* g++.dg/template/spec10.C: Set exit value to zero on success. Fix
[official-gcc.git] / gcc / regclass.c
blob9c496b6afdc10be871df45fb78c7df647520b686
1 /* Compute register class preferences for pseudo-registers.
2 Copyright (C) 1987, 1988, 1991, 1992, 1993, 1994, 1995, 1996
3 1997, 1998, 1999, 2000, 2001, 2002, 2003 Free Software Foundation, Inc.
5 This file is part of GCC.
7 GCC is free software; you can redistribute it and/or modify it under
8 the terms of the GNU General Public License as published by the Free
9 Software Foundation; either version 2, or (at your option) any later
10 version.
12 GCC is distributed in the hope that it will be useful, but WITHOUT ANY
13 WARRANTY; without even the implied warranty of MERCHANTABILITY or
14 FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License
15 for more details.
17 You should have received a copy of the GNU General Public License
18 along with GCC; see the file COPYING. If not, write to the Free
19 Software Foundation, 59 Temple Place - Suite 330, Boston, MA
20 02111-1307, USA. */
23 /* This file contains two passes of the compiler: reg_scan and reg_class.
24 It also defines some tables of information about the hardware registers
25 and a function init_reg_sets to initialize the tables. */
27 #include "config.h"
28 #include "system.h"
29 #include "coretypes.h"
30 #include "tm.h"
31 #include "hard-reg-set.h"
32 #include "rtl.h"
33 #include "expr.h"
34 #include "tm_p.h"
35 #include "flags.h"
36 #include "basic-block.h"
37 #include "regs.h"
38 #include "function.h"
39 #include "insn-config.h"
40 #include "recog.h"
41 #include "reload.h"
42 #include "real.h"
43 #include "toplev.h"
44 #include "output.h"
45 #include "ggc.h"
46 #include "timevar.h"
48 static void init_reg_sets_1 (void);
49 static void init_reg_autoinc (void);
51 /* If we have auto-increment or auto-decrement and we can have secondary
52 reloads, we are not allowed to use classes requiring secondary
53 reloads for pseudos auto-incremented since reload can't handle it. */
55 #ifdef AUTO_INC_DEC
56 #if defined(SECONDARY_INPUT_RELOAD_CLASS) || defined(SECONDARY_OUTPUT_RELOAD_CLASS)
57 #define FORBIDDEN_INC_DEC_CLASSES
58 #endif
59 #endif
61 /* Register tables used by many passes. */
63 /* Indexed by hard register number, contains 1 for registers
64 that are fixed use (stack pointer, pc, frame pointer, etc.).
65 These are the registers that cannot be used to allocate
66 a pseudo reg for general use. */
68 char fixed_regs[FIRST_PSEUDO_REGISTER];
70 /* Same info as a HARD_REG_SET. */
72 HARD_REG_SET fixed_reg_set;
74 /* Data for initializing the above. */
76 static const char initial_fixed_regs[] = FIXED_REGISTERS;
78 /* Indexed by hard register number, contains 1 for registers
79 that are fixed use or are clobbered by function calls.
80 These are the registers that cannot be used to allocate
81 a pseudo reg whose life crosses calls unless we are able
82 to save/restore them across the calls. */
84 char call_used_regs[FIRST_PSEUDO_REGISTER];
86 /* Same info as a HARD_REG_SET. */
88 HARD_REG_SET call_used_reg_set;
90 /* HARD_REG_SET of registers we want to avoid caller saving. */
91 HARD_REG_SET losing_caller_save_reg_set;
93 /* Data for initializing the above. */
95 static const char initial_call_used_regs[] = CALL_USED_REGISTERS;
97 /* This is much like call_used_regs, except it doesn't have to
98 be a superset of FIXED_REGISTERS. This vector indicates
99 what is really call clobbered, and is used when defining
100 regs_invalidated_by_call. */
102 #ifdef CALL_REALLY_USED_REGISTERS
103 char call_really_used_regs[] = CALL_REALLY_USED_REGISTERS;
104 #endif
106 /* Indexed by hard register number, contains 1 for registers that are
107 fixed use or call used registers that cannot hold quantities across
108 calls even if we are willing to save and restore them. call fixed
109 registers are a subset of call used registers. */
111 char call_fixed_regs[FIRST_PSEUDO_REGISTER];
113 /* The same info as a HARD_REG_SET. */
115 HARD_REG_SET call_fixed_reg_set;
117 /* Number of non-fixed registers. */
119 int n_non_fixed_regs;
121 /* Indexed by hard register number, contains 1 for registers
122 that are being used for global register decls.
123 These must be exempt from ordinary flow analysis
124 and are also considered fixed. */
126 char global_regs[FIRST_PSEUDO_REGISTER];
128 /* Contains 1 for registers that are set or clobbered by calls. */
129 /* ??? Ideally, this would be just call_used_regs plus global_regs, but
130 for someone's bright idea to have call_used_regs strictly include
131 fixed_regs. Which leaves us guessing as to the set of fixed_regs
132 that are actually preserved. We know for sure that those associated
133 with the local stack frame are safe, but scant others. */
135 HARD_REG_SET regs_invalidated_by_call;
137 /* Table of register numbers in the order in which to try to use them. */
138 #ifdef REG_ALLOC_ORDER
139 int reg_alloc_order[FIRST_PSEUDO_REGISTER] = REG_ALLOC_ORDER;
141 /* The inverse of reg_alloc_order. */
142 int inv_reg_alloc_order[FIRST_PSEUDO_REGISTER];
143 #endif
145 /* For each reg class, a HARD_REG_SET saying which registers are in it. */
147 HARD_REG_SET reg_class_contents[N_REG_CLASSES];
149 /* The same information, but as an array of unsigned ints. We copy from
150 these unsigned ints to the table above. We do this so the tm.h files
151 do not have to be aware of the wordsize for machines with <= 64 regs.
152 Note that we hard-code 32 here, not HOST_BITS_PER_INT. */
154 #define N_REG_INTS \
155 ((FIRST_PSEUDO_REGISTER + (32 - 1)) / 32)
157 static const unsigned int_reg_class_contents[N_REG_CLASSES][N_REG_INTS]
158 = REG_CLASS_CONTENTS;
160 /* For each reg class, number of regs it contains. */
162 unsigned int reg_class_size[N_REG_CLASSES];
164 /* For each reg class, table listing all the containing classes. */
166 enum reg_class reg_class_superclasses[N_REG_CLASSES][N_REG_CLASSES];
168 /* For each reg class, table listing all the classes contained in it. */
170 enum reg_class reg_class_subclasses[N_REG_CLASSES][N_REG_CLASSES];
172 /* For each pair of reg classes,
173 a largest reg class contained in their union. */
175 enum reg_class reg_class_subunion[N_REG_CLASSES][N_REG_CLASSES];
177 /* For each pair of reg classes,
178 the smallest reg class containing their union. */
180 enum reg_class reg_class_superunion[N_REG_CLASSES][N_REG_CLASSES];
182 /* Array containing all of the register names. Unless
183 DEBUG_REGISTER_NAMES is defined, use the copy in print-rtl.c. */
185 #ifdef DEBUG_REGISTER_NAMES
186 const char * reg_names[] = REGISTER_NAMES;
187 #endif
189 /* For each hard register, the widest mode object that it can contain.
190 This will be a MODE_INT mode if the register can hold integers. Otherwise
191 it will be a MODE_FLOAT or a MODE_CC mode, whichever is valid for the
192 register. */
194 enum machine_mode reg_raw_mode[FIRST_PSEUDO_REGISTER];
196 /* 1 if class does contain register of given mode. */
198 static char contains_reg_of_mode [N_REG_CLASSES] [MAX_MACHINE_MODE];
200 /* Maximum cost of moving from a register in one class to a register in
201 another class. Based on REGISTER_MOVE_COST. */
203 static int move_cost[MAX_MACHINE_MODE][N_REG_CLASSES][N_REG_CLASSES];
205 /* Similar, but here we don't have to move if the first index is a subset
206 of the second so in that case the cost is zero. */
208 static int may_move_in_cost[MAX_MACHINE_MODE][N_REG_CLASSES][N_REG_CLASSES];
210 /* Similar, but here we don't have to move if the first index is a superset
211 of the second so in that case the cost is zero. */
213 static int may_move_out_cost[MAX_MACHINE_MODE][N_REG_CLASSES][N_REG_CLASSES];
215 #ifdef FORBIDDEN_INC_DEC_CLASSES
217 /* These are the classes that regs which are auto-incremented or decremented
218 cannot be put in. */
220 static int forbidden_inc_dec_class[N_REG_CLASSES];
222 /* Indexed by n, is nonzero if (REG n) is used in an auto-inc or auto-dec
223 context. */
225 static char *in_inc_dec;
227 #endif /* FORBIDDEN_INC_DEC_CLASSES */
229 #ifdef CANNOT_CHANGE_MODE_CLASS
230 /* All registers that have been subreged. Indexed by regno * MAX_MACHINE_MODE
231 + mode. */
232 bitmap_head subregs_of_mode;
233 #endif
235 /* Sample MEM values for use by memory_move_secondary_cost. */
237 static GTY(()) rtx top_of_stack[MAX_MACHINE_MODE];
239 /* Linked list of reg_info structures allocated for reg_n_info array.
240 Grouping all of the allocated structures together in one lump
241 means only one call to bzero to clear them, rather than n smaller
242 calls. */
243 struct reg_info_data {
244 struct reg_info_data *next; /* next set of reg_info structures */
245 size_t min_index; /* minimum index # */
246 size_t max_index; /* maximum index # */
247 char used_p; /* nonzero if this has been used previously */
248 reg_info data[1]; /* beginning of the reg_info data */
251 static struct reg_info_data *reg_info_head;
253 /* No more global register variables may be declared; true once
254 regclass has been initialized. */
256 static int no_global_reg_vars = 0;
259 /* Function called only once to initialize the above data on reg usage.
260 Once this is done, various switches may override. */
262 void
263 init_reg_sets (void)
265 int i, j;
267 /* First copy the register information from the initial int form into
268 the regsets. */
270 for (i = 0; i < N_REG_CLASSES; i++)
272 CLEAR_HARD_REG_SET (reg_class_contents[i]);
274 /* Note that we hard-code 32 here, not HOST_BITS_PER_INT. */
275 for (j = 0; j < FIRST_PSEUDO_REGISTER; j++)
276 if (int_reg_class_contents[i][j / 32]
277 & ((unsigned) 1 << (j % 32)))
278 SET_HARD_REG_BIT (reg_class_contents[i], j);
281 memcpy (fixed_regs, initial_fixed_regs, sizeof fixed_regs);
282 memcpy (call_used_regs, initial_call_used_regs, sizeof call_used_regs);
283 memset (global_regs, 0, sizeof global_regs);
285 /* Do any additional initialization regsets may need. */
286 INIT_ONCE_REG_SET ();
288 #ifdef REG_ALLOC_ORDER
289 for (i = 0; i < FIRST_PSEUDO_REGISTER; i++)
290 inv_reg_alloc_order[reg_alloc_order[i]] = i;
291 #endif
294 /* After switches have been processed, which perhaps alter
295 `fixed_regs' and `call_used_regs', convert them to HARD_REG_SETs. */
297 static void
298 init_reg_sets_1 (void)
300 unsigned int i, j;
301 unsigned int /* enum machine_mode */ m;
302 char allocatable_regs_of_mode [MAX_MACHINE_MODE];
304 /* This macro allows the fixed or call-used registers
305 and the register classes to depend on target flags. */
307 #ifdef CONDITIONAL_REGISTER_USAGE
308 CONDITIONAL_REGISTER_USAGE;
309 #endif
311 /* Compute number of hard regs in each class. */
313 memset (reg_class_size, 0, sizeof reg_class_size);
314 for (i = 0; i < N_REG_CLASSES; i++)
315 for (j = 0; j < FIRST_PSEUDO_REGISTER; j++)
316 if (TEST_HARD_REG_BIT (reg_class_contents[i], j))
317 reg_class_size[i]++;
319 /* Initialize the table of subunions.
320 reg_class_subunion[I][J] gets the largest-numbered reg-class
321 that is contained in the union of classes I and J. */
323 for (i = 0; i < N_REG_CLASSES; i++)
325 for (j = 0; j < N_REG_CLASSES; j++)
327 #ifdef HARD_REG_SET
328 register /* Declare it register if it's a scalar. */
329 #endif
330 HARD_REG_SET c;
331 int k;
333 COPY_HARD_REG_SET (c, reg_class_contents[i]);
334 IOR_HARD_REG_SET (c, reg_class_contents[j]);
335 for (k = 0; k < N_REG_CLASSES; k++)
337 GO_IF_HARD_REG_SUBSET (reg_class_contents[k], c,
338 subclass1);
339 continue;
341 subclass1:
342 /* Keep the largest subclass. */ /* SPEE 900308 */
343 GO_IF_HARD_REG_SUBSET (reg_class_contents[k],
344 reg_class_contents[(int) reg_class_subunion[i][j]],
345 subclass2);
346 reg_class_subunion[i][j] = (enum reg_class) k;
347 subclass2:
353 /* Initialize the table of superunions.
354 reg_class_superunion[I][J] gets the smallest-numbered reg-class
355 containing the union of classes I and J. */
357 for (i = 0; i < N_REG_CLASSES; i++)
359 for (j = 0; j < N_REG_CLASSES; j++)
361 #ifdef HARD_REG_SET
362 register /* Declare it register if it's a scalar. */
363 #endif
364 HARD_REG_SET c;
365 int k;
367 COPY_HARD_REG_SET (c, reg_class_contents[i]);
368 IOR_HARD_REG_SET (c, reg_class_contents[j]);
369 for (k = 0; k < N_REG_CLASSES; k++)
370 GO_IF_HARD_REG_SUBSET (c, reg_class_contents[k], superclass);
372 superclass:
373 reg_class_superunion[i][j] = (enum reg_class) k;
377 /* Initialize the tables of subclasses and superclasses of each reg class.
378 First clear the whole table, then add the elements as they are found. */
380 for (i = 0; i < N_REG_CLASSES; i++)
382 for (j = 0; j < N_REG_CLASSES; j++)
384 reg_class_superclasses[i][j] = LIM_REG_CLASSES;
385 reg_class_subclasses[i][j] = LIM_REG_CLASSES;
389 for (i = 0; i < N_REG_CLASSES; i++)
391 if (i == (int) NO_REGS)
392 continue;
394 for (j = i + 1; j < N_REG_CLASSES; j++)
396 enum reg_class *p;
398 GO_IF_HARD_REG_SUBSET (reg_class_contents[i], reg_class_contents[j],
399 subclass);
400 continue;
401 subclass:
402 /* Reg class I is a subclass of J.
403 Add J to the table of superclasses of I. */
404 p = &reg_class_superclasses[i][0];
405 while (*p != LIM_REG_CLASSES) p++;
406 *p = (enum reg_class) j;
407 /* Add I to the table of superclasses of J. */
408 p = &reg_class_subclasses[j][0];
409 while (*p != LIM_REG_CLASSES) p++;
410 *p = (enum reg_class) i;
414 /* Initialize "constant" tables. */
416 CLEAR_HARD_REG_SET (fixed_reg_set);
417 CLEAR_HARD_REG_SET (call_used_reg_set);
418 CLEAR_HARD_REG_SET (call_fixed_reg_set);
419 CLEAR_HARD_REG_SET (regs_invalidated_by_call);
421 memcpy (call_fixed_regs, fixed_regs, sizeof call_fixed_regs);
423 n_non_fixed_regs = 0;
425 for (i = 0; i < FIRST_PSEUDO_REGISTER; i++)
427 if (fixed_regs[i])
428 SET_HARD_REG_BIT (fixed_reg_set, i);
429 else
430 n_non_fixed_regs++;
432 if (call_used_regs[i])
433 SET_HARD_REG_BIT (call_used_reg_set, i);
434 if (call_fixed_regs[i])
435 SET_HARD_REG_BIT (call_fixed_reg_set, i);
436 if (CLASS_LIKELY_SPILLED_P (REGNO_REG_CLASS (i)))
437 SET_HARD_REG_BIT (losing_caller_save_reg_set, i);
439 /* There are a couple of fixed registers that we know are safe to
440 exclude from being clobbered by calls:
442 The frame pointer is always preserved across calls. The arg pointer
443 is if it is fixed. The stack pointer usually is, unless
444 RETURN_POPS_ARGS, in which case an explicit CLOBBER will be present.
445 If we are generating PIC code, the PIC offset table register is
446 preserved across calls, though the target can override that. */
448 if (i == STACK_POINTER_REGNUM || i == FRAME_POINTER_REGNUM)
450 #if HARD_FRAME_POINTER_REGNUM != FRAME_POINTER_REGNUM
451 else if (i == HARD_FRAME_POINTER_REGNUM)
453 #endif
454 #if ARG_POINTER_REGNUM != FRAME_POINTER_REGNUM
455 else if (i == ARG_POINTER_REGNUM && fixed_regs[i])
457 #endif
458 #ifndef PIC_OFFSET_TABLE_REG_CALL_CLOBBERED
459 else if (i == (unsigned) PIC_OFFSET_TABLE_REGNUM && fixed_regs[i])
461 #endif
462 else if (0
463 #ifdef CALL_REALLY_USED_REGISTERS
464 || call_really_used_regs[i]
465 #else
466 || call_used_regs[i]
467 #endif
468 || global_regs[i])
469 SET_HARD_REG_BIT (regs_invalidated_by_call, i);
472 memset (contains_reg_of_mode, 0, sizeof (contains_reg_of_mode));
473 memset (allocatable_regs_of_mode, 0, sizeof (allocatable_regs_of_mode));
474 for (m = 0; m < (unsigned int) MAX_MACHINE_MODE; m++)
475 for (i = 0; i < N_REG_CLASSES; i++)
476 if ((unsigned) CLASS_MAX_NREGS (i, m) <= reg_class_size[i])
477 for (j = 0; j < FIRST_PSEUDO_REGISTER; j++)
478 if (!fixed_regs [j] && TEST_HARD_REG_BIT (reg_class_contents[i], j)
479 && HARD_REGNO_MODE_OK (j, m))
481 contains_reg_of_mode [i][m] = 1;
482 allocatable_regs_of_mode [m] = 1;
483 break;
486 /* Initialize the move cost table. Find every subset of each class
487 and take the maximum cost of moving any subset to any other. */
489 for (m = 0; m < (unsigned int) MAX_MACHINE_MODE; m++)
490 if (allocatable_regs_of_mode [m])
492 for (i = 0; i < N_REG_CLASSES; i++)
493 if (contains_reg_of_mode [i][m])
494 for (j = 0; j < N_REG_CLASSES; j++)
496 int cost;
497 enum reg_class *p1, *p2;
499 if (!contains_reg_of_mode [j][m])
501 move_cost[m][i][j] = 65536;
502 may_move_in_cost[m][i][j] = 65536;
503 may_move_out_cost[m][i][j] = 65536;
505 else
507 cost = REGISTER_MOVE_COST (m, i, j);
509 for (p2 = &reg_class_subclasses[j][0];
510 *p2 != LIM_REG_CLASSES;
511 p2++)
512 if (*p2 != i && contains_reg_of_mode [*p2][m])
513 cost = MAX (cost, move_cost [m][i][*p2]);
515 for (p1 = &reg_class_subclasses[i][0];
516 *p1 != LIM_REG_CLASSES;
517 p1++)
518 if (*p1 != j && contains_reg_of_mode [*p1][m])
519 cost = MAX (cost, move_cost [m][*p1][j]);
521 move_cost[m][i][j] = cost;
523 if (reg_class_subset_p (i, j))
524 may_move_in_cost[m][i][j] = 0;
525 else
526 may_move_in_cost[m][i][j] = cost;
528 if (reg_class_subset_p (j, i))
529 may_move_out_cost[m][i][j] = 0;
530 else
531 may_move_out_cost[m][i][j] = cost;
534 else
535 for (j = 0; j < N_REG_CLASSES; j++)
537 move_cost[m][i][j] = 65536;
538 may_move_in_cost[m][i][j] = 65536;
539 may_move_out_cost[m][i][j] = 65536;
544 /* Compute the table of register modes.
545 These values are used to record death information for individual registers
546 (as opposed to a multi-register mode). */
548 void
549 init_reg_modes_once (void)
551 int i;
553 for (i = 0; i < FIRST_PSEUDO_REGISTER; i++)
555 reg_raw_mode[i] = choose_hard_reg_mode (i, 1, false);
557 /* If we couldn't find a valid mode, just use the previous mode.
558 ??? One situation in which we need to do this is on the mips where
559 HARD_REGNO_NREGS (fpreg, [SD]Fmode) returns 2. Ideally we'd like
560 to use DF mode for the even registers and VOIDmode for the odd
561 (for the cpu models where the odd ones are inaccessible). */
562 if (reg_raw_mode[i] == VOIDmode)
563 reg_raw_mode[i] = i == 0 ? word_mode : reg_raw_mode[i-1];
567 /* Finish initializing the register sets and
568 initialize the register modes. */
570 void
571 init_regs (void)
573 /* This finishes what was started by init_reg_sets, but couldn't be done
574 until after register usage was specified. */
575 init_reg_sets_1 ();
577 init_reg_autoinc ();
580 /* Initialize some fake stack-frame MEM references for use in
581 memory_move_secondary_cost. */
583 void
584 init_fake_stack_mems (void)
586 #ifdef HAVE_SECONDARY_RELOADS
588 int i;
590 for (i = 0; i < MAX_MACHINE_MODE; i++)
591 top_of_stack[i] = gen_rtx_MEM (i, stack_pointer_rtx);
593 #endif
596 #ifdef HAVE_SECONDARY_RELOADS
598 /* Compute extra cost of moving registers to/from memory due to reloads.
599 Only needed if secondary reloads are required for memory moves. */
602 memory_move_secondary_cost (enum machine_mode mode, enum reg_class class, int in)
604 enum reg_class altclass;
605 int partial_cost = 0;
606 /* We need a memory reference to feed to SECONDARY... macros. */
607 /* mem may be unused even if the SECONDARY_ macros are defined. */
608 rtx mem ATTRIBUTE_UNUSED = top_of_stack[(int) mode];
611 if (in)
613 #ifdef SECONDARY_INPUT_RELOAD_CLASS
614 altclass = SECONDARY_INPUT_RELOAD_CLASS (class, mode, mem);
615 #else
616 altclass = NO_REGS;
617 #endif
619 else
621 #ifdef SECONDARY_OUTPUT_RELOAD_CLASS
622 altclass = SECONDARY_OUTPUT_RELOAD_CLASS (class, mode, mem);
623 #else
624 altclass = NO_REGS;
625 #endif
628 if (altclass == NO_REGS)
629 return 0;
631 if (in)
632 partial_cost = REGISTER_MOVE_COST (mode, altclass, class);
633 else
634 partial_cost = REGISTER_MOVE_COST (mode, class, altclass);
636 if (class == altclass)
637 /* This isn't simply a copy-to-temporary situation. Can't guess
638 what it is, so MEMORY_MOVE_COST really ought not to be calling
639 here in that case.
641 I'm tempted to put in an abort here, but returning this will
642 probably only give poor estimates, which is what we would've
643 had before this code anyways. */
644 return partial_cost;
646 /* Check if the secondary reload register will also need a
647 secondary reload. */
648 return memory_move_secondary_cost (mode, altclass, in) + partial_cost;
650 #endif
652 /* Return a machine mode that is legitimate for hard reg REGNO and large
653 enough to save nregs. If we can't find one, return VOIDmode.
654 If CALL_SAVED is true, only consider modes that are call saved. */
656 enum machine_mode
657 choose_hard_reg_mode (unsigned int regno ATTRIBUTE_UNUSED,
658 unsigned int nregs, bool call_saved)
660 unsigned int /* enum machine_mode */ m;
661 enum machine_mode found_mode = VOIDmode, mode;
663 /* We first look for the largest integer mode that can be validly
664 held in REGNO. If none, we look for the largest floating-point mode.
665 If we still didn't find a valid mode, try CCmode. */
667 for (mode = GET_CLASS_NARROWEST_MODE (MODE_INT);
668 mode != VOIDmode;
669 mode = GET_MODE_WIDER_MODE (mode))
670 if ((unsigned) HARD_REGNO_NREGS (regno, mode) == nregs
671 && HARD_REGNO_MODE_OK (regno, mode)
672 && (! call_saved || ! HARD_REGNO_CALL_PART_CLOBBERED (regno, mode)))
673 found_mode = mode;
675 if (found_mode != VOIDmode)
676 return found_mode;
678 for (mode = GET_CLASS_NARROWEST_MODE (MODE_FLOAT);
679 mode != VOIDmode;
680 mode = GET_MODE_WIDER_MODE (mode))
681 if ((unsigned) HARD_REGNO_NREGS (regno, mode) == nregs
682 && HARD_REGNO_MODE_OK (regno, mode)
683 && (! call_saved || ! HARD_REGNO_CALL_PART_CLOBBERED (regno, mode)))
684 found_mode = mode;
686 if (found_mode != VOIDmode)
687 return found_mode;
689 for (mode = GET_CLASS_NARROWEST_MODE (MODE_VECTOR_FLOAT);
690 mode != VOIDmode;
691 mode = GET_MODE_WIDER_MODE (mode))
692 if ((unsigned) HARD_REGNO_NREGS (regno, mode) == nregs
693 && HARD_REGNO_MODE_OK (regno, mode)
694 && (! call_saved || ! HARD_REGNO_CALL_PART_CLOBBERED (regno, mode)))
695 found_mode = mode;
697 if (found_mode != VOIDmode)
698 return found_mode;
700 for (mode = GET_CLASS_NARROWEST_MODE (MODE_VECTOR_INT);
701 mode != VOIDmode;
702 mode = GET_MODE_WIDER_MODE (mode))
703 if ((unsigned) HARD_REGNO_NREGS (regno, mode) == nregs
704 && HARD_REGNO_MODE_OK (regno, mode)
705 && (! call_saved || ! HARD_REGNO_CALL_PART_CLOBBERED (regno, mode)))
706 found_mode = mode;
708 if (found_mode != VOIDmode)
709 return found_mode;
711 /* Iterate over all of the CCmodes. */
712 for (m = (unsigned int) CCmode; m < (unsigned int) NUM_MACHINE_MODES; ++m)
714 mode = (enum machine_mode) m;
715 if ((unsigned) HARD_REGNO_NREGS (regno, mode) == nregs
716 && HARD_REGNO_MODE_OK (regno, mode)
717 && (! call_saved || ! HARD_REGNO_CALL_PART_CLOBBERED (regno, mode)))
718 return mode;
721 /* We can't find a mode valid for this register. */
722 return VOIDmode;
725 /* Specify the usage characteristics of the register named NAME.
726 It should be a fixed register if FIXED and a
727 call-used register if CALL_USED. */
729 void
730 fix_register (const char *name, int fixed, int call_used)
732 int i;
734 /* Decode the name and update the primary form of
735 the register info. */
737 if ((i = decode_reg_name (name)) >= 0)
739 if ((i == STACK_POINTER_REGNUM
740 #ifdef HARD_FRAME_POINTER_REGNUM
741 || i == HARD_FRAME_POINTER_REGNUM
742 #else
743 || i == FRAME_POINTER_REGNUM
744 #endif
746 && (fixed == 0 || call_used == 0))
748 static const char * const what_option[2][2] = {
749 { "call-saved", "call-used" },
750 { "no-such-option", "fixed" }};
752 error ("can't use '%s' as a %s register", name,
753 what_option[fixed][call_used]);
755 else
757 fixed_regs[i] = fixed;
758 call_used_regs[i] = call_used;
759 #ifdef CALL_REALLY_USED_REGISTERS
760 if (fixed == 0)
761 call_really_used_regs[i] = call_used;
762 #endif
765 else
767 warning ("unknown register name: %s", name);
771 /* Mark register number I as global. */
773 void
774 globalize_reg (int i)
776 if (fixed_regs[i] == 0 && no_global_reg_vars)
777 error ("global register variable follows a function definition");
779 if (global_regs[i])
781 warning ("register used for two global register variables");
782 return;
785 if (call_used_regs[i] && ! fixed_regs[i])
786 warning ("call-clobbered register used for global register variable");
788 global_regs[i] = 1;
790 /* If already fixed, nothing else to do. */
791 if (fixed_regs[i])
792 return;
794 fixed_regs[i] = call_used_regs[i] = call_fixed_regs[i] = 1;
795 n_non_fixed_regs--;
797 SET_HARD_REG_BIT (fixed_reg_set, i);
798 SET_HARD_REG_BIT (call_used_reg_set, i);
799 SET_HARD_REG_BIT (call_fixed_reg_set, i);
800 SET_HARD_REG_BIT (regs_invalidated_by_call, i);
803 /* Now the data and code for the `regclass' pass, which happens
804 just before local-alloc. */
806 /* The `costs' struct records the cost of using a hard register of each class
807 and of using memory for each pseudo. We use this data to set up
808 register class preferences. */
810 struct costs
812 int cost[N_REG_CLASSES];
813 int mem_cost;
816 /* Structure used to record preferences of given pseudo. */
817 struct reg_pref
819 /* (enum reg_class) prefclass is the preferred class. */
820 char prefclass;
822 /* altclass is a register class that we should use for allocating
823 pseudo if no register in the preferred class is available.
824 If no register in this class is available, memory is preferred.
826 It might appear to be more general to have a bitmask of classes here,
827 but since it is recommended that there be a class corresponding to the
828 union of most major pair of classes, that generality is not required. */
829 char altclass;
832 /* Record the cost of each class for each pseudo. */
834 static struct costs *costs;
836 /* Initialized once, and used to initialize cost values for each insn. */
838 static struct costs init_cost;
840 /* Record preferences of each pseudo.
841 This is available after `regclass' is run. */
843 static struct reg_pref *reg_pref;
845 /* Allocated buffers for reg_pref. */
847 static struct reg_pref *reg_pref_buffer;
849 /* Frequency of executions of current insn. */
851 static int frequency;
853 static rtx scan_one_insn (rtx, int);
854 static void record_operand_costs (rtx, struct costs *, struct reg_pref *);
855 static void dump_regclass (FILE *);
856 static void record_reg_classes (int, int, rtx *, enum machine_mode *,
857 const char **, rtx, struct costs *,
858 struct reg_pref *);
859 static int copy_cost (rtx, enum machine_mode, enum reg_class, int);
860 static void record_address_regs (rtx, enum reg_class, int);
861 #ifdef FORBIDDEN_INC_DEC_CLASSES
862 static int auto_inc_dec_reg_p (rtx, enum machine_mode);
863 #endif
864 static void reg_scan_mark_refs (rtx, rtx, int, unsigned int);
866 /* Return the reg_class in which pseudo reg number REGNO is best allocated.
867 This function is sometimes called before the info has been computed.
868 When that happens, just return GENERAL_REGS, which is innocuous. */
870 enum reg_class
871 reg_preferred_class (int regno)
873 if (reg_pref == 0)
874 return GENERAL_REGS;
875 return (enum reg_class) reg_pref[regno].prefclass;
878 enum reg_class
879 reg_alternate_class (int regno)
881 if (reg_pref == 0)
882 return ALL_REGS;
884 return (enum reg_class) reg_pref[regno].altclass;
887 /* Initialize some global data for this pass. */
889 void
890 regclass_init (void)
892 int i;
894 init_cost.mem_cost = 10000;
895 for (i = 0; i < N_REG_CLASSES; i++)
896 init_cost.cost[i] = 10000;
898 /* This prevents dump_flow_info from losing if called
899 before regclass is run. */
900 reg_pref = NULL;
902 /* No more global register variables may be declared. */
903 no_global_reg_vars = 1;
906 /* Dump register costs. */
907 static void
908 dump_regclass (FILE *dump)
910 static const char *const reg_class_names[] = REG_CLASS_NAMES;
911 int i;
912 for (i = FIRST_PSEUDO_REGISTER; i < max_regno; i++)
914 int /* enum reg_class */ class;
915 if (REG_N_REFS (i))
917 fprintf (dump, " Register %i costs:", i);
918 for (class = 0; class < (int) N_REG_CLASSES; class++)
919 if (contains_reg_of_mode [(enum reg_class) class][PSEUDO_REGNO_MODE (i)]
920 #ifdef FORBIDDEN_INC_DEC_CLASSES
921 && (!in_inc_dec[i]
922 || !forbidden_inc_dec_class[(enum reg_class) class])
923 #endif
924 #ifdef CANNOT_CHANGE_MODE_CLASS
925 && ! invalid_mode_change_p (i, (enum reg_class) class,
926 PSEUDO_REGNO_MODE (i))
927 #endif
929 fprintf (dump, " %s:%i", reg_class_names[class],
930 costs[i].cost[(enum reg_class) class]);
931 fprintf (dump, " MEM:%i\n", costs[i].mem_cost);
937 /* Calculate the costs of insn operands. */
939 static void
940 record_operand_costs (rtx insn, struct costs *op_costs,
941 struct reg_pref *reg_pref)
943 const char *constraints[MAX_RECOG_OPERANDS];
944 enum machine_mode modes[MAX_RECOG_OPERANDS];
945 int i;
947 for (i = 0; i < recog_data.n_operands; i++)
949 constraints[i] = recog_data.constraints[i];
950 modes[i] = recog_data.operand_mode[i];
953 /* If we get here, we are set up to record the costs of all the
954 operands for this insn. Start by initializing the costs.
955 Then handle any address registers. Finally record the desired
956 classes for any pseudos, doing it twice if some pair of
957 operands are commutative. */
959 for (i = 0; i < recog_data.n_operands; i++)
961 op_costs[i] = init_cost;
963 if (GET_CODE (recog_data.operand[i]) == SUBREG)
964 recog_data.operand[i] = SUBREG_REG (recog_data.operand[i]);
966 if (GET_CODE (recog_data.operand[i]) == MEM)
967 record_address_regs (XEXP (recog_data.operand[i], 0),
968 MODE_BASE_REG_CLASS (modes[i]), frequency * 2);
969 else if (constraints[i][0] == 'p'
970 || EXTRA_ADDRESS_CONSTRAINT (constraints[i][0], constraints[i]))
971 record_address_regs (recog_data.operand[i],
972 MODE_BASE_REG_CLASS (modes[i]), frequency * 2);
975 /* Check for commutative in a separate loop so everything will
976 have been initialized. We must do this even if one operand
977 is a constant--see addsi3 in m68k.md. */
979 for (i = 0; i < (int) recog_data.n_operands - 1; i++)
980 if (constraints[i][0] == '%')
982 const char *xconstraints[MAX_RECOG_OPERANDS];
983 int j;
985 /* Handle commutative operands by swapping the constraints.
986 We assume the modes are the same. */
988 for (j = 0; j < recog_data.n_operands; j++)
989 xconstraints[j] = constraints[j];
991 xconstraints[i] = constraints[i+1];
992 xconstraints[i+1] = constraints[i];
993 record_reg_classes (recog_data.n_alternatives, recog_data.n_operands,
994 recog_data.operand, modes,
995 xconstraints, insn, op_costs, reg_pref);
998 record_reg_classes (recog_data.n_alternatives, recog_data.n_operands,
999 recog_data.operand, modes,
1000 constraints, insn, op_costs, reg_pref);
1003 /* Subroutine of regclass, processes one insn INSN. Scan it and record each
1004 time it would save code to put a certain register in a certain class.
1005 PASS, when nonzero, inhibits some optimizations which need only be done
1006 once.
1007 Return the last insn processed, so that the scan can be continued from
1008 there. */
1010 static rtx
1011 scan_one_insn (rtx insn, int pass)
1013 enum rtx_code code = GET_CODE (insn);
1014 enum rtx_code pat_code;
1015 rtx set, note;
1016 int i, j;
1017 struct costs op_costs[MAX_RECOG_OPERANDS];
1019 if (GET_RTX_CLASS (code) != 'i')
1020 return insn;
1022 pat_code = GET_CODE (PATTERN (insn));
1023 if (pat_code == USE
1024 || pat_code == CLOBBER
1025 || pat_code == ASM_INPUT
1026 || pat_code == ADDR_VEC
1027 || pat_code == ADDR_DIFF_VEC)
1028 return insn;
1030 set = single_set (insn);
1031 extract_insn (insn);
1033 /* If this insn loads a parameter from its stack slot, then
1034 it represents a savings, rather than a cost, if the
1035 parameter is stored in memory. Record this fact. */
1037 if (set != 0 && GET_CODE (SET_DEST (set)) == REG
1038 && GET_CODE (SET_SRC (set)) == MEM
1039 && (note = find_reg_note (insn, REG_EQUIV,
1040 NULL_RTX)) != 0
1041 && GET_CODE (XEXP (note, 0)) == MEM)
1043 costs[REGNO (SET_DEST (set))].mem_cost
1044 -= (MEMORY_MOVE_COST (GET_MODE (SET_DEST (set)),
1045 GENERAL_REGS, 1)
1046 * frequency);
1047 record_address_regs (XEXP (SET_SRC (set), 0),
1048 MODE_BASE_REG_CLASS (VOIDmode), frequency * 2);
1049 return insn;
1052 /* Improve handling of two-address insns such as
1053 (set X (ashift CONST Y)) where CONST must be made to
1054 match X. Change it into two insns: (set X CONST)
1055 (set X (ashift X Y)). If we left this for reloading, it
1056 would probably get three insns because X and Y might go
1057 in the same place. This prevents X and Y from receiving
1058 the same hard reg.
1060 We can only do this if the modes of operands 0 and 1
1061 (which might not be the same) are tieable and we only need
1062 do this during our first pass. */
1064 if (pass == 0 && optimize
1065 && recog_data.n_operands >= 3
1066 && recog_data.constraints[1][0] == '0'
1067 && recog_data.constraints[1][1] == 0
1068 && CONSTANT_P (recog_data.operand[1])
1069 && ! rtx_equal_p (recog_data.operand[0], recog_data.operand[1])
1070 && ! rtx_equal_p (recog_data.operand[0], recog_data.operand[2])
1071 && GET_CODE (recog_data.operand[0]) == REG
1072 && MODES_TIEABLE_P (GET_MODE (recog_data.operand[0]),
1073 recog_data.operand_mode[1]))
1075 rtx previnsn = prev_real_insn (insn);
1076 rtx dest
1077 = gen_lowpart (recog_data.operand_mode[1],
1078 recog_data.operand[0]);
1079 rtx newinsn
1080 = emit_insn_before (gen_move_insn (dest, recog_data.operand[1]), insn);
1082 /* If this insn was the start of a basic block,
1083 include the new insn in that block.
1084 We need not check for code_label here;
1085 while a basic block can start with a code_label,
1086 INSN could not be at the beginning of that block. */
1087 if (previnsn == 0 || GET_CODE (previnsn) == JUMP_INSN)
1089 basic_block b;
1090 FOR_EACH_BB (b)
1091 if (insn == b->head)
1092 b->head = newinsn;
1095 /* This makes one more setting of new insns's dest. */
1096 REG_N_SETS (REGNO (recog_data.operand[0]))++;
1097 REG_N_REFS (REGNO (recog_data.operand[0]))++;
1098 REG_FREQ (REGNO (recog_data.operand[0])) += frequency;
1100 *recog_data.operand_loc[1] = recog_data.operand[0];
1101 REG_N_REFS (REGNO (recog_data.operand[0]))++;
1102 REG_FREQ (REGNO (recog_data.operand[0])) += frequency;
1103 for (i = recog_data.n_dups - 1; i >= 0; i--)
1104 if (recog_data.dup_num[i] == 1)
1106 *recog_data.dup_loc[i] = recog_data.operand[0];
1107 REG_N_REFS (REGNO (recog_data.operand[0]))++;
1108 REG_FREQ (REGNO (recog_data.operand[0])) += frequency;
1111 return PREV_INSN (newinsn);
1114 record_operand_costs (insn, op_costs, reg_pref);
1116 /* Now add the cost for each operand to the total costs for
1117 its register. */
1119 for (i = 0; i < recog_data.n_operands; i++)
1120 if (GET_CODE (recog_data.operand[i]) == REG
1121 && REGNO (recog_data.operand[i]) >= FIRST_PSEUDO_REGISTER)
1123 int regno = REGNO (recog_data.operand[i]);
1124 struct costs *p = &costs[regno], *q = &op_costs[i];
1126 p->mem_cost += q->mem_cost * frequency;
1127 for (j = 0; j < N_REG_CLASSES; j++)
1128 p->cost[j] += q->cost[j] * frequency;
1131 return insn;
1134 /* Initialize information about which register classes can be used for
1135 pseudos that are auto-incremented or auto-decremented. */
1137 static void
1138 init_reg_autoinc (void)
1140 #ifdef FORBIDDEN_INC_DEC_CLASSES
1141 int i;
1143 for (i = 0; i < N_REG_CLASSES; i++)
1145 rtx r = gen_rtx_raw_REG (VOIDmode, 0);
1146 enum machine_mode m;
1147 int j;
1149 for (j = 0; j < FIRST_PSEUDO_REGISTER; j++)
1150 if (TEST_HARD_REG_BIT (reg_class_contents[i], j))
1152 REGNO (r) = j;
1154 for (m = VOIDmode; (int) m < (int) MAX_MACHINE_MODE;
1155 m = (enum machine_mode) ((int) m + 1))
1156 if (HARD_REGNO_MODE_OK (j, m))
1158 PUT_MODE (r, m);
1160 /* If a register is not directly suitable for an
1161 auto-increment or decrement addressing mode and
1162 requires secondary reloads, disallow its class from
1163 being used in such addresses. */
1165 if ((0
1166 #ifdef SECONDARY_RELOAD_CLASS
1167 || (SECONDARY_RELOAD_CLASS (MODE_BASE_REG_CLASS (VOIDmode), m, r)
1168 != NO_REGS)
1169 #else
1170 #ifdef SECONDARY_INPUT_RELOAD_CLASS
1171 || (SECONDARY_INPUT_RELOAD_CLASS (MODE_BASE_REG_CLASS (VOIDmode), m, r)
1172 != NO_REGS)
1173 #endif
1174 #ifdef SECONDARY_OUTPUT_RELOAD_CLASS
1175 || (SECONDARY_OUTPUT_RELOAD_CLASS (MODE_BASE_REG_CLASS (VOIDmode), m, r)
1176 != NO_REGS)
1177 #endif
1178 #endif
1180 && ! auto_inc_dec_reg_p (r, m))
1181 forbidden_inc_dec_class[i] = 1;
1185 #endif /* FORBIDDEN_INC_DEC_CLASSES */
1188 /* This is a pass of the compiler that scans all instructions
1189 and calculates the preferred class for each pseudo-register.
1190 This information can be accessed later by calling `reg_preferred_class'.
1191 This pass comes just before local register allocation. */
1193 void
1194 regclass (rtx f, int nregs, FILE *dump)
1196 rtx insn;
1197 int i;
1198 int pass;
1200 init_recog ();
1202 costs = xmalloc (nregs * sizeof (struct costs));
1204 #ifdef FORBIDDEN_INC_DEC_CLASSES
1206 in_inc_dec = xmalloc (nregs);
1208 #endif /* FORBIDDEN_INC_DEC_CLASSES */
1210 /* Normally we scan the insns once and determine the best class to use for
1211 each register. However, if -fexpensive_optimizations are on, we do so
1212 twice, the second time using the tentative best classes to guide the
1213 selection. */
1215 for (pass = 0; pass <= flag_expensive_optimizations; pass++)
1217 basic_block bb;
1219 if (dump)
1220 fprintf (dump, "\n\nPass %i\n\n",pass);
1221 /* Zero out our accumulation of the cost of each class for each reg. */
1223 memset (costs, 0, nregs * sizeof (struct costs));
1225 #ifdef FORBIDDEN_INC_DEC_CLASSES
1226 memset (in_inc_dec, 0, nregs);
1227 #endif
1229 /* Scan the instructions and record each time it would
1230 save code to put a certain register in a certain class. */
1232 if (!optimize)
1234 frequency = REG_FREQ_MAX;
1235 for (insn = f; insn; insn = NEXT_INSN (insn))
1236 insn = scan_one_insn (insn, pass);
1238 else
1239 FOR_EACH_BB (bb)
1241 /* Show that an insn inside a loop is likely to be executed three
1242 times more than insns outside a loop. This is much more
1243 aggressive than the assumptions made elsewhere and is being
1244 tried as an experiment. */
1245 frequency = REG_FREQ_FROM_BB (bb);
1246 for (insn = bb->head; ; insn = NEXT_INSN (insn))
1248 insn = scan_one_insn (insn, pass);
1249 if (insn == bb->end)
1250 break;
1254 /* Now for each register look at how desirable each class is
1255 and find which class is preferred. Store that in
1256 `prefclass'. Record in `altclass' the largest register
1257 class any of whose registers is better than memory. */
1259 if (pass == 0)
1260 reg_pref = reg_pref_buffer;
1262 if (dump)
1264 dump_regclass (dump);
1265 fprintf (dump,"\n");
1267 for (i = FIRST_PSEUDO_REGISTER; i < nregs; i++)
1269 int best_cost = (1 << (HOST_BITS_PER_INT - 2)) - 1;
1270 enum reg_class best = ALL_REGS, alt = NO_REGS;
1271 /* This is an enum reg_class, but we call it an int
1272 to save lots of casts. */
1273 int class;
1274 struct costs *p = &costs[i];
1276 /* In non-optimizing compilation REG_N_REFS is not initialized
1277 yet. */
1278 if (optimize && !REG_N_REFS (i) && !REG_N_SETS (i))
1279 continue;
1281 for (class = (int) ALL_REGS - 1; class > 0; class--)
1283 /* Ignore classes that are too small for this operand or
1284 invalid for an operand that was auto-incremented. */
1285 if (!contains_reg_of_mode [class][PSEUDO_REGNO_MODE (i)]
1286 #ifdef FORBIDDEN_INC_DEC_CLASSES
1287 || (in_inc_dec[i] && forbidden_inc_dec_class[class])
1288 #endif
1289 #ifdef CANNOT_CHANGE_MODE_CLASS
1290 || invalid_mode_change_p (i, (enum reg_class) class,
1291 PSEUDO_REGNO_MODE (i))
1292 #endif
1295 else if (p->cost[class] < best_cost)
1297 best_cost = p->cost[class];
1298 best = (enum reg_class) class;
1300 else if (p->cost[class] == best_cost)
1301 best = reg_class_subunion[(int) best][class];
1304 /* Record the alternate register class; i.e., a class for which
1305 every register in it is better than using memory. If adding a
1306 class would make a smaller class (i.e., no union of just those
1307 classes exists), skip that class. The major unions of classes
1308 should be provided as a register class. Don't do this if we
1309 will be doing it again later. */
1311 if ((pass == 1 || dump) || ! flag_expensive_optimizations)
1312 for (class = 0; class < N_REG_CLASSES; class++)
1313 if (p->cost[class] < p->mem_cost
1314 && (reg_class_size[(int) reg_class_subunion[(int) alt][class]]
1315 > reg_class_size[(int) alt])
1316 #ifdef FORBIDDEN_INC_DEC_CLASSES
1317 && ! (in_inc_dec[i] && forbidden_inc_dec_class[class])
1318 #endif
1319 #ifdef CANNOT_CHANGE_MODE_CLASS
1320 && ! invalid_mode_change_p (i, (enum reg_class) class,
1321 PSEUDO_REGNO_MODE (i))
1322 #endif
1324 alt = reg_class_subunion[(int) alt][class];
1326 /* If we don't add any classes, nothing to try. */
1327 if (alt == best)
1328 alt = NO_REGS;
1330 if (dump
1331 && (reg_pref[i].prefclass != (int) best
1332 || reg_pref[i].altclass != (int) alt))
1334 static const char *const reg_class_names[] = REG_CLASS_NAMES;
1335 fprintf (dump, " Register %i", i);
1336 if (alt == ALL_REGS || best == ALL_REGS)
1337 fprintf (dump, " pref %s\n", reg_class_names[(int) best]);
1338 else if (alt == NO_REGS)
1339 fprintf (dump, " pref %s or none\n", reg_class_names[(int) best]);
1340 else
1341 fprintf (dump, " pref %s, else %s\n",
1342 reg_class_names[(int) best],
1343 reg_class_names[(int) alt]);
1346 /* We cast to (int) because (char) hits bugs in some compilers. */
1347 reg_pref[i].prefclass = (int) best;
1348 reg_pref[i].altclass = (int) alt;
1352 #ifdef FORBIDDEN_INC_DEC_CLASSES
1353 free (in_inc_dec);
1354 #endif
1355 free (costs);
1358 /* Record the cost of using memory or registers of various classes for
1359 the operands in INSN.
1361 N_ALTS is the number of alternatives.
1363 N_OPS is the number of operands.
1365 OPS is an array of the operands.
1367 MODES are the modes of the operands, in case any are VOIDmode.
1369 CONSTRAINTS are the constraints to use for the operands. This array
1370 is modified by this procedure.
1372 This procedure works alternative by alternative. For each alternative
1373 we assume that we will be able to allocate all pseudos to their ideal
1374 register class and calculate the cost of using that alternative. Then
1375 we compute for each operand that is a pseudo-register, the cost of
1376 having the pseudo allocated to each register class and using it in that
1377 alternative. To this cost is added the cost of the alternative.
1379 The cost of each class for this insn is its lowest cost among all the
1380 alternatives. */
1382 static void
1383 record_reg_classes (int n_alts, int n_ops, rtx *ops,
1384 enum machine_mode *modes, const char **constraints,
1385 rtx insn, struct costs *op_costs,
1386 struct reg_pref *reg_pref)
1388 int alt;
1389 int i, j;
1390 rtx set;
1392 /* Process each alternative, each time minimizing an operand's cost with
1393 the cost for each operand in that alternative. */
1395 for (alt = 0; alt < n_alts; alt++)
1397 struct costs this_op_costs[MAX_RECOG_OPERANDS];
1398 int alt_fail = 0;
1399 int alt_cost = 0;
1400 enum reg_class classes[MAX_RECOG_OPERANDS];
1401 int allows_mem[MAX_RECOG_OPERANDS];
1402 int class;
1404 for (i = 0; i < n_ops; i++)
1406 const char *p = constraints[i];
1407 rtx op = ops[i];
1408 enum machine_mode mode = modes[i];
1409 int allows_addr = 0;
1410 int win = 0;
1411 unsigned char c;
1413 /* Initially show we know nothing about the register class. */
1414 classes[i] = NO_REGS;
1415 allows_mem[i] = 0;
1417 /* If this operand has no constraints at all, we can conclude
1418 nothing about it since anything is valid. */
1420 if (*p == 0)
1422 if (GET_CODE (op) == REG && REGNO (op) >= FIRST_PSEUDO_REGISTER)
1423 memset (&this_op_costs[i], 0, sizeof this_op_costs[i]);
1425 continue;
1428 /* If this alternative is only relevant when this operand
1429 matches a previous operand, we do different things depending
1430 on whether this operand is a pseudo-reg or not. We must process
1431 any modifiers for the operand before we can make this test. */
1433 while (*p == '%' || *p == '=' || *p == '+' || *p == '&')
1434 p++;
1436 if (p[0] >= '0' && p[0] <= '0' + i && (p[1] == ',' || p[1] == 0))
1438 /* Copy class and whether memory is allowed from the matching
1439 alternative. Then perform any needed cost computations
1440 and/or adjustments. */
1441 j = p[0] - '0';
1442 classes[i] = classes[j];
1443 allows_mem[i] = allows_mem[j];
1445 if (GET_CODE (op) != REG || REGNO (op) < FIRST_PSEUDO_REGISTER)
1447 /* If this matches the other operand, we have no added
1448 cost and we win. */
1449 if (rtx_equal_p (ops[j], op))
1450 win = 1;
1452 /* If we can put the other operand into a register, add to
1453 the cost of this alternative the cost to copy this
1454 operand to the register used for the other operand. */
1456 else if (classes[j] != NO_REGS)
1457 alt_cost += copy_cost (op, mode, classes[j], 1), win = 1;
1459 else if (GET_CODE (ops[j]) != REG
1460 || REGNO (ops[j]) < FIRST_PSEUDO_REGISTER)
1462 /* This op is a pseudo but the one it matches is not. */
1464 /* If we can't put the other operand into a register, this
1465 alternative can't be used. */
1467 if (classes[j] == NO_REGS)
1468 alt_fail = 1;
1470 /* Otherwise, add to the cost of this alternative the cost
1471 to copy the other operand to the register used for this
1472 operand. */
1474 else
1475 alt_cost += copy_cost (ops[j], mode, classes[j], 1);
1477 else
1479 /* The costs of this operand are not the same as the other
1480 operand since move costs are not symmetric. Moreover,
1481 if we cannot tie them, this alternative needs to do a
1482 copy, which is one instruction. */
1484 struct costs *pp = &this_op_costs[i];
1486 for (class = 0; class < N_REG_CLASSES; class++)
1487 pp->cost[class]
1488 = ((recog_data.operand_type[i] != OP_OUT
1489 ? may_move_in_cost[mode][class][(int) classes[i]]
1490 : 0)
1491 + (recog_data.operand_type[i] != OP_IN
1492 ? may_move_out_cost[mode][(int) classes[i]][class]
1493 : 0));
1495 /* If the alternative actually allows memory, make things
1496 a bit cheaper since we won't need an extra insn to
1497 load it. */
1499 pp->mem_cost
1500 = ((recog_data.operand_type[i] != OP_IN
1501 ? MEMORY_MOVE_COST (mode, classes[i], 0)
1502 : 0)
1503 + (recog_data.operand_type[i] != OP_OUT
1504 ? MEMORY_MOVE_COST (mode, classes[i], 1)
1505 : 0) - allows_mem[i]);
1507 /* If we have assigned a class to this register in our
1508 first pass, add a cost to this alternative corresponding
1509 to what we would add if this register were not in the
1510 appropriate class. */
1512 if (reg_pref)
1513 alt_cost
1514 += (may_move_in_cost[mode]
1515 [(unsigned char) reg_pref[REGNO (op)].prefclass]
1516 [(int) classes[i]]);
1518 if (REGNO (ops[i]) != REGNO (ops[j])
1519 && ! find_reg_note (insn, REG_DEAD, op))
1520 alt_cost += 2;
1522 /* This is in place of ordinary cost computation
1523 for this operand, so skip to the end of the
1524 alternative (should be just one character). */
1525 while (*p && *p++ != ',')
1528 constraints[i] = p;
1529 continue;
1533 /* Scan all the constraint letters. See if the operand matches
1534 any of the constraints. Collect the valid register classes
1535 and see if this operand accepts memory. */
1537 while ((c = *p))
1539 switch (c)
1541 case ',':
1542 break;
1543 case '*':
1544 /* Ignore the next letter for this pass. */
1545 c = *++p;
1546 break;
1548 case '?':
1549 alt_cost += 2;
1550 case '!': case '#': case '&':
1551 case '0': case '1': case '2': case '3': case '4':
1552 case '5': case '6': case '7': case '8': case '9':
1553 break;
1555 case 'p':
1556 allows_addr = 1;
1557 win = address_operand (op, GET_MODE (op));
1558 /* We know this operand is an address, so we want it to be
1559 allocated to a register that can be the base of an
1560 address, ie BASE_REG_CLASS. */
1561 classes[i]
1562 = reg_class_subunion[(int) classes[i]]
1563 [(int) MODE_BASE_REG_CLASS (VOIDmode)];
1564 break;
1566 case 'm': case 'o': case 'V':
1567 /* It doesn't seem worth distinguishing between offsettable
1568 and non-offsettable addresses here. */
1569 allows_mem[i] = 1;
1570 if (GET_CODE (op) == MEM)
1571 win = 1;
1572 break;
1574 case '<':
1575 if (GET_CODE (op) == MEM
1576 && (GET_CODE (XEXP (op, 0)) == PRE_DEC
1577 || GET_CODE (XEXP (op, 0)) == POST_DEC))
1578 win = 1;
1579 break;
1581 case '>':
1582 if (GET_CODE (op) == MEM
1583 && (GET_CODE (XEXP (op, 0)) == PRE_INC
1584 || GET_CODE (XEXP (op, 0)) == POST_INC))
1585 win = 1;
1586 break;
1588 case 'E':
1589 case 'F':
1590 if (GET_CODE (op) == CONST_DOUBLE
1591 || (GET_CODE (op) == CONST_VECTOR
1592 && (GET_MODE_CLASS (GET_MODE (op))
1593 == MODE_VECTOR_FLOAT)))
1594 win = 1;
1595 break;
1597 case 'G':
1598 case 'H':
1599 if (GET_CODE (op) == CONST_DOUBLE
1600 && CONST_DOUBLE_OK_FOR_CONSTRAINT_P (op, c, p))
1601 win = 1;
1602 break;
1604 case 's':
1605 if (GET_CODE (op) == CONST_INT
1606 || (GET_CODE (op) == CONST_DOUBLE
1607 && GET_MODE (op) == VOIDmode))
1608 break;
1609 case 'i':
1610 if (CONSTANT_P (op)
1611 #ifdef LEGITIMATE_PIC_OPERAND_P
1612 && (! flag_pic || LEGITIMATE_PIC_OPERAND_P (op))
1613 #endif
1615 win = 1;
1616 break;
1618 case 'n':
1619 if (GET_CODE (op) == CONST_INT
1620 || (GET_CODE (op) == CONST_DOUBLE
1621 && GET_MODE (op) == VOIDmode))
1622 win = 1;
1623 break;
1625 case 'I':
1626 case 'J':
1627 case 'K':
1628 case 'L':
1629 case 'M':
1630 case 'N':
1631 case 'O':
1632 case 'P':
1633 if (GET_CODE (op) == CONST_INT
1634 && CONST_OK_FOR_CONSTRAINT_P (INTVAL (op), c, p))
1635 win = 1;
1636 break;
1638 case 'X':
1639 win = 1;
1640 break;
1642 case 'g':
1643 if (GET_CODE (op) == MEM
1644 || (CONSTANT_P (op)
1645 #ifdef LEGITIMATE_PIC_OPERAND_P
1646 && (! flag_pic || LEGITIMATE_PIC_OPERAND_P (op))
1647 #endif
1649 win = 1;
1650 allows_mem[i] = 1;
1651 case 'r':
1652 classes[i]
1653 = reg_class_subunion[(int) classes[i]][(int) GENERAL_REGS];
1654 break;
1656 default:
1657 if (REG_CLASS_FROM_CONSTRAINT (c, p) != NO_REGS)
1658 classes[i]
1659 = reg_class_subunion[(int) classes[i]]
1660 [(int) REG_CLASS_FROM_CONSTRAINT (c, p)];
1661 #ifdef EXTRA_CONSTRAINT_STR
1662 else if (EXTRA_CONSTRAINT_STR (op, c, p))
1663 win = 1;
1665 if (EXTRA_MEMORY_CONSTRAINT (c, p))
1667 /* Every MEM can be reloaded to fit. */
1668 allows_mem[i] = 1;
1669 if (GET_CODE (op) == MEM)
1670 win = 1;
1672 if (EXTRA_ADDRESS_CONSTRAINT (c, p))
1674 /* Every address can be reloaded to fit. */
1675 allows_addr = 1;
1676 if (address_operand (op, GET_MODE (op)))
1677 win = 1;
1678 /* We know this operand is an address, so we want it to
1679 be allocated to a register that can be the base of an
1680 address, ie BASE_REG_CLASS. */
1681 classes[i]
1682 = reg_class_subunion[(int) classes[i]]
1683 [(int) MODE_BASE_REG_CLASS (VOIDmode)];
1685 #endif
1686 break;
1688 p += CONSTRAINT_LEN (c, p);
1689 if (c == ',')
1690 break;
1693 constraints[i] = p;
1695 /* How we account for this operand now depends on whether it is a
1696 pseudo register or not. If it is, we first check if any
1697 register classes are valid. If not, we ignore this alternative,
1698 since we want to assume that all pseudos get allocated for
1699 register preferencing. If some register class is valid, compute
1700 the costs of moving the pseudo into that class. */
1702 if (GET_CODE (op) == REG && REGNO (op) >= FIRST_PSEUDO_REGISTER)
1704 if (classes[i] == NO_REGS)
1706 /* We must always fail if the operand is a REG, but
1707 we did not find a suitable class.
1709 Otherwise we may perform an uninitialized read
1710 from this_op_costs after the `continue' statement
1711 below. */
1712 alt_fail = 1;
1714 else
1716 struct costs *pp = &this_op_costs[i];
1718 for (class = 0; class < N_REG_CLASSES; class++)
1719 pp->cost[class]
1720 = ((recog_data.operand_type[i] != OP_OUT
1721 ? may_move_in_cost[mode][class][(int) classes[i]]
1722 : 0)
1723 + (recog_data.operand_type[i] != OP_IN
1724 ? may_move_out_cost[mode][(int) classes[i]][class]
1725 : 0));
1727 /* If the alternative actually allows memory, make things
1728 a bit cheaper since we won't need an extra insn to
1729 load it. */
1731 pp->mem_cost
1732 = ((recog_data.operand_type[i] != OP_IN
1733 ? MEMORY_MOVE_COST (mode, classes[i], 0)
1734 : 0)
1735 + (recog_data.operand_type[i] != OP_OUT
1736 ? MEMORY_MOVE_COST (mode, classes[i], 1)
1737 : 0) - allows_mem[i]);
1739 /* If we have assigned a class to this register in our
1740 first pass, add a cost to this alternative corresponding
1741 to what we would add if this register were not in the
1742 appropriate class. */
1744 if (reg_pref)
1745 alt_cost
1746 += (may_move_in_cost[mode]
1747 [(unsigned char) reg_pref[REGNO (op)].prefclass]
1748 [(int) classes[i]]);
1752 /* Otherwise, if this alternative wins, either because we
1753 have already determined that or if we have a hard register of
1754 the proper class, there is no cost for this alternative. */
1756 else if (win
1757 || (GET_CODE (op) == REG
1758 && reg_fits_class_p (op, classes[i], 0, GET_MODE (op))))
1761 /* If registers are valid, the cost of this alternative includes
1762 copying the object to and/or from a register. */
1764 else if (classes[i] != NO_REGS)
1766 if (recog_data.operand_type[i] != OP_OUT)
1767 alt_cost += copy_cost (op, mode, classes[i], 1);
1769 if (recog_data.operand_type[i] != OP_IN)
1770 alt_cost += copy_cost (op, mode, classes[i], 0);
1773 /* The only other way this alternative can be used is if this is a
1774 constant that could be placed into memory. */
1776 else if (CONSTANT_P (op) && (allows_addr || allows_mem[i]))
1777 alt_cost += MEMORY_MOVE_COST (mode, classes[i], 1);
1778 else
1779 alt_fail = 1;
1782 if (alt_fail)
1783 continue;
1785 /* Finally, update the costs with the information we've calculated
1786 about this alternative. */
1788 for (i = 0; i < n_ops; i++)
1789 if (GET_CODE (ops[i]) == REG
1790 && REGNO (ops[i]) >= FIRST_PSEUDO_REGISTER)
1792 struct costs *pp = &op_costs[i], *qq = &this_op_costs[i];
1793 int scale = 1 + (recog_data.operand_type[i] == OP_INOUT);
1795 pp->mem_cost = MIN (pp->mem_cost,
1796 (qq->mem_cost + alt_cost) * scale);
1798 for (class = 0; class < N_REG_CLASSES; class++)
1799 pp->cost[class] = MIN (pp->cost[class],
1800 (qq->cost[class] + alt_cost) * scale);
1804 /* If this insn is a single set copying operand 1 to operand 0
1805 and one operand is a pseudo with the other a hard reg or a pseudo
1806 that prefers a register that is in its own register class then
1807 we may want to adjust the cost of that register class to -1.
1809 Avoid the adjustment if the source does not die to avoid stressing of
1810 register allocator by preferrencing two colliding registers into single
1811 class.
1813 Also avoid the adjustment if a copy between registers of the class
1814 is expensive (ten times the cost of a default copy is considered
1815 arbitrarily expensive). This avoids losing when the preferred class
1816 is very expensive as the source of a copy instruction. */
1818 if ((set = single_set (insn)) != 0
1819 && ops[0] == SET_DEST (set) && ops[1] == SET_SRC (set)
1820 && GET_CODE (ops[0]) == REG && GET_CODE (ops[1]) == REG
1821 && find_regno_note (insn, REG_DEAD, REGNO (ops[1])))
1822 for (i = 0; i <= 1; i++)
1823 if (REGNO (ops[i]) >= FIRST_PSEUDO_REGISTER)
1825 unsigned int regno = REGNO (ops[!i]);
1826 enum machine_mode mode = GET_MODE (ops[!i]);
1827 int class;
1828 unsigned int nr;
1830 if (regno >= FIRST_PSEUDO_REGISTER && reg_pref != 0)
1832 enum reg_class pref = reg_pref[regno].prefclass;
1834 if ((reg_class_size[(unsigned char) pref]
1835 == (unsigned) CLASS_MAX_NREGS (pref, mode))
1836 && REGISTER_MOVE_COST (mode, pref, pref) < 10 * 2)
1837 op_costs[i].cost[(unsigned char) pref] = -1;
1839 else if (regno < FIRST_PSEUDO_REGISTER)
1840 for (class = 0; class < N_REG_CLASSES; class++)
1841 if (TEST_HARD_REG_BIT (reg_class_contents[class], regno)
1842 && reg_class_size[class] == (unsigned) CLASS_MAX_NREGS (class, mode))
1844 if (reg_class_size[class] == 1)
1845 op_costs[i].cost[class] = -1;
1846 else
1848 for (nr = 0; nr < (unsigned) HARD_REGNO_NREGS (regno, mode); nr++)
1850 if (! TEST_HARD_REG_BIT (reg_class_contents[class],
1851 regno + nr))
1852 break;
1855 if (nr == (unsigned) HARD_REGNO_NREGS (regno,mode))
1856 op_costs[i].cost[class] = -1;
1862 /* Compute the cost of loading X into (if TO_P is nonzero) or from (if
1863 TO_P is zero) a register of class CLASS in mode MODE.
1865 X must not be a pseudo. */
1867 static int
1868 copy_cost (rtx x, enum machine_mode mode ATTRIBUTE_UNUSED,
1869 enum reg_class class, int to_p ATTRIBUTE_UNUSED)
1871 #ifdef HAVE_SECONDARY_RELOADS
1872 enum reg_class secondary_class = NO_REGS;
1873 #endif
1875 /* If X is a SCRATCH, there is actually nothing to move since we are
1876 assuming optimal allocation. */
1878 if (GET_CODE (x) == SCRATCH)
1879 return 0;
1881 /* Get the class we will actually use for a reload. */
1882 class = PREFERRED_RELOAD_CLASS (x, class);
1884 #ifdef HAVE_SECONDARY_RELOADS
1885 /* If we need a secondary reload (we assume here that we are using
1886 the secondary reload as an intermediate, not a scratch register), the
1887 cost is that to load the input into the intermediate register, then
1888 to copy them. We use a special value of TO_P to avoid recursion. */
1890 #ifdef SECONDARY_INPUT_RELOAD_CLASS
1891 if (to_p == 1)
1892 secondary_class = SECONDARY_INPUT_RELOAD_CLASS (class, mode, x);
1893 #endif
1895 #ifdef SECONDARY_OUTPUT_RELOAD_CLASS
1896 if (! to_p)
1897 secondary_class = SECONDARY_OUTPUT_RELOAD_CLASS (class, mode, x);
1898 #endif
1900 if (secondary_class != NO_REGS)
1901 return (move_cost[mode][(int) secondary_class][(int) class]
1902 + copy_cost (x, mode, secondary_class, 2));
1903 #endif /* HAVE_SECONDARY_RELOADS */
1905 /* For memory, use the memory move cost, for (hard) registers, use the
1906 cost to move between the register classes, and use 2 for everything
1907 else (constants). */
1909 if (GET_CODE (x) == MEM || class == NO_REGS)
1910 return MEMORY_MOVE_COST (mode, class, to_p);
1912 else if (GET_CODE (x) == REG)
1913 return move_cost[mode][(int) REGNO_REG_CLASS (REGNO (x))][(int) class];
1915 else
1916 /* If this is a constant, we may eventually want to call rtx_cost here. */
1917 return COSTS_N_INSNS (1);
1920 /* Record the pseudo registers we must reload into hard registers
1921 in a subexpression of a memory address, X.
1923 CLASS is the class that the register needs to be in and is either
1924 BASE_REG_CLASS or INDEX_REG_CLASS.
1926 SCALE is twice the amount to multiply the cost by (it is twice so we
1927 can represent half-cost adjustments). */
1929 static void
1930 record_address_regs (rtx x, enum reg_class class, int scale)
1932 enum rtx_code code = GET_CODE (x);
1934 switch (code)
1936 case CONST_INT:
1937 case CONST:
1938 case CC0:
1939 case PC:
1940 case SYMBOL_REF:
1941 case LABEL_REF:
1942 return;
1944 case PLUS:
1945 /* When we have an address that is a sum,
1946 we must determine whether registers are "base" or "index" regs.
1947 If there is a sum of two registers, we must choose one to be
1948 the "base". Luckily, we can use the REG_POINTER to make a good
1949 choice most of the time. We only need to do this on machines
1950 that can have two registers in an address and where the base
1951 and index register classes are different.
1953 ??? This code used to set REGNO_POINTER_FLAG in some cases, but
1954 that seems bogus since it should only be set when we are sure
1955 the register is being used as a pointer. */
1958 rtx arg0 = XEXP (x, 0);
1959 rtx arg1 = XEXP (x, 1);
1960 enum rtx_code code0 = GET_CODE (arg0);
1961 enum rtx_code code1 = GET_CODE (arg1);
1963 /* Look inside subregs. */
1964 if (code0 == SUBREG)
1965 arg0 = SUBREG_REG (arg0), code0 = GET_CODE (arg0);
1966 if (code1 == SUBREG)
1967 arg1 = SUBREG_REG (arg1), code1 = GET_CODE (arg1);
1969 /* If this machine only allows one register per address, it must
1970 be in the first operand. */
1972 if (MAX_REGS_PER_ADDRESS == 1)
1973 record_address_regs (arg0, class, scale);
1975 /* If index and base registers are the same on this machine, just
1976 record registers in any non-constant operands. We assume here,
1977 as well as in the tests below, that all addresses are in
1978 canonical form. */
1980 else if (INDEX_REG_CLASS == MODE_BASE_REG_CLASS (VOIDmode))
1982 record_address_regs (arg0, class, scale);
1983 if (! CONSTANT_P (arg1))
1984 record_address_regs (arg1, class, scale);
1987 /* If the second operand is a constant integer, it doesn't change
1988 what class the first operand must be. */
1990 else if (code1 == CONST_INT || code1 == CONST_DOUBLE)
1991 record_address_regs (arg0, class, scale);
1993 /* If the second operand is a symbolic constant, the first operand
1994 must be an index register. */
1996 else if (code1 == SYMBOL_REF || code1 == CONST || code1 == LABEL_REF)
1997 record_address_regs (arg0, INDEX_REG_CLASS, scale);
1999 /* If both operands are registers but one is already a hard register
2000 of index or base class, give the other the class that the hard
2001 register is not. */
2003 #ifdef REG_OK_FOR_BASE_P
2004 else if (code0 == REG && code1 == REG
2005 && REGNO (arg0) < FIRST_PSEUDO_REGISTER
2006 && (REG_OK_FOR_BASE_P (arg0) || REG_OK_FOR_INDEX_P (arg0)))
2007 record_address_regs (arg1,
2008 REG_OK_FOR_BASE_P (arg0)
2009 ? INDEX_REG_CLASS : MODE_BASE_REG_CLASS (VOIDmode),
2010 scale);
2011 else if (code0 == REG && code1 == REG
2012 && REGNO (arg1) < FIRST_PSEUDO_REGISTER
2013 && (REG_OK_FOR_BASE_P (arg1) || REG_OK_FOR_INDEX_P (arg1)))
2014 record_address_regs (arg0,
2015 REG_OK_FOR_BASE_P (arg1)
2016 ? INDEX_REG_CLASS : MODE_BASE_REG_CLASS (VOIDmode),
2017 scale);
2018 #endif
2020 /* If one operand is known to be a pointer, it must be the base
2021 with the other operand the index. Likewise if the other operand
2022 is a MULT. */
2024 else if ((code0 == REG && REG_POINTER (arg0))
2025 || code1 == MULT)
2027 record_address_regs (arg0, MODE_BASE_REG_CLASS (VOIDmode), scale);
2028 record_address_regs (arg1, INDEX_REG_CLASS, scale);
2030 else if ((code1 == REG && REG_POINTER (arg1))
2031 || code0 == MULT)
2033 record_address_regs (arg0, INDEX_REG_CLASS, scale);
2034 record_address_regs (arg1, MODE_BASE_REG_CLASS (VOIDmode), scale);
2037 /* Otherwise, count equal chances that each might be a base
2038 or index register. This case should be rare. */
2040 else
2042 record_address_regs (arg0, MODE_BASE_REG_CLASS (VOIDmode),
2043 scale / 2);
2044 record_address_regs (arg0, INDEX_REG_CLASS, scale / 2);
2045 record_address_regs (arg1, MODE_BASE_REG_CLASS (VOIDmode),
2046 scale / 2);
2047 record_address_regs (arg1, INDEX_REG_CLASS, scale / 2);
2050 break;
2052 /* Double the importance of a pseudo register that is incremented
2053 or decremented, since it would take two extra insns
2054 if it ends up in the wrong place. */
2055 case POST_MODIFY:
2056 case PRE_MODIFY:
2057 record_address_regs (XEXP (x, 0), MODE_BASE_REG_CLASS (VOIDmode),
2058 2 * scale);
2059 if (REG_P (XEXP (XEXP (x, 1), 1)))
2060 record_address_regs (XEXP (XEXP (x, 1), 1),
2061 INDEX_REG_CLASS, 2 * scale);
2062 break;
2064 case POST_INC:
2065 case PRE_INC:
2066 case POST_DEC:
2067 case PRE_DEC:
2068 /* Double the importance of a pseudo register that is incremented
2069 or decremented, since it would take two extra insns
2070 if it ends up in the wrong place. If the operand is a pseudo,
2071 show it is being used in an INC_DEC context. */
2073 #ifdef FORBIDDEN_INC_DEC_CLASSES
2074 if (GET_CODE (XEXP (x, 0)) == REG
2075 && REGNO (XEXP (x, 0)) >= FIRST_PSEUDO_REGISTER)
2076 in_inc_dec[REGNO (XEXP (x, 0))] = 1;
2077 #endif
2079 record_address_regs (XEXP (x, 0), class, 2 * scale);
2080 break;
2082 case REG:
2084 struct costs *pp = &costs[REGNO (x)];
2085 int i;
2087 pp->mem_cost += (MEMORY_MOVE_COST (Pmode, class, 1) * scale) / 2;
2089 for (i = 0; i < N_REG_CLASSES; i++)
2090 pp->cost[i] += (may_move_in_cost[Pmode][i][(int) class] * scale) / 2;
2092 break;
2094 default:
2096 const char *fmt = GET_RTX_FORMAT (code);
2097 int i;
2098 for (i = GET_RTX_LENGTH (code) - 1; i >= 0; i--)
2099 if (fmt[i] == 'e')
2100 record_address_regs (XEXP (x, i), class, scale);
2105 #ifdef FORBIDDEN_INC_DEC_CLASSES
2107 /* Return 1 if REG is valid as an auto-increment memory reference
2108 to an object of MODE. */
2110 static int
2111 auto_inc_dec_reg_p (rtx reg, enum machine_mode mode)
2113 if (HAVE_POST_INCREMENT
2114 && memory_address_p (mode, gen_rtx_POST_INC (Pmode, reg)))
2115 return 1;
2117 if (HAVE_POST_DECREMENT
2118 && memory_address_p (mode, gen_rtx_POST_DEC (Pmode, reg)))
2119 return 1;
2121 if (HAVE_PRE_INCREMENT
2122 && memory_address_p (mode, gen_rtx_PRE_INC (Pmode, reg)))
2123 return 1;
2125 if (HAVE_PRE_DECREMENT
2126 && memory_address_p (mode, gen_rtx_PRE_DEC (Pmode, reg)))
2127 return 1;
2129 return 0;
2131 #endif
2133 static short *renumber;
2134 static size_t regno_allocated;
2135 static unsigned int reg_n_max;
2137 /* Allocate enough space to hold NUM_REGS registers for the tables used for
2138 reg_scan and flow_analysis that are indexed by the register number. If
2139 NEW_P is nonzero, initialize all of the registers, otherwise only
2140 initialize the new registers allocated. The same table is kept from
2141 function to function, only reallocating it when we need more room. If
2142 RENUMBER_P is nonzero, allocate the reg_renumber array also. */
2144 void
2145 allocate_reg_info (size_t num_regs, int new_p, int renumber_p)
2147 size_t size_info;
2148 size_t size_renumber;
2149 size_t min = (new_p) ? 0 : reg_n_max;
2150 struct reg_info_data *reg_data;
2152 if (num_regs > regno_allocated)
2154 size_t old_allocated = regno_allocated;
2156 regno_allocated = num_regs + (num_regs / 20); /* Add some slop space. */
2157 size_renumber = regno_allocated * sizeof (short);
2159 if (!reg_n_info)
2161 VARRAY_REG_INIT (reg_n_info, regno_allocated, "reg_n_info");
2162 renumber = xmalloc (size_renumber);
2163 reg_pref_buffer = xmalloc (regno_allocated
2164 * sizeof (struct reg_pref));
2167 else
2169 VARRAY_GROW (reg_n_info, regno_allocated);
2171 if (new_p) /* If we're zapping everything, no need to realloc. */
2173 free ((char *) renumber);
2174 free ((char *) reg_pref);
2175 renumber = xmalloc (size_renumber);
2176 reg_pref_buffer = xmalloc (regno_allocated
2177 * sizeof (struct reg_pref));
2180 else
2182 renumber = xrealloc (renumber, size_renumber);
2183 reg_pref_buffer = xrealloc (reg_pref_buffer,
2184 regno_allocated
2185 * sizeof (struct reg_pref));
2189 size_info = (regno_allocated - old_allocated) * sizeof (reg_info)
2190 + sizeof (struct reg_info_data) - sizeof (reg_info);
2191 reg_data = xcalloc (size_info, 1);
2192 reg_data->min_index = old_allocated;
2193 reg_data->max_index = regno_allocated - 1;
2194 reg_data->next = reg_info_head;
2195 reg_info_head = reg_data;
2198 reg_n_max = num_regs;
2199 if (min < num_regs)
2201 /* Loop through each of the segments allocated for the actual
2202 reg_info pages, and set up the pointers, zero the pages, etc. */
2203 for (reg_data = reg_info_head;
2204 reg_data && reg_data->max_index >= min;
2205 reg_data = reg_data->next)
2207 size_t min_index = reg_data->min_index;
2208 size_t max_index = reg_data->max_index;
2209 size_t max = MIN (max_index, num_regs);
2210 size_t local_min = min - min_index;
2211 size_t i;
2213 if (reg_data->min_index > num_regs)
2214 continue;
2216 if (min < min_index)
2217 local_min = 0;
2218 if (!reg_data->used_p) /* page just allocated with calloc */
2219 reg_data->used_p = 1; /* no need to zero */
2220 else
2221 memset (&reg_data->data[local_min], 0,
2222 sizeof (reg_info) * (max - min_index - local_min + 1));
2224 for (i = min_index+local_min; i <= max; i++)
2226 VARRAY_REG (reg_n_info, i) = &reg_data->data[i-min_index];
2227 REG_BASIC_BLOCK (i) = REG_BLOCK_UNKNOWN;
2228 renumber[i] = -1;
2229 reg_pref_buffer[i].prefclass = (char) NO_REGS;
2230 reg_pref_buffer[i].altclass = (char) NO_REGS;
2235 /* If {pref,alt}class have already been allocated, update the pointers to
2236 the newly realloced ones. */
2237 if (reg_pref)
2238 reg_pref = reg_pref_buffer;
2240 if (renumber_p)
2241 reg_renumber = renumber;
2243 /* Tell the regset code about the new number of registers. */
2244 MAX_REGNO_REG_SET (num_regs, new_p, renumber_p);
2247 /* Free up the space allocated by allocate_reg_info. */
2248 void
2249 free_reg_info (void)
2251 if (reg_n_info)
2253 struct reg_info_data *reg_data;
2254 struct reg_info_data *reg_next;
2256 VARRAY_FREE (reg_n_info);
2257 for (reg_data = reg_info_head; reg_data; reg_data = reg_next)
2259 reg_next = reg_data->next;
2260 free ((char *) reg_data);
2263 free (reg_pref_buffer);
2264 reg_pref_buffer = (struct reg_pref *) 0;
2265 reg_info_head = (struct reg_info_data *) 0;
2266 renumber = (short *) 0;
2268 regno_allocated = 0;
2269 reg_n_max = 0;
2272 /* This is the `regscan' pass of the compiler, run just before cse
2273 and again just before loop.
2275 It finds the first and last use of each pseudo-register
2276 and records them in the vectors regno_first_uid, regno_last_uid
2277 and counts the number of sets in the vector reg_n_sets.
2279 REPEAT is nonzero the second time this is called. */
2281 /* Maximum number of parallel sets and clobbers in any insn in this fn.
2282 Always at least 3, since the combiner could put that many together
2283 and we want this to remain correct for all the remaining passes.
2284 This corresponds to the maximum number of times note_stores will call
2285 a function for any insn. */
2287 int max_parallel;
2289 /* Used as a temporary to record the largest number of registers in
2290 PARALLEL in a SET_DEST. This is added to max_parallel. */
2292 static int max_set_parallel;
2294 void
2295 reg_scan (rtx f, unsigned int nregs, int repeat ATTRIBUTE_UNUSED)
2297 rtx insn;
2299 allocate_reg_info (nregs, TRUE, FALSE);
2300 max_parallel = 3;
2301 max_set_parallel = 0;
2303 timevar_push (TV_REG_SCAN);
2305 for (insn = f; insn; insn = NEXT_INSN (insn))
2306 if (GET_CODE (insn) == INSN
2307 || GET_CODE (insn) == CALL_INSN
2308 || GET_CODE (insn) == JUMP_INSN)
2310 if (GET_CODE (PATTERN (insn)) == PARALLEL
2311 && XVECLEN (PATTERN (insn), 0) > max_parallel)
2312 max_parallel = XVECLEN (PATTERN (insn), 0);
2313 reg_scan_mark_refs (PATTERN (insn), insn, 0, 0);
2315 if (REG_NOTES (insn))
2316 reg_scan_mark_refs (REG_NOTES (insn), insn, 1, 0);
2319 max_parallel += max_set_parallel;
2321 timevar_pop (TV_REG_SCAN);
2324 /* Update 'regscan' information by looking at the insns
2325 from FIRST to LAST. Some new REGs have been created,
2326 and any REG with number greater than OLD_MAX_REGNO is
2327 such a REG. We only update information for those. */
2329 void
2330 reg_scan_update (rtx first, rtx last, unsigned int old_max_regno)
2332 rtx insn;
2334 allocate_reg_info (max_reg_num (), FALSE, FALSE);
2336 for (insn = first; insn != last; insn = NEXT_INSN (insn))
2337 if (GET_CODE (insn) == INSN
2338 || GET_CODE (insn) == CALL_INSN
2339 || GET_CODE (insn) == JUMP_INSN)
2341 if (GET_CODE (PATTERN (insn)) == PARALLEL
2342 && XVECLEN (PATTERN (insn), 0) > max_parallel)
2343 max_parallel = XVECLEN (PATTERN (insn), 0);
2344 reg_scan_mark_refs (PATTERN (insn), insn, 0, old_max_regno);
2346 if (REG_NOTES (insn))
2347 reg_scan_mark_refs (REG_NOTES (insn), insn, 1, old_max_regno);
2351 /* X is the expression to scan. INSN is the insn it appears in.
2352 NOTE_FLAG is nonzero if X is from INSN's notes rather than its body.
2353 We should only record information for REGs with numbers
2354 greater than or equal to MIN_REGNO. */
2356 static void
2357 reg_scan_mark_refs (rtx x, rtx insn, int note_flag, unsigned int min_regno)
2359 enum rtx_code code;
2360 rtx dest;
2361 rtx note;
2363 if (!x)
2364 return;
2365 code = GET_CODE (x);
2366 switch (code)
2368 case CONST:
2369 case CONST_INT:
2370 case CONST_DOUBLE:
2371 case CONST_VECTOR:
2372 case CC0:
2373 case PC:
2374 case SYMBOL_REF:
2375 case LABEL_REF:
2376 case ADDR_VEC:
2377 case ADDR_DIFF_VEC:
2378 return;
2380 case REG:
2382 unsigned int regno = REGNO (x);
2384 if (regno >= min_regno)
2386 REGNO_LAST_NOTE_UID (regno) = INSN_UID (insn);
2387 if (!note_flag)
2388 REGNO_LAST_UID (regno) = INSN_UID (insn);
2389 if (REGNO_FIRST_UID (regno) == 0)
2390 REGNO_FIRST_UID (regno) = INSN_UID (insn);
2391 /* If we are called by reg_scan_update() (indicated by min_regno
2392 being set), we also need to update the reference count. */
2393 if (min_regno)
2394 REG_N_REFS (regno)++;
2397 break;
2399 case EXPR_LIST:
2400 if (XEXP (x, 0))
2401 reg_scan_mark_refs (XEXP (x, 0), insn, note_flag, min_regno);
2402 if (XEXP (x, 1))
2403 reg_scan_mark_refs (XEXP (x, 1), insn, note_flag, min_regno);
2404 break;
2406 case INSN_LIST:
2407 if (XEXP (x, 1))
2408 reg_scan_mark_refs (XEXP (x, 1), insn, note_flag, min_regno);
2409 break;
2411 case CLOBBER:
2413 rtx reg = XEXP (x, 0);
2414 if (REG_P (reg)
2415 && REGNO (reg) >= min_regno)
2417 REG_N_SETS (REGNO (reg))++;
2418 REG_N_REFS (REGNO (reg))++;
2421 break;
2423 case SET:
2424 /* Count a set of the destination if it is a register. */
2425 for (dest = SET_DEST (x);
2426 GET_CODE (dest) == SUBREG || GET_CODE (dest) == STRICT_LOW_PART
2427 || GET_CODE (dest) == ZERO_EXTEND;
2428 dest = XEXP (dest, 0))
2431 /* For a PARALLEL, record the number of things (less the usual one for a
2432 SET) that are set. */
2433 if (GET_CODE (dest) == PARALLEL)
2434 max_set_parallel = MAX (max_set_parallel, XVECLEN (dest, 0) - 1);
2436 if (GET_CODE (dest) == REG
2437 && REGNO (dest) >= min_regno)
2439 REG_N_SETS (REGNO (dest))++;
2440 REG_N_REFS (REGNO (dest))++;
2443 /* If this is setting a pseudo from another pseudo or the sum of a
2444 pseudo and a constant integer and the other pseudo is known to be
2445 a pointer, set the destination to be a pointer as well.
2447 Likewise if it is setting the destination from an address or from a
2448 value equivalent to an address or to the sum of an address and
2449 something else.
2451 But don't do any of this if the pseudo corresponds to a user
2452 variable since it should have already been set as a pointer based
2453 on the type. */
2455 if (GET_CODE (SET_DEST (x)) == REG
2456 && REGNO (SET_DEST (x)) >= FIRST_PSEUDO_REGISTER
2457 && REGNO (SET_DEST (x)) >= min_regno
2458 /* If the destination pseudo is set more than once, then other
2459 sets might not be to a pointer value (consider access to a
2460 union in two threads of control in the presence of global
2461 optimizations). So only set REG_POINTER on the destination
2462 pseudo if this is the only set of that pseudo. */
2463 && REG_N_SETS (REGNO (SET_DEST (x))) == 1
2464 && ! REG_USERVAR_P (SET_DEST (x))
2465 && ! REG_POINTER (SET_DEST (x))
2466 && ((GET_CODE (SET_SRC (x)) == REG
2467 && REG_POINTER (SET_SRC (x)))
2468 || ((GET_CODE (SET_SRC (x)) == PLUS
2469 || GET_CODE (SET_SRC (x)) == LO_SUM)
2470 && GET_CODE (XEXP (SET_SRC (x), 1)) == CONST_INT
2471 && GET_CODE (XEXP (SET_SRC (x), 0)) == REG
2472 && REG_POINTER (XEXP (SET_SRC (x), 0)))
2473 || GET_CODE (SET_SRC (x)) == CONST
2474 || GET_CODE (SET_SRC (x)) == SYMBOL_REF
2475 || GET_CODE (SET_SRC (x)) == LABEL_REF
2476 || (GET_CODE (SET_SRC (x)) == HIGH
2477 && (GET_CODE (XEXP (SET_SRC (x), 0)) == CONST
2478 || GET_CODE (XEXP (SET_SRC (x), 0)) == SYMBOL_REF
2479 || GET_CODE (XEXP (SET_SRC (x), 0)) == LABEL_REF))
2480 || ((GET_CODE (SET_SRC (x)) == PLUS
2481 || GET_CODE (SET_SRC (x)) == LO_SUM)
2482 && (GET_CODE (XEXP (SET_SRC (x), 1)) == CONST
2483 || GET_CODE (XEXP (SET_SRC (x), 1)) == SYMBOL_REF
2484 || GET_CODE (XEXP (SET_SRC (x), 1)) == LABEL_REF))
2485 || ((note = find_reg_note (insn, REG_EQUAL, 0)) != 0
2486 && (GET_CODE (XEXP (note, 0)) == CONST
2487 || GET_CODE (XEXP (note, 0)) == SYMBOL_REF
2488 || GET_CODE (XEXP (note, 0)) == LABEL_REF))))
2489 REG_POINTER (SET_DEST (x)) = 1;
2491 /* If this is setting a register from a register or from a simple
2492 conversion of a register, propagate REG_EXPR. */
2493 if (GET_CODE (dest) == REG)
2495 rtx src = SET_SRC (x);
2497 while (GET_CODE (src) == SIGN_EXTEND
2498 || GET_CODE (src) == ZERO_EXTEND
2499 || GET_CODE (src) == TRUNCATE
2500 || (GET_CODE (src) == SUBREG && subreg_lowpart_p (src)))
2501 src = XEXP (src, 0);
2503 if (!REG_ATTRS (dest) && REG_P (src))
2504 REG_ATTRS (dest) = REG_ATTRS (src);
2505 if (!REG_ATTRS (dest) && GET_CODE (src) == MEM)
2506 set_reg_attrs_from_mem (dest, src);
2509 /* ... fall through ... */
2511 default:
2513 const char *fmt = GET_RTX_FORMAT (code);
2514 int i;
2515 for (i = GET_RTX_LENGTH (code) - 1; i >= 0; i--)
2517 if (fmt[i] == 'e')
2518 reg_scan_mark_refs (XEXP (x, i), insn, note_flag, min_regno);
2519 else if (fmt[i] == 'E' && XVEC (x, i) != 0)
2521 int j;
2522 for (j = XVECLEN (x, i) - 1; j >= 0; j--)
2523 reg_scan_mark_refs (XVECEXP (x, i, j), insn, note_flag, min_regno);
2530 /* Return nonzero if C1 is a subset of C2, i.e., if every register in C1
2531 is also in C2. */
2534 reg_class_subset_p (enum reg_class c1, enum reg_class c2)
2536 if (c1 == c2) return 1;
2538 if (c2 == ALL_REGS)
2539 win:
2540 return 1;
2541 GO_IF_HARD_REG_SUBSET (reg_class_contents[(int) c1],
2542 reg_class_contents[(int) c2],
2543 win);
2544 return 0;
2547 /* Return nonzero if there is a register that is in both C1 and C2. */
2550 reg_classes_intersect_p (enum reg_class c1, enum reg_class c2)
2552 #ifdef HARD_REG_SET
2553 register
2554 #endif
2555 HARD_REG_SET c;
2557 if (c1 == c2) return 1;
2559 if (c1 == ALL_REGS || c2 == ALL_REGS)
2560 return 1;
2562 COPY_HARD_REG_SET (c, reg_class_contents[(int) c1]);
2563 AND_HARD_REG_SET (c, reg_class_contents[(int) c2]);
2565 GO_IF_HARD_REG_SUBSET (c, reg_class_contents[(int) NO_REGS], lose);
2566 return 1;
2568 lose:
2569 return 0;
2572 /* Release any memory allocated by register sets. */
2574 void
2575 regset_release_memory (void)
2577 bitmap_release_memory ();
2580 #ifdef CANNOT_CHANGE_MODE_CLASS
2581 /* Set bits in *USED which correspond to registers which can't change
2582 their mode from FROM to any mode in which REGNO was encountered. */
2584 void
2585 cannot_change_mode_set_regs (HARD_REG_SET *used, enum machine_mode from,
2586 unsigned int regno)
2588 enum machine_mode to;
2589 int n, i;
2590 int start = regno * MAX_MACHINE_MODE;
2592 EXECUTE_IF_SET_IN_BITMAP (&subregs_of_mode, start, n,
2593 if (n >= MAX_MACHINE_MODE + start)
2594 return;
2595 to = n - start;
2596 for (i = 0; i < FIRST_PSEUDO_REGISTER; i++)
2597 if (! TEST_HARD_REG_BIT (*used, i)
2598 && REG_CANNOT_CHANGE_MODE_P (i, from, to))
2599 SET_HARD_REG_BIT (*used, i);
2603 /* Return 1 if REGNO has had an invalid mode change in CLASS from FROM
2604 mode. */
2606 bool
2607 invalid_mode_change_p (unsigned int regno, enum reg_class class,
2608 enum machine_mode from_mode)
2610 enum machine_mode to_mode;
2611 int n;
2612 int start = regno * MAX_MACHINE_MODE;
2614 EXECUTE_IF_SET_IN_BITMAP (&subregs_of_mode, start, n,
2615 if (n >= MAX_MACHINE_MODE + start)
2616 return 0;
2617 to_mode = n - start;
2618 if (CANNOT_CHANGE_MODE_CLASS (from_mode, to_mode, class))
2619 return 1;
2621 return 0;
2623 #endif /* CANNOT_CHANGE_MODE_CLASS */
2625 #include "gt-regclass.h"