2006-01-16 Richard Guenther <rguenther@suse.de>
[official-gcc.git] / gcc / combine.c
blob3b1fd77605e4e2cd256beadcf434e78f547d128f
1 /* Optimize by combining instructions for GNU compiler.
2 Copyright (C) 1987, 1988, 1992, 1993, 1994, 1995, 1996, 1997, 1998,
3 1999, 2000, 2001, 2002, 2003, 2004, 2005, 2006 Free Software Foundation, Inc.
5 This file is part of GCC.
7 GCC is free software; you can redistribute it and/or modify it under
8 the terms of the GNU General Public License as published by the Free
9 Software Foundation; either version 2, or (at your option) any later
10 version.
12 GCC is distributed in the hope that it will be useful, but WITHOUT ANY
13 WARRANTY; without even the implied warranty of MERCHANTABILITY or
14 FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License
15 for more details.
17 You should have received a copy of the GNU General Public License
18 along with GCC; see the file COPYING. If not, write to the Free
19 Software Foundation, 51 Franklin Street, Fifth Floor, Boston, MA
20 02110-1301, USA. */
22 /* This module is essentially the "combiner" phase of the U. of Arizona
23 Portable Optimizer, but redone to work on our list-structured
24 representation for RTL instead of their string representation.
26 The LOG_LINKS of each insn identify the most recent assignment
27 to each REG used in the insn. It is a list of previous insns,
28 each of which contains a SET for a REG that is used in this insn
29 and not used or set in between. LOG_LINKs never cross basic blocks.
30 They were set up by the preceding pass (lifetime analysis).
32 We try to combine each pair of insns joined by a logical link.
33 We also try to combine triples of insns A, B and C when
34 C has a link back to B and B has a link back to A.
36 LOG_LINKS does not have links for use of the CC0. They don't
37 need to, because the insn that sets the CC0 is always immediately
38 before the insn that tests it. So we always regard a branch
39 insn as having a logical link to the preceding insn. The same is true
40 for an insn explicitly using CC0.
42 We check (with use_crosses_set_p) to avoid combining in such a way
43 as to move a computation to a place where its value would be different.
45 Combination is done by mathematically substituting the previous
46 insn(s) values for the regs they set into the expressions in
47 the later insns that refer to these regs. If the result is a valid insn
48 for our target machine, according to the machine description,
49 we install it, delete the earlier insns, and update the data flow
50 information (LOG_LINKS and REG_NOTES) for what we did.
52 There are a few exceptions where the dataflow information created by
53 flow.c aren't completely updated:
55 - reg_live_length is not updated
56 - reg_n_refs is not adjusted in the rare case when a register is
57 no longer required in a computation
58 - there are extremely rare cases (see distribute_notes) when a
59 REG_DEAD note is lost
60 - a LOG_LINKS entry that refers to an insn with multiple SETs may be
61 removed because there is no way to know which register it was
62 linking
64 To simplify substitution, we combine only when the earlier insn(s)
65 consist of only a single assignment. To simplify updating afterward,
66 we never combine when a subroutine call appears in the middle.
68 Since we do not represent assignments to CC0 explicitly except when that
69 is all an insn does, there is no LOG_LINKS entry in an insn that uses
70 the condition code for the insn that set the condition code.
71 Fortunately, these two insns must be consecutive.
72 Therefore, every JUMP_INSN is taken to have an implicit logical link
73 to the preceding insn. This is not quite right, since non-jumps can
74 also use the condition code; but in practice such insns would not
75 combine anyway. */
77 #include "config.h"
78 #include "system.h"
79 #include "coretypes.h"
80 #include "tm.h"
81 #include "rtl.h"
82 #include "tree.h"
83 #include "tm_p.h"
84 #include "flags.h"
85 #include "regs.h"
86 #include "hard-reg-set.h"
87 #include "basic-block.h"
88 #include "insn-config.h"
89 #include "function.h"
90 /* Include expr.h after insn-config.h so we get HAVE_conditional_move. */
91 #include "expr.h"
92 #include "insn-attr.h"
93 #include "recog.h"
94 #include "real.h"
95 #include "toplev.h"
96 #include "target.h"
97 #include "optabs.h"
98 #include "insn-codes.h"
99 #include "rtlhooks-def.h"
100 /* Include output.h for dump_file. */
101 #include "output.h"
102 #include "params.h"
103 #include "timevar.h"
104 #include "tree-pass.h"
106 /* Number of attempts to combine instructions in this function. */
108 static int combine_attempts;
110 /* Number of attempts that got as far as substitution in this function. */
112 static int combine_merges;
114 /* Number of instructions combined with added SETs in this function. */
116 static int combine_extras;
118 /* Number of instructions combined in this function. */
120 static int combine_successes;
122 /* Totals over entire compilation. */
124 static int total_attempts, total_merges, total_extras, total_successes;
127 /* Vector mapping INSN_UIDs to cuids.
128 The cuids are like uids but increase monotonically always.
129 Combine always uses cuids so that it can compare them.
130 But actually renumbering the uids, which we used to do,
131 proves to be a bad idea because it makes it hard to compare
132 the dumps produced by earlier passes with those from later passes. */
134 static int *uid_cuid;
135 static int max_uid_cuid;
137 /* Get the cuid of an insn. */
139 #define INSN_CUID(INSN) \
140 (INSN_UID (INSN) > max_uid_cuid ? insn_cuid (INSN) : uid_cuid[INSN_UID (INSN)])
142 /* In case BITS_PER_WORD == HOST_BITS_PER_WIDE_INT, shifting by
143 BITS_PER_WORD would invoke undefined behavior. Work around it. */
145 #define UWIDE_SHIFT_LEFT_BY_BITS_PER_WORD(val) \
146 (((unsigned HOST_WIDE_INT) (val) << (BITS_PER_WORD - 1)) << 1)
148 /* Maximum register number, which is the size of the tables below. */
150 static unsigned int combine_max_regno;
152 struct reg_stat {
153 /* Record last point of death of (hard or pseudo) register n. */
154 rtx last_death;
156 /* Record last point of modification of (hard or pseudo) register n. */
157 rtx last_set;
159 /* The next group of fields allows the recording of the last value assigned
160 to (hard or pseudo) register n. We use this information to see if an
161 operation being processed is redundant given a prior operation performed
162 on the register. For example, an `and' with a constant is redundant if
163 all the zero bits are already known to be turned off.
165 We use an approach similar to that used by cse, but change it in the
166 following ways:
168 (1) We do not want to reinitialize at each label.
169 (2) It is useful, but not critical, to know the actual value assigned
170 to a register. Often just its form is helpful.
172 Therefore, we maintain the following fields:
174 last_set_value the last value assigned
175 last_set_label records the value of label_tick when the
176 register was assigned
177 last_set_table_tick records the value of label_tick when a
178 value using the register is assigned
179 last_set_invalid set to nonzero when it is not valid
180 to use the value of this register in some
181 register's value
183 To understand the usage of these tables, it is important to understand
184 the distinction between the value in last_set_value being valid and
185 the register being validly contained in some other expression in the
186 table.
188 (The next two parameters are out of date).
190 reg_stat[i].last_set_value is valid if it is nonzero, and either
191 reg_n_sets[i] is 1 or reg_stat[i].last_set_label == label_tick.
193 Register I may validly appear in any expression returned for the value
194 of another register if reg_n_sets[i] is 1. It may also appear in the
195 value for register J if reg_stat[j].last_set_invalid is zero, or
196 reg_stat[i].last_set_label < reg_stat[j].last_set_label.
198 If an expression is found in the table containing a register which may
199 not validly appear in an expression, the register is replaced by
200 something that won't match, (clobber (const_int 0)). */
202 /* Record last value assigned to (hard or pseudo) register n. */
204 rtx last_set_value;
206 /* Record the value of label_tick when an expression involving register n
207 is placed in last_set_value. */
209 int last_set_table_tick;
211 /* Record the value of label_tick when the value for register n is placed in
212 last_set_value. */
214 int last_set_label;
216 /* These fields are maintained in parallel with last_set_value and are
217 used to store the mode in which the register was last set, the bits
218 that were known to be zero when it was last set, and the number of
219 sign bits copies it was known to have when it was last set. */
221 unsigned HOST_WIDE_INT last_set_nonzero_bits;
222 char last_set_sign_bit_copies;
223 ENUM_BITFIELD(machine_mode) last_set_mode : 8;
225 /* Set nonzero if references to register n in expressions should not be
226 used. last_set_invalid is set nonzero when this register is being
227 assigned to and last_set_table_tick == label_tick. */
229 char last_set_invalid;
231 /* Some registers that are set more than once and used in more than one
232 basic block are nevertheless always set in similar ways. For example,
233 a QImode register may be loaded from memory in two places on a machine
234 where byte loads zero extend.
236 We record in the following fields if a register has some leading bits
237 that are always equal to the sign bit, and what we know about the
238 nonzero bits of a register, specifically which bits are known to be
239 zero.
241 If an entry is zero, it means that we don't know anything special. */
243 unsigned char sign_bit_copies;
245 unsigned HOST_WIDE_INT nonzero_bits;
247 /* Record the value of the label_tick when the last truncation
248 happened. The field truncated_to_mode is only valid if
249 truncation_label == label_tick. */
251 int truncation_label;
253 /* Record the last truncation seen for this register. If truncation
254 is not a nop to this mode we might be able to save an explicit
255 truncation if we know that value already contains a truncated
256 value. */
258 ENUM_BITFIELD(machine_mode) truncated_to_mode : 8;
261 static struct reg_stat *reg_stat;
263 /* Record the cuid of the last insn that invalidated memory
264 (anything that writes memory, and subroutine calls, but not pushes). */
266 static int mem_last_set;
268 /* Record the cuid of the last CALL_INSN
269 so we can tell whether a potential combination crosses any calls. */
271 static int last_call_cuid;
273 /* When `subst' is called, this is the insn that is being modified
274 (by combining in a previous insn). The PATTERN of this insn
275 is still the old pattern partially modified and it should not be
276 looked at, but this may be used to examine the successors of the insn
277 to judge whether a simplification is valid. */
279 static rtx subst_insn;
281 /* This is the lowest CUID that `subst' is currently dealing with.
282 get_last_value will not return a value if the register was set at or
283 after this CUID. If not for this mechanism, we could get confused if
284 I2 or I1 in try_combine were an insn that used the old value of a register
285 to obtain a new value. In that case, we might erroneously get the
286 new value of the register when we wanted the old one. */
288 static int subst_low_cuid;
290 /* This contains any hard registers that are used in newpat; reg_dead_at_p
291 must consider all these registers to be always live. */
293 static HARD_REG_SET newpat_used_regs;
295 /* This is an insn to which a LOG_LINKS entry has been added. If this
296 insn is the earlier than I2 or I3, combine should rescan starting at
297 that location. */
299 static rtx added_links_insn;
301 /* Basic block in which we are performing combines. */
302 static basic_block this_basic_block;
304 /* A bitmap indicating which blocks had registers go dead at entry.
305 After combine, we'll need to re-do global life analysis with
306 those blocks as starting points. */
307 static sbitmap refresh_blocks;
309 /* The following array records the insn_rtx_cost for every insn
310 in the instruction stream. */
312 static int *uid_insn_cost;
314 /* Length of the currently allocated uid_insn_cost array. */
316 static int last_insn_cost;
318 /* Incremented for each label. */
320 static int label_tick;
322 /* Mode used to compute significance in reg_stat[].nonzero_bits. It is the
323 largest integer mode that can fit in HOST_BITS_PER_WIDE_INT. */
325 static enum machine_mode nonzero_bits_mode;
327 /* Nonzero when reg_stat[].nonzero_bits and reg_stat[].sign_bit_copies can
328 be safely used. It is zero while computing them and after combine has
329 completed. This former test prevents propagating values based on
330 previously set values, which can be incorrect if a variable is modified
331 in a loop. */
333 static int nonzero_sign_valid;
336 /* Record one modification to rtl structure
337 to be undone by storing old_contents into *where. */
339 struct undo
341 struct undo *next;
342 enum { UNDO_RTX, UNDO_INT, UNDO_MODE } kind;
343 union { rtx r; int i; enum machine_mode m; } old_contents;
344 union { rtx *r; int *i; } where;
347 /* Record a bunch of changes to be undone, up to MAX_UNDO of them.
348 num_undo says how many are currently recorded.
350 other_insn is nonzero if we have modified some other insn in the process
351 of working on subst_insn. It must be verified too. */
353 struct undobuf
355 struct undo *undos;
356 struct undo *frees;
357 rtx other_insn;
360 static struct undobuf undobuf;
362 /* Number of times the pseudo being substituted for
363 was found and replaced. */
365 static int n_occurrences;
367 static rtx reg_nonzero_bits_for_combine (rtx, enum machine_mode, rtx,
368 enum machine_mode,
369 unsigned HOST_WIDE_INT,
370 unsigned HOST_WIDE_INT *);
371 static rtx reg_num_sign_bit_copies_for_combine (rtx, enum machine_mode, rtx,
372 enum machine_mode,
373 unsigned int, unsigned int *);
374 static void do_SUBST (rtx *, rtx);
375 static void do_SUBST_INT (int *, int);
376 static void init_reg_last (void);
377 static void setup_incoming_promotions (void);
378 static void set_nonzero_bits_and_sign_copies (rtx, rtx, void *);
379 static int cant_combine_insn_p (rtx);
380 static int can_combine_p (rtx, rtx, rtx, rtx, rtx *, rtx *);
381 static int combinable_i3pat (rtx, rtx *, rtx, rtx, int, rtx *);
382 static int contains_muldiv (rtx);
383 static rtx try_combine (rtx, rtx, rtx, int *);
384 static void undo_all (void);
385 static void undo_commit (void);
386 static rtx *find_split_point (rtx *, rtx);
387 static rtx subst (rtx, rtx, rtx, int, int);
388 static rtx combine_simplify_rtx (rtx, enum machine_mode, int);
389 static rtx simplify_if_then_else (rtx);
390 static rtx simplify_set (rtx);
391 static rtx simplify_logical (rtx);
392 static rtx expand_compound_operation (rtx);
393 static rtx expand_field_assignment (rtx);
394 static rtx make_extraction (enum machine_mode, rtx, HOST_WIDE_INT,
395 rtx, unsigned HOST_WIDE_INT, int, int, int);
396 static rtx extract_left_shift (rtx, int);
397 static rtx make_compound_operation (rtx, enum rtx_code);
398 static int get_pos_from_mask (unsigned HOST_WIDE_INT,
399 unsigned HOST_WIDE_INT *);
400 static rtx canon_reg_for_combine (rtx, rtx);
401 static rtx force_to_mode (rtx, enum machine_mode,
402 unsigned HOST_WIDE_INT, int);
403 static rtx if_then_else_cond (rtx, rtx *, rtx *);
404 static rtx known_cond (rtx, enum rtx_code, rtx, rtx);
405 static int rtx_equal_for_field_assignment_p (rtx, rtx);
406 static rtx make_field_assignment (rtx);
407 static rtx apply_distributive_law (rtx);
408 static rtx distribute_and_simplify_rtx (rtx, int);
409 static rtx simplify_and_const_int_1 (enum machine_mode, rtx,
410 unsigned HOST_WIDE_INT);
411 static rtx simplify_and_const_int (rtx, enum machine_mode, rtx,
412 unsigned HOST_WIDE_INT);
413 static int merge_outer_ops (enum rtx_code *, HOST_WIDE_INT *, enum rtx_code,
414 HOST_WIDE_INT, enum machine_mode, int *);
415 static rtx simplify_shift_const_1 (enum rtx_code, enum machine_mode, rtx, int);
416 static rtx simplify_shift_const (rtx, enum rtx_code, enum machine_mode, rtx,
417 int);
418 static int recog_for_combine (rtx *, rtx, rtx *);
419 static rtx gen_lowpart_for_combine (enum machine_mode, rtx);
420 static enum rtx_code simplify_comparison (enum rtx_code, rtx *, rtx *);
421 static void update_table_tick (rtx);
422 static void record_value_for_reg (rtx, rtx, rtx);
423 static void check_conversions (rtx, rtx);
424 static void record_dead_and_set_regs_1 (rtx, rtx, void *);
425 static void record_dead_and_set_regs (rtx);
426 static int get_last_value_validate (rtx *, rtx, int, int);
427 static rtx get_last_value (rtx);
428 static int use_crosses_set_p (rtx, int);
429 static void reg_dead_at_p_1 (rtx, rtx, void *);
430 static int reg_dead_at_p (rtx, rtx);
431 static void move_deaths (rtx, rtx, int, rtx, rtx *);
432 static int reg_bitfield_target_p (rtx, rtx);
433 static void distribute_notes (rtx, rtx, rtx, rtx, rtx, rtx);
434 static void distribute_links (rtx);
435 static void mark_used_regs_combine (rtx);
436 static int insn_cuid (rtx);
437 static void record_promoted_value (rtx, rtx);
438 static int unmentioned_reg_p_1 (rtx *, void *);
439 static bool unmentioned_reg_p (rtx, rtx);
440 static void record_truncated_value (rtx);
441 static bool reg_truncated_to_mode (enum machine_mode, rtx);
442 static rtx gen_lowpart_or_truncate (enum machine_mode, rtx);
445 /* It is not safe to use ordinary gen_lowpart in combine.
446 See comments in gen_lowpart_for_combine. */
447 #undef RTL_HOOKS_GEN_LOWPART
448 #define RTL_HOOKS_GEN_LOWPART gen_lowpart_for_combine
450 /* Our implementation of gen_lowpart never emits a new pseudo. */
451 #undef RTL_HOOKS_GEN_LOWPART_NO_EMIT
452 #define RTL_HOOKS_GEN_LOWPART_NO_EMIT gen_lowpart_for_combine
454 #undef RTL_HOOKS_REG_NONZERO_REG_BITS
455 #define RTL_HOOKS_REG_NONZERO_REG_BITS reg_nonzero_bits_for_combine
457 #undef RTL_HOOKS_REG_NUM_SIGN_BIT_COPIES
458 #define RTL_HOOKS_REG_NUM_SIGN_BIT_COPIES reg_num_sign_bit_copies_for_combine
460 static const struct rtl_hooks combine_rtl_hooks = RTL_HOOKS_INITIALIZER;
463 /* Substitute NEWVAL, an rtx expression, into INTO, a place in some
464 insn. The substitution can be undone by undo_all. If INTO is already
465 set to NEWVAL, do not record this change. Because computing NEWVAL might
466 also call SUBST, we have to compute it before we put anything into
467 the undo table. */
469 static void
470 do_SUBST (rtx *into, rtx newval)
472 struct undo *buf;
473 rtx oldval = *into;
475 if (oldval == newval)
476 return;
478 /* We'd like to catch as many invalid transformations here as
479 possible. Unfortunately, there are way too many mode changes
480 that are perfectly valid, so we'd waste too much effort for
481 little gain doing the checks here. Focus on catching invalid
482 transformations involving integer constants. */
483 if (GET_MODE_CLASS (GET_MODE (oldval)) == MODE_INT
484 && GET_CODE (newval) == CONST_INT)
486 /* Sanity check that we're replacing oldval with a CONST_INT
487 that is a valid sign-extension for the original mode. */
488 gcc_assert (INTVAL (newval)
489 == trunc_int_for_mode (INTVAL (newval), GET_MODE (oldval)));
491 /* Replacing the operand of a SUBREG or a ZERO_EXTEND with a
492 CONST_INT is not valid, because after the replacement, the
493 original mode would be gone. Unfortunately, we can't tell
494 when do_SUBST is called to replace the operand thereof, so we
495 perform this test on oldval instead, checking whether an
496 invalid replacement took place before we got here. */
497 gcc_assert (!(GET_CODE (oldval) == SUBREG
498 && GET_CODE (SUBREG_REG (oldval)) == CONST_INT));
499 gcc_assert (!(GET_CODE (oldval) == ZERO_EXTEND
500 && GET_CODE (XEXP (oldval, 0)) == CONST_INT));
503 if (undobuf.frees)
504 buf = undobuf.frees, undobuf.frees = buf->next;
505 else
506 buf = xmalloc (sizeof (struct undo));
508 buf->kind = UNDO_RTX;
509 buf->where.r = into;
510 buf->old_contents.r = oldval;
511 *into = newval;
513 buf->next = undobuf.undos, undobuf.undos = buf;
516 #define SUBST(INTO, NEWVAL) do_SUBST(&(INTO), (NEWVAL))
518 /* Similar to SUBST, but NEWVAL is an int expression. Note that substitution
519 for the value of a HOST_WIDE_INT value (including CONST_INT) is
520 not safe. */
522 static void
523 do_SUBST_INT (int *into, int newval)
525 struct undo *buf;
526 int oldval = *into;
528 if (oldval == newval)
529 return;
531 if (undobuf.frees)
532 buf = undobuf.frees, undobuf.frees = buf->next;
533 else
534 buf = xmalloc (sizeof (struct undo));
536 buf->kind = UNDO_INT;
537 buf->where.i = into;
538 buf->old_contents.i = oldval;
539 *into = newval;
541 buf->next = undobuf.undos, undobuf.undos = buf;
544 #define SUBST_INT(INTO, NEWVAL) do_SUBST_INT(&(INTO), (NEWVAL))
546 /* Similar to SUBST, but just substitute the mode. This is used when
547 changing the mode of a pseudo-register, so that any other
548 references to the entry in the regno_reg_rtx array will change as
549 well. */
551 static void
552 do_SUBST_MODE (rtx *into, enum machine_mode newval)
554 struct undo *buf;
555 enum machine_mode oldval = GET_MODE (*into);
557 if (oldval == newval)
558 return;
560 if (undobuf.frees)
561 buf = undobuf.frees, undobuf.frees = buf->next;
562 else
563 buf = xmalloc (sizeof (struct undo));
565 buf->kind = UNDO_MODE;
566 buf->where.r = into;
567 buf->old_contents.m = oldval;
568 PUT_MODE (*into, newval);
570 buf->next = undobuf.undos, undobuf.undos = buf;
573 #define SUBST_MODE(INTO, NEWVAL) do_SUBST_MODE(&(INTO), (NEWVAL))
575 /* Subroutine of try_combine. Determine whether the combine replacement
576 patterns NEWPAT and NEWI2PAT are cheaper according to insn_rtx_cost
577 that the original instruction sequence I1, I2 and I3. Note that I1
578 and/or NEWI2PAT may be NULL_RTX. This function returns false, if the
579 costs of all instructions can be estimated, and the replacements are
580 more expensive than the original sequence. */
582 static bool
583 combine_validate_cost (rtx i1, rtx i2, rtx i3, rtx newpat, rtx newi2pat)
585 int i1_cost, i2_cost, i3_cost;
586 int new_i2_cost, new_i3_cost;
587 int old_cost, new_cost;
589 /* Lookup the original insn_rtx_costs. */
590 i2_cost = INSN_UID (i2) <= last_insn_cost
591 ? uid_insn_cost[INSN_UID (i2)] : 0;
592 i3_cost = INSN_UID (i3) <= last_insn_cost
593 ? uid_insn_cost[INSN_UID (i3)] : 0;
595 if (i1)
597 i1_cost = INSN_UID (i1) <= last_insn_cost
598 ? uid_insn_cost[INSN_UID (i1)] : 0;
599 old_cost = (i1_cost > 0 && i2_cost > 0 && i3_cost > 0)
600 ? i1_cost + i2_cost + i3_cost : 0;
602 else
604 old_cost = (i2_cost > 0 && i3_cost > 0) ? i2_cost + i3_cost : 0;
605 i1_cost = 0;
608 /* Calculate the replacement insn_rtx_costs. */
609 new_i3_cost = insn_rtx_cost (newpat);
610 if (newi2pat)
612 new_i2_cost = insn_rtx_cost (newi2pat);
613 new_cost = (new_i2_cost > 0 && new_i3_cost > 0)
614 ? new_i2_cost + new_i3_cost : 0;
616 else
618 new_cost = new_i3_cost;
619 new_i2_cost = 0;
622 if (undobuf.other_insn)
624 int old_other_cost, new_other_cost;
626 old_other_cost = (INSN_UID (undobuf.other_insn) <= last_insn_cost
627 ? uid_insn_cost[INSN_UID (undobuf.other_insn)] : 0);
628 new_other_cost = insn_rtx_cost (PATTERN (undobuf.other_insn));
629 if (old_other_cost > 0 && new_other_cost > 0)
631 old_cost += old_other_cost;
632 new_cost += new_other_cost;
634 else
635 old_cost = 0;
638 /* Disallow this recombination if both new_cost and old_cost are
639 greater than zero, and new_cost is greater than old cost. */
640 if (old_cost > 0
641 && new_cost > old_cost)
643 if (dump_file)
645 if (i1)
647 fprintf (dump_file,
648 "rejecting combination of insns %d, %d and %d\n",
649 INSN_UID (i1), INSN_UID (i2), INSN_UID (i3));
650 fprintf (dump_file, "original costs %d + %d + %d = %d\n",
651 i1_cost, i2_cost, i3_cost, old_cost);
653 else
655 fprintf (dump_file,
656 "rejecting combination of insns %d and %d\n",
657 INSN_UID (i2), INSN_UID (i3));
658 fprintf (dump_file, "original costs %d + %d = %d\n",
659 i2_cost, i3_cost, old_cost);
662 if (newi2pat)
664 fprintf (dump_file, "replacement costs %d + %d = %d\n",
665 new_i2_cost, new_i3_cost, new_cost);
667 else
668 fprintf (dump_file, "replacement cost %d\n", new_cost);
671 return false;
674 /* Update the uid_insn_cost array with the replacement costs. */
675 uid_insn_cost[INSN_UID (i2)] = new_i2_cost;
676 uid_insn_cost[INSN_UID (i3)] = new_i3_cost;
677 if (i1)
678 uid_insn_cost[INSN_UID (i1)] = 0;
680 return true;
683 /* Main entry point for combiner. F is the first insn of the function.
684 NREGS is the first unused pseudo-reg number.
686 Return nonzero if the combiner has turned an indirect jump
687 instruction into a direct jump. */
689 combine_instructions (rtx f, unsigned int nregs)
691 rtx insn, next;
692 #ifdef HAVE_cc0
693 rtx prev;
694 #endif
695 int i;
696 unsigned int j = 0;
697 rtx links, nextlinks;
698 sbitmap_iterator sbi;
700 int new_direct_jump_p = 0;
702 combine_attempts = 0;
703 combine_merges = 0;
704 combine_extras = 0;
705 combine_successes = 0;
707 combine_max_regno = nregs;
709 rtl_hooks = combine_rtl_hooks;
711 reg_stat = xcalloc (nregs, sizeof (struct reg_stat));
713 init_recog_no_volatile ();
715 /* Compute maximum uid value so uid_cuid can be allocated. */
717 for (insn = f, i = 0; insn; insn = NEXT_INSN (insn))
718 if (INSN_UID (insn) > i)
719 i = INSN_UID (insn);
721 uid_cuid = xmalloc ((i + 1) * sizeof (int));
722 max_uid_cuid = i;
724 nonzero_bits_mode = mode_for_size (HOST_BITS_PER_WIDE_INT, MODE_INT, 0);
726 /* Don't use reg_stat[].nonzero_bits when computing it. This can cause
727 problems when, for example, we have j <<= 1 in a loop. */
729 nonzero_sign_valid = 0;
731 /* Compute the mapping from uids to cuids.
732 Cuids are numbers assigned to insns, like uids,
733 except that cuids increase monotonically through the code.
735 Scan all SETs and see if we can deduce anything about what
736 bits are known to be zero for some registers and how many copies
737 of the sign bit are known to exist for those registers.
739 Also set any known values so that we can use it while searching
740 for what bits are known to be set. */
742 label_tick = 1;
744 setup_incoming_promotions ();
746 refresh_blocks = sbitmap_alloc (last_basic_block);
747 sbitmap_zero (refresh_blocks);
749 /* Allocate array of current insn_rtx_costs. */
750 uid_insn_cost = xcalloc (max_uid_cuid + 1, sizeof (int));
751 last_insn_cost = max_uid_cuid;
753 for (insn = f, i = 0; insn; insn = NEXT_INSN (insn))
755 uid_cuid[INSN_UID (insn)] = ++i;
756 subst_low_cuid = i;
757 subst_insn = insn;
759 if (INSN_P (insn))
761 note_stores (PATTERN (insn), set_nonzero_bits_and_sign_copies,
762 NULL);
763 record_dead_and_set_regs (insn);
765 #ifdef AUTO_INC_DEC
766 for (links = REG_NOTES (insn); links; links = XEXP (links, 1))
767 if (REG_NOTE_KIND (links) == REG_INC)
768 set_nonzero_bits_and_sign_copies (XEXP (links, 0), NULL_RTX,
769 NULL);
770 #endif
772 /* Record the current insn_rtx_cost of this instruction. */
773 if (NONJUMP_INSN_P (insn))
774 uid_insn_cost[INSN_UID (insn)] = insn_rtx_cost (PATTERN (insn));
775 if (dump_file)
776 fprintf(dump_file, "insn_cost %d: %d\n",
777 INSN_UID (insn), uid_insn_cost[INSN_UID (insn)]);
780 if (LABEL_P (insn))
781 label_tick++;
784 nonzero_sign_valid = 1;
786 /* Now scan all the insns in forward order. */
788 label_tick = 1;
789 last_call_cuid = 0;
790 mem_last_set = 0;
791 init_reg_last ();
792 setup_incoming_promotions ();
794 FOR_EACH_BB (this_basic_block)
796 for (insn = BB_HEAD (this_basic_block);
797 insn != NEXT_INSN (BB_END (this_basic_block));
798 insn = next ? next : NEXT_INSN (insn))
800 next = 0;
802 if (LABEL_P (insn))
803 label_tick++;
805 else if (INSN_P (insn))
807 /* See if we know about function return values before this
808 insn based upon SUBREG flags. */
809 check_conversions (insn, PATTERN (insn));
811 /* Try this insn with each insn it links back to. */
813 for (links = LOG_LINKS (insn); links; links = XEXP (links, 1))
814 if ((next = try_combine (insn, XEXP (links, 0),
815 NULL_RTX, &new_direct_jump_p)) != 0)
816 goto retry;
818 /* Try each sequence of three linked insns ending with this one. */
820 for (links = LOG_LINKS (insn); links; links = XEXP (links, 1))
822 rtx link = XEXP (links, 0);
824 /* If the linked insn has been replaced by a note, then there
825 is no point in pursuing this chain any further. */
826 if (NOTE_P (link))
827 continue;
829 for (nextlinks = LOG_LINKS (link);
830 nextlinks;
831 nextlinks = XEXP (nextlinks, 1))
832 if ((next = try_combine (insn, link,
833 XEXP (nextlinks, 0),
834 &new_direct_jump_p)) != 0)
835 goto retry;
838 #ifdef HAVE_cc0
839 /* Try to combine a jump insn that uses CC0
840 with a preceding insn that sets CC0, and maybe with its
841 logical predecessor as well.
842 This is how we make decrement-and-branch insns.
843 We need this special code because data flow connections
844 via CC0 do not get entered in LOG_LINKS. */
846 if (JUMP_P (insn)
847 && (prev = prev_nonnote_insn (insn)) != 0
848 && NONJUMP_INSN_P (prev)
849 && sets_cc0_p (PATTERN (prev)))
851 if ((next = try_combine (insn, prev,
852 NULL_RTX, &new_direct_jump_p)) != 0)
853 goto retry;
855 for (nextlinks = LOG_LINKS (prev); nextlinks;
856 nextlinks = XEXP (nextlinks, 1))
857 if ((next = try_combine (insn, prev,
858 XEXP (nextlinks, 0),
859 &new_direct_jump_p)) != 0)
860 goto retry;
863 /* Do the same for an insn that explicitly references CC0. */
864 if (NONJUMP_INSN_P (insn)
865 && (prev = prev_nonnote_insn (insn)) != 0
866 && NONJUMP_INSN_P (prev)
867 && sets_cc0_p (PATTERN (prev))
868 && GET_CODE (PATTERN (insn)) == SET
869 && reg_mentioned_p (cc0_rtx, SET_SRC (PATTERN (insn))))
871 if ((next = try_combine (insn, prev,
872 NULL_RTX, &new_direct_jump_p)) != 0)
873 goto retry;
875 for (nextlinks = LOG_LINKS (prev); nextlinks;
876 nextlinks = XEXP (nextlinks, 1))
877 if ((next = try_combine (insn, prev,
878 XEXP (nextlinks, 0),
879 &new_direct_jump_p)) != 0)
880 goto retry;
883 /* Finally, see if any of the insns that this insn links to
884 explicitly references CC0. If so, try this insn, that insn,
885 and its predecessor if it sets CC0. */
886 for (links = LOG_LINKS (insn); links; links = XEXP (links, 1))
887 if (NONJUMP_INSN_P (XEXP (links, 0))
888 && GET_CODE (PATTERN (XEXP (links, 0))) == SET
889 && reg_mentioned_p (cc0_rtx, SET_SRC (PATTERN (XEXP (links, 0))))
890 && (prev = prev_nonnote_insn (XEXP (links, 0))) != 0
891 && NONJUMP_INSN_P (prev)
892 && sets_cc0_p (PATTERN (prev))
893 && (next = try_combine (insn, XEXP (links, 0),
894 prev, &new_direct_jump_p)) != 0)
895 goto retry;
896 #endif
898 /* Try combining an insn with two different insns whose results it
899 uses. */
900 for (links = LOG_LINKS (insn); links; links = XEXP (links, 1))
901 for (nextlinks = XEXP (links, 1); nextlinks;
902 nextlinks = XEXP (nextlinks, 1))
903 if ((next = try_combine (insn, XEXP (links, 0),
904 XEXP (nextlinks, 0),
905 &new_direct_jump_p)) != 0)
906 goto retry;
908 /* Try this insn with each REG_EQUAL note it links back to. */
909 for (links = LOG_LINKS (insn); links; links = XEXP (links, 1))
911 rtx set, note;
912 rtx temp = XEXP (links, 0);
913 if ((set = single_set (temp)) != 0
914 && (note = find_reg_equal_equiv_note (temp)) != 0
915 && (note = XEXP (note, 0), GET_CODE (note)) != EXPR_LIST
916 /* Avoid using a register that may already been marked
917 dead by an earlier instruction. */
918 && ! unmentioned_reg_p (note, SET_SRC (set))
919 && (GET_MODE (note) == VOIDmode
920 ? SCALAR_INT_MODE_P (GET_MODE (SET_DEST (set)))
921 : GET_MODE (SET_DEST (set)) == GET_MODE (note)))
923 /* Temporarily replace the set's source with the
924 contents of the REG_EQUAL note. The insn will
925 be deleted or recognized by try_combine. */
926 rtx orig = SET_SRC (set);
927 SET_SRC (set) = note;
928 next = try_combine (insn, temp, NULL_RTX,
929 &new_direct_jump_p);
930 if (next)
931 goto retry;
932 SET_SRC (set) = orig;
936 if (!NOTE_P (insn))
937 record_dead_and_set_regs (insn);
939 retry:
944 clear_bb_flags ();
946 EXECUTE_IF_SET_IN_SBITMAP (refresh_blocks, 0, j, sbi)
947 BASIC_BLOCK (j)->flags |= BB_DIRTY;
948 new_direct_jump_p |= purge_all_dead_edges ();
949 delete_noop_moves ();
951 update_life_info_in_dirty_blocks (UPDATE_LIFE_GLOBAL_RM_NOTES,
952 PROP_DEATH_NOTES | PROP_SCAN_DEAD_CODE
953 | PROP_KILL_DEAD_CODE);
955 /* Clean up. */
956 sbitmap_free (refresh_blocks);
957 free (uid_insn_cost);
958 free (reg_stat);
959 free (uid_cuid);
962 struct undo *undo, *next;
963 for (undo = undobuf.frees; undo; undo = next)
965 next = undo->next;
966 free (undo);
968 undobuf.frees = 0;
971 total_attempts += combine_attempts;
972 total_merges += combine_merges;
973 total_extras += combine_extras;
974 total_successes += combine_successes;
976 nonzero_sign_valid = 0;
977 rtl_hooks = general_rtl_hooks;
979 /* Make recognizer allow volatile MEMs again. */
980 init_recog ();
982 return new_direct_jump_p;
985 /* Wipe the last_xxx fields of reg_stat in preparation for another pass. */
987 static void
988 init_reg_last (void)
990 unsigned int i;
991 for (i = 0; i < combine_max_regno; i++)
992 memset (reg_stat + i, 0, offsetof (struct reg_stat, sign_bit_copies));
995 /* Set up any promoted values for incoming argument registers. */
997 static void
998 setup_incoming_promotions (void)
1000 unsigned int regno;
1001 rtx reg;
1002 enum machine_mode mode;
1003 int unsignedp;
1004 rtx first = get_insns ();
1006 if (targetm.calls.promote_function_args (TREE_TYPE (cfun->decl)))
1008 for (regno = 0; regno < FIRST_PSEUDO_REGISTER; regno++)
1009 /* Check whether this register can hold an incoming pointer
1010 argument. FUNCTION_ARG_REGNO_P tests outgoing register
1011 numbers, so translate if necessary due to register windows. */
1012 if (FUNCTION_ARG_REGNO_P (OUTGOING_REGNO (regno))
1013 && (reg = promoted_input_arg (regno, &mode, &unsignedp)) != 0)
1015 record_value_for_reg
1016 (reg, first, gen_rtx_fmt_e ((unsignedp ? ZERO_EXTEND
1017 : SIGN_EXTEND),
1018 GET_MODE (reg),
1019 gen_rtx_CLOBBER (mode, const0_rtx)));
1024 /* Called via note_stores. If X is a pseudo that is narrower than
1025 HOST_BITS_PER_WIDE_INT and is being set, record what bits are known zero.
1027 If we are setting only a portion of X and we can't figure out what
1028 portion, assume all bits will be used since we don't know what will
1029 be happening.
1031 Similarly, set how many bits of X are known to be copies of the sign bit
1032 at all locations in the function. This is the smallest number implied
1033 by any set of X. */
1035 static void
1036 set_nonzero_bits_and_sign_copies (rtx x, rtx set,
1037 void *data ATTRIBUTE_UNUSED)
1039 unsigned int num;
1041 if (REG_P (x)
1042 && REGNO (x) >= FIRST_PSEUDO_REGISTER
1043 /* If this register is undefined at the start of the file, we can't
1044 say what its contents were. */
1045 && ! REGNO_REG_SET_P
1046 (ENTRY_BLOCK_PTR->next_bb->il.rtl->global_live_at_start, REGNO (x))
1047 && GET_MODE_BITSIZE (GET_MODE (x)) <= HOST_BITS_PER_WIDE_INT)
1049 if (set == 0 || GET_CODE (set) == CLOBBER)
1051 reg_stat[REGNO (x)].nonzero_bits = GET_MODE_MASK (GET_MODE (x));
1052 reg_stat[REGNO (x)].sign_bit_copies = 1;
1053 return;
1056 /* If this is a complex assignment, see if we can convert it into a
1057 simple assignment. */
1058 set = expand_field_assignment (set);
1060 /* If this is a simple assignment, or we have a paradoxical SUBREG,
1061 set what we know about X. */
1063 if (SET_DEST (set) == x
1064 || (GET_CODE (SET_DEST (set)) == SUBREG
1065 && (GET_MODE_SIZE (GET_MODE (SET_DEST (set)))
1066 > GET_MODE_SIZE (GET_MODE (SUBREG_REG (SET_DEST (set)))))
1067 && SUBREG_REG (SET_DEST (set)) == x))
1069 rtx src = SET_SRC (set);
1071 #ifdef SHORT_IMMEDIATES_SIGN_EXTEND
1072 /* If X is narrower than a word and SRC is a non-negative
1073 constant that would appear negative in the mode of X,
1074 sign-extend it for use in reg_stat[].nonzero_bits because some
1075 machines (maybe most) will actually do the sign-extension
1076 and this is the conservative approach.
1078 ??? For 2.5, try to tighten up the MD files in this regard
1079 instead of this kludge. */
1081 if (GET_MODE_BITSIZE (GET_MODE (x)) < BITS_PER_WORD
1082 && GET_CODE (src) == CONST_INT
1083 && INTVAL (src) > 0
1084 && 0 != (INTVAL (src)
1085 & ((HOST_WIDE_INT) 1
1086 << (GET_MODE_BITSIZE (GET_MODE (x)) - 1))))
1087 src = GEN_INT (INTVAL (src)
1088 | ((HOST_WIDE_INT) (-1)
1089 << GET_MODE_BITSIZE (GET_MODE (x))));
1090 #endif
1092 /* Don't call nonzero_bits if it cannot change anything. */
1093 if (reg_stat[REGNO (x)].nonzero_bits != ~(unsigned HOST_WIDE_INT) 0)
1094 reg_stat[REGNO (x)].nonzero_bits
1095 |= nonzero_bits (src, nonzero_bits_mode);
1096 num = num_sign_bit_copies (SET_SRC (set), GET_MODE (x));
1097 if (reg_stat[REGNO (x)].sign_bit_copies == 0
1098 || reg_stat[REGNO (x)].sign_bit_copies > num)
1099 reg_stat[REGNO (x)].sign_bit_copies = num;
1101 else
1103 reg_stat[REGNO (x)].nonzero_bits = GET_MODE_MASK (GET_MODE (x));
1104 reg_stat[REGNO (x)].sign_bit_copies = 1;
1109 /* See if INSN can be combined into I3. PRED and SUCC are optionally
1110 insns that were previously combined into I3 or that will be combined
1111 into the merger of INSN and I3.
1113 Return 0 if the combination is not allowed for any reason.
1115 If the combination is allowed, *PDEST will be set to the single
1116 destination of INSN and *PSRC to the single source, and this function
1117 will return 1. */
1119 static int
1120 can_combine_p (rtx insn, rtx i3, rtx pred ATTRIBUTE_UNUSED, rtx succ,
1121 rtx *pdest, rtx *psrc)
1123 int i;
1124 rtx set = 0, src, dest;
1125 rtx p;
1126 #ifdef AUTO_INC_DEC
1127 rtx link;
1128 #endif
1129 int all_adjacent = (succ ? (next_active_insn (insn) == succ
1130 && next_active_insn (succ) == i3)
1131 : next_active_insn (insn) == i3);
1133 /* Can combine only if previous insn is a SET of a REG, a SUBREG or CC0.
1134 or a PARALLEL consisting of such a SET and CLOBBERs.
1136 If INSN has CLOBBER parallel parts, ignore them for our processing.
1137 By definition, these happen during the execution of the insn. When it
1138 is merged with another insn, all bets are off. If they are, in fact,
1139 needed and aren't also supplied in I3, they may be added by
1140 recog_for_combine. Otherwise, it won't match.
1142 We can also ignore a SET whose SET_DEST is mentioned in a REG_UNUSED
1143 note.
1145 Get the source and destination of INSN. If more than one, can't
1146 combine. */
1148 if (GET_CODE (PATTERN (insn)) == SET)
1149 set = PATTERN (insn);
1150 else if (GET_CODE (PATTERN (insn)) == PARALLEL
1151 && GET_CODE (XVECEXP (PATTERN (insn), 0, 0)) == SET)
1153 for (i = 0; i < XVECLEN (PATTERN (insn), 0); i++)
1155 rtx elt = XVECEXP (PATTERN (insn), 0, i);
1156 rtx note;
1158 switch (GET_CODE (elt))
1160 /* This is important to combine floating point insns
1161 for the SH4 port. */
1162 case USE:
1163 /* Combining an isolated USE doesn't make sense.
1164 We depend here on combinable_i3pat to reject them. */
1165 /* The code below this loop only verifies that the inputs of
1166 the SET in INSN do not change. We call reg_set_between_p
1167 to verify that the REG in the USE does not change between
1168 I3 and INSN.
1169 If the USE in INSN was for a pseudo register, the matching
1170 insn pattern will likely match any register; combining this
1171 with any other USE would only be safe if we knew that the
1172 used registers have identical values, or if there was
1173 something to tell them apart, e.g. different modes. For
1174 now, we forgo such complicated tests and simply disallow
1175 combining of USES of pseudo registers with any other USE. */
1176 if (REG_P (XEXP (elt, 0))
1177 && GET_CODE (PATTERN (i3)) == PARALLEL)
1179 rtx i3pat = PATTERN (i3);
1180 int i = XVECLEN (i3pat, 0) - 1;
1181 unsigned int regno = REGNO (XEXP (elt, 0));
1185 rtx i3elt = XVECEXP (i3pat, 0, i);
1187 if (GET_CODE (i3elt) == USE
1188 && REG_P (XEXP (i3elt, 0))
1189 && (REGNO (XEXP (i3elt, 0)) == regno
1190 ? reg_set_between_p (XEXP (elt, 0),
1191 PREV_INSN (insn), i3)
1192 : regno >= FIRST_PSEUDO_REGISTER))
1193 return 0;
1195 while (--i >= 0);
1197 break;
1199 /* We can ignore CLOBBERs. */
1200 case CLOBBER:
1201 break;
1203 case SET:
1204 /* Ignore SETs whose result isn't used but not those that
1205 have side-effects. */
1206 if (find_reg_note (insn, REG_UNUSED, SET_DEST (elt))
1207 && (!(note = find_reg_note (insn, REG_EH_REGION, NULL_RTX))
1208 || INTVAL (XEXP (note, 0)) <= 0)
1209 && ! side_effects_p (elt))
1210 break;
1212 /* If we have already found a SET, this is a second one and
1213 so we cannot combine with this insn. */
1214 if (set)
1215 return 0;
1217 set = elt;
1218 break;
1220 default:
1221 /* Anything else means we can't combine. */
1222 return 0;
1226 if (set == 0
1227 /* If SET_SRC is an ASM_OPERANDS we can't throw away these CLOBBERs,
1228 so don't do anything with it. */
1229 || GET_CODE (SET_SRC (set)) == ASM_OPERANDS)
1230 return 0;
1232 else
1233 return 0;
1235 if (set == 0)
1236 return 0;
1238 set = expand_field_assignment (set);
1239 src = SET_SRC (set), dest = SET_DEST (set);
1241 /* Don't eliminate a store in the stack pointer. */
1242 if (dest == stack_pointer_rtx
1243 /* Don't combine with an insn that sets a register to itself if it has
1244 a REG_EQUAL note. This may be part of a REG_NO_CONFLICT sequence. */
1245 || (rtx_equal_p (src, dest) && find_reg_note (insn, REG_EQUAL, NULL_RTX))
1246 /* Can't merge an ASM_OPERANDS. */
1247 || GET_CODE (src) == ASM_OPERANDS
1248 /* Can't merge a function call. */
1249 || GET_CODE (src) == CALL
1250 /* Don't eliminate a function call argument. */
1251 || (CALL_P (i3)
1252 && (find_reg_fusage (i3, USE, dest)
1253 || (REG_P (dest)
1254 && REGNO (dest) < FIRST_PSEUDO_REGISTER
1255 && global_regs[REGNO (dest)])))
1256 /* Don't substitute into an incremented register. */
1257 || FIND_REG_INC_NOTE (i3, dest)
1258 || (succ && FIND_REG_INC_NOTE (succ, dest))
1259 /* Don't substitute into a non-local goto, this confuses CFG. */
1260 || (JUMP_P (i3) && find_reg_note (i3, REG_NON_LOCAL_GOTO, NULL_RTX))
1261 #if 0
1262 /* Don't combine the end of a libcall into anything. */
1263 /* ??? This gives worse code, and appears to be unnecessary, since no
1264 pass after flow uses REG_LIBCALL/REG_RETVAL notes. Local-alloc does
1265 use REG_RETVAL notes for noconflict blocks, but other code here
1266 makes sure that those insns don't disappear. */
1267 || find_reg_note (insn, REG_RETVAL, NULL_RTX)
1268 #endif
1269 /* Make sure that DEST is not used after SUCC but before I3. */
1270 || (succ && ! all_adjacent
1271 && reg_used_between_p (dest, succ, i3))
1272 /* Make sure that the value that is to be substituted for the register
1273 does not use any registers whose values alter in between. However,
1274 If the insns are adjacent, a use can't cross a set even though we
1275 think it might (this can happen for a sequence of insns each setting
1276 the same destination; last_set of that register might point to
1277 a NOTE). If INSN has a REG_EQUIV note, the register is always
1278 equivalent to the memory so the substitution is valid even if there
1279 are intervening stores. Also, don't move a volatile asm or
1280 UNSPEC_VOLATILE across any other insns. */
1281 || (! all_adjacent
1282 && (((!MEM_P (src)
1283 || ! find_reg_note (insn, REG_EQUIV, src))
1284 && use_crosses_set_p (src, INSN_CUID (insn)))
1285 || (GET_CODE (src) == ASM_OPERANDS && MEM_VOLATILE_P (src))
1286 || GET_CODE (src) == UNSPEC_VOLATILE))
1287 /* If there is a REG_NO_CONFLICT note for DEST in I3 or SUCC, we get
1288 better register allocation by not doing the combine. */
1289 || find_reg_note (i3, REG_NO_CONFLICT, dest)
1290 || (succ && find_reg_note (succ, REG_NO_CONFLICT, dest))
1291 /* Don't combine across a CALL_INSN, because that would possibly
1292 change whether the life span of some REGs crosses calls or not,
1293 and it is a pain to update that information.
1294 Exception: if source is a constant, moving it later can't hurt.
1295 Accept that special case, because it helps -fforce-addr a lot. */
1296 || (INSN_CUID (insn) < last_call_cuid && ! CONSTANT_P (src)))
1297 return 0;
1299 /* DEST must either be a REG or CC0. */
1300 if (REG_P (dest))
1302 /* If register alignment is being enforced for multi-word items in all
1303 cases except for parameters, it is possible to have a register copy
1304 insn referencing a hard register that is not allowed to contain the
1305 mode being copied and which would not be valid as an operand of most
1306 insns. Eliminate this problem by not combining with such an insn.
1308 Also, on some machines we don't want to extend the life of a hard
1309 register. */
1311 if (REG_P (src)
1312 && ((REGNO (dest) < FIRST_PSEUDO_REGISTER
1313 && ! HARD_REGNO_MODE_OK (REGNO (dest), GET_MODE (dest)))
1314 /* Don't extend the life of a hard register unless it is
1315 user variable (if we have few registers) or it can't
1316 fit into the desired register (meaning something special
1317 is going on).
1318 Also avoid substituting a return register into I3, because
1319 reload can't handle a conflict with constraints of other
1320 inputs. */
1321 || (REGNO (src) < FIRST_PSEUDO_REGISTER
1322 && ! HARD_REGNO_MODE_OK (REGNO (src), GET_MODE (src)))))
1323 return 0;
1325 else if (GET_CODE (dest) != CC0)
1326 return 0;
1329 if (GET_CODE (PATTERN (i3)) == PARALLEL)
1330 for (i = XVECLEN (PATTERN (i3), 0) - 1; i >= 0; i--)
1331 if (GET_CODE (XVECEXP (PATTERN (i3), 0, i)) == CLOBBER)
1333 /* Don't substitute for a register intended as a clobberable
1334 operand. */
1335 rtx reg = XEXP (XVECEXP (PATTERN (i3), 0, i), 0);
1336 if (rtx_equal_p (reg, dest))
1337 return 0;
1339 /* If the clobber represents an earlyclobber operand, we must not
1340 substitute an expression containing the clobbered register.
1341 As we do not analyze the constraint strings here, we have to
1342 make the conservative assumption. However, if the register is
1343 a fixed hard reg, the clobber cannot represent any operand;
1344 we leave it up to the machine description to either accept or
1345 reject use-and-clobber patterns. */
1346 if (!REG_P (reg)
1347 || REGNO (reg) >= FIRST_PSEUDO_REGISTER
1348 || !fixed_regs[REGNO (reg)])
1349 if (reg_overlap_mentioned_p (reg, src))
1350 return 0;
1353 /* If INSN contains anything volatile, or is an `asm' (whether volatile
1354 or not), reject, unless nothing volatile comes between it and I3 */
1356 if (GET_CODE (src) == ASM_OPERANDS || volatile_refs_p (src))
1358 /* Make sure succ doesn't contain a volatile reference. */
1359 if (succ != 0 && volatile_refs_p (PATTERN (succ)))
1360 return 0;
1362 for (p = NEXT_INSN (insn); p != i3; p = NEXT_INSN (p))
1363 if (INSN_P (p) && p != succ && volatile_refs_p (PATTERN (p)))
1364 return 0;
1367 /* If INSN is an asm, and DEST is a hard register, reject, since it has
1368 to be an explicit register variable, and was chosen for a reason. */
1370 if (GET_CODE (src) == ASM_OPERANDS
1371 && REG_P (dest) && REGNO (dest) < FIRST_PSEUDO_REGISTER)
1372 return 0;
1374 /* If there are any volatile insns between INSN and I3, reject, because
1375 they might affect machine state. */
1377 for (p = NEXT_INSN (insn); p != i3; p = NEXT_INSN (p))
1378 if (INSN_P (p) && p != succ && volatile_insn_p (PATTERN (p)))
1379 return 0;
1381 /* If INSN contains an autoincrement or autodecrement, make sure that
1382 register is not used between there and I3, and not already used in
1383 I3 either. Neither must it be used in PRED or SUCC, if they exist.
1384 Also insist that I3 not be a jump; if it were one
1385 and the incremented register were spilled, we would lose. */
1387 #ifdef AUTO_INC_DEC
1388 for (link = REG_NOTES (insn); link; link = XEXP (link, 1))
1389 if (REG_NOTE_KIND (link) == REG_INC
1390 && (JUMP_P (i3)
1391 || reg_used_between_p (XEXP (link, 0), insn, i3)
1392 || (pred != NULL_RTX
1393 && reg_overlap_mentioned_p (XEXP (link, 0), PATTERN (pred)))
1394 || (succ != NULL_RTX
1395 && reg_overlap_mentioned_p (XEXP (link, 0), PATTERN (succ)))
1396 || reg_overlap_mentioned_p (XEXP (link, 0), PATTERN (i3))))
1397 return 0;
1398 #endif
1400 #ifdef HAVE_cc0
1401 /* Don't combine an insn that follows a CC0-setting insn.
1402 An insn that uses CC0 must not be separated from the one that sets it.
1403 We do, however, allow I2 to follow a CC0-setting insn if that insn
1404 is passed as I1; in that case it will be deleted also.
1405 We also allow combining in this case if all the insns are adjacent
1406 because that would leave the two CC0 insns adjacent as well.
1407 It would be more logical to test whether CC0 occurs inside I1 or I2,
1408 but that would be much slower, and this ought to be equivalent. */
1410 p = prev_nonnote_insn (insn);
1411 if (p && p != pred && NONJUMP_INSN_P (p) && sets_cc0_p (PATTERN (p))
1412 && ! all_adjacent)
1413 return 0;
1414 #endif
1416 /* If we get here, we have passed all the tests and the combination is
1417 to be allowed. */
1419 *pdest = dest;
1420 *psrc = src;
1422 return 1;
1425 /* LOC is the location within I3 that contains its pattern or the component
1426 of a PARALLEL of the pattern. We validate that it is valid for combining.
1428 One problem is if I3 modifies its output, as opposed to replacing it
1429 entirely, we can't allow the output to contain I2DEST or I1DEST as doing
1430 so would produce an insn that is not equivalent to the original insns.
1432 Consider:
1434 (set (reg:DI 101) (reg:DI 100))
1435 (set (subreg:SI (reg:DI 101) 0) <foo>)
1437 This is NOT equivalent to:
1439 (parallel [(set (subreg:SI (reg:DI 100) 0) <foo>)
1440 (set (reg:DI 101) (reg:DI 100))])
1442 Not only does this modify 100 (in which case it might still be valid
1443 if 100 were dead in I2), it sets 101 to the ORIGINAL value of 100.
1445 We can also run into a problem if I2 sets a register that I1
1446 uses and I1 gets directly substituted into I3 (not via I2). In that
1447 case, we would be getting the wrong value of I2DEST into I3, so we
1448 must reject the combination. This case occurs when I2 and I1 both
1449 feed into I3, rather than when I1 feeds into I2, which feeds into I3.
1450 If I1_NOT_IN_SRC is nonzero, it means that finding I1 in the source
1451 of a SET must prevent combination from occurring.
1453 Before doing the above check, we first try to expand a field assignment
1454 into a set of logical operations.
1456 If PI3_DEST_KILLED is nonzero, it is a pointer to a location in which
1457 we place a register that is both set and used within I3. If more than one
1458 such register is detected, we fail.
1460 Return 1 if the combination is valid, zero otherwise. */
1462 static int
1463 combinable_i3pat (rtx i3, rtx *loc, rtx i2dest, rtx i1dest,
1464 int i1_not_in_src, rtx *pi3dest_killed)
1466 rtx x = *loc;
1468 if (GET_CODE (x) == SET)
1470 rtx set = x ;
1471 rtx dest = SET_DEST (set);
1472 rtx src = SET_SRC (set);
1473 rtx inner_dest = dest;
1474 rtx subdest;
1476 while (GET_CODE (inner_dest) == STRICT_LOW_PART
1477 || GET_CODE (inner_dest) == SUBREG
1478 || GET_CODE (inner_dest) == ZERO_EXTRACT)
1479 inner_dest = XEXP (inner_dest, 0);
1481 /* Check for the case where I3 modifies its output, as discussed
1482 above. We don't want to prevent pseudos from being combined
1483 into the address of a MEM, so only prevent the combination if
1484 i1 or i2 set the same MEM. */
1485 if ((inner_dest != dest &&
1486 (!MEM_P (inner_dest)
1487 || rtx_equal_p (i2dest, inner_dest)
1488 || (i1dest && rtx_equal_p (i1dest, inner_dest)))
1489 && (reg_overlap_mentioned_p (i2dest, inner_dest)
1490 || (i1dest && reg_overlap_mentioned_p (i1dest, inner_dest))))
1492 /* This is the same test done in can_combine_p except we can't test
1493 all_adjacent; we don't have to, since this instruction will stay
1494 in place, thus we are not considering increasing the lifetime of
1495 INNER_DEST.
1497 Also, if this insn sets a function argument, combining it with
1498 something that might need a spill could clobber a previous
1499 function argument; the all_adjacent test in can_combine_p also
1500 checks this; here, we do a more specific test for this case. */
1502 || (REG_P (inner_dest)
1503 && REGNO (inner_dest) < FIRST_PSEUDO_REGISTER
1504 && (! HARD_REGNO_MODE_OK (REGNO (inner_dest),
1505 GET_MODE (inner_dest))))
1506 || (i1_not_in_src && reg_overlap_mentioned_p (i1dest, src)))
1507 return 0;
1509 /* If DEST is used in I3, it is being killed in this insn, so
1510 record that for later. We have to consider paradoxical
1511 subregs here, since they kill the whole register, but we
1512 ignore partial subregs, STRICT_LOW_PART, etc.
1513 Never add REG_DEAD notes for the FRAME_POINTER_REGNUM or the
1514 STACK_POINTER_REGNUM, since these are always considered to be
1515 live. Similarly for ARG_POINTER_REGNUM if it is fixed. */
1516 subdest = dest;
1517 if (GET_CODE (subdest) == SUBREG
1518 && (GET_MODE_SIZE (GET_MODE (subdest))
1519 >= GET_MODE_SIZE (GET_MODE (SUBREG_REG (subdest)))))
1520 subdest = SUBREG_REG (subdest);
1521 if (pi3dest_killed
1522 && REG_P (subdest)
1523 && reg_referenced_p (subdest, PATTERN (i3))
1524 && REGNO (subdest) != FRAME_POINTER_REGNUM
1525 #if HARD_FRAME_POINTER_REGNUM != FRAME_POINTER_REGNUM
1526 && REGNO (subdest) != HARD_FRAME_POINTER_REGNUM
1527 #endif
1528 #if ARG_POINTER_REGNUM != FRAME_POINTER_REGNUM
1529 && (REGNO (subdest) != ARG_POINTER_REGNUM
1530 || ! fixed_regs [REGNO (subdest)])
1531 #endif
1532 && REGNO (subdest) != STACK_POINTER_REGNUM)
1534 if (*pi3dest_killed)
1535 return 0;
1537 *pi3dest_killed = subdest;
1541 else if (GET_CODE (x) == PARALLEL)
1543 int i;
1545 for (i = 0; i < XVECLEN (x, 0); i++)
1546 if (! combinable_i3pat (i3, &XVECEXP (x, 0, i), i2dest, i1dest,
1547 i1_not_in_src, pi3dest_killed))
1548 return 0;
1551 return 1;
1554 /* Return 1 if X is an arithmetic expression that contains a multiplication
1555 and division. We don't count multiplications by powers of two here. */
1557 static int
1558 contains_muldiv (rtx x)
1560 switch (GET_CODE (x))
1562 case MOD: case DIV: case UMOD: case UDIV:
1563 return 1;
1565 case MULT:
1566 return ! (GET_CODE (XEXP (x, 1)) == CONST_INT
1567 && exact_log2 (INTVAL (XEXP (x, 1))) >= 0);
1568 default:
1569 if (BINARY_P (x))
1570 return contains_muldiv (XEXP (x, 0))
1571 || contains_muldiv (XEXP (x, 1));
1573 if (UNARY_P (x))
1574 return contains_muldiv (XEXP (x, 0));
1576 return 0;
1580 /* Determine whether INSN can be used in a combination. Return nonzero if
1581 not. This is used in try_combine to detect early some cases where we
1582 can't perform combinations. */
1584 static int
1585 cant_combine_insn_p (rtx insn)
1587 rtx set;
1588 rtx src, dest;
1590 /* If this isn't really an insn, we can't do anything.
1591 This can occur when flow deletes an insn that it has merged into an
1592 auto-increment address. */
1593 if (! INSN_P (insn))
1594 return 1;
1596 /* Never combine loads and stores involving hard regs that are likely
1597 to be spilled. The register allocator can usually handle such
1598 reg-reg moves by tying. If we allow the combiner to make
1599 substitutions of likely-spilled regs, reload might die.
1600 As an exception, we allow combinations involving fixed regs; these are
1601 not available to the register allocator so there's no risk involved. */
1603 set = single_set (insn);
1604 if (! set)
1605 return 0;
1606 src = SET_SRC (set);
1607 dest = SET_DEST (set);
1608 if (GET_CODE (src) == SUBREG)
1609 src = SUBREG_REG (src);
1610 if (GET_CODE (dest) == SUBREG)
1611 dest = SUBREG_REG (dest);
1612 if (REG_P (src) && REG_P (dest)
1613 && ((REGNO (src) < FIRST_PSEUDO_REGISTER
1614 && ! fixed_regs[REGNO (src)]
1615 && CLASS_LIKELY_SPILLED_P (REGNO_REG_CLASS (REGNO (src))))
1616 || (REGNO (dest) < FIRST_PSEUDO_REGISTER
1617 && ! fixed_regs[REGNO (dest)]
1618 && CLASS_LIKELY_SPILLED_P (REGNO_REG_CLASS (REGNO (dest))))))
1619 return 1;
1621 return 0;
1624 struct likely_spilled_retval_info
1626 unsigned regno, nregs;
1627 unsigned mask;
1630 /* Called via note_stores by likely_spilled_retval_p. Remove from info->mask
1631 hard registers that are known to be written to / clobbered in full. */
1632 static void
1633 likely_spilled_retval_1 (rtx x, rtx set, void *data)
1635 struct likely_spilled_retval_info *info = data;
1636 unsigned regno, nregs;
1637 unsigned new_mask;
1639 if (!REG_P (XEXP (set, 0)))
1640 return;
1641 regno = REGNO (x);
1642 if (regno >= info->regno + info->nregs)
1643 return;
1644 nregs = hard_regno_nregs[regno][GET_MODE (x)];
1645 if (regno + nregs <= info->regno)
1646 return;
1647 new_mask = (2U << (nregs - 1)) - 1;
1648 if (regno < info->regno)
1649 new_mask >>= info->regno - regno;
1650 else
1651 new_mask <<= regno - info->regno;
1652 info->mask &= new_mask;
1655 /* Return nonzero iff part of the return value is live during INSN, and
1656 it is likely spilled. This can happen when more than one insn is needed
1657 to copy the return value, e.g. when we consider to combine into the
1658 second copy insn for a complex value. */
1660 static int
1661 likely_spilled_retval_p (rtx insn)
1663 rtx use = BB_END (this_basic_block);
1664 rtx reg, p;
1665 unsigned regno, nregs;
1666 /* We assume here that no machine mode needs more than
1667 32 hard registers when the value overlaps with a register
1668 for which FUNCTION_VALUE_REGNO_P is true. */
1669 unsigned mask;
1670 struct likely_spilled_retval_info info;
1672 if (!NONJUMP_INSN_P (use) || GET_CODE (PATTERN (use)) != USE || insn == use)
1673 return 0;
1674 reg = XEXP (PATTERN (use), 0);
1675 if (!REG_P (reg) || !FUNCTION_VALUE_REGNO_P (REGNO (reg)))
1676 return 0;
1677 regno = REGNO (reg);
1678 nregs = hard_regno_nregs[regno][GET_MODE (reg)];
1679 if (nregs == 1)
1680 return 0;
1681 mask = (2U << (nregs - 1)) - 1;
1683 /* Disregard parts of the return value that are set later. */
1684 info.regno = regno;
1685 info.nregs = nregs;
1686 info.mask = mask;
1687 for (p = PREV_INSN (use); info.mask && p != insn; p = PREV_INSN (p))
1688 note_stores (PATTERN (insn), likely_spilled_retval_1, &info);
1689 mask = info.mask;
1691 /* Check if any of the (probably) live return value registers is
1692 likely spilled. */
1693 nregs --;
1696 if ((mask & 1 << nregs)
1697 && CLASS_LIKELY_SPILLED_P (REGNO_REG_CLASS (regno + nregs)))
1698 return 1;
1699 } while (nregs--);
1700 return 0;
1703 /* Adjust INSN after we made a change to its destination.
1705 Changing the destination can invalidate notes that say something about
1706 the results of the insn and a LOG_LINK pointing to the insn. */
1708 static void
1709 adjust_for_new_dest (rtx insn)
1711 rtx *loc;
1713 /* For notes, be conservative and simply remove them. */
1714 loc = &REG_NOTES (insn);
1715 while (*loc)
1717 enum reg_note kind = REG_NOTE_KIND (*loc);
1718 if (kind == REG_EQUAL || kind == REG_EQUIV)
1719 *loc = XEXP (*loc, 1);
1720 else
1721 loc = &XEXP (*loc, 1);
1724 /* The new insn will have a destination that was previously the destination
1725 of an insn just above it. Call distribute_links to make a LOG_LINK from
1726 the next use of that destination. */
1727 distribute_links (gen_rtx_INSN_LIST (VOIDmode, insn, NULL_RTX));
1730 /* Return TRUE if combine can reuse reg X in mode MODE.
1731 ADDED_SETS is nonzero if the original set is still required. */
1732 static bool
1733 can_change_dest_mode (rtx x, int added_sets, enum machine_mode mode)
1735 unsigned int regno;
1737 if (!REG_P(x))
1738 return false;
1740 regno = REGNO (x);
1741 /* Allow hard registers if the new mode is legal, and occupies no more
1742 registers than the old mode. */
1743 if (regno < FIRST_PSEUDO_REGISTER)
1744 return (HARD_REGNO_MODE_OK (regno, mode)
1745 && (hard_regno_nregs[regno][GET_MODE (x)]
1746 >= hard_regno_nregs[regno][mode]));
1748 /* Or a pseudo that is only used once. */
1749 return (REG_N_SETS (regno) == 1 && !added_sets
1750 && !REG_USERVAR_P (x));
1754 /* Check whether X, the destination of a set, refers to part of
1755 the register specified by REG. */
1757 static bool
1758 reg_subword_p (rtx x, rtx reg)
1760 /* Check that reg is an integer mode register. */
1761 if (!REG_P (reg) || GET_MODE_CLASS (GET_MODE (reg)) != MODE_INT)
1762 return false;
1764 if (GET_CODE (x) == STRICT_LOW_PART
1765 || GET_CODE (x) == ZERO_EXTRACT)
1766 x = XEXP (x, 0);
1768 return GET_CODE (x) == SUBREG
1769 && SUBREG_REG (x) == reg
1770 && GET_MODE_CLASS (GET_MODE (x)) == MODE_INT;
1774 /* Try to combine the insns I1 and I2 into I3.
1775 Here I1 and I2 appear earlier than I3.
1776 I1 can be zero; then we combine just I2 into I3.
1778 If we are combining three insns and the resulting insn is not recognized,
1779 try splitting it into two insns. If that happens, I2 and I3 are retained
1780 and I1 is pseudo-deleted by turning it into a NOTE. Otherwise, I1 and I2
1781 are pseudo-deleted.
1783 Return 0 if the combination does not work. Then nothing is changed.
1784 If we did the combination, return the insn at which combine should
1785 resume scanning.
1787 Set NEW_DIRECT_JUMP_P to a nonzero value if try_combine creates a
1788 new direct jump instruction. */
1790 static rtx
1791 try_combine (rtx i3, rtx i2, rtx i1, int *new_direct_jump_p)
1793 /* New patterns for I3 and I2, respectively. */
1794 rtx newpat, newi2pat = 0;
1795 rtvec newpat_vec_with_clobbers = 0;
1796 int substed_i2 = 0, substed_i1 = 0;
1797 /* Indicates need to preserve SET in I1 or I2 in I3 if it is not dead. */
1798 int added_sets_1, added_sets_2;
1799 /* Total number of SETs to put into I3. */
1800 int total_sets;
1801 /* Nonzero if I2's body now appears in I3. */
1802 int i2_is_used;
1803 /* INSN_CODEs for new I3, new I2, and user of condition code. */
1804 int insn_code_number, i2_code_number = 0, other_code_number = 0;
1805 /* Contains I3 if the destination of I3 is used in its source, which means
1806 that the old life of I3 is being killed. If that usage is placed into
1807 I2 and not in I3, a REG_DEAD note must be made. */
1808 rtx i3dest_killed = 0;
1809 /* SET_DEST and SET_SRC of I2 and I1. */
1810 rtx i2dest, i2src, i1dest = 0, i1src = 0;
1811 /* PATTERN (I2), or a copy of it in certain cases. */
1812 rtx i2pat;
1813 /* Indicates if I2DEST or I1DEST is in I2SRC or I1_SRC. */
1814 int i2dest_in_i2src = 0, i1dest_in_i1src = 0, i2dest_in_i1src = 0;
1815 int i2dest_killed = 0, i1dest_killed = 0;
1816 int i1_feeds_i3 = 0;
1817 /* Notes that must be added to REG_NOTES in I3 and I2. */
1818 rtx new_i3_notes, new_i2_notes;
1819 /* Notes that we substituted I3 into I2 instead of the normal case. */
1820 int i3_subst_into_i2 = 0;
1821 /* Notes that I1, I2 or I3 is a MULT operation. */
1822 int have_mult = 0;
1823 int swap_i2i3 = 0;
1825 int maxreg;
1826 rtx temp;
1827 rtx link;
1828 int i;
1830 /* Exit early if one of the insns involved can't be used for
1831 combinations. */
1832 if (cant_combine_insn_p (i3)
1833 || cant_combine_insn_p (i2)
1834 || (i1 && cant_combine_insn_p (i1))
1835 || likely_spilled_retval_p (i3)
1836 /* We also can't do anything if I3 has a
1837 REG_LIBCALL note since we don't want to disrupt the contiguity of a
1838 libcall. */
1839 #if 0
1840 /* ??? This gives worse code, and appears to be unnecessary, since no
1841 pass after flow uses REG_LIBCALL/REG_RETVAL notes. */
1842 || find_reg_note (i3, REG_LIBCALL, NULL_RTX)
1843 #endif
1845 return 0;
1847 combine_attempts++;
1848 undobuf.other_insn = 0;
1850 /* Reset the hard register usage information. */
1851 CLEAR_HARD_REG_SET (newpat_used_regs);
1853 /* If I1 and I2 both feed I3, they can be in any order. To simplify the
1854 code below, set I1 to be the earlier of the two insns. */
1855 if (i1 && INSN_CUID (i1) > INSN_CUID (i2))
1856 temp = i1, i1 = i2, i2 = temp;
1858 added_links_insn = 0;
1860 /* First check for one important special-case that the code below will
1861 not handle. Namely, the case where I1 is zero, I2 is a PARALLEL
1862 and I3 is a SET whose SET_SRC is a SET_DEST in I2. In that case,
1863 we may be able to replace that destination with the destination of I3.
1864 This occurs in the common code where we compute both a quotient and
1865 remainder into a structure, in which case we want to do the computation
1866 directly into the structure to avoid register-register copies.
1868 Note that this case handles both multiple sets in I2 and also
1869 cases where I2 has a number of CLOBBER or PARALLELs.
1871 We make very conservative checks below and only try to handle the
1872 most common cases of this. For example, we only handle the case
1873 where I2 and I3 are adjacent to avoid making difficult register
1874 usage tests. */
1876 if (i1 == 0 && NONJUMP_INSN_P (i3) && GET_CODE (PATTERN (i3)) == SET
1877 && REG_P (SET_SRC (PATTERN (i3)))
1878 && REGNO (SET_SRC (PATTERN (i3))) >= FIRST_PSEUDO_REGISTER
1879 && find_reg_note (i3, REG_DEAD, SET_SRC (PATTERN (i3)))
1880 && GET_CODE (PATTERN (i2)) == PARALLEL
1881 && ! side_effects_p (SET_DEST (PATTERN (i3)))
1882 /* If the dest of I3 is a ZERO_EXTRACT or STRICT_LOW_PART, the code
1883 below would need to check what is inside (and reg_overlap_mentioned_p
1884 doesn't support those codes anyway). Don't allow those destinations;
1885 the resulting insn isn't likely to be recognized anyway. */
1886 && GET_CODE (SET_DEST (PATTERN (i3))) != ZERO_EXTRACT
1887 && GET_CODE (SET_DEST (PATTERN (i3))) != STRICT_LOW_PART
1888 && ! reg_overlap_mentioned_p (SET_SRC (PATTERN (i3)),
1889 SET_DEST (PATTERN (i3)))
1890 && next_real_insn (i2) == i3)
1892 rtx p2 = PATTERN (i2);
1894 /* Make sure that the destination of I3,
1895 which we are going to substitute into one output of I2,
1896 is not used within another output of I2. We must avoid making this:
1897 (parallel [(set (mem (reg 69)) ...)
1898 (set (reg 69) ...)])
1899 which is not well-defined as to order of actions.
1900 (Besides, reload can't handle output reloads for this.)
1902 The problem can also happen if the dest of I3 is a memory ref,
1903 if another dest in I2 is an indirect memory ref. */
1904 for (i = 0; i < XVECLEN (p2, 0); i++)
1905 if ((GET_CODE (XVECEXP (p2, 0, i)) == SET
1906 || GET_CODE (XVECEXP (p2, 0, i)) == CLOBBER)
1907 && reg_overlap_mentioned_p (SET_DEST (PATTERN (i3)),
1908 SET_DEST (XVECEXP (p2, 0, i))))
1909 break;
1911 if (i == XVECLEN (p2, 0))
1912 for (i = 0; i < XVECLEN (p2, 0); i++)
1913 if ((GET_CODE (XVECEXP (p2, 0, i)) == SET
1914 || GET_CODE (XVECEXP (p2, 0, i)) == CLOBBER)
1915 && SET_DEST (XVECEXP (p2, 0, i)) == SET_SRC (PATTERN (i3)))
1917 combine_merges++;
1919 subst_insn = i3;
1920 subst_low_cuid = INSN_CUID (i2);
1922 added_sets_2 = added_sets_1 = 0;
1923 i2dest = SET_SRC (PATTERN (i3));
1924 i2dest_killed = dead_or_set_p (i2, i2dest);
1926 /* Replace the dest in I2 with our dest and make the resulting
1927 insn the new pattern for I3. Then skip to where we
1928 validate the pattern. Everything was set up above. */
1929 SUBST (SET_DEST (XVECEXP (p2, 0, i)),
1930 SET_DEST (PATTERN (i3)));
1932 newpat = p2;
1933 i3_subst_into_i2 = 1;
1934 goto validate_replacement;
1938 /* If I2 is setting a pseudo to a constant and I3 is setting some
1939 sub-part of it to another constant, merge them by making a new
1940 constant. */
1941 if (i1 == 0
1942 && (temp = single_set (i2)) != 0
1943 && (GET_CODE (SET_SRC (temp)) == CONST_INT
1944 || GET_CODE (SET_SRC (temp)) == CONST_DOUBLE)
1945 && GET_CODE (PATTERN (i3)) == SET
1946 && (GET_CODE (SET_SRC (PATTERN (i3))) == CONST_INT
1947 || GET_CODE (SET_SRC (PATTERN (i3))) == CONST_DOUBLE)
1948 && reg_subword_p (SET_DEST (PATTERN (i3)), SET_DEST (temp)))
1950 rtx dest = SET_DEST (PATTERN (i3));
1951 int offset = -1;
1952 int width = 0;
1954 if (GET_CODE (dest) == STRICT_LOW_PART)
1956 width = GET_MODE_BITSIZE (GET_MODE (XEXP (dest, 0)));
1957 offset = 0;
1959 else if (GET_CODE (dest) == ZERO_EXTRACT)
1961 if (GET_CODE (XEXP (dest, 1)) == CONST_INT
1962 && GET_CODE (XEXP (dest, 2)) == CONST_INT)
1964 width = INTVAL (XEXP (dest, 1));
1965 offset = INTVAL (XEXP (dest, 2));
1967 if (BITS_BIG_ENDIAN)
1968 offset = GET_MODE_BITSIZE (GET_MODE (XEXP (dest, 0)))
1969 - width - offset;
1972 else if (subreg_lowpart_p (dest))
1974 width = GET_MODE_BITSIZE (GET_MODE (dest));
1975 offset = 0;
1977 /* ??? Preserve the original logic to handle setting the high word
1978 of double-word pseudos, where inner is half the size of outer
1979 but not the lowpart. This could be generalized by handling
1980 SUBREG_BYTE, WORDS_BIG_ENDIAN and BYTES_BIG_ENDIAN ourselves.
1981 Unfortunately this logic is tricky to get right and probably
1982 not worth the effort. */
1983 else if (GET_MODE_BITSIZE (GET_MODE (SET_DEST (temp)))
1984 == 2 * GET_MODE_BITSIZE (GET_MODE (dest)))
1986 width = GET_MODE_BITSIZE (GET_MODE (dest));
1987 offset = width;
1990 if (offset >= 0)
1992 HOST_WIDE_INT mhi, ohi, ihi;
1993 HOST_WIDE_INT mlo, olo, ilo;
1994 rtx inner = SET_SRC (PATTERN (i3));
1995 rtx outer = SET_SRC (temp);
1997 if (GET_CODE (outer) == CONST_INT)
1999 olo = INTVAL (outer);
2000 ohi = olo < 0 ? -1 : 0;
2002 else
2004 olo = CONST_DOUBLE_LOW (outer);
2005 ohi = CONST_DOUBLE_HIGH (outer);
2008 if (GET_CODE (inner) == CONST_INT)
2010 ilo = INTVAL (inner);
2011 ihi = ilo < 0 ? -1 : 0;
2013 else
2015 ilo = CONST_DOUBLE_LOW (inner);
2016 ihi = CONST_DOUBLE_HIGH (inner);
2019 if (width < HOST_BITS_PER_WIDE_INT)
2021 mlo = ((unsigned HOST_WIDE_INT) 1 << width) - 1;
2022 mhi = 0;
2024 else if (width < HOST_BITS_PER_WIDE_INT * 2)
2026 mhi = ((unsigned HOST_WIDE_INT) 1
2027 << (width - HOST_BITS_PER_WIDE_INT)) - 1;
2028 mlo = -1;
2030 else
2032 mlo = -1;
2033 mhi = -1;
2036 ilo &= mlo;
2037 ihi &= mhi;
2039 if (offset >= HOST_BITS_PER_WIDE_INT)
2041 mhi = mlo << (offset - HOST_BITS_PER_WIDE_INT);
2042 mlo = 0;
2043 ihi = ilo << (offset - HOST_BITS_PER_WIDE_INT);
2044 ilo = 0;
2046 else if (offset > 0)
2048 mhi = (mhi << offset) | ((unsigned HOST_WIDE_INT) mlo
2049 >> (HOST_BITS_PER_WIDE_INT - offset));
2050 mlo = mlo << offset;
2051 ihi = (ihi << offset) | ((unsigned HOST_WIDE_INT) ilo
2052 >> (HOST_BITS_PER_WIDE_INT - offset));
2053 ilo = ilo << offset;
2056 olo = (olo & ~mlo) | ilo;
2057 ohi = (ohi & ~mhi) | ihi;
2059 combine_merges++;
2060 subst_insn = i3;
2061 subst_low_cuid = INSN_CUID (i2);
2062 added_sets_2 = added_sets_1 = 0;
2063 i2dest = SET_DEST (temp);
2064 i2dest_killed = dead_or_set_p (i2, i2dest);
2066 SUBST (SET_SRC (temp),
2067 immed_double_const (olo, ohi, GET_MODE (SET_DEST (temp))));
2069 newpat = PATTERN (i2);
2070 goto validate_replacement;
2074 #ifndef HAVE_cc0
2075 /* If we have no I1 and I2 looks like:
2076 (parallel [(set (reg:CC X) (compare:CC OP (const_int 0)))
2077 (set Y OP)])
2078 make up a dummy I1 that is
2079 (set Y OP)
2080 and change I2 to be
2081 (set (reg:CC X) (compare:CC Y (const_int 0)))
2083 (We can ignore any trailing CLOBBERs.)
2085 This undoes a previous combination and allows us to match a branch-and-
2086 decrement insn. */
2088 if (i1 == 0 && GET_CODE (PATTERN (i2)) == PARALLEL
2089 && XVECLEN (PATTERN (i2), 0) >= 2
2090 && GET_CODE (XVECEXP (PATTERN (i2), 0, 0)) == SET
2091 && (GET_MODE_CLASS (GET_MODE (SET_DEST (XVECEXP (PATTERN (i2), 0, 0))))
2092 == MODE_CC)
2093 && GET_CODE (SET_SRC (XVECEXP (PATTERN (i2), 0, 0))) == COMPARE
2094 && XEXP (SET_SRC (XVECEXP (PATTERN (i2), 0, 0)), 1) == const0_rtx
2095 && GET_CODE (XVECEXP (PATTERN (i2), 0, 1)) == SET
2096 && REG_P (SET_DEST (XVECEXP (PATTERN (i2), 0, 1)))
2097 && rtx_equal_p (XEXP (SET_SRC (XVECEXP (PATTERN (i2), 0, 0)), 0),
2098 SET_SRC (XVECEXP (PATTERN (i2), 0, 1))))
2100 for (i = XVECLEN (PATTERN (i2), 0) - 1; i >= 2; i--)
2101 if (GET_CODE (XVECEXP (PATTERN (i2), 0, i)) != CLOBBER)
2102 break;
2104 if (i == 1)
2106 /* We make I1 with the same INSN_UID as I2. This gives it
2107 the same INSN_CUID for value tracking. Our fake I1 will
2108 never appear in the insn stream so giving it the same INSN_UID
2109 as I2 will not cause a problem. */
2111 i1 = gen_rtx_INSN (VOIDmode, INSN_UID (i2), NULL_RTX, i2,
2112 BLOCK_FOR_INSN (i2), INSN_LOCATOR (i2),
2113 XVECEXP (PATTERN (i2), 0, 1), -1, NULL_RTX,
2114 NULL_RTX);
2116 SUBST (PATTERN (i2), XVECEXP (PATTERN (i2), 0, 0));
2117 SUBST (XEXP (SET_SRC (PATTERN (i2)), 0),
2118 SET_DEST (PATTERN (i1)));
2121 #endif
2123 /* Verify that I2 and I1 are valid for combining. */
2124 if (! can_combine_p (i2, i3, i1, NULL_RTX, &i2dest, &i2src)
2125 || (i1 && ! can_combine_p (i1, i3, NULL_RTX, i2, &i1dest, &i1src)))
2127 undo_all ();
2128 return 0;
2131 /* Record whether I2DEST is used in I2SRC and similarly for the other
2132 cases. Knowing this will help in register status updating below. */
2133 i2dest_in_i2src = reg_overlap_mentioned_p (i2dest, i2src);
2134 i1dest_in_i1src = i1 && reg_overlap_mentioned_p (i1dest, i1src);
2135 i2dest_in_i1src = i1 && reg_overlap_mentioned_p (i2dest, i1src);
2136 i2dest_killed = dead_or_set_p (i2, i2dest);
2137 i1dest_killed = i1 && dead_or_set_p (i1, i1dest);
2139 /* See if I1 directly feeds into I3. It does if I1DEST is not used
2140 in I2SRC. */
2141 i1_feeds_i3 = i1 && ! reg_overlap_mentioned_p (i1dest, i2src);
2143 /* Ensure that I3's pattern can be the destination of combines. */
2144 if (! combinable_i3pat (i3, &PATTERN (i3), i2dest, i1dest,
2145 i1 && i2dest_in_i1src && i1_feeds_i3,
2146 &i3dest_killed))
2148 undo_all ();
2149 return 0;
2152 /* See if any of the insns is a MULT operation. Unless one is, we will
2153 reject a combination that is, since it must be slower. Be conservative
2154 here. */
2155 if (GET_CODE (i2src) == MULT
2156 || (i1 != 0 && GET_CODE (i1src) == MULT)
2157 || (GET_CODE (PATTERN (i3)) == SET
2158 && GET_CODE (SET_SRC (PATTERN (i3))) == MULT))
2159 have_mult = 1;
2161 /* If I3 has an inc, then give up if I1 or I2 uses the reg that is inc'd.
2162 We used to do this EXCEPT in one case: I3 has a post-inc in an
2163 output operand. However, that exception can give rise to insns like
2164 mov r3,(r3)+
2165 which is a famous insn on the PDP-11 where the value of r3 used as the
2166 source was model-dependent. Avoid this sort of thing. */
2168 #if 0
2169 if (!(GET_CODE (PATTERN (i3)) == SET
2170 && REG_P (SET_SRC (PATTERN (i3)))
2171 && MEM_P (SET_DEST (PATTERN (i3)))
2172 && (GET_CODE (XEXP (SET_DEST (PATTERN (i3)), 0)) == POST_INC
2173 || GET_CODE (XEXP (SET_DEST (PATTERN (i3)), 0)) == POST_DEC)))
2174 /* It's not the exception. */
2175 #endif
2176 #ifdef AUTO_INC_DEC
2177 for (link = REG_NOTES (i3); link; link = XEXP (link, 1))
2178 if (REG_NOTE_KIND (link) == REG_INC
2179 && (reg_overlap_mentioned_p (XEXP (link, 0), PATTERN (i2))
2180 || (i1 != 0
2181 && reg_overlap_mentioned_p (XEXP (link, 0), PATTERN (i1)))))
2183 undo_all ();
2184 return 0;
2186 #endif
2188 /* See if the SETs in I1 or I2 need to be kept around in the merged
2189 instruction: whenever the value set there is still needed past I3.
2190 For the SETs in I2, this is easy: we see if I2DEST dies or is set in I3.
2192 For the SET in I1, we have two cases: If I1 and I2 independently
2193 feed into I3, the set in I1 needs to be kept around if I1DEST dies
2194 or is set in I3. Otherwise (if I1 feeds I2 which feeds I3), the set
2195 in I1 needs to be kept around unless I1DEST dies or is set in either
2196 I2 or I3. We can distinguish these cases by seeing if I2SRC mentions
2197 I1DEST. If so, we know I1 feeds into I2. */
2199 added_sets_2 = ! dead_or_set_p (i3, i2dest);
2201 added_sets_1
2202 = i1 && ! (i1_feeds_i3 ? dead_or_set_p (i3, i1dest)
2203 : (dead_or_set_p (i3, i1dest) || dead_or_set_p (i2, i1dest)));
2205 /* If the set in I2 needs to be kept around, we must make a copy of
2206 PATTERN (I2), so that when we substitute I1SRC for I1DEST in
2207 PATTERN (I2), we are only substituting for the original I1DEST, not into
2208 an already-substituted copy. This also prevents making self-referential
2209 rtx. If I2 is a PARALLEL, we just need the piece that assigns I2SRC to
2210 I2DEST. */
2212 i2pat = (GET_CODE (PATTERN (i2)) == PARALLEL
2213 ? gen_rtx_SET (VOIDmode, i2dest, i2src)
2214 : PATTERN (i2));
2216 if (added_sets_2)
2217 i2pat = copy_rtx (i2pat);
2219 combine_merges++;
2221 /* Substitute in the latest insn for the regs set by the earlier ones. */
2223 maxreg = max_reg_num ();
2225 subst_insn = i3;
2227 #ifndef HAVE_cc0
2228 /* Many machines that don't use CC0 have insns that can both perform an
2229 arithmetic operation and set the condition code. These operations will
2230 be represented as a PARALLEL with the first element of the vector
2231 being a COMPARE of an arithmetic operation with the constant zero.
2232 The second element of the vector will set some pseudo to the result
2233 of the same arithmetic operation. If we simplify the COMPARE, we won't
2234 match such a pattern and so will generate an extra insn. Here we test
2235 for this case, where both the comparison and the operation result are
2236 needed, and make the PARALLEL by just replacing I2DEST in I3SRC with
2237 I2SRC. Later we will make the PARALLEL that contains I2. */
2239 if (i1 == 0 && added_sets_2 && GET_CODE (PATTERN (i3)) == SET
2240 && GET_CODE (SET_SRC (PATTERN (i3))) == COMPARE
2241 && XEXP (SET_SRC (PATTERN (i3)), 1) == const0_rtx
2242 && rtx_equal_p (XEXP (SET_SRC (PATTERN (i3)), 0), i2dest))
2244 #ifdef SELECT_CC_MODE
2245 rtx *cc_use;
2246 enum machine_mode compare_mode;
2247 #endif
2249 newpat = PATTERN (i3);
2250 SUBST (XEXP (SET_SRC (newpat), 0), i2src);
2252 i2_is_used = 1;
2254 #ifdef SELECT_CC_MODE
2255 /* See if a COMPARE with the operand we substituted in should be done
2256 with the mode that is currently being used. If not, do the same
2257 processing we do in `subst' for a SET; namely, if the destination
2258 is used only once, try to replace it with a register of the proper
2259 mode and also replace the COMPARE. */
2260 if (undobuf.other_insn == 0
2261 && (cc_use = find_single_use (SET_DEST (newpat), i3,
2262 &undobuf.other_insn))
2263 && ((compare_mode = SELECT_CC_MODE (GET_CODE (*cc_use),
2264 i2src, const0_rtx))
2265 != GET_MODE (SET_DEST (newpat))))
2267 if (can_change_dest_mode(SET_DEST (newpat), added_sets_2,
2268 compare_mode))
2270 unsigned int regno = REGNO (SET_DEST (newpat));
2271 rtx new_dest;
2273 if (regno < FIRST_PSEUDO_REGISTER)
2274 new_dest = gen_rtx_REG (compare_mode, regno);
2275 else
2277 SUBST_MODE (regno_reg_rtx[regno], compare_mode);
2278 new_dest = regno_reg_rtx[regno];
2281 SUBST (SET_DEST (newpat), new_dest);
2282 SUBST (XEXP (*cc_use, 0), new_dest);
2283 SUBST (SET_SRC (newpat),
2284 gen_rtx_COMPARE (compare_mode, i2src, const0_rtx));
2286 else
2287 undobuf.other_insn = 0;
2289 #endif
2291 else
2292 #endif
2294 /* It is possible that the source of I2 or I1 may be performing
2295 an unneeded operation, such as a ZERO_EXTEND of something
2296 that is known to have the high part zero. Handle that case
2297 by letting subst look at the innermost one of them.
2299 Another way to do this would be to have a function that tries
2300 to simplify a single insn instead of merging two or more
2301 insns. We don't do this because of the potential of infinite
2302 loops and because of the potential extra memory required.
2303 However, doing it the way we are is a bit of a kludge and
2304 doesn't catch all cases.
2306 But only do this if -fexpensive-optimizations since it slows
2307 things down and doesn't usually win.
2309 This is not done in the COMPARE case above because the
2310 unmodified I2PAT is used in the PARALLEL and so a pattern
2311 with a modified I2SRC would not match. */
2313 if (flag_expensive_optimizations)
2315 /* Pass pc_rtx so no substitutions are done, just
2316 simplifications. */
2317 if (i1)
2319 subst_low_cuid = INSN_CUID (i1);
2320 i1src = subst (i1src, pc_rtx, pc_rtx, 0, 0);
2322 else
2324 subst_low_cuid = INSN_CUID (i2);
2325 i2src = subst (i2src, pc_rtx, pc_rtx, 0, 0);
2329 n_occurrences = 0; /* `subst' counts here */
2331 /* If I1 feeds into I2 (not into I3) and I1DEST is in I1SRC, we
2332 need to make a unique copy of I2SRC each time we substitute it
2333 to avoid self-referential rtl. */
2335 subst_low_cuid = INSN_CUID (i2);
2336 newpat = subst (PATTERN (i3), i2dest, i2src, 0,
2337 ! i1_feeds_i3 && i1dest_in_i1src);
2338 substed_i2 = 1;
2340 /* Record whether i2's body now appears within i3's body. */
2341 i2_is_used = n_occurrences;
2344 /* If we already got a failure, don't try to do more. Otherwise,
2345 try to substitute in I1 if we have it. */
2347 if (i1 && GET_CODE (newpat) != CLOBBER)
2349 /* Before we can do this substitution, we must redo the test done
2350 above (see detailed comments there) that ensures that I1DEST
2351 isn't mentioned in any SETs in NEWPAT that are field assignments. */
2353 if (! combinable_i3pat (NULL_RTX, &newpat, i1dest, NULL_RTX,
2354 0, (rtx*) 0))
2356 undo_all ();
2357 return 0;
2360 n_occurrences = 0;
2361 subst_low_cuid = INSN_CUID (i1);
2362 newpat = subst (newpat, i1dest, i1src, 0, 0);
2363 substed_i1 = 1;
2366 /* Fail if an autoincrement side-effect has been duplicated. Be careful
2367 to count all the ways that I2SRC and I1SRC can be used. */
2368 if ((FIND_REG_INC_NOTE (i2, NULL_RTX) != 0
2369 && i2_is_used + added_sets_2 > 1)
2370 || (i1 != 0 && FIND_REG_INC_NOTE (i1, NULL_RTX) != 0
2371 && (n_occurrences + added_sets_1 + (added_sets_2 && ! i1_feeds_i3)
2372 > 1))
2373 /* Fail if we tried to make a new register. */
2374 || max_reg_num () != maxreg
2375 /* Fail if we couldn't do something and have a CLOBBER. */
2376 || GET_CODE (newpat) == CLOBBER
2377 /* Fail if this new pattern is a MULT and we didn't have one before
2378 at the outer level. */
2379 || (GET_CODE (newpat) == SET && GET_CODE (SET_SRC (newpat)) == MULT
2380 && ! have_mult))
2382 undo_all ();
2383 return 0;
2386 /* If the actions of the earlier insns must be kept
2387 in addition to substituting them into the latest one,
2388 we must make a new PARALLEL for the latest insn
2389 to hold additional the SETs. */
2391 if (added_sets_1 || added_sets_2)
2393 combine_extras++;
2395 if (GET_CODE (newpat) == PARALLEL)
2397 rtvec old = XVEC (newpat, 0);
2398 total_sets = XVECLEN (newpat, 0) + added_sets_1 + added_sets_2;
2399 newpat = gen_rtx_PARALLEL (VOIDmode, rtvec_alloc (total_sets));
2400 memcpy (XVEC (newpat, 0)->elem, &old->elem[0],
2401 sizeof (old->elem[0]) * old->num_elem);
2403 else
2405 rtx old = newpat;
2406 total_sets = 1 + added_sets_1 + added_sets_2;
2407 newpat = gen_rtx_PARALLEL (VOIDmode, rtvec_alloc (total_sets));
2408 XVECEXP (newpat, 0, 0) = old;
2411 if (added_sets_1)
2412 XVECEXP (newpat, 0, --total_sets)
2413 = (GET_CODE (PATTERN (i1)) == PARALLEL
2414 ? gen_rtx_SET (VOIDmode, i1dest, i1src) : PATTERN (i1));
2416 if (added_sets_2)
2418 /* If there is no I1, use I2's body as is. We used to also not do
2419 the subst call below if I2 was substituted into I3,
2420 but that could lose a simplification. */
2421 if (i1 == 0)
2422 XVECEXP (newpat, 0, --total_sets) = i2pat;
2423 else
2424 /* See comment where i2pat is assigned. */
2425 XVECEXP (newpat, 0, --total_sets)
2426 = subst (i2pat, i1dest, i1src, 0, 0);
2430 /* We come here when we are replacing a destination in I2 with the
2431 destination of I3. */
2432 validate_replacement:
2434 /* Note which hard regs this insn has as inputs. */
2435 mark_used_regs_combine (newpat);
2437 /* If recog_for_combine fails, it strips existing clobbers. If we'll
2438 consider splitting this pattern, we might need these clobbers. */
2439 if (i1 && GET_CODE (newpat) == PARALLEL
2440 && GET_CODE (XVECEXP (newpat, 0, XVECLEN (newpat, 0) - 1)) == CLOBBER)
2442 int len = XVECLEN (newpat, 0);
2444 newpat_vec_with_clobbers = rtvec_alloc (len);
2445 for (i = 0; i < len; i++)
2446 RTVEC_ELT (newpat_vec_with_clobbers, i) = XVECEXP (newpat, 0, i);
2449 /* Is the result of combination a valid instruction? */
2450 insn_code_number = recog_for_combine (&newpat, i3, &new_i3_notes);
2452 /* If the result isn't valid, see if it is a PARALLEL of two SETs where
2453 the second SET's destination is a register that is unused and isn't
2454 marked as an instruction that might trap in an EH region. In that case,
2455 we just need the first SET. This can occur when simplifying a divmod
2456 insn. We *must* test for this case here because the code below that
2457 splits two independent SETs doesn't handle this case correctly when it
2458 updates the register status.
2460 It's pointless doing this if we originally had two sets, one from
2461 i3, and one from i2. Combining then splitting the parallel results
2462 in the original i2 again plus an invalid insn (which we delete).
2463 The net effect is only to move instructions around, which makes
2464 debug info less accurate.
2466 Also check the case where the first SET's destination is unused.
2467 That would not cause incorrect code, but does cause an unneeded
2468 insn to remain. */
2470 if (insn_code_number < 0
2471 && !(added_sets_2 && i1 == 0)
2472 && GET_CODE (newpat) == PARALLEL
2473 && XVECLEN (newpat, 0) == 2
2474 && GET_CODE (XVECEXP (newpat, 0, 0)) == SET
2475 && GET_CODE (XVECEXP (newpat, 0, 1)) == SET
2476 && asm_noperands (newpat) < 0)
2478 rtx set0 = XVECEXP (newpat, 0, 0);
2479 rtx set1 = XVECEXP (newpat, 0, 1);
2480 rtx note;
2482 if (((REG_P (SET_DEST (set1))
2483 && find_reg_note (i3, REG_UNUSED, SET_DEST (set1)))
2484 || (GET_CODE (SET_DEST (set1)) == SUBREG
2485 && find_reg_note (i3, REG_UNUSED, SUBREG_REG (SET_DEST (set1)))))
2486 && (!(note = find_reg_note (i3, REG_EH_REGION, NULL_RTX))
2487 || INTVAL (XEXP (note, 0)) <= 0)
2488 && ! side_effects_p (SET_SRC (set1)))
2490 newpat = set0;
2491 insn_code_number = recog_for_combine (&newpat, i3, &new_i3_notes);
2494 else if (((REG_P (SET_DEST (set0))
2495 && find_reg_note (i3, REG_UNUSED, SET_DEST (set0)))
2496 || (GET_CODE (SET_DEST (set0)) == SUBREG
2497 && find_reg_note (i3, REG_UNUSED,
2498 SUBREG_REG (SET_DEST (set0)))))
2499 && (!(note = find_reg_note (i3, REG_EH_REGION, NULL_RTX))
2500 || INTVAL (XEXP (note, 0)) <= 0)
2501 && ! side_effects_p (SET_SRC (set0)))
2503 newpat = set1;
2504 insn_code_number = recog_for_combine (&newpat, i3, &new_i3_notes);
2506 if (insn_code_number >= 0)
2508 /* If we will be able to accept this, we have made a
2509 change to the destination of I3. This requires us to
2510 do a few adjustments. */
2512 PATTERN (i3) = newpat;
2513 adjust_for_new_dest (i3);
2518 /* If we were combining three insns and the result is a simple SET
2519 with no ASM_OPERANDS that wasn't recognized, try to split it into two
2520 insns. There are two ways to do this. It can be split using a
2521 machine-specific method (like when you have an addition of a large
2522 constant) or by combine in the function find_split_point. */
2524 if (i1 && insn_code_number < 0 && GET_CODE (newpat) == SET
2525 && asm_noperands (newpat) < 0)
2527 rtx m_split, *split;
2529 /* See if the MD file can split NEWPAT. If it can't, see if letting it
2530 use I2DEST as a scratch register will help. In the latter case,
2531 convert I2DEST to the mode of the source of NEWPAT if we can. */
2533 m_split = split_insns (newpat, i3);
2535 /* We can only use I2DEST as a scratch reg if it doesn't overlap any
2536 inputs of NEWPAT. */
2538 /* ??? If I2DEST is not safe, and I1DEST exists, then it would be
2539 possible to try that as a scratch reg. This would require adding
2540 more code to make it work though. */
2542 if (m_split == 0 && ! reg_overlap_mentioned_p (i2dest, newpat))
2544 enum machine_mode new_mode = GET_MODE (SET_DEST (newpat));
2546 /* First try to split using the original register as a
2547 scratch register. */
2548 m_split = split_insns (gen_rtx_PARALLEL
2549 (VOIDmode,
2550 gen_rtvec (2, newpat,
2551 gen_rtx_CLOBBER (VOIDmode,
2552 i2dest))),
2553 i3);
2555 /* If that didn't work, try changing the mode of I2DEST if
2556 we can. */
2557 if (m_split == 0
2558 && new_mode != GET_MODE (i2dest)
2559 && new_mode != VOIDmode
2560 && can_change_dest_mode (i2dest, added_sets_2, new_mode))
2562 enum machine_mode old_mode = GET_MODE (i2dest);
2563 rtx ni2dest;
2565 if (REGNO (i2dest) < FIRST_PSEUDO_REGISTER)
2566 ni2dest = gen_rtx_REG (new_mode, REGNO (i2dest));
2567 else
2569 SUBST_MODE (regno_reg_rtx[REGNO (i2dest)], new_mode);
2570 ni2dest = regno_reg_rtx[REGNO (i2dest)];
2573 m_split = split_insns (gen_rtx_PARALLEL
2574 (VOIDmode,
2575 gen_rtvec (2, newpat,
2576 gen_rtx_CLOBBER (VOIDmode,
2577 ni2dest))),
2578 i3);
2580 if (m_split == 0
2581 && REGNO (i2dest) >= FIRST_PSEUDO_REGISTER)
2583 struct undo *buf;
2585 PUT_MODE (regno_reg_rtx[REGNO (i2dest)], old_mode);
2586 buf = undobuf.undos;
2587 undobuf.undos = buf->next;
2588 buf->next = undobuf.frees;
2589 undobuf.frees = buf;
2594 /* If recog_for_combine has discarded clobbers, try to use them
2595 again for the split. */
2596 if (m_split == 0 && newpat_vec_with_clobbers)
2597 m_split
2598 = split_insns (gen_rtx_PARALLEL (VOIDmode,
2599 newpat_vec_with_clobbers), i3);
2601 if (m_split && NEXT_INSN (m_split) == NULL_RTX)
2603 m_split = PATTERN (m_split);
2604 insn_code_number = recog_for_combine (&m_split, i3, &new_i3_notes);
2605 if (insn_code_number >= 0)
2606 newpat = m_split;
2608 else if (m_split && NEXT_INSN (NEXT_INSN (m_split)) == NULL_RTX
2609 && (next_real_insn (i2) == i3
2610 || ! use_crosses_set_p (PATTERN (m_split), INSN_CUID (i2))))
2612 rtx i2set, i3set;
2613 rtx newi3pat = PATTERN (NEXT_INSN (m_split));
2614 newi2pat = PATTERN (m_split);
2616 i3set = single_set (NEXT_INSN (m_split));
2617 i2set = single_set (m_split);
2619 i2_code_number = recog_for_combine (&newi2pat, i2, &new_i2_notes);
2621 /* If I2 or I3 has multiple SETs, we won't know how to track
2622 register status, so don't use these insns. If I2's destination
2623 is used between I2 and I3, we also can't use these insns. */
2625 if (i2_code_number >= 0 && i2set && i3set
2626 && (next_real_insn (i2) == i3
2627 || ! reg_used_between_p (SET_DEST (i2set), i2, i3)))
2628 insn_code_number = recog_for_combine (&newi3pat, i3,
2629 &new_i3_notes);
2630 if (insn_code_number >= 0)
2631 newpat = newi3pat;
2633 /* It is possible that both insns now set the destination of I3.
2634 If so, we must show an extra use of it. */
2636 if (insn_code_number >= 0)
2638 rtx new_i3_dest = SET_DEST (i3set);
2639 rtx new_i2_dest = SET_DEST (i2set);
2641 while (GET_CODE (new_i3_dest) == ZERO_EXTRACT
2642 || GET_CODE (new_i3_dest) == STRICT_LOW_PART
2643 || GET_CODE (new_i3_dest) == SUBREG)
2644 new_i3_dest = XEXP (new_i3_dest, 0);
2646 while (GET_CODE (new_i2_dest) == ZERO_EXTRACT
2647 || GET_CODE (new_i2_dest) == STRICT_LOW_PART
2648 || GET_CODE (new_i2_dest) == SUBREG)
2649 new_i2_dest = XEXP (new_i2_dest, 0);
2651 if (REG_P (new_i3_dest)
2652 && REG_P (new_i2_dest)
2653 && REGNO (new_i3_dest) == REGNO (new_i2_dest))
2654 REG_N_SETS (REGNO (new_i2_dest))++;
2658 /* If we can split it and use I2DEST, go ahead and see if that
2659 helps things be recognized. Verify that none of the registers
2660 are set between I2 and I3. */
2661 if (insn_code_number < 0 && (split = find_split_point (&newpat, i3)) != 0
2662 #ifdef HAVE_cc0
2663 && REG_P (i2dest)
2664 #endif
2665 /* We need I2DEST in the proper mode. If it is a hard register
2666 or the only use of a pseudo, we can change its mode.
2667 Make sure we don't change a hard register to have a mode that
2668 isn't valid for it, or change the number of registers. */
2669 && (GET_MODE (*split) == GET_MODE (i2dest)
2670 || GET_MODE (*split) == VOIDmode
2671 || can_change_dest_mode (i2dest, added_sets_2,
2672 GET_MODE (*split)))
2673 && (next_real_insn (i2) == i3
2674 || ! use_crosses_set_p (*split, INSN_CUID (i2)))
2675 /* We can't overwrite I2DEST if its value is still used by
2676 NEWPAT. */
2677 && ! reg_referenced_p (i2dest, newpat))
2679 rtx newdest = i2dest;
2680 enum rtx_code split_code = GET_CODE (*split);
2681 enum machine_mode split_mode = GET_MODE (*split);
2682 bool subst_done = false;
2683 newi2pat = NULL_RTX;
2685 /* Get NEWDEST as a register in the proper mode. We have already
2686 validated that we can do this. */
2687 if (GET_MODE (i2dest) != split_mode && split_mode != VOIDmode)
2689 if (REGNO (i2dest) < FIRST_PSEUDO_REGISTER)
2690 newdest = gen_rtx_REG (split_mode, REGNO (i2dest));
2691 else
2693 SUBST_MODE (regno_reg_rtx[REGNO (i2dest)], split_mode);
2694 newdest = regno_reg_rtx[REGNO (i2dest)];
2698 /* If *SPLIT is a (mult FOO (const_int pow2)), convert it to
2699 an ASHIFT. This can occur if it was inside a PLUS and hence
2700 appeared to be a memory address. This is a kludge. */
2701 if (split_code == MULT
2702 && GET_CODE (XEXP (*split, 1)) == CONST_INT
2703 && INTVAL (XEXP (*split, 1)) > 0
2704 && (i = exact_log2 (INTVAL (XEXP (*split, 1)))) >= 0)
2706 SUBST (*split, gen_rtx_ASHIFT (split_mode,
2707 XEXP (*split, 0), GEN_INT (i)));
2708 /* Update split_code because we may not have a multiply
2709 anymore. */
2710 split_code = GET_CODE (*split);
2713 #ifdef INSN_SCHEDULING
2714 /* If *SPLIT is a paradoxical SUBREG, when we split it, it should
2715 be written as a ZERO_EXTEND. */
2716 if (split_code == SUBREG && MEM_P (SUBREG_REG (*split)))
2718 #ifdef LOAD_EXTEND_OP
2719 /* Or as a SIGN_EXTEND if LOAD_EXTEND_OP says that that's
2720 what it really is. */
2721 if (LOAD_EXTEND_OP (GET_MODE (SUBREG_REG (*split)))
2722 == SIGN_EXTEND)
2723 SUBST (*split, gen_rtx_SIGN_EXTEND (split_mode,
2724 SUBREG_REG (*split)));
2725 else
2726 #endif
2727 SUBST (*split, gen_rtx_ZERO_EXTEND (split_mode,
2728 SUBREG_REG (*split)));
2730 #endif
2732 /* Attempt to split binary operators using arithmetic identities. */
2733 if (BINARY_P (SET_SRC (newpat))
2734 && split_mode == GET_MODE (SET_SRC (newpat))
2735 && ! side_effects_p (SET_SRC (newpat)))
2737 rtx setsrc = SET_SRC (newpat);
2738 enum machine_mode mode = GET_MODE (setsrc);
2739 enum rtx_code code = GET_CODE (setsrc);
2740 rtx src_op0 = XEXP (setsrc, 0);
2741 rtx src_op1 = XEXP (setsrc, 1);
2743 /* Split "X = Y op Y" as "Z = Y; X = Z op Z". */
2744 if (rtx_equal_p (src_op0, src_op1))
2746 newi2pat = gen_rtx_SET (VOIDmode, newdest, src_op0);
2747 SUBST (XEXP (setsrc, 0), newdest);
2748 SUBST (XEXP (setsrc, 1), newdest);
2749 subst_done = true;
2751 /* Split "((P op Q) op R) op S" where op is PLUS or MULT. */
2752 else if ((code == PLUS || code == MULT)
2753 && GET_CODE (src_op0) == code
2754 && GET_CODE (XEXP (src_op0, 0)) == code
2755 && (INTEGRAL_MODE_P (mode)
2756 || (FLOAT_MODE_P (mode)
2757 && flag_unsafe_math_optimizations)))
2759 rtx p = XEXP (XEXP (src_op0, 0), 0);
2760 rtx q = XEXP (XEXP (src_op0, 0), 1);
2761 rtx r = XEXP (src_op0, 1);
2762 rtx s = src_op1;
2764 /* Split both "((X op Y) op X) op Y" and
2765 "((X op Y) op Y) op X" as "T op T" where T is
2766 "X op Y". */
2767 if ((rtx_equal_p (p,r) && rtx_equal_p (q,s))
2768 || (rtx_equal_p (p,s) && rtx_equal_p (q,r)))
2770 newi2pat = gen_rtx_SET (VOIDmode, newdest,
2771 XEXP (src_op0, 0));
2772 SUBST (XEXP (setsrc, 0), newdest);
2773 SUBST (XEXP (setsrc, 1), newdest);
2774 subst_done = true;
2776 /* Split "((X op X) op Y) op Y)" as "T op T" where
2777 T is "X op Y". */
2778 else if (rtx_equal_p (p,q) && rtx_equal_p (r,s))
2780 rtx tmp = simplify_gen_binary (code, mode, p, r);
2781 newi2pat = gen_rtx_SET (VOIDmode, newdest, tmp);
2782 SUBST (XEXP (setsrc, 0), newdest);
2783 SUBST (XEXP (setsrc, 1), newdest);
2784 subst_done = true;
2789 if (!subst_done)
2791 newi2pat = gen_rtx_SET (VOIDmode, newdest, *split);
2792 SUBST (*split, newdest);
2795 i2_code_number = recog_for_combine (&newi2pat, i2, &new_i2_notes);
2797 /* recog_for_combine might have added CLOBBERs to newi2pat.
2798 Make sure NEWPAT does not depend on the clobbered regs. */
2799 if (GET_CODE (newi2pat) == PARALLEL)
2800 for (i = XVECLEN (newi2pat, 0) - 1; i >= 0; i--)
2801 if (GET_CODE (XVECEXP (newi2pat, 0, i)) == CLOBBER)
2803 rtx reg = XEXP (XVECEXP (newi2pat, 0, i), 0);
2804 if (reg_overlap_mentioned_p (reg, newpat))
2806 undo_all ();
2807 return 0;
2811 /* If the split point was a MULT and we didn't have one before,
2812 don't use one now. */
2813 if (i2_code_number >= 0 && ! (split_code == MULT && ! have_mult))
2814 insn_code_number = recog_for_combine (&newpat, i3, &new_i3_notes);
2818 /* Check for a case where we loaded from memory in a narrow mode and
2819 then sign extended it, but we need both registers. In that case,
2820 we have a PARALLEL with both loads from the same memory location.
2821 We can split this into a load from memory followed by a register-register
2822 copy. This saves at least one insn, more if register allocation can
2823 eliminate the copy.
2825 We cannot do this if the destination of the first assignment is a
2826 condition code register or cc0. We eliminate this case by making sure
2827 the SET_DEST and SET_SRC have the same mode.
2829 We cannot do this if the destination of the second assignment is
2830 a register that we have already assumed is zero-extended. Similarly
2831 for a SUBREG of such a register. */
2833 else if (i1 && insn_code_number < 0 && asm_noperands (newpat) < 0
2834 && GET_CODE (newpat) == PARALLEL
2835 && XVECLEN (newpat, 0) == 2
2836 && GET_CODE (XVECEXP (newpat, 0, 0)) == SET
2837 && GET_CODE (SET_SRC (XVECEXP (newpat, 0, 0))) == SIGN_EXTEND
2838 && (GET_MODE (SET_DEST (XVECEXP (newpat, 0, 0)))
2839 == GET_MODE (SET_SRC (XVECEXP (newpat, 0, 0))))
2840 && GET_CODE (XVECEXP (newpat, 0, 1)) == SET
2841 && rtx_equal_p (SET_SRC (XVECEXP (newpat, 0, 1)),
2842 XEXP (SET_SRC (XVECEXP (newpat, 0, 0)), 0))
2843 && ! use_crosses_set_p (SET_SRC (XVECEXP (newpat, 0, 1)),
2844 INSN_CUID (i2))
2845 && GET_CODE (SET_DEST (XVECEXP (newpat, 0, 1))) != ZERO_EXTRACT
2846 && GET_CODE (SET_DEST (XVECEXP (newpat, 0, 1))) != STRICT_LOW_PART
2847 && ! (temp = SET_DEST (XVECEXP (newpat, 0, 1)),
2848 (REG_P (temp)
2849 && reg_stat[REGNO (temp)].nonzero_bits != 0
2850 && GET_MODE_BITSIZE (GET_MODE (temp)) < BITS_PER_WORD
2851 && GET_MODE_BITSIZE (GET_MODE (temp)) < HOST_BITS_PER_INT
2852 && (reg_stat[REGNO (temp)].nonzero_bits
2853 != GET_MODE_MASK (word_mode))))
2854 && ! (GET_CODE (SET_DEST (XVECEXP (newpat, 0, 1))) == SUBREG
2855 && (temp = SUBREG_REG (SET_DEST (XVECEXP (newpat, 0, 1))),
2856 (REG_P (temp)
2857 && reg_stat[REGNO (temp)].nonzero_bits != 0
2858 && GET_MODE_BITSIZE (GET_MODE (temp)) < BITS_PER_WORD
2859 && GET_MODE_BITSIZE (GET_MODE (temp)) < HOST_BITS_PER_INT
2860 && (reg_stat[REGNO (temp)].nonzero_bits
2861 != GET_MODE_MASK (word_mode)))))
2862 && ! reg_overlap_mentioned_p (SET_DEST (XVECEXP (newpat, 0, 1)),
2863 SET_SRC (XVECEXP (newpat, 0, 1)))
2864 && ! find_reg_note (i3, REG_UNUSED,
2865 SET_DEST (XVECEXP (newpat, 0, 0))))
2867 rtx ni2dest;
2869 newi2pat = XVECEXP (newpat, 0, 0);
2870 ni2dest = SET_DEST (XVECEXP (newpat, 0, 0));
2871 newpat = XVECEXP (newpat, 0, 1);
2872 SUBST (SET_SRC (newpat),
2873 gen_lowpart (GET_MODE (SET_SRC (newpat)), ni2dest));
2874 i2_code_number = recog_for_combine (&newi2pat, i2, &new_i2_notes);
2876 if (i2_code_number >= 0)
2877 insn_code_number = recog_for_combine (&newpat, i3, &new_i3_notes);
2879 if (insn_code_number >= 0)
2880 swap_i2i3 = 1;
2883 /* Similarly, check for a case where we have a PARALLEL of two independent
2884 SETs but we started with three insns. In this case, we can do the sets
2885 as two separate insns. This case occurs when some SET allows two
2886 other insns to combine, but the destination of that SET is still live. */
2888 else if (i1 && insn_code_number < 0 && asm_noperands (newpat) < 0
2889 && GET_CODE (newpat) == PARALLEL
2890 && XVECLEN (newpat, 0) == 2
2891 && GET_CODE (XVECEXP (newpat, 0, 0)) == SET
2892 && GET_CODE (SET_DEST (XVECEXP (newpat, 0, 0))) != ZERO_EXTRACT
2893 && GET_CODE (SET_DEST (XVECEXP (newpat, 0, 0))) != STRICT_LOW_PART
2894 && GET_CODE (XVECEXP (newpat, 0, 1)) == SET
2895 && GET_CODE (SET_DEST (XVECEXP (newpat, 0, 1))) != ZERO_EXTRACT
2896 && GET_CODE (SET_DEST (XVECEXP (newpat, 0, 1))) != STRICT_LOW_PART
2897 && ! use_crosses_set_p (SET_SRC (XVECEXP (newpat, 0, 1)),
2898 INSN_CUID (i2))
2899 /* Don't pass sets with (USE (MEM ...)) dests to the following. */
2900 && GET_CODE (SET_DEST (XVECEXP (newpat, 0, 1))) != USE
2901 && GET_CODE (SET_DEST (XVECEXP (newpat, 0, 0))) != USE
2902 && ! reg_referenced_p (SET_DEST (XVECEXP (newpat, 0, 1)),
2903 XVECEXP (newpat, 0, 0))
2904 && ! reg_referenced_p (SET_DEST (XVECEXP (newpat, 0, 0)),
2905 XVECEXP (newpat, 0, 1))
2906 && ! (contains_muldiv (SET_SRC (XVECEXP (newpat, 0, 0)))
2907 && contains_muldiv (SET_SRC (XVECEXP (newpat, 0, 1)))))
2909 /* Normally, it doesn't matter which of the two is done first,
2910 but it does if one references cc0. In that case, it has to
2911 be first. */
2912 #ifdef HAVE_cc0
2913 if (reg_referenced_p (cc0_rtx, XVECEXP (newpat, 0, 0)))
2915 newi2pat = XVECEXP (newpat, 0, 0);
2916 newpat = XVECEXP (newpat, 0, 1);
2918 else
2919 #endif
2921 newi2pat = XVECEXP (newpat, 0, 1);
2922 newpat = XVECEXP (newpat, 0, 0);
2925 i2_code_number = recog_for_combine (&newi2pat, i2, &new_i2_notes);
2927 if (i2_code_number >= 0)
2928 insn_code_number = recog_for_combine (&newpat, i3, &new_i3_notes);
2931 /* If it still isn't recognized, fail and change things back the way they
2932 were. */
2933 if ((insn_code_number < 0
2934 /* Is the result a reasonable ASM_OPERANDS? */
2935 && (! check_asm_operands (newpat) || added_sets_1 || added_sets_2)))
2937 undo_all ();
2938 return 0;
2941 /* If we had to change another insn, make sure it is valid also. */
2942 if (undobuf.other_insn)
2944 rtx other_pat = PATTERN (undobuf.other_insn);
2945 rtx new_other_notes;
2946 rtx note, next;
2948 CLEAR_HARD_REG_SET (newpat_used_regs);
2950 other_code_number = recog_for_combine (&other_pat, undobuf.other_insn,
2951 &new_other_notes);
2953 if (other_code_number < 0 && ! check_asm_operands (other_pat))
2955 undo_all ();
2956 return 0;
2959 PATTERN (undobuf.other_insn) = other_pat;
2961 /* If any of the notes in OTHER_INSN were REG_UNUSED, ensure that they
2962 are still valid. Then add any non-duplicate notes added by
2963 recog_for_combine. */
2964 for (note = REG_NOTES (undobuf.other_insn); note; note = next)
2966 next = XEXP (note, 1);
2968 if (REG_NOTE_KIND (note) == REG_UNUSED
2969 && ! reg_set_p (XEXP (note, 0), PATTERN (undobuf.other_insn)))
2971 if (REG_P (XEXP (note, 0)))
2972 REG_N_DEATHS (REGNO (XEXP (note, 0)))--;
2974 remove_note (undobuf.other_insn, note);
2978 for (note = new_other_notes; note; note = XEXP (note, 1))
2979 if (REG_P (XEXP (note, 0)))
2980 REG_N_DEATHS (REGNO (XEXP (note, 0)))++;
2982 distribute_notes (new_other_notes, undobuf.other_insn,
2983 undobuf.other_insn, NULL_RTX, NULL_RTX, NULL_RTX);
2985 #ifdef HAVE_cc0
2986 /* If I2 is the CC0 setter and I3 is the CC0 user then check whether
2987 they are adjacent to each other or not. */
2989 rtx p = prev_nonnote_insn (i3);
2990 if (p && p != i2 && NONJUMP_INSN_P (p) && newi2pat
2991 && sets_cc0_p (newi2pat))
2993 undo_all ();
2994 return 0;
2997 #endif
2999 /* Only allow this combination if insn_rtx_costs reports that the
3000 replacement instructions are cheaper than the originals. */
3001 if (!combine_validate_cost (i1, i2, i3, newpat, newi2pat))
3003 undo_all ();
3004 return 0;
3007 /* We now know that we can do this combination. Merge the insns and
3008 update the status of registers and LOG_LINKS. */
3010 if (swap_i2i3)
3012 rtx insn;
3013 rtx link;
3014 rtx ni2dest;
3016 /* I3 now uses what used to be its destination and which is now
3017 I2's destination. This requires us to do a few adjustments. */
3018 PATTERN (i3) = newpat;
3019 adjust_for_new_dest (i3);
3021 /* We need a LOG_LINK from I3 to I2. But we used to have one,
3022 so we still will.
3024 However, some later insn might be using I2's dest and have
3025 a LOG_LINK pointing at I3. We must remove this link.
3026 The simplest way to remove the link is to point it at I1,
3027 which we know will be a NOTE. */
3029 /* newi2pat is usually a SET here; however, recog_for_combine might
3030 have added some clobbers. */
3031 if (GET_CODE (newi2pat) == PARALLEL)
3032 ni2dest = SET_DEST (XVECEXP (newi2pat, 0, 0));
3033 else
3034 ni2dest = SET_DEST (newi2pat);
3036 for (insn = NEXT_INSN (i3);
3037 insn && (this_basic_block->next_bb == EXIT_BLOCK_PTR
3038 || insn != BB_HEAD (this_basic_block->next_bb));
3039 insn = NEXT_INSN (insn))
3041 if (INSN_P (insn) && reg_referenced_p (ni2dest, PATTERN (insn)))
3043 for (link = LOG_LINKS (insn); link;
3044 link = XEXP (link, 1))
3045 if (XEXP (link, 0) == i3)
3046 XEXP (link, 0) = i1;
3048 break;
3054 rtx i3notes, i2notes, i1notes = 0;
3055 rtx i3links, i2links, i1links = 0;
3056 rtx midnotes = 0;
3057 unsigned int regno;
3058 /* Compute which registers we expect to eliminate. newi2pat may be setting
3059 either i3dest or i2dest, so we must check it. Also, i1dest may be the
3060 same as i3dest, in which case newi2pat may be setting i1dest. */
3061 rtx elim_i2 = ((newi2pat && reg_set_p (i2dest, newi2pat))
3062 || i2dest_in_i2src || i2dest_in_i1src
3063 || !i2dest_killed
3064 ? 0 : i2dest);
3065 rtx elim_i1 = (i1 == 0 || i1dest_in_i1src
3066 || (newi2pat && reg_set_p (i1dest, newi2pat))
3067 || !i1dest_killed
3068 ? 0 : i1dest);
3070 /* Get the old REG_NOTES and LOG_LINKS from all our insns and
3071 clear them. */
3072 i3notes = REG_NOTES (i3), i3links = LOG_LINKS (i3);
3073 i2notes = REG_NOTES (i2), i2links = LOG_LINKS (i2);
3074 if (i1)
3075 i1notes = REG_NOTES (i1), i1links = LOG_LINKS (i1);
3077 /* Ensure that we do not have something that should not be shared but
3078 occurs multiple times in the new insns. Check this by first
3079 resetting all the `used' flags and then copying anything is shared. */
3081 reset_used_flags (i3notes);
3082 reset_used_flags (i2notes);
3083 reset_used_flags (i1notes);
3084 reset_used_flags (newpat);
3085 reset_used_flags (newi2pat);
3086 if (undobuf.other_insn)
3087 reset_used_flags (PATTERN (undobuf.other_insn));
3089 i3notes = copy_rtx_if_shared (i3notes);
3090 i2notes = copy_rtx_if_shared (i2notes);
3091 i1notes = copy_rtx_if_shared (i1notes);
3092 newpat = copy_rtx_if_shared (newpat);
3093 newi2pat = copy_rtx_if_shared (newi2pat);
3094 if (undobuf.other_insn)
3095 reset_used_flags (PATTERN (undobuf.other_insn));
3097 INSN_CODE (i3) = insn_code_number;
3098 PATTERN (i3) = newpat;
3100 if (CALL_P (i3) && CALL_INSN_FUNCTION_USAGE (i3))
3102 rtx call_usage = CALL_INSN_FUNCTION_USAGE (i3);
3104 reset_used_flags (call_usage);
3105 call_usage = copy_rtx (call_usage);
3107 if (substed_i2)
3108 replace_rtx (call_usage, i2dest, i2src);
3110 if (substed_i1)
3111 replace_rtx (call_usage, i1dest, i1src);
3113 CALL_INSN_FUNCTION_USAGE (i3) = call_usage;
3116 if (undobuf.other_insn)
3117 INSN_CODE (undobuf.other_insn) = other_code_number;
3119 /* We had one special case above where I2 had more than one set and
3120 we replaced a destination of one of those sets with the destination
3121 of I3. In that case, we have to update LOG_LINKS of insns later
3122 in this basic block. Note that this (expensive) case is rare.
3124 Also, in this case, we must pretend that all REG_NOTEs for I2
3125 actually came from I3, so that REG_UNUSED notes from I2 will be
3126 properly handled. */
3128 if (i3_subst_into_i2)
3130 for (i = 0; i < XVECLEN (PATTERN (i2), 0); i++)
3131 if (GET_CODE (XVECEXP (PATTERN (i2), 0, i)) != USE
3132 && REG_P (SET_DEST (XVECEXP (PATTERN (i2), 0, i)))
3133 && SET_DEST (XVECEXP (PATTERN (i2), 0, i)) != i2dest
3134 && ! find_reg_note (i2, REG_UNUSED,
3135 SET_DEST (XVECEXP (PATTERN (i2), 0, i))))
3136 for (temp = NEXT_INSN (i2);
3137 temp && (this_basic_block->next_bb == EXIT_BLOCK_PTR
3138 || BB_HEAD (this_basic_block) != temp);
3139 temp = NEXT_INSN (temp))
3140 if (temp != i3 && INSN_P (temp))
3141 for (link = LOG_LINKS (temp); link; link = XEXP (link, 1))
3142 if (XEXP (link, 0) == i2)
3143 XEXP (link, 0) = i3;
3145 if (i3notes)
3147 rtx link = i3notes;
3148 while (XEXP (link, 1))
3149 link = XEXP (link, 1);
3150 XEXP (link, 1) = i2notes;
3152 else
3153 i3notes = i2notes;
3154 i2notes = 0;
3157 LOG_LINKS (i3) = 0;
3158 REG_NOTES (i3) = 0;
3159 LOG_LINKS (i2) = 0;
3160 REG_NOTES (i2) = 0;
3162 if (newi2pat)
3164 INSN_CODE (i2) = i2_code_number;
3165 PATTERN (i2) = newi2pat;
3167 else
3168 SET_INSN_DELETED (i2);
3170 if (i1)
3172 LOG_LINKS (i1) = 0;
3173 REG_NOTES (i1) = 0;
3174 SET_INSN_DELETED (i1);
3177 /* Get death notes for everything that is now used in either I3 or
3178 I2 and used to die in a previous insn. If we built two new
3179 patterns, move from I1 to I2 then I2 to I3 so that we get the
3180 proper movement on registers that I2 modifies. */
3182 if (newi2pat)
3184 move_deaths (newi2pat, NULL_RTX, INSN_CUID (i1), i2, &midnotes);
3185 move_deaths (newpat, newi2pat, INSN_CUID (i1), i3, &midnotes);
3187 else
3188 move_deaths (newpat, NULL_RTX, i1 ? INSN_CUID (i1) : INSN_CUID (i2),
3189 i3, &midnotes);
3191 /* Distribute all the LOG_LINKS and REG_NOTES from I1, I2, and I3. */
3192 if (i3notes)
3193 distribute_notes (i3notes, i3, i3, newi2pat ? i2 : NULL_RTX,
3194 elim_i2, elim_i1);
3195 if (i2notes)
3196 distribute_notes (i2notes, i2, i3, newi2pat ? i2 : NULL_RTX,
3197 elim_i2, elim_i1);
3198 if (i1notes)
3199 distribute_notes (i1notes, i1, i3, newi2pat ? i2 : NULL_RTX,
3200 elim_i2, elim_i1);
3201 if (midnotes)
3202 distribute_notes (midnotes, NULL_RTX, i3, newi2pat ? i2 : NULL_RTX,
3203 elim_i2, elim_i1);
3205 /* Distribute any notes added to I2 or I3 by recog_for_combine. We
3206 know these are REG_UNUSED and want them to go to the desired insn,
3207 so we always pass it as i3. We have not counted the notes in
3208 reg_n_deaths yet, so we need to do so now. */
3210 if (newi2pat && new_i2_notes)
3212 for (temp = new_i2_notes; temp; temp = XEXP (temp, 1))
3213 if (REG_P (XEXP (temp, 0)))
3214 REG_N_DEATHS (REGNO (XEXP (temp, 0)))++;
3216 distribute_notes (new_i2_notes, i2, i2, NULL_RTX, NULL_RTX, NULL_RTX);
3219 if (new_i3_notes)
3221 for (temp = new_i3_notes; temp; temp = XEXP (temp, 1))
3222 if (REG_P (XEXP (temp, 0)))
3223 REG_N_DEATHS (REGNO (XEXP (temp, 0)))++;
3225 distribute_notes (new_i3_notes, i3, i3, NULL_RTX, NULL_RTX, NULL_RTX);
3228 /* If I3DEST was used in I3SRC, it really died in I3. We may need to
3229 put a REG_DEAD note for it somewhere. If NEWI2PAT exists and sets
3230 I3DEST, the death must be somewhere before I2, not I3. If we passed I3
3231 in that case, it might delete I2. Similarly for I2 and I1.
3232 Show an additional death due to the REG_DEAD note we make here. If
3233 we discard it in distribute_notes, we will decrement it again. */
3235 if (i3dest_killed)
3237 if (REG_P (i3dest_killed))
3238 REG_N_DEATHS (REGNO (i3dest_killed))++;
3240 if (newi2pat && reg_set_p (i3dest_killed, newi2pat))
3241 distribute_notes (gen_rtx_EXPR_LIST (REG_DEAD, i3dest_killed,
3242 NULL_RTX),
3243 NULL_RTX, i2, NULL_RTX, elim_i2, elim_i1);
3244 else
3245 distribute_notes (gen_rtx_EXPR_LIST (REG_DEAD, i3dest_killed,
3246 NULL_RTX),
3247 NULL_RTX, i3, newi2pat ? i2 : NULL_RTX,
3248 elim_i2, elim_i1);
3251 if (i2dest_in_i2src)
3253 if (REG_P (i2dest))
3254 REG_N_DEATHS (REGNO (i2dest))++;
3256 if (newi2pat && reg_set_p (i2dest, newi2pat))
3257 distribute_notes (gen_rtx_EXPR_LIST (REG_DEAD, i2dest, NULL_RTX),
3258 NULL_RTX, i2, NULL_RTX, NULL_RTX, NULL_RTX);
3259 else
3260 distribute_notes (gen_rtx_EXPR_LIST (REG_DEAD, i2dest, NULL_RTX),
3261 NULL_RTX, i3, newi2pat ? i2 : NULL_RTX,
3262 NULL_RTX, NULL_RTX);
3265 if (i1dest_in_i1src)
3267 if (REG_P (i1dest))
3268 REG_N_DEATHS (REGNO (i1dest))++;
3270 if (newi2pat && reg_set_p (i1dest, newi2pat))
3271 distribute_notes (gen_rtx_EXPR_LIST (REG_DEAD, i1dest, NULL_RTX),
3272 NULL_RTX, i2, NULL_RTX, NULL_RTX, NULL_RTX);
3273 else
3274 distribute_notes (gen_rtx_EXPR_LIST (REG_DEAD, i1dest, NULL_RTX),
3275 NULL_RTX, i3, newi2pat ? i2 : NULL_RTX,
3276 NULL_RTX, NULL_RTX);
3279 distribute_links (i3links);
3280 distribute_links (i2links);
3281 distribute_links (i1links);
3283 if (REG_P (i2dest))
3285 rtx link;
3286 rtx i2_insn = 0, i2_val = 0, set;
3288 /* The insn that used to set this register doesn't exist, and
3289 this life of the register may not exist either. See if one of
3290 I3's links points to an insn that sets I2DEST. If it does,
3291 that is now the last known value for I2DEST. If we don't update
3292 this and I2 set the register to a value that depended on its old
3293 contents, we will get confused. If this insn is used, thing
3294 will be set correctly in combine_instructions. */
3296 for (link = LOG_LINKS (i3); link; link = XEXP (link, 1))
3297 if ((set = single_set (XEXP (link, 0))) != 0
3298 && rtx_equal_p (i2dest, SET_DEST (set)))
3299 i2_insn = XEXP (link, 0), i2_val = SET_SRC (set);
3301 record_value_for_reg (i2dest, i2_insn, i2_val);
3303 /* If the reg formerly set in I2 died only once and that was in I3,
3304 zero its use count so it won't make `reload' do any work. */
3305 if (! added_sets_2
3306 && (newi2pat == 0 || ! reg_mentioned_p (i2dest, newi2pat))
3307 && ! i2dest_in_i2src)
3309 regno = REGNO (i2dest);
3310 REG_N_SETS (regno)--;
3314 if (i1 && REG_P (i1dest))
3316 rtx link;
3317 rtx i1_insn = 0, i1_val = 0, set;
3319 for (link = LOG_LINKS (i3); link; link = XEXP (link, 1))
3320 if ((set = single_set (XEXP (link, 0))) != 0
3321 && rtx_equal_p (i1dest, SET_DEST (set)))
3322 i1_insn = XEXP (link, 0), i1_val = SET_SRC (set);
3324 record_value_for_reg (i1dest, i1_insn, i1_val);
3326 regno = REGNO (i1dest);
3327 if (! added_sets_1 && ! i1dest_in_i1src)
3328 REG_N_SETS (regno)--;
3331 /* Update reg_stat[].nonzero_bits et al for any changes that may have
3332 been made to this insn. The order of
3333 set_nonzero_bits_and_sign_copies() is important. Because newi2pat
3334 can affect nonzero_bits of newpat */
3335 if (newi2pat)
3336 note_stores (newi2pat, set_nonzero_bits_and_sign_copies, NULL);
3337 note_stores (newpat, set_nonzero_bits_and_sign_copies, NULL);
3339 /* Set new_direct_jump_p if a new return or simple jump instruction
3340 has been created.
3342 If I3 is now an unconditional jump, ensure that it has a
3343 BARRIER following it since it may have initially been a
3344 conditional jump. It may also be the last nonnote insn. */
3346 if (returnjump_p (i3) || any_uncondjump_p (i3))
3348 *new_direct_jump_p = 1;
3349 mark_jump_label (PATTERN (i3), i3, 0);
3351 if ((temp = next_nonnote_insn (i3)) == NULL_RTX
3352 || !BARRIER_P (temp))
3353 emit_barrier_after (i3);
3356 if (undobuf.other_insn != NULL_RTX
3357 && (returnjump_p (undobuf.other_insn)
3358 || any_uncondjump_p (undobuf.other_insn)))
3360 *new_direct_jump_p = 1;
3362 if ((temp = next_nonnote_insn (undobuf.other_insn)) == NULL_RTX
3363 || !BARRIER_P (temp))
3364 emit_barrier_after (undobuf.other_insn);
3367 /* An NOOP jump does not need barrier, but it does need cleaning up
3368 of CFG. */
3369 if (GET_CODE (newpat) == SET
3370 && SET_SRC (newpat) == pc_rtx
3371 && SET_DEST (newpat) == pc_rtx)
3372 *new_direct_jump_p = 1;
3375 combine_successes++;
3376 undo_commit ();
3378 if (added_links_insn
3379 && (newi2pat == 0 || INSN_CUID (added_links_insn) < INSN_CUID (i2))
3380 && INSN_CUID (added_links_insn) < INSN_CUID (i3))
3381 return added_links_insn;
3382 else
3383 return newi2pat ? i2 : i3;
3386 /* Undo all the modifications recorded in undobuf. */
3388 static void
3389 undo_all (void)
3391 struct undo *undo, *next;
3393 for (undo = undobuf.undos; undo; undo = next)
3395 next = undo->next;
3396 switch (undo->kind)
3398 case UNDO_RTX:
3399 *undo->where.r = undo->old_contents.r;
3400 break;
3401 case UNDO_INT:
3402 *undo->where.i = undo->old_contents.i;
3403 break;
3404 case UNDO_MODE:
3405 PUT_MODE (*undo->where.r, undo->old_contents.m);
3406 break;
3407 default:
3408 gcc_unreachable ();
3411 undo->next = undobuf.frees;
3412 undobuf.frees = undo;
3415 undobuf.undos = 0;
3418 /* We've committed to accepting the changes we made. Move all
3419 of the undos to the free list. */
3421 static void
3422 undo_commit (void)
3424 struct undo *undo, *next;
3426 for (undo = undobuf.undos; undo; undo = next)
3428 next = undo->next;
3429 undo->next = undobuf.frees;
3430 undobuf.frees = undo;
3432 undobuf.undos = 0;
3436 /* Find the innermost point within the rtx at LOC, possibly LOC itself,
3437 where we have an arithmetic expression and return that point. LOC will
3438 be inside INSN.
3440 try_combine will call this function to see if an insn can be split into
3441 two insns. */
3443 static rtx *
3444 find_split_point (rtx *loc, rtx insn)
3446 rtx x = *loc;
3447 enum rtx_code code = GET_CODE (x);
3448 rtx *split;
3449 unsigned HOST_WIDE_INT len = 0;
3450 HOST_WIDE_INT pos = 0;
3451 int unsignedp = 0;
3452 rtx inner = NULL_RTX;
3454 /* First special-case some codes. */
3455 switch (code)
3457 case SUBREG:
3458 #ifdef INSN_SCHEDULING
3459 /* If we are making a paradoxical SUBREG invalid, it becomes a split
3460 point. */
3461 if (MEM_P (SUBREG_REG (x)))
3462 return loc;
3463 #endif
3464 return find_split_point (&SUBREG_REG (x), insn);
3466 case MEM:
3467 #ifdef HAVE_lo_sum
3468 /* If we have (mem (const ..)) or (mem (symbol_ref ...)), split it
3469 using LO_SUM and HIGH. */
3470 if (GET_CODE (XEXP (x, 0)) == CONST
3471 || GET_CODE (XEXP (x, 0)) == SYMBOL_REF)
3473 SUBST (XEXP (x, 0),
3474 gen_rtx_LO_SUM (Pmode,
3475 gen_rtx_HIGH (Pmode, XEXP (x, 0)),
3476 XEXP (x, 0)));
3477 return &XEXP (XEXP (x, 0), 0);
3479 #endif
3481 /* If we have a PLUS whose second operand is a constant and the
3482 address is not valid, perhaps will can split it up using
3483 the machine-specific way to split large constants. We use
3484 the first pseudo-reg (one of the virtual regs) as a placeholder;
3485 it will not remain in the result. */
3486 if (GET_CODE (XEXP (x, 0)) == PLUS
3487 && GET_CODE (XEXP (XEXP (x, 0), 1)) == CONST_INT
3488 && ! memory_address_p (GET_MODE (x), XEXP (x, 0)))
3490 rtx reg = regno_reg_rtx[FIRST_PSEUDO_REGISTER];
3491 rtx seq = split_insns (gen_rtx_SET (VOIDmode, reg, XEXP (x, 0)),
3492 subst_insn);
3494 /* This should have produced two insns, each of which sets our
3495 placeholder. If the source of the second is a valid address,
3496 we can make put both sources together and make a split point
3497 in the middle. */
3499 if (seq
3500 && NEXT_INSN (seq) != NULL_RTX
3501 && NEXT_INSN (NEXT_INSN (seq)) == NULL_RTX
3502 && NONJUMP_INSN_P (seq)
3503 && GET_CODE (PATTERN (seq)) == SET
3504 && SET_DEST (PATTERN (seq)) == reg
3505 && ! reg_mentioned_p (reg,
3506 SET_SRC (PATTERN (seq)))
3507 && NONJUMP_INSN_P (NEXT_INSN (seq))
3508 && GET_CODE (PATTERN (NEXT_INSN (seq))) == SET
3509 && SET_DEST (PATTERN (NEXT_INSN (seq))) == reg
3510 && memory_address_p (GET_MODE (x),
3511 SET_SRC (PATTERN (NEXT_INSN (seq)))))
3513 rtx src1 = SET_SRC (PATTERN (seq));
3514 rtx src2 = SET_SRC (PATTERN (NEXT_INSN (seq)));
3516 /* Replace the placeholder in SRC2 with SRC1. If we can
3517 find where in SRC2 it was placed, that can become our
3518 split point and we can replace this address with SRC2.
3519 Just try two obvious places. */
3521 src2 = replace_rtx (src2, reg, src1);
3522 split = 0;
3523 if (XEXP (src2, 0) == src1)
3524 split = &XEXP (src2, 0);
3525 else if (GET_RTX_FORMAT (GET_CODE (XEXP (src2, 0)))[0] == 'e'
3526 && XEXP (XEXP (src2, 0), 0) == src1)
3527 split = &XEXP (XEXP (src2, 0), 0);
3529 if (split)
3531 SUBST (XEXP (x, 0), src2);
3532 return split;
3536 /* If that didn't work, perhaps the first operand is complex and
3537 needs to be computed separately, so make a split point there.
3538 This will occur on machines that just support REG + CONST
3539 and have a constant moved through some previous computation. */
3541 else if (!OBJECT_P (XEXP (XEXP (x, 0), 0))
3542 && ! (GET_CODE (XEXP (XEXP (x, 0), 0)) == SUBREG
3543 && OBJECT_P (SUBREG_REG (XEXP (XEXP (x, 0), 0)))))
3544 return &XEXP (XEXP (x, 0), 0);
3546 break;
3548 case SET:
3549 #ifdef HAVE_cc0
3550 /* If SET_DEST is CC0 and SET_SRC is not an operand, a COMPARE, or a
3551 ZERO_EXTRACT, the most likely reason why this doesn't match is that
3552 we need to put the operand into a register. So split at that
3553 point. */
3555 if (SET_DEST (x) == cc0_rtx
3556 && GET_CODE (SET_SRC (x)) != COMPARE
3557 && GET_CODE (SET_SRC (x)) != ZERO_EXTRACT
3558 && !OBJECT_P (SET_SRC (x))
3559 && ! (GET_CODE (SET_SRC (x)) == SUBREG
3560 && OBJECT_P (SUBREG_REG (SET_SRC (x)))))
3561 return &SET_SRC (x);
3562 #endif
3564 /* See if we can split SET_SRC as it stands. */
3565 split = find_split_point (&SET_SRC (x), insn);
3566 if (split && split != &SET_SRC (x))
3567 return split;
3569 /* See if we can split SET_DEST as it stands. */
3570 split = find_split_point (&SET_DEST (x), insn);
3571 if (split && split != &SET_DEST (x))
3572 return split;
3574 /* See if this is a bitfield assignment with everything constant. If
3575 so, this is an IOR of an AND, so split it into that. */
3576 if (GET_CODE (SET_DEST (x)) == ZERO_EXTRACT
3577 && (GET_MODE_BITSIZE (GET_MODE (XEXP (SET_DEST (x), 0)))
3578 <= HOST_BITS_PER_WIDE_INT)
3579 && GET_CODE (XEXP (SET_DEST (x), 1)) == CONST_INT
3580 && GET_CODE (XEXP (SET_DEST (x), 2)) == CONST_INT
3581 && GET_CODE (SET_SRC (x)) == CONST_INT
3582 && ((INTVAL (XEXP (SET_DEST (x), 1))
3583 + INTVAL (XEXP (SET_DEST (x), 2)))
3584 <= GET_MODE_BITSIZE (GET_MODE (XEXP (SET_DEST (x), 0))))
3585 && ! side_effects_p (XEXP (SET_DEST (x), 0)))
3587 HOST_WIDE_INT pos = INTVAL (XEXP (SET_DEST (x), 2));
3588 unsigned HOST_WIDE_INT len = INTVAL (XEXP (SET_DEST (x), 1));
3589 unsigned HOST_WIDE_INT src = INTVAL (SET_SRC (x));
3590 rtx dest = XEXP (SET_DEST (x), 0);
3591 enum machine_mode mode = GET_MODE (dest);
3592 unsigned HOST_WIDE_INT mask = ((HOST_WIDE_INT) 1 << len) - 1;
3593 rtx or_mask;
3595 if (BITS_BIG_ENDIAN)
3596 pos = GET_MODE_BITSIZE (mode) - len - pos;
3598 or_mask = gen_int_mode (src << pos, mode);
3599 if (src == mask)
3600 SUBST (SET_SRC (x),
3601 simplify_gen_binary (IOR, mode, dest, or_mask));
3602 else
3604 rtx negmask = gen_int_mode (~(mask << pos), mode);
3605 SUBST (SET_SRC (x),
3606 simplify_gen_binary (IOR, mode,
3607 simplify_gen_binary (AND, mode,
3608 dest, negmask),
3609 or_mask));
3612 SUBST (SET_DEST (x), dest);
3614 split = find_split_point (&SET_SRC (x), insn);
3615 if (split && split != &SET_SRC (x))
3616 return split;
3619 /* Otherwise, see if this is an operation that we can split into two.
3620 If so, try to split that. */
3621 code = GET_CODE (SET_SRC (x));
3623 switch (code)
3625 case AND:
3626 /* If we are AND'ing with a large constant that is only a single
3627 bit and the result is only being used in a context where we
3628 need to know if it is zero or nonzero, replace it with a bit
3629 extraction. This will avoid the large constant, which might
3630 have taken more than one insn to make. If the constant were
3631 not a valid argument to the AND but took only one insn to make,
3632 this is no worse, but if it took more than one insn, it will
3633 be better. */
3635 if (GET_CODE (XEXP (SET_SRC (x), 1)) == CONST_INT
3636 && REG_P (XEXP (SET_SRC (x), 0))
3637 && (pos = exact_log2 (INTVAL (XEXP (SET_SRC (x), 1)))) >= 7
3638 && REG_P (SET_DEST (x))
3639 && (split = find_single_use (SET_DEST (x), insn, (rtx*) 0)) != 0
3640 && (GET_CODE (*split) == EQ || GET_CODE (*split) == NE)
3641 && XEXP (*split, 0) == SET_DEST (x)
3642 && XEXP (*split, 1) == const0_rtx)
3644 rtx extraction = make_extraction (GET_MODE (SET_DEST (x)),
3645 XEXP (SET_SRC (x), 0),
3646 pos, NULL_RTX, 1, 1, 0, 0);
3647 if (extraction != 0)
3649 SUBST (SET_SRC (x), extraction);
3650 return find_split_point (loc, insn);
3653 break;
3655 case NE:
3656 /* If STORE_FLAG_VALUE is -1, this is (NE X 0) and only one bit of X
3657 is known to be on, this can be converted into a NEG of a shift. */
3658 if (STORE_FLAG_VALUE == -1 && XEXP (SET_SRC (x), 1) == const0_rtx
3659 && GET_MODE (SET_SRC (x)) == GET_MODE (XEXP (SET_SRC (x), 0))
3660 && 1 <= (pos = exact_log2
3661 (nonzero_bits (XEXP (SET_SRC (x), 0),
3662 GET_MODE (XEXP (SET_SRC (x), 0))))))
3664 enum machine_mode mode = GET_MODE (XEXP (SET_SRC (x), 0));
3666 SUBST (SET_SRC (x),
3667 gen_rtx_NEG (mode,
3668 gen_rtx_LSHIFTRT (mode,
3669 XEXP (SET_SRC (x), 0),
3670 GEN_INT (pos))));
3672 split = find_split_point (&SET_SRC (x), insn);
3673 if (split && split != &SET_SRC (x))
3674 return split;
3676 break;
3678 case SIGN_EXTEND:
3679 inner = XEXP (SET_SRC (x), 0);
3681 /* We can't optimize if either mode is a partial integer
3682 mode as we don't know how many bits are significant
3683 in those modes. */
3684 if (GET_MODE_CLASS (GET_MODE (inner)) == MODE_PARTIAL_INT
3685 || GET_MODE_CLASS (GET_MODE (SET_SRC (x))) == MODE_PARTIAL_INT)
3686 break;
3688 pos = 0;
3689 len = GET_MODE_BITSIZE (GET_MODE (inner));
3690 unsignedp = 0;
3691 break;
3693 case SIGN_EXTRACT:
3694 case ZERO_EXTRACT:
3695 if (GET_CODE (XEXP (SET_SRC (x), 1)) == CONST_INT
3696 && GET_CODE (XEXP (SET_SRC (x), 2)) == CONST_INT)
3698 inner = XEXP (SET_SRC (x), 0);
3699 len = INTVAL (XEXP (SET_SRC (x), 1));
3700 pos = INTVAL (XEXP (SET_SRC (x), 2));
3702 if (BITS_BIG_ENDIAN)
3703 pos = GET_MODE_BITSIZE (GET_MODE (inner)) - len - pos;
3704 unsignedp = (code == ZERO_EXTRACT);
3706 break;
3708 default:
3709 break;
3712 if (len && pos >= 0 && pos + len <= GET_MODE_BITSIZE (GET_MODE (inner)))
3714 enum machine_mode mode = GET_MODE (SET_SRC (x));
3716 /* For unsigned, we have a choice of a shift followed by an
3717 AND or two shifts. Use two shifts for field sizes where the
3718 constant might be too large. We assume here that we can
3719 always at least get 8-bit constants in an AND insn, which is
3720 true for every current RISC. */
3722 if (unsignedp && len <= 8)
3724 SUBST (SET_SRC (x),
3725 gen_rtx_AND (mode,
3726 gen_rtx_LSHIFTRT
3727 (mode, gen_lowpart (mode, inner),
3728 GEN_INT (pos)),
3729 GEN_INT (((HOST_WIDE_INT) 1 << len) - 1)));
3731 split = find_split_point (&SET_SRC (x), insn);
3732 if (split && split != &SET_SRC (x))
3733 return split;
3735 else
3737 SUBST (SET_SRC (x),
3738 gen_rtx_fmt_ee
3739 (unsignedp ? LSHIFTRT : ASHIFTRT, mode,
3740 gen_rtx_ASHIFT (mode,
3741 gen_lowpart (mode, inner),
3742 GEN_INT (GET_MODE_BITSIZE (mode)
3743 - len - pos)),
3744 GEN_INT (GET_MODE_BITSIZE (mode) - len)));
3746 split = find_split_point (&SET_SRC (x), insn);
3747 if (split && split != &SET_SRC (x))
3748 return split;
3752 /* See if this is a simple operation with a constant as the second
3753 operand. It might be that this constant is out of range and hence
3754 could be used as a split point. */
3755 if (BINARY_P (SET_SRC (x))
3756 && CONSTANT_P (XEXP (SET_SRC (x), 1))
3757 && (OBJECT_P (XEXP (SET_SRC (x), 0))
3758 || (GET_CODE (XEXP (SET_SRC (x), 0)) == SUBREG
3759 && OBJECT_P (SUBREG_REG (XEXP (SET_SRC (x), 0))))))
3760 return &XEXP (SET_SRC (x), 1);
3762 /* Finally, see if this is a simple operation with its first operand
3763 not in a register. The operation might require this operand in a
3764 register, so return it as a split point. We can always do this
3765 because if the first operand were another operation, we would have
3766 already found it as a split point. */
3767 if ((BINARY_P (SET_SRC (x)) || UNARY_P (SET_SRC (x)))
3768 && ! register_operand (XEXP (SET_SRC (x), 0), VOIDmode))
3769 return &XEXP (SET_SRC (x), 0);
3771 return 0;
3773 case AND:
3774 case IOR:
3775 /* We write NOR as (and (not A) (not B)), but if we don't have a NOR,
3776 it is better to write this as (not (ior A B)) so we can split it.
3777 Similarly for IOR. */
3778 if (GET_CODE (XEXP (x, 0)) == NOT && GET_CODE (XEXP (x, 1)) == NOT)
3780 SUBST (*loc,
3781 gen_rtx_NOT (GET_MODE (x),
3782 gen_rtx_fmt_ee (code == IOR ? AND : IOR,
3783 GET_MODE (x),
3784 XEXP (XEXP (x, 0), 0),
3785 XEXP (XEXP (x, 1), 0))));
3786 return find_split_point (loc, insn);
3789 /* Many RISC machines have a large set of logical insns. If the
3790 second operand is a NOT, put it first so we will try to split the
3791 other operand first. */
3792 if (GET_CODE (XEXP (x, 1)) == NOT)
3794 rtx tem = XEXP (x, 0);
3795 SUBST (XEXP (x, 0), XEXP (x, 1));
3796 SUBST (XEXP (x, 1), tem);
3798 break;
3800 default:
3801 break;
3804 /* Otherwise, select our actions depending on our rtx class. */
3805 switch (GET_RTX_CLASS (code))
3807 case RTX_BITFIELD_OPS: /* This is ZERO_EXTRACT and SIGN_EXTRACT. */
3808 case RTX_TERNARY:
3809 split = find_split_point (&XEXP (x, 2), insn);
3810 if (split)
3811 return split;
3812 /* ... fall through ... */
3813 case RTX_BIN_ARITH:
3814 case RTX_COMM_ARITH:
3815 case RTX_COMPARE:
3816 case RTX_COMM_COMPARE:
3817 split = find_split_point (&XEXP (x, 1), insn);
3818 if (split)
3819 return split;
3820 /* ... fall through ... */
3821 case RTX_UNARY:
3822 /* Some machines have (and (shift ...) ...) insns. If X is not
3823 an AND, but XEXP (X, 0) is, use it as our split point. */
3824 if (GET_CODE (x) != AND && GET_CODE (XEXP (x, 0)) == AND)
3825 return &XEXP (x, 0);
3827 split = find_split_point (&XEXP (x, 0), insn);
3828 if (split)
3829 return split;
3830 return loc;
3832 default:
3833 /* Otherwise, we don't have a split point. */
3834 return 0;
3838 /* Throughout X, replace FROM with TO, and return the result.
3839 The result is TO if X is FROM;
3840 otherwise the result is X, but its contents may have been modified.
3841 If they were modified, a record was made in undobuf so that
3842 undo_all will (among other things) return X to its original state.
3844 If the number of changes necessary is too much to record to undo,
3845 the excess changes are not made, so the result is invalid.
3846 The changes already made can still be undone.
3847 undobuf.num_undo is incremented for such changes, so by testing that
3848 the caller can tell whether the result is valid.
3850 `n_occurrences' is incremented each time FROM is replaced.
3852 IN_DEST is nonzero if we are processing the SET_DEST of a SET.
3854 UNIQUE_COPY is nonzero if each substitution must be unique. We do this
3855 by copying if `n_occurrences' is nonzero. */
3857 static rtx
3858 subst (rtx x, rtx from, rtx to, int in_dest, int unique_copy)
3860 enum rtx_code code = GET_CODE (x);
3861 enum machine_mode op0_mode = VOIDmode;
3862 const char *fmt;
3863 int len, i;
3864 rtx new;
3866 /* Two expressions are equal if they are identical copies of a shared
3867 RTX or if they are both registers with the same register number
3868 and mode. */
3870 #define COMBINE_RTX_EQUAL_P(X,Y) \
3871 ((X) == (Y) \
3872 || (REG_P (X) && REG_P (Y) \
3873 && REGNO (X) == REGNO (Y) && GET_MODE (X) == GET_MODE (Y)))
3875 if (! in_dest && COMBINE_RTX_EQUAL_P (x, from))
3877 n_occurrences++;
3878 return (unique_copy && n_occurrences > 1 ? copy_rtx (to) : to);
3881 /* If X and FROM are the same register but different modes, they will
3882 not have been seen as equal above. However, flow.c will make a
3883 LOG_LINKS entry for that case. If we do nothing, we will try to
3884 rerecognize our original insn and, when it succeeds, we will
3885 delete the feeding insn, which is incorrect.
3887 So force this insn not to match in this (rare) case. */
3888 if (! in_dest && code == REG && REG_P (from)
3889 && REGNO (x) == REGNO (from))
3890 return gen_rtx_CLOBBER (GET_MODE (x), const0_rtx);
3892 /* If this is an object, we are done unless it is a MEM or LO_SUM, both
3893 of which may contain things that can be combined. */
3894 if (code != MEM && code != LO_SUM && OBJECT_P (x))
3895 return x;
3897 /* It is possible to have a subexpression appear twice in the insn.
3898 Suppose that FROM is a register that appears within TO.
3899 Then, after that subexpression has been scanned once by `subst',
3900 the second time it is scanned, TO may be found. If we were
3901 to scan TO here, we would find FROM within it and create a
3902 self-referent rtl structure which is completely wrong. */
3903 if (COMBINE_RTX_EQUAL_P (x, to))
3904 return to;
3906 /* Parallel asm_operands need special attention because all of the
3907 inputs are shared across the arms. Furthermore, unsharing the
3908 rtl results in recognition failures. Failure to handle this case
3909 specially can result in circular rtl.
3911 Solve this by doing a normal pass across the first entry of the
3912 parallel, and only processing the SET_DESTs of the subsequent
3913 entries. Ug. */
3915 if (code == PARALLEL
3916 && GET_CODE (XVECEXP (x, 0, 0)) == SET
3917 && GET_CODE (SET_SRC (XVECEXP (x, 0, 0))) == ASM_OPERANDS)
3919 new = subst (XVECEXP (x, 0, 0), from, to, 0, unique_copy);
3921 /* If this substitution failed, this whole thing fails. */
3922 if (GET_CODE (new) == CLOBBER
3923 && XEXP (new, 0) == const0_rtx)
3924 return new;
3926 SUBST (XVECEXP (x, 0, 0), new);
3928 for (i = XVECLEN (x, 0) - 1; i >= 1; i--)
3930 rtx dest = SET_DEST (XVECEXP (x, 0, i));
3932 if (!REG_P (dest)
3933 && GET_CODE (dest) != CC0
3934 && GET_CODE (dest) != PC)
3936 new = subst (dest, from, to, 0, unique_copy);
3938 /* If this substitution failed, this whole thing fails. */
3939 if (GET_CODE (new) == CLOBBER
3940 && XEXP (new, 0) == const0_rtx)
3941 return new;
3943 SUBST (SET_DEST (XVECEXP (x, 0, i)), new);
3947 else
3949 len = GET_RTX_LENGTH (code);
3950 fmt = GET_RTX_FORMAT (code);
3952 /* We don't need to process a SET_DEST that is a register, CC0,
3953 or PC, so set up to skip this common case. All other cases
3954 where we want to suppress replacing something inside a
3955 SET_SRC are handled via the IN_DEST operand. */
3956 if (code == SET
3957 && (REG_P (SET_DEST (x))
3958 || GET_CODE (SET_DEST (x)) == CC0
3959 || GET_CODE (SET_DEST (x)) == PC))
3960 fmt = "ie";
3962 /* Get the mode of operand 0 in case X is now a SIGN_EXTEND of a
3963 constant. */
3964 if (fmt[0] == 'e')
3965 op0_mode = GET_MODE (XEXP (x, 0));
3967 for (i = 0; i < len; i++)
3969 if (fmt[i] == 'E')
3971 int j;
3972 for (j = XVECLEN (x, i) - 1; j >= 0; j--)
3974 if (COMBINE_RTX_EQUAL_P (XVECEXP (x, i, j), from))
3976 new = (unique_copy && n_occurrences
3977 ? copy_rtx (to) : to);
3978 n_occurrences++;
3980 else
3982 new = subst (XVECEXP (x, i, j), from, to, 0,
3983 unique_copy);
3985 /* If this substitution failed, this whole thing
3986 fails. */
3987 if (GET_CODE (new) == CLOBBER
3988 && XEXP (new, 0) == const0_rtx)
3989 return new;
3992 SUBST (XVECEXP (x, i, j), new);
3995 else if (fmt[i] == 'e')
3997 /* If this is a register being set, ignore it. */
3998 new = XEXP (x, i);
3999 if (in_dest
4000 && i == 0
4001 && (((code == SUBREG || code == ZERO_EXTRACT)
4002 && REG_P (new))
4003 || code == STRICT_LOW_PART))
4006 else if (COMBINE_RTX_EQUAL_P (XEXP (x, i), from))
4008 /* In general, don't install a subreg involving two
4009 modes not tieable. It can worsen register
4010 allocation, and can even make invalid reload
4011 insns, since the reg inside may need to be copied
4012 from in the outside mode, and that may be invalid
4013 if it is an fp reg copied in integer mode.
4015 We allow two exceptions to this: It is valid if
4016 it is inside another SUBREG and the mode of that
4017 SUBREG and the mode of the inside of TO is
4018 tieable and it is valid if X is a SET that copies
4019 FROM to CC0. */
4021 if (GET_CODE (to) == SUBREG
4022 && ! MODES_TIEABLE_P (GET_MODE (to),
4023 GET_MODE (SUBREG_REG (to)))
4024 && ! (code == SUBREG
4025 && MODES_TIEABLE_P (GET_MODE (x),
4026 GET_MODE (SUBREG_REG (to))))
4027 #ifdef HAVE_cc0
4028 && ! (code == SET && i == 1 && XEXP (x, 0) == cc0_rtx)
4029 #endif
4031 return gen_rtx_CLOBBER (VOIDmode, const0_rtx);
4033 #ifdef CANNOT_CHANGE_MODE_CLASS
4034 if (code == SUBREG
4035 && REG_P (to)
4036 && REGNO (to) < FIRST_PSEUDO_REGISTER
4037 && REG_CANNOT_CHANGE_MODE_P (REGNO (to),
4038 GET_MODE (to),
4039 GET_MODE (x)))
4040 return gen_rtx_CLOBBER (VOIDmode, const0_rtx);
4041 #endif
4043 new = (unique_copy && n_occurrences ? copy_rtx (to) : to);
4044 n_occurrences++;
4046 else
4047 /* If we are in a SET_DEST, suppress most cases unless we
4048 have gone inside a MEM, in which case we want to
4049 simplify the address. We assume here that things that
4050 are actually part of the destination have their inner
4051 parts in the first expression. This is true for SUBREG,
4052 STRICT_LOW_PART, and ZERO_EXTRACT, which are the only
4053 things aside from REG and MEM that should appear in a
4054 SET_DEST. */
4055 new = subst (XEXP (x, i), from, to,
4056 (((in_dest
4057 && (code == SUBREG || code == STRICT_LOW_PART
4058 || code == ZERO_EXTRACT))
4059 || code == SET)
4060 && i == 0), unique_copy);
4062 /* If we found that we will have to reject this combination,
4063 indicate that by returning the CLOBBER ourselves, rather than
4064 an expression containing it. This will speed things up as
4065 well as prevent accidents where two CLOBBERs are considered
4066 to be equal, thus producing an incorrect simplification. */
4068 if (GET_CODE (new) == CLOBBER && XEXP (new, 0) == const0_rtx)
4069 return new;
4071 if (GET_CODE (x) == SUBREG
4072 && (GET_CODE (new) == CONST_INT
4073 || GET_CODE (new) == CONST_DOUBLE))
4075 enum machine_mode mode = GET_MODE (x);
4077 x = simplify_subreg (GET_MODE (x), new,
4078 GET_MODE (SUBREG_REG (x)),
4079 SUBREG_BYTE (x));
4080 if (! x)
4081 x = gen_rtx_CLOBBER (mode, const0_rtx);
4083 else if (GET_CODE (new) == CONST_INT
4084 && GET_CODE (x) == ZERO_EXTEND)
4086 x = simplify_unary_operation (ZERO_EXTEND, GET_MODE (x),
4087 new, GET_MODE (XEXP (x, 0)));
4088 gcc_assert (x);
4090 else
4091 SUBST (XEXP (x, i), new);
4096 /* Try to simplify X. If the simplification changed the code, it is likely
4097 that further simplification will help, so loop, but limit the number
4098 of repetitions that will be performed. */
4100 for (i = 0; i < 4; i++)
4102 /* If X is sufficiently simple, don't bother trying to do anything
4103 with it. */
4104 if (code != CONST_INT && code != REG && code != CLOBBER)
4105 x = combine_simplify_rtx (x, op0_mode, in_dest);
4107 if (GET_CODE (x) == code)
4108 break;
4110 code = GET_CODE (x);
4112 /* We no longer know the original mode of operand 0 since we
4113 have changed the form of X) */
4114 op0_mode = VOIDmode;
4117 return x;
4120 /* Simplify X, a piece of RTL. We just operate on the expression at the
4121 outer level; call `subst' to simplify recursively. Return the new
4122 expression.
4124 OP0_MODE is the original mode of XEXP (x, 0). IN_DEST is nonzero
4125 if we are inside a SET_DEST. */
4127 static rtx
4128 combine_simplify_rtx (rtx x, enum machine_mode op0_mode, int in_dest)
4130 enum rtx_code code = GET_CODE (x);
4131 enum machine_mode mode = GET_MODE (x);
4132 rtx temp;
4133 int i;
4135 /* If this is a commutative operation, put a constant last and a complex
4136 expression first. We don't need to do this for comparisons here. */
4137 if (COMMUTATIVE_ARITH_P (x)
4138 && swap_commutative_operands_p (XEXP (x, 0), XEXP (x, 1)))
4140 temp = XEXP (x, 0);
4141 SUBST (XEXP (x, 0), XEXP (x, 1));
4142 SUBST (XEXP (x, 1), temp);
4145 /* If this is a simple operation applied to an IF_THEN_ELSE, try
4146 applying it to the arms of the IF_THEN_ELSE. This often simplifies
4147 things. Check for cases where both arms are testing the same
4148 condition.
4150 Don't do anything if all operands are very simple. */
4152 if ((BINARY_P (x)
4153 && ((!OBJECT_P (XEXP (x, 0))
4154 && ! (GET_CODE (XEXP (x, 0)) == SUBREG
4155 && OBJECT_P (SUBREG_REG (XEXP (x, 0)))))
4156 || (!OBJECT_P (XEXP (x, 1))
4157 && ! (GET_CODE (XEXP (x, 1)) == SUBREG
4158 && OBJECT_P (SUBREG_REG (XEXP (x, 1)))))))
4159 || (UNARY_P (x)
4160 && (!OBJECT_P (XEXP (x, 0))
4161 && ! (GET_CODE (XEXP (x, 0)) == SUBREG
4162 && OBJECT_P (SUBREG_REG (XEXP (x, 0)))))))
4164 rtx cond, true_rtx, false_rtx;
4166 cond = if_then_else_cond (x, &true_rtx, &false_rtx);
4167 if (cond != 0
4168 /* If everything is a comparison, what we have is highly unlikely
4169 to be simpler, so don't use it. */
4170 && ! (COMPARISON_P (x)
4171 && (COMPARISON_P (true_rtx) || COMPARISON_P (false_rtx))))
4173 rtx cop1 = const0_rtx;
4174 enum rtx_code cond_code = simplify_comparison (NE, &cond, &cop1);
4176 if (cond_code == NE && COMPARISON_P (cond))
4177 return x;
4179 /* Simplify the alternative arms; this may collapse the true and
4180 false arms to store-flag values. Be careful to use copy_rtx
4181 here since true_rtx or false_rtx might share RTL with x as a
4182 result of the if_then_else_cond call above. */
4183 true_rtx = subst (copy_rtx (true_rtx), pc_rtx, pc_rtx, 0, 0);
4184 false_rtx = subst (copy_rtx (false_rtx), pc_rtx, pc_rtx, 0, 0);
4186 /* If true_rtx and false_rtx are not general_operands, an if_then_else
4187 is unlikely to be simpler. */
4188 if (general_operand (true_rtx, VOIDmode)
4189 && general_operand (false_rtx, VOIDmode))
4191 enum rtx_code reversed;
4193 /* Restarting if we generate a store-flag expression will cause
4194 us to loop. Just drop through in this case. */
4196 /* If the result values are STORE_FLAG_VALUE and zero, we can
4197 just make the comparison operation. */
4198 if (true_rtx == const_true_rtx && false_rtx == const0_rtx)
4199 x = simplify_gen_relational (cond_code, mode, VOIDmode,
4200 cond, cop1);
4201 else if (true_rtx == const0_rtx && false_rtx == const_true_rtx
4202 && ((reversed = reversed_comparison_code_parts
4203 (cond_code, cond, cop1, NULL))
4204 != UNKNOWN))
4205 x = simplify_gen_relational (reversed, mode, VOIDmode,
4206 cond, cop1);
4208 /* Likewise, we can make the negate of a comparison operation
4209 if the result values are - STORE_FLAG_VALUE and zero. */
4210 else if (GET_CODE (true_rtx) == CONST_INT
4211 && INTVAL (true_rtx) == - STORE_FLAG_VALUE
4212 && false_rtx == const0_rtx)
4213 x = simplify_gen_unary (NEG, mode,
4214 simplify_gen_relational (cond_code,
4215 mode, VOIDmode,
4216 cond, cop1),
4217 mode);
4218 else if (GET_CODE (false_rtx) == CONST_INT
4219 && INTVAL (false_rtx) == - STORE_FLAG_VALUE
4220 && true_rtx == const0_rtx
4221 && ((reversed = reversed_comparison_code_parts
4222 (cond_code, cond, cop1, NULL))
4223 != UNKNOWN))
4224 x = simplify_gen_unary (NEG, mode,
4225 simplify_gen_relational (reversed,
4226 mode, VOIDmode,
4227 cond, cop1),
4228 mode);
4229 else
4230 return gen_rtx_IF_THEN_ELSE (mode,
4231 simplify_gen_relational (cond_code,
4232 mode,
4233 VOIDmode,
4234 cond,
4235 cop1),
4236 true_rtx, false_rtx);
4238 code = GET_CODE (x);
4239 op0_mode = VOIDmode;
4244 /* Try to fold this expression in case we have constants that weren't
4245 present before. */
4246 temp = 0;
4247 switch (GET_RTX_CLASS (code))
4249 case RTX_UNARY:
4250 if (op0_mode == VOIDmode)
4251 op0_mode = GET_MODE (XEXP (x, 0));
4252 temp = simplify_unary_operation (code, mode, XEXP (x, 0), op0_mode);
4253 break;
4254 case RTX_COMPARE:
4255 case RTX_COMM_COMPARE:
4257 enum machine_mode cmp_mode = GET_MODE (XEXP (x, 0));
4258 if (cmp_mode == VOIDmode)
4260 cmp_mode = GET_MODE (XEXP (x, 1));
4261 if (cmp_mode == VOIDmode)
4262 cmp_mode = op0_mode;
4264 temp = simplify_relational_operation (code, mode, cmp_mode,
4265 XEXP (x, 0), XEXP (x, 1));
4267 break;
4268 case RTX_COMM_ARITH:
4269 case RTX_BIN_ARITH:
4270 temp = simplify_binary_operation (code, mode, XEXP (x, 0), XEXP (x, 1));
4271 break;
4272 case RTX_BITFIELD_OPS:
4273 case RTX_TERNARY:
4274 temp = simplify_ternary_operation (code, mode, op0_mode, XEXP (x, 0),
4275 XEXP (x, 1), XEXP (x, 2));
4276 break;
4277 default:
4278 break;
4281 if (temp)
4283 x = temp;
4284 code = GET_CODE (temp);
4285 op0_mode = VOIDmode;
4286 mode = GET_MODE (temp);
4289 /* First see if we can apply the inverse distributive law. */
4290 if (code == PLUS || code == MINUS
4291 || code == AND || code == IOR || code == XOR)
4293 x = apply_distributive_law (x);
4294 code = GET_CODE (x);
4295 op0_mode = VOIDmode;
4298 /* If CODE is an associative operation not otherwise handled, see if we
4299 can associate some operands. This can win if they are constants or
4300 if they are logically related (i.e. (a & b) & a). */
4301 if ((code == PLUS || code == MINUS || code == MULT || code == DIV
4302 || code == AND || code == IOR || code == XOR
4303 || code == SMAX || code == SMIN || code == UMAX || code == UMIN)
4304 && ((INTEGRAL_MODE_P (mode) && code != DIV)
4305 || (flag_unsafe_math_optimizations && FLOAT_MODE_P (mode))))
4307 if (GET_CODE (XEXP (x, 0)) == code)
4309 rtx other = XEXP (XEXP (x, 0), 0);
4310 rtx inner_op0 = XEXP (XEXP (x, 0), 1);
4311 rtx inner_op1 = XEXP (x, 1);
4312 rtx inner;
4314 /* Make sure we pass the constant operand if any as the second
4315 one if this is a commutative operation. */
4316 if (CONSTANT_P (inner_op0) && COMMUTATIVE_ARITH_P (x))
4318 rtx tem = inner_op0;
4319 inner_op0 = inner_op1;
4320 inner_op1 = tem;
4322 inner = simplify_binary_operation (code == MINUS ? PLUS
4323 : code == DIV ? MULT
4324 : code,
4325 mode, inner_op0, inner_op1);
4327 /* For commutative operations, try the other pair if that one
4328 didn't simplify. */
4329 if (inner == 0 && COMMUTATIVE_ARITH_P (x))
4331 other = XEXP (XEXP (x, 0), 1);
4332 inner = simplify_binary_operation (code, mode,
4333 XEXP (XEXP (x, 0), 0),
4334 XEXP (x, 1));
4337 if (inner)
4338 return simplify_gen_binary (code, mode, other, inner);
4342 /* A little bit of algebraic simplification here. */
4343 switch (code)
4345 case MEM:
4346 /* Ensure that our address has any ASHIFTs converted to MULT in case
4347 address-recognizing predicates are called later. */
4348 temp = make_compound_operation (XEXP (x, 0), MEM);
4349 SUBST (XEXP (x, 0), temp);
4350 break;
4352 case SUBREG:
4353 if (op0_mode == VOIDmode)
4354 op0_mode = GET_MODE (SUBREG_REG (x));
4356 /* See if this can be moved to simplify_subreg. */
4357 if (CONSTANT_P (SUBREG_REG (x))
4358 && subreg_lowpart_offset (mode, op0_mode) == SUBREG_BYTE (x)
4359 /* Don't call gen_lowpart if the inner mode
4360 is VOIDmode and we cannot simplify it, as SUBREG without
4361 inner mode is invalid. */
4362 && (GET_MODE (SUBREG_REG (x)) != VOIDmode
4363 || gen_lowpart_common (mode, SUBREG_REG (x))))
4364 return gen_lowpart (mode, SUBREG_REG (x));
4366 if (GET_MODE_CLASS (GET_MODE (SUBREG_REG (x))) == MODE_CC)
4367 break;
4369 rtx temp;
4370 temp = simplify_subreg (mode, SUBREG_REG (x), op0_mode,
4371 SUBREG_BYTE (x));
4372 if (temp)
4373 return temp;
4376 /* Don't change the mode of the MEM if that would change the meaning
4377 of the address. */
4378 if (MEM_P (SUBREG_REG (x))
4379 && (MEM_VOLATILE_P (SUBREG_REG (x))
4380 || mode_dependent_address_p (XEXP (SUBREG_REG (x), 0))))
4381 return gen_rtx_CLOBBER (mode, const0_rtx);
4383 /* Note that we cannot do any narrowing for non-constants since
4384 we might have been counting on using the fact that some bits were
4385 zero. We now do this in the SET. */
4387 break;
4389 case NEG:
4390 temp = expand_compound_operation (XEXP (x, 0));
4392 /* For C equal to the width of MODE minus 1, (neg (ashiftrt X C)) can be
4393 replaced by (lshiftrt X C). This will convert
4394 (neg (sign_extract X 1 Y)) to (zero_extract X 1 Y). */
4396 if (GET_CODE (temp) == ASHIFTRT
4397 && GET_CODE (XEXP (temp, 1)) == CONST_INT
4398 && INTVAL (XEXP (temp, 1)) == GET_MODE_BITSIZE (mode) - 1)
4399 return simplify_shift_const (NULL_RTX, LSHIFTRT, mode, XEXP (temp, 0),
4400 INTVAL (XEXP (temp, 1)));
4402 /* If X has only a single bit that might be nonzero, say, bit I, convert
4403 (neg X) to (ashiftrt (ashift X C-I) C-I) where C is the bitsize of
4404 MODE minus 1. This will convert (neg (zero_extract X 1 Y)) to
4405 (sign_extract X 1 Y). But only do this if TEMP isn't a register
4406 or a SUBREG of one since we'd be making the expression more
4407 complex if it was just a register. */
4409 if (!REG_P (temp)
4410 && ! (GET_CODE (temp) == SUBREG
4411 && REG_P (SUBREG_REG (temp)))
4412 && (i = exact_log2 (nonzero_bits (temp, mode))) >= 0)
4414 rtx temp1 = simplify_shift_const
4415 (NULL_RTX, ASHIFTRT, mode,
4416 simplify_shift_const (NULL_RTX, ASHIFT, mode, temp,
4417 GET_MODE_BITSIZE (mode) - 1 - i),
4418 GET_MODE_BITSIZE (mode) - 1 - i);
4420 /* If all we did was surround TEMP with the two shifts, we
4421 haven't improved anything, so don't use it. Otherwise,
4422 we are better off with TEMP1. */
4423 if (GET_CODE (temp1) != ASHIFTRT
4424 || GET_CODE (XEXP (temp1, 0)) != ASHIFT
4425 || XEXP (XEXP (temp1, 0), 0) != temp)
4426 return temp1;
4428 break;
4430 case TRUNCATE:
4431 /* We can't handle truncation to a partial integer mode here
4432 because we don't know the real bitsize of the partial
4433 integer mode. */
4434 if (GET_MODE_CLASS (mode) == MODE_PARTIAL_INT)
4435 break;
4437 if (GET_MODE_BITSIZE (mode) <= HOST_BITS_PER_WIDE_INT
4438 && TRULY_NOOP_TRUNCATION (GET_MODE_BITSIZE (mode),
4439 GET_MODE_BITSIZE (GET_MODE (XEXP (x, 0)))))
4440 SUBST (XEXP (x, 0),
4441 force_to_mode (XEXP (x, 0), GET_MODE (XEXP (x, 0)),
4442 GET_MODE_MASK (mode), 0));
4444 /* Similarly to what we do in simplify-rtx.c, a truncate of a register
4445 whose value is a comparison can be replaced with a subreg if
4446 STORE_FLAG_VALUE permits. */
4447 if (GET_MODE_BITSIZE (mode) <= HOST_BITS_PER_WIDE_INT
4448 && ((HOST_WIDE_INT) STORE_FLAG_VALUE & ~GET_MODE_MASK (mode)) == 0
4449 && (temp = get_last_value (XEXP (x, 0)))
4450 && COMPARISON_P (temp))
4451 return gen_lowpart (mode, XEXP (x, 0));
4452 break;
4454 #ifdef HAVE_cc0
4455 case COMPARE:
4456 /* Convert (compare FOO (const_int 0)) to FOO unless we aren't
4457 using cc0, in which case we want to leave it as a COMPARE
4458 so we can distinguish it from a register-register-copy. */
4459 if (XEXP (x, 1) == const0_rtx)
4460 return XEXP (x, 0);
4462 /* x - 0 is the same as x unless x's mode has signed zeros and
4463 allows rounding towards -infinity. Under those conditions,
4464 0 - 0 is -0. */
4465 if (!(HONOR_SIGNED_ZEROS (GET_MODE (XEXP (x, 0)))
4466 && HONOR_SIGN_DEPENDENT_ROUNDING (GET_MODE (XEXP (x, 0))))
4467 && XEXP (x, 1) == CONST0_RTX (GET_MODE (XEXP (x, 0))))
4468 return XEXP (x, 0);
4469 break;
4470 #endif
4472 case CONST:
4473 /* (const (const X)) can become (const X). Do it this way rather than
4474 returning the inner CONST since CONST can be shared with a
4475 REG_EQUAL note. */
4476 if (GET_CODE (XEXP (x, 0)) == CONST)
4477 SUBST (XEXP (x, 0), XEXP (XEXP (x, 0), 0));
4478 break;
4480 #ifdef HAVE_lo_sum
4481 case LO_SUM:
4482 /* Convert (lo_sum (high FOO) FOO) to FOO. This is necessary so we
4483 can add in an offset. find_split_point will split this address up
4484 again if it doesn't match. */
4485 if (GET_CODE (XEXP (x, 0)) == HIGH
4486 && rtx_equal_p (XEXP (XEXP (x, 0), 0), XEXP (x, 1)))
4487 return XEXP (x, 1);
4488 break;
4489 #endif
4491 case PLUS:
4492 /* (plus (xor (and <foo> (const_int pow2 - 1)) <c>) <-c>)
4493 when c is (const_int (pow2 + 1) / 2) is a sign extension of a
4494 bit-field and can be replaced by either a sign_extend or a
4495 sign_extract. The `and' may be a zero_extend and the two
4496 <c>, -<c> constants may be reversed. */
4497 if (GET_CODE (XEXP (x, 0)) == XOR
4498 && GET_CODE (XEXP (x, 1)) == CONST_INT
4499 && GET_CODE (XEXP (XEXP (x, 0), 1)) == CONST_INT
4500 && INTVAL (XEXP (x, 1)) == -INTVAL (XEXP (XEXP (x, 0), 1))
4501 && ((i = exact_log2 (INTVAL (XEXP (XEXP (x, 0), 1)))) >= 0
4502 || (i = exact_log2 (INTVAL (XEXP (x, 1)))) >= 0)
4503 && GET_MODE_BITSIZE (mode) <= HOST_BITS_PER_WIDE_INT
4504 && ((GET_CODE (XEXP (XEXP (x, 0), 0)) == AND
4505 && GET_CODE (XEXP (XEXP (XEXP (x, 0), 0), 1)) == CONST_INT
4506 && (INTVAL (XEXP (XEXP (XEXP (x, 0), 0), 1))
4507 == ((HOST_WIDE_INT) 1 << (i + 1)) - 1))
4508 || (GET_CODE (XEXP (XEXP (x, 0), 0)) == ZERO_EXTEND
4509 && (GET_MODE_BITSIZE (GET_MODE (XEXP (XEXP (XEXP (x, 0), 0), 0)))
4510 == (unsigned int) i + 1))))
4511 return simplify_shift_const
4512 (NULL_RTX, ASHIFTRT, mode,
4513 simplify_shift_const (NULL_RTX, ASHIFT, mode,
4514 XEXP (XEXP (XEXP (x, 0), 0), 0),
4515 GET_MODE_BITSIZE (mode) - (i + 1)),
4516 GET_MODE_BITSIZE (mode) - (i + 1));
4518 /* If only the low-order bit of X is possibly nonzero, (plus x -1)
4519 can become (ashiftrt (ashift (xor x 1) C) C) where C is
4520 the bitsize of the mode - 1. This allows simplification of
4521 "a = (b & 8) == 0;" */
4522 if (XEXP (x, 1) == constm1_rtx
4523 && !REG_P (XEXP (x, 0))
4524 && ! (GET_CODE (XEXP (x, 0)) == SUBREG
4525 && REG_P (SUBREG_REG (XEXP (x, 0))))
4526 && nonzero_bits (XEXP (x, 0), mode) == 1)
4527 return simplify_shift_const (NULL_RTX, ASHIFTRT, mode,
4528 simplify_shift_const (NULL_RTX, ASHIFT, mode,
4529 gen_rtx_XOR (mode, XEXP (x, 0), const1_rtx),
4530 GET_MODE_BITSIZE (mode) - 1),
4531 GET_MODE_BITSIZE (mode) - 1);
4533 /* If we are adding two things that have no bits in common, convert
4534 the addition into an IOR. This will often be further simplified,
4535 for example in cases like ((a & 1) + (a & 2)), which can
4536 become a & 3. */
4538 if (GET_MODE_BITSIZE (mode) <= HOST_BITS_PER_WIDE_INT
4539 && (nonzero_bits (XEXP (x, 0), mode)
4540 & nonzero_bits (XEXP (x, 1), mode)) == 0)
4542 /* Try to simplify the expression further. */
4543 rtx tor = simplify_gen_binary (IOR, mode, XEXP (x, 0), XEXP (x, 1));
4544 temp = combine_simplify_rtx (tor, mode, in_dest);
4546 /* If we could, great. If not, do not go ahead with the IOR
4547 replacement, since PLUS appears in many special purpose
4548 address arithmetic instructions. */
4549 if (GET_CODE (temp) != CLOBBER && temp != tor)
4550 return temp;
4552 break;
4554 case MINUS:
4555 /* (minus <foo> (and <foo> (const_int -pow2))) becomes
4556 (and <foo> (const_int pow2-1)) */
4557 if (GET_CODE (XEXP (x, 1)) == AND
4558 && GET_CODE (XEXP (XEXP (x, 1), 1)) == CONST_INT
4559 && exact_log2 (-INTVAL (XEXP (XEXP (x, 1), 1))) >= 0
4560 && rtx_equal_p (XEXP (XEXP (x, 1), 0), XEXP (x, 0)))
4561 return simplify_and_const_int (NULL_RTX, mode, XEXP (x, 0),
4562 -INTVAL (XEXP (XEXP (x, 1), 1)) - 1);
4563 break;
4565 case MULT:
4566 /* If we have (mult (plus A B) C), apply the distributive law and then
4567 the inverse distributive law to see if things simplify. This
4568 occurs mostly in addresses, often when unrolling loops. */
4570 if (GET_CODE (XEXP (x, 0)) == PLUS)
4572 rtx result = distribute_and_simplify_rtx (x, 0);
4573 if (result)
4574 return result;
4577 /* Try simplify a*(b/c) as (a*b)/c. */
4578 if (FLOAT_MODE_P (mode) && flag_unsafe_math_optimizations
4579 && GET_CODE (XEXP (x, 0)) == DIV)
4581 rtx tem = simplify_binary_operation (MULT, mode,
4582 XEXP (XEXP (x, 0), 0),
4583 XEXP (x, 1));
4584 if (tem)
4585 return simplify_gen_binary (DIV, mode, tem, XEXP (XEXP (x, 0), 1));
4587 break;
4589 case UDIV:
4590 /* If this is a divide by a power of two, treat it as a shift if
4591 its first operand is a shift. */
4592 if (GET_CODE (XEXP (x, 1)) == CONST_INT
4593 && (i = exact_log2 (INTVAL (XEXP (x, 1)))) >= 0
4594 && (GET_CODE (XEXP (x, 0)) == ASHIFT
4595 || GET_CODE (XEXP (x, 0)) == LSHIFTRT
4596 || GET_CODE (XEXP (x, 0)) == ASHIFTRT
4597 || GET_CODE (XEXP (x, 0)) == ROTATE
4598 || GET_CODE (XEXP (x, 0)) == ROTATERT))
4599 return simplify_shift_const (NULL_RTX, LSHIFTRT, mode, XEXP (x, 0), i);
4600 break;
4602 case EQ: case NE:
4603 case GT: case GTU: case GE: case GEU:
4604 case LT: case LTU: case LE: case LEU:
4605 case UNEQ: case LTGT:
4606 case UNGT: case UNGE:
4607 case UNLT: case UNLE:
4608 case UNORDERED: case ORDERED:
4609 /* If the first operand is a condition code, we can't do anything
4610 with it. */
4611 if (GET_CODE (XEXP (x, 0)) == COMPARE
4612 || (GET_MODE_CLASS (GET_MODE (XEXP (x, 0))) != MODE_CC
4613 && ! CC0_P (XEXP (x, 0))))
4615 rtx op0 = XEXP (x, 0);
4616 rtx op1 = XEXP (x, 1);
4617 enum rtx_code new_code;
4619 if (GET_CODE (op0) == COMPARE)
4620 op1 = XEXP (op0, 1), op0 = XEXP (op0, 0);
4622 /* Simplify our comparison, if possible. */
4623 new_code = simplify_comparison (code, &op0, &op1);
4625 /* If STORE_FLAG_VALUE is 1, we can convert (ne x 0) to simply X
4626 if only the low-order bit is possibly nonzero in X (such as when
4627 X is a ZERO_EXTRACT of one bit). Similarly, we can convert EQ to
4628 (xor X 1) or (minus 1 X); we use the former. Finally, if X is
4629 known to be either 0 or -1, NE becomes a NEG and EQ becomes
4630 (plus X 1).
4632 Remove any ZERO_EXTRACT we made when thinking this was a
4633 comparison. It may now be simpler to use, e.g., an AND. If a
4634 ZERO_EXTRACT is indeed appropriate, it will be placed back by
4635 the call to make_compound_operation in the SET case. */
4637 if (STORE_FLAG_VALUE == 1
4638 && new_code == NE && GET_MODE_CLASS (mode) == MODE_INT
4639 && op1 == const0_rtx
4640 && mode == GET_MODE (op0)
4641 && nonzero_bits (op0, mode) == 1)
4642 return gen_lowpart (mode,
4643 expand_compound_operation (op0));
4645 else if (STORE_FLAG_VALUE == 1
4646 && new_code == NE && GET_MODE_CLASS (mode) == MODE_INT
4647 && op1 == const0_rtx
4648 && mode == GET_MODE (op0)
4649 && (num_sign_bit_copies (op0, mode)
4650 == GET_MODE_BITSIZE (mode)))
4652 op0 = expand_compound_operation (op0);
4653 return simplify_gen_unary (NEG, mode,
4654 gen_lowpart (mode, op0),
4655 mode);
4658 else if (STORE_FLAG_VALUE == 1
4659 && new_code == EQ && GET_MODE_CLASS (mode) == MODE_INT
4660 && op1 == const0_rtx
4661 && mode == GET_MODE (op0)
4662 && nonzero_bits (op0, mode) == 1)
4664 op0 = expand_compound_operation (op0);
4665 return simplify_gen_binary (XOR, mode,
4666 gen_lowpart (mode, op0),
4667 const1_rtx);
4670 else if (STORE_FLAG_VALUE == 1
4671 && new_code == EQ && GET_MODE_CLASS (mode) == MODE_INT
4672 && op1 == const0_rtx
4673 && mode == GET_MODE (op0)
4674 && (num_sign_bit_copies (op0, mode)
4675 == GET_MODE_BITSIZE (mode)))
4677 op0 = expand_compound_operation (op0);
4678 return plus_constant (gen_lowpart (mode, op0), 1);
4681 /* If STORE_FLAG_VALUE is -1, we have cases similar to
4682 those above. */
4683 if (STORE_FLAG_VALUE == -1
4684 && new_code == NE && GET_MODE_CLASS (mode) == MODE_INT
4685 && op1 == const0_rtx
4686 && (num_sign_bit_copies (op0, mode)
4687 == GET_MODE_BITSIZE (mode)))
4688 return gen_lowpart (mode,
4689 expand_compound_operation (op0));
4691 else if (STORE_FLAG_VALUE == -1
4692 && new_code == NE && GET_MODE_CLASS (mode) == MODE_INT
4693 && op1 == const0_rtx
4694 && mode == GET_MODE (op0)
4695 && nonzero_bits (op0, mode) == 1)
4697 op0 = expand_compound_operation (op0);
4698 return simplify_gen_unary (NEG, mode,
4699 gen_lowpart (mode, op0),
4700 mode);
4703 else if (STORE_FLAG_VALUE == -1
4704 && new_code == EQ && GET_MODE_CLASS (mode) == MODE_INT
4705 && op1 == const0_rtx
4706 && mode == GET_MODE (op0)
4707 && (num_sign_bit_copies (op0, mode)
4708 == GET_MODE_BITSIZE (mode)))
4710 op0 = expand_compound_operation (op0);
4711 return simplify_gen_unary (NOT, mode,
4712 gen_lowpart (mode, op0),
4713 mode);
4716 /* If X is 0/1, (eq X 0) is X-1. */
4717 else if (STORE_FLAG_VALUE == -1
4718 && new_code == EQ && GET_MODE_CLASS (mode) == MODE_INT
4719 && op1 == const0_rtx
4720 && mode == GET_MODE (op0)
4721 && nonzero_bits (op0, mode) == 1)
4723 op0 = expand_compound_operation (op0);
4724 return plus_constant (gen_lowpart (mode, op0), -1);
4727 /* If STORE_FLAG_VALUE says to just test the sign bit and X has just
4728 one bit that might be nonzero, we can convert (ne x 0) to
4729 (ashift x c) where C puts the bit in the sign bit. Remove any
4730 AND with STORE_FLAG_VALUE when we are done, since we are only
4731 going to test the sign bit. */
4732 if (new_code == NE && GET_MODE_CLASS (mode) == MODE_INT
4733 && GET_MODE_BITSIZE (mode) <= HOST_BITS_PER_WIDE_INT
4734 && ((STORE_FLAG_VALUE & GET_MODE_MASK (mode))
4735 == (unsigned HOST_WIDE_INT) 1 << (GET_MODE_BITSIZE (mode) - 1))
4736 && op1 == const0_rtx
4737 && mode == GET_MODE (op0)
4738 && (i = exact_log2 (nonzero_bits (op0, mode))) >= 0)
4740 x = simplify_shift_const (NULL_RTX, ASHIFT, mode,
4741 expand_compound_operation (op0),
4742 GET_MODE_BITSIZE (mode) - 1 - i);
4743 if (GET_CODE (x) == AND && XEXP (x, 1) == const_true_rtx)
4744 return XEXP (x, 0);
4745 else
4746 return x;
4749 /* If the code changed, return a whole new comparison. */
4750 if (new_code != code)
4751 return gen_rtx_fmt_ee (new_code, mode, op0, op1);
4753 /* Otherwise, keep this operation, but maybe change its operands.
4754 This also converts (ne (compare FOO BAR) 0) to (ne FOO BAR). */
4755 SUBST (XEXP (x, 0), op0);
4756 SUBST (XEXP (x, 1), op1);
4758 break;
4760 case IF_THEN_ELSE:
4761 return simplify_if_then_else (x);
4763 case ZERO_EXTRACT:
4764 case SIGN_EXTRACT:
4765 case ZERO_EXTEND:
4766 case SIGN_EXTEND:
4767 /* If we are processing SET_DEST, we are done. */
4768 if (in_dest)
4769 return x;
4771 return expand_compound_operation (x);
4773 case SET:
4774 return simplify_set (x);
4776 case AND:
4777 case IOR:
4778 return simplify_logical (x);
4780 case ASHIFT:
4781 case LSHIFTRT:
4782 case ASHIFTRT:
4783 case ROTATE:
4784 case ROTATERT:
4785 /* If this is a shift by a constant amount, simplify it. */
4786 if (GET_CODE (XEXP (x, 1)) == CONST_INT)
4787 return simplify_shift_const (x, code, mode, XEXP (x, 0),
4788 INTVAL (XEXP (x, 1)));
4790 else if (SHIFT_COUNT_TRUNCATED && !REG_P (XEXP (x, 1)))
4791 SUBST (XEXP (x, 1),
4792 force_to_mode (XEXP (x, 1), GET_MODE (XEXP (x, 1)),
4793 ((HOST_WIDE_INT) 1
4794 << exact_log2 (GET_MODE_BITSIZE (GET_MODE (x))))
4795 - 1,
4796 0));
4797 break;
4799 default:
4800 break;
4803 return x;
4806 /* Simplify X, an IF_THEN_ELSE expression. Return the new expression. */
4808 static rtx
4809 simplify_if_then_else (rtx x)
4811 enum machine_mode mode = GET_MODE (x);
4812 rtx cond = XEXP (x, 0);
4813 rtx true_rtx = XEXP (x, 1);
4814 rtx false_rtx = XEXP (x, 2);
4815 enum rtx_code true_code = GET_CODE (cond);
4816 int comparison_p = COMPARISON_P (cond);
4817 rtx temp;
4818 int i;
4819 enum rtx_code false_code;
4820 rtx reversed;
4822 /* Simplify storing of the truth value. */
4823 if (comparison_p && true_rtx == const_true_rtx && false_rtx == const0_rtx)
4824 return simplify_gen_relational (true_code, mode, VOIDmode,
4825 XEXP (cond, 0), XEXP (cond, 1));
4827 /* Also when the truth value has to be reversed. */
4828 if (comparison_p
4829 && true_rtx == const0_rtx && false_rtx == const_true_rtx
4830 && (reversed = reversed_comparison (cond, mode)))
4831 return reversed;
4833 /* Sometimes we can simplify the arm of an IF_THEN_ELSE if a register used
4834 in it is being compared against certain values. Get the true and false
4835 comparisons and see if that says anything about the value of each arm. */
4837 if (comparison_p
4838 && ((false_code = reversed_comparison_code (cond, NULL))
4839 != UNKNOWN)
4840 && REG_P (XEXP (cond, 0)))
4842 HOST_WIDE_INT nzb;
4843 rtx from = XEXP (cond, 0);
4844 rtx true_val = XEXP (cond, 1);
4845 rtx false_val = true_val;
4846 int swapped = 0;
4848 /* If FALSE_CODE is EQ, swap the codes and arms. */
4850 if (false_code == EQ)
4852 swapped = 1, true_code = EQ, false_code = NE;
4853 temp = true_rtx, true_rtx = false_rtx, false_rtx = temp;
4856 /* If we are comparing against zero and the expression being tested has
4857 only a single bit that might be nonzero, that is its value when it is
4858 not equal to zero. Similarly if it is known to be -1 or 0. */
4860 if (true_code == EQ && true_val == const0_rtx
4861 && exact_log2 (nzb = nonzero_bits (from, GET_MODE (from))) >= 0)
4862 false_code = EQ, false_val = GEN_INT (nzb);
4863 else if (true_code == EQ && true_val == const0_rtx
4864 && (num_sign_bit_copies (from, GET_MODE (from))
4865 == GET_MODE_BITSIZE (GET_MODE (from))))
4866 false_code = EQ, false_val = constm1_rtx;
4868 /* Now simplify an arm if we know the value of the register in the
4869 branch and it is used in the arm. Be careful due to the potential
4870 of locally-shared RTL. */
4872 if (reg_mentioned_p (from, true_rtx))
4873 true_rtx = subst (known_cond (copy_rtx (true_rtx), true_code,
4874 from, true_val),
4875 pc_rtx, pc_rtx, 0, 0);
4876 if (reg_mentioned_p (from, false_rtx))
4877 false_rtx = subst (known_cond (copy_rtx (false_rtx), false_code,
4878 from, false_val),
4879 pc_rtx, pc_rtx, 0, 0);
4881 SUBST (XEXP (x, 1), swapped ? false_rtx : true_rtx);
4882 SUBST (XEXP (x, 2), swapped ? true_rtx : false_rtx);
4884 true_rtx = XEXP (x, 1);
4885 false_rtx = XEXP (x, 2);
4886 true_code = GET_CODE (cond);
4889 /* If we have (if_then_else FOO (pc) (label_ref BAR)) and FOO can be
4890 reversed, do so to avoid needing two sets of patterns for
4891 subtract-and-branch insns. Similarly if we have a constant in the true
4892 arm, the false arm is the same as the first operand of the comparison, or
4893 the false arm is more complicated than the true arm. */
4895 if (comparison_p
4896 && reversed_comparison_code (cond, NULL) != UNKNOWN
4897 && (true_rtx == pc_rtx
4898 || (CONSTANT_P (true_rtx)
4899 && GET_CODE (false_rtx) != CONST_INT && false_rtx != pc_rtx)
4900 || true_rtx == const0_rtx
4901 || (OBJECT_P (true_rtx) && !OBJECT_P (false_rtx))
4902 || (GET_CODE (true_rtx) == SUBREG && OBJECT_P (SUBREG_REG (true_rtx))
4903 && !OBJECT_P (false_rtx))
4904 || reg_mentioned_p (true_rtx, false_rtx)
4905 || rtx_equal_p (false_rtx, XEXP (cond, 0))))
4907 true_code = reversed_comparison_code (cond, NULL);
4908 SUBST (XEXP (x, 0), reversed_comparison (cond, GET_MODE (cond)));
4909 SUBST (XEXP (x, 1), false_rtx);
4910 SUBST (XEXP (x, 2), true_rtx);
4912 temp = true_rtx, true_rtx = false_rtx, false_rtx = temp;
4913 cond = XEXP (x, 0);
4915 /* It is possible that the conditional has been simplified out. */
4916 true_code = GET_CODE (cond);
4917 comparison_p = COMPARISON_P (cond);
4920 /* If the two arms are identical, we don't need the comparison. */
4922 if (rtx_equal_p (true_rtx, false_rtx) && ! side_effects_p (cond))
4923 return true_rtx;
4925 /* Convert a == b ? b : a to "a". */
4926 if (true_code == EQ && ! side_effects_p (cond)
4927 && !HONOR_NANS (mode)
4928 && rtx_equal_p (XEXP (cond, 0), false_rtx)
4929 && rtx_equal_p (XEXP (cond, 1), true_rtx))
4930 return false_rtx;
4931 else if (true_code == NE && ! side_effects_p (cond)
4932 && !HONOR_NANS (mode)
4933 && rtx_equal_p (XEXP (cond, 0), true_rtx)
4934 && rtx_equal_p (XEXP (cond, 1), false_rtx))
4935 return true_rtx;
4937 /* Look for cases where we have (abs x) or (neg (abs X)). */
4939 if (GET_MODE_CLASS (mode) == MODE_INT
4940 && GET_CODE (false_rtx) == NEG
4941 && rtx_equal_p (true_rtx, XEXP (false_rtx, 0))
4942 && comparison_p
4943 && rtx_equal_p (true_rtx, XEXP (cond, 0))
4944 && ! side_effects_p (true_rtx))
4945 switch (true_code)
4947 case GT:
4948 case GE:
4949 return simplify_gen_unary (ABS, mode, true_rtx, mode);
4950 case LT:
4951 case LE:
4952 return
4953 simplify_gen_unary (NEG, mode,
4954 simplify_gen_unary (ABS, mode, true_rtx, mode),
4955 mode);
4956 default:
4957 break;
4960 /* Look for MIN or MAX. */
4962 if ((! FLOAT_MODE_P (mode) || flag_unsafe_math_optimizations)
4963 && comparison_p
4964 && rtx_equal_p (XEXP (cond, 0), true_rtx)
4965 && rtx_equal_p (XEXP (cond, 1), false_rtx)
4966 && ! side_effects_p (cond))
4967 switch (true_code)
4969 case GE:
4970 case GT:
4971 return simplify_gen_binary (SMAX, mode, true_rtx, false_rtx);
4972 case LE:
4973 case LT:
4974 return simplify_gen_binary (SMIN, mode, true_rtx, false_rtx);
4975 case GEU:
4976 case GTU:
4977 return simplify_gen_binary (UMAX, mode, true_rtx, false_rtx);
4978 case LEU:
4979 case LTU:
4980 return simplify_gen_binary (UMIN, mode, true_rtx, false_rtx);
4981 default:
4982 break;
4985 /* If we have (if_then_else COND (OP Z C1) Z) and OP is an identity when its
4986 second operand is zero, this can be done as (OP Z (mult COND C2)) where
4987 C2 = C1 * STORE_FLAG_VALUE. Similarly if OP has an outer ZERO_EXTEND or
4988 SIGN_EXTEND as long as Z is already extended (so we don't destroy it).
4989 We can do this kind of thing in some cases when STORE_FLAG_VALUE is
4990 neither 1 or -1, but it isn't worth checking for. */
4992 if ((STORE_FLAG_VALUE == 1 || STORE_FLAG_VALUE == -1)
4993 && comparison_p
4994 && GET_MODE_CLASS (mode) == MODE_INT
4995 && ! side_effects_p (x))
4997 rtx t = make_compound_operation (true_rtx, SET);
4998 rtx f = make_compound_operation (false_rtx, SET);
4999 rtx cond_op0 = XEXP (cond, 0);
5000 rtx cond_op1 = XEXP (cond, 1);
5001 enum rtx_code op = UNKNOWN, extend_op = UNKNOWN;
5002 enum machine_mode m = mode;
5003 rtx z = 0, c1 = NULL_RTX;
5005 if ((GET_CODE (t) == PLUS || GET_CODE (t) == MINUS
5006 || GET_CODE (t) == IOR || GET_CODE (t) == XOR
5007 || GET_CODE (t) == ASHIFT
5008 || GET_CODE (t) == LSHIFTRT || GET_CODE (t) == ASHIFTRT)
5009 && rtx_equal_p (XEXP (t, 0), f))
5010 c1 = XEXP (t, 1), op = GET_CODE (t), z = f;
5012 /* If an identity-zero op is commutative, check whether there
5013 would be a match if we swapped the operands. */
5014 else if ((GET_CODE (t) == PLUS || GET_CODE (t) == IOR
5015 || GET_CODE (t) == XOR)
5016 && rtx_equal_p (XEXP (t, 1), f))
5017 c1 = XEXP (t, 0), op = GET_CODE (t), z = f;
5018 else if (GET_CODE (t) == SIGN_EXTEND
5019 && (GET_CODE (XEXP (t, 0)) == PLUS
5020 || GET_CODE (XEXP (t, 0)) == MINUS
5021 || GET_CODE (XEXP (t, 0)) == IOR
5022 || GET_CODE (XEXP (t, 0)) == XOR
5023 || GET_CODE (XEXP (t, 0)) == ASHIFT
5024 || GET_CODE (XEXP (t, 0)) == LSHIFTRT
5025 || GET_CODE (XEXP (t, 0)) == ASHIFTRT)
5026 && GET_CODE (XEXP (XEXP (t, 0), 0)) == SUBREG
5027 && subreg_lowpart_p (XEXP (XEXP (t, 0), 0))
5028 && rtx_equal_p (SUBREG_REG (XEXP (XEXP (t, 0), 0)), f)
5029 && (num_sign_bit_copies (f, GET_MODE (f))
5030 > (unsigned int)
5031 (GET_MODE_BITSIZE (mode)
5032 - GET_MODE_BITSIZE (GET_MODE (XEXP (XEXP (t, 0), 0))))))
5034 c1 = XEXP (XEXP (t, 0), 1); z = f; op = GET_CODE (XEXP (t, 0));
5035 extend_op = SIGN_EXTEND;
5036 m = GET_MODE (XEXP (t, 0));
5038 else if (GET_CODE (t) == SIGN_EXTEND
5039 && (GET_CODE (XEXP (t, 0)) == PLUS
5040 || GET_CODE (XEXP (t, 0)) == IOR
5041 || GET_CODE (XEXP (t, 0)) == XOR)
5042 && GET_CODE (XEXP (XEXP (t, 0), 1)) == SUBREG
5043 && subreg_lowpart_p (XEXP (XEXP (t, 0), 1))
5044 && rtx_equal_p (SUBREG_REG (XEXP (XEXP (t, 0), 1)), f)
5045 && (num_sign_bit_copies (f, GET_MODE (f))
5046 > (unsigned int)
5047 (GET_MODE_BITSIZE (mode)
5048 - GET_MODE_BITSIZE (GET_MODE (XEXP (XEXP (t, 0), 1))))))
5050 c1 = XEXP (XEXP (t, 0), 0); z = f; op = GET_CODE (XEXP (t, 0));
5051 extend_op = SIGN_EXTEND;
5052 m = GET_MODE (XEXP (t, 0));
5054 else if (GET_CODE (t) == ZERO_EXTEND
5055 && (GET_CODE (XEXP (t, 0)) == PLUS
5056 || GET_CODE (XEXP (t, 0)) == MINUS
5057 || GET_CODE (XEXP (t, 0)) == IOR
5058 || GET_CODE (XEXP (t, 0)) == XOR
5059 || GET_CODE (XEXP (t, 0)) == ASHIFT
5060 || GET_CODE (XEXP (t, 0)) == LSHIFTRT
5061 || GET_CODE (XEXP (t, 0)) == ASHIFTRT)
5062 && GET_CODE (XEXP (XEXP (t, 0), 0)) == SUBREG
5063 && GET_MODE_BITSIZE (mode) <= HOST_BITS_PER_WIDE_INT
5064 && subreg_lowpart_p (XEXP (XEXP (t, 0), 0))
5065 && rtx_equal_p (SUBREG_REG (XEXP (XEXP (t, 0), 0)), f)
5066 && ((nonzero_bits (f, GET_MODE (f))
5067 & ~GET_MODE_MASK (GET_MODE (XEXP (XEXP (t, 0), 0))))
5068 == 0))
5070 c1 = XEXP (XEXP (t, 0), 1); z = f; op = GET_CODE (XEXP (t, 0));
5071 extend_op = ZERO_EXTEND;
5072 m = GET_MODE (XEXP (t, 0));
5074 else if (GET_CODE (t) == ZERO_EXTEND
5075 && (GET_CODE (XEXP (t, 0)) == PLUS
5076 || GET_CODE (XEXP (t, 0)) == IOR
5077 || GET_CODE (XEXP (t, 0)) == XOR)
5078 && GET_CODE (XEXP (XEXP (t, 0), 1)) == SUBREG
5079 && GET_MODE_BITSIZE (mode) <= HOST_BITS_PER_WIDE_INT
5080 && subreg_lowpart_p (XEXP (XEXP (t, 0), 1))
5081 && rtx_equal_p (SUBREG_REG (XEXP (XEXP (t, 0), 1)), f)
5082 && ((nonzero_bits (f, GET_MODE (f))
5083 & ~GET_MODE_MASK (GET_MODE (XEXP (XEXP (t, 0), 1))))
5084 == 0))
5086 c1 = XEXP (XEXP (t, 0), 0); z = f; op = GET_CODE (XEXP (t, 0));
5087 extend_op = ZERO_EXTEND;
5088 m = GET_MODE (XEXP (t, 0));
5091 if (z)
5093 temp = subst (simplify_gen_relational (true_code, m, VOIDmode,
5094 cond_op0, cond_op1),
5095 pc_rtx, pc_rtx, 0, 0);
5096 temp = simplify_gen_binary (MULT, m, temp,
5097 simplify_gen_binary (MULT, m, c1,
5098 const_true_rtx));
5099 temp = subst (temp, pc_rtx, pc_rtx, 0, 0);
5100 temp = simplify_gen_binary (op, m, gen_lowpart (m, z), temp);
5102 if (extend_op != UNKNOWN)
5103 temp = simplify_gen_unary (extend_op, mode, temp, m);
5105 return temp;
5109 /* If we have (if_then_else (ne A 0) C1 0) and either A is known to be 0 or
5110 1 and C1 is a single bit or A is known to be 0 or -1 and C1 is the
5111 negation of a single bit, we can convert this operation to a shift. We
5112 can actually do this more generally, but it doesn't seem worth it. */
5114 if (true_code == NE && XEXP (cond, 1) == const0_rtx
5115 && false_rtx == const0_rtx && GET_CODE (true_rtx) == CONST_INT
5116 && ((1 == nonzero_bits (XEXP (cond, 0), mode)
5117 && (i = exact_log2 (INTVAL (true_rtx))) >= 0)
5118 || ((num_sign_bit_copies (XEXP (cond, 0), mode)
5119 == GET_MODE_BITSIZE (mode))
5120 && (i = exact_log2 (-INTVAL (true_rtx))) >= 0)))
5121 return
5122 simplify_shift_const (NULL_RTX, ASHIFT, mode,
5123 gen_lowpart (mode, XEXP (cond, 0)), i);
5125 /* (IF_THEN_ELSE (NE REG 0) (0) (8)) is REG for nonzero_bits (REG) == 8. */
5126 if (true_code == NE && XEXP (cond, 1) == const0_rtx
5127 && false_rtx == const0_rtx && GET_CODE (true_rtx) == CONST_INT
5128 && GET_MODE (XEXP (cond, 0)) == mode
5129 && (INTVAL (true_rtx) & GET_MODE_MASK (mode))
5130 == nonzero_bits (XEXP (cond, 0), mode)
5131 && (i = exact_log2 (INTVAL (true_rtx) & GET_MODE_MASK (mode))) >= 0)
5132 return XEXP (cond, 0);
5134 return x;
5137 /* Simplify X, a SET expression. Return the new expression. */
5139 static rtx
5140 simplify_set (rtx x)
5142 rtx src = SET_SRC (x);
5143 rtx dest = SET_DEST (x);
5144 enum machine_mode mode
5145 = GET_MODE (src) != VOIDmode ? GET_MODE (src) : GET_MODE (dest);
5146 rtx other_insn;
5147 rtx *cc_use;
5149 /* (set (pc) (return)) gets written as (return). */
5150 if (GET_CODE (dest) == PC && GET_CODE (src) == RETURN)
5151 return src;
5153 /* Now that we know for sure which bits of SRC we are using, see if we can
5154 simplify the expression for the object knowing that we only need the
5155 low-order bits. */
5157 if (GET_MODE_CLASS (mode) == MODE_INT
5158 && GET_MODE_BITSIZE (mode) <= HOST_BITS_PER_WIDE_INT)
5160 src = force_to_mode (src, mode, ~(HOST_WIDE_INT) 0, 0);
5161 SUBST (SET_SRC (x), src);
5164 /* If we are setting CC0 or if the source is a COMPARE, look for the use of
5165 the comparison result and try to simplify it unless we already have used
5166 undobuf.other_insn. */
5167 if ((GET_MODE_CLASS (mode) == MODE_CC
5168 || GET_CODE (src) == COMPARE
5169 || CC0_P (dest))
5170 && (cc_use = find_single_use (dest, subst_insn, &other_insn)) != 0
5171 && (undobuf.other_insn == 0 || other_insn == undobuf.other_insn)
5172 && COMPARISON_P (*cc_use)
5173 && rtx_equal_p (XEXP (*cc_use, 0), dest))
5175 enum rtx_code old_code = GET_CODE (*cc_use);
5176 enum rtx_code new_code;
5177 rtx op0, op1, tmp;
5178 int other_changed = 0;
5179 enum machine_mode compare_mode = GET_MODE (dest);
5181 if (GET_CODE (src) == COMPARE)
5182 op0 = XEXP (src, 0), op1 = XEXP (src, 1);
5183 else
5184 op0 = src, op1 = CONST0_RTX (GET_MODE (src));
5186 tmp = simplify_relational_operation (old_code, compare_mode, VOIDmode,
5187 op0, op1);
5188 if (!tmp)
5189 new_code = old_code;
5190 else if (!CONSTANT_P (tmp))
5192 new_code = GET_CODE (tmp);
5193 op0 = XEXP (tmp, 0);
5194 op1 = XEXP (tmp, 1);
5196 else
5198 rtx pat = PATTERN (other_insn);
5199 undobuf.other_insn = other_insn;
5200 SUBST (*cc_use, tmp);
5202 /* Attempt to simplify CC user. */
5203 if (GET_CODE (pat) == SET)
5205 rtx new = simplify_rtx (SET_SRC (pat));
5206 if (new != NULL_RTX)
5207 SUBST (SET_SRC (pat), new);
5210 /* Convert X into a no-op move. */
5211 SUBST (SET_DEST (x), pc_rtx);
5212 SUBST (SET_SRC (x), pc_rtx);
5213 return x;
5216 /* Simplify our comparison, if possible. */
5217 new_code = simplify_comparison (new_code, &op0, &op1);
5219 #ifdef SELECT_CC_MODE
5220 /* If this machine has CC modes other than CCmode, check to see if we
5221 need to use a different CC mode here. */
5222 if (GET_MODE_CLASS (GET_MODE (op0)) == MODE_CC)
5223 compare_mode = GET_MODE (op0);
5224 else
5225 compare_mode = SELECT_CC_MODE (new_code, op0, op1);
5227 #ifndef HAVE_cc0
5228 /* If the mode changed, we have to change SET_DEST, the mode in the
5229 compare, and the mode in the place SET_DEST is used. If SET_DEST is
5230 a hard register, just build new versions with the proper mode. If it
5231 is a pseudo, we lose unless it is only time we set the pseudo, in
5232 which case we can safely change its mode. */
5233 if (compare_mode != GET_MODE (dest))
5235 if (can_change_dest_mode (dest, 0, compare_mode))
5237 unsigned int regno = REGNO (dest);
5238 rtx new_dest;
5240 if (regno < FIRST_PSEUDO_REGISTER)
5241 new_dest = gen_rtx_REG (compare_mode, regno);
5242 else
5244 SUBST_MODE (regno_reg_rtx[regno], compare_mode);
5245 new_dest = regno_reg_rtx[regno];
5248 SUBST (SET_DEST (x), new_dest);
5249 SUBST (XEXP (*cc_use, 0), new_dest);
5250 other_changed = 1;
5252 dest = new_dest;
5255 #endif /* cc0 */
5256 #endif /* SELECT_CC_MODE */
5258 /* If the code changed, we have to build a new comparison in
5259 undobuf.other_insn. */
5260 if (new_code != old_code)
5262 int other_changed_previously = other_changed;
5263 unsigned HOST_WIDE_INT mask;
5265 SUBST (*cc_use, gen_rtx_fmt_ee (new_code, GET_MODE (*cc_use),
5266 dest, const0_rtx));
5267 other_changed = 1;
5269 /* If the only change we made was to change an EQ into an NE or
5270 vice versa, OP0 has only one bit that might be nonzero, and OP1
5271 is zero, check if changing the user of the condition code will
5272 produce a valid insn. If it won't, we can keep the original code
5273 in that insn by surrounding our operation with an XOR. */
5275 if (((old_code == NE && new_code == EQ)
5276 || (old_code == EQ && new_code == NE))
5277 && ! other_changed_previously && op1 == const0_rtx
5278 && GET_MODE_BITSIZE (GET_MODE (op0)) <= HOST_BITS_PER_WIDE_INT
5279 && exact_log2 (mask = nonzero_bits (op0, GET_MODE (op0))) >= 0)
5281 rtx pat = PATTERN (other_insn), note = 0;
5283 if ((recog_for_combine (&pat, other_insn, &note) < 0
5284 && ! check_asm_operands (pat)))
5286 PUT_CODE (*cc_use, old_code);
5287 other_changed = 0;
5289 op0 = simplify_gen_binary (XOR, GET_MODE (op0),
5290 op0, GEN_INT (mask));
5295 if (other_changed)
5296 undobuf.other_insn = other_insn;
5298 #ifdef HAVE_cc0
5299 /* If we are now comparing against zero, change our source if
5300 needed. If we do not use cc0, we always have a COMPARE. */
5301 if (op1 == const0_rtx && dest == cc0_rtx)
5303 SUBST (SET_SRC (x), op0);
5304 src = op0;
5306 else
5307 #endif
5309 /* Otherwise, if we didn't previously have a COMPARE in the
5310 correct mode, we need one. */
5311 if (GET_CODE (src) != COMPARE || GET_MODE (src) != compare_mode)
5313 SUBST (SET_SRC (x), gen_rtx_COMPARE (compare_mode, op0, op1));
5314 src = SET_SRC (x);
5316 else if (GET_MODE (op0) == compare_mode && op1 == const0_rtx)
5318 SUBST(SET_SRC (x), op0);
5319 src = SET_SRC (x);
5321 else
5323 /* Otherwise, update the COMPARE if needed. */
5324 SUBST (XEXP (src, 0), op0);
5325 SUBST (XEXP (src, 1), op1);
5328 else
5330 /* Get SET_SRC in a form where we have placed back any
5331 compound expressions. Then do the checks below. */
5332 src = make_compound_operation (src, SET);
5333 SUBST (SET_SRC (x), src);
5336 /* If we have (set x (subreg:m1 (op:m2 ...) 0)) with OP being some operation,
5337 and X being a REG or (subreg (reg)), we may be able to convert this to
5338 (set (subreg:m2 x) (op)).
5340 We can always do this if M1 is narrower than M2 because that means that
5341 we only care about the low bits of the result.
5343 However, on machines without WORD_REGISTER_OPERATIONS defined, we cannot
5344 perform a narrower operation than requested since the high-order bits will
5345 be undefined. On machine where it is defined, this transformation is safe
5346 as long as M1 and M2 have the same number of words. */
5348 if (GET_CODE (src) == SUBREG && subreg_lowpart_p (src)
5349 && !OBJECT_P (SUBREG_REG (src))
5350 && (((GET_MODE_SIZE (GET_MODE (src)) + (UNITS_PER_WORD - 1))
5351 / UNITS_PER_WORD)
5352 == ((GET_MODE_SIZE (GET_MODE (SUBREG_REG (src)))
5353 + (UNITS_PER_WORD - 1)) / UNITS_PER_WORD))
5354 #ifndef WORD_REGISTER_OPERATIONS
5355 && (GET_MODE_SIZE (GET_MODE (src))
5356 < GET_MODE_SIZE (GET_MODE (SUBREG_REG (src))))
5357 #endif
5358 #ifdef CANNOT_CHANGE_MODE_CLASS
5359 && ! (REG_P (dest) && REGNO (dest) < FIRST_PSEUDO_REGISTER
5360 && REG_CANNOT_CHANGE_MODE_P (REGNO (dest),
5361 GET_MODE (SUBREG_REG (src)),
5362 GET_MODE (src)))
5363 #endif
5364 && (REG_P (dest)
5365 || (GET_CODE (dest) == SUBREG
5366 && REG_P (SUBREG_REG (dest)))))
5368 SUBST (SET_DEST (x),
5369 gen_lowpart (GET_MODE (SUBREG_REG (src)),
5370 dest));
5371 SUBST (SET_SRC (x), SUBREG_REG (src));
5373 src = SET_SRC (x), dest = SET_DEST (x);
5376 #ifdef HAVE_cc0
5377 /* If we have (set (cc0) (subreg ...)), we try to remove the subreg
5378 in SRC. */
5379 if (dest == cc0_rtx
5380 && GET_CODE (src) == SUBREG
5381 && subreg_lowpart_p (src)
5382 && (GET_MODE_BITSIZE (GET_MODE (src))
5383 < GET_MODE_BITSIZE (GET_MODE (SUBREG_REG (src)))))
5385 rtx inner = SUBREG_REG (src);
5386 enum machine_mode inner_mode = GET_MODE (inner);
5388 /* Here we make sure that we don't have a sign bit on. */
5389 if (GET_MODE_BITSIZE (inner_mode) <= HOST_BITS_PER_WIDE_INT
5390 && (nonzero_bits (inner, inner_mode)
5391 < ((unsigned HOST_WIDE_INT) 1
5392 << (GET_MODE_BITSIZE (GET_MODE (src)) - 1))))
5394 SUBST (SET_SRC (x), inner);
5395 src = SET_SRC (x);
5398 #endif
5400 #ifdef LOAD_EXTEND_OP
5401 /* If we have (set FOO (subreg:M (mem:N BAR) 0)) with M wider than N, this
5402 would require a paradoxical subreg. Replace the subreg with a
5403 zero_extend to avoid the reload that would otherwise be required. */
5405 if (GET_CODE (src) == SUBREG && subreg_lowpart_p (src)
5406 && LOAD_EXTEND_OP (GET_MODE (SUBREG_REG (src))) != UNKNOWN
5407 && SUBREG_BYTE (src) == 0
5408 && (GET_MODE_SIZE (GET_MODE (src))
5409 > GET_MODE_SIZE (GET_MODE (SUBREG_REG (src))))
5410 && MEM_P (SUBREG_REG (src)))
5412 SUBST (SET_SRC (x),
5413 gen_rtx_fmt_e (LOAD_EXTEND_OP (GET_MODE (SUBREG_REG (src))),
5414 GET_MODE (src), SUBREG_REG (src)));
5416 src = SET_SRC (x);
5418 #endif
5420 /* If we don't have a conditional move, SET_SRC is an IF_THEN_ELSE, and we
5421 are comparing an item known to be 0 or -1 against 0, use a logical
5422 operation instead. Check for one of the arms being an IOR of the other
5423 arm with some value. We compute three terms to be IOR'ed together. In
5424 practice, at most two will be nonzero. Then we do the IOR's. */
5426 if (GET_CODE (dest) != PC
5427 && GET_CODE (src) == IF_THEN_ELSE
5428 && GET_MODE_CLASS (GET_MODE (src)) == MODE_INT
5429 && (GET_CODE (XEXP (src, 0)) == EQ || GET_CODE (XEXP (src, 0)) == NE)
5430 && XEXP (XEXP (src, 0), 1) == const0_rtx
5431 && GET_MODE (src) == GET_MODE (XEXP (XEXP (src, 0), 0))
5432 #ifdef HAVE_conditional_move
5433 && ! can_conditionally_move_p (GET_MODE (src))
5434 #endif
5435 && (num_sign_bit_copies (XEXP (XEXP (src, 0), 0),
5436 GET_MODE (XEXP (XEXP (src, 0), 0)))
5437 == GET_MODE_BITSIZE (GET_MODE (XEXP (XEXP (src, 0), 0))))
5438 && ! side_effects_p (src))
5440 rtx true_rtx = (GET_CODE (XEXP (src, 0)) == NE
5441 ? XEXP (src, 1) : XEXP (src, 2));
5442 rtx false_rtx = (GET_CODE (XEXP (src, 0)) == NE
5443 ? XEXP (src, 2) : XEXP (src, 1));
5444 rtx term1 = const0_rtx, term2, term3;
5446 if (GET_CODE (true_rtx) == IOR
5447 && rtx_equal_p (XEXP (true_rtx, 0), false_rtx))
5448 term1 = false_rtx, true_rtx = XEXP (true_rtx, 1), false_rtx = const0_rtx;
5449 else if (GET_CODE (true_rtx) == IOR
5450 && rtx_equal_p (XEXP (true_rtx, 1), false_rtx))
5451 term1 = false_rtx, true_rtx = XEXP (true_rtx, 0), false_rtx = const0_rtx;
5452 else if (GET_CODE (false_rtx) == IOR
5453 && rtx_equal_p (XEXP (false_rtx, 0), true_rtx))
5454 term1 = true_rtx, false_rtx = XEXP (false_rtx, 1), true_rtx = const0_rtx;
5455 else if (GET_CODE (false_rtx) == IOR
5456 && rtx_equal_p (XEXP (false_rtx, 1), true_rtx))
5457 term1 = true_rtx, false_rtx = XEXP (false_rtx, 0), true_rtx = const0_rtx;
5459 term2 = simplify_gen_binary (AND, GET_MODE (src),
5460 XEXP (XEXP (src, 0), 0), true_rtx);
5461 term3 = simplify_gen_binary (AND, GET_MODE (src),
5462 simplify_gen_unary (NOT, GET_MODE (src),
5463 XEXP (XEXP (src, 0), 0),
5464 GET_MODE (src)),
5465 false_rtx);
5467 SUBST (SET_SRC (x),
5468 simplify_gen_binary (IOR, GET_MODE (src),
5469 simplify_gen_binary (IOR, GET_MODE (src),
5470 term1, term2),
5471 term3));
5473 src = SET_SRC (x);
5476 /* If either SRC or DEST is a CLOBBER of (const_int 0), make this
5477 whole thing fail. */
5478 if (GET_CODE (src) == CLOBBER && XEXP (src, 0) == const0_rtx)
5479 return src;
5480 else if (GET_CODE (dest) == CLOBBER && XEXP (dest, 0) == const0_rtx)
5481 return dest;
5482 else
5483 /* Convert this into a field assignment operation, if possible. */
5484 return make_field_assignment (x);
5487 /* Simplify, X, and AND, IOR, or XOR operation, and return the simplified
5488 result. */
5490 static rtx
5491 simplify_logical (rtx x)
5493 enum machine_mode mode = GET_MODE (x);
5494 rtx op0 = XEXP (x, 0);
5495 rtx op1 = XEXP (x, 1);
5497 switch (GET_CODE (x))
5499 case AND:
5500 /* We can call simplify_and_const_int only if we don't lose
5501 any (sign) bits when converting INTVAL (op1) to
5502 "unsigned HOST_WIDE_INT". */
5503 if (GET_CODE (op1) == CONST_INT
5504 && (GET_MODE_BITSIZE (mode) <= HOST_BITS_PER_WIDE_INT
5505 || INTVAL (op1) > 0))
5507 x = simplify_and_const_int (x, mode, op0, INTVAL (op1));
5508 if (GET_CODE (x) != AND)
5509 return x;
5511 op0 = XEXP (x, 0);
5512 op1 = XEXP (x, 1);
5515 /* If we have any of (and (ior A B) C) or (and (xor A B) C),
5516 apply the distributive law and then the inverse distributive
5517 law to see if things simplify. */
5518 if (GET_CODE (op0) == IOR || GET_CODE (op0) == XOR)
5520 rtx result = distribute_and_simplify_rtx (x, 0);
5521 if (result)
5522 return result;
5524 if (GET_CODE (op1) == IOR || GET_CODE (op1) == XOR)
5526 rtx result = distribute_and_simplify_rtx (x, 1);
5527 if (result)
5528 return result;
5530 break;
5532 case IOR:
5533 /* If we have (ior (and A B) C), apply the distributive law and then
5534 the inverse distributive law to see if things simplify. */
5536 if (GET_CODE (op0) == AND)
5538 rtx result = distribute_and_simplify_rtx (x, 0);
5539 if (result)
5540 return result;
5543 if (GET_CODE (op1) == AND)
5545 rtx result = distribute_and_simplify_rtx (x, 1);
5546 if (result)
5547 return result;
5549 break;
5551 default:
5552 gcc_unreachable ();
5555 return x;
5558 /* We consider ZERO_EXTRACT, SIGN_EXTRACT, and SIGN_EXTEND as "compound
5559 operations" because they can be replaced with two more basic operations.
5560 ZERO_EXTEND is also considered "compound" because it can be replaced with
5561 an AND operation, which is simpler, though only one operation.
5563 The function expand_compound_operation is called with an rtx expression
5564 and will convert it to the appropriate shifts and AND operations,
5565 simplifying at each stage.
5567 The function make_compound_operation is called to convert an expression
5568 consisting of shifts and ANDs into the equivalent compound expression.
5569 It is the inverse of this function, loosely speaking. */
5571 static rtx
5572 expand_compound_operation (rtx x)
5574 unsigned HOST_WIDE_INT pos = 0, len;
5575 int unsignedp = 0;
5576 unsigned int modewidth;
5577 rtx tem;
5579 switch (GET_CODE (x))
5581 case ZERO_EXTEND:
5582 unsignedp = 1;
5583 case SIGN_EXTEND:
5584 /* We can't necessarily use a const_int for a multiword mode;
5585 it depends on implicitly extending the value.
5586 Since we don't know the right way to extend it,
5587 we can't tell whether the implicit way is right.
5589 Even for a mode that is no wider than a const_int,
5590 we can't win, because we need to sign extend one of its bits through
5591 the rest of it, and we don't know which bit. */
5592 if (GET_CODE (XEXP (x, 0)) == CONST_INT)
5593 return x;
5595 /* Return if (subreg:MODE FROM 0) is not a safe replacement for
5596 (zero_extend:MODE FROM) or (sign_extend:MODE FROM). It is for any MEM
5597 because (SUBREG (MEM...)) is guaranteed to cause the MEM to be
5598 reloaded. If not for that, MEM's would very rarely be safe.
5600 Reject MODEs bigger than a word, because we might not be able
5601 to reference a two-register group starting with an arbitrary register
5602 (and currently gen_lowpart might crash for a SUBREG). */
5604 if (GET_MODE_SIZE (GET_MODE (XEXP (x, 0))) > UNITS_PER_WORD)
5605 return x;
5607 /* Reject MODEs that aren't scalar integers because turning vector
5608 or complex modes into shifts causes problems. */
5610 if (! SCALAR_INT_MODE_P (GET_MODE (XEXP (x, 0))))
5611 return x;
5613 len = GET_MODE_BITSIZE (GET_MODE (XEXP (x, 0)));
5614 /* If the inner object has VOIDmode (the only way this can happen
5615 is if it is an ASM_OPERANDS), we can't do anything since we don't
5616 know how much masking to do. */
5617 if (len == 0)
5618 return x;
5620 break;
5622 case ZERO_EXTRACT:
5623 unsignedp = 1;
5625 /* ... fall through ... */
5627 case SIGN_EXTRACT:
5628 /* If the operand is a CLOBBER, just return it. */
5629 if (GET_CODE (XEXP (x, 0)) == CLOBBER)
5630 return XEXP (x, 0);
5632 if (GET_CODE (XEXP (x, 1)) != CONST_INT
5633 || GET_CODE (XEXP (x, 2)) != CONST_INT
5634 || GET_MODE (XEXP (x, 0)) == VOIDmode)
5635 return x;
5637 /* Reject MODEs that aren't scalar integers because turning vector
5638 or complex modes into shifts causes problems. */
5640 if (! SCALAR_INT_MODE_P (GET_MODE (XEXP (x, 0))))
5641 return x;
5643 len = INTVAL (XEXP (x, 1));
5644 pos = INTVAL (XEXP (x, 2));
5646 /* If this goes outside the object being extracted, replace the object
5647 with a (use (mem ...)) construct that only combine understands
5648 and is used only for this purpose. */
5649 if (len + pos > GET_MODE_BITSIZE (GET_MODE (XEXP (x, 0))))
5650 SUBST (XEXP (x, 0), gen_rtx_USE (GET_MODE (x), XEXP (x, 0)));
5652 if (BITS_BIG_ENDIAN)
5653 pos = GET_MODE_BITSIZE (GET_MODE (XEXP (x, 0))) - len - pos;
5655 break;
5657 default:
5658 return x;
5660 /* Convert sign extension to zero extension, if we know that the high
5661 bit is not set, as this is easier to optimize. It will be converted
5662 back to cheaper alternative in make_extraction. */
5663 if (GET_CODE (x) == SIGN_EXTEND
5664 && (GET_MODE_BITSIZE (GET_MODE (x)) <= HOST_BITS_PER_WIDE_INT
5665 && ((nonzero_bits (XEXP (x, 0), GET_MODE (XEXP (x, 0)))
5666 & ~(((unsigned HOST_WIDE_INT)
5667 GET_MODE_MASK (GET_MODE (XEXP (x, 0))))
5668 >> 1))
5669 == 0)))
5671 rtx temp = gen_rtx_ZERO_EXTEND (GET_MODE (x), XEXP (x, 0));
5672 rtx temp2 = expand_compound_operation (temp);
5674 /* Make sure this is a profitable operation. */
5675 if (rtx_cost (x, SET) > rtx_cost (temp2, SET))
5676 return temp2;
5677 else if (rtx_cost (x, SET) > rtx_cost (temp, SET))
5678 return temp;
5679 else
5680 return x;
5683 /* We can optimize some special cases of ZERO_EXTEND. */
5684 if (GET_CODE (x) == ZERO_EXTEND)
5686 /* (zero_extend:DI (truncate:SI foo:DI)) is just foo:DI if we
5687 know that the last value didn't have any inappropriate bits
5688 set. */
5689 if (GET_CODE (XEXP (x, 0)) == TRUNCATE
5690 && GET_MODE (XEXP (XEXP (x, 0), 0)) == GET_MODE (x)
5691 && GET_MODE_BITSIZE (GET_MODE (x)) <= HOST_BITS_PER_WIDE_INT
5692 && (nonzero_bits (XEXP (XEXP (x, 0), 0), GET_MODE (x))
5693 & ~GET_MODE_MASK (GET_MODE (XEXP (x, 0)))) == 0)
5694 return XEXP (XEXP (x, 0), 0);
5696 /* Likewise for (zero_extend:DI (subreg:SI foo:DI 0)). */
5697 if (GET_CODE (XEXP (x, 0)) == SUBREG
5698 && GET_MODE (SUBREG_REG (XEXP (x, 0))) == GET_MODE (x)
5699 && subreg_lowpart_p (XEXP (x, 0))
5700 && GET_MODE_BITSIZE (GET_MODE (x)) <= HOST_BITS_PER_WIDE_INT
5701 && (nonzero_bits (SUBREG_REG (XEXP (x, 0)), GET_MODE (x))
5702 & ~GET_MODE_MASK (GET_MODE (XEXP (x, 0)))) == 0)
5703 return SUBREG_REG (XEXP (x, 0));
5705 /* (zero_extend:DI (truncate:SI foo:DI)) is just foo:DI when foo
5706 is a comparison and STORE_FLAG_VALUE permits. This is like
5707 the first case, but it works even when GET_MODE (x) is larger
5708 than HOST_WIDE_INT. */
5709 if (GET_CODE (XEXP (x, 0)) == TRUNCATE
5710 && GET_MODE (XEXP (XEXP (x, 0), 0)) == GET_MODE (x)
5711 && COMPARISON_P (XEXP (XEXP (x, 0), 0))
5712 && (GET_MODE_BITSIZE (GET_MODE (XEXP (x, 0)))
5713 <= HOST_BITS_PER_WIDE_INT)
5714 && ((HOST_WIDE_INT) STORE_FLAG_VALUE
5715 & ~GET_MODE_MASK (GET_MODE (XEXP (x, 0)))) == 0)
5716 return XEXP (XEXP (x, 0), 0);
5718 /* Likewise for (zero_extend:DI (subreg:SI foo:DI 0)). */
5719 if (GET_CODE (XEXP (x, 0)) == SUBREG
5720 && GET_MODE (SUBREG_REG (XEXP (x, 0))) == GET_MODE (x)
5721 && subreg_lowpart_p (XEXP (x, 0))
5722 && COMPARISON_P (SUBREG_REG (XEXP (x, 0)))
5723 && (GET_MODE_BITSIZE (GET_MODE (XEXP (x, 0)))
5724 <= HOST_BITS_PER_WIDE_INT)
5725 && ((HOST_WIDE_INT) STORE_FLAG_VALUE
5726 & ~GET_MODE_MASK (GET_MODE (XEXP (x, 0)))) == 0)
5727 return SUBREG_REG (XEXP (x, 0));
5731 /* If we reach here, we want to return a pair of shifts. The inner
5732 shift is a left shift of BITSIZE - POS - LEN bits. The outer
5733 shift is a right shift of BITSIZE - LEN bits. It is arithmetic or
5734 logical depending on the value of UNSIGNEDP.
5736 If this was a ZERO_EXTEND or ZERO_EXTRACT, this pair of shifts will be
5737 converted into an AND of a shift.
5739 We must check for the case where the left shift would have a negative
5740 count. This can happen in a case like (x >> 31) & 255 on machines
5741 that can't shift by a constant. On those machines, we would first
5742 combine the shift with the AND to produce a variable-position
5743 extraction. Then the constant of 31 would be substituted in to produce
5744 a such a position. */
5746 modewidth = GET_MODE_BITSIZE (GET_MODE (x));
5747 if (modewidth + len >= pos)
5748 tem = simplify_shift_const (NULL_RTX, unsignedp ? LSHIFTRT : ASHIFTRT,
5749 GET_MODE (x),
5750 simplify_shift_const (NULL_RTX, ASHIFT,
5751 GET_MODE (x),
5752 XEXP (x, 0),
5753 modewidth - pos - len),
5754 modewidth - len);
5756 else if (unsignedp && len < HOST_BITS_PER_WIDE_INT)
5757 tem = simplify_and_const_int (NULL_RTX, GET_MODE (x),
5758 simplify_shift_const (NULL_RTX, LSHIFTRT,
5759 GET_MODE (x),
5760 XEXP (x, 0), pos),
5761 ((HOST_WIDE_INT) 1 << len) - 1);
5762 else
5763 /* Any other cases we can't handle. */
5764 return x;
5766 /* If we couldn't do this for some reason, return the original
5767 expression. */
5768 if (GET_CODE (tem) == CLOBBER)
5769 return x;
5771 return tem;
5774 /* X is a SET which contains an assignment of one object into
5775 a part of another (such as a bit-field assignment, STRICT_LOW_PART,
5776 or certain SUBREGS). If possible, convert it into a series of
5777 logical operations.
5779 We half-heartedly support variable positions, but do not at all
5780 support variable lengths. */
5782 static rtx
5783 expand_field_assignment (rtx x)
5785 rtx inner;
5786 rtx pos; /* Always counts from low bit. */
5787 int len;
5788 rtx mask, cleared, masked;
5789 enum machine_mode compute_mode;
5791 /* Loop until we find something we can't simplify. */
5792 while (1)
5794 if (GET_CODE (SET_DEST (x)) == STRICT_LOW_PART
5795 && GET_CODE (XEXP (SET_DEST (x), 0)) == SUBREG)
5797 inner = SUBREG_REG (XEXP (SET_DEST (x), 0));
5798 len = GET_MODE_BITSIZE (GET_MODE (XEXP (SET_DEST (x), 0)));
5799 pos = GEN_INT (subreg_lsb (XEXP (SET_DEST (x), 0)));
5801 else if (GET_CODE (SET_DEST (x)) == ZERO_EXTRACT
5802 && GET_CODE (XEXP (SET_DEST (x), 1)) == CONST_INT)
5804 inner = XEXP (SET_DEST (x), 0);
5805 len = INTVAL (XEXP (SET_DEST (x), 1));
5806 pos = XEXP (SET_DEST (x), 2);
5808 /* If the position is constant and spans the width of INNER,
5809 surround INNER with a USE to indicate this. */
5810 if (GET_CODE (pos) == CONST_INT
5811 && INTVAL (pos) + len > GET_MODE_BITSIZE (GET_MODE (inner)))
5812 inner = gen_rtx_USE (GET_MODE (SET_DEST (x)), inner);
5814 if (BITS_BIG_ENDIAN)
5816 if (GET_CODE (pos) == CONST_INT)
5817 pos = GEN_INT (GET_MODE_BITSIZE (GET_MODE (inner)) - len
5818 - INTVAL (pos));
5819 else if (GET_CODE (pos) == MINUS
5820 && GET_CODE (XEXP (pos, 1)) == CONST_INT
5821 && (INTVAL (XEXP (pos, 1))
5822 == GET_MODE_BITSIZE (GET_MODE (inner)) - len))
5823 /* If position is ADJUST - X, new position is X. */
5824 pos = XEXP (pos, 0);
5825 else
5826 pos = simplify_gen_binary (MINUS, GET_MODE (pos),
5827 GEN_INT (GET_MODE_BITSIZE (
5828 GET_MODE (inner))
5829 - len),
5830 pos);
5834 /* A SUBREG between two modes that occupy the same numbers of words
5835 can be done by moving the SUBREG to the source. */
5836 else if (GET_CODE (SET_DEST (x)) == SUBREG
5837 /* We need SUBREGs to compute nonzero_bits properly. */
5838 && nonzero_sign_valid
5839 && (((GET_MODE_SIZE (GET_MODE (SET_DEST (x)))
5840 + (UNITS_PER_WORD - 1)) / UNITS_PER_WORD)
5841 == ((GET_MODE_SIZE (GET_MODE (SUBREG_REG (SET_DEST (x))))
5842 + (UNITS_PER_WORD - 1)) / UNITS_PER_WORD)))
5844 x = gen_rtx_SET (VOIDmode, SUBREG_REG (SET_DEST (x)),
5845 gen_lowpart
5846 (GET_MODE (SUBREG_REG (SET_DEST (x))),
5847 SET_SRC (x)));
5848 continue;
5850 else
5851 break;
5853 while (GET_CODE (inner) == SUBREG && subreg_lowpart_p (inner))
5854 inner = SUBREG_REG (inner);
5856 compute_mode = GET_MODE (inner);
5858 /* Don't attempt bitwise arithmetic on non scalar integer modes. */
5859 if (! SCALAR_INT_MODE_P (compute_mode))
5861 enum machine_mode imode;
5863 /* Don't do anything for vector or complex integral types. */
5864 if (! FLOAT_MODE_P (compute_mode))
5865 break;
5867 /* Try to find an integral mode to pun with. */
5868 imode = mode_for_size (GET_MODE_BITSIZE (compute_mode), MODE_INT, 0);
5869 if (imode == BLKmode)
5870 break;
5872 compute_mode = imode;
5873 inner = gen_lowpart (imode, inner);
5876 /* Compute a mask of LEN bits, if we can do this on the host machine. */
5877 if (len >= HOST_BITS_PER_WIDE_INT)
5878 break;
5880 /* Now compute the equivalent expression. Make a copy of INNER
5881 for the SET_DEST in case it is a MEM into which we will substitute;
5882 we don't want shared RTL in that case. */
5883 mask = GEN_INT (((HOST_WIDE_INT) 1 << len) - 1);
5884 cleared = simplify_gen_binary (AND, compute_mode,
5885 simplify_gen_unary (NOT, compute_mode,
5886 simplify_gen_binary (ASHIFT,
5887 compute_mode,
5888 mask, pos),
5889 compute_mode),
5890 inner);
5891 masked = simplify_gen_binary (ASHIFT, compute_mode,
5892 simplify_gen_binary (
5893 AND, compute_mode,
5894 gen_lowpart (compute_mode, SET_SRC (x)),
5895 mask),
5896 pos);
5898 x = gen_rtx_SET (VOIDmode, copy_rtx (inner),
5899 simplify_gen_binary (IOR, compute_mode,
5900 cleared, masked));
5903 return x;
5906 /* Return an RTX for a reference to LEN bits of INNER. If POS_RTX is nonzero,
5907 it is an RTX that represents a variable starting position; otherwise,
5908 POS is the (constant) starting bit position (counted from the LSB).
5910 INNER may be a USE. This will occur when we started with a bitfield
5911 that went outside the boundary of the object in memory, which is
5912 allowed on most machines. To isolate this case, we produce a USE
5913 whose mode is wide enough and surround the MEM with it. The only
5914 code that understands the USE is this routine. If it is not removed,
5915 it will cause the resulting insn not to match.
5917 UNSIGNEDP is nonzero for an unsigned reference and zero for a
5918 signed reference.
5920 IN_DEST is nonzero if this is a reference in the destination of a
5921 SET. This is used when a ZERO_ or SIGN_EXTRACT isn't needed. If nonzero,
5922 a STRICT_LOW_PART will be used, if zero, ZERO_EXTEND or SIGN_EXTEND will
5923 be used.
5925 IN_COMPARE is nonzero if we are in a COMPARE. This means that a
5926 ZERO_EXTRACT should be built even for bits starting at bit 0.
5928 MODE is the desired mode of the result (if IN_DEST == 0).
5930 The result is an RTX for the extraction or NULL_RTX if the target
5931 can't handle it. */
5933 static rtx
5934 make_extraction (enum machine_mode mode, rtx inner, HOST_WIDE_INT pos,
5935 rtx pos_rtx, unsigned HOST_WIDE_INT len, int unsignedp,
5936 int in_dest, int in_compare)
5938 /* This mode describes the size of the storage area
5939 to fetch the overall value from. Within that, we
5940 ignore the POS lowest bits, etc. */
5941 enum machine_mode is_mode = GET_MODE (inner);
5942 enum machine_mode inner_mode;
5943 enum machine_mode wanted_inner_mode = byte_mode;
5944 enum machine_mode wanted_inner_reg_mode = word_mode;
5945 enum machine_mode pos_mode = word_mode;
5946 enum machine_mode extraction_mode = word_mode;
5947 enum machine_mode tmode = mode_for_size (len, MODE_INT, 1);
5948 int spans_byte = 0;
5949 rtx new = 0;
5950 rtx orig_pos_rtx = pos_rtx;
5951 HOST_WIDE_INT orig_pos;
5953 /* Get some information about INNER and get the innermost object. */
5954 if (GET_CODE (inner) == USE)
5955 /* (use:SI (mem:QI foo)) stands for (mem:SI foo). */
5956 /* We don't need to adjust the position because we set up the USE
5957 to pretend that it was a full-word object. */
5958 spans_byte = 1, inner = XEXP (inner, 0);
5959 else if (GET_CODE (inner) == SUBREG && subreg_lowpart_p (inner))
5961 /* If going from (subreg:SI (mem:QI ...)) to (mem:QI ...),
5962 consider just the QI as the memory to extract from.
5963 The subreg adds or removes high bits; its mode is
5964 irrelevant to the meaning of this extraction,
5965 since POS and LEN count from the lsb. */
5966 if (MEM_P (SUBREG_REG (inner)))
5967 is_mode = GET_MODE (SUBREG_REG (inner));
5968 inner = SUBREG_REG (inner);
5970 else if (GET_CODE (inner) == ASHIFT
5971 && GET_CODE (XEXP (inner, 1)) == CONST_INT
5972 && pos_rtx == 0 && pos == 0
5973 && len > (unsigned HOST_WIDE_INT) INTVAL (XEXP (inner, 1)))
5975 /* We're extracting the least significant bits of an rtx
5976 (ashift X (const_int C)), where LEN > C. Extract the
5977 least significant (LEN - C) bits of X, giving an rtx
5978 whose mode is MODE, then shift it left C times. */
5979 new = make_extraction (mode, XEXP (inner, 0),
5980 0, 0, len - INTVAL (XEXP (inner, 1)),
5981 unsignedp, in_dest, in_compare);
5982 if (new != 0)
5983 return gen_rtx_ASHIFT (mode, new, XEXP (inner, 1));
5986 inner_mode = GET_MODE (inner);
5988 if (pos_rtx && GET_CODE (pos_rtx) == CONST_INT)
5989 pos = INTVAL (pos_rtx), pos_rtx = 0;
5991 /* See if this can be done without an extraction. We never can if the
5992 width of the field is not the same as that of some integer mode. For
5993 registers, we can only avoid the extraction if the position is at the
5994 low-order bit and this is either not in the destination or we have the
5995 appropriate STRICT_LOW_PART operation available.
5997 For MEM, we can avoid an extract if the field starts on an appropriate
5998 boundary and we can change the mode of the memory reference. However,
5999 we cannot directly access the MEM if we have a USE and the underlying
6000 MEM is not TMODE. This combination means that MEM was being used in a
6001 context where bits outside its mode were being referenced; that is only
6002 valid in bit-field insns. */
6004 if (tmode != BLKmode
6005 && ! (spans_byte && inner_mode != tmode)
6006 && ((pos_rtx == 0 && (pos % BITS_PER_WORD) == 0
6007 && !MEM_P (inner)
6008 && (inner_mode == tmode
6009 || !REG_P (inner)
6010 || TRULY_NOOP_TRUNCATION (GET_MODE_BITSIZE (tmode),
6011 GET_MODE_BITSIZE (inner_mode))
6012 || reg_truncated_to_mode (tmode, inner))
6013 && (! in_dest
6014 || (REG_P (inner)
6015 && have_insn_for (STRICT_LOW_PART, tmode))))
6016 || (MEM_P (inner) && pos_rtx == 0
6017 && (pos
6018 % (STRICT_ALIGNMENT ? GET_MODE_ALIGNMENT (tmode)
6019 : BITS_PER_UNIT)) == 0
6020 /* We can't do this if we are widening INNER_MODE (it
6021 may not be aligned, for one thing). */
6022 && GET_MODE_BITSIZE (inner_mode) >= GET_MODE_BITSIZE (tmode)
6023 && (inner_mode == tmode
6024 || (! mode_dependent_address_p (XEXP (inner, 0))
6025 && ! MEM_VOLATILE_P (inner))))))
6027 /* If INNER is a MEM, make a new MEM that encompasses just the desired
6028 field. If the original and current mode are the same, we need not
6029 adjust the offset. Otherwise, we do if bytes big endian.
6031 If INNER is not a MEM, get a piece consisting of just the field
6032 of interest (in this case POS % BITS_PER_WORD must be 0). */
6034 if (MEM_P (inner))
6036 HOST_WIDE_INT offset;
6038 /* POS counts from lsb, but make OFFSET count in memory order. */
6039 if (BYTES_BIG_ENDIAN)
6040 offset = (GET_MODE_BITSIZE (is_mode) - len - pos) / BITS_PER_UNIT;
6041 else
6042 offset = pos / BITS_PER_UNIT;
6044 new = adjust_address_nv (inner, tmode, offset);
6046 else if (REG_P (inner))
6048 if (tmode != inner_mode)
6050 /* We can't call gen_lowpart in a DEST since we
6051 always want a SUBREG (see below) and it would sometimes
6052 return a new hard register. */
6053 if (pos || in_dest)
6055 HOST_WIDE_INT final_word = pos / BITS_PER_WORD;
6057 if (WORDS_BIG_ENDIAN
6058 && GET_MODE_SIZE (inner_mode) > UNITS_PER_WORD)
6059 final_word = ((GET_MODE_SIZE (inner_mode)
6060 - GET_MODE_SIZE (tmode))
6061 / UNITS_PER_WORD) - final_word;
6063 final_word *= UNITS_PER_WORD;
6064 if (BYTES_BIG_ENDIAN &&
6065 GET_MODE_SIZE (inner_mode) > GET_MODE_SIZE (tmode))
6066 final_word += (GET_MODE_SIZE (inner_mode)
6067 - GET_MODE_SIZE (tmode)) % UNITS_PER_WORD;
6069 /* Avoid creating invalid subregs, for example when
6070 simplifying (x>>32)&255. */
6071 if (!validate_subreg (tmode, inner_mode, inner, final_word))
6072 return NULL_RTX;
6074 new = gen_rtx_SUBREG (tmode, inner, final_word);
6076 else
6077 new = gen_lowpart (tmode, inner);
6079 else
6080 new = inner;
6082 else
6083 new = force_to_mode (inner, tmode,
6084 len >= HOST_BITS_PER_WIDE_INT
6085 ? ~(unsigned HOST_WIDE_INT) 0
6086 : ((unsigned HOST_WIDE_INT) 1 << len) - 1,
6089 /* If this extraction is going into the destination of a SET,
6090 make a STRICT_LOW_PART unless we made a MEM. */
6092 if (in_dest)
6093 return (MEM_P (new) ? new
6094 : (GET_CODE (new) != SUBREG
6095 ? gen_rtx_CLOBBER (tmode, const0_rtx)
6096 : gen_rtx_STRICT_LOW_PART (VOIDmode, new)));
6098 if (mode == tmode)
6099 return new;
6101 if (GET_CODE (new) == CONST_INT)
6102 return gen_int_mode (INTVAL (new), mode);
6104 /* If we know that no extraneous bits are set, and that the high
6105 bit is not set, convert the extraction to the cheaper of
6106 sign and zero extension, that are equivalent in these cases. */
6107 if (flag_expensive_optimizations
6108 && (GET_MODE_BITSIZE (tmode) <= HOST_BITS_PER_WIDE_INT
6109 && ((nonzero_bits (new, tmode)
6110 & ~(((unsigned HOST_WIDE_INT)
6111 GET_MODE_MASK (tmode))
6112 >> 1))
6113 == 0)))
6115 rtx temp = gen_rtx_ZERO_EXTEND (mode, new);
6116 rtx temp1 = gen_rtx_SIGN_EXTEND (mode, new);
6118 /* Prefer ZERO_EXTENSION, since it gives more information to
6119 backends. */
6120 if (rtx_cost (temp, SET) <= rtx_cost (temp1, SET))
6121 return temp;
6122 return temp1;
6125 /* Otherwise, sign- or zero-extend unless we already are in the
6126 proper mode. */
6128 return (gen_rtx_fmt_e (unsignedp ? ZERO_EXTEND : SIGN_EXTEND,
6129 mode, new));
6132 /* Unless this is a COMPARE or we have a funny memory reference,
6133 don't do anything with zero-extending field extracts starting at
6134 the low-order bit since they are simple AND operations. */
6135 if (pos_rtx == 0 && pos == 0 && ! in_dest
6136 && ! in_compare && ! spans_byte && unsignedp)
6137 return 0;
6139 /* Unless we are allowed to span bytes or INNER is not MEM, reject this if
6140 we would be spanning bytes or if the position is not a constant and the
6141 length is not 1. In all other cases, we would only be going outside
6142 our object in cases when an original shift would have been
6143 undefined. */
6144 if (! spans_byte && MEM_P (inner)
6145 && ((pos_rtx == 0 && pos + len > GET_MODE_BITSIZE (is_mode))
6146 || (pos_rtx != 0 && len != 1)))
6147 return 0;
6149 /* Get the mode to use should INNER not be a MEM, the mode for the position,
6150 and the mode for the result. */
6151 if (in_dest && mode_for_extraction (EP_insv, -1) != MAX_MACHINE_MODE)
6153 wanted_inner_reg_mode = mode_for_extraction (EP_insv, 0);
6154 pos_mode = mode_for_extraction (EP_insv, 2);
6155 extraction_mode = mode_for_extraction (EP_insv, 3);
6158 if (! in_dest && unsignedp
6159 && mode_for_extraction (EP_extzv, -1) != MAX_MACHINE_MODE)
6161 wanted_inner_reg_mode = mode_for_extraction (EP_extzv, 1);
6162 pos_mode = mode_for_extraction (EP_extzv, 3);
6163 extraction_mode = mode_for_extraction (EP_extzv, 0);
6166 if (! in_dest && ! unsignedp
6167 && mode_for_extraction (EP_extv, -1) != MAX_MACHINE_MODE)
6169 wanted_inner_reg_mode = mode_for_extraction (EP_extv, 1);
6170 pos_mode = mode_for_extraction (EP_extv, 3);
6171 extraction_mode = mode_for_extraction (EP_extv, 0);
6174 /* Never narrow an object, since that might not be safe. */
6176 if (mode != VOIDmode
6177 && GET_MODE_SIZE (extraction_mode) < GET_MODE_SIZE (mode))
6178 extraction_mode = mode;
6180 if (pos_rtx && GET_MODE (pos_rtx) != VOIDmode
6181 && GET_MODE_SIZE (pos_mode) < GET_MODE_SIZE (GET_MODE (pos_rtx)))
6182 pos_mode = GET_MODE (pos_rtx);
6184 /* If this is not from memory, the desired mode is wanted_inner_reg_mode;
6185 if we have to change the mode of memory and cannot, the desired mode is
6186 EXTRACTION_MODE. */
6187 if (!MEM_P (inner))
6188 wanted_inner_mode = wanted_inner_reg_mode;
6189 else if (inner_mode != wanted_inner_mode
6190 && (mode_dependent_address_p (XEXP (inner, 0))
6191 || MEM_VOLATILE_P (inner)))
6192 wanted_inner_mode = extraction_mode;
6194 orig_pos = pos;
6196 if (BITS_BIG_ENDIAN)
6198 /* POS is passed as if BITS_BIG_ENDIAN == 0, so we need to convert it to
6199 BITS_BIG_ENDIAN style. If position is constant, compute new
6200 position. Otherwise, build subtraction.
6201 Note that POS is relative to the mode of the original argument.
6202 If it's a MEM we need to recompute POS relative to that.
6203 However, if we're extracting from (or inserting into) a register,
6204 we want to recompute POS relative to wanted_inner_mode. */
6205 int width = (MEM_P (inner)
6206 ? GET_MODE_BITSIZE (is_mode)
6207 : GET_MODE_BITSIZE (wanted_inner_mode));
6209 if (pos_rtx == 0)
6210 pos = width - len - pos;
6211 else
6212 pos_rtx
6213 = gen_rtx_MINUS (GET_MODE (pos_rtx), GEN_INT (width - len), pos_rtx);
6214 /* POS may be less than 0 now, but we check for that below.
6215 Note that it can only be less than 0 if !MEM_P (inner). */
6218 /* If INNER has a wider mode, make it smaller. If this is a constant
6219 extract, try to adjust the byte to point to the byte containing
6220 the value. */
6221 if (wanted_inner_mode != VOIDmode
6222 && GET_MODE_SIZE (wanted_inner_mode) < GET_MODE_SIZE (is_mode)
6223 && ((MEM_P (inner)
6224 && (inner_mode == wanted_inner_mode
6225 || (! mode_dependent_address_p (XEXP (inner, 0))
6226 && ! MEM_VOLATILE_P (inner))))))
6228 int offset = 0;
6230 /* The computations below will be correct if the machine is big
6231 endian in both bits and bytes or little endian in bits and bytes.
6232 If it is mixed, we must adjust. */
6234 /* If bytes are big endian and we had a paradoxical SUBREG, we must
6235 adjust OFFSET to compensate. */
6236 if (BYTES_BIG_ENDIAN
6237 && ! spans_byte
6238 && GET_MODE_SIZE (inner_mode) < GET_MODE_SIZE (is_mode))
6239 offset -= GET_MODE_SIZE (is_mode) - GET_MODE_SIZE (inner_mode);
6241 /* If this is a constant position, we can move to the desired byte.
6242 Be careful not to go beyond the original object and maintain the
6243 natural alignment of the memory. */
6244 if (pos_rtx == 0)
6246 enum machine_mode bfmode = smallest_mode_for_size (len, MODE_INT);
6247 offset += (pos / GET_MODE_BITSIZE (bfmode)) * GET_MODE_SIZE (bfmode);
6248 pos %= GET_MODE_BITSIZE (bfmode);
6251 if (BYTES_BIG_ENDIAN != BITS_BIG_ENDIAN
6252 && ! spans_byte
6253 && is_mode != wanted_inner_mode)
6254 offset = (GET_MODE_SIZE (is_mode)
6255 - GET_MODE_SIZE (wanted_inner_mode) - offset);
6257 if (offset != 0 || inner_mode != wanted_inner_mode)
6258 inner = adjust_address_nv (inner, wanted_inner_mode, offset);
6261 /* If INNER is not memory, we can always get it into the proper mode. If we
6262 are changing its mode, POS must be a constant and smaller than the size
6263 of the new mode. */
6264 else if (!MEM_P (inner))
6266 if (GET_MODE (inner) != wanted_inner_mode
6267 && (pos_rtx != 0
6268 || orig_pos + len > GET_MODE_BITSIZE (wanted_inner_mode)))
6269 return 0;
6271 inner = force_to_mode (inner, wanted_inner_mode,
6272 pos_rtx
6273 || len + orig_pos >= HOST_BITS_PER_WIDE_INT
6274 ? ~(unsigned HOST_WIDE_INT) 0
6275 : ((((unsigned HOST_WIDE_INT) 1 << len) - 1)
6276 << orig_pos),
6280 /* Adjust mode of POS_RTX, if needed. If we want a wider mode, we
6281 have to zero extend. Otherwise, we can just use a SUBREG. */
6282 if (pos_rtx != 0
6283 && GET_MODE_SIZE (pos_mode) > GET_MODE_SIZE (GET_MODE (pos_rtx)))
6285 rtx temp = gen_rtx_ZERO_EXTEND (pos_mode, pos_rtx);
6287 /* If we know that no extraneous bits are set, and that the high
6288 bit is not set, convert extraction to cheaper one - either
6289 SIGN_EXTENSION or ZERO_EXTENSION, that are equivalent in these
6290 cases. */
6291 if (flag_expensive_optimizations
6292 && (GET_MODE_BITSIZE (GET_MODE (pos_rtx)) <= HOST_BITS_PER_WIDE_INT
6293 && ((nonzero_bits (pos_rtx, GET_MODE (pos_rtx))
6294 & ~(((unsigned HOST_WIDE_INT)
6295 GET_MODE_MASK (GET_MODE (pos_rtx)))
6296 >> 1))
6297 == 0)))
6299 rtx temp1 = gen_rtx_SIGN_EXTEND (pos_mode, pos_rtx);
6301 /* Prefer ZERO_EXTENSION, since it gives more information to
6302 backends. */
6303 if (rtx_cost (temp1, SET) < rtx_cost (temp, SET))
6304 temp = temp1;
6306 pos_rtx = temp;
6308 else if (pos_rtx != 0
6309 && GET_MODE_SIZE (pos_mode) < GET_MODE_SIZE (GET_MODE (pos_rtx)))
6310 pos_rtx = gen_lowpart (pos_mode, pos_rtx);
6312 /* Make POS_RTX unless we already have it and it is correct. If we don't
6313 have a POS_RTX but we do have an ORIG_POS_RTX, the latter must
6314 be a CONST_INT. */
6315 if (pos_rtx == 0 && orig_pos_rtx != 0 && INTVAL (orig_pos_rtx) == pos)
6316 pos_rtx = orig_pos_rtx;
6318 else if (pos_rtx == 0)
6319 pos_rtx = GEN_INT (pos);
6321 /* Make the required operation. See if we can use existing rtx. */
6322 new = gen_rtx_fmt_eee (unsignedp ? ZERO_EXTRACT : SIGN_EXTRACT,
6323 extraction_mode, inner, GEN_INT (len), pos_rtx);
6324 if (! in_dest)
6325 new = gen_lowpart (mode, new);
6327 return new;
6330 /* See if X contains an ASHIFT of COUNT or more bits that can be commuted
6331 with any other operations in X. Return X without that shift if so. */
6333 static rtx
6334 extract_left_shift (rtx x, int count)
6336 enum rtx_code code = GET_CODE (x);
6337 enum machine_mode mode = GET_MODE (x);
6338 rtx tem;
6340 switch (code)
6342 case ASHIFT:
6343 /* This is the shift itself. If it is wide enough, we will return
6344 either the value being shifted if the shift count is equal to
6345 COUNT or a shift for the difference. */
6346 if (GET_CODE (XEXP (x, 1)) == CONST_INT
6347 && INTVAL (XEXP (x, 1)) >= count)
6348 return simplify_shift_const (NULL_RTX, ASHIFT, mode, XEXP (x, 0),
6349 INTVAL (XEXP (x, 1)) - count);
6350 break;
6352 case NEG: case NOT:
6353 if ((tem = extract_left_shift (XEXP (x, 0), count)) != 0)
6354 return simplify_gen_unary (code, mode, tem, mode);
6356 break;
6358 case PLUS: case IOR: case XOR: case AND:
6359 /* If we can safely shift this constant and we find the inner shift,
6360 make a new operation. */
6361 if (GET_CODE (XEXP (x, 1)) == CONST_INT
6362 && (INTVAL (XEXP (x, 1)) & ((((HOST_WIDE_INT) 1 << count)) - 1)) == 0
6363 && (tem = extract_left_shift (XEXP (x, 0), count)) != 0)
6364 return simplify_gen_binary (code, mode, tem,
6365 GEN_INT (INTVAL (XEXP (x, 1)) >> count));
6367 break;
6369 default:
6370 break;
6373 return 0;
6376 /* Look at the expression rooted at X. Look for expressions
6377 equivalent to ZERO_EXTRACT, SIGN_EXTRACT, ZERO_EXTEND, SIGN_EXTEND.
6378 Form these expressions.
6380 Return the new rtx, usually just X.
6382 Also, for machines like the VAX that don't have logical shift insns,
6383 try to convert logical to arithmetic shift operations in cases where
6384 they are equivalent. This undoes the canonicalizations to logical
6385 shifts done elsewhere.
6387 We try, as much as possible, to re-use rtl expressions to save memory.
6389 IN_CODE says what kind of expression we are processing. Normally, it is
6390 SET. In a memory address (inside a MEM, PLUS or minus, the latter two
6391 being kludges), it is MEM. When processing the arguments of a comparison
6392 or a COMPARE against zero, it is COMPARE. */
6394 static rtx
6395 make_compound_operation (rtx x, enum rtx_code in_code)
6397 enum rtx_code code = GET_CODE (x);
6398 enum machine_mode mode = GET_MODE (x);
6399 int mode_width = GET_MODE_BITSIZE (mode);
6400 rtx rhs, lhs;
6401 enum rtx_code next_code;
6402 int i;
6403 rtx new = 0;
6404 rtx tem;
6405 const char *fmt;
6407 /* Select the code to be used in recursive calls. Once we are inside an
6408 address, we stay there. If we have a comparison, set to COMPARE,
6409 but once inside, go back to our default of SET. */
6411 next_code = (code == MEM || code == PLUS || code == MINUS ? MEM
6412 : ((code == COMPARE || COMPARISON_P (x))
6413 && XEXP (x, 1) == const0_rtx) ? COMPARE
6414 : in_code == COMPARE ? SET : in_code);
6416 /* Process depending on the code of this operation. If NEW is set
6417 nonzero, it will be returned. */
6419 switch (code)
6421 case ASHIFT:
6422 /* Convert shifts by constants into multiplications if inside
6423 an address. */
6424 if (in_code == MEM && GET_CODE (XEXP (x, 1)) == CONST_INT
6425 && INTVAL (XEXP (x, 1)) < HOST_BITS_PER_WIDE_INT
6426 && INTVAL (XEXP (x, 1)) >= 0)
6428 new = make_compound_operation (XEXP (x, 0), next_code);
6429 new = gen_rtx_MULT (mode, new,
6430 GEN_INT ((HOST_WIDE_INT) 1
6431 << INTVAL (XEXP (x, 1))));
6433 break;
6435 case AND:
6436 /* If the second operand is not a constant, we can't do anything
6437 with it. */
6438 if (GET_CODE (XEXP (x, 1)) != CONST_INT)
6439 break;
6441 /* If the constant is a power of two minus one and the first operand
6442 is a logical right shift, make an extraction. */
6443 if (GET_CODE (XEXP (x, 0)) == LSHIFTRT
6444 && (i = exact_log2 (INTVAL (XEXP (x, 1)) + 1)) >= 0)
6446 new = make_compound_operation (XEXP (XEXP (x, 0), 0), next_code);
6447 new = make_extraction (mode, new, 0, XEXP (XEXP (x, 0), 1), i, 1,
6448 0, in_code == COMPARE);
6451 /* Same as previous, but for (subreg (lshiftrt ...)) in first op. */
6452 else if (GET_CODE (XEXP (x, 0)) == SUBREG
6453 && subreg_lowpart_p (XEXP (x, 0))
6454 && GET_CODE (SUBREG_REG (XEXP (x, 0))) == LSHIFTRT
6455 && (i = exact_log2 (INTVAL (XEXP (x, 1)) + 1)) >= 0)
6457 new = make_compound_operation (XEXP (SUBREG_REG (XEXP (x, 0)), 0),
6458 next_code);
6459 new = make_extraction (GET_MODE (SUBREG_REG (XEXP (x, 0))), new, 0,
6460 XEXP (SUBREG_REG (XEXP (x, 0)), 1), i, 1,
6461 0, in_code == COMPARE);
6463 /* Same as previous, but for (xor/ior (lshiftrt...) (lshiftrt...)). */
6464 else if ((GET_CODE (XEXP (x, 0)) == XOR
6465 || GET_CODE (XEXP (x, 0)) == IOR)
6466 && GET_CODE (XEXP (XEXP (x, 0), 0)) == LSHIFTRT
6467 && GET_CODE (XEXP (XEXP (x, 0), 1)) == LSHIFTRT
6468 && (i = exact_log2 (INTVAL (XEXP (x, 1)) + 1)) >= 0)
6470 /* Apply the distributive law, and then try to make extractions. */
6471 new = gen_rtx_fmt_ee (GET_CODE (XEXP (x, 0)), mode,
6472 gen_rtx_AND (mode, XEXP (XEXP (x, 0), 0),
6473 XEXP (x, 1)),
6474 gen_rtx_AND (mode, XEXP (XEXP (x, 0), 1),
6475 XEXP (x, 1)));
6476 new = make_compound_operation (new, in_code);
6479 /* If we are have (and (rotate X C) M) and C is larger than the number
6480 of bits in M, this is an extraction. */
6482 else if (GET_CODE (XEXP (x, 0)) == ROTATE
6483 && GET_CODE (XEXP (XEXP (x, 0), 1)) == CONST_INT
6484 && (i = exact_log2 (INTVAL (XEXP (x, 1)) + 1)) >= 0
6485 && i <= INTVAL (XEXP (XEXP (x, 0), 1)))
6487 new = make_compound_operation (XEXP (XEXP (x, 0), 0), next_code);
6488 new = make_extraction (mode, new,
6489 (GET_MODE_BITSIZE (mode)
6490 - INTVAL (XEXP (XEXP (x, 0), 1))),
6491 NULL_RTX, i, 1, 0, in_code == COMPARE);
6494 /* On machines without logical shifts, if the operand of the AND is
6495 a logical shift and our mask turns off all the propagated sign
6496 bits, we can replace the logical shift with an arithmetic shift. */
6497 else if (GET_CODE (XEXP (x, 0)) == LSHIFTRT
6498 && !have_insn_for (LSHIFTRT, mode)
6499 && have_insn_for (ASHIFTRT, mode)
6500 && GET_CODE (XEXP (XEXP (x, 0), 1)) == CONST_INT
6501 && INTVAL (XEXP (XEXP (x, 0), 1)) >= 0
6502 && INTVAL (XEXP (XEXP (x, 0), 1)) < HOST_BITS_PER_WIDE_INT
6503 && mode_width <= HOST_BITS_PER_WIDE_INT)
6505 unsigned HOST_WIDE_INT mask = GET_MODE_MASK (mode);
6507 mask >>= INTVAL (XEXP (XEXP (x, 0), 1));
6508 if ((INTVAL (XEXP (x, 1)) & ~mask) == 0)
6509 SUBST (XEXP (x, 0),
6510 gen_rtx_ASHIFTRT (mode,
6511 make_compound_operation
6512 (XEXP (XEXP (x, 0), 0), next_code),
6513 XEXP (XEXP (x, 0), 1)));
6516 /* If the constant is one less than a power of two, this might be
6517 representable by an extraction even if no shift is present.
6518 If it doesn't end up being a ZERO_EXTEND, we will ignore it unless
6519 we are in a COMPARE. */
6520 else if ((i = exact_log2 (INTVAL (XEXP (x, 1)) + 1)) >= 0)
6521 new = make_extraction (mode,
6522 make_compound_operation (XEXP (x, 0),
6523 next_code),
6524 0, NULL_RTX, i, 1, 0, in_code == COMPARE);
6526 /* If we are in a comparison and this is an AND with a power of two,
6527 convert this into the appropriate bit extract. */
6528 else if (in_code == COMPARE
6529 && (i = exact_log2 (INTVAL (XEXP (x, 1)))) >= 0)
6530 new = make_extraction (mode,
6531 make_compound_operation (XEXP (x, 0),
6532 next_code),
6533 i, NULL_RTX, 1, 1, 0, 1);
6535 break;
6537 case LSHIFTRT:
6538 /* If the sign bit is known to be zero, replace this with an
6539 arithmetic shift. */
6540 if (have_insn_for (ASHIFTRT, mode)
6541 && ! have_insn_for (LSHIFTRT, mode)
6542 && mode_width <= HOST_BITS_PER_WIDE_INT
6543 && (nonzero_bits (XEXP (x, 0), mode) & (1 << (mode_width - 1))) == 0)
6545 new = gen_rtx_ASHIFTRT (mode,
6546 make_compound_operation (XEXP (x, 0),
6547 next_code),
6548 XEXP (x, 1));
6549 break;
6552 /* ... fall through ... */
6554 case ASHIFTRT:
6555 lhs = XEXP (x, 0);
6556 rhs = XEXP (x, 1);
6558 /* If we have (ashiftrt (ashift foo C1) C2) with C2 >= C1,
6559 this is a SIGN_EXTRACT. */
6560 if (GET_CODE (rhs) == CONST_INT
6561 && GET_CODE (lhs) == ASHIFT
6562 && GET_CODE (XEXP (lhs, 1)) == CONST_INT
6563 && INTVAL (rhs) >= INTVAL (XEXP (lhs, 1)))
6565 new = make_compound_operation (XEXP (lhs, 0), next_code);
6566 new = make_extraction (mode, new,
6567 INTVAL (rhs) - INTVAL (XEXP (lhs, 1)),
6568 NULL_RTX, mode_width - INTVAL (rhs),
6569 code == LSHIFTRT, 0, in_code == COMPARE);
6570 break;
6573 /* See if we have operations between an ASHIFTRT and an ASHIFT.
6574 If so, try to merge the shifts into a SIGN_EXTEND. We could
6575 also do this for some cases of SIGN_EXTRACT, but it doesn't
6576 seem worth the effort; the case checked for occurs on Alpha. */
6578 if (!OBJECT_P (lhs)
6579 && ! (GET_CODE (lhs) == SUBREG
6580 && (OBJECT_P (SUBREG_REG (lhs))))
6581 && GET_CODE (rhs) == CONST_INT
6582 && INTVAL (rhs) < HOST_BITS_PER_WIDE_INT
6583 && (new = extract_left_shift (lhs, INTVAL (rhs))) != 0)
6584 new = make_extraction (mode, make_compound_operation (new, next_code),
6585 0, NULL_RTX, mode_width - INTVAL (rhs),
6586 code == LSHIFTRT, 0, in_code == COMPARE);
6588 break;
6590 case SUBREG:
6591 /* Call ourselves recursively on the inner expression. If we are
6592 narrowing the object and it has a different RTL code from
6593 what it originally did, do this SUBREG as a force_to_mode. */
6595 tem = make_compound_operation (SUBREG_REG (x), in_code);
6598 rtx simplified;
6599 simplified = simplify_subreg (GET_MODE (x), tem, GET_MODE (tem),
6600 SUBREG_BYTE (x));
6602 if (simplified)
6603 tem = simplified;
6605 if (GET_CODE (tem) != GET_CODE (SUBREG_REG (x))
6606 && GET_MODE_SIZE (mode) < GET_MODE_SIZE (GET_MODE (tem))
6607 && subreg_lowpart_p (x))
6609 rtx newer = force_to_mode (tem, mode, ~(HOST_WIDE_INT) 0,
6612 /* If we have something other than a SUBREG, we might have
6613 done an expansion, so rerun ourselves. */
6614 if (GET_CODE (newer) != SUBREG)
6615 newer = make_compound_operation (newer, in_code);
6617 return newer;
6620 if (simplified)
6621 return tem;
6623 break;
6625 default:
6626 break;
6629 if (new)
6631 x = gen_lowpart (mode, new);
6632 code = GET_CODE (x);
6635 /* Now recursively process each operand of this operation. */
6636 fmt = GET_RTX_FORMAT (code);
6637 for (i = 0; i < GET_RTX_LENGTH (code); i++)
6638 if (fmt[i] == 'e')
6640 new = make_compound_operation (XEXP (x, i), next_code);
6641 SUBST (XEXP (x, i), new);
6644 /* If this is a commutative operation, the changes to the operands
6645 may have made it noncanonical. */
6646 if (COMMUTATIVE_ARITH_P (x)
6647 && swap_commutative_operands_p (XEXP (x, 0), XEXP (x, 1)))
6649 tem = XEXP (x, 0);
6650 SUBST (XEXP (x, 0), XEXP (x, 1));
6651 SUBST (XEXP (x, 1), tem);
6654 return x;
6657 /* Given M see if it is a value that would select a field of bits
6658 within an item, but not the entire word. Return -1 if not.
6659 Otherwise, return the starting position of the field, where 0 is the
6660 low-order bit.
6662 *PLEN is set to the length of the field. */
6664 static int
6665 get_pos_from_mask (unsigned HOST_WIDE_INT m, unsigned HOST_WIDE_INT *plen)
6667 /* Get the bit number of the first 1 bit from the right, -1 if none. */
6668 int pos = exact_log2 (m & -m);
6669 int len = 0;
6671 if (pos >= 0)
6672 /* Now shift off the low-order zero bits and see if we have a
6673 power of two minus 1. */
6674 len = exact_log2 ((m >> pos) + 1);
6676 if (len <= 0)
6677 pos = -1;
6679 *plen = len;
6680 return pos;
6683 /* If X refers to a register that equals REG in value, replace these
6684 references with REG. */
6685 static rtx
6686 canon_reg_for_combine (rtx x, rtx reg)
6688 rtx op0, op1, op2;
6689 const char *fmt;
6690 int i;
6691 bool copied;
6693 enum rtx_code code = GET_CODE (x);
6694 switch (GET_RTX_CLASS (code))
6696 case RTX_UNARY:
6697 op0 = canon_reg_for_combine (XEXP (x, 0), reg);
6698 if (op0 != XEXP (x, 0))
6699 return simplify_gen_unary (GET_CODE (x), GET_MODE (x), op0,
6700 GET_MODE (reg));
6701 break;
6703 case RTX_BIN_ARITH:
6704 case RTX_COMM_ARITH:
6705 op0 = canon_reg_for_combine (XEXP (x, 0), reg);
6706 op1 = canon_reg_for_combine (XEXP (x, 1), reg);
6707 if (op0 != XEXP (x, 0) || op1 != XEXP (x, 1))
6708 return simplify_gen_binary (GET_CODE (x), GET_MODE (x), op0, op1);
6709 break;
6711 case RTX_COMPARE:
6712 case RTX_COMM_COMPARE:
6713 op0 = canon_reg_for_combine (XEXP (x, 0), reg);
6714 op1 = canon_reg_for_combine (XEXP (x, 1), reg);
6715 if (op0 != XEXP (x, 0) || op1 != XEXP (x, 1))
6716 return simplify_gen_relational (GET_CODE (x), GET_MODE (x),
6717 GET_MODE (op0), op0, op1);
6718 break;
6720 case RTX_TERNARY:
6721 case RTX_BITFIELD_OPS:
6722 op0 = canon_reg_for_combine (XEXP (x, 0), reg);
6723 op1 = canon_reg_for_combine (XEXP (x, 1), reg);
6724 op2 = canon_reg_for_combine (XEXP (x, 2), reg);
6725 if (op0 != XEXP (x, 0) || op1 != XEXP (x, 1) || op2 != XEXP (x, 2))
6726 return simplify_gen_ternary (GET_CODE (x), GET_MODE (x),
6727 GET_MODE (op0), op0, op1, op2);
6729 case RTX_OBJ:
6730 if (REG_P (x))
6732 if (rtx_equal_p (get_last_value (reg), x)
6733 || rtx_equal_p (reg, get_last_value (x)))
6734 return reg;
6735 else
6736 break;
6739 /* fall through */
6741 default:
6742 fmt = GET_RTX_FORMAT (code);
6743 copied = false;
6744 for (i = GET_RTX_LENGTH (code) - 1; i >= 0; i--)
6745 if (fmt[i] == 'e')
6747 rtx op = canon_reg_for_combine (XEXP (x, i), reg);
6748 if (op != XEXP (x, i))
6750 if (!copied)
6752 copied = true;
6753 x = copy_rtx (x);
6755 XEXP (x, i) = op;
6758 else if (fmt[i] == 'E')
6760 int j;
6761 for (j = 0; j < XVECLEN (x, i); j++)
6763 rtx op = canon_reg_for_combine (XVECEXP (x, i, j), reg);
6764 if (op != XVECEXP (x, i, j))
6766 if (!copied)
6768 copied = true;
6769 x = copy_rtx (x);
6771 XVECEXP (x, i, j) = op;
6776 break;
6779 return x;
6782 /* Return X converted to MODE. If the value is already truncated to
6783 MODE we can just return a subreg even though in the general case we
6784 would need an explicit truncation. */
6786 static rtx
6787 gen_lowpart_or_truncate (enum machine_mode mode, rtx x)
6789 if (GET_MODE_SIZE (GET_MODE (x)) <= GET_MODE_SIZE (mode)
6790 || TRULY_NOOP_TRUNCATION (GET_MODE_BITSIZE (mode),
6791 GET_MODE_BITSIZE (GET_MODE (x)))
6792 || (REG_P (x) && reg_truncated_to_mode (mode, x)))
6793 return gen_lowpart (mode, x);
6794 else
6795 return gen_rtx_TRUNCATE (mode, x);
6798 /* See if X can be simplified knowing that we will only refer to it in
6799 MODE and will only refer to those bits that are nonzero in MASK.
6800 If other bits are being computed or if masking operations are done
6801 that select a superset of the bits in MASK, they can sometimes be
6802 ignored.
6804 Return a possibly simplified expression, but always convert X to
6805 MODE. If X is a CONST_INT, AND the CONST_INT with MASK.
6807 If JUST_SELECT is nonzero, don't optimize by noticing that bits in MASK
6808 are all off in X. This is used when X will be complemented, by either
6809 NOT, NEG, or XOR. */
6811 static rtx
6812 force_to_mode (rtx x, enum machine_mode mode, unsigned HOST_WIDE_INT mask,
6813 int just_select)
6815 enum rtx_code code = GET_CODE (x);
6816 int next_select = just_select || code == XOR || code == NOT || code == NEG;
6817 enum machine_mode op_mode;
6818 unsigned HOST_WIDE_INT fuller_mask, nonzero;
6819 rtx op0, op1, temp;
6821 /* If this is a CALL or ASM_OPERANDS, don't do anything. Some of the
6822 code below will do the wrong thing since the mode of such an
6823 expression is VOIDmode.
6825 Also do nothing if X is a CLOBBER; this can happen if X was
6826 the return value from a call to gen_lowpart. */
6827 if (code == CALL || code == ASM_OPERANDS || code == CLOBBER)
6828 return x;
6830 /* We want to perform the operation is its present mode unless we know
6831 that the operation is valid in MODE, in which case we do the operation
6832 in MODE. */
6833 op_mode = ((GET_MODE_CLASS (mode) == GET_MODE_CLASS (GET_MODE (x))
6834 && have_insn_for (code, mode))
6835 ? mode : GET_MODE (x));
6837 /* It is not valid to do a right-shift in a narrower mode
6838 than the one it came in with. */
6839 if ((code == LSHIFTRT || code == ASHIFTRT)
6840 && GET_MODE_BITSIZE (mode) < GET_MODE_BITSIZE (GET_MODE (x)))
6841 op_mode = GET_MODE (x);
6843 /* Truncate MASK to fit OP_MODE. */
6844 if (op_mode)
6845 mask &= GET_MODE_MASK (op_mode);
6847 /* When we have an arithmetic operation, or a shift whose count we
6848 do not know, we need to assume that all bits up to the highest-order
6849 bit in MASK will be needed. This is how we form such a mask. */
6850 if (mask & ((unsigned HOST_WIDE_INT) 1 << (HOST_BITS_PER_WIDE_INT - 1)))
6851 fuller_mask = ~(unsigned HOST_WIDE_INT) 0;
6852 else
6853 fuller_mask = (((unsigned HOST_WIDE_INT) 1 << (floor_log2 (mask) + 1))
6854 - 1);
6856 /* Determine what bits of X are guaranteed to be (non)zero. */
6857 nonzero = nonzero_bits (x, mode);
6859 /* If none of the bits in X are needed, return a zero. */
6860 if (! just_select && (nonzero & mask) == 0)
6861 x = const0_rtx;
6863 /* If X is a CONST_INT, return a new one. Do this here since the
6864 test below will fail. */
6865 if (GET_CODE (x) == CONST_INT)
6867 if (SCALAR_INT_MODE_P (mode))
6868 return gen_int_mode (INTVAL (x) & mask, mode);
6869 else
6871 x = GEN_INT (INTVAL (x) & mask);
6872 return gen_lowpart_common (mode, x);
6876 /* If X is narrower than MODE and we want all the bits in X's mode, just
6877 get X in the proper mode. */
6878 if (GET_MODE_SIZE (GET_MODE (x)) < GET_MODE_SIZE (mode)
6879 && (GET_MODE_MASK (GET_MODE (x)) & ~mask) == 0)
6880 return gen_lowpart (mode, x);
6882 switch (code)
6884 case CLOBBER:
6885 /* If X is a (clobber (const_int)), return it since we know we are
6886 generating something that won't match. */
6887 return x;
6889 case USE:
6890 /* X is a (use (mem ..)) that was made from a bit-field extraction that
6891 spanned the boundary of the MEM. If we are now masking so it is
6892 within that boundary, we don't need the USE any more. */
6893 if (! BITS_BIG_ENDIAN
6894 && (mask & ~GET_MODE_MASK (GET_MODE (XEXP (x, 0)))) == 0)
6895 return force_to_mode (XEXP (x, 0), mode, mask, next_select);
6896 break;
6898 case SIGN_EXTEND:
6899 case ZERO_EXTEND:
6900 case ZERO_EXTRACT:
6901 case SIGN_EXTRACT:
6902 x = expand_compound_operation (x);
6903 if (GET_CODE (x) != code)
6904 return force_to_mode (x, mode, mask, next_select);
6905 break;
6907 case SUBREG:
6908 if (subreg_lowpart_p (x)
6909 /* We can ignore the effect of this SUBREG if it narrows the mode or
6910 if the constant masks to zero all the bits the mode doesn't
6911 have. */
6912 && ((GET_MODE_SIZE (GET_MODE (x))
6913 < GET_MODE_SIZE (GET_MODE (SUBREG_REG (x))))
6914 || (0 == (mask
6915 & GET_MODE_MASK (GET_MODE (x))
6916 & ~GET_MODE_MASK (GET_MODE (SUBREG_REG (x)))))))
6917 return force_to_mode (SUBREG_REG (x), mode, mask, next_select);
6918 break;
6920 case AND:
6921 /* If this is an AND with a constant, convert it into an AND
6922 whose constant is the AND of that constant with MASK. If it
6923 remains an AND of MASK, delete it since it is redundant. */
6925 if (GET_CODE (XEXP (x, 1)) == CONST_INT)
6927 x = simplify_and_const_int (x, op_mode, XEXP (x, 0),
6928 mask & INTVAL (XEXP (x, 1)));
6930 /* If X is still an AND, see if it is an AND with a mask that
6931 is just some low-order bits. If so, and it is MASK, we don't
6932 need it. */
6934 if (GET_CODE (x) == AND && GET_CODE (XEXP (x, 1)) == CONST_INT
6935 && ((INTVAL (XEXP (x, 1)) & GET_MODE_MASK (GET_MODE (x)))
6936 == mask))
6937 x = XEXP (x, 0);
6939 /* If it remains an AND, try making another AND with the bits
6940 in the mode mask that aren't in MASK turned on. If the
6941 constant in the AND is wide enough, this might make a
6942 cheaper constant. */
6944 if (GET_CODE (x) == AND && GET_CODE (XEXP (x, 1)) == CONST_INT
6945 && GET_MODE_MASK (GET_MODE (x)) != mask
6946 && GET_MODE_BITSIZE (GET_MODE (x)) <= HOST_BITS_PER_WIDE_INT)
6948 HOST_WIDE_INT cval = (INTVAL (XEXP (x, 1))
6949 | (GET_MODE_MASK (GET_MODE (x)) & ~mask));
6950 int width = GET_MODE_BITSIZE (GET_MODE (x));
6951 rtx y;
6953 /* If MODE is narrower than HOST_WIDE_INT and CVAL is a negative
6954 number, sign extend it. */
6955 if (width > 0 && width < HOST_BITS_PER_WIDE_INT
6956 && (cval & ((HOST_WIDE_INT) 1 << (width - 1))) != 0)
6957 cval |= (HOST_WIDE_INT) -1 << width;
6959 y = simplify_gen_binary (AND, GET_MODE (x),
6960 XEXP (x, 0), GEN_INT (cval));
6961 if (rtx_cost (y, SET) < rtx_cost (x, SET))
6962 x = y;
6965 break;
6968 goto binop;
6970 case PLUS:
6971 /* In (and (plus FOO C1) M), if M is a mask that just turns off
6972 low-order bits (as in an alignment operation) and FOO is already
6973 aligned to that boundary, mask C1 to that boundary as well.
6974 This may eliminate that PLUS and, later, the AND. */
6977 unsigned int width = GET_MODE_BITSIZE (mode);
6978 unsigned HOST_WIDE_INT smask = mask;
6980 /* If MODE is narrower than HOST_WIDE_INT and mask is a negative
6981 number, sign extend it. */
6983 if (width < HOST_BITS_PER_WIDE_INT
6984 && (smask & ((HOST_WIDE_INT) 1 << (width - 1))) != 0)
6985 smask |= (HOST_WIDE_INT) -1 << width;
6987 if (GET_CODE (XEXP (x, 1)) == CONST_INT
6988 && exact_log2 (- smask) >= 0
6989 && (nonzero_bits (XEXP (x, 0), mode) & ~smask) == 0
6990 && (INTVAL (XEXP (x, 1)) & ~smask) != 0)
6991 return force_to_mode (plus_constant (XEXP (x, 0),
6992 (INTVAL (XEXP (x, 1)) & smask)),
6993 mode, smask, next_select);
6996 /* ... fall through ... */
6998 case MULT:
6999 /* For PLUS, MINUS and MULT, we need any bits less significant than the
7000 most significant bit in MASK since carries from those bits will
7001 affect the bits we are interested in. */
7002 mask = fuller_mask;
7003 goto binop;
7005 case MINUS:
7006 /* If X is (minus C Y) where C's least set bit is larger than any bit
7007 in the mask, then we may replace with (neg Y). */
7008 if (GET_CODE (XEXP (x, 0)) == CONST_INT
7009 && (((unsigned HOST_WIDE_INT) (INTVAL (XEXP (x, 0))
7010 & -INTVAL (XEXP (x, 0))))
7011 > mask))
7013 x = simplify_gen_unary (NEG, GET_MODE (x), XEXP (x, 1),
7014 GET_MODE (x));
7015 return force_to_mode (x, mode, mask, next_select);
7018 /* Similarly, if C contains every bit in the fuller_mask, then we may
7019 replace with (not Y). */
7020 if (GET_CODE (XEXP (x, 0)) == CONST_INT
7021 && ((INTVAL (XEXP (x, 0)) | (HOST_WIDE_INT) fuller_mask)
7022 == INTVAL (XEXP (x, 0))))
7024 x = simplify_gen_unary (NOT, GET_MODE (x),
7025 XEXP (x, 1), GET_MODE (x));
7026 return force_to_mode (x, mode, mask, next_select);
7029 mask = fuller_mask;
7030 goto binop;
7032 case IOR:
7033 case XOR:
7034 /* If X is (ior (lshiftrt FOO C1) C2), try to commute the IOR and
7035 LSHIFTRT so we end up with an (and (lshiftrt (ior ...) ...) ...)
7036 operation which may be a bitfield extraction. Ensure that the
7037 constant we form is not wider than the mode of X. */
7039 if (GET_CODE (XEXP (x, 0)) == LSHIFTRT
7040 && GET_CODE (XEXP (XEXP (x, 0), 1)) == CONST_INT
7041 && INTVAL (XEXP (XEXP (x, 0), 1)) >= 0
7042 && INTVAL (XEXP (XEXP (x, 0), 1)) < HOST_BITS_PER_WIDE_INT
7043 && GET_CODE (XEXP (x, 1)) == CONST_INT
7044 && ((INTVAL (XEXP (XEXP (x, 0), 1))
7045 + floor_log2 (INTVAL (XEXP (x, 1))))
7046 < GET_MODE_BITSIZE (GET_MODE (x)))
7047 && (INTVAL (XEXP (x, 1))
7048 & ~nonzero_bits (XEXP (x, 0), GET_MODE (x))) == 0)
7050 temp = GEN_INT ((INTVAL (XEXP (x, 1)) & mask)
7051 << INTVAL (XEXP (XEXP (x, 0), 1)));
7052 temp = simplify_gen_binary (GET_CODE (x), GET_MODE (x),
7053 XEXP (XEXP (x, 0), 0), temp);
7054 x = simplify_gen_binary (LSHIFTRT, GET_MODE (x), temp,
7055 XEXP (XEXP (x, 0), 1));
7056 return force_to_mode (x, mode, mask, next_select);
7059 binop:
7060 /* For most binary operations, just propagate into the operation and
7061 change the mode if we have an operation of that mode. */
7063 op0 = gen_lowpart_or_truncate (op_mode,
7064 force_to_mode (XEXP (x, 0), mode, mask,
7065 next_select));
7066 op1 = gen_lowpart_or_truncate (op_mode,
7067 force_to_mode (XEXP (x, 1), mode, mask,
7068 next_select));
7070 if (op_mode != GET_MODE (x) || op0 != XEXP (x, 0) || op1 != XEXP (x, 1))
7071 x = simplify_gen_binary (code, op_mode, op0, op1);
7072 break;
7074 case ASHIFT:
7075 /* For left shifts, do the same, but just for the first operand.
7076 However, we cannot do anything with shifts where we cannot
7077 guarantee that the counts are smaller than the size of the mode
7078 because such a count will have a different meaning in a
7079 wider mode. */
7081 if (! (GET_CODE (XEXP (x, 1)) == CONST_INT
7082 && INTVAL (XEXP (x, 1)) >= 0
7083 && INTVAL (XEXP (x, 1)) < GET_MODE_BITSIZE (mode))
7084 && ! (GET_MODE (XEXP (x, 1)) != VOIDmode
7085 && (nonzero_bits (XEXP (x, 1), GET_MODE (XEXP (x, 1)))
7086 < (unsigned HOST_WIDE_INT) GET_MODE_BITSIZE (mode))))
7087 break;
7089 /* If the shift count is a constant and we can do arithmetic in
7090 the mode of the shift, refine which bits we need. Otherwise, use the
7091 conservative form of the mask. */
7092 if (GET_CODE (XEXP (x, 1)) == CONST_INT
7093 && INTVAL (XEXP (x, 1)) >= 0
7094 && INTVAL (XEXP (x, 1)) < GET_MODE_BITSIZE (op_mode)
7095 && GET_MODE_BITSIZE (op_mode) <= HOST_BITS_PER_WIDE_INT)
7096 mask >>= INTVAL (XEXP (x, 1));
7097 else
7098 mask = fuller_mask;
7100 op0 = gen_lowpart_or_truncate (op_mode,
7101 force_to_mode (XEXP (x, 0), op_mode,
7102 mask, next_select));
7104 if (op_mode != GET_MODE (x) || op0 != XEXP (x, 0))
7105 x = simplify_gen_binary (code, op_mode, op0, XEXP (x, 1));
7106 break;
7108 case LSHIFTRT:
7109 /* Here we can only do something if the shift count is a constant,
7110 this shift constant is valid for the host, and we can do arithmetic
7111 in OP_MODE. */
7113 if (GET_CODE (XEXP (x, 1)) == CONST_INT
7114 && INTVAL (XEXP (x, 1)) < HOST_BITS_PER_WIDE_INT
7115 && GET_MODE_BITSIZE (op_mode) <= HOST_BITS_PER_WIDE_INT)
7117 rtx inner = XEXP (x, 0);
7118 unsigned HOST_WIDE_INT inner_mask;
7120 /* Select the mask of the bits we need for the shift operand. */
7121 inner_mask = mask << INTVAL (XEXP (x, 1));
7123 /* We can only change the mode of the shift if we can do arithmetic
7124 in the mode of the shift and INNER_MASK is no wider than the
7125 width of X's mode. */
7126 if ((inner_mask & ~GET_MODE_MASK (GET_MODE (x))) != 0)
7127 op_mode = GET_MODE (x);
7129 inner = force_to_mode (inner, op_mode, inner_mask, next_select);
7131 if (GET_MODE (x) != op_mode || inner != XEXP (x, 0))
7132 x = simplify_gen_binary (LSHIFTRT, op_mode, inner, XEXP (x, 1));
7135 /* If we have (and (lshiftrt FOO C1) C2) where the combination of the
7136 shift and AND produces only copies of the sign bit (C2 is one less
7137 than a power of two), we can do this with just a shift. */
7139 if (GET_CODE (x) == LSHIFTRT
7140 && GET_CODE (XEXP (x, 1)) == CONST_INT
7141 /* The shift puts one of the sign bit copies in the least significant
7142 bit. */
7143 && ((INTVAL (XEXP (x, 1))
7144 + num_sign_bit_copies (XEXP (x, 0), GET_MODE (XEXP (x, 0))))
7145 >= GET_MODE_BITSIZE (GET_MODE (x)))
7146 && exact_log2 (mask + 1) >= 0
7147 /* Number of bits left after the shift must be more than the mask
7148 needs. */
7149 && ((INTVAL (XEXP (x, 1)) + exact_log2 (mask + 1))
7150 <= GET_MODE_BITSIZE (GET_MODE (x)))
7151 /* Must be more sign bit copies than the mask needs. */
7152 && ((int) num_sign_bit_copies (XEXP (x, 0), GET_MODE (XEXP (x, 0)))
7153 >= exact_log2 (mask + 1)))
7154 x = simplify_gen_binary (LSHIFTRT, GET_MODE (x), XEXP (x, 0),
7155 GEN_INT (GET_MODE_BITSIZE (GET_MODE (x))
7156 - exact_log2 (mask + 1)));
7158 goto shiftrt;
7160 case ASHIFTRT:
7161 /* If we are just looking for the sign bit, we don't need this shift at
7162 all, even if it has a variable count. */
7163 if (GET_MODE_BITSIZE (GET_MODE (x)) <= HOST_BITS_PER_WIDE_INT
7164 && (mask == ((unsigned HOST_WIDE_INT) 1
7165 << (GET_MODE_BITSIZE (GET_MODE (x)) - 1))))
7166 return force_to_mode (XEXP (x, 0), mode, mask, next_select);
7168 /* If this is a shift by a constant, get a mask that contains those bits
7169 that are not copies of the sign bit. We then have two cases: If
7170 MASK only includes those bits, this can be a logical shift, which may
7171 allow simplifications. If MASK is a single-bit field not within
7172 those bits, we are requesting a copy of the sign bit and hence can
7173 shift the sign bit to the appropriate location. */
7175 if (GET_CODE (XEXP (x, 1)) == CONST_INT && INTVAL (XEXP (x, 1)) >= 0
7176 && INTVAL (XEXP (x, 1)) < HOST_BITS_PER_WIDE_INT)
7178 int i;
7180 /* If the considered data is wider than HOST_WIDE_INT, we can't
7181 represent a mask for all its bits in a single scalar.
7182 But we only care about the lower bits, so calculate these. */
7184 if (GET_MODE_BITSIZE (GET_MODE (x)) > HOST_BITS_PER_WIDE_INT)
7186 nonzero = ~(HOST_WIDE_INT) 0;
7188 /* GET_MODE_BITSIZE (GET_MODE (x)) - INTVAL (XEXP (x, 1))
7189 is the number of bits a full-width mask would have set.
7190 We need only shift if these are fewer than nonzero can
7191 hold. If not, we must keep all bits set in nonzero. */
7193 if (GET_MODE_BITSIZE (GET_MODE (x)) - INTVAL (XEXP (x, 1))
7194 < HOST_BITS_PER_WIDE_INT)
7195 nonzero >>= INTVAL (XEXP (x, 1))
7196 + HOST_BITS_PER_WIDE_INT
7197 - GET_MODE_BITSIZE (GET_MODE (x)) ;
7199 else
7201 nonzero = GET_MODE_MASK (GET_MODE (x));
7202 nonzero >>= INTVAL (XEXP (x, 1));
7205 if ((mask & ~nonzero) == 0)
7207 x = simplify_shift_const (NULL_RTX, LSHIFTRT, GET_MODE (x),
7208 XEXP (x, 0), INTVAL (XEXP (x, 1)));
7209 if (GET_CODE (x) != ASHIFTRT)
7210 return force_to_mode (x, mode, mask, next_select);
7213 else if ((i = exact_log2 (mask)) >= 0)
7215 x = simplify_shift_const
7216 (NULL_RTX, LSHIFTRT, GET_MODE (x), XEXP (x, 0),
7217 GET_MODE_BITSIZE (GET_MODE (x)) - 1 - i);
7219 if (GET_CODE (x) != ASHIFTRT)
7220 return force_to_mode (x, mode, mask, next_select);
7224 /* If MASK is 1, convert this to an LSHIFTRT. This can be done
7225 even if the shift count isn't a constant. */
7226 if (mask == 1)
7227 x = simplify_gen_binary (LSHIFTRT, GET_MODE (x),
7228 XEXP (x, 0), XEXP (x, 1));
7230 shiftrt:
7232 /* If this is a zero- or sign-extension operation that just affects bits
7233 we don't care about, remove it. Be sure the call above returned
7234 something that is still a shift. */
7236 if ((GET_CODE (x) == LSHIFTRT || GET_CODE (x) == ASHIFTRT)
7237 && GET_CODE (XEXP (x, 1)) == CONST_INT
7238 && INTVAL (XEXP (x, 1)) >= 0
7239 && (INTVAL (XEXP (x, 1))
7240 <= GET_MODE_BITSIZE (GET_MODE (x)) - (floor_log2 (mask) + 1))
7241 && GET_CODE (XEXP (x, 0)) == ASHIFT
7242 && XEXP (XEXP (x, 0), 1) == XEXP (x, 1))
7243 return force_to_mode (XEXP (XEXP (x, 0), 0), mode, mask,
7244 next_select);
7246 break;
7248 case ROTATE:
7249 case ROTATERT:
7250 /* If the shift count is constant and we can do computations
7251 in the mode of X, compute where the bits we care about are.
7252 Otherwise, we can't do anything. Don't change the mode of
7253 the shift or propagate MODE into the shift, though. */
7254 if (GET_CODE (XEXP (x, 1)) == CONST_INT
7255 && INTVAL (XEXP (x, 1)) >= 0)
7257 temp = simplify_binary_operation (code == ROTATE ? ROTATERT : ROTATE,
7258 GET_MODE (x), GEN_INT (mask),
7259 XEXP (x, 1));
7260 if (temp && GET_CODE (temp) == CONST_INT)
7261 SUBST (XEXP (x, 0),
7262 force_to_mode (XEXP (x, 0), GET_MODE (x),
7263 INTVAL (temp), next_select));
7265 break;
7267 case NEG:
7268 /* If we just want the low-order bit, the NEG isn't needed since it
7269 won't change the low-order bit. */
7270 if (mask == 1)
7271 return force_to_mode (XEXP (x, 0), mode, mask, just_select);
7273 /* We need any bits less significant than the most significant bit in
7274 MASK since carries from those bits will affect the bits we are
7275 interested in. */
7276 mask = fuller_mask;
7277 goto unop;
7279 case NOT:
7280 /* (not FOO) is (xor FOO CONST), so if FOO is an LSHIFTRT, we can do the
7281 same as the XOR case above. Ensure that the constant we form is not
7282 wider than the mode of X. */
7284 if (GET_CODE (XEXP (x, 0)) == LSHIFTRT
7285 && GET_CODE (XEXP (XEXP (x, 0), 1)) == CONST_INT
7286 && INTVAL (XEXP (XEXP (x, 0), 1)) >= 0
7287 && (INTVAL (XEXP (XEXP (x, 0), 1)) + floor_log2 (mask)
7288 < GET_MODE_BITSIZE (GET_MODE (x)))
7289 && INTVAL (XEXP (XEXP (x, 0), 1)) < HOST_BITS_PER_WIDE_INT)
7291 temp = gen_int_mode (mask << INTVAL (XEXP (XEXP (x, 0), 1)),
7292 GET_MODE (x));
7293 temp = simplify_gen_binary (XOR, GET_MODE (x),
7294 XEXP (XEXP (x, 0), 0), temp);
7295 x = simplify_gen_binary (LSHIFTRT, GET_MODE (x),
7296 temp, XEXP (XEXP (x, 0), 1));
7298 return force_to_mode (x, mode, mask, next_select);
7301 /* (and (not FOO) CONST) is (not (or FOO (not CONST))), so we must
7302 use the full mask inside the NOT. */
7303 mask = fuller_mask;
7305 unop:
7306 op0 = gen_lowpart_or_truncate (op_mode,
7307 force_to_mode (XEXP (x, 0), mode, mask,
7308 next_select));
7309 if (op_mode != GET_MODE (x) || op0 != XEXP (x, 0))
7310 x = simplify_gen_unary (code, op_mode, op0, op_mode);
7311 break;
7313 case NE:
7314 /* (and (ne FOO 0) CONST) can be (and FOO CONST) if CONST is included
7315 in STORE_FLAG_VALUE and FOO has a single bit that might be nonzero,
7316 which is equal to STORE_FLAG_VALUE. */
7317 if ((mask & ~STORE_FLAG_VALUE) == 0 && XEXP (x, 1) == const0_rtx
7318 && GET_MODE (XEXP (x, 0)) == mode
7319 && exact_log2 (nonzero_bits (XEXP (x, 0), mode)) >= 0
7320 && (nonzero_bits (XEXP (x, 0), mode)
7321 == (unsigned HOST_WIDE_INT) STORE_FLAG_VALUE))
7322 return force_to_mode (XEXP (x, 0), mode, mask, next_select);
7324 break;
7326 case IF_THEN_ELSE:
7327 /* We have no way of knowing if the IF_THEN_ELSE can itself be
7328 written in a narrower mode. We play it safe and do not do so. */
7330 SUBST (XEXP (x, 1),
7331 gen_lowpart_or_truncate (GET_MODE (x),
7332 force_to_mode (XEXP (x, 1), mode,
7333 mask, next_select)));
7334 SUBST (XEXP (x, 2),
7335 gen_lowpart_or_truncate (GET_MODE (x),
7336 force_to_mode (XEXP (x, 2), mode,
7337 mask, next_select)));
7338 break;
7340 default:
7341 break;
7344 /* Ensure we return a value of the proper mode. */
7345 return gen_lowpart_or_truncate (mode, x);
7348 /* Return nonzero if X is an expression that has one of two values depending on
7349 whether some other value is zero or nonzero. In that case, we return the
7350 value that is being tested, *PTRUE is set to the value if the rtx being
7351 returned has a nonzero value, and *PFALSE is set to the other alternative.
7353 If we return zero, we set *PTRUE and *PFALSE to X. */
7355 static rtx
7356 if_then_else_cond (rtx x, rtx *ptrue, rtx *pfalse)
7358 enum machine_mode mode = GET_MODE (x);
7359 enum rtx_code code = GET_CODE (x);
7360 rtx cond0, cond1, true0, true1, false0, false1;
7361 unsigned HOST_WIDE_INT nz;
7363 /* If we are comparing a value against zero, we are done. */
7364 if ((code == NE || code == EQ)
7365 && XEXP (x, 1) == const0_rtx)
7367 *ptrue = (code == NE) ? const_true_rtx : const0_rtx;
7368 *pfalse = (code == NE) ? const0_rtx : const_true_rtx;
7369 return XEXP (x, 0);
7372 /* If this is a unary operation whose operand has one of two values, apply
7373 our opcode to compute those values. */
7374 else if (UNARY_P (x)
7375 && (cond0 = if_then_else_cond (XEXP (x, 0), &true0, &false0)) != 0)
7377 *ptrue = simplify_gen_unary (code, mode, true0, GET_MODE (XEXP (x, 0)));
7378 *pfalse = simplify_gen_unary (code, mode, false0,
7379 GET_MODE (XEXP (x, 0)));
7380 return cond0;
7383 /* If this is a COMPARE, do nothing, since the IF_THEN_ELSE we would
7384 make can't possibly match and would suppress other optimizations. */
7385 else if (code == COMPARE)
7388 /* If this is a binary operation, see if either side has only one of two
7389 values. If either one does or if both do and they are conditional on
7390 the same value, compute the new true and false values. */
7391 else if (BINARY_P (x))
7393 cond0 = if_then_else_cond (XEXP (x, 0), &true0, &false0);
7394 cond1 = if_then_else_cond (XEXP (x, 1), &true1, &false1);
7396 if ((cond0 != 0 || cond1 != 0)
7397 && ! (cond0 != 0 && cond1 != 0 && ! rtx_equal_p (cond0, cond1)))
7399 /* If if_then_else_cond returned zero, then true/false are the
7400 same rtl. We must copy one of them to prevent invalid rtl
7401 sharing. */
7402 if (cond0 == 0)
7403 true0 = copy_rtx (true0);
7404 else if (cond1 == 0)
7405 true1 = copy_rtx (true1);
7407 if (COMPARISON_P (x))
7409 *ptrue = simplify_gen_relational (code, mode, VOIDmode,
7410 true0, true1);
7411 *pfalse = simplify_gen_relational (code, mode, VOIDmode,
7412 false0, false1);
7414 else
7416 *ptrue = simplify_gen_binary (code, mode, true0, true1);
7417 *pfalse = simplify_gen_binary (code, mode, false0, false1);
7420 return cond0 ? cond0 : cond1;
7423 /* See if we have PLUS, IOR, XOR, MINUS or UMAX, where one of the
7424 operands is zero when the other is nonzero, and vice-versa,
7425 and STORE_FLAG_VALUE is 1 or -1. */
7427 if ((STORE_FLAG_VALUE == 1 || STORE_FLAG_VALUE == -1)
7428 && (code == PLUS || code == IOR || code == XOR || code == MINUS
7429 || code == UMAX)
7430 && GET_CODE (XEXP (x, 0)) == MULT && GET_CODE (XEXP (x, 1)) == MULT)
7432 rtx op0 = XEXP (XEXP (x, 0), 1);
7433 rtx op1 = XEXP (XEXP (x, 1), 1);
7435 cond0 = XEXP (XEXP (x, 0), 0);
7436 cond1 = XEXP (XEXP (x, 1), 0);
7438 if (COMPARISON_P (cond0)
7439 && COMPARISON_P (cond1)
7440 && ((GET_CODE (cond0) == reversed_comparison_code (cond1, NULL)
7441 && rtx_equal_p (XEXP (cond0, 0), XEXP (cond1, 0))
7442 && rtx_equal_p (XEXP (cond0, 1), XEXP (cond1, 1)))
7443 || ((swap_condition (GET_CODE (cond0))
7444 == reversed_comparison_code (cond1, NULL))
7445 && rtx_equal_p (XEXP (cond0, 0), XEXP (cond1, 1))
7446 && rtx_equal_p (XEXP (cond0, 1), XEXP (cond1, 0))))
7447 && ! side_effects_p (x))
7449 *ptrue = simplify_gen_binary (MULT, mode, op0, const_true_rtx);
7450 *pfalse = simplify_gen_binary (MULT, mode,
7451 (code == MINUS
7452 ? simplify_gen_unary (NEG, mode,
7453 op1, mode)
7454 : op1),
7455 const_true_rtx);
7456 return cond0;
7460 /* Similarly for MULT, AND and UMIN, except that for these the result
7461 is always zero. */
7462 if ((STORE_FLAG_VALUE == 1 || STORE_FLAG_VALUE == -1)
7463 && (code == MULT || code == AND || code == UMIN)
7464 && GET_CODE (XEXP (x, 0)) == MULT && GET_CODE (XEXP (x, 1)) == MULT)
7466 cond0 = XEXP (XEXP (x, 0), 0);
7467 cond1 = XEXP (XEXP (x, 1), 0);
7469 if (COMPARISON_P (cond0)
7470 && COMPARISON_P (cond1)
7471 && ((GET_CODE (cond0) == reversed_comparison_code (cond1, NULL)
7472 && rtx_equal_p (XEXP (cond0, 0), XEXP (cond1, 0))
7473 && rtx_equal_p (XEXP (cond0, 1), XEXP (cond1, 1)))
7474 || ((swap_condition (GET_CODE (cond0))
7475 == reversed_comparison_code (cond1, NULL))
7476 && rtx_equal_p (XEXP (cond0, 0), XEXP (cond1, 1))
7477 && rtx_equal_p (XEXP (cond0, 1), XEXP (cond1, 0))))
7478 && ! side_effects_p (x))
7480 *ptrue = *pfalse = const0_rtx;
7481 return cond0;
7486 else if (code == IF_THEN_ELSE)
7488 /* If we have IF_THEN_ELSE already, extract the condition and
7489 canonicalize it if it is NE or EQ. */
7490 cond0 = XEXP (x, 0);
7491 *ptrue = XEXP (x, 1), *pfalse = XEXP (x, 2);
7492 if (GET_CODE (cond0) == NE && XEXP (cond0, 1) == const0_rtx)
7493 return XEXP (cond0, 0);
7494 else if (GET_CODE (cond0) == EQ && XEXP (cond0, 1) == const0_rtx)
7496 *ptrue = XEXP (x, 2), *pfalse = XEXP (x, 1);
7497 return XEXP (cond0, 0);
7499 else
7500 return cond0;
7503 /* If X is a SUBREG, we can narrow both the true and false values
7504 if the inner expression, if there is a condition. */
7505 else if (code == SUBREG
7506 && 0 != (cond0 = if_then_else_cond (SUBREG_REG (x),
7507 &true0, &false0)))
7509 true0 = simplify_gen_subreg (mode, true0,
7510 GET_MODE (SUBREG_REG (x)), SUBREG_BYTE (x));
7511 false0 = simplify_gen_subreg (mode, false0,
7512 GET_MODE (SUBREG_REG (x)), SUBREG_BYTE (x));
7513 if (true0 && false0)
7515 *ptrue = true0;
7516 *pfalse = false0;
7517 return cond0;
7521 /* If X is a constant, this isn't special and will cause confusions
7522 if we treat it as such. Likewise if it is equivalent to a constant. */
7523 else if (CONSTANT_P (x)
7524 || ((cond0 = get_last_value (x)) != 0 && CONSTANT_P (cond0)))
7527 /* If we're in BImode, canonicalize on 0 and STORE_FLAG_VALUE, as that
7528 will be least confusing to the rest of the compiler. */
7529 else if (mode == BImode)
7531 *ptrue = GEN_INT (STORE_FLAG_VALUE), *pfalse = const0_rtx;
7532 return x;
7535 /* If X is known to be either 0 or -1, those are the true and
7536 false values when testing X. */
7537 else if (x == constm1_rtx || x == const0_rtx
7538 || (mode != VOIDmode
7539 && num_sign_bit_copies (x, mode) == GET_MODE_BITSIZE (mode)))
7541 *ptrue = constm1_rtx, *pfalse = const0_rtx;
7542 return x;
7545 /* Likewise for 0 or a single bit. */
7546 else if (SCALAR_INT_MODE_P (mode)
7547 && GET_MODE_BITSIZE (mode) <= HOST_BITS_PER_WIDE_INT
7548 && exact_log2 (nz = nonzero_bits (x, mode)) >= 0)
7550 *ptrue = gen_int_mode (nz, mode), *pfalse = const0_rtx;
7551 return x;
7554 /* Otherwise fail; show no condition with true and false values the same. */
7555 *ptrue = *pfalse = x;
7556 return 0;
7559 /* Return the value of expression X given the fact that condition COND
7560 is known to be true when applied to REG as its first operand and VAL
7561 as its second. X is known to not be shared and so can be modified in
7562 place.
7564 We only handle the simplest cases, and specifically those cases that
7565 arise with IF_THEN_ELSE expressions. */
7567 static rtx
7568 known_cond (rtx x, enum rtx_code cond, rtx reg, rtx val)
7570 enum rtx_code code = GET_CODE (x);
7571 rtx temp;
7572 const char *fmt;
7573 int i, j;
7575 if (side_effects_p (x))
7576 return x;
7578 /* If either operand of the condition is a floating point value,
7579 then we have to avoid collapsing an EQ comparison. */
7580 if (cond == EQ
7581 && rtx_equal_p (x, reg)
7582 && ! FLOAT_MODE_P (GET_MODE (x))
7583 && ! FLOAT_MODE_P (GET_MODE (val)))
7584 return val;
7586 if (cond == UNEQ && rtx_equal_p (x, reg))
7587 return val;
7589 /* If X is (abs REG) and we know something about REG's relationship
7590 with zero, we may be able to simplify this. */
7592 if (code == ABS && rtx_equal_p (XEXP (x, 0), reg) && val == const0_rtx)
7593 switch (cond)
7595 case GE: case GT: case EQ:
7596 return XEXP (x, 0);
7597 case LT: case LE:
7598 return simplify_gen_unary (NEG, GET_MODE (XEXP (x, 0)),
7599 XEXP (x, 0),
7600 GET_MODE (XEXP (x, 0)));
7601 default:
7602 break;
7605 /* The only other cases we handle are MIN, MAX, and comparisons if the
7606 operands are the same as REG and VAL. */
7608 else if (COMPARISON_P (x) || COMMUTATIVE_ARITH_P (x))
7610 if (rtx_equal_p (XEXP (x, 0), val))
7611 cond = swap_condition (cond), temp = val, val = reg, reg = temp;
7613 if (rtx_equal_p (XEXP (x, 0), reg) && rtx_equal_p (XEXP (x, 1), val))
7615 if (COMPARISON_P (x))
7617 if (comparison_dominates_p (cond, code))
7618 return const_true_rtx;
7620 code = reversed_comparison_code (x, NULL);
7621 if (code != UNKNOWN
7622 && comparison_dominates_p (cond, code))
7623 return const0_rtx;
7624 else
7625 return x;
7627 else if (code == SMAX || code == SMIN
7628 || code == UMIN || code == UMAX)
7630 int unsignedp = (code == UMIN || code == UMAX);
7632 /* Do not reverse the condition when it is NE or EQ.
7633 This is because we cannot conclude anything about
7634 the value of 'SMAX (x, y)' when x is not equal to y,
7635 but we can when x equals y. */
7636 if ((code == SMAX || code == UMAX)
7637 && ! (cond == EQ || cond == NE))
7638 cond = reverse_condition (cond);
7640 switch (cond)
7642 case GE: case GT:
7643 return unsignedp ? x : XEXP (x, 1);
7644 case LE: case LT:
7645 return unsignedp ? x : XEXP (x, 0);
7646 case GEU: case GTU:
7647 return unsignedp ? XEXP (x, 1) : x;
7648 case LEU: case LTU:
7649 return unsignedp ? XEXP (x, 0) : x;
7650 default:
7651 break;
7656 else if (code == SUBREG)
7658 enum machine_mode inner_mode = GET_MODE (SUBREG_REG (x));
7659 rtx new, r = known_cond (SUBREG_REG (x), cond, reg, val);
7661 if (SUBREG_REG (x) != r)
7663 /* We must simplify subreg here, before we lose track of the
7664 original inner_mode. */
7665 new = simplify_subreg (GET_MODE (x), r,
7666 inner_mode, SUBREG_BYTE (x));
7667 if (new)
7668 return new;
7669 else
7670 SUBST (SUBREG_REG (x), r);
7673 return x;
7675 /* We don't have to handle SIGN_EXTEND here, because even in the
7676 case of replacing something with a modeless CONST_INT, a
7677 CONST_INT is already (supposed to be) a valid sign extension for
7678 its narrower mode, which implies it's already properly
7679 sign-extended for the wider mode. Now, for ZERO_EXTEND, the
7680 story is different. */
7681 else if (code == ZERO_EXTEND)
7683 enum machine_mode inner_mode = GET_MODE (XEXP (x, 0));
7684 rtx new, r = known_cond (XEXP (x, 0), cond, reg, val);
7686 if (XEXP (x, 0) != r)
7688 /* We must simplify the zero_extend here, before we lose
7689 track of the original inner_mode. */
7690 new = simplify_unary_operation (ZERO_EXTEND, GET_MODE (x),
7691 r, inner_mode);
7692 if (new)
7693 return new;
7694 else
7695 SUBST (XEXP (x, 0), r);
7698 return x;
7701 fmt = GET_RTX_FORMAT (code);
7702 for (i = GET_RTX_LENGTH (code) - 1; i >= 0; i--)
7704 if (fmt[i] == 'e')
7705 SUBST (XEXP (x, i), known_cond (XEXP (x, i), cond, reg, val));
7706 else if (fmt[i] == 'E')
7707 for (j = XVECLEN (x, i) - 1; j >= 0; j--)
7708 SUBST (XVECEXP (x, i, j), known_cond (XVECEXP (x, i, j),
7709 cond, reg, val));
7712 return x;
7715 /* See if X and Y are equal for the purposes of seeing if we can rewrite an
7716 assignment as a field assignment. */
7718 static int
7719 rtx_equal_for_field_assignment_p (rtx x, rtx y)
7721 if (x == y || rtx_equal_p (x, y))
7722 return 1;
7724 if (x == 0 || y == 0 || GET_MODE (x) != GET_MODE (y))
7725 return 0;
7727 /* Check for a paradoxical SUBREG of a MEM compared with the MEM.
7728 Note that all SUBREGs of MEM are paradoxical; otherwise they
7729 would have been rewritten. */
7730 if (MEM_P (x) && GET_CODE (y) == SUBREG
7731 && MEM_P (SUBREG_REG (y))
7732 && rtx_equal_p (SUBREG_REG (y),
7733 gen_lowpart (GET_MODE (SUBREG_REG (y)), x)))
7734 return 1;
7736 if (MEM_P (y) && GET_CODE (x) == SUBREG
7737 && MEM_P (SUBREG_REG (x))
7738 && rtx_equal_p (SUBREG_REG (x),
7739 gen_lowpart (GET_MODE (SUBREG_REG (x)), y)))
7740 return 1;
7742 /* We used to see if get_last_value of X and Y were the same but that's
7743 not correct. In one direction, we'll cause the assignment to have
7744 the wrong destination and in the case, we'll import a register into this
7745 insn that might have already have been dead. So fail if none of the
7746 above cases are true. */
7747 return 0;
7750 /* See if X, a SET operation, can be rewritten as a bit-field assignment.
7751 Return that assignment if so.
7753 We only handle the most common cases. */
7755 static rtx
7756 make_field_assignment (rtx x)
7758 rtx dest = SET_DEST (x);
7759 rtx src = SET_SRC (x);
7760 rtx assign;
7761 rtx rhs, lhs;
7762 HOST_WIDE_INT c1;
7763 HOST_WIDE_INT pos;
7764 unsigned HOST_WIDE_INT len;
7765 rtx other;
7766 enum machine_mode mode;
7768 /* If SRC was (and (not (ashift (const_int 1) POS)) DEST), this is
7769 a clear of a one-bit field. We will have changed it to
7770 (and (rotate (const_int -2) POS) DEST), so check for that. Also check
7771 for a SUBREG. */
7773 if (GET_CODE (src) == AND && GET_CODE (XEXP (src, 0)) == ROTATE
7774 && GET_CODE (XEXP (XEXP (src, 0), 0)) == CONST_INT
7775 && INTVAL (XEXP (XEXP (src, 0), 0)) == -2
7776 && rtx_equal_for_field_assignment_p (dest, XEXP (src, 1)))
7778 assign = make_extraction (VOIDmode, dest, 0, XEXP (XEXP (src, 0), 1),
7779 1, 1, 1, 0);
7780 if (assign != 0)
7781 return gen_rtx_SET (VOIDmode, assign, const0_rtx);
7782 return x;
7785 if (GET_CODE (src) == AND && GET_CODE (XEXP (src, 0)) == SUBREG
7786 && subreg_lowpart_p (XEXP (src, 0))
7787 && (GET_MODE_SIZE (GET_MODE (XEXP (src, 0)))
7788 < GET_MODE_SIZE (GET_MODE (SUBREG_REG (XEXP (src, 0)))))
7789 && GET_CODE (SUBREG_REG (XEXP (src, 0))) == ROTATE
7790 && GET_CODE (XEXP (SUBREG_REG (XEXP (src, 0)), 0)) == CONST_INT
7791 && INTVAL (XEXP (SUBREG_REG (XEXP (src, 0)), 0)) == -2
7792 && rtx_equal_for_field_assignment_p (dest, XEXP (src, 1)))
7794 assign = make_extraction (VOIDmode, dest, 0,
7795 XEXP (SUBREG_REG (XEXP (src, 0)), 1),
7796 1, 1, 1, 0);
7797 if (assign != 0)
7798 return gen_rtx_SET (VOIDmode, assign, const0_rtx);
7799 return x;
7802 /* If SRC is (ior (ashift (const_int 1) POS) DEST), this is a set of a
7803 one-bit field. */
7804 if (GET_CODE (src) == IOR && GET_CODE (XEXP (src, 0)) == ASHIFT
7805 && XEXP (XEXP (src, 0), 0) == const1_rtx
7806 && rtx_equal_for_field_assignment_p (dest, XEXP (src, 1)))
7808 assign = make_extraction (VOIDmode, dest, 0, XEXP (XEXP (src, 0), 1),
7809 1, 1, 1, 0);
7810 if (assign != 0)
7811 return gen_rtx_SET (VOIDmode, assign, const1_rtx);
7812 return x;
7815 /* If DEST is already a field assignment, i.e. ZERO_EXTRACT, and the
7816 SRC is an AND with all bits of that field set, then we can discard
7817 the AND. */
7818 if (GET_CODE (dest) == ZERO_EXTRACT
7819 && GET_CODE (XEXP (dest, 1)) == CONST_INT
7820 && GET_CODE (src) == AND
7821 && GET_CODE (XEXP (src, 1)) == CONST_INT)
7823 HOST_WIDE_INT width = INTVAL (XEXP (dest, 1));
7824 unsigned HOST_WIDE_INT and_mask = INTVAL (XEXP (src, 1));
7825 unsigned HOST_WIDE_INT ze_mask;
7827 if (width >= HOST_BITS_PER_WIDE_INT)
7828 ze_mask = -1;
7829 else
7830 ze_mask = ((unsigned HOST_WIDE_INT)1 << width) - 1;
7832 /* Complete overlap. We can remove the source AND. */
7833 if ((and_mask & ze_mask) == ze_mask)
7834 return gen_rtx_SET (VOIDmode, dest, XEXP (src, 0));
7836 /* Partial overlap. We can reduce the source AND. */
7837 if ((and_mask & ze_mask) != and_mask)
7839 mode = GET_MODE (src);
7840 src = gen_rtx_AND (mode, XEXP (src, 0),
7841 gen_int_mode (and_mask & ze_mask, mode));
7842 return gen_rtx_SET (VOIDmode, dest, src);
7846 /* The other case we handle is assignments into a constant-position
7847 field. They look like (ior/xor (and DEST C1) OTHER). If C1 represents
7848 a mask that has all one bits except for a group of zero bits and
7849 OTHER is known to have zeros where C1 has ones, this is such an
7850 assignment. Compute the position and length from C1. Shift OTHER
7851 to the appropriate position, force it to the required mode, and
7852 make the extraction. Check for the AND in both operands. */
7854 if (GET_CODE (src) != IOR && GET_CODE (src) != XOR)
7855 return x;
7857 rhs = expand_compound_operation (XEXP (src, 0));
7858 lhs = expand_compound_operation (XEXP (src, 1));
7860 if (GET_CODE (rhs) == AND
7861 && GET_CODE (XEXP (rhs, 1)) == CONST_INT
7862 && rtx_equal_for_field_assignment_p (XEXP (rhs, 0), dest))
7863 c1 = INTVAL (XEXP (rhs, 1)), other = lhs;
7864 else if (GET_CODE (lhs) == AND
7865 && GET_CODE (XEXP (lhs, 1)) == CONST_INT
7866 && rtx_equal_for_field_assignment_p (XEXP (lhs, 0), dest))
7867 c1 = INTVAL (XEXP (lhs, 1)), other = rhs;
7868 else
7869 return x;
7871 pos = get_pos_from_mask ((~c1) & GET_MODE_MASK (GET_MODE (dest)), &len);
7872 if (pos < 0 || pos + len > GET_MODE_BITSIZE (GET_MODE (dest))
7873 || GET_MODE_BITSIZE (GET_MODE (dest)) > HOST_BITS_PER_WIDE_INT
7874 || (c1 & nonzero_bits (other, GET_MODE (dest))) != 0)
7875 return x;
7877 assign = make_extraction (VOIDmode, dest, pos, NULL_RTX, len, 1, 1, 0);
7878 if (assign == 0)
7879 return x;
7881 /* The mode to use for the source is the mode of the assignment, or of
7882 what is inside a possible STRICT_LOW_PART. */
7883 mode = (GET_CODE (assign) == STRICT_LOW_PART
7884 ? GET_MODE (XEXP (assign, 0)) : GET_MODE (assign));
7886 /* Shift OTHER right POS places and make it the source, restricting it
7887 to the proper length and mode. */
7889 src = canon_reg_for_combine (simplify_shift_const (NULL_RTX, LSHIFTRT,
7890 GET_MODE (src),
7891 other, pos),
7892 dest);
7893 src = force_to_mode (src, mode,
7894 GET_MODE_BITSIZE (mode) >= HOST_BITS_PER_WIDE_INT
7895 ? ~(unsigned HOST_WIDE_INT) 0
7896 : ((unsigned HOST_WIDE_INT) 1 << len) - 1,
7899 /* If SRC is masked by an AND that does not make a difference in
7900 the value being stored, strip it. */
7901 if (GET_CODE (assign) == ZERO_EXTRACT
7902 && GET_CODE (XEXP (assign, 1)) == CONST_INT
7903 && INTVAL (XEXP (assign, 1)) < HOST_BITS_PER_WIDE_INT
7904 && GET_CODE (src) == AND
7905 && GET_CODE (XEXP (src, 1)) == CONST_INT
7906 && ((unsigned HOST_WIDE_INT) INTVAL (XEXP (src, 1))
7907 == ((unsigned HOST_WIDE_INT) 1 << INTVAL (XEXP (assign, 1))) - 1))
7908 src = XEXP (src, 0);
7910 return gen_rtx_SET (VOIDmode, assign, src);
7913 /* See if X is of the form (+ (* a c) (* b c)) and convert to (* (+ a b) c)
7914 if so. */
7916 static rtx
7917 apply_distributive_law (rtx x)
7919 enum rtx_code code = GET_CODE (x);
7920 enum rtx_code inner_code;
7921 rtx lhs, rhs, other;
7922 rtx tem;
7924 /* Distributivity is not true for floating point as it can change the
7925 value. So we don't do it unless -funsafe-math-optimizations. */
7926 if (FLOAT_MODE_P (GET_MODE (x))
7927 && ! flag_unsafe_math_optimizations)
7928 return x;
7930 /* The outer operation can only be one of the following: */
7931 if (code != IOR && code != AND && code != XOR
7932 && code != PLUS && code != MINUS)
7933 return x;
7935 lhs = XEXP (x, 0);
7936 rhs = XEXP (x, 1);
7938 /* If either operand is a primitive we can't do anything, so get out
7939 fast. */
7940 if (OBJECT_P (lhs) || OBJECT_P (rhs))
7941 return x;
7943 lhs = expand_compound_operation (lhs);
7944 rhs = expand_compound_operation (rhs);
7945 inner_code = GET_CODE (lhs);
7946 if (inner_code != GET_CODE (rhs))
7947 return x;
7949 /* See if the inner and outer operations distribute. */
7950 switch (inner_code)
7952 case LSHIFTRT:
7953 case ASHIFTRT:
7954 case AND:
7955 case IOR:
7956 /* These all distribute except over PLUS. */
7957 if (code == PLUS || code == MINUS)
7958 return x;
7959 break;
7961 case MULT:
7962 if (code != PLUS && code != MINUS)
7963 return x;
7964 break;
7966 case ASHIFT:
7967 /* This is also a multiply, so it distributes over everything. */
7968 break;
7970 case SUBREG:
7971 /* Non-paradoxical SUBREGs distributes over all operations,
7972 provided the inner modes and byte offsets are the same, this
7973 is an extraction of a low-order part, we don't convert an fp
7974 operation to int or vice versa, this is not a vector mode,
7975 and we would not be converting a single-word operation into a
7976 multi-word operation. The latter test is not required, but
7977 it prevents generating unneeded multi-word operations. Some
7978 of the previous tests are redundant given the latter test,
7979 but are retained because they are required for correctness.
7981 We produce the result slightly differently in this case. */
7983 if (GET_MODE (SUBREG_REG (lhs)) != GET_MODE (SUBREG_REG (rhs))
7984 || SUBREG_BYTE (lhs) != SUBREG_BYTE (rhs)
7985 || ! subreg_lowpart_p (lhs)
7986 || (GET_MODE_CLASS (GET_MODE (lhs))
7987 != GET_MODE_CLASS (GET_MODE (SUBREG_REG (lhs))))
7988 || (GET_MODE_SIZE (GET_MODE (lhs))
7989 > GET_MODE_SIZE (GET_MODE (SUBREG_REG (lhs))))
7990 || VECTOR_MODE_P (GET_MODE (lhs))
7991 || GET_MODE_SIZE (GET_MODE (SUBREG_REG (lhs))) > UNITS_PER_WORD
7992 /* Result might need to be truncated. Don't change mode if
7993 explicit truncation is needed. */
7994 || !TRULY_NOOP_TRUNCATION
7995 (GET_MODE_BITSIZE (GET_MODE (x)),
7996 GET_MODE_BITSIZE (GET_MODE (SUBREG_REG (lhs)))))
7997 return x;
7999 tem = simplify_gen_binary (code, GET_MODE (SUBREG_REG (lhs)),
8000 SUBREG_REG (lhs), SUBREG_REG (rhs));
8001 return gen_lowpart (GET_MODE (x), tem);
8003 default:
8004 return x;
8007 /* Set LHS and RHS to the inner operands (A and B in the example
8008 above) and set OTHER to the common operand (C in the example).
8009 There is only one way to do this unless the inner operation is
8010 commutative. */
8011 if (COMMUTATIVE_ARITH_P (lhs)
8012 && rtx_equal_p (XEXP (lhs, 0), XEXP (rhs, 0)))
8013 other = XEXP (lhs, 0), lhs = XEXP (lhs, 1), rhs = XEXP (rhs, 1);
8014 else if (COMMUTATIVE_ARITH_P (lhs)
8015 && rtx_equal_p (XEXP (lhs, 0), XEXP (rhs, 1)))
8016 other = XEXP (lhs, 0), lhs = XEXP (lhs, 1), rhs = XEXP (rhs, 0);
8017 else if (COMMUTATIVE_ARITH_P (lhs)
8018 && rtx_equal_p (XEXP (lhs, 1), XEXP (rhs, 0)))
8019 other = XEXP (lhs, 1), lhs = XEXP (lhs, 0), rhs = XEXP (rhs, 1);
8020 else if (rtx_equal_p (XEXP (lhs, 1), XEXP (rhs, 1)))
8021 other = XEXP (lhs, 1), lhs = XEXP (lhs, 0), rhs = XEXP (rhs, 0);
8022 else
8023 return x;
8025 /* Form the new inner operation, seeing if it simplifies first. */
8026 tem = simplify_gen_binary (code, GET_MODE (x), lhs, rhs);
8028 /* There is one exception to the general way of distributing:
8029 (a | c) ^ (b | c) -> (a ^ b) & ~c */
8030 if (code == XOR && inner_code == IOR)
8032 inner_code = AND;
8033 other = simplify_gen_unary (NOT, GET_MODE (x), other, GET_MODE (x));
8036 /* We may be able to continuing distributing the result, so call
8037 ourselves recursively on the inner operation before forming the
8038 outer operation, which we return. */
8039 return simplify_gen_binary (inner_code, GET_MODE (x),
8040 apply_distributive_law (tem), other);
8043 /* See if X is of the form (* (+ A B) C), and if so convert to
8044 (+ (* A C) (* B C)) and try to simplify.
8046 Most of the time, this results in no change. However, if some of
8047 the operands are the same or inverses of each other, simplifications
8048 will result.
8050 For example, (and (ior A B) (not B)) can occur as the result of
8051 expanding a bit field assignment. When we apply the distributive
8052 law to this, we get (ior (and (A (not B))) (and (B (not B)))),
8053 which then simplifies to (and (A (not B))).
8055 Note that no checks happen on the validity of applying the inverse
8056 distributive law. This is pointless since we can do it in the
8057 few places where this routine is called.
8059 N is the index of the term that is decomposed (the arithmetic operation,
8060 i.e. (+ A B) in the first example above). !N is the index of the term that
8061 is distributed, i.e. of C in the first example above. */
8062 static rtx
8063 distribute_and_simplify_rtx (rtx x, int n)
8065 enum machine_mode mode;
8066 enum rtx_code outer_code, inner_code;
8067 rtx decomposed, distributed, inner_op0, inner_op1, new_op0, new_op1, tmp;
8069 decomposed = XEXP (x, n);
8070 if (!ARITHMETIC_P (decomposed))
8071 return NULL_RTX;
8073 mode = GET_MODE (x);
8074 outer_code = GET_CODE (x);
8075 distributed = XEXP (x, !n);
8077 inner_code = GET_CODE (decomposed);
8078 inner_op0 = XEXP (decomposed, 0);
8079 inner_op1 = XEXP (decomposed, 1);
8081 /* Special case (and (xor B C) (not A)), which is equivalent to
8082 (xor (ior A B) (ior A C)) */
8083 if (outer_code == AND && inner_code == XOR && GET_CODE (distributed) == NOT)
8085 distributed = XEXP (distributed, 0);
8086 outer_code = IOR;
8089 if (n == 0)
8091 /* Distribute the second term. */
8092 new_op0 = simplify_gen_binary (outer_code, mode, inner_op0, distributed);
8093 new_op1 = simplify_gen_binary (outer_code, mode, inner_op1, distributed);
8095 else
8097 /* Distribute the first term. */
8098 new_op0 = simplify_gen_binary (outer_code, mode, distributed, inner_op0);
8099 new_op1 = simplify_gen_binary (outer_code, mode, distributed, inner_op1);
8102 tmp = apply_distributive_law (simplify_gen_binary (inner_code, mode,
8103 new_op0, new_op1));
8104 if (GET_CODE (tmp) != outer_code
8105 && rtx_cost (tmp, SET) < rtx_cost (x, SET))
8106 return tmp;
8108 return NULL_RTX;
8111 /* Simplify a logical `and' of VAROP with the constant CONSTOP, to be done
8112 in MODE. Return an equivalent form, if different from (and VAROP
8113 (const_int CONSTOP)). Otherwise, return NULL_RTX. */
8115 static rtx
8116 simplify_and_const_int_1 (enum machine_mode mode, rtx varop,
8117 unsigned HOST_WIDE_INT constop)
8119 unsigned HOST_WIDE_INT nonzero;
8120 unsigned HOST_WIDE_INT orig_constop;
8121 rtx orig_varop;
8122 int i;
8124 orig_varop = varop;
8125 orig_constop = constop;
8126 if (GET_CODE (varop) == CLOBBER)
8127 return NULL_RTX;
8129 /* Simplify VAROP knowing that we will be only looking at some of the
8130 bits in it.
8132 Note by passing in CONSTOP, we guarantee that the bits not set in
8133 CONSTOP are not significant and will never be examined. We must
8134 ensure that is the case by explicitly masking out those bits
8135 before returning. */
8136 varop = force_to_mode (varop, mode, constop, 0);
8138 /* If VAROP is a CLOBBER, we will fail so return it. */
8139 if (GET_CODE (varop) == CLOBBER)
8140 return varop;
8142 /* If VAROP is a CONST_INT, then we need to apply the mask in CONSTOP
8143 to VAROP and return the new constant. */
8144 if (GET_CODE (varop) == CONST_INT)
8145 return gen_int_mode (INTVAL (varop) & constop, mode);
8147 /* See what bits may be nonzero in VAROP. Unlike the general case of
8148 a call to nonzero_bits, here we don't care about bits outside
8149 MODE. */
8151 nonzero = nonzero_bits (varop, mode) & GET_MODE_MASK (mode);
8153 /* Turn off all bits in the constant that are known to already be zero.
8154 Thus, if the AND isn't needed at all, we will have CONSTOP == NONZERO_BITS
8155 which is tested below. */
8157 constop &= nonzero;
8159 /* If we don't have any bits left, return zero. */
8160 if (constop == 0)
8161 return const0_rtx;
8163 /* If VAROP is a NEG of something known to be zero or 1 and CONSTOP is
8164 a power of two, we can replace this with an ASHIFT. */
8165 if (GET_CODE (varop) == NEG && nonzero_bits (XEXP (varop, 0), mode) == 1
8166 && (i = exact_log2 (constop)) >= 0)
8167 return simplify_shift_const (NULL_RTX, ASHIFT, mode, XEXP (varop, 0), i);
8169 /* If VAROP is an IOR or XOR, apply the AND to both branches of the IOR
8170 or XOR, then try to apply the distributive law. This may eliminate
8171 operations if either branch can be simplified because of the AND.
8172 It may also make some cases more complex, but those cases probably
8173 won't match a pattern either with or without this. */
8175 if (GET_CODE (varop) == IOR || GET_CODE (varop) == XOR)
8176 return
8177 gen_lowpart
8178 (mode,
8179 apply_distributive_law
8180 (simplify_gen_binary (GET_CODE (varop), GET_MODE (varop),
8181 simplify_and_const_int (NULL_RTX,
8182 GET_MODE (varop),
8183 XEXP (varop, 0),
8184 constop),
8185 simplify_and_const_int (NULL_RTX,
8186 GET_MODE (varop),
8187 XEXP (varop, 1),
8188 constop))));
8190 /* If VAROP is PLUS, and the constant is a mask of low bits, distribute
8191 the AND and see if one of the operands simplifies to zero. If so, we
8192 may eliminate it. */
8194 if (GET_CODE (varop) == PLUS
8195 && exact_log2 (constop + 1) >= 0)
8197 rtx o0, o1;
8199 o0 = simplify_and_const_int (NULL_RTX, mode, XEXP (varop, 0), constop);
8200 o1 = simplify_and_const_int (NULL_RTX, mode, XEXP (varop, 1), constop);
8201 if (o0 == const0_rtx)
8202 return o1;
8203 if (o1 == const0_rtx)
8204 return o0;
8207 /* Make a SUBREG if necessary. If we can't make it, fail. */
8208 varop = gen_lowpart (mode, varop);
8209 if (varop == NULL_RTX || GET_CODE (varop) == CLOBBER)
8210 return NULL_RTX;
8212 /* If we are only masking insignificant bits, return VAROP. */
8213 if (constop == nonzero)
8214 return varop;
8216 if (varop == orig_varop && constop == orig_constop)
8217 return NULL_RTX;
8219 /* Otherwise, return an AND. */
8220 constop = trunc_int_for_mode (constop, mode);
8221 return simplify_gen_binary (AND, mode, varop, GEN_INT (constop));
8225 /* We have X, a logical `and' of VAROP with the constant CONSTOP, to be done
8226 in MODE.
8228 Return an equivalent form, if different from X. Otherwise, return X. If
8229 X is zero, we are to always construct the equivalent form. */
8231 static rtx
8232 simplify_and_const_int (rtx x, enum machine_mode mode, rtx varop,
8233 unsigned HOST_WIDE_INT constop)
8235 rtx tem = simplify_and_const_int_1 (mode, varop, constop);
8236 if (tem)
8237 return tem;
8239 if (!x)
8240 x = simplify_gen_binary (AND, GET_MODE (varop), varop, GEN_INT (constop));
8241 if (GET_MODE (x) != mode)
8242 x = gen_lowpart (mode, x);
8243 return x;
8246 /* Given a REG, X, compute which bits in X can be nonzero.
8247 We don't care about bits outside of those defined in MODE.
8249 For most X this is simply GET_MODE_MASK (GET_MODE (MODE)), but if X is
8250 a shift, AND, or zero_extract, we can do better. */
8252 static rtx
8253 reg_nonzero_bits_for_combine (rtx x, enum machine_mode mode,
8254 rtx known_x ATTRIBUTE_UNUSED,
8255 enum machine_mode known_mode ATTRIBUTE_UNUSED,
8256 unsigned HOST_WIDE_INT known_ret ATTRIBUTE_UNUSED,
8257 unsigned HOST_WIDE_INT *nonzero)
8259 rtx tem;
8261 /* If X is a register whose nonzero bits value is current, use it.
8262 Otherwise, if X is a register whose value we can find, use that
8263 value. Otherwise, use the previously-computed global nonzero bits
8264 for this register. */
8266 if (reg_stat[REGNO (x)].last_set_value != 0
8267 && (reg_stat[REGNO (x)].last_set_mode == mode
8268 || (GET_MODE_CLASS (reg_stat[REGNO (x)].last_set_mode) == MODE_INT
8269 && GET_MODE_CLASS (mode) == MODE_INT))
8270 && (reg_stat[REGNO (x)].last_set_label == label_tick
8271 || (REGNO (x) >= FIRST_PSEUDO_REGISTER
8272 && REG_N_SETS (REGNO (x)) == 1
8273 && ! REGNO_REG_SET_P
8274 (ENTRY_BLOCK_PTR->next_bb->il.rtl->global_live_at_start,
8275 REGNO (x))))
8276 && INSN_CUID (reg_stat[REGNO (x)].last_set) < subst_low_cuid)
8278 *nonzero &= reg_stat[REGNO (x)].last_set_nonzero_bits;
8279 return NULL;
8282 tem = get_last_value (x);
8284 if (tem)
8286 #ifdef SHORT_IMMEDIATES_SIGN_EXTEND
8287 /* If X is narrower than MODE and TEM is a non-negative
8288 constant that would appear negative in the mode of X,
8289 sign-extend it for use in reg_nonzero_bits because some
8290 machines (maybe most) will actually do the sign-extension
8291 and this is the conservative approach.
8293 ??? For 2.5, try to tighten up the MD files in this regard
8294 instead of this kludge. */
8296 if (GET_MODE_BITSIZE (GET_MODE (x)) < GET_MODE_BITSIZE (mode)
8297 && GET_CODE (tem) == CONST_INT
8298 && INTVAL (tem) > 0
8299 && 0 != (INTVAL (tem)
8300 & ((HOST_WIDE_INT) 1
8301 << (GET_MODE_BITSIZE (GET_MODE (x)) - 1))))
8302 tem = GEN_INT (INTVAL (tem)
8303 | ((HOST_WIDE_INT) (-1)
8304 << GET_MODE_BITSIZE (GET_MODE (x))));
8305 #endif
8306 return tem;
8308 else if (nonzero_sign_valid && reg_stat[REGNO (x)].nonzero_bits)
8310 unsigned HOST_WIDE_INT mask = reg_stat[REGNO (x)].nonzero_bits;
8312 if (GET_MODE_BITSIZE (GET_MODE (x)) < GET_MODE_BITSIZE (mode))
8313 /* We don't know anything about the upper bits. */
8314 mask |= GET_MODE_MASK (mode) ^ GET_MODE_MASK (GET_MODE (x));
8315 *nonzero &= mask;
8318 return NULL;
8321 /* Return the number of bits at the high-order end of X that are known to
8322 be equal to the sign bit. X will be used in mode MODE; if MODE is
8323 VOIDmode, X will be used in its own mode. The returned value will always
8324 be between 1 and the number of bits in MODE. */
8326 static rtx
8327 reg_num_sign_bit_copies_for_combine (rtx x, enum machine_mode mode,
8328 rtx known_x ATTRIBUTE_UNUSED,
8329 enum machine_mode known_mode
8330 ATTRIBUTE_UNUSED,
8331 unsigned int known_ret ATTRIBUTE_UNUSED,
8332 unsigned int *result)
8334 rtx tem;
8336 if (reg_stat[REGNO (x)].last_set_value != 0
8337 && reg_stat[REGNO (x)].last_set_mode == mode
8338 && (reg_stat[REGNO (x)].last_set_label == label_tick
8339 || (REGNO (x) >= FIRST_PSEUDO_REGISTER
8340 && REG_N_SETS (REGNO (x)) == 1
8341 && ! REGNO_REG_SET_P
8342 (ENTRY_BLOCK_PTR->next_bb->il.rtl->global_live_at_start,
8343 REGNO (x))))
8344 && INSN_CUID (reg_stat[REGNO (x)].last_set) < subst_low_cuid)
8346 *result = reg_stat[REGNO (x)].last_set_sign_bit_copies;
8347 return NULL;
8350 tem = get_last_value (x);
8351 if (tem != 0)
8352 return tem;
8354 if (nonzero_sign_valid && reg_stat[REGNO (x)].sign_bit_copies != 0
8355 && GET_MODE_BITSIZE (GET_MODE (x)) == GET_MODE_BITSIZE (mode))
8356 *result = reg_stat[REGNO (x)].sign_bit_copies;
8358 return NULL;
8361 /* Return the number of "extended" bits there are in X, when interpreted
8362 as a quantity in MODE whose signedness is indicated by UNSIGNEDP. For
8363 unsigned quantities, this is the number of high-order zero bits.
8364 For signed quantities, this is the number of copies of the sign bit
8365 minus 1. In both case, this function returns the number of "spare"
8366 bits. For example, if two quantities for which this function returns
8367 at least 1 are added, the addition is known not to overflow.
8369 This function will always return 0 unless called during combine, which
8370 implies that it must be called from a define_split. */
8372 unsigned int
8373 extended_count (rtx x, enum machine_mode mode, int unsignedp)
8375 if (nonzero_sign_valid == 0)
8376 return 0;
8378 return (unsignedp
8379 ? (GET_MODE_BITSIZE (mode) <= HOST_BITS_PER_WIDE_INT
8380 ? (unsigned int) (GET_MODE_BITSIZE (mode) - 1
8381 - floor_log2 (nonzero_bits (x, mode)))
8382 : 0)
8383 : num_sign_bit_copies (x, mode) - 1);
8386 /* This function is called from `simplify_shift_const' to merge two
8387 outer operations. Specifically, we have already found that we need
8388 to perform operation *POP0 with constant *PCONST0 at the outermost
8389 position. We would now like to also perform OP1 with constant CONST1
8390 (with *POP0 being done last).
8392 Return 1 if we can do the operation and update *POP0 and *PCONST0 with
8393 the resulting operation. *PCOMP_P is set to 1 if we would need to
8394 complement the innermost operand, otherwise it is unchanged.
8396 MODE is the mode in which the operation will be done. No bits outside
8397 the width of this mode matter. It is assumed that the width of this mode
8398 is smaller than or equal to HOST_BITS_PER_WIDE_INT.
8400 If *POP0 or OP1 are UNKNOWN, it means no operation is required. Only NEG, PLUS,
8401 IOR, XOR, and AND are supported. We may set *POP0 to SET if the proper
8402 result is simply *PCONST0.
8404 If the resulting operation cannot be expressed as one operation, we
8405 return 0 and do not change *POP0, *PCONST0, and *PCOMP_P. */
8407 static int
8408 merge_outer_ops (enum rtx_code *pop0, HOST_WIDE_INT *pconst0, enum rtx_code op1, HOST_WIDE_INT const1, enum machine_mode mode, int *pcomp_p)
8410 enum rtx_code op0 = *pop0;
8411 HOST_WIDE_INT const0 = *pconst0;
8413 const0 &= GET_MODE_MASK (mode);
8414 const1 &= GET_MODE_MASK (mode);
8416 /* If OP0 is an AND, clear unimportant bits in CONST1. */
8417 if (op0 == AND)
8418 const1 &= const0;
8420 /* If OP0 or OP1 is UNKNOWN, this is easy. Similarly if they are the same or
8421 if OP0 is SET. */
8423 if (op1 == UNKNOWN || op0 == SET)
8424 return 1;
8426 else if (op0 == UNKNOWN)
8427 op0 = op1, const0 = const1;
8429 else if (op0 == op1)
8431 switch (op0)
8433 case AND:
8434 const0 &= const1;
8435 break;
8436 case IOR:
8437 const0 |= const1;
8438 break;
8439 case XOR:
8440 const0 ^= const1;
8441 break;
8442 case PLUS:
8443 const0 += const1;
8444 break;
8445 case NEG:
8446 op0 = UNKNOWN;
8447 break;
8448 default:
8449 break;
8453 /* Otherwise, if either is a PLUS or NEG, we can't do anything. */
8454 else if (op0 == PLUS || op1 == PLUS || op0 == NEG || op1 == NEG)
8455 return 0;
8457 /* If the two constants aren't the same, we can't do anything. The
8458 remaining six cases can all be done. */
8459 else if (const0 != const1)
8460 return 0;
8462 else
8463 switch (op0)
8465 case IOR:
8466 if (op1 == AND)
8467 /* (a & b) | b == b */
8468 op0 = SET;
8469 else /* op1 == XOR */
8470 /* (a ^ b) | b == a | b */
8472 break;
8474 case XOR:
8475 if (op1 == AND)
8476 /* (a & b) ^ b == (~a) & b */
8477 op0 = AND, *pcomp_p = 1;
8478 else /* op1 == IOR */
8479 /* (a | b) ^ b == a & ~b */
8480 op0 = AND, const0 = ~const0;
8481 break;
8483 case AND:
8484 if (op1 == IOR)
8485 /* (a | b) & b == b */
8486 op0 = SET;
8487 else /* op1 == XOR */
8488 /* (a ^ b) & b) == (~a) & b */
8489 *pcomp_p = 1;
8490 break;
8491 default:
8492 break;
8495 /* Check for NO-OP cases. */
8496 const0 &= GET_MODE_MASK (mode);
8497 if (const0 == 0
8498 && (op0 == IOR || op0 == XOR || op0 == PLUS))
8499 op0 = UNKNOWN;
8500 else if (const0 == 0 && op0 == AND)
8501 op0 = SET;
8502 else if ((unsigned HOST_WIDE_INT) const0 == GET_MODE_MASK (mode)
8503 && op0 == AND)
8504 op0 = UNKNOWN;
8506 /* ??? Slightly redundant with the above mask, but not entirely.
8507 Moving this above means we'd have to sign-extend the mode mask
8508 for the final test. */
8509 const0 = trunc_int_for_mode (const0, mode);
8511 *pop0 = op0;
8512 *pconst0 = const0;
8514 return 1;
8517 /* Simplify a shift of VAROP by COUNT bits. CODE says what kind of shift.
8518 The result of the shift is RESULT_MODE. Return NULL_RTX if we cannot
8519 simplify it. Otherwise, return a simplified value.
8521 The shift is normally computed in the widest mode we find in VAROP, as
8522 long as it isn't a different number of words than RESULT_MODE. Exceptions
8523 are ASHIFTRT and ROTATE, which are always done in their original mode. */
8525 static rtx
8526 simplify_shift_const_1 (enum rtx_code code, enum machine_mode result_mode,
8527 rtx varop, int orig_count)
8529 enum rtx_code orig_code = code;
8530 rtx orig_varop = varop;
8531 int count;
8532 enum machine_mode mode = result_mode;
8533 enum machine_mode shift_mode, tmode;
8534 unsigned int mode_words
8535 = (GET_MODE_SIZE (mode) + (UNITS_PER_WORD - 1)) / UNITS_PER_WORD;
8536 /* We form (outer_op (code varop count) (outer_const)). */
8537 enum rtx_code outer_op = UNKNOWN;
8538 HOST_WIDE_INT outer_const = 0;
8539 int complement_p = 0;
8540 rtx new, x;
8542 /* Make sure and truncate the "natural" shift on the way in. We don't
8543 want to do this inside the loop as it makes it more difficult to
8544 combine shifts. */
8545 if (SHIFT_COUNT_TRUNCATED)
8546 orig_count &= GET_MODE_BITSIZE (mode) - 1;
8548 /* If we were given an invalid count, don't do anything except exactly
8549 what was requested. */
8551 if (orig_count < 0 || orig_count >= (int) GET_MODE_BITSIZE (mode))
8552 return NULL_RTX;
8554 count = orig_count;
8556 /* Unless one of the branches of the `if' in this loop does a `continue',
8557 we will `break' the loop after the `if'. */
8559 while (count != 0)
8561 /* If we have an operand of (clobber (const_int 0)), fail. */
8562 if (GET_CODE (varop) == CLOBBER)
8563 return NULL_RTX;
8565 /* If we discovered we had to complement VAROP, leave. Making a NOT
8566 here would cause an infinite loop. */
8567 if (complement_p)
8568 break;
8570 /* Convert ROTATERT to ROTATE. */
8571 if (code == ROTATERT)
8573 unsigned int bitsize = GET_MODE_BITSIZE (result_mode);;
8574 code = ROTATE;
8575 if (VECTOR_MODE_P (result_mode))
8576 count = bitsize / GET_MODE_NUNITS (result_mode) - count;
8577 else
8578 count = bitsize - count;
8581 /* We need to determine what mode we will do the shift in. If the
8582 shift is a right shift or a ROTATE, we must always do it in the mode
8583 it was originally done in. Otherwise, we can do it in MODE, the
8584 widest mode encountered. */
8585 shift_mode
8586 = (code == ASHIFTRT || code == LSHIFTRT || code == ROTATE
8587 ? result_mode : mode);
8589 /* Handle cases where the count is greater than the size of the mode
8590 minus 1. For ASHIFT, use the size minus one as the count (this can
8591 occur when simplifying (lshiftrt (ashiftrt ..))). For rotates,
8592 take the count modulo the size. For other shifts, the result is
8593 zero.
8595 Since these shifts are being produced by the compiler by combining
8596 multiple operations, each of which are defined, we know what the
8597 result is supposed to be. */
8599 if (count > (GET_MODE_BITSIZE (shift_mode) - 1))
8601 if (code == ASHIFTRT)
8602 count = GET_MODE_BITSIZE (shift_mode) - 1;
8603 else if (code == ROTATE || code == ROTATERT)
8604 count %= GET_MODE_BITSIZE (shift_mode);
8605 else
8607 /* We can't simply return zero because there may be an
8608 outer op. */
8609 varop = const0_rtx;
8610 count = 0;
8611 break;
8615 /* An arithmetic right shift of a quantity known to be -1 or 0
8616 is a no-op. */
8617 if (code == ASHIFTRT
8618 && (num_sign_bit_copies (varop, shift_mode)
8619 == GET_MODE_BITSIZE (shift_mode)))
8621 count = 0;
8622 break;
8625 /* If we are doing an arithmetic right shift and discarding all but
8626 the sign bit copies, this is equivalent to doing a shift by the
8627 bitsize minus one. Convert it into that shift because it will often
8628 allow other simplifications. */
8630 if (code == ASHIFTRT
8631 && (count + num_sign_bit_copies (varop, shift_mode)
8632 >= GET_MODE_BITSIZE (shift_mode)))
8633 count = GET_MODE_BITSIZE (shift_mode) - 1;
8635 /* We simplify the tests below and elsewhere by converting
8636 ASHIFTRT to LSHIFTRT if we know the sign bit is clear.
8637 `make_compound_operation' will convert it to an ASHIFTRT for
8638 those machines (such as VAX) that don't have an LSHIFTRT. */
8639 if (GET_MODE_BITSIZE (shift_mode) <= HOST_BITS_PER_WIDE_INT
8640 && code == ASHIFTRT
8641 && ((nonzero_bits (varop, shift_mode)
8642 & ((HOST_WIDE_INT) 1 << (GET_MODE_BITSIZE (shift_mode) - 1)))
8643 == 0))
8644 code = LSHIFTRT;
8646 if (code == LSHIFTRT
8647 && GET_MODE_BITSIZE (shift_mode) <= HOST_BITS_PER_WIDE_INT
8648 && !(nonzero_bits (varop, shift_mode) >> count))
8649 varop = const0_rtx;
8650 if (code == ASHIFT
8651 && GET_MODE_BITSIZE (shift_mode) <= HOST_BITS_PER_WIDE_INT
8652 && !((nonzero_bits (varop, shift_mode) << count)
8653 & GET_MODE_MASK (shift_mode)))
8654 varop = const0_rtx;
8656 switch (GET_CODE (varop))
8658 case SIGN_EXTEND:
8659 case ZERO_EXTEND:
8660 case SIGN_EXTRACT:
8661 case ZERO_EXTRACT:
8662 new = expand_compound_operation (varop);
8663 if (new != varop)
8665 varop = new;
8666 continue;
8668 break;
8670 case MEM:
8671 /* If we have (xshiftrt (mem ...) C) and C is MODE_WIDTH
8672 minus the width of a smaller mode, we can do this with a
8673 SIGN_EXTEND or ZERO_EXTEND from the narrower memory location. */
8674 if ((code == ASHIFTRT || code == LSHIFTRT)
8675 && ! mode_dependent_address_p (XEXP (varop, 0))
8676 && ! MEM_VOLATILE_P (varop)
8677 && (tmode = mode_for_size (GET_MODE_BITSIZE (mode) - count,
8678 MODE_INT, 1)) != BLKmode)
8680 new = adjust_address_nv (varop, tmode,
8681 BYTES_BIG_ENDIAN ? 0
8682 : count / BITS_PER_UNIT);
8684 varop = gen_rtx_fmt_e (code == ASHIFTRT ? SIGN_EXTEND
8685 : ZERO_EXTEND, mode, new);
8686 count = 0;
8687 continue;
8689 break;
8691 case USE:
8692 /* Similar to the case above, except that we can only do this if
8693 the resulting mode is the same as that of the underlying
8694 MEM and adjust the address depending on the *bits* endianness
8695 because of the way that bit-field extract insns are defined. */
8696 if ((code == ASHIFTRT || code == LSHIFTRT)
8697 && (tmode = mode_for_size (GET_MODE_BITSIZE (mode) - count,
8698 MODE_INT, 1)) != BLKmode
8699 && tmode == GET_MODE (XEXP (varop, 0)))
8701 if (BITS_BIG_ENDIAN)
8702 new = XEXP (varop, 0);
8703 else
8705 new = copy_rtx (XEXP (varop, 0));
8706 SUBST (XEXP (new, 0),
8707 plus_constant (XEXP (new, 0),
8708 count / BITS_PER_UNIT));
8711 varop = gen_rtx_fmt_e (code == ASHIFTRT ? SIGN_EXTEND
8712 : ZERO_EXTEND, mode, new);
8713 count = 0;
8714 continue;
8716 break;
8718 case SUBREG:
8719 /* If VAROP is a SUBREG, strip it as long as the inner operand has
8720 the same number of words as what we've seen so far. Then store
8721 the widest mode in MODE. */
8722 if (subreg_lowpart_p (varop)
8723 && (GET_MODE_SIZE (GET_MODE (SUBREG_REG (varop)))
8724 > GET_MODE_SIZE (GET_MODE (varop)))
8725 && (unsigned int) ((GET_MODE_SIZE (GET_MODE (SUBREG_REG (varop)))
8726 + (UNITS_PER_WORD - 1)) / UNITS_PER_WORD)
8727 == mode_words)
8729 varop = SUBREG_REG (varop);
8730 if (GET_MODE_SIZE (GET_MODE (varop)) > GET_MODE_SIZE (mode))
8731 mode = GET_MODE (varop);
8732 continue;
8734 break;
8736 case MULT:
8737 /* Some machines use MULT instead of ASHIFT because MULT
8738 is cheaper. But it is still better on those machines to
8739 merge two shifts into one. */
8740 if (GET_CODE (XEXP (varop, 1)) == CONST_INT
8741 && exact_log2 (INTVAL (XEXP (varop, 1))) >= 0)
8743 varop
8744 = simplify_gen_binary (ASHIFT, GET_MODE (varop),
8745 XEXP (varop, 0),
8746 GEN_INT (exact_log2 (
8747 INTVAL (XEXP (varop, 1)))));
8748 continue;
8750 break;
8752 case UDIV:
8753 /* Similar, for when divides are cheaper. */
8754 if (GET_CODE (XEXP (varop, 1)) == CONST_INT
8755 && exact_log2 (INTVAL (XEXP (varop, 1))) >= 0)
8757 varop
8758 = simplify_gen_binary (LSHIFTRT, GET_MODE (varop),
8759 XEXP (varop, 0),
8760 GEN_INT (exact_log2 (
8761 INTVAL (XEXP (varop, 1)))));
8762 continue;
8764 break;
8766 case ASHIFTRT:
8767 /* If we are extracting just the sign bit of an arithmetic
8768 right shift, that shift is not needed. However, the sign
8769 bit of a wider mode may be different from what would be
8770 interpreted as the sign bit in a narrower mode, so, if
8771 the result is narrower, don't discard the shift. */
8772 if (code == LSHIFTRT
8773 && count == (GET_MODE_BITSIZE (result_mode) - 1)
8774 && (GET_MODE_BITSIZE (result_mode)
8775 >= GET_MODE_BITSIZE (GET_MODE (varop))))
8777 varop = XEXP (varop, 0);
8778 continue;
8781 /* ... fall through ... */
8783 case LSHIFTRT:
8784 case ASHIFT:
8785 case ROTATE:
8786 /* Here we have two nested shifts. The result is usually the
8787 AND of a new shift with a mask. We compute the result below. */
8788 if (GET_CODE (XEXP (varop, 1)) == CONST_INT
8789 && INTVAL (XEXP (varop, 1)) >= 0
8790 && INTVAL (XEXP (varop, 1)) < GET_MODE_BITSIZE (GET_MODE (varop))
8791 && GET_MODE_BITSIZE (result_mode) <= HOST_BITS_PER_WIDE_INT
8792 && GET_MODE_BITSIZE (mode) <= HOST_BITS_PER_WIDE_INT)
8794 enum rtx_code first_code = GET_CODE (varop);
8795 unsigned int first_count = INTVAL (XEXP (varop, 1));
8796 unsigned HOST_WIDE_INT mask;
8797 rtx mask_rtx;
8799 /* We have one common special case. We can't do any merging if
8800 the inner code is an ASHIFTRT of a smaller mode. However, if
8801 we have (ashift:M1 (subreg:M1 (ashiftrt:M2 FOO C1) 0) C2)
8802 with C2 == GET_MODE_BITSIZE (M1) - GET_MODE_BITSIZE (M2),
8803 we can convert it to
8804 (ashiftrt:M1 (ashift:M1 (and:M1 (subreg:M1 FOO 0 C2) C3) C1).
8805 This simplifies certain SIGN_EXTEND operations. */
8806 if (code == ASHIFT && first_code == ASHIFTRT
8807 && count == (GET_MODE_BITSIZE (result_mode)
8808 - GET_MODE_BITSIZE (GET_MODE (varop))))
8810 /* C3 has the low-order C1 bits zero. */
8812 mask = (GET_MODE_MASK (mode)
8813 & ~(((HOST_WIDE_INT) 1 << first_count) - 1));
8815 varop = simplify_and_const_int (NULL_RTX, result_mode,
8816 XEXP (varop, 0), mask);
8817 varop = simplify_shift_const (NULL_RTX, ASHIFT, result_mode,
8818 varop, count);
8819 count = first_count;
8820 code = ASHIFTRT;
8821 continue;
8824 /* If this was (ashiftrt (ashift foo C1) C2) and FOO has more
8825 than C1 high-order bits equal to the sign bit, we can convert
8826 this to either an ASHIFT or an ASHIFTRT depending on the
8827 two counts.
8829 We cannot do this if VAROP's mode is not SHIFT_MODE. */
8831 if (code == ASHIFTRT && first_code == ASHIFT
8832 && GET_MODE (varop) == shift_mode
8833 && (num_sign_bit_copies (XEXP (varop, 0), shift_mode)
8834 > first_count))
8836 varop = XEXP (varop, 0);
8837 count -= first_count;
8838 if (count < 0)
8840 count = -count;
8841 code = ASHIFT;
8844 continue;
8847 /* There are some cases we can't do. If CODE is ASHIFTRT,
8848 we can only do this if FIRST_CODE is also ASHIFTRT.
8850 We can't do the case when CODE is ROTATE and FIRST_CODE is
8851 ASHIFTRT.
8853 If the mode of this shift is not the mode of the outer shift,
8854 we can't do this if either shift is a right shift or ROTATE.
8856 Finally, we can't do any of these if the mode is too wide
8857 unless the codes are the same.
8859 Handle the case where the shift codes are the same
8860 first. */
8862 if (code == first_code)
8864 if (GET_MODE (varop) != result_mode
8865 && (code == ASHIFTRT || code == LSHIFTRT
8866 || code == ROTATE))
8867 break;
8869 count += first_count;
8870 varop = XEXP (varop, 0);
8871 continue;
8874 if (code == ASHIFTRT
8875 || (code == ROTATE && first_code == ASHIFTRT)
8876 || GET_MODE_BITSIZE (mode) > HOST_BITS_PER_WIDE_INT
8877 || (GET_MODE (varop) != result_mode
8878 && (first_code == ASHIFTRT || first_code == LSHIFTRT
8879 || first_code == ROTATE
8880 || code == ROTATE)))
8881 break;
8883 /* To compute the mask to apply after the shift, shift the
8884 nonzero bits of the inner shift the same way the
8885 outer shift will. */
8887 mask_rtx = GEN_INT (nonzero_bits (varop, GET_MODE (varop)));
8889 mask_rtx
8890 = simplify_const_binary_operation (code, result_mode, mask_rtx,
8891 GEN_INT (count));
8893 /* Give up if we can't compute an outer operation to use. */
8894 if (mask_rtx == 0
8895 || GET_CODE (mask_rtx) != CONST_INT
8896 || ! merge_outer_ops (&outer_op, &outer_const, AND,
8897 INTVAL (mask_rtx),
8898 result_mode, &complement_p))
8899 break;
8901 /* If the shifts are in the same direction, we add the
8902 counts. Otherwise, we subtract them. */
8903 if ((code == ASHIFTRT || code == LSHIFTRT)
8904 == (first_code == ASHIFTRT || first_code == LSHIFTRT))
8905 count += first_count;
8906 else
8907 count -= first_count;
8909 /* If COUNT is positive, the new shift is usually CODE,
8910 except for the two exceptions below, in which case it is
8911 FIRST_CODE. If the count is negative, FIRST_CODE should
8912 always be used */
8913 if (count > 0
8914 && ((first_code == ROTATE && code == ASHIFT)
8915 || (first_code == ASHIFTRT && code == LSHIFTRT)))
8916 code = first_code;
8917 else if (count < 0)
8918 code = first_code, count = -count;
8920 varop = XEXP (varop, 0);
8921 continue;
8924 /* If we have (A << B << C) for any shift, we can convert this to
8925 (A << C << B). This wins if A is a constant. Only try this if
8926 B is not a constant. */
8928 else if (GET_CODE (varop) == code
8929 && GET_CODE (XEXP (varop, 0)) == CONST_INT
8930 && GET_CODE (XEXP (varop, 1)) != CONST_INT)
8932 rtx new = simplify_const_binary_operation (code, mode,
8933 XEXP (varop, 0),
8934 GEN_INT (count));
8935 varop = gen_rtx_fmt_ee (code, mode, new, XEXP (varop, 1));
8936 count = 0;
8937 continue;
8939 break;
8941 case NOT:
8942 /* Make this fit the case below. */
8943 varop = gen_rtx_XOR (mode, XEXP (varop, 0),
8944 GEN_INT (GET_MODE_MASK (mode)));
8945 continue;
8947 case IOR:
8948 case AND:
8949 case XOR:
8950 /* If we have (xshiftrt (ior (plus X (const_int -1)) X) C)
8951 with C the size of VAROP - 1 and the shift is logical if
8952 STORE_FLAG_VALUE is 1 and arithmetic if STORE_FLAG_VALUE is -1,
8953 we have an (le X 0) operation. If we have an arithmetic shift
8954 and STORE_FLAG_VALUE is 1 or we have a logical shift with
8955 STORE_FLAG_VALUE of -1, we have a (neg (le X 0)) operation. */
8957 if (GET_CODE (varop) == IOR && GET_CODE (XEXP (varop, 0)) == PLUS
8958 && XEXP (XEXP (varop, 0), 1) == constm1_rtx
8959 && (STORE_FLAG_VALUE == 1 || STORE_FLAG_VALUE == -1)
8960 && (code == LSHIFTRT || code == ASHIFTRT)
8961 && count == (GET_MODE_BITSIZE (GET_MODE (varop)) - 1)
8962 && rtx_equal_p (XEXP (XEXP (varop, 0), 0), XEXP (varop, 1)))
8964 count = 0;
8965 varop = gen_rtx_LE (GET_MODE (varop), XEXP (varop, 1),
8966 const0_rtx);
8968 if (STORE_FLAG_VALUE == 1 ? code == ASHIFTRT : code == LSHIFTRT)
8969 varop = gen_rtx_NEG (GET_MODE (varop), varop);
8971 continue;
8974 /* If we have (shift (logical)), move the logical to the outside
8975 to allow it to possibly combine with another logical and the
8976 shift to combine with another shift. This also canonicalizes to
8977 what a ZERO_EXTRACT looks like. Also, some machines have
8978 (and (shift)) insns. */
8980 if (GET_CODE (XEXP (varop, 1)) == CONST_INT
8981 /* We can't do this if we have (ashiftrt (xor)) and the
8982 constant has its sign bit set in shift_mode. */
8983 && !(code == ASHIFTRT && GET_CODE (varop) == XOR
8984 && 0 > trunc_int_for_mode (INTVAL (XEXP (varop, 1)),
8985 shift_mode))
8986 && (new = simplify_const_binary_operation (code, result_mode,
8987 XEXP (varop, 1),
8988 GEN_INT (count))) != 0
8989 && GET_CODE (new) == CONST_INT
8990 && merge_outer_ops (&outer_op, &outer_const, GET_CODE (varop),
8991 INTVAL (new), result_mode, &complement_p))
8993 varop = XEXP (varop, 0);
8994 continue;
8997 /* If we can't do that, try to simplify the shift in each arm of the
8998 logical expression, make a new logical expression, and apply
8999 the inverse distributive law. This also can't be done
9000 for some (ashiftrt (xor)). */
9001 if (GET_CODE (XEXP (varop, 1)) == CONST_INT
9002 && !(code == ASHIFTRT && GET_CODE (varop) == XOR
9003 && 0 > trunc_int_for_mode (INTVAL (XEXP (varop, 1)),
9004 shift_mode)))
9006 rtx lhs = simplify_shift_const (NULL_RTX, code, shift_mode,
9007 XEXP (varop, 0), count);
9008 rtx rhs = simplify_shift_const (NULL_RTX, code, shift_mode,
9009 XEXP (varop, 1), count);
9011 varop = simplify_gen_binary (GET_CODE (varop), shift_mode,
9012 lhs, rhs);
9013 varop = apply_distributive_law (varop);
9015 count = 0;
9016 continue;
9018 break;
9020 case EQ:
9021 /* Convert (lshiftrt (eq FOO 0) C) to (xor FOO 1) if STORE_FLAG_VALUE
9022 says that the sign bit can be tested, FOO has mode MODE, C is
9023 GET_MODE_BITSIZE (MODE) - 1, and FOO has only its low-order bit
9024 that may be nonzero. */
9025 if (code == LSHIFTRT
9026 && XEXP (varop, 1) == const0_rtx
9027 && GET_MODE (XEXP (varop, 0)) == result_mode
9028 && count == (GET_MODE_BITSIZE (result_mode) - 1)
9029 && GET_MODE_BITSIZE (result_mode) <= HOST_BITS_PER_WIDE_INT
9030 && STORE_FLAG_VALUE == -1
9031 && nonzero_bits (XEXP (varop, 0), result_mode) == 1
9032 && merge_outer_ops (&outer_op, &outer_const, XOR,
9033 (HOST_WIDE_INT) 1, result_mode,
9034 &complement_p))
9036 varop = XEXP (varop, 0);
9037 count = 0;
9038 continue;
9040 break;
9042 case NEG:
9043 /* (lshiftrt (neg A) C) where A is either 0 or 1 and C is one less
9044 than the number of bits in the mode is equivalent to A. */
9045 if (code == LSHIFTRT
9046 && count == (GET_MODE_BITSIZE (result_mode) - 1)
9047 && nonzero_bits (XEXP (varop, 0), result_mode) == 1)
9049 varop = XEXP (varop, 0);
9050 count = 0;
9051 continue;
9054 /* NEG commutes with ASHIFT since it is multiplication. Move the
9055 NEG outside to allow shifts to combine. */
9056 if (code == ASHIFT
9057 && merge_outer_ops (&outer_op, &outer_const, NEG,
9058 (HOST_WIDE_INT) 0, result_mode,
9059 &complement_p))
9061 varop = XEXP (varop, 0);
9062 continue;
9064 break;
9066 case PLUS:
9067 /* (lshiftrt (plus A -1) C) where A is either 0 or 1 and C
9068 is one less than the number of bits in the mode is
9069 equivalent to (xor A 1). */
9070 if (code == LSHIFTRT
9071 && count == (GET_MODE_BITSIZE (result_mode) - 1)
9072 && XEXP (varop, 1) == constm1_rtx
9073 && nonzero_bits (XEXP (varop, 0), result_mode) == 1
9074 && merge_outer_ops (&outer_op, &outer_const, XOR,
9075 (HOST_WIDE_INT) 1, result_mode,
9076 &complement_p))
9078 count = 0;
9079 varop = XEXP (varop, 0);
9080 continue;
9083 /* If we have (xshiftrt (plus FOO BAR) C), and the only bits
9084 that might be nonzero in BAR are those being shifted out and those
9085 bits are known zero in FOO, we can replace the PLUS with FOO.
9086 Similarly in the other operand order. This code occurs when
9087 we are computing the size of a variable-size array. */
9089 if ((code == ASHIFTRT || code == LSHIFTRT)
9090 && count < HOST_BITS_PER_WIDE_INT
9091 && nonzero_bits (XEXP (varop, 1), result_mode) >> count == 0
9092 && (nonzero_bits (XEXP (varop, 1), result_mode)
9093 & nonzero_bits (XEXP (varop, 0), result_mode)) == 0)
9095 varop = XEXP (varop, 0);
9096 continue;
9098 else if ((code == ASHIFTRT || code == LSHIFTRT)
9099 && count < HOST_BITS_PER_WIDE_INT
9100 && GET_MODE_BITSIZE (result_mode) <= HOST_BITS_PER_WIDE_INT
9101 && 0 == (nonzero_bits (XEXP (varop, 0), result_mode)
9102 >> count)
9103 && 0 == (nonzero_bits (XEXP (varop, 0), result_mode)
9104 & nonzero_bits (XEXP (varop, 1),
9105 result_mode)))
9107 varop = XEXP (varop, 1);
9108 continue;
9111 /* (ashift (plus foo C) N) is (plus (ashift foo N) C'). */
9112 if (code == ASHIFT
9113 && GET_CODE (XEXP (varop, 1)) == CONST_INT
9114 && (new = simplify_const_binary_operation (ASHIFT, result_mode,
9115 XEXP (varop, 1),
9116 GEN_INT (count))) != 0
9117 && GET_CODE (new) == CONST_INT
9118 && merge_outer_ops (&outer_op, &outer_const, PLUS,
9119 INTVAL (new), result_mode, &complement_p))
9121 varop = XEXP (varop, 0);
9122 continue;
9125 /* Check for 'PLUS signbit', which is the canonical form of 'XOR
9126 signbit', and attempt to change the PLUS to an XOR and move it to
9127 the outer operation as is done above in the AND/IOR/XOR case
9128 leg for shift(logical). See details in logical handling above
9129 for reasoning in doing so. */
9130 if (code == LSHIFTRT
9131 && GET_CODE (XEXP (varop, 1)) == CONST_INT
9132 && mode_signbit_p (result_mode, XEXP (varop, 1))
9133 && (new = simplify_const_binary_operation (code, result_mode,
9134 XEXP (varop, 1),
9135 GEN_INT (count))) != 0
9136 && GET_CODE (new) == CONST_INT
9137 && merge_outer_ops (&outer_op, &outer_const, XOR,
9138 INTVAL (new), result_mode, &complement_p))
9140 varop = XEXP (varop, 0);
9141 continue;
9144 break;
9146 case MINUS:
9147 /* If we have (xshiftrt (minus (ashiftrt X C)) X) C)
9148 with C the size of VAROP - 1 and the shift is logical if
9149 STORE_FLAG_VALUE is 1 and arithmetic if STORE_FLAG_VALUE is -1,
9150 we have a (gt X 0) operation. If the shift is arithmetic with
9151 STORE_FLAG_VALUE of 1 or logical with STORE_FLAG_VALUE == -1,
9152 we have a (neg (gt X 0)) operation. */
9154 if ((STORE_FLAG_VALUE == 1 || STORE_FLAG_VALUE == -1)
9155 && GET_CODE (XEXP (varop, 0)) == ASHIFTRT
9156 && count == (GET_MODE_BITSIZE (GET_MODE (varop)) - 1)
9157 && (code == LSHIFTRT || code == ASHIFTRT)
9158 && GET_CODE (XEXP (XEXP (varop, 0), 1)) == CONST_INT
9159 && INTVAL (XEXP (XEXP (varop, 0), 1)) == count
9160 && rtx_equal_p (XEXP (XEXP (varop, 0), 0), XEXP (varop, 1)))
9162 count = 0;
9163 varop = gen_rtx_GT (GET_MODE (varop), XEXP (varop, 1),
9164 const0_rtx);
9166 if (STORE_FLAG_VALUE == 1 ? code == ASHIFTRT : code == LSHIFTRT)
9167 varop = gen_rtx_NEG (GET_MODE (varop), varop);
9169 continue;
9171 break;
9173 case TRUNCATE:
9174 /* Change (lshiftrt (truncate (lshiftrt))) to (truncate (lshiftrt))
9175 if the truncate does not affect the value. */
9176 if (code == LSHIFTRT
9177 && GET_CODE (XEXP (varop, 0)) == LSHIFTRT
9178 && GET_CODE (XEXP (XEXP (varop, 0), 1)) == CONST_INT
9179 && (INTVAL (XEXP (XEXP (varop, 0), 1))
9180 >= (GET_MODE_BITSIZE (GET_MODE (XEXP (varop, 0)))
9181 - GET_MODE_BITSIZE (GET_MODE (varop)))))
9183 rtx varop_inner = XEXP (varop, 0);
9185 varop_inner
9186 = gen_rtx_LSHIFTRT (GET_MODE (varop_inner),
9187 XEXP (varop_inner, 0),
9188 GEN_INT
9189 (count + INTVAL (XEXP (varop_inner, 1))));
9190 varop = gen_rtx_TRUNCATE (GET_MODE (varop), varop_inner);
9191 count = 0;
9192 continue;
9194 break;
9196 default:
9197 break;
9200 break;
9203 /* We need to determine what mode to do the shift in. If the shift is
9204 a right shift or ROTATE, we must always do it in the mode it was
9205 originally done in. Otherwise, we can do it in MODE, the widest mode
9206 encountered. The code we care about is that of the shift that will
9207 actually be done, not the shift that was originally requested. */
9208 shift_mode
9209 = (code == ASHIFTRT || code == LSHIFTRT || code == ROTATE
9210 ? result_mode : mode);
9212 /* We have now finished analyzing the shift. The result should be
9213 a shift of type CODE with SHIFT_MODE shifting VAROP COUNT places. If
9214 OUTER_OP is non-UNKNOWN, it is an operation that needs to be applied
9215 to the result of the shift. OUTER_CONST is the relevant constant,
9216 but we must turn off all bits turned off in the shift. */
9218 if (outer_op == UNKNOWN
9219 && orig_code == code && orig_count == count
9220 && varop == orig_varop
9221 && shift_mode == GET_MODE (varop))
9222 return NULL_RTX;
9224 /* Make a SUBREG if necessary. If we can't make it, fail. */
9225 varop = gen_lowpart (shift_mode, varop);
9226 if (varop == NULL_RTX || GET_CODE (varop) == CLOBBER)
9227 return NULL_RTX;
9229 /* If we have an outer operation and we just made a shift, it is
9230 possible that we could have simplified the shift were it not
9231 for the outer operation. So try to do the simplification
9232 recursively. */
9234 if (outer_op != UNKNOWN)
9235 x = simplify_shift_const_1 (code, shift_mode, varop, count);
9236 else
9237 x = NULL_RTX;
9239 if (x == NULL_RTX)
9240 x = simplify_gen_binary (code, shift_mode, varop, GEN_INT (count));
9242 /* If we were doing an LSHIFTRT in a wider mode than it was originally,
9243 turn off all the bits that the shift would have turned off. */
9244 if (orig_code == LSHIFTRT && result_mode != shift_mode)
9245 x = simplify_and_const_int (NULL_RTX, shift_mode, x,
9246 GET_MODE_MASK (result_mode) >> orig_count);
9248 /* Do the remainder of the processing in RESULT_MODE. */
9249 x = gen_lowpart (result_mode, x);
9251 /* If COMPLEMENT_P is set, we have to complement X before doing the outer
9252 operation. */
9253 if (complement_p)
9254 x = simplify_gen_unary (NOT, result_mode, x, result_mode);
9256 if (outer_op != UNKNOWN)
9258 if (GET_MODE_BITSIZE (result_mode) < HOST_BITS_PER_WIDE_INT)
9259 outer_const = trunc_int_for_mode (outer_const, result_mode);
9261 if (outer_op == AND)
9262 x = simplify_and_const_int (NULL_RTX, result_mode, x, outer_const);
9263 else if (outer_op == SET)
9264 /* This means that we have determined that the result is
9265 equivalent to a constant. This should be rare. */
9266 x = GEN_INT (outer_const);
9267 else if (GET_RTX_CLASS (outer_op) == RTX_UNARY)
9268 x = simplify_gen_unary (outer_op, result_mode, x, result_mode);
9269 else
9270 x = simplify_gen_binary (outer_op, result_mode, x,
9271 GEN_INT (outer_const));
9274 return x;
9277 /* Simplify a shift of VAROP by COUNT bits. CODE says what kind of shift.
9278 The result of the shift is RESULT_MODE. If we cannot simplify it,
9279 return X or, if it is NULL, synthesize the expression with
9280 simplify_gen_binary. Otherwise, return a simplified value.
9282 The shift is normally computed in the widest mode we find in VAROP, as
9283 long as it isn't a different number of words than RESULT_MODE. Exceptions
9284 are ASHIFTRT and ROTATE, which are always done in their original mode. */
9286 static rtx
9287 simplify_shift_const (rtx x, enum rtx_code code, enum machine_mode result_mode,
9288 rtx varop, int count)
9290 rtx tem = simplify_shift_const_1 (code, result_mode, varop, count);
9291 if (tem)
9292 return tem;
9294 if (!x)
9295 x = simplify_gen_binary (code, GET_MODE (varop), varop, GEN_INT (count));
9296 if (GET_MODE (x) != result_mode)
9297 x = gen_lowpart (result_mode, x);
9298 return x;
9302 /* Like recog, but we receive the address of a pointer to a new pattern.
9303 We try to match the rtx that the pointer points to.
9304 If that fails, we may try to modify or replace the pattern,
9305 storing the replacement into the same pointer object.
9307 Modifications include deletion or addition of CLOBBERs.
9309 PNOTES is a pointer to a location where any REG_UNUSED notes added for
9310 the CLOBBERs are placed.
9312 The value is the final insn code from the pattern ultimately matched,
9313 or -1. */
9315 static int
9316 recog_for_combine (rtx *pnewpat, rtx insn, rtx *pnotes)
9318 rtx pat = *pnewpat;
9319 int insn_code_number;
9320 int num_clobbers_to_add = 0;
9321 int i;
9322 rtx notes = 0;
9323 rtx old_notes, old_pat;
9325 /* If PAT is a PARALLEL, check to see if it contains the CLOBBER
9326 we use to indicate that something didn't match. If we find such a
9327 thing, force rejection. */
9328 if (GET_CODE (pat) == PARALLEL)
9329 for (i = XVECLEN (pat, 0) - 1; i >= 0; i--)
9330 if (GET_CODE (XVECEXP (pat, 0, i)) == CLOBBER
9331 && XEXP (XVECEXP (pat, 0, i), 0) == const0_rtx)
9332 return -1;
9334 old_pat = PATTERN (insn);
9335 old_notes = REG_NOTES (insn);
9336 PATTERN (insn) = pat;
9337 REG_NOTES (insn) = 0;
9339 insn_code_number = recog (pat, insn, &num_clobbers_to_add);
9341 /* If it isn't, there is the possibility that we previously had an insn
9342 that clobbered some register as a side effect, but the combined
9343 insn doesn't need to do that. So try once more without the clobbers
9344 unless this represents an ASM insn. */
9346 if (insn_code_number < 0 && ! check_asm_operands (pat)
9347 && GET_CODE (pat) == PARALLEL)
9349 int pos;
9351 for (pos = 0, i = 0; i < XVECLEN (pat, 0); i++)
9352 if (GET_CODE (XVECEXP (pat, 0, i)) != CLOBBER)
9354 if (i != pos)
9355 SUBST (XVECEXP (pat, 0, pos), XVECEXP (pat, 0, i));
9356 pos++;
9359 SUBST_INT (XVECLEN (pat, 0), pos);
9361 if (pos == 1)
9362 pat = XVECEXP (pat, 0, 0);
9364 PATTERN (insn) = pat;
9365 insn_code_number = recog (pat, insn, &num_clobbers_to_add);
9367 PATTERN (insn) = old_pat;
9368 REG_NOTES (insn) = old_notes;
9370 /* Recognize all noop sets, these will be killed by followup pass. */
9371 if (insn_code_number < 0 && GET_CODE (pat) == SET && set_noop_p (pat))
9372 insn_code_number = NOOP_MOVE_INSN_CODE, num_clobbers_to_add = 0;
9374 /* If we had any clobbers to add, make a new pattern than contains
9375 them. Then check to make sure that all of them are dead. */
9376 if (num_clobbers_to_add)
9378 rtx newpat = gen_rtx_PARALLEL (VOIDmode,
9379 rtvec_alloc (GET_CODE (pat) == PARALLEL
9380 ? (XVECLEN (pat, 0)
9381 + num_clobbers_to_add)
9382 : num_clobbers_to_add + 1));
9384 if (GET_CODE (pat) == PARALLEL)
9385 for (i = 0; i < XVECLEN (pat, 0); i++)
9386 XVECEXP (newpat, 0, i) = XVECEXP (pat, 0, i);
9387 else
9388 XVECEXP (newpat, 0, 0) = pat;
9390 add_clobbers (newpat, insn_code_number);
9392 for (i = XVECLEN (newpat, 0) - num_clobbers_to_add;
9393 i < XVECLEN (newpat, 0); i++)
9395 if (REG_P (XEXP (XVECEXP (newpat, 0, i), 0))
9396 && ! reg_dead_at_p (XEXP (XVECEXP (newpat, 0, i), 0), insn))
9397 return -1;
9398 notes = gen_rtx_EXPR_LIST (REG_UNUSED,
9399 XEXP (XVECEXP (newpat, 0, i), 0), notes);
9401 pat = newpat;
9404 *pnewpat = pat;
9405 *pnotes = notes;
9407 return insn_code_number;
9410 /* Like gen_lowpart_general but for use by combine. In combine it
9411 is not possible to create any new pseudoregs. However, it is
9412 safe to create invalid memory addresses, because combine will
9413 try to recognize them and all they will do is make the combine
9414 attempt fail.
9416 If for some reason this cannot do its job, an rtx
9417 (clobber (const_int 0)) is returned.
9418 An insn containing that will not be recognized. */
9420 static rtx
9421 gen_lowpart_for_combine (enum machine_mode omode, rtx x)
9423 enum machine_mode imode = GET_MODE (x);
9424 unsigned int osize = GET_MODE_SIZE (omode);
9425 unsigned int isize = GET_MODE_SIZE (imode);
9426 rtx result;
9428 if (omode == imode)
9429 return x;
9431 /* Return identity if this is a CONST or symbolic reference. */
9432 if (omode == Pmode
9433 && (GET_CODE (x) == CONST
9434 || GET_CODE (x) == SYMBOL_REF
9435 || GET_CODE (x) == LABEL_REF))
9436 return x;
9438 /* We can only support MODE being wider than a word if X is a
9439 constant integer or has a mode the same size. */
9440 if (GET_MODE_SIZE (omode) > UNITS_PER_WORD
9441 && ! ((imode == VOIDmode
9442 && (GET_CODE (x) == CONST_INT
9443 || GET_CODE (x) == CONST_DOUBLE))
9444 || isize == osize))
9445 goto fail;
9447 /* X might be a paradoxical (subreg (mem)). In that case, gen_lowpart
9448 won't know what to do. So we will strip off the SUBREG here and
9449 process normally. */
9450 if (GET_CODE (x) == SUBREG && MEM_P (SUBREG_REG (x)))
9452 x = SUBREG_REG (x);
9454 /* For use in case we fall down into the address adjustments
9455 further below, we need to adjust the known mode and size of
9456 x; imode and isize, since we just adjusted x. */
9457 imode = GET_MODE (x);
9459 if (imode == omode)
9460 return x;
9462 isize = GET_MODE_SIZE (imode);
9465 result = gen_lowpart_common (omode, x);
9467 #ifdef CANNOT_CHANGE_MODE_CLASS
9468 if (result != 0 && GET_CODE (result) == SUBREG)
9469 record_subregs_of_mode (result);
9470 #endif
9472 if (result)
9473 return result;
9475 if (MEM_P (x))
9477 int offset = 0;
9479 /* Refuse to work on a volatile memory ref or one with a mode-dependent
9480 address. */
9481 if (MEM_VOLATILE_P (x) || mode_dependent_address_p (XEXP (x, 0)))
9482 goto fail;
9484 /* If we want to refer to something bigger than the original memref,
9485 generate a paradoxical subreg instead. That will force a reload
9486 of the original memref X. */
9487 if (isize < osize)
9488 return gen_rtx_SUBREG (omode, x, 0);
9490 if (WORDS_BIG_ENDIAN)
9491 offset = MAX (isize, UNITS_PER_WORD) - MAX (osize, UNITS_PER_WORD);
9493 /* Adjust the address so that the address-after-the-data is
9494 unchanged. */
9495 if (BYTES_BIG_ENDIAN)
9496 offset -= MIN (UNITS_PER_WORD, osize) - MIN (UNITS_PER_WORD, isize);
9498 return adjust_address_nv (x, omode, offset);
9501 /* If X is a comparison operator, rewrite it in a new mode. This
9502 probably won't match, but may allow further simplifications. */
9503 else if (COMPARISON_P (x))
9504 return gen_rtx_fmt_ee (GET_CODE (x), omode, XEXP (x, 0), XEXP (x, 1));
9506 /* If we couldn't simplify X any other way, just enclose it in a
9507 SUBREG. Normally, this SUBREG won't match, but some patterns may
9508 include an explicit SUBREG or we may simplify it further in combine. */
9509 else
9511 int offset = 0;
9512 rtx res;
9514 offset = subreg_lowpart_offset (omode, imode);
9515 if (imode == VOIDmode)
9517 imode = int_mode_for_mode (omode);
9518 x = gen_lowpart_common (imode, x);
9519 if (x == NULL)
9520 goto fail;
9522 res = simplify_gen_subreg (omode, x, imode, offset);
9523 if (res)
9524 return res;
9527 fail:
9528 return gen_rtx_CLOBBER (imode, const0_rtx);
9531 /* Simplify a comparison between *POP0 and *POP1 where CODE is the
9532 comparison code that will be tested.
9534 The result is a possibly different comparison code to use. *POP0 and
9535 *POP1 may be updated.
9537 It is possible that we might detect that a comparison is either always
9538 true or always false. However, we do not perform general constant
9539 folding in combine, so this knowledge isn't useful. Such tautologies
9540 should have been detected earlier. Hence we ignore all such cases. */
9542 static enum rtx_code
9543 simplify_comparison (enum rtx_code code, rtx *pop0, rtx *pop1)
9545 rtx op0 = *pop0;
9546 rtx op1 = *pop1;
9547 rtx tem, tem1;
9548 int i;
9549 enum machine_mode mode, tmode;
9551 /* Try a few ways of applying the same transformation to both operands. */
9552 while (1)
9554 #ifndef WORD_REGISTER_OPERATIONS
9555 /* The test below this one won't handle SIGN_EXTENDs on these machines,
9556 so check specially. */
9557 if (code != GTU && code != GEU && code != LTU && code != LEU
9558 && GET_CODE (op0) == ASHIFTRT && GET_CODE (op1) == ASHIFTRT
9559 && GET_CODE (XEXP (op0, 0)) == ASHIFT
9560 && GET_CODE (XEXP (op1, 0)) == ASHIFT
9561 && GET_CODE (XEXP (XEXP (op0, 0), 0)) == SUBREG
9562 && GET_CODE (XEXP (XEXP (op1, 0), 0)) == SUBREG
9563 && (GET_MODE (SUBREG_REG (XEXP (XEXP (op0, 0), 0)))
9564 == GET_MODE (SUBREG_REG (XEXP (XEXP (op1, 0), 0))))
9565 && GET_CODE (XEXP (op0, 1)) == CONST_INT
9566 && XEXP (op0, 1) == XEXP (op1, 1)
9567 && XEXP (op0, 1) == XEXP (XEXP (op0, 0), 1)
9568 && XEXP (op0, 1) == XEXP (XEXP (op1, 0), 1)
9569 && (INTVAL (XEXP (op0, 1))
9570 == (GET_MODE_BITSIZE (GET_MODE (op0))
9571 - (GET_MODE_BITSIZE
9572 (GET_MODE (SUBREG_REG (XEXP (XEXP (op0, 0), 0))))))))
9574 op0 = SUBREG_REG (XEXP (XEXP (op0, 0), 0));
9575 op1 = SUBREG_REG (XEXP (XEXP (op1, 0), 0));
9577 #endif
9579 /* If both operands are the same constant shift, see if we can ignore the
9580 shift. We can if the shift is a rotate or if the bits shifted out of
9581 this shift are known to be zero for both inputs and if the type of
9582 comparison is compatible with the shift. */
9583 if (GET_CODE (op0) == GET_CODE (op1)
9584 && GET_MODE_BITSIZE (GET_MODE (op0)) <= HOST_BITS_PER_WIDE_INT
9585 && ((GET_CODE (op0) == ROTATE && (code == NE || code == EQ))
9586 || ((GET_CODE (op0) == LSHIFTRT || GET_CODE (op0) == ASHIFT)
9587 && (code != GT && code != LT && code != GE && code != LE))
9588 || (GET_CODE (op0) == ASHIFTRT
9589 && (code != GTU && code != LTU
9590 && code != GEU && code != LEU)))
9591 && GET_CODE (XEXP (op0, 1)) == CONST_INT
9592 && INTVAL (XEXP (op0, 1)) >= 0
9593 && INTVAL (XEXP (op0, 1)) < HOST_BITS_PER_WIDE_INT
9594 && XEXP (op0, 1) == XEXP (op1, 1))
9596 enum machine_mode mode = GET_MODE (op0);
9597 unsigned HOST_WIDE_INT mask = GET_MODE_MASK (mode);
9598 int shift_count = INTVAL (XEXP (op0, 1));
9600 if (GET_CODE (op0) == LSHIFTRT || GET_CODE (op0) == ASHIFTRT)
9601 mask &= (mask >> shift_count) << shift_count;
9602 else if (GET_CODE (op0) == ASHIFT)
9603 mask = (mask & (mask << shift_count)) >> shift_count;
9605 if ((nonzero_bits (XEXP (op0, 0), mode) & ~mask) == 0
9606 && (nonzero_bits (XEXP (op1, 0), mode) & ~mask) == 0)
9607 op0 = XEXP (op0, 0), op1 = XEXP (op1, 0);
9608 else
9609 break;
9612 /* If both operands are AND's of a paradoxical SUBREG by constant, the
9613 SUBREGs are of the same mode, and, in both cases, the AND would
9614 be redundant if the comparison was done in the narrower mode,
9615 do the comparison in the narrower mode (e.g., we are AND'ing with 1
9616 and the operand's possibly nonzero bits are 0xffffff01; in that case
9617 if we only care about QImode, we don't need the AND). This case
9618 occurs if the output mode of an scc insn is not SImode and
9619 STORE_FLAG_VALUE == 1 (e.g., the 386).
9621 Similarly, check for a case where the AND's are ZERO_EXTEND
9622 operations from some narrower mode even though a SUBREG is not
9623 present. */
9625 else if (GET_CODE (op0) == AND && GET_CODE (op1) == AND
9626 && GET_CODE (XEXP (op0, 1)) == CONST_INT
9627 && GET_CODE (XEXP (op1, 1)) == CONST_INT)
9629 rtx inner_op0 = XEXP (op0, 0);
9630 rtx inner_op1 = XEXP (op1, 0);
9631 HOST_WIDE_INT c0 = INTVAL (XEXP (op0, 1));
9632 HOST_WIDE_INT c1 = INTVAL (XEXP (op1, 1));
9633 int changed = 0;
9635 if (GET_CODE (inner_op0) == SUBREG && GET_CODE (inner_op1) == SUBREG
9636 && (GET_MODE_SIZE (GET_MODE (inner_op0))
9637 > GET_MODE_SIZE (GET_MODE (SUBREG_REG (inner_op0))))
9638 && (GET_MODE (SUBREG_REG (inner_op0))
9639 == GET_MODE (SUBREG_REG (inner_op1)))
9640 && (GET_MODE_BITSIZE (GET_MODE (SUBREG_REG (inner_op0)))
9641 <= HOST_BITS_PER_WIDE_INT)
9642 && (0 == ((~c0) & nonzero_bits (SUBREG_REG (inner_op0),
9643 GET_MODE (SUBREG_REG (inner_op0)))))
9644 && (0 == ((~c1) & nonzero_bits (SUBREG_REG (inner_op1),
9645 GET_MODE (SUBREG_REG (inner_op1))))))
9647 op0 = SUBREG_REG (inner_op0);
9648 op1 = SUBREG_REG (inner_op1);
9650 /* The resulting comparison is always unsigned since we masked
9651 off the original sign bit. */
9652 code = unsigned_condition (code);
9654 changed = 1;
9657 else if (c0 == c1)
9658 for (tmode = GET_CLASS_NARROWEST_MODE
9659 (GET_MODE_CLASS (GET_MODE (op0)));
9660 tmode != GET_MODE (op0); tmode = GET_MODE_WIDER_MODE (tmode))
9661 if ((unsigned HOST_WIDE_INT) c0 == GET_MODE_MASK (tmode))
9663 op0 = gen_lowpart (tmode, inner_op0);
9664 op1 = gen_lowpart (tmode, inner_op1);
9665 code = unsigned_condition (code);
9666 changed = 1;
9667 break;
9670 if (! changed)
9671 break;
9674 /* If both operands are NOT, we can strip off the outer operation
9675 and adjust the comparison code for swapped operands; similarly for
9676 NEG, except that this must be an equality comparison. */
9677 else if ((GET_CODE (op0) == NOT && GET_CODE (op1) == NOT)
9678 || (GET_CODE (op0) == NEG && GET_CODE (op1) == NEG
9679 && (code == EQ || code == NE)))
9680 op0 = XEXP (op0, 0), op1 = XEXP (op1, 0), code = swap_condition (code);
9682 else
9683 break;
9686 /* If the first operand is a constant, swap the operands and adjust the
9687 comparison code appropriately, but don't do this if the second operand
9688 is already a constant integer. */
9689 if (swap_commutative_operands_p (op0, op1))
9691 tem = op0, op0 = op1, op1 = tem;
9692 code = swap_condition (code);
9695 /* We now enter a loop during which we will try to simplify the comparison.
9696 For the most part, we only are concerned with comparisons with zero,
9697 but some things may really be comparisons with zero but not start
9698 out looking that way. */
9700 while (GET_CODE (op1) == CONST_INT)
9702 enum machine_mode mode = GET_MODE (op0);
9703 unsigned int mode_width = GET_MODE_BITSIZE (mode);
9704 unsigned HOST_WIDE_INT mask = GET_MODE_MASK (mode);
9705 int equality_comparison_p;
9706 int sign_bit_comparison_p;
9707 int unsigned_comparison_p;
9708 HOST_WIDE_INT const_op;
9710 /* We only want to handle integral modes. This catches VOIDmode,
9711 CCmode, and the floating-point modes. An exception is that we
9712 can handle VOIDmode if OP0 is a COMPARE or a comparison
9713 operation. */
9715 if (GET_MODE_CLASS (mode) != MODE_INT
9716 && ! (mode == VOIDmode
9717 && (GET_CODE (op0) == COMPARE || COMPARISON_P (op0))))
9718 break;
9720 /* Get the constant we are comparing against and turn off all bits
9721 not on in our mode. */
9722 const_op = INTVAL (op1);
9723 if (mode != VOIDmode)
9724 const_op = trunc_int_for_mode (const_op, mode);
9725 op1 = GEN_INT (const_op);
9727 /* If we are comparing against a constant power of two and the value
9728 being compared can only have that single bit nonzero (e.g., it was
9729 `and'ed with that bit), we can replace this with a comparison
9730 with zero. */
9731 if (const_op
9732 && (code == EQ || code == NE || code == GE || code == GEU
9733 || code == LT || code == LTU)
9734 && mode_width <= HOST_BITS_PER_WIDE_INT
9735 && exact_log2 (const_op) >= 0
9736 && nonzero_bits (op0, mode) == (unsigned HOST_WIDE_INT) const_op)
9738 code = (code == EQ || code == GE || code == GEU ? NE : EQ);
9739 op1 = const0_rtx, const_op = 0;
9742 /* Similarly, if we are comparing a value known to be either -1 or
9743 0 with -1, change it to the opposite comparison against zero. */
9745 if (const_op == -1
9746 && (code == EQ || code == NE || code == GT || code == LE
9747 || code == GEU || code == LTU)
9748 && num_sign_bit_copies (op0, mode) == mode_width)
9750 code = (code == EQ || code == LE || code == GEU ? NE : EQ);
9751 op1 = const0_rtx, const_op = 0;
9754 /* Do some canonicalizations based on the comparison code. We prefer
9755 comparisons against zero and then prefer equality comparisons.
9756 If we can reduce the size of a constant, we will do that too. */
9758 switch (code)
9760 case LT:
9761 /* < C is equivalent to <= (C - 1) */
9762 if (const_op > 0)
9764 const_op -= 1;
9765 op1 = GEN_INT (const_op);
9766 code = LE;
9767 /* ... fall through to LE case below. */
9769 else
9770 break;
9772 case LE:
9773 /* <= C is equivalent to < (C + 1); we do this for C < 0 */
9774 if (const_op < 0)
9776 const_op += 1;
9777 op1 = GEN_INT (const_op);
9778 code = LT;
9781 /* If we are doing a <= 0 comparison on a value known to have
9782 a zero sign bit, we can replace this with == 0. */
9783 else if (const_op == 0
9784 && mode_width <= HOST_BITS_PER_WIDE_INT
9785 && (nonzero_bits (op0, mode)
9786 & ((HOST_WIDE_INT) 1 << (mode_width - 1))) == 0)
9787 code = EQ;
9788 break;
9790 case GE:
9791 /* >= C is equivalent to > (C - 1). */
9792 if (const_op > 0)
9794 const_op -= 1;
9795 op1 = GEN_INT (const_op);
9796 code = GT;
9797 /* ... fall through to GT below. */
9799 else
9800 break;
9802 case GT:
9803 /* > C is equivalent to >= (C + 1); we do this for C < 0. */
9804 if (const_op < 0)
9806 const_op += 1;
9807 op1 = GEN_INT (const_op);
9808 code = GE;
9811 /* If we are doing a > 0 comparison on a value known to have
9812 a zero sign bit, we can replace this with != 0. */
9813 else if (const_op == 0
9814 && mode_width <= HOST_BITS_PER_WIDE_INT
9815 && (nonzero_bits (op0, mode)
9816 & ((HOST_WIDE_INT) 1 << (mode_width - 1))) == 0)
9817 code = NE;
9818 break;
9820 case LTU:
9821 /* < C is equivalent to <= (C - 1). */
9822 if (const_op > 0)
9824 const_op -= 1;
9825 op1 = GEN_INT (const_op);
9826 code = LEU;
9827 /* ... fall through ... */
9830 /* (unsigned) < 0x80000000 is equivalent to >= 0. */
9831 else if ((mode_width <= HOST_BITS_PER_WIDE_INT)
9832 && (const_op == (HOST_WIDE_INT) 1 << (mode_width - 1)))
9834 const_op = 0, op1 = const0_rtx;
9835 code = GE;
9836 break;
9838 else
9839 break;
9841 case LEU:
9842 /* unsigned <= 0 is equivalent to == 0 */
9843 if (const_op == 0)
9844 code = EQ;
9846 /* (unsigned) <= 0x7fffffff is equivalent to >= 0. */
9847 else if ((mode_width <= HOST_BITS_PER_WIDE_INT)
9848 && (const_op == ((HOST_WIDE_INT) 1 << (mode_width - 1)) - 1))
9850 const_op = 0, op1 = const0_rtx;
9851 code = GE;
9853 break;
9855 case GEU:
9856 /* >= C is equivalent to > (C - 1). */
9857 if (const_op > 1)
9859 const_op -= 1;
9860 op1 = GEN_INT (const_op);
9861 code = GTU;
9862 /* ... fall through ... */
9865 /* (unsigned) >= 0x80000000 is equivalent to < 0. */
9866 else if ((mode_width <= HOST_BITS_PER_WIDE_INT)
9867 && (const_op == (HOST_WIDE_INT) 1 << (mode_width - 1)))
9869 const_op = 0, op1 = const0_rtx;
9870 code = LT;
9871 break;
9873 else
9874 break;
9876 case GTU:
9877 /* unsigned > 0 is equivalent to != 0 */
9878 if (const_op == 0)
9879 code = NE;
9881 /* (unsigned) > 0x7fffffff is equivalent to < 0. */
9882 else if ((mode_width <= HOST_BITS_PER_WIDE_INT)
9883 && (const_op == ((HOST_WIDE_INT) 1 << (mode_width - 1)) - 1))
9885 const_op = 0, op1 = const0_rtx;
9886 code = LT;
9888 break;
9890 default:
9891 break;
9894 /* Compute some predicates to simplify code below. */
9896 equality_comparison_p = (code == EQ || code == NE);
9897 sign_bit_comparison_p = ((code == LT || code == GE) && const_op == 0);
9898 unsigned_comparison_p = (code == LTU || code == LEU || code == GTU
9899 || code == GEU);
9901 /* If this is a sign bit comparison and we can do arithmetic in
9902 MODE, say that we will only be needing the sign bit of OP0. */
9903 if (sign_bit_comparison_p
9904 && GET_MODE_BITSIZE (mode) <= HOST_BITS_PER_WIDE_INT)
9905 op0 = force_to_mode (op0, mode,
9906 ((HOST_WIDE_INT) 1
9907 << (GET_MODE_BITSIZE (mode) - 1)),
9910 /* Now try cases based on the opcode of OP0. If none of the cases
9911 does a "continue", we exit this loop immediately after the
9912 switch. */
9914 switch (GET_CODE (op0))
9916 case ZERO_EXTRACT:
9917 /* If we are extracting a single bit from a variable position in
9918 a constant that has only a single bit set and are comparing it
9919 with zero, we can convert this into an equality comparison
9920 between the position and the location of the single bit. */
9921 /* Except we can't if SHIFT_COUNT_TRUNCATED is set, since we might
9922 have already reduced the shift count modulo the word size. */
9923 if (!SHIFT_COUNT_TRUNCATED
9924 && GET_CODE (XEXP (op0, 0)) == CONST_INT
9925 && XEXP (op0, 1) == const1_rtx
9926 && equality_comparison_p && const_op == 0
9927 && (i = exact_log2 (INTVAL (XEXP (op0, 0)))) >= 0)
9929 if (BITS_BIG_ENDIAN)
9931 enum machine_mode new_mode
9932 = mode_for_extraction (EP_extzv, 1);
9933 if (new_mode == MAX_MACHINE_MODE)
9934 i = BITS_PER_WORD - 1 - i;
9935 else
9937 mode = new_mode;
9938 i = (GET_MODE_BITSIZE (mode) - 1 - i);
9942 op0 = XEXP (op0, 2);
9943 op1 = GEN_INT (i);
9944 const_op = i;
9946 /* Result is nonzero iff shift count is equal to I. */
9947 code = reverse_condition (code);
9948 continue;
9951 /* ... fall through ... */
9953 case SIGN_EXTRACT:
9954 tem = expand_compound_operation (op0);
9955 if (tem != op0)
9957 op0 = tem;
9958 continue;
9960 break;
9962 case NOT:
9963 /* If testing for equality, we can take the NOT of the constant. */
9964 if (equality_comparison_p
9965 && (tem = simplify_unary_operation (NOT, mode, op1, mode)) != 0)
9967 op0 = XEXP (op0, 0);
9968 op1 = tem;
9969 continue;
9972 /* If just looking at the sign bit, reverse the sense of the
9973 comparison. */
9974 if (sign_bit_comparison_p)
9976 op0 = XEXP (op0, 0);
9977 code = (code == GE ? LT : GE);
9978 continue;
9980 break;
9982 case NEG:
9983 /* If testing for equality, we can take the NEG of the constant. */
9984 if (equality_comparison_p
9985 && (tem = simplify_unary_operation (NEG, mode, op1, mode)) != 0)
9987 op0 = XEXP (op0, 0);
9988 op1 = tem;
9989 continue;
9992 /* The remaining cases only apply to comparisons with zero. */
9993 if (const_op != 0)
9994 break;
9996 /* When X is ABS or is known positive,
9997 (neg X) is < 0 if and only if X != 0. */
9999 if (sign_bit_comparison_p
10000 && (GET_CODE (XEXP (op0, 0)) == ABS
10001 || (mode_width <= HOST_BITS_PER_WIDE_INT
10002 && (nonzero_bits (XEXP (op0, 0), mode)
10003 & ((HOST_WIDE_INT) 1 << (mode_width - 1))) == 0)))
10005 op0 = XEXP (op0, 0);
10006 code = (code == LT ? NE : EQ);
10007 continue;
10010 /* If we have NEG of something whose two high-order bits are the
10011 same, we know that "(-a) < 0" is equivalent to "a > 0". */
10012 if (num_sign_bit_copies (op0, mode) >= 2)
10014 op0 = XEXP (op0, 0);
10015 code = swap_condition (code);
10016 continue;
10018 break;
10020 case ROTATE:
10021 /* If we are testing equality and our count is a constant, we
10022 can perform the inverse operation on our RHS. */
10023 if (equality_comparison_p && GET_CODE (XEXP (op0, 1)) == CONST_INT
10024 && (tem = simplify_binary_operation (ROTATERT, mode,
10025 op1, XEXP (op0, 1))) != 0)
10027 op0 = XEXP (op0, 0);
10028 op1 = tem;
10029 continue;
10032 /* If we are doing a < 0 or >= 0 comparison, it means we are testing
10033 a particular bit. Convert it to an AND of a constant of that
10034 bit. This will be converted into a ZERO_EXTRACT. */
10035 if (const_op == 0 && sign_bit_comparison_p
10036 && GET_CODE (XEXP (op0, 1)) == CONST_INT
10037 && mode_width <= HOST_BITS_PER_WIDE_INT)
10039 op0 = simplify_and_const_int (NULL_RTX, mode, XEXP (op0, 0),
10040 ((HOST_WIDE_INT) 1
10041 << (mode_width - 1
10042 - INTVAL (XEXP (op0, 1)))));
10043 code = (code == LT ? NE : EQ);
10044 continue;
10047 /* Fall through. */
10049 case ABS:
10050 /* ABS is ignorable inside an equality comparison with zero. */
10051 if (const_op == 0 && equality_comparison_p)
10053 op0 = XEXP (op0, 0);
10054 continue;
10056 break;
10058 case SIGN_EXTEND:
10059 /* Can simplify (compare (zero/sign_extend FOO) CONST) to
10060 (compare FOO CONST) if CONST fits in FOO's mode and we
10061 are either testing inequality or have an unsigned
10062 comparison with ZERO_EXTEND or a signed comparison with
10063 SIGN_EXTEND. But don't do it if we don't have a compare
10064 insn of the given mode, since we'd have to revert it
10065 later on, and then we wouldn't know whether to sign- or
10066 zero-extend. */
10067 mode = GET_MODE (XEXP (op0, 0));
10068 if (mode != VOIDmode && GET_MODE_CLASS (mode) == MODE_INT
10069 && ! unsigned_comparison_p
10070 && (GET_MODE_BITSIZE (mode) <= HOST_BITS_PER_WIDE_INT)
10071 && ((unsigned HOST_WIDE_INT) const_op
10072 < (((unsigned HOST_WIDE_INT) 1
10073 << (GET_MODE_BITSIZE (mode) - 1))))
10074 && cmp_optab->handlers[(int) mode].insn_code != CODE_FOR_nothing)
10076 op0 = XEXP (op0, 0);
10077 continue;
10079 break;
10081 case SUBREG:
10082 /* Check for the case where we are comparing A - C1 with C2, that is
10084 (subreg:MODE (plus (A) (-C1))) op (C2)
10086 with C1 a constant, and try to lift the SUBREG, i.e. to do the
10087 comparison in the wider mode. One of the following two conditions
10088 must be true in order for this to be valid:
10090 1. The mode extension results in the same bit pattern being added
10091 on both sides and the comparison is equality or unsigned. As
10092 C2 has been truncated to fit in MODE, the pattern can only be
10093 all 0s or all 1s.
10095 2. The mode extension results in the sign bit being copied on
10096 each side.
10098 The difficulty here is that we have predicates for A but not for
10099 (A - C1) so we need to check that C1 is within proper bounds so
10100 as to perturbate A as little as possible. */
10102 if (mode_width <= HOST_BITS_PER_WIDE_INT
10103 && subreg_lowpart_p (op0)
10104 && GET_MODE_BITSIZE (GET_MODE (SUBREG_REG (op0))) > mode_width
10105 && GET_CODE (SUBREG_REG (op0)) == PLUS
10106 && GET_CODE (XEXP (SUBREG_REG (op0), 1)) == CONST_INT)
10108 enum machine_mode inner_mode = GET_MODE (SUBREG_REG (op0));
10109 rtx a = XEXP (SUBREG_REG (op0), 0);
10110 HOST_WIDE_INT c1 = -INTVAL (XEXP (SUBREG_REG (op0), 1));
10112 if ((c1 > 0
10113 && (unsigned HOST_WIDE_INT) c1
10114 < (unsigned HOST_WIDE_INT) 1 << (mode_width - 1)
10115 && (equality_comparison_p || unsigned_comparison_p)
10116 /* (A - C1) zero-extends if it is positive and sign-extends
10117 if it is negative, C2 both zero- and sign-extends. */
10118 && ((0 == (nonzero_bits (a, inner_mode)
10119 & ~GET_MODE_MASK (mode))
10120 && const_op >= 0)
10121 /* (A - C1) sign-extends if it is positive and 1-extends
10122 if it is negative, C2 both sign- and 1-extends. */
10123 || (num_sign_bit_copies (a, inner_mode)
10124 > (unsigned int) (GET_MODE_BITSIZE (inner_mode)
10125 - mode_width)
10126 && const_op < 0)))
10127 || ((unsigned HOST_WIDE_INT) c1
10128 < (unsigned HOST_WIDE_INT) 1 << (mode_width - 2)
10129 /* (A - C1) always sign-extends, like C2. */
10130 && num_sign_bit_copies (a, inner_mode)
10131 > (unsigned int) (GET_MODE_BITSIZE (inner_mode)
10132 - (mode_width - 1))))
10134 op0 = SUBREG_REG (op0);
10135 continue;
10139 /* If the inner mode is narrower and we are extracting the low part,
10140 we can treat the SUBREG as if it were a ZERO_EXTEND. */
10141 if (subreg_lowpart_p (op0)
10142 && GET_MODE_BITSIZE (GET_MODE (SUBREG_REG (op0))) < mode_width)
10143 /* Fall through */ ;
10144 else
10145 break;
10147 /* ... fall through ... */
10149 case ZERO_EXTEND:
10150 mode = GET_MODE (XEXP (op0, 0));
10151 if (mode != VOIDmode && GET_MODE_CLASS (mode) == MODE_INT
10152 && (unsigned_comparison_p || equality_comparison_p)
10153 && (GET_MODE_BITSIZE (mode) <= HOST_BITS_PER_WIDE_INT)
10154 && ((unsigned HOST_WIDE_INT) const_op < GET_MODE_MASK (mode))
10155 && cmp_optab->handlers[(int) mode].insn_code != CODE_FOR_nothing)
10157 op0 = XEXP (op0, 0);
10158 continue;
10160 break;
10162 case PLUS:
10163 /* (eq (plus X A) B) -> (eq X (minus B A)). We can only do
10164 this for equality comparisons due to pathological cases involving
10165 overflows. */
10166 if (equality_comparison_p
10167 && 0 != (tem = simplify_binary_operation (MINUS, mode,
10168 op1, XEXP (op0, 1))))
10170 op0 = XEXP (op0, 0);
10171 op1 = tem;
10172 continue;
10175 /* (plus (abs X) (const_int -1)) is < 0 if and only if X == 0. */
10176 if (const_op == 0 && XEXP (op0, 1) == constm1_rtx
10177 && GET_CODE (XEXP (op0, 0)) == ABS && sign_bit_comparison_p)
10179 op0 = XEXP (XEXP (op0, 0), 0);
10180 code = (code == LT ? EQ : NE);
10181 continue;
10183 break;
10185 case MINUS:
10186 /* We used to optimize signed comparisons against zero, but that
10187 was incorrect. Unsigned comparisons against zero (GTU, LEU)
10188 arrive here as equality comparisons, or (GEU, LTU) are
10189 optimized away. No need to special-case them. */
10191 /* (eq (minus A B) C) -> (eq A (plus B C)) or
10192 (eq B (minus A C)), whichever simplifies. We can only do
10193 this for equality comparisons due to pathological cases involving
10194 overflows. */
10195 if (equality_comparison_p
10196 && 0 != (tem = simplify_binary_operation (PLUS, mode,
10197 XEXP (op0, 1), op1)))
10199 op0 = XEXP (op0, 0);
10200 op1 = tem;
10201 continue;
10204 if (equality_comparison_p
10205 && 0 != (tem = simplify_binary_operation (MINUS, mode,
10206 XEXP (op0, 0), op1)))
10208 op0 = XEXP (op0, 1);
10209 op1 = tem;
10210 continue;
10213 /* The sign bit of (minus (ashiftrt X C) X), where C is the number
10214 of bits in X minus 1, is one iff X > 0. */
10215 if (sign_bit_comparison_p && GET_CODE (XEXP (op0, 0)) == ASHIFTRT
10216 && GET_CODE (XEXP (XEXP (op0, 0), 1)) == CONST_INT
10217 && (unsigned HOST_WIDE_INT) INTVAL (XEXP (XEXP (op0, 0), 1))
10218 == mode_width - 1
10219 && rtx_equal_p (XEXP (XEXP (op0, 0), 0), XEXP (op0, 1)))
10221 op0 = XEXP (op0, 1);
10222 code = (code == GE ? LE : GT);
10223 continue;
10225 break;
10227 case XOR:
10228 /* (eq (xor A B) C) -> (eq A (xor B C)). This is a simplification
10229 if C is zero or B is a constant. */
10230 if (equality_comparison_p
10231 && 0 != (tem = simplify_binary_operation (XOR, mode,
10232 XEXP (op0, 1), op1)))
10234 op0 = XEXP (op0, 0);
10235 op1 = tem;
10236 continue;
10238 break;
10240 case EQ: case NE:
10241 case UNEQ: case LTGT:
10242 case LT: case LTU: case UNLT: case LE: case LEU: case UNLE:
10243 case GT: case GTU: case UNGT: case GE: case GEU: case UNGE:
10244 case UNORDERED: case ORDERED:
10245 /* We can't do anything if OP0 is a condition code value, rather
10246 than an actual data value. */
10247 if (const_op != 0
10248 || CC0_P (XEXP (op0, 0))
10249 || GET_MODE_CLASS (GET_MODE (XEXP (op0, 0))) == MODE_CC)
10250 break;
10252 /* Get the two operands being compared. */
10253 if (GET_CODE (XEXP (op0, 0)) == COMPARE)
10254 tem = XEXP (XEXP (op0, 0), 0), tem1 = XEXP (XEXP (op0, 0), 1);
10255 else
10256 tem = XEXP (op0, 0), tem1 = XEXP (op0, 1);
10258 /* Check for the cases where we simply want the result of the
10259 earlier test or the opposite of that result. */
10260 if (code == NE || code == EQ
10261 || (GET_MODE_BITSIZE (GET_MODE (op0)) <= HOST_BITS_PER_WIDE_INT
10262 && GET_MODE_CLASS (GET_MODE (op0)) == MODE_INT
10263 && (STORE_FLAG_VALUE
10264 & (((HOST_WIDE_INT) 1
10265 << (GET_MODE_BITSIZE (GET_MODE (op0)) - 1))))
10266 && (code == LT || code == GE)))
10268 enum rtx_code new_code;
10269 if (code == LT || code == NE)
10270 new_code = GET_CODE (op0);
10271 else
10272 new_code = reversed_comparison_code (op0, NULL);
10274 if (new_code != UNKNOWN)
10276 code = new_code;
10277 op0 = tem;
10278 op1 = tem1;
10279 continue;
10282 break;
10284 case IOR:
10285 /* The sign bit of (ior (plus X (const_int -1)) X) is nonzero
10286 iff X <= 0. */
10287 if (sign_bit_comparison_p && GET_CODE (XEXP (op0, 0)) == PLUS
10288 && XEXP (XEXP (op0, 0), 1) == constm1_rtx
10289 && rtx_equal_p (XEXP (XEXP (op0, 0), 0), XEXP (op0, 1)))
10291 op0 = XEXP (op0, 1);
10292 code = (code == GE ? GT : LE);
10293 continue;
10295 break;
10297 case AND:
10298 /* Convert (and (xshift 1 X) Y) to (and (lshiftrt Y X) 1). This
10299 will be converted to a ZERO_EXTRACT later. */
10300 if (const_op == 0 && equality_comparison_p
10301 && GET_CODE (XEXP (op0, 0)) == ASHIFT
10302 && XEXP (XEXP (op0, 0), 0) == const1_rtx)
10304 op0 = simplify_and_const_int
10305 (NULL_RTX, mode, gen_rtx_LSHIFTRT (mode,
10306 XEXP (op0, 1),
10307 XEXP (XEXP (op0, 0), 1)),
10308 (HOST_WIDE_INT) 1);
10309 continue;
10312 /* If we are comparing (and (lshiftrt X C1) C2) for equality with
10313 zero and X is a comparison and C1 and C2 describe only bits set
10314 in STORE_FLAG_VALUE, we can compare with X. */
10315 if (const_op == 0 && equality_comparison_p
10316 && mode_width <= HOST_BITS_PER_WIDE_INT
10317 && GET_CODE (XEXP (op0, 1)) == CONST_INT
10318 && GET_CODE (XEXP (op0, 0)) == LSHIFTRT
10319 && GET_CODE (XEXP (XEXP (op0, 0), 1)) == CONST_INT
10320 && INTVAL (XEXP (XEXP (op0, 0), 1)) >= 0
10321 && INTVAL (XEXP (XEXP (op0, 0), 1)) < HOST_BITS_PER_WIDE_INT)
10323 mask = ((INTVAL (XEXP (op0, 1)) & GET_MODE_MASK (mode))
10324 << INTVAL (XEXP (XEXP (op0, 0), 1)));
10325 if ((~STORE_FLAG_VALUE & mask) == 0
10326 && (COMPARISON_P (XEXP (XEXP (op0, 0), 0))
10327 || ((tem = get_last_value (XEXP (XEXP (op0, 0), 0))) != 0
10328 && COMPARISON_P (tem))))
10330 op0 = XEXP (XEXP (op0, 0), 0);
10331 continue;
10335 /* If we are doing an equality comparison of an AND of a bit equal
10336 to the sign bit, replace this with a LT or GE comparison of
10337 the underlying value. */
10338 if (equality_comparison_p
10339 && const_op == 0
10340 && GET_CODE (XEXP (op0, 1)) == CONST_INT
10341 && mode_width <= HOST_BITS_PER_WIDE_INT
10342 && ((INTVAL (XEXP (op0, 1)) & GET_MODE_MASK (mode))
10343 == (unsigned HOST_WIDE_INT) 1 << (mode_width - 1)))
10345 op0 = XEXP (op0, 0);
10346 code = (code == EQ ? GE : LT);
10347 continue;
10350 /* If this AND operation is really a ZERO_EXTEND from a narrower
10351 mode, the constant fits within that mode, and this is either an
10352 equality or unsigned comparison, try to do this comparison in
10353 the narrower mode. */
10354 if ((equality_comparison_p || unsigned_comparison_p)
10355 && GET_CODE (XEXP (op0, 1)) == CONST_INT
10356 && (i = exact_log2 ((INTVAL (XEXP (op0, 1))
10357 & GET_MODE_MASK (mode))
10358 + 1)) >= 0
10359 && const_op >> i == 0
10360 && (tmode = mode_for_size (i, MODE_INT, 1)) != BLKmode)
10362 op0 = gen_lowpart (tmode, XEXP (op0, 0));
10363 continue;
10366 /* If this is (and:M1 (subreg:M2 X 0) (const_int C1)) where C1
10367 fits in both M1 and M2 and the SUBREG is either paradoxical
10368 or represents the low part, permute the SUBREG and the AND
10369 and try again. */
10370 if (GET_CODE (XEXP (op0, 0)) == SUBREG)
10372 unsigned HOST_WIDE_INT c1;
10373 tmode = GET_MODE (SUBREG_REG (XEXP (op0, 0)));
10374 /* Require an integral mode, to avoid creating something like
10375 (AND:SF ...). */
10376 if (SCALAR_INT_MODE_P (tmode)
10377 /* It is unsafe to commute the AND into the SUBREG if the
10378 SUBREG is paradoxical and WORD_REGISTER_OPERATIONS is
10379 not defined. As originally written the upper bits
10380 have a defined value due to the AND operation.
10381 However, if we commute the AND inside the SUBREG then
10382 they no longer have defined values and the meaning of
10383 the code has been changed. */
10384 && (0
10385 #ifdef WORD_REGISTER_OPERATIONS
10386 || (mode_width > GET_MODE_BITSIZE (tmode)
10387 && mode_width <= BITS_PER_WORD)
10388 #endif
10389 || (mode_width <= GET_MODE_BITSIZE (tmode)
10390 && subreg_lowpart_p (XEXP (op0, 0))))
10391 && GET_CODE (XEXP (op0, 1)) == CONST_INT
10392 && mode_width <= HOST_BITS_PER_WIDE_INT
10393 && GET_MODE_BITSIZE (tmode) <= HOST_BITS_PER_WIDE_INT
10394 && ((c1 = INTVAL (XEXP (op0, 1))) & ~mask) == 0
10395 && (c1 & ~GET_MODE_MASK (tmode)) == 0
10396 && c1 != mask
10397 && c1 != GET_MODE_MASK (tmode))
10399 op0 = simplify_gen_binary (AND, tmode,
10400 SUBREG_REG (XEXP (op0, 0)),
10401 gen_int_mode (c1, tmode));
10402 op0 = gen_lowpart (mode, op0);
10403 continue;
10407 /* Convert (ne (and (not X) 1) 0) to (eq (and X 1) 0). */
10408 if (const_op == 0 && equality_comparison_p
10409 && XEXP (op0, 1) == const1_rtx
10410 && GET_CODE (XEXP (op0, 0)) == NOT)
10412 op0 = simplify_and_const_int
10413 (NULL_RTX, mode, XEXP (XEXP (op0, 0), 0), (HOST_WIDE_INT) 1);
10414 code = (code == NE ? EQ : NE);
10415 continue;
10418 /* Convert (ne (and (lshiftrt (not X)) 1) 0) to
10419 (eq (and (lshiftrt X) 1) 0).
10420 Also handle the case where (not X) is expressed using xor. */
10421 if (const_op == 0 && equality_comparison_p
10422 && XEXP (op0, 1) == const1_rtx
10423 && GET_CODE (XEXP (op0, 0)) == LSHIFTRT)
10425 rtx shift_op = XEXP (XEXP (op0, 0), 0);
10426 rtx shift_count = XEXP (XEXP (op0, 0), 1);
10428 if (GET_CODE (shift_op) == NOT
10429 || (GET_CODE (shift_op) == XOR
10430 && GET_CODE (XEXP (shift_op, 1)) == CONST_INT
10431 && GET_CODE (shift_count) == CONST_INT
10432 && GET_MODE_BITSIZE (mode) <= HOST_BITS_PER_WIDE_INT
10433 && (INTVAL (XEXP (shift_op, 1))
10434 == (HOST_WIDE_INT) 1 << INTVAL (shift_count))))
10436 op0 = simplify_and_const_int
10437 (NULL_RTX, mode,
10438 gen_rtx_LSHIFTRT (mode, XEXP (shift_op, 0), shift_count),
10439 (HOST_WIDE_INT) 1);
10440 code = (code == NE ? EQ : NE);
10441 continue;
10444 break;
10446 case ASHIFT:
10447 /* If we have (compare (ashift FOO N) (const_int C)) and
10448 the high order N bits of FOO (N+1 if an inequality comparison)
10449 are known to be zero, we can do this by comparing FOO with C
10450 shifted right N bits so long as the low-order N bits of C are
10451 zero. */
10452 if (GET_CODE (XEXP (op0, 1)) == CONST_INT
10453 && INTVAL (XEXP (op0, 1)) >= 0
10454 && ((INTVAL (XEXP (op0, 1)) + ! equality_comparison_p)
10455 < HOST_BITS_PER_WIDE_INT)
10456 && ((const_op
10457 & (((HOST_WIDE_INT) 1 << INTVAL (XEXP (op0, 1))) - 1)) == 0)
10458 && mode_width <= HOST_BITS_PER_WIDE_INT
10459 && (nonzero_bits (XEXP (op0, 0), mode)
10460 & ~(mask >> (INTVAL (XEXP (op0, 1))
10461 + ! equality_comparison_p))) == 0)
10463 /* We must perform a logical shift, not an arithmetic one,
10464 as we want the top N bits of C to be zero. */
10465 unsigned HOST_WIDE_INT temp = const_op & GET_MODE_MASK (mode);
10467 temp >>= INTVAL (XEXP (op0, 1));
10468 op1 = gen_int_mode (temp, mode);
10469 op0 = XEXP (op0, 0);
10470 continue;
10473 /* If we are doing a sign bit comparison, it means we are testing
10474 a particular bit. Convert it to the appropriate AND. */
10475 if (sign_bit_comparison_p && GET_CODE (XEXP (op0, 1)) == CONST_INT
10476 && mode_width <= HOST_BITS_PER_WIDE_INT)
10478 op0 = simplify_and_const_int (NULL_RTX, mode, XEXP (op0, 0),
10479 ((HOST_WIDE_INT) 1
10480 << (mode_width - 1
10481 - INTVAL (XEXP (op0, 1)))));
10482 code = (code == LT ? NE : EQ);
10483 continue;
10486 /* If this an equality comparison with zero and we are shifting
10487 the low bit to the sign bit, we can convert this to an AND of the
10488 low-order bit. */
10489 if (const_op == 0 && equality_comparison_p
10490 && GET_CODE (XEXP (op0, 1)) == CONST_INT
10491 && (unsigned HOST_WIDE_INT) INTVAL (XEXP (op0, 1))
10492 == mode_width - 1)
10494 op0 = simplify_and_const_int (NULL_RTX, mode, XEXP (op0, 0),
10495 (HOST_WIDE_INT) 1);
10496 continue;
10498 break;
10500 case ASHIFTRT:
10501 /* If this is an equality comparison with zero, we can do this
10502 as a logical shift, which might be much simpler. */
10503 if (equality_comparison_p && const_op == 0
10504 && GET_CODE (XEXP (op0, 1)) == CONST_INT)
10506 op0 = simplify_shift_const (NULL_RTX, LSHIFTRT, mode,
10507 XEXP (op0, 0),
10508 INTVAL (XEXP (op0, 1)));
10509 continue;
10512 /* If OP0 is a sign extension and CODE is not an unsigned comparison,
10513 do the comparison in a narrower mode. */
10514 if (! unsigned_comparison_p
10515 && GET_CODE (XEXP (op0, 1)) == CONST_INT
10516 && GET_CODE (XEXP (op0, 0)) == ASHIFT
10517 && XEXP (op0, 1) == XEXP (XEXP (op0, 0), 1)
10518 && (tmode = mode_for_size (mode_width - INTVAL (XEXP (op0, 1)),
10519 MODE_INT, 1)) != BLKmode
10520 && (((unsigned HOST_WIDE_INT) const_op
10521 + (GET_MODE_MASK (tmode) >> 1) + 1)
10522 <= GET_MODE_MASK (tmode)))
10524 op0 = gen_lowpart (tmode, XEXP (XEXP (op0, 0), 0));
10525 continue;
10528 /* Likewise if OP0 is a PLUS of a sign extension with a
10529 constant, which is usually represented with the PLUS
10530 between the shifts. */
10531 if (! unsigned_comparison_p
10532 && GET_CODE (XEXP (op0, 1)) == CONST_INT
10533 && GET_CODE (XEXP (op0, 0)) == PLUS
10534 && GET_CODE (XEXP (XEXP (op0, 0), 1)) == CONST_INT
10535 && GET_CODE (XEXP (XEXP (op0, 0), 0)) == ASHIFT
10536 && XEXP (op0, 1) == XEXP (XEXP (XEXP (op0, 0), 0), 1)
10537 && (tmode = mode_for_size (mode_width - INTVAL (XEXP (op0, 1)),
10538 MODE_INT, 1)) != BLKmode
10539 && (((unsigned HOST_WIDE_INT) const_op
10540 + (GET_MODE_MASK (tmode) >> 1) + 1)
10541 <= GET_MODE_MASK (tmode)))
10543 rtx inner = XEXP (XEXP (XEXP (op0, 0), 0), 0);
10544 rtx add_const = XEXP (XEXP (op0, 0), 1);
10545 rtx new_const = simplify_gen_binary (ASHIFTRT, GET_MODE (op0),
10546 add_const, XEXP (op0, 1));
10548 op0 = simplify_gen_binary (PLUS, tmode,
10549 gen_lowpart (tmode, inner),
10550 new_const);
10551 continue;
10554 /* ... fall through ... */
10555 case LSHIFTRT:
10556 /* If we have (compare (xshiftrt FOO N) (const_int C)) and
10557 the low order N bits of FOO are known to be zero, we can do this
10558 by comparing FOO with C shifted left N bits so long as no
10559 overflow occurs. */
10560 if (GET_CODE (XEXP (op0, 1)) == CONST_INT
10561 && INTVAL (XEXP (op0, 1)) >= 0
10562 && INTVAL (XEXP (op0, 1)) < HOST_BITS_PER_WIDE_INT
10563 && mode_width <= HOST_BITS_PER_WIDE_INT
10564 && (nonzero_bits (XEXP (op0, 0), mode)
10565 & (((HOST_WIDE_INT) 1 << INTVAL (XEXP (op0, 1))) - 1)) == 0
10566 && (((unsigned HOST_WIDE_INT) const_op
10567 + (GET_CODE (op0) != LSHIFTRT
10568 ? ((GET_MODE_MASK (mode) >> INTVAL (XEXP (op0, 1)) >> 1)
10569 + 1)
10570 : 0))
10571 <= GET_MODE_MASK (mode) >> INTVAL (XEXP (op0, 1))))
10573 /* If the shift was logical, then we must make the condition
10574 unsigned. */
10575 if (GET_CODE (op0) == LSHIFTRT)
10576 code = unsigned_condition (code);
10578 const_op <<= INTVAL (XEXP (op0, 1));
10579 op1 = GEN_INT (const_op);
10580 op0 = XEXP (op0, 0);
10581 continue;
10584 /* If we are using this shift to extract just the sign bit, we
10585 can replace this with an LT or GE comparison. */
10586 if (const_op == 0
10587 && (equality_comparison_p || sign_bit_comparison_p)
10588 && GET_CODE (XEXP (op0, 1)) == CONST_INT
10589 && (unsigned HOST_WIDE_INT) INTVAL (XEXP (op0, 1))
10590 == mode_width - 1)
10592 op0 = XEXP (op0, 0);
10593 code = (code == NE || code == GT ? LT : GE);
10594 continue;
10596 break;
10598 default:
10599 break;
10602 break;
10605 /* Now make any compound operations involved in this comparison. Then,
10606 check for an outmost SUBREG on OP0 that is not doing anything or is
10607 paradoxical. The latter transformation must only be performed when
10608 it is known that the "extra" bits will be the same in op0 and op1 or
10609 that they don't matter. There are three cases to consider:
10611 1. SUBREG_REG (op0) is a register. In this case the bits are don't
10612 care bits and we can assume they have any convenient value. So
10613 making the transformation is safe.
10615 2. SUBREG_REG (op0) is a memory and LOAD_EXTEND_OP is not defined.
10616 In this case the upper bits of op0 are undefined. We should not make
10617 the simplification in that case as we do not know the contents of
10618 those bits.
10620 3. SUBREG_REG (op0) is a memory and LOAD_EXTEND_OP is defined and not
10621 UNKNOWN. In that case we know those bits are zeros or ones. We must
10622 also be sure that they are the same as the upper bits of op1.
10624 We can never remove a SUBREG for a non-equality comparison because
10625 the sign bit is in a different place in the underlying object. */
10627 op0 = make_compound_operation (op0, op1 == const0_rtx ? COMPARE : SET);
10628 op1 = make_compound_operation (op1, SET);
10630 if (GET_CODE (op0) == SUBREG && subreg_lowpart_p (op0)
10631 && GET_MODE_CLASS (GET_MODE (op0)) == MODE_INT
10632 && GET_MODE_CLASS (GET_MODE (SUBREG_REG (op0))) == MODE_INT
10633 && (code == NE || code == EQ))
10635 if (GET_MODE_SIZE (GET_MODE (op0))
10636 > GET_MODE_SIZE (GET_MODE (SUBREG_REG (op0))))
10638 /* For paradoxical subregs, allow case 1 as above. Case 3 isn't
10639 implemented. */
10640 if (REG_P (SUBREG_REG (op0)))
10642 op0 = SUBREG_REG (op0);
10643 op1 = gen_lowpart (GET_MODE (op0), op1);
10646 else if ((GET_MODE_BITSIZE (GET_MODE (SUBREG_REG (op0)))
10647 <= HOST_BITS_PER_WIDE_INT)
10648 && (nonzero_bits (SUBREG_REG (op0),
10649 GET_MODE (SUBREG_REG (op0)))
10650 & ~GET_MODE_MASK (GET_MODE (op0))) == 0)
10652 tem = gen_lowpart (GET_MODE (SUBREG_REG (op0)), op1);
10654 if ((nonzero_bits (tem, GET_MODE (SUBREG_REG (op0)))
10655 & ~GET_MODE_MASK (GET_MODE (op0))) == 0)
10656 op0 = SUBREG_REG (op0), op1 = tem;
10660 /* We now do the opposite procedure: Some machines don't have compare
10661 insns in all modes. If OP0's mode is an integer mode smaller than a
10662 word and we can't do a compare in that mode, see if there is a larger
10663 mode for which we can do the compare. There are a number of cases in
10664 which we can use the wider mode. */
10666 mode = GET_MODE (op0);
10667 if (mode != VOIDmode && GET_MODE_CLASS (mode) == MODE_INT
10668 && GET_MODE_SIZE (mode) < UNITS_PER_WORD
10669 && ! have_insn_for (COMPARE, mode))
10670 for (tmode = GET_MODE_WIDER_MODE (mode);
10671 (tmode != VOIDmode
10672 && GET_MODE_BITSIZE (tmode) <= HOST_BITS_PER_WIDE_INT);
10673 tmode = GET_MODE_WIDER_MODE (tmode))
10674 if (have_insn_for (COMPARE, tmode))
10676 int zero_extended;
10678 /* If the only nonzero bits in OP0 and OP1 are those in the
10679 narrower mode and this is an equality or unsigned comparison,
10680 we can use the wider mode. Similarly for sign-extended
10681 values, in which case it is true for all comparisons. */
10682 zero_extended = ((code == EQ || code == NE
10683 || code == GEU || code == GTU
10684 || code == LEU || code == LTU)
10685 && (nonzero_bits (op0, tmode)
10686 & ~GET_MODE_MASK (mode)) == 0
10687 && ((GET_CODE (op1) == CONST_INT
10688 || (nonzero_bits (op1, tmode)
10689 & ~GET_MODE_MASK (mode)) == 0)));
10691 if (zero_extended
10692 || ((num_sign_bit_copies (op0, tmode)
10693 > (unsigned int) (GET_MODE_BITSIZE (tmode)
10694 - GET_MODE_BITSIZE (mode)))
10695 && (num_sign_bit_copies (op1, tmode)
10696 > (unsigned int) (GET_MODE_BITSIZE (tmode)
10697 - GET_MODE_BITSIZE (mode)))))
10699 /* If OP0 is an AND and we don't have an AND in MODE either,
10700 make a new AND in the proper mode. */
10701 if (GET_CODE (op0) == AND
10702 && !have_insn_for (AND, mode))
10703 op0 = simplify_gen_binary (AND, tmode,
10704 gen_lowpart (tmode,
10705 XEXP (op0, 0)),
10706 gen_lowpart (tmode,
10707 XEXP (op0, 1)));
10709 op0 = gen_lowpart (tmode, op0);
10710 if (zero_extended && GET_CODE (op1) == CONST_INT)
10711 op1 = GEN_INT (INTVAL (op1) & GET_MODE_MASK (mode));
10712 op1 = gen_lowpart (tmode, op1);
10713 break;
10716 /* If this is a test for negative, we can make an explicit
10717 test of the sign bit. */
10719 if (op1 == const0_rtx && (code == LT || code == GE)
10720 && GET_MODE_BITSIZE (mode) <= HOST_BITS_PER_WIDE_INT)
10722 op0 = simplify_gen_binary (AND, tmode,
10723 gen_lowpart (tmode, op0),
10724 GEN_INT ((HOST_WIDE_INT) 1
10725 << (GET_MODE_BITSIZE (mode)
10726 - 1)));
10727 code = (code == LT) ? NE : EQ;
10728 break;
10732 #ifdef CANONICALIZE_COMPARISON
10733 /* If this machine only supports a subset of valid comparisons, see if we
10734 can convert an unsupported one into a supported one. */
10735 CANONICALIZE_COMPARISON (code, op0, op1);
10736 #endif
10738 *pop0 = op0;
10739 *pop1 = op1;
10741 return code;
10744 /* Utility function for record_value_for_reg. Count number of
10745 rtxs in X. */
10746 static int
10747 count_rtxs (rtx x)
10749 enum rtx_code code = GET_CODE (x);
10750 const char *fmt;
10751 int i, ret = 1;
10753 if (GET_RTX_CLASS (code) == '2'
10754 || GET_RTX_CLASS (code) == 'c')
10756 rtx x0 = XEXP (x, 0);
10757 rtx x1 = XEXP (x, 1);
10759 if (x0 == x1)
10760 return 1 + 2 * count_rtxs (x0);
10762 if ((GET_RTX_CLASS (GET_CODE (x1)) == '2'
10763 || GET_RTX_CLASS (GET_CODE (x1)) == 'c')
10764 && (x0 == XEXP (x1, 0) || x0 == XEXP (x1, 1)))
10765 return 2 + 2 * count_rtxs (x0)
10766 + count_rtxs (x == XEXP (x1, 0)
10767 ? XEXP (x1, 1) : XEXP (x1, 0));
10769 if ((GET_RTX_CLASS (GET_CODE (x0)) == '2'
10770 || GET_RTX_CLASS (GET_CODE (x0)) == 'c')
10771 && (x1 == XEXP (x0, 0) || x1 == XEXP (x0, 1)))
10772 return 2 + 2 * count_rtxs (x1)
10773 + count_rtxs (x == XEXP (x0, 0)
10774 ? XEXP (x0, 1) : XEXP (x0, 0));
10777 fmt = GET_RTX_FORMAT (code);
10778 for (i = GET_RTX_LENGTH (code) - 1; i >= 0; i--)
10779 if (fmt[i] == 'e')
10780 ret += count_rtxs (XEXP (x, i));
10782 return ret;
10785 /* Utility function for following routine. Called when X is part of a value
10786 being stored into last_set_value. Sets last_set_table_tick
10787 for each register mentioned. Similar to mention_regs in cse.c */
10789 static void
10790 update_table_tick (rtx x)
10792 enum rtx_code code = GET_CODE (x);
10793 const char *fmt = GET_RTX_FORMAT (code);
10794 int i;
10796 if (code == REG)
10798 unsigned int regno = REGNO (x);
10799 unsigned int endregno
10800 = regno + (regno < FIRST_PSEUDO_REGISTER
10801 ? hard_regno_nregs[regno][GET_MODE (x)] : 1);
10802 unsigned int r;
10804 for (r = regno; r < endregno; r++)
10805 reg_stat[r].last_set_table_tick = label_tick;
10807 return;
10810 for (i = GET_RTX_LENGTH (code) - 1; i >= 0; i--)
10811 /* Note that we can't have an "E" in values stored; see
10812 get_last_value_validate. */
10813 if (fmt[i] == 'e')
10815 /* Check for identical subexpressions. If x contains
10816 identical subexpression we only have to traverse one of
10817 them. */
10818 if (i == 0 && ARITHMETIC_P (x))
10820 /* Note that at this point x1 has already been
10821 processed. */
10822 rtx x0 = XEXP (x, 0);
10823 rtx x1 = XEXP (x, 1);
10825 /* If x0 and x1 are identical then there is no need to
10826 process x0. */
10827 if (x0 == x1)
10828 break;
10830 /* If x0 is identical to a subexpression of x1 then while
10831 processing x1, x0 has already been processed. Thus we
10832 are done with x. */
10833 if (ARITHMETIC_P (x1)
10834 && (x0 == XEXP (x1, 0) || x0 == XEXP (x1, 1)))
10835 break;
10837 /* If x1 is identical to a subexpression of x0 then we
10838 still have to process the rest of x0. */
10839 if (ARITHMETIC_P (x0)
10840 && (x1 == XEXP (x0, 0) || x1 == XEXP (x0, 1)))
10842 update_table_tick (XEXP (x0, x1 == XEXP (x0, 0) ? 1 : 0));
10843 break;
10847 update_table_tick (XEXP (x, i));
10851 /* Record that REG is set to VALUE in insn INSN. If VALUE is zero, we
10852 are saying that the register is clobbered and we no longer know its
10853 value. If INSN is zero, don't update reg_stat[].last_set; this is
10854 only permitted with VALUE also zero and is used to invalidate the
10855 register. */
10857 static void
10858 record_value_for_reg (rtx reg, rtx insn, rtx value)
10860 unsigned int regno = REGNO (reg);
10861 unsigned int endregno
10862 = regno + (regno < FIRST_PSEUDO_REGISTER
10863 ? hard_regno_nregs[regno][GET_MODE (reg)] : 1);
10864 unsigned int i;
10866 /* If VALUE contains REG and we have a previous value for REG, substitute
10867 the previous value. */
10868 if (value && insn && reg_overlap_mentioned_p (reg, value))
10870 rtx tem;
10872 /* Set things up so get_last_value is allowed to see anything set up to
10873 our insn. */
10874 subst_low_cuid = INSN_CUID (insn);
10875 tem = get_last_value (reg);
10877 /* If TEM is simply a binary operation with two CLOBBERs as operands,
10878 it isn't going to be useful and will take a lot of time to process,
10879 so just use the CLOBBER. */
10881 if (tem)
10883 if (ARITHMETIC_P (tem)
10884 && GET_CODE (XEXP (tem, 0)) == CLOBBER
10885 && GET_CODE (XEXP (tem, 1)) == CLOBBER)
10886 tem = XEXP (tem, 0);
10887 else if (count_occurrences (value, reg, 1) >= 2)
10889 /* If there are two or more occurrences of REG in VALUE,
10890 prevent the value from growing too much. */
10891 if (count_rtxs (tem) > MAX_LAST_VALUE_RTL)
10892 tem = gen_rtx_CLOBBER (GET_MODE (tem), const0_rtx);
10895 value = replace_rtx (copy_rtx (value), reg, tem);
10899 /* For each register modified, show we don't know its value, that
10900 we don't know about its bitwise content, that its value has been
10901 updated, and that we don't know the location of the death of the
10902 register. */
10903 for (i = regno; i < endregno; i++)
10905 if (insn)
10906 reg_stat[i].last_set = insn;
10908 reg_stat[i].last_set_value = 0;
10909 reg_stat[i].last_set_mode = 0;
10910 reg_stat[i].last_set_nonzero_bits = 0;
10911 reg_stat[i].last_set_sign_bit_copies = 0;
10912 reg_stat[i].last_death = 0;
10913 reg_stat[i].truncated_to_mode = 0;
10916 /* Mark registers that are being referenced in this value. */
10917 if (value)
10918 update_table_tick (value);
10920 /* Now update the status of each register being set.
10921 If someone is using this register in this block, set this register
10922 to invalid since we will get confused between the two lives in this
10923 basic block. This makes using this register always invalid. In cse, we
10924 scan the table to invalidate all entries using this register, but this
10925 is too much work for us. */
10927 for (i = regno; i < endregno; i++)
10929 reg_stat[i].last_set_label = label_tick;
10930 if (value && reg_stat[i].last_set_table_tick == label_tick)
10931 reg_stat[i].last_set_invalid = 1;
10932 else
10933 reg_stat[i].last_set_invalid = 0;
10936 /* The value being assigned might refer to X (like in "x++;"). In that
10937 case, we must replace it with (clobber (const_int 0)) to prevent
10938 infinite loops. */
10939 if (value && ! get_last_value_validate (&value, insn,
10940 reg_stat[regno].last_set_label, 0))
10942 value = copy_rtx (value);
10943 if (! get_last_value_validate (&value, insn,
10944 reg_stat[regno].last_set_label, 1))
10945 value = 0;
10948 /* For the main register being modified, update the value, the mode, the
10949 nonzero bits, and the number of sign bit copies. */
10951 reg_stat[regno].last_set_value = value;
10953 if (value)
10955 enum machine_mode mode = GET_MODE (reg);
10956 subst_low_cuid = INSN_CUID (insn);
10957 reg_stat[regno].last_set_mode = mode;
10958 if (GET_MODE_CLASS (mode) == MODE_INT
10959 && GET_MODE_BITSIZE (mode) <= HOST_BITS_PER_WIDE_INT)
10960 mode = nonzero_bits_mode;
10961 reg_stat[regno].last_set_nonzero_bits = nonzero_bits (value, mode);
10962 reg_stat[regno].last_set_sign_bit_copies
10963 = num_sign_bit_copies (value, GET_MODE (reg));
10967 /* Called via note_stores from record_dead_and_set_regs to handle one
10968 SET or CLOBBER in an insn. DATA is the instruction in which the
10969 set is occurring. */
10971 static void
10972 record_dead_and_set_regs_1 (rtx dest, rtx setter, void *data)
10974 rtx record_dead_insn = (rtx) data;
10976 if (GET_CODE (dest) == SUBREG)
10977 dest = SUBREG_REG (dest);
10979 if (REG_P (dest))
10981 /* If we are setting the whole register, we know its value. Otherwise
10982 show that we don't know the value. We can handle SUBREG in
10983 some cases. */
10984 if (GET_CODE (setter) == SET && dest == SET_DEST (setter))
10985 record_value_for_reg (dest, record_dead_insn, SET_SRC (setter));
10986 else if (GET_CODE (setter) == SET
10987 && GET_CODE (SET_DEST (setter)) == SUBREG
10988 && SUBREG_REG (SET_DEST (setter)) == dest
10989 && GET_MODE_BITSIZE (GET_MODE (dest)) <= BITS_PER_WORD
10990 && subreg_lowpart_p (SET_DEST (setter)))
10991 record_value_for_reg (dest, record_dead_insn,
10992 gen_lowpart (GET_MODE (dest),
10993 SET_SRC (setter)));
10994 else
10995 record_value_for_reg (dest, record_dead_insn, NULL_RTX);
10997 else if (MEM_P (dest)
10998 /* Ignore pushes, they clobber nothing. */
10999 && ! push_operand (dest, GET_MODE (dest)))
11000 mem_last_set = INSN_CUID (record_dead_insn);
11003 /* Update the records of when each REG was most recently set or killed
11004 for the things done by INSN. This is the last thing done in processing
11005 INSN in the combiner loop.
11007 We update reg_stat[], in particular fields last_set, last_set_value,
11008 last_set_mode, last_set_nonzero_bits, last_set_sign_bit_copies,
11009 last_death, and also the similar information mem_last_set (which insn
11010 most recently modified memory) and last_call_cuid (which insn was the
11011 most recent subroutine call). */
11013 static void
11014 record_dead_and_set_regs (rtx insn)
11016 rtx link;
11017 unsigned int i;
11019 for (link = REG_NOTES (insn); link; link = XEXP (link, 1))
11021 if (REG_NOTE_KIND (link) == REG_DEAD
11022 && REG_P (XEXP (link, 0)))
11024 unsigned int regno = REGNO (XEXP (link, 0));
11025 unsigned int endregno
11026 = regno + (regno < FIRST_PSEUDO_REGISTER
11027 ? hard_regno_nregs[regno][GET_MODE (XEXP (link, 0))]
11028 : 1);
11030 for (i = regno; i < endregno; i++)
11031 reg_stat[i].last_death = insn;
11033 else if (REG_NOTE_KIND (link) == REG_INC)
11034 record_value_for_reg (XEXP (link, 0), insn, NULL_RTX);
11037 if (CALL_P (insn))
11039 for (i = 0; i < FIRST_PSEUDO_REGISTER; i++)
11040 if (TEST_HARD_REG_BIT (regs_invalidated_by_call, i))
11042 reg_stat[i].last_set_value = 0;
11043 reg_stat[i].last_set_mode = 0;
11044 reg_stat[i].last_set_nonzero_bits = 0;
11045 reg_stat[i].last_set_sign_bit_copies = 0;
11046 reg_stat[i].last_death = 0;
11047 reg_stat[i].truncated_to_mode = 0;
11050 last_call_cuid = mem_last_set = INSN_CUID (insn);
11052 /* Don't bother recording what this insn does. It might set the
11053 return value register, but we can't combine into a call
11054 pattern anyway, so there's no point trying (and it may cause
11055 a crash, if e.g. we wind up asking for last_set_value of a
11056 SUBREG of the return value register). */
11057 return;
11060 note_stores (PATTERN (insn), record_dead_and_set_regs_1, insn);
11063 /* If a SUBREG has the promoted bit set, it is in fact a property of the
11064 register present in the SUBREG, so for each such SUBREG go back and
11065 adjust nonzero and sign bit information of the registers that are
11066 known to have some zero/sign bits set.
11068 This is needed because when combine blows the SUBREGs away, the
11069 information on zero/sign bits is lost and further combines can be
11070 missed because of that. */
11072 static void
11073 record_promoted_value (rtx insn, rtx subreg)
11075 rtx links, set;
11076 unsigned int regno = REGNO (SUBREG_REG (subreg));
11077 enum machine_mode mode = GET_MODE (subreg);
11079 if (GET_MODE_BITSIZE (mode) > HOST_BITS_PER_WIDE_INT)
11080 return;
11082 for (links = LOG_LINKS (insn); links;)
11084 insn = XEXP (links, 0);
11085 set = single_set (insn);
11087 if (! set || !REG_P (SET_DEST (set))
11088 || REGNO (SET_DEST (set)) != regno
11089 || GET_MODE (SET_DEST (set)) != GET_MODE (SUBREG_REG (subreg)))
11091 links = XEXP (links, 1);
11092 continue;
11095 if (reg_stat[regno].last_set == insn)
11097 if (SUBREG_PROMOTED_UNSIGNED_P (subreg) > 0)
11098 reg_stat[regno].last_set_nonzero_bits &= GET_MODE_MASK (mode);
11101 if (REG_P (SET_SRC (set)))
11103 regno = REGNO (SET_SRC (set));
11104 links = LOG_LINKS (insn);
11106 else
11107 break;
11111 /* Check if X, a register, is known to contain a value already
11112 truncated to MODE. In this case we can use a subreg to refer to
11113 the truncated value even though in the generic case we would need
11114 an explicit truncation. */
11116 static bool
11117 reg_truncated_to_mode (enum machine_mode mode, rtx x)
11119 enum machine_mode truncated = reg_stat[REGNO (x)].truncated_to_mode;
11121 if (truncated == 0 || reg_stat[REGNO (x)].truncation_label != label_tick)
11122 return false;
11123 if (GET_MODE_SIZE (truncated) <= GET_MODE_SIZE (mode))
11124 return true;
11125 if (TRULY_NOOP_TRUNCATION (GET_MODE_BITSIZE (mode),
11126 GET_MODE_BITSIZE (truncated)))
11127 return true;
11128 return false;
11131 /* X is a REG or a SUBREG. If X is some sort of a truncation record
11132 it. For non-TRULY_NOOP_TRUNCATION targets we might be able to turn
11133 a truncate into a subreg using this information. */
11135 static void
11136 record_truncated_value (rtx x)
11138 enum machine_mode truncated_mode;
11140 if (GET_CODE (x) == SUBREG && REG_P (SUBREG_REG (x)))
11142 enum machine_mode original_mode = GET_MODE (SUBREG_REG (x));
11143 truncated_mode = GET_MODE (x);
11145 if (GET_MODE_SIZE (original_mode) <= GET_MODE_SIZE (truncated_mode))
11146 return;
11148 if (TRULY_NOOP_TRUNCATION (GET_MODE_BITSIZE (truncated_mode),
11149 GET_MODE_BITSIZE (original_mode)))
11150 return;
11152 x = SUBREG_REG (x);
11154 /* ??? For hard-regs we now record everthing. We might be able to
11155 optimize this using last_set_mode. */
11156 else if (REG_P (x) && REGNO (x) < FIRST_PSEUDO_REGISTER)
11157 truncated_mode = GET_MODE (x);
11158 else
11159 return;
11161 if (reg_stat[REGNO (x)].truncated_to_mode == 0
11162 || reg_stat[REGNO (x)].truncation_label < label_tick
11163 || (GET_MODE_SIZE (truncated_mode)
11164 < GET_MODE_SIZE (reg_stat[REGNO (x)].truncated_to_mode)))
11166 reg_stat[REGNO (x)].truncated_to_mode = truncated_mode;
11167 reg_stat[REGNO (x)].truncation_label = label_tick;
11171 /* Scan X for promoted SUBREGs and truncated REGs. For each one
11172 found, note what it implies to the registers used in it. */
11174 static void
11175 check_conversions (rtx insn, rtx x)
11177 if (GET_CODE (x) == SUBREG || REG_P (x))
11179 if (GET_CODE (x) == SUBREG
11180 && SUBREG_PROMOTED_VAR_P (x)
11181 && REG_P (SUBREG_REG (x)))
11182 record_promoted_value (insn, x);
11184 record_truncated_value (x);
11186 else
11188 const char *format = GET_RTX_FORMAT (GET_CODE (x));
11189 int i, j;
11191 for (i = 0; i < GET_RTX_LENGTH (GET_CODE (x)); i++)
11192 switch (format[i])
11194 case 'e':
11195 check_conversions (insn, XEXP (x, i));
11196 break;
11197 case 'V':
11198 case 'E':
11199 if (XVEC (x, i) != 0)
11200 for (j = 0; j < XVECLEN (x, i); j++)
11201 check_conversions (insn, XVECEXP (x, i, j));
11202 break;
11207 /* Utility routine for the following function. Verify that all the registers
11208 mentioned in *LOC are valid when *LOC was part of a value set when
11209 label_tick == TICK. Return 0 if some are not.
11211 If REPLACE is nonzero, replace the invalid reference with
11212 (clobber (const_int 0)) and return 1. This replacement is useful because
11213 we often can get useful information about the form of a value (e.g., if
11214 it was produced by a shift that always produces -1 or 0) even though
11215 we don't know exactly what registers it was produced from. */
11217 static int
11218 get_last_value_validate (rtx *loc, rtx insn, int tick, int replace)
11220 rtx x = *loc;
11221 const char *fmt = GET_RTX_FORMAT (GET_CODE (x));
11222 int len = GET_RTX_LENGTH (GET_CODE (x));
11223 int i;
11225 if (REG_P (x))
11227 unsigned int regno = REGNO (x);
11228 unsigned int endregno
11229 = regno + (regno < FIRST_PSEUDO_REGISTER
11230 ? hard_regno_nregs[regno][GET_MODE (x)] : 1);
11231 unsigned int j;
11233 for (j = regno; j < endregno; j++)
11234 if (reg_stat[j].last_set_invalid
11235 /* If this is a pseudo-register that was only set once and not
11236 live at the beginning of the function, it is always valid. */
11237 || (! (regno >= FIRST_PSEUDO_REGISTER
11238 && REG_N_SETS (regno) == 1
11239 && (! REGNO_REG_SET_P
11240 (ENTRY_BLOCK_PTR->next_bb->il.rtl->global_live_at_start,
11241 regno)))
11242 && reg_stat[j].last_set_label > tick))
11244 if (replace)
11245 *loc = gen_rtx_CLOBBER (GET_MODE (x), const0_rtx);
11246 return replace;
11249 return 1;
11251 /* If this is a memory reference, make sure that there were
11252 no stores after it that might have clobbered the value. We don't
11253 have alias info, so we assume any store invalidates it. */
11254 else if (MEM_P (x) && !MEM_READONLY_P (x)
11255 && INSN_CUID (insn) <= mem_last_set)
11257 if (replace)
11258 *loc = gen_rtx_CLOBBER (GET_MODE (x), const0_rtx);
11259 return replace;
11262 for (i = 0; i < len; i++)
11264 if (fmt[i] == 'e')
11266 /* Check for identical subexpressions. If x contains
11267 identical subexpression we only have to traverse one of
11268 them. */
11269 if (i == 1 && ARITHMETIC_P (x))
11271 /* Note that at this point x0 has already been checked
11272 and found valid. */
11273 rtx x0 = XEXP (x, 0);
11274 rtx x1 = XEXP (x, 1);
11276 /* If x0 and x1 are identical then x is also valid. */
11277 if (x0 == x1)
11278 return 1;
11280 /* If x1 is identical to a subexpression of x0 then
11281 while checking x0, x1 has already been checked. Thus
11282 it is valid and so as x. */
11283 if (ARITHMETIC_P (x0)
11284 && (x1 == XEXP (x0, 0) || x1 == XEXP (x0, 1)))
11285 return 1;
11287 /* If x0 is identical to a subexpression of x1 then x is
11288 valid iff the rest of x1 is valid. */
11289 if (ARITHMETIC_P (x1)
11290 && (x0 == XEXP (x1, 0) || x0 == XEXP (x1, 1)))
11291 return
11292 get_last_value_validate (&XEXP (x1,
11293 x0 == XEXP (x1, 0) ? 1 : 0),
11294 insn, tick, replace);
11297 if (get_last_value_validate (&XEXP (x, i), insn, tick,
11298 replace) == 0)
11299 return 0;
11301 /* Don't bother with these. They shouldn't occur anyway. */
11302 else if (fmt[i] == 'E')
11303 return 0;
11306 /* If we haven't found a reason for it to be invalid, it is valid. */
11307 return 1;
11310 /* Get the last value assigned to X, if known. Some registers
11311 in the value may be replaced with (clobber (const_int 0)) if their value
11312 is known longer known reliably. */
11314 static rtx
11315 get_last_value (rtx x)
11317 unsigned int regno;
11318 rtx value;
11320 /* If this is a non-paradoxical SUBREG, get the value of its operand and
11321 then convert it to the desired mode. If this is a paradoxical SUBREG,
11322 we cannot predict what values the "extra" bits might have. */
11323 if (GET_CODE (x) == SUBREG
11324 && subreg_lowpart_p (x)
11325 && (GET_MODE_SIZE (GET_MODE (x))
11326 <= GET_MODE_SIZE (GET_MODE (SUBREG_REG (x))))
11327 && (value = get_last_value (SUBREG_REG (x))) != 0)
11328 return gen_lowpart (GET_MODE (x), value);
11330 if (!REG_P (x))
11331 return 0;
11333 regno = REGNO (x);
11334 value = reg_stat[regno].last_set_value;
11336 /* If we don't have a value, or if it isn't for this basic block and
11337 it's either a hard register, set more than once, or it's a live
11338 at the beginning of the function, return 0.
11340 Because if it's not live at the beginning of the function then the reg
11341 is always set before being used (is never used without being set).
11342 And, if it's set only once, and it's always set before use, then all
11343 uses must have the same last value, even if it's not from this basic
11344 block. */
11346 if (value == 0
11347 || (reg_stat[regno].last_set_label != label_tick
11348 && (regno < FIRST_PSEUDO_REGISTER
11349 || REG_N_SETS (regno) != 1
11350 || (REGNO_REG_SET_P
11351 (ENTRY_BLOCK_PTR->next_bb->il.rtl->global_live_at_start,
11352 regno)))))
11353 return 0;
11355 /* If the value was set in a later insn than the ones we are processing,
11356 we can't use it even if the register was only set once. */
11357 if (INSN_CUID (reg_stat[regno].last_set) >= subst_low_cuid)
11358 return 0;
11360 /* If the value has all its registers valid, return it. */
11361 if (get_last_value_validate (&value, reg_stat[regno].last_set,
11362 reg_stat[regno].last_set_label, 0))
11363 return value;
11365 /* Otherwise, make a copy and replace any invalid register with
11366 (clobber (const_int 0)). If that fails for some reason, return 0. */
11368 value = copy_rtx (value);
11369 if (get_last_value_validate (&value, reg_stat[regno].last_set,
11370 reg_stat[regno].last_set_label, 1))
11371 return value;
11373 return 0;
11376 /* Return nonzero if expression X refers to a REG or to memory
11377 that is set in an instruction more recent than FROM_CUID. */
11379 static int
11380 use_crosses_set_p (rtx x, int from_cuid)
11382 const char *fmt;
11383 int i;
11384 enum rtx_code code = GET_CODE (x);
11386 if (code == REG)
11388 unsigned int regno = REGNO (x);
11389 unsigned endreg = regno + (regno < FIRST_PSEUDO_REGISTER
11390 ? hard_regno_nregs[regno][GET_MODE (x)] : 1);
11392 #ifdef PUSH_ROUNDING
11393 /* Don't allow uses of the stack pointer to be moved,
11394 because we don't know whether the move crosses a push insn. */
11395 if (regno == STACK_POINTER_REGNUM && PUSH_ARGS)
11396 return 1;
11397 #endif
11398 for (; regno < endreg; regno++)
11399 if (reg_stat[regno].last_set
11400 && INSN_CUID (reg_stat[regno].last_set) > from_cuid)
11401 return 1;
11402 return 0;
11405 if (code == MEM && mem_last_set > from_cuid)
11406 return 1;
11408 fmt = GET_RTX_FORMAT (code);
11410 for (i = GET_RTX_LENGTH (code) - 1; i >= 0; i--)
11412 if (fmt[i] == 'E')
11414 int j;
11415 for (j = XVECLEN (x, i) - 1; j >= 0; j--)
11416 if (use_crosses_set_p (XVECEXP (x, i, j), from_cuid))
11417 return 1;
11419 else if (fmt[i] == 'e'
11420 && use_crosses_set_p (XEXP (x, i), from_cuid))
11421 return 1;
11423 return 0;
11426 /* Define three variables used for communication between the following
11427 routines. */
11429 static unsigned int reg_dead_regno, reg_dead_endregno;
11430 static int reg_dead_flag;
11432 /* Function called via note_stores from reg_dead_at_p.
11434 If DEST is within [reg_dead_regno, reg_dead_endregno), set
11435 reg_dead_flag to 1 if X is a CLOBBER and to -1 it is a SET. */
11437 static void
11438 reg_dead_at_p_1 (rtx dest, rtx x, void *data ATTRIBUTE_UNUSED)
11440 unsigned int regno, endregno;
11442 if (!REG_P (dest))
11443 return;
11445 regno = REGNO (dest);
11446 endregno = regno + (regno < FIRST_PSEUDO_REGISTER
11447 ? hard_regno_nregs[regno][GET_MODE (dest)] : 1);
11449 if (reg_dead_endregno > regno && reg_dead_regno < endregno)
11450 reg_dead_flag = (GET_CODE (x) == CLOBBER) ? 1 : -1;
11453 /* Return nonzero if REG is known to be dead at INSN.
11455 We scan backwards from INSN. If we hit a REG_DEAD note or a CLOBBER
11456 referencing REG, it is dead. If we hit a SET referencing REG, it is
11457 live. Otherwise, see if it is live or dead at the start of the basic
11458 block we are in. Hard regs marked as being live in NEWPAT_USED_REGS
11459 must be assumed to be always live. */
11461 static int
11462 reg_dead_at_p (rtx reg, rtx insn)
11464 basic_block block;
11465 unsigned int i;
11467 /* Set variables for reg_dead_at_p_1. */
11468 reg_dead_regno = REGNO (reg);
11469 reg_dead_endregno = reg_dead_regno + (reg_dead_regno < FIRST_PSEUDO_REGISTER
11470 ? hard_regno_nregs[reg_dead_regno]
11471 [GET_MODE (reg)]
11472 : 1);
11474 reg_dead_flag = 0;
11476 /* Check that reg isn't mentioned in NEWPAT_USED_REGS. For fixed registers
11477 we allow the machine description to decide whether use-and-clobber
11478 patterns are OK. */
11479 if (reg_dead_regno < FIRST_PSEUDO_REGISTER)
11481 for (i = reg_dead_regno; i < reg_dead_endregno; i++)
11482 if (!fixed_regs[i] && TEST_HARD_REG_BIT (newpat_used_regs, i))
11483 return 0;
11486 /* Scan backwards until we find a REG_DEAD note, SET, CLOBBER, label, or
11487 beginning of function. */
11488 for (; insn && !LABEL_P (insn) && !BARRIER_P (insn);
11489 insn = prev_nonnote_insn (insn))
11491 note_stores (PATTERN (insn), reg_dead_at_p_1, NULL);
11492 if (reg_dead_flag)
11493 return reg_dead_flag == 1 ? 1 : 0;
11495 if (find_regno_note (insn, REG_DEAD, reg_dead_regno))
11496 return 1;
11499 /* Get the basic block that we were in. */
11500 if (insn == 0)
11501 block = ENTRY_BLOCK_PTR->next_bb;
11502 else
11504 FOR_EACH_BB (block)
11505 if (insn == BB_HEAD (block))
11506 break;
11508 if (block == EXIT_BLOCK_PTR)
11509 return 0;
11512 for (i = reg_dead_regno; i < reg_dead_endregno; i++)
11513 if (REGNO_REG_SET_P (block->il.rtl->global_live_at_start, i))
11514 return 0;
11516 return 1;
11519 /* Note hard registers in X that are used. This code is similar to
11520 that in flow.c, but much simpler since we don't care about pseudos. */
11522 static void
11523 mark_used_regs_combine (rtx x)
11525 RTX_CODE code = GET_CODE (x);
11526 unsigned int regno;
11527 int i;
11529 switch (code)
11531 case LABEL_REF:
11532 case SYMBOL_REF:
11533 case CONST_INT:
11534 case CONST:
11535 case CONST_DOUBLE:
11536 case CONST_VECTOR:
11537 case PC:
11538 case ADDR_VEC:
11539 case ADDR_DIFF_VEC:
11540 case ASM_INPUT:
11541 #ifdef HAVE_cc0
11542 /* CC0 must die in the insn after it is set, so we don't need to take
11543 special note of it here. */
11544 case CC0:
11545 #endif
11546 return;
11548 case CLOBBER:
11549 /* If we are clobbering a MEM, mark any hard registers inside the
11550 address as used. */
11551 if (MEM_P (XEXP (x, 0)))
11552 mark_used_regs_combine (XEXP (XEXP (x, 0), 0));
11553 return;
11555 case REG:
11556 regno = REGNO (x);
11557 /* A hard reg in a wide mode may really be multiple registers.
11558 If so, mark all of them just like the first. */
11559 if (regno < FIRST_PSEUDO_REGISTER)
11561 unsigned int endregno, r;
11563 /* None of this applies to the stack, frame or arg pointers. */
11564 if (regno == STACK_POINTER_REGNUM
11565 #if FRAME_POINTER_REGNUM != HARD_FRAME_POINTER_REGNUM
11566 || regno == HARD_FRAME_POINTER_REGNUM
11567 #endif
11568 #if FRAME_POINTER_REGNUM != ARG_POINTER_REGNUM
11569 || (regno == ARG_POINTER_REGNUM && fixed_regs[regno])
11570 #endif
11571 || regno == FRAME_POINTER_REGNUM)
11572 return;
11574 endregno = regno + hard_regno_nregs[regno][GET_MODE (x)];
11575 for (r = regno; r < endregno; r++)
11576 SET_HARD_REG_BIT (newpat_used_regs, r);
11578 return;
11580 case SET:
11582 /* If setting a MEM, or a SUBREG of a MEM, then note any hard regs in
11583 the address. */
11584 rtx testreg = SET_DEST (x);
11586 while (GET_CODE (testreg) == SUBREG
11587 || GET_CODE (testreg) == ZERO_EXTRACT
11588 || GET_CODE (testreg) == STRICT_LOW_PART)
11589 testreg = XEXP (testreg, 0);
11591 if (MEM_P (testreg))
11592 mark_used_regs_combine (XEXP (testreg, 0));
11594 mark_used_regs_combine (SET_SRC (x));
11596 return;
11598 default:
11599 break;
11602 /* Recursively scan the operands of this expression. */
11605 const char *fmt = GET_RTX_FORMAT (code);
11607 for (i = GET_RTX_LENGTH (code) - 1; i >= 0; i--)
11609 if (fmt[i] == 'e')
11610 mark_used_regs_combine (XEXP (x, i));
11611 else if (fmt[i] == 'E')
11613 int j;
11615 for (j = 0; j < XVECLEN (x, i); j++)
11616 mark_used_regs_combine (XVECEXP (x, i, j));
11622 /* Remove register number REGNO from the dead registers list of INSN.
11624 Return the note used to record the death, if there was one. */
11627 remove_death (unsigned int regno, rtx insn)
11629 rtx note = find_regno_note (insn, REG_DEAD, regno);
11631 if (note)
11633 REG_N_DEATHS (regno)--;
11634 remove_note (insn, note);
11637 return note;
11640 /* For each register (hardware or pseudo) used within expression X, if its
11641 death is in an instruction with cuid between FROM_CUID (inclusive) and
11642 TO_INSN (exclusive), put a REG_DEAD note for that register in the
11643 list headed by PNOTES.
11645 That said, don't move registers killed by maybe_kill_insn.
11647 This is done when X is being merged by combination into TO_INSN. These
11648 notes will then be distributed as needed. */
11650 static void
11651 move_deaths (rtx x, rtx maybe_kill_insn, int from_cuid, rtx to_insn,
11652 rtx *pnotes)
11654 const char *fmt;
11655 int len, i;
11656 enum rtx_code code = GET_CODE (x);
11658 if (code == REG)
11660 unsigned int regno = REGNO (x);
11661 rtx where_dead = reg_stat[regno].last_death;
11662 rtx before_dead, after_dead;
11664 /* Don't move the register if it gets killed in between from and to. */
11665 if (maybe_kill_insn && reg_set_p (x, maybe_kill_insn)
11666 && ! reg_referenced_p (x, maybe_kill_insn))
11667 return;
11669 /* WHERE_DEAD could be a USE insn made by combine, so first we
11670 make sure that we have insns with valid INSN_CUID values. */
11671 before_dead = where_dead;
11672 while (before_dead && INSN_UID (before_dead) > max_uid_cuid)
11673 before_dead = PREV_INSN (before_dead);
11675 after_dead = where_dead;
11676 while (after_dead && INSN_UID (after_dead) > max_uid_cuid)
11677 after_dead = NEXT_INSN (after_dead);
11679 if (before_dead && after_dead
11680 && INSN_CUID (before_dead) >= from_cuid
11681 && (INSN_CUID (after_dead) < INSN_CUID (to_insn)
11682 || (where_dead != after_dead
11683 && INSN_CUID (after_dead) == INSN_CUID (to_insn))))
11685 rtx note = remove_death (regno, where_dead);
11687 /* It is possible for the call above to return 0. This can occur
11688 when last_death points to I2 or I1 that we combined with.
11689 In that case make a new note.
11691 We must also check for the case where X is a hard register
11692 and NOTE is a death note for a range of hard registers
11693 including X. In that case, we must put REG_DEAD notes for
11694 the remaining registers in place of NOTE. */
11696 if (note != 0 && regno < FIRST_PSEUDO_REGISTER
11697 && (GET_MODE_SIZE (GET_MODE (XEXP (note, 0)))
11698 > GET_MODE_SIZE (GET_MODE (x))))
11700 unsigned int deadregno = REGNO (XEXP (note, 0));
11701 unsigned int deadend
11702 = (deadregno + hard_regno_nregs[deadregno]
11703 [GET_MODE (XEXP (note, 0))]);
11704 unsigned int ourend
11705 = regno + hard_regno_nregs[regno][GET_MODE (x)];
11706 unsigned int i;
11708 for (i = deadregno; i < deadend; i++)
11709 if (i < regno || i >= ourend)
11710 REG_NOTES (where_dead)
11711 = gen_rtx_EXPR_LIST (REG_DEAD,
11712 regno_reg_rtx[i],
11713 REG_NOTES (where_dead));
11716 /* If we didn't find any note, or if we found a REG_DEAD note that
11717 covers only part of the given reg, and we have a multi-reg hard
11718 register, then to be safe we must check for REG_DEAD notes
11719 for each register other than the first. They could have
11720 their own REG_DEAD notes lying around. */
11721 else if ((note == 0
11722 || (note != 0
11723 && (GET_MODE_SIZE (GET_MODE (XEXP (note, 0)))
11724 < GET_MODE_SIZE (GET_MODE (x)))))
11725 && regno < FIRST_PSEUDO_REGISTER
11726 && hard_regno_nregs[regno][GET_MODE (x)] > 1)
11728 unsigned int ourend
11729 = regno + hard_regno_nregs[regno][GET_MODE (x)];
11730 unsigned int i, offset;
11731 rtx oldnotes = 0;
11733 if (note)
11734 offset = hard_regno_nregs[regno][GET_MODE (XEXP (note, 0))];
11735 else
11736 offset = 1;
11738 for (i = regno + offset; i < ourend; i++)
11739 move_deaths (regno_reg_rtx[i],
11740 maybe_kill_insn, from_cuid, to_insn, &oldnotes);
11743 if (note != 0 && GET_MODE (XEXP (note, 0)) == GET_MODE (x))
11745 XEXP (note, 1) = *pnotes;
11746 *pnotes = note;
11748 else
11749 *pnotes = gen_rtx_EXPR_LIST (REG_DEAD, x, *pnotes);
11751 REG_N_DEATHS (regno)++;
11754 return;
11757 else if (GET_CODE (x) == SET)
11759 rtx dest = SET_DEST (x);
11761 move_deaths (SET_SRC (x), maybe_kill_insn, from_cuid, to_insn, pnotes);
11763 /* In the case of a ZERO_EXTRACT, a STRICT_LOW_PART, or a SUBREG
11764 that accesses one word of a multi-word item, some
11765 piece of everything register in the expression is used by
11766 this insn, so remove any old death. */
11767 /* ??? So why do we test for equality of the sizes? */
11769 if (GET_CODE (dest) == ZERO_EXTRACT
11770 || GET_CODE (dest) == STRICT_LOW_PART
11771 || (GET_CODE (dest) == SUBREG
11772 && (((GET_MODE_SIZE (GET_MODE (dest))
11773 + UNITS_PER_WORD - 1) / UNITS_PER_WORD)
11774 == ((GET_MODE_SIZE (GET_MODE (SUBREG_REG (dest)))
11775 + UNITS_PER_WORD - 1) / UNITS_PER_WORD))))
11777 move_deaths (dest, maybe_kill_insn, from_cuid, to_insn, pnotes);
11778 return;
11781 /* If this is some other SUBREG, we know it replaces the entire
11782 value, so use that as the destination. */
11783 if (GET_CODE (dest) == SUBREG)
11784 dest = SUBREG_REG (dest);
11786 /* If this is a MEM, adjust deaths of anything used in the address.
11787 For a REG (the only other possibility), the entire value is
11788 being replaced so the old value is not used in this insn. */
11790 if (MEM_P (dest))
11791 move_deaths (XEXP (dest, 0), maybe_kill_insn, from_cuid,
11792 to_insn, pnotes);
11793 return;
11796 else if (GET_CODE (x) == CLOBBER)
11797 return;
11799 len = GET_RTX_LENGTH (code);
11800 fmt = GET_RTX_FORMAT (code);
11802 for (i = 0; i < len; i++)
11804 if (fmt[i] == 'E')
11806 int j;
11807 for (j = XVECLEN (x, i) - 1; j >= 0; j--)
11808 move_deaths (XVECEXP (x, i, j), maybe_kill_insn, from_cuid,
11809 to_insn, pnotes);
11811 else if (fmt[i] == 'e')
11812 move_deaths (XEXP (x, i), maybe_kill_insn, from_cuid, to_insn, pnotes);
11816 /* Return 1 if X is the target of a bit-field assignment in BODY, the
11817 pattern of an insn. X must be a REG. */
11819 static int
11820 reg_bitfield_target_p (rtx x, rtx body)
11822 int i;
11824 if (GET_CODE (body) == SET)
11826 rtx dest = SET_DEST (body);
11827 rtx target;
11828 unsigned int regno, tregno, endregno, endtregno;
11830 if (GET_CODE (dest) == ZERO_EXTRACT)
11831 target = XEXP (dest, 0);
11832 else if (GET_CODE (dest) == STRICT_LOW_PART)
11833 target = SUBREG_REG (XEXP (dest, 0));
11834 else
11835 return 0;
11837 if (GET_CODE (target) == SUBREG)
11838 target = SUBREG_REG (target);
11840 if (!REG_P (target))
11841 return 0;
11843 tregno = REGNO (target), regno = REGNO (x);
11844 if (tregno >= FIRST_PSEUDO_REGISTER || regno >= FIRST_PSEUDO_REGISTER)
11845 return target == x;
11847 endtregno = tregno + hard_regno_nregs[tregno][GET_MODE (target)];
11848 endregno = regno + hard_regno_nregs[regno][GET_MODE (x)];
11850 return endregno > tregno && regno < endtregno;
11853 else if (GET_CODE (body) == PARALLEL)
11854 for (i = XVECLEN (body, 0) - 1; i >= 0; i--)
11855 if (reg_bitfield_target_p (x, XVECEXP (body, 0, i)))
11856 return 1;
11858 return 0;
11861 /* Given a chain of REG_NOTES originally from FROM_INSN, try to place them
11862 as appropriate. I3 and I2 are the insns resulting from the combination
11863 insns including FROM (I2 may be zero).
11865 ELIM_I2 and ELIM_I1 are either zero or registers that we know will
11866 not need REG_DEAD notes because they are being substituted for. This
11867 saves searching in the most common cases.
11869 Each note in the list is either ignored or placed on some insns, depending
11870 on the type of note. */
11872 static void
11873 distribute_notes (rtx notes, rtx from_insn, rtx i3, rtx i2, rtx elim_i2,
11874 rtx elim_i1)
11876 rtx note, next_note;
11877 rtx tem;
11879 for (note = notes; note; note = next_note)
11881 rtx place = 0, place2 = 0;
11883 next_note = XEXP (note, 1);
11884 switch (REG_NOTE_KIND (note))
11886 case REG_BR_PROB:
11887 case REG_BR_PRED:
11888 /* Doesn't matter much where we put this, as long as it's somewhere.
11889 It is preferable to keep these notes on branches, which is most
11890 likely to be i3. */
11891 place = i3;
11892 break;
11894 case REG_VALUE_PROFILE:
11895 /* Just get rid of this note, as it is unused later anyway. */
11896 break;
11898 case REG_NON_LOCAL_GOTO:
11899 if (JUMP_P (i3))
11900 place = i3;
11901 else
11903 gcc_assert (i2 && JUMP_P (i2));
11904 place = i2;
11906 break;
11908 case REG_EH_REGION:
11909 /* These notes must remain with the call or trapping instruction. */
11910 if (CALL_P (i3))
11911 place = i3;
11912 else if (i2 && CALL_P (i2))
11913 place = i2;
11914 else
11916 gcc_assert (flag_non_call_exceptions);
11917 if (may_trap_p (i3))
11918 place = i3;
11919 else if (i2 && may_trap_p (i2))
11920 place = i2;
11921 /* ??? Otherwise assume we've combined things such that we
11922 can now prove that the instructions can't trap. Drop the
11923 note in this case. */
11925 break;
11927 case REG_NORETURN:
11928 case REG_SETJMP:
11929 /* These notes must remain with the call. It should not be
11930 possible for both I2 and I3 to be a call. */
11931 if (CALL_P (i3))
11932 place = i3;
11933 else
11935 gcc_assert (i2 && CALL_P (i2));
11936 place = i2;
11938 break;
11940 case REG_UNUSED:
11941 /* Any clobbers for i3 may still exist, and so we must process
11942 REG_UNUSED notes from that insn.
11944 Any clobbers from i2 or i1 can only exist if they were added by
11945 recog_for_combine. In that case, recog_for_combine created the
11946 necessary REG_UNUSED notes. Trying to keep any original
11947 REG_UNUSED notes from these insns can cause incorrect output
11948 if it is for the same register as the original i3 dest.
11949 In that case, we will notice that the register is set in i3,
11950 and then add a REG_UNUSED note for the destination of i3, which
11951 is wrong. However, it is possible to have REG_UNUSED notes from
11952 i2 or i1 for register which were both used and clobbered, so
11953 we keep notes from i2 or i1 if they will turn into REG_DEAD
11954 notes. */
11956 /* If this register is set or clobbered in I3, put the note there
11957 unless there is one already. */
11958 if (reg_set_p (XEXP (note, 0), PATTERN (i3)))
11960 if (from_insn != i3)
11961 break;
11963 if (! (REG_P (XEXP (note, 0))
11964 ? find_regno_note (i3, REG_UNUSED, REGNO (XEXP (note, 0)))
11965 : find_reg_note (i3, REG_UNUSED, XEXP (note, 0))))
11966 place = i3;
11968 /* Otherwise, if this register is used by I3, then this register
11969 now dies here, so we must put a REG_DEAD note here unless there
11970 is one already. */
11971 else if (reg_referenced_p (XEXP (note, 0), PATTERN (i3))
11972 && ! (REG_P (XEXP (note, 0))
11973 ? find_regno_note (i3, REG_DEAD,
11974 REGNO (XEXP (note, 0)))
11975 : find_reg_note (i3, REG_DEAD, XEXP (note, 0))))
11977 PUT_REG_NOTE_KIND (note, REG_DEAD);
11978 place = i3;
11980 break;
11982 case REG_EQUAL:
11983 case REG_EQUIV:
11984 case REG_NOALIAS:
11985 /* These notes say something about results of an insn. We can
11986 only support them if they used to be on I3 in which case they
11987 remain on I3. Otherwise they are ignored.
11989 If the note refers to an expression that is not a constant, we
11990 must also ignore the note since we cannot tell whether the
11991 equivalence is still true. It might be possible to do
11992 slightly better than this (we only have a problem if I2DEST
11993 or I1DEST is present in the expression), but it doesn't
11994 seem worth the trouble. */
11996 if (from_insn == i3
11997 && (XEXP (note, 0) == 0 || CONSTANT_P (XEXP (note, 0))))
11998 place = i3;
11999 break;
12001 case REG_INC:
12002 case REG_NO_CONFLICT:
12003 /* These notes say something about how a register is used. They must
12004 be present on any use of the register in I2 or I3. */
12005 if (reg_mentioned_p (XEXP (note, 0), PATTERN (i3)))
12006 place = i3;
12008 if (i2 && reg_mentioned_p (XEXP (note, 0), PATTERN (i2)))
12010 if (place)
12011 place2 = i2;
12012 else
12013 place = i2;
12015 break;
12017 case REG_LABEL:
12018 /* This can show up in several ways -- either directly in the
12019 pattern, or hidden off in the constant pool with (or without?)
12020 a REG_EQUAL note. */
12021 /* ??? Ignore the without-reg_equal-note problem for now. */
12022 if (reg_mentioned_p (XEXP (note, 0), PATTERN (i3))
12023 || ((tem = find_reg_note (i3, REG_EQUAL, NULL_RTX))
12024 && GET_CODE (XEXP (tem, 0)) == LABEL_REF
12025 && XEXP (XEXP (tem, 0), 0) == XEXP (note, 0)))
12026 place = i3;
12028 if (i2
12029 && (reg_mentioned_p (XEXP (note, 0), PATTERN (i2))
12030 || ((tem = find_reg_note (i2, REG_EQUAL, NULL_RTX))
12031 && GET_CODE (XEXP (tem, 0)) == LABEL_REF
12032 && XEXP (XEXP (tem, 0), 0) == XEXP (note, 0))))
12034 if (place)
12035 place2 = i2;
12036 else
12037 place = i2;
12040 /* Don't attach REG_LABEL note to a JUMP_INSN. Add
12041 a JUMP_LABEL instead or decrement LABEL_NUSES. */
12042 if (place && JUMP_P (place))
12044 rtx label = JUMP_LABEL (place);
12046 if (!label)
12047 JUMP_LABEL (place) = XEXP (note, 0);
12048 else
12050 gcc_assert (label == XEXP (note, 0));
12051 if (LABEL_P (label))
12052 LABEL_NUSES (label)--;
12054 place = 0;
12056 if (place2 && JUMP_P (place2))
12058 rtx label = JUMP_LABEL (place2);
12060 if (!label)
12061 JUMP_LABEL (place2) = XEXP (note, 0);
12062 else
12064 gcc_assert (label == XEXP (note, 0));
12065 if (LABEL_P (label))
12066 LABEL_NUSES (label)--;
12068 place2 = 0;
12070 break;
12072 case REG_NONNEG:
12073 /* This note says something about the value of a register prior
12074 to the execution of an insn. It is too much trouble to see
12075 if the note is still correct in all situations. It is better
12076 to simply delete it. */
12077 break;
12079 case REG_RETVAL:
12080 /* If the insn previously containing this note still exists,
12081 put it back where it was. Otherwise move it to the previous
12082 insn. Adjust the corresponding REG_LIBCALL note. */
12083 if (!NOTE_P (from_insn))
12084 place = from_insn;
12085 else
12087 tem = find_reg_note (XEXP (note, 0), REG_LIBCALL, NULL_RTX);
12088 place = prev_real_insn (from_insn);
12089 if (tem && place)
12090 XEXP (tem, 0) = place;
12091 /* If we're deleting the last remaining instruction of a
12092 libcall sequence, don't add the notes. */
12093 else if (XEXP (note, 0) == from_insn)
12094 tem = place = 0;
12095 /* Don't add the dangling REG_RETVAL note. */
12096 else if (! tem)
12097 place = 0;
12099 break;
12101 case REG_LIBCALL:
12102 /* This is handled similarly to REG_RETVAL. */
12103 if (!NOTE_P (from_insn))
12104 place = from_insn;
12105 else
12107 tem = find_reg_note (XEXP (note, 0), REG_RETVAL, NULL_RTX);
12108 place = next_real_insn (from_insn);
12109 if (tem && place)
12110 XEXP (tem, 0) = place;
12111 /* If we're deleting the last remaining instruction of a
12112 libcall sequence, don't add the notes. */
12113 else if (XEXP (note, 0) == from_insn)
12114 tem = place = 0;
12115 /* Don't add the dangling REG_LIBCALL note. */
12116 else if (! tem)
12117 place = 0;
12119 break;
12121 case REG_DEAD:
12122 /* If the register is used as an input in I3, it dies there.
12123 Similarly for I2, if it is nonzero and adjacent to I3.
12125 If the register is not used as an input in either I3 or I2
12126 and it is not one of the registers we were supposed to eliminate,
12127 there are two possibilities. We might have a non-adjacent I2
12128 or we might have somehow eliminated an additional register
12129 from a computation. For example, we might have had A & B where
12130 we discover that B will always be zero. In this case we will
12131 eliminate the reference to A.
12133 In both cases, we must search to see if we can find a previous
12134 use of A and put the death note there. */
12136 if (from_insn
12137 && CALL_P (from_insn)
12138 && find_reg_fusage (from_insn, USE, XEXP (note, 0)))
12139 place = from_insn;
12140 else if (reg_referenced_p (XEXP (note, 0), PATTERN (i3)))
12141 place = i3;
12142 else if (i2 != 0 && next_nonnote_insn (i2) == i3
12143 && reg_referenced_p (XEXP (note, 0), PATTERN (i2)))
12144 place = i2;
12146 if (place == 0
12147 && (rtx_equal_p (XEXP (note, 0), elim_i2)
12148 || rtx_equal_p (XEXP (note, 0), elim_i1)))
12149 break;
12151 if (place == 0)
12153 basic_block bb = this_basic_block;
12155 /* You might think you could search back from FROM_INSN
12156 rather than from I3, but combine tries to split invalid
12157 combined instructions. This can result in the old I2
12158 or I1 moving later in the insn sequence. */
12159 for (tem = PREV_INSN (i3); place == 0; tem = PREV_INSN (tem))
12161 if (! INSN_P (tem))
12163 if (tem == BB_HEAD (bb))
12164 break;
12165 continue;
12168 /* If the register is being set at TEM, see if that is all
12169 TEM is doing. If so, delete TEM. Otherwise, make this
12170 into a REG_UNUSED note instead. Don't delete sets to
12171 global register vars. */
12172 if ((REGNO (XEXP (note, 0)) >= FIRST_PSEUDO_REGISTER
12173 || !global_regs[REGNO (XEXP (note, 0))])
12174 && reg_set_p (XEXP (note, 0), PATTERN (tem)))
12176 rtx set = single_set (tem);
12177 rtx inner_dest = 0;
12178 #ifdef HAVE_cc0
12179 rtx cc0_setter = NULL_RTX;
12180 #endif
12182 if (set != 0)
12183 for (inner_dest = SET_DEST (set);
12184 (GET_CODE (inner_dest) == STRICT_LOW_PART
12185 || GET_CODE (inner_dest) == SUBREG
12186 || GET_CODE (inner_dest) == ZERO_EXTRACT);
12187 inner_dest = XEXP (inner_dest, 0))
12190 /* Verify that it was the set, and not a clobber that
12191 modified the register.
12193 CC0 targets must be careful to maintain setter/user
12194 pairs. If we cannot delete the setter due to side
12195 effects, mark the user with an UNUSED note instead
12196 of deleting it. */
12198 if (set != 0 && ! side_effects_p (SET_SRC (set))
12199 && rtx_equal_p (XEXP (note, 0), inner_dest)
12200 #ifdef HAVE_cc0
12201 && (! reg_mentioned_p (cc0_rtx, SET_SRC (set))
12202 || ((cc0_setter = prev_cc0_setter (tem)) != NULL
12203 && sets_cc0_p (PATTERN (cc0_setter)) > 0))
12204 #endif
12207 /* Move the notes and links of TEM elsewhere.
12208 This might delete other dead insns recursively.
12209 First set the pattern to something that won't use
12210 any register. */
12211 rtx old_notes = REG_NOTES (tem);
12213 PATTERN (tem) = pc_rtx;
12214 REG_NOTES (tem) = NULL;
12216 distribute_notes (old_notes, tem, tem, NULL_RTX,
12217 NULL_RTX, NULL_RTX);
12218 distribute_links (LOG_LINKS (tem));
12220 SET_INSN_DELETED (tem);
12222 #ifdef HAVE_cc0
12223 /* Delete the setter too. */
12224 if (cc0_setter)
12226 PATTERN (cc0_setter) = pc_rtx;
12227 old_notes = REG_NOTES (cc0_setter);
12228 REG_NOTES (cc0_setter) = NULL;
12230 distribute_notes (old_notes, cc0_setter,
12231 cc0_setter, NULL_RTX,
12232 NULL_RTX, NULL_RTX);
12233 distribute_links (LOG_LINKS (cc0_setter));
12235 SET_INSN_DELETED (cc0_setter);
12237 #endif
12239 else
12241 PUT_REG_NOTE_KIND (note, REG_UNUSED);
12243 /* If there isn't already a REG_UNUSED note, put one
12244 here. Do not place a REG_DEAD note, even if
12245 the register is also used here; that would not
12246 match the algorithm used in lifetime analysis
12247 and can cause the consistency check in the
12248 scheduler to fail. */
12249 if (! find_regno_note (tem, REG_UNUSED,
12250 REGNO (XEXP (note, 0))))
12251 place = tem;
12252 break;
12255 else if (reg_referenced_p (XEXP (note, 0), PATTERN (tem))
12256 || (CALL_P (tem)
12257 && find_reg_fusage (tem, USE, XEXP (note, 0))))
12259 /* This may not be the correct place for the death
12260 note if FROM_INSN is before TEM, and the reg is
12261 set between FROM_INSN and TEM. The reg might
12262 die two or more times. An existing death note
12263 means we are looking at the wrong live range. */
12264 if (from_insn
12265 && INSN_CUID (from_insn) < INSN_CUID (tem)
12266 && find_regno_note (tem, REG_DEAD,
12267 REGNO (XEXP (note, 0))))
12269 tem = from_insn;
12270 if (tem == BB_HEAD (bb))
12271 break;
12272 continue;
12275 place = tem;
12277 /* If we are doing a 3->2 combination, and we have a
12278 register which formerly died in i3 and was not used
12279 by i2, which now no longer dies in i3 and is used in
12280 i2 but does not die in i2, and place is between i2
12281 and i3, then we may need to move a link from place to
12282 i2. */
12283 if (i2 && INSN_UID (place) <= max_uid_cuid
12284 && INSN_CUID (place) > INSN_CUID (i2)
12285 && from_insn
12286 && INSN_CUID (from_insn) > INSN_CUID (i2)
12287 && reg_referenced_p (XEXP (note, 0), PATTERN (i2)))
12289 rtx links = LOG_LINKS (place);
12290 LOG_LINKS (place) = 0;
12291 distribute_links (links);
12293 break;
12296 if (tem == BB_HEAD (bb))
12297 break;
12300 /* We haven't found an insn for the death note and it
12301 is still a REG_DEAD note, but we have hit the beginning
12302 of the block. If the existing life info says the reg
12303 was dead, there's nothing left to do. Otherwise, we'll
12304 need to do a global life update after combine. */
12305 if (REG_NOTE_KIND (note) == REG_DEAD && place == 0
12306 && REGNO_REG_SET_P (bb->il.rtl->global_live_at_start,
12307 REGNO (XEXP (note, 0))))
12308 SET_BIT (refresh_blocks, this_basic_block->index);
12311 /* If the register is set or already dead at PLACE, we needn't do
12312 anything with this note if it is still a REG_DEAD note.
12313 We check here if it is set at all, not if is it totally replaced,
12314 which is what `dead_or_set_p' checks, so also check for it being
12315 set partially. */
12317 if (place && REG_NOTE_KIND (note) == REG_DEAD)
12319 unsigned int regno = REGNO (XEXP (note, 0));
12321 /* Similarly, if the instruction on which we want to place
12322 the note is a noop, we'll need do a global live update
12323 after we remove them in delete_noop_moves. */
12324 if (noop_move_p (place))
12325 SET_BIT (refresh_blocks, this_basic_block->index);
12327 if (dead_or_set_p (place, XEXP (note, 0))
12328 || reg_bitfield_target_p (XEXP (note, 0), PATTERN (place)))
12330 /* Unless the register previously died in PLACE, clear
12331 last_death. [I no longer understand why this is
12332 being done.] */
12333 if (reg_stat[regno].last_death != place)
12334 reg_stat[regno].last_death = 0;
12335 place = 0;
12337 else
12338 reg_stat[regno].last_death = place;
12340 /* If this is a death note for a hard reg that is occupying
12341 multiple registers, ensure that we are still using all
12342 parts of the object. If we find a piece of the object
12343 that is unused, we must arrange for an appropriate REG_DEAD
12344 note to be added for it. However, we can't just emit a USE
12345 and tag the note to it, since the register might actually
12346 be dead; so we recourse, and the recursive call then finds
12347 the previous insn that used this register. */
12349 if (place && regno < FIRST_PSEUDO_REGISTER
12350 && hard_regno_nregs[regno][GET_MODE (XEXP (note, 0))] > 1)
12352 unsigned int endregno
12353 = regno + hard_regno_nregs[regno]
12354 [GET_MODE (XEXP (note, 0))];
12355 int all_used = 1;
12356 unsigned int i;
12358 for (i = regno; i < endregno; i++)
12359 if ((! refers_to_regno_p (i, i + 1, PATTERN (place), 0)
12360 && ! find_regno_fusage (place, USE, i))
12361 || dead_or_set_regno_p (place, i))
12362 all_used = 0;
12364 if (! all_used)
12366 /* Put only REG_DEAD notes for pieces that are
12367 not already dead or set. */
12369 for (i = regno; i < endregno;
12370 i += hard_regno_nregs[i][reg_raw_mode[i]])
12372 rtx piece = regno_reg_rtx[i];
12373 basic_block bb = this_basic_block;
12375 if (! dead_or_set_p (place, piece)
12376 && ! reg_bitfield_target_p (piece,
12377 PATTERN (place)))
12379 rtx new_note
12380 = gen_rtx_EXPR_LIST (REG_DEAD, piece, NULL_RTX);
12382 distribute_notes (new_note, place, place,
12383 NULL_RTX, NULL_RTX, NULL_RTX);
12385 else if (! refers_to_regno_p (i, i + 1,
12386 PATTERN (place), 0)
12387 && ! find_regno_fusage (place, USE, i))
12388 for (tem = PREV_INSN (place); ;
12389 tem = PREV_INSN (tem))
12391 if (! INSN_P (tem))
12393 if (tem == BB_HEAD (bb))
12395 SET_BIT (refresh_blocks,
12396 this_basic_block->index);
12397 break;
12399 continue;
12401 if (dead_or_set_p (tem, piece)
12402 || reg_bitfield_target_p (piece,
12403 PATTERN (tem)))
12405 REG_NOTES (tem)
12406 = gen_rtx_EXPR_LIST (REG_UNUSED, piece,
12407 REG_NOTES (tem));
12408 break;
12414 place = 0;
12418 break;
12420 default:
12421 /* Any other notes should not be present at this point in the
12422 compilation. */
12423 gcc_unreachable ();
12426 if (place)
12428 XEXP (note, 1) = REG_NOTES (place);
12429 REG_NOTES (place) = note;
12431 else if ((REG_NOTE_KIND (note) == REG_DEAD
12432 || REG_NOTE_KIND (note) == REG_UNUSED)
12433 && REG_P (XEXP (note, 0)))
12434 REG_N_DEATHS (REGNO (XEXP (note, 0)))--;
12436 if (place2)
12438 if ((REG_NOTE_KIND (note) == REG_DEAD
12439 || REG_NOTE_KIND (note) == REG_UNUSED)
12440 && REG_P (XEXP (note, 0)))
12441 REG_N_DEATHS (REGNO (XEXP (note, 0)))++;
12443 REG_NOTES (place2) = gen_rtx_fmt_ee (GET_CODE (note),
12444 REG_NOTE_KIND (note),
12445 XEXP (note, 0),
12446 REG_NOTES (place2));
12451 /* Similarly to above, distribute the LOG_LINKS that used to be present on
12452 I3, I2, and I1 to new locations. This is also called to add a link
12453 pointing at I3 when I3's destination is changed. */
12455 static void
12456 distribute_links (rtx links)
12458 rtx link, next_link;
12460 for (link = links; link; link = next_link)
12462 rtx place = 0;
12463 rtx insn;
12464 rtx set, reg;
12466 next_link = XEXP (link, 1);
12468 /* If the insn that this link points to is a NOTE or isn't a single
12469 set, ignore it. In the latter case, it isn't clear what we
12470 can do other than ignore the link, since we can't tell which
12471 register it was for. Such links wouldn't be used by combine
12472 anyway.
12474 It is not possible for the destination of the target of the link to
12475 have been changed by combine. The only potential of this is if we
12476 replace I3, I2, and I1 by I3 and I2. But in that case the
12477 destination of I2 also remains unchanged. */
12479 if (NOTE_P (XEXP (link, 0))
12480 || (set = single_set (XEXP (link, 0))) == 0)
12481 continue;
12483 reg = SET_DEST (set);
12484 while (GET_CODE (reg) == SUBREG || GET_CODE (reg) == ZERO_EXTRACT
12485 || GET_CODE (reg) == STRICT_LOW_PART)
12486 reg = XEXP (reg, 0);
12488 /* A LOG_LINK is defined as being placed on the first insn that uses
12489 a register and points to the insn that sets the register. Start
12490 searching at the next insn after the target of the link and stop
12491 when we reach a set of the register or the end of the basic block.
12493 Note that this correctly handles the link that used to point from
12494 I3 to I2. Also note that not much searching is typically done here
12495 since most links don't point very far away. */
12497 for (insn = NEXT_INSN (XEXP (link, 0));
12498 (insn && (this_basic_block->next_bb == EXIT_BLOCK_PTR
12499 || BB_HEAD (this_basic_block->next_bb) != insn));
12500 insn = NEXT_INSN (insn))
12501 if (INSN_P (insn) && reg_overlap_mentioned_p (reg, PATTERN (insn)))
12503 if (reg_referenced_p (reg, PATTERN (insn)))
12504 place = insn;
12505 break;
12507 else if (CALL_P (insn)
12508 && find_reg_fusage (insn, USE, reg))
12510 place = insn;
12511 break;
12513 else if (INSN_P (insn) && reg_set_p (reg, insn))
12514 break;
12516 /* If we found a place to put the link, place it there unless there
12517 is already a link to the same insn as LINK at that point. */
12519 if (place)
12521 rtx link2;
12523 for (link2 = LOG_LINKS (place); link2; link2 = XEXP (link2, 1))
12524 if (XEXP (link2, 0) == XEXP (link, 0))
12525 break;
12527 if (link2 == 0)
12529 XEXP (link, 1) = LOG_LINKS (place);
12530 LOG_LINKS (place) = link;
12532 /* Set added_links_insn to the earliest insn we added a
12533 link to. */
12534 if (added_links_insn == 0
12535 || INSN_CUID (added_links_insn) > INSN_CUID (place))
12536 added_links_insn = place;
12542 /* Subroutine of unmentioned_reg_p and callback from for_each_rtx.
12543 Check whether the expression pointer to by LOC is a register or
12544 memory, and if so return 1 if it isn't mentioned in the rtx EXPR.
12545 Otherwise return zero. */
12547 static int
12548 unmentioned_reg_p_1 (rtx *loc, void *expr)
12550 rtx x = *loc;
12552 if (x != NULL_RTX
12553 && (REG_P (x) || MEM_P (x))
12554 && ! reg_mentioned_p (x, (rtx) expr))
12555 return 1;
12556 return 0;
12559 /* Check for any register or memory mentioned in EQUIV that is not
12560 mentioned in EXPR. This is used to restrict EQUIV to "specializations"
12561 of EXPR where some registers may have been replaced by constants. */
12563 static bool
12564 unmentioned_reg_p (rtx equiv, rtx expr)
12566 return for_each_rtx (&equiv, unmentioned_reg_p_1, expr);
12569 /* Compute INSN_CUID for INSN, which is an insn made by combine. */
12571 static int
12572 insn_cuid (rtx insn)
12574 while (insn != 0 && INSN_UID (insn) > max_uid_cuid
12575 && NONJUMP_INSN_P (insn) && GET_CODE (PATTERN (insn)) == USE)
12576 insn = NEXT_INSN (insn);
12578 gcc_assert (INSN_UID (insn) <= max_uid_cuid);
12580 return INSN_CUID (insn);
12583 void
12584 dump_combine_stats (FILE *file)
12586 fprintf
12587 (file,
12588 ";; Combiner statistics: %d attempts, %d substitutions (%d requiring new space),\n;; %d successes.\n\n",
12589 combine_attempts, combine_merges, combine_extras, combine_successes);
12592 void
12593 dump_combine_total_stats (FILE *file)
12595 fprintf
12596 (file,
12597 "\n;; Combiner totals: %d attempts, %d substitutions (%d requiring new space),\n;; %d successes.\n",
12598 total_attempts, total_merges, total_extras, total_successes);
12602 static bool
12603 gate_handle_combine (void)
12605 return (optimize > 0);
12608 /* Try combining insns through substitution. */
12609 static void
12610 rest_of_handle_combine (void)
12612 int rebuild_jump_labels_after_combine
12613 = combine_instructions (get_insns (), max_reg_num ());
12615 /* Combining insns may have turned an indirect jump into a
12616 direct jump. Rebuild the JUMP_LABEL fields of jumping
12617 instructions. */
12618 if (rebuild_jump_labels_after_combine)
12620 timevar_push (TV_JUMP);
12621 rebuild_jump_labels (get_insns ());
12622 timevar_pop (TV_JUMP);
12624 delete_dead_jumptables ();
12625 cleanup_cfg (CLEANUP_EXPENSIVE | CLEANUP_UPDATE_LIFE);
12629 struct tree_opt_pass pass_combine =
12631 "combine", /* name */
12632 gate_handle_combine, /* gate */
12633 rest_of_handle_combine, /* execute */
12634 NULL, /* sub */
12635 NULL, /* next */
12636 0, /* static_pass_number */
12637 TV_COMBINE, /* tv_id */
12638 0, /* properties_required */
12639 0, /* properties_provided */
12640 0, /* properties_destroyed */
12641 0, /* todo_flags_start */
12642 TODO_dump_func |
12643 TODO_ggc_collect, /* todo_flags_finish */
12644 'c' /* letter */