[testsuite] [i386] work around fails with --enable-frame-pointer
[official-gcc.git] / gcc / ada / sem_ch4.adb
blob685a305e341528d9ad79f2aba399418c3107ed3d
1 ------------------------------------------------------------------------------
2 -- --
3 -- GNAT COMPILER COMPONENTS --
4 -- --
5 -- S E M _ C H 4 --
6 -- --
7 -- B o d y --
8 -- --
9 -- Copyright (C) 1992-2024, Free Software Foundation, Inc. --
10 -- --
11 -- GNAT is free software; you can redistribute it and/or modify it under --
12 -- terms of the GNU General Public License as published by the Free Soft- --
13 -- ware Foundation; either version 3, or (at your option) any later ver- --
14 -- sion. GNAT is distributed in the hope that it will be useful, but WITH- --
15 -- OUT ANY WARRANTY; without even the implied warranty of MERCHANTABILITY --
16 -- or FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License --
17 -- for more details. You should have received a copy of the GNU General --
18 -- Public License distributed with GNAT; see file COPYING3. If not, go to --
19 -- http://www.gnu.org/licenses for a complete copy of the license. --
20 -- --
21 -- GNAT was originally developed by the GNAT team at New York University. --
22 -- Extensive contributions were provided by Ada Core Technologies Inc. --
23 -- --
24 ------------------------------------------------------------------------------
26 with Accessibility; use Accessibility;
27 with Aspects; use Aspects;
28 with Atree; use Atree;
29 with Debug; use Debug;
30 with Einfo; use Einfo;
31 with Einfo.Entities; use Einfo.Entities;
32 with Einfo.Utils; use Einfo.Utils;
33 with Elists; use Elists;
34 with Errout; use Errout;
35 with Exp_Util; use Exp_Util;
36 with Itypes; use Itypes;
37 with Lib; use Lib;
38 with Lib.Xref; use Lib.Xref;
39 with Namet; use Namet;
40 with Namet.Sp; use Namet.Sp;
41 with Nlists; use Nlists;
42 with Nmake; use Nmake;
43 with Opt; use Opt;
44 with Output; use Output;
45 with Restrict; use Restrict;
46 with Rident; use Rident;
47 with Rtsfind; use Rtsfind;
48 with Sem; use Sem;
49 with Sem_Aux; use Sem_Aux;
50 with Sem_Case; use Sem_Case;
51 with Sem_Cat; use Sem_Cat;
52 with Sem_Ch3; use Sem_Ch3;
53 with Sem_Ch6; use Sem_Ch6;
54 with Sem_Ch8; use Sem_Ch8;
55 with Sem_Dim; use Sem_Dim;
56 with Sem_Disp; use Sem_Disp;
57 with Sem_Dist; use Sem_Dist;
58 with Sem_Eval; use Sem_Eval;
59 with Sem_Res; use Sem_Res;
60 with Sem_Type; use Sem_Type;
61 with Sem_Util; use Sem_Util;
62 with Sem_Warn; use Sem_Warn;
63 with Stand; use Stand;
64 with Sinfo; use Sinfo;
65 with Sinfo.Nodes; use Sinfo.Nodes;
66 with Sinfo.Utils; use Sinfo.Utils;
67 with Snames; use Snames;
68 with Style; use Style;
69 with Tbuild; use Tbuild;
70 with Uintp; use Uintp;
71 with Warnsw; use Warnsw;
73 package body Sem_Ch4 is
75 -- Tables which speed up the identification of dangerous calls to Ada 2012
76 -- functions with writable actuals (AI05-0144).
78 -- The following table enumerates the Ada constructs which may evaluate in
79 -- arbitrary order. It does not cover all the language constructs which can
80 -- be evaluated in arbitrary order but the subset needed for AI05-0144.
82 Has_Arbitrary_Evaluation_Order : constant array (Node_Kind) of Boolean :=
83 (N_Aggregate => True,
84 N_Assignment_Statement => True,
85 N_Entry_Call_Statement => True,
86 N_Extension_Aggregate => True,
87 N_Full_Type_Declaration => True,
88 N_Indexed_Component => True,
89 N_Object_Declaration => True,
90 N_Pragma => True,
91 N_Range => True,
92 N_Slice => True,
93 N_Array_Type_Definition => True,
94 N_Membership_Test => True,
95 N_Binary_Op => True,
96 N_Subprogram_Call => True,
97 others => False);
99 -- The following table enumerates the nodes on which we stop climbing when
100 -- locating the outermost Ada construct that can be evaluated in arbitrary
101 -- order.
103 Stop_Subtree_Climbing : constant array (Node_Kind) of Boolean :=
104 (N_Aggregate => True,
105 N_Assignment_Statement => True,
106 N_Entry_Call_Statement => True,
107 N_Extended_Return_Statement => True,
108 N_Extension_Aggregate => True,
109 N_Full_Type_Declaration => True,
110 N_Object_Declaration => True,
111 N_Object_Renaming_Declaration => True,
112 N_Package_Specification => True,
113 N_Pragma => True,
114 N_Procedure_Call_Statement => True,
115 N_Simple_Return_Statement => True,
116 N_Has_Condition => True,
117 others => False);
119 -----------------------
120 -- Local Subprograms --
121 -----------------------
123 procedure Analyze_Concatenation_Rest (N : Node_Id);
124 -- Does the "rest" of the work of Analyze_Concatenation, after the left
125 -- operand has been analyzed. See Analyze_Concatenation for details.
127 procedure Analyze_Expression (N : Node_Id);
128 -- For expressions that are not names, this is just a call to analyze. If
129 -- the expression is a name, it may be a call to a parameterless function,
130 -- and if so must be converted into an explicit call node and analyzed as
131 -- such. This deproceduring must be done during the first pass of overload
132 -- resolution, because otherwise a procedure call with overloaded actuals
133 -- may fail to resolve.
135 procedure Analyze_Operator_Call (N : Node_Id; Op_Id : Entity_Id);
136 -- Analyze a call of the form "+"(x, y), etc. The prefix of the call is an
137 -- operator name or an expanded name whose selector is an operator name,
138 -- and one possible interpretation is as a predefined operator.
140 procedure Analyze_Overloaded_Selected_Component (N : Node_Id);
141 -- If the prefix of a selected_component is overloaded, the proper
142 -- interpretation that yields a record type with the proper selector
143 -- name must be selected.
145 procedure Analyze_User_Defined_Binary_Op (N : Node_Id; Op_Id : Entity_Id);
146 -- Procedure to analyze a user defined binary operator, which is resolved
147 -- like a function, but instead of a list of actuals it is presented
148 -- with the left and right operands of an operator node.
150 procedure Analyze_User_Defined_Unary_Op (N : Node_Id; Op_Id : Entity_Id);
151 -- Procedure to analyze a user defined unary operator, which is resolved
152 -- like a function, but instead of a list of actuals, it is presented with
153 -- the operand of the operator node.
155 procedure Analyze_One_Call
156 (N : Node_Id;
157 Nam : Entity_Id;
158 Report : Boolean;
159 Success : out Boolean;
160 Skip_First : Boolean := False);
161 -- Check one interpretation of an overloaded subprogram name for
162 -- compatibility with the types of the actuals in a call. If there is a
163 -- single interpretation which does not match, post error if Report is
164 -- set to True.
166 -- Nam is the entity that provides the formals against which the actuals
167 -- are checked. Nam is either the name of a subprogram, or the internal
168 -- subprogram type constructed for an access_to_subprogram. If the actuals
169 -- are compatible with Nam, then Nam is added to the list of candidate
170 -- interpretations for N, and Success is set to True.
172 -- The flag Skip_First is used when analyzing a call that was rewritten
173 -- from object notation. In this case the first actual may have to receive
174 -- an explicit dereference, depending on the first formal of the operation
175 -- being called. The caller will have verified that the object is legal
176 -- for the call. If the remaining parameters match, the first parameter
177 -- will rewritten as a dereference if needed, prior to completing analysis.
179 procedure Check_Misspelled_Selector
180 (Prefix : Entity_Id;
181 Sel : Node_Id);
182 -- Give possible misspelling message if Sel seems likely to be a mis-
183 -- spelling of one of the selectors of the Prefix. This is called by
184 -- Analyze_Selected_Component after producing an invalid selector error
185 -- message.
187 procedure Find_Arithmetic_Types
188 (L, R : Node_Id;
189 Op_Id : Entity_Id;
190 N : Node_Id);
191 -- L and R are the operands of an arithmetic operator. Find consistent
192 -- pairs of interpretations for L and R that have a numeric type consistent
193 -- with the semantics of the operator.
195 procedure Find_Comparison_Equality_Types
196 (L, R : Node_Id;
197 Op_Id : Entity_Id;
198 N : Node_Id);
199 -- L and R are operands of a comparison or equality operator. Find valid
200 -- pairs of interpretations for L and R.
202 procedure Find_Concatenation_Types
203 (L, R : Node_Id;
204 Op_Id : Entity_Id;
205 N : Node_Id);
206 -- For the four varieties of concatenation
208 procedure Find_Boolean_Types
209 (L, R : Node_Id;
210 Op_Id : Entity_Id;
211 N : Node_Id);
212 -- Ditto for binary logical operations
214 procedure Find_Negation_Types
215 (R : Node_Id;
216 Op_Id : Entity_Id;
217 N : Node_Id);
218 -- Find consistent interpretation for operand of negation operator
220 function Find_Primitive_Operation (N : Node_Id) return Boolean;
221 -- Find candidate interpretations for the name Obj.Proc when it appears in
222 -- a subprogram renaming declaration.
224 procedure Find_Unary_Types
225 (R : Node_Id;
226 Op_Id : Entity_Id;
227 N : Node_Id);
228 -- Unary arithmetic types: plus, minus, abs
230 procedure Check_Arithmetic_Pair
231 (T1, T2 : Entity_Id;
232 Op_Id : Entity_Id;
233 N : Node_Id);
234 -- Subsidiary procedure to Find_Arithmetic_Types. T1 and T2 are valid types
235 -- for left and right operand. Determine whether they constitute a valid
236 -- pair for the given operator, and record the corresponding interpretation
237 -- of the operator node. The node N may be an operator node (the usual
238 -- case) or a function call whose prefix is an operator designator. In
239 -- both cases Op_Id is the operator name itself.
241 procedure Diagnose_Call (N : Node_Id; Nam : Node_Id);
242 -- Give detailed information on overloaded call where none of the
243 -- interpretations match. N is the call node, Nam the designator for
244 -- the overloaded entity being called.
246 function Junk_Operand (N : Node_Id) return Boolean;
247 -- Test for an operand that is an inappropriate entity (e.g. a package
248 -- name or a label). If so, issue an error message and return True. If
249 -- the operand is not an inappropriate entity kind, return False.
251 procedure Operator_Check (N : Node_Id);
252 -- Verify that an operator has received some valid interpretation. If none
253 -- was found, determine whether a use clause would make the operation
254 -- legal. The variable Candidate_Type (defined in Sem_Type) is set for
255 -- every type compatible with the operator, even if the operator for the
256 -- type is not directly visible. The routine uses this type to emit a more
257 -- informative message.
259 function Has_Possible_User_Defined_Literal (N : Node_Id) return Boolean;
260 -- Ada 2022: if an operand is a literal, it may be subject to an
261 -- implicit conversion to a type for which a user-defined literal
262 -- function exists. During the first pass of type resolution we do
263 -- not know the context imposed on the literal, so we assume that
264 -- the literal type is a valid candidate and rely on the second pass
265 -- of resolution to find the type with the proper aspect. We only
266 -- add this interpretation if no other one was found, which may be
267 -- too restrictive but seems sufficient to handle most proper uses
268 -- of the new aspect. It is unclear whether a full implementation of
269 -- these aspects can be achieved without larger modifications to the
270 -- two-pass resolution algorithm.
272 function Possible_Type_For_Conditional_Expression
273 (T1, T2 : Entity_Id) return Entity_Id;
274 -- Given two types T1 and T2 that are _not_ compatible, return a type that
275 -- may still be used as the possible type of a conditional expression whose
276 -- dependent expressions, or part thereof, have type T1 and T2 respectively
277 -- during the first phase of type resolution, or Empty if such a type does
278 -- not exist.
280 -- The typical example is an if_expression whose then_expression is of a
281 -- tagged type and whose else_expresssion is of an extension of this type:
282 -- the types are not compatible but such an if_expression can be legal if
283 -- its expected type is the 'Class of the tagged type, so the function will
284 -- return the tagged type in this case. If the expected type turns out to
285 -- be something else, including the tagged type itself, then an error will
286 -- be given during the second phase of type resolution.
288 procedure Remove_Abstract_Operations (N : Node_Id);
289 -- Ada 2005: implementation of AI-310. An abstract non-dispatching
290 -- operation is not a candidate interpretation.
292 function Try_Container_Indexing
293 (N : Node_Id;
294 Prefix : Node_Id;
295 Exprs : List_Id) return Boolean;
296 -- AI05-0139: Generalized indexing to support iterators over containers
297 -- ??? Need to provide a more detailed spec of what this function does
299 function Try_Indexed_Call
300 (N : Node_Id;
301 Nam : Entity_Id;
302 Typ : Entity_Id;
303 Skip_First : Boolean) return Boolean;
304 -- If a function has defaults for all its actuals, a call to it may in fact
305 -- be an indexing on the result of the call. Try_Indexed_Call attempts the
306 -- interpretation as an indexing, prior to analysis as a call. If both are
307 -- possible, the node is overloaded with both interpretations (same symbol
308 -- but two different types). If the call is written in prefix form, the
309 -- prefix becomes the first parameter in the call, and only the remaining
310 -- actuals must be checked for the presence of defaults.
312 function Try_Indirect_Call
313 (N : Node_Id;
314 Nam : Entity_Id;
315 Typ : Entity_Id) return Boolean;
316 -- Similarly, a function F that needs no actuals can return an access to a
317 -- subprogram, and the call F (X) interpreted as F.all (X). In this case
318 -- the call may be overloaded with both interpretations.
320 procedure wpo (T : Entity_Id);
321 pragma Warnings (Off, wpo);
322 -- Used for debugging: obtain list of primitive operations even if
323 -- type is not frozen and dispatch table is not built yet.
325 ------------------------
326 -- Ambiguous_Operands --
327 ------------------------
329 procedure Ambiguous_Operands (N : Node_Id) is
330 procedure List_Operand_Interps (Opnd : Node_Id);
332 --------------------------
333 -- List_Operand_Interps --
334 --------------------------
336 procedure List_Operand_Interps (Opnd : Node_Id) is
337 Nam : Node_Id := Empty;
338 Err : Node_Id := N;
340 begin
341 if Is_Overloaded (Opnd) then
342 if Nkind (Opnd) in N_Op then
343 Nam := Opnd;
345 elsif Nkind (Opnd) = N_Function_Call then
346 Nam := Name (Opnd);
348 elsif Ada_Version >= Ada_2012 then
349 declare
350 It : Interp;
351 I : Interp_Index;
353 begin
354 Get_First_Interp (Opnd, I, It);
355 while Present (It.Nam) loop
356 if Has_Implicit_Dereference (It.Typ) then
357 Error_Msg_N
358 ("can be interpreted as implicit dereference", Opnd);
359 return;
360 end if;
362 Get_Next_Interp (I, It);
363 end loop;
364 end;
366 return;
367 end if;
369 else
370 return;
371 end if;
373 if Opnd = Left_Opnd (N) then
374 Error_Msg_N
375 ("\left operand has the following interpretations", N);
376 else
377 Error_Msg_N
378 ("\right operand has the following interpretations", N);
379 Err := Opnd;
380 end if;
382 List_Interps (Nam, Err);
383 end List_Operand_Interps;
385 -- Start of processing for Ambiguous_Operands
387 begin
388 if Nkind (N) in N_Membership_Test then
389 Error_Msg_N ("ambiguous operands for membership", N);
391 elsif Nkind (N) in N_Op_Eq | N_Op_Ne then
392 Error_Msg_N ("ambiguous operands for equality", N);
394 else
395 Error_Msg_N ("ambiguous operands for comparison", N);
396 end if;
398 if All_Errors_Mode then
399 List_Operand_Interps (Left_Opnd (N));
400 List_Operand_Interps (Right_Opnd (N));
401 else
402 Error_Msg_N ("\use -gnatf switch for details", N);
403 end if;
404 end Ambiguous_Operands;
406 -----------------------
407 -- Analyze_Aggregate --
408 -----------------------
410 -- Most of the analysis of Aggregates requires that the type be known, and
411 -- is therefore put off until resolution of the context. Delta aggregates
412 -- have a base component that determines the enclosing aggregate type so
413 -- its type can be ascertained earlier. This also allows delta aggregates
414 -- to appear in the context of a record type with a private extension, as
415 -- per the latest update of AI12-0127.
417 procedure Analyze_Aggregate (N : Node_Id) is
418 begin
419 if No (Etype (N)) then
420 if Nkind (N) = N_Delta_Aggregate then
421 declare
422 Base : constant Node_Id := Expression (N);
424 I : Interp_Index;
425 It : Interp;
427 begin
428 Analyze (Base);
430 -- If the base is overloaded, propagate interpretations to the
431 -- enclosing aggregate.
433 if Is_Overloaded (Base) then
434 Get_First_Interp (Base, I, It);
435 Set_Etype (N, Any_Type);
437 while Present (It.Nam) loop
438 Add_One_Interp (N, It.Typ, It.Typ);
439 Get_Next_Interp (I, It);
440 end loop;
442 else
443 Set_Etype (N, Etype (Base));
444 end if;
445 end;
447 else
448 Set_Etype (N, Any_Composite);
449 end if;
450 end if;
451 end Analyze_Aggregate;
453 -----------------------
454 -- Analyze_Allocator --
455 -----------------------
457 procedure Analyze_Allocator (N : Node_Id) is
458 Loc : constant Source_Ptr := Sloc (N);
459 Sav_Errs : constant Nat := Serious_Errors_Detected;
460 E : Node_Id := Expression (N);
461 Acc_Type : Entity_Id;
462 Type_Id : Entity_Id;
463 P : Node_Id;
464 C : Node_Id;
465 Onode : Node_Id;
467 begin
468 -- Deal with allocator restrictions
470 -- In accordance with H.4(7), the No_Allocators restriction only applies
471 -- to user-written allocators. The same consideration applies to the
472 -- No_Standard_Allocators_Before_Elaboration restriction.
474 if Comes_From_Source (N) then
475 Check_Restriction (No_Allocators, N);
477 -- Processing for No_Standard_Allocators_After_Elaboration, loop to
478 -- look at enclosing context, checking task/main subprogram case.
480 C := N;
481 P := Parent (C);
482 while Present (P) loop
484 -- For the task case we need a handled sequence of statements,
485 -- where the occurrence of the allocator is within the statements
486 -- and the parent is a task body
488 if Nkind (P) = N_Handled_Sequence_Of_Statements
489 and then Is_List_Member (C)
490 and then List_Containing (C) = Statements (P)
491 then
492 Onode := Original_Node (Parent (P));
494 -- Check for allocator within task body, this is a definite
495 -- violation of No_Allocators_After_Elaboration we can detect
496 -- at compile time.
498 if Nkind (Onode) = N_Task_Body then
499 Check_Restriction
500 (No_Standard_Allocators_After_Elaboration, N);
501 exit;
502 end if;
503 end if;
505 -- The other case is appearance in a subprogram body. This is
506 -- a violation if this is a library level subprogram with no
507 -- parameters. Note that this is now a static error even if the
508 -- subprogram is not the main program (this is a change, in an
509 -- earlier version only the main program was affected, and the
510 -- check had to be done in the binder).
512 if Nkind (P) = N_Subprogram_Body
513 and then Nkind (Parent (P)) = N_Compilation_Unit
514 and then No (Parameter_Specifications (Specification (P)))
515 then
516 Check_Restriction
517 (No_Standard_Allocators_After_Elaboration, N);
518 end if;
520 C := P;
521 P := Parent (C);
522 end loop;
523 end if;
525 -- Ada 2012 (AI05-0111-3): Analyze the subpool_specification, if
526 -- any. The expected type for the name is any type. A non-overloading
527 -- rule then requires it to be of a type descended from
528 -- System.Storage_Pools.Subpools.Subpool_Handle.
530 -- This isn't exactly what the AI says, but it seems to be the right
531 -- rule. The AI should be fixed.???
533 declare
534 Subpool : constant Node_Id := Subpool_Handle_Name (N);
536 begin
537 if Present (Subpool) then
538 Analyze (Subpool);
540 if Is_Overloaded (Subpool) then
541 Error_Msg_N ("ambiguous subpool handle", Subpool);
542 end if;
544 -- Check that Etype (Subpool) is descended from Subpool_Handle
546 Resolve (Subpool);
547 end if;
548 end;
550 -- Analyze the qualified expression or subtype indication
552 if Nkind (E) = N_Qualified_Expression then
553 Acc_Type := Create_Itype (E_Allocator_Type, N);
554 Set_Etype (Acc_Type, Acc_Type);
555 Find_Type (Subtype_Mark (E));
557 -- Analyze the qualified expression, and apply the name resolution
558 -- rule given in 4.7(3).
560 Analyze (E);
561 Type_Id := Etype (E);
562 Set_Directly_Designated_Type (Acc_Type, Type_Id);
564 -- A qualified expression requires an exact match of the type,
565 -- class-wide matching is not allowed.
567 -- if Is_Class_Wide_Type (Type_Id)
568 -- and then Base_Type
569 -- (Etype (Expression (E))) /= Base_Type (Type_Id)
570 -- then
571 -- Wrong_Type (Expression (E), Type_Id);
572 -- end if;
574 -- We don't analyze the qualified expression itself because it's
575 -- part of the allocator. It is fully analyzed and resolved when
576 -- the allocator is resolved with the context type.
578 Set_Etype (E, Type_Id);
580 -- Case where allocator has a subtype indication
582 else
583 -- If the allocator includes a N_Subtype_Indication then a
584 -- constraint is present, otherwise the node is a subtype mark.
585 -- Introduce an explicit subtype declaration into the tree
586 -- defining some anonymous subtype and rewrite the allocator to
587 -- use this subtype rather than the subtype indication.
589 -- It is important to introduce the explicit subtype declaration
590 -- so that the bounds of the subtype indication are attached to
591 -- the tree in case the allocator is inside a generic unit.
593 -- Finally, if there is no subtype indication and the type is
594 -- a tagged unconstrained type with discriminants, the designated
595 -- object is constrained by their default values, and it is
596 -- simplest to introduce an explicit constraint now. In some cases
597 -- this is done during expansion, but freeze actions are certain
598 -- to be emitted in the proper order if constraint is explicit.
600 if Is_Entity_Name (E) and then Expander_Active then
601 Find_Type (E);
602 Type_Id := Entity (E);
604 if Is_Tagged_Type (Type_Id)
605 and then Has_Defaulted_Discriminants (Type_Id)
606 and then not Is_Constrained (Type_Id)
607 then
608 declare
609 Constr : constant List_Id := New_List;
610 Loc : constant Source_Ptr := Sloc (E);
611 Discr : Entity_Id := First_Discriminant (Type_Id);
613 begin
614 while Present (Discr) loop
615 Append (Discriminant_Default_Value (Discr), Constr);
616 Next_Discriminant (Discr);
617 end loop;
619 Rewrite (E,
620 Make_Subtype_Indication (Loc,
621 Subtype_Mark => New_Occurrence_Of (Type_Id, Loc),
622 Constraint =>
623 Make_Index_Or_Discriminant_Constraint (Loc,
624 Constraints => Constr)));
625 end;
626 end if;
627 end if;
629 if Nkind (E) = N_Subtype_Indication then
630 declare
631 Def_Id : Entity_Id;
632 Base_Typ : Entity_Id;
634 begin
635 -- A constraint is only allowed for a composite type in Ada
636 -- 95. In Ada 83, a constraint is also allowed for an
637 -- access-to-composite type, but the constraint is ignored.
639 Find_Type (Subtype_Mark (E));
640 Base_Typ := Entity (Subtype_Mark (E));
642 if Is_Elementary_Type (Base_Typ) then
643 if not (Ada_Version = Ada_83
644 and then Is_Access_Type (Base_Typ))
645 then
646 Error_Msg_N ("constraint not allowed here", E);
648 if Nkind (Constraint (E)) =
649 N_Index_Or_Discriminant_Constraint
650 then
651 Error_Msg_N -- CODEFIX
652 ("\if qualified expression was meant, " &
653 "use apostrophe", Constraint (E));
654 end if;
655 end if;
657 -- Get rid of the bogus constraint:
659 Rewrite (E, New_Copy_Tree (Subtype_Mark (E)));
660 Analyze_Allocator (N);
661 return;
662 end if;
664 -- In GNATprove mode we need to preserve the link between
665 -- the original subtype indication and the anonymous subtype,
666 -- to extend proofs to constrained access types. We only do
667 -- that outside of spec expressions, otherwise the declaration
668 -- cannot be inserted and analyzed. In such a case, GNATprove
669 -- later rejects the allocator as it is not used here in
670 -- a non-interfering context (SPARK 4.8(2) and 7.1.3(10)).
672 if Expander_Active
673 or else (GNATprove_Mode and then not In_Spec_Expression)
674 then
675 Def_Id := Make_Temporary (Loc, 'S');
677 declare
678 Subtype_Decl : constant Node_Id :=
679 Make_Subtype_Declaration (Loc,
680 Defining_Identifier => Def_Id,
681 Subtype_Indication => Relocate_Node (E));
682 begin
683 Insert_Action (E, Subtype_Decl);
685 -- Handle unusual case where Insert_Action does not
686 -- analyze the declaration. Subtype_Decl must be
687 -- preanalyzed before call to Process_Subtype below.
688 Preanalyze (Subtype_Decl);
689 end;
691 if Sav_Errs /= Serious_Errors_Detected
692 and then Nkind (Constraint (E)) =
693 N_Index_Or_Discriminant_Constraint
694 then
695 Error_Msg_N -- CODEFIX
696 ("if qualified expression was meant, use apostrophe!",
697 Constraint (E));
698 end if;
700 E := New_Occurrence_Of (Def_Id, Loc);
701 Rewrite (Expression (N), E);
702 end if;
703 end;
704 end if;
706 Type_Id := Process_Subtype (E, N);
707 Acc_Type := Create_Itype (E_Allocator_Type, N);
708 Set_Etype (Acc_Type, Acc_Type);
709 Set_Directly_Designated_Type (Acc_Type, Type_Id);
710 Check_Fully_Declared (Type_Id, N);
712 -- Ada 2005 (AI-231): If the designated type is itself an access
713 -- type that excludes null, its default initialization will
714 -- be a null object, and we can insert an unconditional raise
715 -- before the allocator.
717 -- Ada 2012 (AI-104): A not null indication here is altogether
718 -- illegal.
720 if Can_Never_Be_Null (Type_Id) then
721 declare
722 Not_Null_Check : constant Node_Id :=
723 Make_Raise_Constraint_Error (Sloc (E),
724 Reason => CE_Null_Not_Allowed);
726 begin
727 if Expander_Active then
728 Insert_Action (N, Not_Null_Check);
729 Analyze (Not_Null_Check);
731 elsif Warn_On_Ada_2012_Compatibility then
732 Error_Msg_N
733 ("null value not allowed here in Ada 2012?y?", E);
734 end if;
735 end;
736 end if;
738 -- Check for missing initialization. Skip this check if the allocator
739 -- is made for a special return object or if we already had errors on
740 -- analyzing the allocator since, in that case, these are very likely
741 -- cascaded errors.
743 if not Is_Definite_Subtype (Type_Id)
744 and then not For_Special_Return_Object (N)
745 and then Serious_Errors_Detected = Sav_Errs
746 then
747 if Is_Class_Wide_Type (Type_Id) then
748 Error_Msg_N
749 ("initialization required in class-wide allocation", N);
751 else
752 if Ada_Version < Ada_2005
753 and then Is_Limited_Type (Type_Id)
754 then
755 Error_Msg_N ("unconstrained allocation not allowed", N);
757 if Is_Array_Type (Type_Id) then
758 Error_Msg_N
759 ("\constraint with array bounds required", N);
761 elsif Has_Unknown_Discriminants (Type_Id) then
762 null;
764 else pragma Assert (Has_Discriminants (Type_Id));
765 Error_Msg_N
766 ("\constraint with discriminant values required", N);
767 end if;
769 -- Limited Ada 2005 and general nonlimited case.
770 -- This is an error, except in the case of an
771 -- uninitialized allocator that is generated
772 -- for a build-in-place function return of a
773 -- discriminated but compile-time-known-size
774 -- type.
776 else
777 if Is_Rewrite_Substitution (N)
778 and then Nkind (Original_Node (N)) = N_Allocator
779 then
780 declare
781 Qual : constant Node_Id :=
782 Expression (Original_Node (N));
783 pragma Assert
784 (Nkind (Qual) = N_Qualified_Expression);
785 Call : constant Node_Id := Expression (Qual);
786 pragma Assert
787 (Is_Expanded_Build_In_Place_Call (Call));
788 begin
789 null;
790 end;
792 else
793 Error_Msg_N
794 ("uninitialized unconstrained allocation not "
795 & "allowed", N);
797 if Is_Array_Type (Type_Id) then
798 Error_Msg_N
799 ("\qualified expression or constraint with "
800 & "array bounds required", N);
802 elsif Has_Unknown_Discriminants (Type_Id) then
803 Error_Msg_N ("\qualified expression required", N);
805 else pragma Assert (Has_Discriminants (Type_Id));
806 Error_Msg_N
807 ("\qualified expression or constraint with "
808 & "discriminant values required", N);
809 end if;
810 end if;
811 end if;
812 end if;
813 end if;
814 end if;
816 if Is_Abstract_Type (Type_Id) then
817 Error_Msg_N ("cannot allocate abstract object", E);
818 end if;
820 Set_Etype (N, Acc_Type);
822 -- If this is an allocator for the return stack, then no restriction may
823 -- be violated since it's just a low-level access to the primary stack.
825 if Nkind (Parent (N)) = N_Object_Declaration
826 and then Is_Entity_Name (Object_Definition (Parent (N)))
827 and then Is_Access_Type (Entity (Object_Definition (Parent (N))))
828 then
829 declare
830 Pool : constant Entity_Id :=
831 Associated_Storage_Pool
832 (Root_Type (Entity (Object_Definition (Parent (N)))));
834 begin
835 if Present (Pool) and then Is_RTE (Pool, RE_RS_Pool) then
836 goto Leave;
837 end if;
838 end;
839 end if;
841 if Has_Task (Designated_Type (Acc_Type)) then
842 Check_Restriction (No_Tasking, N);
843 Check_Restriction (Max_Tasks, N);
844 Check_Restriction (No_Task_Allocators, N);
845 end if;
847 -- Check restriction against dynamically allocated protected objects
849 if Has_Protected (Designated_Type (Acc_Type)) then
850 Check_Restriction (No_Protected_Type_Allocators, N);
851 end if;
853 -- AI05-0013-1: No_Nested_Finalization forbids allocators if the access
854 -- type is nested, and the designated type needs finalization. The rule
855 -- is conservative in that class-wide types need finalization.
857 if Needs_Finalization (Designated_Type (Acc_Type))
858 and then not Is_Library_Level_Entity (Acc_Type)
859 then
860 Check_Restriction (No_Nested_Finalization, N);
861 end if;
863 -- Check that an allocator of a nested access type doesn't create a
864 -- protected object when restriction No_Local_Protected_Objects applies.
866 if Has_Protected (Designated_Type (Acc_Type))
867 and then not Is_Library_Level_Entity (Acc_Type)
868 then
869 Check_Restriction (No_Local_Protected_Objects, N);
870 end if;
872 -- Likewise for No_Local_Timing_Events
874 if Has_Timing_Event (Designated_Type (Acc_Type))
875 and then not Is_Library_Level_Entity (Acc_Type)
876 then
877 Check_Restriction (No_Local_Timing_Events, N);
878 end if;
880 -- If the No_Streams restriction is set, check that the type of the
881 -- object is not, and does not contain, any subtype derived from
882 -- Ada.Streams.Root_Stream_Type. Note that we guard the call to
883 -- Has_Stream just for efficiency reasons. There is no point in
884 -- spending time on a Has_Stream check if the restriction is not set.
886 if Restriction_Check_Required (No_Streams) then
887 if Has_Stream (Designated_Type (Acc_Type)) then
888 Check_Restriction (No_Streams, N);
889 end if;
890 end if;
892 if not Is_Library_Level_Entity (Acc_Type) then
893 Check_Restriction (No_Local_Allocators, N);
894 end if;
896 <<Leave>>
897 if Serious_Errors_Detected > Sav_Errs then
898 Set_Error_Posted (N);
899 Set_Etype (N, Any_Type);
900 end if;
901 end Analyze_Allocator;
903 ---------------------------
904 -- Analyze_Arithmetic_Op --
905 ---------------------------
907 procedure Analyze_Arithmetic_Op (N : Node_Id) is
908 L : constant Node_Id := Left_Opnd (N);
909 R : constant Node_Id := Right_Opnd (N);
911 Op_Id : Entity_Id;
913 begin
914 Set_Etype (N, Any_Type);
915 Candidate_Type := Empty;
917 Analyze_Expression (L);
918 Analyze_Expression (R);
920 -- If the entity is already set, the node is the instantiation of a
921 -- generic node with a non-local reference, or was manufactured by a
922 -- call to Make_Op_xxx. In either case the entity is known to be valid,
923 -- and we do not need to collect interpretations, instead we just get
924 -- the single possible interpretation.
926 if Present (Entity (N)) then
927 Op_Id := Entity (N);
929 if Ekind (Op_Id) = E_Operator then
930 Find_Arithmetic_Types (L, R, Op_Id, N);
931 else
932 Add_One_Interp (N, Op_Id, Etype (Op_Id));
933 end if;
935 -- Entity is not already set, so we do need to collect interpretations
937 else
938 Op_Id := Get_Name_Entity_Id (Chars (N));
939 while Present (Op_Id) loop
940 if Ekind (Op_Id) = E_Operator
941 and then Present (Next_Entity (First_Entity (Op_Id)))
942 then
943 Find_Arithmetic_Types (L, R, Op_Id, N);
945 -- The following may seem superfluous, because an operator cannot
946 -- be generic, but this ignores the cleverness of the author of
947 -- ACVC bc1013a.
949 elsif Is_Overloadable (Op_Id) then
950 Analyze_User_Defined_Binary_Op (N, Op_Id);
951 end if;
953 Op_Id := Homonym (Op_Id);
954 end loop;
955 end if;
957 Operator_Check (N);
958 Check_Function_Writable_Actuals (N);
959 end Analyze_Arithmetic_Op;
961 ------------------
962 -- Analyze_Call --
963 ------------------
965 -- Function, procedure, and entry calls are checked here. The Name in
966 -- the call may be overloaded. The actuals have been analyzed and may
967 -- themselves be overloaded. On exit from this procedure, the node N
968 -- may have zero, one or more interpretations. In the first case an
969 -- error message is produced. In the last case, the node is flagged
970 -- as overloaded and the interpretations are collected in All_Interp.
972 -- If the name is an Access_To_Subprogram, it cannot be overloaded, but
973 -- the type-checking is similar to that of other calls.
975 procedure Analyze_Call (N : Node_Id) is
976 Actuals : constant List_Id := Parameter_Associations (N);
977 Loc : constant Source_Ptr := Sloc (N);
978 Nam : Node_Id;
979 X : Interp_Index;
980 It : Interp;
981 Nam_Ent : Entity_Id := Empty;
982 Success : Boolean := False;
984 Deref : Boolean := False;
985 -- Flag indicates whether an interpretation of the prefix is a
986 -- parameterless call that returns an access_to_subprogram.
988 procedure Check_Writable_Actuals (N : Node_Id);
989 -- If the call has out or in-out parameters then mark its outermost
990 -- enclosing construct as a node on which the writable actuals check
991 -- must be performed.
993 function Name_Denotes_Function return Boolean;
994 -- If the type of the name is an access to subprogram, this may be the
995 -- type of a name, or the return type of the function being called. If
996 -- the name is not an entity then it can denote a protected function.
997 -- Until we distinguish Etype from Return_Type, we must use this routine
998 -- to resolve the meaning of the name in the call.
1000 procedure No_Interpretation;
1001 -- Output error message when no valid interpretation exists
1003 ----------------------------
1004 -- Check_Writable_Actuals --
1005 ----------------------------
1007 -- The identification of conflicts in calls to functions with writable
1008 -- actuals is performed in the analysis phase of the front end to ensure
1009 -- that it reports exactly the same errors compiling with and without
1010 -- expansion enabled. It is performed in two stages:
1012 -- 1) When a call to a function with out-mode parameters is found,
1013 -- we climb to the outermost enclosing construct that can be
1014 -- evaluated in arbitrary order and we mark it with the flag
1015 -- Check_Actuals.
1017 -- 2) When the analysis of the marked node is complete, we traverse
1018 -- its decorated subtree searching for conflicts (see function
1019 -- Sem_Util.Check_Function_Writable_Actuals).
1021 -- The unique exception to this general rule is for aggregates, since
1022 -- their analysis is performed by the front end in the resolution
1023 -- phase. For aggregates we do not climb to their enclosing construct:
1024 -- we restrict the analysis to the subexpressions initializing the
1025 -- aggregate components.
1027 -- This implies that the analysis of expressions containing aggregates
1028 -- is not complete, since there may be conflicts on writable actuals
1029 -- involving subexpressions of the enclosing logical or arithmetic
1030 -- expressions. However, we cannot wait and perform the analysis when
1031 -- the whole subtree is resolved, since the subtrees may be transformed,
1032 -- thus adding extra complexity and computation cost to identify and
1033 -- report exactly the same errors compiling with and without expansion
1034 -- enabled.
1036 procedure Check_Writable_Actuals (N : Node_Id) is
1037 begin
1038 if Comes_From_Source (N)
1039 and then Present (Get_Subprogram_Entity (N))
1040 and then Has_Out_Or_In_Out_Parameter (Get_Subprogram_Entity (N))
1041 then
1042 -- For procedures and entries there is no need to climb since
1043 -- we only need to check if the actuals of this call invoke
1044 -- functions whose out-mode parameters overlap.
1046 if Nkind (N) /= N_Function_Call then
1047 Set_Check_Actuals (N);
1049 -- For calls to functions we climb to the outermost enclosing
1050 -- construct where the out-mode actuals of this function may
1051 -- introduce conflicts.
1053 else
1054 declare
1055 Outermost : Node_Id := Empty; -- init to avoid warning
1056 P : Node_Id := N;
1058 begin
1059 while Present (P) loop
1060 -- For object declarations we can climb to the node from
1061 -- its object definition branch or from its initializing
1062 -- expression. We prefer to mark the child node as the
1063 -- outermost construct to avoid adding further complexity
1064 -- to the routine that will later take care of
1065 -- performing the writable actuals check.
1067 if Has_Arbitrary_Evaluation_Order (Nkind (P))
1068 and then Nkind (P) not in
1069 N_Assignment_Statement | N_Object_Declaration
1070 then
1071 Outermost := P;
1072 end if;
1074 -- Avoid climbing more than needed
1076 exit when Stop_Subtree_Climbing (Nkind (P))
1077 or else (Nkind (P) = N_Range
1078 and then
1079 Nkind (Parent (P)) not in N_In | N_Not_In);
1081 P := Parent (P);
1082 end loop;
1084 Set_Check_Actuals (Outermost);
1085 end;
1086 end if;
1087 end if;
1088 end Check_Writable_Actuals;
1090 ---------------------------
1091 -- Name_Denotes_Function --
1092 ---------------------------
1094 function Name_Denotes_Function return Boolean is
1095 begin
1096 if Is_Entity_Name (Nam) then
1097 return Ekind (Entity (Nam)) = E_Function;
1098 elsif Nkind (Nam) = N_Selected_Component then
1099 return Ekind (Entity (Selector_Name (Nam))) = E_Function;
1100 else
1101 return False;
1102 end if;
1103 end Name_Denotes_Function;
1105 -----------------------
1106 -- No_Interpretation --
1107 -----------------------
1109 procedure No_Interpretation is
1110 L : constant Boolean := Is_List_Member (N);
1111 K : constant Node_Kind := Nkind (Parent (N));
1113 begin
1114 -- If the node is in a list whose parent is not an expression then it
1115 -- must be an attempted procedure call.
1117 if L and then K not in N_Subexpr then
1118 if Ekind (Entity (Nam)) = E_Generic_Procedure then
1119 Error_Msg_NE
1120 ("must instantiate generic procedure& before call",
1121 Nam, Entity (Nam));
1122 else
1123 Error_Msg_N ("procedure or entry name expected", Nam);
1124 end if;
1126 -- Check for tasking cases where only an entry call will do
1128 elsif not L
1129 and then K in N_Entry_Call_Alternative | N_Triggering_Alternative
1130 then
1131 Error_Msg_N ("entry name expected", Nam);
1133 -- Otherwise give general error message
1135 else
1136 Error_Msg_N ("invalid prefix in call", Nam);
1137 end if;
1138 end No_Interpretation;
1140 -- Start of processing for Analyze_Call
1142 begin
1143 -- Initialize the type of the result of the call to the error type,
1144 -- which will be reset if the type is successfully resolved.
1146 Set_Etype (N, Any_Type);
1148 Nam := Name (N);
1150 if not Is_Overloaded (Nam) then
1152 -- Only one interpretation to check
1154 if Ekind (Etype (Nam)) = E_Subprogram_Type then
1155 Nam_Ent := Etype (Nam);
1157 -- If the prefix is an access_to_subprogram, this may be an indirect
1158 -- call. This is the case if the name in the call is not an entity
1159 -- name, or if it is a function name in the context of a procedure
1160 -- call. In this latter case, we have a call to a parameterless
1161 -- function that returns a pointer_to_procedure which is the entity
1162 -- being called. Finally, F (X) may be a call to a parameterless
1163 -- function that returns a pointer to a function with parameters.
1164 -- Note that if F returns an access-to-subprogram whose designated
1165 -- type is an array, F (X) cannot be interpreted as an indirect call
1166 -- through the result of the call to F.
1168 elsif Is_Access_Subprogram_Type (Base_Type (Etype (Nam)))
1169 and then
1170 (not Name_Denotes_Function
1171 or else Nkind (N) = N_Procedure_Call_Statement
1172 or else
1173 (Nkind (Parent (N)) /= N_Explicit_Dereference
1174 and then Is_Entity_Name (Nam)
1175 and then No (First_Formal (Entity (Nam)))
1176 and then not
1177 Is_Array_Type (Etype (Designated_Type (Etype (Nam))))
1178 and then Present (Actuals)))
1179 then
1180 Nam_Ent := Designated_Type (Etype (Nam));
1181 Insert_Explicit_Dereference (Nam);
1183 -- Selected component case. Simple entry or protected operation,
1184 -- where the entry name is given by the selector name.
1186 elsif Nkind (Nam) = N_Selected_Component then
1187 Nam_Ent := Entity (Selector_Name (Nam));
1189 if Ekind (Nam_Ent) not in E_Entry
1190 | E_Entry_Family
1191 | E_Function
1192 | E_Procedure
1193 then
1194 Error_Msg_N ("name in call is not a callable entity", Nam);
1195 Set_Etype (N, Any_Type);
1196 return;
1197 end if;
1199 -- If the name is an Indexed component, it can be a call to a member
1200 -- of an entry family. The prefix must be a selected component whose
1201 -- selector is the entry. Analyze_Procedure_Call normalizes several
1202 -- kinds of call into this form.
1204 elsif Nkind (Nam) = N_Indexed_Component then
1205 if Nkind (Prefix (Nam)) = N_Selected_Component then
1206 Nam_Ent := Entity (Selector_Name (Prefix (Nam)));
1207 else
1208 Error_Msg_N ("name in call is not a callable entity", Nam);
1209 Set_Etype (N, Any_Type);
1210 return;
1211 end if;
1213 elsif not Is_Entity_Name (Nam) then
1214 Error_Msg_N ("name in call is not a callable entity", Nam);
1215 Set_Etype (N, Any_Type);
1216 return;
1218 else
1219 Nam_Ent := Entity (Nam);
1221 -- If not overloadable, this may be a generalized indexing
1222 -- operation with named associations. Rewrite again as an
1223 -- indexed component and analyze as container indexing.
1225 if not Is_Overloadable (Nam_Ent) then
1226 if Present
1227 (Find_Value_Of_Aspect
1228 (Etype (Nam_Ent), Aspect_Constant_Indexing))
1229 then
1230 Replace (N,
1231 Make_Indexed_Component (Sloc (N),
1232 Prefix => Nam,
1233 Expressions => Parameter_Associations (N)));
1235 if Try_Container_Indexing (N, Nam, Expressions (N)) then
1236 return;
1237 else
1238 No_Interpretation;
1239 end if;
1241 else
1242 No_Interpretation;
1243 end if;
1245 return;
1246 end if;
1247 end if;
1249 -- Operations generated for RACW stub types are called only through
1250 -- dispatching, and can never be the static interpretation of a call.
1252 if Is_RACW_Stub_Type_Operation (Nam_Ent) then
1253 No_Interpretation;
1254 return;
1255 end if;
1257 Analyze_One_Call (N, Nam_Ent, True, Success);
1259 -- If the nonoverloaded interpretation is a call to an abstract
1260 -- nondispatching operation, then flag an error and return.
1262 if Is_Overloadable (Nam_Ent)
1263 and then Is_Abstract_Subprogram (Nam_Ent)
1264 and then not Is_Dispatching_Operation (Nam_Ent)
1265 then
1266 Nondispatching_Call_To_Abstract_Operation (N, Nam_Ent);
1267 return;
1268 end if;
1270 -- If this is an indirect call, the return type of the access_to
1271 -- subprogram may be an incomplete type. At the point of the call,
1272 -- use the full type if available, and at the same time update the
1273 -- return type of the access_to_subprogram.
1275 if Success
1276 and then Nkind (Nam) = N_Explicit_Dereference
1277 and then Ekind (Etype (N)) = E_Incomplete_Type
1278 and then Present (Full_View (Etype (N)))
1279 then
1280 Set_Etype (N, Full_View (Etype (N)));
1281 Set_Etype (Nam_Ent, Etype (N));
1282 end if;
1284 -- Overloaded call
1286 else
1287 -- An overloaded selected component must denote overloaded operations
1288 -- of a concurrent type. The interpretations are attached to the
1289 -- simple name of those operations.
1291 if Nkind (Nam) = N_Selected_Component then
1292 Nam := Selector_Name (Nam);
1293 end if;
1295 Get_First_Interp (Nam, X, It);
1296 while Present (It.Nam) loop
1297 Nam_Ent := It.Nam;
1298 Deref := False;
1300 -- Name may be call that returns an access to subprogram, or more
1301 -- generally an overloaded expression one of whose interpretations
1302 -- yields an access to subprogram. If the name is an entity, we do
1303 -- not dereference, because the node is a call that returns the
1304 -- access type: note difference between f(x), where the call may
1305 -- return an access subprogram type, and f(x)(y), where the type
1306 -- returned by the call to f is implicitly dereferenced to analyze
1307 -- the outer call.
1309 if Is_Access_Type (Nam_Ent) then
1310 Nam_Ent := Designated_Type (Nam_Ent);
1312 elsif Is_Access_Type (Etype (Nam_Ent))
1313 and then
1314 (not Is_Entity_Name (Nam)
1315 or else Nkind (N) = N_Procedure_Call_Statement)
1316 and then Ekind (Designated_Type (Etype (Nam_Ent)))
1317 = E_Subprogram_Type
1318 then
1319 Nam_Ent := Designated_Type (Etype (Nam_Ent));
1321 if Is_Entity_Name (Nam) then
1322 Deref := True;
1323 end if;
1324 end if;
1326 -- If the call has been rewritten from a prefixed call, the first
1327 -- parameter has been analyzed, but may need a subsequent
1328 -- dereference, so skip its analysis now.
1330 if Is_Rewrite_Substitution (N)
1331 and then Nkind (Original_Node (N)) = Nkind (N)
1332 and then Nkind (Name (N)) /= Nkind (Name (Original_Node (N)))
1333 and then Present (Parameter_Associations (N))
1334 and then Present (Etype (First (Parameter_Associations (N))))
1335 then
1336 Analyze_One_Call
1337 (N, Nam_Ent, False, Success, Skip_First => True);
1338 else
1339 Analyze_One_Call (N, Nam_Ent, False, Success);
1340 end if;
1342 -- If the interpretation succeeds, mark the proper type of the
1343 -- prefix (any valid candidate will do). If not, remove the
1344 -- candidate interpretation. If this is a parameterless call
1345 -- on an anonymous access to subprogram, X is a variable with
1346 -- an access discriminant D, the entity in the interpretation is
1347 -- D, so rewrite X as X.D.all.
1349 if Success then
1350 if Deref
1351 and then Nkind (Parent (N)) /= N_Explicit_Dereference
1352 then
1353 if Ekind (It.Nam) = E_Discriminant
1354 and then Has_Implicit_Dereference (It.Nam)
1355 then
1356 Rewrite (Name (N),
1357 Make_Explicit_Dereference (Loc,
1358 Prefix =>
1359 Make_Selected_Component (Loc,
1360 Prefix =>
1361 New_Occurrence_Of (Entity (Nam), Loc),
1362 Selector_Name =>
1363 New_Occurrence_Of (It.Nam, Loc))));
1365 Analyze (N);
1366 return;
1368 else
1369 Set_Entity (Nam, It.Nam);
1370 Insert_Explicit_Dereference (Nam);
1371 Set_Etype (Nam, Nam_Ent);
1372 end if;
1374 else
1375 Set_Etype (Nam, It.Typ);
1376 end if;
1378 elsif Nkind (Name (N)) in N_Function_Call | N_Selected_Component
1379 then
1380 Remove_Interp (X);
1381 end if;
1383 Get_Next_Interp (X, It);
1384 end loop;
1386 -- If the name is the result of a function call, it can only be a
1387 -- call to a function returning an access to subprogram. Insert
1388 -- explicit dereference.
1390 if Nkind (Nam) = N_Function_Call then
1391 Insert_Explicit_Dereference (Nam);
1392 end if;
1394 if Etype (N) = Any_Type then
1396 -- None of the interpretations is compatible with the actuals
1398 Diagnose_Call (N, Nam);
1400 -- Special checks for uninstantiated put routines
1402 if Nkind (N) = N_Procedure_Call_Statement
1403 and then Is_Entity_Name (Nam)
1404 and then Chars (Nam) = Name_Put
1405 and then List_Length (Actuals) = 1
1406 then
1407 declare
1408 Arg : constant Node_Id := First (Actuals);
1409 Typ : Entity_Id;
1411 begin
1412 if Nkind (Arg) = N_Parameter_Association then
1413 Typ := Etype (Explicit_Actual_Parameter (Arg));
1414 else
1415 Typ := Etype (Arg);
1416 end if;
1418 if Is_Signed_Integer_Type (Typ) then
1419 Error_Msg_N
1420 ("possible missing instantiation of "
1421 & "'Text_'I'O.'Integer_'I'O!", Nam);
1423 elsif Is_Modular_Integer_Type (Typ) then
1424 Error_Msg_N
1425 ("possible missing instantiation of "
1426 & "'Text_'I'O.'Modular_'I'O!", Nam);
1428 elsif Is_Floating_Point_Type (Typ) then
1429 Error_Msg_N
1430 ("possible missing instantiation of "
1431 & "'Text_'I'O.'Float_'I'O!", Nam);
1433 elsif Is_Ordinary_Fixed_Point_Type (Typ) then
1434 Error_Msg_N
1435 ("possible missing instantiation of "
1436 & "'Text_'I'O.'Fixed_'I'O!", Nam);
1438 elsif Is_Decimal_Fixed_Point_Type (Typ) then
1439 Error_Msg_N
1440 ("possible missing instantiation of "
1441 & "'Text_'I'O.'Decimal_'I'O!", Nam);
1443 elsif Is_Enumeration_Type (Typ) then
1444 Error_Msg_N
1445 ("possible missing instantiation of "
1446 & "'Text_'I'O.'Enumeration_'I'O!", Nam);
1447 end if;
1448 end;
1449 end if;
1451 elsif not Is_Overloaded (N)
1452 and then Is_Entity_Name (Nam)
1453 then
1454 -- Resolution yields a single interpretation. Verify that the
1455 -- reference has capitalization consistent with the declaration.
1457 Set_Entity_With_Checks (Nam, Entity (Nam));
1458 Generate_Reference (Entity (Nam), Nam);
1460 Set_Etype (Nam, Etype (Entity (Nam)));
1461 else
1462 Remove_Abstract_Operations (N);
1463 end if;
1464 end if;
1466 -- Check the accessibility level for actuals for explicitly aliased
1467 -- formals when a function call appears within a return statement.
1468 -- This is only checked if the enclosing subprogram Comes_From_Source,
1469 -- to avoid issuing errors on calls occurring in wrapper subprograms
1470 -- (for example, where the call is part of an expression of an aspect
1471 -- associated with a wrapper, such as Pre'Class).
1473 if Nkind (N) = N_Function_Call
1474 and then Comes_From_Source (N)
1475 and then Present (Nam_Ent)
1476 and then In_Return_Value (N)
1477 and then Comes_From_Source (Current_Subprogram)
1478 then
1479 declare
1480 Form : Node_Id;
1481 Act : Node_Id;
1482 begin
1483 Act := First_Actual (N);
1484 Form := First_Formal (Nam_Ent);
1486 while Present (Form) and then Present (Act) loop
1487 -- Check whether the formal is aliased and if the accessibility
1488 -- level of the actual is deeper than the accessibility level
1489 -- of the enclosing subprogram to which the current return
1490 -- statement applies.
1492 -- Should we be checking Is_Entity_Name on Act? Won't this miss
1493 -- other cases ???
1495 if Is_Explicitly_Aliased (Form)
1496 and then Is_Entity_Name (Act)
1497 and then Static_Accessibility_Level
1498 (Act, Zero_On_Dynamic_Level)
1499 > Subprogram_Access_Level (Current_Subprogram)
1500 then
1501 Error_Msg_N ("actual for explicitly aliased formal is too"
1502 & " short lived", Act);
1503 end if;
1505 Next_Formal (Form);
1506 Next_Actual (Act);
1507 end loop;
1508 end;
1509 end if;
1511 if Ada_Version >= Ada_2012 then
1513 -- Check if the call contains a function with writable actuals
1515 Check_Writable_Actuals (N);
1517 -- If found and the outermost construct that can be evaluated in
1518 -- an arbitrary order is precisely this call, then check all its
1519 -- actuals.
1521 Check_Function_Writable_Actuals (N);
1523 -- The return type of the function may be incomplete. This can be
1524 -- the case if the type is a generic formal, or a limited view. It
1525 -- can also happen when the function declaration appears before the
1526 -- full view of the type (which is legal in Ada 2012) and the call
1527 -- appears in a different unit, in which case the incomplete view
1528 -- must be replaced with the full view (or the nonlimited view)
1529 -- to prevent subsequent type errors. Note that the usual install/
1530 -- removal of limited_with clauses is not sufficient to handle this
1531 -- case, because the limited view may have been captured in another
1532 -- compilation unit that defines the current function.
1534 if Is_Incomplete_Type (Etype (N)) then
1535 if Present (Full_View (Etype (N))) then
1536 if Is_Entity_Name (Nam) then
1537 Set_Etype (Nam, Full_View (Etype (N)));
1538 Set_Etype (Entity (Nam), Full_View (Etype (N)));
1539 end if;
1541 Set_Etype (N, Full_View (Etype (N)));
1543 -- If the call is within a thunk, the nonlimited view should be
1544 -- analyzed eventually (see also Analyze_Return_Type).
1546 elsif From_Limited_With (Etype (N))
1547 and then Present (Non_Limited_View (Etype (N)))
1548 and then
1549 (Ekind (Non_Limited_View (Etype (N))) /= E_Incomplete_Type
1550 or else Is_Thunk (Current_Scope))
1551 then
1552 Set_Etype (N, Non_Limited_View (Etype (N)));
1554 -- If there is no completion for the type, this may be because
1555 -- there is only a limited view of it and there is nothing in
1556 -- the context of the current unit that has required a regular
1557 -- compilation of the unit containing the type. We recognize
1558 -- this unusual case by the fact that unit is not analyzed.
1559 -- Note that the call being analyzed is in a different unit from
1560 -- the function declaration, and nothing indicates that the type
1561 -- is a limited view.
1563 elsif Ekind (Scope (Etype (N))) = E_Package
1564 and then Present (Limited_View (Scope (Etype (N))))
1565 and then not Analyzed (Unit_Declaration_Node (Scope (Etype (N))))
1566 then
1567 Error_Msg_NE
1568 ("cannot call function that returns limited view of}",
1569 N, Etype (N));
1571 Error_Msg_NE
1572 ("\there must be a regular with_clause for package & in the "
1573 & "current unit, or in some unit in its context",
1574 N, Scope (Etype (N)));
1576 Set_Etype (N, Any_Type);
1577 end if;
1578 end if;
1579 end if;
1580 end Analyze_Call;
1582 -----------------------------
1583 -- Analyze_Case_Expression --
1584 -----------------------------
1586 procedure Analyze_Case_Expression (N : Node_Id) is
1587 Expr : constant Node_Id := Expression (N);
1588 First_Alt : constant Node_Id := First (Alternatives (N));
1590 First_Expr : Node_Id := Empty;
1591 -- First expression in the case where there is some type information
1592 -- available, i.e. there is not Any_Type everywhere, which can happen
1593 -- because of some error.
1595 Second_Expr : Node_Id := Empty;
1596 -- Second expression as above
1598 Wrong_Alt : Node_Id := Empty;
1599 -- For error reporting
1601 procedure Non_Static_Choice_Error (Choice : Node_Id);
1602 -- Error routine invoked by the generic instantiation below when
1603 -- the case expression has a non static choice.
1605 procedure Check_Next_Expression (T : Entity_Id; Alt : Node_Id);
1606 -- Check one interpretation of the next expression with type T
1608 procedure Check_Expression_Pair (T1, T2 : Entity_Id; Alt : Node_Id);
1609 -- Check first expression with type T1 and next expression with type T2
1611 package Case_Choices_Analysis is new
1612 Generic_Analyze_Choices
1613 (Process_Associated_Node => No_OP);
1614 use Case_Choices_Analysis;
1616 package Case_Choices_Checking is new
1617 Generic_Check_Choices
1618 (Process_Empty_Choice => No_OP,
1619 Process_Non_Static_Choice => Non_Static_Choice_Error,
1620 Process_Associated_Node => No_OP);
1621 use Case_Choices_Checking;
1623 -----------------------------
1624 -- Non_Static_Choice_Error --
1625 -----------------------------
1627 procedure Non_Static_Choice_Error (Choice : Node_Id) is
1628 begin
1629 Flag_Non_Static_Expr
1630 ("choice given in case expression is not static!", Choice);
1631 end Non_Static_Choice_Error;
1633 ---------------------------
1634 -- Check_Next_Expression --
1635 ---------------------------
1637 procedure Check_Next_Expression (T : Entity_Id; Alt : Node_Id) is
1638 Next_Expr : constant Node_Id := Expression (Alt);
1640 I : Interp_Index;
1641 It : Interp;
1643 begin
1644 if Next_Expr = First_Expr then
1645 Check_Next_Expression (T, Next (Alt));
1646 return;
1647 end if;
1649 -- Loop through the interpretations of the next expression
1651 if not Is_Overloaded (Next_Expr) then
1652 Check_Expression_Pair (T, Etype (Next_Expr), Alt);
1654 else
1655 Get_First_Interp (Next_Expr, I, It);
1656 while Present (It.Typ) loop
1657 Check_Expression_Pair (T, It.Typ, Alt);
1658 Get_Next_Interp (I, It);
1659 end loop;
1660 end if;
1661 end Check_Next_Expression;
1663 ---------------------------
1664 -- Check_Expression_Pair --
1665 ---------------------------
1667 procedure Check_Expression_Pair (T1, T2 : Entity_Id; Alt : Node_Id) is
1668 Next_Expr : constant Node_Id := Expression (Alt);
1670 T : Entity_Id;
1672 begin
1673 if Covers (T1 => T1, T2 => T2)
1674 or else Covers (T1 => T2, T2 => T1)
1675 then
1676 T := Specific_Type (T1, T2);
1678 elsif Is_User_Defined_Literal (First_Expr, T2) then
1679 T := T2;
1681 elsif Is_User_Defined_Literal (Next_Expr, T1) then
1682 T := T1;
1684 else
1685 T := Possible_Type_For_Conditional_Expression (T1, T2);
1687 if No (T) then
1688 Wrong_Alt := Alt;
1689 return;
1690 end if;
1691 end if;
1693 if Present (Next (Alt)) then
1694 Check_Next_Expression (T, Next (Alt));
1695 else
1696 Add_One_Interp (N, T, T);
1697 end if;
1698 end Check_Expression_Pair;
1700 -- Local variables
1702 Alt : Node_Id;
1703 Exp_Type : Entity_Id;
1704 Exp_Btype : Entity_Id;
1705 I : Interp_Index;
1706 It : Interp;
1707 Others_Present : Boolean;
1709 -- Start of processing for Analyze_Case_Expression
1711 begin
1712 Analyze_And_Resolve (Expr, Any_Discrete);
1713 Check_Unset_Reference (Expr);
1714 Exp_Type := Etype (Expr);
1715 Exp_Btype := Base_Type (Exp_Type);
1717 Set_Etype (N, Any_Type);
1719 Alt := First_Alt;
1720 while Present (Alt) loop
1721 if Error_Posted (Expression (Alt)) then
1722 return;
1723 end if;
1725 Analyze_Expression (Expression (Alt));
1727 if Etype (Expression (Alt)) /= Any_Type then
1728 if No (First_Expr) then
1729 First_Expr := Expression (Alt);
1731 elsif No (Second_Expr) then
1732 Second_Expr := Expression (Alt);
1733 end if;
1734 end if;
1736 Next (Alt);
1737 end loop;
1739 -- Get our initial type from the first expression for which we got some
1740 -- useful type information from the expression.
1742 if No (First_Expr) then
1743 return;
1744 end if;
1746 -- The expression must be of a discrete type which must be determinable
1747 -- independently of the context in which the expression occurs, but
1748 -- using the fact that the expression must be of a discrete type.
1749 -- Moreover, the type this expression must not be a character literal
1750 -- (which is always ambiguous).
1752 -- If error already reported by Resolve, nothing more to do
1754 if Exp_Btype = Any_Discrete or else Exp_Btype = Any_Type then
1755 return;
1757 -- Special case message for character literal
1759 elsif Exp_Btype = Any_Character then
1760 Error_Msg_N
1761 ("character literal as case expression is ambiguous", Expr);
1762 return;
1763 end if;
1765 -- If the case expression is a formal object of mode in out, then
1766 -- treat it as having a nonstatic subtype by forcing use of the base
1767 -- type (which has to get passed to Check_Case_Choices below). Also
1768 -- use base type when the case expression is parenthesized.
1770 if Paren_Count (Expr) > 0
1771 or else (Is_Entity_Name (Expr)
1772 and then Ekind (Entity (Expr)) = E_Generic_In_Out_Parameter)
1773 then
1774 Exp_Type := Exp_Btype;
1775 end if;
1777 -- The case expression alternatives cover the range of a static subtype
1778 -- subject to aspect Static_Predicate. Do not check the choices when the
1779 -- case expression has not been fully analyzed yet because this may lead
1780 -- to bogus errors.
1782 if Is_OK_Static_Subtype (Exp_Type)
1783 and then Has_Static_Predicate_Aspect (Exp_Type)
1784 and then In_Spec_Expression
1785 then
1786 null;
1788 -- Call Analyze_Choices and Check_Choices to do the rest of the work
1790 else
1791 Analyze_Choices (Alternatives (N), Exp_Type);
1792 Check_Choices (N, Alternatives (N), Exp_Type, Others_Present);
1794 if Exp_Type = Universal_Integer and then not Others_Present then
1795 Error_Msg_N
1796 ("case on universal integer requires OTHERS choice", Expr);
1797 return;
1798 end if;
1799 end if;
1801 -- RM 4.5.7(10/3): If the case_expression is the operand of a type
1802 -- conversion, the type of the case_expression is the target type
1803 -- of the conversion.
1805 if Nkind (Parent (N)) = N_Type_Conversion then
1806 Set_Etype (N, Etype (Parent (N)));
1807 return;
1808 end if;
1810 -- Loop through the interpretations of the first expression and check
1811 -- the other expressions if present.
1813 if not Is_Overloaded (First_Expr) then
1814 if Present (Second_Expr) then
1815 Check_Next_Expression (Etype (First_Expr), First_Alt);
1816 else
1817 Set_Etype (N, Etype (First_Expr));
1818 end if;
1820 else
1821 Get_First_Interp (First_Expr, I, It);
1822 while Present (It.Typ) loop
1823 if Present (Second_Expr) then
1824 Check_Next_Expression (It.Typ, First_Alt);
1825 else
1826 Add_One_Interp (N, It.Typ, It.Typ);
1827 end if;
1829 Get_Next_Interp (I, It);
1830 end loop;
1831 end if;
1833 -- If no possible interpretation has been found, the type of the wrong
1834 -- alternative doesn't match any interpretation of the FIRST expression.
1836 if Etype (N) = Any_Type and then Present (Wrong_Alt) then
1837 Second_Expr := Expression (Wrong_Alt);
1839 if Is_Overloaded (First_Expr) then
1840 if Is_Overloaded (Second_Expr) then
1841 Error_Msg_N
1842 ("no interpretation compatible with those of previous "
1843 & "alternative",
1844 Second_Expr);
1845 else
1846 Error_Msg_N
1847 ("type incompatible with interpretations of previous "
1848 & "alternative",
1849 Second_Expr);
1850 Error_Msg_NE
1851 ("\this alternative has}!",
1852 Second_Expr,
1853 Etype (Second_Expr));
1854 end if;
1856 else
1857 if Is_Overloaded (Second_Expr) then
1858 Error_Msg_N
1859 ("no interpretation compatible with type of previous "
1860 & "alternative",
1861 Second_Expr);
1862 Error_Msg_NE
1863 ("\previous alternative has}!",
1864 Second_Expr,
1865 Etype (First_Expr));
1866 else
1867 Error_Msg_N
1868 ("type incompatible with that of previous alternative",
1869 Second_Expr);
1870 Error_Msg_NE
1871 ("\previous alternative has}!",
1872 Second_Expr,
1873 Etype (First_Expr));
1874 Error_Msg_NE
1875 ("\this alternative has}!",
1876 Second_Expr,
1877 Etype (Second_Expr));
1878 end if;
1879 end if;
1880 end if;
1881 end Analyze_Case_Expression;
1883 ---------------------------
1884 -- Analyze_Concatenation --
1885 ---------------------------
1887 procedure Analyze_Concatenation (N : Node_Id) is
1889 -- We wish to avoid deep recursion, because concatenations are often
1890 -- deeply nested, as in A&B&...&Z. Therefore, we walk down the left
1891 -- operands nonrecursively until we find something that is not a
1892 -- concatenation (A in this case), or has already been analyzed. We
1893 -- analyze that, and then walk back up the tree following Parent
1894 -- pointers, calling Analyze_Concatenation_Rest to do the rest of the
1895 -- work at each level. The Parent pointers allow us to avoid recursion,
1896 -- and thus avoid running out of memory.
1898 NN : Node_Id := N;
1899 L : Node_Id;
1901 begin
1902 Candidate_Type := Empty;
1904 -- The following code is equivalent to:
1906 -- Set_Etype (N, Any_Type);
1907 -- Analyze_Expression (Left_Opnd (N));
1908 -- Analyze_Concatenation_Rest (N);
1910 -- where the Analyze_Expression call recurses back here if the left
1911 -- operand is a concatenation.
1913 -- Walk down left operands
1915 loop
1916 Set_Etype (NN, Any_Type);
1917 L := Left_Opnd (NN);
1918 exit when Nkind (L) /= N_Op_Concat or else Analyzed (L);
1919 NN := L;
1920 end loop;
1922 -- Now (given the above example) NN is A&B and L is A
1924 -- First analyze L ...
1926 Analyze_Expression (L);
1928 -- ... then walk NN back up until we reach N (where we started), calling
1929 -- Analyze_Concatenation_Rest along the way.
1931 loop
1932 Analyze_Concatenation_Rest (NN);
1933 exit when NN = N;
1934 NN := Parent (NN);
1935 end loop;
1936 end Analyze_Concatenation;
1938 --------------------------------
1939 -- Analyze_Concatenation_Rest --
1940 --------------------------------
1942 -- If the only one-dimensional array type in scope is String,
1943 -- this is the resulting type of the operation. Otherwise there
1944 -- will be a concatenation operation defined for each user-defined
1945 -- one-dimensional array.
1947 procedure Analyze_Concatenation_Rest (N : Node_Id) is
1948 L : constant Node_Id := Left_Opnd (N);
1949 R : constant Node_Id := Right_Opnd (N);
1950 Op_Id : Entity_Id := Entity (N);
1951 LT : Entity_Id;
1952 RT : Entity_Id;
1954 begin
1955 Analyze_Expression (R);
1957 -- If the entity is present, the node appears in an instance, and
1958 -- denotes a predefined concatenation operation. The resulting type is
1959 -- obtained from the arguments when possible. If the arguments are
1960 -- aggregates, the array type and the concatenation type must be
1961 -- visible.
1963 if Present (Op_Id) then
1964 if Ekind (Op_Id) = E_Operator then
1965 LT := Base_Type (Etype (L));
1966 RT := Base_Type (Etype (R));
1968 if Is_Array_Type (LT)
1969 and then (RT = LT or else RT = Base_Type (Component_Type (LT)))
1970 then
1971 Add_One_Interp (N, Op_Id, LT);
1973 elsif Is_Array_Type (RT)
1974 and then LT = Base_Type (Component_Type (RT))
1975 then
1976 Add_One_Interp (N, Op_Id, RT);
1978 -- If one operand is a string type or a user-defined array type,
1979 -- and the other is a literal, result is of the specific type.
1981 elsif
1982 (Root_Type (LT) = Standard_String
1983 or else Scope (LT) /= Standard_Standard)
1984 and then Etype (R) = Any_String
1985 then
1986 Add_One_Interp (N, Op_Id, LT);
1988 elsif
1989 (Root_Type (RT) = Standard_String
1990 or else Scope (RT) /= Standard_Standard)
1991 and then Etype (L) = Any_String
1992 then
1993 Add_One_Interp (N, Op_Id, RT);
1995 elsif not Is_Generic_Type (Etype (Op_Id)) then
1996 Add_One_Interp (N, Op_Id, Etype (Op_Id));
1998 else
1999 -- Type and its operations must be visible
2001 Set_Entity (N, Empty);
2002 Analyze_Concatenation (N);
2003 end if;
2005 else
2006 Add_One_Interp (N, Op_Id, Etype (Op_Id));
2007 end if;
2009 else
2010 Op_Id := Get_Name_Entity_Id (Name_Op_Concat);
2011 while Present (Op_Id) loop
2012 if Ekind (Op_Id) = E_Operator then
2014 -- Do not consider operators declared in dead code, they
2015 -- cannot be part of the resolution.
2017 if Is_Eliminated (Op_Id) then
2018 null;
2019 else
2020 Find_Concatenation_Types (L, R, Op_Id, N);
2021 end if;
2023 else
2024 Analyze_User_Defined_Binary_Op (N, Op_Id);
2025 end if;
2027 Op_Id := Homonym (Op_Id);
2028 end loop;
2029 end if;
2031 Operator_Check (N);
2032 end Analyze_Concatenation_Rest;
2034 ------------------------------------
2035 -- Analyze_Comparison_Equality_Op --
2036 ------------------------------------
2038 procedure Analyze_Comparison_Equality_Op (N : Node_Id) is
2039 Loc : constant Source_Ptr := Sloc (N);
2040 L : constant Node_Id := Left_Opnd (N);
2041 R : constant Node_Id := Right_Opnd (N);
2043 Op_Id : Entity_Id;
2045 begin
2046 Set_Etype (N, Any_Type);
2047 Candidate_Type := Empty;
2049 Analyze_Expression (L);
2050 Analyze_Expression (R);
2052 -- If the entity is set, the node is a generic instance with a non-local
2053 -- reference to the predefined operator or to a user-defined function.
2054 -- It can also be an inequality that is expanded into the negation of a
2055 -- call to a user-defined equality operator.
2057 -- For the predefined case, the result is Boolean, regardless of the
2058 -- type of the operands. The operands may even be limited, if they are
2059 -- generic actuals. If they are overloaded, label the operands with the
2060 -- compare type if it is present, typically because it is a global type
2061 -- in a generic instance, or with the common type that must be present,
2062 -- or with the type of the formal of the user-defined function.
2064 if Present (Entity (N)) then
2065 Op_Id := Entity (N);
2067 if Ekind (Op_Id) = E_Operator then
2068 Add_One_Interp (N, Op_Id, Standard_Boolean);
2069 else
2070 Add_One_Interp (N, Op_Id, Etype (Op_Id));
2071 end if;
2073 if Is_Overloaded (L) then
2074 if Ekind (Op_Id) = E_Operator then
2075 Set_Etype (L,
2076 (if Present (Compare_Type (N))
2077 then Compare_Type (N)
2078 else Intersect_Types (L, R)));
2079 else
2080 Set_Etype (L, Etype (First_Formal (Op_Id)));
2081 end if;
2082 end if;
2084 if Is_Overloaded (R) then
2085 if Ekind (Op_Id) = E_Operator then
2086 Set_Etype (R,
2087 (if Present (Compare_Type (N))
2088 then Compare_Type (N)
2089 else Intersect_Types (L, R)));
2090 else
2091 Set_Etype (R, Etype (Next_Formal (First_Formal (Op_Id))));
2092 end if;
2093 end if;
2095 else
2096 Op_Id := Get_Name_Entity_Id (Chars (N));
2098 while Present (Op_Id) loop
2099 if Ekind (Op_Id) = E_Operator then
2100 Find_Comparison_Equality_Types (L, R, Op_Id, N);
2101 else
2102 Analyze_User_Defined_Binary_Op (N, Op_Id);
2103 end if;
2105 Op_Id := Homonym (Op_Id);
2106 end loop;
2107 end if;
2109 -- If there was no match and the operator is inequality, this may be
2110 -- a case where inequality has not been made explicit, as for tagged
2111 -- types. Analyze the node as the negation of an equality operation.
2112 -- This cannot be done earlier because, before analysis, we cannot rule
2113 -- out the presence of an explicit inequality.
2115 if Etype (N) = Any_Type and then Nkind (N) = N_Op_Ne then
2116 Op_Id := Get_Name_Entity_Id (Name_Op_Eq);
2118 while Present (Op_Id) loop
2119 if Ekind (Op_Id) = E_Operator then
2120 Find_Comparison_Equality_Types (L, R, Op_Id, N);
2121 else
2122 Analyze_User_Defined_Binary_Op (N, Op_Id);
2123 end if;
2125 Op_Id := Homonym (Op_Id);
2126 end loop;
2128 if Etype (N) /= Any_Type then
2129 Op_Id := Entity (N);
2131 Rewrite (N,
2132 Make_Op_Not (Loc,
2133 Right_Opnd =>
2134 Make_Op_Eq (Loc,
2135 Left_Opnd => Left_Opnd (N),
2136 Right_Opnd => Right_Opnd (N))));
2138 Set_Entity (Right_Opnd (N), Op_Id);
2139 Analyze (N);
2140 end if;
2141 end if;
2143 Operator_Check (N);
2144 Check_Function_Writable_Actuals (N);
2145 end Analyze_Comparison_Equality_Op;
2147 ----------------------------------
2148 -- Analyze_Explicit_Dereference --
2149 ----------------------------------
2151 procedure Analyze_Explicit_Dereference (N : Node_Id) is
2152 Loc : constant Source_Ptr := Sloc (N);
2153 P : constant Node_Id := Prefix (N);
2154 T : Entity_Id;
2155 I : Interp_Index;
2156 It : Interp;
2157 New_N : Node_Id;
2159 function Is_Function_Type return Boolean;
2160 -- Check whether node may be interpreted as an implicit function call
2162 ----------------------
2163 -- Is_Function_Type --
2164 ----------------------
2166 function Is_Function_Type return Boolean is
2167 I : Interp_Index;
2168 It : Interp;
2170 begin
2171 if not Is_Overloaded (N) then
2172 return Ekind (Base_Type (Etype (N))) = E_Subprogram_Type
2173 and then Etype (Base_Type (Etype (N))) /= Standard_Void_Type;
2175 else
2176 Get_First_Interp (N, I, It);
2177 while Present (It.Nam) loop
2178 if Ekind (Base_Type (It.Typ)) /= E_Subprogram_Type
2179 or else Etype (Base_Type (It.Typ)) = Standard_Void_Type
2180 then
2181 return False;
2182 end if;
2184 Get_Next_Interp (I, It);
2185 end loop;
2187 return True;
2188 end if;
2189 end Is_Function_Type;
2191 -- Start of processing for Analyze_Explicit_Dereference
2193 begin
2194 -- In formal verification mode, keep track of all reads and writes
2195 -- through explicit dereferences.
2197 if GNATprove_Mode then
2198 SPARK_Specific.Generate_Dereference (N);
2199 end if;
2201 Analyze (P);
2202 Set_Etype (N, Any_Type);
2204 -- Test for remote access to subprogram type, and if so return
2205 -- after rewriting the original tree.
2207 if Remote_AST_E_Dereference (P) then
2208 return;
2209 end if;
2211 -- Normal processing for other than remote access to subprogram type
2213 if not Is_Overloaded (P) then
2214 if Is_Access_Type (Etype (P)) then
2216 -- Set the Etype
2218 declare
2219 DT : constant Entity_Id := Designated_Type (Etype (P));
2221 begin
2222 -- An explicit dereference is a legal occurrence of an
2223 -- incomplete type imported through a limited_with clause, if
2224 -- the full view is visible, or if we are within an instance
2225 -- body, where the enclosing body has a regular with_clause
2226 -- on the unit.
2228 if From_Limited_With (DT)
2229 and then not From_Limited_With (Scope (DT))
2230 and then
2231 (Is_Immediately_Visible (Scope (DT))
2232 or else
2233 (Is_Child_Unit (Scope (DT))
2234 and then Is_Visible_Lib_Unit (Scope (DT)))
2235 or else In_Instance_Body)
2236 then
2237 Set_Etype (N, Available_View (DT));
2239 else
2240 Set_Etype (N, DT);
2241 end if;
2242 end;
2244 elsif Etype (P) /= Any_Type then
2245 Error_Msg_N ("prefix of dereference must be an access type", N);
2246 return;
2247 end if;
2249 else
2250 Get_First_Interp (P, I, It);
2251 while Present (It.Nam) loop
2252 T := It.Typ;
2254 if Is_Access_Type (T) then
2255 Add_One_Interp (N, Designated_Type (T), Designated_Type (T));
2256 end if;
2258 Get_Next_Interp (I, It);
2259 end loop;
2261 -- Error if no interpretation of the prefix has an access type
2263 if Etype (N) = Any_Type then
2264 Error_Msg_N
2265 ("access type required in prefix of explicit dereference", P);
2266 Set_Etype (N, Any_Type);
2267 return;
2268 end if;
2269 end if;
2271 if Is_Function_Type
2272 and then Nkind (Parent (N)) /= N_Indexed_Component
2274 and then (Nkind (Parent (N)) /= N_Function_Call
2275 or else N /= Name (Parent (N)))
2277 and then (Nkind (Parent (N)) /= N_Procedure_Call_Statement
2278 or else N /= Name (Parent (N)))
2280 and then Nkind (Parent (N)) /= N_Subprogram_Renaming_Declaration
2281 and then (Nkind (Parent (N)) /= N_Attribute_Reference
2282 or else
2283 (Attribute_Name (Parent (N)) /= Name_Address
2284 and then
2285 Attribute_Name (Parent (N)) /= Name_Access))
2286 then
2287 -- Name is a function call with no actuals, in a context that
2288 -- requires deproceduring (including as an actual in an enclosing
2289 -- function or procedure call). There are some pathological cases
2290 -- where the prefix might include functions that return access to
2291 -- subprograms and others that return a regular type. Disambiguation
2292 -- of those has to take place in Resolve.
2294 New_N :=
2295 Make_Function_Call (Loc,
2296 Name => Make_Explicit_Dereference (Loc, P),
2297 Parameter_Associations => New_List);
2299 -- If the prefix is overloaded, remove operations that have formals,
2300 -- we know that this is a parameterless call.
2302 if Is_Overloaded (P) then
2303 Get_First_Interp (P, I, It);
2304 while Present (It.Nam) loop
2305 T := It.Typ;
2307 if Is_Access_Type (T)
2308 and then No (First_Formal (Base_Type (Designated_Type (T))))
2309 then
2310 Set_Etype (P, T);
2311 else
2312 Remove_Interp (I);
2313 end if;
2315 Get_Next_Interp (I, It);
2316 end loop;
2317 end if;
2319 Rewrite (N, New_N);
2320 Analyze (N);
2322 elsif not Is_Function_Type
2323 and then Is_Overloaded (N)
2324 then
2325 -- The prefix may include access to subprograms and other access
2326 -- types. If the context selects the interpretation that is a
2327 -- function call (not a procedure call) we cannot rewrite the node
2328 -- yet, but we include the result of the call interpretation.
2330 Get_First_Interp (N, I, It);
2331 while Present (It.Nam) loop
2332 if Ekind (Base_Type (It.Typ)) = E_Subprogram_Type
2333 and then Etype (Base_Type (It.Typ)) /= Standard_Void_Type
2334 and then Nkind (Parent (N)) /= N_Procedure_Call_Statement
2335 then
2336 Add_One_Interp (N, Etype (It.Typ), Etype (It.Typ));
2337 end if;
2339 Get_Next_Interp (I, It);
2340 end loop;
2341 end if;
2343 -- A value of remote access-to-class-wide must not be dereferenced
2344 -- (RM E.2.2(16)).
2346 Validate_Remote_Access_To_Class_Wide_Type (N);
2347 end Analyze_Explicit_Dereference;
2349 ------------------------
2350 -- Analyze_Expression --
2351 ------------------------
2353 procedure Analyze_Expression (N : Node_Id) is
2354 begin
2355 -- If the expression is an indexed component that will be rewritten
2356 -- as a container indexing, it has already been analyzed.
2358 if Nkind (N) = N_Indexed_Component
2359 and then Present (Generalized_Indexing (N))
2360 then
2361 null;
2363 else
2364 Analyze (N);
2365 Check_Parameterless_Call (N);
2366 end if;
2367 end Analyze_Expression;
2369 -------------------------------------
2370 -- Analyze_Expression_With_Actions --
2371 -------------------------------------
2373 procedure Analyze_Expression_With_Actions (N : Node_Id) is
2375 procedure Check_Action_OK (A : Node_Id);
2376 -- Check that the action A is allowed as a declare_item of a declare
2377 -- expression if N and A come from source.
2379 ---------------------
2380 -- Check_Action_OK --
2381 ---------------------
2383 procedure Check_Action_OK (A : Node_Id) is
2384 begin
2385 if not Comes_From_Source (N) or else not Comes_From_Source (A) then
2387 -- If, for example, an (illegal) expression function is
2388 -- transformed into a "vanilla" function then we don't want to
2389 -- allow it just because Comes_From_Source is now False. So look
2390 -- at the Original_Node.
2392 if Is_Rewrite_Substitution (A) then
2393 Check_Action_OK (Original_Node (A));
2394 end if;
2396 return; -- Allow anything in generated code
2397 end if;
2399 case Nkind (A) is
2400 when N_Object_Declaration =>
2401 if Nkind (Object_Definition (A)) = N_Access_Definition then
2402 Error_Msg_N
2403 ("anonymous access type not allowed in declare_expression",
2404 Object_Definition (A));
2405 end if;
2407 if Aliased_Present (A) then
2408 Error_Msg_N ("ALIASED not allowed in declare_expression", A);
2409 end if;
2411 if Constant_Present (A)
2412 and then not Is_Limited_Type (Etype (Defining_Identifier (A)))
2413 then
2414 return; -- nonlimited constants are OK
2415 end if;
2417 when N_Object_Renaming_Declaration =>
2418 if Present (Access_Definition (A)) then
2419 Error_Msg_N
2420 ("anonymous access type not allowed in declare_expression",
2421 Access_Definition (A));
2422 end if;
2424 if not Is_Limited_Type (Etype (Defining_Identifier (A))) then
2425 return; -- ???For now; the RM rule is a bit more complicated
2426 end if;
2428 when N_Pragma =>
2429 declare
2430 -- See AI22-0045 pragma categorization.
2431 subtype Executable_Pragma_Id is Pragma_Id
2432 with Predicate => Executable_Pragma_Id in
2433 -- language-defined executable pragmas
2434 Pragma_Assert | Pragma_Inspection_Point
2436 -- GNAT-defined executable pragmas
2437 | Pragma_Assume | Pragma_Debug;
2438 begin
2439 if Get_Pragma_Id (A) in Executable_Pragma_Id then
2440 return;
2441 end if;
2442 end;
2444 when others =>
2445 null; -- Nothing else allowed
2446 end case;
2448 -- We could mention pragmas in the message text; let's not.
2449 Error_Msg_N ("object renaming or constant declaration expected", A);
2450 end Check_Action_OK;
2452 A : Node_Id;
2453 EWA_Scop : Entity_Id;
2455 -- Start of processing for Analyze_Expression_With_Actions
2457 begin
2458 -- Create a scope, which is needed to provide proper visibility of the
2459 -- declare_items.
2461 EWA_Scop := New_Internal_Entity (E_Block, Current_Scope, Sloc (N), 'B');
2462 Set_Etype (EWA_Scop, Standard_Void_Type);
2463 Set_Scope (EWA_Scop, Current_Scope);
2464 Set_Parent (EWA_Scop, N);
2465 Push_Scope (EWA_Scop);
2467 -- If this Expression_With_Actions node comes from source, then it
2468 -- represents a declare_expression; increment the counter to take note
2469 -- of that.
2471 if Comes_From_Source (N) then
2472 In_Declare_Expr := In_Declare_Expr + 1;
2473 end if;
2475 A := First (Actions (N));
2476 while Present (A) loop
2477 Analyze (A);
2478 Check_Action_OK (A);
2479 Next (A);
2480 end loop;
2482 Analyze_Expression (Expression (N));
2483 Set_Etype (N, Etype (Expression (N)));
2484 End_Scope;
2486 if Comes_From_Source (N) then
2487 In_Declare_Expr := In_Declare_Expr - 1;
2488 end if;
2489 end Analyze_Expression_With_Actions;
2491 ---------------------------
2492 -- Analyze_If_Expression --
2493 ---------------------------
2495 procedure Analyze_If_Expression (N : Node_Id) is
2496 Condition : constant Node_Id := First (Expressions (N));
2498 Then_Expr : Node_Id;
2499 Else_Expr : Node_Id;
2501 procedure Check_Else_Expression (T : Entity_Id);
2502 -- Check one interpretation of the THEN expression with type T
2504 procedure Check_Expression_Pair (T1, T2 : Entity_Id);
2505 -- Check THEN expression with type T1 and ELSE expression with type T2
2507 ---------------------------
2508 -- Check_Else_Expression --
2509 ---------------------------
2511 procedure Check_Else_Expression (T : Entity_Id) is
2512 I : Interp_Index;
2513 It : Interp;
2515 begin
2516 -- Loop through the interpretations of the ELSE expression
2518 if not Is_Overloaded (Else_Expr) then
2519 Check_Expression_Pair (T, Etype (Else_Expr));
2521 else
2522 Get_First_Interp (Else_Expr, I, It);
2523 while Present (It.Typ) loop
2524 Check_Expression_Pair (T, It.Typ);
2525 Get_Next_Interp (I, It);
2526 end loop;
2527 end if;
2528 end Check_Else_Expression;
2530 ---------------------------
2531 -- Check_Expression_Pair --
2532 ---------------------------
2534 procedure Check_Expression_Pair (T1, T2 : Entity_Id) is
2535 T : Entity_Id;
2537 begin
2538 if Covers (T1 => T1, T2 => T2)
2539 or else Covers (T1 => T2, T2 => T1)
2540 then
2541 T := Specific_Type (T1, T2);
2543 elsif Is_User_Defined_Literal (Then_Expr, T2) then
2544 T := T2;
2546 elsif Is_User_Defined_Literal (Else_Expr, T1) then
2547 T := T1;
2549 else
2550 T := Possible_Type_For_Conditional_Expression (T1, T2);
2552 if No (T) then
2553 return;
2554 end if;
2555 end if;
2557 Add_One_Interp (N, T, T);
2558 end Check_Expression_Pair;
2560 -- Local variables
2562 I : Interp_Index;
2563 It : Interp;
2565 -- Start of processing for Analyze_If_Expression
2567 begin
2568 -- Defend against error of missing expressions from previous error
2570 if No (Condition) then
2571 Check_Error_Detected;
2572 return;
2573 end if;
2575 Set_Etype (N, Any_Type);
2577 Then_Expr := Next (Condition);
2579 if No (Then_Expr) then
2580 Check_Error_Detected;
2581 return;
2582 end if;
2584 Else_Expr := Next (Then_Expr);
2586 -- Analyze and resolve the condition. We need to resolve this now so
2587 -- that it gets folded to True/False if possible, before we analyze
2588 -- the THEN/ELSE branches, because when analyzing these branches, we
2589 -- may call Is_Statically_Unevaluated, which expects the condition of
2590 -- an enclosing IF to have been analyze/resolved/evaluated.
2592 Analyze_Expression (Condition);
2593 Resolve (Condition, Any_Boolean);
2595 -- Analyze the THEN expression and (if present) the ELSE expression. For
2596 -- them we delay resolution in the normal manner because of overloading.
2598 Analyze_Expression (Then_Expr);
2600 if Present (Else_Expr) then
2601 Analyze_Expression (Else_Expr);
2602 end if;
2604 -- RM 4.5.7(10/3): If the if_expression is the operand of a type
2605 -- conversion, the type of the if_expression is the target type
2606 -- of the conversion.
2608 if Nkind (Parent (N)) = N_Type_Conversion then
2609 Set_Etype (N, Etype (Parent (N)));
2610 return;
2611 end if;
2613 -- Loop through the interpretations of the THEN expression and check the
2614 -- ELSE expression if present.
2616 if not Is_Overloaded (Then_Expr) then
2617 if Present (Else_Expr) then
2618 Check_Else_Expression (Etype (Then_Expr));
2619 else
2620 Set_Etype (N, Etype (Then_Expr));
2621 end if;
2623 else
2624 Get_First_Interp (Then_Expr, I, It);
2625 while Present (It.Typ) loop
2626 if Present (Else_Expr) then
2627 Check_Else_Expression (It.Typ);
2628 else
2629 Add_One_Interp (N, It.Typ, It.Typ);
2630 end if;
2632 Get_Next_Interp (I, It);
2633 end loop;
2634 end if;
2636 -- If no possible interpretation has been found, the type of the
2637 -- ELSE expression does not match any interpretation of the THEN
2638 -- expression.
2640 if Etype (N) = Any_Type then
2641 if Is_Overloaded (Then_Expr) then
2642 if Is_Overloaded (Else_Expr) then
2643 Error_Msg_N
2644 ("no interpretation compatible with those of THEN expression",
2645 Else_Expr);
2646 else
2647 Error_Msg_N
2648 ("type of ELSE incompatible with interpretations of THEN "
2649 & "expression",
2650 Else_Expr);
2651 Error_Msg_NE
2652 ("\ELSE expression has}!", Else_Expr, Etype (Else_Expr));
2653 end if;
2655 else
2656 if Is_Overloaded (Else_Expr) then
2657 Error_Msg_N
2658 ("no interpretation compatible with type of THEN expression",
2659 Else_Expr);
2660 Error_Msg_NE
2661 ("\THEN expression has}!", Else_Expr, Etype (Then_Expr));
2662 else
2663 Error_Msg_N
2664 ("type of ELSE incompatible with that of THEN expression",
2665 Else_Expr);
2666 Error_Msg_NE
2667 ("\THEN expression has}!", Else_Expr, Etype (Then_Expr));
2668 Error_Msg_NE
2669 ("\ELSE expression has}!", Else_Expr, Etype (Else_Expr));
2670 end if;
2671 end if;
2672 end if;
2673 end Analyze_If_Expression;
2675 ------------------------------------
2676 -- Analyze_Indexed_Component_Form --
2677 ------------------------------------
2679 procedure Analyze_Indexed_Component_Form (N : Node_Id) is
2680 P : constant Node_Id := Prefix (N);
2681 Exprs : constant List_Id := Expressions (N);
2682 Exp : Node_Id;
2683 P_T : Entity_Id;
2684 E : Node_Id;
2685 U_N : Entity_Id;
2687 procedure Process_Function_Call;
2688 -- Prefix in indexed component form is an overloadable entity, so the
2689 -- node is very likely a function call; reformat it as such. The only
2690 -- exception is a call to a parameterless function that returns an
2691 -- array type, or an access type thereof, in which case this will be
2692 -- undone later by Resolve_Call or Resolve_Entry_Call.
2694 procedure Process_Indexed_Component;
2695 -- Prefix in indexed component form is actually an indexed component.
2696 -- This routine processes it, knowing that the prefix is already
2697 -- resolved.
2699 procedure Process_Indexed_Component_Or_Slice;
2700 -- An indexed component with a single index may designate a slice if
2701 -- the index is a subtype mark. This routine disambiguates these two
2702 -- cases by resolving the prefix to see if it is a subtype mark.
2704 procedure Process_Overloaded_Indexed_Component;
2705 -- If the prefix of an indexed component is overloaded, the proper
2706 -- interpretation is selected by the index types and the context.
2708 ---------------------------
2709 -- Process_Function_Call --
2710 ---------------------------
2712 procedure Process_Function_Call is
2713 Loc : constant Source_Ptr := Sloc (N);
2714 Actual : Node_Id;
2716 begin
2717 Change_Node (N, N_Function_Call);
2718 Set_Name (N, P);
2719 Set_Parameter_Associations (N, Exprs);
2721 -- Analyze actuals prior to analyzing the call itself
2723 Actual := First (Parameter_Associations (N));
2724 while Present (Actual) loop
2725 Analyze (Actual);
2726 Check_Parameterless_Call (Actual);
2728 -- Move to next actual. Note that we use Next, not Next_Actual
2729 -- here. The reason for this is a bit subtle. If a function call
2730 -- includes named associations, the parser recognizes the node
2731 -- as a call, and it is analyzed as such. If all associations are
2732 -- positional, the parser builds an indexed_component node, and
2733 -- it is only after analysis of the prefix that the construct
2734 -- is recognized as a call, in which case Process_Function_Call
2735 -- rewrites the node and analyzes the actuals. If the list of
2736 -- actuals is malformed, the parser may leave the node as an
2737 -- indexed component (despite the presence of named associations).
2738 -- The iterator Next_Actual is equivalent to Next if the list is
2739 -- positional, but follows the normalized chain of actuals when
2740 -- named associations are present. In this case normalization has
2741 -- not taken place, and actuals remain unanalyzed, which leads to
2742 -- subsequent crashes or loops if there is an attempt to continue
2743 -- analysis of the program.
2745 -- IF there is a single actual and it is a type name, the node
2746 -- can only be interpreted as a slice of a parameterless call.
2747 -- Rebuild the node as such and analyze.
2749 if No (Next (Actual))
2750 and then Is_Entity_Name (Actual)
2751 and then Is_Type (Entity (Actual))
2752 and then Is_Discrete_Type (Entity (Actual))
2753 and then not Is_Current_Instance (Actual)
2754 then
2755 Replace (N,
2756 Make_Slice (Loc,
2757 Prefix => P,
2758 Discrete_Range =>
2759 New_Occurrence_Of (Entity (Actual), Loc)));
2760 Analyze (N);
2761 return;
2763 else
2764 Next (Actual);
2765 end if;
2766 end loop;
2768 Analyze_Call (N);
2769 end Process_Function_Call;
2771 -------------------------------
2772 -- Process_Indexed_Component --
2773 -------------------------------
2775 procedure Process_Indexed_Component is
2776 Exp : Node_Id;
2777 Array_Type : Entity_Id;
2778 Index : Node_Id;
2779 Pent : Entity_Id := Empty;
2781 begin
2782 Exp := First (Exprs);
2784 if Is_Overloaded (P) then
2785 Process_Overloaded_Indexed_Component;
2787 else
2788 Array_Type := Etype (P);
2790 if Is_Entity_Name (P) then
2791 Pent := Entity (P);
2792 elsif Nkind (P) = N_Selected_Component
2793 and then Is_Entity_Name (Selector_Name (P))
2794 then
2795 Pent := Entity (Selector_Name (P));
2796 end if;
2798 -- Prefix must be appropriate for an array type, taking into
2799 -- account a possible implicit dereference.
2801 if Is_Access_Type (Array_Type) then
2802 Error_Msg_NW
2803 (Warn_On_Dereference, "?d?implicit dereference", N);
2804 Array_Type := Implicitly_Designated_Type (Array_Type);
2805 end if;
2807 if Is_Array_Type (Array_Type) then
2809 -- In order to correctly access First_Index component later,
2810 -- replace string literal subtype by its parent type.
2812 if Ekind (Array_Type) = E_String_Literal_Subtype then
2813 Array_Type := Etype (Array_Type);
2814 end if;
2816 elsif Present (Pent) and then Ekind (Pent) = E_Entry_Family then
2817 Analyze (Exp);
2818 Set_Etype (N, Any_Type);
2820 if not Has_Compatible_Type (Exp, Entry_Index_Type (Pent)) then
2821 Error_Msg_N ("invalid index type in entry name", N);
2823 elsif Present (Next (Exp)) then
2824 Error_Msg_N ("too many subscripts in entry reference", N);
2826 else
2827 Set_Etype (N, Etype (P));
2828 end if;
2830 return;
2832 elsif Is_Record_Type (Array_Type)
2833 and then Remote_AST_I_Dereference (P)
2834 then
2835 return;
2837 elsif Try_Container_Indexing (N, P, Exprs) then
2838 return;
2840 elsif Array_Type = Any_Type then
2841 Set_Etype (N, Any_Type);
2843 -- In most cases the analysis of the prefix will have emitted
2844 -- an error already, but if the prefix may be interpreted as a
2845 -- call in prefixed notation, the report is left to the caller.
2846 -- To prevent cascaded errors, report only if no previous ones.
2848 if Serious_Errors_Detected = 0 then
2849 Error_Msg_N ("invalid prefix in indexed component", P);
2851 if Nkind (P) = N_Expanded_Name then
2852 Error_Msg_NE ("\& is not visible", P, Selector_Name (P));
2853 end if;
2854 end if;
2856 return;
2858 -- Here we definitely have a bad indexing
2860 else
2861 if Nkind (Parent (N)) = N_Requeue_Statement
2862 and then Present (Pent) and then Ekind (Pent) = E_Entry
2863 then
2864 Error_Msg_N
2865 ("REQUEUE does not permit parameters", First (Exprs));
2867 elsif Is_Entity_Name (P)
2868 and then Etype (P) = Standard_Void_Type
2869 then
2870 Error_Msg_NE ("incorrect use of &", P, Entity (P));
2872 else
2873 Error_Msg_N ("array type required in indexed component", P);
2874 end if;
2876 Set_Etype (N, Any_Type);
2877 return;
2878 end if;
2880 Index := First_Index (Array_Type);
2881 while Present (Index) and then Present (Exp) loop
2882 if not Has_Compatible_Type (Exp, Etype (Index)) then
2883 Wrong_Type (Exp, Etype (Index));
2884 Set_Etype (N, Any_Type);
2885 return;
2886 end if;
2888 Next_Index (Index);
2889 Next (Exp);
2890 end loop;
2892 Set_Etype (N, Component_Type (Array_Type));
2893 Check_Implicit_Dereference (N, Etype (N));
2895 if Present (Index) then
2896 Error_Msg_N
2897 ("too few subscripts in array reference", First (Exprs));
2899 elsif Present (Exp) then
2900 Error_Msg_N ("too many subscripts in array reference", Exp);
2901 end if;
2902 end if;
2903 end Process_Indexed_Component;
2905 ----------------------------------------
2906 -- Process_Indexed_Component_Or_Slice --
2907 ----------------------------------------
2909 procedure Process_Indexed_Component_Or_Slice is
2910 begin
2911 Exp := First (Exprs);
2912 while Present (Exp) loop
2913 Analyze_Expression (Exp);
2914 Next (Exp);
2915 end loop;
2917 Exp := First (Exprs);
2919 -- If one index is present, and it is a subtype name, then the node
2920 -- denotes a slice (note that the case of an explicit range for a
2921 -- slice was already built as an N_Slice node in the first place,
2922 -- so that case is not handled here).
2924 -- We use a replace rather than a rewrite here because this is one
2925 -- of the cases in which the tree built by the parser is plain wrong.
2927 if No (Next (Exp))
2928 and then Is_Entity_Name (Exp)
2929 and then Is_Type (Entity (Exp))
2930 then
2931 Replace (N,
2932 Make_Slice (Sloc (N),
2933 Prefix => P,
2934 Discrete_Range => New_Copy (Exp)));
2935 Analyze (N);
2937 -- Otherwise (more than one index present, or single index is not
2938 -- a subtype name), then we have the indexed component case.
2940 else
2941 Process_Indexed_Component;
2942 end if;
2943 end Process_Indexed_Component_Or_Slice;
2945 ------------------------------------------
2946 -- Process_Overloaded_Indexed_Component --
2947 ------------------------------------------
2949 procedure Process_Overloaded_Indexed_Component is
2950 Exp : Node_Id;
2951 I : Interp_Index;
2952 It : Interp;
2953 Typ : Entity_Id;
2954 Index : Node_Id;
2955 Found : Boolean;
2957 begin
2958 Set_Etype (N, Any_Type);
2960 Get_First_Interp (P, I, It);
2961 while Present (It.Nam) loop
2962 Typ := It.Typ;
2964 if Is_Access_Type (Typ) then
2965 Typ := Designated_Type (Typ);
2966 Error_Msg_NW
2967 (Warn_On_Dereference, "?d?implicit dereference", N);
2968 end if;
2970 if Is_Array_Type (Typ) then
2972 -- Got a candidate: verify that index types are compatible
2974 Index := First_Index (Typ);
2975 Found := True;
2976 Exp := First (Exprs);
2977 while Present (Index) and then Present (Exp) loop
2978 if Has_Compatible_Type (Exp, Etype (Index)) then
2979 null;
2980 else
2981 Found := False;
2982 Remove_Interp (I);
2983 exit;
2984 end if;
2986 Next_Index (Index);
2987 Next (Exp);
2988 end loop;
2990 if Found and then No (Index) and then No (Exp) then
2991 declare
2992 CT : constant Entity_Id :=
2993 Base_Type (Component_Type (Typ));
2994 begin
2995 Add_One_Interp (N, CT, CT);
2996 Check_Implicit_Dereference (N, CT);
2997 end;
2998 end if;
3000 elsif Try_Container_Indexing (N, P, Exprs) then
3001 return;
3003 end if;
3005 Get_Next_Interp (I, It);
3006 end loop;
3008 if Etype (N) = Any_Type then
3009 Error_Msg_N ("no legal interpretation for indexed component", N);
3010 Set_Is_Overloaded (N, False);
3011 end if;
3012 end Process_Overloaded_Indexed_Component;
3014 -- Start of processing for Analyze_Indexed_Component_Form
3016 begin
3017 -- Get name of array, function or type
3019 Analyze (P);
3021 -- If P is an explicit dereference whose prefix is of a remote access-
3022 -- to-subprogram type, then N has already been rewritten as a subprogram
3023 -- call and analyzed.
3025 if Nkind (N) in N_Subprogram_Call then
3026 return;
3028 -- When the prefix is attribute 'Loop_Entry and the sole expression of
3029 -- the indexed component denotes a loop name, the indexed form is turned
3030 -- into an attribute reference.
3032 elsif Nkind (N) = N_Attribute_Reference
3033 and then Attribute_Name (N) = Name_Loop_Entry
3034 then
3035 return;
3036 end if;
3038 pragma Assert (Nkind (N) = N_Indexed_Component);
3040 P_T := Base_Type (Etype (P));
3042 if Is_Entity_Name (P) and then Present (Entity (P)) then
3043 U_N := Entity (P);
3045 if Is_Type (U_N) then
3047 -- Reformat node as a type conversion
3049 E := Remove_Head (Exprs);
3051 if Present (First (Exprs)) then
3052 Error_Msg_N
3053 ("argument of type conversion must be single expression", N);
3054 end if;
3056 Change_Node (N, N_Type_Conversion);
3057 Set_Subtype_Mark (N, P);
3058 Set_Etype (N, U_N);
3059 Set_Expression (N, E);
3061 -- After changing the node, call for the specific Analysis
3062 -- routine directly, to avoid a double call to the expander.
3064 Analyze_Type_Conversion (N);
3065 return;
3066 end if;
3068 if Is_Overloadable (U_N) then
3069 Process_Function_Call;
3071 elsif Ekind (Etype (P)) = E_Subprogram_Type
3072 or else (Is_Access_Type (Etype (P))
3073 and then
3074 Ekind (Designated_Type (Etype (P))) =
3075 E_Subprogram_Type)
3076 then
3077 -- Call to access_to-subprogram with possible implicit dereference
3079 Process_Function_Call;
3081 elsif Is_Generic_Subprogram (U_N) then
3083 -- A common beginner's (or C++ templates fan) error
3085 Error_Msg_N ("generic subprogram cannot be called", N);
3086 Set_Etype (N, Any_Type);
3087 return;
3089 else
3090 Process_Indexed_Component_Or_Slice;
3091 end if;
3093 -- If not an entity name, prefix is an expression that may denote
3094 -- an array or an access-to-subprogram.
3096 else
3097 if Ekind (P_T) = E_Subprogram_Type
3098 or else (Is_Access_Type (P_T)
3099 and then
3100 Ekind (Designated_Type (P_T)) = E_Subprogram_Type)
3101 then
3102 Process_Function_Call;
3104 elsif Nkind (P) = N_Selected_Component
3105 and then Present (Entity (Selector_Name (P)))
3106 and then Is_Overloadable (Entity (Selector_Name (P)))
3107 then
3108 Process_Function_Call;
3109 else
3110 -- Indexed component, slice, or a call to a member of a family
3111 -- entry, which will be converted to an entry call later.
3113 Process_Indexed_Component_Or_Slice;
3114 end if;
3115 end if;
3117 Analyze_Dimension (N);
3118 end Analyze_Indexed_Component_Form;
3120 ------------------------
3121 -- Analyze_Logical_Op --
3122 ------------------------
3124 procedure Analyze_Logical_Op (N : Node_Id) is
3125 L : constant Node_Id := Left_Opnd (N);
3126 R : constant Node_Id := Right_Opnd (N);
3128 Op_Id : Entity_Id;
3130 begin
3131 Set_Etype (N, Any_Type);
3132 Candidate_Type := Empty;
3134 Analyze_Expression (L);
3135 Analyze_Expression (R);
3137 -- If the entity is already set, the node is the instantiation of a
3138 -- generic node with a non-local reference, or was manufactured by a
3139 -- call to Make_Op_xxx. In either case the entity is known to be valid,
3140 -- and we do not need to collect interpretations, instead we just get
3141 -- the single possible interpretation.
3143 if Present (Entity (N)) then
3144 Op_Id := Entity (N);
3146 if Ekind (Op_Id) = E_Operator then
3147 Find_Boolean_Types (L, R, Op_Id, N);
3148 else
3149 Add_One_Interp (N, Op_Id, Etype (Op_Id));
3150 end if;
3152 -- Entity is not already set, so we do need to collect interpretations
3154 else
3155 Op_Id := Get_Name_Entity_Id (Chars (N));
3156 while Present (Op_Id) loop
3157 if Ekind (Op_Id) = E_Operator then
3158 Find_Boolean_Types (L, R, Op_Id, N);
3159 else
3160 Analyze_User_Defined_Binary_Op (N, Op_Id);
3161 end if;
3163 Op_Id := Homonym (Op_Id);
3164 end loop;
3165 end if;
3167 Operator_Check (N);
3168 Check_Function_Writable_Actuals (N);
3170 if Style_Check then
3171 if Nkind (L) not in N_Short_Circuit | N_Op_And | N_Op_Or | N_Op_Xor
3172 and then Is_Boolean_Type (Etype (L))
3173 then
3174 Check_Xtra_Parens_Precedence (L);
3175 end if;
3177 if Nkind (R) not in N_Short_Circuit | N_Op_And | N_Op_Or | N_Op_Xor
3178 and then Is_Boolean_Type (Etype (R))
3179 then
3180 Check_Xtra_Parens_Precedence (R);
3181 end if;
3182 end if;
3183 end Analyze_Logical_Op;
3185 ---------------------------
3186 -- Analyze_Membership_Op --
3187 ---------------------------
3189 procedure Analyze_Membership_Op (N : Node_Id) is
3190 Loc : constant Source_Ptr := Sloc (N);
3191 L : constant Node_Id := Left_Opnd (N);
3192 R : constant Node_Id := Right_Opnd (N);
3194 procedure Analyze_Set_Membership;
3195 -- If a set of alternatives is present, analyze each and find the
3196 -- common type to which they must all resolve.
3198 function Find_Interp return Boolean;
3199 -- Find a valid interpretation of the test. Note that the context of the
3200 -- operation plays no role in resolving the operands, so that if there
3201 -- is more than one interpretation of the operands that is compatible
3202 -- with the test, the operation is ambiguous.
3204 function Try_Left_Interp (T : Entity_Id) return Boolean;
3205 -- Try an interpretation of the left operand with type T. Return true if
3206 -- one interpretation (at least) of the right operand making up a valid
3207 -- operand pair exists, otherwise false if no such pair exists.
3209 function Is_Valid_Pair (T1, T2 : Entity_Id) return Boolean;
3210 -- Return true if T1 and T2 constitute a valid pair of operand types for
3211 -- L and R respectively.
3213 ----------------------------
3214 -- Analyze_Set_Membership --
3215 ----------------------------
3217 procedure Analyze_Set_Membership is
3218 Alt : Node_Id;
3219 Index : Interp_Index;
3220 It : Interp;
3221 Candidate_Interps : Node_Id;
3222 Common_Type : Entity_Id := Empty;
3224 begin
3225 Analyze (L);
3226 Candidate_Interps := L;
3228 if not Is_Overloaded (L) then
3229 Common_Type := Etype (L);
3231 Alt := First (Alternatives (N));
3232 while Present (Alt) loop
3233 Analyze (Alt);
3235 if not Has_Compatible_Type (Alt, Common_Type) then
3236 Wrong_Type (Alt, Common_Type);
3237 end if;
3239 Next (Alt);
3240 end loop;
3242 else
3243 Alt := First (Alternatives (N));
3244 while Present (Alt) loop
3245 Analyze (Alt);
3246 if not Is_Overloaded (Alt) then
3247 Common_Type := Etype (Alt);
3249 else
3250 Get_First_Interp (Alt, Index, It);
3251 while Present (It.Typ) loop
3252 if not
3253 Has_Compatible_Type (Candidate_Interps, It.Typ)
3254 then
3255 Remove_Interp (Index);
3256 end if;
3258 Get_Next_Interp (Index, It);
3259 end loop;
3261 Get_First_Interp (Alt, Index, It);
3263 if No (It.Typ) then
3264 Error_Msg_N ("alternative has no legal type", Alt);
3265 return;
3266 end if;
3268 -- If alternative is not overloaded, we have a unique type
3269 -- for all of them.
3271 Set_Etype (Alt, It.Typ);
3273 -- If the alternative is an enumeration literal, use the one
3274 -- for this interpretation.
3276 if Is_Entity_Name (Alt) then
3277 Set_Entity (Alt, It.Nam);
3278 end if;
3280 Get_Next_Interp (Index, It);
3282 if No (It.Typ) then
3283 Set_Is_Overloaded (Alt, False);
3284 Common_Type := Etype (Alt);
3285 end if;
3287 Candidate_Interps := Alt;
3288 end if;
3290 Next (Alt);
3291 end loop;
3292 end if;
3294 if Present (Common_Type) then
3295 Set_Etype (L, Common_Type);
3297 -- The left operand may still be overloaded, to be resolved using
3298 -- the Common_Type.
3300 else
3301 Error_Msg_N ("cannot resolve membership operation", N);
3302 end if;
3303 end Analyze_Set_Membership;
3305 -----------------
3306 -- Find_Interp --
3307 -----------------
3309 function Find_Interp return Boolean is
3310 Found : Boolean;
3311 I : Interp_Index;
3312 It : Interp;
3313 L_Typ : Entity_Id;
3314 Valid_I : Interp_Index;
3316 begin
3317 -- Loop through the interpretations of the left operand
3319 if not Is_Overloaded (L) then
3320 Found := Try_Left_Interp (Etype (L));
3322 else
3323 Found := False;
3324 L_Typ := Empty;
3325 Valid_I := 0;
3327 Get_First_Interp (L, I, It);
3328 while Present (It.Typ) loop
3329 if Try_Left_Interp (It.Typ) then
3330 -- If several interpretations are possible, disambiguate
3332 if Present (L_Typ)
3333 and then Base_Type (It.Typ) /= Base_Type (L_Typ)
3334 then
3335 It := Disambiguate (L, Valid_I, I, Any_Type);
3337 if It = No_Interp then
3338 Ambiguous_Operands (N);
3339 Set_Etype (L, Any_Type);
3340 return True;
3341 end if;
3343 else
3344 Valid_I := I;
3345 end if;
3347 L_Typ := It.Typ;
3348 Set_Etype (L, L_Typ);
3349 Found := True;
3350 end if;
3352 Get_Next_Interp (I, It);
3353 end loop;
3354 end if;
3356 return Found;
3357 end Find_Interp;
3359 ---------------------
3360 -- Try_Left_Interp --
3361 ---------------------
3363 function Try_Left_Interp (T : Entity_Id) return Boolean is
3364 Found : Boolean;
3365 I : Interp_Index;
3366 It : Interp;
3367 R_Typ : Entity_Id;
3368 Valid_I : Interp_Index;
3370 begin
3371 -- Defend against previous error
3373 if Nkind (R) = N_Error then
3374 Found := False;
3376 -- Loop through the interpretations of the right operand
3378 elsif not Is_Overloaded (R) then
3379 Found := Is_Valid_Pair (T, Etype (R));
3381 else
3382 Found := False;
3383 R_Typ := Empty;
3384 Valid_I := 0;
3386 Get_First_Interp (R, I, It);
3387 while Present (It.Typ) loop
3388 if Is_Valid_Pair (T, It.Typ) then
3389 -- If several interpretations are possible, disambiguate
3391 if Present (R_Typ)
3392 and then Base_Type (It.Typ) /= Base_Type (R_Typ)
3393 then
3394 It := Disambiguate (R, Valid_I, I, Any_Type);
3396 if It = No_Interp then
3397 Ambiguous_Operands (N);
3398 Set_Etype (R, Any_Type);
3399 return True;
3400 end if;
3402 else
3403 Valid_I := I;
3404 end if;
3406 R_Typ := It.Typ;
3407 Found := True;
3408 end if;
3410 Get_Next_Interp (I, It);
3411 end loop;
3412 end if;
3414 return Found;
3415 end Try_Left_Interp;
3417 -------------------
3418 -- Is_Valid_Pair --
3419 -------------------
3421 function Is_Valid_Pair (T1, T2 : Entity_Id) return Boolean is
3422 begin
3423 return Covers (T1 => T1, T2 => T2)
3424 or else Covers (T1 => T2, T2 => T1)
3425 or else Is_User_Defined_Literal (L, T2)
3426 or else Is_User_Defined_Literal (R, T1);
3427 end Is_Valid_Pair;
3429 -- Local variables
3431 Dummy : Boolean;
3432 Op : Node_Id;
3434 -- Start of processing for Analyze_Membership_Op
3436 begin
3437 Analyze_Expression (L);
3439 if No (R) then
3440 pragma Assert (Ada_Version >= Ada_2012);
3442 Analyze_Set_Membership;
3444 declare
3445 Alt : Node_Id;
3446 begin
3447 Alt := First (Alternatives (N));
3448 while Present (Alt) loop
3449 if Is_Entity_Name (Alt) and then Is_Type (Entity (Alt)) then
3450 Check_Fully_Declared (Entity (Alt), Alt);
3452 if Has_Ghost_Predicate_Aspect (Entity (Alt)) then
3453 Error_Msg_NE
3454 ("subtype& has ghost predicate, "
3455 & "not allowed in membership test",
3456 Alt, Entity (Alt));
3457 end if;
3458 end if;
3460 Next (Alt);
3461 end loop;
3462 end;
3464 elsif Nkind (R) = N_Range
3465 or else (Nkind (R) = N_Attribute_Reference
3466 and then Attribute_Name (R) = Name_Range)
3467 then
3468 Analyze_Expression (R);
3470 Dummy := Find_Interp;
3472 -- If not a range, it can be a subtype mark, or else it is a degenerate
3473 -- membership test with a singleton value, i.e. a test for equality,
3474 -- if the types are compatible.
3476 else
3477 Analyze_Expression (R);
3479 if Is_Entity_Name (R) and then Is_Type (Entity (R)) then
3480 Find_Type (R);
3481 Check_Fully_Declared (Entity (R), R);
3483 if Has_Ghost_Predicate_Aspect (Entity (R)) then
3484 Error_Msg_NE
3485 ("subtype& has ghost predicate, "
3486 & "not allowed in membership test",
3487 R, Entity (R));
3488 end if;
3490 elsif Ada_Version >= Ada_2012 and then Find_Interp then
3491 Op := Make_Op_Eq (Loc, Left_Opnd => L, Right_Opnd => R);
3492 Resolve_Membership_Equality (Op, Etype (L));
3494 if Nkind (N) = N_Not_In then
3495 Op := Make_Op_Not (Loc, Op);
3496 end if;
3498 Rewrite (N, Op);
3499 Analyze (N);
3500 return;
3502 else
3503 -- In all versions of the language, if we reach this point there
3504 -- is a previous error that will be diagnosed below.
3506 Find_Type (R);
3507 end if;
3508 end if;
3510 -- Compatibility between expression and subtype mark or range is
3511 -- checked during resolution. The result of the operation is Boolean
3512 -- in any case.
3514 Set_Etype (N, Standard_Boolean);
3516 if Comes_From_Source (N)
3517 and then Present (Right_Opnd (N))
3518 and then Is_CPP_Class (Etype (Etype (Right_Opnd (N))))
3519 then
3520 Error_Msg_N ("membership test not applicable to cpp-class types", N);
3521 end if;
3523 Check_Function_Writable_Actuals (N);
3524 end Analyze_Membership_Op;
3526 -----------------
3527 -- Analyze_Mod --
3528 -----------------
3530 procedure Analyze_Mod (N : Node_Id) is
3531 begin
3532 -- A special warning check, if we have an expression of the form:
3533 -- expr mod 2 * literal
3534 -- where literal is 128 or less, then probably what was meant was
3535 -- expr mod 2 ** literal
3536 -- so issue an appropriate warning.
3538 if Warn_On_Suspicious_Modulus_Value
3539 and then Nkind (Right_Opnd (N)) = N_Integer_Literal
3540 and then Intval (Right_Opnd (N)) = Uint_2
3541 and then Nkind (Parent (N)) = N_Op_Multiply
3542 and then Nkind (Right_Opnd (Parent (N))) = N_Integer_Literal
3543 and then Intval (Right_Opnd (Parent (N))) <= Uint_128
3544 then
3545 Error_Msg_N
3546 ("suspicious MOD value, was '*'* intended'??.m?", Parent (N));
3547 end if;
3549 -- Remaining processing is same as for other arithmetic operators
3551 Analyze_Arithmetic_Op (N);
3552 end Analyze_Mod;
3554 ----------------------
3555 -- Analyze_Negation --
3556 ----------------------
3558 procedure Analyze_Negation (N : Node_Id) is
3559 R : constant Node_Id := Right_Opnd (N);
3561 Op_Id : Entity_Id;
3563 begin
3564 Set_Etype (N, Any_Type);
3565 Candidate_Type := Empty;
3567 Analyze_Expression (R);
3569 -- If the entity is already set, the node is the instantiation of a
3570 -- generic node with a non-local reference, or was manufactured by a
3571 -- call to Make_Op_xxx. In either case the entity is known to be valid,
3572 -- and we do not need to collect interpretations, instead we just get
3573 -- the single possible interpretation.
3575 if Present (Entity (N)) then
3576 Op_Id := Entity (N);
3578 if Ekind (Op_Id) = E_Operator then
3579 Find_Negation_Types (R, Op_Id, N);
3580 else
3581 Add_One_Interp (N, Op_Id, Etype (Op_Id));
3582 end if;
3584 else
3585 Op_Id := Get_Name_Entity_Id (Chars (N));
3586 while Present (Op_Id) loop
3587 if Ekind (Op_Id) = E_Operator then
3588 Find_Negation_Types (R, Op_Id, N);
3589 else
3590 Analyze_User_Defined_Unary_Op (N, Op_Id);
3591 end if;
3593 Op_Id := Homonym (Op_Id);
3594 end loop;
3595 end if;
3597 Operator_Check (N);
3598 end Analyze_Negation;
3600 ------------------
3601 -- Analyze_Null --
3602 ------------------
3604 procedure Analyze_Null (N : Node_Id) is
3605 begin
3606 Set_Etype (N, Universal_Access);
3607 end Analyze_Null;
3609 ----------------------
3610 -- Analyze_One_Call --
3611 ----------------------
3613 procedure Analyze_One_Call
3614 (N : Node_Id;
3615 Nam : Entity_Id;
3616 Report : Boolean;
3617 Success : out Boolean;
3618 Skip_First : Boolean := False)
3620 Actuals : constant List_Id := Parameter_Associations (N);
3621 Prev_T : constant Entity_Id := Etype (N);
3623 -- Recognize cases of prefixed calls that have been rewritten in
3624 -- various ways. The simplest case is a rewritten selected component,
3625 -- but it can also be an already-examined indexed component, or a
3626 -- prefix that is itself a rewritten prefixed call that is in turn
3627 -- an indexed call (the syntactic ambiguity involving the indexing of
3628 -- a function with defaulted parameters that returns an array).
3629 -- A flag Maybe_Indexed_Call might be useful here ???
3631 Must_Skip : constant Boolean := Skip_First
3632 or else Nkind (Original_Node (N)) = N_Selected_Component
3633 or else
3634 (Nkind (Original_Node (N)) = N_Indexed_Component
3635 and then Nkind (Prefix (Original_Node (N))) =
3636 N_Selected_Component)
3637 or else
3638 (Nkind (Parent (N)) = N_Function_Call
3639 and then Is_Array_Type (Etype (Name (N)))
3640 and then Etype (Original_Node (N)) =
3641 Component_Type (Etype (Name (N)))
3642 and then Nkind (Original_Node (Parent (N))) =
3643 N_Selected_Component);
3645 -- The first formal must be omitted from the match when trying to find
3646 -- a primitive operation that is a possible interpretation, and also
3647 -- after the call has been rewritten, because the corresponding actual
3648 -- is already known to be compatible, and because this may be an
3649 -- indexing of a call with default parameters.
3651 First_Form : Entity_Id;
3652 Formal : Entity_Id;
3653 Actual : Node_Id;
3654 Is_Indexed : Boolean := False;
3655 Is_Indirect : Boolean := False;
3656 Subp_Type : constant Entity_Id := Etype (Nam);
3657 Norm_OK : Boolean;
3659 function Compatible_Types_In_Predicate
3660 (T1 : Entity_Id;
3661 T2 : Entity_Id) return Boolean;
3662 -- For an Ada 2012 predicate or invariant, a call may mention an
3663 -- incomplete type, while resolution of the corresponding predicate
3664 -- function may see the full view, as a consequence of the delayed
3665 -- resolution of the corresponding expressions. This may occur in
3666 -- the body of a predicate function, or in a call to such. Anomalies
3667 -- involving private and full views can also happen. In each case,
3668 -- rewrite node or add conversions to remove spurious type errors.
3670 procedure Indicate_Name_And_Type;
3671 -- If candidate interpretation matches, indicate name and type of result
3672 -- on call node.
3674 function Operator_Hidden_By (Fun : Entity_Id) return Boolean;
3675 -- There may be a user-defined operator that hides the current
3676 -- interpretation. We must check for this independently of the
3677 -- analysis of the call with the user-defined operation, because
3678 -- the parameter names may be wrong and yet the hiding takes place.
3679 -- This fixes a problem with ACATS test B34014O.
3681 -- When the type Address is a visible integer type, and the DEC
3682 -- system extension is visible, the predefined operator may be
3683 -- hidden as well, by one of the address operations in auxdec.
3684 -- Finally, the abstract operations on address do not hide the
3685 -- predefined operator (this is the purpose of making them abstract).
3687 -----------------------------------
3688 -- Compatible_Types_In_Predicate --
3689 -----------------------------------
3691 function Compatible_Types_In_Predicate
3692 (T1 : Entity_Id;
3693 T2 : Entity_Id) return Boolean
3695 function Common_Type (T : Entity_Id) return Entity_Id;
3696 -- Find non-private underlying full view if any, without going to
3697 -- ancestor type (as opposed to Underlying_Type).
3699 -----------------
3700 -- Common_Type --
3701 -----------------
3703 function Common_Type (T : Entity_Id) return Entity_Id is
3704 CT : Entity_Id;
3706 begin
3707 CT := T;
3709 if Is_Private_Type (CT) and then Present (Full_View (CT)) then
3710 CT := Full_View (CT);
3711 end if;
3713 if Is_Private_Type (CT)
3714 and then Present (Underlying_Full_View (CT))
3715 then
3716 CT := Underlying_Full_View (CT);
3717 end if;
3719 return Base_Type (CT);
3720 end Common_Type;
3722 -- Start of processing for Compatible_Types_In_Predicate
3724 begin
3725 if (Ekind (Current_Scope) = E_Function
3726 and then Is_Predicate_Function (Current_Scope))
3727 or else
3728 (Ekind (Nam) = E_Function
3729 and then Is_Predicate_Function (Nam))
3730 then
3731 if Is_Incomplete_Type (T1)
3732 and then Present (Full_View (T1))
3733 and then Full_View (T1) = T2
3734 then
3735 Set_Etype (Formal, Etype (Actual));
3736 return True;
3738 elsif Common_Type (T1) = Common_Type (T2) then
3739 Rewrite (Actual, Unchecked_Convert_To (Etype (Formal), Actual));
3740 return True;
3742 else
3743 return False;
3744 end if;
3746 else
3747 return False;
3748 end if;
3749 end Compatible_Types_In_Predicate;
3751 ----------------------------
3752 -- Indicate_Name_And_Type --
3753 ----------------------------
3755 procedure Indicate_Name_And_Type is
3756 begin
3757 Add_One_Interp (N, Nam, Etype (Nam));
3758 Check_Implicit_Dereference (N, Etype (Nam));
3759 Success := True;
3761 -- If the prefix of the call is a name, indicate the entity
3762 -- being called. If it is not a name, it is an expression that
3763 -- denotes an access to subprogram or else an entry or family. In
3764 -- the latter case, the name is a selected component, and the entity
3765 -- being called is noted on the selector.
3767 if not Is_Type (Nam) then
3768 if Is_Entity_Name (Name (N)) then
3769 Set_Entity (Name (N), Nam);
3770 Set_Etype (Name (N), Etype (Nam));
3772 elsif Nkind (Name (N)) = N_Selected_Component then
3773 Set_Entity (Selector_Name (Name (N)), Nam);
3774 end if;
3775 end if;
3777 if Debug_Flag_E and not Report then
3778 Write_Str (" Overloaded call ");
3779 Write_Int (Int (N));
3780 Write_Str (" compatible with ");
3781 Write_Int (Int (Nam));
3782 Write_Eol;
3783 end if;
3784 end Indicate_Name_And_Type;
3786 ------------------------
3787 -- Operator_Hidden_By --
3788 ------------------------
3790 function Operator_Hidden_By (Fun : Entity_Id) return Boolean is
3791 Act1 : constant Node_Id := First_Actual (N);
3792 Act2 : constant Node_Id := Next_Actual (Act1);
3793 Form1 : constant Entity_Id := First_Formal (Fun);
3794 Form2 : constant Entity_Id := Next_Formal (Form1);
3796 begin
3797 if Ekind (Fun) /= E_Function or else Is_Abstract_Subprogram (Fun) then
3798 return False;
3800 elsif not Has_Compatible_Type (Act1, Etype (Form1)) then
3801 return False;
3803 elsif Present (Form2) then
3804 if No (Act2)
3805 or else not Has_Compatible_Type (Act2, Etype (Form2))
3806 then
3807 return False;
3808 end if;
3810 elsif Present (Act2) then
3811 return False;
3812 end if;
3814 -- Now we know that the arity of the operator matches the function,
3815 -- and the function call is a valid interpretation. The function
3816 -- hides the operator if it has the right signature, or if one of
3817 -- its operands is a non-abstract operation on Address when this is
3818 -- a visible integer type.
3820 return Hides_Op (Fun, Nam)
3821 or else Is_Descendant_Of_Address (Etype (Form1))
3822 or else
3823 (Present (Form2)
3824 and then Is_Descendant_Of_Address (Etype (Form2)));
3825 end Operator_Hidden_By;
3827 -- Start of processing for Analyze_One_Call
3829 begin
3830 Success := False;
3832 -- If the subprogram has no formals or if all the formals have defaults,
3833 -- and the return type is an array type, the node may denote an indexing
3834 -- of the result of a parameterless call. In Ada 2005, the subprogram
3835 -- may have one non-defaulted formal, and the call may have been written
3836 -- in prefix notation, so that the rebuilt parameter list has more than
3837 -- one actual.
3839 if not Is_Overloadable (Nam)
3840 and then Ekind (Nam) /= E_Subprogram_Type
3841 and then Ekind (Nam) /= E_Entry_Family
3842 then
3843 return;
3844 end if;
3846 -- An indexing requires at least one actual. The name of the call cannot
3847 -- be an implicit indirect call, so it cannot be a generated explicit
3848 -- dereference.
3850 if not Is_Empty_List (Actuals)
3851 and then
3852 (Needs_No_Actuals (Nam)
3853 or else
3854 (Needs_One_Actual (Nam)
3855 and then Present (Next_Actual (First (Actuals)))))
3856 then
3857 if Is_Array_Type (Subp_Type)
3858 and then
3859 (Nkind (Name (N)) /= N_Explicit_Dereference
3860 or else Comes_From_Source (Name (N)))
3861 then
3862 Is_Indexed := Try_Indexed_Call (N, Nam, Subp_Type, Must_Skip);
3864 elsif Is_Access_Type (Subp_Type)
3865 and then Is_Array_Type (Designated_Type (Subp_Type))
3866 then
3867 Is_Indexed :=
3868 Try_Indexed_Call
3869 (N, Nam, Designated_Type (Subp_Type), Must_Skip);
3871 -- The prefix can also be a parameterless function that returns an
3872 -- access to subprogram, in which case this is an indirect call.
3873 -- If this succeeds, an explicit dereference is added later on,
3874 -- in Analyze_Call or Resolve_Call.
3876 elsif Is_Access_Type (Subp_Type)
3877 and then Ekind (Designated_Type (Subp_Type)) = E_Subprogram_Type
3878 then
3879 Is_Indirect := Try_Indirect_Call (N, Nam, Subp_Type);
3880 end if;
3882 end if;
3884 -- If the call has been transformed into a slice, it is of the form
3885 -- F (Subtype) where F is parameterless. The node has been rewritten in
3886 -- Try_Indexed_Call and there is nothing else to do.
3888 if Is_Indexed
3889 and then Nkind (N) = N_Slice
3890 then
3891 return;
3892 end if;
3894 Normalize_Actuals
3895 (N, Nam, (Report and not Is_Indexed and not Is_Indirect), Norm_OK);
3897 if not Norm_OK then
3899 -- If an indirect call is a possible interpretation, indicate
3900 -- success to the caller. This may be an indexing of an explicit
3901 -- dereference of a call that returns an access type (see above).
3903 if Is_Indirect
3904 or else (Is_Indexed
3905 and then Nkind (Name (N)) = N_Explicit_Dereference
3906 and then Comes_From_Source (Name (N)))
3907 then
3908 Success := True;
3909 return;
3911 -- Mismatch in number or names of parameters
3913 elsif Debug_Flag_E then
3914 Write_Str (" normalization fails in call ");
3915 Write_Int (Int (N));
3916 Write_Str (" with subprogram ");
3917 Write_Int (Int (Nam));
3918 Write_Eol;
3919 end if;
3921 -- If the context expects a function call, discard any interpretation
3922 -- that is a procedure. If the node is not overloaded, leave as is for
3923 -- better error reporting when type mismatch is found.
3925 elsif Nkind (N) = N_Function_Call
3926 and then Is_Overloaded (Name (N))
3927 and then Ekind (Nam) = E_Procedure
3928 then
3929 return;
3931 -- Ditto for function calls in a procedure context
3933 elsif Nkind (N) = N_Procedure_Call_Statement
3934 and then Is_Overloaded (Name (N))
3935 and then Etype (Nam) /= Standard_Void_Type
3936 then
3937 return;
3939 elsif No (Actuals) then
3941 -- If Normalize succeeds, then there are default parameters for
3942 -- all formals.
3944 Indicate_Name_And_Type;
3946 elsif Ekind (Nam) = E_Operator then
3947 if Nkind (N) = N_Procedure_Call_Statement then
3948 return;
3949 end if;
3951 -- This occurs when the prefix of the call is an operator name
3952 -- or an expanded name whose selector is an operator name.
3954 Analyze_Operator_Call (N, Nam);
3956 if Etype (N) /= Prev_T then
3958 -- Check that operator is not hidden by a function interpretation
3960 if Is_Overloaded (Name (N)) then
3961 declare
3962 I : Interp_Index;
3963 It : Interp;
3965 begin
3966 Get_First_Interp (Name (N), I, It);
3967 while Present (It.Nam) loop
3968 if Operator_Hidden_By (It.Nam) then
3969 Set_Etype (N, Prev_T);
3970 return;
3971 end if;
3973 Get_Next_Interp (I, It);
3974 end loop;
3975 end;
3976 end if;
3978 -- If operator matches formals, record its name on the call.
3979 -- If the operator is overloaded, Resolve will select the
3980 -- correct one from the list of interpretations. The call
3981 -- node itself carries the first candidate.
3983 Set_Entity (Name (N), Nam);
3984 Success := True;
3986 elsif Report and then Etype (N) = Any_Type then
3987 Error_Msg_N ("incompatible arguments for operator", N);
3988 end if;
3990 else
3991 -- Normalize_Actuals has chained the named associations in the
3992 -- correct order of the formals.
3994 Actual := First_Actual (N);
3995 Formal := First_Formal (Nam);
3996 First_Form := Formal;
3998 -- If we are analyzing a call rewritten from object notation, skip
3999 -- first actual, which may be rewritten later as an explicit
4000 -- dereference.
4002 if Must_Skip then
4003 Next_Actual (Actual);
4004 Next_Formal (Formal);
4005 end if;
4007 while Present (Actual) and then Present (Formal) loop
4008 if Nkind (Parent (Actual)) /= N_Parameter_Association
4009 or else Chars (Selector_Name (Parent (Actual))) = Chars (Formal)
4010 then
4011 -- The actual can be compatible with the formal, but we must
4012 -- also check that the context is not an address type that is
4013 -- visibly an integer type. In this case the use of literals is
4014 -- illegal, except in the body of descendants of system, where
4015 -- arithmetic operations on address are of course used.
4017 if Has_Compatible_Type (Actual, Etype (Formal))
4018 and then
4019 (Etype (Actual) /= Universal_Integer
4020 or else not Is_Descendant_Of_Address (Etype (Formal))
4021 or else In_Predefined_Unit (N))
4022 then
4023 Next_Actual (Actual);
4024 Next_Formal (Formal);
4026 -- In Allow_Integer_Address mode, we allow an actual integer to
4027 -- match a formal address type and vice versa. We only do this
4028 -- if we are certain that an error will otherwise be issued
4030 elsif Address_Integer_Convert_OK
4031 (Etype (Actual), Etype (Formal))
4032 and then (Report and not Is_Indexed and not Is_Indirect)
4033 then
4034 -- Handle this case by introducing an unchecked conversion
4036 Rewrite (Actual,
4037 Unchecked_Convert_To (Etype (Formal),
4038 Relocate_Node (Actual)));
4039 Analyze_And_Resolve (Actual, Etype (Formal));
4040 Next_Actual (Actual);
4041 Next_Formal (Formal);
4043 -- Under relaxed RM semantics silently replace occurrences of
4044 -- null by System.Address_Null. We only do this if we know that
4045 -- an error will otherwise be issued.
4047 elsif Null_To_Null_Address_Convert_OK (Actual, Etype (Formal))
4048 and then (Report and not Is_Indexed and not Is_Indirect)
4049 then
4050 Replace_Null_By_Null_Address (Actual);
4051 Analyze_And_Resolve (Actual, Etype (Formal));
4052 Next_Actual (Actual);
4053 Next_Formal (Formal);
4055 elsif Compatible_Types_In_Predicate
4056 (Etype (Formal), Etype (Actual))
4057 then
4058 Next_Actual (Actual);
4059 Next_Formal (Formal);
4061 -- A current instance used as an actual of a function,
4062 -- whose body has not been seen, may include a formal
4063 -- whose type is an incomplete view of an enclosing
4064 -- type declaration containing the current call (e.g.
4065 -- in the Expression for a component declaration).
4067 -- In this case, update the signature of the subprogram
4068 -- so the formal has the type of the full view.
4070 elsif Inside_Init_Proc
4071 and then Nkind (Actual) = N_Identifier
4072 and then Ekind (Etype (Formal)) = E_Incomplete_Type
4073 and then Etype (Actual) = Full_View (Etype (Formal))
4074 then
4075 Set_Etype (Formal, Etype (Actual));
4076 Next_Actual (Actual);
4077 Next_Formal (Formal);
4079 -- Handle failed type check
4081 else
4082 if Debug_Flag_E then
4083 Write_Str (" type checking fails in call ");
4084 Write_Int (Int (N));
4085 Write_Str (" with formal ");
4086 Write_Int (Int (Formal));
4087 Write_Str (" in subprogram ");
4088 Write_Int (Int (Nam));
4089 Write_Eol;
4090 end if;
4092 -- Comment needed on the following test???
4094 if Report and not Is_Indexed and not Is_Indirect then
4096 -- Ada 2005 (AI-251): Complete the error notification
4097 -- to help new Ada 2005 users.
4099 if Is_Class_Wide_Type (Etype (Formal))
4100 and then Is_Interface (Etype (Etype (Formal)))
4101 and then not Interface_Present_In_Ancestor
4102 (Typ => Etype (Actual),
4103 Iface => Etype (Etype (Formal)))
4104 then
4105 Error_Msg_NE
4106 ("(Ada 2005) does not implement interface }",
4107 Actual, Etype (Etype (Formal)));
4108 end if;
4110 -- If we are going to output a secondary error message
4111 -- below, we need to have Wrong_Type output the main one.
4113 Wrong_Type
4114 (Actual, Etype (Formal), Multiple => All_Errors_Mode);
4116 if Nkind (Actual) = N_Op_Eq
4117 and then Nkind (Left_Opnd (Actual)) = N_Identifier
4118 then
4119 Formal := First_Formal (Nam);
4120 while Present (Formal) loop
4121 if Chars (Left_Opnd (Actual)) = Chars (Formal) then
4122 Error_Msg_N -- CODEFIX
4123 ("possible misspelling of `='>`!", Actual);
4124 exit;
4125 end if;
4127 Next_Formal (Formal);
4128 end loop;
4129 end if;
4131 if All_Errors_Mode then
4132 Error_Msg_Sloc := Sloc (Nam);
4134 if Etype (Formal) = Any_Type then
4135 Error_Msg_N
4136 ("there is no legal actual parameter", Actual);
4137 end if;
4139 if Is_Overloadable (Nam)
4140 and then Present (Alias (Nam))
4141 and then not Comes_From_Source (Nam)
4142 then
4143 Error_Msg_NE
4144 ("\\ =='> in call to inherited operation & #!",
4145 Actual, Nam);
4147 elsif Ekind (Nam) = E_Subprogram_Type then
4148 declare
4149 Access_To_Subprogram_Typ :
4150 constant Entity_Id :=
4151 Defining_Identifier
4152 (Associated_Node_For_Itype (Nam));
4153 begin
4154 Error_Msg_NE
4155 ("\\ =='> in call to dereference of &#!",
4156 Actual, Access_To_Subprogram_Typ);
4157 end;
4159 else
4160 Error_Msg_NE
4161 ("\\ =='> in call to &#!", Actual, Nam);
4163 end if;
4164 end if;
4165 end if;
4167 return;
4168 end if;
4170 else
4171 -- Normalize_Actuals has verified that a default value exists
4172 -- for this formal. Current actual names a subsequent formal.
4174 Next_Formal (Formal);
4175 end if;
4176 end loop;
4178 -- Due to our current model of controlled type expansion we may
4179 -- have resolved a user call to a non-visible controlled primitive
4180 -- since these inherited subprograms may be generated in the current
4181 -- scope. This is a side effect of the need for the expander to be
4182 -- able to resolve internally generated calls.
4184 -- Specifically, the issue appears when predefined controlled
4185 -- operations get called on a type extension whose parent is a
4186 -- private extension completed with a controlled extension - see
4187 -- below:
4189 -- package X is
4190 -- type Par_Typ is tagged private;
4191 -- private
4192 -- type Par_Typ is new Controlled with null record;
4193 -- end;
4194 -- ...
4195 -- procedure Main is
4196 -- type Ext_Typ is new Par_Typ with null record;
4197 -- Obj : Ext_Typ;
4198 -- begin
4199 -- Finalize (Obj); -- Will improperly resolve
4200 -- end;
4202 -- To avoid breaking privacy, Is_Hidden gets set elsewhere on such
4203 -- primitives, but we still need to verify that Nam is indeed a
4204 -- non-visible controlled subprogram. So, we do that here and issue
4205 -- the appropriate error.
4207 if Is_Hidden (Nam)
4208 and then not In_Instance
4209 and then not Comes_From_Source (Nam)
4210 and then Comes_From_Source (N)
4212 -- Verify Nam is a non-visible controlled primitive
4214 and then Chars (Nam) in Name_Adjust
4215 | Name_Finalize
4216 | Name_Initialize
4217 and then Ekind (Nam) = E_Procedure
4218 and then Is_Controlled (Etype (First_Form))
4219 and then No (Next_Formal (First_Form))
4220 and then not Is_Visibly_Controlled (Etype (First_Form))
4221 then
4222 Error_Msg_Node_2 := Etype (First_Form);
4223 Error_Msg_NE ("call to non-visible controlled primitive & on type"
4224 & " &", N, Nam);
4225 end if;
4227 -- On exit, all actuals match
4229 Indicate_Name_And_Type;
4230 end if;
4231 end Analyze_One_Call;
4233 ---------------------------
4234 -- Analyze_Operator_Call --
4235 ---------------------------
4237 procedure Analyze_Operator_Call (N : Node_Id; Op_Id : Entity_Id) is
4238 Op_Name : constant Name_Id := Chars (Op_Id);
4239 Act1 : constant Node_Id := First_Actual (N);
4240 Act2 : constant Node_Id := Next_Actual (Act1);
4242 begin
4243 -- Binary operator case
4245 if Present (Act2) then
4247 -- If more than two operands, then not binary operator after all
4249 if Present (Next_Actual (Act2)) then
4250 return;
4251 end if;
4253 -- Otherwise action depends on operator
4255 case Op_Name is
4256 when Name_Op_Add
4257 | Name_Op_Divide
4258 | Name_Op_Expon
4259 | Name_Op_Mod
4260 | Name_Op_Multiply
4261 | Name_Op_Rem
4262 | Name_Op_Subtract
4264 Find_Arithmetic_Types (Act1, Act2, Op_Id, N);
4266 when Name_Op_And
4267 | Name_Op_Or
4268 | Name_Op_Xor
4270 Find_Boolean_Types (Act1, Act2, Op_Id, N);
4272 when Name_Op_Eq
4273 | Name_Op_Ge
4274 | Name_Op_Gt
4275 | Name_Op_Le
4276 | Name_Op_Lt
4277 | Name_Op_Ne
4279 Find_Comparison_Equality_Types (Act1, Act2, Op_Id, N);
4281 when Name_Op_Concat =>
4282 Find_Concatenation_Types (Act1, Act2, Op_Id, N);
4284 -- Is this when others, or should it be an abort???
4286 when others =>
4287 null;
4288 end case;
4290 -- Unary operator case
4292 else
4293 case Op_Name is
4294 when Name_Op_Abs
4295 | Name_Op_Add
4296 | Name_Op_Subtract
4298 Find_Unary_Types (Act1, Op_Id, N);
4300 when Name_Op_Not =>
4301 Find_Negation_Types (Act1, Op_Id, N);
4303 -- Is this when others correct, or should it be an abort???
4305 when others =>
4306 null;
4307 end case;
4308 end if;
4309 end Analyze_Operator_Call;
4311 -------------------------------------------
4312 -- Analyze_Overloaded_Selected_Component --
4313 -------------------------------------------
4315 procedure Analyze_Overloaded_Selected_Component (N : Node_Id) is
4316 Nam : constant Node_Id := Prefix (N);
4317 Sel : constant Node_Id := Selector_Name (N);
4318 Comp : Entity_Id;
4319 I : Interp_Index;
4320 It : Interp;
4321 T : Entity_Id;
4323 begin
4324 Set_Etype (Sel, Any_Type);
4326 Get_First_Interp (Nam, I, It);
4327 while Present (It.Typ) loop
4328 if Is_Access_Type (It.Typ) then
4329 T := Designated_Type (It.Typ);
4330 Error_Msg_NW (Warn_On_Dereference, "?d?implicit dereference", N);
4331 else
4332 T := It.Typ;
4333 end if;
4335 -- Locate the component. For a private prefix the selector can denote
4336 -- a discriminant.
4338 if Is_Record_Type (T) or else Is_Private_Type (T) then
4340 -- If the prefix is a class-wide type, the visible components are
4341 -- those of the base type.
4343 if Is_Class_Wide_Type (T) then
4344 T := Etype (T);
4345 end if;
4347 Comp := First_Entity (T);
4348 while Present (Comp) loop
4349 if Chars (Comp) = Chars (Sel)
4350 and then Is_Visible_Component (Comp, Sel)
4351 then
4353 -- AI05-105: if the context is an object renaming with
4354 -- an anonymous access type, the expected type of the
4355 -- object must be anonymous. This is a name resolution rule.
4357 if Nkind (Parent (N)) /= N_Object_Renaming_Declaration
4358 or else No (Access_Definition (Parent (N)))
4359 or else Is_Anonymous_Access_Type (Etype (Comp))
4360 then
4361 Set_Entity (Sel, Comp);
4362 Set_Etype (Sel, Etype (Comp));
4363 Add_One_Interp (N, Etype (Comp), Etype (Comp));
4364 Check_Implicit_Dereference (N, Etype (Comp));
4366 -- This also specifies a candidate to resolve the name.
4367 -- Further overloading will be resolved from context.
4368 -- The selector name itself does not carry overloading
4369 -- information.
4371 Set_Etype (Nam, It.Typ);
4373 else
4374 -- Named access type in the context of a renaming
4375 -- declaration with an access definition. Remove
4376 -- inapplicable candidate.
4378 Remove_Interp (I);
4379 end if;
4380 end if;
4382 Next_Entity (Comp);
4383 end loop;
4385 elsif Is_Concurrent_Type (T) then
4386 Comp := First_Entity (T);
4387 while Present (Comp)
4388 and then Comp /= First_Private_Entity (T)
4389 loop
4390 if Chars (Comp) = Chars (Sel) then
4391 if Is_Overloadable (Comp) then
4392 Add_One_Interp (Sel, Comp, Etype (Comp));
4393 else
4394 Set_Entity_With_Checks (Sel, Comp);
4395 Generate_Reference (Comp, Sel);
4396 end if;
4398 Set_Etype (Sel, Etype (Comp));
4399 Set_Etype (N, Etype (Comp));
4400 Set_Etype (Nam, It.Typ);
4401 end if;
4403 Next_Entity (Comp);
4404 end loop;
4406 Set_Is_Overloaded (N, Is_Overloaded (Sel));
4407 end if;
4409 Get_Next_Interp (I, It);
4410 end loop;
4412 if Etype (N) = Any_Type
4413 and then not Try_Object_Operation (N)
4414 then
4415 Error_Msg_NE ("undefined selector& for overloaded prefix", N, Sel);
4416 Set_Entity (Sel, Any_Id);
4417 Set_Etype (Sel, Any_Type);
4418 end if;
4419 end Analyze_Overloaded_Selected_Component;
4421 ----------------------------------
4422 -- Analyze_Qualified_Expression --
4423 ----------------------------------
4425 procedure Analyze_Qualified_Expression (N : Node_Id) is
4426 Expr : constant Node_Id := Expression (N);
4427 Mark : constant Entity_Id := Subtype_Mark (N);
4429 I : Interp_Index;
4430 It : Interp;
4431 T : Entity_Id;
4433 begin
4434 Find_Type (Mark);
4435 T := Entity (Mark);
4437 if Nkind (Enclosing_Declaration (N)) in
4438 N_Formal_Type_Declaration |
4439 N_Full_Type_Declaration |
4440 N_Incomplete_Type_Declaration |
4441 N_Protected_Type_Declaration |
4442 N_Private_Extension_Declaration |
4443 N_Private_Type_Declaration |
4444 N_Subtype_Declaration |
4445 N_Task_Type_Declaration
4446 and then T = Defining_Identifier (Enclosing_Declaration (N))
4447 then
4448 Error_Msg_N ("current instance not allowed", Mark);
4449 T := Any_Type;
4450 end if;
4452 Set_Etype (N, T);
4454 Analyze_Expression (Expr);
4456 if T = Any_Type then
4457 return;
4458 end if;
4460 Check_Fully_Declared (T, N);
4462 -- If expected type is class-wide, check for exact match before
4463 -- expansion, because if the expression is a dispatching call it
4464 -- may be rewritten as explicit dereference with class-wide result.
4465 -- If expression is overloaded, retain only interpretations that
4466 -- will yield exact matches.
4468 if Is_Class_Wide_Type (T) then
4469 if not Is_Overloaded (Expr) then
4470 if Base_Type (Etype (Expr)) /= Base_Type (T)
4471 and then Etype (Expr) /= Raise_Type
4472 then
4473 if Nkind (Expr) = N_Aggregate then
4474 Error_Msg_N ("type of aggregate cannot be class-wide", Expr);
4475 else
4476 Wrong_Type (Expr, T);
4477 end if;
4478 end if;
4480 else
4481 Get_First_Interp (Expr, I, It);
4483 while Present (It.Nam) loop
4484 if Base_Type (It.Typ) /= Base_Type (T) then
4485 Remove_Interp (I);
4486 end if;
4488 Get_Next_Interp (I, It);
4489 end loop;
4490 end if;
4491 end if;
4492 end Analyze_Qualified_Expression;
4494 -----------------------------------
4495 -- Analyze_Quantified_Expression --
4496 -----------------------------------
4498 procedure Analyze_Quantified_Expression (N : Node_Id) is
4499 function Is_Empty_Range (Typ : Entity_Id) return Boolean;
4500 -- Return True if the iterator is part of a quantified expression and
4501 -- the range is known to be statically empty.
4503 function No_Else_Or_Trivial_True (If_Expr : Node_Id) return Boolean;
4504 -- Determine whether if expression If_Expr lacks an else part or if it
4505 -- has one, it evaluates to True.
4507 --------------------
4508 -- Is_Empty_Range --
4509 --------------------
4511 function Is_Empty_Range (Typ : Entity_Id) return Boolean is
4512 begin
4513 return Is_Array_Type (Typ)
4514 and then Compile_Time_Known_Bounds (Typ)
4515 and then
4516 Expr_Value (Type_Low_Bound (Etype (First_Index (Typ)))) >
4517 Expr_Value (Type_High_Bound (Etype (First_Index (Typ))));
4518 end Is_Empty_Range;
4520 -----------------------------
4521 -- No_Else_Or_Trivial_True --
4522 -----------------------------
4524 function No_Else_Or_Trivial_True (If_Expr : Node_Id) return Boolean is
4525 Else_Expr : constant Node_Id :=
4526 Next (Next (First (Expressions (If_Expr))));
4527 begin
4528 return
4529 No (Else_Expr)
4530 or else (Compile_Time_Known_Value (Else_Expr)
4531 and then Is_True (Expr_Value (Else_Expr)));
4532 end No_Else_Or_Trivial_True;
4534 -- Local variables
4536 Cond : constant Node_Id := Condition (N);
4537 Loc : constant Source_Ptr := Sloc (N);
4538 Loop_Id : Entity_Id;
4539 QE_Scop : Entity_Id;
4541 -- Start of processing for Analyze_Quantified_Expression
4543 begin
4544 -- Create a scope to emulate the loop-like behavior of the quantified
4545 -- expression. The scope is needed to provide proper visibility of the
4546 -- loop variable.
4548 QE_Scop := New_Internal_Entity (E_Loop, Current_Scope, Loc, 'L');
4549 Set_Etype (QE_Scop, Standard_Void_Type);
4550 Set_Scope (QE_Scop, Current_Scope);
4551 Set_Parent (QE_Scop, N);
4553 Push_Scope (QE_Scop);
4555 -- All constituents are preanalyzed and resolved to avoid untimely
4556 -- generation of various temporaries and types. Full analysis and
4557 -- expansion is carried out when the quantified expression is
4558 -- transformed into an expression with actions.
4560 if Present (Iterator_Specification (N)) then
4561 Preanalyze (Iterator_Specification (N));
4563 -- Do not proceed with the analysis when the range of iteration is
4564 -- empty.
4566 if Is_Entity_Name (Name (Iterator_Specification (N)))
4567 and then Is_Empty_Range (Etype (Name (Iterator_Specification (N))))
4568 then
4569 Preanalyze_And_Resolve (Condition (N), Standard_Boolean);
4570 End_Scope;
4572 -- Emit a warning and replace expression with its static value
4574 if All_Present (N) then
4575 Error_Msg_N
4576 ("??quantified expression with ALL "
4577 & "over a null range has value True", N);
4578 Rewrite (N, New_Occurrence_Of (Standard_True, Loc));
4580 else
4581 Error_Msg_N
4582 ("??quantified expression with SOME "
4583 & "over a null range has value False", N);
4584 Rewrite (N, New_Occurrence_Of (Standard_False, Loc));
4585 end if;
4587 Analyze (N);
4588 return;
4589 end if;
4591 else pragma Assert (Present (Loop_Parameter_Specification (N)));
4592 declare
4593 Loop_Par : constant Node_Id := Loop_Parameter_Specification (N);
4595 begin
4596 Preanalyze (Loop_Par);
4598 if Nkind (Discrete_Subtype_Definition (Loop_Par)) = N_Function_Call
4599 and then Parent (Loop_Par) /= N
4600 then
4601 -- The parser cannot distinguish between a loop specification
4602 -- and an iterator specification. If after preanalysis the
4603 -- proper form has been recognized, rewrite the expression to
4604 -- reflect the right kind. This is needed for proper ASIS
4605 -- navigation. If expansion is enabled, the transformation is
4606 -- performed when the expression is rewritten as a loop.
4607 -- Is this still needed???
4609 Set_Iterator_Specification (N,
4610 New_Copy_Tree (Iterator_Specification (Parent (Loop_Par))));
4612 Set_Defining_Identifier (Iterator_Specification (N),
4613 Relocate_Node (Defining_Identifier (Loop_Par)));
4614 Set_Name (Iterator_Specification (N),
4615 Relocate_Node (Discrete_Subtype_Definition (Loop_Par)));
4616 Set_Comes_From_Source (Iterator_Specification (N),
4617 Comes_From_Source (Loop_Parameter_Specification (N)));
4618 Set_Loop_Parameter_Specification (N, Empty);
4619 end if;
4620 end;
4621 end if;
4623 Preanalyze_And_Resolve (Cond, Standard_Boolean);
4625 End_Scope;
4626 Set_Etype (N, Standard_Boolean);
4628 -- Verify that the loop variable is used within the condition of the
4629 -- quantified expression.
4631 if Present (Iterator_Specification (N)) then
4632 Loop_Id := Defining_Identifier (Iterator_Specification (N));
4633 else
4634 Loop_Id := Defining_Identifier (Loop_Parameter_Specification (N));
4635 end if;
4637 declare
4638 type Subexpr_Kind is (Full, Conjunct, Disjunct);
4640 procedure Check_Subexpr (Expr : Node_Id; Kind : Subexpr_Kind);
4641 -- Check that the quantified variable appears in every sub-expression
4642 -- of the quantified expression. If Kind is Full, Expr is the full
4643 -- expression. If Kind is Conjunct (resp. Disjunct), Expr is a
4644 -- conjunct (resp. disjunct) of the full expression.
4646 -------------------
4647 -- Check_Subexpr --
4648 -------------------
4650 procedure Check_Subexpr (Expr : Node_Id; Kind : Subexpr_Kind) is
4651 begin
4652 if Nkind (Expr) in N_Op_And | N_And_Then
4653 and then Kind /= Disjunct
4654 then
4655 Check_Subexpr (Left_Opnd (Expr), Conjunct);
4656 Check_Subexpr (Right_Opnd (Expr), Conjunct);
4658 elsif Nkind (Expr) in N_Op_Or | N_Or_Else
4659 and then Kind /= Conjunct
4660 then
4661 Check_Subexpr (Left_Opnd (Expr), Disjunct);
4662 Check_Subexpr (Right_Opnd (Expr), Disjunct);
4664 elsif Kind /= Full
4665 and then not Referenced (Loop_Id, Expr)
4666 then
4667 declare
4668 Sub : constant String :=
4669 (if Kind = Conjunct then "conjunct" else "disjunct");
4670 begin
4671 Error_Msg_NE
4672 ("?.t?unused variable & in " & Sub, Expr, Loop_Id);
4673 Error_Msg_NE
4674 ("\consider extracting " & Sub & " from quantified "
4675 & "expression", Expr, Loop_Id);
4676 end;
4677 end if;
4678 end Check_Subexpr;
4680 begin
4681 if Warn_On_Suspicious_Contract
4682 and then not Is_Internal_Name (Chars (Loop_Id))
4684 -- Generating C, this check causes spurious warnings on inlined
4685 -- postconditions; we can safely disable it because this check
4686 -- was previously performed when analyzing the internally built
4687 -- postconditions procedure.
4689 and then not (Modify_Tree_For_C and In_Inlined_Body)
4690 then
4691 if not Referenced (Loop_Id, Cond) then
4692 Error_Msg_N ("?.t?unused variable &", Loop_Id);
4693 else
4694 Check_Subexpr (Cond, Kind => Full);
4695 end if;
4696 end if;
4697 end;
4699 -- Diagnose a possible misuse of the SOME existential quantifier. When
4700 -- we have a quantified expression of the form:
4702 -- for some X => (if P then Q [else True])
4704 -- any value for X that makes P False results in the if expression being
4705 -- trivially True, and so also results in the quantified expression
4706 -- being trivially True.
4708 if Warn_On_Suspicious_Contract
4709 and then not All_Present (N)
4710 and then Nkind (Cond) = N_If_Expression
4711 and then No_Else_Or_Trivial_True (Cond)
4712 then
4713 Error_Msg_N ("?.t?suspicious expression", N);
4714 Error_Msg_N ("\\did you mean (for all X ='> (if P then Q))", N);
4715 Error_Msg_N ("\\or (for some X ='> P and then Q) instead'?", N);
4716 end if;
4717 end Analyze_Quantified_Expression;
4719 -------------------
4720 -- Analyze_Range --
4721 -------------------
4723 procedure Analyze_Range (N : Node_Id) is
4724 L : constant Node_Id := Low_Bound (N);
4725 H : constant Node_Id := High_Bound (N);
4726 I1, I2 : Interp_Index;
4727 It1, It2 : Interp;
4729 procedure Check_Common_Type (T1, T2 : Entity_Id);
4730 -- Verify the compatibility of two types, and choose the
4731 -- non universal one if the other is universal.
4733 procedure Check_High_Bound (T : Entity_Id);
4734 -- Test one interpretation of the low bound against all those
4735 -- of the high bound.
4737 procedure Check_Universal_Expression (N : Node_Id);
4738 -- In Ada 83, reject bounds of a universal range that are not literals
4739 -- or entity names.
4741 -----------------------
4742 -- Check_Common_Type --
4743 -----------------------
4745 procedure Check_Common_Type (T1, T2 : Entity_Id) is
4746 begin
4747 if Covers (T1 => T1, T2 => T2)
4748 or else
4749 Covers (T1 => T2, T2 => T1)
4750 then
4751 if Is_Universal_Numeric_Type (T1)
4752 or else T1 = Any_Character
4753 then
4754 Add_One_Interp (N, Base_Type (T2), Base_Type (T2));
4756 elsif T1 = T2 then
4757 Add_One_Interp (N, T1, T1);
4759 else
4760 Add_One_Interp (N, Base_Type (T1), Base_Type (T1));
4761 end if;
4762 end if;
4763 end Check_Common_Type;
4765 ----------------------
4766 -- Check_High_Bound --
4767 ----------------------
4769 procedure Check_High_Bound (T : Entity_Id) is
4770 begin
4771 if not Is_Overloaded (H) then
4772 Check_Common_Type (T, Etype (H));
4773 else
4774 Get_First_Interp (H, I2, It2);
4775 while Present (It2.Typ) loop
4776 Check_Common_Type (T, It2.Typ);
4777 Get_Next_Interp (I2, It2);
4778 end loop;
4779 end if;
4780 end Check_High_Bound;
4782 --------------------------------
4783 -- Check_Universal_Expression --
4784 --------------------------------
4786 procedure Check_Universal_Expression (N : Node_Id) is
4787 begin
4788 if Etype (N) = Universal_Integer
4789 and then Nkind (N) /= N_Integer_Literal
4790 and then not Is_Entity_Name (N)
4791 and then Nkind (N) /= N_Attribute_Reference
4792 then
4793 Error_Msg_N ("illegal bound in discrete range", N);
4794 end if;
4795 end Check_Universal_Expression;
4797 -- Start of processing for Analyze_Range
4799 begin
4800 Set_Etype (N, Any_Type);
4801 Analyze_Expression (L);
4802 Analyze_Expression (H);
4804 if Etype (L) = Any_Type or else Etype (H) = Any_Type then
4805 return;
4807 else
4808 if not Is_Overloaded (L) then
4809 Check_High_Bound (Etype (L));
4810 else
4811 Get_First_Interp (L, I1, It1);
4812 while Present (It1.Typ) loop
4813 Check_High_Bound (It1.Typ);
4814 Get_Next_Interp (I1, It1);
4815 end loop;
4816 end if;
4818 -- If result is Any_Type, then we did not find a compatible pair
4820 if Etype (N) = Any_Type then
4821 Error_Msg_N ("incompatible types in range", N);
4822 end if;
4823 end if;
4825 if Ada_Version = Ada_83
4826 and then
4827 (Nkind (Parent (N)) = N_Loop_Parameter_Specification
4828 or else Nkind (Parent (N)) = N_Constrained_Array_Definition)
4829 then
4830 Check_Universal_Expression (L);
4831 Check_Universal_Expression (H);
4832 end if;
4834 Check_Function_Writable_Actuals (N);
4835 end Analyze_Range;
4837 -----------------------
4838 -- Analyze_Reference --
4839 -----------------------
4841 procedure Analyze_Reference (N : Node_Id) is
4842 P : constant Node_Id := Prefix (N);
4843 E : Entity_Id;
4844 T : Entity_Id;
4845 Acc_Type : Entity_Id;
4847 begin
4848 Analyze (P);
4850 -- An interesting error check, if we take the 'Ref of an object for
4851 -- which a pragma Atomic or Volatile has been given, and the type of the
4852 -- object is not Atomic or Volatile, then we are in trouble. The problem
4853 -- is that no trace of the atomic/volatile status will remain for the
4854 -- backend to respect when it deals with the resulting pointer, since
4855 -- the pointer type will not be marked atomic (it is a pointer to the
4856 -- base type of the object).
4858 -- It is not clear if that can ever occur, but in case it does, we will
4859 -- generate an error message. Not clear if this message can ever be
4860 -- generated, and pretty clear that it represents a bug if it is, still
4861 -- seems worth checking, except in CodePeer mode where we do not really
4862 -- care and don't want to bother the user.
4864 T := Etype (P);
4866 if Is_Entity_Name (P)
4867 and then Is_Object_Reference (P)
4868 and then not CodePeer_Mode
4869 then
4870 E := Entity (P);
4871 T := Etype (P);
4873 if (Has_Atomic_Components (E)
4874 and then not Has_Atomic_Components (T))
4875 or else
4876 (Has_Volatile_Components (E)
4877 and then not Has_Volatile_Components (T))
4878 or else (Is_Atomic (E) and then not Is_Atomic (T))
4879 or else (Is_Volatile (E) and then not Is_Volatile (T))
4880 then
4881 Error_Msg_N ("cannot take reference to Atomic/Volatile object", N);
4882 end if;
4883 end if;
4885 -- Carry on with normal processing
4887 Acc_Type := Create_Itype (E_Allocator_Type, N);
4888 Set_Etype (Acc_Type, Acc_Type);
4889 Set_Directly_Designated_Type (Acc_Type, Etype (P));
4890 Set_Etype (N, Acc_Type);
4891 end Analyze_Reference;
4893 --------------------------------
4894 -- Analyze_Selected_Component --
4895 --------------------------------
4897 -- Prefix is a record type or a task or protected type. In the latter case,
4898 -- the selector must denote a visible entry.
4900 procedure Analyze_Selected_Component (N : Node_Id) is
4901 Name : constant Node_Id := Prefix (N);
4902 Sel : constant Node_Id := Selector_Name (N);
4903 Act_Decl : Node_Id;
4904 Comp : Entity_Id := Empty;
4905 Has_Candidate : Boolean := False;
4906 Hidden_Comp : Entity_Id;
4907 In_Scope : Boolean;
4908 Is_Private_Op : Boolean;
4909 Parent_N : Node_Id;
4910 Prefix_Type : Entity_Id;
4912 Type_To_Use : Entity_Id;
4913 -- In most cases this is the Prefix_Type, but if the Prefix_Type is
4914 -- a class-wide type, we use its root type, whose components are
4915 -- present in the class-wide type.
4917 Is_Single_Concurrent_Object : Boolean;
4918 -- Set True if the prefix is a single task or a single protected object
4920 function Constraint_Has_Unprefixed_Discriminant_Reference
4921 (Typ : Entity_Id) return Boolean;
4922 -- Given a subtype that is subject to a discriminant-dependent
4923 -- constraint, returns True if any of the values of the constraint
4924 -- (i.e., any of the index values for an index constraint, any of
4925 -- the discriminant values for a discriminant constraint)
4926 -- are unprefixed discriminant names.
4928 function Has_Mode_Conformant_Spec (Comp : Entity_Id) return Boolean;
4929 -- It is known that the parent of N denotes a subprogram call. Comp
4930 -- is an overloadable component of the concurrent type of the prefix.
4931 -- Determine whether all formals of the parent of N and Comp are mode
4932 -- conformant. If the parent node is not analyzed yet it may be an
4933 -- indexed component rather than a function call.
4935 function Has_Dereference (Nod : Node_Id) return Boolean;
4936 -- Check whether prefix includes a dereference, explicit or implicit,
4937 -- at any recursive level.
4939 function Try_By_Protected_Procedure_Prefixed_View return Boolean;
4940 -- Return True if N is an access attribute whose prefix is a prefixed
4941 -- class-wide (synchronized or protected) interface view for which some
4942 -- interpretation is a procedure with synchronization kind By_Protected
4943 -- _Procedure, and collect all its interpretations (since it may be an
4944 -- overloaded interface primitive); otherwise return False.
4946 function Try_Selected_Component_In_Instance
4947 (Typ : Entity_Id) return Boolean;
4948 -- If Typ is the actual for a formal derived type, or a derived type
4949 -- thereof, the component inherited from the generic parent may not
4950 -- be visible in the actual, but the selected component is legal. Climb
4951 -- up the derivation chain of the generic parent type and return True if
4952 -- we find the proper ancestor type; otherwise return False.
4954 ------------------------------------------------------
4955 -- Constraint_Has_Unprefixed_Discriminant_Reference --
4956 ------------------------------------------------------
4958 function Constraint_Has_Unprefixed_Discriminant_Reference
4959 (Typ : Entity_Id) return Boolean
4961 function Is_Discriminant_Name (N : Node_Id) return Boolean is
4962 (Nkind (N) = N_Identifier
4963 and then Ekind (Entity (N)) = E_Discriminant);
4964 begin
4965 if Is_Array_Type (Typ) then
4966 declare
4967 Index : Node_Id := First_Index (Typ);
4968 Rng : Node_Id;
4969 begin
4970 while Present (Index) loop
4971 Rng := Index;
4972 if Nkind (Rng) = N_Subtype_Indication then
4973 Rng := Range_Expression (Constraint (Rng));
4974 end if;
4976 if Nkind (Rng) = N_Range then
4977 if Is_Discriminant_Name (Low_Bound (Rng))
4978 or else Is_Discriminant_Name (High_Bound (Rng))
4979 then
4980 return True;
4981 end if;
4982 end if;
4984 Next_Index (Index);
4985 end loop;
4986 end;
4987 else
4988 declare
4989 Elmt : Elmt_Id := First_Elmt (Discriminant_Constraint (Typ));
4990 begin
4991 while Present (Elmt) loop
4992 if Is_Discriminant_Name (Node (Elmt)) then
4993 return True;
4994 end if;
4995 Next_Elmt (Elmt);
4996 end loop;
4997 end;
4998 end if;
5000 return False;
5001 end Constraint_Has_Unprefixed_Discriminant_Reference;
5003 ------------------------------
5004 -- Has_Mode_Conformant_Spec --
5005 ------------------------------
5007 function Has_Mode_Conformant_Spec (Comp : Entity_Id) return Boolean is
5008 Comp_Param : Entity_Id;
5009 Param : Node_Id;
5010 Param_Typ : Entity_Id;
5012 begin
5013 Comp_Param := First_Formal (Comp);
5015 if Nkind (Parent (N)) = N_Indexed_Component then
5016 Param := First (Expressions (Parent (N)));
5017 else
5018 Param := First (Parameter_Associations (Parent (N)));
5019 end if;
5021 while Present (Comp_Param)
5022 and then Present (Param)
5023 loop
5024 Param_Typ := Find_Parameter_Type (Param);
5026 if Present (Param_Typ)
5027 and then
5028 not Conforming_Types
5029 (Etype (Comp_Param), Param_Typ, Mode_Conformant)
5030 then
5031 return False;
5032 end if;
5034 Next_Formal (Comp_Param);
5035 Next (Param);
5036 end loop;
5038 -- One of the specs has additional formals; there is no match, unless
5039 -- this may be an indexing of a parameterless call.
5041 -- Note that when expansion is disabled, the corresponding record
5042 -- type of synchronized types is not constructed, so that there is
5043 -- no point is attempting an interpretation as a prefixed call, as
5044 -- this is bound to fail because the primitive operations will not
5045 -- be properly located.
5047 if Present (Comp_Param) or else Present (Param) then
5048 if Needs_No_Actuals (Comp)
5049 and then Is_Array_Type (Etype (Comp))
5050 and then not Expander_Active
5051 then
5052 return True;
5053 else
5054 return False;
5055 end if;
5056 end if;
5058 return True;
5059 end Has_Mode_Conformant_Spec;
5061 ---------------------
5062 -- Has_Dereference --
5063 ---------------------
5065 function Has_Dereference (Nod : Node_Id) return Boolean is
5066 begin
5067 if Nkind (Nod) = N_Explicit_Dereference then
5068 return True;
5070 elsif Is_Access_Type (Etype (Nod)) then
5071 return True;
5073 elsif Nkind (Nod) in N_Indexed_Component | N_Selected_Component then
5074 return Has_Dereference (Prefix (Nod));
5076 else
5077 return False;
5078 end if;
5079 end Has_Dereference;
5081 ----------------------------------------------
5082 -- Try_By_Protected_Procedure_Prefixed_View --
5083 ----------------------------------------------
5085 function Try_By_Protected_Procedure_Prefixed_View return Boolean is
5086 Candidate : Node_Id := Empty;
5087 Elmt : Elmt_Id;
5088 Prim : Node_Id;
5090 begin
5091 if Nkind (Parent (N)) = N_Attribute_Reference
5092 and then Attribute_Name (Parent (N)) in
5093 Name_Access
5094 | Name_Unchecked_Access
5095 | Name_Unrestricted_Access
5096 and then Is_Class_Wide_Type (Prefix_Type)
5097 and then (Is_Synchronized_Interface (Prefix_Type)
5098 or else Is_Protected_Interface (Prefix_Type))
5099 then
5100 -- If we have not found yet any interpretation then mark this
5101 -- one as the first interpretation (cf. Add_One_Interp).
5103 if No (Etype (Sel)) then
5104 Set_Etype (Sel, Any_Type);
5105 end if;
5107 Elmt := First_Elmt (Primitive_Operations (Etype (Prefix_Type)));
5108 while Present (Elmt) loop
5109 Prim := Node (Elmt);
5111 if Chars (Prim) = Chars (Sel)
5112 and then Is_By_Protected_Procedure (Prim)
5113 then
5114 Candidate := New_Copy (Prim);
5116 -- Skip the controlling formal; required to check type
5117 -- conformance of the target access to protected type
5118 -- (see Conforming_Types).
5120 Set_First_Entity (Candidate,
5121 Next_Entity (First_Entity (Prim)));
5123 Add_One_Interp (Sel, Candidate, Etype (Prim));
5124 Set_Etype (N, Etype (Prim));
5125 end if;
5127 Next_Elmt (Elmt);
5128 end loop;
5129 end if;
5131 -- Propagate overloaded attribute
5133 if Present (Candidate) and then Is_Overloaded (Sel) then
5134 Set_Is_Overloaded (N);
5135 end if;
5137 return Present (Candidate);
5138 end Try_By_Protected_Procedure_Prefixed_View;
5140 ----------------------------------------
5141 -- Try_Selected_Component_In_Instance --
5142 ----------------------------------------
5144 function Try_Selected_Component_In_Instance
5145 (Typ : Entity_Id) return Boolean
5147 procedure Find_Component_In_Instance (Rec : Entity_Id);
5148 -- In an instance, a component of a private extension may not be
5149 -- visible while it was visible in the generic. Search candidate
5150 -- scope for a component with the proper identifier. If a match is
5151 -- found, the Etype of both N and Sel are set from this component,
5152 -- and the entity of Sel is set to reference this component. If no
5153 -- match is found, Entity (Sel) remains unset. For a derived type
5154 -- that is an actual of the instance, the desired component may be
5155 -- found in any ancestor.
5157 --------------------------------
5158 -- Find_Component_In_Instance --
5159 --------------------------------
5161 procedure Find_Component_In_Instance (Rec : Entity_Id) is
5162 Comp : Entity_Id;
5163 Typ : Entity_Id;
5165 begin
5166 Typ := Rec;
5167 while Present (Typ) loop
5168 Comp := First_Component (Typ);
5169 while Present (Comp) loop
5170 if Chars (Comp) = Chars (Sel) then
5171 Set_Entity_With_Checks (Sel, Comp);
5172 Set_Etype (Sel, Etype (Comp));
5173 Set_Etype (N, Etype (Comp));
5174 return;
5175 end if;
5177 Next_Component (Comp);
5178 end loop;
5180 -- If not found, the component may be declared in the parent
5181 -- type or its full view, if any.
5183 if Is_Derived_Type (Typ) then
5184 Typ := Etype (Typ);
5186 if Is_Private_Type (Typ) then
5187 Typ := Full_View (Typ);
5188 end if;
5190 else
5191 return;
5192 end if;
5193 end loop;
5195 -- If we fall through, no match, so no changes made
5197 return;
5198 end Find_Component_In_Instance;
5200 -- Local variables
5202 Par : Entity_Id;
5204 -- Start of processing for Try_Selected_Component_In_Instance
5206 begin
5207 pragma Assert (In_Instance and then Is_Tagged_Type (Typ));
5208 pragma Assert (Etype (N) = Any_Type);
5210 -- Climb up derivation chain to generic actual subtype
5212 Par := Typ;
5213 while not Is_Generic_Actual_Type (Par) loop
5214 if Ekind (Par) = E_Record_Type then
5215 Par := Parent_Subtype (Par);
5216 exit when No (Par);
5217 else
5218 exit when Par = Etype (Par);
5219 Par := Etype (Par);
5220 end if;
5221 end loop;
5223 -- If Par is a generic actual, look for component in ancestor types.
5224 -- Skip this if we have no Declaration_Node, as is the case for
5225 -- itypes.
5227 if Present (Par)
5228 and then Is_Generic_Actual_Type (Par)
5229 and then Present (Declaration_Node (Par))
5230 then
5231 Par := Generic_Parent_Type (Declaration_Node (Par));
5232 loop
5233 Find_Component_In_Instance (Par);
5234 exit when Present (Entity (Sel))
5235 or else Par = Etype (Par);
5236 Par := Etype (Par);
5237 end loop;
5239 -- Another special case: the type is an extension of a private
5240 -- type T, either is an actual in an instance or is immediately
5241 -- visible, and we are in the body of the instance, which means
5242 -- the generic body had a full view of the type declaration for
5243 -- T or some ancestor that defines the component in question.
5244 -- This happens because Is_Visible_Component returned False on
5245 -- this component, as T or the ancestor is still private since
5246 -- the Has_Private_View mechanism is bypassed because T or the
5247 -- ancestor is not directly referenced in the generic body.
5249 elsif Is_Derived_Type (Typ)
5250 and then (Used_As_Generic_Actual (Typ)
5251 or else Is_Immediately_Visible (Typ))
5252 and then In_Instance_Body
5253 then
5254 Find_Component_In_Instance (Parent_Subtype (Typ));
5255 end if;
5257 return Etype (N) /= Any_Type;
5258 end Try_Selected_Component_In_Instance;
5260 -- Start of processing for Analyze_Selected_Component
5262 begin
5263 Set_Etype (N, Any_Type);
5265 if Is_Overloaded (Name) then
5266 Analyze_Overloaded_Selected_Component (N);
5267 return;
5269 elsif Etype (Name) = Any_Type then
5270 Set_Entity (Sel, Any_Id);
5271 Set_Etype (Sel, Any_Type);
5272 return;
5274 else
5275 Prefix_Type := Etype (Name);
5276 end if;
5278 if Is_Access_Type (Prefix_Type) then
5280 -- A RACW object can never be used as prefix of a selected component
5281 -- since that means it is dereferenced without being a controlling
5282 -- operand of a dispatching operation (RM E.2.2(16/1)). Before
5283 -- reporting an error, we must check whether this is actually a
5284 -- dispatching call in prefix form.
5286 if Is_Remote_Access_To_Class_Wide_Type (Prefix_Type)
5287 and then Comes_From_Source (N)
5288 then
5289 if Try_Object_Operation (N) then
5290 return;
5291 else
5292 Error_Msg_N
5293 ("invalid dereference of a remote access-to-class-wide value",
5295 end if;
5297 -- Normal case of selected component applied to access type
5299 else
5300 Error_Msg_NW (Warn_On_Dereference, "?d?implicit dereference", N);
5301 Prefix_Type := Implicitly_Designated_Type (Prefix_Type);
5302 end if;
5304 -- If we have an explicit dereference of a remote access-to-class-wide
5305 -- value, then issue an error (see RM-E.2.2(16/1)). However we first
5306 -- have to check for the case of a prefix that is a controlling operand
5307 -- of a prefixed dispatching call, as the dereference is legal in that
5308 -- case. Normally this condition is checked in Validate_Remote_Access_
5309 -- To_Class_Wide_Type, but we have to defer the checking for selected
5310 -- component prefixes because of the prefixed dispatching call case.
5311 -- Note that implicit dereferences are checked for this just above.
5313 elsif Nkind (Name) = N_Explicit_Dereference
5314 and then Is_Remote_Access_To_Class_Wide_Type (Etype (Prefix (Name)))
5315 and then Comes_From_Source (N)
5316 then
5317 if Try_Object_Operation (N) then
5318 return;
5319 else
5320 Error_Msg_N
5321 ("invalid dereference of a remote access-to-class-wide value",
5323 end if;
5324 end if;
5326 -- (Ada 2005): if the prefix is the limited view of a type, and
5327 -- the context already includes the full view, use the full view
5328 -- in what follows, either to retrieve a component of to find
5329 -- a primitive operation. If the prefix is an explicit dereference,
5330 -- set the type of the prefix to reflect this transformation.
5331 -- If the nonlimited view is itself an incomplete type, get the
5332 -- full view if available.
5334 if From_Limited_With (Prefix_Type)
5335 and then Has_Non_Limited_View (Prefix_Type)
5336 then
5337 Prefix_Type := Get_Full_View (Non_Limited_View (Prefix_Type));
5339 if Nkind (N) = N_Explicit_Dereference then
5340 Set_Etype (Prefix (N), Prefix_Type);
5341 end if;
5342 end if;
5344 if Ekind (Prefix_Type) = E_Private_Subtype then
5345 Prefix_Type := Base_Type (Prefix_Type);
5346 end if;
5348 Type_To_Use := Prefix_Type;
5350 -- For class-wide types, use the entity list of the root type. This
5351 -- indirection is specially important for private extensions because
5352 -- only the root type get switched (not the class-wide type).
5354 if Is_Class_Wide_Type (Prefix_Type) then
5355 Type_To_Use := Root_Type (Prefix_Type);
5356 end if;
5358 -- If the prefix is a single concurrent object, use its name in error
5359 -- messages, rather than that of its anonymous type.
5361 Is_Single_Concurrent_Object :=
5362 Is_Concurrent_Type (Prefix_Type)
5363 and then Is_Internal_Name (Chars (Prefix_Type))
5364 and then not Is_Derived_Type (Prefix_Type)
5365 and then Is_Entity_Name (Name);
5367 -- Avoid initializing Comp if that initialization is not needed
5368 -- (and, more importantly, if the call to First_Entity could fail).
5370 if Has_Discriminants (Type_To_Use)
5371 or else Is_Record_Type (Type_To_Use)
5372 or else Is_Private_Type (Type_To_Use)
5373 or else Is_Concurrent_Type (Type_To_Use)
5374 then
5375 Comp := First_Entity (Type_To_Use);
5376 end if;
5378 -- If the selector has an original discriminant, the node appears in
5379 -- an instance. Replace the discriminant with the corresponding one
5380 -- in the current discriminated type. For nested generics, this must
5381 -- be done transitively, so note the new original discriminant.
5383 if Nkind (Sel) = N_Identifier
5384 and then In_Instance
5385 and then Present (Original_Discriminant (Sel))
5386 then
5387 Comp := Find_Corresponding_Discriminant (Sel, Prefix_Type);
5389 -- Mark entity before rewriting, for completeness and because
5390 -- subsequent semantic checks might examine the original node.
5392 Set_Entity (Sel, Comp);
5393 Rewrite (Selector_Name (N), New_Occurrence_Of (Comp, Sloc (N)));
5394 Set_Original_Discriminant (Selector_Name (N), Comp);
5395 Set_Etype (N, Etype (Comp));
5396 Check_Implicit_Dereference (N, Etype (Comp));
5398 elsif Is_Record_Type (Prefix_Type) then
5400 -- Find a component with the given name. If the node is a prefixed
5401 -- call, do not examine components whose visibility may be
5402 -- accidental.
5404 while Present (Comp)
5405 and then not Is_Prefixed_Call (N)
5407 -- When the selector has been resolved to a function then we may be
5408 -- looking at a prefixed call which has been preanalyzed already as
5409 -- part of a class condition. In such cases it is possible for a
5410 -- derived type to declare a component which has the same name as
5411 -- a primitive used in a parent's class condition.
5413 -- Avoid seeing components as possible interpretations of the
5414 -- selected component when this is true.
5416 and then not (Inside_Class_Condition_Preanalysis
5417 and then Present (Entity (Sel))
5418 and then Ekind (Entity (Sel)) = E_Function)
5419 loop
5420 if Chars (Comp) = Chars (Sel)
5421 and then Is_Visible_Component (Comp, N)
5422 then
5423 Set_Entity_With_Checks (Sel, Comp);
5424 Set_Etype (Sel, Etype (Comp));
5426 if Ekind (Comp) = E_Discriminant then
5427 if Is_Unchecked_Union (Base_Type (Prefix_Type)) then
5428 Error_Msg_N
5429 ("cannot reference discriminant of unchecked union",
5430 Sel);
5431 end if;
5433 if Is_Generic_Type (Prefix_Type)
5434 or else
5435 Is_Generic_Type (Root_Type (Prefix_Type))
5436 then
5437 Set_Original_Discriminant (Sel, Comp);
5438 end if;
5439 end if;
5441 -- Resolve the prefix early otherwise it is not possible to
5442 -- build the actual subtype of the component: it may need
5443 -- to duplicate this prefix and duplication is only allowed
5444 -- on fully resolved expressions.
5446 Resolve (Name);
5448 -- Ada 2005 (AI-50217): Check wrong use of incomplete types or
5449 -- subtypes in a package specification.
5450 -- Example:
5452 -- limited with Pkg;
5453 -- package Pkg is
5454 -- type Acc_Inc is access Pkg.T;
5455 -- X : Acc_Inc;
5456 -- N : Natural := X.all.Comp; -- ERROR, limited view
5457 -- end Pkg; -- Comp is not visible
5459 if Nkind (Name) = N_Explicit_Dereference
5460 and then From_Limited_With (Etype (Prefix (Name)))
5461 and then not Is_Potentially_Use_Visible (Etype (Name))
5462 and then Nkind (Parent (Cunit_Entity (Current_Sem_Unit))) =
5463 N_Package_Specification
5464 then
5465 Error_Msg_NE
5466 ("premature usage of incomplete}", Prefix (Name),
5467 Etype (Prefix (Name)));
5468 end if;
5470 -- We never need an actual subtype for the case of a selection
5471 -- for a indexed component of a non-packed array, since in
5472 -- this case gigi generates all the checks and can find the
5473 -- necessary bounds information.
5475 -- We also do not need an actual subtype for the case of a
5476 -- first, last, length, or range attribute applied to a
5477 -- non-packed array, since gigi can again get the bounds in
5478 -- these cases (gigi cannot handle the packed case, since it
5479 -- has the bounds of the packed array type, not the original
5480 -- bounds of the type). However, if the prefix is itself a
5481 -- selected component, as in a.b.c (i), gigi may regard a.b.c
5482 -- as a dynamic-sized temporary, so we do generate an actual
5483 -- subtype for this case.
5485 Parent_N := Parent (N);
5487 if not Is_Packed (Etype (Comp))
5488 and then
5489 ((Nkind (Parent_N) = N_Indexed_Component
5490 and then Nkind (Name) /= N_Selected_Component)
5491 or else
5492 (Nkind (Parent_N) = N_Attribute_Reference
5493 and then
5494 Attribute_Name (Parent_N) in Name_First
5495 | Name_Last
5496 | Name_Length
5497 | Name_Range))
5498 then
5499 Set_Etype (N, Etype (Comp));
5501 -- If full analysis is not enabled, we do not generate an
5502 -- actual subtype, because in the absence of expansion
5503 -- reference to a formal of a protected type, for example,
5504 -- will not be properly transformed, and will lead to
5505 -- out-of-scope references in gigi.
5507 -- In all other cases, we currently build an actual subtype.
5508 -- It seems likely that many of these cases can be avoided,
5509 -- but right now, the front end makes direct references to the
5510 -- bounds (e.g. in generating a length check), and if we do
5511 -- not make an actual subtype, we end up getting a direct
5512 -- reference to a discriminant, which will not do.
5514 elsif Full_Analysis then
5515 Act_Decl :=
5516 Build_Actual_Subtype_Of_Component (Etype (Comp), N);
5517 Insert_Action (N, Act_Decl);
5519 if No (Act_Decl) then
5520 Set_Etype (N, Etype (Comp));
5522 else
5523 -- If discriminants were present in the component
5524 -- declaration, they have been replaced by the
5525 -- actual values in the prefix object.
5527 declare
5528 Subt : constant Entity_Id :=
5529 Defining_Identifier (Act_Decl);
5530 begin
5531 Set_Etype (Subt, Base_Type (Etype (Comp)));
5532 Set_Etype (N, Subt);
5533 end;
5534 end if;
5536 -- If Etype (Comp) is an access type whose designated subtype
5537 -- is constrained by an unprefixed discriminant value,
5538 -- then ideally we would build a new subtype with an
5539 -- appropriately prefixed discriminant value and use that
5540 -- instead, as is done in Build_Actual_Subtype_Of_Component.
5541 -- That turns out to be difficult in this context (with
5542 -- Full_Analysis = False, we could be processing a selected
5543 -- component that occurs in a Postcondition pragma;
5544 -- PPC pragmas are odd because they can contain references
5545 -- to formal parameters that occur outside the subprogram).
5546 -- So instead we punt on building a new subtype and we
5547 -- use the base type instead. This might introduce
5548 -- correctness problems if N were the target of an
5549 -- assignment (because a required check might be omitted);
5550 -- fortunately, that's impossible because a reference to the
5551 -- current instance of a type does not denote a variable view
5552 -- when the reference occurs within an aspect_specification.
5553 -- GNAT's Precondition and Postcondition pragmas follow the
5554 -- same rules as a Pre or Post aspect_specification.
5556 elsif Has_Discriminant_Dependent_Constraint (Comp)
5557 and then Ekind (Etype (Comp)) = E_Access_Subtype
5558 and then Constraint_Has_Unprefixed_Discriminant_Reference
5559 (Designated_Type (Etype (Comp)))
5560 then
5561 Set_Etype (N, Base_Type (Etype (Comp)));
5563 -- If Full_Analysis not enabled, just set the Etype
5565 else
5566 Set_Etype (N, Etype (Comp));
5567 end if;
5569 Check_Implicit_Dereference (N, Etype (N));
5570 return;
5571 end if;
5573 -- If the prefix is a private extension, check only the visible
5574 -- components of the partial view. This must include the tag,
5575 -- which can appear in expanded code in a tag check.
5577 if Ekind (Type_To_Use) = E_Record_Type_With_Private
5578 and then Chars (Selector_Name (N)) /= Name_uTag
5579 then
5580 exit when Comp = Last_Entity (Type_To_Use);
5581 end if;
5583 Next_Entity (Comp);
5584 end loop;
5586 -- Ada 2005 (AI-252): The selected component can be interpreted as
5587 -- a prefixed view of a subprogram. Depending on the context, this is
5588 -- either a name that can appear in a renaming declaration, or part
5589 -- of an enclosing call given in prefix form.
5591 -- Ada 2005 (AI05-0030): In the case of dispatching requeue, the
5592 -- selected component should resolve to a name.
5594 -- Extension feature: Also support calls with prefixed views for
5595 -- untagged record types.
5597 if Ada_Version >= Ada_2005
5598 and then (Is_Tagged_Type (Prefix_Type)
5599 or else Core_Extensions_Allowed)
5600 and then not Is_Concurrent_Type (Prefix_Type)
5601 then
5602 if Nkind (Parent (N)) = N_Generic_Association
5603 or else Nkind (Parent (N)) = N_Requeue_Statement
5604 or else Nkind (Parent (N)) = N_Subprogram_Renaming_Declaration
5605 then
5606 if Find_Primitive_Operation (N) then
5607 return;
5608 end if;
5610 elsif Try_By_Protected_Procedure_Prefixed_View then
5611 return;
5613 -- If the prefix type is the actual for a formal derived type,
5614 -- or a derived type thereof, the component inherited from the
5615 -- generic parent may not be visible in the actual, but the
5616 -- selected component is legal. This case must be handled before
5617 -- trying the object.operation notation to avoid reporting
5618 -- spurious errors, but must be skipped when Is_Prefixed_Call has
5619 -- been set (because that means that this node was resolved to an
5620 -- Object.Operation call when the generic unit was analyzed).
5622 elsif In_Instance
5623 and then not Is_Prefixed_Call (N)
5624 and then Is_Tagged_Type (Prefix_Type)
5625 and then Try_Selected_Component_In_Instance (Type_To_Use)
5626 then
5627 return;
5629 elsif Try_Object_Operation (N) then
5630 return;
5631 end if;
5633 -- If the transformation fails, it will be necessary to redo the
5634 -- analysis with all errors enabled, to indicate candidate
5635 -- interpretations and reasons for each failure ???
5637 end if;
5639 elsif Is_Private_Type (Prefix_Type) then
5641 -- Allow access only to discriminants of the type. If the type has
5642 -- no full view, gigi uses the parent type for the components, so we
5643 -- do the same here.
5645 if No (Full_View (Prefix_Type)) then
5646 Type_To_Use := Root_Type (Base_Type (Prefix_Type));
5647 Comp := First_Entity (Type_To_Use);
5648 end if;
5650 while Present (Comp) loop
5651 if Chars (Comp) = Chars (Sel) then
5652 if Ekind (Comp) = E_Discriminant then
5653 Set_Entity_With_Checks (Sel, Comp);
5654 Generate_Reference (Comp, Sel);
5656 Set_Etype (Sel, Etype (Comp));
5657 Set_Etype (N, Etype (Comp));
5658 Check_Implicit_Dereference (N, Etype (N));
5660 if Is_Generic_Type (Prefix_Type)
5661 or else Is_Generic_Type (Root_Type (Prefix_Type))
5662 then
5663 Set_Original_Discriminant (Sel, Comp);
5664 end if;
5666 -- Before declaring an error, check whether this is tagged
5667 -- private type and a call to a primitive operation.
5669 elsif Ada_Version >= Ada_2005
5670 and then Is_Tagged_Type (Prefix_Type)
5671 and then Try_Object_Operation (N)
5672 then
5673 return;
5675 else
5676 Error_Msg_Node_2 := First_Subtype (Prefix_Type);
5677 Error_Msg_NE ("invisible selector& for }", N, Sel);
5678 Set_Entity (Sel, Any_Id);
5679 Set_Etype (N, Any_Type);
5680 end if;
5682 return;
5683 end if;
5685 Next_Entity (Comp);
5686 end loop;
5688 -- Extension feature: Also support calls with prefixed views for
5689 -- untagged private types.
5691 if Core_Extensions_Allowed then
5692 if Try_Object_Operation (N) then
5693 return;
5694 end if;
5695 end if;
5697 elsif Is_Concurrent_Type (Prefix_Type) then
5699 -- Find visible operation with given name. For a protected type,
5700 -- the possible candidates are discriminants, entries or protected
5701 -- subprograms. For a task type, the set can only include entries or
5702 -- discriminants if the task type is not an enclosing scope. If it
5703 -- is an enclosing scope (e.g. in an inner task) then all entities
5704 -- are visible, but the prefix must denote the enclosing scope, i.e.
5705 -- can only be a direct name or an expanded name.
5707 Set_Etype (Sel, Any_Type);
5708 Hidden_Comp := Empty;
5709 In_Scope := In_Open_Scopes (Prefix_Type);
5710 Is_Private_Op := False;
5712 while Present (Comp) loop
5714 -- Do not examine private operations of the type if not within
5715 -- its scope.
5717 if Chars (Comp) = Chars (Sel) then
5718 if Is_Overloadable (Comp)
5719 and then (In_Scope
5720 or else Comp /= First_Private_Entity (Type_To_Use))
5721 then
5722 Add_One_Interp (Sel, Comp, Etype (Comp));
5723 if Comp = First_Private_Entity (Type_To_Use) then
5724 Is_Private_Op := True;
5725 end if;
5727 -- If the prefix is tagged, the correct interpretation may
5728 -- lie in the primitive or class-wide operations of the
5729 -- type. Perform a simple conformance check to determine
5730 -- whether Try_Object_Operation should be invoked even if
5731 -- a visible entity is found.
5733 if Is_Tagged_Type (Prefix_Type)
5734 and then Nkind (Parent (N)) in N_Function_Call
5735 | N_Indexed_Component
5736 | N_Procedure_Call_Statement
5737 and then Has_Mode_Conformant_Spec (Comp)
5738 then
5739 Has_Candidate := True;
5740 end if;
5742 -- Note: a selected component may not denote a component of a
5743 -- protected type (4.1.3(7)).
5745 elsif Ekind (Comp) in E_Discriminant | E_Entry_Family
5746 or else (In_Scope
5747 and then not Is_Protected_Type (Prefix_Type)
5748 and then Is_Entity_Name (Name))
5749 then
5750 Set_Entity_With_Checks (Sel, Comp);
5751 Generate_Reference (Comp, Sel);
5753 -- The selector is not overloadable, so we have a candidate
5754 -- interpretation.
5756 Has_Candidate := True;
5758 else
5759 if Ekind (Comp) = E_Component then
5760 Hidden_Comp := Comp;
5761 end if;
5763 goto Next_Comp;
5764 end if;
5766 Set_Etype (Sel, Etype (Comp));
5767 Set_Etype (N, Etype (Comp));
5769 if Ekind (Comp) = E_Discriminant then
5770 Set_Original_Discriminant (Sel, Comp);
5771 end if;
5772 end if;
5774 <<Next_Comp>>
5775 if Comp = First_Private_Entity (Type_To_Use) then
5776 if Etype (Sel) /= Any_Type then
5778 -- If the first private entity's name matches, then treat
5779 -- it as a private op: needed for the error check for
5780 -- illegal selection of private entities further below.
5782 if Chars (Comp) = Chars (Sel) then
5783 Is_Private_Op := True;
5784 end if;
5786 -- We have a candidate, so exit the loop
5788 exit;
5790 else
5791 -- Indicate that subsequent operations are private,
5792 -- for better error reporting.
5794 Is_Private_Op := True;
5795 end if;
5796 end if;
5798 -- Do not examine private operations if not within scope of
5799 -- the synchronized type.
5801 exit when not In_Scope
5802 and then
5803 Comp = First_Private_Entity (Base_Type (Prefix_Type));
5804 Next_Entity (Comp);
5805 end loop;
5807 -- If the scope is a current instance, the prefix cannot be an
5808 -- expression of the same type, unless the selector designates a
5809 -- public operation (otherwise that would represent an attempt to
5810 -- reach an internal entity of another synchronized object).
5812 -- This is legal if prefix is an access to such type and there is
5813 -- a dereference, or is a component with a dereferenced prefix.
5814 -- It is also legal if the prefix is a component of a task type,
5815 -- and the selector is one of the task operations.
5817 if In_Scope
5818 and then not Is_Entity_Name (Name)
5819 and then not Has_Dereference (Name)
5820 then
5821 if Is_Task_Type (Prefix_Type)
5822 and then Present (Entity (Sel))
5823 and then Is_Entry (Entity (Sel))
5824 then
5825 null;
5827 elsif Is_Protected_Type (Prefix_Type)
5828 and then Is_Overloadable (Entity (Sel))
5829 and then not Is_Private_Op
5830 then
5831 null;
5833 else
5834 Error_Msg_NE
5835 ("invalid reference to internal operation of some object of "
5836 & "type &", N, Type_To_Use);
5837 Set_Entity (Sel, Any_Id);
5838 Set_Etype (Sel, Any_Type);
5839 return;
5840 end if;
5842 -- Another special case: the prefix may denote an object of the type
5843 -- (but not a type) in which case this is an external call and the
5844 -- operation must be public.
5846 elsif In_Scope
5847 and then Is_Object_Reference (Original_Node (Prefix (N)))
5848 and then Comes_From_Source (N)
5849 and then Is_Private_Op
5850 then
5851 if Present (Hidden_Comp) then
5852 Error_Msg_NE
5853 ("invalid reference to private component of object of type "
5854 & "&", N, Type_To_Use);
5856 else
5857 Error_Msg_NE
5858 ("invalid reference to private operation of some object of "
5859 & "type &", N, Type_To_Use);
5860 end if;
5862 Set_Entity (Sel, Any_Id);
5863 Set_Etype (Sel, Any_Type);
5864 return;
5865 end if;
5867 -- If there is no visible entity with the given name or none of the
5868 -- visible entities are plausible interpretations, check whether
5869 -- there is some other primitive operation with that name.
5871 if Ada_Version >= Ada_2005 and then Is_Tagged_Type (Prefix_Type) then
5872 if (Etype (N) = Any_Type
5873 or else not Has_Candidate)
5874 and then Try_Object_Operation (N)
5875 then
5876 return;
5878 -- If the context is not syntactically a procedure call, it
5879 -- may be a call to a primitive function declared outside of
5880 -- the synchronized type.
5882 -- If the context is a procedure call, there might still be
5883 -- an overloading between an entry and a primitive procedure
5884 -- declared outside of the synchronized type, called in prefix
5885 -- notation. This is harder to disambiguate because in one case
5886 -- the controlling formal is implicit ???
5888 elsif Nkind (Parent (N)) /= N_Procedure_Call_Statement
5889 and then Nkind (Parent (N)) /= N_Indexed_Component
5890 and then Try_Object_Operation (N)
5891 then
5892 return;
5893 end if;
5895 -- Ada 2012 (AI05-0090-1): If we found a candidate of a call to an
5896 -- entry or procedure of a tagged concurrent type we must check
5897 -- if there are class-wide subprograms covering the primitive. If
5898 -- true then Try_Object_Operation reports the error.
5900 if Has_Candidate
5901 and then Is_Concurrent_Type (Prefix_Type)
5902 and then Nkind (Parent (N)) = N_Procedure_Call_Statement
5903 then
5904 -- Duplicate the call. This is required to avoid problems with
5905 -- the tree transformations performed by Try_Object_Operation.
5906 -- Set properly the parent of the copied call, because it is
5907 -- about to be reanalyzed.
5909 declare
5910 Par : constant Node_Id := New_Copy_Tree (Parent (N));
5912 begin
5913 Set_Parent (Par, Parent (Parent (N)));
5915 if Try_Object_Operation
5916 (Sinfo.Nodes.Name (Par), CW_Test_Only => True)
5917 then
5918 return;
5919 end if;
5920 end;
5921 end if;
5922 end if;
5924 if Etype (N) = Any_Type and then Is_Protected_Type (Prefix_Type) then
5926 -- Case of a prefix of a protected type: selector might denote
5927 -- an invisible private component.
5929 Comp := First_Private_Entity (Base_Type (Prefix_Type));
5930 while Present (Comp) and then Chars (Comp) /= Chars (Sel) loop
5931 Next_Entity (Comp);
5932 end loop;
5934 if Present (Comp) then
5935 if Is_Single_Concurrent_Object then
5936 Error_Msg_Node_2 := Entity (Name);
5937 Error_Msg_NE ("invisible selector& for &", N, Sel);
5939 else
5940 Error_Msg_Node_2 := First_Subtype (Prefix_Type);
5941 Error_Msg_NE ("invisible selector& for }", N, Sel);
5942 end if;
5943 return;
5944 end if;
5945 end if;
5947 Set_Is_Overloaded (N, Is_Overloaded (Sel));
5949 -- Extension feature: Also support calls with prefixed views for
5950 -- untagged types.
5952 elsif Core_Extensions_Allowed
5953 and then Try_Object_Operation (N)
5954 then
5955 return;
5957 else
5958 -- Invalid prefix
5960 Error_Msg_NE ("invalid prefix in selected component&", N, Sel);
5961 end if;
5963 -- If N still has no type, the component is not defined in the prefix
5965 if Etype (N) = Any_Type then
5967 if Is_Single_Concurrent_Object then
5968 Error_Msg_Node_2 := Entity (Name);
5969 Error_Msg_NE ("no selector& for&", N, Sel);
5971 Check_Misspelled_Selector (Type_To_Use, Sel);
5973 -- If this is a derived formal type, the parent may have different
5974 -- visibility at this point. Try for an inherited component before
5975 -- reporting an error.
5977 elsif Is_Generic_Type (Prefix_Type)
5978 and then Ekind (Prefix_Type) = E_Record_Type_With_Private
5979 and then Prefix_Type /= Etype (Prefix_Type)
5980 and then Is_Record_Type (Etype (Prefix_Type))
5981 then
5982 Set_Etype (Prefix (N), Etype (Prefix_Type));
5983 Analyze_Selected_Component (N);
5984 return;
5986 -- Similarly, if this is the actual for a formal derived type, or
5987 -- a derived type thereof, the component inherited from the generic
5988 -- parent may not be visible in the actual, but the selected
5989 -- component is legal.
5991 elsif In_Instance and then Is_Tagged_Type (Prefix_Type) then
5993 -- Climb up the derivation chain of the generic parent type until
5994 -- we find the proper ancestor type.
5996 if Try_Selected_Component_In_Instance (Type_To_Use) then
5997 return;
5999 -- The search above must have eventually succeeded, since the
6000 -- selected component was legal in the generic.
6002 else
6003 raise Program_Error;
6004 end if;
6006 -- Component not found, specialize error message when appropriate
6008 else
6009 if Ekind (Prefix_Type) = E_Record_Subtype then
6011 -- Check whether this is a component of the base type which
6012 -- is absent from a statically constrained subtype. This will
6013 -- raise constraint error at run time, but is not a compile-
6014 -- time error. When the selector is illegal for base type as
6015 -- well fall through and generate a compilation error anyway.
6017 Comp := First_Component (Base_Type (Prefix_Type));
6018 while Present (Comp) loop
6019 if Chars (Comp) = Chars (Sel)
6020 and then Is_Visible_Component (Comp, Sel)
6021 then
6022 Set_Entity_With_Checks (Sel, Comp);
6023 Generate_Reference (Comp, Sel);
6024 Set_Etype (Sel, Etype (Comp));
6025 Set_Etype (N, Etype (Comp));
6027 -- Emit appropriate message. The node will be replaced
6028 -- by an appropriate raise statement.
6030 -- Note that in GNATprove mode, as with all calls to
6031 -- apply a compile time constraint error, this will be
6032 -- made into an error to simplify the processing of the
6033 -- formal verification backend.
6035 Apply_Compile_Time_Constraint_Error
6036 (N, "component not present in }??",
6037 CE_Discriminant_Check_Failed,
6038 Ent => Prefix_Type,
6039 Emit_Message =>
6040 GNATprove_Mode or not In_Instance_Not_Visible);
6041 return;
6042 end if;
6044 Next_Component (Comp);
6045 end loop;
6047 end if;
6049 Error_Msg_Node_2 := First_Subtype (Prefix_Type);
6050 Error_Msg_NE ("no selector& for}", N, Sel);
6052 -- Add information in the case of an incomplete prefix
6054 if Is_Incomplete_Type (Type_To_Use) then
6055 declare
6056 Inc : constant Entity_Id := First_Subtype (Type_To_Use);
6058 begin
6059 if From_Limited_With (Scope (Type_To_Use)) then
6060 Error_Msg_NE
6061 ("\limited view of& has no components", N, Inc);
6063 else
6064 Error_Msg_NE
6065 ("\premature usage of incomplete type&", N, Inc);
6067 if Nkind (Parent (Inc)) =
6068 N_Incomplete_Type_Declaration
6069 then
6070 -- Record location of premature use in entity so that
6071 -- a continuation message is generated when the
6072 -- completion is seen.
6074 Set_Premature_Use (Parent (Inc), N);
6075 end if;
6076 end if;
6077 end;
6078 end if;
6080 Check_Misspelled_Selector (Type_To_Use, Sel);
6081 end if;
6083 Set_Entity (Sel, Any_Id);
6084 Set_Etype (Sel, Any_Type);
6085 end if;
6086 end Analyze_Selected_Component;
6088 ---------------------------
6089 -- Analyze_Short_Circuit --
6090 ---------------------------
6092 procedure Analyze_Short_Circuit (N : Node_Id) is
6093 L : constant Node_Id := Left_Opnd (N);
6094 R : constant Node_Id := Right_Opnd (N);
6095 Ind : Interp_Index;
6096 It : Interp;
6098 begin
6099 Set_Etype (N, Any_Type);
6100 Analyze_Expression (L);
6101 Analyze_Expression (R);
6103 if not Is_Overloaded (L) then
6104 if Root_Type (Etype (L)) = Standard_Boolean
6105 and then Has_Compatible_Type (R, Etype (L))
6106 then
6107 Add_One_Interp (N, Etype (L), Etype (L));
6108 end if;
6110 else
6111 Get_First_Interp (L, Ind, It);
6112 while Present (It.Typ) loop
6113 if Root_Type (It.Typ) = Standard_Boolean
6114 and then Has_Compatible_Type (R, It.Typ)
6115 then
6116 Add_One_Interp (N, It.Typ, It.Typ);
6117 end if;
6119 Get_Next_Interp (Ind, It);
6120 end loop;
6121 end if;
6123 -- Here we have failed to find an interpretation. Clearly we know that
6124 -- it is not the case that both operands can have an interpretation of
6125 -- Boolean, but this is by far the most likely intended interpretation.
6126 -- So we simply resolve both operands as Booleans, and at least one of
6127 -- these resolutions will generate an error message, and we do not need
6128 -- to give another error message on the short circuit operation itself.
6130 if Etype (N) = Any_Type then
6131 Resolve (L, Standard_Boolean);
6132 Resolve (R, Standard_Boolean);
6133 Set_Etype (N, Standard_Boolean);
6134 end if;
6136 if Style_Check then
6137 if Nkind (L) not in N_Short_Circuit | N_Op_And | N_Op_Or | N_Op_Xor
6138 then
6139 Check_Xtra_Parens_Precedence (L);
6140 end if;
6142 if Nkind (R) not in N_Short_Circuit | N_Op_And | N_Op_Or | N_Op_Xor
6143 then
6144 Check_Xtra_Parens_Precedence (R);
6145 end if;
6146 end if;
6147 end Analyze_Short_Circuit;
6149 -------------------
6150 -- Analyze_Slice --
6151 -------------------
6153 procedure Analyze_Slice (N : Node_Id) is
6154 D : constant Node_Id := Discrete_Range (N);
6155 P : constant Node_Id := Prefix (N);
6156 Array_Type : Entity_Id;
6157 Index_Type : Entity_Id;
6159 procedure Analyze_Overloaded_Slice;
6160 -- If the prefix is overloaded, select those interpretations that
6161 -- yield a one-dimensional array type.
6163 ------------------------------
6164 -- Analyze_Overloaded_Slice --
6165 ------------------------------
6167 procedure Analyze_Overloaded_Slice is
6168 I : Interp_Index;
6169 It : Interp;
6170 Typ : Entity_Id;
6172 begin
6173 Set_Etype (N, Any_Type);
6175 Get_First_Interp (P, I, It);
6176 while Present (It.Nam) loop
6177 Typ := It.Typ;
6179 if Is_Access_Type (Typ) then
6180 Typ := Designated_Type (Typ);
6181 Error_Msg_NW
6182 (Warn_On_Dereference, "?d?implicit dereference", N);
6183 end if;
6185 if Is_Array_Type (Typ)
6186 and then Number_Dimensions (Typ) = 1
6187 and then Has_Compatible_Type (D, Etype (First_Index (Typ)))
6188 then
6189 Add_One_Interp (N, Typ, Typ);
6190 end if;
6192 Get_Next_Interp (I, It);
6193 end loop;
6195 if Etype (N) = Any_Type then
6196 Error_Msg_N ("expect array type in prefix of slice", N);
6197 end if;
6198 end Analyze_Overloaded_Slice;
6200 -- Start of processing for Analyze_Slice
6202 begin
6203 Analyze (P);
6204 Analyze (D);
6206 if Is_Overloaded (P) then
6207 Analyze_Overloaded_Slice;
6209 else
6210 Array_Type := Etype (P);
6211 Set_Etype (N, Any_Type);
6213 if Is_Access_Type (Array_Type) then
6214 Error_Msg_NW (Warn_On_Dereference, "?d?implicit dereference", N);
6215 Array_Type := Implicitly_Designated_Type (Array_Type);
6216 end if;
6218 if not Is_Array_Type (Array_Type) then
6219 Wrong_Type (P, Any_Array);
6221 elsif Number_Dimensions (Array_Type) > 1 then
6222 Error_Msg_N
6223 ("type is not one-dimensional array in slice prefix", N);
6225 else
6226 if Ekind (Array_Type) = E_String_Literal_Subtype then
6227 Index_Type := Etype (String_Literal_Low_Bound (Array_Type));
6228 else
6229 Index_Type := Etype (First_Index (Array_Type));
6230 end if;
6232 if not Has_Compatible_Type (D, Index_Type) then
6233 Wrong_Type (D, Index_Type);
6234 else
6235 Set_Etype (N, Array_Type);
6236 end if;
6237 end if;
6238 end if;
6239 end Analyze_Slice;
6241 -----------------------------
6242 -- Analyze_Type_Conversion --
6243 -----------------------------
6245 procedure Analyze_Type_Conversion (N : Node_Id) is
6246 Expr : constant Node_Id := Expression (N);
6247 Mark : constant Entity_Id := Subtype_Mark (N);
6249 Typ : Entity_Id;
6251 begin
6252 -- If Conversion_OK is set, then the Etype is already set, and the only
6253 -- processing required is to analyze the expression. This is used to
6254 -- construct certain "illegal" conversions which are not allowed by Ada
6255 -- semantics, but can be handled by Gigi, see Sinfo for further details.
6257 if Conversion_OK (N) then
6258 Analyze (Expr);
6259 return;
6260 end if;
6262 -- Otherwise full type analysis is required, as well as some semantic
6263 -- checks to make sure the argument of the conversion is appropriate.
6265 Find_Type (Mark);
6266 Typ := Entity (Mark);
6267 Set_Etype (N, Typ);
6269 Analyze_Expression (Expr);
6271 Check_Fully_Declared (Typ, N);
6272 Validate_Remote_Type_Type_Conversion (N);
6274 -- Only remaining step is validity checks on the argument. These
6275 -- are skipped if the conversion does not come from the source.
6277 if not Comes_From_Source (N) then
6278 return;
6280 -- If there was an error in a generic unit, no need to replicate the
6281 -- error message. Conversely, constant-folding in the generic may
6282 -- transform the argument of a conversion into a string literal, which
6283 -- is legal. Therefore the following tests are not performed in an
6284 -- instance. The same applies to an inlined body.
6286 elsif In_Instance or In_Inlined_Body then
6287 return;
6289 elsif Nkind (Expr) = N_Null then
6290 Error_Msg_N ("argument of conversion cannot be null", N);
6291 Error_Msg_N ("\use qualified expression instead", N);
6292 Set_Etype (N, Any_Type);
6294 elsif Nkind (Expr) = N_Aggregate then
6295 Error_Msg_N ("argument of conversion cannot be aggregate", N);
6296 Error_Msg_N ("\use qualified expression instead", N);
6298 elsif Nkind (Expr) = N_Allocator then
6299 Error_Msg_N ("argument of conversion cannot be allocator", N);
6300 Error_Msg_N ("\use qualified expression instead", N);
6302 elsif Nkind (Expr) = N_String_Literal then
6303 Error_Msg_N ("argument of conversion cannot be string literal", N);
6304 Error_Msg_N ("\use qualified expression instead", N);
6306 elsif Nkind (Expr) = N_Character_Literal then
6307 if Ada_Version = Ada_83 then
6308 Resolve (Expr, Typ);
6309 else
6310 Error_Msg_N
6311 ("argument of conversion cannot be character literal", N);
6312 Error_Msg_N ("\use qualified expression instead", N);
6313 end if;
6315 elsif Nkind (Expr) = N_Attribute_Reference
6316 and then Attribute_Name (Expr) in Name_Access
6317 | Name_Unchecked_Access
6318 | Name_Unrestricted_Access
6319 then
6320 Error_Msg_N
6321 ("argument of conversion cannot be access attribute", N);
6322 Error_Msg_N ("\use qualified expression instead", N);
6323 end if;
6325 -- A formal parameter of a specific tagged type whose related subprogram
6326 -- is subject to pragma Extensions_Visible with value "False" cannot
6327 -- appear in a class-wide conversion (SPARK RM 6.1.7(3)). Do not check
6328 -- internally generated expressions.
6330 if Is_Class_Wide_Type (Typ)
6331 and then Comes_From_Source (Expr)
6332 and then Is_EVF_Expression (Expr)
6333 then
6334 Error_Msg_N
6335 ("formal parameter cannot be converted to class-wide type when "
6336 & "Extensions_Visible is False", Expr);
6337 end if;
6338 end Analyze_Type_Conversion;
6340 ----------------------
6341 -- Analyze_Unary_Op --
6342 ----------------------
6344 procedure Analyze_Unary_Op (N : Node_Id) is
6345 R : constant Node_Id := Right_Opnd (N);
6347 Op_Id : Entity_Id;
6349 begin
6350 Set_Etype (N, Any_Type);
6351 Candidate_Type := Empty;
6353 Analyze_Expression (R);
6355 -- If the entity is already set, the node is the instantiation of a
6356 -- generic node with a non-local reference, or was manufactured by a
6357 -- call to Make_Op_xxx. In either case the entity is known to be valid,
6358 -- and we do not need to collect interpretations, instead we just get
6359 -- the single possible interpretation.
6361 if Present (Entity (N)) then
6362 Op_Id := Entity (N);
6364 if Ekind (Op_Id) = E_Operator then
6365 Find_Unary_Types (R, Op_Id, N);
6366 else
6367 Add_One_Interp (N, Op_Id, Etype (Op_Id));
6368 end if;
6370 else
6371 Op_Id := Get_Name_Entity_Id (Chars (N));
6372 while Present (Op_Id) loop
6373 if Ekind (Op_Id) = E_Operator then
6374 if No (Next_Entity (First_Entity (Op_Id))) then
6375 Find_Unary_Types (R, Op_Id, N);
6376 end if;
6378 elsif Is_Overloadable (Op_Id) then
6379 Analyze_User_Defined_Unary_Op (N, Op_Id);
6380 end if;
6382 Op_Id := Homonym (Op_Id);
6383 end loop;
6384 end if;
6386 Operator_Check (N);
6387 end Analyze_Unary_Op;
6389 ----------------------------------
6390 -- Analyze_Unchecked_Expression --
6391 ----------------------------------
6393 procedure Analyze_Unchecked_Expression (N : Node_Id) is
6394 Expr : constant Node_Id := Expression (N);
6396 begin
6397 Analyze (Expr, Suppress => All_Checks);
6398 Set_Etype (N, Etype (Expr));
6399 Save_Interps (Expr, N);
6400 end Analyze_Unchecked_Expression;
6402 ---------------------------------------
6403 -- Analyze_Unchecked_Type_Conversion --
6404 ---------------------------------------
6406 procedure Analyze_Unchecked_Type_Conversion (N : Node_Id) is
6407 Expr : constant Node_Id := Expression (N);
6408 Mark : constant Entity_Id := Subtype_Mark (N);
6410 begin
6411 Find_Type (Mark);
6412 Set_Etype (N, Entity (Mark));
6413 Analyze_Expression (Expr);
6414 end Analyze_Unchecked_Type_Conversion;
6416 ------------------------------------
6417 -- Analyze_User_Defined_Binary_Op --
6418 ------------------------------------
6420 procedure Analyze_User_Defined_Binary_Op
6421 (N : Node_Id;
6422 Op_Id : Entity_Id) is
6423 begin
6424 declare
6425 F1 : constant Entity_Id := First_Formal (Op_Id);
6426 F2 : constant Entity_Id := Next_Formal (F1);
6428 begin
6429 -- Verify that Op_Id is a visible binary function. Note that since
6430 -- we know Op_Id is overloaded, potentially use visible means use
6431 -- visible for sure (RM 9.4(11)). Be prepared for previous errors.
6433 if Ekind (Op_Id) = E_Function
6434 and then Present (F2)
6435 and then (Is_Immediately_Visible (Op_Id)
6436 or else Is_Potentially_Use_Visible (Op_Id))
6437 and then (Has_Compatible_Type (Left_Opnd (N), Etype (F1))
6438 or else Etype (F1) = Any_Type)
6439 and then (Has_Compatible_Type (Right_Opnd (N), Etype (F2))
6440 or else Etype (F2) = Any_Type)
6441 then
6442 Add_One_Interp (N, Op_Id, Base_Type (Etype (Op_Id)));
6444 -- If the operands are overloaded, indicate that the current
6445 -- type is a viable candidate. This is redundant in most cases,
6446 -- but for equality and comparison operators where the context
6447 -- does not impose a type on the operands, setting the proper
6448 -- type is necessary to avoid subsequent ambiguities during
6449 -- resolution, when both user-defined and predefined operators
6450 -- may be candidates.
6452 if Is_Overloaded (Left_Opnd (N)) then
6453 Set_Etype (Left_Opnd (N), Etype (F1));
6454 end if;
6456 if Is_Overloaded (Right_Opnd (N)) then
6457 Set_Etype (Right_Opnd (N), Etype (F2));
6458 end if;
6460 if Debug_Flag_E then
6461 Write_Str ("user defined operator ");
6462 Write_Name (Chars (Op_Id));
6463 Write_Str (" on node ");
6464 Write_Int (Int (N));
6465 Write_Eol;
6466 end if;
6467 end if;
6468 end;
6469 end Analyze_User_Defined_Binary_Op;
6471 -----------------------------------
6472 -- Analyze_User_Defined_Unary_Op --
6473 -----------------------------------
6475 procedure Analyze_User_Defined_Unary_Op
6476 (N : Node_Id;
6477 Op_Id : Entity_Id)
6479 begin
6480 -- Only do analysis if the operator Comes_From_Source, since otherwise
6481 -- the operator was generated by the expander, and all such operators
6482 -- always refer to the operators in package Standard.
6484 if Comes_From_Source (N) then
6485 declare
6486 F : constant Entity_Id := First_Formal (Op_Id);
6488 begin
6489 -- Verify that Op_Id is a visible unary function. Note that since
6490 -- we know Op_Id is overloaded, potentially use visible means use
6491 -- visible for sure (RM 9.4(11)).
6493 if Ekind (Op_Id) = E_Function
6494 and then No (Next_Formal (F))
6495 and then (Is_Immediately_Visible (Op_Id)
6496 or else Is_Potentially_Use_Visible (Op_Id))
6497 and then Has_Compatible_Type (Right_Opnd (N), Etype (F))
6498 then
6499 Add_One_Interp (N, Op_Id, Etype (Op_Id));
6500 end if;
6501 end;
6502 end if;
6503 end Analyze_User_Defined_Unary_Op;
6505 ---------------------------
6506 -- Check_Arithmetic_Pair --
6507 ---------------------------
6509 procedure Check_Arithmetic_Pair
6510 (T1, T2 : Entity_Id;
6511 Op_Id : Entity_Id;
6512 N : Node_Id)
6514 Op_Name : constant Name_Id := Chars (Op_Id);
6516 function Has_Fixed_Op (Typ : Entity_Id; Op : Entity_Id) return Boolean;
6517 -- Check whether the fixed-point type Typ has a user-defined operator
6518 -- (multiplication or division) that should hide the corresponding
6519 -- predefined operator. Used to implement Ada 2005 AI-264, to make
6520 -- such operators more visible and therefore useful.
6522 -- If the name of the operation is an expanded name with prefix
6523 -- Standard, the predefined universal fixed operator is available,
6524 -- as specified by AI-420 (RM 4.5.5 (19.1/2)).
6526 ------------------
6527 -- Has_Fixed_Op --
6528 ------------------
6530 function Has_Fixed_Op (Typ : Entity_Id; Op : Entity_Id) return Boolean is
6531 Bas : constant Entity_Id := Base_Type (Typ);
6532 Ent : Entity_Id;
6533 F1 : Entity_Id;
6534 F2 : Entity_Id;
6536 begin
6537 -- If the universal_fixed operation is given explicitly the rule
6538 -- concerning primitive operations of the type do not apply.
6540 if Nkind (N) = N_Function_Call
6541 and then Nkind (Name (N)) = N_Expanded_Name
6542 and then Entity (Prefix (Name (N))) = Standard_Standard
6543 then
6544 return False;
6545 end if;
6547 -- The operation is treated as primitive if it is declared in the
6548 -- same scope as the type, and therefore on the same entity chain.
6550 Ent := Next_Entity (Typ);
6551 while Present (Ent) loop
6552 if Chars (Ent) = Chars (Op) then
6553 F1 := First_Formal (Ent);
6554 F2 := Next_Formal (F1);
6556 -- The operation counts as primitive if either operand or
6557 -- result are of the given base type, and both operands are
6558 -- fixed point types.
6560 if (Base_Type (Etype (F1)) = Bas
6561 and then Is_Fixed_Point_Type (Etype (F2)))
6563 or else
6564 (Base_Type (Etype (F2)) = Bas
6565 and then Is_Fixed_Point_Type (Etype (F1)))
6567 or else
6568 (Base_Type (Etype (Ent)) = Bas
6569 and then Is_Fixed_Point_Type (Etype (F1))
6570 and then Is_Fixed_Point_Type (Etype (F2)))
6571 then
6572 return True;
6573 end if;
6574 end if;
6576 Next_Entity (Ent);
6577 end loop;
6579 return False;
6580 end Has_Fixed_Op;
6582 -- Start of processing for Check_Arithmetic_Pair
6584 begin
6585 if Op_Name in Name_Op_Add | Name_Op_Subtract then
6586 if Is_Numeric_Type (T1)
6587 and then Is_Numeric_Type (T2)
6588 and then (Covers (T1 => T1, T2 => T2)
6589 or else
6590 Covers (T1 => T2, T2 => T1))
6591 then
6592 Add_One_Interp (N, Op_Id, Specific_Type (T1, T2));
6593 end if;
6595 elsif Op_Name in Name_Op_Multiply | Name_Op_Divide then
6596 if Is_Fixed_Point_Type (T1)
6597 and then (Is_Fixed_Point_Type (T2) or else T2 = Universal_Real)
6598 then
6599 -- Add one interpretation with universal fixed result
6601 if not Has_Fixed_Op (T1, Op_Id)
6602 or else Nkind (Parent (N)) = N_Type_Conversion
6603 then
6604 Add_One_Interp (N, Op_Id, Universal_Fixed);
6605 end if;
6607 elsif Is_Fixed_Point_Type (T2)
6608 and then T1 = Universal_Real
6609 and then
6610 (not Has_Fixed_Op (T1, Op_Id)
6611 or else Nkind (Parent (N)) = N_Type_Conversion)
6612 then
6613 Add_One_Interp (N, Op_Id, Universal_Fixed);
6615 elsif Is_Numeric_Type (T1)
6616 and then Is_Numeric_Type (T2)
6617 and then (Covers (T1 => T1, T2 => T2)
6618 or else
6619 Covers (T1 => T2, T2 => T1))
6620 then
6621 Add_One_Interp (N, Op_Id, Specific_Type (T1, T2));
6623 elsif Is_Fixed_Point_Type (T1)
6624 and then (Base_Type (T2) = Base_Type (Standard_Integer)
6625 or else T2 = Universal_Integer)
6626 then
6627 Add_One_Interp (N, Op_Id, T1);
6629 elsif T2 = Universal_Real
6630 and then Base_Type (T1) = Base_Type (Standard_Integer)
6631 and then Op_Name = Name_Op_Multiply
6632 then
6633 Add_One_Interp (N, Op_Id, Any_Fixed);
6635 elsif T1 = Universal_Real
6636 and then Base_Type (T2) = Base_Type (Standard_Integer)
6637 then
6638 Add_One_Interp (N, Op_Id, Any_Fixed);
6640 elsif Is_Fixed_Point_Type (T2)
6641 and then (Base_Type (T1) = Base_Type (Standard_Integer)
6642 or else T1 = Universal_Integer)
6643 and then Op_Name = Name_Op_Multiply
6644 then
6645 Add_One_Interp (N, Op_Id, T2);
6647 elsif T1 = Universal_Real and then T2 = Universal_Integer then
6648 Add_One_Interp (N, Op_Id, T1);
6650 elsif T2 = Universal_Real
6651 and then T1 = Universal_Integer
6652 and then Op_Name = Name_Op_Multiply
6653 then
6654 Add_One_Interp (N, Op_Id, T2);
6655 end if;
6657 elsif Op_Name = Name_Op_Mod or else Op_Name = Name_Op_Rem then
6659 if Is_Integer_Type (T1)
6660 and then (Covers (T1 => T1, T2 => T2)
6661 or else
6662 Covers (T1 => T2, T2 => T1))
6663 then
6664 Add_One_Interp (N, Op_Id, Specific_Type (T1, T2));
6665 end if;
6667 elsif Op_Name = Name_Op_Expon then
6668 if Is_Numeric_Type (T1)
6669 and then not Is_Fixed_Point_Type (T1)
6670 and then (Base_Type (T2) = Base_Type (Standard_Integer)
6671 or else T2 = Universal_Integer)
6672 then
6673 Add_One_Interp (N, Op_Id, Base_Type (T1));
6674 end if;
6676 else pragma Assert (Nkind (N) in N_Op_Shift);
6678 -- If not one of the predefined operators, the node may be one
6679 -- of the intrinsic functions. Its kind is always specific, and
6680 -- we can use it directly, rather than the name of the operation.
6682 if Is_Integer_Type (T1)
6683 and then (Base_Type (T2) = Base_Type (Standard_Integer)
6684 or else T2 = Universal_Integer)
6685 then
6686 Add_One_Interp (N, Op_Id, Base_Type (T1));
6687 end if;
6688 end if;
6689 end Check_Arithmetic_Pair;
6691 -------------------------------
6692 -- Check_Misspelled_Selector --
6693 -------------------------------
6695 procedure Check_Misspelled_Selector
6696 (Prefix : Entity_Id;
6697 Sel : Node_Id)
6699 Max_Suggestions : constant := 2;
6700 Nr_Of_Suggestions : Natural := 0;
6702 Suggestion_1 : Entity_Id := Empty;
6703 Suggestion_2 : Entity_Id := Empty;
6705 Comp : Entity_Id;
6707 begin
6708 -- All the components of the prefix of selector Sel are matched against
6709 -- Sel and a count is maintained of possible misspellings. When at
6710 -- the end of the analysis there are one or two (not more) possible
6711 -- misspellings, these misspellings will be suggested as possible
6712 -- correction.
6714 if not (Is_Private_Type (Prefix) or else Is_Record_Type (Prefix)) then
6716 -- Concurrent types should be handled as well ???
6718 return;
6719 end if;
6721 Comp := First_Entity (Prefix);
6722 while Nr_Of_Suggestions <= Max_Suggestions and then Present (Comp) loop
6723 if Is_Visible_Component (Comp, Sel) then
6724 if Is_Bad_Spelling_Of (Chars (Comp), Chars (Sel)) then
6725 Nr_Of_Suggestions := Nr_Of_Suggestions + 1;
6727 case Nr_Of_Suggestions is
6728 when 1 => Suggestion_1 := Comp;
6729 when 2 => Suggestion_2 := Comp;
6730 when others => null;
6731 end case;
6732 end if;
6733 end if;
6735 Next_Entity (Comp);
6736 end loop;
6738 -- Report at most two suggestions
6740 if Nr_Of_Suggestions = 1 then
6741 Error_Msg_NE -- CODEFIX
6742 ("\possible misspelling of&", Sel, Suggestion_1);
6744 elsif Nr_Of_Suggestions = 2 then
6745 Error_Msg_Node_2 := Suggestion_2;
6746 Error_Msg_NE -- CODEFIX
6747 ("\possible misspelling of& or&", Sel, Suggestion_1);
6748 end if;
6749 end Check_Misspelled_Selector;
6751 -------------------
6752 -- Diagnose_Call --
6753 -------------------
6755 procedure Diagnose_Call (N : Node_Id; Nam : Node_Id) is
6756 Actual : Node_Id;
6757 X : Interp_Index;
6758 It : Interp;
6759 Err_Mode : Boolean;
6760 New_Nam : Node_Id;
6761 Num_Actuals : Natural;
6762 Num_Interps : Natural;
6763 Void_Interp_Seen : Boolean := False;
6765 Success : Boolean;
6766 pragma Warnings (Off, Boolean);
6768 begin
6769 Num_Actuals := 0;
6770 Actual := First_Actual (N);
6772 while Present (Actual) loop
6773 -- Ada 2005 (AI-50217): Post an error in case of premature
6774 -- usage of an entity from the limited view.
6776 if not Analyzed (Etype (Actual))
6777 and then From_Limited_With (Etype (Actual))
6778 and then Ada_Version >= Ada_2005
6779 then
6780 Error_Msg_Qual_Level := 1;
6781 Error_Msg_NE
6782 ("missing with_clause for scope of imported type&",
6783 Actual, Etype (Actual));
6784 Error_Msg_Qual_Level := 0;
6785 end if;
6787 Num_Actuals := Num_Actuals + 1;
6788 Next_Actual (Actual);
6789 end loop;
6791 -- Before listing the possible candidates, check whether this is
6792 -- a prefix of a selected component that has been rewritten as a
6793 -- parameterless function call because there is a callable candidate
6794 -- interpretation. If there is a hidden package in the list of homonyms
6795 -- of the function name (bad programming style in any case) suggest that
6796 -- this is the intended entity.
6798 if No (Parameter_Associations (N))
6799 and then Nkind (Parent (N)) = N_Selected_Component
6800 and then Nkind (Parent (Parent (N))) in N_Declaration
6801 and then Is_Overloaded (Nam)
6802 then
6803 declare
6804 Ent : Entity_Id;
6806 begin
6807 Ent := Current_Entity (Nam);
6808 while Present (Ent) loop
6809 if Ekind (Ent) = E_Package then
6810 Error_Msg_N
6811 ("no legal interpretations as function call,!", Nam);
6812 Error_Msg_NE ("\package& is not visible", N, Ent);
6814 Rewrite (Parent (N),
6815 New_Occurrence_Of (Any_Type, Sloc (N)));
6816 return;
6817 end if;
6819 Ent := Homonym (Ent);
6820 end loop;
6821 end;
6822 end if;
6824 -- If this is a call to an operation of a concurrent type, the failed
6825 -- interpretations have been removed from the name. Recover them now
6826 -- in order to provide full diagnostics.
6828 if Nkind (Parent (Nam)) = N_Selected_Component then
6829 Set_Entity (Nam, Empty);
6830 New_Nam := New_Copy_Tree (Parent (Nam));
6831 Set_Is_Overloaded (New_Nam, False);
6832 Set_Is_Overloaded (Selector_Name (New_Nam), False);
6833 Set_Parent (New_Nam, Parent (Parent (Nam)));
6834 Analyze_Selected_Component (New_Nam);
6835 Get_First_Interp (Selector_Name (New_Nam), X, It);
6836 else
6837 Get_First_Interp (Nam, X, It);
6838 end if;
6840 -- If the number of actuals is 2, then remove interpretations involving
6841 -- a unary "+" operator as they might yield confusing errors downstream.
6843 if Num_Actuals = 2
6844 and then Nkind (Parent (Nam)) /= N_Selected_Component
6845 then
6846 Num_Interps := 0;
6848 while Present (It.Nam) loop
6849 if Ekind (It.Nam) = E_Operator
6850 and then Chars (It.Nam) = Name_Op_Add
6851 and then (No (First_Formal (It.Nam))
6852 or else No (Next_Formal (First_Formal (It.Nam))))
6853 then
6854 Remove_Interp (X);
6855 else
6856 Num_Interps := Num_Interps + 1;
6857 end if;
6859 Get_Next_Interp (X, It);
6860 end loop;
6862 if Num_Interps = 0 then
6863 Error_Msg_N ("!too many arguments in call to&", Nam);
6864 return;
6865 end if;
6867 Get_First_Interp (Nam, X, It);
6869 else
6870 Num_Interps := 2; -- at least
6871 end if;
6873 -- Analyze each candidate call again with full error reporting for each
6875 if Num_Interps > 1 then
6876 Error_Msg_N ("!no candidate interpretations match the actuals:", Nam);
6877 end if;
6879 Err_Mode := All_Errors_Mode;
6880 All_Errors_Mode := True;
6882 while Present (It.Nam) loop
6883 if Etype (It.Nam) = Standard_Void_Type then
6884 Void_Interp_Seen := True;
6885 end if;
6887 Analyze_One_Call (N, It.Nam, True, Success);
6888 Get_Next_Interp (X, It);
6889 end loop;
6891 if Nkind (N) = N_Function_Call then
6892 Get_First_Interp (Nam, X, It);
6894 if No (It.Typ)
6895 and then Ekind (Entity (Name (N))) = E_Function
6896 and then Present (Homonym (Entity (Name (N))))
6897 then
6898 -- A name may appear overloaded if it has a homonym, even if that
6899 -- homonym is non-overloadable, in which case the overload list is
6900 -- in fact empty. This specialized case deserves a special message
6901 -- if the homonym is a child package.
6903 declare
6904 Nam : constant Node_Id := Name (N);
6905 H : constant Entity_Id := Homonym (Entity (Nam));
6907 begin
6908 if Ekind (H) = E_Package and then Is_Child_Unit (H) then
6909 Error_Msg_Qual_Level := 2;
6910 Error_Msg_NE ("if an entity in package& is meant, ", Nam, H);
6911 Error_Msg_NE ("\use a fully qualified name", Nam, H);
6912 Error_Msg_Qual_Level := 0;
6913 end if;
6914 end;
6916 else
6917 while Present (It.Nam) loop
6918 if Ekind (It.Nam) in E_Function | E_Operator then
6919 return;
6920 else
6921 Get_Next_Interp (X, It);
6922 end if;
6923 end loop;
6925 -- If all interpretations are procedures, this deserves a more
6926 -- precise message. Ditto if this appears as the prefix of a
6927 -- selected component, which may be a lexical error.
6929 Error_Msg_N
6930 ("\context requires function call, found procedure name", Nam);
6932 if Nkind (Parent (N)) = N_Selected_Component
6933 and then N = Prefix (Parent (N))
6934 then
6935 Error_Msg_N -- CODEFIX
6936 ("\period should probably be semicolon", Parent (N));
6937 end if;
6938 end if;
6940 elsif Nkind (N) = N_Procedure_Call_Statement
6941 and then not Void_Interp_Seen
6942 then
6943 Error_Msg_N ("\function name found in procedure call", Nam);
6944 end if;
6946 All_Errors_Mode := Err_Mode;
6947 end Diagnose_Call;
6949 ---------------------------
6950 -- Find_Arithmetic_Types --
6951 ---------------------------
6953 procedure Find_Arithmetic_Types
6954 (L, R : Node_Id;
6955 Op_Id : Entity_Id;
6956 N : Node_Id)
6958 procedure Check_Right_Argument (T : Entity_Id);
6959 -- Check right operand of operator
6961 --------------------------
6962 -- Check_Right_Argument --
6963 --------------------------
6965 procedure Check_Right_Argument (T : Entity_Id) is
6966 I : Interp_Index;
6967 It : Interp;
6969 begin
6970 if not Is_Overloaded (R) then
6971 Check_Arithmetic_Pair (T, Etype (R), Op_Id, N);
6973 else
6974 Get_First_Interp (R, I, It);
6975 while Present (It.Typ) loop
6976 Check_Arithmetic_Pair (T, It.Typ, Op_Id, N);
6977 Get_Next_Interp (I, It);
6978 end loop;
6979 end if;
6980 end Check_Right_Argument;
6982 -- Local variables
6984 I : Interp_Index;
6985 It : Interp;
6987 -- Start of processing for Find_Arithmetic_Types
6989 begin
6990 if not Is_Overloaded (L) then
6991 Check_Right_Argument (Etype (L));
6993 else
6994 Get_First_Interp (L, I, It);
6995 while Present (It.Typ) loop
6996 Check_Right_Argument (It.Typ);
6997 Get_Next_Interp (I, It);
6998 end loop;
6999 end if;
7000 end Find_Arithmetic_Types;
7002 ------------------------
7003 -- Find_Boolean_Types --
7004 ------------------------
7006 procedure Find_Boolean_Types
7007 (L, R : Node_Id;
7008 Op_Id : Entity_Id;
7009 N : Node_Id)
7011 procedure Check_Boolean_Pair (T1, T2 : Entity_Id);
7012 -- Check operand pair of operator
7014 procedure Check_Right_Argument (T : Entity_Id);
7015 -- Check right operand of operator
7017 ------------------------
7018 -- Check_Boolean_Pair --
7019 ------------------------
7021 procedure Check_Boolean_Pair (T1, T2 : Entity_Id) is
7022 T : Entity_Id;
7024 begin
7025 if Valid_Boolean_Arg (T1)
7026 and then Valid_Boolean_Arg (T2)
7027 and then (Covers (T1 => T1, T2 => T2)
7028 or else Covers (T1 => T2, T2 => T1))
7029 then
7030 T := Specific_Type (T1, T2);
7032 if T = Universal_Integer then
7033 T := Any_Modular;
7034 end if;
7036 Add_One_Interp (N, Op_Id, T);
7037 end if;
7038 end Check_Boolean_Pair;
7040 --------------------------
7041 -- Check_Right_Argument --
7042 --------------------------
7044 procedure Check_Right_Argument (T : Entity_Id) is
7045 I : Interp_Index;
7046 It : Interp;
7048 begin
7049 -- Defend against previous error
7051 if Nkind (R) = N_Error then
7052 null;
7054 elsif not Is_Overloaded (R) then
7055 Check_Boolean_Pair (T, Etype (R));
7057 else
7058 Get_First_Interp (R, I, It);
7059 while Present (It.Typ) loop
7060 Check_Boolean_Pair (T, It.Typ);
7061 Get_Next_Interp (I, It);
7062 end loop;
7063 end if;
7064 end Check_Right_Argument;
7066 -- Local variables
7068 I : Interp_Index;
7069 It : Interp;
7071 -- Start of processing for Find_Boolean_Types
7073 begin
7074 if not Is_Overloaded (L) then
7075 Check_Right_Argument (Etype (L));
7077 else
7078 Get_First_Interp (L, I, It);
7079 while Present (It.Typ) loop
7080 Check_Right_Argument (It.Typ);
7081 Get_Next_Interp (I, It);
7082 end loop;
7083 end if;
7084 end Find_Boolean_Types;
7086 ------------------------------------
7087 -- Find_Comparison_Equality_Types --
7088 ------------------------------------
7090 -- The context of the operator plays no role in resolving the operands,
7091 -- so that if there is more than one interpretation of the operands that
7092 -- is compatible with the comparison or equality, then the operation is
7093 -- ambiguous, but this cannot be reported at this point because there is
7094 -- no guarantee that the operation will be resolved to this operator yet.
7096 procedure Find_Comparison_Equality_Types
7097 (L, R : Node_Id;
7098 Op_Id : Entity_Id;
7099 N : Node_Id)
7101 Op_Name : constant Name_Id := Chars (Op_Id);
7102 Op_Typ : Entity_Id renames Standard_Boolean;
7104 function Try_Left_Interp (T : Entity_Id) return Entity_Id;
7105 -- Try an interpretation of the left operand with type T. Return the
7106 -- type of the interpretation of the right operand making up a valid
7107 -- operand pair, or else Any_Type if the right operand is ambiguous,
7108 -- otherwise Empty if no such pair exists.
7110 function Is_Valid_Comparison_Type (T : Entity_Id) return Boolean;
7111 -- Return true if T is a valid comparison type
7113 function Is_Valid_Equality_Type
7114 (T : Entity_Id;
7115 Anon_Access : Boolean) return Boolean;
7116 -- Return true if T is a valid equality type
7118 function Is_Valid_Pair (T1, T2 : Entity_Id) return Boolean;
7119 -- Return true if T1 and T2 constitute a valid pair of operand types for
7120 -- L and R respectively.
7122 ---------------------
7123 -- Try_Left_Interp --
7124 ---------------------
7126 function Try_Left_Interp (T : Entity_Id) return Entity_Id is
7127 I : Interp_Index;
7128 It : Interp;
7129 R_Typ : Entity_Id;
7130 Valid_I : Interp_Index;
7132 begin
7133 -- Defend against previous error
7135 if Nkind (R) = N_Error then
7136 null;
7138 -- Loop through the interpretations of the right operand
7140 elsif not Is_Overloaded (R) then
7141 if Is_Valid_Pair (T, Etype (R)) then
7142 return Etype (R);
7143 end if;
7145 else
7146 R_Typ := Empty;
7147 Valid_I := 0;
7149 Get_First_Interp (R, I, It);
7150 while Present (It.Typ) loop
7151 if Is_Valid_Pair (T, It.Typ) then
7152 -- If several interpretations are possible, disambiguate
7154 if Present (R_Typ)
7155 and then Base_Type (It.Typ) /= Base_Type (R_Typ)
7156 then
7157 It := Disambiguate (R, Valid_I, I, Any_Type);
7159 if It = No_Interp then
7160 R_Typ := Any_Type;
7161 exit;
7162 end if;
7164 else
7165 Valid_I := I;
7166 end if;
7168 R_Typ := It.Typ;
7169 end if;
7171 Get_Next_Interp (I, It);
7172 end loop;
7174 if Present (R_Typ) then
7175 return R_Typ;
7176 end if;
7177 end if;
7179 return Empty;
7180 end Try_Left_Interp;
7182 ------------------------------
7183 -- Is_Valid_Comparison_Type --
7184 ------------------------------
7186 function Is_Valid_Comparison_Type (T : Entity_Id) return Boolean is
7187 begin
7188 -- The operation must be performed in a context where the operators
7189 -- of the base type are visible.
7191 if Is_Visible_Operator (N, Base_Type (T)) then
7192 null;
7194 -- Save candidate type for subsequent error message, if any
7196 else
7197 if Valid_Comparison_Arg (T) then
7198 Candidate_Type := T;
7199 end if;
7201 return False;
7202 end if;
7204 -- Defer to the common implementation for the rest
7206 return Valid_Comparison_Arg (T);
7207 end Is_Valid_Comparison_Type;
7209 ----------------------------
7210 -- Is_Valid_Equality_Type --
7211 ----------------------------
7213 function Is_Valid_Equality_Type
7214 (T : Entity_Id;
7215 Anon_Access : Boolean) return Boolean
7217 begin
7218 -- The operation must be performed in a context where the operators
7219 -- of the base type are visible. Deal with special types used with
7220 -- access types before type resolution is done.
7222 if Ekind (T) = E_Access_Attribute_Type
7223 or else (Ekind (T) in E_Access_Subprogram_Type
7224 | E_Access_Protected_Subprogram_Type
7225 and then
7226 Ekind (Designated_Type (T)) /= E_Subprogram_Type)
7227 or else Is_Visible_Operator (N, Base_Type (T))
7228 then
7229 null;
7231 -- AI95-0230: Keep restriction imposed by Ada 83 and 95, do not allow
7232 -- anonymous access types in universal_access equality operators.
7234 elsif Anon_Access then
7235 if Ada_Version < Ada_2005 then
7236 return False;
7237 end if;
7239 -- Save candidate type for subsequent error message, if any
7241 else
7242 if Valid_Equality_Arg (T) then
7243 Candidate_Type := T;
7244 end if;
7246 return False;
7247 end if;
7249 -- For the use of a "/=" operator on a tagged type, several possible
7250 -- interpretations of equality need to be considered, we don't want
7251 -- the default inequality declared in Standard to be chosen, and the
7252 -- "/=" operator will be rewritten as a negation of "=" (see the end
7253 -- of Analyze_Comparison_Equality_Op). This ensures the rewriting
7254 -- occurs during analysis rather than being delayed until expansion.
7255 -- Note that, if the node is N_Op_Ne but Op_Id is Name_Op_Eq, then we
7256 -- still proceed with the interpretation, because this indicates
7257 -- the aforementioned rewriting case where the interpretation to be
7258 -- considered is actually that of the "=" operator.
7260 if Nkind (N) = N_Op_Ne
7261 and then Op_Name /= Name_Op_Eq
7262 and then Is_Tagged_Type (T)
7263 then
7264 return False;
7266 -- Defer to the common implementation for the rest
7268 else
7269 return Valid_Equality_Arg (T);
7270 end if;
7271 end Is_Valid_Equality_Type;
7273 -------------------
7274 -- Is_Valid_Pair --
7275 -------------------
7277 function Is_Valid_Pair (T1, T2 : Entity_Id) return Boolean is
7278 begin
7279 if Op_Name = Name_Op_Eq or else Op_Name = Name_Op_Ne then
7280 declare
7281 Anon_Access : constant Boolean :=
7282 Is_Anonymous_Access_Type (T1)
7283 or else Is_Anonymous_Access_Type (T2);
7284 -- RM 4.5.2(9.1/2): At least one of the operands of an equality
7285 -- operator for universal_access shall be of specific anonymous
7286 -- access type.
7288 begin
7289 if not Is_Valid_Equality_Type (T1, Anon_Access)
7290 or else not Is_Valid_Equality_Type (T2, Anon_Access)
7291 then
7292 return False;
7293 end if;
7294 end;
7296 else
7297 if not Is_Valid_Comparison_Type (T1)
7298 or else not Is_Valid_Comparison_Type (T2)
7299 then
7300 return False;
7301 end if;
7302 end if;
7304 return Covers (T1 => T1, T2 => T2)
7305 or else Covers (T1 => T2, T2 => T1)
7306 or else Is_User_Defined_Literal (L, T2)
7307 or else Is_User_Defined_Literal (R, T1);
7308 end Is_Valid_Pair;
7310 -- Local variables
7312 I : Interp_Index;
7313 It : Interp;
7314 L_Typ : Entity_Id;
7315 R_Typ : Entity_Id;
7316 T : Entity_Id;
7317 Valid_I : Interp_Index;
7319 -- Start of processing for Find_Comparison_Equality_Types
7321 begin
7322 -- Loop through the interpretations of the left operand
7324 if not Is_Overloaded (L) then
7325 T := Try_Left_Interp (Etype (L));
7327 if Present (T) then
7328 Set_Etype (R, T);
7329 Add_One_Interp (N, Op_Id, Op_Typ, Find_Unique_Type (L, R));
7330 end if;
7332 else
7333 L_Typ := Empty;
7334 R_Typ := Empty;
7335 Valid_I := 0;
7337 Get_First_Interp (L, I, It);
7338 while Present (It.Typ) loop
7339 T := Try_Left_Interp (It.Typ);
7341 if Present (T) then
7342 -- If several interpretations are possible, disambiguate
7344 if Present (L_Typ)
7345 and then Base_Type (It.Typ) /= Base_Type (L_Typ)
7346 then
7347 It := Disambiguate (L, Valid_I, I, Any_Type);
7349 if It = No_Interp then
7350 L_Typ := Any_Type;
7351 R_Typ := T;
7352 exit;
7353 end if;
7355 else
7356 Valid_I := I;
7357 end if;
7359 L_Typ := It.Typ;
7360 R_Typ := T;
7361 end if;
7363 Get_Next_Interp (I, It);
7364 end loop;
7366 if Present (L_Typ) then
7367 Set_Etype (L, L_Typ);
7368 Set_Etype (R, R_Typ);
7369 Add_One_Interp (N, Op_Id, Op_Typ, Find_Unique_Type (L, R));
7370 end if;
7371 end if;
7372 end Find_Comparison_Equality_Types;
7374 ------------------------------
7375 -- Find_Concatenation_Types --
7376 ------------------------------
7378 procedure Find_Concatenation_Types
7379 (L, R : Node_Id;
7380 Op_Id : Entity_Id;
7381 N : Node_Id)
7383 Is_String : constant Boolean := Nkind (L) = N_String_Literal
7384 or else
7385 Nkind (R) = N_String_Literal;
7386 Op_Type : constant Entity_Id := Etype (Op_Id);
7388 begin
7389 if Is_Array_Type (Op_Type)
7391 -- Small but very effective optimization: if at least one operand is a
7392 -- string literal, then the type of the operator must be either array
7393 -- of characters or array of strings.
7395 and then (not Is_String
7396 or else
7397 Is_Character_Type (Component_Type (Op_Type))
7398 or else
7399 Is_String_Type (Component_Type (Op_Type)))
7401 and then not Is_Limited_Type (Op_Type)
7403 and then (Has_Compatible_Type (L, Op_Type)
7404 or else
7405 Has_Compatible_Type (L, Component_Type (Op_Type)))
7407 and then (Has_Compatible_Type (R, Op_Type)
7408 or else
7409 Has_Compatible_Type (R, Component_Type (Op_Type)))
7410 then
7411 Add_One_Interp (N, Op_Id, Op_Type);
7412 end if;
7413 end Find_Concatenation_Types;
7415 -------------------------
7416 -- Find_Negation_Types --
7417 -------------------------
7419 procedure Find_Negation_Types
7420 (R : Node_Id;
7421 Op_Id : Entity_Id;
7422 N : Node_Id)
7424 Index : Interp_Index;
7425 It : Interp;
7427 begin
7428 if not Is_Overloaded (R) then
7429 if Etype (R) = Universal_Integer then
7430 Add_One_Interp (N, Op_Id, Any_Modular);
7431 elsif Valid_Boolean_Arg (Etype (R)) then
7432 Add_One_Interp (N, Op_Id, Etype (R));
7433 end if;
7435 else
7436 Get_First_Interp (R, Index, It);
7437 while Present (It.Typ) loop
7438 if Valid_Boolean_Arg (It.Typ) then
7439 Add_One_Interp (N, Op_Id, It.Typ);
7440 end if;
7442 Get_Next_Interp (Index, It);
7443 end loop;
7444 end if;
7445 end Find_Negation_Types;
7447 ------------------------------
7448 -- Find_Primitive_Operation --
7449 ------------------------------
7451 function Find_Primitive_Operation (N : Node_Id) return Boolean is
7452 Obj : constant Node_Id := Prefix (N);
7453 Op : constant Node_Id := Selector_Name (N);
7455 Prim : Elmt_Id;
7456 Prims : Elist_Id;
7457 Typ : Entity_Id;
7459 begin
7460 Set_Etype (Op, Any_Type);
7462 if Is_Access_Type (Etype (Obj)) then
7463 Typ := Designated_Type (Etype (Obj));
7464 else
7465 Typ := Etype (Obj);
7466 end if;
7468 if Is_Class_Wide_Type (Typ) then
7469 Typ := Root_Type (Typ);
7470 end if;
7472 Prims := Primitive_Operations (Typ);
7474 Prim := First_Elmt (Prims);
7475 while Present (Prim) loop
7476 if Chars (Node (Prim)) = Chars (Op) then
7477 Add_One_Interp (Op, Node (Prim), Etype (Node (Prim)));
7478 Set_Etype (N, Etype (Node (Prim)));
7479 end if;
7481 Next_Elmt (Prim);
7482 end loop;
7484 -- Now look for class-wide operations of the type or any of its
7485 -- ancestors by iterating over the homonyms of the selector.
7487 declare
7488 Cls_Type : constant Entity_Id := Class_Wide_Type (Typ);
7489 Hom : Entity_Id;
7491 begin
7492 Hom := Current_Entity (Op);
7493 while Present (Hom) loop
7494 if (Ekind (Hom) = E_Procedure
7495 or else
7496 Ekind (Hom) = E_Function)
7497 and then Scope (Hom) = Scope (Typ)
7498 and then Present (First_Formal (Hom))
7499 and then
7500 (Base_Type (Etype (First_Formal (Hom))) = Cls_Type
7501 or else
7502 (Is_Access_Type (Etype (First_Formal (Hom)))
7503 and then
7504 Ekind (Etype (First_Formal (Hom))) =
7505 E_Anonymous_Access_Type
7506 and then
7507 Base_Type
7508 (Designated_Type (Etype (First_Formal (Hom)))) =
7509 Cls_Type))
7510 then
7511 Add_One_Interp (Op, Hom, Etype (Hom));
7512 Set_Etype (N, Etype (Hom));
7513 end if;
7515 Hom := Homonym (Hom);
7516 end loop;
7517 end;
7519 return Etype (Op) /= Any_Type;
7520 end Find_Primitive_Operation;
7522 ----------------------
7523 -- Find_Unary_Types --
7524 ----------------------
7526 procedure Find_Unary_Types
7527 (R : Node_Id;
7528 Op_Id : Entity_Id;
7529 N : Node_Id)
7531 Index : Interp_Index;
7532 It : Interp;
7534 begin
7535 if not Is_Overloaded (R) then
7536 if Is_Numeric_Type (Etype (R)) then
7538 -- In an instance a generic actual may be a numeric type even if
7539 -- the formal in the generic unit was not. In that case, the
7540 -- predefined operator was not a possible interpretation in the
7541 -- generic, and cannot be one in the instance, unless the operator
7542 -- is an actual of an instance.
7544 if In_Instance
7545 and then
7546 not Is_Numeric_Type (Corresponding_Generic_Type (Etype (R)))
7547 then
7548 null;
7549 else
7550 Add_One_Interp (N, Op_Id, Base_Type (Etype (R)));
7551 end if;
7552 end if;
7554 else
7555 Get_First_Interp (R, Index, It);
7556 while Present (It.Typ) loop
7557 if Is_Numeric_Type (It.Typ) then
7558 if In_Instance
7559 and then
7560 not Is_Numeric_Type
7561 (Corresponding_Generic_Type (Etype (It.Typ)))
7562 then
7563 null;
7565 else
7566 Add_One_Interp (N, Op_Id, Base_Type (It.Typ));
7567 end if;
7568 end if;
7570 Get_Next_Interp (Index, It);
7571 end loop;
7572 end if;
7573 end Find_Unary_Types;
7575 ------------------
7576 -- Junk_Operand --
7577 ------------------
7579 function Junk_Operand (N : Node_Id) return Boolean is
7580 Enode : Node_Id;
7582 begin
7583 if Error_Posted (N) then
7584 return False;
7585 end if;
7587 -- Get entity to be tested
7589 if Is_Entity_Name (N)
7590 and then Present (Entity (N))
7591 then
7592 Enode := N;
7594 -- An odd case, a procedure name gets converted to a very peculiar
7595 -- function call, and here is where we detect this happening.
7597 elsif Nkind (N) = N_Function_Call
7598 and then Is_Entity_Name (Name (N))
7599 and then Present (Entity (Name (N)))
7600 then
7601 Enode := Name (N);
7603 -- Another odd case, there are at least some cases of selected
7604 -- components where the selected component is not marked as having
7605 -- an entity, even though the selector does have an entity
7607 elsif Nkind (N) = N_Selected_Component
7608 and then Present (Entity (Selector_Name (N)))
7609 then
7610 Enode := Selector_Name (N);
7612 else
7613 return False;
7614 end if;
7616 -- Now test the entity we got to see if it is a bad case
7618 case Ekind (Entity (Enode)) is
7619 when E_Package =>
7620 Error_Msg_N
7621 ("package name cannot be used as operand", Enode);
7623 when Generic_Unit_Kind =>
7624 Error_Msg_N
7625 ("generic unit name cannot be used as operand", Enode);
7627 when Type_Kind =>
7628 Error_Msg_N
7629 ("subtype name cannot be used as operand", Enode);
7631 when Entry_Kind =>
7632 Error_Msg_N
7633 ("entry name cannot be used as operand", Enode);
7635 when E_Procedure =>
7636 Error_Msg_N
7637 ("procedure name cannot be used as operand", Enode);
7639 when E_Exception =>
7640 Error_Msg_N
7641 ("exception name cannot be used as operand", Enode);
7643 when E_Block
7644 | E_Label
7645 | E_Loop
7647 Error_Msg_N
7648 ("label name cannot be used as operand", Enode);
7650 when others =>
7651 return False;
7652 end case;
7654 return True;
7655 end Junk_Operand;
7657 --------------------
7658 -- Operator_Check --
7659 --------------------
7661 procedure Operator_Check (N : Node_Id) is
7662 begin
7663 Remove_Abstract_Operations (N);
7665 -- Test for case of no interpretation found for operator
7667 if Etype (N) = Any_Type then
7668 declare
7669 L : constant Node_Id :=
7670 (if Nkind (N) in N_Binary_Op then Left_Opnd (N) else Empty);
7671 R : constant Node_Id := Right_Opnd (N);
7673 begin
7674 -- If either operand has no type, then don't complain further,
7675 -- since this simply means that we have a propagated error.
7677 if R = Error
7678 or else Etype (R) = Any_Type
7679 or else (Nkind (N) in N_Binary_Op and then Etype (L) = Any_Type)
7680 then
7681 -- For the rather unusual case where one of the operands is
7682 -- a Raise_Expression, whose initial type is Any_Type, use
7683 -- the type of the other operand.
7685 if Nkind (L) = N_Raise_Expression then
7686 Set_Etype (L, Etype (R));
7687 Set_Etype (N, Etype (R));
7689 elsif Nkind (R) = N_Raise_Expression then
7690 Set_Etype (R, Etype (L));
7691 Set_Etype (N, Etype (L));
7692 end if;
7694 return;
7696 -- We explicitly check for the case of concatenation of component
7697 -- with component to avoid reporting spurious matching array types
7698 -- that might happen to be lurking in distant packages (such as
7699 -- run-time packages). This also prevents inconsistencies in the
7700 -- messages for certain ACVC B tests, which can vary depending on
7701 -- types declared in run-time interfaces. Another improvement when
7702 -- aggregates are present is to look for a well-typed operand.
7704 elsif Present (Candidate_Type)
7705 and then (Nkind (N) /= N_Op_Concat
7706 or else Is_Array_Type (Etype (L))
7707 or else Is_Array_Type (Etype (R)))
7708 then
7709 if Nkind (N) = N_Op_Concat then
7710 if Etype (L) /= Any_Composite
7711 and then Is_Array_Type (Etype (L))
7712 then
7713 Candidate_Type := Etype (L);
7715 elsif Etype (R) /= Any_Composite
7716 and then Is_Array_Type (Etype (R))
7717 then
7718 Candidate_Type := Etype (R);
7719 end if;
7720 end if;
7722 Error_Msg_NE -- CODEFIX
7723 ("operator for} is not directly visible!",
7724 N, First_Subtype (Candidate_Type));
7726 declare
7727 U : constant Node_Id :=
7728 Cunit (Get_Source_Unit (Candidate_Type));
7729 begin
7730 if Unit_Is_Visible (U) then
7731 Error_Msg_N -- CODEFIX
7732 ("use clause would make operation legal!", N);
7733 else
7734 Error_Msg_NE -- CODEFIX
7735 ("add with_clause and use_clause for&!",
7736 N, Defining_Entity (Unit (U)));
7737 end if;
7738 end;
7739 return;
7741 -- If either operand is a junk operand (e.g. package name), then
7742 -- post appropriate error messages, but do not complain further.
7744 -- Note that the use of OR in this test instead of OR ELSE is
7745 -- quite deliberate, we may as well check both operands in the
7746 -- binary operator case.
7748 elsif Junk_Operand (R)
7749 or -- really mean OR here and not OR ELSE, see above
7750 (Nkind (N) in N_Binary_Op and then Junk_Operand (L))
7751 then
7752 return;
7754 -- The handling of user-defined literals is deferred to the second
7755 -- pass of resolution.
7757 elsif Has_Possible_User_Defined_Literal (N) then
7758 return;
7760 -- If we have a logical operator, one of whose operands is
7761 -- Boolean, then we know that the other operand cannot resolve to
7762 -- Boolean (since we got no interpretations), but in that case we
7763 -- pretty much know that the other operand should be Boolean, so
7764 -- resolve it that way (generating an error).
7766 elsif Nkind (N) in N_Op_And | N_Op_Or | N_Op_Xor then
7767 if Etype (L) = Standard_Boolean then
7768 Resolve (R, Standard_Boolean);
7769 return;
7770 elsif Etype (R) = Standard_Boolean then
7771 Resolve (L, Standard_Boolean);
7772 return;
7773 end if;
7775 -- For an arithmetic operator or comparison operator, if one
7776 -- of the operands is numeric, then we know the other operand
7777 -- is not the same numeric type. If it is a non-numeric type,
7778 -- then probably it is intended to match the other operand.
7780 elsif Nkind (N) in N_Op_Add
7781 | N_Op_Divide
7782 | N_Op_Ge
7783 | N_Op_Gt
7784 | N_Op_Le
7785 | N_Op_Lt
7786 | N_Op_Mod
7787 | N_Op_Multiply
7788 | N_Op_Rem
7789 | N_Op_Subtract
7790 then
7791 -- If Allow_Integer_Address is active, check whether the
7792 -- operation becomes legal after converting an operand.
7794 if Is_Numeric_Type (Etype (L))
7795 and then not Is_Numeric_Type (Etype (R))
7796 then
7797 if Address_Integer_Convert_OK (Etype (R), Etype (L)) then
7798 Rewrite (L,
7799 Unchecked_Convert_To (
7800 Standard_Address, Relocate_Node (L)));
7801 Rewrite (R,
7802 Unchecked_Convert_To (
7803 Standard_Address, Relocate_Node (R)));
7805 if Nkind (N) in N_Op_Ge | N_Op_Gt | N_Op_Le | N_Op_Lt then
7806 Analyze_Comparison_Equality_Op (N);
7807 else
7808 Analyze_Arithmetic_Op (N);
7809 end if;
7810 else
7811 Resolve (R, Etype (L));
7812 end if;
7814 return;
7816 elsif Is_Numeric_Type (Etype (R))
7817 and then not Is_Numeric_Type (Etype (L))
7818 then
7819 if Address_Integer_Convert_OK (Etype (L), Etype (R)) then
7820 Rewrite (L,
7821 Unchecked_Convert_To (
7822 Standard_Address, Relocate_Node (L)));
7823 Rewrite (R,
7824 Unchecked_Convert_To (
7825 Standard_Address, Relocate_Node (R)));
7827 if Nkind (N) in N_Op_Ge | N_Op_Gt | N_Op_Le | N_Op_Lt then
7828 Analyze_Comparison_Equality_Op (N);
7829 else
7830 Analyze_Arithmetic_Op (N);
7831 end if;
7833 return;
7835 else
7836 Resolve (L, Etype (R));
7837 end if;
7839 return;
7841 elsif Allow_Integer_Address
7842 and then Is_Descendant_Of_Address (Etype (L))
7843 and then Is_Descendant_Of_Address (Etype (R))
7844 and then not Error_Posted (N)
7845 then
7846 declare
7847 Addr_Type : constant Entity_Id := Etype (L);
7849 begin
7850 Rewrite (L,
7851 Unchecked_Convert_To (
7852 Standard_Address, Relocate_Node (L)));
7853 Rewrite (R,
7854 Unchecked_Convert_To (
7855 Standard_Address, Relocate_Node (R)));
7857 if Nkind (N) in N_Op_Ge | N_Op_Gt | N_Op_Le | N_Op_Lt then
7858 Analyze_Comparison_Equality_Op (N);
7859 else
7860 Analyze_Arithmetic_Op (N);
7861 end if;
7863 -- If this is an operand in an enclosing arithmetic
7864 -- operation, Convert the result as an address so that
7865 -- arithmetic folding of address can continue.
7867 if Nkind (Parent (N)) in N_Op then
7868 Rewrite (N,
7869 Unchecked_Convert_To (Addr_Type, Relocate_Node (N)));
7870 end if;
7872 return;
7873 end;
7875 -- Under relaxed RM semantics silently replace occurrences of
7876 -- null by System.Address_Null.
7878 elsif Null_To_Null_Address_Convert_OK (N) then
7879 Replace_Null_By_Null_Address (N);
7881 if Nkind (N) in N_Op_Ge | N_Op_Gt | N_Op_Le | N_Op_Lt then
7882 Analyze_Comparison_Equality_Op (N);
7883 else
7884 Analyze_Arithmetic_Op (N);
7885 end if;
7887 return;
7888 end if;
7890 -- Comparisons on A'Access are common enough to deserve a
7891 -- special message.
7893 elsif Nkind (N) in N_Op_Eq | N_Op_Ne
7894 and then Ekind (Etype (L)) = E_Access_Attribute_Type
7895 and then Ekind (Etype (R)) = E_Access_Attribute_Type
7896 then
7897 Error_Msg_N
7898 ("two access attributes cannot be compared directly", N);
7899 Error_Msg_N
7900 ("\use qualified expression for one of the operands",
7902 return;
7904 -- Another one for C programmers
7906 elsif Nkind (N) = N_Op_Concat
7907 and then Valid_Boolean_Arg (Etype (L))
7908 and then Valid_Boolean_Arg (Etype (R))
7909 then
7910 Error_Msg_N ("invalid operands for concatenation", N);
7911 Error_Msg_N -- CODEFIX
7912 ("\maybe AND was meant", N);
7913 return;
7915 -- A special case for comparison of access parameter with null
7917 elsif Nkind (N) = N_Op_Eq
7918 and then Is_Entity_Name (L)
7919 and then Nkind (Parent (Entity (L))) = N_Parameter_Specification
7920 and then Nkind (Parameter_Type (Parent (Entity (L)))) =
7921 N_Access_Definition
7922 and then Nkind (R) = N_Null
7923 then
7924 Error_Msg_N ("access parameter is not allowed to be null", L);
7925 Error_Msg_N ("\(call would raise Constraint_Error)", L);
7926 return;
7928 -- Another special case for exponentiation, where the right
7929 -- operand must be Natural, independently of the base.
7931 elsif Nkind (N) = N_Op_Expon
7932 and then Is_Numeric_Type (Etype (L))
7933 and then not Is_Overloaded (R)
7934 and then
7935 First_Subtype (Base_Type (Etype (R))) /= Standard_Integer
7936 and then Base_Type (Etype (R)) /= Universal_Integer
7937 then
7938 if Ada_Version >= Ada_2012
7939 and then Has_Dimension_System (Etype (L))
7940 then
7941 Error_Msg_NE
7942 ("exponent for dimensioned type must be a rational" &
7943 ", found}", R, Etype (R));
7944 else
7945 Error_Msg_NE
7946 ("exponent must be of type Natural, found}", R, Etype (R));
7947 end if;
7949 return;
7951 elsif Nkind (N) in N_Op_Eq | N_Op_Ne then
7952 if Address_Integer_Convert_OK (Etype (R), Etype (L)) then
7953 Rewrite (L,
7954 Unchecked_Convert_To (
7955 Standard_Address, Relocate_Node (L)));
7956 Rewrite (R,
7957 Unchecked_Convert_To (
7958 Standard_Address, Relocate_Node (R)));
7959 Analyze_Comparison_Equality_Op (N);
7960 return;
7962 -- Under relaxed RM semantics silently replace occurrences of
7963 -- null by System.Address_Null.
7965 elsif Null_To_Null_Address_Convert_OK (N) then
7966 Replace_Null_By_Null_Address (N);
7967 Analyze_Comparison_Equality_Op (N);
7968 return;
7969 end if;
7970 end if;
7972 -- If we fall through then just give general message
7974 Unresolved_Operator (N);
7975 end;
7976 end if;
7977 end Operator_Check;
7979 ---------------------------------------
7980 -- Has_Possible_User_Defined_Literal --
7981 ---------------------------------------
7983 function Has_Possible_User_Defined_Literal (N : Node_Id) return Boolean is
7984 R : constant Node_Id := Right_Opnd (N);
7986 procedure Check_Literal_Opnd (Opnd : Node_Id);
7987 -- If an operand is a literal to which an aspect may apply,
7988 -- add the corresponding type to operator node.
7990 ------------------------
7991 -- Check_Literal_Opnd --
7992 ------------------------
7994 procedure Check_Literal_Opnd (Opnd : Node_Id) is
7995 begin
7996 if Nkind (Opnd) in N_Numeric_Or_String_Literal
7997 or else (Is_Entity_Name (Opnd)
7998 and then Present (Entity (Opnd))
7999 and then Is_Named_Number (Entity (Opnd)))
8000 then
8001 Add_One_Interp (N, Etype (Opnd), Etype (Opnd));
8002 end if;
8003 end Check_Literal_Opnd;
8005 -- Start of processing for Has_Possible_User_Defined_Literal
8007 begin
8008 if Ada_Version < Ada_2022 then
8009 return False;
8010 end if;
8012 Check_Literal_Opnd (R);
8014 -- Check left operand only if right one did not provide a
8015 -- possible interpretation. Note that literal types are not
8016 -- overloadable, in the sense that there is no overloadable
8017 -- entity name whose several interpretations can be used to
8018 -- indicate possible resulting types, so there is no way to
8019 -- provide more than one interpretation to the operator node.
8020 -- The choice of one operand over the other is arbitrary at
8021 -- this point, and may lead to spurious resolution when both
8022 -- operands are literals of different kinds, but the second
8023 -- pass of resolution will examine anew both operands to
8024 -- determine whether a user-defined literal may apply to
8025 -- either or both.
8027 if Nkind (N) in N_Binary_Op and then Etype (N) = Any_Type then
8028 Check_Literal_Opnd (Left_Opnd (N));
8029 end if;
8031 return Etype (N) /= Any_Type;
8032 end Has_Possible_User_Defined_Literal;
8034 -----------------------------------------------
8035 -- Nondispatching_Call_To_Abstract_Operation --
8036 -----------------------------------------------
8038 procedure Nondispatching_Call_To_Abstract_Operation
8039 (N : Node_Id;
8040 Abstract_Op : Entity_Id)
8042 Typ : constant Entity_Id := Etype (N);
8044 begin
8045 -- In an instance body, this is a runtime check, but one we know will
8046 -- fail, so give an appropriate warning. As usual this kind of warning
8047 -- is an error in SPARK mode.
8049 Error_Msg_Sloc := Sloc (Abstract_Op);
8051 if In_Instance_Body and then SPARK_Mode /= On then
8052 Error_Msg_NE
8053 ("??cannot call abstract operation& declared#",
8054 N, Abstract_Op);
8055 Error_Msg_N ("\Program_Error [??", N);
8056 Rewrite (N,
8057 Make_Raise_Program_Error (Sloc (N),
8058 Reason => PE_Explicit_Raise));
8059 Analyze (N);
8060 Set_Etype (N, Typ);
8062 else
8063 Error_Msg_NE
8064 ("cannot call abstract operation& declared#",
8065 N, Abstract_Op);
8066 Set_Etype (N, Any_Type);
8067 end if;
8068 end Nondispatching_Call_To_Abstract_Operation;
8070 ----------------------------------------------
8071 -- Possible_Type_For_Conditional_Expression --
8072 ----------------------------------------------
8074 function Possible_Type_For_Conditional_Expression
8075 (T1, T2 : Entity_Id) return Entity_Id
8077 function Is_Access_Protected_Subprogram_Attribute
8078 (T : Entity_Id) return Boolean;
8079 -- Return true if T is the type of an access-to-protected-subprogram
8080 -- attribute.
8082 function Is_Access_Subprogram_Attribute (T : Entity_Id) return Boolean;
8083 -- Return true if T is the type of an access-to-subprogram attribute
8085 ----------------------------------------------
8086 -- Is_Access_Protected_Subprogram_Attribute --
8087 ----------------------------------------------
8089 function Is_Access_Protected_Subprogram_Attribute
8090 (T : Entity_Id) return Boolean
8092 begin
8093 return Ekind (T) = E_Access_Protected_Subprogram_Type
8094 and then Ekind (Designated_Type (T)) /= E_Subprogram_Type;
8095 end Is_Access_Protected_Subprogram_Attribute;
8097 ------------------------------------
8098 -- Is_Access_Subprogram_Attribute --
8099 ------------------------------------
8101 function Is_Access_Subprogram_Attribute (T : Entity_Id) return Boolean is
8102 begin
8103 return Ekind (T) = E_Access_Subprogram_Type
8104 and then Ekind (Designated_Type (T)) /= E_Subprogram_Type;
8105 end Is_Access_Subprogram_Attribute;
8107 -- Start of processing for Possible_Type_For_Conditional_Expression
8109 begin
8110 -- If both types are those of similar access attributes or allocators,
8111 -- pick one of them, for example the first.
8113 if Ekind (T1) in E_Access_Attribute_Type | E_Allocator_Type
8114 and then Ekind (T2) in E_Access_Attribute_Type | E_Allocator_Type
8115 then
8116 return T1;
8118 elsif Is_Access_Subprogram_Attribute (T1)
8119 and then Is_Access_Subprogram_Attribute (T2)
8120 and then
8121 Subtype_Conformant (Designated_Type (T1), Designated_Type (T2))
8122 then
8123 return T1;
8125 elsif Is_Access_Protected_Subprogram_Attribute (T1)
8126 and then Is_Access_Protected_Subprogram_Attribute (T2)
8127 and then
8128 Subtype_Conformant (Designated_Type (T1), Designated_Type (T2))
8129 then
8130 return T1;
8132 -- The other case to be considered is a pair of tagged types
8134 elsif Is_Tagged_Type (T1) and then Is_Tagged_Type (T2) then
8135 -- Covers performs the same checks when T1 or T2 are a CW type, so
8136 -- we don't need to do them again here.
8138 if not Is_Class_Wide_Type (T1) and then Is_Ancestor (T1, T2) then
8139 return T1;
8141 elsif not Is_Class_Wide_Type (T2) and then Is_Ancestor (T2, T1) then
8142 return T2;
8144 -- Neither type is an ancestor of the other, but they may have one in
8145 -- common, so we pick the first type as above. We could perform here
8146 -- the computation of the nearest common ancestors of T1 and T2, but
8147 -- this would require a significant amount of work and the practical
8148 -- benefit would very likely be negligible.
8150 else
8151 return T1;
8152 end if;
8154 -- Otherwise no type is possible
8156 else
8157 return Empty;
8158 end if;
8159 end Possible_Type_For_Conditional_Expression;
8161 --------------------------------
8162 -- Remove_Abstract_Operations --
8163 --------------------------------
8165 procedure Remove_Abstract_Operations (N : Node_Id) is
8166 Abstract_Op : Entity_Id := Empty;
8167 Address_Descendant : Boolean := False;
8168 I : Interp_Index;
8169 It : Interp;
8171 -- AI-310: If overloaded, remove abstract non-dispatching operations. We
8172 -- activate this if either extensions are enabled, or if the abstract
8173 -- operation in question comes from a predefined file. This latter test
8174 -- allows us to use abstract to make operations invisible to users. In
8175 -- particular, if type Address is non-private and abstract subprograms
8176 -- are used to hide its operators, they will be truly hidden.
8178 type Operand_Position is (First_Op, Second_Op);
8179 Univ_Type : constant Entity_Id := Universal_Interpretation (N);
8181 procedure Remove_Address_Interpretations (Op : Operand_Position);
8182 -- Ambiguities may arise when the operands are literal and the address
8183 -- operations in s-auxdec are visible. In that case, remove the
8184 -- interpretation of a literal as Address, to retain the semantics
8185 -- of Address as a private type.
8187 ------------------------------------
8188 -- Remove_Address_Interpretations --
8189 ------------------------------------
8191 procedure Remove_Address_Interpretations (Op : Operand_Position) is
8192 Formal : Entity_Id;
8194 begin
8195 if Is_Overloaded (N) then
8196 Get_First_Interp (N, I, It);
8197 while Present (It.Nam) loop
8198 Formal := First_Entity (It.Nam);
8200 if Op = Second_Op then
8201 Next_Entity (Formal);
8202 end if;
8204 if Is_Descendant_Of_Address (Etype (Formal)) then
8205 Address_Descendant := True;
8206 Remove_Interp (I);
8207 end if;
8209 Get_Next_Interp (I, It);
8210 end loop;
8211 end if;
8212 end Remove_Address_Interpretations;
8214 -- Start of processing for Remove_Abstract_Operations
8216 begin
8217 if Is_Overloaded (N) then
8218 if Debug_Flag_V then
8219 Write_Line ("Remove_Abstract_Operations: ");
8220 Write_Overloads (N);
8221 end if;
8223 Get_First_Interp (N, I, It);
8225 while Present (It.Nam) loop
8226 if Is_Overloadable (It.Nam)
8227 and then Is_Abstract_Subprogram (It.Nam)
8228 and then not Is_Dispatching_Operation (It.Nam)
8229 then
8230 Abstract_Op := It.Nam;
8232 if Is_Descendant_Of_Address (It.Typ) then
8233 Address_Descendant := True;
8234 Remove_Interp (I);
8235 exit;
8237 -- In Ada 2005, this operation does not participate in overload
8238 -- resolution. If the operation is defined in a predefined
8239 -- unit, it is one of the operations declared abstract in some
8240 -- variants of System, and it must be removed as well.
8242 elsif Ada_Version >= Ada_2005
8243 or else In_Predefined_Unit (It.Nam)
8244 then
8245 Remove_Interp (I);
8246 exit;
8247 end if;
8248 end if;
8250 Get_Next_Interp (I, It);
8251 end loop;
8253 if No (Abstract_Op) then
8255 -- If some interpretation yields an integer type, it is still
8256 -- possible that there are address interpretations. Remove them
8257 -- if one operand is a literal, to avoid spurious ambiguities
8258 -- on systems where Address is a visible integer type.
8260 if Is_Overloaded (N)
8261 and then Nkind (N) in N_Op
8262 and then Is_Integer_Type (Etype (N))
8263 then
8264 if Nkind (N) in N_Binary_Op then
8265 if Nkind (Right_Opnd (N)) = N_Integer_Literal then
8266 Remove_Address_Interpretations (Second_Op);
8268 elsif Nkind (Left_Opnd (N)) = N_Integer_Literal then
8269 Remove_Address_Interpretations (First_Op);
8270 end if;
8271 end if;
8272 end if;
8274 elsif Nkind (N) in N_Op then
8276 -- Remove interpretations that treat literals as addresses. This
8277 -- is never appropriate, even when Address is defined as a visible
8278 -- Integer type. The reason is that we would really prefer Address
8279 -- to behave as a private type, even in this case. If Address is a
8280 -- visible integer type, we get lots of overload ambiguities.
8282 if Nkind (N) in N_Binary_Op then
8283 declare
8284 U1 : constant Boolean :=
8285 Present (Universal_Interpretation (Right_Opnd (N)));
8286 U2 : constant Boolean :=
8287 Present (Universal_Interpretation (Left_Opnd (N)));
8289 begin
8290 if U1 then
8291 Remove_Address_Interpretations (Second_Op);
8292 end if;
8294 if U2 then
8295 Remove_Address_Interpretations (First_Op);
8296 end if;
8298 if not (U1 and U2) then
8300 -- Remove corresponding predefined operator, which is
8301 -- always added to the overload set.
8303 Get_First_Interp (N, I, It);
8304 while Present (It.Nam) loop
8305 if Scope (It.Nam) = Standard_Standard
8306 and then Base_Type (It.Typ) =
8307 Base_Type (Etype (Abstract_Op))
8308 then
8309 Remove_Interp (I);
8310 end if;
8312 Get_Next_Interp (I, It);
8313 end loop;
8315 elsif Is_Overloaded (N)
8316 and then Present (Univ_Type)
8317 then
8318 -- If both operands have a universal interpretation,
8319 -- it is still necessary to remove interpretations that
8320 -- yield Address. Any remaining ambiguities will be
8321 -- removed in Disambiguate.
8323 Get_First_Interp (N, I, It);
8324 while Present (It.Nam) loop
8325 if Is_Descendant_Of_Address (It.Typ) then
8326 Remove_Interp (I);
8328 elsif not Is_Type (It.Nam) then
8329 Set_Entity (N, It.Nam);
8330 end if;
8332 Get_Next_Interp (I, It);
8333 end loop;
8334 end if;
8335 end;
8336 end if;
8338 elsif Nkind (N) = N_Function_Call
8339 and then
8340 (Nkind (Name (N)) = N_Operator_Symbol
8341 or else
8342 (Nkind (Name (N)) = N_Expanded_Name
8343 and then
8344 Nkind (Selector_Name (Name (N))) = N_Operator_Symbol))
8345 then
8347 declare
8348 Arg1 : constant Node_Id := First (Parameter_Associations (N));
8349 U1 : constant Boolean :=
8350 Present (Universal_Interpretation (Arg1));
8351 U2 : constant Boolean :=
8352 Present (Next (Arg1)) and then
8353 Present (Universal_Interpretation (Next (Arg1)));
8355 begin
8356 if U1 then
8357 Remove_Address_Interpretations (First_Op);
8358 end if;
8360 if U2 then
8361 Remove_Address_Interpretations (Second_Op);
8362 end if;
8364 if not (U1 and U2) then
8365 Get_First_Interp (N, I, It);
8366 while Present (It.Nam) loop
8367 if Scope (It.Nam) = Standard_Standard
8368 and then It.Typ = Base_Type (Etype (Abstract_Op))
8369 then
8370 Remove_Interp (I);
8371 end if;
8373 Get_Next_Interp (I, It);
8374 end loop;
8375 end if;
8376 end;
8377 end if;
8379 -- If the removal has left no valid interpretations, emit an error
8380 -- message now and label node as illegal.
8382 if Present (Abstract_Op) then
8383 Get_First_Interp (N, I, It);
8385 if No (It.Nam) then
8387 -- Removal of abstract operation left no viable candidate
8389 Nondispatching_Call_To_Abstract_Operation (N, Abstract_Op);
8391 -- In Ada 2005, an abstract operation may disable predefined
8392 -- operators. Since the context is not yet known, we mark the
8393 -- predefined operators as potentially hidden. Do not include
8394 -- predefined operators when addresses are involved since this
8395 -- case is handled separately.
8397 elsif Ada_Version >= Ada_2005 and then not Address_Descendant then
8398 while Present (It.Nam) loop
8399 if Is_Numeric_Type (It.Typ)
8400 and then Scope (It.Typ) = Standard_Standard
8401 and then Ekind (It.Nam) = E_Operator
8402 then
8403 Set_Abstract_Op (I, Abstract_Op);
8404 end if;
8406 Get_Next_Interp (I, It);
8407 end loop;
8408 end if;
8409 end if;
8411 if Debug_Flag_V then
8412 Write_Line ("Remove_Abstract_Operations done: ");
8413 Write_Overloads (N);
8414 end if;
8415 end if;
8416 end Remove_Abstract_Operations;
8418 ----------------------------
8419 -- Try_Container_Indexing --
8420 ----------------------------
8422 function Try_Container_Indexing
8423 (N : Node_Id;
8424 Prefix : Node_Id;
8425 Exprs : List_Id) return Boolean
8427 Pref_Typ : Entity_Id := Etype (Prefix);
8429 function Constant_Indexing_OK return Boolean;
8430 -- Constant_Indexing is legal if there is no Variable_Indexing defined
8431 -- for the type, or else node not a target of assignment, or an actual
8432 -- for an IN OUT or OUT formal (RM 4.1.6 (11)).
8434 function Expr_Matches_In_Formal
8435 (Subp : Entity_Id;
8436 Par : Node_Id) return Boolean;
8437 -- Find formal corresponding to given indexed component that is an
8438 -- actual in a call. Note that the enclosing subprogram call has not
8439 -- been analyzed yet, and the parameter list is not normalized, so
8440 -- that if the argument is a parameter association we must match it
8441 -- by name and not by position.
8443 function Find_Indexing_Operations
8444 (T : Entity_Id;
8445 Nam : Name_Id;
8446 Is_Constant : Boolean) return Node_Id;
8447 -- Return a reference to the primitive operation of type T denoted by
8448 -- name Nam. If the operation is overloaded, the reference carries all
8449 -- interpretations. Flag Is_Constant should be set when the context is
8450 -- constant indexing.
8452 --------------------------
8453 -- Constant_Indexing_OK --
8454 --------------------------
8456 function Constant_Indexing_OK return Boolean is
8457 Par : Node_Id;
8459 begin
8460 if No (Find_Value_Of_Aspect (Pref_Typ, Aspect_Variable_Indexing)) then
8461 return True;
8463 elsif not Is_Variable (Prefix) then
8464 return True;
8465 end if;
8467 Par := N;
8468 while Present (Par) loop
8469 if Nkind (Parent (Par)) = N_Assignment_Statement
8470 and then Par = Name (Parent (Par))
8471 then
8472 return False;
8474 -- The call may be overloaded, in which case we assume that its
8475 -- resolution does not depend on the type of the parameter that
8476 -- includes the indexing operation.
8478 elsif Nkind (Parent (Par)) in N_Subprogram_Call then
8480 if not Is_Entity_Name (Name (Parent (Par))) then
8482 -- ??? We don't know what to do with an N_Selected_Component
8483 -- node for a prefixed-notation call to AA.BB where AA's
8484 -- type is known, but BB has not yet been resolved. In that
8485 -- case, the preceding Is_Entity_Name call returns False.
8486 -- Incorrectly returning False here will usually work
8487 -- better than incorrectly returning True, so that's what
8488 -- we do for now.
8490 return False;
8491 end if;
8493 declare
8494 Proc : Entity_Id;
8496 begin
8497 -- We should look for an interpretation with the proper
8498 -- number of formals, and determine whether it is an
8499 -- In_Parameter, but for now we examine the formal that
8500 -- corresponds to the indexing, and assume that variable
8501 -- indexing is required if some interpretation has an
8502 -- assignable formal at that position. Still does not
8503 -- cover the most complex cases ???
8505 if Is_Overloaded (Name (Parent (Par))) then
8506 declare
8507 Proc : constant Node_Id := Name (Parent (Par));
8508 I : Interp_Index;
8509 It : Interp;
8511 begin
8512 Get_First_Interp (Proc, I, It);
8513 while Present (It.Nam) loop
8514 if not Expr_Matches_In_Formal (It.Nam, Par) then
8515 return False;
8516 end if;
8518 Get_Next_Interp (I, It);
8519 end loop;
8520 end;
8522 -- All interpretations have a matching in-mode formal
8524 return True;
8526 else
8527 Proc := Entity (Name (Parent (Par)));
8529 -- If this is an indirect call, get formals from
8530 -- designated type.
8532 if Is_Access_Subprogram_Type (Etype (Proc)) then
8533 Proc := Designated_Type (Etype (Proc));
8534 end if;
8535 end if;
8537 return Expr_Matches_In_Formal (Proc, Par);
8538 end;
8540 elsif Nkind (Parent (Par)) = N_Object_Renaming_Declaration then
8541 return False;
8543 -- If the indexed component is a prefix it may be the first actual
8544 -- of a prefixed call. Retrieve the called entity, if any, and
8545 -- check its first formal. Determine if the context is a procedure
8546 -- or function call.
8548 elsif Nkind (Parent (Par)) = N_Selected_Component then
8549 declare
8550 Sel : constant Node_Id := Selector_Name (Parent (Par));
8551 Nam : constant Entity_Id := Current_Entity (Sel);
8553 begin
8554 if Present (Nam) and then Is_Overloadable (Nam) then
8555 if Nkind (Parent (Parent (Par))) =
8556 N_Procedure_Call_Statement
8557 then
8558 return False;
8560 elsif Ekind (Nam) = E_Function
8561 and then Present (First_Formal (Nam))
8562 then
8563 return Ekind (First_Formal (Nam)) = E_In_Parameter;
8564 end if;
8565 end if;
8566 end;
8568 elsif Nkind (Par) in N_Op then
8569 return True;
8570 end if;
8572 Par := Parent (Par);
8573 end loop;
8575 -- In all other cases, constant indexing is legal
8577 return True;
8578 end Constant_Indexing_OK;
8580 ----------------------------
8581 -- Expr_Matches_In_Formal --
8582 ----------------------------
8584 function Expr_Matches_In_Formal
8585 (Subp : Entity_Id;
8586 Par : Node_Id) return Boolean
8588 Actual : Node_Id;
8589 Formal : Node_Id;
8591 begin
8592 Formal := First_Formal (Subp);
8593 Actual := First (Parameter_Associations ((Parent (Par))));
8595 if Nkind (Par) /= N_Parameter_Association then
8597 -- Match by position
8599 while Present (Actual) and then Present (Formal) loop
8600 exit when Actual = Par;
8601 Next (Actual);
8603 if Present (Formal) then
8604 Next_Formal (Formal);
8606 -- Otherwise this is a parameter mismatch, the error is
8607 -- reported elsewhere, or else variable indexing is implied.
8609 else
8610 return False;
8611 end if;
8612 end loop;
8614 else
8615 -- Match by name
8617 while Present (Formal) loop
8618 exit when Chars (Formal) = Chars (Selector_Name (Par));
8619 Next_Formal (Formal);
8621 if No (Formal) then
8622 return False;
8623 end if;
8624 end loop;
8625 end if;
8627 return Present (Formal) and then Ekind (Formal) = E_In_Parameter;
8628 end Expr_Matches_In_Formal;
8630 ------------------------------
8631 -- Find_Indexing_Operations --
8632 ------------------------------
8634 function Find_Indexing_Operations
8635 (T : Entity_Id;
8636 Nam : Name_Id;
8637 Is_Constant : Boolean) return Node_Id
8639 procedure Inspect_Declarations
8640 (Typ : Entity_Id;
8641 Ref : in out Node_Id);
8642 -- Traverse the declarative list where type Typ resides and collect
8643 -- all suitable interpretations in node Ref.
8645 procedure Inspect_Primitives
8646 (Typ : Entity_Id;
8647 Ref : in out Node_Id);
8648 -- Traverse the list of primitive operations of type Typ and collect
8649 -- all suitable interpretations in node Ref.
8651 function Is_OK_Candidate
8652 (Subp_Id : Entity_Id;
8653 Typ : Entity_Id) return Boolean;
8654 -- Determine whether subprogram Subp_Id is a suitable indexing
8655 -- operation for type Typ. To qualify as such, the subprogram must
8656 -- be a function, have at least two parameters, and the type of the
8657 -- first parameter must be either Typ, or Typ'Class, or access [to
8658 -- constant] with designated type Typ or Typ'Class.
8660 procedure Record_Interp (Subp_Id : Entity_Id; Ref : in out Node_Id);
8661 -- Store subprogram Subp_Id as an interpretation in node Ref
8663 --------------------------
8664 -- Inspect_Declarations --
8665 --------------------------
8667 procedure Inspect_Declarations
8668 (Typ : Entity_Id;
8669 Ref : in out Node_Id)
8671 Typ_Decl : constant Node_Id := Declaration_Node (Typ);
8672 Decl : Node_Id;
8673 Subp_Id : Entity_Id;
8675 begin
8676 -- Ensure that the routine is not called with itypes, which lack a
8677 -- declarative node.
8679 pragma Assert (Present (Typ_Decl));
8680 pragma Assert (Is_List_Member (Typ_Decl));
8682 Decl := First (List_Containing (Typ_Decl));
8683 while Present (Decl) loop
8684 if Nkind (Decl) = N_Subprogram_Declaration then
8685 Subp_Id := Defining_Entity (Decl);
8687 if Is_OK_Candidate (Subp_Id, Typ) then
8688 Record_Interp (Subp_Id, Ref);
8689 end if;
8690 end if;
8692 Next (Decl);
8693 end loop;
8694 end Inspect_Declarations;
8696 ------------------------
8697 -- Inspect_Primitives --
8698 ------------------------
8700 procedure Inspect_Primitives
8701 (Typ : Entity_Id;
8702 Ref : in out Node_Id)
8704 Prim_Elmt : Elmt_Id;
8705 Prim_Id : Entity_Id;
8707 begin
8708 Prim_Elmt := First_Elmt (Primitive_Operations (Typ));
8709 while Present (Prim_Elmt) loop
8710 Prim_Id := Node (Prim_Elmt);
8712 if Is_OK_Candidate (Prim_Id, Typ) then
8713 Record_Interp (Prim_Id, Ref);
8714 end if;
8716 Next_Elmt (Prim_Elmt);
8717 end loop;
8718 end Inspect_Primitives;
8720 ---------------------
8721 -- Is_OK_Candidate --
8722 ---------------------
8724 function Is_OK_Candidate
8725 (Subp_Id : Entity_Id;
8726 Typ : Entity_Id) return Boolean
8728 Formal : Entity_Id;
8729 Formal_Typ : Entity_Id;
8730 Param_Typ : Node_Id;
8732 begin
8733 -- To classify as a suitable candidate, the subprogram must be a
8734 -- function whose name matches the argument of aspect Constant or
8735 -- Variable_Indexing.
8737 if Ekind (Subp_Id) = E_Function and then Chars (Subp_Id) = Nam then
8738 Formal := First_Formal (Subp_Id);
8740 -- The candidate requires at least two parameters
8742 if Present (Formal) and then Present (Next_Formal (Formal)) then
8743 Formal_Typ := Empty;
8744 Param_Typ := Parameter_Type (Parent (Formal));
8746 -- Use the designated type when the first parameter is of an
8747 -- access type.
8749 if Nkind (Param_Typ) = N_Access_Definition
8750 and then Present (Subtype_Mark (Param_Typ))
8751 then
8752 -- When the context is a constant indexing, the access
8753 -- definition must be access-to-constant. This does not
8754 -- apply to variable indexing.
8756 if not Is_Constant
8757 or else Constant_Present (Param_Typ)
8758 then
8759 Formal_Typ := Etype (Subtype_Mark (Param_Typ));
8760 end if;
8762 -- Otherwise use the parameter type
8764 else
8765 Formal_Typ := Etype (Param_Typ);
8766 end if;
8768 if Present (Formal_Typ) then
8770 -- Use the specific type when the parameter type is
8771 -- class-wide.
8773 if Is_Class_Wide_Type (Formal_Typ) then
8774 Formal_Typ := Etype (Base_Type (Formal_Typ));
8775 end if;
8777 -- Use the full view when the parameter type is private
8778 -- or incomplete.
8780 if Is_Incomplete_Or_Private_Type (Formal_Typ)
8781 and then Present (Full_View (Formal_Typ))
8782 then
8783 Formal_Typ := Full_View (Formal_Typ);
8784 end if;
8786 -- The type of the first parameter must denote the type
8787 -- of the container or acts as its ancestor type.
8789 return
8790 Formal_Typ = Typ
8791 or else Is_Ancestor (Formal_Typ, Typ);
8792 end if;
8793 end if;
8794 end if;
8796 return False;
8797 end Is_OK_Candidate;
8799 -------------------
8800 -- Record_Interp --
8801 -------------------
8803 procedure Record_Interp (Subp_Id : Entity_Id; Ref : in out Node_Id) is
8804 begin
8805 if Present (Ref) then
8806 Add_One_Interp (Ref, Subp_Id, Etype (Subp_Id));
8808 -- Otherwise this is the first interpretation. Create a reference
8809 -- where all remaining interpretations will be collected.
8811 else
8812 Ref := New_Occurrence_Of (Subp_Id, Sloc (T));
8813 end if;
8814 end Record_Interp;
8816 -- Local variables
8818 Ref : Node_Id;
8819 Typ : Entity_Id;
8821 -- Start of processing for Find_Indexing_Operations
8823 begin
8824 Typ := T;
8826 -- Use the specific type when the parameter type is class-wide
8828 if Is_Class_Wide_Type (Typ) then
8829 Typ := Root_Type (Typ);
8830 end if;
8832 Ref := Empty;
8833 Typ := Underlying_Type (Base_Type (Typ));
8835 Inspect_Primitives (Typ, Ref);
8837 -- Now look for explicit declarations of an indexing operation.
8838 -- If the type is private the operation may be declared in the
8839 -- visible part that contains the partial view.
8841 if Is_Private_Type (T) then
8842 Inspect_Declarations (T, Ref);
8843 end if;
8845 Inspect_Declarations (Typ, Ref);
8847 return Ref;
8848 end Find_Indexing_Operations;
8850 -- Local variables
8852 Loc : constant Source_Ptr := Sloc (N);
8853 Assoc : List_Id;
8854 C_Type : Entity_Id;
8855 Func : Entity_Id;
8856 Func_Name : Node_Id;
8857 Indexing : Node_Id;
8859 Is_Constant_Indexing : Boolean := False;
8860 -- This flag reflects the nature of the container indexing. Note that
8861 -- the context may be suited for constant indexing, but the type may
8862 -- lack a Constant_Indexing annotation.
8864 -- Start of processing for Try_Container_Indexing
8866 begin
8867 -- Node may have been analyzed already when testing for a prefixed
8868 -- call, in which case do not redo analysis.
8870 if Present (Generalized_Indexing (N)) then
8871 return True;
8872 end if;
8874 -- An explicit dereference needs to be created in the case of a prefix
8875 -- that's an access.
8877 -- It seems that this should be done elsewhere, but not clear where that
8878 -- should happen. Normally Insert_Explicit_Dereference is called via
8879 -- Resolve_Implicit_Dereference, called from Resolve_Indexed_Component,
8880 -- but that won't be called in this case because we transform the
8881 -- indexing to a call. Resolve_Call.Check_Prefixed_Call takes care of
8882 -- implicit dereferencing and referencing on prefixed calls, but that
8883 -- would be too late, even if we expanded to a prefix call, because
8884 -- Process_Indexed_Component will flag an error before the resolution
8885 -- happens. ???
8887 if Is_Access_Type (Pref_Typ) then
8888 Pref_Typ := Implicitly_Designated_Type (Pref_Typ);
8889 Insert_Explicit_Dereference (Prefix);
8890 Error_Msg_NW (Warn_On_Dereference, "?d?implicit dereference", N);
8891 end if;
8893 C_Type := Pref_Typ;
8895 -- If indexing a class-wide container, obtain indexing primitive from
8896 -- specific type.
8898 if Is_Class_Wide_Type (C_Type) then
8899 C_Type := Etype (Base_Type (C_Type));
8900 end if;
8902 -- Check whether the type has a specified indexing aspect
8904 Func_Name := Empty;
8906 -- The context is suitable for constant indexing, so obtain the name of
8907 -- the indexing function from aspect Constant_Indexing.
8909 if Constant_Indexing_OK then
8910 Func_Name :=
8911 Find_Value_Of_Aspect (Pref_Typ, Aspect_Constant_Indexing);
8912 end if;
8914 if Present (Func_Name) then
8915 Is_Constant_Indexing := True;
8917 -- Otherwise attempt variable indexing
8919 else
8920 Func_Name :=
8921 Find_Value_Of_Aspect (Pref_Typ, Aspect_Variable_Indexing);
8922 end if;
8924 -- The type is not subject to either form of indexing, therefore the
8925 -- indexed component does not denote container indexing. If this is a
8926 -- true error, it is diagnosed by the caller.
8928 if No (Func_Name) then
8930 -- The prefix itself may be an indexing of a container. Rewrite it
8931 -- as such and retry.
8933 if Has_Implicit_Dereference (Pref_Typ) then
8934 Build_Explicit_Dereference
8935 (Prefix, Get_Reference_Discriminant (Pref_Typ));
8936 return Try_Container_Indexing (N, Prefix, Exprs);
8938 -- Otherwise this is definitely not container indexing
8940 else
8941 return False;
8942 end if;
8944 -- If the container type is derived from another container type, the
8945 -- value of the inherited aspect is the Reference operation declared
8946 -- for the parent type.
8948 -- However, Reference is also a primitive operation of the type, and the
8949 -- inherited operation has a different signature. We retrieve the right
8950 -- ones (the function may be overloaded) from the list of primitive
8951 -- operations of the derived type.
8953 -- Note that predefined containers are typically all derived from one of
8954 -- the Controlled types. The code below is motivated by containers that
8955 -- are derived from other types with a Reference aspect.
8956 -- Note as well that we need to examine the base type, given that
8957 -- the container object may be a constrained subtype or itype that
8958 -- does not have an explicit declaration.
8960 elsif Is_Derived_Type (C_Type)
8961 and then Etype (First_Formal (Entity (Func_Name))) /= Pref_Typ
8962 then
8963 Func_Name :=
8964 Find_Indexing_Operations
8965 (T => Base_Type (C_Type),
8966 Nam => Chars (Func_Name),
8967 Is_Constant => Is_Constant_Indexing);
8968 end if;
8970 Assoc := New_List (Relocate_Node (Prefix));
8972 -- A generalized indexing may have nore than one index expression, so
8973 -- transfer all of them to the argument list to be used in the call.
8974 -- Note that there may be named associations, in which case the node
8975 -- was rewritten earlier as a call, and has been transformed back into
8976 -- an indexed expression to share the following processing.
8978 -- The generalized indexing node is the one on which analysis and
8979 -- resolution take place. Before expansion the original node is replaced
8980 -- with the generalized indexing node, which is a call, possibly with a
8981 -- dereference operation.
8983 -- Create argument list for function call that represents generalized
8984 -- indexing. Note that indices (i.e. actuals) may themselves be
8985 -- overloaded.
8987 declare
8988 Arg : Node_Id;
8989 New_Arg : Node_Id;
8991 begin
8992 Arg := First (Exprs);
8993 while Present (Arg) loop
8994 New_Arg := Relocate_Node (Arg);
8996 -- The arguments can be parameter associations, in which case the
8997 -- explicit actual parameter carries the overloadings.
8999 if Nkind (New_Arg) /= N_Parameter_Association then
9000 Save_Interps (Arg, New_Arg);
9001 end if;
9003 Append (New_Arg, Assoc);
9004 Next (Arg);
9005 end loop;
9006 end;
9008 if not Is_Overloaded (Func_Name) then
9009 Func := Entity (Func_Name);
9011 -- Can happen in case of e.g. cascaded errors
9013 if No (Func) then
9014 return False;
9015 end if;
9017 Indexing :=
9018 Make_Function_Call (Loc,
9019 Name => New_Occurrence_Of (Func, Loc),
9020 Parameter_Associations => Assoc);
9022 Set_Parent (Indexing, Parent (N));
9023 Set_Generalized_Indexing (N, Indexing);
9024 Analyze (Indexing);
9025 Set_Etype (N, Etype (Indexing));
9027 -- If the return type of the indexing function is a reference type,
9028 -- add the dereference as a possible interpretation. Note that the
9029 -- indexing aspect may be a function that returns the element type
9030 -- with no intervening implicit dereference, and that the reference
9031 -- discriminant is not the first discriminant.
9033 if Has_Discriminants (Etype (Func)) then
9034 Check_Implicit_Dereference (N, Etype (Func));
9035 end if;
9037 else
9038 -- If there are multiple indexing functions, build a function call
9039 -- and analyze it for each of the possible interpretations.
9041 Indexing :=
9042 Make_Function_Call (Loc,
9043 Name =>
9044 Make_Identifier (Loc, Chars (Func_Name)),
9045 Parameter_Associations => Assoc);
9046 Set_Parent (Indexing, Parent (N));
9047 Set_Generalized_Indexing (N, Indexing);
9048 Set_Etype (N, Any_Type);
9049 Set_Etype (Name (Indexing), Any_Type);
9051 declare
9052 I : Interp_Index;
9053 It : Interp;
9054 Success : Boolean;
9056 begin
9057 Get_First_Interp (Func_Name, I, It);
9058 Set_Etype (Indexing, Any_Type);
9060 -- Analyze each candidate function with the given actuals
9062 while Present (It.Nam) loop
9063 Analyze_One_Call (Indexing, It.Nam, False, Success);
9064 Get_Next_Interp (I, It);
9065 end loop;
9067 -- If there are several successful candidates, resolution will
9068 -- be by result. Mark the interpretations of the function name
9069 -- itself.
9071 if Is_Overloaded (Indexing) then
9072 Get_First_Interp (Indexing, I, It);
9074 while Present (It.Nam) loop
9075 Add_One_Interp (Name (Indexing), It.Nam, It.Typ);
9076 Get_Next_Interp (I, It);
9077 end loop;
9079 else
9080 Set_Etype (Name (Indexing), Etype (Indexing));
9081 end if;
9083 -- Now add the candidate interpretations to the indexing node
9084 -- itself, to be replaced later by the function call.
9086 if Is_Overloaded (Name (Indexing)) then
9087 Get_First_Interp (Name (Indexing), I, It);
9089 while Present (It.Nam) loop
9090 Add_One_Interp (N, It.Nam, It.Typ);
9092 -- Add dereference interpretation if the result type has
9093 -- implicit reference discriminants.
9095 if Has_Discriminants (Etype (It.Nam)) then
9096 Check_Implicit_Dereference (N, Etype (It.Nam));
9097 end if;
9099 Get_Next_Interp (I, It);
9100 end loop;
9102 else
9103 Set_Etype (N, Etype (Name (Indexing)));
9104 if Has_Discriminants (Etype (N)) then
9105 Check_Implicit_Dereference (N, Etype (N));
9106 end if;
9107 end if;
9108 end;
9109 end if;
9111 if Etype (Indexing) = Any_Type then
9112 Error_Msg_NE
9113 ("container cannot be indexed with&", N, Etype (First (Exprs)));
9114 Rewrite (N, New_Occurrence_Of (Any_Id, Loc));
9115 end if;
9117 return True;
9118 end Try_Container_Indexing;
9120 -----------------------
9121 -- Try_Indirect_Call --
9122 -----------------------
9124 function Try_Indirect_Call
9125 (N : Node_Id;
9126 Nam : Entity_Id;
9127 Typ : Entity_Id) return Boolean
9129 Actual : Node_Id;
9130 Formal : Entity_Id;
9132 Call_OK : Boolean;
9133 pragma Warnings (Off, Call_OK);
9135 begin
9136 Normalize_Actuals (N, Designated_Type (Typ), False, Call_OK);
9138 Actual := First_Actual (N);
9139 Formal := First_Formal (Designated_Type (Typ));
9140 while Present (Actual) and then Present (Formal) loop
9141 if not Has_Compatible_Type (Actual, Etype (Formal)) then
9142 return False;
9143 end if;
9145 Next (Actual);
9146 Next_Formal (Formal);
9147 end loop;
9149 if No (Actual) and then No (Formal) then
9150 Add_One_Interp (N, Nam, Etype (Designated_Type (Typ)));
9152 -- Nam is a candidate interpretation for the name in the call,
9153 -- if it is not an indirect call.
9155 if not Is_Type (Nam)
9156 and then Is_Entity_Name (Name (N))
9157 then
9158 Set_Entity (Name (N), Nam);
9159 end if;
9161 return True;
9163 else
9164 return False;
9165 end if;
9166 end Try_Indirect_Call;
9168 ----------------------
9169 -- Try_Indexed_Call --
9170 ----------------------
9172 function Try_Indexed_Call
9173 (N : Node_Id;
9174 Nam : Entity_Id;
9175 Typ : Entity_Id;
9176 Skip_First : Boolean) return Boolean
9178 Loc : constant Source_Ptr := Sloc (N);
9179 Actuals : constant List_Id := Parameter_Associations (N);
9180 Actual : Node_Id;
9181 Index : Entity_Id;
9183 begin
9184 Actual := First (Actuals);
9186 -- If the call was originally written in prefix form, skip the first
9187 -- actual, which is obviously not defaulted.
9189 if Skip_First then
9190 Next (Actual);
9191 end if;
9193 Index := First_Index (Typ);
9194 while Present (Actual) and then Present (Index) loop
9196 -- If the parameter list has a named association, the expression
9197 -- is definitely a call and not an indexed component.
9199 if Nkind (Actual) = N_Parameter_Association then
9200 return False;
9201 end if;
9203 if Is_Entity_Name (Actual)
9204 and then Is_Type (Entity (Actual))
9205 and then No (Next (Actual))
9206 then
9207 -- A single actual that is a type name indicates a slice if the
9208 -- type is discrete, and an error otherwise.
9210 if Is_Discrete_Type (Entity (Actual)) then
9211 Rewrite (N,
9212 Make_Slice (Loc,
9213 Prefix =>
9214 Make_Function_Call (Loc,
9215 Name => Relocate_Node (Name (N))),
9216 Discrete_Range =>
9217 New_Occurrence_Of (Entity (Actual), Sloc (Actual))));
9219 Analyze (N);
9221 else
9222 Error_Msg_N ("invalid use of type in expression", Actual);
9223 Set_Etype (N, Any_Type);
9224 end if;
9226 return True;
9228 elsif not Has_Compatible_Type (Actual, Etype (Index)) then
9229 return False;
9230 end if;
9232 Next (Actual);
9233 Next_Index (Index);
9234 end loop;
9236 if No (Actual) and then No (Index) then
9237 Add_One_Interp (N, Nam, Component_Type (Typ));
9239 -- Nam is a candidate interpretation for the name in the call,
9240 -- if it is not an indirect call.
9242 if not Is_Type (Nam)
9243 and then Is_Entity_Name (Name (N))
9244 then
9245 Set_Entity (Name (N), Nam);
9246 end if;
9248 return True;
9249 else
9250 return False;
9251 end if;
9252 end Try_Indexed_Call;
9254 --------------------------
9255 -- Try_Object_Operation --
9256 --------------------------
9258 function Try_Object_Operation
9259 (N : Node_Id;
9260 CW_Test_Only : Boolean := False;
9261 Allow_Extensions : Boolean := False) return Boolean
9263 K : constant Node_Kind := Nkind (Parent (N));
9264 Is_Subprg_Call : constant Boolean := K in N_Subprogram_Call;
9265 Loc : constant Source_Ptr := Sloc (N);
9266 Obj : constant Node_Id := Prefix (N);
9268 Subprog : constant Node_Id :=
9269 Make_Identifier (Sloc (Selector_Name (N)),
9270 Chars => Chars (Selector_Name (N)));
9271 -- Identifier on which possible interpretations will be collected
9273 Report_Error : Boolean := False;
9274 -- If no candidate interpretation matches the context, redo analysis
9275 -- with Report_Error True to provide additional information.
9277 Actual : Node_Id;
9278 Candidate : Entity_Id := Empty;
9279 New_Call_Node : Node_Id := Empty;
9280 Node_To_Replace : Node_Id;
9281 Obj_Type : Entity_Id := Etype (Obj);
9282 Success : Boolean := False;
9284 procedure Complete_Object_Operation
9285 (Call_Node : Node_Id;
9286 Node_To_Replace : Node_Id);
9287 -- Make Subprog the name of Call_Node, replace Node_To_Replace with
9288 -- Call_Node, insert the object (or its dereference) as the first actual
9289 -- in the call, and complete the analysis of the call.
9291 procedure Report_Ambiguity (Op : Entity_Id);
9292 -- If a prefixed procedure call is ambiguous, indicate whether the call
9293 -- includes an implicit dereference or an implicit 'Access.
9295 procedure Transform_Object_Operation
9296 (Call_Node : out Node_Id;
9297 Node_To_Replace : out Node_Id);
9298 -- Transform Obj.Operation (X, Y, ...) into Operation (Obj, X, Y ...).
9299 -- Call_Node is the resulting subprogram call, Node_To_Replace is
9300 -- either N or the parent of N, and Subprog is a reference to the
9301 -- subprogram we are trying to match. Note that the transformation
9302 -- may be partially destructive for the parent of N, so it needs to
9303 -- be undone in the case where Try_Object_Operation returns false.
9305 function Try_Class_Wide_Operation
9306 (Call_Node : Node_Id;
9307 Node_To_Replace : Node_Id) return Boolean;
9308 -- Traverse all ancestor types looking for a class-wide subprogram for
9309 -- which the current operation is a valid non-dispatching call.
9311 procedure Try_One_Prefix_Interpretation (T : Entity_Id);
9312 -- If prefix is overloaded, its interpretation may include different
9313 -- tagged types, and we must examine the primitive operations and the
9314 -- class-wide operations of each in order to find candidate
9315 -- interpretations for the call as a whole.
9317 function Try_Primitive_Operation
9318 (Call_Node : Node_Id;
9319 Node_To_Replace : Node_Id) return Boolean;
9320 -- Traverse the list of primitive subprograms looking for a dispatching
9321 -- operation for which the current node is a valid call.
9323 function Valid_Candidate
9324 (Success : Boolean;
9325 Call : Node_Id;
9326 Subp : Entity_Id) return Entity_Id;
9327 -- If the subprogram is a valid interpretation, record it, and add to
9328 -- the list of interpretations of Subprog. Otherwise return Empty.
9330 -------------------------------
9331 -- Complete_Object_Operation --
9332 -------------------------------
9334 procedure Complete_Object_Operation
9335 (Call_Node : Node_Id;
9336 Node_To_Replace : Node_Id)
9338 Control : constant Entity_Id := First_Formal (Entity (Subprog));
9339 Formal_Type : constant Entity_Id := Etype (Control);
9340 First_Actual : Node_Id;
9342 begin
9343 -- Place the name of the operation, with its interpretations,
9344 -- on the rewritten call.
9346 Set_Name (Call_Node, Subprog);
9348 First_Actual := First (Parameter_Associations (Call_Node));
9350 -- For cross-reference purposes, treat the new node as being in the
9351 -- source if the original one is. Set entity and type, even though
9352 -- they may be overwritten during resolution if overloaded.
9354 Set_Comes_From_Source (Subprog, Comes_From_Source (N));
9355 Set_Comes_From_Source (Call_Node, Comes_From_Source (N));
9357 if Nkind (N) = N_Selected_Component
9358 and then not Inside_A_Generic
9359 then
9360 Set_Entity (Selector_Name (N), Entity (Subprog));
9361 Set_Etype (Selector_Name (N), Etype (Entity (Subprog)));
9362 end if;
9364 -- If need be, rewrite first actual as an explicit dereference. If
9365 -- the call is overloaded, the rewriting can only be done once the
9366 -- primitive operation is identified.
9368 if Is_Overloaded (Subprog) then
9370 -- The prefix itself may be overloaded, and its interpretations
9371 -- must be propagated to the new actual in the call.
9373 if Is_Overloaded (Obj) then
9374 Save_Interps (Obj, First_Actual);
9375 end if;
9377 Rewrite (First_Actual, Obj);
9379 elsif not Is_Access_Type (Formal_Type)
9380 and then Is_Access_Type (Etype (Obj))
9381 then
9382 Rewrite (First_Actual,
9383 Make_Explicit_Dereference (Sloc (Obj), Obj));
9384 Analyze (First_Actual);
9386 -- If we need to introduce an explicit dereference, verify that
9387 -- the resulting actual is compatible with the mode of the formal.
9389 if Ekind (First_Formal (Entity (Subprog))) /= E_In_Parameter
9390 and then Is_Access_Constant (Etype (Obj))
9391 then
9392 Error_Msg_NE
9393 ("expect variable in call to&", Prefix (N), Entity (Subprog));
9394 end if;
9396 -- Conversely, if the formal is an access parameter and the object is
9397 -- not an access type or a reference type (i.e. a type with the
9398 -- Implicit_Dereference aspect specified), replace the actual with a
9399 -- 'Access reference. Its analysis will check that the object is
9400 -- aliased.
9402 elsif Is_Access_Type (Formal_Type)
9403 and then not Is_Access_Type (Etype (Obj))
9404 and then
9405 (not Has_Implicit_Dereference (Etype (Obj))
9406 or else
9407 not Is_Access_Type (Designated_Type (Etype
9408 (Get_Reference_Discriminant (Etype (Obj))))))
9409 then
9410 -- A special case: A.all'Access is illegal if A is an access to a
9411 -- constant and the context requires an access to a variable.
9413 if not Is_Access_Constant (Formal_Type) then
9414 if (Nkind (Obj) = N_Explicit_Dereference
9415 and then Is_Access_Constant (Etype (Prefix (Obj))))
9416 or else not Is_Variable (Obj)
9417 then
9418 Error_Msg_NE
9419 ("actual for & must be a variable", Obj, Control);
9420 end if;
9421 end if;
9423 Rewrite (First_Actual,
9424 Make_Attribute_Reference (Loc,
9425 Attribute_Name => Name_Access,
9426 Prefix => Relocate_Node (Obj)));
9428 -- If the object is not overloaded verify that taking access of
9429 -- it is legal. Otherwise check is made during resolution.
9431 if not Is_Overloaded (Obj)
9432 and then not Is_Aliased_View (Obj)
9433 then
9434 Error_Msg_NE
9435 ("object in prefixed call to & must be aliased "
9436 & "(RM 4.1.3 (13 1/2))", Prefix (First_Actual), Subprog);
9437 end if;
9439 Analyze (First_Actual);
9441 else
9442 if Is_Overloaded (Obj) then
9443 Save_Interps (Obj, First_Actual);
9444 end if;
9446 Rewrite (First_Actual, Obj);
9447 end if;
9449 if In_Extended_Main_Source_Unit (Current_Scope) then
9450 -- The operation is obtained from the dispatch table and not by
9451 -- visibility, and may be declared in a unit that is not
9452 -- explicitly referenced in the source, but is nevertheless
9453 -- required in the context of the current unit. Indicate that
9454 -- operation and its scope are referenced, to prevent spurious and
9455 -- misleading warnings. If the operation is overloaded, all
9456 -- primitives are in the same scope and we can use any of them.
9457 -- Don't do that outside the main unit since otherwise this will
9458 -- e.g. prevent the detection of some unused with clauses.
9460 Set_Referenced (Entity (Subprog), True);
9461 Set_Referenced (Scope (Entity (Subprog)), True);
9462 end if;
9464 Rewrite (Node_To_Replace, Call_Node);
9466 -- Propagate the interpretations collected in subprog to the new
9467 -- function call node, to be resolved from context.
9469 if Is_Overloaded (Subprog) then
9470 Save_Interps (Subprog, Node_To_Replace);
9472 else
9473 Analyze (Node_To_Replace);
9475 -- If the operation has been rewritten into a call, which may get
9476 -- subsequently an explicit dereference, preserve the type on the
9477 -- original node (selected component or indexed component) for
9478 -- subsequent legality tests, e.g. Is_Variable. which examines
9479 -- the original node.
9481 if Nkind (Node_To_Replace) = N_Function_Call then
9482 Set_Etype
9483 (Original_Node (Node_To_Replace), Etype (Node_To_Replace));
9484 end if;
9485 end if;
9486 end Complete_Object_Operation;
9488 ----------------------
9489 -- Report_Ambiguity --
9490 ----------------------
9492 procedure Report_Ambiguity (Op : Entity_Id) is
9493 Access_Actual : constant Boolean :=
9494 Is_Access_Type (Etype (Prefix (N)));
9495 Access_Formal : Boolean := False;
9497 begin
9498 Error_Msg_Sloc := Sloc (Op);
9500 if Present (First_Formal (Op)) then
9501 Access_Formal := Is_Access_Type (Etype (First_Formal (Op)));
9502 end if;
9504 if Access_Formal and then not Access_Actual then
9505 if Nkind (Parent (Op)) = N_Full_Type_Declaration then
9506 Error_Msg_N
9507 ("\possible interpretation "
9508 & "(inherited, with implicit 'Access) #", N);
9509 else
9510 Error_Msg_N
9511 ("\possible interpretation (with implicit 'Access) #", N);
9512 end if;
9514 elsif not Access_Formal and then Access_Actual then
9515 if Nkind (Parent (Op)) = N_Full_Type_Declaration then
9516 Error_Msg_N
9517 ("\possible interpretation "
9518 & "(inherited, with implicit dereference) #", N);
9519 else
9520 Error_Msg_N
9521 ("\possible interpretation (with implicit dereference) #", N);
9522 end if;
9524 else
9525 if Nkind (Parent (Op)) = N_Full_Type_Declaration then
9526 Error_Msg_N ("\possible interpretation (inherited)#", N);
9527 else
9528 Error_Msg_N -- CODEFIX
9529 ("\possible interpretation#", N);
9530 end if;
9531 end if;
9532 end Report_Ambiguity;
9534 --------------------------------
9535 -- Transform_Object_Operation --
9536 --------------------------------
9538 procedure Transform_Object_Operation
9539 (Call_Node : out Node_Id;
9540 Node_To_Replace : out Node_Id)
9542 Dummy : constant Node_Id := New_Copy (Obj);
9543 -- Placeholder used as a first parameter in the call, replaced
9544 -- eventually by the proper object.
9546 Parent_Node : constant Node_Id := Parent (N);
9548 Actual : Node_Id;
9549 Actuals : List_Id;
9551 begin
9552 -- Common case covering 1) Call to a procedure and 2) Call to a
9553 -- function that has some additional actuals.
9555 if Nkind (Parent_Node) in N_Subprogram_Call
9557 -- N is a selected component node containing the name of the
9558 -- subprogram. If N is not the name of the parent node we must
9559 -- not replace the parent node by the new construct. This case
9560 -- occurs when N is a parameterless call to a subprogram that
9561 -- is an actual parameter of a call to another subprogram. For
9562 -- example:
9563 -- Some_Subprogram (..., Obj.Operation, ...)
9565 and then N = Name (Parent_Node)
9566 then
9567 Node_To_Replace := Parent_Node;
9569 Actuals := Parameter_Associations (Parent_Node);
9571 if Present (Actuals) then
9572 Prepend (Dummy, Actuals);
9573 else
9574 Actuals := New_List (Dummy);
9575 end if;
9577 if Nkind (Parent_Node) = N_Procedure_Call_Statement then
9578 Call_Node :=
9579 Make_Procedure_Call_Statement (Loc,
9580 Name => New_Copy (Subprog),
9581 Parameter_Associations => Actuals);
9583 else
9584 Call_Node :=
9585 Make_Function_Call (Loc,
9586 Name => New_Copy (Subprog),
9587 Parameter_Associations => Actuals);
9588 end if;
9590 -- Before analysis, a function call appears as an indexed component
9591 -- if there are no named associations.
9593 elsif Nkind (Parent_Node) = N_Indexed_Component
9594 and then N = Prefix (Parent_Node)
9595 then
9596 Node_To_Replace := Parent_Node;
9597 Actuals := Expressions (Parent_Node);
9599 Actual := First (Actuals);
9600 while Present (Actual) loop
9601 Analyze (Actual);
9602 Next (Actual);
9603 end loop;
9605 Prepend (Dummy, Actuals);
9607 Call_Node :=
9608 Make_Function_Call (Loc,
9609 Name => New_Copy (Subprog),
9610 Parameter_Associations => Actuals);
9612 -- Parameterless call: Obj.F is rewritten as F (Obj)
9614 else
9615 Node_To_Replace := N;
9617 Call_Node :=
9618 Make_Function_Call (Loc,
9619 Name => New_Copy (Subprog),
9620 Parameter_Associations => New_List (Dummy));
9621 end if;
9622 end Transform_Object_Operation;
9624 ------------------------------
9625 -- Try_Class_Wide_Operation --
9626 ------------------------------
9628 function Try_Class_Wide_Operation
9629 (Call_Node : Node_Id;
9630 Node_To_Replace : Node_Id) return Boolean
9632 Anc_Type : Entity_Id;
9633 Matching_Op : Entity_Id := Empty;
9634 Error : Boolean;
9636 procedure Traverse_Homonyms
9637 (Anc_Type : Entity_Id;
9638 Error : out Boolean);
9639 -- Traverse the homonym chain of the subprogram searching for those
9640 -- homonyms whose first formal has the Anc_Type's class-wide type,
9641 -- or an anonymous access type designating the class-wide type. If
9642 -- an ambiguity is detected, then Error is set to True.
9644 procedure Traverse_Interfaces
9645 (Anc_Type : Entity_Id;
9646 Error : out Boolean);
9647 -- Traverse the list of interfaces, if any, associated with Anc_Type
9648 -- and search for acceptable class-wide homonyms associated with each
9649 -- interface. If an ambiguity is detected, then Error is set to True.
9651 -----------------------
9652 -- Traverse_Homonyms --
9653 -----------------------
9655 procedure Traverse_Homonyms
9656 (Anc_Type : Entity_Id;
9657 Error : out Boolean)
9659 function First_Formal_Match
9660 (Subp_Id : Entity_Id;
9661 Typ : Entity_Id) return Boolean;
9662 -- Predicate to verify that the first foramal of class-wide
9663 -- subprogram Subp_Id matches type Typ of the prefix.
9665 ------------------------
9666 -- First_Formal_Match --
9667 ------------------------
9669 function First_Formal_Match
9670 (Subp_Id : Entity_Id;
9671 Typ : Entity_Id) return Boolean
9673 Ctrl : constant Entity_Id := First_Formal (Subp_Id);
9675 begin
9676 return
9677 Present (Ctrl)
9678 and then
9679 (Base_Type (Etype (Ctrl)) = Typ
9680 or else
9681 (Ekind (Etype (Ctrl)) = E_Anonymous_Access_Type
9682 and then
9683 Base_Type (Designated_Type (Etype (Ctrl))) =
9684 Typ));
9685 end First_Formal_Match;
9687 -- Local variables
9689 CW_Typ : constant Entity_Id := Class_Wide_Type (Anc_Type);
9691 Candidate : Entity_Id;
9692 -- If homonym is a renaming, examine the renamed program
9694 Hom : Entity_Id;
9695 Hom_Ref : Node_Id;
9696 Success : Boolean;
9698 -- Start of processing for Traverse_Homonyms
9700 begin
9701 Error := False;
9703 -- Find a non-hidden operation whose first parameter is of the
9704 -- class-wide type, a subtype thereof, or an anonymous access
9705 -- to same. If in an instance, the operation can be considered
9706 -- even if hidden (it may be hidden because the instantiation
9707 -- is expanded after the containing package has been analyzed).
9708 -- If the subprogram is a generic actual in an enclosing instance,
9709 -- it appears as a renaming that is a candidate interpretation as
9710 -- well.
9712 Hom := Current_Entity (Subprog);
9713 while Present (Hom) loop
9714 if Ekind (Hom) in E_Procedure | E_Function
9715 and then Present (Renamed_Entity (Hom))
9716 and then Is_Generic_Actual_Subprogram (Hom)
9717 and then In_Open_Scopes (Scope (Hom))
9718 then
9719 Candidate := Renamed_Entity (Hom);
9720 else
9721 Candidate := Hom;
9722 end if;
9724 if Ekind (Candidate) in E_Function | E_Procedure
9725 and then (not Is_Hidden (Candidate) or else In_Instance)
9726 and then Scope (Candidate) = Scope (Base_Type (Anc_Type))
9727 and then First_Formal_Match (Candidate, CW_Typ)
9728 then
9729 -- If the context is a procedure call, ignore functions
9730 -- in the name of the call.
9732 if Ekind (Candidate) = E_Function
9733 and then Nkind (Parent (N)) = N_Procedure_Call_Statement
9734 and then N = Name (Parent (N))
9735 then
9736 goto Next_Hom;
9738 -- If the context is a function call, ignore procedures
9739 -- in the name of the call.
9741 elsif Ekind (Candidate) = E_Procedure
9742 and then Nkind (Parent (N)) /= N_Procedure_Call_Statement
9743 then
9744 goto Next_Hom;
9745 end if;
9747 Set_Etype (Call_Node, Any_Type);
9748 Set_Is_Overloaded (Call_Node, False);
9749 Success := False;
9751 if No (Matching_Op) then
9752 Hom_Ref := New_Occurrence_Of (Candidate, Sloc (Subprog));
9754 Set_Etype (Call_Node, Any_Type);
9755 Set_Name (Call_Node, Hom_Ref);
9756 Set_Parent (Call_Node, Parent (Node_To_Replace));
9758 Analyze_One_Call
9759 (N => Call_Node,
9760 Nam => Candidate,
9761 Report => Report_Error,
9762 Success => Success,
9763 Skip_First => True);
9765 Matching_Op :=
9766 Valid_Candidate (Success, Call_Node, Candidate);
9768 else
9769 Analyze_One_Call
9770 (N => Call_Node,
9771 Nam => Candidate,
9772 Report => Report_Error,
9773 Success => Success,
9774 Skip_First => True);
9776 -- The same operation may be encountered on two homonym
9777 -- traversals, before and after looking at interfaces.
9778 -- Check for this case before reporting a real ambiguity.
9780 if Present
9781 (Valid_Candidate (Success, Call_Node, Candidate))
9782 and then Nkind (Call_Node) /= N_Function_Call
9783 and then Candidate /= Matching_Op
9784 then
9785 Error_Msg_NE ("ambiguous call to&", N, Hom);
9786 Report_Ambiguity (Matching_Op);
9787 Report_Ambiguity (Hom);
9788 Check_Ambiguous_Aggregate (New_Call_Node);
9789 Error := True;
9790 return;
9791 end if;
9792 end if;
9793 end if;
9795 <<Next_Hom>>
9796 Hom := Homonym (Hom);
9797 end loop;
9798 end Traverse_Homonyms;
9800 -------------------------
9801 -- Traverse_Interfaces --
9802 -------------------------
9804 procedure Traverse_Interfaces
9805 (Anc_Type : Entity_Id;
9806 Error : out Boolean)
9808 Intface_List : constant List_Id :=
9809 Abstract_Interface_List (Anc_Type);
9810 Intface : Node_Id;
9812 begin
9813 Error := False;
9815 Intface := First (Intface_List);
9816 while Present (Intface) loop
9818 -- Look for acceptable class-wide homonyms associated with the
9819 -- interface.
9821 Traverse_Homonyms (Etype (Intface), Error);
9823 if Error then
9824 return;
9825 end if;
9827 -- Continue the search by looking at each of the interface's
9828 -- associated interface ancestors.
9830 Traverse_Interfaces (Etype (Intface), Error);
9832 if Error then
9833 return;
9834 end if;
9836 Next (Intface);
9837 end loop;
9838 end Traverse_Interfaces;
9840 -- Start of processing for Try_Class_Wide_Operation
9842 begin
9843 -- If we are searching only for conflicting class-wide subprograms
9844 -- then initialize directly Matching_Op with the target entity.
9846 if CW_Test_Only then
9847 Matching_Op := Entity (Selector_Name (N));
9848 end if;
9850 -- Loop through ancestor types (including interfaces), traversing
9851 -- the homonym chain of the subprogram, trying out those homonyms
9852 -- whose first formal has the class-wide type of the ancestor, or
9853 -- an anonymous access type designating the class-wide type.
9855 Anc_Type := Obj_Type;
9856 loop
9857 -- Look for a match among homonyms associated with the ancestor
9859 Traverse_Homonyms (Anc_Type, Error);
9861 if Error then
9862 return True;
9863 end if;
9865 -- Continue the search for matches among homonyms associated with
9866 -- any interfaces implemented by the ancestor.
9868 Traverse_Interfaces (Anc_Type, Error);
9870 if Error then
9871 return True;
9872 end if;
9874 exit when Etype (Anc_Type) = Anc_Type;
9875 Anc_Type := Etype (Anc_Type);
9876 end loop;
9878 if Present (Matching_Op) then
9879 Set_Etype (Call_Node, Etype (Matching_Op));
9880 end if;
9882 return Present (Matching_Op);
9883 end Try_Class_Wide_Operation;
9885 -----------------------------------
9886 -- Try_One_Prefix_Interpretation --
9887 -----------------------------------
9889 procedure Try_One_Prefix_Interpretation (T : Entity_Id) is
9890 Prev_Obj_Type : constant Entity_Id := Obj_Type;
9891 -- If the interpretation does not have a valid candidate type,
9892 -- preserve current value of Obj_Type for subsequent errors.
9894 begin
9895 Obj_Type := T;
9897 if Is_Access_Type (Obj_Type) then
9898 Obj_Type := Designated_Type (Obj_Type);
9899 end if;
9901 if Ekind (Obj_Type)
9902 in E_Private_Subtype | E_Record_Subtype_With_Private
9903 then
9904 Obj_Type := Base_Type (Obj_Type);
9905 end if;
9907 if Is_Class_Wide_Type (Obj_Type) then
9908 Obj_Type := Etype (Class_Wide_Type (Obj_Type));
9909 end if;
9911 -- The type may have be obtained through a limited_with clause,
9912 -- in which case the primitive operations are available on its
9913 -- nonlimited view. If still incomplete, retrieve full view.
9915 if Ekind (Obj_Type) = E_Incomplete_Type
9916 and then From_Limited_With (Obj_Type)
9917 and then Has_Non_Limited_View (Obj_Type)
9918 then
9919 Obj_Type := Get_Full_View (Non_Limited_View (Obj_Type));
9920 end if;
9922 -- If the object is not tagged, or the type is still an incomplete
9923 -- type, this is not a prefixed call. Restore the previous type as
9924 -- the current one is not a legal candidate.
9926 -- Extension feature: Calls with prefixed views are also supported
9927 -- for untagged types, so skip the early return when extensions are
9928 -- enabled, unless the type doesn't have a primitive operations list
9929 -- (such as in the case of predefined types).
9931 if (not Is_Tagged_Type (Obj_Type)
9932 and then
9933 (not (Core_Extensions_Allowed or Allow_Extensions)
9934 or else No (Primitive_Operations (Obj_Type))))
9935 or else Is_Incomplete_Type (Obj_Type)
9936 then
9937 Obj_Type := Prev_Obj_Type;
9938 return;
9939 end if;
9941 declare
9942 Dup_Call_Node : constant Node_Id := New_Copy (New_Call_Node);
9943 Ignore : Boolean;
9944 Prim_Result : Boolean := False;
9946 begin
9947 if not CW_Test_Only then
9948 Prim_Result :=
9949 Try_Primitive_Operation
9950 (Call_Node => New_Call_Node,
9951 Node_To_Replace => Node_To_Replace);
9953 -- Extension feature: In the case where the prefix is of an
9954 -- access type, and a primitive wasn't found for the designated
9955 -- type, then if the access type has primitives we attempt a
9956 -- prefixed call using one of its primitives. (It seems that
9957 -- this isn't quite right to give preference to the designated
9958 -- type in the case where both the access and designated types
9959 -- have homographic prefixed-view operations that could result
9960 -- in an ambiguity, but handling properly may be tricky. ???)
9962 if (Core_Extensions_Allowed or Allow_Extensions)
9963 and then not Prim_Result
9964 and then Is_Named_Access_Type (Prev_Obj_Type)
9965 and then Present (Direct_Primitive_Operations (Prev_Obj_Type))
9966 then
9967 -- Temporarily reset Obj_Type to the original access type
9969 Obj_Type := Prev_Obj_Type;
9971 Prim_Result :=
9972 Try_Primitive_Operation
9973 (Call_Node => New_Call_Node,
9974 Node_To_Replace => Node_To_Replace);
9976 -- Restore Obj_Type to the designated type (is this really
9977 -- necessary, or should it only be done when Prim_Result is
9978 -- still False?).
9980 Obj_Type := Designated_Type (Obj_Type);
9981 end if;
9982 end if;
9984 -- Check if there is a class-wide subprogram covering the
9985 -- primitive. This check must be done even if a candidate
9986 -- was found in order to report ambiguous calls.
9988 if not Prim_Result then
9989 Ignore :=
9990 Try_Class_Wide_Operation
9991 (Call_Node => New_Call_Node,
9992 Node_To_Replace => Node_To_Replace);
9994 -- If we found a primitive we search for class-wide subprograms
9995 -- using a duplicate of the call node (done to avoid missing its
9996 -- decoration if there is no ambiguity).
9998 else
9999 Ignore :=
10000 Try_Class_Wide_Operation
10001 (Call_Node => Dup_Call_Node,
10002 Node_To_Replace => Node_To_Replace);
10003 end if;
10004 end;
10005 end Try_One_Prefix_Interpretation;
10007 -----------------------------
10008 -- Try_Primitive_Operation --
10009 -----------------------------
10011 function Try_Primitive_Operation
10012 (Call_Node : Node_Id;
10013 Node_To_Replace : Node_Id) return Boolean
10015 Elmt : Elmt_Id;
10016 Prim_Op : Entity_Id;
10017 Matching_Op : Entity_Id := Empty;
10018 Prim_Op_Ref : Node_Id := Empty;
10020 Corr_Type : Entity_Id := Empty;
10021 -- If the prefix is a synchronized type, the controlling type of
10022 -- the primitive operation is the corresponding record type, else
10023 -- this is the object type itself.
10025 Success : Boolean := False;
10027 function Collect_Generic_Type_Ops (T : Entity_Id) return Elist_Id;
10028 -- For tagged types the candidate interpretations are found in
10029 -- the list of primitive operations of the type and its ancestors.
10030 -- For formal tagged types we have to find the operations declared
10031 -- in the same scope as the type (including in the generic formal
10032 -- part) because the type itself carries no primitive operations,
10033 -- except for formal derived types that inherit the operations of
10034 -- the parent and progenitors.
10036 -- If the context is a generic subprogram body, the generic formals
10037 -- are visible by name, but are not in the entity list of the
10038 -- subprogram because that list starts with the subprogram formals.
10039 -- We retrieve the candidate operations from the generic declaration.
10041 function Extended_Primitive_Ops (T : Entity_Id) return Elist_Id;
10042 -- Prefix notation can also be used on operations that are not
10043 -- primitives of the type, but are declared in the same immediate
10044 -- declarative part, which can only mean the corresponding package
10045 -- body (see RM 4.1.3 (9.2/3)). If we are in that body we extend the
10046 -- list of primitives with body operations with the same name that
10047 -- may be candidates, so that Try_Primitive_Operations can examine
10048 -- them if no real primitive is found.
10050 function Is_Private_Overriding (Op : Entity_Id) return Boolean;
10051 -- An operation that overrides an inherited operation in the private
10052 -- part of its package may be hidden, but if the inherited operation
10053 -- is visible a direct call to it will dispatch to the private one,
10054 -- which is therefore a valid candidate.
10056 function Names_Match
10057 (Obj_Type : Entity_Id;
10058 Prim_Op : Entity_Id;
10059 Subprog : Entity_Id) return Boolean;
10060 -- Return True if the names of Prim_Op and Subprog match. If Obj_Type
10061 -- is a protected type then compare also the original name of Prim_Op
10062 -- with the name of Subprog (since the expander may have added a
10063 -- prefix to its original name --see Exp_Ch9.Build_Selected_Name).
10065 function Valid_First_Argument_Of (Op : Entity_Id) return Boolean;
10066 -- Verify that the prefix, dereferenced if need be, is a valid
10067 -- controlling argument in a call to Op. The remaining actuals
10068 -- are checked in the subsequent call to Analyze_One_Call.
10070 ------------------------------
10071 -- Collect_Generic_Type_Ops --
10072 ------------------------------
10074 function Collect_Generic_Type_Ops (T : Entity_Id) return Elist_Id is
10075 Bas : constant Entity_Id := Base_Type (T);
10076 Candidates : constant Elist_Id := New_Elmt_List;
10077 Subp : Entity_Id;
10078 Formal : Entity_Id;
10080 procedure Check_Candidate;
10081 -- The operation is a candidate if its first parameter is a
10082 -- controlling operand of the desired type.
10084 -----------------------
10085 -- Check_Candidate; --
10086 -----------------------
10088 procedure Check_Candidate is
10089 begin
10090 Formal := First_Formal (Subp);
10092 if Present (Formal)
10093 and then Is_Controlling_Formal (Formal)
10094 and then
10095 (Base_Type (Etype (Formal)) = Bas
10096 or else
10097 (Is_Access_Type (Etype (Formal))
10098 and then Designated_Type (Etype (Formal)) = Bas))
10099 then
10100 Append_Elmt (Subp, Candidates);
10101 end if;
10102 end Check_Candidate;
10104 -- Start of processing for Collect_Generic_Type_Ops
10106 begin
10107 if Is_Derived_Type (T) then
10108 return Primitive_Operations (T);
10110 elsif Ekind (Scope (T)) in E_Procedure | E_Function then
10112 -- Scan the list of generic formals to find subprograms
10113 -- that may have a first controlling formal of the type.
10115 if Nkind (Unit_Declaration_Node (Scope (T))) =
10116 N_Generic_Subprogram_Declaration
10117 then
10118 declare
10119 Decl : Node_Id;
10121 begin
10122 Decl :=
10123 First (Generic_Formal_Declarations
10124 (Unit_Declaration_Node (Scope (T))));
10125 while Present (Decl) loop
10126 if Nkind (Decl) in N_Formal_Subprogram_Declaration then
10127 Subp := Defining_Entity (Decl);
10128 Check_Candidate;
10129 end if;
10131 Next (Decl);
10132 end loop;
10133 end;
10134 end if;
10135 return Candidates;
10137 else
10138 -- Scan the list of entities declared in the same scope as
10139 -- the type. In general this will be an open scope, given that
10140 -- the call we are analyzing can only appear within a generic
10141 -- declaration or body (either the one that declares T, or a
10142 -- child unit).
10144 -- For a subtype representing a generic actual type, go to the
10145 -- base type.
10147 if Is_Generic_Actual_Type (T) then
10148 Subp := First_Entity (Scope (Base_Type (T)));
10149 else
10150 Subp := First_Entity (Scope (T));
10151 end if;
10153 while Present (Subp) loop
10154 if Is_Overloadable (Subp) then
10155 Check_Candidate;
10156 end if;
10158 Next_Entity (Subp);
10159 end loop;
10161 return Candidates;
10162 end if;
10163 end Collect_Generic_Type_Ops;
10165 ----------------------------
10166 -- Extended_Primitive_Ops --
10167 ----------------------------
10169 function Extended_Primitive_Ops (T : Entity_Id) return Elist_Id is
10170 Type_Scope : constant Entity_Id := Scope (T);
10171 Op_List : Elist_Id := Primitive_Operations (T);
10172 begin
10173 if Is_Package_Or_Generic_Package (Type_Scope)
10174 and then ((In_Package_Body (Type_Scope)
10175 and then In_Open_Scopes (Type_Scope)) or else In_Instance_Body)
10176 then
10177 -- Retrieve list of declarations of package body if possible
10179 declare
10180 The_Body : constant Node_Id :=
10181 Corresponding_Body (Unit_Declaration_Node (Type_Scope));
10182 begin
10183 if Present (The_Body) then
10184 declare
10185 Body_Decls : constant List_Id :=
10186 Declarations (Unit_Declaration_Node (The_Body));
10187 Op_Found : Boolean := False;
10188 Op : Entity_Id := Current_Entity (Subprog);
10189 begin
10190 while Present (Op) loop
10191 if Comes_From_Source (Op)
10192 and then Is_Overloadable (Op)
10194 -- Exclude overriding primitive operations of a
10195 -- type extension declared in the package body,
10196 -- to prevent duplicates in extended list.
10198 and then not Is_Primitive (Op)
10199 and then Is_List_Member
10200 (Unit_Declaration_Node (Op))
10201 and then List_Containing
10202 (Unit_Declaration_Node (Op)) = Body_Decls
10203 then
10204 if not Op_Found then
10205 -- Copy list of primitives so it is not
10206 -- affected for other uses.
10208 Op_List := New_Copy_Elist (Op_List);
10209 Op_Found := True;
10210 end if;
10212 Append_Elmt (Op, Op_List);
10213 end if;
10215 Op := Homonym (Op);
10216 end loop;
10217 end;
10218 end if;
10219 end;
10220 end if;
10222 return Op_List;
10223 end Extended_Primitive_Ops;
10225 ---------------------------
10226 -- Is_Private_Overriding --
10227 ---------------------------
10229 function Is_Private_Overriding (Op : Entity_Id) return Boolean is
10230 Visible_Op : Entity_Id;
10232 begin
10233 -- The subprogram may be overloaded with both visible and private
10234 -- entities with the same name. We have to scan the chain of
10235 -- homonyms to determine whether there is a previous implicit
10236 -- declaration in the same scope that is overridden by the
10237 -- private candidate.
10239 Visible_Op := Homonym (Op);
10240 while Present (Visible_Op) loop
10241 if Scope (Op) /= Scope (Visible_Op) then
10242 return False;
10244 elsif not Comes_From_Source (Visible_Op)
10245 and then Alias (Visible_Op) = Op
10246 then
10247 -- If Visible_Op or what it overrides is not hidden, then we
10248 -- have found what we're looking for.
10250 if not Is_Hidden (Visible_Op)
10251 or else not Is_Hidden (Overridden_Operation (Op))
10252 then
10253 return True;
10254 end if;
10255 end if;
10257 Visible_Op := Homonym (Visible_Op);
10258 end loop;
10260 return False;
10261 end Is_Private_Overriding;
10263 -----------------
10264 -- Names_Match --
10265 -----------------
10267 function Names_Match
10268 (Obj_Type : Entity_Id;
10269 Prim_Op : Entity_Id;
10270 Subprog : Entity_Id) return Boolean is
10271 begin
10272 -- Common case: exact match
10274 if Chars (Prim_Op) = Chars (Subprog) then
10275 return True;
10277 -- For protected type primitives the expander may have built the
10278 -- name of the dispatching primitive prepending the type name to
10279 -- avoid conflicts with the name of the protected subprogram (see
10280 -- Exp_Ch9.Build_Selected_Name).
10282 elsif Is_Protected_Type (Obj_Type) then
10283 return
10284 Present (Original_Protected_Subprogram (Prim_Op))
10285 and then Chars (Original_Protected_Subprogram (Prim_Op)) =
10286 Chars (Subprog);
10288 -- In an instance, the selector name may be a generic actual that
10289 -- renames a primitive operation of the type of the prefix.
10291 elsif In_Instance and then Present (Current_Entity (Subprog)) then
10292 declare
10293 Subp : constant Entity_Id := Current_Entity (Subprog);
10294 begin
10295 if Present (Subp)
10296 and then Is_Subprogram (Subp)
10297 and then Present (Renamed_Entity (Subp))
10298 and then Is_Generic_Actual_Subprogram (Subp)
10299 and then Chars (Renamed_Entity (Subp)) = Chars (Prim_Op)
10300 then
10301 return True;
10302 end if;
10303 end;
10304 end if;
10306 return False;
10307 end Names_Match;
10309 -----------------------------
10310 -- Valid_First_Argument_Of --
10311 -----------------------------
10313 function Valid_First_Argument_Of (Op : Entity_Id) return Boolean is
10314 Typ : Entity_Id := Etype (First_Formal (Op));
10316 begin
10317 if Is_Concurrent_Type (Typ)
10318 and then Present (Corresponding_Record_Type (Typ))
10319 then
10320 Typ := Corresponding_Record_Type (Typ);
10321 end if;
10323 -- Simple case. Object may be a subtype of the tagged type or may
10324 -- be the corresponding record of a synchronized type.
10326 return Obj_Type = Typ
10327 or else Base_Type (Obj_Type) = Base_Type (Typ)
10328 or else Corr_Type = Typ
10330 -- Object may be of a derived type whose parent has unknown
10331 -- discriminants, in which case the type matches the underlying
10332 -- record view of its base.
10334 or else
10335 (Has_Unknown_Discriminants (Typ)
10336 and then Typ = Underlying_Record_View (Base_Type (Obj_Type)))
10338 -- Prefix can be dereferenced
10340 or else
10341 (Is_Access_Type (Corr_Type)
10342 and then Designated_Type (Corr_Type) = Typ)
10344 -- Formal is an access parameter, for which the object can
10345 -- provide an access.
10347 or else
10348 (Ekind (Typ) = E_Anonymous_Access_Type
10349 and then
10350 Base_Type (Designated_Type (Typ)) = Base_Type (Corr_Type));
10351 end Valid_First_Argument_Of;
10353 -- Start of processing for Try_Primitive_Operation
10355 begin
10356 -- Look for subprograms in the list of primitive operations. The name
10357 -- must be identical, and the kind of call indicates the expected
10358 -- kind of operation (function or procedure). If the type is a
10359 -- (tagged) synchronized type, the primitive ops are attached to the
10360 -- corresponding record (base) type.
10362 if Is_Concurrent_Type (Obj_Type) then
10363 if Present (Corresponding_Record_Type (Obj_Type)) then
10364 Corr_Type := Base_Type (Corresponding_Record_Type (Obj_Type));
10365 Elmt := First_Elmt (Primitive_Operations (Corr_Type));
10366 else
10367 Corr_Type := Obj_Type;
10368 Elmt := First_Elmt (Collect_Generic_Type_Ops (Obj_Type));
10369 end if;
10371 elsif not Is_Generic_Type (Obj_Type) then
10372 Corr_Type := Obj_Type;
10373 Elmt := First_Elmt (Extended_Primitive_Ops (Obj_Type));
10375 else
10376 Corr_Type := Obj_Type;
10377 Elmt := First_Elmt (Collect_Generic_Type_Ops (Obj_Type));
10378 end if;
10380 while Present (Elmt) loop
10381 Prim_Op := Node (Elmt);
10383 if Names_Match (Obj_Type, Prim_Op, Subprog)
10384 and then Present (First_Formal (Prim_Op))
10385 and then Valid_First_Argument_Of (Prim_Op)
10386 and then
10387 (Nkind (Call_Node) = N_Function_Call)
10389 (Ekind (Prim_Op) = E_Function)
10390 then
10391 -- Ada 2005 (AI-251): If this primitive operation corresponds
10392 -- to an immediate ancestor interface there is no need to add
10393 -- it to the list of interpretations; the corresponding aliased
10394 -- primitive is also in this list of primitive operations and
10395 -- will be used instead.
10397 if (Present (Interface_Alias (Prim_Op))
10398 and then Is_Ancestor (Find_Dispatching_Type
10399 (Alias (Prim_Op)), Corr_Type))
10401 -- Do not consider hidden primitives unless the type is in an
10402 -- open scope or we are within an instance, where visibility
10403 -- is known to be correct, or else if this is an overriding
10404 -- operation in the private part for an inherited operation.
10406 or else (Is_Hidden (Prim_Op)
10407 and then not Is_Immediately_Visible (Obj_Type)
10408 and then not In_Instance
10409 and then not Is_Private_Overriding (Prim_Op))
10410 then
10411 goto Continue;
10412 end if;
10414 Set_Etype (Call_Node, Any_Type);
10415 Set_Is_Overloaded (Call_Node, False);
10417 if No (Matching_Op) then
10418 Prim_Op_Ref := New_Occurrence_Of (Prim_Op, Sloc (Subprog));
10419 Candidate := Prim_Op;
10421 Set_Parent (Call_Node, Parent (Node_To_Replace));
10423 Set_Name (Call_Node, Prim_Op_Ref);
10424 Success := False;
10426 Analyze_One_Call
10427 (N => Call_Node,
10428 Nam => Prim_Op,
10429 Report => Report_Error,
10430 Success => Success,
10431 Skip_First => True);
10433 Matching_Op := Valid_Candidate (Success, Call_Node, Prim_Op);
10435 -- More than one interpretation, collect for subsequent
10436 -- disambiguation. If this is a procedure call and there
10437 -- is another match, report ambiguity now.
10439 else
10440 Analyze_One_Call
10441 (N => Call_Node,
10442 Nam => Prim_Op,
10443 Report => Report_Error,
10444 Success => Success,
10445 Skip_First => True);
10447 if Present (Valid_Candidate (Success, Call_Node, Prim_Op))
10448 and then Nkind (Call_Node) /= N_Function_Call
10449 then
10450 Error_Msg_NE ("ambiguous call to&", N, Prim_Op);
10451 Report_Ambiguity (Matching_Op);
10452 Report_Ambiguity (Prim_Op);
10453 Check_Ambiguous_Aggregate (Call_Node);
10454 return True;
10455 end if;
10456 end if;
10457 end if;
10459 <<Continue>>
10460 Next_Elmt (Elmt);
10461 end loop;
10463 if Present (Matching_Op) then
10464 Set_Etype (Call_Node, Etype (Matching_Op));
10465 end if;
10467 return Present (Matching_Op);
10468 end Try_Primitive_Operation;
10470 ---------------------
10471 -- Valid_Candidate --
10472 ---------------------
10474 function Valid_Candidate
10475 (Success : Boolean;
10476 Call : Node_Id;
10477 Subp : Entity_Id) return Entity_Id
10479 Arr_Type : Entity_Id;
10480 Comp_Type : Entity_Id;
10482 begin
10483 -- If the subprogram is a valid interpretation, record it in global
10484 -- variable Subprog, to collect all possible overloadings.
10486 if Success then
10487 if Subp /= Entity (Subprog) then
10488 Add_One_Interp (Subprog, Subp, Etype (Subp));
10489 end if;
10490 end if;
10492 -- If the call may be an indexed call, retrieve component type of
10493 -- resulting expression, and add possible interpretation.
10495 Arr_Type := Empty;
10496 Comp_Type := Empty;
10498 if Nkind (Call) = N_Function_Call
10499 and then Nkind (Parent (N)) = N_Indexed_Component
10500 and then Needs_One_Actual (Subp)
10501 then
10502 if Is_Array_Type (Etype (Subp)) then
10503 Arr_Type := Etype (Subp);
10505 elsif Is_Access_Type (Etype (Subp))
10506 and then Is_Array_Type (Designated_Type (Etype (Subp)))
10507 then
10508 Arr_Type := Designated_Type (Etype (Subp));
10509 end if;
10510 end if;
10512 if Present (Arr_Type) then
10514 -- Verify that the actuals (excluding the object) match the types
10515 -- of the indexes.
10517 declare
10518 Actual : Node_Id;
10519 Index : Node_Id;
10521 begin
10522 Actual := Next (First_Actual (Call));
10523 Index := First_Index (Arr_Type);
10524 while Present (Actual) and then Present (Index) loop
10525 if not Has_Compatible_Type (Actual, Etype (Index)) then
10526 Arr_Type := Empty;
10527 exit;
10528 end if;
10530 Next_Actual (Actual);
10531 Next_Index (Index);
10532 end loop;
10534 if No (Actual)
10535 and then No (Index)
10536 and then Present (Arr_Type)
10537 then
10538 Comp_Type := Component_Type (Arr_Type);
10539 end if;
10540 end;
10542 if Present (Comp_Type)
10543 and then Etype (Subprog) /= Comp_Type
10544 then
10545 Add_One_Interp (Subprog, Subp, Comp_Type);
10546 end if;
10547 end if;
10549 if Etype (Call) /= Any_Type then
10550 return Subp;
10551 else
10552 return Empty;
10553 end if;
10554 end Valid_Candidate;
10556 -- Start of processing for Try_Object_Operation
10558 begin
10559 Analyze_Expression (Obj);
10561 -- Analyze the actuals if node is known to be a subprogram call
10563 if Is_Subprg_Call and then N = Name (Parent (N)) then
10564 Actual := First (Parameter_Associations (Parent (N)));
10565 while Present (Actual) loop
10566 Analyze_Expression (Actual);
10567 Next (Actual);
10568 end loop;
10569 end if;
10571 -- Build a subprogram call node, using a copy of Obj as its first
10572 -- actual. This is a placeholder, to be replaced by an explicit
10573 -- dereference when needed.
10575 Transform_Object_Operation
10576 (Call_Node => New_Call_Node,
10577 Node_To_Replace => Node_To_Replace);
10579 Set_Etype (New_Call_Node, Any_Type);
10580 Set_Etype (Subprog, Any_Type);
10581 Set_Parent (New_Call_Node, Parent (Node_To_Replace));
10583 if not Is_Overloaded (Obj) then
10584 Try_One_Prefix_Interpretation (Obj_Type);
10586 else
10587 declare
10588 I : Interp_Index;
10589 It : Interp;
10590 begin
10591 Get_First_Interp (Obj, I, It);
10592 while Present (It.Nam) loop
10593 Try_One_Prefix_Interpretation (It.Typ);
10594 Get_Next_Interp (I, It);
10595 end loop;
10596 end;
10597 end if;
10599 if Etype (New_Call_Node) /= Any_Type then
10601 -- No need to complete the tree transformations if we are only
10602 -- searching for conflicting class-wide subprograms
10604 if CW_Test_Only then
10605 return False;
10606 else
10607 Complete_Object_Operation
10608 (Call_Node => New_Call_Node,
10609 Node_To_Replace => Node_To_Replace);
10610 return True;
10611 end if;
10613 elsif Present (Candidate) then
10615 -- The argument list is not type correct. Re-analyze with error
10616 -- reporting enabled, and use one of the possible candidates.
10617 -- In All_Errors_Mode, re-analyze all failed interpretations.
10619 if All_Errors_Mode then
10620 Report_Error := True;
10621 if Try_Primitive_Operation
10622 (Call_Node => New_Call_Node,
10623 Node_To_Replace => Node_To_Replace)
10625 or else
10626 Try_Class_Wide_Operation
10627 (Call_Node => New_Call_Node,
10628 Node_To_Replace => Node_To_Replace)
10629 then
10630 null;
10631 end if;
10633 else
10634 Analyze_One_Call
10635 (N => New_Call_Node,
10636 Nam => Candidate,
10637 Report => True,
10638 Success => Success,
10639 Skip_First => True);
10641 -- The error may hot have been reported yet for overloaded
10642 -- prefixed calls, depending on the non-matching candidate,
10643 -- in which case provide a concise error now.
10645 if Serious_Errors_Detected = 0 then
10646 Error_Msg_NE
10647 ("cannot resolve prefixed call to primitive operation of&",
10648 N, Entity (Obj));
10649 end if;
10650 end if;
10652 -- No need for further errors
10654 return True;
10656 else
10657 -- There was no candidate operation, but Analyze_Selected_Component
10658 -- may continue the analysis so we need to undo the change possibly
10659 -- made to the Parent of N earlier by Transform_Object_Operation.
10661 declare
10662 Parent_Node : constant Node_Id := Parent (N);
10664 begin
10665 if Node_To_Replace = Parent_Node then
10666 Remove (First (Parameter_Associations (New_Call_Node)));
10667 Set_Parent
10668 (Parameter_Associations (New_Call_Node), Parent_Node);
10669 end if;
10670 end;
10672 return False;
10673 end if;
10674 end Try_Object_Operation;
10676 -------------------------
10677 -- Unresolved_Operator --
10678 -------------------------
10680 procedure Unresolved_Operator (N : Node_Id) is
10681 L : constant Node_Id :=
10682 (if Nkind (N) in N_Binary_Op then Left_Opnd (N) else Empty);
10683 R : constant Node_Id := Right_Opnd (N);
10685 Op_Id : Entity_Id;
10687 begin
10688 -- Note that in the following messages, if the operand is overloaded we
10689 -- choose an arbitrary type to complain about, but that is probably more
10690 -- useful than not giving a type at all.
10692 if Nkind (N) in N_Unary_Op then
10693 Error_Msg_Node_2 := Etype (R);
10694 Error_Msg_N ("operator& not defined for}", N);
10696 elsif Nkind (N) in N_Binary_Op then
10697 if not Is_Overloaded (L)
10698 and then not Is_Overloaded (R)
10699 and then Base_Type (Etype (L)) = Base_Type (Etype (R))
10700 then
10701 Error_Msg_Node_2 := First_Subtype (Etype (R));
10702 Error_Msg_N ("there is no applicable operator& for}", N);
10704 else
10705 -- Another attempt to find a fix: one of the candidate
10706 -- interpretations may not be use-visible. This has
10707 -- already been checked for predefined operators, so
10708 -- we examine only user-defined functions.
10710 Op_Id := Get_Name_Entity_Id (Chars (N));
10712 while Present (Op_Id) loop
10713 if Ekind (Op_Id) /= E_Operator
10714 and then Is_Overloadable (Op_Id)
10715 and then not Is_Immediately_Visible (Op_Id)
10716 and then not In_Use (Scope (Op_Id))
10717 and then not Is_Abstract_Subprogram (Op_Id)
10718 and then not Is_Hidden (Op_Id)
10719 and then Ekind (Scope (Op_Id)) = E_Package
10720 and then Has_Compatible_Type (L, Etype (First_Formal (Op_Id)))
10721 and then Present (Next_Formal (First_Formal (Op_Id)))
10722 and then
10723 Has_Compatible_Type
10724 (R, Etype (Next_Formal (First_Formal (Op_Id))))
10725 then
10726 Error_Msg_N ("no legal interpretation for operator&", N);
10727 Error_Msg_NE ("\use clause on& would make operation legal",
10728 N, Scope (Op_Id));
10729 exit;
10730 end if;
10732 Op_Id := Homonym (Op_Id);
10733 end loop;
10735 if No (Op_Id) then
10736 Error_Msg_N ("invalid operand types for operator&", N);
10738 if Nkind (N) /= N_Op_Concat then
10739 Error_Msg_NE ("\left operand has}!", N, Etype (L));
10740 Error_Msg_NE ("\right operand has}!", N, Etype (R));
10742 -- For multiplication and division operators with
10743 -- a fixed-point operand and an integer operand,
10744 -- indicate that the integer operand should be of
10745 -- type Integer.
10747 if Nkind (N) in N_Op_Multiply | N_Op_Divide
10748 and then Is_Fixed_Point_Type (Etype (L))
10749 and then Is_Integer_Type (Etype (R))
10750 then
10751 Error_Msg_N ("\convert right operand to `Integer`", N);
10753 elsif Nkind (N) = N_Op_Multiply
10754 and then Is_Fixed_Point_Type (Etype (R))
10755 and then Is_Integer_Type (Etype (L))
10756 then
10757 Error_Msg_N ("\convert left operand to `Integer`", N);
10758 end if;
10760 -- For concatenation operators it is more difficult to
10761 -- determine which is the wrong operand. It is worth
10762 -- flagging explicitly an access type, for those who
10763 -- might think that a dereference happens here.
10765 elsif Is_Access_Type (Etype (L)) then
10766 Error_Msg_N ("\left operand is access type", N);
10768 elsif Is_Access_Type (Etype (R)) then
10769 Error_Msg_N ("\right operand is access type", N);
10770 end if;
10771 end if;
10772 end if;
10773 end if;
10774 end Unresolved_Operator;
10776 ---------
10777 -- wpo --
10778 ---------
10780 procedure wpo (T : Entity_Id) is
10781 Op : Entity_Id;
10782 E : Elmt_Id;
10784 begin
10785 if not Is_Tagged_Type (T) then
10786 return;
10787 end if;
10789 E := First_Elmt (Primitive_Operations (Base_Type (T)));
10790 while Present (E) loop
10791 Op := Node (E);
10792 Write_Int (Int (Op));
10793 Write_Str (" === ");
10794 Write_Name (Chars (Op));
10795 Write_Str (" in ");
10796 Write_Name (Chars (Scope (Op)));
10797 Next_Elmt (E);
10798 Write_Eol;
10799 end loop;
10800 end wpo;
10802 end Sem_Ch4;