Update gimple.texi class hierarchy diagram
[official-gcc.git] / gcc / tree-ssa-loop-im.c
blob4312997b4fea3a4ff0023659b9c38cf33c94d5b8
1 /* Loop invariant motion.
2 Copyright (C) 2003-2014 Free Software Foundation, Inc.
4 This file is part of GCC.
6 GCC is free software; you can redistribute it and/or modify it
7 under the terms of the GNU General Public License as published by the
8 Free Software Foundation; either version 3, or (at your option) any
9 later version.
11 GCC is distributed in the hope that it will be useful, but WITHOUT
12 ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
13 FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License
14 for more details.
16 You should have received a copy of the GNU General Public License
17 along with GCC; see the file COPYING3. If not see
18 <http://www.gnu.org/licenses/>. */
20 #include "config.h"
21 #include "system.h"
22 #include "coretypes.h"
23 #include "tm.h"
24 #include "tree.h"
25 #include "tm_p.h"
26 #include "basic-block.h"
27 #include "gimple-pretty-print.h"
28 #include "hash-map.h"
29 #include "hash-table.h"
30 #include "tree-ssa-alias.h"
31 #include "internal-fn.h"
32 #include "tree-eh.h"
33 #include "gimple-expr.h"
34 #include "is-a.h"
35 #include "gimple.h"
36 #include "gimplify.h"
37 #include "gimple-iterator.h"
38 #include "gimple-ssa.h"
39 #include "tree-cfg.h"
40 #include "tree-phinodes.h"
41 #include "ssa-iterators.h"
42 #include "stringpool.h"
43 #include "tree-ssanames.h"
44 #include "tree-ssa-loop-manip.h"
45 #include "tree-ssa-loop.h"
46 #include "tree-into-ssa.h"
47 #include "cfgloop.h"
48 #include "domwalk.h"
49 #include "params.h"
50 #include "tree-pass.h"
51 #include "flags.h"
52 #include "tree-affine.h"
53 #include "tree-ssa-propagate.h"
54 #include "trans-mem.h"
55 #include "gimple-fold.h"
57 /* TODO: Support for predicated code motion. I.e.
59 while (1)
61 if (cond)
63 a = inv;
64 something;
68 Where COND and INV are invariants, but evaluating INV may trap or be
69 invalid from some other reason if !COND. This may be transformed to
71 if (cond)
72 a = inv;
73 while (1)
75 if (cond)
76 something;
77 } */
79 /* The auxiliary data kept for each statement. */
81 struct lim_aux_data
83 struct loop *max_loop; /* The outermost loop in that the statement
84 is invariant. */
86 struct loop *tgt_loop; /* The loop out of that we want to move the
87 invariant. */
89 struct loop *always_executed_in;
90 /* The outermost loop for that we are sure
91 the statement is executed if the loop
92 is entered. */
94 unsigned cost; /* Cost of the computation performed by the
95 statement. */
97 vec<gimple> depends; /* Vector of statements that must be also
98 hoisted out of the loop when this statement
99 is hoisted; i.e. those that define the
100 operands of the statement and are inside of
101 the MAX_LOOP loop. */
104 /* Maps statements to their lim_aux_data. */
106 static hash_map<gimple, lim_aux_data *> *lim_aux_data_map;
108 /* Description of a memory reference location. */
110 typedef struct mem_ref_loc
112 tree *ref; /* The reference itself. */
113 gimple stmt; /* The statement in that it occurs. */
114 } *mem_ref_loc_p;
117 /* Description of a memory reference. */
119 typedef struct im_mem_ref
121 unsigned id; /* ID assigned to the memory reference
122 (its index in memory_accesses.refs_list) */
123 hashval_t hash; /* Its hash value. */
125 /* The memory access itself and associated caching of alias-oracle
126 query meta-data. */
127 ao_ref mem;
129 bitmap stored; /* The set of loops in that this memory location
130 is stored to. */
131 vec<mem_ref_loc> accesses_in_loop;
132 /* The locations of the accesses. Vector
133 indexed by the loop number. */
135 /* The following sets are computed on demand. We keep both set and
136 its complement, so that we know whether the information was
137 already computed or not. */
138 bitmap_head indep_loop; /* The set of loops in that the memory
139 reference is independent, meaning:
140 If it is stored in the loop, this store
141 is independent on all other loads and
142 stores.
143 If it is only loaded, then it is independent
144 on all stores in the loop. */
145 bitmap_head dep_loop; /* The complement of INDEP_LOOP. */
146 } *mem_ref_p;
148 /* We use two bits per loop in the ref->{in,}dep_loop bitmaps, the first
149 to record (in)dependence against stores in the loop and its subloops, the
150 second to record (in)dependence against all references in the loop
151 and its subloops. */
152 #define LOOP_DEP_BIT(loopnum, storedp) (2 * (loopnum) + (storedp ? 1 : 0))
154 /* Mem_ref hashtable helpers. */
156 struct mem_ref_hasher : typed_noop_remove <im_mem_ref>
158 typedef im_mem_ref value_type;
159 typedef tree_node compare_type;
160 static inline hashval_t hash (const value_type *);
161 static inline bool equal (const value_type *, const compare_type *);
164 /* A hash function for struct im_mem_ref object OBJ. */
166 inline hashval_t
167 mem_ref_hasher::hash (const value_type *mem)
169 return mem->hash;
172 /* An equality function for struct im_mem_ref object MEM1 with
173 memory reference OBJ2. */
175 inline bool
176 mem_ref_hasher::equal (const value_type *mem1, const compare_type *obj2)
178 return operand_equal_p (mem1->mem.ref, (const_tree) obj2, 0);
182 /* Description of memory accesses in loops. */
184 static struct
186 /* The hash table of memory references accessed in loops. */
187 hash_table<mem_ref_hasher> *refs;
189 /* The list of memory references. */
190 vec<mem_ref_p> refs_list;
192 /* The set of memory references accessed in each loop. */
193 vec<bitmap_head> refs_in_loop;
195 /* The set of memory references stored in each loop. */
196 vec<bitmap_head> refs_stored_in_loop;
198 /* The set of memory references stored in each loop, including subloops . */
199 vec<bitmap_head> all_refs_stored_in_loop;
201 /* Cache for expanding memory addresses. */
202 hash_map<tree, name_expansion *> *ttae_cache;
203 } memory_accesses;
205 /* Obstack for the bitmaps in the above data structures. */
206 static bitmap_obstack lim_bitmap_obstack;
207 static obstack mem_ref_obstack;
209 static bool ref_indep_loop_p (struct loop *, mem_ref_p);
211 /* Minimum cost of an expensive expression. */
212 #define LIM_EXPENSIVE ((unsigned) PARAM_VALUE (PARAM_LIM_EXPENSIVE))
214 /* The outermost loop for which execution of the header guarantees that the
215 block will be executed. */
216 #define ALWAYS_EXECUTED_IN(BB) ((struct loop *) (BB)->aux)
217 #define SET_ALWAYS_EXECUTED_IN(BB, VAL) ((BB)->aux = (void *) (VAL))
219 /* ID of the shared unanalyzable mem. */
220 #define UNANALYZABLE_MEM_ID 0
222 /* Whether the reference was analyzable. */
223 #define MEM_ANALYZABLE(REF) ((REF)->id != UNANALYZABLE_MEM_ID)
225 static struct lim_aux_data *
226 init_lim_data (gimple stmt)
228 lim_aux_data *p = XCNEW (struct lim_aux_data);
229 lim_aux_data_map->put (stmt, p);
231 return p;
234 static struct lim_aux_data *
235 get_lim_data (gimple stmt)
237 lim_aux_data **p = lim_aux_data_map->get (stmt);
238 if (!p)
239 return NULL;
241 return *p;
244 /* Releases the memory occupied by DATA. */
246 static void
247 free_lim_aux_data (struct lim_aux_data *data)
249 data->depends.release ();
250 free (data);
253 static void
254 clear_lim_data (gimple stmt)
256 lim_aux_data **p = lim_aux_data_map->get (stmt);
257 if (!p)
258 return;
260 free_lim_aux_data (*p);
261 *p = NULL;
265 /* The possibilities of statement movement. */
266 enum move_pos
268 MOVE_IMPOSSIBLE, /* No movement -- side effect expression. */
269 MOVE_PRESERVE_EXECUTION, /* Must not cause the non-executed statement
270 become executed -- memory accesses, ... */
271 MOVE_POSSIBLE /* Unlimited movement. */
275 /* If it is possible to hoist the statement STMT unconditionally,
276 returns MOVE_POSSIBLE.
277 If it is possible to hoist the statement STMT, but we must avoid making
278 it executed if it would not be executed in the original program (e.g.
279 because it may trap), return MOVE_PRESERVE_EXECUTION.
280 Otherwise return MOVE_IMPOSSIBLE. */
282 enum move_pos
283 movement_possibility (gimple stmt)
285 tree lhs;
286 enum move_pos ret = MOVE_POSSIBLE;
288 if (flag_unswitch_loops
289 && gimple_code (stmt) == GIMPLE_COND)
291 /* If we perform unswitching, force the operands of the invariant
292 condition to be moved out of the loop. */
293 return MOVE_POSSIBLE;
296 if (gimple_code (stmt) == GIMPLE_PHI
297 && gimple_phi_num_args (stmt) <= 2
298 && !virtual_operand_p (gimple_phi_result (stmt))
299 && !SSA_NAME_OCCURS_IN_ABNORMAL_PHI (gimple_phi_result (stmt)))
300 return MOVE_POSSIBLE;
302 if (gimple_get_lhs (stmt) == NULL_TREE)
303 return MOVE_IMPOSSIBLE;
305 if (gimple_vdef (stmt))
306 return MOVE_IMPOSSIBLE;
308 if (stmt_ends_bb_p (stmt)
309 || gimple_has_volatile_ops (stmt)
310 || gimple_has_side_effects (stmt)
311 || stmt_could_throw_p (stmt))
312 return MOVE_IMPOSSIBLE;
314 if (is_gimple_call (stmt))
316 /* While pure or const call is guaranteed to have no side effects, we
317 cannot move it arbitrarily. Consider code like
319 char *s = something ();
321 while (1)
323 if (s)
324 t = strlen (s);
325 else
326 t = 0;
329 Here the strlen call cannot be moved out of the loop, even though
330 s is invariant. In addition to possibly creating a call with
331 invalid arguments, moving out a function call that is not executed
332 may cause performance regressions in case the call is costly and
333 not executed at all. */
334 ret = MOVE_PRESERVE_EXECUTION;
335 lhs = gimple_call_lhs (stmt);
337 else if (is_gimple_assign (stmt))
338 lhs = gimple_assign_lhs (stmt);
339 else
340 return MOVE_IMPOSSIBLE;
342 if (TREE_CODE (lhs) == SSA_NAME
343 && SSA_NAME_OCCURS_IN_ABNORMAL_PHI (lhs))
344 return MOVE_IMPOSSIBLE;
346 if (TREE_CODE (lhs) != SSA_NAME
347 || gimple_could_trap_p (stmt))
348 return MOVE_PRESERVE_EXECUTION;
350 /* Non local loads in a transaction cannot be hoisted out. Well,
351 unless the load happens on every path out of the loop, but we
352 don't take this into account yet. */
353 if (flag_tm
354 && gimple_in_transaction (stmt)
355 && gimple_assign_single_p (stmt))
357 tree rhs = gimple_assign_rhs1 (stmt);
358 if (DECL_P (rhs) && is_global_var (rhs))
360 if (dump_file)
362 fprintf (dump_file, "Cannot hoist conditional load of ");
363 print_generic_expr (dump_file, rhs, TDF_SLIM);
364 fprintf (dump_file, " because it is in a transaction.\n");
366 return MOVE_IMPOSSIBLE;
370 return ret;
373 /* Suppose that operand DEF is used inside the LOOP. Returns the outermost
374 loop to that we could move the expression using DEF if it did not have
375 other operands, i.e. the outermost loop enclosing LOOP in that the value
376 of DEF is invariant. */
378 static struct loop *
379 outermost_invariant_loop (tree def, struct loop *loop)
381 gimple def_stmt;
382 basic_block def_bb;
383 struct loop *max_loop;
384 struct lim_aux_data *lim_data;
386 if (!def)
387 return superloop_at_depth (loop, 1);
389 if (TREE_CODE (def) != SSA_NAME)
391 gcc_assert (is_gimple_min_invariant (def));
392 return superloop_at_depth (loop, 1);
395 def_stmt = SSA_NAME_DEF_STMT (def);
396 def_bb = gimple_bb (def_stmt);
397 if (!def_bb)
398 return superloop_at_depth (loop, 1);
400 max_loop = find_common_loop (loop, def_bb->loop_father);
402 lim_data = get_lim_data (def_stmt);
403 if (lim_data != NULL && lim_data->max_loop != NULL)
404 max_loop = find_common_loop (max_loop,
405 loop_outer (lim_data->max_loop));
406 if (max_loop == loop)
407 return NULL;
408 max_loop = superloop_at_depth (loop, loop_depth (max_loop) + 1);
410 return max_loop;
413 /* DATA is a structure containing information associated with a statement
414 inside LOOP. DEF is one of the operands of this statement.
416 Find the outermost loop enclosing LOOP in that value of DEF is invariant
417 and record this in DATA->max_loop field. If DEF itself is defined inside
418 this loop as well (i.e. we need to hoist it out of the loop if we want
419 to hoist the statement represented by DATA), record the statement in that
420 DEF is defined to the DATA->depends list. Additionally if ADD_COST is true,
421 add the cost of the computation of DEF to the DATA->cost.
423 If DEF is not invariant in LOOP, return false. Otherwise return TRUE. */
425 static bool
426 add_dependency (tree def, struct lim_aux_data *data, struct loop *loop,
427 bool add_cost)
429 gimple def_stmt = SSA_NAME_DEF_STMT (def);
430 basic_block def_bb = gimple_bb (def_stmt);
431 struct loop *max_loop;
432 struct lim_aux_data *def_data;
434 if (!def_bb)
435 return true;
437 max_loop = outermost_invariant_loop (def, loop);
438 if (!max_loop)
439 return false;
441 if (flow_loop_nested_p (data->max_loop, max_loop))
442 data->max_loop = max_loop;
444 def_data = get_lim_data (def_stmt);
445 if (!def_data)
446 return true;
448 if (add_cost
449 /* Only add the cost if the statement defining DEF is inside LOOP,
450 i.e. if it is likely that by moving the invariants dependent
451 on it, we will be able to avoid creating a new register for
452 it (since it will be only used in these dependent invariants). */
453 && def_bb->loop_father == loop)
454 data->cost += def_data->cost;
456 data->depends.safe_push (def_stmt);
458 return true;
461 /* Returns an estimate for a cost of statement STMT. The values here
462 are just ad-hoc constants, similar to costs for inlining. */
464 static unsigned
465 stmt_cost (gimple stmt)
467 /* Always try to create possibilities for unswitching. */
468 if (gimple_code (stmt) == GIMPLE_COND
469 || gimple_code (stmt) == GIMPLE_PHI)
470 return LIM_EXPENSIVE;
472 /* We should be hoisting calls if possible. */
473 if (is_gimple_call (stmt))
475 tree fndecl;
477 /* Unless the call is a builtin_constant_p; this always folds to a
478 constant, so moving it is useless. */
479 fndecl = gimple_call_fndecl (stmt);
480 if (fndecl
481 && DECL_BUILT_IN_CLASS (fndecl) == BUILT_IN_NORMAL
482 && DECL_FUNCTION_CODE (fndecl) == BUILT_IN_CONSTANT_P)
483 return 0;
485 return LIM_EXPENSIVE;
488 /* Hoisting memory references out should almost surely be a win. */
489 if (gimple_references_memory_p (stmt))
490 return LIM_EXPENSIVE;
492 if (gimple_code (stmt) != GIMPLE_ASSIGN)
493 return 1;
495 switch (gimple_assign_rhs_code (stmt))
497 case MULT_EXPR:
498 case WIDEN_MULT_EXPR:
499 case WIDEN_MULT_PLUS_EXPR:
500 case WIDEN_MULT_MINUS_EXPR:
501 case DOT_PROD_EXPR:
502 case FMA_EXPR:
503 case TRUNC_DIV_EXPR:
504 case CEIL_DIV_EXPR:
505 case FLOOR_DIV_EXPR:
506 case ROUND_DIV_EXPR:
507 case EXACT_DIV_EXPR:
508 case CEIL_MOD_EXPR:
509 case FLOOR_MOD_EXPR:
510 case ROUND_MOD_EXPR:
511 case TRUNC_MOD_EXPR:
512 case RDIV_EXPR:
513 /* Division and multiplication are usually expensive. */
514 return LIM_EXPENSIVE;
516 case LSHIFT_EXPR:
517 case RSHIFT_EXPR:
518 case WIDEN_LSHIFT_EXPR:
519 case LROTATE_EXPR:
520 case RROTATE_EXPR:
521 /* Shifts and rotates are usually expensive. */
522 return LIM_EXPENSIVE;
524 case CONSTRUCTOR:
525 /* Make vector construction cost proportional to the number
526 of elements. */
527 return CONSTRUCTOR_NELTS (gimple_assign_rhs1 (stmt));
529 case SSA_NAME:
530 case PAREN_EXPR:
531 /* Whether or not something is wrapped inside a PAREN_EXPR
532 should not change move cost. Nor should an intermediate
533 unpropagated SSA name copy. */
534 return 0;
536 default:
537 return 1;
541 /* Finds the outermost loop between OUTER and LOOP in that the memory reference
542 REF is independent. If REF is not independent in LOOP, NULL is returned
543 instead. */
545 static struct loop *
546 outermost_indep_loop (struct loop *outer, struct loop *loop, mem_ref_p ref)
548 struct loop *aloop;
550 if (ref->stored && bitmap_bit_p (ref->stored, loop->num))
551 return NULL;
553 for (aloop = outer;
554 aloop != loop;
555 aloop = superloop_at_depth (loop, loop_depth (aloop) + 1))
556 if ((!ref->stored || !bitmap_bit_p (ref->stored, aloop->num))
557 && ref_indep_loop_p (aloop, ref))
558 return aloop;
560 if (ref_indep_loop_p (loop, ref))
561 return loop;
562 else
563 return NULL;
566 /* If there is a simple load or store to a memory reference in STMT, returns
567 the location of the memory reference, and sets IS_STORE according to whether
568 it is a store or load. Otherwise, returns NULL. */
570 static tree *
571 simple_mem_ref_in_stmt (gimple stmt, bool *is_store)
573 tree *lhs, *rhs;
575 /* Recognize SSA_NAME = MEM and MEM = (SSA_NAME | invariant) patterns. */
576 if (!gimple_assign_single_p (stmt))
577 return NULL;
579 lhs = gimple_assign_lhs_ptr (stmt);
580 rhs = gimple_assign_rhs1_ptr (stmt);
582 if (TREE_CODE (*lhs) == SSA_NAME && gimple_vuse (stmt))
584 *is_store = false;
585 return rhs;
587 else if (gimple_vdef (stmt)
588 && (TREE_CODE (*rhs) == SSA_NAME || is_gimple_min_invariant (*rhs)))
590 *is_store = true;
591 return lhs;
593 else
594 return NULL;
597 /* Returns the memory reference contained in STMT. */
599 static mem_ref_p
600 mem_ref_in_stmt (gimple stmt)
602 bool store;
603 tree *mem = simple_mem_ref_in_stmt (stmt, &store);
604 hashval_t hash;
605 mem_ref_p ref;
607 if (!mem)
608 return NULL;
609 gcc_assert (!store);
611 hash = iterative_hash_expr (*mem, 0);
612 ref = memory_accesses.refs->find_with_hash (*mem, hash);
614 gcc_assert (ref != NULL);
615 return ref;
618 /* From a controlling predicate in DOM determine the arguments from
619 the PHI node PHI that are chosen if the predicate evaluates to
620 true and false and store them to *TRUE_ARG_P and *FALSE_ARG_P if
621 they are non-NULL. Returns true if the arguments can be determined,
622 else return false. */
624 static bool
625 extract_true_false_args_from_phi (basic_block dom, gphi *phi,
626 tree *true_arg_p, tree *false_arg_p)
628 basic_block bb = gimple_bb (phi);
629 edge true_edge, false_edge, tem;
630 tree arg0 = NULL_TREE, arg1 = NULL_TREE;
632 /* We have to verify that one edge into the PHI node is dominated
633 by the true edge of the predicate block and the other edge
634 dominated by the false edge. This ensures that the PHI argument
635 we are going to take is completely determined by the path we
636 take from the predicate block.
637 We can only use BB dominance checks below if the destination of
638 the true/false edges are dominated by their edge, thus only
639 have a single predecessor. */
640 extract_true_false_edges_from_block (dom, &true_edge, &false_edge);
641 tem = EDGE_PRED (bb, 0);
642 if (tem == true_edge
643 || (single_pred_p (true_edge->dest)
644 && (tem->src == true_edge->dest
645 || dominated_by_p (CDI_DOMINATORS,
646 tem->src, true_edge->dest))))
647 arg0 = PHI_ARG_DEF (phi, tem->dest_idx);
648 else if (tem == false_edge
649 || (single_pred_p (false_edge->dest)
650 && (tem->src == false_edge->dest
651 || dominated_by_p (CDI_DOMINATORS,
652 tem->src, false_edge->dest))))
653 arg1 = PHI_ARG_DEF (phi, tem->dest_idx);
654 else
655 return false;
656 tem = EDGE_PRED (bb, 1);
657 if (tem == true_edge
658 || (single_pred_p (true_edge->dest)
659 && (tem->src == true_edge->dest
660 || dominated_by_p (CDI_DOMINATORS,
661 tem->src, true_edge->dest))))
662 arg0 = PHI_ARG_DEF (phi, tem->dest_idx);
663 else if (tem == false_edge
664 || (single_pred_p (false_edge->dest)
665 && (tem->src == false_edge->dest
666 || dominated_by_p (CDI_DOMINATORS,
667 tem->src, false_edge->dest))))
668 arg1 = PHI_ARG_DEF (phi, tem->dest_idx);
669 else
670 return false;
671 if (!arg0 || !arg1)
672 return false;
674 if (true_arg_p)
675 *true_arg_p = arg0;
676 if (false_arg_p)
677 *false_arg_p = arg1;
679 return true;
682 /* Determine the outermost loop to that it is possible to hoist a statement
683 STMT and store it to LIM_DATA (STMT)->max_loop. To do this we determine
684 the outermost loop in that the value computed by STMT is invariant.
685 If MUST_PRESERVE_EXEC is true, additionally choose such a loop that
686 we preserve the fact whether STMT is executed. It also fills other related
687 information to LIM_DATA (STMT).
689 The function returns false if STMT cannot be hoisted outside of the loop it
690 is defined in, and true otherwise. */
692 static bool
693 determine_max_movement (gimple stmt, bool must_preserve_exec)
695 basic_block bb = gimple_bb (stmt);
696 struct loop *loop = bb->loop_father;
697 struct loop *level;
698 struct lim_aux_data *lim_data = get_lim_data (stmt);
699 tree val;
700 ssa_op_iter iter;
702 if (must_preserve_exec)
703 level = ALWAYS_EXECUTED_IN (bb);
704 else
705 level = superloop_at_depth (loop, 1);
706 lim_data->max_loop = level;
708 if (gphi *phi = dyn_cast <gphi *> (stmt))
710 use_operand_p use_p;
711 unsigned min_cost = UINT_MAX;
712 unsigned total_cost = 0;
713 struct lim_aux_data *def_data;
715 /* We will end up promoting dependencies to be unconditionally
716 evaluated. For this reason the PHI cost (and thus the
717 cost we remove from the loop by doing the invariant motion)
718 is that of the cheapest PHI argument dependency chain. */
719 FOR_EACH_PHI_ARG (use_p, phi, iter, SSA_OP_USE)
721 val = USE_FROM_PTR (use_p);
723 if (TREE_CODE (val) != SSA_NAME)
725 /* Assign const 1 to constants. */
726 min_cost = MIN (min_cost, 1);
727 total_cost += 1;
728 continue;
730 if (!add_dependency (val, lim_data, loop, false))
731 return false;
733 gimple def_stmt = SSA_NAME_DEF_STMT (val);
734 if (gimple_bb (def_stmt)
735 && gimple_bb (def_stmt)->loop_father == loop)
737 def_data = get_lim_data (def_stmt);
738 if (def_data)
740 min_cost = MIN (min_cost, def_data->cost);
741 total_cost += def_data->cost;
746 min_cost = MIN (min_cost, total_cost);
747 lim_data->cost += min_cost;
749 if (gimple_phi_num_args (phi) > 1)
751 basic_block dom = get_immediate_dominator (CDI_DOMINATORS, bb);
752 gimple cond;
753 if (gsi_end_p (gsi_last_bb (dom)))
754 return false;
755 cond = gsi_stmt (gsi_last_bb (dom));
756 if (gimple_code (cond) != GIMPLE_COND)
757 return false;
758 /* Verify that this is an extended form of a diamond and
759 the PHI arguments are completely controlled by the
760 predicate in DOM. */
761 if (!extract_true_false_args_from_phi (dom, phi, NULL, NULL))
762 return false;
764 /* Fold in dependencies and cost of the condition. */
765 FOR_EACH_SSA_TREE_OPERAND (val, cond, iter, SSA_OP_USE)
767 if (!add_dependency (val, lim_data, loop, false))
768 return false;
769 def_data = get_lim_data (SSA_NAME_DEF_STMT (val));
770 if (def_data)
771 total_cost += def_data->cost;
774 /* We want to avoid unconditionally executing very expensive
775 operations. As costs for our dependencies cannot be
776 negative just claim we are not invariand for this case.
777 We also are not sure whether the control-flow inside the
778 loop will vanish. */
779 if (total_cost - min_cost >= 2 * LIM_EXPENSIVE
780 && !(min_cost != 0
781 && total_cost / min_cost <= 2))
782 return false;
784 /* Assume that the control-flow in the loop will vanish.
785 ??? We should verify this and not artificially increase
786 the cost if that is not the case. */
787 lim_data->cost += stmt_cost (stmt);
790 return true;
792 else
793 FOR_EACH_SSA_TREE_OPERAND (val, stmt, iter, SSA_OP_USE)
794 if (!add_dependency (val, lim_data, loop, true))
795 return false;
797 if (gimple_vuse (stmt))
799 mem_ref_p ref = mem_ref_in_stmt (stmt);
801 if (ref)
803 lim_data->max_loop
804 = outermost_indep_loop (lim_data->max_loop, loop, ref);
805 if (!lim_data->max_loop)
806 return false;
808 else
810 if ((val = gimple_vuse (stmt)) != NULL_TREE)
812 if (!add_dependency (val, lim_data, loop, false))
813 return false;
818 lim_data->cost += stmt_cost (stmt);
820 return true;
823 /* Suppose that some statement in ORIG_LOOP is hoisted to the loop LEVEL,
824 and that one of the operands of this statement is computed by STMT.
825 Ensure that STMT (together with all the statements that define its
826 operands) is hoisted at least out of the loop LEVEL. */
828 static void
829 set_level (gimple stmt, struct loop *orig_loop, struct loop *level)
831 struct loop *stmt_loop = gimple_bb (stmt)->loop_father;
832 struct lim_aux_data *lim_data;
833 gimple dep_stmt;
834 unsigned i;
836 stmt_loop = find_common_loop (orig_loop, stmt_loop);
837 lim_data = get_lim_data (stmt);
838 if (lim_data != NULL && lim_data->tgt_loop != NULL)
839 stmt_loop = find_common_loop (stmt_loop,
840 loop_outer (lim_data->tgt_loop));
841 if (flow_loop_nested_p (stmt_loop, level))
842 return;
844 gcc_assert (level == lim_data->max_loop
845 || flow_loop_nested_p (lim_data->max_loop, level));
847 lim_data->tgt_loop = level;
848 FOR_EACH_VEC_ELT (lim_data->depends, i, dep_stmt)
849 set_level (dep_stmt, orig_loop, level);
852 /* Determines an outermost loop from that we want to hoist the statement STMT.
853 For now we chose the outermost possible loop. TODO -- use profiling
854 information to set it more sanely. */
856 static void
857 set_profitable_level (gimple stmt)
859 set_level (stmt, gimple_bb (stmt)->loop_father, get_lim_data (stmt)->max_loop);
862 /* Returns true if STMT is a call that has side effects. */
864 static bool
865 nonpure_call_p (gimple stmt)
867 if (gimple_code (stmt) != GIMPLE_CALL)
868 return false;
870 return gimple_has_side_effects (stmt);
873 /* Rewrite a/b to a*(1/b). Return the invariant stmt to process. */
875 static gimple
876 rewrite_reciprocal (gimple_stmt_iterator *bsi)
878 gassign *stmt, *stmt1, *stmt2;
879 tree name, lhs, type;
880 tree real_one;
881 gimple_stmt_iterator gsi;
883 stmt = as_a <gassign *> (gsi_stmt (*bsi));
884 lhs = gimple_assign_lhs (stmt);
885 type = TREE_TYPE (lhs);
887 real_one = build_one_cst (type);
889 name = make_temp_ssa_name (type, NULL, "reciptmp");
890 stmt1 = gimple_build_assign_with_ops (RDIV_EXPR, name, real_one,
891 gimple_assign_rhs2 (stmt));
893 stmt2 = gimple_build_assign_with_ops (MULT_EXPR, lhs, name,
894 gimple_assign_rhs1 (stmt));
896 /* Replace division stmt with reciprocal and multiply stmts.
897 The multiply stmt is not invariant, so update iterator
898 and avoid rescanning. */
899 gsi = *bsi;
900 gsi_insert_before (bsi, stmt1, GSI_NEW_STMT);
901 gsi_replace (&gsi, stmt2, true);
903 /* Continue processing with invariant reciprocal statement. */
904 return stmt1;
907 /* Check if the pattern at *BSI is a bittest of the form
908 (A >> B) & 1 != 0 and in this case rewrite it to A & (1 << B) != 0. */
910 static gimple
911 rewrite_bittest (gimple_stmt_iterator *bsi)
913 gassign *stmt;
914 gimple stmt1;
915 gassign *stmt2;
916 gimple use_stmt;
917 gcond *cond_stmt;
918 tree lhs, name, t, a, b;
919 use_operand_p use;
921 stmt = as_a <gassign *> (gsi_stmt (*bsi));
922 lhs = gimple_assign_lhs (stmt);
924 /* Verify that the single use of lhs is a comparison against zero. */
925 if (TREE_CODE (lhs) != SSA_NAME
926 || !single_imm_use (lhs, &use, &use_stmt))
927 return stmt;
928 cond_stmt = dyn_cast <gcond *> (use_stmt);
929 if (!cond_stmt)
930 return stmt;
931 if (gimple_cond_lhs (cond_stmt) != lhs
932 || (gimple_cond_code (cond_stmt) != NE_EXPR
933 && gimple_cond_code (cond_stmt) != EQ_EXPR)
934 || !integer_zerop (gimple_cond_rhs (cond_stmt)))
935 return stmt;
937 /* Get at the operands of the shift. The rhs is TMP1 & 1. */
938 stmt1 = SSA_NAME_DEF_STMT (gimple_assign_rhs1 (stmt));
939 if (gimple_code (stmt1) != GIMPLE_ASSIGN)
940 return stmt;
942 /* There is a conversion in between possibly inserted by fold. */
943 if (CONVERT_EXPR_CODE_P (gimple_assign_rhs_code (stmt1)))
945 t = gimple_assign_rhs1 (stmt1);
946 if (TREE_CODE (t) != SSA_NAME
947 || !has_single_use (t))
948 return stmt;
949 stmt1 = SSA_NAME_DEF_STMT (t);
950 if (gimple_code (stmt1) != GIMPLE_ASSIGN)
951 return stmt;
954 /* Verify that B is loop invariant but A is not. Verify that with
955 all the stmt walking we are still in the same loop. */
956 if (gimple_assign_rhs_code (stmt1) != RSHIFT_EXPR
957 || loop_containing_stmt (stmt1) != loop_containing_stmt (stmt))
958 return stmt;
960 a = gimple_assign_rhs1 (stmt1);
961 b = gimple_assign_rhs2 (stmt1);
963 if (outermost_invariant_loop (b, loop_containing_stmt (stmt1)) != NULL
964 && outermost_invariant_loop (a, loop_containing_stmt (stmt1)) == NULL)
966 gimple_stmt_iterator rsi;
968 /* 1 << B */
969 t = fold_build2 (LSHIFT_EXPR, TREE_TYPE (a),
970 build_int_cst (TREE_TYPE (a), 1), b);
971 name = make_temp_ssa_name (TREE_TYPE (a), NULL, "shifttmp");
972 stmt1 = gimple_build_assign (name, t);
974 /* A & (1 << B) */
975 t = fold_build2 (BIT_AND_EXPR, TREE_TYPE (a), a, name);
976 name = make_temp_ssa_name (TREE_TYPE (a), NULL, "shifttmp");
977 stmt2 = gimple_build_assign (name, t);
979 /* Replace the SSA_NAME we compare against zero. Adjust
980 the type of zero accordingly. */
981 SET_USE (use, name);
982 gimple_cond_set_rhs (cond_stmt,
983 build_int_cst_type (TREE_TYPE (name),
984 0));
986 /* Don't use gsi_replace here, none of the new assignments sets
987 the variable originally set in stmt. Move bsi to stmt1, and
988 then remove the original stmt, so that we get a chance to
989 retain debug info for it. */
990 rsi = *bsi;
991 gsi_insert_before (bsi, stmt1, GSI_NEW_STMT);
992 gsi_insert_before (&rsi, stmt2, GSI_SAME_STMT);
993 gsi_remove (&rsi, true);
995 return stmt1;
998 return stmt;
1001 /* For each statement determines the outermost loop in that it is invariant,
1002 - statements on whose motion it depends and the cost of the computation.
1003 - This information is stored to the LIM_DATA structure associated with
1004 - each statement. */
1005 class invariantness_dom_walker : public dom_walker
1007 public:
1008 invariantness_dom_walker (cdi_direction direction)
1009 : dom_walker (direction) {}
1011 virtual void before_dom_children (basic_block);
1014 /* Determine the outermost loops in that statements in basic block BB are
1015 invariant, and record them to the LIM_DATA associated with the statements.
1016 Callback for dom_walker. */
1018 void
1019 invariantness_dom_walker::before_dom_children (basic_block bb)
1021 enum move_pos pos;
1022 gimple_stmt_iterator bsi;
1023 gimple stmt;
1024 bool maybe_never = ALWAYS_EXECUTED_IN (bb) == NULL;
1025 struct loop *outermost = ALWAYS_EXECUTED_IN (bb);
1026 struct lim_aux_data *lim_data;
1028 if (!loop_outer (bb->loop_father))
1029 return;
1031 if (dump_file && (dump_flags & TDF_DETAILS))
1032 fprintf (dump_file, "Basic block %d (loop %d -- depth %d):\n\n",
1033 bb->index, bb->loop_father->num, loop_depth (bb->loop_father));
1035 /* Look at PHI nodes, but only if there is at most two.
1036 ??? We could relax this further by post-processing the inserted
1037 code and transforming adjacent cond-exprs with the same predicate
1038 to control flow again. */
1039 bsi = gsi_start_phis (bb);
1040 if (!gsi_end_p (bsi)
1041 && ((gsi_next (&bsi), gsi_end_p (bsi))
1042 || (gsi_next (&bsi), gsi_end_p (bsi))))
1043 for (bsi = gsi_start_phis (bb); !gsi_end_p (bsi); gsi_next (&bsi))
1045 stmt = gsi_stmt (bsi);
1047 pos = movement_possibility (stmt);
1048 if (pos == MOVE_IMPOSSIBLE)
1049 continue;
1051 lim_data = init_lim_data (stmt);
1052 lim_data->always_executed_in = outermost;
1054 if (!determine_max_movement (stmt, false))
1056 lim_data->max_loop = NULL;
1057 continue;
1060 if (dump_file && (dump_flags & TDF_DETAILS))
1062 print_gimple_stmt (dump_file, stmt, 2, 0);
1063 fprintf (dump_file, " invariant up to level %d, cost %d.\n\n",
1064 loop_depth (lim_data->max_loop),
1065 lim_data->cost);
1068 if (lim_data->cost >= LIM_EXPENSIVE)
1069 set_profitable_level (stmt);
1072 for (bsi = gsi_start_bb (bb); !gsi_end_p (bsi); gsi_next (&bsi))
1074 stmt = gsi_stmt (bsi);
1076 pos = movement_possibility (stmt);
1077 if (pos == MOVE_IMPOSSIBLE)
1079 if (nonpure_call_p (stmt))
1081 maybe_never = true;
1082 outermost = NULL;
1084 /* Make sure to note always_executed_in for stores to make
1085 store-motion work. */
1086 else if (stmt_makes_single_store (stmt))
1088 struct lim_aux_data *lim_data = init_lim_data (stmt);
1089 lim_data->always_executed_in = outermost;
1091 continue;
1094 if (is_gimple_assign (stmt)
1095 && (get_gimple_rhs_class (gimple_assign_rhs_code (stmt))
1096 == GIMPLE_BINARY_RHS))
1098 tree op0 = gimple_assign_rhs1 (stmt);
1099 tree op1 = gimple_assign_rhs2 (stmt);
1100 struct loop *ol1 = outermost_invariant_loop (op1,
1101 loop_containing_stmt (stmt));
1103 /* If divisor is invariant, convert a/b to a*(1/b), allowing reciprocal
1104 to be hoisted out of loop, saving expensive divide. */
1105 if (pos == MOVE_POSSIBLE
1106 && gimple_assign_rhs_code (stmt) == RDIV_EXPR
1107 && flag_unsafe_math_optimizations
1108 && !flag_trapping_math
1109 && ol1 != NULL
1110 && outermost_invariant_loop (op0, ol1) == NULL)
1111 stmt = rewrite_reciprocal (&bsi);
1113 /* If the shift count is invariant, convert (A >> B) & 1 to
1114 A & (1 << B) allowing the bit mask to be hoisted out of the loop
1115 saving an expensive shift. */
1116 if (pos == MOVE_POSSIBLE
1117 && gimple_assign_rhs_code (stmt) == BIT_AND_EXPR
1118 && integer_onep (op1)
1119 && TREE_CODE (op0) == SSA_NAME
1120 && has_single_use (op0))
1121 stmt = rewrite_bittest (&bsi);
1124 lim_data = init_lim_data (stmt);
1125 lim_data->always_executed_in = outermost;
1127 if (maybe_never && pos == MOVE_PRESERVE_EXECUTION)
1128 continue;
1130 if (!determine_max_movement (stmt, pos == MOVE_PRESERVE_EXECUTION))
1132 lim_data->max_loop = NULL;
1133 continue;
1136 if (dump_file && (dump_flags & TDF_DETAILS))
1138 print_gimple_stmt (dump_file, stmt, 2, 0);
1139 fprintf (dump_file, " invariant up to level %d, cost %d.\n\n",
1140 loop_depth (lim_data->max_loop),
1141 lim_data->cost);
1144 if (lim_data->cost >= LIM_EXPENSIVE)
1145 set_profitable_level (stmt);
1149 class move_computations_dom_walker : public dom_walker
1151 public:
1152 move_computations_dom_walker (cdi_direction direction)
1153 : dom_walker (direction), todo_ (0) {}
1155 virtual void before_dom_children (basic_block);
1157 unsigned int todo_;
1160 /* Hoist the statements in basic block BB out of the loops prescribed by
1161 data stored in LIM_DATA structures associated with each statement. Callback
1162 for walk_dominator_tree. */
1164 void
1165 move_computations_dom_walker::before_dom_children (basic_block bb)
1167 struct loop *level;
1168 unsigned cost = 0;
1169 struct lim_aux_data *lim_data;
1171 if (!loop_outer (bb->loop_father))
1172 return;
1174 for (gphi_iterator bsi = gsi_start_phis (bb); !gsi_end_p (bsi); )
1176 gassign *new_stmt;
1177 gphi *stmt = bsi.phi ();
1179 lim_data = get_lim_data (stmt);
1180 if (lim_data == NULL)
1182 gsi_next (&bsi);
1183 continue;
1186 cost = lim_data->cost;
1187 level = lim_data->tgt_loop;
1188 clear_lim_data (stmt);
1190 if (!level)
1192 gsi_next (&bsi);
1193 continue;
1196 if (dump_file && (dump_flags & TDF_DETAILS))
1198 fprintf (dump_file, "Moving PHI node\n");
1199 print_gimple_stmt (dump_file, stmt, 0, 0);
1200 fprintf (dump_file, "(cost %u) out of loop %d.\n\n",
1201 cost, level->num);
1204 if (gimple_phi_num_args (stmt) == 1)
1206 tree arg = PHI_ARG_DEF (stmt, 0);
1207 new_stmt = gimple_build_assign_with_ops (TREE_CODE (arg),
1208 gimple_phi_result (stmt),
1209 arg, NULL_TREE);
1211 else
1213 basic_block dom = get_immediate_dominator (CDI_DOMINATORS, bb);
1214 gimple cond = gsi_stmt (gsi_last_bb (dom));
1215 tree arg0 = NULL_TREE, arg1 = NULL_TREE, t;
1216 /* Get the PHI arguments corresponding to the true and false
1217 edges of COND. */
1218 extract_true_false_args_from_phi (dom, stmt, &arg0, &arg1);
1219 gcc_assert (arg0 && arg1);
1220 t = build2 (gimple_cond_code (cond), boolean_type_node,
1221 gimple_cond_lhs (cond), gimple_cond_rhs (cond));
1222 new_stmt = gimple_build_assign_with_ops (COND_EXPR,
1223 gimple_phi_result (stmt),
1224 t, arg0, arg1);
1225 todo_ |= TODO_cleanup_cfg;
1227 gsi_insert_on_edge (loop_preheader_edge (level), new_stmt);
1228 remove_phi_node (&bsi, false);
1231 for (gimple_stmt_iterator bsi = gsi_start_bb (bb); !gsi_end_p (bsi); )
1233 edge e;
1235 gimple stmt = gsi_stmt (bsi);
1237 lim_data = get_lim_data (stmt);
1238 if (lim_data == NULL)
1240 gsi_next (&bsi);
1241 continue;
1244 cost = lim_data->cost;
1245 level = lim_data->tgt_loop;
1246 clear_lim_data (stmt);
1248 if (!level)
1250 gsi_next (&bsi);
1251 continue;
1254 /* We do not really want to move conditionals out of the loop; we just
1255 placed it here to force its operands to be moved if necessary. */
1256 if (gimple_code (stmt) == GIMPLE_COND)
1257 continue;
1259 if (dump_file && (dump_flags & TDF_DETAILS))
1261 fprintf (dump_file, "Moving statement\n");
1262 print_gimple_stmt (dump_file, stmt, 0, 0);
1263 fprintf (dump_file, "(cost %u) out of loop %d.\n\n",
1264 cost, level->num);
1267 e = loop_preheader_edge (level);
1268 gcc_assert (!gimple_vdef (stmt));
1269 if (gimple_vuse (stmt))
1271 /* The new VUSE is the one from the virtual PHI in the loop
1272 header or the one already present. */
1273 gphi_iterator gsi2;
1274 for (gsi2 = gsi_start_phis (e->dest);
1275 !gsi_end_p (gsi2); gsi_next (&gsi2))
1277 gphi *phi = gsi2.phi ();
1278 if (virtual_operand_p (gimple_phi_result (phi)))
1280 gimple_set_vuse (stmt, PHI_ARG_DEF_FROM_EDGE (phi, e));
1281 break;
1285 gsi_remove (&bsi, false);
1286 /* In case this is a stmt that is not unconditionally executed
1287 when the target loop header is executed and the stmt may
1288 invoke undefined integer or pointer overflow rewrite it to
1289 unsigned arithmetic. */
1290 if (is_gimple_assign (stmt)
1291 && INTEGRAL_TYPE_P (TREE_TYPE (gimple_assign_lhs (stmt)))
1292 && TYPE_OVERFLOW_UNDEFINED (TREE_TYPE (gimple_assign_lhs (stmt)))
1293 && arith_code_with_undefined_signed_overflow
1294 (gimple_assign_rhs_code (stmt))
1295 && (!ALWAYS_EXECUTED_IN (bb)
1296 || !(ALWAYS_EXECUTED_IN (bb) == level
1297 || flow_loop_nested_p (ALWAYS_EXECUTED_IN (bb), level))))
1298 gsi_insert_seq_on_edge (e, rewrite_to_defined_overflow (stmt));
1299 else
1300 gsi_insert_on_edge (e, stmt);
1304 /* Hoist the statements out of the loops prescribed by data stored in
1305 LIM_DATA structures associated with each statement.*/
1307 static unsigned int
1308 move_computations (void)
1310 move_computations_dom_walker walker (CDI_DOMINATORS);
1311 walker.walk (cfun->cfg->x_entry_block_ptr);
1313 gsi_commit_edge_inserts ();
1314 if (need_ssa_update_p (cfun))
1315 rewrite_into_loop_closed_ssa (NULL, TODO_update_ssa);
1317 return walker.todo_;
1320 /* Checks whether the statement defining variable *INDEX can be hoisted
1321 out of the loop passed in DATA. Callback for for_each_index. */
1323 static bool
1324 may_move_till (tree ref, tree *index, void *data)
1326 struct loop *loop = (struct loop *) data, *max_loop;
1328 /* If REF is an array reference, check also that the step and the lower
1329 bound is invariant in LOOP. */
1330 if (TREE_CODE (ref) == ARRAY_REF)
1332 tree step = TREE_OPERAND (ref, 3);
1333 tree lbound = TREE_OPERAND (ref, 2);
1335 max_loop = outermost_invariant_loop (step, loop);
1336 if (!max_loop)
1337 return false;
1339 max_loop = outermost_invariant_loop (lbound, loop);
1340 if (!max_loop)
1341 return false;
1344 max_loop = outermost_invariant_loop (*index, loop);
1345 if (!max_loop)
1346 return false;
1348 return true;
1351 /* If OP is SSA NAME, force the statement that defines it to be
1352 moved out of the LOOP. ORIG_LOOP is the loop in that EXPR is used. */
1354 static void
1355 force_move_till_op (tree op, struct loop *orig_loop, struct loop *loop)
1357 gimple stmt;
1359 if (!op
1360 || is_gimple_min_invariant (op))
1361 return;
1363 gcc_assert (TREE_CODE (op) == SSA_NAME);
1365 stmt = SSA_NAME_DEF_STMT (op);
1366 if (gimple_nop_p (stmt))
1367 return;
1369 set_level (stmt, orig_loop, loop);
1372 /* Forces statement defining invariants in REF (and *INDEX) to be moved out of
1373 the LOOP. The reference REF is used in the loop ORIG_LOOP. Callback for
1374 for_each_index. */
1376 struct fmt_data
1378 struct loop *loop;
1379 struct loop *orig_loop;
1382 static bool
1383 force_move_till (tree ref, tree *index, void *data)
1385 struct fmt_data *fmt_data = (struct fmt_data *) data;
1387 if (TREE_CODE (ref) == ARRAY_REF)
1389 tree step = TREE_OPERAND (ref, 3);
1390 tree lbound = TREE_OPERAND (ref, 2);
1392 force_move_till_op (step, fmt_data->orig_loop, fmt_data->loop);
1393 force_move_till_op (lbound, fmt_data->orig_loop, fmt_data->loop);
1396 force_move_till_op (*index, fmt_data->orig_loop, fmt_data->loop);
1398 return true;
1401 /* A function to free the mem_ref object OBJ. */
1403 static void
1404 memref_free (struct im_mem_ref *mem)
1406 mem->accesses_in_loop.release ();
1409 /* Allocates and returns a memory reference description for MEM whose hash
1410 value is HASH and id is ID. */
1412 static mem_ref_p
1413 mem_ref_alloc (tree mem, unsigned hash, unsigned id)
1415 mem_ref_p ref = XOBNEW (&mem_ref_obstack, struct im_mem_ref);
1416 ao_ref_init (&ref->mem, mem);
1417 ref->id = id;
1418 ref->hash = hash;
1419 ref->stored = NULL;
1420 bitmap_initialize (&ref->indep_loop, &lim_bitmap_obstack);
1421 bitmap_initialize (&ref->dep_loop, &lim_bitmap_obstack);
1422 ref->accesses_in_loop.create (1);
1424 return ref;
1427 /* Records memory reference location *LOC in LOOP to the memory reference
1428 description REF. The reference occurs in statement STMT. */
1430 static void
1431 record_mem_ref_loc (mem_ref_p ref, gimple stmt, tree *loc)
1433 mem_ref_loc aref;
1434 aref.stmt = stmt;
1435 aref.ref = loc;
1436 ref->accesses_in_loop.safe_push (aref);
1439 /* Set the LOOP bit in REF stored bitmap and allocate that if
1440 necessary. Return whether a bit was changed. */
1442 static bool
1443 set_ref_stored_in_loop (mem_ref_p ref, struct loop *loop)
1445 if (!ref->stored)
1446 ref->stored = BITMAP_ALLOC (&lim_bitmap_obstack);
1447 return bitmap_set_bit (ref->stored, loop->num);
1450 /* Marks reference REF as stored in LOOP. */
1452 static void
1453 mark_ref_stored (mem_ref_p ref, struct loop *loop)
1455 while (loop != current_loops->tree_root
1456 && set_ref_stored_in_loop (ref, loop))
1457 loop = loop_outer (loop);
1460 /* Gathers memory references in statement STMT in LOOP, storing the
1461 information about them in the memory_accesses structure. Marks
1462 the vops accessed through unrecognized statements there as
1463 well. */
1465 static void
1466 gather_mem_refs_stmt (struct loop *loop, gimple stmt)
1468 tree *mem = NULL;
1469 hashval_t hash;
1470 im_mem_ref **slot;
1471 mem_ref_p ref;
1472 bool is_stored;
1473 unsigned id;
1475 if (!gimple_vuse (stmt))
1476 return;
1478 mem = simple_mem_ref_in_stmt (stmt, &is_stored);
1479 if (!mem)
1481 /* We use the shared mem_ref for all unanalyzable refs. */
1482 id = UNANALYZABLE_MEM_ID;
1483 ref = memory_accesses.refs_list[id];
1484 if (dump_file && (dump_flags & TDF_DETAILS))
1486 fprintf (dump_file, "Unanalyzed memory reference %u: ", id);
1487 print_gimple_stmt (dump_file, stmt, 0, TDF_SLIM);
1489 is_stored = gimple_vdef (stmt);
1491 else
1493 hash = iterative_hash_expr (*mem, 0);
1494 slot = memory_accesses.refs->find_slot_with_hash (*mem, hash, INSERT);
1495 if (*slot)
1497 ref = (mem_ref_p) *slot;
1498 id = ref->id;
1500 else
1502 id = memory_accesses.refs_list.length ();
1503 ref = mem_ref_alloc (*mem, hash, id);
1504 memory_accesses.refs_list.safe_push (ref);
1505 *slot = ref;
1507 if (dump_file && (dump_flags & TDF_DETAILS))
1509 fprintf (dump_file, "Memory reference %u: ", id);
1510 print_generic_expr (dump_file, ref->mem.ref, TDF_SLIM);
1511 fprintf (dump_file, "\n");
1515 record_mem_ref_loc (ref, stmt, mem);
1517 bitmap_set_bit (&memory_accesses.refs_in_loop[loop->num], ref->id);
1518 if (is_stored)
1520 bitmap_set_bit (&memory_accesses.refs_stored_in_loop[loop->num], ref->id);
1521 mark_ref_stored (ref, loop);
1523 return;
1526 static unsigned *bb_loop_postorder;
1528 /* qsort sort function to sort blocks after their loop fathers postorder. */
1530 static int
1531 sort_bbs_in_loop_postorder_cmp (const void *bb1_, const void *bb2_)
1533 basic_block bb1 = *(basic_block *)const_cast<void *>(bb1_);
1534 basic_block bb2 = *(basic_block *)const_cast<void *>(bb2_);
1535 struct loop *loop1 = bb1->loop_father;
1536 struct loop *loop2 = bb2->loop_father;
1537 if (loop1->num == loop2->num)
1538 return 0;
1539 return bb_loop_postorder[loop1->num] < bb_loop_postorder[loop2->num] ? -1 : 1;
1542 /* qsort sort function to sort ref locs after their loop fathers postorder. */
1544 static int
1545 sort_locs_in_loop_postorder_cmp (const void *loc1_, const void *loc2_)
1547 mem_ref_loc *loc1 = (mem_ref_loc *)const_cast<void *>(loc1_);
1548 mem_ref_loc *loc2 = (mem_ref_loc *)const_cast<void *>(loc2_);
1549 struct loop *loop1 = gimple_bb (loc1->stmt)->loop_father;
1550 struct loop *loop2 = gimple_bb (loc2->stmt)->loop_father;
1551 if (loop1->num == loop2->num)
1552 return 0;
1553 return bb_loop_postorder[loop1->num] < bb_loop_postorder[loop2->num] ? -1 : 1;
1556 /* Gathers memory references in loops. */
1558 static void
1559 analyze_memory_references (void)
1561 gimple_stmt_iterator bsi;
1562 basic_block bb, *bbs;
1563 struct loop *loop, *outer;
1564 unsigned i, n;
1566 /* Collect all basic-blocks in loops and sort them after their
1567 loops postorder. */
1568 i = 0;
1569 bbs = XNEWVEC (basic_block, n_basic_blocks_for_fn (cfun) - NUM_FIXED_BLOCKS);
1570 FOR_EACH_BB_FN (bb, cfun)
1571 if (bb->loop_father != current_loops->tree_root)
1572 bbs[i++] = bb;
1573 n = i;
1574 qsort (bbs, n, sizeof (basic_block), sort_bbs_in_loop_postorder_cmp);
1576 /* Visit blocks in loop postorder and assign mem-ref IDs in that order.
1577 That results in better locality for all the bitmaps. */
1578 for (i = 0; i < n; ++i)
1580 basic_block bb = bbs[i];
1581 for (bsi = gsi_start_bb (bb); !gsi_end_p (bsi); gsi_next (&bsi))
1582 gather_mem_refs_stmt (bb->loop_father, gsi_stmt (bsi));
1585 /* Sort the location list of gathered memory references after their
1586 loop postorder number. */
1587 im_mem_ref *ref;
1588 FOR_EACH_VEC_ELT (memory_accesses.refs_list, i, ref)
1589 ref->accesses_in_loop.qsort (sort_locs_in_loop_postorder_cmp);
1591 free (bbs);
1592 // free (bb_loop_postorder);
1594 /* Propagate the information about accessed memory references up
1595 the loop hierarchy. */
1596 FOR_EACH_LOOP (loop, LI_FROM_INNERMOST)
1598 /* Finalize the overall touched references (including subloops). */
1599 bitmap_ior_into (&memory_accesses.all_refs_stored_in_loop[loop->num],
1600 &memory_accesses.refs_stored_in_loop[loop->num]);
1602 /* Propagate the information about accessed memory references up
1603 the loop hierarchy. */
1604 outer = loop_outer (loop);
1605 if (outer == current_loops->tree_root)
1606 continue;
1608 bitmap_ior_into (&memory_accesses.all_refs_stored_in_loop[outer->num],
1609 &memory_accesses.all_refs_stored_in_loop[loop->num]);
1613 /* Returns true if MEM1 and MEM2 may alias. TTAE_CACHE is used as a cache in
1614 tree_to_aff_combination_expand. */
1616 static bool
1617 mem_refs_may_alias_p (mem_ref_p mem1, mem_ref_p mem2,
1618 hash_map<tree, name_expansion *> **ttae_cache)
1620 /* Perform BASE + OFFSET analysis -- if MEM1 and MEM2 are based on the same
1621 object and their offset differ in such a way that the locations cannot
1622 overlap, then they cannot alias. */
1623 widest_int size1, size2;
1624 aff_tree off1, off2;
1626 /* Perform basic offset and type-based disambiguation. */
1627 if (!refs_may_alias_p_1 (&mem1->mem, &mem2->mem, true))
1628 return false;
1630 /* The expansion of addresses may be a bit expensive, thus we only do
1631 the check at -O2 and higher optimization levels. */
1632 if (optimize < 2)
1633 return true;
1635 get_inner_reference_aff (mem1->mem.ref, &off1, &size1);
1636 get_inner_reference_aff (mem2->mem.ref, &off2, &size2);
1637 aff_combination_expand (&off1, ttae_cache);
1638 aff_combination_expand (&off2, ttae_cache);
1639 aff_combination_scale (&off1, -1);
1640 aff_combination_add (&off2, &off1);
1642 if (aff_comb_cannot_overlap_p (&off2, size1, size2))
1643 return false;
1645 return true;
1648 /* Compare function for bsearch searching for reference locations
1649 in a loop. */
1651 static int
1652 find_ref_loc_in_loop_cmp (const void *loop_, const void *loc_)
1654 struct loop *loop = (struct loop *)const_cast<void *>(loop_);
1655 mem_ref_loc *loc = (mem_ref_loc *)const_cast<void *>(loc_);
1656 struct loop *loc_loop = gimple_bb (loc->stmt)->loop_father;
1657 if (loop->num == loc_loop->num
1658 || flow_loop_nested_p (loop, loc_loop))
1659 return 0;
1660 return (bb_loop_postorder[loop->num] < bb_loop_postorder[loc_loop->num]
1661 ? -1 : 1);
1664 /* Iterates over all locations of REF in LOOP and its subloops calling
1665 fn.operator() with the location as argument. When that operator
1666 returns true the iteration is stopped and true is returned.
1667 Otherwise false is returned. */
1669 template <typename FN>
1670 static bool
1671 for_all_locs_in_loop (struct loop *loop, mem_ref_p ref, FN fn)
1673 unsigned i;
1674 mem_ref_loc_p loc;
1676 /* Search for the cluster of locs in the accesses_in_loop vector
1677 which is sorted after postorder index of the loop father. */
1678 loc = ref->accesses_in_loop.bsearch (loop, find_ref_loc_in_loop_cmp);
1679 if (!loc)
1680 return false;
1682 /* We have found one location inside loop or its sub-loops. Iterate
1683 both forward and backward to cover the whole cluster. */
1684 i = loc - ref->accesses_in_loop.address ();
1685 while (i > 0)
1687 --i;
1688 mem_ref_loc_p l = &ref->accesses_in_loop[i];
1689 if (!flow_bb_inside_loop_p (loop, gimple_bb (l->stmt)))
1690 break;
1691 if (fn (l))
1692 return true;
1694 for (i = loc - ref->accesses_in_loop.address ();
1695 i < ref->accesses_in_loop.length (); ++i)
1697 mem_ref_loc_p l = &ref->accesses_in_loop[i];
1698 if (!flow_bb_inside_loop_p (loop, gimple_bb (l->stmt)))
1699 break;
1700 if (fn (l))
1701 return true;
1704 return false;
1707 /* Rewrites location LOC by TMP_VAR. */
1709 struct rewrite_mem_ref_loc
1711 rewrite_mem_ref_loc (tree tmp_var_) : tmp_var (tmp_var_) {}
1712 bool operator () (mem_ref_loc_p loc);
1713 tree tmp_var;
1716 bool
1717 rewrite_mem_ref_loc::operator () (mem_ref_loc_p loc)
1719 *loc->ref = tmp_var;
1720 update_stmt (loc->stmt);
1721 return false;
1724 /* Rewrites all references to REF in LOOP by variable TMP_VAR. */
1726 static void
1727 rewrite_mem_refs (struct loop *loop, mem_ref_p ref, tree tmp_var)
1729 for_all_locs_in_loop (loop, ref, rewrite_mem_ref_loc (tmp_var));
1732 /* Stores the first reference location in LOCP. */
1734 struct first_mem_ref_loc_1
1736 first_mem_ref_loc_1 (mem_ref_loc_p *locp_) : locp (locp_) {}
1737 bool operator () (mem_ref_loc_p loc);
1738 mem_ref_loc_p *locp;
1741 bool
1742 first_mem_ref_loc_1::operator () (mem_ref_loc_p loc)
1744 *locp = loc;
1745 return true;
1748 /* Returns the first reference location to REF in LOOP. */
1750 static mem_ref_loc_p
1751 first_mem_ref_loc (struct loop *loop, mem_ref_p ref)
1753 mem_ref_loc_p locp = NULL;
1754 for_all_locs_in_loop (loop, ref, first_mem_ref_loc_1 (&locp));
1755 return locp;
1758 struct prev_flag_edges {
1759 /* Edge to insert new flag comparison code. */
1760 edge append_cond_position;
1762 /* Edge for fall through from previous flag comparison. */
1763 edge last_cond_fallthru;
1766 /* Helper function for execute_sm. Emit code to store TMP_VAR into
1767 MEM along edge EX.
1769 The store is only done if MEM has changed. We do this so no
1770 changes to MEM occur on code paths that did not originally store
1771 into it.
1773 The common case for execute_sm will transform:
1775 for (...) {
1776 if (foo)
1777 stuff;
1778 else
1779 MEM = TMP_VAR;
1782 into:
1784 lsm = MEM;
1785 for (...) {
1786 if (foo)
1787 stuff;
1788 else
1789 lsm = TMP_VAR;
1791 MEM = lsm;
1793 This function will generate:
1795 lsm = MEM;
1797 lsm_flag = false;
1799 for (...) {
1800 if (foo)
1801 stuff;
1802 else {
1803 lsm = TMP_VAR;
1804 lsm_flag = true;
1807 if (lsm_flag) <--
1808 MEM = lsm; <--
1811 static void
1812 execute_sm_if_changed (edge ex, tree mem, tree tmp_var, tree flag)
1814 basic_block new_bb, then_bb, old_dest;
1815 bool loop_has_only_one_exit;
1816 edge then_old_edge, orig_ex = ex;
1817 gimple_stmt_iterator gsi;
1818 gimple stmt;
1819 struct prev_flag_edges *prev_edges = (struct prev_flag_edges *) ex->aux;
1820 bool irr = ex->flags & EDGE_IRREDUCIBLE_LOOP;
1822 /* ?? Insert store after previous store if applicable. See note
1823 below. */
1824 if (prev_edges)
1825 ex = prev_edges->append_cond_position;
1827 loop_has_only_one_exit = single_pred_p (ex->dest);
1829 if (loop_has_only_one_exit)
1830 ex = split_block_after_labels (ex->dest);
1832 old_dest = ex->dest;
1833 new_bb = split_edge (ex);
1834 then_bb = create_empty_bb (new_bb);
1835 if (irr)
1836 then_bb->flags = BB_IRREDUCIBLE_LOOP;
1837 add_bb_to_loop (then_bb, new_bb->loop_father);
1839 gsi = gsi_start_bb (new_bb);
1840 stmt = gimple_build_cond (NE_EXPR, flag, boolean_false_node,
1841 NULL_TREE, NULL_TREE);
1842 gsi_insert_after (&gsi, stmt, GSI_CONTINUE_LINKING);
1844 gsi = gsi_start_bb (then_bb);
1845 /* Insert actual store. */
1846 stmt = gimple_build_assign (unshare_expr (mem), tmp_var);
1847 gsi_insert_after (&gsi, stmt, GSI_CONTINUE_LINKING);
1849 make_edge (new_bb, then_bb,
1850 EDGE_TRUE_VALUE | (irr ? EDGE_IRREDUCIBLE_LOOP : 0));
1851 make_edge (new_bb, old_dest,
1852 EDGE_FALSE_VALUE | (irr ? EDGE_IRREDUCIBLE_LOOP : 0));
1853 then_old_edge = make_edge (then_bb, old_dest,
1854 EDGE_FALLTHRU | (irr ? EDGE_IRREDUCIBLE_LOOP : 0));
1856 set_immediate_dominator (CDI_DOMINATORS, then_bb, new_bb);
1858 if (prev_edges)
1860 basic_block prevbb = prev_edges->last_cond_fallthru->src;
1861 redirect_edge_succ (prev_edges->last_cond_fallthru, new_bb);
1862 set_immediate_dominator (CDI_DOMINATORS, new_bb, prevbb);
1863 set_immediate_dominator (CDI_DOMINATORS, old_dest,
1864 recompute_dominator (CDI_DOMINATORS, old_dest));
1867 /* ?? Because stores may alias, they must happen in the exact
1868 sequence they originally happened. Save the position right after
1869 the (_lsm) store we just created so we can continue appending after
1870 it and maintain the original order. */
1872 struct prev_flag_edges *p;
1874 if (orig_ex->aux)
1875 orig_ex->aux = NULL;
1876 alloc_aux_for_edge (orig_ex, sizeof (struct prev_flag_edges));
1877 p = (struct prev_flag_edges *) orig_ex->aux;
1878 p->append_cond_position = then_old_edge;
1879 p->last_cond_fallthru = find_edge (new_bb, old_dest);
1880 orig_ex->aux = (void *) p;
1883 if (!loop_has_only_one_exit)
1884 for (gphi_iterator gpi = gsi_start_phis (old_dest);
1885 !gsi_end_p (gpi); gsi_next (&gpi))
1887 gphi *phi = gpi.phi ();
1888 unsigned i;
1890 for (i = 0; i < gimple_phi_num_args (phi); i++)
1891 if (gimple_phi_arg_edge (phi, i)->src == new_bb)
1893 tree arg = gimple_phi_arg_def (phi, i);
1894 add_phi_arg (phi, arg, then_old_edge, UNKNOWN_LOCATION);
1895 update_stmt (phi);
1898 /* Remove the original fall through edge. This was the
1899 single_succ_edge (new_bb). */
1900 EDGE_SUCC (new_bb, 0)->flags &= ~EDGE_FALLTHRU;
1903 /* When REF is set on the location, set flag indicating the store. */
1905 struct sm_set_flag_if_changed
1907 sm_set_flag_if_changed (tree flag_) : flag (flag_) {}
1908 bool operator () (mem_ref_loc_p loc);
1909 tree flag;
1912 bool
1913 sm_set_flag_if_changed::operator () (mem_ref_loc_p loc)
1915 /* Only set the flag for writes. */
1916 if (is_gimple_assign (loc->stmt)
1917 && gimple_assign_lhs_ptr (loc->stmt) == loc->ref)
1919 gimple_stmt_iterator gsi = gsi_for_stmt (loc->stmt);
1920 gimple stmt = gimple_build_assign (flag, boolean_true_node);
1921 gsi_insert_after (&gsi, stmt, GSI_CONTINUE_LINKING);
1923 return false;
1926 /* Helper function for execute_sm. On every location where REF is
1927 set, set an appropriate flag indicating the store. */
1929 static tree
1930 execute_sm_if_changed_flag_set (struct loop *loop, mem_ref_p ref)
1932 tree flag;
1933 char *str = get_lsm_tmp_name (ref->mem.ref, ~0, "_flag");
1934 flag = create_tmp_reg (boolean_type_node, str);
1935 for_all_locs_in_loop (loop, ref, sm_set_flag_if_changed (flag));
1936 return flag;
1939 /* Executes store motion of memory reference REF from LOOP.
1940 Exits from the LOOP are stored in EXITS. The initialization of the
1941 temporary variable is put to the preheader of the loop, and assignments
1942 to the reference from the temporary variable are emitted to exits. */
1944 static void
1945 execute_sm (struct loop *loop, vec<edge> exits, mem_ref_p ref)
1947 tree tmp_var, store_flag = NULL_TREE;
1948 unsigned i;
1949 gassign *load;
1950 struct fmt_data fmt_data;
1951 edge ex;
1952 struct lim_aux_data *lim_data;
1953 bool multi_threaded_model_p = false;
1954 gimple_stmt_iterator gsi;
1956 if (dump_file && (dump_flags & TDF_DETAILS))
1958 fprintf (dump_file, "Executing store motion of ");
1959 print_generic_expr (dump_file, ref->mem.ref, 0);
1960 fprintf (dump_file, " from loop %d\n", loop->num);
1963 tmp_var = create_tmp_reg (TREE_TYPE (ref->mem.ref),
1964 get_lsm_tmp_name (ref->mem.ref, ~0));
1966 fmt_data.loop = loop;
1967 fmt_data.orig_loop = loop;
1968 for_each_index (&ref->mem.ref, force_move_till, &fmt_data);
1970 if (bb_in_transaction (loop_preheader_edge (loop)->src)
1971 || !PARAM_VALUE (PARAM_ALLOW_STORE_DATA_RACES))
1972 multi_threaded_model_p = true;
1974 if (multi_threaded_model_p)
1975 store_flag = execute_sm_if_changed_flag_set (loop, ref);
1977 rewrite_mem_refs (loop, ref, tmp_var);
1979 /* Emit the load code on a random exit edge or into the latch if
1980 the loop does not exit, so that we are sure it will be processed
1981 by move_computations after all dependencies. */
1982 gsi = gsi_for_stmt (first_mem_ref_loc (loop, ref)->stmt);
1984 /* FIXME/TODO: For the multi-threaded variant, we could avoid this
1985 load altogether, since the store is predicated by a flag. We
1986 could, do the load only if it was originally in the loop. */
1987 load = gimple_build_assign (tmp_var, unshare_expr (ref->mem.ref));
1988 lim_data = init_lim_data (load);
1989 lim_data->max_loop = loop;
1990 lim_data->tgt_loop = loop;
1991 gsi_insert_before (&gsi, load, GSI_SAME_STMT);
1993 if (multi_threaded_model_p)
1995 load = gimple_build_assign (store_flag, boolean_false_node);
1996 lim_data = init_lim_data (load);
1997 lim_data->max_loop = loop;
1998 lim_data->tgt_loop = loop;
1999 gsi_insert_before (&gsi, load, GSI_SAME_STMT);
2002 /* Sink the store to every exit from the loop. */
2003 FOR_EACH_VEC_ELT (exits, i, ex)
2004 if (!multi_threaded_model_p)
2006 gassign *store;
2007 store = gimple_build_assign (unshare_expr (ref->mem.ref), tmp_var);
2008 gsi_insert_on_edge (ex, store);
2010 else
2011 execute_sm_if_changed (ex, ref->mem.ref, tmp_var, store_flag);
2014 /* Hoists memory references MEM_REFS out of LOOP. EXITS is the list of exit
2015 edges of the LOOP. */
2017 static void
2018 hoist_memory_references (struct loop *loop, bitmap mem_refs,
2019 vec<edge> exits)
2021 mem_ref_p ref;
2022 unsigned i;
2023 bitmap_iterator bi;
2025 EXECUTE_IF_SET_IN_BITMAP (mem_refs, 0, i, bi)
2027 ref = memory_accesses.refs_list[i];
2028 execute_sm (loop, exits, ref);
2032 struct ref_always_accessed
2034 ref_always_accessed (struct loop *loop_, bool stored_p_)
2035 : loop (loop_), stored_p (stored_p_) {}
2036 bool operator () (mem_ref_loc_p loc);
2037 struct loop *loop;
2038 bool stored_p;
2041 bool
2042 ref_always_accessed::operator () (mem_ref_loc_p loc)
2044 struct loop *must_exec;
2046 if (!get_lim_data (loc->stmt))
2047 return false;
2049 /* If we require an always executed store make sure the statement
2050 stores to the reference. */
2051 if (stored_p)
2053 tree lhs = gimple_get_lhs (loc->stmt);
2054 if (!lhs
2055 || lhs != *loc->ref)
2056 return false;
2059 must_exec = get_lim_data (loc->stmt)->always_executed_in;
2060 if (!must_exec)
2061 return false;
2063 if (must_exec == loop
2064 || flow_loop_nested_p (must_exec, loop))
2065 return true;
2067 return false;
2070 /* Returns true if REF is always accessed in LOOP. If STORED_P is true
2071 make sure REF is always stored to in LOOP. */
2073 static bool
2074 ref_always_accessed_p (struct loop *loop, mem_ref_p ref, bool stored_p)
2076 return for_all_locs_in_loop (loop, ref,
2077 ref_always_accessed (loop, stored_p));
2080 /* Returns true if REF1 and REF2 are independent. */
2082 static bool
2083 refs_independent_p (mem_ref_p ref1, mem_ref_p ref2)
2085 if (ref1 == ref2)
2086 return true;
2088 if (dump_file && (dump_flags & TDF_DETAILS))
2089 fprintf (dump_file, "Querying dependency of refs %u and %u: ",
2090 ref1->id, ref2->id);
2092 if (mem_refs_may_alias_p (ref1, ref2, &memory_accesses.ttae_cache))
2094 if (dump_file && (dump_flags & TDF_DETAILS))
2095 fprintf (dump_file, "dependent.\n");
2096 return false;
2098 else
2100 if (dump_file && (dump_flags & TDF_DETAILS))
2101 fprintf (dump_file, "independent.\n");
2102 return true;
2106 /* Mark REF dependent on stores or loads (according to STORED_P) in LOOP
2107 and its super-loops. */
2109 static void
2110 record_dep_loop (struct loop *loop, mem_ref_p ref, bool stored_p)
2112 /* We can propagate dependent-in-loop bits up the loop
2113 hierarchy to all outer loops. */
2114 while (loop != current_loops->tree_root
2115 && bitmap_set_bit (&ref->dep_loop, LOOP_DEP_BIT (loop->num, stored_p)))
2116 loop = loop_outer (loop);
2119 /* Returns true if REF is independent on all other memory references in
2120 LOOP. */
2122 static bool
2123 ref_indep_loop_p_1 (struct loop *loop, mem_ref_p ref, bool stored_p)
2125 bitmap refs_to_check;
2126 unsigned i;
2127 bitmap_iterator bi;
2128 mem_ref_p aref;
2130 if (stored_p)
2131 refs_to_check = &memory_accesses.refs_in_loop[loop->num];
2132 else
2133 refs_to_check = &memory_accesses.refs_stored_in_loop[loop->num];
2135 if (bitmap_bit_p (refs_to_check, UNANALYZABLE_MEM_ID))
2136 return false;
2138 EXECUTE_IF_SET_IN_BITMAP (refs_to_check, 0, i, bi)
2140 aref = memory_accesses.refs_list[i];
2141 if (!refs_independent_p (ref, aref))
2142 return false;
2145 return true;
2148 /* Returns true if REF is independent on all other memory references in
2149 LOOP. Wrapper over ref_indep_loop_p_1, caching its results. */
2151 static bool
2152 ref_indep_loop_p_2 (struct loop *loop, mem_ref_p ref, bool stored_p)
2154 stored_p |= (ref->stored && bitmap_bit_p (ref->stored, loop->num));
2156 if (bitmap_bit_p (&ref->indep_loop, LOOP_DEP_BIT (loop->num, stored_p)))
2157 return true;
2158 if (bitmap_bit_p (&ref->dep_loop, LOOP_DEP_BIT (loop->num, stored_p)))
2159 return false;
2161 struct loop *inner = loop->inner;
2162 while (inner)
2164 if (!ref_indep_loop_p_2 (inner, ref, stored_p))
2165 return false;
2166 inner = inner->next;
2169 bool indep_p = ref_indep_loop_p_1 (loop, ref, stored_p);
2171 if (dump_file && (dump_flags & TDF_DETAILS))
2172 fprintf (dump_file, "Querying dependencies of ref %u in loop %d: %s\n",
2173 ref->id, loop->num, indep_p ? "independent" : "dependent");
2175 /* Record the computed result in the cache. */
2176 if (indep_p)
2178 if (bitmap_set_bit (&ref->indep_loop, LOOP_DEP_BIT (loop->num, stored_p))
2179 && stored_p)
2181 /* If it's independend against all refs then it's independent
2182 against stores, too. */
2183 bitmap_set_bit (&ref->indep_loop, LOOP_DEP_BIT (loop->num, false));
2186 else
2188 record_dep_loop (loop, ref, stored_p);
2189 if (!stored_p)
2191 /* If it's dependent against stores it's dependent against
2192 all refs, too. */
2193 record_dep_loop (loop, ref, true);
2197 return indep_p;
2200 /* Returns true if REF is independent on all other memory references in
2201 LOOP. */
2203 static bool
2204 ref_indep_loop_p (struct loop *loop, mem_ref_p ref)
2206 gcc_checking_assert (MEM_ANALYZABLE (ref));
2208 return ref_indep_loop_p_2 (loop, ref, false);
2211 /* Returns true if we can perform store motion of REF from LOOP. */
2213 static bool
2214 can_sm_ref_p (struct loop *loop, mem_ref_p ref)
2216 tree base;
2218 /* Can't hoist unanalyzable refs. */
2219 if (!MEM_ANALYZABLE (ref))
2220 return false;
2222 /* It should be movable. */
2223 if (!is_gimple_reg_type (TREE_TYPE (ref->mem.ref))
2224 || TREE_THIS_VOLATILE (ref->mem.ref)
2225 || !for_each_index (&ref->mem.ref, may_move_till, loop))
2226 return false;
2228 /* If it can throw fail, we do not properly update EH info. */
2229 if (tree_could_throw_p (ref->mem.ref))
2230 return false;
2232 /* If it can trap, it must be always executed in LOOP.
2233 Readonly memory locations may trap when storing to them, but
2234 tree_could_trap_p is a predicate for rvalues, so check that
2235 explicitly. */
2236 base = get_base_address (ref->mem.ref);
2237 if ((tree_could_trap_p (ref->mem.ref)
2238 || (DECL_P (base) && TREE_READONLY (base)))
2239 && !ref_always_accessed_p (loop, ref, true))
2240 return false;
2242 /* And it must be independent on all other memory references
2243 in LOOP. */
2244 if (!ref_indep_loop_p (loop, ref))
2245 return false;
2247 return true;
2250 /* Marks the references in LOOP for that store motion should be performed
2251 in REFS_TO_SM. SM_EXECUTED is the set of references for that store
2252 motion was performed in one of the outer loops. */
2254 static void
2255 find_refs_for_sm (struct loop *loop, bitmap sm_executed, bitmap refs_to_sm)
2257 bitmap refs = &memory_accesses.all_refs_stored_in_loop[loop->num];
2258 unsigned i;
2259 bitmap_iterator bi;
2260 mem_ref_p ref;
2262 EXECUTE_IF_AND_COMPL_IN_BITMAP (refs, sm_executed, 0, i, bi)
2264 ref = memory_accesses.refs_list[i];
2265 if (can_sm_ref_p (loop, ref))
2266 bitmap_set_bit (refs_to_sm, i);
2270 /* Checks whether LOOP (with exits stored in EXITS array) is suitable
2271 for a store motion optimization (i.e. whether we can insert statement
2272 on its exits). */
2274 static bool
2275 loop_suitable_for_sm (struct loop *loop ATTRIBUTE_UNUSED,
2276 vec<edge> exits)
2278 unsigned i;
2279 edge ex;
2281 FOR_EACH_VEC_ELT (exits, i, ex)
2282 if (ex->flags & (EDGE_ABNORMAL | EDGE_EH))
2283 return false;
2285 return true;
2288 /* Try to perform store motion for all memory references modified inside
2289 LOOP. SM_EXECUTED is the bitmap of the memory references for that
2290 store motion was executed in one of the outer loops. */
2292 static void
2293 store_motion_loop (struct loop *loop, bitmap sm_executed)
2295 vec<edge> exits = get_loop_exit_edges (loop);
2296 struct loop *subloop;
2297 bitmap sm_in_loop = BITMAP_ALLOC (&lim_bitmap_obstack);
2299 if (loop_suitable_for_sm (loop, exits))
2301 find_refs_for_sm (loop, sm_executed, sm_in_loop);
2302 hoist_memory_references (loop, sm_in_loop, exits);
2304 exits.release ();
2306 bitmap_ior_into (sm_executed, sm_in_loop);
2307 for (subloop = loop->inner; subloop != NULL; subloop = subloop->next)
2308 store_motion_loop (subloop, sm_executed);
2309 bitmap_and_compl_into (sm_executed, sm_in_loop);
2310 BITMAP_FREE (sm_in_loop);
2313 /* Try to perform store motion for all memory references modified inside
2314 loops. */
2316 static void
2317 store_motion (void)
2319 struct loop *loop;
2320 bitmap sm_executed = BITMAP_ALLOC (&lim_bitmap_obstack);
2322 for (loop = current_loops->tree_root->inner; loop != NULL; loop = loop->next)
2323 store_motion_loop (loop, sm_executed);
2325 BITMAP_FREE (sm_executed);
2326 gsi_commit_edge_inserts ();
2329 /* Fills ALWAYS_EXECUTED_IN information for basic blocks of LOOP, i.e.
2330 for each such basic block bb records the outermost loop for that execution
2331 of its header implies execution of bb. CONTAINS_CALL is the bitmap of
2332 blocks that contain a nonpure call. */
2334 static void
2335 fill_always_executed_in_1 (struct loop *loop, sbitmap contains_call)
2337 basic_block bb = NULL, *bbs, last = NULL;
2338 unsigned i;
2339 edge e;
2340 struct loop *inn_loop = loop;
2342 if (ALWAYS_EXECUTED_IN (loop->header) == NULL)
2344 bbs = get_loop_body_in_dom_order (loop);
2346 for (i = 0; i < loop->num_nodes; i++)
2348 edge_iterator ei;
2349 bb = bbs[i];
2351 if (dominated_by_p (CDI_DOMINATORS, loop->latch, bb))
2352 last = bb;
2354 if (bitmap_bit_p (contains_call, bb->index))
2355 break;
2357 FOR_EACH_EDGE (e, ei, bb->succs)
2358 if (!flow_bb_inside_loop_p (loop, e->dest))
2359 break;
2360 if (e)
2361 break;
2363 /* A loop might be infinite (TODO use simple loop analysis
2364 to disprove this if possible). */
2365 if (bb->flags & BB_IRREDUCIBLE_LOOP)
2366 break;
2368 if (!flow_bb_inside_loop_p (inn_loop, bb))
2369 break;
2371 if (bb->loop_father->header == bb)
2373 if (!dominated_by_p (CDI_DOMINATORS, loop->latch, bb))
2374 break;
2376 /* In a loop that is always entered we may proceed anyway.
2377 But record that we entered it and stop once we leave it. */
2378 inn_loop = bb->loop_father;
2382 while (1)
2384 SET_ALWAYS_EXECUTED_IN (last, loop);
2385 if (last == loop->header)
2386 break;
2387 last = get_immediate_dominator (CDI_DOMINATORS, last);
2390 free (bbs);
2393 for (loop = loop->inner; loop; loop = loop->next)
2394 fill_always_executed_in_1 (loop, contains_call);
2397 /* Fills ALWAYS_EXECUTED_IN information for basic blocks, i.e.
2398 for each such basic block bb records the outermost loop for that execution
2399 of its header implies execution of bb. */
2401 static void
2402 fill_always_executed_in (void)
2404 sbitmap contains_call = sbitmap_alloc (last_basic_block_for_fn (cfun));
2405 basic_block bb;
2406 struct loop *loop;
2408 bitmap_clear (contains_call);
2409 FOR_EACH_BB_FN (bb, cfun)
2411 gimple_stmt_iterator gsi;
2412 for (gsi = gsi_start_bb (bb); !gsi_end_p (gsi); gsi_next (&gsi))
2414 if (nonpure_call_p (gsi_stmt (gsi)))
2415 break;
2418 if (!gsi_end_p (gsi))
2419 bitmap_set_bit (contains_call, bb->index);
2422 for (loop = current_loops->tree_root->inner; loop; loop = loop->next)
2423 fill_always_executed_in_1 (loop, contains_call);
2425 sbitmap_free (contains_call);
2429 /* Compute the global information needed by the loop invariant motion pass. */
2431 static void
2432 tree_ssa_lim_initialize (void)
2434 struct loop *loop;
2435 unsigned i;
2437 bitmap_obstack_initialize (&lim_bitmap_obstack);
2438 gcc_obstack_init (&mem_ref_obstack);
2439 lim_aux_data_map = new hash_map<gimple, lim_aux_data *>;
2441 if (flag_tm)
2442 compute_transaction_bits ();
2444 alloc_aux_for_edges (0);
2446 memory_accesses.refs = new hash_table<mem_ref_hasher> (100);
2447 memory_accesses.refs_list.create (100);
2448 /* Allocate a special, unanalyzable mem-ref with ID zero. */
2449 memory_accesses.refs_list.quick_push
2450 (mem_ref_alloc (error_mark_node, 0, UNANALYZABLE_MEM_ID));
2452 memory_accesses.refs_in_loop.create (number_of_loops (cfun));
2453 memory_accesses.refs_in_loop.quick_grow (number_of_loops (cfun));
2454 memory_accesses.refs_stored_in_loop.create (number_of_loops (cfun));
2455 memory_accesses.refs_stored_in_loop.quick_grow (number_of_loops (cfun));
2456 memory_accesses.all_refs_stored_in_loop.create (number_of_loops (cfun));
2457 memory_accesses.all_refs_stored_in_loop.quick_grow (number_of_loops (cfun));
2459 for (i = 0; i < number_of_loops (cfun); i++)
2461 bitmap_initialize (&memory_accesses.refs_in_loop[i],
2462 &lim_bitmap_obstack);
2463 bitmap_initialize (&memory_accesses.refs_stored_in_loop[i],
2464 &lim_bitmap_obstack);
2465 bitmap_initialize (&memory_accesses.all_refs_stored_in_loop[i],
2466 &lim_bitmap_obstack);
2469 memory_accesses.ttae_cache = NULL;
2471 /* Initialize bb_loop_postorder with a mapping from loop->num to
2472 its postorder index. */
2473 i = 0;
2474 bb_loop_postorder = XNEWVEC (unsigned, number_of_loops (cfun));
2475 FOR_EACH_LOOP (loop, LI_FROM_INNERMOST)
2476 bb_loop_postorder[loop->num] = i++;
2479 /* Cleans up after the invariant motion pass. */
2481 static void
2482 tree_ssa_lim_finalize (void)
2484 basic_block bb;
2485 unsigned i;
2486 mem_ref_p ref;
2488 free_aux_for_edges ();
2490 FOR_EACH_BB_FN (bb, cfun)
2491 SET_ALWAYS_EXECUTED_IN (bb, NULL);
2493 bitmap_obstack_release (&lim_bitmap_obstack);
2494 delete lim_aux_data_map;
2496 delete memory_accesses.refs;
2497 memory_accesses.refs = NULL;
2499 FOR_EACH_VEC_ELT (memory_accesses.refs_list, i, ref)
2500 memref_free (ref);
2501 memory_accesses.refs_list.release ();
2502 obstack_free (&mem_ref_obstack, NULL);
2504 memory_accesses.refs_in_loop.release ();
2505 memory_accesses.refs_stored_in_loop.release ();
2506 memory_accesses.all_refs_stored_in_loop.release ();
2508 if (memory_accesses.ttae_cache)
2509 free_affine_expand_cache (&memory_accesses.ttae_cache);
2511 free (bb_loop_postorder);
2514 /* Moves invariants from loops. Only "expensive" invariants are moved out --
2515 i.e. those that are likely to be win regardless of the register pressure. */
2517 unsigned int
2518 tree_ssa_lim (void)
2520 unsigned int todo;
2522 tree_ssa_lim_initialize ();
2524 /* Gathers information about memory accesses in the loops. */
2525 analyze_memory_references ();
2527 /* Fills ALWAYS_EXECUTED_IN information for basic blocks. */
2528 fill_always_executed_in ();
2530 /* For each statement determine the outermost loop in that it is
2531 invariant and cost for computing the invariant. */
2532 invariantness_dom_walker (CDI_DOMINATORS)
2533 .walk (cfun->cfg->x_entry_block_ptr);
2535 /* Execute store motion. Force the necessary invariants to be moved
2536 out of the loops as well. */
2537 store_motion ();
2539 /* Move the expressions that are expensive enough. */
2540 todo = move_computations ();
2542 tree_ssa_lim_finalize ();
2544 return todo;
2547 /* Loop invariant motion pass. */
2549 namespace {
2551 const pass_data pass_data_lim =
2553 GIMPLE_PASS, /* type */
2554 "lim", /* name */
2555 OPTGROUP_LOOP, /* optinfo_flags */
2556 TV_LIM, /* tv_id */
2557 PROP_cfg, /* properties_required */
2558 0, /* properties_provided */
2559 0, /* properties_destroyed */
2560 0, /* todo_flags_start */
2561 0, /* todo_flags_finish */
2564 class pass_lim : public gimple_opt_pass
2566 public:
2567 pass_lim (gcc::context *ctxt)
2568 : gimple_opt_pass (pass_data_lim, ctxt)
2571 /* opt_pass methods: */
2572 opt_pass * clone () { return new pass_lim (m_ctxt); }
2573 virtual bool gate (function *) { return flag_tree_loop_im != 0; }
2574 virtual unsigned int execute (function *);
2576 }; // class pass_lim
2578 unsigned int
2579 pass_lim::execute (function *fun)
2581 if (number_of_loops (fun) <= 1)
2582 return 0;
2584 return tree_ssa_lim ();
2587 } // anon namespace
2589 gimple_opt_pass *
2590 make_pass_lim (gcc::context *ctxt)
2592 return new pass_lim (ctxt);