[testsuite] [i386] work around fails with --enable-frame-pointer
[official-gcc.git] / gcc / cp / logic.cc
blob5466dbe2ec26833873cba012cc9e7d304e40c11a
1 /* Derivation and subsumption rules for constraints.
2 Copyright (C) 2013-2024 Free Software Foundation, Inc.
3 Contributed by Andrew Sutton (andrew.n.sutton@gmail.com)
5 This file is part of GCC.
7 GCC is free software; you can redistribute it and/or modify
8 it under the terms of the GNU General Public License as published by
9 the Free Software Foundation; either version 3, or (at your option)
10 any later version.
12 GCC is distributed in the hope that it will be useful,
13 but WITHOUT ANY WARRANTY; without even the implied warranty of
14 MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
15 GNU General Public License for more details.
17 You should have received a copy of the GNU General Public License
18 along with GCC; see the file COPYING3. If not see
19 <http://www.gnu.org/licenses/>. */
21 #include "config.h"
22 #define INCLUDE_LIST
23 #include "system.h"
24 #include "coretypes.h"
25 #include "tm.h"
26 #include "timevar.h"
27 #include "hash-set.h"
28 #include "machmode.h"
29 #include "vec.h"
30 #include "double-int.h"
31 #include "input.h"
32 #include "alias.h"
33 #include "symtab.h"
34 #include "wide-int.h"
35 #include "inchash.h"
36 #include "tree.h"
37 #include "stringpool.h"
38 #include "attribs.h"
39 #include "intl.h"
40 #include "flags.h"
41 #include "cp-tree.h"
42 #include "c-family/c-common.h"
43 #include "c-family/c-objc.h"
44 #include "cp-objcp-common.h"
45 #include "tree-inline.h"
46 #include "decl.h"
47 #include "toplev.h"
48 #include "type-utils.h"
50 /* A conjunctive or disjunctive clause.
52 Each clause maintains an iterator that refers to the current
53 term, which is used in the linear decomposition of a formula
54 into CNF or DNF. */
56 struct clause
58 typedef std::list<tree>::iterator iterator;
59 typedef std::list<tree>::const_iterator const_iterator;
61 /* Initialize a clause with an initial term. */
63 clause (tree t)
65 m_terms.push_back (t);
66 if (TREE_CODE (t) == ATOMIC_CONSTR)
67 m_set.add (t);
69 m_current = m_terms.begin ();
72 /* Create a copy of the current term. The current
73 iterator is set to point to the same position in the
74 copied list of terms. */
76 clause (clause const& c)
77 : m_terms (c.m_terms), m_set (c.m_set), m_current (m_terms.begin ())
79 std::advance (m_current, std::distance (c.begin (), c.current ()));
82 /* Returns true when all terms are atoms. */
84 bool done () const
86 return m_current == end ();
89 /* Advance to the next term. */
91 void advance ()
93 gcc_assert (!done ());
94 ++m_current;
97 /* Replaces the current term at position ITER with T. If
98 T is an atomic constraint that already appears in the
99 clause, remove but do not replace ITER. Returns a pair
100 containing an iterator to the replace object or past
101 the erased object and a boolean value which is true if
102 an object was erased. */
104 std::pair<iterator, bool> replace (iterator iter, tree t)
106 gcc_assert (TREE_CODE (*iter) != ATOMIC_CONSTR);
107 if (TREE_CODE (t) == ATOMIC_CONSTR)
109 if (m_set.add (t))
110 return std::make_pair (m_terms.erase (iter), true);
112 *iter = t;
113 return std::make_pair (iter, false);
116 /* Inserts T before ITER in the list of terms. If T has
117 already is an atomic constraint that already appears in
118 the clause, no action is taken, and the current iterator
119 is returned. Returns a pair of an iterator to the inserted
120 object or ITER if no insertion occurred and a boolean
121 value which is true if an object was inserted. */
123 std::pair<iterator, bool> insert (iterator iter, tree t)
125 if (TREE_CODE (t) == ATOMIC_CONSTR)
127 if (m_set.add (t))
128 return std::make_pair (iter, false);
130 return std::make_pair (m_terms.insert (iter, t), true);
133 /* Replaces the current term with T. In the case where the
134 current term is erased (because T is redundant), update
135 the position of the current term to the next term. */
137 void replace (tree t)
139 m_current = replace (m_current, t).first;
142 /* Replace the current term with T1 and T2, in that order. */
144 void replace (tree t1, tree t2)
146 /* Replace the current term with t1. Ensure that iter points
147 to the term before which t2 will be inserted. Update the
148 current term as needed. */
149 std::pair<iterator, bool> rep = replace (m_current, t1);
150 if (rep.second)
151 m_current = rep.first;
152 else
153 ++rep.first;
155 /* Insert the t2. Make this the current term if we erased
156 the prior term. */
157 std::pair<iterator, bool> ins = insert (rep.first, t2);
158 if (rep.second && ins.second)
159 m_current = ins.first;
162 /* Returns true if the clause contains the term T. */
164 bool contains (tree t)
166 gcc_assert (TREE_CODE (t) == ATOMIC_CONSTR);
167 return m_set.contains (t);
171 /* Returns an iterator to the first clause in the formula. */
173 iterator begin ()
175 return m_terms.begin ();
178 /* Returns an iterator to the first clause in the formula. */
180 const_iterator begin () const
182 return m_terms.begin ();
185 /* Returns an iterator past the last clause in the formula. */
187 iterator end ()
189 return m_terms.end ();
192 /* Returns an iterator past the last clause in the formula. */
194 const_iterator end () const
196 return m_terms.end ();
199 /* Returns the current iterator. */
201 const_iterator current () const
203 return m_current;
206 std::list<tree> m_terms; /* The list of terms. */
207 hash_set<tree, false, atom_hasher> m_set; /* The set of atomic constraints. */
208 iterator m_current; /* The current term. */
212 /* A proof state owns a list of goals and tracks the
213 current sub-goal. The class also provides facilities
214 for managing subgoals and constructing term lists. */
216 struct formula
218 typedef std::list<clause>::iterator iterator;
219 typedef std::list<clause>::const_iterator const_iterator;
221 /* Construct a formula with an initial formula in a
222 single clause. */
224 formula (tree t)
226 m_clauses.emplace_back (t);
227 m_current = m_clauses.begin ();
230 /* Returns true when all clauses are atomic. */
231 bool done () const
233 return m_current == end ();
236 /* Advance to the next term. */
237 void advance ()
239 gcc_assert (!done ());
240 ++m_current;
243 /* Insert a copy of clause into the formula. This corresponds
244 to a distribution of one logical operation over the other. */
246 clause& branch ()
248 gcc_assert (!done ());
249 return *m_clauses.insert (std::next (m_current), *m_current);
252 /* Returns the position of the current clause. */
254 iterator current ()
256 return m_current;
259 /* Returns an iterator to the first clause in the formula. */
261 iterator begin ()
263 return m_clauses.begin ();
266 /* Returns an iterator to the first clause in the formula. */
268 const_iterator begin () const
270 return m_clauses.begin ();
273 /* Returns an iterator past the last clause in the formula. */
275 iterator end ()
277 return m_clauses.end ();
280 /* Returns an iterator past the last clause in the formula. */
282 const_iterator end () const
284 return m_clauses.end ();
287 /* Remove the specified clause from the formula. */
289 void erase (iterator i)
291 gcc_assert (i != m_current);
292 m_clauses.erase (i);
295 std::list<clause> m_clauses; /* The list of clauses. */
296 iterator m_current; /* The current clause. */
299 void
300 debug (clause& c)
302 for (clause::iterator i = c.begin(); i != c.end(); ++i)
303 verbatim (" # %E", *i);
306 void
307 debug (formula& f)
309 for (formula::iterator i = f.begin(); i != f.end(); ++i)
311 /* Format punctuators via %s to avoid -Wformat-diag. */
312 verbatim ("%s", "(((");
313 debug (*i);
314 verbatim ("%s", ")))");
318 /* The logical rules used to analyze a logical formula. The
319 "left" and "right" refer to the position of formula in a
320 sequent (as in sequent calculus). */
322 enum rules
324 left, right
327 /* Distribution counting. */
329 static inline bool
330 disjunction_p (tree t)
332 return TREE_CODE (t) == DISJ_CONSTR;
335 static inline bool
336 conjunction_p (tree t)
338 return TREE_CODE (t) == CONJ_CONSTR;
341 static inline bool
342 atomic_p (tree t)
344 return TREE_CODE (t) == ATOMIC_CONSTR;
347 /* Recursively count the number of clauses produced when converting T
348 to DNF. Returns a pair containing the number of clauses and a bool
349 value signifying that the tree would be rewritten as a result of
350 distributing. In general, a conjunction for which this flag is set
351 is considered a disjunction for the purpose of counting. */
353 static std::pair<int, bool>
354 dnf_size_r (tree t)
356 if (atomic_p (t))
357 /* Atomic constraints produce no clauses. */
358 return std::make_pair (0, false);
360 /* For compound constraints, recursively count clauses and unpack
361 the results. */
362 tree lhs = TREE_OPERAND (t, 0);
363 tree rhs = TREE_OPERAND (t, 1);
364 std::pair<int, bool> p1 = dnf_size_r (lhs);
365 std::pair<int, bool> p2 = dnf_size_r (rhs);
366 int n1 = p1.first, n2 = p2.first;
367 bool d1 = p1.second, d2 = p2.second;
369 if (disjunction_p (t))
371 /* Matches constraints of the form P \/ Q. Disjunctions contribute
372 linearly to the number of constraints. When both P and Q are
373 disjunctions, clauses are added. When only one of P and Q
374 is a disjunction, an additional clause is produced. When neither
375 P nor Q are disjunctions, two clauses are produced. */
376 if (disjunction_p (lhs))
378 if (disjunction_p (rhs) || (conjunction_p (rhs) && d2))
379 /* Both P and Q are disjunctions. */
380 return std::make_pair (n1 + n2, d1 | d2);
381 else
382 /* Only LHS is a disjunction. */
383 return std::make_pair (1 + n1 + n2, d1 | d2);
384 gcc_unreachable ();
386 if (conjunction_p (lhs))
388 if ((disjunction_p (rhs) && d1) || (conjunction_p (rhs) && d1 && d2))
389 /* Both P and Q are disjunctions. */
390 return std::make_pair (n1 + n2, d1 | d2);
391 if (disjunction_p (rhs)
392 || (conjunction_p (rhs) && d1 != d2)
393 || (atomic_p (rhs) && d1))
394 /* Either LHS or RHS is a disjunction. */
395 return std::make_pair (1 + n1 + n2, d1 | d2);
396 else
397 /* Neither LHS nor RHS is a disjunction. */
398 return std::make_pair (2, false);
400 if (atomic_p (lhs))
402 if (disjunction_p (rhs) || (conjunction_p (rhs) && d2))
403 /* Only RHS is a disjunction. */
404 return std::make_pair (1 + n1 + n2, d1 | d2);
405 else
406 /* Neither LHS nor RHS is a disjunction. */
407 return std::make_pair (2, false);
410 else /* conjunction_p (t) */
412 /* Matches constraints of the form P /\ Q, possibly resulting
413 in the distribution of one side over the other. When both
414 P and Q are disjunctions, the number of clauses are multiplied.
415 When only one of P and Q is a disjunction, the number of
416 clauses are added. Otherwise, neither side is a disjunction and
417 no clauses are created. */
418 if (disjunction_p (lhs))
420 if (disjunction_p (rhs) || (conjunction_p (rhs) && d2))
421 /* Both P and Q are disjunctions. */
422 return std::make_pair (n1 * n2, true);
423 else
424 /* Only LHS is a disjunction. */
425 return std::make_pair (n1 + n2, true);
426 gcc_unreachable ();
428 if (conjunction_p (lhs))
430 if ((disjunction_p (rhs) && d1) || (conjunction_p (rhs) && d1 && d2))
431 /* Both P and Q are disjunctions. */
432 return std::make_pair (n1 * n2, true);
433 if (disjunction_p (rhs)
434 || (conjunction_p (rhs) && d1 != d2)
435 || (atomic_p (rhs) && d1))
436 /* Either LHS or RHS is a disjunction. */
437 return std::make_pair (n1 + n2, true);
438 else
439 /* Neither LHS nor RHS is a disjunction. */
440 return std::make_pair (0, false);
442 if (atomic_p (lhs))
444 if (disjunction_p (rhs) || (conjunction_p (rhs) && d2))
445 /* Only RHS is a disjunction. */
446 return std::make_pair (n1 + n2, true);
447 else
448 /* Neither LHS nor RHS is a disjunction. */
449 return std::make_pair (0, false);
452 gcc_unreachable ();
455 /* Recursively count the number of clauses produced when converting T
456 to CNF. Returns a pair containing the number of clauses and a bool
457 value signifying that the tree would be rewritten as a result of
458 distributing. In general, a disjunction for which this flag is set
459 is considered a conjunction for the purpose of counting. */
461 static std::pair<int, bool>
462 cnf_size_r (tree t)
464 if (atomic_p (t))
465 /* Atomic constraints produce no clauses. */
466 return std::make_pair (0, false);
468 /* For compound constraints, recursively count clauses and unpack
469 the results. */
470 tree lhs = TREE_OPERAND (t, 0);
471 tree rhs = TREE_OPERAND (t, 1);
472 std::pair<int, bool> p1 = cnf_size_r (lhs);
473 std::pair<int, bool> p2 = cnf_size_r (rhs);
474 int n1 = p1.first, n2 = p2.first;
475 bool d1 = p1.second, d2 = p2.second;
477 if (disjunction_p (t))
479 /* Matches constraints of the form P \/ Q, possibly resulting
480 in the distribution of one side over the other. When both
481 P and Q are conjunctions, the number of clauses are multiplied.
482 When only one of P and Q is a conjunction, the number of
483 clauses are added. Otherwise, neither side is a conjunction and
484 no clauses are created. */
485 if (disjunction_p (lhs))
487 if ((disjunction_p (rhs) && d1 && d2) || (conjunction_p (rhs) && d1))
488 /* Both P and Q are conjunctions. */
489 return std::make_pair (n1 * n2, true);
490 if ((disjunction_p (rhs) && d1 != d2)
491 || conjunction_p (rhs)
492 || (atomic_p (rhs) && d1))
493 /* Either LHS or RHS is a conjunction. */
494 return std::make_pair (n1 + n2, true);
495 else
496 /* Neither LHS nor RHS is a conjunction. */
497 return std::make_pair (0, false);
499 if (conjunction_p (lhs))
501 if ((disjunction_p (rhs) && d2) || conjunction_p (rhs))
502 /* Both LHS and RHS are conjunctions. */
503 return std::make_pair (n1 * n2, true);
504 else
505 /* Only LHS is a conjunction. */
506 return std::make_pair (n1 + n2, true);
508 if (atomic_p (lhs))
510 if ((disjunction_p (rhs) && d2) || conjunction_p (rhs))
511 /* Only RHS is a disjunction. */
512 return std::make_pair (n1 + n2, true);
513 else
514 /* Neither LHS nor RHS is a disjunction. */
515 return std::make_pair (0, false);
518 else /* conjunction_p (t) */
520 /* Matches constraints of the form P /\ Q. Conjunctions contribute
521 linearly to the number of constraints. When both P and Q are
522 conjunctions, clauses are added. When only one of P and Q
523 is a conjunction, an additional clause is produced. When neither
524 P nor Q are conjunctions, two clauses are produced. */
525 if (disjunction_p (lhs))
527 if ((disjunction_p (rhs) && d1 && d2) || (conjunction_p (rhs) && d1))
528 /* Both P and Q are conjunctions. */
529 return std::make_pair (n1 + n2, d1 | d2);
530 if ((disjunction_p (rhs) && d1 != d2)
531 || conjunction_p (rhs)
532 || (atomic_p (rhs) && d1))
533 /* Either LHS or RHS is a conjunction. */
534 return std::make_pair (1 + n1 + n2, d1 | d2);
535 else
536 /* Neither LHS nor RHS is a conjunction. */
537 return std::make_pair (2, false);
539 if (conjunction_p (lhs))
541 if ((disjunction_p (rhs) && d2) || conjunction_p (rhs))
542 /* Both LHS and RHS are conjunctions. */
543 return std::make_pair (n1 + n2, d1 | d2);
544 else
545 /* Only LHS is a conjunction. */
546 return std::make_pair (1 + n1 + n2, d1 | d2);
548 if (atomic_p (lhs))
550 if ((disjunction_p (rhs) && d2) || conjunction_p (rhs))
551 /* Only RHS is a disjunction. */
552 return std::make_pair (1 + n1 + n2, d1 | d2);
553 else
554 /* Neither LHS nor RHS is a disjunction. */
555 return std::make_pair (2, false);
558 gcc_unreachable ();
561 /* Count the number conjunctive clauses that would be created
562 when rewriting T to DNF. */
564 static int
565 dnf_size (tree t)
567 std::pair<int, bool> result = dnf_size_r (t);
568 return result.first == 0 ? 1 : result.first;
572 /* Count the number disjunctive clauses that would be created
573 when rewriting T to CNF. */
575 static int
576 cnf_size (tree t)
578 std::pair<int, bool> result = cnf_size_r (t);
579 return result.first == 0 ? 1 : result.first;
583 /* A left-conjunction is replaced by its operands. */
585 void
586 replace_term (clause& c, tree t)
588 tree t1 = TREE_OPERAND (t, 0);
589 tree t2 = TREE_OPERAND (t, 1);
590 return c.replace (t1, t2);
593 /* Create a new clause in the formula by copying the current
594 clause. In the current clause, the term at CI is replaced
595 by the first operand, and in the new clause, it is replaced
596 by the second. */
598 void
599 branch_clause (formula& f, clause& c1, tree t)
601 tree t1 = TREE_OPERAND (t, 0);
602 tree t2 = TREE_OPERAND (t, 1);
603 clause& c2 = f.branch ();
604 c1.replace (t1);
605 c2.replace (t2);
608 /* Decompose t1 /\ t2 according to the rules R. */
610 inline void
611 decompose_conjuntion (formula& f, clause& c, tree t, rules r)
613 if (r == left)
614 replace_term (c, t);
615 else
616 branch_clause (f, c, t);
619 /* Decompose t1 \/ t2 according to the rules R. */
621 inline void
622 decompose_disjunction (formula& f, clause& c, tree t, rules r)
624 if (r == right)
625 replace_term (c, t);
626 else
627 branch_clause (f, c, t);
630 /* An atomic constraint is already decomposed. */
631 inline void
632 decompose_atom (clause& c)
634 c.advance ();
637 /* Decompose a term of clause C (in formula F) according to the
638 logical rules R. */
640 void
641 decompose_term (formula& f, clause& c, tree t, rules r)
643 switch (TREE_CODE (t))
645 case CONJ_CONSTR:
646 return decompose_conjuntion (f, c, t, r);
647 case DISJ_CONSTR:
648 return decompose_disjunction (f, c, t, r);
649 default:
650 return decompose_atom (c);
654 /* Decompose C (in F) using the logical rules R until it
655 is comprised of only atomic constraints. */
657 void
658 decompose_clause (formula& f, clause& c, rules r)
660 while (!c.done ())
661 decompose_term (f, c, *c.current (), r);
662 f.advance ();
665 static bool derive_proof (clause&, tree, rules);
667 /* Derive a proof of both operands of T. */
669 static bool
670 derive_proof_for_both_operands (clause& c, tree t, rules r)
672 if (!derive_proof (c, TREE_OPERAND (t, 0), r))
673 return false;
674 return derive_proof (c, TREE_OPERAND (t, 1), r);
677 /* Derive a proof of either operand of T. */
679 static bool
680 derive_proof_for_either_operand (clause& c, tree t, rules r)
682 if (derive_proof (c, TREE_OPERAND (t, 0), r))
683 return true;
684 return derive_proof (c, TREE_OPERAND (t, 1), r);
687 /* Derive a proof of the atomic constraint T in clause C. */
689 static bool
690 derive_atomic_proof (clause& c, tree t)
692 return c.contains (t);
695 /* Derive a proof of T from the terms in C. */
697 static bool
698 derive_proof (clause& c, tree t, rules r)
700 switch (TREE_CODE (t))
702 case CONJ_CONSTR:
703 if (r == left)
704 return derive_proof_for_both_operands (c, t, r);
705 else
706 return derive_proof_for_either_operand (c, t, r);
707 case DISJ_CONSTR:
708 if (r == left)
709 return derive_proof_for_either_operand (c, t, r);
710 else
711 return derive_proof_for_both_operands (c, t, r);
712 default:
713 return derive_atomic_proof (c, t);
717 /* Key/value pair for caching subsumption results. This associates a pair of
718 constraints with a boolean value indicating the result. */
720 struct GTY((for_user)) subsumption_entry
722 tree lhs;
723 tree rhs;
724 bool result;
727 /* Hashing function and equality for constraint entries. */
729 struct subsumption_hasher : ggc_ptr_hash<subsumption_entry>
731 static hashval_t hash (subsumption_entry *e)
733 hashval_t val = 0;
734 val = iterative_hash_constraint (e->lhs, val);
735 val = iterative_hash_constraint (e->rhs, val);
736 return val;
739 static bool equal (subsumption_entry *e1, subsumption_entry *e2)
741 if (!constraints_equivalent_p (e1->lhs, e2->lhs))
742 return false;
743 if (!constraints_equivalent_p (e1->rhs, e2->rhs))
744 return false;
745 return true;
749 /* Caches the results of subsumes_non_null(t1, t1). */
751 static GTY ((deletable)) hash_table<subsumption_hasher> *subsumption_cache;
753 /* Search for a previously cached subsumption result. */
755 static bool*
756 lookup_subsumption (tree t1, tree t2)
758 if (!subsumption_cache)
759 return NULL;
760 subsumption_entry elt = { t1, t2, false };
761 subsumption_entry* found = subsumption_cache->find (&elt);
762 if (found)
763 return &found->result;
764 else
765 return 0;
768 /* Save a subsumption result. */
770 static bool
771 save_subsumption (tree t1, tree t2, bool result)
773 if (!subsumption_cache)
774 subsumption_cache = hash_table<subsumption_hasher>::create_ggc(31);
775 subsumption_entry elt = {t1, t2, result};
776 subsumption_entry** slot = subsumption_cache->find_slot (&elt, INSERT);
777 subsumption_entry* entry = ggc_alloc<subsumption_entry> ();
778 *entry = elt;
779 *slot = entry;
780 return result;
784 /* Returns true if the LEFT constraint subsume the RIGHT constraints.
785 This is done by deriving a proof of the conclusions on the RIGHT
786 from the assumptions on the LEFT assumptions. */
788 static bool
789 subsumes_constraints_nonnull (tree lhs, tree rhs)
791 auto_timevar time (TV_CONSTRAINT_SUB);
793 if (bool *b = lookup_subsumption(lhs, rhs))
794 return *b;
796 tree x, y;
797 rules r;
798 if (dnf_size (lhs) <= cnf_size (rhs))
799 /* When LHS looks simpler than RHS, we'll determine subsumption by
800 decomposing LHS into its disjunctive normal form and checking that
801 each (conjunctive) clause in the decomposed LHS implies RHS. */
802 x = lhs, y = rhs, r = left;
803 else
804 /* Otherwise, we'll determine subsumption by decomposing RHS into its
805 conjunctive normal form and checking that each (disjunctive) clause
806 in the decomposed RHS implies LHS. */
807 x = rhs, y = lhs, r = right;
809 /* Decompose X into a list of sequents according to R, and recursively
810 check for implication of Y. */
811 bool result = true;
812 formula f (x);
813 while (!f.done ())
815 auto i = f.current ();
816 decompose_clause (f, *i, r);
817 if (!derive_proof (*i, y, r))
819 result = false;
820 break;
822 f.erase (i);
825 return save_subsumption (lhs, rhs, result);
828 /* Returns true if the LEFT constraints subsume the RIGHT
829 constraints. */
831 bool
832 subsumes (tree lhs, tree rhs)
834 if (lhs == rhs)
835 return true;
836 if (!lhs || lhs == error_mark_node)
837 return false;
838 if (!rhs || rhs == error_mark_node)
839 return true;
840 return subsumes_constraints_nonnull (lhs, rhs);
843 #include "gt-cp-logic.h"