 return unsignedp ? x : XEXP (x, 0);
7710 case GEU: case GTU:
7711 return unsignedp ? XEXP (x, 1) : x;
7712 case LEU: case LTU:
7713 return unsignedp ? XEXP (x, 0) : x;
7714 default:
7715 break;
7720 else if (code == SUBREG)
7722 enum machine_mode inner_mode = GET_MODE (SUBREG_REG (x));
7723 rtx new, r = known_cond (SUBREG_REG (x), cond, reg, val);
7725 if (SUBREG_REG (x) != r)
7727 /* We must simplify subreg here, before we lose track of the
7728 original inner_mode. */
7729 new = simplify_subreg (GET_MODE (x), r,
7730 inner_mode, SUBREG_BYTE (x));
7731 if (new)
7732 return new;
7733 else
7734 SUBST (SUBREG_REG (x), r);
7737 return x;
7739 /* We don't have to handle SIGN_EXTEND here, because even in the
7740 case of replacing something with a modeless CONST_INT, a
7741 CONST_INT is already (supposed to be) a valid sign extension for
7742 its narrower mode, which implies it's already properly
7743 sign-extended for the wider mode. Now, for ZERO_EXTEND, the
7744 story is different. */
7745 else if (code == ZERO_EXTEND)
7747 enum machine_mode inner_mode = GET_MODE (XEXP (x, 0));
7748 rtx new, r = known_cond (XEXP (x, 0), cond, reg, val);
7750 if (XEXP (x, 0) != r)
7752 /* We must simplify the zero_extend here, before we lose
7753 track of the original inner_mode. */
7754 new = simplify_unary_operation (ZERO_EXTEND, GET_MODE (x),
7755 r, inner_mode);
7756 if (new)
7757 return new;
7758 else
7759 SUBST (XEXP (x, 0), r);
7762 return x;
7765 fmt = GET_RTX_FORMAT (code);
7766 for (i = GET_RTX_LENGTH (code) - 1; i >= 0; i--)
7768 if (fmt[i] == 'e')
7769 SUBST (XEXP (x, i), known_cond (XEXP (x, i), cond, reg, val));
7770 else if (fmt[i] == 'E')
7771 for (j = XVECLEN (x, i) - 1; j >= 0; j--)
7772 SUBST (XVECEXP (x, i, j), known_cond (XVECEXP (x, i, j),
7773 cond, reg, val));
7776 return x;
7779 /* See if X and Y are equal for the purposes of seeing if we can rewrite an
7780 assignment as a field assignment. */
7782 static int
7783 rtx_equal_for_field_assignment_p (rtx x, rtx y)
7785 if (x == y || rtx_equal_p (x, y))
7786 return 1;
7788 if (x == 0 || y == 0 || GET_MODE (x) != GET_MODE (y))
7789 return 0;
7791 /* Check for a paradoxical SUBREG of a MEM compared with the MEM.
7792 Note that all SUBREGs of MEM are paradoxical; otherwise they
7793 would have been rewritten. */
7794 if (MEM_P (x) && GET_CODE (y) == SUBREG
7795 && MEM_P (SUBREG_REG (y))
7796 && rtx_equal_p (SUBREG_REG (y),
7797 gen_lowpart (GET_MODE (SUBREG_REG (y)), x)))
7798 return 1;
7800 if (MEM_P (y) && GET_CODE (x) == SUBREG
7801 && MEM_P (SUBREG_REG (x))
7802 && rtx_equal_p (SUBREG_REG (x),
7803 gen_lowpart (GET_MODE (SUBREG_REG (x)), y)))
7804 return 1;
7806 /* We used to see if get_last_value of X and Y were the same but that's
7807 not correct. In one direction, we'll cause the assignment to have
7808 the wrong destination and in the case, we'll import a register into this
7809 insn that might have already have been dead. So fail if none of the
7810 above cases are true. */
7811 return 0;
7814 /* See if X, a SET operation, can be rewritten as a bit-field assignment.
7815 Return that assignment if so.
7817 We only handle the most common cases. */
7819 static rtx
7820 make_field_assignment (rtx x)
7822 rtx dest = SET_DEST (x);
7823 rtx src = SET_SRC (x);
7824 rtx assign;
7825 rtx rhs, lhs;
7826 HOST_WIDE_INT c1;
7827 HOST_WIDE_INT pos;
7828 unsigned HOST_WIDE_INT len;
7829 rtx other;
7830 enum machine_mode mode;
7832 /* If SRC was (and (not (ashift (const_int 1) POS)) DEST), this is
7833 a clear of a one-bit field. We will have changed it to
7834 (and (rotate (const_int -2) POS) DEST), so check for that. Also check
7835 for a SUBREG. */
7837 if (GET_CODE (src) == AND && GET_CODE (XEXP (src, 0)) == ROTATE
7838 && GET_CODE (XEXP (XEXP (src, 0), 0)) == CONST_INT
7839 && INTVAL (XEXP (XEXP (src, 0), 0)) == -2
7840 && rtx_equal_for_field_assignment_p (dest, XEXP (src, 1)))
7842 assign = make_extraction (VOIDmode, dest, 0, XEXP (XEXP (src, 0), 1),
7843 1, 1, 1, 0);
7844 if (assign != 0)
7845 return gen_rtx_SET (VOIDmode, assign, const0_rtx);
7846 return x;
7849 if (GET_CODE (src) == AND && GET_CODE (XEXP (src, 0)) == SUBREG
7850 && subreg_lowpart_p (XEXP (src, 0))
7851 && (GET_MODE_SIZE (GET_MODE (XEXP (src, 0)))
7852 < GET_MODE_SIZE (GET_MODE (SUBREG_REG (XEXP (src, 0)))))
7853 && GET_CODE (SUBREG_REG (XEXP (src, 0))) == ROTATE
7854 && GET_CODE (XEXP (SUBREG_REG (XEXP (src, 0)), 0)) == CONST_INT
7855 && INTVAL (XEXP (SUBREG_REG (XEXP (src, 0)), 0)) == -2
7856 && rtx_equal_for_field_assignment_p (dest, XEXP (src, 1)))
7858 assign = make_extraction (VOIDmode, dest, 0,
7859 XEXP (SUBREG_REG (XEXP (src, 0)), 1),
7860 1, 1, 1, 0);
7861 if (assign != 0)
7862 return gen_rtx_SET (VOIDmode, assign, const0_rtx);
7863 return x;
7866 /* If SRC is (ior (ashift (const_int 1) POS) DEST), this is a set of a
7867 one-bit field. */
7868 if (GET_CODE (src) == IOR && GET_CODE (XEXP (src, 0)) == ASHIFT
7869 && XEXP (XEXP (src, 0), 0) == const1_rtx
7870 && rtx_equal_for_field_assignment_p (dest, XEXP (src, 1)))
7872 assign = make_extraction (VOIDmode, dest, 0, XEXP (XEXP (src, 0), 1),
7873 1, 1, 1, 0);
7874 if (assign != 0)
7875 return gen_rtx_SET (VOIDmode, assign, const1_rtx);
7876 return x;
7879 /* If DEST is already a field assignment, i.e. ZERO_EXTRACT, and the
7880 SRC is an AND with all bits of that field set, then we can discard
7881 the AND. */
7882 if (GET_CODE (dest) == ZERO_EXTRACT
7883 && GET_CODE (XEXP (dest, 1)) == CONST_INT
7884 && GET_CODE (src) == AND
7885 && GET_CODE (XEXP (src, 1)) == CONST_INT)
7887 HOST_WIDE_INT width = INTVAL (XEXP (dest, 1));
7888 unsigned HOST_WIDE_INT and_mask = INTVAL (XEXP (src, 1));
7889 unsigned HOST_WIDE_INT ze_mask;
7891 if (width >= HOST_BITS_PER_WIDE_INT)
7892 ze_mask = -1;
7893 else
7894 ze_mask = ((unsigned HOST_WIDE_INT)1 << width) - 1;
7896 /* Complete overlap. We can remove the source AND. */
7897 if ((and_mask & ze_mask) == ze_mask)
7898 return gen_rtx_SET (VOIDmode, dest, XEXP (src, 0));
7900 /* Partial overlap. We can reduce the source AND. */
7901 if ((and_mask & ze_mask) != and_mask)
7903 mode = GET_MODE (src);
7904 src = gen_rtx_AND (mode, XEXP (src, 0),
7905 gen_int_mode (and_mask & ze_mask, mode));
7906 return gen_rtx_SET (VOIDmode, dest, src);
7910 /* The other case we handle is assignments into a constant-position
7911 field. They look like (ior/xor (and DEST C1) OTHER). If C1 represents
7912 a mask that has all one bits except for a group of zero bits and
7913 OTHER is known to have zeros where C1 has ones, this is such an
7914 assignment. Compute the position and length from C1. Shift OTHER
7915 to the appropriate position, force it to the required mode, and
7916 make the extraction. Check for the AND in both operands. */
7918 if (GET_CODE (src) != IOR && GET_CODE (src) != XOR)
7919 return x;
7921 rhs = expand_compound_operation (XEXP (src, 0));
7922 lhs = expand_compound_operation (XEXP (src, 1));
7924 if (GET_CODE (rhs) == AND
7925 && GET_CODE (XEXP (rhs, 1)) == CONST_INT
7926 && rtx_equal_for_field_assignment_p (XEXP (rhs, 0), dest))
7927 c1 = INTVAL (XEXP (rhs, 1)), other = lhs;
7928 else if (GET_CODE (lhs) == AND
7929 && GET_CODE (XEXP (lhs, 1)) == CONST_INT
7930 && rtx_equal_for_field_assignment_p (XEXP (lhs, 0), dest))
7931 c1 = INTVAL (XEXP (lhs, 1)), other = rhs;
7932 else
7933 return x;
7935 pos = get_pos_from_mask ((~c1) & GET_MODE_MASK (GET_MODE (dest)), &len);
7936 if (pos < 0 || pos + len > GET_MODE_BITSIZE (GET_MODE (dest))
7937 || GET_MODE_BITSIZE (GET_MODE (dest)) > HOST_BITS_PER_WIDE_INT
7938 || (c1 & nonzero_bits (other, GET_MODE (dest))) != 0)
7939 return x;
7941 assign = make_extraction (VOIDmode, dest, pos, NULL_RTX, len, 1, 1, 0);
7942 if (assign == 0)
7943 return x;
7945 /* The mode to use for the source is the mode of the assignment, or of
7946 what is inside a possible STRICT_LOW_PART. */
7947 mode = (GET_CODE (assign) == STRICT_LOW_PART
7948 ? GET_MODE (XEXP (assign, 0)) : GET_MODE (assign));
7950 /* Shift OTHER right POS places and make it the source, restricting it
7951 to the proper length and mode. */
7953 src = force_to_mode (simplify_shift_const (NULL_RTX, LSHIFTRT,
7954 GET_MODE (src), other, pos),
7955 mode,
7956 GET_MODE_BITSIZE (mode) >= HOST_BITS_PER_WIDE_INT
7957 ? ~(unsigned HOST_WIDE_INT) 0
7958 : ((unsigned HOST_WIDE_INT) 1 << len) - 1,
7959 dest, 0);
7961 /* If SRC is masked by an AND that does not make a difference in
7962 the value being stored, strip it. */
7963 if (GET_CODE (assign) == ZERO_EXTRACT
7964 && GET_CODE (XEXP (assign, 1)) == CONST_INT
7965 && INTVAL (XEXP (assign, 1)) < HOST_BITS_PER_WIDE_INT
7966 && GET_CODE (src) == AND
7967 && GET_CODE (XEXP (src, 1)) == CONST_INT
7968 && ((unsigned HOST_WIDE_INT) INTVAL (XEXP (src, 1))
7969 == ((unsigned HOST_WIDE_INT) 1 << INTVAL (XEXP (assign, 1))) - 1))
7970 src = XEXP (src, 0);
7972 return gen_rtx_SET (VOIDmode, assign, src);
7975 /* See if X is of the form (+ (* a c) (* b c)) and convert to (* (+ a b) c)
7976 if so. */
7978 static rtx
7979 apply_distributive_law (rtx x)
7981 enum rtx_code code = GET_CODE (x);
7982 enum rtx_code inner_code;
7983 rtx lhs, rhs, other;
7984 rtx tem;
7986 /* Distributivity is not true for floating point as it can change the
7987 value. So we don't do it unless -funsafe-math-optimizations. */
7988 if (FLOAT_MODE_P (GET_MODE (x))
7989 && ! flag_unsafe_math_optimizations)
7990 return x;
7992 /* The outer operation can only be one of the following: */
7993 if (code != IOR && code != AND && code != XOR
7994 && code != PLUS && code != MINUS)
7995 return x;
7997 lhs = XEXP (x, 0);
7998 rhs = XEXP (x, 1);
8000 /* If either operand is a primitive we can't do anything, so get out
8001 fast. */
8002 if (OBJECT_P (lhs) || OBJECT_P (rhs))
8003 return x;
8005 lhs = expand_compound_operation (lhs);
8006 rhs = expand_compound_operation (rhs);
8007 inner_code = GET_CODE (lhs);
8008 if (inner_code != GET_CODE (rhs))
8009 return x;
8011 /* See if the inner and outer operations distribute. */
8012 switch (inner_code)
8014 case LSHIFTRT:
8015 case ASHIFTRT:
8016 case AND:
8017 case IOR:
8018 /* These all distribute except over PLUS. */
8019 if (code == PLUS || code == MINUS)
8020 return x;
8021 break;
8023 case MULT:
8024 if (code != PLUS && code != MINUS)
8025 return x;
8026 break;
8028 case ASHIFT:
8029 /* This is also a multiply, so it distributes over everything. */
8030 break;
8032 case SUBREG:
8033 /* Non-paradoxical SUBREGs distributes over all operations, provided
8034 the inner modes and byte offsets are the same, this is an extraction
8035 of a low-order part, we don't convert an fp operation to int or
8036 vice versa, and we would not be converting a single-word
8037 operation into a multi-word operation. The latter test is not
8038 required, but it prevents generating unneeded multi-word operations.
8039 Some of the previous tests are redundant given the latter test, but
8040 are retained because they are required for correctness.
8042 We produce the result slightly differently in this case. */
8044 if (GET_MODE (SUBREG_REG (lhs)) != GET_MODE (SUBREG_REG (rhs))
8045 || SUBREG_BYTE (lhs) != SUBREG_BYTE (rhs)
8046 || ! subreg_lowpart_p (lhs)
8047 || (GET_MODE_CLASS (GET_MODE (lhs))
8048 != GET_MODE_CLASS (GET_MODE (SUBREG_REG (lhs))))
8049 || (GET_MODE_SIZE (GET_MODE (lhs))
8050 > GET_MODE_SIZE (GET_MODE (SUBREG_REG (lhs))))
8051 || GET_MODE_SIZE (GET_MODE (SUBREG_REG (lhs))) > UNITS_PER_WORD)
8052 return x;
8054 tem = simplify_gen_binary (code, GET_MODE (SUBREG_REG (lhs)),
8055 SUBREG_REG (lhs), SUBREG_REG (rhs));
8056 return gen_lowpart (GET_MODE (x), tem);
8058 default:
8059 return x;
8062 /* Set LHS and RHS to the inner operands (A and B in the example
8063 above) and set OTHER to the common operand (C in the example).
8064 There is only one way to do this unless the inner operation is
8065 commutative. */
8066 if (COMMUTATIVE_ARITH_P (lhs)
8067 && rtx_equal_p (XEXP (lhs, 0), XEXP (rhs, 0)))
8068 other = XEXP (lhs, 0), lhs = XEXP (lhs, 1), rhs = XEXP (rhs, 1);
8069 else if (COMMUTATIVE_ARITH_P (lhs)
8070 && rtx_equal_p (XEXP (lhs, 0), XEXP (rhs, 1)))
8071 other = XEXP (lhs, 0), lhs = XEXP (lhs, 1), rhs = XEXP (rhs, 0);
8072 else if (COMMUTATIVE_ARITH_P (lhs)
8073 && rtx_equal_p (XEXP (lhs, 1), XEXP (rhs, 0)))
8074 other = XEXP (lhs, 1), lhs = XEXP (lhs, 0), rhs = XEXP (rhs, 1);
8075 else if (rtx_equal_p (XEXP (lhs, 1), XEXP (rhs, 1)))
8076 other = XEXP (lhs, 1), lhs = XEXP (lhs, 0), rhs = XEXP (rhs, 0);
8077 else
8078 return x;
8080 /* Form the new inner operation, seeing if it simplifies first. */
8081 tem = simplify_gen_binary (code, GET_MODE (x), lhs, rhs);
8083 /* There is one exception to the general way of distributing:
8084 (a | c) ^ (b | c) -> (a ^ b) & ~c */
8085 if (code == XOR && inner_code == IOR)
8087 inner_code = AND;
8088 other = simplify_gen_unary (NOT, GET_MODE (x), other, GET_MODE (x));
8091 /* We may be able to continuing distributing the result, so call
8092 ourselves recursively on the inner operation before forming the
8093 outer operation, which we return. */
8094 return simplify_gen_binary (inner_code, GET_MODE (x),
8095 apply_distributive_law (tem), other);
8098 /* See if X is of the form (* (+ A B) C), and if so convert to
8099 (+ (* A C) (* B C)) and try to simplify.
8101 Most of the time, this results in no change. However, if some of
8102 the operands are the same or inverses of each other, simplifications
8103 will result.
8105 For example, (and (ior A B) (not B)) can occur as the result of
8106 expanding a bit field assignment. When we apply the distributive
8107 law to this, we get (ior (and (A (not B))) (and (B (not B)))),
8108 which then simplifies to (and (A (not B))).
8110 Note that no checks happen on the validity of applying the inverse
8111 distributive law. This is pointless since we can do it in the
8112 few places where this routine is called.
8114 N is the index of the term that is decomposed (the arithmetic operation,
8115 i.e. (+ A B) in the first example above). !N is the index of the term that
8116 is distributed, i.e. of C in the first example above. */
8117 static rtx
8118 distribute_and_simplify_rtx (rtx x, int n)
8120 enum machine_mode mode;
8121 enum rtx_code outer_code, inner_code;
8122 rtx decomposed, distributed, inner_op0, inner_op1, new_op0, new_op1, tmp;
8124 decomposed = XEXP (x, n);
8125 if (!ARITHMETIC_P (decomposed))
8126 return NULL_RTX;
8128 mode = GET_MODE (x);
8129 outer_code = GET_CODE (x);
8130 distributed = XEXP (x, !n);
8132 inner_code = GET_CODE (decomposed);
8133 inner_op0 = XEXP (decomposed, 0);
8134 inner_op1 = XEXP (decomposed, 1);
8136 /* Special case (and (xor B C) (not A)), which is equivalent to
8137 (xor (ior A B) (ior A C)) */
8138 if (outer_code == AND && inner_code == XOR && GET_CODE (distributed) == NOT)
8140 distributed = XEXP (distributed, 0);
8141 outer_code = IOR;
8144 if (n == 0)
8146 /* Distribute the second term. */
8147 new_op0 = simplify_gen_binary (outer_code, mode, inner_op0, distributed);
8148 new_op1 = simplify_gen_binary (outer_code, mode, inner_op1, distributed);
8150 else
8152 /* Distribute the first term. */
8153 new_op0 = simplify_gen_binary (outer_code, mode, distributed, inner_op0);
8154 new_op1 = simplify_gen_binary (outer_code, mode, distributed, inner_op1);
8157 tmp = apply_distributive_law (simplify_gen_binary (inner_code, mode,
8158 new_op0, new_op1));
8159 if (GET_CODE (tmp) != outer_code
8160 && rtx_cost (tmp, SET) < rtx_cost (x, SET))
8161 return tmp;
8163 return NULL_RTX;
8166 /* We have X, a logical `and' of VAROP with the constant CONSTOP, to be done
8167 in MODE.
8169 Return an equivalent form, if different from X. Otherwise, return X. If
8170 X is zero, we are to always construct the equivalent form. */
8172 static rtx
8173 simplify_and_const_int (rtx x, enum machine_mode mode, rtx varop,
8174 unsigned HOST_WIDE_INT constop)
8176 unsigned HOST_WIDE_INT nonzero;
8177 int i;
8179 /* Simplify VAROP knowing that we will be only looking at some of the
8180 bits in it.
8182 Note by passing in CONSTOP, we guarantee that the bits not set in
8183 CONSTOP are not significant and will never be examined. We must
8184 ensure that is the case by explicitly masking out those bits
8185 before returning. */
8186 varop = force_to_mode (varop, mode, constop, NULL_RTX, 0);
8188 /* If VAROP is a CLOBBER, we will fail so return it. */
8189 if (GET_CODE (varop) == CLOBBER)
8190 return varop;
8192 /* If VAROP is a CONST_INT, then we need to apply the mask in CONSTOP
8193 to VAROP and return the new constant. */
8194 if (GET_CODE (varop) == CONST_INT)
8195 return gen_int_mode (INTVAL (varop) & constop, mode);
8197 /* See what bits may be nonzero in VAROP. Unlike the general case of
8198 a call to nonzero_bits, here we don't care about bits outside
8199 MODE. */
8201 nonzero = nonzero_bits (varop, mode) & GET_MODE_MASK (mode);
8203 /* Turn off all bits in the constant that are known to already be zero.
8204 Thus, if the AND isn't needed at all, we will have CONSTOP == NONZERO_BITS
8205 which is tested below. */
8207 constop &= nonzero;
8209 /* If we don't have any bits left, return zero. */
8210 if (constop == 0)
8211 return const0_rtx;
8213 /* If VAROP is a NEG of something known to be zero or 1 and CONSTOP is
8214 a power of two, we can replace this with an ASHIFT. */
8215 if (GET_CODE (varop) == NEG && nonzero_bits (XEXP (varop, 0), mode) == 1
8216 && (i = exact_log2 (constop)) >= 0)
8217 return simplify_shift_const (NULL_RTX, ASHIFT, mode, XEXP (varop, 0), i);
8219 /* If VAROP is an IOR or XOR, apply the AND to both branches of the IOR
8220 or XOR, then try to apply the distributive law. This may eliminate
8221 operations if either branch can be simplified because of the AND.
8222 It may also make some cases more complex, but those cases probably
8223 won't match a pattern either with or without this. */
8225 if (GET_CODE (varop) == IOR || GET_CODE (varop) == XOR)
8226 return
8227 gen_lowpart
8228 (mode,
8229 apply_distributive_law
8230 (simplify_gen_binary (GET_CODE (varop), GET_MODE (varop),
8231 simplify_and_const_int (NULL_RTX,
8232 GET_MODE (varop),
8233 XEXP (varop, 0),
8234 constop),
8235 simplify_and_const_int (NULL_RTX,
8236 GET_MODE (varop),
8237 XEXP (varop, 1),
8238 constop))));
8240 /* If VAROP is PLUS, and the constant is a mask of low bite, distribute
8241 the AND and see if one of the operands simplifies to zero. If so, we
8242 may eliminate it. */
8244 if (GET_CODE (varop) == PLUS
8245 && exact_log2 (constop + 1) >= 0)
8247 rtx o0, o1;
8249 o0 = simplify_and_const_int (NULL_RTX, mode, XEXP (varop, 0), constop);
8250 o1 = simplify_and_const_int (NULL_RTX, mode, XEXP (varop, 1), constop);
8251 if (o0 == const0_rtx)
8252 return o1;
8253 if (o1 == const0_rtx)
8254 return o0;
8257 /* Get VAROP in MODE. Try to get a SUBREG if not. Don't make a new SUBREG
8258 if we already had one (just check for the simplest cases). */
8259 if (x && GET_CODE (XEXP (x, 0)) == SUBREG
8260 && GET_MODE (XEXP (x, 0)) == mode
8261 && SUBREG_REG (XEXP (x, 0)) == varop)
8262 varop = XEXP (x, 0);
8263 else
8264 varop = gen_lowpart (mode, varop);
8266 /* If we can't make the SUBREG, try to return what we were given. */
8267 if (GET_CODE (varop) == CLOBBER)
8268 return x ? x : varop;
8270 /* If we are only masking insignificant bits, return VAROP. */
8271 if (constop == nonzero)
8272 x = varop;
8273 else
8275 /* Otherwise, return an AND. */
8276 constop = trunc_int_for_mode (constop, mode);
8277 /* See how much, if any, of X we can use. */
8278 if (x == 0 || GET_CODE (x) != AND || GET_MODE (x) != mode)
8279 x = simplify_gen_binary (AND, mode, varop, GEN_INT (constop));
8281 else
8283 if (GET_CODE (XEXP (x, 1)) != CONST_INT
8284 || (unsigned HOST_WIDE_INT) INTVAL (XEXP (x, 1)) != constop)
8285 SUBST (XEXP (x, 1), GEN_INT (constop));
8287 SUBST (XEXP (x, 0), varop);
8291 return x;
8294 /* Given a REG, X, compute which bits in X can be nonzero.
8295 We don't care about bits outside of those defined in MODE.
8297 For most X this is simply GET_MODE_MASK (GET_MODE (MODE)), but if X is
8298 a shift, AND, or zero_extract, we can do better. */
8300 static rtx
8301 reg_nonzero_bits_for_combine (rtx x, enum machine_mode mode,
8302 rtx known_x ATTRIBUTE_UNUSED,
8303 enum machine_mode known_mode ATTRIBUTE_UNUSED,
8304 unsigned HOST_WIDE_INT known_ret ATTRIBUTE_UNUSED,
8305 unsigned HOST_WIDE_INT *nonzero)
8307 rtx tem;
8309 /* If X is a register whose nonzero bits value is current, use it.
8310 Otherwise, if X is a register whose value we can find, use that
8311 value. Otherwise, use the previously-computed global nonzero bits
8312 for this register. */
8314 if (reg_stat[REGNO (x)].last_set_value != 0
8315 && (reg_stat[REGNO (x)].last_set_mode == mode
8316 || (GET_MODE_CLASS (reg_stat[REGNO (x)].last_set_mode) == MODE_INT
8317 && GET_MODE_CLASS (mode) == MODE_INT))
8318 && (reg_stat[REGNO (x)].last_set_label == label_tick
8319 || (REGNO (x) >= FIRST_PSEUDO_REGISTER
8320 && REG_N_SETS (REGNO (x)) == 1
8321 && ! REGNO_REG_SET_P (ENTRY_BLOCK_PTR->next_bb->global_live_at_start,
8322 REGNO (x))))
8323 && INSN_CUID (reg_stat[REGNO (x)].last_set) < subst_low_cuid)
8325 *nonzero &= reg_stat[REGNO (x)].last_set_nonzero_bits;
8326 return NULL;
8329 tem = get_last_value (x);
8331 if (tem)
8333 #ifdef SHORT_IMMEDIATES_SIGN_EXTEND
8334 /* If X is narrower than MODE and TEM is a non-negative
8335 constant that would appear negative in the mode of X,
8336 sign-extend it for use in reg_nonzero_bits because some
8337 machines (maybe most) will actually do the sign-extension
8338 and this is the conservative approach.
8340 ??? For 2.5, try to tighten up the MD files in this regard
8341 instead of this kludge. */
8343 if (GET_MODE_BITSIZE (GET_MODE (x)) < GET_MODE_BITSIZE (mode)
8344 && GET_CODE (tem) == CONST_INT
8345 && INTVAL (tem) > 0
8346 && 0 != (INTVAL (tem)
8347 & ((HOST_WIDE_INT) 1
8348 << (GET_MODE_BITSIZE (GET_MODE (x)) - 1))))
8349 tem = GEN_INT (INTVAL (tem)
8350 | ((HOST_WIDE_INT) (-1)
8351 << GET_MODE_BITSIZE (GET_MODE (x))));
8352 #endif
8353 return tem;
8355 else if (nonzero_sign_valid && reg_stat[REGNO (x)].nonzero_bits)
8357 unsigned HOST_WIDE_INT mask = reg_stat[REGNO (x)].nonzero_bits;
8359 if (GET_MODE_BITSIZE (GET_MODE (x)) < GET_MODE_BITSIZE (mode))
8360 /* We don't know anything about the upper bits. */
8361 mask |= GET_MODE_MASK (mode) ^ GET_MODE_MASK (GET_MODE (x));
8362 *nonzero &= mask;
8365 return NULL;
8368 /* Return the number of bits at the high-order end of X that are known to
8369 be equal to the sign bit. X will be used in mode MODE; if MODE is
8370 VOIDmode, X will be used in its own mode. The returned value will always
8371 be between 1 and the number of bits in MODE. */
8373 static rtx
8374 reg_num_sign_bit_copies_for_combine (rtx x, enum machine_mode mode,
8375 rtx known_x ATTRIBUTE_UNUSED,
8376 enum machine_mode known_mode
8377 ATTRIBUTE_UNUSED,
8378 unsigned int known_ret ATTRIBUTE_UNUSED,
8379 unsigned int *result)
8381 rtx tem;
8383 if (reg_stat[REGNO (x)].last_set_value != 0
8384 && reg_stat[REGNO (x)].last_set_mode == mode
8385 && (reg_stat[REGNO (x)].last_set_label == label_tick
8386 || (REGNO (x) >= FIRST_PSEUDO_REGISTER
8387 && REG_N_SETS (REGNO (x)) == 1
8388 && ! REGNO_REG_SET_P (ENTRY_BLOCK_PTR->next_bb->global_live_at_start,
8389 REGNO (x))))
8390 && INSN_CUID (reg_stat[REGNO (x)].last_set) < subst_low_cuid)
8392 *result = reg_stat[REGNO (x)].last_set_sign_bit_copies;
8393 return NULL;
8396 tem = get_last_value (x);
8397 if (tem != 0)
8398 return tem;
8400 if (nonzero_sign_valid && reg_stat[REGNO (x)].sign_bit_copies != 0
8401 && GET_MODE_BITSIZE (GET_MODE (x)) == GET_MODE_BITSIZE (mode))
8402 *result = reg_stat[REGNO (x)].sign_bit_copies;
8404 return NULL;
8407 /* Return the number of "extended" bits there are in X, when interpreted
8408 as a quantity in MODE whose signedness is indicated by UNSIGNEDP. For
8409 unsigned quantities, this is the number of high-order zero bits.
8410 For signed quantities, this is the number of copies of the sign bit
8411 minus 1. In both case, this function returns the number of "spare"
8412 bits. For example, if two quantities for which this function returns
8413 at least 1 are added, the addition is known not to overflow.
8415 This function will always return 0 unless called during combine, which
8416 implies that it must be called from a define_split. */
8418 unsigned int
8419 extended_count (rtx x, enum machine_mode mode, int unsignedp)
8421 if (nonzero_sign_valid == 0)
8422 return 0;
8424 return (unsignedp
8425 ? (GET_MODE_BITSIZE (mode) <= HOST_BITS_PER_WIDE_INT
8426 ? (unsigned int) (GET_MODE_BITSIZE (mode) - 1
8427 - floor_log2 (nonzero_bits (x, mode)))
8428 : 0)
8429 : num_sign_bit_copies (x, mode) - 1);
8432 /* This function is called from `simplify_shift_const' to merge two
8433 outer operations. Specifically, we have already found that we need
8434 to perform operation *POP0 with constant *PCONST0 at the outermost
8435 position. We would now like to also perform OP1 with constant CONST1
8436 (with *POP0 being done last).
8438 Return 1 if we can do the operation and update *POP0 and *PCONST0 with
8439 the resulting operation. *PCOMP_P is set to 1 if we would need to
8440 complement the innermost operand, otherwise it is unchanged.
8442 MODE is the mode in which the operation will be done. No bits outside
8443 the width of this mode matter. It is assumed that the width of this mode
8444 is smaller than or equal to HOST_BITS_PER_WIDE_INT.
8446 If *POP0 or OP1 are UNKNOWN, it means no operation is required. Only NEG, PLUS,
8447 IOR, XOR, and AND are supported. We may set *POP0 to SET if the proper
8448 result is simply *PCONST0.
8450 If the resulting operation cannot be expressed as one operation, we
8451 return 0 and do not change *POP0, *PCONST0, and *PCOMP_P. */
8453 static int
8454 merge_outer_ops (enum rtx_code *pop0, HOST_WIDE_INT *pconst0, enum rtx_code op1, HOST_WIDE_INT const1, enum machine_mode mode, int *pcomp_p)
8456 enum rtx_code op0 = *pop0;
8457 HOST_WIDE_INT const0 = *pconst0;
8459 const0 &= GET_MODE_MASK (mode);
8460 const1 &= GET_MODE_MASK (mode);
8462 /* If OP0 is an AND, clear unimportant bits in CONST1. */
8463 if (op0 == AND)
8464 const1 &= const0;
8466 /* If OP0 or OP1 is UNKNOWN, this is easy. Similarly if they are the same or
8467 if OP0 is SET. */
8469 if (op1 == UNKNOWN || op0 == SET)
8470 return 1;
8472 else if (op0 == UNKNOWN)
8473 op0 = op1, const0 = const1;
8475 else if (op0 == op1)
8477 switch (op0)
8479 case AND:
8480 const0 &= const1;
8481 break;
8482 case IOR:
8483 const0 |= const1;
8484 break;
8485 case XOR:
8486 const0 ^= const1;
8487 break;
8488 case PLUS:
8489 const0 += const1;
8490 break;
8491 case NEG:
8492 op0 = UNKNOWN;
8493 break;
8494 default:
8495 break;
8499 /* Otherwise, if either is a PLUS or NEG, we can't do anything. */
8500 else if (op0 == PLUS || op1 == PLUS || op0 == NEG || op1 == NEG)
8501 return 0;
8503 /* If the two constants aren't the same, we can't do anything. The
8504 remaining six cases can all be done. */
8505 else if (const0 != const1)
8506 return 0;
8508 else
8509 switch (op0)
8511 case IOR:
8512 if (op1 == AND)
8513 /* (a & b) | b == b */
8514 op0 = SET;
8515 else /* op1 == XOR */
8516 /* (a ^ b) | b == a | b */
8518 break;
8520 case XOR:
8521 if (op1 == AND)
8522 /* (a & b) ^ b == (~a) & b */
8523 op0 = AND, *pcomp_p = 1;
8524 else /* op1 == IOR */
8525 /* (a | b) ^ b == a & ~b */
8526 op0 = AND, const0 = ~const0;
8527 break;
8529 case AND:
8530 if (op1 == IOR)
8531 /* (a | b) & b == b */
8532 op0 = SET;
8533 else /* op1 == XOR */
8534 /* (a ^ b) & b) == (~a) & b */
8535 *pcomp_p = 1;
8536 break;
8537 default:
8538 break;
8541 /* Check for NO-OP cases. */
8542 const0 &= GET_MODE_MASK (mode);
8543 if (const0 == 0
8544 && (op0 == IOR || op0 == XOR || op0 == PLUS))
8545 op0 = UNKNOWN;
8546 else if (const0 == 0 && op0 == AND)
8547 op0 = SET;
8548 else if ((unsigned HOST_WIDE_INT) const0 == GET_MODE_MASK (mode)
8549 && op0 == AND)
8550 op0 = UNKNOWN;
8552 /* ??? Slightly redundant with the above mask, but not entirely.
8553 Moving this above means we'd have to sign-extend the mode mask
8554 for the final test. */
8555 const0 = trunc_int_for_mode (const0, mode);
8557 *pop0 = op0;
8558 *pconst0 = const0;
8560 return 1;
8563 /* Simplify a shift of VAROP by COUNT bits. CODE says what kind of shift.
8564 The result of the shift is RESULT_MODE. X, if nonzero, is an expression
8565 that we started with.
8567 The shift is normally computed in the widest mode we find in VAROP, as
8568 long as it isn't a different number of words than RESULT_MODE. Exceptions
8569 are ASHIFTRT and ROTATE, which are always done in their original mode, */
8571 static rtx
8572 simplify_shift_const (rtx x, enum rtx_code code,
8573 enum machine_mode result_mode, rtx varop,
8574 int orig_count)
8576 enum rtx_code orig_code = code;
8577 unsigned int count;
8578 int signed_count;
8579 enum machine_mode mode = result_mode;
8580 enum machine_mode shift_mode, tmode;
8581 unsigned int mode_words
8582 = (GET_MODE_SIZE (mode) + (UNITS_PER_WORD - 1)) / UNITS_PER_WORD;
8583 /* We form (outer_op (code varop count) (outer_const)). */
8584 enum rtx_code outer_op = UNKNOWN;
8585 HOST_WIDE_INT outer_const = 0;
8586 rtx const_rtx;
8587 int complement_p = 0;
8588 rtx new;
8590 /* Make sure and truncate the "natural" shift on the way in. We don't
8591 want to do this inside the loop as it makes it more difficult to
8592 combine shifts. */
8593 if (SHIFT_COUNT_TRUNCATED)
8594 orig_count &= GET_MODE_BITSIZE (mode) - 1;
8596 /* If we were given an invalid count, don't do anything except exactly
8597 what was requested. */
8599 if (orig_count < 0 || orig_count >= (int) GET_MODE_BITSIZE (mode))
8601 if (x)
8602 return x;
8604 return gen_rtx_fmt_ee (code, mode, varop, GEN_INT (orig_count));
8607 count = orig_count;
8609 /* Unless one of the branches of the `if' in this loop does a `continue',
8610 we will `break' the loop after the `if'. */
8612 while (count != 0)
8614 /* If we have an operand of (clobber (const_int 0)), just return that
8615 value. */
8616 if (GET_CODE (varop) == CLOBBER)
8617 return varop;
8619 /* If we discovered we had to complement VAROP, leave. Making a NOT
8620 here would cause an infinite loop. */
8621 if (complement_p)
8622 break;
8624 /* Convert ROTATERT to ROTATE. */
8625 if (code == ROTATERT)
8627 unsigned int bitsize = GET_MODE_BITSIZE (result_mode);;
8628 code = ROTATE;
8629 if (VECTOR_MODE_P (result_mode))
8630 count = bitsize / GET_MODE_NUNITS (result_mode) - count;
8631 else
8632 count = bitsize - count;
8635 /* We need to determine what mode we will do the shift in. If the
8636 shift is a right shift or a ROTATE, we must always do it in the mode
8637 it was originally done in. Otherwise, we can do it in MODE, the
8638 widest mode encountered. */
8639 shift_mode
8640 = (code == ASHIFTRT || code == LSHIFTRT || code == ROTATE
8641 ? result_mode : mode);
8643 /* Handle cases where the count is greater than the size of the mode
8644 minus 1. For ASHIFT, use the size minus one as the count (this can
8645 occur when simplifying (lshiftrt (ashiftrt ..))). For rotates,
8646 take the count modulo the size. For other shifts, the result is
8647 zero.
8649 Since these shifts are being produced by the compiler by combining
8650 multiple operations, each of which are defined, we know what the
8651 result is supposed to be. */
8653 if (count > (unsigned int) (GET_MODE_BITSIZE (shift_mode) - 1))
8655 if (code == ASHIFTRT)
8656 count = GET_MODE_BITSIZE (shift_mode) - 1;
8657 else if (code == ROTATE || code == ROTATERT)
8658 count %= GET_MODE_BITSIZE (shift_mode);
8659 else
8661 /* We can't simply return zero because there may be an
8662 outer op. */
8663 varop = const0_rtx;
8664 count = 0;
8665 break;
8669 /* An arithmetic right shift of a quantity known to be -1 or 0
8670 is a no-op. */
8671 if (code == ASHIFTRT
8672 && (num_sign_bit_copies (varop, shift_mode)
8673 == GET_MODE_BITSIZE (shift_mode)))
8675 count = 0;
8676 break;
8679 /* If we are doing an arithmetic right shift and discarding all but
8680 the sign bit copies, this is equivalent to doing a shift by the
8681 bitsize minus one. Convert it into that shift because it will often
8682 allow other simplifications. */
8684 if (code == ASHIFTRT
8685 && (count + num_sign_bit_copies (varop, shift_mode)
8686 >= GET_MODE_BITSIZE (shift_mode)))
8687 count = GET_MODE_BITSIZE (shift_mode) - 1;
8689 /* We simplify the tests below and elsewhere by converting
8690 ASHIFTRT to LSHIFTRT if we know the sign bit is clear.
8691 `make_compound_operation' will convert it to an ASHIFTRT for
8692 those machines (such as VAX) that don't have an LSHIFTRT. */
8693 if (GET_MODE_BITSIZE (shift_mode) <= HOST_BITS_PER_WIDE_INT
8694 && code == ASHIFTRT
8695 && ((nonzero_bits (varop, shift_mode)
8696 & ((HOST_WIDE_INT) 1 << (GET_MODE_BITSIZE (shift_mode) - 1)))
8697 == 0))
8698 code = LSHIFTRT;
8700 if (code == LSHIFTRT
8701 && GET_MODE_BITSIZE (shift_mode) <= HOST_BITS_PER_WIDE_INT
8702 && !(nonzero_bits (varop, shift_mode) >> count))
8703 varop = const0_rtx;
8704 if (code == ASHIFT
8705 && GET_MODE_BITSIZE (shift_mode) <= HOST_BITS_PER_WIDE_INT
8706 && !((nonzero_bits (varop, shift_mode) << count)
8707 & GET_MODE_MASK (shift_mode)))
8708 varop = const0_rtx;
8710 switch (GET_CODE (varop))
8712 case SIGN_EXTEND:
8713 case ZERO_EXTEND:
8714 case SIGN_EXTRACT:
8715 case ZERO_EXTRACT:
8716 new = expand_compound_operation (varop);
8717 if (new != varop)
8719 varop = new;
8720 continue;
8722 break;
8724 case MEM:
8725 /* If we have (xshiftrt (mem ...) C) and C is MODE_WIDTH
8726 minus the width of a smaller mode, we can do this with a
8727 SIGN_EXTEND or ZERO_EXTEND from the narrower memory location. */
8728 if ((code == ASHIFTRT || code == LSHIFTRT)
8729 && ! mode_dependent_address_p (XEXP (varop, 0))
8730 && ! MEM_VOLATILE_P (varop)
8731 && (tmode = mode_for_size (GET_MODE_BITSIZE (mode) - count,
8732 MODE_INT, 1)) != BLKmode)
8734 new = adjust_address_nv (varop, tmode,
8735 BYTES_BIG_ENDIAN ? 0
8736 : count / BITS_PER_UNIT);
8738 varop = gen_rtx_fmt_e (code == ASHIFTRT ? SIGN_EXTEND
8739 : ZERO_EXTEND, mode, new);
8740 count = 0;
8741 continue;
8743 break;
8745 case USE:
8746 /* Similar to the case above, except that we can only do this if
8747 the resulting mode is the same as that of the underlying
8748 MEM and adjust the address depending on the *bits* endianness
8749 because of the way that bit-field extract insns are defined. */
8750 if ((code == ASHIFTRT || code == LSHIFTRT)
8751 && (tmode = mode_for_size (GET_MODE_BITSIZE (mode) - count,
8752 MODE_INT, 1)) != BLKmode
8753 && tmode == GET_MODE (XEXP (varop, 0)))
8755 if (BITS_BIG_ENDIAN)
8756 new = XEXP (varop, 0);
8757 else
8759 new = copy_rtx (XEXP (varop, 0));
8760 SUBST (XEXP (new, 0),
8761 plus_constant (XEXP (new, 0),
8762 count / BITS_PER_UNIT));
8765 varop = gen_rtx_fmt_e (code == ASHIFTRT ? SIGN_EXTEND
8766 : ZERO_EXTEND, mode, new);
8767 count = 0;
8768 continue;
8770 break;
8772 case SUBREG:
8773 /* If VAROP is a SUBREG, strip it as long as the inner operand has
8774 the same number of words as what we've seen so far. Then store
8775 the widest mode in MODE. */
8776 if (subreg_lowpart_p (varop)
8777 && (GET_MODE_SIZE (GET_MODE (SUBREG_REG (varop)))
8778 > GET_MODE_SIZE (GET_MODE (varop)))
8779 && (unsigned int) ((GET_MODE_SIZE (GET_MODE (SUBREG_REG (varop)))
8780 + (UNITS_PER_WORD - 1)) / UNITS_PER_WORD)
8781 == mode_words)
8783 varop = SUBREG_REG (varop);
8784 if (GET_MODE_SIZE (GET_MODE (varop)) > GET_MODE_SIZE (mode))
8785 mode = GET_MODE (varop);
8786 continue;
8788 break;
8790 case MULT:
8791 /* Some machines use MULT instead of ASHIFT because MULT
8792 is cheaper. But it is still better on those machines to
8793 merge two shifts into one. */
8794 if (GET_CODE (XEXP (varop, 1)) == CONST_INT
8795 && exact_log2 (INTVAL (XEXP (varop, 1))) >= 0)
8797 varop
8798 = simplify_gen_binary (ASHIFT, GET_MODE (varop),
8799 XEXP (varop, 0),
8800 GEN_INT (exact_log2 (
8801 INTVAL (XEXP (varop, 1)))));
8802 continue;
8804 break;
8806 case UDIV:
8807 /* Similar, for when divides are cheaper. */
8808 if (GET_CODE (XEXP (varop, 1)) == CONST_INT
8809 && exact_log2 (INTVAL (XEXP (varop, 1))) >= 0)
8811 varop
8812 = simplify_gen_binary (LSHIFTRT, GET_MODE (varop),
8813 XEXP (varop, 0),
8814 GEN_INT (exact_log2 (
8815 INTVAL (XEXP (varop, 1)))));
8816 continue;
8818 break;
8820 case ASHIFTRT:
8821 /* If we are extracting just the sign bit of an arithmetic
8822 right shift, that shift is not needed. However, the sign
8823 bit of a wider mode may be different from what would be
8824 interpreted as the sign bit in a narrower mode, so, if
8825 the result is narrower, don't discard the shift. */
8826 if (code == LSHIFTRT
8827 && count == (unsigned int) (GET_MODE_BITSIZE (result_mode) - 1)
8828 && (GET_MODE_BITSIZE (result_mode)
8829 >= GET_MODE_BITSIZE (GET_MODE (varop))))
8831 varop = XEXP (varop, 0);
8832 continue;
8835 /* ... fall through ... */
8837 case LSHIFTRT:
8838 case ASHIFT:
8839 case ROTATE:
8840 /* Here we have two nested shifts. The result is usually the
8841 AND of a new shift with a mask. We compute the result below. */
8842 if (GET_CODE (XEXP (varop, 1)) == CONST_INT
8843 && INTVAL (XEXP (varop, 1)) >= 0
8844 && INTVAL (XEXP (varop, 1)) < GET_MODE_BITSIZE (GET_MODE (varop))
8845 && GET_MODE_BITSIZE (result_mode) <= HOST_BITS_PER_WIDE_INT
8846 && GET_MODE_BITSIZE (mode) <= HOST_BITS_PER_WIDE_INT)
8848 enum rtx_code first_code = GET_CODE (varop);
8849 unsigned int first_count = INTVAL (XEXP (varop, 1));
8850 unsigned HOST_WIDE_INT mask;
8851 rtx mask_rtx;
8853 /* We have one common special case. We can't do any merging if
8854 the inner code is an ASHIFTRT of a smaller mode. However, if
8855 we have (ashift:M1 (subreg:M1 (ashiftrt:M2 FOO C1) 0) C2)
8856 with C2 == GET_MODE_BITSIZE (M1) - GET_MODE_BITSIZE (M2),
8857 we can convert it to
8858 (ashiftrt:M1 (ashift:M1 (and:M1 (subreg:M1 FOO 0 C2) C3) C1).
8859 This simplifies certain SIGN_EXTEND operations. */
8860 if (code == ASHIFT && first_code == ASHIFTRT
8861 && count == (unsigned int)
8862 (GET_MODE_BITSIZE (result_mode)
8863 - GET_MODE_BITSIZE (GET_MODE (varop))))
8865 /* C3 has the low-order C1 bits zero. */
8867 mask = (GET_MODE_MASK (mode)
8868 & ~(((HOST_WIDE_INT) 1 << first_count) - 1));
8870 varop = simplify_and_const_int (NULL_RTX, result_mode,
8871 XEXP (varop, 0), mask);
8872 varop = simplify_shift_const (NULL_RTX, ASHIFT, result_mode,
8873 varop, count);
8874 count = first_count;
8875 code = ASHIFTRT;
8876 continue;
8879 /* If this was (ashiftrt (ashift foo C1) C2) and FOO has more
8880 than C1 high-order bits equal to the sign bit, we can convert
8881 this to either an ASHIFT or an ASHIFTRT depending on the
8882 two counts.
8884 We cannot do this if VAROP's mode is not SHIFT_MODE. */
8886 if (code == ASHIFTRT && first_code == ASHIFT
8887 && GET_MODE (varop) == shift_mode
8888 && (num_sign_bit_copies (XEXP (varop, 0), shift_mode)
8889 > first_count))
8891 varop = XEXP (varop, 0);
8893 signed_count = count - first_count;
8894 if (signed_count < 0)
8895 count = -signed_count, code = ASHIFT;
8896 else
8897 count = signed_count;
8899 continue;
8902 /* There are some cases we can't do. If CODE is ASHIFTRT,
8903 we can only do this if FIRST_CODE is also ASHIFTRT.
8905 We can't do the case when CODE is ROTATE and FIRST_CODE is
8906 ASHIFTRT.
8908 If the mode of this shift is not the mode of the outer shift,
8909 we can't do this if either shift is a right shift or ROTATE.
8911 Finally, we can't do any of these if the mode is too wide
8912 unless the codes are the same.
8914 Handle the case where the shift codes are the same
8915 first. */
8917 if (code == first_code)
8919 if (GET_MODE (varop) != result_mode
8920 && (code == ASHIFTRT || code == LSHIFTRT
8921 || code == ROTATE))
8922 break;
8924 count += first_count;
8925 varop = XEXP (varop, 0);
8926 continue;
8929 if (code == ASHIFTRT
8930 || (code == ROTATE && first_code == ASHIFTRT)
8931 || GET_MODE_BITSIZE (mode) > HOST_BITS_PER_WIDE_INT
8932 || (GET_MODE (varop) != result_mode
8933 && (first_code == ASHIFTRT || first_code == LSHIFTRT
8934 || first_code == ROTATE
8935 || code == ROTATE)))
8936 break;
8938 /* To compute the mask to apply after the shift, shift the
8939 nonzero bits of the inner shift the same way the
8940 outer shift will. */
8942 mask_rtx = GEN_INT (nonzero_bits (varop, GET_MODE (varop)));
8944 mask_rtx
8945 = simplify_binary_operation (code, result_mode, mask_rtx,
8946 GEN_INT (count));
8948 /* Give up if we can't compute an outer operation to use. */
8949 if (mask_rtx == 0
8950 || GET_CODE (mask_rtx) != CONST_INT
8951 || ! merge_outer_ops (&outer_op, &outer_const, AND,
8952 INTVAL (mask_rtx),
8953 result_mode, &complement_p))
8954 break;
8956 /* If the shifts are in the same direction, we add the
8957 counts. Otherwise, we subtract them. */
8958 signed_count = count;
8959 if ((code == ASHIFTRT || code == LSHIFTRT)
8960 == (first_code == ASHIFTRT || first_code == LSHIFTRT))
8961 signed_count += first_count;
8962 else
8963 signed_count -= first_count;
8965 /* If COUNT is positive, the new shift is usually CODE,
8966 except for the two exceptions below, in which case it is
8967 FIRST_CODE. If the count is negative, FIRST_CODE should
8968 always be used */
8969 if (signed_count > 0
8970 && ((first_code == ROTATE && code == ASHIFT)
8971 || (first_code == ASHIFTRT && code == LSHIFTRT)))
8972 code = first_code, count = signed_count;
8973 else if (signed_count < 0)
8974 code = first_code, count = -signed_count;
8975 else
8976 count = signed_count;
8978 varop = XEXP (varop, 0);
8979 continue;
8982 /* If we have (A << B << C) for any shift, we can convert this to
8983 (A << C << B). This wins if A is a constant. Only try this if
8984 B is not a constant. */
8986 else if (GET_CODE (varop) == code
8987 && GET_CODE (XEXP (varop, 1)) != CONST_INT
8988 && 0 != (new
8989 = simplify_binary_operation (code, mode,
8990 XEXP (varop, 0),
8991 GEN_INT (count))))
8993 varop = gen_rtx_fmt_ee (code, mode, new, XEXP (varop, 1));
8994 count = 0;
8995 continue;
8997 break;
8999 case NOT:
9000 /* Make this fit the case below. */
9001 varop = gen_rtx_XOR (mode, XEXP (varop, 0),
9002 GEN_INT (GET_MODE_MASK (mode)));
9003 continue;
9005 case IOR:
9006 case AND:
9007 case XOR:
9008 /* If we have (xshiftrt (ior (plus X (const_int -1)) X) C)
9009 with C the size of VAROP - 1 and the shift is logical if
9010 STORE_FLAG_VALUE is 1 and arithmetic if STORE_FLAG_VALUE is -1,
9011 we have an (le X 0) operation. If we have an arithmetic shift
9012 and STORE_FLAG_VALUE is 1 or we have a logical shift with
9013 STORE_FLAG_VALUE of -1, we have a (neg (le X 0)) operation. */
9015 if (GET_CODE (varop) == IOR && GET_CODE (XEXP (varop, 0)) == PLUS
9016 && XEXP (XEXP (varop, 0), 1) == constm1_rtx
9017 && (STORE_FLAG_VALUE == 1 || STORE_FLAG_VALUE == -1)
9018 && (code == LSHIFTRT || code == ASHIFTRT)
9019 && count == (unsigned int)
9020 (GET_MODE_BITSIZE (GET_MODE (varop)) - 1)
9021 && rtx_equal_p (XEXP (XEXP (varop, 0), 0), XEXP (varop, 1)))
9023 count = 0;
9024 varop = gen_rtx_LE (GET_MODE (varop), XEXP (varop, 1),
9025 const0_rtx);
9027 if (STORE_FLAG_VALUE == 1 ? code == ASHIFTRT : code == LSHIFTRT)
9028 varop = gen_rtx_NEG (GET_MODE (varop), varop);
9030 continue;
9033 /* If we have (shift (logical)), move the logical to the outside
9034 to allow it to possibly combine with another logical and the
9035 shift to combine with another shift. This also canonicalizes to
9036 what a ZERO_EXTRACT looks like. Also, some machines have
9037 (and (shift)) insns. */
9039 if (GET_CODE (XEXP (varop, 1)) == CONST_INT
9040 /* We can't do this if we have (ashiftrt (xor)) and the
9041 constant has its sign bit set in shift_mode. */
9042 && !(code == ASHIFTRT && GET_CODE (varop) == XOR
9043 && 0 > trunc_int_for_mode (INTVAL (XEXP (varop, 1)),
9044 shift_mode))
9045 && (new = simplify_binary_operation (code, result_mode,
9046 XEXP (varop, 1),
9047 GEN_INT (count))) != 0
9048 && GET_CODE (new) == CONST_INT
9049 && merge_outer_ops (&outer_op, &outer_const, GET_CODE (varop),
9050 INTVAL (new), result_mode, &complement_p))
9052 varop = XEXP (varop, 0);
9053 continue;
9056 /* If we can't do that, try to simplify the shift in each arm of the
9057 logical expression, make a new logical expression, and apply
9058 the inverse distributive law. This also can't be done
9059 for some (ashiftrt (xor)). */
9060 if (GET_CODE (XEXP (varop, 1)) == CONST_INT
9061 && !(code == ASHIFTRT && GET_CODE (varop) == XOR
9062 && 0 > trunc_int_for_mode (INTVAL (XEXP (varop, 1)),
9063 shift_mode)))
9065 rtx lhs = simplify_shift_const (NULL_RTX, code, shift_mode,
9066 XEXP (varop, 0), count);
9067 rtx rhs = simplify_shift_const (NULL_RTX, code, shift_mode,
9068 XEXP (varop, 1), count);
9070 varop = simplify_gen_binary (GET_CODE (varop), shift_mode,
9071 lhs, rhs);
9072 varop = apply_distributive_law (varop);
9074 count = 0;
9075 continue;
9077 break;
9079 case EQ:
9080 /* Convert (lshiftrt (eq FOO 0) C) to (xor FOO 1) if STORE_FLAG_VALUE
9081 says that the sign bit can be tested, FOO has mode MODE, C is
9082 GET_MODE_BITSIZE (MODE) - 1, and FOO has only its low-order bit
9083 that may be nonzero. */
9084 if (code == LSHIFTRT
9085 && XEXP (varop, 1) == const0_rtx
9086 && GET_MODE (XEXP (varop, 0)) == result_mode
9087 && count == (unsigned int) (GET_MODE_BITSIZE (result_mode) - 1)
9088 && GET_MODE_BITSIZE (result_mode) <= HOST_BITS_PER_WIDE_INT
9089 && ((STORE_FLAG_VALUE
9090 & ((HOST_WIDE_INT) 1
9091 < (GET_MODE_BITSIZE (result_mode) - 1))))
9092 && nonzero_bits (XEXP (varop, 0), result_mode) == 1
9093 && merge_outer_ops (&outer_op, &outer_const, XOR,
9094 (HOST_WIDE_INT) 1, result_mode,
9095 &complement_p))
9097 varop = XEXP (varop, 0);
9098 count = 0;
9099 continue;
9101 break;
9103 case NEG:
9104 /* (lshiftrt (neg A) C) where A is either 0 or 1 and C is one less
9105 than the number of bits in the mode is equivalent to A. */
9106 if (code == LSHIFTRT
9107 && count == (unsigned int) (GET_MODE_BITSIZE (result_mode) - 1)
9108 && nonzero_bits (XEXP (varop, 0), result_mode) == 1)
9110 varop = XEXP (varop, 0);
9111 count = 0;
9112 continue;
9115 /* NEG commutes with ASHIFT since it is multiplication. Move the
9116 NEG outside to allow shifts to combine. */
9117 if (code == ASHIFT
9118 && merge_outer_ops (&outer_op, &outer_const, NEG,
9119 (HOST_WIDE_INT) 0, result_mode,
9120 &complement_p))
9122 varop = XEXP (varop, 0);
9123 continue;
9125 break;
9127 case PLUS:
9128 /* (lshiftrt (plus A -1) C) where A is either 0 or 1 and C
9129 is one less than the number of bits in the mode is
9130 equivalent to (xor A 1). */
9131 if (code == LSHIFTRT
9132 && count == (unsigned int) (GET_MODE_BITSIZE (result_mode) - 1)
9133 && XEXP (varop, 1) == constm1_rtx
9134 && nonzero_bits (XEXP (varop, 0), result_mode) == 1
9135 && merge_outer_ops (&outer_op, &outer_const, XOR,
9136 (HOST_WIDE_INT) 1, result_mode,
9137 &complement_p))
9139 count = 0;
9140 varop = XEXP (varop, 0);
9141 continue;
9144 /* If we have (xshiftrt (plus FOO BAR) C), and the only bits
9145 that might be nonzero in BAR are those being shifted out and those
9146 bits are known zero in FOO, we can replace the PLUS with FOO.
9147 Similarly in the other operand order. This code occurs when
9148 we are computing the size of a variable-size array. */
9150 if ((code == ASHIFTRT || code == LSHIFTRT)
9151 && count < HOST_BITS_PER_WIDE_INT
9152 && nonzero_bits (XEXP (varop, 1), result_mode) >> count == 0
9153 && (nonzero_bits (XEXP (varop, 1), result_mode)
9154 & nonzero_bits (XEXP (varop, 0), result_mode)) == 0)
9156 varop = XEXP (varop, 0);
9157 continue;
9159 else if ((code == ASHIFTRT || code == LSHIFTRT)
9160 && count < HOST_BITS_PER_WIDE_INT
9161 && GET_MODE_BITSIZE (result_mode) <= HOST_BITS_PER_WIDE_INT
9162 && 0 == (nonzero_bits (XEXP (varop, 0), result_mode)
9163 >> count)
9164 && 0 == (nonzero_bits (XEXP (varop, 0), result_mode)
9165 & nonzero_bits (XEXP (varop, 1),
9166 result_mode)))
9168 varop = XEXP (varop, 1);
9169 continue;
9172 /* (ashift (plus foo C) N) is (plus (ashift foo N) C'). */
9173 if (code == ASHIFT
9174 && GET_CODE (XEXP (varop, 1)) == CONST_INT
9175 && (new = simplify_binary_operation (ASHIFT, result_mode,
9176 XEXP (varop, 1),
9177 GEN_INT (count))) != 0
9178 && GET_CODE (new) == CONST_INT
9179 && merge_outer_ops (&outer_op, &outer_const, PLUS,
9180 INTVAL (new), result_mode, &complement_p))
9182 varop = XEXP (varop, 0);
9183 continue;
9186 /* Check for 'PLUS signbit', which is the canonical form of 'XOR
9187 signbit', and attempt to change the PLUS to an XOR and move it to
9188 the outer operation as is done above in the AND/IOR/XOR case
9189 leg for shift(logical). See details in logical handling above
9190 for reasoning in doing so. */
9191 if (code == LSHIFTRT
9192 && GET_CODE (XEXP (varop, 1)) == CONST_INT
9193 && mode_signbit_p (result_mode, XEXP (varop, 1))
9194 && (new = simplify_binary_operation (code, result_mode,
9195 XEXP (varop, 1),
9196 GEN_INT (count))) != 0
9197 && GET_CODE (new) == CONST_INT
9198 && merge_outer_ops (&outer_op, &outer_const, XOR,
9199 INTVAL (new), result_mode, &complement_p))
9201 varop = XEXP (varop, 0);
9202 continue;
9205 break;
9207 case MINUS:
9208 /* If we have (xshiftrt (minus (ashiftrt X C)) X) C)
9209 with C the size of VAROP - 1 and the shift is logical if
9210 STORE_FLAG_VALUE is 1 and arithmetic if STORE_FLAG_VALUE is -1,
9211 we have a (gt X 0) operation. If the shift is arithmetic with
9212 STORE_FLAG_VALUE of 1 or logical with STORE_FLAG_VALUE == -1,
9213 we have a (neg (gt X 0)) operation. */
9215 if ((STORE_FLAG_VALUE == 1 || STORE_FLAG_VALUE == -1)
9216 && GET_CODE (XEXP (varop, 0)) == ASHIFTRT
9217 && count == (unsigned int)
9218 (GET_MODE_BITSIZE (GET_MODE (varop)) - 1)
9219 && (code == LSHIFTRT || code == ASHIFTRT)
9220 && GET_CODE (XEXP (XEXP (varop, 0), 1)) == CONST_INT
9221 && (unsigned HOST_WIDE_INT) INTVAL (XEXP (XEXP (varop, 0), 1))
9222 == count
9223 && rtx_equal_p (XEXP (XEXP (varop, 0), 0), XEXP (varop, 1)))
9225 count = 0;
9226 varop = gen_rtx_GT (GET_MODE (varop), XEXP (varop, 1),
9227 const0_rtx);
9229 if (STORE_FLAG_VALUE == 1 ? code == ASHIFTRT : code == LSHIFTRT)
9230 varop = gen_rtx_NEG (GET_MODE (varop), varop);
9232 continue;
9234 break;
9236 case TRUNCATE:
9237 /* Change (lshiftrt (truncate (lshiftrt))) to (truncate (lshiftrt))
9238 if the truncate does not affect the value. */
9239 if (code == LSHIFTRT
9240 && GET_CODE (XEXP (varop, 0)) == LSHIFTRT
9241 && GET_CODE (XEXP (XEXP (varop, 0), 1)) == CONST_INT
9242 && (INTVAL (XEXP (XEXP (varop, 0), 1))
9243 >= (GET_MODE_BITSIZE (GET_MODE (XEXP (varop, 0)))
9244 - GET_MODE_BITSIZE (GET_MODE (varop)))))
9246 rtx varop_inner = XEXP (varop, 0);
9248 varop_inner
9249 = gen_rtx_LSHIFTRT (GET_MODE (varop_inner),
9250 XEXP (varop_inner, 0),
9251 GEN_INT
9252 (count + INTVAL (XEXP (varop_inner, 1))));
9253 varop = gen_rtx_TRUNCATE (GET_MODE (varop), varop_inner);
9254 count = 0;
9255 continue;
9257 break;
9259 default:
9260 break;
9263 break;
9266 /* We need to determine what mode to do the shift in. If the shift is
9267 a right shift or ROTATE, we must always do it in the mode it was
9268 originally done in. Otherwise, we can do it in MODE, the widest mode
9269 encountered. The code we care about is that of the shift that will
9270 actually be done, not the shift that was originally requested. */
9271 shift_mode
9272 = (code == ASHIFTRT || code == LSHIFTRT || code == ROTATE
9273 ? result_mode : mode);
9275 /* We have now finished analyzing the shift. The result should be
9276 a shift of type CODE with SHIFT_MODE shifting VAROP COUNT places. If
9277 OUTER_OP is non-UNKNOWN, it is an operation that needs to be applied
9278 to the result of the shift. OUTER_CONST is the relevant constant,
9279 but we must turn off all bits turned off in the shift.
9281 If we were passed a value for X, see if we can use any pieces of
9282 it. If not, make new rtx. */
9284 if (x && GET_RTX_CLASS (GET_CODE (x)) == RTX_BIN_ARITH
9285 && GET_CODE (XEXP (x, 1)) == CONST_INT
9286 && (unsigned HOST_WIDE_INT) INTVAL (XEXP (x, 1)) == count)
9287 const_rtx = XEXP (x, 1);
9288 else
9289 const_rtx = GEN_INT (count);
9291 if (x && GET_CODE (XEXP (x, 0)) == SUBREG
9292 && GET_MODE (XEXP (x, 0)) == shift_mode
9293 && SUBREG_REG (XEXP (x, 0)) == varop)
9294 varop = XEXP (x, 0);
9295 else if (GET_MODE (varop) != shift_mode)
9296 varop = gen_lowpart (shift_mode, varop);
9298 /* If we can't make the SUBREG, try to return what we were given. */
9299 if (GET_CODE (varop) == CLOBBER)
9300 return x ? x : varop;
9302 new = simplify_binary_operation (code, shift_mode, varop, const_rtx);
9303 if (new != 0)
9304 x = new;
9305 else
9306 x = gen_rtx_fmt_ee (code, shift_mode, varop, const_rtx);
9308 /* If we have an outer operation and we just made a shift, it is
9309 possible that we could have simplified the shift were it not
9310 for the outer operation. So try to do the simplification
9311 recursively. */
9313 if (outer_op != UNKNOWN && GET_CODE (x) == code
9314 && GET_CODE (XEXP (x, 1)) == CONST_INT)
9315 x = simplify_shift_const (x, code, shift_mode, XEXP (x, 0),
9316 INTVAL (XEXP (x, 1)));
9318 /* If we were doing an LSHIFTRT in a wider mode than it was originally,
9319 turn off all the bits that the shift would have turned off. */
9320 if (orig_code == LSHIFTRT && result_mode != shift_mode)
9321 x = simplify_and_const_int (NULL_RTX, shift_mode, x,
9322 GET_MODE_MASK (result_mode) >> orig_count);
9324 /* Do the remainder of the processing in RESULT_MODE. */
9325 x = gen_lowpart (result_mode, x);
9327 /* If COMPLEMENT_P is set, we have to complement X before doing the outer
9328 operation. */
9329 if (complement_p)
9330 x = simplify_gen_unary (NOT, result_mode, x, result_mode);
9332 if (outer_op != UNKNOWN)
9334 if (GET_MODE_BITSIZE (result_mode) < HOST_BITS_PER_WIDE_INT)
9335 outer_const = trunc_int_for_mode (outer_const, result_mode);
9337 if (outer_op == AND)
9338 x = simplify_and_const_int (NULL_RTX, result_mode, x, outer_const);
9339 else if (outer_op == SET)
9340 /* This means that we have determined that the result is
9341 equivalent to a constant. This should be rare. */
9342 x = GEN_INT (outer_const);
9343 else if (GET_RTX_CLASS (outer_op) == RTX_UNARY)
9344 x = simplify_gen_unary (outer_op, result_mode, x, result_mode);
9345 else
9346 x = simplify_gen_binary (outer_op, result_mode, x,
9347 GEN_INT (outer_const));
9350 return x;
9353 /* Like recog, but we receive the address of a pointer to a new pattern.
9354 We try to match the rtx that the pointer points to.
9355 If that fails, we may try to modify or replace the pattern,
9356 storing the replacement into the same pointer object.
9358 Modifications include deletion or addition of CLOBBERs.
9360 PNOTES is a pointer to a location where any REG_UNUSED notes added for
9361 the CLOBBERs are placed.
9363 The value is the final insn code from the pattern ultimately matched,
9364 or -1. */
9366 static int
9367 recog_for_combine (rtx *pnewpat, rtx insn, rtx *pnotes)
9369 rtx pat = *pnewpat;
9370 int insn_code_number;
9371 int num_clobbers_to_add = 0;
9372 int i;
9373 rtx notes = 0;
9374 rtx old_notes, old_pat;
9376 /* If PAT is a PARALLEL, check to see if it contains the CLOBBER
9377 we use to indicate that something didn't match. If we find such a
9378 thing, force rejection. */
9379 if (GET_CODE (pat) == PARALLEL)
9380 for (i = XVECLEN (pat, 0) - 1; i >= 0; i--)
9381 if (GET_CODE (XVECEXP (pat, 0, i)) == CLOBBER
9382 && XEXP (XVECEXP (pat, 0, i), 0) == const0_rtx)
9383 return -1;
9385 old_pat = PATTERN (insn);
9386 old_notes = REG_NOTES (insn);
9387 PATTERN (insn) = pat;
9388 REG_NOTES (insn) = 0;
9390 insn_code_number = recog (pat, insn, &num_clobbers_to_add);
9392 /* If it isn't, there is the possibility that we previously had an insn
9393 that clobbered some register as a side effect, but the combined
9394 insn doesn't need to do that. So try once more without the clobbers
9395 unless this represents an ASM insn. */
9397 if (insn_code_number < 0 && ! check_asm_operands (pat)
9398 && GET_CODE (pat) == PARALLEL)
9400 int pos;
9402 for (pos = 0, i = 0; i < XVECLEN (pat, 0); i++)
9403 if (GET_CODE (XVECEXP (pat, 0, i)) != CLOBBER)
9405 if (i != pos)
9406 SUBST (XVECEXP (pat, 0, pos), XVECEXP (pat, 0, i));
9407 pos++;
9410 SUBST_INT (XVECLEN (pat, 0), pos);
9412 if (pos == 1)
9413 pat = XVECEXP (pat, 0, 0);
9415 PATTERN (insn) = pat;
9416 insn_code_number = recog (pat, insn, &num_clobbers_to_add);
9418 PATTERN (insn) = old_pat;
9419 REG_NOTES (insn) = old_notes;
9421 /* Recognize all noop sets, these will be killed by followup pass. */
9422 if (insn_code_number < 0 && GET_CODE (pat) == SET && set_noop_p (pat))
9423 insn_code_number = NOOP_MOVE_INSN_CODE, num_clobbers_to_add = 0;
9425 /* If we had any clobbers to add, make a new pattern than contains
9426 them. Then check to make sure that all of them are dead. */
9427 if (num_clobbers_to_add)
9429 rtx newpat = gen_rtx_PARALLEL (VOIDmode,
9430 rtvec_alloc (GET_CODE (pat) == PARALLEL
9431 ? (XVECLEN (pat, 0)
9432 + num_clobbers_to_add)
9433 : num_clobbers_to_add + 1));
9435 if (GET_CODE (pat) == PARALLEL)
9436 for (i = 0; i < XVECLEN (pat, 0); i++)
9437 XVECEXP (newpat, 0, i) = XVECEXP (pat, 0, i);
9438 else
9439 XVECEXP (newpat, 0, 0) = pat;
9441 add_clobbers (newpat, insn_code_number);
9443 for (i = XVECLEN (newpat, 0) - num_clobbers_to_add;
9444 i < XVECLEN (newpat, 0); i++)
9446 if (REG_P (XEXP (XVECEXP (newpat, 0, i), 0))
9447 && ! reg_dead_at_p (XEXP (XVECEXP (newpat, 0, i), 0), insn))
9448 return -1;
9449 notes = gen_rtx_EXPR_LIST (REG_UNUSED,
9450 XEXP (XVECEXP (newpat, 0, i), 0), notes);
9452 pat = newpat;
9455 *pnewpat = pat;
9456 *pnotes = notes;
9458 return insn_code_number;
9461 /* Like gen_lowpart_general but for use by combine. In combine it
9462 is not possible to create any new pseudoregs. However, it is
9463 safe to create invalid memory addresses, because combine will
9464 try to recognize them and all they will do is make the combine
9465 attempt fail.
9467 If for some reason this cannot do its job, an rtx
9468 (clobber (const_int 0)) is returned.
9469 An insn containing that will not be recognized. */
9471 static rtx
9472 gen_lowpart_for_combine (enum machine_mode omode, rtx x)
9474 enum machine_mode imode = GET_MODE (x);
9475 unsigned int osize = GET_MODE_SIZE (omode);
9476 unsigned int isize = GET_MODE_SIZE (imode);
9477 rtx result;
9479 if (omode == imode)
9480 return x;
9482 /* Return identity if this is a CONST or symbolic reference. */
9483 if (omode == Pmode
9484 && (GET_CODE (x) == CONST
9485 || GET_CODE (x) == SYMBOL_REF
9486 || GET_CODE (x) == LABEL_REF))
9487 return x;
9489 /* We can only support MODE being wider than a word if X is a
9490 constant integer or has a mode the same size. */
9491 if (GET_MODE_SIZE (omode) > UNITS_PER_WORD
9492 && ! ((imode == VOIDmode
9493 && (GET_CODE (x) == CONST_INT
9494 || GET_CODE (x) == CONST_DOUBLE))
9495 || isize == osize))
9496 goto fail;
9498 /* X might be a paradoxical (subreg (mem)). In that case, gen_lowpart
9499 won't know what to do. So we will strip off the SUBREG here and
9500 process normally. */
9501 if (GET_CODE (x) == SUBREG && MEM_P (SUBREG_REG (x)))
9503 x = SUBREG_REG (x);
9505 /* For use in case we fall down into the address adjustments
9506 further below, we need to adjust the known mode and size of
9507 x; imode and isize, since we just adjusted x. */
9508 imode = GET_MODE (x);
9510 if (imode == omode)
9511 return x;
9513 isize = GET_MODE_SIZE (imode);
9516 result = gen_lowpart_common (omode, x);
9518 #ifdef CANNOT_CHANGE_MODE_CLASS
9519 if (result != 0 && GET_CODE (result) == SUBREG)
9520 record_subregs_of_mode (result);
9521 #endif
9523 if (result)
9524 return result;
9526 if (MEM_P (x))
9528 int offset = 0;
9530 /* Refuse to work on a volatile memory ref or one with a mode-dependent
9531 address. */
9532 if (MEM_VOLATILE_P (x) || mode_dependent_address_p (XEXP (x, 0)))
9533 goto fail;
9535 /* If we want to refer to something bigger than the original memref,
9536 generate a paradoxical subreg instead. That will force a reload
9537 of the original memref X. */
9538 if (isize < osize)
9539 return gen_rtx_SUBREG (omode, x, 0);
9541 if (WORDS_BIG_ENDIAN)
9542 offset = MAX (isize, UNITS_PER_WORD) - MAX (osize, UNITS_PER_WORD);
9544 /* Adjust the address so that the address-after-the-data is
9545 unchanged. */
9546 if (BYTES_BIG_ENDIAN)
9547 offset -= MIN (UNITS_PER_WORD, osize) - MIN (UNITS_PER_WORD, isize);
9549 return adjust_address_nv (x, omode, offset);
9552 /* If X is a comparison operator, rewrite it in a new mode. This
9553 probably won't match, but may allow further simplifications. */
9554 else if (COMPARISON_P (x))
9555 return gen_rtx_fmt_ee (GET_CODE (x), omode, XEXP (x, 0), XEXP (x, 1));
9557 /* If we couldn't simplify X any other way, just enclose it in a
9558 SUBREG. Normally, this SUBREG won't match, but some patterns may
9559 include an explicit SUBREG or we may simplify it further in combine. */
9560 else
9562 int offset = 0;
9563 rtx res;
9565 offset = subreg_lowpart_offset (omode, imode);
9566 if (imode == VOIDmode)
9568 imode = int_mode_for_mode (omode);
9569 x = gen_lowpart_common (imode, x);
9570 if (x == NULL)
9571 goto fail;
9573 res = simplify_gen_subreg (omode, x, imode, offset);
9574 if (res)
9575 return res;
9578 fail:
9579 return gen_rtx_CLOBBER (imode, const0_rtx);
9582 /* Simplify a comparison between *POP0 and *POP1 where CODE is the
9583 comparison code that will be tested.
9585 The result is a possibly different comparison code to use. *POP0 and
9586 *POP1 may be updated.
9588 It is possible that we might detect that a comparison is either always
9589 true or always false. However, we do not perform general constant
9590 folding in combine, so this knowledge isn't useful. Such tautologies
9591 should have been detected earlier. Hence we ignore all such cases. */
9593 static enum rtx_code
9594 simplify_comparison (enum rtx_code code, rtx *pop0, rtx *pop1)
9596 rtx op0 = *pop0;
9597 rtx op1 = *pop1;
9598 rtx tem, tem1;
9599 int i;
9600 enum machine_mode mode, tmode;
9602 /* Try a few ways of applying the same transformation to both operands. */
9603 while (1)
9605 #ifndef WORD_REGISTER_OPERATIONS
9606 /* The test below this one won't handle SIGN_EXTENDs on these machines,
9607 so check specially. */
9608 if (code != GTU && code != GEU && code != LTU && code != LEU
9609 && GET_CODE (op0) == ASHIFTRT && GET_CODE (op1) == ASHIFTRT
9610 && GET_CODE (XEXP (op0, 0)) == ASHIFT
9611 && GET_CODE (XEXP (op1, 0)) == ASHIFT
9612 && GET_CODE (XEXP (XEXP (op0, 0), 0)) == SUBREG
9613 && GET_CODE (XEXP (XEXP (op1, 0), 0)) == SUBREG
9614 && (GET_MODE (SUBREG_REG (XEXP (XEXP (op0, 0), 0)))
9615 == GET_MODE (SUBREG_REG (XEXP (XEXP (op1, 0), 0))))
9616 && GET_CODE (XEXP (op0, 1)) == CONST_INT
9617 && XEXP (op0, 1) == XEXP (op1, 1)
9618 && XEXP (op0, 1) == XEXP (XEXP (op0, 0), 1)
9619 && XEXP (op0, 1) == XEXP (XEXP (op1, 0), 1)
9620 && (INTVAL (XEXP (op0, 1))
9621 == (GET_MODE_BITSIZE (GET_MODE (op0))
9622 - (GET_MODE_BITSIZE
9623 (GET_MODE (SUBREG_REG (XEXP (XEXP (op0, 0), 0))))))))
9625 op0 = SUBREG_REG (XEXP (XEXP (op0, 0), 0));
9626 op1 = SUBREG_REG (XEXP (XEXP (op1, 0), 0));
9628 #endif
9630 /* If both operands are the same constant shift, see if we can ignore the
9631 shift. We can if the shift is a rotate or if the bits shifted out of
9632 this shift are known to be zero for both inputs and if the type of
9633 comparison is compatible with the shift. */
9634 if (GET_CODE (op0) == GET_CODE (op1)
9635 && GET_MODE_BITSIZE (GET_MODE (op0)) <= HOST_BITS_PER_WIDE_INT
9636 && ((GET_CODE (op0) == ROTATE && (code == NE || code == EQ))
9637 || ((GET_CODE (op0) == LSHIFTRT || GET_CODE (op0) == ASHIFT)
9638 && (code != GT && code != LT && code != GE && code != LE))
9639 || (GET_CODE (op0) == ASHIFTRT
9640 && (code != GTU && code != LTU
9641 && code != GEU && code != LEU)))
9642 && GET_CODE (XEXP (op0, 1)) == CONST_INT
9643 && INTVAL (XEXP (op0, 1)) >= 0
9644 && INTVAL (XEXP (op0, 1)) < HOST_BITS_PER_WIDE_INT
9645 && XEXP (op0, 1) == XEXP (op1, 1))
9647 enum machine_mode mode = GET_MODE (op0);
9648 unsigned HOST_WIDE_INT mask = GET_MODE_MASK (mode);
9649 int shift_count = INTVAL (XEXP (op0, 1));
9651 if (GET_CODE (op0) == LSHIFTRT || GET_CODE (op0) == ASHIFTRT)
9652 mask &= (mask >> shift_count) << shift_count;
9653 else if (GET_CODE (op0) == ASHIFT)
9654 mask = (mask & (mask << shift_count)) >> shift_count;
9656 if ((nonzero_bits (XEXP (op0, 0), mode) & ~mask) == 0
9657 && (nonzero_bits (XEXP (op1, 0), mode) & ~mask) == 0)
9658 op0 = XEXP (op0, 0), op1 = XEXP (op1, 0);
9659 else
9660 break;
9663 /* If both operands are AND's of a paradoxical SUBREG by constant, the
9664 SUBREGs are of the same mode, and, in both cases, the AND would
9665 be redundant if the comparison was done in the narrower mode,
9666 do the comparison in the narrower mode (e.g., we are AND'ing with 1
9667 and the operand's possibly nonzero bits are 0xffffff01; in that case
9668 if we only care about QImode, we don't need the AND). This case
9669 occurs if the output mode of an scc insn is not SImode and
9670 STORE_FLAG_VALUE == 1 (e.g., the 386).
9672 Similarly, check for a case where the AND's are ZERO_EXTEND
9673 operations from some narrower mode even though a SUBREG is not
9674 present. */
9676 else if (GET_CODE (op0) == AND && GET_CODE (op1) == AND
9677 && GET_CODE (XEXP (op0, 1)) == CONST_INT
9678 && GET_CODE (XEXP (op1, 1)) == CONST_INT)
9680 rtx inner_op0 = XEXP (op0, 0);
9681 rtx inner_op1 = XEXP (op1, 0);
9682 HOST_WIDE_INT c0 = INTVAL (XEXP (op0, 1));
9683 HOST_WIDE_INT c1 = INTVAL (XEXP (op1, 1));
9684 int changed = 0;
9686 if (GET_CODE (inner_op0) == SUBREG && GET_CODE (inner_op1) == SUBREG
9687 && (GET_MODE_SIZE (GET_MODE (inner_op0))
9688 > GET_MODE_SIZE (GET_MODE (SUBREG_REG (inner_op0))))
9689 && (GET_MODE (SUBREG_REG (inner_op0))
9690 == GET_MODE (SUBREG_REG (inner_op1)))
9691 && (GET_MODE_BITSIZE (GET_MODE (SUBREG_REG (inner_op0)))
9692 <= HOST_BITS_PER_WIDE_INT)
9693 && (0 == ((~c0) & nonzero_bits (SUBREG_REG (inner_op0),
9694 GET_MODE (SUBREG_REG (inner_op0)))))
9695 && (0 == ((~c1) & nonzero_bits (SUBREG_REG (inner_op1),
9696 GET_MODE (SUBREG_REG (inner_op1))))))
9698 op0 = SUBREG_REG (inner_op0);
9699 op1 = SUBREG_REG (inner_op1);
9701 /* The resulting comparison is always unsigned since we masked
9702 off the original sign bit. */
9703 code = unsigned_condition (code);
9705 changed = 1;
9708 else if (c0 == c1)
9709 for (tmode = GET_CLASS_NARROWEST_MODE
9710 (GET_MODE_CLASS (GET_MODE (op0)));
9711 tmode != GET_MODE (op0); tmode = GET_MODE_WIDER_MODE (tmode))
9712 if ((unsigned HOST_WIDE_INT) c0 == GET_MODE_MASK (tmode))
9714 op0 = gen_lowpart (tmode, inner_op0);
9715 op1 = gen_lowpart (tmode, inner_op1);
9716 code = unsigned_condition (code);
9717 changed = 1;
9718 break;
9721 if (! changed)
9722 break;
9725 /* If both operands are NOT, we can strip off the outer operation
9726 and adjust the comparison code for swapped operands; similarly for
9727 NEG, except that this must be an equality comparison. */
9728 else if ((GET_CODE (op0) == NOT && GET_CODE (op1) == NOT)
9729 || (GET_CODE (op0) == NEG && GET_CODE (op1) == NEG
9730 && (code == EQ || code == NE)))
9731 op0 = XEXP (op0, 0), op1 = XEXP (op1, 0), code = swap_condition (code);
9733 else
9734 break;
9737 /* If the first operand is a constant, swap the operands and adjust the
9738 comparison code appropriately, but don't do this if the second operand
9739 is already a constant integer. */
9740 if (swap_commutative_operands_p (op0, op1))
9742 tem = op0, op0 = op1, op1 = tem;
9743 code = swap_condition (code);
9746 /* We now enter a loop during which we will try to simplify the comparison.
9747 For the most part, we only are concerned with comparisons with zero,
9748 but some things may really be comparisons with zero but not start
9749 out looking that way. */
9751 while (GET_CODE (op1) == CONST_INT)
9753 enum machine_mode mode = GET_MODE (op0);
9754 unsigned int mode_width = GET_MODE_BITSIZE (mode);
9755 unsigned HOST_WIDE_INT mask = GET_MODE_MASK (mode);
9756 int equality_comparison_p;
9757 int sign_bit_comparison_p;
9758 int unsigned_comparison_p;
9759 HOST_WIDE_INT const_op;
9761 /* We only want to handle integral modes. This catches VOIDmode,
9762 CCmode, and the floating-point modes. An exception is that we
9763 can handle VOIDmode if OP0 is a COMPARE or a comparison
9764 operation. */
9766 if (GET_MODE_CLASS (mode) != MODE_INT
9767 && ! (mode == VOIDmode
9768 && (GET_CODE (op0) == COMPARE || COMPARISON_P (op0))))
9769 break;
9771 /* Get the constant we are comparing against and turn off all bits
9772 not on in our mode. */
9773 const_op = INTVAL (op1);
9774 if (mode != VOIDmode)
9775 const_op = trunc_int_for_mode (const_op, mode);
9776 op1 = GEN_INT (const_op);
9778 /* If we are comparing against a constant power of two and the value
9779 being compared can only have that single bit nonzero (e.g., it was
9780 `and'ed with that bit), we can replace this with a comparison
9781 with zero. */
9782 if (const_op
9783 && (code == EQ || code == NE || code == GE || code == GEU
9784 || code == LT || code == LTU)
9785 && mode_width <= HOST_BITS_PER_WIDE_INT
9786 && exact_log2 (const_op) >= 0
9787 && nonzero_bits (op0, mode) == (unsigned HOST_WIDE_INT) const_op)
9789 code = (code == EQ || code == GE || code == GEU ? NE : EQ);
9790 op1 = const0_rtx, const_op = 0;
9793 /* Similarly, if we are comparing a value known to be either -1 or
9794 0 with -1, change it to the opposite comparison against zero. */
9796 if (const_op == -1
9797 && (code == EQ || code == NE || code == GT || code == LE
9798 || code == GEU || code == LTU)
9799 && num_sign_bit_copies (op0, mode) == mode_width)
9801 code = (code == EQ || code == LE || code == GEU ? NE : EQ);
9802 op1 = const0_rtx, const_op = 0;
9805 /* Do some canonicalizations based on the comparison code. We prefer
9806 comparisons against zero and then prefer equality comparisons.
9807 If we can reduce the size of a constant, we will do that too. */
9809 switch (code)
9811 case LT:
9812 /* < C is equivalent to <= (C - 1) */
9813 if (const_op > 0)
9815 const_op -= 1;
9816 op1 = GEN_INT (const_op);
9817 code = LE;
9818 /* ... fall through to LE case below. */
9820 else
9821 break;
9823 case LE:
9824 /* <= C is equivalent to < (C + 1); we do this for C < 0 */
9825 if (const_op < 0)
9827 const_op += 1;
9828 op1 = GEN_INT (const_op);
9829 code = LT;
9832 /* If we are doing a <= 0 comparison on a value known to have
9833 a zero sign bit, we can replace this with == 0. */
9834 else if (const_op == 0
9835 && mode_width <= HOST_BITS_PER_WIDE_INT
9836 && (nonzero_bits (op0, mode)
9837 & ((HOST_WIDE_INT) 1 << (mode_width - 1))) == 0)
9838 code = EQ;
9839 break;
9841 case GE:
9842 /* >= C is equivalent to > (C - 1). */
9843 if (const_op > 0)
9845 const_op -= 1;
9846 op1 = GEN_INT (const_op);
9847 code = GT;
9848 /* ... fall through to GT below. */
9850 else
9851 break;
9853 case GT:
9854 /* > C is equivalent to >= (C + 1); we do this for C < 0. */
9855 if (const_op < 0)
9857 const_op += 1;
9858 op1 = GEN_INT (const_op);
9859 code = GE;
9862 /* If we are doing a > 0 comparison on a value known to have
9863 a zero sign bit, we can replace this with != 0. */
9864 else if (const_op == 0
9865 && mode_width <= HOST_BITS_PER_WIDE_INT
9866 && (nonzero_bits (op0, mode)
9867 & ((HOST_WIDE_INT) 1 << (mode_width - 1))) == 0)
9868 code = NE;
9869 break;
9871 case LTU:
9872 /* < C is equivalent to <= (C - 1). */
9873 if (const_op > 0)
9875 const_op -= 1;
9876 op1 = GEN_INT (const_op);
9877 code = LEU;
9878 /* ... fall through ... */
9881 /* (unsigned) < 0x80000000 is equivalent to >= 0. */
9882 else if ((mode_width <= HOST_BITS_PER_WIDE_INT)
9883 && (const_op == (HOST_WIDE_INT) 1 << (mode_width - 1)))
9885 const_op = 0, op1 = const0_rtx;
9886 code = GE;
9887 break;
9889 else
9890 break;
9892 case LEU:
9893 /* unsigned <= 0 is equivalent to == 0 */
9894 if (const_op == 0)
9895 code = EQ;
9897 /* (unsigned) <= 0x7fffffff is equivalent to >= 0. */
9898 else if ((mode_width <= HOST_BITS_PER_WIDE_INT)
9899 && (const_op == ((HOST_WIDE_INT) 1 << (mode_width - 1)) - 1))
9901 const_op = 0, op1 = const0_rtx;
9902 code = GE;
9904 break;
9906 case GEU:
9907 /* >= C is equivalent to > (C - 1). */
9908 if (const_op > 1)
9910 const_op -= 1;
9911 op1 = GEN_INT (const_op);
9912 code = GTU;
9913 /* ... fall through ... */
9916 /* (unsigned) >= 0x80000000 is equivalent to < 0. */
9917 else if ((mode_width <= HOST_BITS_PER_WIDE_INT)
9918 && (const_op == (HOST_WIDE_INT) 1 << (mode_width - 1)))
9920 const_op = 0, op1 = const0_rtx;
9921 code = LT;
9922 break;
9924 else
9925 break;
9927 case GTU:
9928 /* unsigned > 0 is equivalent to != 0 */
9929 if (const_op == 0)
9930 code = NE;
9932 /* (unsigned) > 0x7fffffff is equivalent to < 0. */
9933 else if ((mode_width <= HOST_BITS_PER_WIDE_INT)
9934 && (const_op == ((HOST_WIDE_INT) 1 << (mode_width - 1)) - 1))
9936 const_op = 0, op1 = const0_rtx;
9937 code = LT;
9939 break;
9941 default:
9942 break;
9945 /* Compute some predicates to simplify code below. */
9947 equality_comparison_p = (code == EQ || code == NE);
9948 sign_bit_comparison_p = ((code == LT || code == GE) && const_op == 0);
9949 unsigned_comparison_p = (code == LTU || code == LEU || code == GTU
9950 || code == GEU);
9952 /* If this is a sign bit comparison and we can do arithmetic in
9953 MODE, say that we will only be needing the sign bit of OP0. */
9954 if (sign_bit_comparison_p
9955 && GET_MODE_BITSIZE (mode) <= HOST_BITS_PER_WIDE_INT)
9956 op0 = force_to_mode (op0, mode,
9957 ((HOST_WIDE_INT) 1
9958 << (GET_MODE_BITSIZE (mode) - 1)),
9959 NULL_RTX, 0);
9961 /* Now try cases based on the opcode of OP0. If none of the cases
9962 does a "continue", we exit this loop immediately after the
9963 switch. */
9965 switch (GET_CODE (op0))
9967 case ZERO_EXTRACT:
9968 /* If we are extracting a single bit from a variable position in
9969 a constant that has only a single bit set and are comparing it
9970 with zero, we can convert this into an equality comparison
9971 between the position and the location of the single bit. */
9972 /* Except we can't if SHIFT_COUNT_TRUNCATED is set, since we might
9973 have already reduced the shift count modulo the word size. */
9974 if (!SHIFT_COUNT_TRUNCATED
9975 && GET_CODE (XEXP (op0, 0)) == CONST_INT
9976 && XEXP (op0, 1) == const1_rtx
9977 && equality_comparison_p && const_op == 0
9978 && (i = exact_log2 (INTVAL (XEXP (op0, 0)))) >= 0)
9980 if (BITS_BIG_ENDIAN)
9982 enum machine_mode new_mode
9983 = mode_for_extraction (EP_extzv, 1);
9984 if (new_mode == MAX_MACHINE_MODE)
9985 i = BITS_PER_WORD - 1 - i;
9986 else
9988 mode = new_mode;
9989 i = (GET_MODE_BITSIZE (mode) - 1 - i);
9993 op0 = XEXP (op0, 2);
9994 op1 = GEN_INT (i);
9995 const_op = i;
9997 /* Result is nonzero iff shift count is equal to I. */
9998 code = reverse_condition (code);
9999 continue;
10002 /* ... fall through ... */
10004 case SIGN_EXTRACT:
10005 tem = expand_compound_operation (op0);
10006 if (tem != op0)
10008 op0 = tem;
10009 continue;
10011 break;
10013 case NOT:
10014 /* If testing for equality, we can take the NOT of the constant. */
10015 if (equality_comparison_p
10016 && (tem = simplify_unary_operation (NOT, mode, op1, mode)) != 0)
10018 op0 = XEXP (op0, 0);
10019 op1 = tem;
10020 continue;
10023 /* If just looking at the sign bit, reverse the sense of the
10024 comparison. */
10025 if (sign_bit_comparison_p)
10027 op0 = XEXP (op0, 0);
10028 code = (code == GE ? LT : GE);
10029 continue;
10031 break;
10033 case NEG:
10034 /* If testing for equality, we can take the NEG of the constant. */
10035 if (equality_comparison_p
10036 && (tem = simplify_unary_operation (NEG, mode, op1, mode)) != 0)
10038 op0 = XEXP (op0, 0);
10039 op1 = tem;
10040 continue;
10043 /* The remaining cases only apply to comparisons with zero. */
10044 if (const_op != 0)
10045 break;
10047 /* When X is ABS or is known positive,
10048 (neg X) is < 0 if and only if X != 0. */
10050 if (sign_bit_comparison_p
10051 && (GET_CODE (XEXP (op0, 0)) == ABS
10052 || (mode_width <= HOST_BITS_PER_WIDE_INT
10053 && (nonzero_bits (XEXP (op0, 0), mode)
10054 & ((HOST_WIDE_INT) 1 << (mode_width - 1))) == 0)))
10056 op0 = XEXP (op0, 0);
10057 code = (code == LT ? NE : EQ);
10058 continue;
10061 /* If we have NEG of something whose two high-order bits are the
10062 same, we know that "(-a) < 0" is equivalent to "a > 0". */
10063 if (num_sign_bit_copies (op0, mode) >= 2)
10065 op0 = XEXP (op0, 0);
10066 code = swap_condition (code);
10067 continue;
10069 break;
10071 case ROTATE:
10072 /* If we are testing equality and our count is a constant, we
10073 can perform the inverse operation on our RHS. */
10074 if (equality_comparison_p && GET_CODE (XEXP (op0, 1)) == CONST_INT
10075 && (tem = simplify_binary_operation (ROTATERT, mode,
10076 op1, XEXP (op0, 1))) != 0)
10078 op0 = XEXP (op0, 0);
10079 op1 = tem;
10080 continue;
10083 /* If we are doing a < 0 or >= 0 comparison, it means we are testing
10084 a particular bit. Convert it to an AND of a constant of that
10085 bit. This will be converted into a ZERO_EXTRACT. */
10086 if (const_op == 0 && sign_bit_comparison_p
10087 && GET_CODE (XEXP (op0, 1)) == CONST_INT
10088 && mode_width <= HOST_BITS_PER_WIDE_INT)
10090 op0 = simplify_and_const_int (NULL_RTX, mode, XEXP (op0, 0),
10091 ((HOST_WIDE_INT) 1
10092 << (mode_width - 1
10093 - INTVAL (XEXP (op0, 1)))));
10094 code = (code == LT ? NE : EQ);
10095 continue;
10098 /* Fall through. */
10100 case ABS:
10101 /* ABS is ignorable inside an equality comparison with zero. */
10102 if (const_op == 0 && equality_comparison_p)
10104 op0 = XEXP (op0, 0);
10105 continue;
10107 break;
10109 case SIGN_EXTEND:
10110 /* Can simplify (compare (zero/sign_extend FOO) CONST) to
10111 (compare FOO CONST) if CONST fits in FOO's mode and we
10112 are either testing inequality or have an unsigned
10113 comparison with ZERO_EXTEND or a signed comparison with
10114 SIGN_EXTEND. But don't do it if we don't have a compare
10115 insn of the given mode, since we'd have to revert it
10116 later on, and then we wouldn't know whether to sign- or
10117 zero-extend. */
10118 mode = GET_MODE (XEXP (op0, 0));
10119 if (mode != VOIDmode && GET_MODE_CLASS (mode) == MODE_INT
10120 && ! unsigned_comparison_p
10121 && (GET_MODE_BITSIZE (mode) <= HOST_BITS_PER_WIDE_INT)
10122 && ((unsigned HOST_WIDE_INT) const_op
10123 < (((unsigned HOST_WIDE_INT) 1
10124 << (GET_MODE_BITSIZE (mode) - 1))))
10125 && cmp_optab->handlers[(int) mode].insn_code != CODE_FOR_nothing)
10127 op0 = XEXP (op0, 0);
10128 continue;
10130 break;
10132 case SUBREG:
10133 /* Check for the case where we are comparing A - C1 with C2, that is
10135 (subreg:MODE (plus (A) (-C1))) op (C2)
10137 with C1 a constant, and try to lift the SUBREG, i.e. to do the
10138 comparison in the wider mode. One of the following two conditions
10139 must be true in order for this to be valid:
10141 1. The mode extension results in the same bit pattern being added
10142 on both sides and the comparison is equality or unsigned. As
10143 C2 has been truncated to fit in MODE, the pattern can only be
10144 all 0s or all 1s.
10146 2. The mode extension results in the sign bit being copied on
10147 each side.
10149 The difficulty here is that we have predicates for A but not for
10150 (A - C1) so we need to check that C1 is within proper bounds so
10151 as to perturbate A as little as possible. */
10153 if (mode_width <= HOST_BITS_PER_WIDE_INT
10154 && subreg_lowpart_p (op0)
10155 && GET_MODE_BITSIZE (GET_MODE (SUBREG_REG (op0))) > mode_width
10156 && GET_CODE (SUBREG_REG (op0)) == PLUS
10157 && GET_CODE (XEXP (SUBREG_REG (op0), 1)) == CONST_INT)
10159 enum machine_mode inner_mode = GET_MODE (SUBREG_REG (op0));
10160 rtx a = XEXP (SUBREG_REG (op0), 0);
10161 HOST_WIDE_INT c1 = -INTVAL (XEXP (SUBREG_REG (op0), 1));
10163 if ((c1 > 0
10164 && (unsigned HOST_WIDE_INT) c1
10165 < (unsigned HOST_WIDE_INT) 1 << (mode_width - 1)
10166 && (equality_comparison_p || unsigned_comparison_p)
10167 /* (A - C1) zero-extends if it is positive and sign-extends
10168 if it is negative, C2 both zero- and sign-extends. */
10169 && ((0 == (nonzero_bits (a, inner_mode)
10170 & ~GET_MODE_MASK (mode))
10171 && const_op >= 0)
10172 /* (A - C1) sign-extends if it is positive and 1-extends
10173 if it is negative, C2 both sign- and 1-extends. */
10174 || (num_sign_bit_copies (a, inner_mode)
10175 > (unsigned int) (GET_MODE_BITSIZE (inner_mode)
10176 - mode_width)
10177 && const_op < 0)))
10178 || ((unsigned HOST_WIDE_INT) c1
10179 < (unsigned HOST_WIDE_INT) 1 << (mode_width - 2)
10180 /* (A - C1) always sign-extends, like C2. */
10181 && num_sign_bit_copies (a, inner_mode)
10182 > (unsigned int) (GET_MODE_BITSIZE (inner_mode)
10183 - mode_width - 1)))
10185 op0 = SUBREG_REG (op0);
10186 continue;
10190 /* If the inner mode is narrower and we are extracting the low part,
10191 we can treat the SUBREG as if it were a ZERO_EXTEND. */
10192 if (subreg_lowpart_p (op0)
10193 && GET_MODE_BITSIZE (GET_MODE (SUBREG_REG (op0))) < mode_width)
10194 /* Fall through */ ;
10195 else
10196 break;
10198 /* ... fall through ... */
10200 case ZERO_EXTEND:
10201 mode = GET_MODE (XEXP (op0, 0));
10202 if (mode != VOIDmode && GET_MODE_CLASS (mode) == MODE_INT
10203 && (unsigned_comparison_p || equality_comparison_p)
10204 && (GET_MODE_BITSIZE (mode) <= HOST_BITS_PER_WIDE_INT)
10205 && ((unsigned HOST_WIDE_INT) const_op < GET_MODE_MASK (mode))
10206 && cmp_optab->handlers[(int) mode].insn_code != CODE_FOR_nothing)
10208 op0 = XEXP (op0, 0);
10209 continue;
10211 break;
10213 case PLUS:
10214 /* (eq (plus X A) B) -> (eq X (minus B A)). We can only do
10215 this for equality comparisons due to pathological cases involving
10216 overflows. */
10217 if (equality_comparison_p
10218 && 0 != (tem = simplify_binary_operation (MINUS, mode,
10219 op1, XEXP (op0, 1))))
10221 op0 = XEXP (op0, 0);
10222 op1 = tem;
10223 continue;
10226 /* (plus (abs X) (const_int -1)) is < 0 if and only if X == 0. */
10227 if (const_op == 0 && XEXP (op0, 1) == constm1_rtx
10228 && GET_CODE (XEXP (op0, 0)) == ABS && sign_bit_comparison_p)
10230 op0 = XEXP (XEXP (op0, 0), 0);
10231 code = (code == LT ? EQ : NE);
10232 continue;
10234 break;
10236 case MINUS:
10237 /* We used to optimize signed comparisons against zero, but that
10238 was incorrect. Unsigned comparisons against zero (GTU, LEU)
10239 arrive here as equality comparisons, or (GEU, LTU) are
10240 optimized away. No need to special-case them. */
10242 /* (eq (minus A B) C) -> (eq A (plus B C)) or
10243 (eq B (minus A C)), whichever simplifies. We can only do
10244 this for equality comparisons due to pathological cases involving
10245 overflows. */
10246 if (equality_comparison_p
10247 && 0 != (tem = simplify_binary_operation (PLUS, mode,
10248 XEXP (op0, 1), op1)))
10250 op0 = XEXP (op0, 0);
10251 op1 = tem;
10252 continue;
10255 if (equality_comparison_p
10256 && 0 != (tem = simplify_binary_operation (MINUS, mode,
10257 XEXP (op0, 0), op1)))
10259 op0 = XEXP (op0, 1);
10260 op1 = tem;
10261 continue;
10264 /* The sign bit of (minus (ashiftrt X C) X), where C is the number
10265 of bits in X minus 1, is one iff X > 0. */
10266 if (sign_bit_comparison_p && GET_CODE (XEXP (op0, 0)) == ASHIFTRT
10267 && GET_CODE (XEXP (XEXP (op0, 0), 1)) == CONST_INT
10268 && (unsigned HOST_WIDE_INT) INTVAL (XEXP (XEXP (op0, 0), 1))
10269 == mode_width - 1
10270 && rtx_equal_p (XEXP (XEXP (op0, 0), 0), XEXP (op0, 1)))
10272 op0 = XEXP (op0, 1);
10273 code = (code == GE ? LE : GT);
10274 continue;
10276 break;
10278 case XOR:
10279 /* (eq (xor A B) C) -> (eq A (xor B C)). This is a simplification
10280 if C is zero or B is a constant. */
10281 if (equality_comparison_p
10282 && 0 != (tem = simplify_binary_operation (XOR, mode,
10283 XEXP (op0, 1), op1)))
10285 op0 = XEXP (op0, 0);
10286 op1 = tem;
10287 continue;
10289 break;
10291 case EQ: case NE:
10292 case UNEQ: case LTGT:
10293 case LT: case LTU: case UNLT: case LE: case LEU: case UNLE:
10294 case GT: case GTU: case UNGT: case GE: case GEU: case UNGE:
10295 case UNORDERED: case ORDERED:
10296 /* We can't do anything if OP0 is a condition code value, rather
10297 than an actual data value. */
10298 if (const_op != 0
10299 || CC0_P (XEXP (op0, 0))
10300 || GET_MODE_CLASS (GET_MODE (XEXP (op0, 0))) == MODE_CC)
10301 break;
10303 /* Get the two operands being compared. */
10304 if (GET_CODE (XEXP (op0, 0)) == COMPARE)
10305 tem = XEXP (XEXP (op0, 0), 0), tem1 = XEXP (XEXP (op0, 0), 1);
10306 else
10307 tem = XEXP (op0, 0), tem1 = XEXP (op0, 1);
10309 /* Check for the cases where we simply want the result of the
10310 earlier test or the opposite of that result. */
10311 if (code == NE || code == EQ
10312 || (GET_MODE_BITSIZE (GET_MODE (op0)) <= HOST_BITS_PER_WIDE_INT
10313 && GET_MODE_CLASS (GET_MODE (op0)) == MODE_INT
10314 && (STORE_FLAG_VALUE
10315 & (((HOST_WIDE_INT) 1
10316 << (GET_MODE_BITSIZE (GET_MODE (op0)) - 1))))
10317 && (code == LT || code == GE)))
10319 enum rtx_code new_code;
10320 if (code == LT || code == NE)
10321 new_code = GET_CODE (op0);
10322 else
10323 new_code = reversed_comparison_code (op0, NULL);
10325 if (new_code != UNKNOWN)
10327 code = new_code;
10328 op0 = tem;
10329 op1 = tem1;
10330 continue;
10333 break;
10335 case IOR:
10336 /* The sign bit of (ior (plus X (const_int -1)) X) is nonzero
10337 iff X <= 0. */
10338 if (sign_bit_comparison_p && GET_CODE (XEXP (op0, 0)) == PLUS
10339 && XEXP (XEXP (op0, 0), 1) == constm1_rtx
10340 && rtx_equal_p (XEXP (XEXP (op0, 0), 0), XEXP (op0, 1)))
10342 op0 = XEXP (op0, 1);
10343 code = (code == GE ? GT : LE);
10344 continue;
10346 break;
10348 case AND:
10349 /* Convert (and (xshift 1 X) Y) to (and (lshiftrt Y X) 1). This
10350 will be converted to a ZERO_EXTRACT later. */
10351 if (const_op == 0 && equality_comparison_p
10352 && GET_CODE (XEXP (op0, 0)) == ASHIFT
10353 && XEXP (XEXP (op0, 0), 0) == const1_rtx)
10355 op0 = simplify_and_const_int
10356 (op0, mode, gen_rtx_LSHIFTRT (mode,
10357 XEXP (op0, 1),
10358 XEXP (XEXP (op0, 0), 1)),
10359 (HOST_WIDE_INT) 1);
10360 continue;
10363 /* If we are comparing (and (lshiftrt X C1) C2) for equality with
10364 zero and X is a comparison and C1 and C2 describe only bits set
10365 in STORE_FLAG_VALUE, we can compare with X. */
10366 if (const_op == 0 && equality_comparison_p
10367 && mode_width <= HOST_BITS_PER_WIDE_INT
10368 && GET_CODE (XEXP (op0, 1)) == CONST_INT
10369 && GET_CODE (XEXP (op0, 0)) == LSHIFTRT
10370 && GET_CODE (XEXP (XEXP (op0, 0), 1)) == CONST_INT
10371 && INTVAL (XEXP (XEXP (op0, 0), 1)) >= 0
10372 && INTVAL (XEXP (XEXP (op0, 0), 1)) < HOST_BITS_PER_WIDE_INT)
10374 mask = ((INTVAL (XEXP (op0, 1)) & GET_MODE_MASK (mode))
10375 << INTVAL (XEXP (XEXP (op0, 0), 1)));
10376 if ((~STORE_FLAG_VALUE & mask) == 0
10377 && (COMPARISON_P (XEXP (XEXP (op0, 0), 0))
10378 || ((tem = get_last_value (XEXP (XEXP (op0, 0), 0))) != 0
10379 && COMPARISON_P (tem))))
10381 op0 = XEXP (XEXP (op0, 0), 0);
10382 continue;
10386 /* If we are doing an equality comparison of an AND of a bit equal
10387 to the sign bit, replace this with a LT or GE comparison of
10388 the underlying value. */
10389 if (equality_comparison_p
10390 && const_op == 0
10391 && GET_CODE (XEXP (op0, 1)) == CONST_INT
10392 && mode_width <= HOST_BITS_PER_WIDE_INT
10393 && ((INTVAL (XEXP (op0, 1)) & GET_MODE_MASK (mode))
10394 == (unsigned HOST_WIDE_INT) 1 << (mode_width - 1)))
10396 op0 = XEXP (op0, 0);
10397 code = (code == EQ ? GE : LT);
10398 continue;
10401 /* If this AND operation is really a ZERO_EXTEND from a narrower
10402 mode, the constant fits within that mode, and this is either an
10403 equality or unsigned comparison, try to do this comparison in
10404 the narrower mode. */
10405 if ((equality_comparison_p || unsigned_comparison_p)
10406 && GET_CODE (XEXP (op0, 1)) == CONST_INT
10407 && (i = exact_log2 ((INTVAL (XEXP (op0, 1))
10408 & GET_MODE_MASK (mode))
10409 + 1)) >= 0
10410 && const_op >> i == 0
10411 && (tmode = mode_for_size (i, MODE_INT, 1)) != BLKmode)
10413 op0 = gen_lowpart (tmode, XEXP (op0, 0));
10414 continue;
10417 /* If this is (and:M1 (subreg:M2 X 0) (const_int C1)) where C1
10418 fits in both M1 and M2 and the SUBREG is either paradoxical
10419 or represents the low part, permute the SUBREG and the AND
10420 and try again. */
10421 if (GET_CODE (XEXP (op0, 0)) == SUBREG)
10423 unsigned HOST_WIDE_INT c1;
10424 tmode = GET_MODE (SUBREG_REG (XEXP (op0, 0)));
10425 /* Require an integral mode, to avoid creating something like
10426 (AND:SF ...). */
10427 if (SCALAR_INT_MODE_P (tmode)
10428 /* It is unsafe to commute the AND into the SUBREG if the
10429 SUBREG is paradoxical and WORD_REGISTER_OPERATIONS is
10430 not defined. As originally written the upper bits
10431 have a defined value due to the AND operation.
10432 However, if we commute the AND inside the SUBREG then
10433 they no longer have defined values and the meaning of
10434 the code has been changed. */
10435 && (0
10436 #ifdef WORD_REGISTER_OPERATIONS
10437 || (mode_width > GET_MODE_BITSIZE (tmode)
10438 && mode_width <= BITS_PER_WORD)
10439 #endif
10440 || (mode_width <= GET_MODE_BITSIZE (tmode)
10441 && subreg_lowpart_p (XEXP (op0, 0))))
10442 && GET_CODE (XEXP (op0, 1)) == CONST_INT
10443 && mode_width <= HOST_BITS_PER_WIDE_INT
10444 && GET_MODE_BITSIZE (tmode) <= HOST_BITS_PER_WIDE_INT
10445 && ((c1 = INTVAL (XEXP (op0, 1))) & ~mask) == 0
10446 && (c1 & ~GET_MODE_MASK (tmode)) == 0
10447 && c1 != mask
10448 && c1 != GET_MODE_MASK (tmode))
10450 op0 = simplify_gen_binary (AND, tmode,
10451 SUBREG_REG (XEXP (op0, 0)),
10452 gen_int_mode (c1, tmode));
10453 op0 = gen_lowpart (mode, op0);
10454 continue;
10458 /* Convert (ne (and (not X) 1) 0) to (eq (and X 1) 0). */
10459 if (const_op == 0 && equality_comparison_p
10460 && XEXP (op0, 1) == const1_rtx
10461 && GET_CODE (XEXP (op0, 0)) == NOT)
10463 op0 = simplify_and_const_int
10464 (NULL_RTX, mode, XEXP (XEXP (op0, 0), 0), (HOST_WIDE_INT) 1);
10465 code = (code == NE ? EQ : NE);
10466 continue;
10469 /* Convert (ne (and (lshiftrt (not X)) 1) 0) to
10470 (eq (and (lshiftrt X) 1) 0).
10471 Also handle the case where (not X) is expressed using xor. */
10472 if (const_op == 0 && equality_comparison_p
10473 && XEXP (op0, 1) == const1_rtx
10474 && GET_CODE (XEXP (op0, 0)) == LSHIFTRT)
10476 rtx shift_op = XEXP (XEXP (op0, 0), 0);
10477 rtx shift_count = XEXP (XEXP (op0, 0), 1);
10479 if (GET_CODE (shift_op) == NOT
10480 || (GET_CODE (shift_op) == XOR
10481 && GET_CODE (XEXP (shift_op, 1)) == CONST_INT
10482 && GET_CODE (shift_count) == CONST_INT
10483 && GET_MODE_BITSIZE (mode) <= HOST_BITS_PER_WIDE_INT
10484 && (INTVAL (XEXP (shift_op, 1))
10485 == (HOST_WIDE_INT) 1 << INTVAL (shift_count))))
10487 op0 = simplify_and_const_int
10488 (NULL_RTX, mode,
10489 gen_rtx_LSHIFTRT (mode, XEXP (shift_op, 0), shift_count),
10490 (HOST_WIDE_INT) 1);
10491 code = (code == NE ? EQ : NE);
10492 continue;
10495 break;
10497 case ASHIFT:
10498 /* If we have (compare (ashift FOO N) (const_int C)) and
10499 the high order N bits of FOO (N+1 if an inequality comparison)
10500 are known to be zero, we can do this by comparing FOO with C
10501 shifted right N bits so long as the low-order N bits of C are
10502 zero. */
10503 if (GET_CODE (XEXP (op0, 1)) == CONST_INT
10504 && INTVAL (XEXP (op0, 1)) >= 0
10505 && ((INTVAL (XEXP (op0, 1)) + ! equality_comparison_p)
10506 < HOST_BITS_PER_WIDE_INT)
10507 && ((const_op
10508 & (((HOST_WIDE_INT) 1 << INTVAL (XEXP (op0, 1))) - 1)) == 0)
10509 && mode_width <= HOST_BITS_PER_WIDE_INT
10510 && (nonzero_bits (XEXP (op0, 0), mode)
10511 & ~(mask >> (INTVAL (XEXP (op0, 1))
10512 + ! equality_comparison_p))) == 0)
10514 /* We must perform a logical shift, not an arithmetic one,
10515 as we want the top N bits of C to be zero. */
10516 unsigned HOST_WIDE_INT temp = const_op & GET_MODE_MASK (mode);
10518 temp >>= INTVAL (XEXP (op0, 1));
10519 op1 = gen_int_mode (temp, mode);
10520 op0 = XEXP (op0, 0);
10521 continue;
10524 /* If we are doing a sign bit comparison, it means we are testing
10525 a particular bit. Convert it to the appropriate AND. */
10526 if (sign_bit_comparison_p && GET_CODE (XEXP (op0, 1)) == CONST_INT
10527 && mode_width <= HOST_BITS_PER_WIDE_INT)
10529 op0 = simplify_and_const_int (NULL_RTX, mode, XEXP (op0, 0),
10530 ((HOST_WIDE_INT) 1
10531 << (mode_width - 1
10532 - INTVAL (XEXP (op0, 1)))));
10533 code = (code == LT ? NE : EQ);
10534 continue;
10537 /* If this an equality comparison with zero and we are shifting
10538 the low bit to the sign bit, we can convert this to an AND of the
10539 low-order bit. */
10540 if (const_op == 0 && equality_comparison_p
10541 && GET_CODE (XEXP (op0, 1)) == CONST_INT
10542 && (unsigned HOST_WIDE_INT) INTVAL (XEXP (op0, 1))
10543 == mode_width - 1)
10545 op0 = simplify_and_const_int (NULL_RTX, mode, XEXP (op0, 0),
10546 (HOST_WIDE_INT) 1);
10547 continue;
10549 break;
10551 case ASHIFTRT:
10552 /* If this is an equality comparison with zero, we can do this
10553 as a logical shift, which might be much simpler. */
10554 if (equality_comparison_p && const_op == 0
10555 && GET_CODE (XEXP (op0, 1)) == CONST_INT)
10557 op0 = simplify_shift_const (NULL_RTX, LSHIFTRT, mode,
10558 XEXP (op0, 0),
10559 INTVAL (XEXP (op0, 1)));
10560 continue;
10563 /* If OP0 is a sign extension and CODE is not an unsigned comparison,
10564 do the comparison in a narrower mode. */
10565 if (! unsigned_comparison_p
10566 && GET_CODE (XEXP (op0, 1)) == CONST_INT
10567 && GET_CODE (XEXP (op0, 0)) == ASHIFT
10568 && XEXP (op0, 1) == XEXP (XEXP (op0, 0), 1)
10569 && (tmode = mode_for_size (mode_width - INTVAL (XEXP (op0, 1)),
10570 MODE_INT, 1)) != BLKmode
10571 && (((unsigned HOST_WIDE_INT) const_op
10572 + (GET_MODE_MASK (tmode) >> 1) + 1)
10573 <= GET_MODE_MASK (tmode)))
10575 op0 = gen_lowpart (tmode, XEXP (XEXP (op0, 0), 0));
10576 continue;
10579 /* Likewise if OP0 is a PLUS of a sign extension with a
10580 constant, which is usually represented with the PLUS
10581 between the shifts. */
10582 if (! unsigned_comparison_p
10583 && GET_CODE (XEXP (op0, 1)) == CONST_INT
10584 && GET_CODE (XEXP (op0, 0)) == PLUS
10585 && GET_CODE (XEXP (XEXP (op0, 0), 1)) == CONST_INT
10586 && GET_CODE (XEXP (XEXP (op0, 0), 0)) == ASHIFT
10587 && XEXP (op0, 1) == XEXP (XEXP (XEXP (op0, 0), 0), 1)
10588 && (tmode = mode_for_size (mode_width - INTVAL (XEXP (op0, 1)),
10589 MODE_INT, 1)) != BLKmode
10590 && (((unsigned HOST_WIDE_INT) const_op
10591 + (GET_MODE_MASK (tmode) >> 1) + 1)
10592 <= GET_MODE_MASK (tmode)))
10594 rtx inner = XEXP (XEXP (XEXP (op0, 0), 0), 0);
10595 rtx add_const = XEXP (XEXP (op0, 0), 1);
10596 rtx new_const = simplify_gen_binary (ASHIFTRT, GET_MODE (op0),
10597 add_const, XEXP (op0, 1));
10599 op0 = simplify_gen_binary (PLUS, tmode,
10600 gen_lowpart (tmode, inner),
10601 new_const);
10602 continue;
10605 /* ... fall through ... */
10606 case LSHIFTRT:
10607 /* If we have (compare (xshiftrt FOO N) (const_int C)) and
10608 the low order N bits of FOO are known to be zero, we can do this
10609 by comparing FOO with C shifted left N bits so long as no
10610 overflow occurs. */
10611 if (GET_CODE (XEXP (op0, 1)) == CONST_INT
10612 && INTVAL (XEXP (op0, 1)) >= 0
10613 && INTVAL (XEXP (op0, 1)) < HOST_BITS_PER_WIDE_INT
10614 && mode_width <= HOST_BITS_PER_WIDE_INT
10615 && (nonzero_bits (XEXP (op0, 0), mode)
10616 & (((HOST_WIDE_INT) 1 << INTVAL (XEXP (op0, 1))) - 1)) == 0
10617 && (((unsigned HOST_WIDE_INT) const_op
10618 + (GET_CODE (op0) != LSHIFTRT
10619 ? ((GET_MODE_MASK (mode) >> INTVAL (XEXP (op0, 1)) >> 1)
10620 + 1)
10621 : 0))
10622 <= GET_MODE_MASK (mode) >> INTVAL (XEXP (op0, 1))))
10624 /* If the shift was logical, then we must make the condition
10625 unsigned. */
10626 if (GET_CODE (op0) == LSHIFTRT)
10627 code = unsigned_condition (code);
10629 const_op <<= INTVAL (XEXP (op0, 1));
10630 op1 = GEN_INT (const_op);
10631 op0 = XEXP (op0, 0);
10632 continue;
10635 /* If we are using this shift to extract just the sign bit, we
10636 can replace this with an LT or GE comparison. */
10637 if (const_op == 0
10638 && (equality_comparison_p || sign_bit_comparison_p)
10639 && GET_CODE (XEXP (op0, 1)) == CONST_INT
10640 && (unsigned HOST_WIDE_INT) INTVAL (XEXP (op0, 1))
10641 == mode_width - 1)
10643 op0 = XEXP (op0, 0);
10644 code = (code == NE || code == GT ? LT : GE);
10645 continue;
10647 break;
10649 default:
10650 break;
10653 break;
10656 /* Now make any compound operations involved in this comparison. Then,
10657 check for an outmost SUBREG on OP0 that is not doing anything or is
10658 paradoxical. The latter transformation must only be performed when
10659 it is known that the "extra" bits will be the same in op0 and op1 or
10660 that they don't matter. There are three cases to consider:
10662 1. SUBREG_REG (op0) is a register. In this case the bits are don't
10663 care bits and we can assume they have any convenient value. So
10664 making the transformation is safe.
10666 2. SUBREG_REG (op0) is a memory and LOAD_EXTEND_OP is not defined.
10667 In this case the upper bits of op0 are undefined. We should not make
10668 the simplification in that case as we do not know the contents of
10669 those bits.
10671 3. SUBREG_REG (op0) is a memory and LOAD_EXTEND_OP is defined and not
10672 UNKNOWN. In that case we know those bits are zeros or ones. We must
10673 also be sure that they are the same as the upper bits of op1.
10675 We can never remove a SUBREG for a non-equality comparison because
10676 the sign bit is in a different place in the underlying object. */
10678 op0 = make_compound_operation (op0, op1 == const0_rtx ? COMPARE : SET);
10679 op1 = make_compound_operation (op1, SET);
10681 if (GET_CODE (op0) == SUBREG && subreg_lowpart_p (op0)
10682 && GET_MODE_CLASS (GET_MODE (op0)) == MODE_INT
10683 && GET_MODE_CLASS (GET_MODE (SUBREG_REG (op0))) == MODE_INT
10684 && (code == NE || code == EQ))
10686 if (GET_MODE_SIZE (GET_MODE (op0))
10687 > GET_MODE_SIZE (GET_MODE (SUBREG_REG (op0))))
10689 /* For paradoxical subregs, allow case 1 as above. Case 3 isn't
10690 implemented. */
10691 if (REG_P (SUBREG_REG (op0)))
10693 op0 = SUBREG_REG (op0);
10694 op1 = gen_lowpart (GET_MODE (op0), op1);
10697 else if ((GET_MODE_BITSIZE (GET_MODE (SUBREG_REG (op0)))
10698 <= HOST_BITS_PER_WIDE_INT)
10699 && (nonzero_bits (SUBREG_REG (op0),
10700 GET_MODE (SUBREG_REG (op0)))
10701 & ~GET_MODE_MASK (GET_MODE (op0))) == 0)
10703 tem = gen_lowpart (GET_MODE (SUBREG_REG (op0)), op1);
10705 if ((nonzero_bits (tem, GET_MODE (SUBREG_REG (op0)))
10706 & ~GET_MODE_MASK (GET_MODE (op0))) == 0)
10707 op0 = SUBREG_REG (op0), op1 = tem;
10711 /* We now do the opposite procedure: Some machines don't have compare
10712 insns in all modes. If OP0's mode is an integer mode smaller than a
10713 word and we can't do a compare in that mode, see if there is a larger
10714 mode for which we can do the compare. There are a number of cases in
10715 which we can use the wider mode. */
10717 mode = GET_MODE (op0);
10718 if (mode != VOIDmode && GET_MODE_CLASS (mode) == MODE_INT
10719 && GET_MODE_SIZE (mode) < UNITS_PER_WORD
10720 && ! have_insn_for (COMPARE, mode))
10721 for (tmode = GET_MODE_WIDER_MODE (mode);
10722 (tmode != VOIDmode
10723 && GET_MODE_BITSIZE (tmode) <= HOST_BITS_PER_WIDE_INT);
10724 tmode = GET_MODE_WIDER_MODE (tmode))
10725 if (have_insn_for (COMPARE, tmode))
10727 int zero_extended;
10729 /* If the only nonzero bits in OP0 and OP1 are those in the
10730 narrower mode and this is an equality or unsigned comparison,
10731 we can use the wider mode. Similarly for sign-extended
10732 values, in which case it is true for all comparisons. */
10733 zero_extended = ((code == EQ || code == NE
10734 || code == GEU || code == GTU
10735 || code == LEU || code == LTU)
10736 && (nonzero_bits (op0, tmode)
10737 & ~GET_MODE_MASK (mode)) == 0
10738 && ((GET_CODE (op1) == CONST_INT
10739 || (nonzero_bits (op1, tmode)
10740 & ~GET_MODE_MASK (mode)) == 0)));
10742 if (zero_extended
10743 || ((num_sign_bit_copies (op0, tmode)
10744 > (unsigned int) (GET_MODE_BITSIZE (tmode)
10745 - GET_MODE_BITSIZE (mode)))
10746 && (num_sign_bit_copies (op1, tmode)
10747 > (unsigned int) (GET_MODE_BITSIZE (tmode)
10748 - GET_MODE_BITSIZE (mode)))))
10750 /* If OP0 is an AND and we don't have an AND in MODE either,
10751 make a new AND in the proper mode. */
10752 if (GET_CODE (op0) == AND
10753 && !have_insn_for (AND, mode))
10754 op0 = simplify_gen_binary (AND, tmode,
10755 gen_lowpart (tmode,
10756 XEXP (op0, 0)),
10757 gen_lowpart (tmode,
10758 XEXP (op0, 1)));
10760 op0 = gen_lowpart (tmode, op0);
10761 if (zero_extended && GET_CODE (op1) == CONST_INT)
10762 op1 = GEN_INT (INTVAL (op1) & GET_MODE_MASK (mode));
10763 op1 = gen_lowpart (tmode, op1);
10764 break;
10767 /* If this is a test for negative, we can make an explicit
10768 test of the sign bit. */
10770 if (op1 == const0_rtx && (code == LT || code == GE)
10771 && GET_MODE_BITSIZE (mode) <= HOST_BITS_PER_WIDE_INT)
10773 op0 = simplify_gen_binary (AND, tmode,
10774 gen_lowpart (tmode, op0),
10775 GEN_INT ((HOST_WIDE_INT) 1
10776 << (GET_MODE_BITSIZE (mode)
10777 - 1)));
10778 code = (code == LT) ? NE : EQ;
10779 break;
10783 #ifdef CANONICALIZE_COMPARISON
10784 /* If this machine only supports a subset of valid comparisons, see if we
10785 can convert an unsupported one into a supported one. */
10786 CANONICALIZE_COMPARISON (code, op0, op1);
10787 #endif
10789 *pop0 = op0;
10790 *pop1 = op1;
10792 return code;
10795 /* Utility function for record_value_for_reg. Count number of
10796 rtxs in X. */
10797 static int
10798 count_rtxs (rtx x)
10800 enum rtx_code code = GET_CODE (x);
10801 const char *fmt;
10802 int i, ret = 1;
10804 if (GET_RTX_CLASS (code) == '2'
10805 || GET_RTX_CLASS (code) == 'c')
10807 rtx x0 = XEXP (x, 0);
10808 rtx x1 = XEXP (x, 1);
10810 if (x0 == x1)
10811 return 1 + 2 * count_rtxs (x0);
10813 if ((GET_RTX_CLASS (GET_CODE (x1)) == '2'
10814 || GET_RTX_CLASS (GET_CODE (x1)) == 'c')
10815 && (x0 == XEXP (x1, 0) || x0 == XEXP (x1, 1)))
10816 return 2 + 2 * count_rtxs (x0)
10817 + count_rtxs (x == XEXP (x1, 0)
10818 ? XEXP (x1, 1) : XEXP (x1, 0));
10820 if ((GET_RTX_CLASS (GET_CODE (x0)) == '2'
10821 || GET_RTX_CLASS (GET_CODE (x0)) == 'c')
10822 && (x1 == XEXP (x0, 0) || x1 == XEXP (x0, 1)))
10823 return 2 + 2 * count_rtxs (x1)
10824 + count_rtxs (x == XEXP (x0, 0)
10825 ? XEXP (x0, 1) : XEXP (x0, 0));
10828 fmt = GET_RTX_FORMAT (code);
10829 for (i = GET_RTX_LENGTH (code) - 1; i >= 0; i--)
10830 if (fmt[i] == 'e')
10831 ret += count_rtxs (XEXP (x, i));
10833 return ret;
10836 /* Utility function for following routine. Called when X is part of a value
10837 being stored into last_set_value. Sets last_set_table_tick
10838 for each register mentioned. Similar to mention_regs in cse.c */
10840 static void
10841 update_table_tick (rtx x)
10843 enum rtx_code code = GET_CODE (x);
10844 const char *fmt = GET_RTX_FORMAT (code);
10845 int i;
10847 if (code == REG)
10849 unsigned int regno = REGNO (x);
10850 unsigned int endregno
10851 = regno + (regno < FIRST_PSEUDO_REGISTER
10852 ? hard_regno_nregs[regno][GET_MODE (x)] : 1);
10853 unsigned int r;
10855 for (r = regno; r < endregno; r++)
10856 reg_stat[r].last_set_table_tick = label_tick;
10858 return;
10861 for (i = GET_RTX_LENGTH (code) - 1; i >= 0; i--)
10862 /* Note that we can't have an "E" in values stored; see
10863 get_last_value_validate. */
10864 if (fmt[i] == 'e')
10866 /* Check for identical subexpressions. If x contains
10867 identical subexpression we only have to traverse one of
10868 them. */
10869 if (i == 0 && ARITHMETIC_P (x))
10871 /* Note that at this point x1 has already been
10872 processed. */
10873 rtx x0 = XEXP (x, 0);
10874 rtx x1 = XEXP (x, 1);
10876 /* If x0 and x1 are identical then there is no need to
10877 process x0. */
10878 if (x0 == x1)
10879 break;
10881 /* If x0 is identical to a subexpression of x1 then while
10882 processing x1, x0 has already been processed. Thus we
10883 are done with x. */
10884 if (ARITHMETIC_P (x1)
10885 && (x0 == XEXP (x1, 0) || x0 == XEXP (x1, 1)))
10886 break;
10888 /* If x1 is identical to a subexpression of x0 then we
10889 still have to process the rest of x0. */
10890 if (ARITHMETIC_P (x0)
10891 && (x1 == XEXP (x0, 0) || x1 == XEXP (x0, 1)))
10893 update_table_tick (XEXP (x0, x1 == XEXP (x0, 0) ? 1 : 0));
10894 break;
10898 update_table_tick (XEXP (x, i));
10902 /* Record that REG is set to VALUE in insn INSN. If VALUE is zero, we
10903 are saying that the register is clobbered and we no longer know its
10904 value. If INSN is zero, don't update reg_stat[].last_set; this is
10905 only permitted with VALUE also zero and is used to invalidate the
10906 register. */
10908 static void
10909 record_value_for_reg (rtx reg, rtx insn, rtx value)
10911 unsigned int regno = REGNO (reg);
10912 unsigned int endregno
10913 = regno + (regno < FIRST_PSEUDO_REGISTER
10914 ? hard_regno_nregs[regno][GET_MODE (reg)] : 1);
10915 unsigned int i;
10917 /* If VALUE contains REG and we have a previous value for REG, substitute
10918 the previous value. */
10919 if (value && insn && reg_overlap_mentioned_p (reg, value))
10921 rtx tem;
10923 /* Set things up so get_last_value is allowed to see anything set up to
10924 our insn. */
10925 subst_low_cuid = INSN_CUID (insn);
10926 tem = get_last_value (reg);
10928 /* If TEM is simply a binary operation with two CLOBBERs as operands,
10929 it isn't going to be useful and will take a lot of time to process,
10930 so just use the CLOBBER. */
10932 if (tem)
10934 if (ARITHMETIC_P (tem)
10935 && GET_CODE (XEXP (tem, 0)) == CLOBBER
10936 && GET_CODE (XEXP (tem, 1)) == CLOBBER)
10937 tem = XEXP (tem, 0);
10938 else if (count_occurrences (value, reg, 1) >= 2)
10940 /* If there are two or more occurrences of REG in VALUE,
10941 prevent the value from growing too much. */
10942 if (count_rtxs (tem) > MAX_LAST_VALUE_RTL)
10943 tem = gen_rtx_CLOBBER (GET_MODE (tem), const0_rtx);
10946 value = replace_rtx (copy_rtx (value), reg, tem);
10950 /* For each register modified, show we don't know its value, that
10951 we don't know about its bitwise content, that its value has been
10952 updated, and that we don't know the location of the death of the
10953 register. */
10954 for (i = regno; i < endregno; i++)
10956 if (insn)
10957 reg_stat[i].last_set = insn;
10959 reg_stat[i].last_set_value = 0;
10960 reg_stat[i].last_set_mode = 0;
10961 reg_stat[i].last_set_nonzero_bits = 0;
10962 reg_stat[i].last_set_sign_bit_copies = 0;
10963 reg_stat[i].last_death = 0;
10966 /* Mark registers that are being referenced in this value. */
10967 if (value)
10968 update_table_tick (value);
10970 /* Now update the status of each register being set.
10971 If someone is using this register in this block, set this register
10972 to invalid since we will get confused between the two lives in this
10973 basic block. This makes using this register always invalid. In cse, we
10974 scan the table to invalidate all entries using this register, but this
10975 is too much work for us. */
10977 for (i = regno; i < endregno; i++)
10979 reg_stat[i].last_set_label = label_tick;
10980 if (value && reg_stat[i].last_set_table_tick == label_tick)
10981 reg_stat[i].last_set_invalid = 1;
10982 else
10983 reg_stat[i].last_set_invalid = 0;
10986 /* The value being assigned might refer to X (like in "x++;"). In that
10987 case, we must replace it with (clobber (const_int 0)) to prevent
10988 infinite loops. */
10989 if (value && ! get_last_value_validate (&value, insn,
10990 reg_stat[regno].last_set_label, 0))
10992 value = copy_rtx (value);
10993 if (! get_last_value_validate (&value, insn,
10994 reg_stat[regno].last_set_label, 1))
10995 value = 0;
10998 /* For the main register being modified, update the value, the mode, the
10999 nonzero bits, and the number of sign bit copies. */
11001 reg_stat[regno].last_set_value = value;
11003 if (value)
11005 enum machine_mode mode = GET_MODE (reg);
11006 subst_low_cuid = INSN_CUID (insn);
11007 reg_stat[regno].last_set_mode = mode;
11008 if (GET_MODE_CLASS (mode) == MODE_INT
11009 && GET_MODE_BITSIZE (mode) <= HOST_BITS_PER_WIDE_INT)
11010 mode = nonzero_bits_mode;
11011 reg_stat[regno].last_set_nonzero_bits = nonzero_bits (value, mode);
11012 reg_stat[regno].last_set_sign_bit_copies
11013 = num_sign_bit_copies (value, GET_MODE (reg));
11017 /* Called via note_stores from record_dead_and_set_regs to handle one
11018 SET or CLOBBER in an insn. DATA is the instruction in which the
11019 set is occurring. */
11021 static void
11022 record_dead_and_set_regs_1 (rtx dest, rtx setter, void *data)
11024 rtx record_dead_insn = (rtx) data;
11026 if (GET_CODE (dest) == SUBREG)
11027 dest = SUBREG_REG (dest);
11029 if (REG_P (dest))
11031 /* If we are setting the whole register, we know its value. Otherwise
11032 show that we don't know the value. We can handle SUBREG in
11033 some cases. */
11034 if (GET_CODE (setter) == SET && dest == SET_DEST (setter))
11035 record_value_for_reg (dest, record_dead_insn, SET_SRC (setter));
11036 else if (GET_CODE (setter) == SET
11037 && GET_CODE (SET_DEST (setter)) == SUBREG
11038 && SUBREG_REG (SET_DEST (setter)) == dest
11039 && GET_MODE_BITSIZE (GET_MODE (dest)) <= BITS_PER_WORD
11040 && subreg_lowpart_p (SET_DEST (setter)))
11041 record_value_for_reg (dest, record_dead_insn,
11042 gen_lowpart (GET_MODE (dest),
11043 SET_SRC (setter)));
11044 else
11045 record_value_for_reg (dest, record_dead_insn, NULL_RTX);
11047 else if (MEM_P (dest)
11048 /* Ignore pushes, they clobber nothing. */
11049 && ! push_operand (dest, GET_MODE (dest)))
11050 mem_last_set = INSN_CUID (record_dead_insn);
11053 /* Update the records of when each REG was most recently set or killed
11054 for the things done by INSN. This is the last thing done in processing
11055 INSN in the combiner loop.
11057 We update reg_stat[], in particular fields last_set, last_set_value,
11058 last_set_mode, last_set_nonzero_bits, last_set_sign_bit_copies,
11059 last_death, and also the similar information mem_last_set (which insn
11060 most recently modified memory) and last_call_cuid (which insn was the
11061 most recent subroutine call). */
11063 static void
11064 record_dead_and_set_regs (rtx insn)
11066 rtx link;
11067 unsigned int i;
11069 for (link = REG_NOTES (insn); link; link = XEXP (link, 1))
11071 if (REG_NOTE_KIND (link) == REG_DEAD
11072 && REG_P (XEXP (link, 0)))
11074 unsigned int regno = REGNO (XEXP (link, 0));
11075 unsigned int endregno
11076 = regno + (regno < FIRST_PSEUDO_REGISTER
11077 ? hard_regno_nregs[regno][GET_MODE (XEXP (link, 0))]
11078 : 1);
11080 for (i = regno; i < endregno; i++)
11081 reg_stat[i].last_death = insn;
11083 else if (REG_NOTE_KIND (link) == REG_INC)
11084 record_value_for_reg (XEXP (link, 0), insn, NULL_RTX);
11087 if (CALL_P (insn))
11089 for (i = 0; i < FIRST_PSEUDO_REGISTER; i++)
11090 if (TEST_HARD_REG_BIT (regs_invalidated_by_call, i))
11092 reg_stat[i].last_set_value = 0;
11093 reg_stat[i].last_set_mode = 0;
11094 reg_stat[i].last_set_nonzero_bits = 0;
11095 reg_stat[i].last_set_sign_bit_copies = 0;
11096 reg_stat[i].last_death = 0;
11099 last_call_cuid = mem_last_set = INSN_CUID (insn);
11101 /* Don't bother recording what this insn does. It might set the
11102 return value register, but we can't combine into a call
11103 pattern anyway, so there's no point trying (and it may cause
11104 a crash, if e.g. we wind up asking for last_set_value of a
11105 SUBREG of the return value register). */
11106 return;
11109 note_stores (PATTERN (insn), record_dead_and_set_regs_1, insn);
11112 /* If a SUBREG has the promoted bit set, it is in fact a property of the
11113 register present in the SUBREG, so for each such SUBREG go back and
11114 adjust nonzero and sign bit information of the registers that are
11115 known to have some zero/sign bits set.
11117 This is needed because when combine blows the SUBREGs away, the
11118 information on zero/sign bits is lost and further combines can be
11119 missed because of that. */
11121 static void
11122 record_promoted_value (rtx insn, rtx subreg)
11124 rtx links, set;
11125 unsigned int regno = REGNO (SUBREG_REG (subreg));
11126 enum machine_mode mode = GET_MODE (subreg);
11128 if (GET_MODE_BITSIZE (mode) > HOST_BITS_PER_WIDE_INT)
11129 return;
11131 for (links = LOG_LINKS (insn); links;)
11133 insn = XEXP (links, 0);
11134 set = single_set (insn);
11136 if (! set || !REG_P (SET_DEST (set))
11137 || REGNO (SET_DEST (set)) != regno
11138 || GET_MODE (SET_DEST (set)) != GET_MODE (SUBREG_REG (subreg)))
11140 links = XEXP (links, 1);
11141 continue;
11144 if (reg_stat[regno].last_set == insn)
11146 if (SUBREG_PROMOTED_UNSIGNED_P (subreg) > 0)
11147 reg_stat[regno].last_set_nonzero_bits &= GET_MODE_MASK (mode);
11150 if (REG_P (SET_SRC (set)))
11152 regno = REGNO (SET_SRC (set));
11153 links = LOG_LINKS (insn);
11155 else
11156 break;
11160 /* Scan X for promoted SUBREGs. For each one found,
11161 note what it implies to the registers used in it. */
11163 static void
11164 check_promoted_subreg (rtx insn, rtx x)
11166 if (GET_CODE (x) == SUBREG && SUBREG_PROMOTED_VAR_P (x)
11167 && REG_P (SUBREG_REG (x)))
11168 record_promoted_value (insn, x);
11169 else
11171 const char *format = GET_RTX_FORMAT (GET_CODE (x));
11172 int i, j;
11174 for (i = 0; i < GET_RTX_LENGTH (GET_CODE (x)); i++)
11175 switch (format[i])
11177 case 'e':
11178 check_promoted_subreg (insn, XEXP (x, i));
11179 break;
11180 case 'V':
11181 case 'E':
11182 if (XVEC (x, i) != 0)
11183 for (j = 0; j < XVECLEN (x, i); j++)
11184 check_promoted_subreg (insn, XVECEXP (x, i, j));
11185 break;
11190 /* Utility routine for the following function. Verify that all the registers
11191 mentioned in *LOC are valid when *LOC was part of a value set when
11192 label_tick == TICK. Return 0 if some are not.
11194 If REPLACE is nonzero, replace the invalid reference with
11195 (clobber (const_int 0)) and return 1. This replacement is useful because
11196 we often can get useful information about the form of a value (e.g., if
11197 it was produced by a shift that always produces -1 or 0) even though
11198 we don't know exactly what registers it was produced from. */
11200 static int
11201 get_last_value_validate (rtx *loc, rtx insn, int tick, int replace)
11203 rtx x = *loc;
11204 const char *fmt = GET_RTX_FORMAT (GET_CODE (x));
11205 int len = GET_RTX_LENGTH (GET_CODE (x));
11206 int i;
11208 if (REG_P (x))
11210 unsigned int regno = REGNO (x);
11211 unsigned int endregno
11212 = regno + (regno < FIRST_PSEUDO_REGISTER
11213 ? hard_regno_nregs[regno][GET_MODE (x)] : 1);
11214 unsigned int j;
11216 for (j = regno; j < endregno; j++)
11217 if (reg_stat[j].last_set_invalid
11218 /* If this is a pseudo-register that was only set once and not
11219 live at the beginning of the function, it is always valid. */
11220 || (! (regno >= FIRST_PSEUDO_REGISTER
11221 && REG_N_SETS (regno) == 1
11222 && (! REGNO_REG_SET_P
11223 (ENTRY_BLOCK_PTR->next_bb->global_live_at_start, regno)))
11224 && reg_stat[j].last_set_label > tick))
11226 if (replace)
11227 *loc = gen_rtx_CLOBBER (GET_MODE (x), const0_rtx);
11228 return replace;
11231 return 1;
11233 /* If this is a memory reference, make sure that there were
11234 no stores after it that might have clobbered the value. We don't
11235 have alias info, so we assume any store invalidates it. */
11236 else if (MEM_P (x) && !MEM_READONLY_P (x)
11237 && INSN_CUID (insn) <= mem_last_set)
11239 if (replace)
11240 *loc = gen_rtx_CLOBBER (GET_MODE (x), const0_rtx);
11241 return replace;
11244 for (i = 0; i < len; i++)
11246 if (fmt[i] == 'e')
11248 /* Check for identical subexpressions. If x contains
11249 identical subexpression we only have to traverse one of
11250 them. */
11251 if (i == 1 && ARITHMETIC_P (x))
11253 /* Note that at this point x0 has already been checked
11254 and found valid. */
11255 rtx x0 = XEXP (x, 0);
11256 rtx x1 = XEXP (x, 1);
11258 /* If x0 and x1 are identical then x is also valid. */
11259 if (x0 == x1)
11260 return 1;
11262 /* If x1 is identical to a subexpression of x0 then
11263 while checking x0, x1 has already been checked. Thus
11264 it is valid and so as x. */
11265 if (ARITHMETIC_P (x0)
11266 && (x1 == XEXP (x0, 0) || x1 == XEXP (x0, 1)))
11267 return 1;
11269 /* If x0 is identical to a subexpression of x1 then x is
11270 valid iff the rest of x1 is valid. */
11271 if (ARITHMETIC_P (x1)
11272 && (x0 == XEXP (x1, 0) || x0 == XEXP (x1, 1)))
11273 return
11274 get_last_value_validate (&XEXP (x1,
11275 x0 == XEXP (x1, 0) ? 1 : 0),
11276 insn, tick, replace);
11279 if (get_last_value_validate (&XEXP (x, i), insn, tick,
11280 replace) == 0)
11281 return 0;
11283 /* Don't bother with these. They shouldn't occur anyway. */
11284 else if (fmt[i] == 'E')
11285 return 0;
11288 /* If we haven't found a reason for it to be invalid, it is valid. */
11289 return 1;
11292 /* Get the last value assigned to X, if known. Some registers
11293 in the value may be replaced with (clobber (const_int 0)) if their value
11294 is known longer known reliably. */
11296 static rtx
11297 get_last_value (rtx x)
11299 unsigned int regno;
11300 rtx value;
11302 /* If this is a non-paradoxical SUBREG, get the value of its operand and
11303 then convert it to the desired mode. If this is a paradoxical SUBREG,
11304 we cannot predict what values the "extra" bits might have. */
11305 if (GET_CODE (x) == SUBREG
11306 && subreg_lowpart_p (x)
11307 && (GET_MODE_SIZE (GET_MODE (x))
11308 <= GET_MODE_SIZE (GET_MODE (SUBREG_REG (x))))
11309 && (value = get_last_value (SUBREG_REG (x))) != 0)
11310 return gen_lowpart (GET_MODE (x), value);
11312 if (!REG_P (x))
11313 return 0;
11315 regno = REGNO (x);
11316 value = reg_stat[regno].last_set_value;
11318 /* If we don't have a value, or if it isn't for this basic block and
11319 it's either a hard register, set more than once, or it's a live
11320 at the beginning of the function, return 0.
11322 Because if it's not live at the beginning of the function then the reg
11323 is always set before being used (is never used without being set).
11324 And, if it's set only once, and it's always set before use, then all
11325 uses must have the same last value, even if it's not from this basic
11326 block. */
11328 if (value == 0
11329 || (reg_stat[regno].last_set_label != label_tick
11330 && (regno < FIRST_PSEUDO_REGISTER
11331 || REG_N_SETS (regno) != 1
11332 || (REGNO_REG_SET_P
11333 (ENTRY_BLOCK_PTR->next_bb->global_live_at_start, regno)))))
11334 return 0;
11336 /* If the value was set in a later insn than the ones we are processing,
11337 we can't use it even if the register was only set once. */
11338 if (INSN_CUID (reg_stat[regno].last_set) >= subst_low_cuid)
11339 return 0;
11341 /* If the value has all its registers valid, return it. */
11342 if (get_last_value_validate (&value, reg_stat[regno].last_set,
11343 reg_stat[regno].last_set_label, 0))
11344 return value;
11346 /* Otherwise, make a copy and replace any invalid register with
11347 (clobber (const_int 0)). If that fails for some reason, return 0. */
11349 value = copy_rtx (value);
11350 if (get_last_value_validate (&value, reg_stat[regno].last_set,
11351 reg_stat[regno].last_set_label, 1))
11352 return value;
11354 return 0;
11357 /* Return nonzero if expression X refers to a REG or to memory
11358 that is set in an instruction more recent than FROM_CUID. */
11360 static int
11361 use_crosses_set_p (rtx x, int from_cuid)
11363 const char *fmt;
11364 int i;
11365 enum rtx_code code = GET_CODE (x);
11367 if (code == REG)
11369 unsigned int regno = REGNO (x);
11370 unsigned endreg = regno + (regno < FIRST_PSEUDO_REGISTER
11371 ? hard_regno_nregs[regno][GET_MODE (x)] : 1);
11373 #ifdef PUSH_ROUNDING
11374 /* Don't allow uses of the stack pointer to be moved,
11375 because we don't know whether the move crosses a push insn. */
11376 if (regno == STACK_POINTER_REGNUM && PUSH_ARGS)
11377 return 1;
11378 #endif
11379 for (; regno < endreg; regno++)
11380 if (reg_stat[regno].last_set
11381 && INSN_CUID (reg_stat[regno].last_set) > from_cuid)
11382 return 1;
11383 return 0;
11386 if (code == MEM && mem_last_set > from_cuid)
11387 return 1;
11389 fmt = GET_RTX_FORMAT (code);
11391 for (i = GET_RTX_LENGTH (code) - 1; i >= 0; i--)
11393 if (fmt[i] == 'E')
11395 int j;
11396 for (j = XVECLEN (x, i) - 1; j >= 0; j--)
11397 if (use_crosses_set_p (XVECEXP (x, i, j), from_cuid))
11398 return 1;
11400 else if (fmt[i] == 'e'
11401 && use_crosses_set_p (XEXP (x, i), from_cuid))
11402 return 1;
11404 return 0;
11407 /* Define three variables used for communication between the following
11408 routines. */
11410 static unsigned int reg_dead_regno, reg_dead_endregno;
11411 static int reg_dead_flag;
11413 /* Function called via note_stores from reg_dead_at_p.
11415 If DEST is within [reg_dead_regno, reg_dead_endregno), set
11416 reg_dead_flag to 1 if X is a CLOBBER and to -1 it is a SET. */
11418 static void
11419 reg_dead_at_p_1 (rtx dest, rtx x, void *data ATTRIBUTE_UNUSED)
11421 unsigned int regno, endregno;
11423 if (!REG_P (dest))
11424 return;
11426 regno = REGNO (dest);
11427 endregno = regno + (regno < FIRST_PSEUDO_REGISTER
11428 ? hard_regno_nregs[regno][GET_MODE (dest)] : 1);
11430 if (reg_dead_endregno > regno && reg_dead_regno < endregno)
11431 reg_dead_flag = (GET_CODE (x) == CLOBBER) ? 1 : -1;
11434 /* Return nonzero if REG is known to be dead at INSN.
11436 We scan backwards from INSN. If we hit a REG_DEAD note or a CLOBBER
11437 referencing REG, it is dead. If we hit a SET referencing REG, it is
11438 live. Otherwise, see if it is live or dead at the start of the basic
11439 block we are in. Hard regs marked as being live in NEWPAT_USED_REGS
11440 must be assumed to be always live. */
11442 static int
11443 reg_dead_at_p (rtx reg, rtx insn)
11445 basic_block block;
11446 unsigned int i;
11448 /* Set variables for reg_dead_at_p_1. */
11449 reg_dead_regno = REGNO (reg);
11450 reg_dead_endregno = reg_dead_regno + (reg_dead_regno < FIRST_PSEUDO_REGISTER
11451 ? hard_regno_nregs[reg_dead_regno]
11452 [GET_MODE (reg)]
11453 : 1);
11455 reg_dead_flag = 0;
11457 /* Check that reg isn't mentioned in NEWPAT_USED_REGS. For fixed registers
11458 we allow the machine description to decide whether use-and-clobber
11459 patterns are OK. */
11460 if (reg_dead_regno < FIRST_PSEUDO_REGISTER)
11462 for (i = reg_dead_regno; i < reg_dead_endregno; i++)
11463 if (!fixed_regs[i] && TEST_HARD_REG_BIT (newpat_used_regs, i))
11464 return 0;
11467 /* Scan backwards until we find a REG_DEAD note, SET, CLOBBER, label, or
11468 beginning of function. */
11469 for (; insn && !LABEL_P (insn) && !BARRIER_P (insn);
11470 insn = prev_nonnote_insn (insn))
11472 note_stores (PATTERN (insn), reg_dead_at_p_1, NULL);
11473 if (reg_dead_flag)
11474 return reg_dead_flag == 1 ? 1 : 0;
11476 if (find_regno_note (insn, REG_DEAD, reg_dead_regno))
11477 return 1;
11480 /* Get the basic block that we were in. */
11481 if (insn == 0)
11482 block = ENTRY_BLOCK_PTR->next_bb;
11483 else
11485 FOR_EACH_BB (block)
11486 if (insn == BB_HEAD (block))
11487 break;
11489 if (block == EXIT_BLOCK_PTR)
11490 return 0;
11493 for (i = reg_dead_regno; i < reg_dead_endregno; i++)
11494 if (REGNO_REG_SET_P (block->global_live_at_start, i))
11495 return 0;
11497 return 1;
11500 /* Note hard registers in X that are used. This code is similar to
11501 that in flow.c, but much simpler since we don't care about pseudos. */
11503 static void
11504 mark_used_regs_combine (rtx x)
11506 RTX_CODE code = GET_CODE (x);
11507 unsigned int regno;
11508 int i;
11510 switch (code)
11512 case LABEL_REF:
11513 case SYMBOL_REF:
11514 case CONST_INT:
11515 case CONST:
11516 case CONST_DOUBLE:
11517 case CONST_VECTOR:
11518 case PC:
11519 case ADDR_VEC:
11520 case ADDR_DIFF_VEC:
11521 case ASM_INPUT:
11522 #ifdef HAVE_cc0
11523 /* CC0 must die in the insn after it is set, so we don't need to take
11524 special note of it here. */
11525 case CC0:
11526 #endif
11527 return;
11529 case CLOBBER:
11530 /* If we are clobbering a MEM, mark any hard registers inside the
11531 address as used. */
11532 if (MEM_P (XEXP (x, 0)))
11533 mark_used_regs_combine (XEXP (XEXP (x, 0), 0));
11534 return;
11536 case REG:
11537 regno = REGNO (x);
11538 /* A hard reg in a wide mode may really be multiple registers.
11539 If so, mark all of them just like the first. */
11540 if (regno < FIRST_PSEUDO_REGISTER)
11542 unsigned int endregno, r;
11544 /* None of this applies to the stack, frame or arg pointers. */
11545 if (regno == STACK_POINTER_REGNUM
11546 #if FRAME_POINTER_REGNUM != HARD_FRAME_POINTER_REGNUM
11547 || regno == HARD_FRAME_POINTER_REGNUM
11548 #endif
11549 #if FRAME_POINTER_REGNUM != ARG_POINTER_REGNUM
11550 || (regno == ARG_POINTER_REGNUM && fixed_regs[regno])
11551 #endif
11552 || regno == FRAME_POINTER_REGNUM)
11553 return;
11555 endregno = regno + hard_regno_nregs[regno][GET_MODE (x)];
11556 for (r = regno; r < endregno; r++)
11557 SET_HARD_REG_BIT (newpat_used_regs, r);
11559 return;
11561 case SET:
11563 /* If setting a MEM, or a SUBREG of a MEM, then note any hard regs in
11564 the address. */
11565 rtx testreg = SET_DEST (x);
11567 while (GET_CODE (testreg) == SUBREG
11568 || GET_CODE (testreg) == ZERO_EXTRACT
11569 || GET_CODE (testreg) == STRICT_LOW_PART)
11570 testreg = XEXP (testreg, 0);
11572 if (MEM_P (testreg))
11573 mark_used_regs_combine (XEXP (testreg, 0));
11575 mark_used_regs_combine (SET_SRC (x));
11577 return;
11579 default:
11580 break;
11583 /* Recursively scan the operands of this expression. */
11586 const char *fmt = GET_RTX_FORMAT (code);
11588 for (i = GET_RTX_LENGTH (code) - 1; i >= 0; i--)
11590 if (fmt[i] == 'e')
11591 mark_used_regs_combine (XEXP (x, i));
11592 else if (fmt[i] == 'E')
11594 int j;
11596 for (j = 0; j < XVECLEN (x, i); j++)
11597 mark_used_regs_combine (XVECEXP (x, i, j));
11603 /* Remove register number REGNO from the dead registers list of INSN.
11605 Return the note used to record the death, if there was one. */
11608 remove_death (unsigned int regno, rtx insn)
11610 rtx note = find_regno_note (insn, REG_DEAD, regno);
11612 if (note)
11614 REG_N_DEATHS (regno)--;
11615 remove_note (insn, note);
11618 return note;
11621 /* For each register (hardware or pseudo) used within expression X, if its
11622 death is in an instruction with cuid between FROM_CUID (inclusive) and
11623 TO_INSN (exclusive), put a REG_DEAD note for that register in the
11624 list headed by PNOTES.
11626 That said, don't move registers killed by maybe_kill_insn.
11628 This is done when X is being merged by combination into TO_INSN. These
11629 notes will then be distributed as needed. */
11631 static void
11632 move_deaths (rtx x, rtx maybe_kill_insn, int from_cuid, rtx to_insn,
11633 rtx *pnotes)
11635 const char *fmt;
11636 int len, i;
11637 enum rtx_code code = GET_CODE (x);
11639 if (code == REG)
11641 unsigned int regno = REGNO (x);
11642 rtx where_dead = reg_stat[regno].last_death;
11643 rtx before_dead, after_dead;
11645 /* Don't move the register if it gets killed in between from and to. */
11646 if (maybe_kill_insn && reg_set_p (x, maybe_kill_insn)
11647 && ! reg_referenced_p (x, maybe_kill_insn))
11648 return;
11650 /* WHERE_DEAD could be a USE insn made by combine, so first we
11651 make sure that we have insns with valid INSN_CUID values. */
11652 before_dead = where_dead;
11653 while (before_dead && INSN_UID (before_dead) > max_uid_cuid)
11654 before_dead = PREV_INSN (before_dead);
11656 after_dead = where_dead;
11657 while (after_dead && INSN_UID (after_dead) > max_uid_cuid)
11658 after_dead = NEXT_INSN (after_dead);
11660 if (before_dead && after_dead
11661 && INSN_CUID (before_dead) >= from_cuid
11662 && (INSN_CUID (after_dead) < INSN_CUID (to_insn)
11663 || (where_dead != after_dead
11664 && INSN_CUID (after_dead) == INSN_CUID (to_insn))))
11666 rtx note = remove_death (regno, where_dead);
11668 /* It is possible for the call above to return 0. This can occur
11669 when last_death points to I2 or I1 that we combined with.
11670 In that case make a new note.
11672 We must also check for the case where X is a hard register
11673 and NOTE is a death note for a range of hard registers
11674 including X. In that case, we must put REG_DEAD notes for
11675 the remaining registers in place of NOTE. */
11677 if (note != 0 && regno < FIRST_PSEUDO_REGISTER
11678 && (GET_MODE_SIZE (GET_MODE (XEXP (note, 0)))
11679 > GET_MODE_SIZE (GET_MODE (x))))
11681 unsigned int deadregno = REGNO (XEXP (note, 0));
11682 unsigned int deadend
11683 = (deadregno + hard_regno_nregs[deadregno]
11684 [GET_MODE (XEXP (note, 0))]);
11685 unsigned int ourend
11686 = regno + hard_regno_nregs[regno][GET_MODE (x)];
11687 unsigned int i;
11689 for (i = deadregno; i < deadend; i++)
11690 if (i < regno || i >= ourend)
11691 REG_NOTES (where_dead)
11692 = gen_rtx_EXPR_LIST (REG_DEAD,
11693 regno_reg_rtx[i],
11694 REG_NOTES (where_dead));
11697 /* If we didn't find any note, or if we found a REG_DEAD note that
11698 covers only part of the given reg, and we have a multi-reg hard
11699 register, then to be safe we must check for REG_DEAD notes
11700 for each register other than the first. They could have
11701 their own REG_DEAD notes lying around. */
11702 else if ((note == 0
11703 || (note != 0
11704 && (GET_MODE_SIZE (GET_MODE (XEXP (note, 0)))
11705 < GET_MODE_SIZE (GET_MODE (x)))))
11706 && regno < FIRST_PSEUDO_REGISTER
11707 && hard_regno_nregs[regno][GET_MODE (x)] > 1)
11709 unsigned int ourend
11710 = regno + hard_regno_nregs[regno][GET_MODE (x)];
11711 unsigned int i, offset;
11712 rtx oldnotes = 0;
11714 if (note)
11715 offset = hard_regno_nregs[regno][GET_MODE (XEXP (note, 0))];
11716 else
11717 offset = 1;
11719 for (i = regno + offset; i < ourend; i++)
11720 move_deaths (regno_reg_rtx[i],
11721 maybe_kill_insn, from_cuid, to_insn, &oldnotes);
11724 if (note != 0 && GET_MODE (XEXP (note, 0)) == GET_MODE (x))
11726 XEXP (note, 1) = *pnotes;
11727 *pnotes = note;
11729 else
11730 *pnotes = gen_rtx_EXPR_LIST (REG_DEAD, x, *pnotes);
11732 REG_N_DEATHS (regno)++;
11735 return;
11738 else if (GET_CODE (x) == SET)
11740 rtx dest = SET_DEST (x);
11742 move_deaths (SET_SRC (x), maybe_kill_insn, from_cuid, to_insn, pnotes);
11744 /* In the case of a ZERO_EXTRACT, a STRICT_LOW_PART, or a SUBREG
11745 that accesses one word of a multi-word item, some
11746 piece of everything register in the expression is used by
11747 this insn, so remove any old death. */
11748 /* ??? So why do we test for equality of the sizes? */
11750 if (GET_CODE (dest) == ZERO_EXTRACT
11751 || GET_CODE (dest) == STRICT_LOW_PART
11752 || (GET_CODE (dest) == SUBREG
11753 && (((GET_MODE_SIZE (GET_MODE (dest))
11754 + UNITS_PER_WORD - 1) / UNITS_PER_WORD)
11755 == ((GET_MODE_SIZE (GET_MODE (SUBREG_REG (dest)))
11756 + UNITS_PER_WORD - 1) / UNITS_PER_WORD))))
11758 move_deaths (dest, maybe_kill_insn, from_cuid, to_insn, pnotes);
11759 return;
11762 /* If this is some other SUBREG, we know it replaces the entire
11763 value, so use that as the destination. */
11764 if (GET_CODE (dest) == SUBREG)
11765 dest = SUBREG_REG (dest);
11767 /* If this is a MEM, adjust deaths of anything used in the address.
11768 For a REG (the only other possibility), the entire value is
11769 being replaced so the old value is not used in this insn. */
11771 if (MEM_P (dest))
11772 move_deaths (XEXP (dest, 0), maybe_kill_insn, from_cuid,
11773 to_insn, pnotes);
11774 return;
11777 else if (GET_CODE (x) == CLOBBER)
11778 return;
11780 len = GET_RTX_LENGTH (code);
11781 fmt = GET_RTX_FORMAT (code);
11783 for (i = 0; i < len; i++)
11785 if (fmt[i] == 'E')
11787 int j;
11788 for (j = XVECLEN (x, i) - 1; j >= 0; j--)
11789 move_deaths (XVECEXP (x, i, j), maybe_kill_insn, from_cuid,
11790 to_insn, pnotes);
11792 else if (fmt[i] == 'e')
11793 move_deaths (XEXP (x, i), maybe_kill_insn, from_cuid, to_insn, pnotes);
11797 /* Return 1 if X is the target of a bit-field assignment in BODY, the
11798 pattern of an insn. X must be a REG. */
11800 static int
11801 reg_bitfield_target_p (rtx x, rtx body)
11803 int i;
11805 if (GET_CODE (body) == SET)
11807 rtx dest = SET_DEST (body);
11808 rtx target;
11809 unsigned int regno, tregno, endregno, endtregno;
11811 if (GET_CODE (dest) == ZERO_EXTRACT)
11812 target = XEXP (dest, 0);
11813 else if (GET_CODE (dest) == STRICT_LOW_PART)
11814 target = SUBREG_REG (XEXP (dest, 0));
11815 else
11816 return 0;
11818 if (GET_CODE (target) == SUBREG)
11819 target = SUBREG_REG (target);
11821 if (!REG_P (target))
11822 return 0;
11824 tregno = REGNO (target), regno = REGNO (x);
11825 if (tregno >= FIRST_PSEUDO_REGISTER || regno >= FIRST_PSEUDO_REGISTER)
11826 return target == x;
11828 endtregno = tregno + hard_regno_nregs[tregno][GET_MODE (target)];
11829 endregno = regno + hard_regno_nregs[regno][GET_MODE (x)];
11831 return endregno > tregno && regno < endtregno;
11834 else if (GET_CODE (body) == PARALLEL)
11835 for (i = XVECLEN (body, 0) - 1; i >= 0; i--)
11836 if (reg_bitfield_target_p (x, XVECEXP (body, 0, i)))
11837 return 1;
11839 return 0;
11842 /* Given a chain of REG_NOTES originally from FROM_INSN, try to place them
11843 as appropriate. I3 and I2 are the insns resulting from the combination
11844 insns including FROM (I2 may be zero).
11846 Each note in the list is either ignored or placed on some insns, depending
11847 on the type of note. */
11849 static void
11850 distribute_notes (rtx notes, rtx from_insn, rtx i3, rtx i2)
11852 rtx note, next_note;
11853 rtx tem;
11855 for (note = notes; note; note = next_note)
11857 rtx place = 0, place2 = 0;
11859 /* If this NOTE references a pseudo register, ensure it references
11860 the latest copy of that register. */
11861 if (XEXP (note, 0) && REG_P (XEXP (note, 0))
11862 && REGNO (XEXP (note, 0)) >= FIRST_PSEUDO_REGISTER)
11863 XEXP (note, 0) = regno_reg_rtx[REGNO (XEXP (note, 0))];
11865 next_note = XEXP (note, 1);
11866 switch (REG_NOTE_KIND (note))
11868 case REG_BR_PROB:
11869 case REG_BR_PRED:
11870 /* Doesn't matter much where we put this, as long as it's somewhere.
11871 It is preferable to keep these notes on branches, which is most
11872 likely to be i3. */
11873 place = i3;
11874 break;
11876 case REG_VALUE_PROFILE:
11877 /* Just get rid of this note, as it is unused later anyway. */
11878 break;
11880 case REG_NON_LOCAL_GOTO:
11881 if (JUMP_P (i3))
11882 place = i3;
11883 else
11885 gcc_assert (i2 && JUMP_P (i2));
11886 place = i2;
11888 break;
11890 case REG_EH_REGION:
11891 /* These notes must remain with the call or trapping instruction. */
11892 if (CALL_P (i3))
11893 place = i3;
11894 else if (i2 && CALL_P (i2))
11895 place = i2;
11896 else
11898 gcc_assert (flag_non_call_exceptions);
11899 if (may_trap_p (i3))
11900 place = i3;
11901 else if (i2 && may_trap_p (i2))
11902 place = i2;
11903 /* ??? Otherwise assume we've combined things such that we
11904 can now prove that the instructions can't trap. Drop the
11905 note in this case. */
11907 break;
11909 case REG_NORETURN:
11910 case REG_SETJMP:
11911 /* These notes must remain with the call. It should not be
11912 possible for both I2 and I3 to be a call. */
11913 if (CALL_P (i3))
11914 place = i3;
11915 else
11917 gcc_assert (i2 && CALL_P (i2));
11918 place = i2;
11920 break;
11922 case REG_UNUSED:
11923 /* Any clobbers for i3 may still exist, and so we must process
11924 REG_UNUSED notes from that insn.
11926 Any clobbers from i2 or i1 can only exist if they were added by
11927 recog_for_combine. In that case, recog_for_combine created the
11928 necessary REG_UNUSED notes. Trying to keep any original
11929 REG_UNUSED notes from these insns can cause incorrect output
11930 if it is for the same register as the original i3 dest.
11931 In that case, we will notice that the register is set in i3,
11932 and then add a REG_UNUSED note for the destination of i3, which
11933 is wrong. However, it is possible to have REG_UNUSED notes from
11934 i2 or i1 for register which were both used and clobbered, so
11935 we keep notes from i2 or i1 if they will turn into REG_DEAD
11936 notes. */
11938 /* If this register is set or clobbered in I3, put the note there
11939 unless there is one already. */
11940 if (reg_set_p (XEXP (note, 0), PATTERN (i3)))
11942 if (from_insn != i3)
11943 break;
11945 if (! (REG_P (XEXP (note, 0))
11946 ? find_regno_note (i3, REG_UNUSED, REGNO (XEXP (note, 0)))
11947 : find_reg_note (i3, REG_UNUSED, XEXP (note, 0))))
11948 place = i3;
11950 /* Otherwise, if this register is used by I3, then this register
11951 now dies here, so we must put a REG_DEAD note here unless there
11952 is one already. */
11953 else if (reg_referenced_p (XEXP (note, 0), PATTERN (i3))
11954 && ! (REG_P (XEXP (note, 0))
11955 ? find_regno_note (i3, REG_DEAD,
11956 REGNO (XEXP (note, 0)))
11957 : find_reg_note (i3, REG_DEAD, XEXP (note, 0))))
11959 PUT_REG_NOTE_KIND (note, REG_DEAD);
11960 place = i3;
11962 break;
11964 case REG_EQUAL:
11965 case REG_EQUIV:
11966 case REG_NOALIAS:
11967 /* These notes say something about results of an insn. We can
11968 only support them if they used to be on I3 in which case they
11969 remain on I3. Otherwise they are ignored.
11971 If the note refers to an expression that is not a constant, we
11972 must also ignore the note since we cannot tell whether the
11973 equivalence is still true. It might be possible to do
11974 slightly better than this (we only have a problem if I2DEST
11975 or I1DEST is present in the expression), but it doesn't
11976 seem worth the trouble. */
11978 if (from_insn == i3
11979 && (XEXP (note, 0) == 0 || CONSTANT_P (XEXP (note, 0))))
11980 place = i3;
11981 break;
11983 case REG_INC:
11984 case REG_NO_CONFLICT:
11985 /* These notes say something about how a register is used. They must
11986 be present on any use of the register in I2 or I3. */
11987 if (reg_mentioned_p (XEXP (note, 0), PATTERN (i3)))
11988 place = i3;
11990 if (i2 && reg_mentioned_p (XEXP (note, 0), PATTERN (i2)))
11992 if (place)
11993 place2 = i2;
11994 else
11995 place = i2;
11997 break;
11999 case REG_LABEL:
12000 /* This can show up in several ways -- either directly in the
12001 pattern, or hidden off in the constant pool with (or without?)
12002 a REG_EQUAL note. */
12003 /* ??? Ignore the without-reg_equal-note problem for now. */
12004 if (reg_mentioned_p (XEXP (note, 0), PATTERN (i3))
12005 || ((tem = find_reg_note (i3, REG_EQUAL, NULL_RTX))
12006 && GET_CODE (XEXP (tem, 0)) == LABEL_REF
12007 && XEXP (XEXP (tem, 0), 0) == XEXP (note, 0)))
12008 place = i3;
12010 if (i2
12011 && (reg_mentioned_p (XEXP (note, 0), PATTERN (i2))
12012 || ((tem = find_reg_note (i2, REG_EQUAL, NULL_RTX))
12013 && GET_CODE (XEXP (tem, 0)) == LABEL_REF
12014 && XEXP (XEXP (tem, 0), 0) == XEXP (note, 0))))
12016 if (place)
12017 place2 = i2;
12018 else
12019 place = i2;
12022 /* Don't attach REG_LABEL note to a JUMP_INSN. Add
12023 a JUMP_LABEL instead or decrement LABEL_NUSES. */
12024 if (place && JUMP_P (place))
12026 rtx label = JUMP_LABEL (place);
12028 if (!label)
12029 JUMP_LABEL (place) = XEXP (note, 0);
12030 else
12032 gcc_assert (label == XEXP (note, 0));
12033 if (LABEL_P (label))
12034 LABEL_NUSES (label)--;
12036 place = 0;
12038 if (place2 && JUMP_P (place2))
12040 rtx label = JUMP_LABEL (place2);
12042 if (!label)
12043 JUMP_LABEL (place2) = XEXP (note, 0);
12044 else
12046 gcc_assert (label == XEXP (note, 0));
12047 if (LABEL_P (label))
12048 LABEL_NUSES (label)--;
12050 place2 = 0;
12052 break;
12054 case REG_NONNEG:
12055 /* This note says something about the value of a register prior
12056 to the execution of an insn. It is too much trouble to see
12057 if the note is still correct in all situations. It is better
12058 to simply delete it. */
12059 break;
12061 case REG_RETVAL:
12062 /* If the insn previously containing this note still exists,
12063 put it back where it was. Otherwise move it to the previous
12064 insn. Adjust the corresponding REG_LIBCALL note. */
12065 if (!NOTE_P (from_insn))
12066 place = from_insn;
12067 else
12069 tem = find_reg_note (XEXP (note, 0), REG_LIBCALL, NULL_RTX);
12070 place = prev_real_insn (from_insn);
12071 if (tem && place)
12072 XEXP (tem, 0) = place;
12073 /* If we're deleting the last remaining instruction of a
12074 libcall sequence, don't add the notes. */
12075 else if (XEXP (note, 0) == from_insn)
12076 tem = place = 0;
12077 /* Don't add the dangling REG_RETVAL note. */
12078 else if (! tem)
12079 place = 0;
12081 break;
12083 case REG_LIBCALL:
12084 /* This is handled similarly to REG_RETVAL. */
12085 if (!NOTE_P (from_insn))
12086 place = from_insn;
12087 else
12089 tem = find_reg_note (XEXP (note, 0), REG_RETVAL, NULL_RTX);
12090 place = next_real_insn (from_insn);
12091 if (tem && place)
12092 XEXP (tem, 0) = place;
12093 /* If we're deleting the last remaining instruction of a
12094 libcall sequence, don't add the notes. */
12095 else if (XEXP (note, 0) == from_insn)
12096 tem = place = 0;
12097 /* Don't add the dangling REG_LIBCALL note. */
12098 else if (! tem)
12099 place = 0;
12101 break;
12103 case REG_DEAD:
12104 /* If the register is used as an input in I3, it dies there.
12105 Similarly for I2, if it is nonzero and adjacent to I3.
12107 If the register is not used as an input in either I3 or I2
12108 and it is not one of the registers we were supposed to eliminate,
12109 there are two possibilities. We might have a non-adjacent I2
12110 or we might have somehow eliminated an additional register
12111 from a computation. For example, we might have had A & B where
12112 we discover that B will always be zero. In this case we will
12113 eliminate the reference to A.
12115 In both cases, we must search to see if we can find a previous
12116 use of A and put the death note there. */
12118 if (from_insn
12119 && CALL_P (from_insn)
12120 && find_reg_fusage (from_insn, USE, XEXP (note, 0)))
12121 place = from_insn;
12122 else if (reg_referenced_p (XEXP (note, 0), PATTERN (i3)))
12123 place = i3;
12124 else if (i2 != 0 && next_nonnote_insn (i2) == i3
12125 && reg_referenced_p (XEXP (note, 0), PATTERN (i2)))
12126 place = i2;
12128 if (place == 0)
12130 basic_block bb = this_basic_block;
12132 for (tem = PREV_INSN (i3); place == 0; tem = PREV_INSN (tem))
12134 if (! INSN_P (tem))
12136 if (tem == BB_HEAD (bb))
12137 break;
12138 continue;
12141 /* If the register is being set at TEM, see if that is all
12142 TEM is doing. If so, delete TEM. Otherwise, make this
12143 into a REG_UNUSED note instead. Don't delete sets to
12144 global register vars. */
12145 if ((REGNO (XEXP (note, 0)) >= FIRST_PSEUDO_REGISTER
12146 || !global_regs[REGNO (XEXP (note, 0))])
12147 && reg_set_p (XEXP (note, 0), PATTERN (tem)))
12149 rtx set = single_set (tem);
12150 rtx inner_dest = 0;
12151 #ifdef HAVE_cc0
12152 rtx cc0_setter = NULL_RTX;
12153 #endif
12155 if (set != 0)
12156 for (inner_dest = SET_DEST (set);
12157 (GET_CODE (inner_dest) == STRICT_LOW_PART
12158 || GET_CODE (inner_dest) == SUBREG
12159 || GET_CODE (inner_dest) == ZERO_EXTRACT);
12160 inner_dest = XEXP (inner_dest, 0))
12163 /* Verify that it was the set, and not a clobber that
12164 modified the register.
12166 CC0 targets must be careful to maintain setter/user
12167 pairs. If we cannot delete the setter due to side
12168 effects, mark the user with an UNUSED note instead
12169 of deleting it. */
12171 if (set != 0 && ! side_effects_p (SET_SRC (set))
12172 && rtx_equal_p (XEXP (note, 0), inner_dest)
12173 #ifdef HAVE_cc0
12174 && (! reg_mentioned_p (cc0_rtx, SET_SRC (set))
12175 || ((cc0_setter = prev_cc0_setter (tem)) != NULL
12176 && sets_cc0_p (PATTERN (cc0_setter)) > 0))
12177 #endif
12180 /* Move the notes and links of TEM elsewhere.
12181 This might delete other dead insns recursively.
12182 First set the pattern to something that won't use
12183 any register. */
12184 rtx old_notes = REG_NOTES (tem);
12186 PATTERN (tem) = pc_rtx;
12187 REG_NOTES (tem) = NULL;
12189 distribute_notes (old_notes, tem, tem, NULL_RTX);
12190 distribute_links (LOG_LINKS (tem));
12192 SET_INSN_DELETED (tem);
12194 #ifdef HAVE_cc0
12195 /* Delete the setter too. */
12196 if (cc0_setter)
12198 PATTERN (cc0_setter) = pc_rtx;
12199 old_notes = REG_NOTES (cc0_setter);
12200 REG_NOTES (cc0_setter) = NULL;
12202 distribute_notes (old_notes, cc0_setter,
12203 cc0_setter, NULL_RTX);
12204 distribute_links (LOG_LINKS (cc0_setter));
12206 SET_INSN_DELETED (cc0_setter);
12208 #endif
12210 else
12212 PUT_REG_NOTE_KIND (note, REG_UNUSED);
12214 /* If there isn't already a REG_UNUSED note, put one
12215 here. Do not place a REG_DEAD note, even if
12216 the register is also used here; that would not
12217 match the algorithm used in lifetime analysis
12218 and can cause the consistency check in the
12219 scheduler to fail. */
12220 if (! find_regno_note (tem, REG_UNUSED,
12221 REGNO (XEXP (note, 0))))
12222 place = tem;
12223 break;
12226 else if (reg_referenced_p (XEXP (note, 0), PATTERN (tem))
12227 || (CALL_P (tem)
12228 && find_reg_fusage (tem, USE, XEXP (note, 0))))
12230 place = tem;
12232 /* If we are doing a 3->2 combination, and we have a
12233 register which formerly died in i3 and was not used
12234 by i2, which now no longer dies in i3 and is used in
12235 i2 but does not die in i2, and place is between i2
12236 and i3, then we may need to move a link from place to
12237 i2. */
12238 if (i2 && INSN_UID (place) <= max_uid_cuid
12239 && INSN_CUID (place) > INSN_CUID (i2)
12240 && from_insn
12241 && INSN_CUID (from_insn) > INSN_CUID (i2)
12242 && reg_referenced_p (XEXP (note, 0), PATTERN (i2)))
12244 rtx links = LOG_LINKS (place);
12245 LOG_LINKS (place) = 0;
12246 distribute_links (links);
12248 break;
12251 if (tem == BB_HEAD (bb))
12252 break;
12255 /* We haven't found an insn for the death note and it
12256 is still a REG_DEAD note, but we have hit the beginning
12257 of the block. If the existing life info says the reg
12258 was dead, there's nothing left to do. Otherwise, we'll
12259 need to do a global life update after combine. */
12260 if (REG_NOTE_KIND (note) == REG_DEAD && place == 0
12261 && REGNO_REG_SET_P (bb->global_live_at_start,
12262 REGNO (XEXP (note, 0))))
12263 SET_BIT (refresh_blocks, this_basic_block->index);
12266 /* If the register is set or already dead at PLACE, we needn't do
12267 anything with this note if it is still a REG_DEAD note.
12268 We check here if it is set at all, not if is it totally replaced,
12269 which is what `dead_or_set_p' checks, so also check for it being
12270 set partially. */
12272 if (place && REG_NOTE_KIND (note) == REG_DEAD)
12274 unsigned int regno = REGNO (XEXP (note, 0));
12276 /* Similarly, if the instruction on which we want to place
12277 the note is a noop, we'll need do a global live update
12278 after we remove them in delete_noop_moves. */
12279 if (noop_move_p (place))
12280 SET_BIT (refresh_blocks, this_basic_block->index);
12282 if (dead_or_set_p (place, XEXP (note, 0))
12283 || reg_bitfield_target_p (XEXP (note, 0), PATTERN (place)))
12285 /* Unless the register previously died in PLACE, clear
12286 last_death. [I no longer understand why this is
12287 being done.] */
12288 if (reg_stat[regno].last_death != place)
12289 reg_stat[regno].last_death = 0;
12290 place = 0;
12292 else
12293 reg_stat[regno].last_death = place;
12295 /* If this is a death note for a hard reg that is occupying
12296 multiple registers, ensure that we are still using all
12297 parts of the object. If we find a piece of the object
12298 that is unused, we must arrange for an appropriate REG_DEAD
12299 note to be added for it. However, we can't just emit a USE
12300 and tag the note to it, since the register might actually
12301 be dead; so we recourse, and the recursive call then finds
12302 the previous insn that used this register. */
12304 if (place && regno < FIRST_PSEUDO_REGISTER
12305 && hard_regno_nregs[regno][GET_MODE (XEXP (note, 0))] > 1)
12307 unsigned int endregno
12308 = regno + hard_regno_nregs[regno]
12309 [GET_MODE (XEXP (note, 0))];
12310 int all_used = 1;
12311 unsigned int i;
12313 for (i = regno; i < endregno; i++)
12314 if ((! refers_to_regno_p (i, i + 1, PATTERN (place), 0)
12315 && ! find_regno_fusage (place, USE, i))
12316 || dead_or_set_regno_p (place, i))
12317 all_used = 0;
12319 if (! all_used)
12321 /* Put only REG_DEAD notes for pieces that are
12322 not already dead or set. */
12324 for (i = regno; i < endregno;
12325 i += hard_regno_nregs[i][reg_raw_mode[i]])
12327 rtx piece = regno_reg_rtx[i];
12328 basic_block bb = this_basic_block;
12330 if (! dead_or_set_p (place, piece)
12331 && ! reg_bitfield_target_p (piece,
12332 PATTERN (place)))
12334 rtx new_note
12335 = gen_rtx_EXPR_LIST (REG_DEAD, piece, NULL_RTX);
12337 distribute_notes (new_note, place, place,
12338 NULL_RTX);
12340 else if (! refers_to_regno_p (i, i + 1,
12341 PATTERN (place), 0)
12342 && ! find_regno_fusage (place, USE, i))
12343 for (tem = PREV_INSN (place); ;
12344 tem = PREV_INSN (tem))
12346 if (! INSN_P (tem))
12348 if (tem == BB_HEAD (bb))
12350 SET_BIT (refresh_blocks,
12351 this_basic_block->index);
12352 break;
12354 continue;
12356 if (dead_or_set_p (tem, piece)
12357 || reg_bitfield_target_p (piece,
12358 PATTERN (tem)))
12360 REG_NOTES (tem)
12361 = gen_rtx_EXPR_LIST (REG_UNUSED, piece,
12362 REG_NOTES (tem));
12363 break;
12369 place = 0;
12373 break;
12375 default:
12376 /* Any other notes should not be present at this point in the
12377 compilation. */
12378 gcc_unreachable ();
12381 if (place)
12383 XEXP (note, 1) = REG_NOTES (place);
12384 REG_NOTES (place) = note;
12386 else if ((REG_NOTE_KIND (note) == REG_DEAD
12387 || REG_NOTE_KIND (note) == REG_UNUSED)
12388 && REG_P (XEXP (note, 0)))
12389 REG_N_DEATHS (REGNO (XEXP (note, 0)))--;
12391 if (place2)
12393 if ((REG_NOTE_KIND (note) == REG_DEAD
12394 || REG_NOTE_KIND (note) == REG_UNUSED)
12395 && REG_P (XEXP (note, 0)))
12396 REG_N_DEATHS (REGNO (XEXP (note, 0)))++;
12398 REG_NOTES (place2) = gen_rtx_fmt_ee (GET_CODE (note),
12399 REG_NOTE_KIND (note),
12400 XEXP (note, 0),
12401 REG_NOTES (place2));
12406 /* Similarly to above, distribute the LOG_LINKS that used to be present on
12407 I3, I2, and I1 to new locations. This is also called to add a link
12408 pointing at I3 when I3's destination is changed. */
12410 static void
12411 distribute_links (rtx links)
12413 rtx link, next_link;
12415 for (link = links; link; link = next_link)
12417 rtx place = 0;
12418 rtx insn;
12419 rtx set, reg;
12421 next_link = XEXP (link, 1);
12423 /* If the insn that this link points to is a NOTE or isn't a single
12424 set, ignore it. In the latter case, it isn't clear what we
12425 can do other than ignore the link, since we can't tell which
12426 register it was for. Such links wouldn't be used by combine
12427 anyway.
12429 It is not possible for the destination of the target of the link to
12430 have been changed by combine. The only potential of this is if we
12431 replace I3, I2, and I1 by I3 and I2. But in that case the
12432 destination of I2 also remains unchanged. */
12434 if (NOTE_P (XEXP (link, 0))
12435 || (set = single_set (XEXP (link, 0))) == 0)
12436 continue;
12438 reg = SET_DEST (set);
12439 while (GET_CODE (reg) == SUBREG || GET_CODE (reg) == ZERO_EXTRACT
12440 || GET_CODE (reg) == STRICT_LOW_PART)
12441 reg = XEXP (reg, 0);
12443 /* A LOG_LINK is defined as being placed on the first insn that uses
12444 a register and points to the insn that sets the register. Start
12445 searching at the next insn after the target of the link and stop
12446 when we reach a set of the register or the end of the basic block.
12448 Note that this correctly handles the link that used to point from
12449 I3 to I2. Also note that not much searching is typically done here
12450 since most links don't point very far away. */
12452 for (insn = NEXT_INSN (XEXP (link, 0));
12453 (insn && (this_basic_block->next_bb == EXIT_BLOCK_PTR
12454 || BB_HEAD (this_basic_block->next_bb) != insn));
12455 insn = NEXT_INSN (insn))
12456 if (INSN_P (insn) && reg_overlap_mentioned_p (reg, PATTERN (insn)))
12458 if (reg_referenced_p (reg, PATTERN (insn)))
12459 place = insn;
12460 break;
12462 else if (CALL_P (insn)
12463 && find_reg_fusage (insn, USE, reg))
12465 place = insn;
12466 break;
12468 else if (INSN_P (insn) && reg_set_p (reg, insn))
12469 break;
12471 /* If we found a place to put the link, place it there unless there
12472 is already a link to the same insn as LINK at that point. */
12474 if (place)
12476 rtx link2;
12478 for (link2 = LOG_LINKS (place); link2; link2 = XEXP (link2, 1))
12479 if (XEXP (link2, 0) == XEXP (link, 0))
12480 break;
12482 if (link2 == 0)
12484 XEXP (link, 1) = LOG_LINKS (place);
12485 LOG_LINKS (place) = link;
12487 /* Set added_links_insn to the earliest insn we added a
12488 link to. */
12489 if (added_links_insn == 0
12490 || INSN_CUID (added_links_insn) > INSN_CUID (place))
12491 added_links_insn = place;
12497 /* Subroutine of unmentioned_reg_p and callback from for_each_rtx.
12498 Check whether the expression pointer to by LOC is a register or
12499 memory, and if so return 1 if it isn't mentioned in the rtx EXPR.
12500 Otherwise return zero. */
12502 static int
12503 unmentioned_reg_p_1 (rtx *loc, void *expr)
12505 rtx x = *loc;
12507 if (x != NULL_RTX
12508 && (REG_P (x) || MEM_P (x))
12509 && ! reg_mentioned_p (x, (rtx) expr))
12510 return 1;
12511 return 0;
12514 /* Check for any register or memory mentioned in EQUIV that is not
12515 mentioned in EXPR. This is used to restrict EQUIV to "specializations"
12516 of EXPR where some registers may have been replaced by constants. */
12518 static bool
12519 unmentioned_reg_p (rtx equiv, rtx expr)
12521 return for_each_rtx (&equiv, unmentioned_reg_p_1, expr);
12524 /* Compute INSN_CUID for INSN, which is an insn made by combine. */
12526 static int
12527 insn_cuid (rtx insn)
12529 while (insn != 0 && INSN_UID (insn) > max_uid_cuid
12530 && NONJUMP_INSN_P (insn) && GET_CODE (PATTERN (insn)) == USE)
12531 insn = NEXT_INSN (insn);
12533 gcc_assert (INSN_UID (insn) <= max_uid_cuid);
12535 return INSN_CUID (insn);
12538 void
12539 dump_combine_stats (FILE *file)
12541 fnotice
12542 (file,
12543 ";; Combiner statistics: %d attempts, %d substitutions (%d requiring new space),\n;; %d successes.\n\n",
12544 combine_attempts, combine_merges, combine_extras, combine_successes);
12547 void
12548 dump_combine_total_stats (FILE *file)
12550 fnotice
12551 (file,
12552 "\n;; Combiner totals: %d attempts, %d substitutions (%d requiring new space),\n;; %d successes.\n",
12553 total_attempts, total_merges, total_extras, total_successes);