* gfortran.dg/promotion.f90: Fix options.
[official-gcc.git] / libiberty / floatformat.c
blob4819507cbdd2812ee3cda622a07dd66c713c9458
1 /* IEEE floating point support routines, for GDB, the GNU Debugger.
2 Copyright 1991, 1994, 1999, 2000, 2003, 2005, 2006
3 Free Software Foundation, Inc.
5 This file is part of GDB.
7 This program is free software; you can redistribute it and/or modify
8 it under the terms of the GNU General Public License as published by
9 the Free Software Foundation; either version 2 of the License, or
10 (at your option) any later version.
12 This program is distributed in the hope that it will be useful,
13 but WITHOUT ANY WARRANTY; without even the implied warranty of
14 MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
15 GNU General Public License for more details.
17 You should have received a copy of the GNU General Public License
18 along with this program; if not, write to the Free Software
19 Foundation, Inc., 51 Franklin Street - Fifth Floor, Boston, MA 02110-1301, USA. */
21 /* This is needed to pick up the NAN macro on some systems. */
22 #define _GNU_SOURCE
24 #ifdef HAVE_CONFIG_H
25 #include "config.h"
26 #endif
28 #include <math.h>
30 #ifdef HAVE_STRING_H
31 #include <string.h>
32 #endif
34 /* On some platforms, <float.h> provides DBL_QNAN. */
35 #ifdef STDC_HEADERS
36 #include <float.h>
37 #endif
39 #include "ansidecl.h"
40 #include "libiberty.h"
41 #include "floatformat.h"
43 #ifndef INFINITY
44 #ifdef HUGE_VAL
45 #define INFINITY HUGE_VAL
46 #else
47 #define INFINITY (1.0 / 0.0)
48 #endif
49 #endif
51 #ifndef NAN
52 #ifdef DBL_QNAN
53 #define NAN DBL_QNAN
54 #else
55 #define NAN (0.0 / 0.0)
56 #endif
57 #endif
59 static int mant_bits_set (const struct floatformat *, const unsigned char *);
60 static unsigned long get_field (const unsigned char *,
61 enum floatformat_byteorders,
62 unsigned int,
63 unsigned int,
64 unsigned int);
65 static int floatformat_always_valid (const struct floatformat *fmt,
66 const void *from);
68 static int
69 floatformat_always_valid (const struct floatformat *fmt ATTRIBUTE_UNUSED,
70 const void *from ATTRIBUTE_UNUSED)
72 return 1;
75 /* The odds that CHAR_BIT will be anything but 8 are low enough that I'm not
76 going to bother with trying to muck around with whether it is defined in
77 a system header, what we do if not, etc. */
78 #define FLOATFORMAT_CHAR_BIT 8
80 /* floatformats for IEEE half, single and double, big and little endian. */
81 const struct floatformat floatformat_ieee_half_big =
83 floatformat_big, 16, 0, 1, 5, 15, 31, 6, 10,
84 floatformat_intbit_no,
85 "floatformat_ieee_half_big",
86 floatformat_always_valid,
87 NULL
89 const struct floatformat floatformat_ieee_half_little =
91 floatformat_little, 16, 0, 1, 5, 15, 31, 6, 10,
92 floatformat_intbit_no,
93 "floatformat_ieee_half_little",
94 floatformat_always_valid,
95 NULL
97 const struct floatformat floatformat_ieee_single_big =
99 floatformat_big, 32, 0, 1, 8, 127, 255, 9, 23,
100 floatformat_intbit_no,
101 "floatformat_ieee_single_big",
102 floatformat_always_valid,
103 NULL
105 const struct floatformat floatformat_ieee_single_little =
107 floatformat_little, 32, 0, 1, 8, 127, 255, 9, 23,
108 floatformat_intbit_no,
109 "floatformat_ieee_single_little",
110 floatformat_always_valid,
111 NULL
113 const struct floatformat floatformat_ieee_double_big =
115 floatformat_big, 64, 0, 1, 11, 1023, 2047, 12, 52,
116 floatformat_intbit_no,
117 "floatformat_ieee_double_big",
118 floatformat_always_valid,
119 NULL
121 const struct floatformat floatformat_ieee_double_little =
123 floatformat_little, 64, 0, 1, 11, 1023, 2047, 12, 52,
124 floatformat_intbit_no,
125 "floatformat_ieee_double_little",
126 floatformat_always_valid,
127 NULL
130 /* floatformat for IEEE double, little endian byte order, with big endian word
131 ordering, as on the ARM. */
133 const struct floatformat floatformat_ieee_double_littlebyte_bigword =
135 floatformat_littlebyte_bigword, 64, 0, 1, 11, 1023, 2047, 12, 52,
136 floatformat_intbit_no,
137 "floatformat_ieee_double_littlebyte_bigword",
138 floatformat_always_valid,
139 NULL
142 /* floatformat for VAX. Not quite IEEE, but close enough. */
144 const struct floatformat floatformat_vax_f =
146 floatformat_vax, 32, 0, 1, 8, 129, 0, 9, 23,
147 floatformat_intbit_no,
148 "floatformat_vax_f",
149 floatformat_always_valid,
150 NULL
152 const struct floatformat floatformat_vax_d =
154 floatformat_vax, 64, 0, 1, 8, 129, 0, 9, 55,
155 floatformat_intbit_no,
156 "floatformat_vax_d",
157 floatformat_always_valid,
158 NULL
160 const struct floatformat floatformat_vax_g =
162 floatformat_vax, 64, 0, 1, 11, 1025, 0, 12, 52,
163 floatformat_intbit_no,
164 "floatformat_vax_g",
165 floatformat_always_valid,
166 NULL
169 static int floatformat_i387_ext_is_valid (const struct floatformat *fmt,
170 const void *from);
172 static int
173 floatformat_i387_ext_is_valid (const struct floatformat *fmt, const void *from)
175 /* In the i387 double-extended format, if the exponent is all ones,
176 then the integer bit must be set. If the exponent is neither 0
177 nor ~0, the intbit must also be set. Only if the exponent is
178 zero can it be zero, and then it must be zero. */
179 unsigned long exponent, int_bit;
180 const unsigned char *ufrom = (const unsigned char *) from;
182 exponent = get_field (ufrom, fmt->byteorder, fmt->totalsize,
183 fmt->exp_start, fmt->exp_len);
184 int_bit = get_field (ufrom, fmt->byteorder, fmt->totalsize,
185 fmt->man_start, 1);
187 if ((exponent == 0) != (int_bit == 0))
188 return 0;
189 else
190 return 1;
193 const struct floatformat floatformat_i387_ext =
195 floatformat_little, 80, 0, 1, 15, 0x3fff, 0x7fff, 16, 64,
196 floatformat_intbit_yes,
197 "floatformat_i387_ext",
198 floatformat_i387_ext_is_valid,
199 NULL
201 const struct floatformat floatformat_m68881_ext =
203 /* Note that the bits from 16 to 31 are unused. */
204 floatformat_big, 96, 0, 1, 15, 0x3fff, 0x7fff, 32, 64,
205 floatformat_intbit_yes,
206 "floatformat_m68881_ext",
207 floatformat_always_valid,
208 NULL
210 const struct floatformat floatformat_i960_ext =
212 /* Note that the bits from 0 to 15 are unused. */
213 floatformat_little, 96, 16, 17, 15, 0x3fff, 0x7fff, 32, 64,
214 floatformat_intbit_yes,
215 "floatformat_i960_ext",
216 floatformat_always_valid,
217 NULL
219 const struct floatformat floatformat_m88110_ext =
221 floatformat_big, 80, 0, 1, 15, 0x3fff, 0x7fff, 16, 64,
222 floatformat_intbit_yes,
223 "floatformat_m88110_ext",
224 floatformat_always_valid,
225 NULL
227 const struct floatformat floatformat_m88110_harris_ext =
229 /* Harris uses raw format 128 bytes long, but the number is just an ieee
230 double, and the last 64 bits are wasted. */
231 floatformat_big,128, 0, 1, 11, 0x3ff, 0x7ff, 12, 52,
232 floatformat_intbit_no,
233 "floatformat_m88110_ext_harris",
234 floatformat_always_valid,
235 NULL
237 const struct floatformat floatformat_arm_ext_big =
239 /* Bits 1 to 16 are unused. */
240 floatformat_big, 96, 0, 17, 15, 0x3fff, 0x7fff, 32, 64,
241 floatformat_intbit_yes,
242 "floatformat_arm_ext_big",
243 floatformat_always_valid,
244 NULL
246 const struct floatformat floatformat_arm_ext_littlebyte_bigword =
248 /* Bits 1 to 16 are unused. */
249 floatformat_littlebyte_bigword, 96, 0, 17, 15, 0x3fff, 0x7fff, 32, 64,
250 floatformat_intbit_yes,
251 "floatformat_arm_ext_littlebyte_bigword",
252 floatformat_always_valid,
253 NULL
255 const struct floatformat floatformat_ia64_spill_big =
257 floatformat_big, 128, 0, 1, 17, 65535, 0x1ffff, 18, 64,
258 floatformat_intbit_yes,
259 "floatformat_ia64_spill_big",
260 floatformat_always_valid,
261 NULL
263 const struct floatformat floatformat_ia64_spill_little =
265 floatformat_little, 128, 0, 1, 17, 65535, 0x1ffff, 18, 64,
266 floatformat_intbit_yes,
267 "floatformat_ia64_spill_little",
268 floatformat_always_valid,
269 NULL
271 const struct floatformat floatformat_ia64_quad_big =
273 floatformat_big, 128, 0, 1, 15, 16383, 0x7fff, 16, 112,
274 floatformat_intbit_no,
275 "floatformat_ia64_quad_big",
276 floatformat_always_valid,
277 NULL
279 const struct floatformat floatformat_ia64_quad_little =
281 floatformat_little, 128, 0, 1, 15, 16383, 0x7fff, 16, 112,
282 floatformat_intbit_no,
283 "floatformat_ia64_quad_little",
284 floatformat_always_valid,
285 NULL
288 static int
289 floatformat_ibm_long_double_is_valid (const struct floatformat *fmt,
290 const void *from)
292 const unsigned char *ufrom = (const unsigned char *) from;
293 const struct floatformat *hfmt = fmt->split_half;
294 long top_exp, bot_exp;
295 int top_nan = 0;
297 top_exp = get_field (ufrom, hfmt->byteorder, hfmt->totalsize,
298 hfmt->exp_start, hfmt->exp_len);
299 bot_exp = get_field (ufrom + 8, hfmt->byteorder, hfmt->totalsize,
300 hfmt->exp_start, hfmt->exp_len);
302 if ((unsigned long) top_exp == hfmt->exp_nan)
303 top_nan = mant_bits_set (hfmt, ufrom);
305 /* A NaN is valid with any low part. */
306 if (top_nan)
307 return 1;
309 /* An infinity, zero or denormal requires low part 0 (positive or
310 negative). */
311 if ((unsigned long) top_exp == hfmt->exp_nan || top_exp == 0)
313 if (bot_exp != 0)
314 return 0;
316 return !mant_bits_set (hfmt, ufrom + 8);
319 /* The top part is now a finite normal value. The long double value
320 is the sum of the two parts, and the top part must equal the
321 result of rounding the long double value to nearest double. Thus
322 the bottom part must be <= 0.5ulp of the top part in absolute
323 value, and if it is < 0.5ulp then the long double is definitely
324 valid. */
325 if (bot_exp < top_exp - 53)
326 return 1;
327 if (bot_exp > top_exp - 53 && bot_exp != 0)
328 return 0;
329 if (bot_exp == 0)
331 /* The bottom part is 0 or denormal. Determine which, and if
332 denormal the first two set bits. */
333 int first_bit = -1, second_bit = -1, cur_bit;
334 for (cur_bit = 0; (unsigned int) cur_bit < hfmt->man_len; cur_bit++)
335 if (get_field (ufrom + 8, hfmt->byteorder, hfmt->totalsize,
336 hfmt->man_start + cur_bit, 1))
338 if (first_bit == -1)
339 first_bit = cur_bit;
340 else
342 second_bit = cur_bit;
343 break;
346 /* Bottom part 0 is OK. */
347 if (first_bit == -1)
348 return 1;
349 /* The real exponent of the bottom part is -first_bit. */
350 if (-first_bit < top_exp - 53)
351 return 1;
352 if (-first_bit > top_exp - 53)
353 return 0;
354 /* The bottom part is at least 0.5ulp of the top part. For this
355 to be OK, the bottom part must be exactly 0.5ulp (i.e. no
356 more bits set) and the top part must have last bit 0. */
357 if (second_bit != -1)
358 return 0;
359 return !get_field (ufrom, hfmt->byteorder, hfmt->totalsize,
360 hfmt->man_start + hfmt->man_len - 1, 1);
362 else
364 /* The bottom part is at least 0.5ulp of the top part. For this
365 to be OK, it must be exactly 0.5ulp (i.e. no explicit bits
366 set) and the top part must have last bit 0. */
367 if (get_field (ufrom, hfmt->byteorder, hfmt->totalsize,
368 hfmt->man_start + hfmt->man_len - 1, 1))
369 return 0;
370 return !mant_bits_set (hfmt, ufrom + 8);
374 const struct floatformat floatformat_ibm_long_double =
376 floatformat_big, 128, 0, 1, 11, 1023, 2047, 12, 52,
377 floatformat_intbit_no,
378 "floatformat_ibm_long_double",
379 floatformat_ibm_long_double_is_valid,
380 &floatformat_ieee_double_big
384 #ifndef min
385 #define min(a, b) ((a) < (b) ? (a) : (b))
386 #endif
388 /* Return 1 if any bits are explicitly set in the mantissa of UFROM,
389 format FMT, 0 otherwise. */
390 static int
391 mant_bits_set (const struct floatformat *fmt, const unsigned char *ufrom)
393 unsigned int mant_bits, mant_off;
394 int mant_bits_left;
396 mant_off = fmt->man_start;
397 mant_bits_left = fmt->man_len;
398 while (mant_bits_left > 0)
400 mant_bits = min (mant_bits_left, 32);
402 if (get_field (ufrom, fmt->byteorder, fmt->totalsize,
403 mant_off, mant_bits) != 0)
404 return 1;
406 mant_off += mant_bits;
407 mant_bits_left -= mant_bits;
409 return 0;
412 /* Extract a field which starts at START and is LEN bits long. DATA and
413 TOTAL_LEN are the thing we are extracting it from, in byteorder ORDER. */
414 static unsigned long
415 get_field (const unsigned char *data, enum floatformat_byteorders order,
416 unsigned int total_len, unsigned int start, unsigned int len)
418 unsigned long result = 0;
419 unsigned int cur_byte;
420 int lo_bit, hi_bit, cur_bitshift = 0;
421 int nextbyte = (order == floatformat_little) ? 1 : -1;
423 /* Start is in big-endian bit order! Fix that first. */
424 start = total_len - (start + len);
426 /* Start at the least significant part of the field. */
427 if (order == floatformat_little)
428 cur_byte = start / FLOATFORMAT_CHAR_BIT;
429 else
430 cur_byte = (total_len - start - 1) / FLOATFORMAT_CHAR_BIT;
432 lo_bit = start % FLOATFORMAT_CHAR_BIT;
433 hi_bit = min (lo_bit + len, FLOATFORMAT_CHAR_BIT);
437 unsigned int shifted = *(data + cur_byte) >> lo_bit;
438 unsigned int bits = hi_bit - lo_bit;
439 unsigned int mask = (1 << bits) - 1;
440 result |= (shifted & mask) << cur_bitshift;
441 len -= bits;
442 cur_bitshift += bits;
443 cur_byte += nextbyte;
444 lo_bit = 0;
445 hi_bit = min (len, FLOATFORMAT_CHAR_BIT);
447 while (len != 0);
449 return result;
452 /* Convert from FMT to a double.
453 FROM is the address of the extended float.
454 Store the double in *TO. */
456 void
457 floatformat_to_double (const struct floatformat *fmt,
458 const void *from, double *to)
460 const unsigned char *ufrom = (const unsigned char *) from;
461 double dto;
462 long exponent;
463 unsigned long mant;
464 unsigned int mant_bits, mant_off;
465 int mant_bits_left;
466 int special_exponent; /* It's a NaN, denorm or zero */
468 /* Split values are not handled specially, since the top half has
469 the correctly rounded double value (in the only supported case of
470 split values). */
472 exponent = get_field (ufrom, fmt->byteorder, fmt->totalsize,
473 fmt->exp_start, fmt->exp_len);
475 /* If the exponent indicates a NaN, we don't have information to
476 decide what to do. So we handle it like IEEE, except that we
477 don't try to preserve the type of NaN. FIXME. */
478 if ((unsigned long) exponent == fmt->exp_nan)
480 int nan = mant_bits_set (fmt, ufrom);
482 /* On certain systems (such as GNU/Linux), the use of the
483 INFINITY macro below may generate a warning that can not be
484 silenced due to a bug in GCC (PR preprocessor/11931). The
485 preprocessor fails to recognise the __extension__ keyword in
486 conjunction with the GNU/C99 extension for hexadecimal
487 floating point constants and will issue a warning when
488 compiling with -pedantic. */
489 if (nan)
490 dto = NAN;
491 else
492 dto = INFINITY;
494 if (get_field (ufrom, fmt->byteorder, fmt->totalsize, fmt->sign_start, 1))
495 dto = -dto;
497 *to = dto;
499 return;
502 mant_bits_left = fmt->man_len;
503 mant_off = fmt->man_start;
504 dto = 0.0;
506 special_exponent = exponent == 0 || (unsigned long) exponent == fmt->exp_nan;
508 /* Don't bias zero's, denorms or NaNs. */
509 if (!special_exponent)
510 exponent -= fmt->exp_bias;
512 /* Build the result algebraically. Might go infinite, underflow, etc;
513 who cares. */
515 /* If this format uses a hidden bit, explicitly add it in now. Otherwise,
516 increment the exponent by one to account for the integer bit. */
518 if (!special_exponent)
520 if (fmt->intbit == floatformat_intbit_no)
521 dto = ldexp (1.0, exponent);
522 else
523 exponent++;
526 while (mant_bits_left > 0)
528 mant_bits = min (mant_bits_left, 32);
530 mant = get_field (ufrom, fmt->byteorder, fmt->totalsize,
531 mant_off, mant_bits);
533 /* Handle denormalized numbers. FIXME: What should we do for
534 non-IEEE formats? */
535 if (special_exponent && exponent == 0 && mant != 0)
536 dto += ldexp ((double)mant,
537 (- fmt->exp_bias
538 - mant_bits
539 - (mant_off - fmt->man_start)
540 + 1));
541 else
542 dto += ldexp ((double)mant, exponent - mant_bits);
543 if (exponent != 0)
544 exponent -= mant_bits;
545 mant_off += mant_bits;
546 mant_bits_left -= mant_bits;
549 /* Negate it if negative. */
550 if (get_field (ufrom, fmt->byteorder, fmt->totalsize, fmt->sign_start, 1))
551 dto = -dto;
552 *to = dto;
555 static void put_field (unsigned char *, enum floatformat_byteorders,
556 unsigned int,
557 unsigned int,
558 unsigned int,
559 unsigned long);
561 /* Set a field which starts at START and is LEN bits long. DATA and
562 TOTAL_LEN are the thing we are extracting it from, in byteorder ORDER. */
563 static void
564 put_field (unsigned char *data, enum floatformat_byteorders order,
565 unsigned int total_len, unsigned int start, unsigned int len,
566 unsigned long stuff_to_put)
568 unsigned int cur_byte;
569 int lo_bit, hi_bit;
570 int nextbyte = (order == floatformat_little) ? 1 : -1;
572 /* Start is in big-endian bit order! Fix that first. */
573 start = total_len - (start + len);
575 /* Start at the least significant part of the field. */
576 if (order == floatformat_little)
577 cur_byte = start / FLOATFORMAT_CHAR_BIT;
578 else
579 cur_byte = (total_len - start - 1) / FLOATFORMAT_CHAR_BIT;
581 lo_bit = start % FLOATFORMAT_CHAR_BIT;
582 hi_bit = min (lo_bit + len, FLOATFORMAT_CHAR_BIT);
586 unsigned char *byte_ptr = data + cur_byte;
587 unsigned int bits = hi_bit - lo_bit;
588 unsigned int mask = ((1 << bits) - 1) << lo_bit;
589 *byte_ptr = (*byte_ptr & ~mask) | ((stuff_to_put << lo_bit) & mask);
590 stuff_to_put >>= bits;
591 len -= bits;
592 cur_byte += nextbyte;
593 lo_bit = 0;
594 hi_bit = min (len, FLOATFORMAT_CHAR_BIT);
596 while (len != 0);
599 /* The converse: convert the double *FROM to an extended float
600 and store where TO points. Neither FROM nor TO have any alignment
601 restrictions. */
603 void
604 floatformat_from_double (const struct floatformat *fmt,
605 const double *from, void *to)
607 double dfrom;
608 int exponent;
609 double mant;
610 unsigned int mant_bits, mant_off;
611 int mant_bits_left;
612 unsigned char *uto = (unsigned char *) to;
614 dfrom = *from;
615 memset (uto, 0, fmt->totalsize / FLOATFORMAT_CHAR_BIT);
617 /* Split values are not handled specially, since a bottom half of
618 zero is correct for any value representable as double (in the
619 only supported case of split values). */
621 /* If negative, set the sign bit. */
622 if (dfrom < 0)
624 put_field (uto, fmt->byteorder, fmt->totalsize, fmt->sign_start, 1, 1);
625 dfrom = -dfrom;
628 if (dfrom == 0)
630 /* 0.0. */
631 return;
634 if (dfrom != dfrom)
636 /* NaN. */
637 put_field (uto, fmt->byteorder, fmt->totalsize, fmt->exp_start,
638 fmt->exp_len, fmt->exp_nan);
639 /* Be sure it's not infinity, but NaN value is irrelevant. */
640 put_field (uto, fmt->byteorder, fmt->totalsize, fmt->man_start,
641 32, 1);
642 return;
645 if (dfrom + dfrom == dfrom)
647 /* This can only happen for an infinite value (or zero, which we
648 already handled above). */
649 put_field (uto, fmt->byteorder, fmt->totalsize, fmt->exp_start,
650 fmt->exp_len, fmt->exp_nan);
651 return;
654 mant = frexp (dfrom, &exponent);
655 if (exponent + fmt->exp_bias - 1 > 0)
656 put_field (uto, fmt->byteorder, fmt->totalsize, fmt->exp_start,
657 fmt->exp_len, exponent + fmt->exp_bias - 1);
658 else
660 /* Handle a denormalized number. FIXME: What should we do for
661 non-IEEE formats? */
662 put_field (uto, fmt->byteorder, fmt->totalsize, fmt->exp_start,
663 fmt->exp_len, 0);
664 mant = ldexp (mant, exponent + fmt->exp_bias - 1);
667 mant_bits_left = fmt->man_len;
668 mant_off = fmt->man_start;
669 while (mant_bits_left > 0)
671 unsigned long mant_long;
672 mant_bits = mant_bits_left < 32 ? mant_bits_left : 32;
674 mant *= 4294967296.0;
675 mant_long = (unsigned long)mant;
676 mant -= mant_long;
678 /* If the integer bit is implicit, and we are not creating a
679 denormalized number, then we need to discard it. */
680 if ((unsigned int) mant_bits_left == fmt->man_len
681 && fmt->intbit == floatformat_intbit_no
682 && exponent + fmt->exp_bias - 1 > 0)
684 mant_long &= 0x7fffffff;
685 mant_bits -= 1;
687 else if (mant_bits < 32)
689 /* The bits we want are in the most significant MANT_BITS bits of
690 mant_long. Move them to the least significant. */
691 mant_long >>= 32 - mant_bits;
694 put_field (uto, fmt->byteorder, fmt->totalsize,
695 mant_off, mant_bits, mant_long);
696 mant_off += mant_bits;
697 mant_bits_left -= mant_bits;
701 /* Return non-zero iff the data at FROM is a valid number in format FMT. */
704 floatformat_is_valid (const struct floatformat *fmt, const void *from)
706 return fmt->is_valid (fmt, from);
710 #ifdef IEEE_DEBUG
712 #include <stdio.h>
714 /* This is to be run on a host which uses IEEE floating point. */
716 void
717 ieee_test (double n)
719 double result;
721 floatformat_to_double (&floatformat_ieee_double_little, &n, &result);
722 if ((n != result && (! isnan (n) || ! isnan (result)))
723 || (n < 0 && result >= 0)
724 || (n >= 0 && result < 0))
725 printf ("Differ(to): %.20g -> %.20g\n", n, result);
727 floatformat_from_double (&floatformat_ieee_double_little, &n, &result);
728 if ((n != result && (! isnan (n) || ! isnan (result)))
729 || (n < 0 && result >= 0)
730 || (n >= 0 && result < 0))
731 printf ("Differ(from): %.20g -> %.20g\n", n, result);
733 #if 0
735 char exten[16];
737 floatformat_from_double (&floatformat_m68881_ext, &n, exten);
738 floatformat_to_double (&floatformat_m68881_ext, exten, &result);
739 if (n != result)
740 printf ("Differ(to+from): %.20g -> %.20g\n", n, result);
742 #endif
744 #if IEEE_DEBUG > 1
745 /* This is to be run on a host which uses 68881 format. */
747 long double ex = *(long double *)exten;
748 if (ex != n)
749 printf ("Differ(from vs. extended): %.20g\n", n);
751 #endif
755 main (void)
757 ieee_test (0.0);
758 ieee_test (0.5);
759 ieee_test (256.0);
760 ieee_test (0.12345);
761 ieee_test (234235.78907234);
762 ieee_test (-512.0);
763 ieee_test (-0.004321);
764 ieee_test (1.2E-70);
765 ieee_test (1.2E-316);
766 ieee_test (4.9406564584124654E-324);
767 ieee_test (- 4.9406564584124654E-324);
768 ieee_test (- 0.0);
769 ieee_test (- INFINITY);
770 ieee_test (- NAN);
771 ieee_test (INFINITY);
772 ieee_test (NAN);
773 return 0;
775 #endif