Handle constant CONSTRUCTORs in operand_compare
[official-gcc.git] / gcc / graphds.cc
blob77f5b4c4c5c791f6ca7056b40a80d15ee8fd32c7
1 /* Graph representation and manipulation functions.
2 Copyright (C) 2007-2023 Free Software Foundation, Inc.
4 This file is part of GCC.
6 GCC is free software; you can redistribute it and/or modify it under
7 the terms of the GNU General Public License as published by the Free
8 Software Foundation; either version 3, or (at your option) any later
9 version.
11 GCC is distributed in the hope that it will be useful, but WITHOUT ANY
12 WARRANTY; without even the implied warranty of MERCHANTABILITY or
13 FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License
14 for more details.
16 You should have received a copy of the GNU General Public License
17 along with GCC; see the file COPYING3. If not see
18 <http://www.gnu.org/licenses/>. */
20 #include "config.h"
21 #include "system.h"
22 #include "coretypes.h"
23 #include "bitmap.h"
24 #include "graphds.h"
26 /* Dumps graph G into F. */
28 void
29 dump_graph (FILE *f, struct graph *g)
31 int i;
32 struct graph_edge *e;
34 for (i = 0; i < g->n_vertices; i++)
36 if (!g->vertices[i].pred
37 && !g->vertices[i].succ)
38 continue;
40 fprintf (f, "%d (%d)\t<-", i, g->vertices[i].component);
41 for (e = g->vertices[i].pred; e; e = e->pred_next)
42 fprintf (f, " %d", e->src);
43 fprintf (f, "\n");
45 fprintf (f, "\t->");
46 for (e = g->vertices[i].succ; e; e = e->succ_next)
47 fprintf (f, " %d", e->dest);
48 fprintf (f, "\n");
52 /* Creates a new graph with N_VERTICES vertices. */
54 struct graph *
55 new_graph (int n_vertices)
57 struct graph *g = XNEW (struct graph);
59 gcc_obstack_init (&g->ob);
60 g->n_vertices = n_vertices;
61 g->vertices = XOBNEWVEC (&g->ob, struct vertex, n_vertices);
62 memset (g->vertices, 0, sizeof (struct vertex) * n_vertices);
64 return g;
67 /* Adds an edge from F to T to graph G. The new edge is returned. */
69 struct graph_edge *
70 add_edge (struct graph *g, int f, int t)
72 struct graph_edge *e = XOBNEW (&g->ob, struct graph_edge);
73 struct vertex *vf = &g->vertices[f], *vt = &g->vertices[t];
75 e->src = f;
76 e->dest = t;
78 e->pred_next = vt->pred;
79 vt->pred = e;
81 e->succ_next = vf->succ;
82 vf->succ = e;
84 e->data = NULL;
85 return e;
88 /* Moves all the edges incident with U to V. */
90 void
91 identify_vertices (struct graph *g, int v, int u)
93 struct vertex *vv = &g->vertices[v];
94 struct vertex *uu = &g->vertices[u];
95 struct graph_edge *e, *next;
97 for (e = uu->succ; e; e = next)
99 next = e->succ_next;
101 e->src = v;
102 e->succ_next = vv->succ;
103 vv->succ = e;
105 uu->succ = NULL;
107 for (e = uu->pred; e; e = next)
109 next = e->pred_next;
111 e->dest = v;
112 e->pred_next = vv->pred;
113 vv->pred = e;
115 uu->pred = NULL;
118 /* Helper function for graphds_dfs. Returns the source vertex of E, in the
119 direction given by FORWARD. */
121 static inline int
122 dfs_edge_src (struct graph_edge *e, bool forward)
124 return forward ? e->src : e->dest;
127 /* Helper function for graphds_dfs. Returns the destination vertex of E, in
128 the direction given by FORWARD. */
130 static inline int
131 dfs_edge_dest (struct graph_edge *e, bool forward)
133 return forward ? e->dest : e->src;
136 /* Helper function for graphds_dfs. Returns the first edge after E (including
137 E), in the graph direction given by FORWARD, that belongs to SUBGRAPH. If
138 SKIP_EDGE_P is not NULL, it points to a callback function. Edge E will be
139 skipped if callback function returns true. */
141 static inline struct graph_edge *
142 foll_in_subgraph (struct graph_edge *e, bool forward, bitmap subgraph,
143 skip_edge_callback skip_edge_p)
145 int d;
147 if (!e)
148 return e;
150 if (!subgraph && (!skip_edge_p || !skip_edge_p (e)))
151 return e;
153 while (e)
155 d = dfs_edge_dest (e, forward);
156 /* Return edge if it belongs to subgraph and shouldn't be skipped. */
157 if ((!subgraph || bitmap_bit_p (subgraph, d))
158 && (!skip_edge_p || !skip_edge_p (e)))
159 return e;
161 e = forward ? e->succ_next : e->pred_next;
164 return e;
167 /* Helper function for graphds_dfs. Select the first edge from V in G, in the
168 direction given by FORWARD, that belongs to SUBGRAPH. If SKIP_EDGE_P is not
169 NULL, it points to a callback function. Edge E will be skipped if callback
170 function returns true. */
172 static inline struct graph_edge *
173 dfs_fst_edge (struct graph *g, int v, bool forward, bitmap subgraph,
174 skip_edge_callback skip_edge_p)
176 struct graph_edge *e;
178 e = (forward ? g->vertices[v].succ : g->vertices[v].pred);
179 return foll_in_subgraph (e, forward, subgraph, skip_edge_p);
182 /* Helper function for graphds_dfs. Returns the next edge after E, in the
183 graph direction given by FORWARD, that belongs to SUBGRAPH. If SKIP_EDGE_P
184 is not NULL, it points to a callback function. Edge E will be skipped if
185 callback function returns true. */
187 static inline struct graph_edge *
188 dfs_next_edge (struct graph_edge *e, bool forward, bitmap subgraph,
189 skip_edge_callback skip_edge_p)
191 return foll_in_subgraph (forward ? e->succ_next : e->pred_next,
192 forward, subgraph, skip_edge_p);
195 /* Runs dfs search over vertices of G, from NQ vertices in queue QS.
196 The vertices in postorder are stored into QT. If FORWARD is false,
197 backward dfs is run. If SUBGRAPH is not NULL, it specifies the
198 subgraph of G to run DFS on. Returns the number of the components
199 of the graph (number of the restarts of DFS). If SKIP_EDGE_P is not
200 NULL, it points to a callback function. Edge E will be skipped if
201 callback function returns true. */
204 graphds_dfs (struct graph *g, int *qs, int nq, vec<int> *qt,
205 bool forward, bitmap subgraph,
206 skip_edge_callback skip_edge_p)
208 int i, tick = 0, v, comp = 0, top;
209 struct graph_edge *e;
210 struct graph_edge **stack = XNEWVEC (struct graph_edge *, g->n_vertices);
211 bitmap_iterator bi;
212 unsigned av;
214 if (subgraph)
216 EXECUTE_IF_SET_IN_BITMAP (subgraph, 0, av, bi)
218 g->vertices[av].component = -1;
219 g->vertices[av].post = -1;
222 else
224 for (i = 0; i < g->n_vertices; i++)
226 g->vertices[i].component = -1;
227 g->vertices[i].post = -1;
231 for (i = 0; i < nq; i++)
233 v = qs[i];
234 if (g->vertices[v].post != -1)
235 continue;
237 g->vertices[v].component = comp++;
238 e = dfs_fst_edge (g, v, forward, subgraph, skip_edge_p);
239 top = 0;
241 while (1)
243 while (e)
245 if (g->vertices[dfs_edge_dest (e, forward)].component
246 == -1)
247 break;
248 e = dfs_next_edge (e, forward, subgraph, skip_edge_p);
251 if (!e)
253 if (qt)
254 qt->safe_push (v);
255 g->vertices[v].post = tick++;
257 if (!top)
258 break;
260 e = stack[--top];
261 v = dfs_edge_src (e, forward);
262 e = dfs_next_edge (e, forward, subgraph, skip_edge_p);
263 continue;
266 stack[top++] = e;
267 v = dfs_edge_dest (e, forward);
268 e = dfs_fst_edge (g, v, forward, subgraph, skip_edge_p);
269 g->vertices[v].component = comp - 1;
273 free (stack);
275 return comp;
278 /* Determines the strongly connected components of G, using the algorithm of
279 Kosaraju -- first determine the postorder dfs numbering in reversed graph,
280 then run the dfs on the original graph in the order given by decreasing
281 numbers assigned by the previous pass. If SUBGRAPH is not NULL, it
282 specifies the subgraph of G whose strongly connected components we want
283 to determine. If SKIP_EDGE_P is not NULL, it points to a callback function.
284 Edge E will be skipped if callback function returns true. If SCC_GROUPING
285 is not null, the nodes will be added to it in the following order:
287 - If SCC A is a direct or indirect predecessor of SCC B in the SCC dag,
288 A's nodes come before B's nodes.
290 - All of an SCC's nodes are listed consecutively, although the order
291 of the nodes within an SCC is not really meaningful.
293 After running this function, v->component is the number of the strongly
294 connected component for each vertex of G. Returns the number of the
295 sccs of G. */
298 graphds_scc (struct graph *g, bitmap subgraph,
299 skip_edge_callback skip_edge_p, vec<int> *scc_grouping)
301 int *queue = XNEWVEC (int, g->n_vertices);
302 vec<int> postorder = vNULL;
303 int nq, i, comp;
304 unsigned v;
305 bitmap_iterator bi;
307 if (subgraph)
309 nq = 0;
310 EXECUTE_IF_SET_IN_BITMAP (subgraph, 0, v, bi)
312 queue[nq++] = v;
315 else
317 for (i = 0; i < g->n_vertices; i++)
318 queue[i] = i;
319 nq = g->n_vertices;
322 graphds_dfs (g, queue, nq, &postorder, false, subgraph, skip_edge_p);
323 gcc_assert (postorder.length () == (unsigned) nq);
325 for (i = 0; i < nq; i++)
326 queue[i] = postorder[nq - i - 1];
327 comp = graphds_dfs (g, queue, nq, scc_grouping, true, subgraph, skip_edge_p);
329 free (queue);
330 postorder.release ();
332 return comp;
335 /* Runs CALLBACK for all edges in G. DATA is private data for CALLBACK. */
337 void
338 for_each_edge (struct graph *g, graphds_edge_callback callback, void *data)
340 struct graph_edge *e;
341 int i;
343 for (i = 0; i < g->n_vertices; i++)
344 for (e = g->vertices[i].succ; e; e = e->succ_next)
345 callback (g, e, data);
348 /* Releases the memory occupied by G. */
350 void
351 free_graph (struct graph *g)
353 obstack_free (&g->ob, NULL);
354 free (g);
357 /* Returns the nearest common ancestor of X and Y in tree whose parent
358 links are given by PARENT. MARKS is the array used to mark the
359 vertices of the tree, and MARK is the number currently used as a mark. */
361 static int
362 tree_nca (int x, int y, int *parent, int *marks, int mark)
364 if (x == -1 || x == y)
365 return y;
367 /* We climb with X and Y up the tree, marking the visited nodes. When
368 we first arrive to a marked node, it is the common ancestor. */
369 marks[x] = mark;
370 marks[y] = mark;
372 while (1)
374 x = parent[x];
375 if (x == -1)
376 break;
377 if (marks[x] == mark)
378 return x;
379 marks[x] = mark;
381 y = parent[y];
382 if (y == -1)
383 break;
384 if (marks[y] == mark)
385 return y;
386 marks[y] = mark;
389 /* If we reached the root with one of the vertices, continue
390 with the other one till we reach the marked part of the
391 tree. */
392 if (x == -1)
394 for (y = parent[y]; marks[y] != mark; y = parent[y])
395 continue;
397 return y;
399 else
401 for (x = parent[x]; marks[x] != mark; x = parent[x])
402 continue;
404 return x;
408 /* Determines the dominance tree of G (stored in the PARENT, SON and BROTHER
409 arrays), where the entry node is ENTRY. */
411 void
412 graphds_domtree (struct graph *g, int entry,
413 int *parent, int *son, int *brother)
415 vec<int> postorder = vNULL;
416 int *marks = XCNEWVEC (int, g->n_vertices);
417 int mark = 1, i, v, idom;
418 bool changed = true;
419 struct graph_edge *e;
421 /* We use a slight modification of the standard iterative algorithm, as
422 described in
424 K. D. Cooper, T. J. Harvey and K. Kennedy: A Simple, Fast Dominance
425 Algorithm
427 sort vertices in reverse postorder
428 foreach v
429 dom(v) = everything
430 dom(entry) = entry;
432 while (anything changes)
433 foreach v
434 dom(v) = {v} union (intersection of dom(p) over all predecessors of v)
436 The sets dom(v) are represented by the parent links in the current version
437 of the dominance tree. */
439 for (i = 0; i < g->n_vertices; i++)
441 parent[i] = -1;
442 son[i] = -1;
443 brother[i] = -1;
445 graphds_dfs (g, &entry, 1, &postorder, true, NULL);
446 gcc_assert (postorder.length () == (unsigned) g->n_vertices);
447 gcc_assert (postorder[g->n_vertices - 1] == entry);
449 while (changed)
451 changed = false;
453 for (i = g->n_vertices - 2; i >= 0; i--)
455 v = postorder[i];
456 idom = -1;
457 for (e = g->vertices[v].pred; e; e = e->pred_next)
459 if (e->src != entry
460 && parent[e->src] == -1)
461 continue;
463 idom = tree_nca (idom, e->src, parent, marks, mark++);
466 if (idom != parent[v])
468 parent[v] = idom;
469 changed = true;
474 free (marks);
475 postorder.release ();
477 for (i = 0; i < g->n_vertices; i++)
478 if (parent[i] != -1)
480 brother[i] = son[parent[i]];
481 son[parent[i]] = i;