1 ------------------------------------------------------------------------------
3 -- GNAT COMPILER COMPONENTS --
9 -- Copyright (C) 1992-2024, Free Software Foundation, Inc. --
11 -- GNAT is free software; you can redistribute it and/or modify it under --
12 -- terms of the GNU General Public License as published by the Free Soft- --
13 -- ware Foundation; either version 3, or (at your option) any later ver- --
14 -- sion. GNAT is distributed in the hope that it will be useful, but WITH- --
15 -- OUT ANY WARRANTY; without even the implied warranty of MERCHANTABILITY --
16 -- or FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License --
17 -- for more details. You should have received a copy of the GNU General --
18 -- Public License distributed with GNAT; see file COPYING3. If not, go to --
19 -- http://www.gnu.org/licenses for a complete copy of the license. --
21 -- GNAT was originally developed by the GNAT team at New York University. --
22 -- Extensive contributions were provided by Ada Core Technologies Inc. --
24 ------------------------------------------------------------------------------
26 with Accessibility
; use Accessibility
;
27 with Aspects
; use Aspects
;
28 with Atree
; use Atree
;
29 with Debug
; use Debug
;
30 with Einfo
; use Einfo
;
31 with Einfo
.Entities
; use Einfo
.Entities
;
32 with Einfo
.Utils
; use Einfo
.Utils
;
33 with Elists
; use Elists
;
34 with Errout
; use Errout
;
35 with Exp_Util
; use Exp_Util
;
36 with Itypes
; use Itypes
;
38 with Lib
.Xref
; use Lib
.Xref
;
39 with Namet
; use Namet
;
40 with Namet
.Sp
; use Namet
.Sp
;
41 with Nlists
; use Nlists
;
42 with Nmake
; use Nmake
;
44 with Output
; use Output
;
45 with Restrict
; use Restrict
;
46 with Rident
; use Rident
;
47 with Rtsfind
; use Rtsfind
;
49 with Sem_Aux
; use Sem_Aux
;
50 with Sem_Case
; use Sem_Case
;
51 with Sem_Cat
; use Sem_Cat
;
52 with Sem_Ch3
; use Sem_Ch3
;
53 with Sem_Ch6
; use Sem_Ch6
;
54 with Sem_Ch8
; use Sem_Ch8
;
55 with Sem_Dim
; use Sem_Dim
;
56 with Sem_Disp
; use Sem_Disp
;
57 with Sem_Dist
; use Sem_Dist
;
58 with Sem_Eval
; use Sem_Eval
;
59 with Sem_Res
; use Sem_Res
;
60 with Sem_Type
; use Sem_Type
;
61 with Sem_Util
; use Sem_Util
;
62 with Sem_Warn
; use Sem_Warn
;
63 with Stand
; use Stand
;
64 with Sinfo
; use Sinfo
;
65 with Sinfo
.Nodes
; use Sinfo
.Nodes
;
66 with Sinfo
.Utils
; use Sinfo
.Utils
;
67 with Snames
; use Snames
;
68 with Style
; use Style
;
69 with Tbuild
; use Tbuild
;
70 with Uintp
; use Uintp
;
71 with Warnsw
; use Warnsw
;
73 package body Sem_Ch4
is
75 -- Tables which speed up the identification of dangerous calls to Ada 2012
76 -- functions with writable actuals (AI05-0144).
78 -- The following table enumerates the Ada constructs which may evaluate in
79 -- arbitrary order. It does not cover all the language constructs which can
80 -- be evaluated in arbitrary order but the subset needed for AI05-0144.
82 Has_Arbitrary_Evaluation_Order
: constant array (Node_Kind
) of Boolean :=
84 N_Assignment_Statement
=> True,
85 N_Entry_Call_Statement
=> True,
86 N_Extension_Aggregate
=> True,
87 N_Full_Type_Declaration
=> True,
88 N_Indexed_Component
=> True,
89 N_Object_Declaration
=> True,
93 N_Array_Type_Definition
=> True,
94 N_Membership_Test
=> True,
96 N_Subprogram_Call
=> True,
99 -- The following table enumerates the nodes on which we stop climbing when
100 -- locating the outermost Ada construct that can be evaluated in arbitrary
103 Stop_Subtree_Climbing
: constant array (Node_Kind
) of Boolean :=
104 (N_Aggregate
=> True,
105 N_Assignment_Statement
=> True,
106 N_Entry_Call_Statement
=> True,
107 N_Extended_Return_Statement
=> True,
108 N_Extension_Aggregate
=> True,
109 N_Full_Type_Declaration
=> True,
110 N_Object_Declaration
=> True,
111 N_Object_Renaming_Declaration
=> True,
112 N_Package_Specification
=> True,
114 N_Procedure_Call_Statement
=> True,
115 N_Simple_Return_Statement
=> True,
116 N_Has_Condition
=> True,
119 -----------------------
120 -- Local Subprograms --
121 -----------------------
123 procedure Analyze_Concatenation_Rest
(N
: Node_Id
);
124 -- Does the "rest" of the work of Analyze_Concatenation, after the left
125 -- operand has been analyzed. See Analyze_Concatenation for details.
127 procedure Analyze_Expression
(N
: Node_Id
);
128 -- For expressions that are not names, this is just a call to analyze. If
129 -- the expression is a name, it may be a call to a parameterless function,
130 -- and if so must be converted into an explicit call node and analyzed as
131 -- such. This deproceduring must be done during the first pass of overload
132 -- resolution, because otherwise a procedure call with overloaded actuals
133 -- may fail to resolve.
135 procedure Analyze_Operator_Call
(N
: Node_Id
; Op_Id
: Entity_Id
);
136 -- Analyze a call of the form "+"(x, y), etc. The prefix of the call is an
137 -- operator name or an expanded name whose selector is an operator name,
138 -- and one possible interpretation is as a predefined operator.
140 procedure Analyze_Overloaded_Selected_Component
(N
: Node_Id
);
141 -- If the prefix of a selected_component is overloaded, the proper
142 -- interpretation that yields a record type with the proper selector
143 -- name must be selected.
145 procedure Analyze_User_Defined_Binary_Op
(N
: Node_Id
; Op_Id
: Entity_Id
);
146 -- Procedure to analyze a user defined binary operator, which is resolved
147 -- like a function, but instead of a list of actuals it is presented
148 -- with the left and right operands of an operator node.
150 procedure Analyze_User_Defined_Unary_Op
(N
: Node_Id
; Op_Id
: Entity_Id
);
151 -- Procedure to analyze a user defined unary operator, which is resolved
152 -- like a function, but instead of a list of actuals, it is presented with
153 -- the operand of the operator node.
155 procedure Analyze_One_Call
159 Success
: out Boolean;
160 Skip_First
: Boolean := False);
161 -- Check one interpretation of an overloaded subprogram name for
162 -- compatibility with the types of the actuals in a call. If there is a
163 -- single interpretation which does not match, post error if Report is
166 -- Nam is the entity that provides the formals against which the actuals
167 -- are checked. Nam is either the name of a subprogram, or the internal
168 -- subprogram type constructed for an access_to_subprogram. If the actuals
169 -- are compatible with Nam, then Nam is added to the list of candidate
170 -- interpretations for N, and Success is set to True.
172 -- The flag Skip_First is used when analyzing a call that was rewritten
173 -- from object notation. In this case the first actual may have to receive
174 -- an explicit dereference, depending on the first formal of the operation
175 -- being called. The caller will have verified that the object is legal
176 -- for the call. If the remaining parameters match, the first parameter
177 -- will rewritten as a dereference if needed, prior to completing analysis.
179 procedure Check_Misspelled_Selector
182 -- Give possible misspelling message if Sel seems likely to be a mis-
183 -- spelling of one of the selectors of the Prefix. This is called by
184 -- Analyze_Selected_Component after producing an invalid selector error
187 procedure Find_Arithmetic_Types
191 -- L and R are the operands of an arithmetic operator. Find consistent
192 -- pairs of interpretations for L and R that have a numeric type consistent
193 -- with the semantics of the operator.
195 procedure Find_Comparison_Equality_Types
199 -- L and R are operands of a comparison or equality operator. Find valid
200 -- pairs of interpretations for L and R.
202 procedure Find_Concatenation_Types
206 -- For the four varieties of concatenation
208 procedure Find_Boolean_Types
212 -- Ditto for binary logical operations
214 procedure Find_Negation_Types
218 -- Find consistent interpretation for operand of negation operator
220 function Find_Primitive_Operation
(N
: Node_Id
) return Boolean;
221 -- Find candidate interpretations for the name Obj.Proc when it appears in
222 -- a subprogram renaming declaration.
224 procedure Find_Unary_Types
228 -- Unary arithmetic types: plus, minus, abs
230 procedure Check_Arithmetic_Pair
234 -- Subsidiary procedure to Find_Arithmetic_Types. T1 and T2 are valid types
235 -- for left and right operand. Determine whether they constitute a valid
236 -- pair for the given operator, and record the corresponding interpretation
237 -- of the operator node. The node N may be an operator node (the usual
238 -- case) or a function call whose prefix is an operator designator. In
239 -- both cases Op_Id is the operator name itself.
241 procedure Diagnose_Call
(N
: Node_Id
; Nam
: Node_Id
);
242 -- Give detailed information on overloaded call where none of the
243 -- interpretations match. N is the call node, Nam the designator for
244 -- the overloaded entity being called.
246 function Junk_Operand
(N
: Node_Id
) return Boolean;
247 -- Test for an operand that is an inappropriate entity (e.g. a package
248 -- name or a label). If so, issue an error message and return True. If
249 -- the operand is not an inappropriate entity kind, return False.
251 procedure Operator_Check
(N
: Node_Id
);
252 -- Verify that an operator has received some valid interpretation. If none
253 -- was found, determine whether a use clause would make the operation
254 -- legal. The variable Candidate_Type (defined in Sem_Type) is set for
255 -- every type compatible with the operator, even if the operator for the
256 -- type is not directly visible. The routine uses this type to emit a more
257 -- informative message.
259 function Has_Possible_User_Defined_Literal
(N
: Node_Id
) return Boolean;
260 -- Ada 2022: if an operand is a literal, it may be subject to an
261 -- implicit conversion to a type for which a user-defined literal
262 -- function exists. During the first pass of type resolution we do
263 -- not know the context imposed on the literal, so we assume that
264 -- the literal type is a valid candidate and rely on the second pass
265 -- of resolution to find the type with the proper aspect. We only
266 -- add this interpretation if no other one was found, which may be
267 -- too restrictive but seems sufficient to handle most proper uses
268 -- of the new aspect. It is unclear whether a full implementation of
269 -- these aspects can be achieved without larger modifications to the
270 -- two-pass resolution algorithm.
272 function Possible_Type_For_Conditional_Expression
273 (T1
, T2
: Entity_Id
) return Entity_Id
;
274 -- Given two types T1 and T2 that are _not_ compatible, return a type that
275 -- may still be used as the possible type of a conditional expression whose
276 -- dependent expressions, or part thereof, have type T1 and T2 respectively
277 -- during the first phase of type resolution, or Empty if such a type does
280 -- The typical example is an if_expression whose then_expression is of a
281 -- tagged type and whose else_expresssion is of an extension of this type:
282 -- the types are not compatible but such an if_expression can be legal if
283 -- its expected type is the 'Class of the tagged type, so the function will
284 -- return the tagged type in this case. If the expected type turns out to
285 -- be something else, including the tagged type itself, then an error will
286 -- be given during the second phase of type resolution.
288 procedure Remove_Abstract_Operations
(N
: Node_Id
);
289 -- Ada 2005: implementation of AI-310. An abstract non-dispatching
290 -- operation is not a candidate interpretation.
292 function Try_Container_Indexing
295 Exprs
: List_Id
) return Boolean;
296 -- AI05-0139: Generalized indexing to support iterators over containers
297 -- ??? Need to provide a more detailed spec of what this function does
299 function Try_Indexed_Call
303 Skip_First
: Boolean) return Boolean;
304 -- If a function has defaults for all its actuals, a call to it may in fact
305 -- be an indexing on the result of the call. Try_Indexed_Call attempts the
306 -- interpretation as an indexing, prior to analysis as a call. If both are
307 -- possible, the node is overloaded with both interpretations (same symbol
308 -- but two different types). If the call is written in prefix form, the
309 -- prefix becomes the first parameter in the call, and only the remaining
310 -- actuals must be checked for the presence of defaults.
312 function Try_Indirect_Call
315 Typ
: Entity_Id
) return Boolean;
316 -- Similarly, a function F that needs no actuals can return an access to a
317 -- subprogram, and the call F (X) interpreted as F.all (X). In this case
318 -- the call may be overloaded with both interpretations.
320 procedure wpo
(T
: Entity_Id
);
321 pragma Warnings
(Off
, wpo
);
322 -- Used for debugging: obtain list of primitive operations even if
323 -- type is not frozen and dispatch table is not built yet.
325 ------------------------
326 -- Ambiguous_Operands --
327 ------------------------
329 procedure Ambiguous_Operands
(N
: Node_Id
) is
330 procedure List_Operand_Interps
(Opnd
: Node_Id
);
332 --------------------------
333 -- List_Operand_Interps --
334 --------------------------
336 procedure List_Operand_Interps
(Opnd
: Node_Id
) is
337 Nam
: Node_Id
:= Empty
;
341 if Is_Overloaded
(Opnd
) then
342 if Nkind
(Opnd
) in N_Op
then
345 elsif Nkind
(Opnd
) = N_Function_Call
then
348 elsif Ada_Version
>= Ada_2012
then
354 Get_First_Interp
(Opnd
, I
, It
);
355 while Present
(It
.Nam
) loop
356 if Has_Implicit_Dereference
(It
.Typ
) then
358 ("can be interpreted as implicit dereference", Opnd
);
362 Get_Next_Interp
(I
, It
);
373 if Opnd
= Left_Opnd
(N
) then
375 ("\left operand has the following interpretations", N
);
378 ("\right operand has the following interpretations", N
);
382 List_Interps
(Nam
, Err
);
383 end List_Operand_Interps
;
385 -- Start of processing for Ambiguous_Operands
388 if Nkind
(N
) in N_Membership_Test
then
389 Error_Msg_N
("ambiguous operands for membership", N
);
391 elsif Nkind
(N
) in N_Op_Eq | N_Op_Ne
then
392 Error_Msg_N
("ambiguous operands for equality", N
);
395 Error_Msg_N
("ambiguous operands for comparison", N
);
398 if All_Errors_Mode
then
399 List_Operand_Interps
(Left_Opnd
(N
));
400 List_Operand_Interps
(Right_Opnd
(N
));
402 Error_Msg_N
("\use -gnatf switch for details", N
);
404 end Ambiguous_Operands
;
406 -----------------------
407 -- Analyze_Aggregate --
408 -----------------------
410 -- Most of the analysis of Aggregates requires that the type be known, and
411 -- is therefore put off until resolution of the context. Delta aggregates
412 -- have a base component that determines the enclosing aggregate type so
413 -- its type can be ascertained earlier. This also allows delta aggregates
414 -- to appear in the context of a record type with a private extension, as
415 -- per the latest update of AI12-0127.
417 procedure Analyze_Aggregate
(N
: Node_Id
) is
419 if No
(Etype
(N
)) then
420 if Nkind
(N
) = N_Delta_Aggregate
then
422 Base
: constant Node_Id
:= Expression
(N
);
430 -- If the base is overloaded, propagate interpretations to the
431 -- enclosing aggregate.
433 if Is_Overloaded
(Base
) then
434 Get_First_Interp
(Base
, I
, It
);
435 Set_Etype
(N
, Any_Type
);
437 while Present
(It
.Nam
) loop
438 Add_One_Interp
(N
, It
.Typ
, It
.Typ
);
439 Get_Next_Interp
(I
, It
);
443 Set_Etype
(N
, Etype
(Base
));
448 Set_Etype
(N
, Any_Composite
);
451 end Analyze_Aggregate
;
453 -----------------------
454 -- Analyze_Allocator --
455 -----------------------
457 procedure Analyze_Allocator
(N
: Node_Id
) is
458 Loc
: constant Source_Ptr
:= Sloc
(N
);
459 Sav_Errs
: constant Nat
:= Serious_Errors_Detected
;
460 E
: Node_Id
:= Expression
(N
);
461 Acc_Type
: Entity_Id
;
468 -- Deal with allocator restrictions
470 -- In accordance with H.4(7), the No_Allocators restriction only applies
471 -- to user-written allocators. The same consideration applies to the
472 -- No_Standard_Allocators_Before_Elaboration restriction.
474 if Comes_From_Source
(N
) then
475 Check_Restriction
(No_Allocators
, N
);
477 -- Processing for No_Standard_Allocators_After_Elaboration, loop to
478 -- look at enclosing context, checking task/main subprogram case.
482 while Present
(P
) loop
484 -- For the task case we need a handled sequence of statements,
485 -- where the occurrence of the allocator is within the statements
486 -- and the parent is a task body
488 if Nkind
(P
) = N_Handled_Sequence_Of_Statements
489 and then Is_List_Member
(C
)
490 and then List_Containing
(C
) = Statements
(P
)
492 Onode
:= Original_Node
(Parent
(P
));
494 -- Check for allocator within task body, this is a definite
495 -- violation of No_Allocators_After_Elaboration we can detect
498 if Nkind
(Onode
) = N_Task_Body
then
500 (No_Standard_Allocators_After_Elaboration
, N
);
505 -- The other case is appearance in a subprogram body. This is
506 -- a violation if this is a library level subprogram with no
507 -- parameters. Note that this is now a static error even if the
508 -- subprogram is not the main program (this is a change, in an
509 -- earlier version only the main program was affected, and the
510 -- check had to be done in the binder).
512 if Nkind
(P
) = N_Subprogram_Body
513 and then Nkind
(Parent
(P
)) = N_Compilation_Unit
514 and then No
(Parameter_Specifications
(Specification
(P
)))
517 (No_Standard_Allocators_After_Elaboration
, N
);
525 -- Ada 2012 (AI05-0111-3): Analyze the subpool_specification, if
526 -- any. The expected type for the name is any type. A non-overloading
527 -- rule then requires it to be of a type descended from
528 -- System.Storage_Pools.Subpools.Subpool_Handle.
530 -- This isn't exactly what the AI says, but it seems to be the right
531 -- rule. The AI should be fixed.???
534 Subpool
: constant Node_Id
:= Subpool_Handle_Name
(N
);
537 if Present
(Subpool
) then
540 if Is_Overloaded
(Subpool
) then
541 Error_Msg_N
("ambiguous subpool handle", Subpool
);
544 -- Check that Etype (Subpool) is descended from Subpool_Handle
550 -- Analyze the qualified expression or subtype indication
552 if Nkind
(E
) = N_Qualified_Expression
then
553 Acc_Type
:= Create_Itype
(E_Allocator_Type
, N
);
554 Set_Etype
(Acc_Type
, Acc_Type
);
555 Find_Type
(Subtype_Mark
(E
));
557 -- Analyze the qualified expression, and apply the name resolution
558 -- rule given in 4.7(3).
561 Type_Id
:= Etype
(E
);
562 Set_Directly_Designated_Type
(Acc_Type
, Type_Id
);
564 -- A qualified expression requires an exact match of the type,
565 -- class-wide matching is not allowed.
567 -- if Is_Class_Wide_Type (Type_Id)
568 -- and then Base_Type
569 -- (Etype (Expression (E))) /= Base_Type (Type_Id)
571 -- Wrong_Type (Expression (E), Type_Id);
574 -- We don't analyze the qualified expression itself because it's
575 -- part of the allocator. It is fully analyzed and resolved when
576 -- the allocator is resolved with the context type.
578 Set_Etype
(E
, Type_Id
);
580 -- Case where allocator has a subtype indication
583 -- If the allocator includes a N_Subtype_Indication then a
584 -- constraint is present, otherwise the node is a subtype mark.
585 -- Introduce an explicit subtype declaration into the tree
586 -- defining some anonymous subtype and rewrite the allocator to
587 -- use this subtype rather than the subtype indication.
589 -- It is important to introduce the explicit subtype declaration
590 -- so that the bounds of the subtype indication are attached to
591 -- the tree in case the allocator is inside a generic unit.
593 -- Finally, if there is no subtype indication and the type is
594 -- a tagged unconstrained type with discriminants, the designated
595 -- object is constrained by their default values, and it is
596 -- simplest to introduce an explicit constraint now. In some cases
597 -- this is done during expansion, but freeze actions are certain
598 -- to be emitted in the proper order if constraint is explicit.
600 if Is_Entity_Name
(E
) and then Expander_Active
then
602 Type_Id
:= Entity
(E
);
604 if Is_Tagged_Type
(Type_Id
)
605 and then Has_Defaulted_Discriminants
(Type_Id
)
606 and then not Is_Constrained
(Type_Id
)
609 Constr
: constant List_Id
:= New_List
;
610 Loc
: constant Source_Ptr
:= Sloc
(E
);
611 Discr
: Entity_Id
:= First_Discriminant
(Type_Id
);
614 while Present
(Discr
) loop
615 Append
(Discriminant_Default_Value
(Discr
), Constr
);
616 Next_Discriminant
(Discr
);
620 Make_Subtype_Indication
(Loc
,
621 Subtype_Mark
=> New_Occurrence_Of
(Type_Id
, Loc
),
623 Make_Index_Or_Discriminant_Constraint
(Loc
,
624 Constraints
=> Constr
)));
629 if Nkind
(E
) = N_Subtype_Indication
then
632 Base_Typ
: Entity_Id
;
635 -- A constraint is only allowed for a composite type in Ada
636 -- 95. In Ada 83, a constraint is also allowed for an
637 -- access-to-composite type, but the constraint is ignored.
639 Find_Type
(Subtype_Mark
(E
));
640 Base_Typ
:= Entity
(Subtype_Mark
(E
));
642 if Is_Elementary_Type
(Base_Typ
) then
643 if not (Ada_Version
= Ada_83
644 and then Is_Access_Type
(Base_Typ
))
646 Error_Msg_N
("constraint not allowed here", E
);
648 if Nkind
(Constraint
(E
)) =
649 N_Index_Or_Discriminant_Constraint
651 Error_Msg_N
-- CODEFIX
652 ("\if qualified expression was meant, " &
653 "use apostrophe", Constraint
(E
));
657 -- Get rid of the bogus constraint:
659 Rewrite
(E
, New_Copy_Tree
(Subtype_Mark
(E
)));
660 Analyze_Allocator
(N
);
664 -- In GNATprove mode we need to preserve the link between
665 -- the original subtype indication and the anonymous subtype,
666 -- to extend proofs to constrained access types. We only do
667 -- that outside of spec expressions, otherwise the declaration
668 -- cannot be inserted and analyzed. In such a case, GNATprove
669 -- later rejects the allocator as it is not used here in
670 -- a non-interfering context (SPARK 4.8(2) and 7.1.3(10)).
673 or else (GNATprove_Mode
and then not In_Spec_Expression
)
675 Def_Id
:= Make_Temporary
(Loc
, 'S');
678 Subtype_Decl
: constant Node_Id
:=
679 Make_Subtype_Declaration
(Loc
,
680 Defining_Identifier
=> Def_Id
,
681 Subtype_Indication
=> Relocate_Node
(E
));
683 Insert_Action
(E
, Subtype_Decl
);
685 -- Handle unusual case where Insert_Action does not
686 -- analyze the declaration. Subtype_Decl must be
687 -- preanalyzed before call to Process_Subtype below.
688 Preanalyze
(Subtype_Decl
);
691 if Sav_Errs
/= Serious_Errors_Detected
692 and then Nkind
(Constraint
(E
)) =
693 N_Index_Or_Discriminant_Constraint
695 Error_Msg_N
-- CODEFIX
696 ("if qualified expression was meant, use apostrophe!",
700 E
:= New_Occurrence_Of
(Def_Id
, Loc
);
701 Rewrite
(Expression
(N
), E
);
706 Type_Id
:= Process_Subtype
(E
, N
);
707 Acc_Type
:= Create_Itype
(E_Allocator_Type
, N
);
708 Set_Etype
(Acc_Type
, Acc_Type
);
709 Set_Directly_Designated_Type
(Acc_Type
, Type_Id
);
710 Check_Fully_Declared
(Type_Id
, N
);
712 -- Ada 2005 (AI-231): If the designated type is itself an access
713 -- type that excludes null, its default initialization will
714 -- be a null object, and we can insert an unconditional raise
715 -- before the allocator.
717 -- Ada 2012 (AI-104): A not null indication here is altogether
720 if Can_Never_Be_Null
(Type_Id
) then
722 Not_Null_Check
: constant Node_Id
:=
723 Make_Raise_Constraint_Error
(Sloc
(E
),
724 Reason
=> CE_Null_Not_Allowed
);
727 if Expander_Active
then
728 Insert_Action
(N
, Not_Null_Check
);
729 Analyze
(Not_Null_Check
);
731 elsif Warn_On_Ada_2012_Compatibility
then
733 ("null value not allowed here in Ada 2012?y?", E
);
738 -- Check for missing initialization. Skip this check if the allocator
739 -- is made for a special return object or if we already had errors on
740 -- analyzing the allocator since, in that case, these are very likely
743 if not Is_Definite_Subtype
(Type_Id
)
744 and then not For_Special_Return_Object
(N
)
745 and then Serious_Errors_Detected
= Sav_Errs
747 if Is_Class_Wide_Type
(Type_Id
) then
749 ("initialization required in class-wide allocation", N
);
752 if Ada_Version
< Ada_2005
753 and then Is_Limited_Type
(Type_Id
)
755 Error_Msg_N
("unconstrained allocation not allowed", N
);
757 if Is_Array_Type
(Type_Id
) then
759 ("\constraint with array bounds required", N
);
761 elsif Has_Unknown_Discriminants
(Type_Id
) then
764 else pragma Assert
(Has_Discriminants
(Type_Id
));
766 ("\constraint with discriminant values required", N
);
769 -- Limited Ada 2005 and general nonlimited case.
770 -- This is an error, except in the case of an
771 -- uninitialized allocator that is generated
772 -- for a build-in-place function return of a
773 -- discriminated but compile-time-known-size
777 if Is_Rewrite_Substitution
(N
)
778 and then Nkind
(Original_Node
(N
)) = N_Allocator
781 Qual
: constant Node_Id
:=
782 Expression
(Original_Node
(N
));
784 (Nkind
(Qual
) = N_Qualified_Expression
);
785 Call
: constant Node_Id
:= Expression
(Qual
);
787 (Is_Expanded_Build_In_Place_Call
(Call
));
794 ("uninitialized unconstrained allocation not "
797 if Is_Array_Type
(Type_Id
) then
799 ("\qualified expression or constraint with "
800 & "array bounds required", N
);
802 elsif Has_Unknown_Discriminants
(Type_Id
) then
803 Error_Msg_N
("\qualified expression required", N
);
805 else pragma Assert
(Has_Discriminants
(Type_Id
));
807 ("\qualified expression or constraint with "
808 & "discriminant values required", N
);
816 if Is_Abstract_Type
(Type_Id
) then
817 Error_Msg_N
("cannot allocate abstract object", E
);
820 Set_Etype
(N
, Acc_Type
);
822 -- If this is an allocator for the return stack, then no restriction may
823 -- be violated since it's just a low-level access to the primary stack.
825 if Nkind
(Parent
(N
)) = N_Object_Declaration
826 and then Is_Entity_Name
(Object_Definition
(Parent
(N
)))
827 and then Is_Access_Type
(Entity
(Object_Definition
(Parent
(N
))))
830 Pool
: constant Entity_Id
:=
831 Associated_Storage_Pool
832 (Root_Type
(Entity
(Object_Definition
(Parent
(N
)))));
835 if Present
(Pool
) and then Is_RTE
(Pool
, RE_RS_Pool
) then
841 if Has_Task
(Designated_Type
(Acc_Type
)) then
842 Check_Restriction
(No_Tasking
, N
);
843 Check_Restriction
(Max_Tasks
, N
);
844 Check_Restriction
(No_Task_Allocators
, N
);
847 -- Check restriction against dynamically allocated protected objects
849 if Has_Protected
(Designated_Type
(Acc_Type
)) then
850 Check_Restriction
(No_Protected_Type_Allocators
, N
);
853 -- AI05-0013-1: No_Nested_Finalization forbids allocators if the access
854 -- type is nested, and the designated type needs finalization. The rule
855 -- is conservative in that class-wide types need finalization.
857 if Needs_Finalization
(Designated_Type
(Acc_Type
))
858 and then not Is_Library_Level_Entity
(Acc_Type
)
860 Check_Restriction
(No_Nested_Finalization
, N
);
863 -- Check that an allocator of a nested access type doesn't create a
864 -- protected object when restriction No_Local_Protected_Objects applies.
866 if Has_Protected
(Designated_Type
(Acc_Type
))
867 and then not Is_Library_Level_Entity
(Acc_Type
)
869 Check_Restriction
(No_Local_Protected_Objects
, N
);
872 -- Likewise for No_Local_Timing_Events
874 if Has_Timing_Event
(Designated_Type
(Acc_Type
))
875 and then not Is_Library_Level_Entity
(Acc_Type
)
877 Check_Restriction
(No_Local_Timing_Events
, N
);
880 -- If the No_Streams restriction is set, check that the type of the
881 -- object is not, and does not contain, any subtype derived from
882 -- Ada.Streams.Root_Stream_Type. Note that we guard the call to
883 -- Has_Stream just for efficiency reasons. There is no point in
884 -- spending time on a Has_Stream check if the restriction is not set.
886 if Restriction_Check_Required
(No_Streams
) then
887 if Has_Stream
(Designated_Type
(Acc_Type
)) then
888 Check_Restriction
(No_Streams
, N
);
892 if not Is_Library_Level_Entity
(Acc_Type
) then
893 Check_Restriction
(No_Local_Allocators
, N
);
897 if Serious_Errors_Detected
> Sav_Errs
then
898 Set_Error_Posted
(N
);
899 Set_Etype
(N
, Any_Type
);
901 end Analyze_Allocator
;
903 ---------------------------
904 -- Analyze_Arithmetic_Op --
905 ---------------------------
907 procedure Analyze_Arithmetic_Op
(N
: Node_Id
) is
908 L
: constant Node_Id
:= Left_Opnd
(N
);
909 R
: constant Node_Id
:= Right_Opnd
(N
);
914 Set_Etype
(N
, Any_Type
);
915 Candidate_Type
:= Empty
;
917 Analyze_Expression
(L
);
918 Analyze_Expression
(R
);
920 -- If the entity is already set, the node is the instantiation of a
921 -- generic node with a non-local reference, or was manufactured by a
922 -- call to Make_Op_xxx. In either case the entity is known to be valid,
923 -- and we do not need to collect interpretations, instead we just get
924 -- the single possible interpretation.
926 if Present
(Entity
(N
)) then
929 if Ekind
(Op_Id
) = E_Operator
then
930 Find_Arithmetic_Types
(L
, R
, Op_Id
, N
);
932 Add_One_Interp
(N
, Op_Id
, Etype
(Op_Id
));
935 -- Entity is not already set, so we do need to collect interpretations
938 Op_Id
:= Get_Name_Entity_Id
(Chars
(N
));
939 while Present
(Op_Id
) loop
940 if Ekind
(Op_Id
) = E_Operator
941 and then Present
(Next_Entity
(First_Entity
(Op_Id
)))
943 Find_Arithmetic_Types
(L
, R
, Op_Id
, N
);
945 -- The following may seem superfluous, because an operator cannot
946 -- be generic, but this ignores the cleverness of the author of
949 elsif Is_Overloadable
(Op_Id
) then
950 Analyze_User_Defined_Binary_Op
(N
, Op_Id
);
953 Op_Id
:= Homonym
(Op_Id
);
958 Check_Function_Writable_Actuals
(N
);
959 end Analyze_Arithmetic_Op
;
965 -- Function, procedure, and entry calls are checked here. The Name in
966 -- the call may be overloaded. The actuals have been analyzed and may
967 -- themselves be overloaded. On exit from this procedure, the node N
968 -- may have zero, one or more interpretations. In the first case an
969 -- error message is produced. In the last case, the node is flagged
970 -- as overloaded and the interpretations are collected in All_Interp.
972 -- If the name is an Access_To_Subprogram, it cannot be overloaded, but
973 -- the type-checking is similar to that of other calls.
975 procedure Analyze_Call
(N
: Node_Id
) is
976 Actuals
: constant List_Id
:= Parameter_Associations
(N
);
977 Loc
: constant Source_Ptr
:= Sloc
(N
);
981 Nam_Ent
: Entity_Id
:= Empty
;
982 Success
: Boolean := False;
984 Deref
: Boolean := False;
985 -- Flag indicates whether an interpretation of the prefix is a
986 -- parameterless call that returns an access_to_subprogram.
988 procedure Check_Writable_Actuals
(N
: Node_Id
);
989 -- If the call has out or in-out parameters then mark its outermost
990 -- enclosing construct as a node on which the writable actuals check
991 -- must be performed.
993 function Name_Denotes_Function
return Boolean;
994 -- If the type of the name is an access to subprogram, this may be the
995 -- type of a name, or the return type of the function being called. If
996 -- the name is not an entity then it can denote a protected function.
997 -- Until we distinguish Etype from Return_Type, we must use this routine
998 -- to resolve the meaning of the name in the call.
1000 procedure No_Interpretation
;
1001 -- Output error message when no valid interpretation exists
1003 ----------------------------
1004 -- Check_Writable_Actuals --
1005 ----------------------------
1007 -- The identification of conflicts in calls to functions with writable
1008 -- actuals is performed in the analysis phase of the front end to ensure
1009 -- that it reports exactly the same errors compiling with and without
1010 -- expansion enabled. It is performed in two stages:
1012 -- 1) When a call to a function with out-mode parameters is found,
1013 -- we climb to the outermost enclosing construct that can be
1014 -- evaluated in arbitrary order and we mark it with the flag
1017 -- 2) When the analysis of the marked node is complete, we traverse
1018 -- its decorated subtree searching for conflicts (see function
1019 -- Sem_Util.Check_Function_Writable_Actuals).
1021 -- The unique exception to this general rule is for aggregates, since
1022 -- their analysis is performed by the front end in the resolution
1023 -- phase. For aggregates we do not climb to their enclosing construct:
1024 -- we restrict the analysis to the subexpressions initializing the
1025 -- aggregate components.
1027 -- This implies that the analysis of expressions containing aggregates
1028 -- is not complete, since there may be conflicts on writable actuals
1029 -- involving subexpressions of the enclosing logical or arithmetic
1030 -- expressions. However, we cannot wait and perform the analysis when
1031 -- the whole subtree is resolved, since the subtrees may be transformed,
1032 -- thus adding extra complexity and computation cost to identify and
1033 -- report exactly the same errors compiling with and without expansion
1036 procedure Check_Writable_Actuals
(N
: Node_Id
) is
1038 if Comes_From_Source
(N
)
1039 and then Present
(Get_Subprogram_Entity
(N
))
1040 and then Has_Out_Or_In_Out_Parameter
(Get_Subprogram_Entity
(N
))
1042 -- For procedures and entries there is no need to climb since
1043 -- we only need to check if the actuals of this call invoke
1044 -- functions whose out-mode parameters overlap.
1046 if Nkind
(N
) /= N_Function_Call
then
1047 Set_Check_Actuals
(N
);
1049 -- For calls to functions we climb to the outermost enclosing
1050 -- construct where the out-mode actuals of this function may
1051 -- introduce conflicts.
1055 Outermost
: Node_Id
:= Empty
; -- init to avoid warning
1059 while Present
(P
) loop
1060 -- For object declarations we can climb to the node from
1061 -- its object definition branch or from its initializing
1062 -- expression. We prefer to mark the child node as the
1063 -- outermost construct to avoid adding further complexity
1064 -- to the routine that will later take care of
1065 -- performing the writable actuals check.
1067 if Has_Arbitrary_Evaluation_Order
(Nkind
(P
))
1068 and then Nkind
(P
) not in
1069 N_Assignment_Statement | N_Object_Declaration
1074 -- Avoid climbing more than needed
1076 exit when Stop_Subtree_Climbing
(Nkind
(P
))
1077 or else (Nkind
(P
) = N_Range
1079 Nkind
(Parent
(P
)) not in N_In | N_Not_In
);
1084 Set_Check_Actuals
(Outermost
);
1088 end Check_Writable_Actuals
;
1090 ---------------------------
1091 -- Name_Denotes_Function --
1092 ---------------------------
1094 function Name_Denotes_Function
return Boolean is
1096 if Is_Entity_Name
(Nam
) then
1097 return Ekind
(Entity
(Nam
)) = E_Function
;
1098 elsif Nkind
(Nam
) = N_Selected_Component
then
1099 return Ekind
(Entity
(Selector_Name
(Nam
))) = E_Function
;
1103 end Name_Denotes_Function
;
1105 -----------------------
1106 -- No_Interpretation --
1107 -----------------------
1109 procedure No_Interpretation
is
1110 L
: constant Boolean := Is_List_Member
(N
);
1111 K
: constant Node_Kind
:= Nkind
(Parent
(N
));
1114 -- If the node is in a list whose parent is not an expression then it
1115 -- must be an attempted procedure call.
1117 if L
and then K
not in N_Subexpr
then
1118 if Ekind
(Entity
(Nam
)) = E_Generic_Procedure
then
1120 ("must instantiate generic procedure& before call",
1123 Error_Msg_N
("procedure or entry name expected", Nam
);
1126 -- Check for tasking cases where only an entry call will do
1129 and then K
in N_Entry_Call_Alternative | N_Triggering_Alternative
1131 Error_Msg_N
("entry name expected", Nam
);
1133 -- Otherwise give general error message
1136 Error_Msg_N
("invalid prefix in call", Nam
);
1138 end No_Interpretation
;
1140 -- Start of processing for Analyze_Call
1143 -- Initialize the type of the result of the call to the error type,
1144 -- which will be reset if the type is successfully resolved.
1146 Set_Etype
(N
, Any_Type
);
1150 if not Is_Overloaded
(Nam
) then
1152 -- Only one interpretation to check
1154 if Ekind
(Etype
(Nam
)) = E_Subprogram_Type
then
1155 Nam_Ent
:= Etype
(Nam
);
1157 -- If the prefix is an access_to_subprogram, this may be an indirect
1158 -- call. This is the case if the name in the call is not an entity
1159 -- name, or if it is a function name in the context of a procedure
1160 -- call. In this latter case, we have a call to a parameterless
1161 -- function that returns a pointer_to_procedure which is the entity
1162 -- being called. Finally, F (X) may be a call to a parameterless
1163 -- function that returns a pointer to a function with parameters.
1164 -- Note that if F returns an access-to-subprogram whose designated
1165 -- type is an array, F (X) cannot be interpreted as an indirect call
1166 -- through the result of the call to F.
1168 elsif Is_Access_Subprogram_Type
(Base_Type
(Etype
(Nam
)))
1170 (not Name_Denotes_Function
1171 or else Nkind
(N
) = N_Procedure_Call_Statement
1173 (Nkind
(Parent
(N
)) /= N_Explicit_Dereference
1174 and then Is_Entity_Name
(Nam
)
1175 and then No
(First_Formal
(Entity
(Nam
)))
1177 Is_Array_Type
(Etype
(Designated_Type
(Etype
(Nam
))))
1178 and then Present
(Actuals
)))
1180 Nam_Ent
:= Designated_Type
(Etype
(Nam
));
1181 Insert_Explicit_Dereference
(Nam
);
1183 -- Selected component case. Simple entry or protected operation,
1184 -- where the entry name is given by the selector name.
1186 elsif Nkind
(Nam
) = N_Selected_Component
then
1187 Nam_Ent
:= Entity
(Selector_Name
(Nam
));
1189 if Ekind
(Nam_Ent
) not in E_Entry
1194 Error_Msg_N
("name in call is not a callable entity", Nam
);
1195 Set_Etype
(N
, Any_Type
);
1199 -- If the name is an Indexed component, it can be a call to a member
1200 -- of an entry family. The prefix must be a selected component whose
1201 -- selector is the entry. Analyze_Procedure_Call normalizes several
1202 -- kinds of call into this form.
1204 elsif Nkind
(Nam
) = N_Indexed_Component
then
1205 if Nkind
(Prefix
(Nam
)) = N_Selected_Component
then
1206 Nam_Ent
:= Entity
(Selector_Name
(Prefix
(Nam
)));
1208 Error_Msg_N
("name in call is not a callable entity", Nam
);
1209 Set_Etype
(N
, Any_Type
);
1213 elsif not Is_Entity_Name
(Nam
) then
1214 Error_Msg_N
("name in call is not a callable entity", Nam
);
1215 Set_Etype
(N
, Any_Type
);
1219 Nam_Ent
:= Entity
(Nam
);
1221 -- If not overloadable, this may be a generalized indexing
1222 -- operation with named associations. Rewrite again as an
1223 -- indexed component and analyze as container indexing.
1225 if not Is_Overloadable
(Nam_Ent
) then
1227 (Find_Value_Of_Aspect
1228 (Etype
(Nam_Ent
), Aspect_Constant_Indexing
))
1231 Make_Indexed_Component
(Sloc
(N
),
1233 Expressions
=> Parameter_Associations
(N
)));
1235 if Try_Container_Indexing
(N
, Nam
, Expressions
(N
)) then
1249 -- Operations generated for RACW stub types are called only through
1250 -- dispatching, and can never be the static interpretation of a call.
1252 if Is_RACW_Stub_Type_Operation
(Nam_Ent
) then
1257 Analyze_One_Call
(N
, Nam_Ent
, True, Success
);
1259 -- If the nonoverloaded interpretation is a call to an abstract
1260 -- nondispatching operation, then flag an error and return.
1262 if Is_Overloadable
(Nam_Ent
)
1263 and then Is_Abstract_Subprogram
(Nam_Ent
)
1264 and then not Is_Dispatching_Operation
(Nam_Ent
)
1266 Nondispatching_Call_To_Abstract_Operation
(N
, Nam_Ent
);
1270 -- If this is an indirect call, the return type of the access_to
1271 -- subprogram may be an incomplete type. At the point of the call,
1272 -- use the full type if available, and at the same time update the
1273 -- return type of the access_to_subprogram.
1276 and then Nkind
(Nam
) = N_Explicit_Dereference
1277 and then Ekind
(Etype
(N
)) = E_Incomplete_Type
1278 and then Present
(Full_View
(Etype
(N
)))
1280 Set_Etype
(N
, Full_View
(Etype
(N
)));
1281 Set_Etype
(Nam_Ent
, Etype
(N
));
1287 -- An overloaded selected component must denote overloaded operations
1288 -- of a concurrent type. The interpretations are attached to the
1289 -- simple name of those operations.
1291 if Nkind
(Nam
) = N_Selected_Component
then
1292 Nam
:= Selector_Name
(Nam
);
1295 Get_First_Interp
(Nam
, X
, It
);
1296 while Present
(It
.Nam
) loop
1300 -- Name may be call that returns an access to subprogram, or more
1301 -- generally an overloaded expression one of whose interpretations
1302 -- yields an access to subprogram. If the name is an entity, we do
1303 -- not dereference, because the node is a call that returns the
1304 -- access type: note difference between f(x), where the call may
1305 -- return an access subprogram type, and f(x)(y), where the type
1306 -- returned by the call to f is implicitly dereferenced to analyze
1309 if Is_Access_Type
(Nam_Ent
) then
1310 Nam_Ent
:= Designated_Type
(Nam_Ent
);
1312 elsif Is_Access_Type
(Etype
(Nam_Ent
))
1314 (not Is_Entity_Name
(Nam
)
1315 or else Nkind
(N
) = N_Procedure_Call_Statement
)
1316 and then Ekind
(Designated_Type
(Etype
(Nam_Ent
)))
1319 Nam_Ent
:= Designated_Type
(Etype
(Nam_Ent
));
1321 if Is_Entity_Name
(Nam
) then
1326 -- If the call has been rewritten from a prefixed call, the first
1327 -- parameter has been analyzed, but may need a subsequent
1328 -- dereference, so skip its analysis now.
1330 if Is_Rewrite_Substitution
(N
)
1331 and then Nkind
(Original_Node
(N
)) = Nkind
(N
)
1332 and then Nkind
(Name
(N
)) /= Nkind
(Name
(Original_Node
(N
)))
1333 and then Present
(Parameter_Associations
(N
))
1334 and then Present
(Etype
(First
(Parameter_Associations
(N
))))
1337 (N
, Nam_Ent
, False, Success
, Skip_First
=> True);
1339 Analyze_One_Call
(N
, Nam_Ent
, False, Success
);
1342 -- If the interpretation succeeds, mark the proper type of the
1343 -- prefix (any valid candidate will do). If not, remove the
1344 -- candidate interpretation. If this is a parameterless call
1345 -- on an anonymous access to subprogram, X is a variable with
1346 -- an access discriminant D, the entity in the interpretation is
1347 -- D, so rewrite X as X.D.all.
1351 and then Nkind
(Parent
(N
)) /= N_Explicit_Dereference
1353 if Ekind
(It
.Nam
) = E_Discriminant
1354 and then Has_Implicit_Dereference
(It
.Nam
)
1357 Make_Explicit_Dereference
(Loc
,
1359 Make_Selected_Component
(Loc
,
1361 New_Occurrence_Of
(Entity
(Nam
), Loc
),
1363 New_Occurrence_Of
(It
.Nam
, Loc
))));
1369 Set_Entity
(Nam
, It
.Nam
);
1370 Insert_Explicit_Dereference
(Nam
);
1371 Set_Etype
(Nam
, Nam_Ent
);
1375 Set_Etype
(Nam
, It
.Typ
);
1378 elsif Nkind
(Name
(N
)) in N_Function_Call | N_Selected_Component
1383 Get_Next_Interp
(X
, It
);
1386 -- If the name is the result of a function call, it can only be a
1387 -- call to a function returning an access to subprogram. Insert
1388 -- explicit dereference.
1390 if Nkind
(Nam
) = N_Function_Call
then
1391 Insert_Explicit_Dereference
(Nam
);
1394 if Etype
(N
) = Any_Type
then
1396 -- None of the interpretations is compatible with the actuals
1398 Diagnose_Call
(N
, Nam
);
1400 -- Special checks for uninstantiated put routines
1402 if Nkind
(N
) = N_Procedure_Call_Statement
1403 and then Is_Entity_Name
(Nam
)
1404 and then Chars
(Nam
) = Name_Put
1405 and then List_Length
(Actuals
) = 1
1408 Arg
: constant Node_Id
:= First
(Actuals
);
1412 if Nkind
(Arg
) = N_Parameter_Association
then
1413 Typ
:= Etype
(Explicit_Actual_Parameter
(Arg
));
1418 if Is_Signed_Integer_Type
(Typ
) then
1420 ("possible missing instantiation of "
1421 & "'Text_'I'O.'Integer_'I'O!", Nam
);
1423 elsif Is_Modular_Integer_Type
(Typ
) then
1425 ("possible missing instantiation of "
1426 & "'Text_'I'O.'Modular_'I'O!", Nam
);
1428 elsif Is_Floating_Point_Type
(Typ
) then
1430 ("possible missing instantiation of "
1431 & "'Text_'I'O.'Float_'I'O!", Nam
);
1433 elsif Is_Ordinary_Fixed_Point_Type
(Typ
) then
1435 ("possible missing instantiation of "
1436 & "'Text_'I'O.'Fixed_'I'O!", Nam
);
1438 elsif Is_Decimal_Fixed_Point_Type
(Typ
) then
1440 ("possible missing instantiation of "
1441 & "'Text_'I'O.'Decimal_'I'O!", Nam
);
1443 elsif Is_Enumeration_Type
(Typ
) then
1445 ("possible missing instantiation of "
1446 & "'Text_'I'O.'Enumeration_'I'O!", Nam
);
1451 elsif not Is_Overloaded
(N
)
1452 and then Is_Entity_Name
(Nam
)
1454 -- Resolution yields a single interpretation. Verify that the
1455 -- reference has capitalization consistent with the declaration.
1457 Set_Entity_With_Checks
(Nam
, Entity
(Nam
));
1458 Generate_Reference
(Entity
(Nam
), Nam
);
1460 Set_Etype
(Nam
, Etype
(Entity
(Nam
)));
1462 Remove_Abstract_Operations
(N
);
1466 -- Check the accessibility level for actuals for explicitly aliased
1467 -- formals when a function call appears within a return statement.
1468 -- This is only checked if the enclosing subprogram Comes_From_Source,
1469 -- to avoid issuing errors on calls occurring in wrapper subprograms
1470 -- (for example, where the call is part of an expression of an aspect
1471 -- associated with a wrapper, such as Pre'Class).
1473 if Nkind
(N
) = N_Function_Call
1474 and then Comes_From_Source
(N
)
1475 and then Present
(Nam_Ent
)
1476 and then In_Return_Value
(N
)
1477 and then Comes_From_Source
(Current_Subprogram
)
1483 Act
:= First_Actual
(N
);
1484 Form
:= First_Formal
(Nam_Ent
);
1486 while Present
(Form
) and then Present
(Act
) loop
1487 -- Check whether the formal is aliased and if the accessibility
1488 -- level of the actual is deeper than the accessibility level
1489 -- of the enclosing subprogram to which the current return
1490 -- statement applies.
1492 -- Should we be checking Is_Entity_Name on Act? Won't this miss
1495 if Is_Explicitly_Aliased
(Form
)
1496 and then Is_Entity_Name
(Act
)
1497 and then Static_Accessibility_Level
1498 (Act
, Zero_On_Dynamic_Level
)
1499 > Subprogram_Access_Level
(Current_Subprogram
)
1501 Error_Msg_N
("actual for explicitly aliased formal is too"
1502 & " short lived", Act
);
1511 if Ada_Version
>= Ada_2012
then
1513 -- Check if the call contains a function with writable actuals
1515 Check_Writable_Actuals
(N
);
1517 -- If found and the outermost construct that can be evaluated in
1518 -- an arbitrary order is precisely this call, then check all its
1521 Check_Function_Writable_Actuals
(N
);
1523 -- The return type of the function may be incomplete. This can be
1524 -- the case if the type is a generic formal, or a limited view. It
1525 -- can also happen when the function declaration appears before the
1526 -- full view of the type (which is legal in Ada 2012) and the call
1527 -- appears in a different unit, in which case the incomplete view
1528 -- must be replaced with the full view (or the nonlimited view)
1529 -- to prevent subsequent type errors. Note that the usual install/
1530 -- removal of limited_with clauses is not sufficient to handle this
1531 -- case, because the limited view may have been captured in another
1532 -- compilation unit that defines the current function.
1534 if Is_Incomplete_Type
(Etype
(N
)) then
1535 if Present
(Full_View
(Etype
(N
))) then
1536 if Is_Entity_Name
(Nam
) then
1537 Set_Etype
(Nam
, Full_View
(Etype
(N
)));
1538 Set_Etype
(Entity
(Nam
), Full_View
(Etype
(N
)));
1541 Set_Etype
(N
, Full_View
(Etype
(N
)));
1543 -- If the call is within a thunk, the nonlimited view should be
1544 -- analyzed eventually (see also Analyze_Return_Type).
1546 elsif From_Limited_With
(Etype
(N
))
1547 and then Present
(Non_Limited_View
(Etype
(N
)))
1549 (Ekind
(Non_Limited_View
(Etype
(N
))) /= E_Incomplete_Type
1550 or else Is_Thunk
(Current_Scope
))
1552 Set_Etype
(N
, Non_Limited_View
(Etype
(N
)));
1554 -- If there is no completion for the type, this may be because
1555 -- there is only a limited view of it and there is nothing in
1556 -- the context of the current unit that has required a regular
1557 -- compilation of the unit containing the type. We recognize
1558 -- this unusual case by the fact that unit is not analyzed.
1559 -- Note that the call being analyzed is in a different unit from
1560 -- the function declaration, and nothing indicates that the type
1561 -- is a limited view.
1563 elsif Ekind
(Scope
(Etype
(N
))) = E_Package
1564 and then Present
(Limited_View
(Scope
(Etype
(N
))))
1565 and then not Analyzed
(Unit_Declaration_Node
(Scope
(Etype
(N
))))
1568 ("cannot call function that returns limited view of}",
1572 ("\there must be a regular with_clause for package & in the "
1573 & "current unit, or in some unit in its context",
1574 N
, Scope
(Etype
(N
)));
1576 Set_Etype
(N
, Any_Type
);
1582 -----------------------------
1583 -- Analyze_Case_Expression --
1584 -----------------------------
1586 procedure Analyze_Case_Expression
(N
: Node_Id
) is
1587 Expr
: constant Node_Id
:= Expression
(N
);
1588 First_Alt
: constant Node_Id
:= First
(Alternatives
(N
));
1590 First_Expr
: Node_Id
:= Empty
;
1591 -- First expression in the case where there is some type information
1592 -- available, i.e. there is not Any_Type everywhere, which can happen
1593 -- because of some error.
1595 Second_Expr
: Node_Id
:= Empty
;
1596 -- Second expression as above
1598 Wrong_Alt
: Node_Id
:= Empty
;
1599 -- For error reporting
1601 procedure Non_Static_Choice_Error
(Choice
: Node_Id
);
1602 -- Error routine invoked by the generic instantiation below when
1603 -- the case expression has a non static choice.
1605 procedure Check_Next_Expression
(T
: Entity_Id
; Alt
: Node_Id
);
1606 -- Check one interpretation of the next expression with type T
1608 procedure Check_Expression_Pair
(T1
, T2
: Entity_Id
; Alt
: Node_Id
);
1609 -- Check first expression with type T1 and next expression with type T2
1611 package Case_Choices_Analysis
is new
1612 Generic_Analyze_Choices
1613 (Process_Associated_Node
=> No_OP
);
1614 use Case_Choices_Analysis
;
1616 package Case_Choices_Checking
is new
1617 Generic_Check_Choices
1618 (Process_Empty_Choice
=> No_OP
,
1619 Process_Non_Static_Choice
=> Non_Static_Choice_Error
,
1620 Process_Associated_Node
=> No_OP
);
1621 use Case_Choices_Checking
;
1623 -----------------------------
1624 -- Non_Static_Choice_Error --
1625 -----------------------------
1627 procedure Non_Static_Choice_Error
(Choice
: Node_Id
) is
1629 Flag_Non_Static_Expr
1630 ("choice given in case expression is not static!", Choice
);
1631 end Non_Static_Choice_Error
;
1633 ---------------------------
1634 -- Check_Next_Expression --
1635 ---------------------------
1637 procedure Check_Next_Expression
(T
: Entity_Id
; Alt
: Node_Id
) is
1638 Next_Expr
: constant Node_Id
:= Expression
(Alt
);
1644 if Next_Expr
= First_Expr
then
1645 Check_Next_Expression
(T
, Next
(Alt
));
1649 -- Loop through the interpretations of the next expression
1651 if not Is_Overloaded
(Next_Expr
) then
1652 Check_Expression_Pair
(T
, Etype
(Next_Expr
), Alt
);
1655 Get_First_Interp
(Next_Expr
, I
, It
);
1656 while Present
(It
.Typ
) loop
1657 Check_Expression_Pair
(T
, It
.Typ
, Alt
);
1658 Get_Next_Interp
(I
, It
);
1661 end Check_Next_Expression
;
1663 ---------------------------
1664 -- Check_Expression_Pair --
1665 ---------------------------
1667 procedure Check_Expression_Pair
(T1
, T2
: Entity_Id
; Alt
: Node_Id
) is
1668 Next_Expr
: constant Node_Id
:= Expression
(Alt
);
1673 if Covers
(T1
=> T1
, T2
=> T2
)
1674 or else Covers
(T1
=> T2
, T2
=> T1
)
1676 T
:= Specific_Type
(T1
, T2
);
1678 elsif Is_User_Defined_Literal
(First_Expr
, T2
) then
1681 elsif Is_User_Defined_Literal
(Next_Expr
, T1
) then
1685 T
:= Possible_Type_For_Conditional_Expression
(T1
, T2
);
1693 if Present
(Next
(Alt
)) then
1694 Check_Next_Expression
(T
, Next
(Alt
));
1696 Add_One_Interp
(N
, T
, T
);
1698 end Check_Expression_Pair
;
1703 Exp_Type
: Entity_Id
;
1704 Exp_Btype
: Entity_Id
;
1707 Others_Present
: Boolean;
1709 -- Start of processing for Analyze_Case_Expression
1712 Analyze_And_Resolve
(Expr
, Any_Discrete
);
1713 Check_Unset_Reference
(Expr
);
1714 Exp_Type
:= Etype
(Expr
);
1715 Exp_Btype
:= Base_Type
(Exp_Type
);
1717 Set_Etype
(N
, Any_Type
);
1720 while Present
(Alt
) loop
1721 if Error_Posted
(Expression
(Alt
)) then
1725 Analyze_Expression
(Expression
(Alt
));
1727 if Etype
(Expression
(Alt
)) /= Any_Type
then
1728 if No
(First_Expr
) then
1729 First_Expr
:= Expression
(Alt
);
1731 elsif No
(Second_Expr
) then
1732 Second_Expr
:= Expression
(Alt
);
1739 -- Get our initial type from the first expression for which we got some
1740 -- useful type information from the expression.
1742 if No
(First_Expr
) then
1746 -- The expression must be of a discrete type which must be determinable
1747 -- independently of the context in which the expression occurs, but
1748 -- using the fact that the expression must be of a discrete type.
1749 -- Moreover, the type this expression must not be a character literal
1750 -- (which is always ambiguous).
1752 -- If error already reported by Resolve, nothing more to do
1754 if Exp_Btype
= Any_Discrete
or else Exp_Btype
= Any_Type
then
1757 -- Special case message for character literal
1759 elsif Exp_Btype
= Any_Character
then
1761 ("character literal as case expression is ambiguous", Expr
);
1765 -- If the case expression is a formal object of mode in out, then
1766 -- treat it as having a nonstatic subtype by forcing use of the base
1767 -- type (which has to get passed to Check_Case_Choices below). Also
1768 -- use base type when the case expression is parenthesized.
1770 if Paren_Count
(Expr
) > 0
1771 or else (Is_Entity_Name
(Expr
)
1772 and then Ekind
(Entity
(Expr
)) = E_Generic_In_Out_Parameter
)
1774 Exp_Type
:= Exp_Btype
;
1777 -- The case expression alternatives cover the range of a static subtype
1778 -- subject to aspect Static_Predicate. Do not check the choices when the
1779 -- case expression has not been fully analyzed yet because this may lead
1782 if Is_OK_Static_Subtype
(Exp_Type
)
1783 and then Has_Static_Predicate_Aspect
(Exp_Type
)
1784 and then In_Spec_Expression
1788 -- Call Analyze_Choices and Check_Choices to do the rest of the work
1791 Analyze_Choices
(Alternatives
(N
), Exp_Type
);
1792 Check_Choices
(N
, Alternatives
(N
), Exp_Type
, Others_Present
);
1794 if Exp_Type
= Universal_Integer
and then not Others_Present
then
1796 ("case on universal integer requires OTHERS choice", Expr
);
1801 -- RM 4.5.7(10/3): If the case_expression is the operand of a type
1802 -- conversion, the type of the case_expression is the target type
1803 -- of the conversion.
1805 if Nkind
(Parent
(N
)) = N_Type_Conversion
then
1806 Set_Etype
(N
, Etype
(Parent
(N
)));
1810 -- Loop through the interpretations of the first expression and check
1811 -- the other expressions if present.
1813 if not Is_Overloaded
(First_Expr
) then
1814 if Present
(Second_Expr
) then
1815 Check_Next_Expression
(Etype
(First_Expr
), First_Alt
);
1817 Set_Etype
(N
, Etype
(First_Expr
));
1821 Get_First_Interp
(First_Expr
, I
, It
);
1822 while Present
(It
.Typ
) loop
1823 if Present
(Second_Expr
) then
1824 Check_Next_Expression
(It
.Typ
, First_Alt
);
1826 Add_One_Interp
(N
, It
.Typ
, It
.Typ
);
1829 Get_Next_Interp
(I
, It
);
1833 -- If no possible interpretation has been found, the type of the wrong
1834 -- alternative doesn't match any interpretation of the FIRST expression.
1836 if Etype
(N
) = Any_Type
and then Present
(Wrong_Alt
) then
1837 Second_Expr
:= Expression
(Wrong_Alt
);
1839 if Is_Overloaded
(First_Expr
) then
1840 if Is_Overloaded
(Second_Expr
) then
1842 ("no interpretation compatible with those of previous "
1847 ("type incompatible with interpretations of previous "
1851 ("\this alternative has}!",
1853 Etype
(Second_Expr
));
1857 if Is_Overloaded
(Second_Expr
) then
1859 ("no interpretation compatible with type of previous "
1863 ("\previous alternative has}!",
1865 Etype
(First_Expr
));
1868 ("type incompatible with that of previous alternative",
1871 ("\previous alternative has}!",
1873 Etype
(First_Expr
));
1875 ("\this alternative has}!",
1877 Etype
(Second_Expr
));
1881 end Analyze_Case_Expression
;
1883 ---------------------------
1884 -- Analyze_Concatenation --
1885 ---------------------------
1887 procedure Analyze_Concatenation
(N
: Node_Id
) is
1889 -- We wish to avoid deep recursion, because concatenations are often
1890 -- deeply nested, as in A&B&...&Z. Therefore, we walk down the left
1891 -- operands nonrecursively until we find something that is not a
1892 -- concatenation (A in this case), or has already been analyzed. We
1893 -- analyze that, and then walk back up the tree following Parent
1894 -- pointers, calling Analyze_Concatenation_Rest to do the rest of the
1895 -- work at each level. The Parent pointers allow us to avoid recursion,
1896 -- and thus avoid running out of memory.
1902 Candidate_Type
:= Empty
;
1904 -- The following code is equivalent to:
1906 -- Set_Etype (N, Any_Type);
1907 -- Analyze_Expression (Left_Opnd (N));
1908 -- Analyze_Concatenation_Rest (N);
1910 -- where the Analyze_Expression call recurses back here if the left
1911 -- operand is a concatenation.
1913 -- Walk down left operands
1916 Set_Etype
(NN
, Any_Type
);
1917 L
:= Left_Opnd
(NN
);
1918 exit when Nkind
(L
) /= N_Op_Concat
or else Analyzed
(L
);
1922 -- Now (given the above example) NN is A&B and L is A
1924 -- First analyze L ...
1926 Analyze_Expression
(L
);
1928 -- ... then walk NN back up until we reach N (where we started), calling
1929 -- Analyze_Concatenation_Rest along the way.
1932 Analyze_Concatenation_Rest
(NN
);
1936 end Analyze_Concatenation
;
1938 --------------------------------
1939 -- Analyze_Concatenation_Rest --
1940 --------------------------------
1942 -- If the only one-dimensional array type in scope is String,
1943 -- this is the resulting type of the operation. Otherwise there
1944 -- will be a concatenation operation defined for each user-defined
1945 -- one-dimensional array.
1947 procedure Analyze_Concatenation_Rest
(N
: Node_Id
) is
1948 L
: constant Node_Id
:= Left_Opnd
(N
);
1949 R
: constant Node_Id
:= Right_Opnd
(N
);
1950 Op_Id
: Entity_Id
:= Entity
(N
);
1955 Analyze_Expression
(R
);
1957 -- If the entity is present, the node appears in an instance, and
1958 -- denotes a predefined concatenation operation. The resulting type is
1959 -- obtained from the arguments when possible. If the arguments are
1960 -- aggregates, the array type and the concatenation type must be
1963 if Present
(Op_Id
) then
1964 if Ekind
(Op_Id
) = E_Operator
then
1965 LT
:= Base_Type
(Etype
(L
));
1966 RT
:= Base_Type
(Etype
(R
));
1968 if Is_Array_Type
(LT
)
1969 and then (RT
= LT
or else RT
= Base_Type
(Component_Type
(LT
)))
1971 Add_One_Interp
(N
, Op_Id
, LT
);
1973 elsif Is_Array_Type
(RT
)
1974 and then LT
= Base_Type
(Component_Type
(RT
))
1976 Add_One_Interp
(N
, Op_Id
, RT
);
1978 -- If one operand is a string type or a user-defined array type,
1979 -- and the other is a literal, result is of the specific type.
1982 (Root_Type
(LT
) = Standard_String
1983 or else Scope
(LT
) /= Standard_Standard
)
1984 and then Etype
(R
) = Any_String
1986 Add_One_Interp
(N
, Op_Id
, LT
);
1989 (Root_Type
(RT
) = Standard_String
1990 or else Scope
(RT
) /= Standard_Standard
)
1991 and then Etype
(L
) = Any_String
1993 Add_One_Interp
(N
, Op_Id
, RT
);
1995 elsif not Is_Generic_Type
(Etype
(Op_Id
)) then
1996 Add_One_Interp
(N
, Op_Id
, Etype
(Op_Id
));
1999 -- Type and its operations must be visible
2001 Set_Entity
(N
, Empty
);
2002 Analyze_Concatenation
(N
);
2006 Add_One_Interp
(N
, Op_Id
, Etype
(Op_Id
));
2010 Op_Id
:= Get_Name_Entity_Id
(Name_Op_Concat
);
2011 while Present
(Op_Id
) loop
2012 if Ekind
(Op_Id
) = E_Operator
then
2014 -- Do not consider operators declared in dead code, they
2015 -- cannot be part of the resolution.
2017 if Is_Eliminated
(Op_Id
) then
2020 Find_Concatenation_Types
(L
, R
, Op_Id
, N
);
2024 Analyze_User_Defined_Binary_Op
(N
, Op_Id
);
2027 Op_Id
:= Homonym
(Op_Id
);
2032 end Analyze_Concatenation_Rest
;
2034 ------------------------------------
2035 -- Analyze_Comparison_Equality_Op --
2036 ------------------------------------
2038 procedure Analyze_Comparison_Equality_Op
(N
: Node_Id
) is
2039 Loc
: constant Source_Ptr
:= Sloc
(N
);
2040 L
: constant Node_Id
:= Left_Opnd
(N
);
2041 R
: constant Node_Id
:= Right_Opnd
(N
);
2046 Set_Etype
(N
, Any_Type
);
2047 Candidate_Type
:= Empty
;
2049 Analyze_Expression
(L
);
2050 Analyze_Expression
(R
);
2052 -- If the entity is set, the node is a generic instance with a non-local
2053 -- reference to the predefined operator or to a user-defined function.
2054 -- It can also be an inequality that is expanded into the negation of a
2055 -- call to a user-defined equality operator.
2057 -- For the predefined case, the result is Boolean, regardless of the
2058 -- type of the operands. The operands may even be limited, if they are
2059 -- generic actuals. If they are overloaded, label the operands with the
2060 -- compare type if it is present, typically because it is a global type
2061 -- in a generic instance, or with the common type that must be present,
2062 -- or with the type of the formal of the user-defined function.
2064 if Present
(Entity
(N
)) then
2065 Op_Id
:= Entity
(N
);
2067 if Ekind
(Op_Id
) = E_Operator
then
2068 Add_One_Interp
(N
, Op_Id
, Standard_Boolean
);
2070 Add_One_Interp
(N
, Op_Id
, Etype
(Op_Id
));
2073 if Is_Overloaded
(L
) then
2074 if Ekind
(Op_Id
) = E_Operator
then
2076 (if Present
(Compare_Type
(N
))
2077 then Compare_Type
(N
)
2078 else Intersect_Types
(L
, R
)));
2080 Set_Etype
(L
, Etype
(First_Formal
(Op_Id
)));
2084 if Is_Overloaded
(R
) then
2085 if Ekind
(Op_Id
) = E_Operator
then
2087 (if Present
(Compare_Type
(N
))
2088 then Compare_Type
(N
)
2089 else Intersect_Types
(L
, R
)));
2091 Set_Etype
(R
, Etype
(Next_Formal
(First_Formal
(Op_Id
))));
2096 Op_Id
:= Get_Name_Entity_Id
(Chars
(N
));
2098 while Present
(Op_Id
) loop
2099 if Ekind
(Op_Id
) = E_Operator
then
2100 Find_Comparison_Equality_Types
(L
, R
, Op_Id
, N
);
2102 Analyze_User_Defined_Binary_Op
(N
, Op_Id
);
2105 Op_Id
:= Homonym
(Op_Id
);
2109 -- If there was no match and the operator is inequality, this may be
2110 -- a case where inequality has not been made explicit, as for tagged
2111 -- types. Analyze the node as the negation of an equality operation.
2112 -- This cannot be done earlier because, before analysis, we cannot rule
2113 -- out the presence of an explicit inequality.
2115 if Etype
(N
) = Any_Type
and then Nkind
(N
) = N_Op_Ne
then
2116 Op_Id
:= Get_Name_Entity_Id
(Name_Op_Eq
);
2118 while Present
(Op_Id
) loop
2119 if Ekind
(Op_Id
) = E_Operator
then
2120 Find_Comparison_Equality_Types
(L
, R
, Op_Id
, N
);
2122 Analyze_User_Defined_Binary_Op
(N
, Op_Id
);
2125 Op_Id
:= Homonym
(Op_Id
);
2128 if Etype
(N
) /= Any_Type
then
2129 Op_Id
:= Entity
(N
);
2135 Left_Opnd
=> Left_Opnd
(N
),
2136 Right_Opnd
=> Right_Opnd
(N
))));
2138 Set_Entity
(Right_Opnd
(N
), Op_Id
);
2144 Check_Function_Writable_Actuals
(N
);
2145 end Analyze_Comparison_Equality_Op
;
2147 ----------------------------------
2148 -- Analyze_Explicit_Dereference --
2149 ----------------------------------
2151 procedure Analyze_Explicit_Dereference
(N
: Node_Id
) is
2152 Loc
: constant Source_Ptr
:= Sloc
(N
);
2153 P
: constant Node_Id
:= Prefix
(N
);
2159 function Is_Function_Type
return Boolean;
2160 -- Check whether node may be interpreted as an implicit function call
2162 ----------------------
2163 -- Is_Function_Type --
2164 ----------------------
2166 function Is_Function_Type
return Boolean is
2171 if not Is_Overloaded
(N
) then
2172 return Ekind
(Base_Type
(Etype
(N
))) = E_Subprogram_Type
2173 and then Etype
(Base_Type
(Etype
(N
))) /= Standard_Void_Type
;
2176 Get_First_Interp
(N
, I
, It
);
2177 while Present
(It
.Nam
) loop
2178 if Ekind
(Base_Type
(It
.Typ
)) /= E_Subprogram_Type
2179 or else Etype
(Base_Type
(It
.Typ
)) = Standard_Void_Type
2184 Get_Next_Interp
(I
, It
);
2189 end Is_Function_Type
;
2191 -- Start of processing for Analyze_Explicit_Dereference
2194 -- In formal verification mode, keep track of all reads and writes
2195 -- through explicit dereferences.
2197 if GNATprove_Mode
then
2198 SPARK_Specific
.Generate_Dereference
(N
);
2202 Set_Etype
(N
, Any_Type
);
2204 -- Test for remote access to subprogram type, and if so return
2205 -- after rewriting the original tree.
2207 if Remote_AST_E_Dereference
(P
) then
2211 -- Normal processing for other than remote access to subprogram type
2213 if not Is_Overloaded
(P
) then
2214 if Is_Access_Type
(Etype
(P
)) then
2219 DT
: constant Entity_Id
:= Designated_Type
(Etype
(P
));
2222 -- An explicit dereference is a legal occurrence of an
2223 -- incomplete type imported through a limited_with clause, if
2224 -- the full view is visible, or if we are within an instance
2225 -- body, where the enclosing body has a regular with_clause
2228 if From_Limited_With
(DT
)
2229 and then not From_Limited_With
(Scope
(DT
))
2231 (Is_Immediately_Visible
(Scope
(DT
))
2233 (Is_Child_Unit
(Scope
(DT
))
2234 and then Is_Visible_Lib_Unit
(Scope
(DT
)))
2235 or else In_Instance_Body
)
2237 Set_Etype
(N
, Available_View
(DT
));
2244 elsif Etype
(P
) /= Any_Type
then
2245 Error_Msg_N
("prefix of dereference must be an access type", N
);
2250 Get_First_Interp
(P
, I
, It
);
2251 while Present
(It
.Nam
) loop
2254 if Is_Access_Type
(T
) then
2255 Add_One_Interp
(N
, Designated_Type
(T
), Designated_Type
(T
));
2258 Get_Next_Interp
(I
, It
);
2261 -- Error if no interpretation of the prefix has an access type
2263 if Etype
(N
) = Any_Type
then
2265 ("access type required in prefix of explicit dereference", P
);
2266 Set_Etype
(N
, Any_Type
);
2272 and then Nkind
(Parent
(N
)) /= N_Indexed_Component
2274 and then (Nkind
(Parent
(N
)) /= N_Function_Call
2275 or else N
/= Name
(Parent
(N
)))
2277 and then (Nkind
(Parent
(N
)) /= N_Procedure_Call_Statement
2278 or else N
/= Name
(Parent
(N
)))
2280 and then Nkind
(Parent
(N
)) /= N_Subprogram_Renaming_Declaration
2281 and then (Nkind
(Parent
(N
)) /= N_Attribute_Reference
2283 (Attribute_Name
(Parent
(N
)) /= Name_Address
2285 Attribute_Name
(Parent
(N
)) /= Name_Access
))
2287 -- Name is a function call with no actuals, in a context that
2288 -- requires deproceduring (including as an actual in an enclosing
2289 -- function or procedure call). There are some pathological cases
2290 -- where the prefix might include functions that return access to
2291 -- subprograms and others that return a regular type. Disambiguation
2292 -- of those has to take place in Resolve.
2295 Make_Function_Call
(Loc
,
2296 Name
=> Make_Explicit_Dereference
(Loc
, P
),
2297 Parameter_Associations
=> New_List
);
2299 -- If the prefix is overloaded, remove operations that have formals,
2300 -- we know that this is a parameterless call.
2302 if Is_Overloaded
(P
) then
2303 Get_First_Interp
(P
, I
, It
);
2304 while Present
(It
.Nam
) loop
2307 if Is_Access_Type
(T
)
2308 and then No
(First_Formal
(Base_Type
(Designated_Type
(T
))))
2315 Get_Next_Interp
(I
, It
);
2322 elsif not Is_Function_Type
2323 and then Is_Overloaded
(N
)
2325 -- The prefix may include access to subprograms and other access
2326 -- types. If the context selects the interpretation that is a
2327 -- function call (not a procedure call) we cannot rewrite the node
2328 -- yet, but we include the result of the call interpretation.
2330 Get_First_Interp
(N
, I
, It
);
2331 while Present
(It
.Nam
) loop
2332 if Ekind
(Base_Type
(It
.Typ
)) = E_Subprogram_Type
2333 and then Etype
(Base_Type
(It
.Typ
)) /= Standard_Void_Type
2334 and then Nkind
(Parent
(N
)) /= N_Procedure_Call_Statement
2336 Add_One_Interp
(N
, Etype
(It
.Typ
), Etype
(It
.Typ
));
2339 Get_Next_Interp
(I
, It
);
2343 -- A value of remote access-to-class-wide must not be dereferenced
2346 Validate_Remote_Access_To_Class_Wide_Type
(N
);
2347 end Analyze_Explicit_Dereference
;
2349 ------------------------
2350 -- Analyze_Expression --
2351 ------------------------
2353 procedure Analyze_Expression
(N
: Node_Id
) is
2355 -- If the expression is an indexed component that will be rewritten
2356 -- as a container indexing, it has already been analyzed.
2358 if Nkind
(N
) = N_Indexed_Component
2359 and then Present
(Generalized_Indexing
(N
))
2365 Check_Parameterless_Call
(N
);
2367 end Analyze_Expression
;
2369 -------------------------------------
2370 -- Analyze_Expression_With_Actions --
2371 -------------------------------------
2373 procedure Analyze_Expression_With_Actions
(N
: Node_Id
) is
2375 procedure Check_Action_OK
(A
: Node_Id
);
2376 -- Check that the action A is allowed as a declare_item of a declare
2377 -- expression if N and A come from source.
2379 ---------------------
2380 -- Check_Action_OK --
2381 ---------------------
2383 procedure Check_Action_OK
(A
: Node_Id
) is
2385 if not Comes_From_Source
(N
) or else not Comes_From_Source
(A
) then
2387 -- If, for example, an (illegal) expression function is
2388 -- transformed into a "vanilla" function then we don't want to
2389 -- allow it just because Comes_From_Source is now False. So look
2390 -- at the Original_Node.
2392 if Is_Rewrite_Substitution
(A
) then
2393 Check_Action_OK
(Original_Node
(A
));
2396 return; -- Allow anything in generated code
2400 when N_Object_Declaration
=>
2401 if Nkind
(Object_Definition
(A
)) = N_Access_Definition
then
2403 ("anonymous access type not allowed in declare_expression",
2404 Object_Definition
(A
));
2407 if Aliased_Present
(A
) then
2408 Error_Msg_N
("ALIASED not allowed in declare_expression", A
);
2411 if Constant_Present
(A
)
2412 and then not Is_Limited_Type
(Etype
(Defining_Identifier
(A
)))
2414 return; -- nonlimited constants are OK
2417 when N_Object_Renaming_Declaration
=>
2418 if Present
(Access_Definition
(A
)) then
2420 ("anonymous access type not allowed in declare_expression",
2421 Access_Definition
(A
));
2424 if not Is_Limited_Type
(Etype
(Defining_Identifier
(A
))) then
2425 return; -- ???For now; the RM rule is a bit more complicated
2430 -- See AI22-0045 pragma categorization.
2431 subtype Executable_Pragma_Id
is Pragma_Id
2432 with Predicate
=> Executable_Pragma_Id
in
2433 -- language-defined executable pragmas
2434 Pragma_Assert | Pragma_Inspection_Point
2436 -- GNAT-defined executable pragmas
2437 | Pragma_Assume | Pragma_Debug
;
2439 if Get_Pragma_Id
(A
) in Executable_Pragma_Id
then
2445 null; -- Nothing else allowed
2448 -- We could mention pragmas in the message text; let's not.
2449 Error_Msg_N
("object renaming or constant declaration expected", A
);
2450 end Check_Action_OK
;
2453 EWA_Scop
: Entity_Id
;
2455 -- Start of processing for Analyze_Expression_With_Actions
2458 -- Create a scope, which is needed to provide proper visibility of the
2461 EWA_Scop
:= New_Internal_Entity
(E_Block
, Current_Scope
, Sloc
(N
), 'B');
2462 Set_Etype
(EWA_Scop
, Standard_Void_Type
);
2463 Set_Scope
(EWA_Scop
, Current_Scope
);
2464 Set_Parent
(EWA_Scop
, N
);
2465 Push_Scope
(EWA_Scop
);
2467 -- If this Expression_With_Actions node comes from source, then it
2468 -- represents a declare_expression; increment the counter to take note
2471 if Comes_From_Source
(N
) then
2472 In_Declare_Expr
:= In_Declare_Expr
+ 1;
2475 A
:= First
(Actions
(N
));
2476 while Present
(A
) loop
2478 Check_Action_OK
(A
);
2482 Analyze_Expression
(Expression
(N
));
2483 Set_Etype
(N
, Etype
(Expression
(N
)));
2486 if Comes_From_Source
(N
) then
2487 In_Declare_Expr
:= In_Declare_Expr
- 1;
2489 end Analyze_Expression_With_Actions
;
2491 ---------------------------
2492 -- Analyze_If_Expression --
2493 ---------------------------
2495 procedure Analyze_If_Expression
(N
: Node_Id
) is
2496 Condition
: constant Node_Id
:= First
(Expressions
(N
));
2498 Then_Expr
: Node_Id
;
2499 Else_Expr
: Node_Id
;
2501 procedure Check_Else_Expression
(T
: Entity_Id
);
2502 -- Check one interpretation of the THEN expression with type T
2504 procedure Check_Expression_Pair
(T1
, T2
: Entity_Id
);
2505 -- Check THEN expression with type T1 and ELSE expression with type T2
2507 ---------------------------
2508 -- Check_Else_Expression --
2509 ---------------------------
2511 procedure Check_Else_Expression
(T
: Entity_Id
) is
2516 -- Loop through the interpretations of the ELSE expression
2518 if not Is_Overloaded
(Else_Expr
) then
2519 Check_Expression_Pair
(T
, Etype
(Else_Expr
));
2522 Get_First_Interp
(Else_Expr
, I
, It
);
2523 while Present
(It
.Typ
) loop
2524 Check_Expression_Pair
(T
, It
.Typ
);
2525 Get_Next_Interp
(I
, It
);
2528 end Check_Else_Expression
;
2530 ---------------------------
2531 -- Check_Expression_Pair --
2532 ---------------------------
2534 procedure Check_Expression_Pair
(T1
, T2
: Entity_Id
) is
2538 if Covers
(T1
=> T1
, T2
=> T2
)
2539 or else Covers
(T1
=> T2
, T2
=> T1
)
2541 T
:= Specific_Type
(T1
, T2
);
2543 elsif Is_User_Defined_Literal
(Then_Expr
, T2
) then
2546 elsif Is_User_Defined_Literal
(Else_Expr
, T1
) then
2550 T
:= Possible_Type_For_Conditional_Expression
(T1
, T2
);
2557 Add_One_Interp
(N
, T
, T
);
2558 end Check_Expression_Pair
;
2565 -- Start of processing for Analyze_If_Expression
2568 -- Defend against error of missing expressions from previous error
2570 if No
(Condition
) then
2571 Check_Error_Detected
;
2575 Set_Etype
(N
, Any_Type
);
2577 Then_Expr
:= Next
(Condition
);
2579 if No
(Then_Expr
) then
2580 Check_Error_Detected
;
2584 Else_Expr
:= Next
(Then_Expr
);
2586 -- Analyze and resolve the condition. We need to resolve this now so
2587 -- that it gets folded to True/False if possible, before we analyze
2588 -- the THEN/ELSE branches, because when analyzing these branches, we
2589 -- may call Is_Statically_Unevaluated, which expects the condition of
2590 -- an enclosing IF to have been analyze/resolved/evaluated.
2592 Analyze_Expression
(Condition
);
2593 Resolve
(Condition
, Any_Boolean
);
2595 -- Analyze the THEN expression and (if present) the ELSE expression. For
2596 -- them we delay resolution in the normal manner because of overloading.
2598 Analyze_Expression
(Then_Expr
);
2600 if Present
(Else_Expr
) then
2601 Analyze_Expression
(Else_Expr
);
2604 -- RM 4.5.7(10/3): If the if_expression is the operand of a type
2605 -- conversion, the type of the if_expression is the target type
2606 -- of the conversion.
2608 if Nkind
(Parent
(N
)) = N_Type_Conversion
then
2609 Set_Etype
(N
, Etype
(Parent
(N
)));
2613 -- Loop through the interpretations of the THEN expression and check the
2614 -- ELSE expression if present.
2616 if not Is_Overloaded
(Then_Expr
) then
2617 if Present
(Else_Expr
) then
2618 Check_Else_Expression
(Etype
(Then_Expr
));
2620 Set_Etype
(N
, Etype
(Then_Expr
));
2624 Get_First_Interp
(Then_Expr
, I
, It
);
2625 while Present
(It
.Typ
) loop
2626 if Present
(Else_Expr
) then
2627 Check_Else_Expression
(It
.Typ
);
2629 Add_One_Interp
(N
, It
.Typ
, It
.Typ
);
2632 Get_Next_Interp
(I
, It
);
2636 -- If no possible interpretation has been found, the type of the
2637 -- ELSE expression does not match any interpretation of the THEN
2640 if Etype
(N
) = Any_Type
then
2641 if Is_Overloaded
(Then_Expr
) then
2642 if Is_Overloaded
(Else_Expr
) then
2644 ("no interpretation compatible with those of THEN expression",
2648 ("type of ELSE incompatible with interpretations of THEN "
2652 ("\ELSE expression has}!", Else_Expr
, Etype
(Else_Expr
));
2656 if Is_Overloaded
(Else_Expr
) then
2658 ("no interpretation compatible with type of THEN expression",
2661 ("\THEN expression has}!", Else_Expr
, Etype
(Then_Expr
));
2664 ("type of ELSE incompatible with that of THEN expression",
2667 ("\THEN expression has}!", Else_Expr
, Etype
(Then_Expr
));
2669 ("\ELSE expression has}!", Else_Expr
, Etype
(Else_Expr
));
2673 end Analyze_If_Expression
;
2675 ------------------------------------
2676 -- Analyze_Indexed_Component_Form --
2677 ------------------------------------
2679 procedure Analyze_Indexed_Component_Form
(N
: Node_Id
) is
2680 P
: constant Node_Id
:= Prefix
(N
);
2681 Exprs
: constant List_Id
:= Expressions
(N
);
2687 procedure Process_Function_Call
;
2688 -- Prefix in indexed component form is an overloadable entity, so the
2689 -- node is very likely a function call; reformat it as such. The only
2690 -- exception is a call to a parameterless function that returns an
2691 -- array type, or an access type thereof, in which case this will be
2692 -- undone later by Resolve_Call or Resolve_Entry_Call.
2694 procedure Process_Indexed_Component
;
2695 -- Prefix in indexed component form is actually an indexed component.
2696 -- This routine processes it, knowing that the prefix is already
2699 procedure Process_Indexed_Component_Or_Slice
;
2700 -- An indexed component with a single index may designate a slice if
2701 -- the index is a subtype mark. This routine disambiguates these two
2702 -- cases by resolving the prefix to see if it is a subtype mark.
2704 procedure Process_Overloaded_Indexed_Component
;
2705 -- If the prefix of an indexed component is overloaded, the proper
2706 -- interpretation is selected by the index types and the context.
2708 ---------------------------
2709 -- Process_Function_Call --
2710 ---------------------------
2712 procedure Process_Function_Call
is
2713 Loc
: constant Source_Ptr
:= Sloc
(N
);
2717 Change_Node
(N
, N_Function_Call
);
2719 Set_Parameter_Associations
(N
, Exprs
);
2721 -- Analyze actuals prior to analyzing the call itself
2723 Actual
:= First
(Parameter_Associations
(N
));
2724 while Present
(Actual
) loop
2726 Check_Parameterless_Call
(Actual
);
2728 -- Move to next actual. Note that we use Next, not Next_Actual
2729 -- here. The reason for this is a bit subtle. If a function call
2730 -- includes named associations, the parser recognizes the node
2731 -- as a call, and it is analyzed as such. If all associations are
2732 -- positional, the parser builds an indexed_component node, and
2733 -- it is only after analysis of the prefix that the construct
2734 -- is recognized as a call, in which case Process_Function_Call
2735 -- rewrites the node and analyzes the actuals. If the list of
2736 -- actuals is malformed, the parser may leave the node as an
2737 -- indexed component (despite the presence of named associations).
2738 -- The iterator Next_Actual is equivalent to Next if the list is
2739 -- positional, but follows the normalized chain of actuals when
2740 -- named associations are present. In this case normalization has
2741 -- not taken place, and actuals remain unanalyzed, which leads to
2742 -- subsequent crashes or loops if there is an attempt to continue
2743 -- analysis of the program.
2745 -- IF there is a single actual and it is a type name, the node
2746 -- can only be interpreted as a slice of a parameterless call.
2747 -- Rebuild the node as such and analyze.
2749 if No
(Next
(Actual
))
2750 and then Is_Entity_Name
(Actual
)
2751 and then Is_Type
(Entity
(Actual
))
2752 and then Is_Discrete_Type
(Entity
(Actual
))
2753 and then not Is_Current_Instance
(Actual
)
2759 New_Occurrence_Of
(Entity
(Actual
), Loc
)));
2769 end Process_Function_Call
;
2771 -------------------------------
2772 -- Process_Indexed_Component --
2773 -------------------------------
2775 procedure Process_Indexed_Component
is
2777 Array_Type
: Entity_Id
;
2779 Pent
: Entity_Id
:= Empty
;
2782 Exp
:= First
(Exprs
);
2784 if Is_Overloaded
(P
) then
2785 Process_Overloaded_Indexed_Component
;
2788 Array_Type
:= Etype
(P
);
2790 if Is_Entity_Name
(P
) then
2792 elsif Nkind
(P
) = N_Selected_Component
2793 and then Is_Entity_Name
(Selector_Name
(P
))
2795 Pent
:= Entity
(Selector_Name
(P
));
2798 -- Prefix must be appropriate for an array type, taking into
2799 -- account a possible implicit dereference.
2801 if Is_Access_Type
(Array_Type
) then
2803 (Warn_On_Dereference
, "?d?implicit dereference", N
);
2804 Array_Type
:= Implicitly_Designated_Type
(Array_Type
);
2807 if Is_Array_Type
(Array_Type
) then
2809 -- In order to correctly access First_Index component later,
2810 -- replace string literal subtype by its parent type.
2812 if Ekind
(Array_Type
) = E_String_Literal_Subtype
then
2813 Array_Type
:= Etype
(Array_Type
);
2816 elsif Present
(Pent
) and then Ekind
(Pent
) = E_Entry_Family
then
2818 Set_Etype
(N
, Any_Type
);
2820 if not Has_Compatible_Type
(Exp
, Entry_Index_Type
(Pent
)) then
2821 Error_Msg_N
("invalid index type in entry name", N
);
2823 elsif Present
(Next
(Exp
)) then
2824 Error_Msg_N
("too many subscripts in entry reference", N
);
2827 Set_Etype
(N
, Etype
(P
));
2832 elsif Is_Record_Type
(Array_Type
)
2833 and then Remote_AST_I_Dereference
(P
)
2837 elsif Try_Container_Indexing
(N
, P
, Exprs
) then
2840 elsif Array_Type
= Any_Type
then
2841 Set_Etype
(N
, Any_Type
);
2843 -- In most cases the analysis of the prefix will have emitted
2844 -- an error already, but if the prefix may be interpreted as a
2845 -- call in prefixed notation, the report is left to the caller.
2846 -- To prevent cascaded errors, report only if no previous ones.
2848 if Serious_Errors_Detected
= 0 then
2849 Error_Msg_N
("invalid prefix in indexed component", P
);
2851 if Nkind
(P
) = N_Expanded_Name
then
2852 Error_Msg_NE
("\& is not visible", P
, Selector_Name
(P
));
2858 -- Here we definitely have a bad indexing
2861 if Nkind
(Parent
(N
)) = N_Requeue_Statement
2862 and then Present
(Pent
) and then Ekind
(Pent
) = E_Entry
2865 ("REQUEUE does not permit parameters", First
(Exprs
));
2867 elsif Is_Entity_Name
(P
)
2868 and then Etype
(P
) = Standard_Void_Type
2870 Error_Msg_NE
("incorrect use of &", P
, Entity
(P
));
2873 Error_Msg_N
("array type required in indexed component", P
);
2876 Set_Etype
(N
, Any_Type
);
2880 Index
:= First_Index
(Array_Type
);
2881 while Present
(Index
) and then Present
(Exp
) loop
2882 if not Has_Compatible_Type
(Exp
, Etype
(Index
)) then
2883 Wrong_Type
(Exp
, Etype
(Index
));
2884 Set_Etype
(N
, Any_Type
);
2892 Set_Etype
(N
, Component_Type
(Array_Type
));
2893 Check_Implicit_Dereference
(N
, Etype
(N
));
2895 if Present
(Index
) then
2897 ("too few subscripts in array reference", First
(Exprs
));
2899 elsif Present
(Exp
) then
2900 Error_Msg_N
("too many subscripts in array reference", Exp
);
2903 end Process_Indexed_Component
;
2905 ----------------------------------------
2906 -- Process_Indexed_Component_Or_Slice --
2907 ----------------------------------------
2909 procedure Process_Indexed_Component_Or_Slice
is
2911 Exp
:= First
(Exprs
);
2912 while Present
(Exp
) loop
2913 Analyze_Expression
(Exp
);
2917 Exp
:= First
(Exprs
);
2919 -- If one index is present, and it is a subtype name, then the node
2920 -- denotes a slice (note that the case of an explicit range for a
2921 -- slice was already built as an N_Slice node in the first place,
2922 -- so that case is not handled here).
2924 -- We use a replace rather than a rewrite here because this is one
2925 -- of the cases in which the tree built by the parser is plain wrong.
2928 and then Is_Entity_Name
(Exp
)
2929 and then Is_Type
(Entity
(Exp
))
2932 Make_Slice
(Sloc
(N
),
2934 Discrete_Range
=> New_Copy
(Exp
)));
2937 -- Otherwise (more than one index present, or single index is not
2938 -- a subtype name), then we have the indexed component case.
2941 Process_Indexed_Component
;
2943 end Process_Indexed_Component_Or_Slice
;
2945 ------------------------------------------
2946 -- Process_Overloaded_Indexed_Component --
2947 ------------------------------------------
2949 procedure Process_Overloaded_Indexed_Component
is
2958 Set_Etype
(N
, Any_Type
);
2960 Get_First_Interp
(P
, I
, It
);
2961 while Present
(It
.Nam
) loop
2964 if Is_Access_Type
(Typ
) then
2965 Typ
:= Designated_Type
(Typ
);
2967 (Warn_On_Dereference
, "?d?implicit dereference", N
);
2970 if Is_Array_Type
(Typ
) then
2972 -- Got a candidate: verify that index types are compatible
2974 Index
:= First_Index
(Typ
);
2976 Exp
:= First
(Exprs
);
2977 while Present
(Index
) and then Present
(Exp
) loop
2978 if Has_Compatible_Type
(Exp
, Etype
(Index
)) then
2990 if Found
and then No
(Index
) and then No
(Exp
) then
2992 CT
: constant Entity_Id
:=
2993 Base_Type
(Component_Type
(Typ
));
2995 Add_One_Interp
(N
, CT
, CT
);
2996 Check_Implicit_Dereference
(N
, CT
);
3000 elsif Try_Container_Indexing
(N
, P
, Exprs
) then
3005 Get_Next_Interp
(I
, It
);
3008 if Etype
(N
) = Any_Type
then
3009 Error_Msg_N
("no legal interpretation for indexed component", N
);
3010 Set_Is_Overloaded
(N
, False);
3012 end Process_Overloaded_Indexed_Component
;
3014 -- Start of processing for Analyze_Indexed_Component_Form
3017 -- Get name of array, function or type
3021 -- If P is an explicit dereference whose prefix is of a remote access-
3022 -- to-subprogram type, then N has already been rewritten as a subprogram
3023 -- call and analyzed.
3025 if Nkind
(N
) in N_Subprogram_Call
then
3028 -- When the prefix is attribute 'Loop_Entry and the sole expression of
3029 -- the indexed component denotes a loop name, the indexed form is turned
3030 -- into an attribute reference.
3032 elsif Nkind
(N
) = N_Attribute_Reference
3033 and then Attribute_Name
(N
) = Name_Loop_Entry
3038 pragma Assert
(Nkind
(N
) = N_Indexed_Component
);
3040 P_T
:= Base_Type
(Etype
(P
));
3042 if Is_Entity_Name
(P
) and then Present
(Entity
(P
)) then
3045 if Is_Type
(U_N
) then
3047 -- Reformat node as a type conversion
3049 E
:= Remove_Head
(Exprs
);
3051 if Present
(First
(Exprs
)) then
3053 ("argument of type conversion must be single expression", N
);
3056 Change_Node
(N
, N_Type_Conversion
);
3057 Set_Subtype_Mark
(N
, P
);
3059 Set_Expression
(N
, E
);
3061 -- After changing the node, call for the specific Analysis
3062 -- routine directly, to avoid a double call to the expander.
3064 Analyze_Type_Conversion
(N
);
3068 if Is_Overloadable
(U_N
) then
3069 Process_Function_Call
;
3071 elsif Ekind
(Etype
(P
)) = E_Subprogram_Type
3072 or else (Is_Access_Type
(Etype
(P
))
3074 Ekind
(Designated_Type
(Etype
(P
))) =
3077 -- Call to access_to-subprogram with possible implicit dereference
3079 Process_Function_Call
;
3081 elsif Is_Generic_Subprogram
(U_N
) then
3083 -- A common beginner's (or C++ templates fan) error
3085 Error_Msg_N
("generic subprogram cannot be called", N
);
3086 Set_Etype
(N
, Any_Type
);
3090 Process_Indexed_Component_Or_Slice
;
3093 -- If not an entity name, prefix is an expression that may denote
3094 -- an array or an access-to-subprogram.
3097 if Ekind
(P_T
) = E_Subprogram_Type
3098 or else (Is_Access_Type
(P_T
)
3100 Ekind
(Designated_Type
(P_T
)) = E_Subprogram_Type
)
3102 Process_Function_Call
;
3104 elsif Nkind
(P
) = N_Selected_Component
3105 and then Present
(Entity
(Selector_Name
(P
)))
3106 and then Is_Overloadable
(Entity
(Selector_Name
(P
)))
3108 Process_Function_Call
;
3110 -- Indexed component, slice, or a call to a member of a family
3111 -- entry, which will be converted to an entry call later.
3113 Process_Indexed_Component_Or_Slice
;
3117 Analyze_Dimension
(N
);
3118 end Analyze_Indexed_Component_Form
;
3120 ------------------------
3121 -- Analyze_Logical_Op --
3122 ------------------------
3124 procedure Analyze_Logical_Op
(N
: Node_Id
) is
3125 L
: constant Node_Id
:= Left_Opnd
(N
);
3126 R
: constant Node_Id
:= Right_Opnd
(N
);
3131 Set_Etype
(N
, Any_Type
);
3132 Candidate_Type
:= Empty
;
3134 Analyze_Expression
(L
);
3135 Analyze_Expression
(R
);
3137 -- If the entity is already set, the node is the instantiation of a
3138 -- generic node with a non-local reference, or was manufactured by a
3139 -- call to Make_Op_xxx. In either case the entity is known to be valid,
3140 -- and we do not need to collect interpretations, instead we just get
3141 -- the single possible interpretation.
3143 if Present
(Entity
(N
)) then
3144 Op_Id
:= Entity
(N
);
3146 if Ekind
(Op_Id
) = E_Operator
then
3147 Find_Boolean_Types
(L
, R
, Op_Id
, N
);
3149 Add_One_Interp
(N
, Op_Id
, Etype
(Op_Id
));
3152 -- Entity is not already set, so we do need to collect interpretations
3155 Op_Id
:= Get_Name_Entity_Id
(Chars
(N
));
3156 while Present
(Op_Id
) loop
3157 if Ekind
(Op_Id
) = E_Operator
then
3158 Find_Boolean_Types
(L
, R
, Op_Id
, N
);
3160 Analyze_User_Defined_Binary_Op
(N
, Op_Id
);
3163 Op_Id
:= Homonym
(Op_Id
);
3168 Check_Function_Writable_Actuals
(N
);
3171 if Nkind
(L
) not in N_Short_Circuit | N_Op_And | N_Op_Or | N_Op_Xor
3172 and then Is_Boolean_Type
(Etype
(L
))
3174 Check_Xtra_Parens_Precedence
(L
);
3177 if Nkind
(R
) not in N_Short_Circuit | N_Op_And | N_Op_Or | N_Op_Xor
3178 and then Is_Boolean_Type
(Etype
(R
))
3180 Check_Xtra_Parens_Precedence
(R
);
3183 end Analyze_Logical_Op
;
3185 ---------------------------
3186 -- Analyze_Membership_Op --
3187 ---------------------------
3189 procedure Analyze_Membership_Op
(N
: Node_Id
) is
3190 Loc
: constant Source_Ptr
:= Sloc
(N
);
3191 L
: constant Node_Id
:= Left_Opnd
(N
);
3192 R
: constant Node_Id
:= Right_Opnd
(N
);
3194 procedure Analyze_Set_Membership
;
3195 -- If a set of alternatives is present, analyze each and find the
3196 -- common type to which they must all resolve.
3198 function Find_Interp
return Boolean;
3199 -- Find a valid interpretation of the test. Note that the context of the
3200 -- operation plays no role in resolving the operands, so that if there
3201 -- is more than one interpretation of the operands that is compatible
3202 -- with the test, the operation is ambiguous.
3204 function Try_Left_Interp
(T
: Entity_Id
) return Boolean;
3205 -- Try an interpretation of the left operand with type T. Return true if
3206 -- one interpretation (at least) of the right operand making up a valid
3207 -- operand pair exists, otherwise false if no such pair exists.
3209 function Is_Valid_Pair
(T1
, T2
: Entity_Id
) return Boolean;
3210 -- Return true if T1 and T2 constitute a valid pair of operand types for
3211 -- L and R respectively.
3213 ----------------------------
3214 -- Analyze_Set_Membership --
3215 ----------------------------
3217 procedure Analyze_Set_Membership
is
3219 Index
: Interp_Index
;
3221 Candidate_Interps
: Node_Id
;
3222 Common_Type
: Entity_Id
:= Empty
;
3226 Candidate_Interps
:= L
;
3228 if not Is_Overloaded
(L
) then
3229 Common_Type
:= Etype
(L
);
3231 Alt
:= First
(Alternatives
(N
));
3232 while Present
(Alt
) loop
3235 if not Has_Compatible_Type
(Alt
, Common_Type
) then
3236 Wrong_Type
(Alt
, Common_Type
);
3243 Alt
:= First
(Alternatives
(N
));
3244 while Present
(Alt
) loop
3246 if not Is_Overloaded
(Alt
) then
3247 Common_Type
:= Etype
(Alt
);
3250 Get_First_Interp
(Alt
, Index
, It
);
3251 while Present
(It
.Typ
) loop
3253 Has_Compatible_Type
(Candidate_Interps
, It
.Typ
)
3255 Remove_Interp
(Index
);
3258 Get_Next_Interp
(Index
, It
);
3261 Get_First_Interp
(Alt
, Index
, It
);
3264 Error_Msg_N
("alternative has no legal type", Alt
);
3268 -- If alternative is not overloaded, we have a unique type
3271 Set_Etype
(Alt
, It
.Typ
);
3273 -- If the alternative is an enumeration literal, use the one
3274 -- for this interpretation.
3276 if Is_Entity_Name
(Alt
) then
3277 Set_Entity
(Alt
, It
.Nam
);
3280 Get_Next_Interp
(Index
, It
);
3283 Set_Is_Overloaded
(Alt
, False);
3284 Common_Type
:= Etype
(Alt
);
3287 Candidate_Interps
:= Alt
;
3294 if Present
(Common_Type
) then
3295 Set_Etype
(L
, Common_Type
);
3297 -- The left operand may still be overloaded, to be resolved using
3301 Error_Msg_N
("cannot resolve membership operation", N
);
3303 end Analyze_Set_Membership
;
3309 function Find_Interp
return Boolean is
3314 Valid_I
: Interp_Index
;
3317 -- Loop through the interpretations of the left operand
3319 if not Is_Overloaded
(L
) then
3320 Found
:= Try_Left_Interp
(Etype
(L
));
3327 Get_First_Interp
(L
, I
, It
);
3328 while Present
(It
.Typ
) loop
3329 if Try_Left_Interp
(It
.Typ
) then
3330 -- If several interpretations are possible, disambiguate
3333 and then Base_Type
(It
.Typ
) /= Base_Type
(L_Typ
)
3335 It
:= Disambiguate
(L
, Valid_I
, I
, Any_Type
);
3337 if It
= No_Interp
then
3338 Ambiguous_Operands
(N
);
3339 Set_Etype
(L
, Any_Type
);
3348 Set_Etype
(L
, L_Typ
);
3352 Get_Next_Interp
(I
, It
);
3359 ---------------------
3360 -- Try_Left_Interp --
3361 ---------------------
3363 function Try_Left_Interp
(T
: Entity_Id
) return Boolean is
3368 Valid_I
: Interp_Index
;
3371 -- Defend against previous error
3373 if Nkind
(R
) = N_Error
then
3376 -- Loop through the interpretations of the right operand
3378 elsif not Is_Overloaded
(R
) then
3379 Found
:= Is_Valid_Pair
(T
, Etype
(R
));
3386 Get_First_Interp
(R
, I
, It
);
3387 while Present
(It
.Typ
) loop
3388 if Is_Valid_Pair
(T
, It
.Typ
) then
3389 -- If several interpretations are possible, disambiguate
3392 and then Base_Type
(It
.Typ
) /= Base_Type
(R_Typ
)
3394 It
:= Disambiguate
(R
, Valid_I
, I
, Any_Type
);
3396 if It
= No_Interp
then
3397 Ambiguous_Operands
(N
);
3398 Set_Etype
(R
, Any_Type
);
3410 Get_Next_Interp
(I
, It
);
3415 end Try_Left_Interp
;
3421 function Is_Valid_Pair
(T1
, T2
: Entity_Id
) return Boolean is
3423 return Covers
(T1
=> T1
, T2
=> T2
)
3424 or else Covers
(T1
=> T2
, T2
=> T1
)
3425 or else Is_User_Defined_Literal
(L
, T2
)
3426 or else Is_User_Defined_Literal
(R
, T1
);
3434 -- Start of processing for Analyze_Membership_Op
3437 Analyze_Expression
(L
);
3440 pragma Assert
(Ada_Version
>= Ada_2012
);
3442 Analyze_Set_Membership
;
3447 Alt
:= First
(Alternatives
(N
));
3448 while Present
(Alt
) loop
3449 if Is_Entity_Name
(Alt
) and then Is_Type
(Entity
(Alt
)) then
3450 Check_Fully_Declared
(Entity
(Alt
), Alt
);
3452 if Has_Ghost_Predicate_Aspect
(Entity
(Alt
)) then
3454 ("subtype& has ghost predicate, "
3455 & "not allowed in membership test",
3464 elsif Nkind
(R
) = N_Range
3465 or else (Nkind
(R
) = N_Attribute_Reference
3466 and then Attribute_Name
(R
) = Name_Range
)
3468 Analyze_Expression
(R
);
3470 Dummy
:= Find_Interp
;
3472 -- If not a range, it can be a subtype mark, or else it is a degenerate
3473 -- membership test with a singleton value, i.e. a test for equality,
3474 -- if the types are compatible.
3477 Analyze_Expression
(R
);
3479 if Is_Entity_Name
(R
) and then Is_Type
(Entity
(R
)) then
3481 Check_Fully_Declared
(Entity
(R
), R
);
3483 if Has_Ghost_Predicate_Aspect
(Entity
(R
)) then
3485 ("subtype& has ghost predicate, "
3486 & "not allowed in membership test",
3490 elsif Ada_Version
>= Ada_2012
and then Find_Interp
then
3491 Op
:= Make_Op_Eq
(Loc
, Left_Opnd
=> L
, Right_Opnd
=> R
);
3492 Resolve_Membership_Equality
(Op
, Etype
(L
));
3494 if Nkind
(N
) = N_Not_In
then
3495 Op
:= Make_Op_Not
(Loc
, Op
);
3503 -- In all versions of the language, if we reach this point there
3504 -- is a previous error that will be diagnosed below.
3510 -- Compatibility between expression and subtype mark or range is
3511 -- checked during resolution. The result of the operation is Boolean
3514 Set_Etype
(N
, Standard_Boolean
);
3516 if Comes_From_Source
(N
)
3517 and then Present
(Right_Opnd
(N
))
3518 and then Is_CPP_Class
(Etype
(Etype
(Right_Opnd
(N
))))
3520 Error_Msg_N
("membership test not applicable to cpp-class types", N
);
3523 Check_Function_Writable_Actuals
(N
);
3524 end Analyze_Membership_Op
;
3530 procedure Analyze_Mod
(N
: Node_Id
) is
3532 -- A special warning check, if we have an expression of the form:
3533 -- expr mod 2 * literal
3534 -- where literal is 128 or less, then probably what was meant was
3535 -- expr mod 2 ** literal
3536 -- so issue an appropriate warning.
3538 if Warn_On_Suspicious_Modulus_Value
3539 and then Nkind
(Right_Opnd
(N
)) = N_Integer_Literal
3540 and then Intval
(Right_Opnd
(N
)) = Uint_2
3541 and then Nkind
(Parent
(N
)) = N_Op_Multiply
3542 and then Nkind
(Right_Opnd
(Parent
(N
))) = N_Integer_Literal
3543 and then Intval
(Right_Opnd
(Parent
(N
))) <= Uint_128
3546 ("suspicious MOD value, was '*'* intended'??.m?", Parent
(N
));
3549 -- Remaining processing is same as for other arithmetic operators
3551 Analyze_Arithmetic_Op
(N
);
3554 ----------------------
3555 -- Analyze_Negation --
3556 ----------------------
3558 procedure Analyze_Negation
(N
: Node_Id
) is
3559 R
: constant Node_Id
:= Right_Opnd
(N
);
3564 Set_Etype
(N
, Any_Type
);
3565 Candidate_Type
:= Empty
;
3567 Analyze_Expression
(R
);
3569 -- If the entity is already set, the node is the instantiation of a
3570 -- generic node with a non-local reference, or was manufactured by a
3571 -- call to Make_Op_xxx. In either case the entity is known to be valid,
3572 -- and we do not need to collect interpretations, instead we just get
3573 -- the single possible interpretation.
3575 if Present
(Entity
(N
)) then
3576 Op_Id
:= Entity
(N
);
3578 if Ekind
(Op_Id
) = E_Operator
then
3579 Find_Negation_Types
(R
, Op_Id
, N
);
3581 Add_One_Interp
(N
, Op_Id
, Etype
(Op_Id
));
3585 Op_Id
:= Get_Name_Entity_Id
(Chars
(N
));
3586 while Present
(Op_Id
) loop
3587 if Ekind
(Op_Id
) = E_Operator
then
3588 Find_Negation_Types
(R
, Op_Id
, N
);
3590 Analyze_User_Defined_Unary_Op
(N
, Op_Id
);
3593 Op_Id
:= Homonym
(Op_Id
);
3598 end Analyze_Negation
;
3604 procedure Analyze_Null
(N
: Node_Id
) is
3606 Set_Etype
(N
, Universal_Access
);
3609 ----------------------
3610 -- Analyze_One_Call --
3611 ----------------------
3613 procedure Analyze_One_Call
3617 Success
: out Boolean;
3618 Skip_First
: Boolean := False)
3620 Actuals
: constant List_Id
:= Parameter_Associations
(N
);
3621 Prev_T
: constant Entity_Id
:= Etype
(N
);
3623 -- Recognize cases of prefixed calls that have been rewritten in
3624 -- various ways. The simplest case is a rewritten selected component,
3625 -- but it can also be an already-examined indexed component, or a
3626 -- prefix that is itself a rewritten prefixed call that is in turn
3627 -- an indexed call (the syntactic ambiguity involving the indexing of
3628 -- a function with defaulted parameters that returns an array).
3629 -- A flag Maybe_Indexed_Call might be useful here ???
3631 Must_Skip
: constant Boolean := Skip_First
3632 or else Nkind
(Original_Node
(N
)) = N_Selected_Component
3634 (Nkind
(Original_Node
(N
)) = N_Indexed_Component
3635 and then Nkind
(Prefix
(Original_Node
(N
))) =
3636 N_Selected_Component
)
3638 (Nkind
(Parent
(N
)) = N_Function_Call
3639 and then Is_Array_Type
(Etype
(Name
(N
)))
3640 and then Etype
(Original_Node
(N
)) =
3641 Component_Type
(Etype
(Name
(N
)))
3642 and then Nkind
(Original_Node
(Parent
(N
))) =
3643 N_Selected_Component
);
3645 -- The first formal must be omitted from the match when trying to find
3646 -- a primitive operation that is a possible interpretation, and also
3647 -- after the call has been rewritten, because the corresponding actual
3648 -- is already known to be compatible, and because this may be an
3649 -- indexing of a call with default parameters.
3651 First_Form
: Entity_Id
;
3654 Is_Indexed
: Boolean := False;
3655 Is_Indirect
: Boolean := False;
3656 Subp_Type
: constant Entity_Id
:= Etype
(Nam
);
3659 function Compatible_Types_In_Predicate
3661 T2
: Entity_Id
) return Boolean;
3662 -- For an Ada 2012 predicate or invariant, a call may mention an
3663 -- incomplete type, while resolution of the corresponding predicate
3664 -- function may see the full view, as a consequence of the delayed
3665 -- resolution of the corresponding expressions. This may occur in
3666 -- the body of a predicate function, or in a call to such. Anomalies
3667 -- involving private and full views can also happen. In each case,
3668 -- rewrite node or add conversions to remove spurious type errors.
3670 procedure Indicate_Name_And_Type
;
3671 -- If candidate interpretation matches, indicate name and type of result
3674 function Operator_Hidden_By
(Fun
: Entity_Id
) return Boolean;
3675 -- There may be a user-defined operator that hides the current
3676 -- interpretation. We must check for this independently of the
3677 -- analysis of the call with the user-defined operation, because
3678 -- the parameter names may be wrong and yet the hiding takes place.
3679 -- This fixes a problem with ACATS test B34014O.
3681 -- When the type Address is a visible integer type, and the DEC
3682 -- system extension is visible, the predefined operator may be
3683 -- hidden as well, by one of the address operations in auxdec.
3684 -- Finally, the abstract operations on address do not hide the
3685 -- predefined operator (this is the purpose of making them abstract).
3687 -----------------------------------
3688 -- Compatible_Types_In_Predicate --
3689 -----------------------------------
3691 function Compatible_Types_In_Predicate
3693 T2
: Entity_Id
) return Boolean
3695 function Common_Type
(T
: Entity_Id
) return Entity_Id
;
3696 -- Find non-private underlying full view if any, without going to
3697 -- ancestor type (as opposed to Underlying_Type).
3703 function Common_Type
(T
: Entity_Id
) return Entity_Id
is
3709 if Is_Private_Type
(CT
) and then Present
(Full_View
(CT
)) then
3710 CT
:= Full_View
(CT
);
3713 if Is_Private_Type
(CT
)
3714 and then Present
(Underlying_Full_View
(CT
))
3716 CT
:= Underlying_Full_View
(CT
);
3719 return Base_Type
(CT
);
3722 -- Start of processing for Compatible_Types_In_Predicate
3725 if (Ekind
(Current_Scope
) = E_Function
3726 and then Is_Predicate_Function
(Current_Scope
))
3728 (Ekind
(Nam
) = E_Function
3729 and then Is_Predicate_Function
(Nam
))
3731 if Is_Incomplete_Type
(T1
)
3732 and then Present
(Full_View
(T1
))
3733 and then Full_View
(T1
) = T2
3735 Set_Etype
(Formal
, Etype
(Actual
));
3738 elsif Common_Type
(T1
) = Common_Type
(T2
) then
3739 Rewrite
(Actual
, Unchecked_Convert_To
(Etype
(Formal
), Actual
));
3749 end Compatible_Types_In_Predicate
;
3751 ----------------------------
3752 -- Indicate_Name_And_Type --
3753 ----------------------------
3755 procedure Indicate_Name_And_Type
is
3757 Add_One_Interp
(N
, Nam
, Etype
(Nam
));
3758 Check_Implicit_Dereference
(N
, Etype
(Nam
));
3761 -- If the prefix of the call is a name, indicate the entity
3762 -- being called. If it is not a name, it is an expression that
3763 -- denotes an access to subprogram or else an entry or family. In
3764 -- the latter case, the name is a selected component, and the entity
3765 -- being called is noted on the selector.
3767 if not Is_Type
(Nam
) then
3768 if Is_Entity_Name
(Name
(N
)) then
3769 Set_Entity
(Name
(N
), Nam
);
3770 Set_Etype
(Name
(N
), Etype
(Nam
));
3772 elsif Nkind
(Name
(N
)) = N_Selected_Component
then
3773 Set_Entity
(Selector_Name
(Name
(N
)), Nam
);
3777 if Debug_Flag_E
and not Report
then
3778 Write_Str
(" Overloaded call ");
3779 Write_Int
(Int
(N
));
3780 Write_Str
(" compatible with ");
3781 Write_Int
(Int
(Nam
));
3784 end Indicate_Name_And_Type
;
3786 ------------------------
3787 -- Operator_Hidden_By --
3788 ------------------------
3790 function Operator_Hidden_By
(Fun
: Entity_Id
) return Boolean is
3791 Act1
: constant Node_Id
:= First_Actual
(N
);
3792 Act2
: constant Node_Id
:= Next_Actual
(Act1
);
3793 Form1
: constant Entity_Id
:= First_Formal
(Fun
);
3794 Form2
: constant Entity_Id
:= Next_Formal
(Form1
);
3797 if Ekind
(Fun
) /= E_Function
or else Is_Abstract_Subprogram
(Fun
) then
3800 elsif not Has_Compatible_Type
(Act1
, Etype
(Form1
)) then
3803 elsif Present
(Form2
) then
3805 or else not Has_Compatible_Type
(Act2
, Etype
(Form2
))
3810 elsif Present
(Act2
) then
3814 -- Now we know that the arity of the operator matches the function,
3815 -- and the function call is a valid interpretation. The function
3816 -- hides the operator if it has the right signature, or if one of
3817 -- its operands is a non-abstract operation on Address when this is
3818 -- a visible integer type.
3820 return Hides_Op
(Fun
, Nam
)
3821 or else Is_Descendant_Of_Address
(Etype
(Form1
))
3824 and then Is_Descendant_Of_Address
(Etype
(Form2
)));
3825 end Operator_Hidden_By
;
3827 -- Start of processing for Analyze_One_Call
3832 -- If the subprogram has no formals or if all the formals have defaults,
3833 -- and the return type is an array type, the node may denote an indexing
3834 -- of the result of a parameterless call. In Ada 2005, the subprogram
3835 -- may have one non-defaulted formal, and the call may have been written
3836 -- in prefix notation, so that the rebuilt parameter list has more than
3839 if not Is_Overloadable
(Nam
)
3840 and then Ekind
(Nam
) /= E_Subprogram_Type
3841 and then Ekind
(Nam
) /= E_Entry_Family
3846 -- An indexing requires at least one actual. The name of the call cannot
3847 -- be an implicit indirect call, so it cannot be a generated explicit
3850 if not Is_Empty_List
(Actuals
)
3852 (Needs_No_Actuals
(Nam
)
3854 (Needs_One_Actual
(Nam
)
3855 and then Present
(Next_Actual
(First
(Actuals
)))))
3857 if Is_Array_Type
(Subp_Type
)
3859 (Nkind
(Name
(N
)) /= N_Explicit_Dereference
3860 or else Comes_From_Source
(Name
(N
)))
3862 Is_Indexed
:= Try_Indexed_Call
(N
, Nam
, Subp_Type
, Must_Skip
);
3864 elsif Is_Access_Type
(Subp_Type
)
3865 and then Is_Array_Type
(Designated_Type
(Subp_Type
))
3869 (N
, Nam
, Designated_Type
(Subp_Type
), Must_Skip
);
3871 -- The prefix can also be a parameterless function that returns an
3872 -- access to subprogram, in which case this is an indirect call.
3873 -- If this succeeds, an explicit dereference is added later on,
3874 -- in Analyze_Call or Resolve_Call.
3876 elsif Is_Access_Type
(Subp_Type
)
3877 and then Ekind
(Designated_Type
(Subp_Type
)) = E_Subprogram_Type
3879 Is_Indirect
:= Try_Indirect_Call
(N
, Nam
, Subp_Type
);
3884 -- If the call has been transformed into a slice, it is of the form
3885 -- F (Subtype) where F is parameterless. The node has been rewritten in
3886 -- Try_Indexed_Call and there is nothing else to do.
3889 and then Nkind
(N
) = N_Slice
3895 (N
, Nam
, (Report
and not Is_Indexed
and not Is_Indirect
), Norm_OK
);
3899 -- If an indirect call is a possible interpretation, indicate
3900 -- success to the caller. This may be an indexing of an explicit
3901 -- dereference of a call that returns an access type (see above).
3905 and then Nkind
(Name
(N
)) = N_Explicit_Dereference
3906 and then Comes_From_Source
(Name
(N
)))
3911 -- Mismatch in number or names of parameters
3913 elsif Debug_Flag_E
then
3914 Write_Str
(" normalization fails in call ");
3915 Write_Int
(Int
(N
));
3916 Write_Str
(" with subprogram ");
3917 Write_Int
(Int
(Nam
));
3921 -- If the context expects a function call, discard any interpretation
3922 -- that is a procedure. If the node is not overloaded, leave as is for
3923 -- better error reporting when type mismatch is found.
3925 elsif Nkind
(N
) = N_Function_Call
3926 and then Is_Overloaded
(Name
(N
))
3927 and then Ekind
(Nam
) = E_Procedure
3931 -- Ditto for function calls in a procedure context
3933 elsif Nkind
(N
) = N_Procedure_Call_Statement
3934 and then Is_Overloaded
(Name
(N
))
3935 and then Etype
(Nam
) /= Standard_Void_Type
3939 elsif No
(Actuals
) then
3941 -- If Normalize succeeds, then there are default parameters for
3944 Indicate_Name_And_Type
;
3946 elsif Ekind
(Nam
) = E_Operator
then
3947 if Nkind
(N
) = N_Procedure_Call_Statement
then
3951 -- This occurs when the prefix of the call is an operator name
3952 -- or an expanded name whose selector is an operator name.
3954 Analyze_Operator_Call
(N
, Nam
);
3956 if Etype
(N
) /= Prev_T
then
3958 -- Check that operator is not hidden by a function interpretation
3960 if Is_Overloaded
(Name
(N
)) then
3966 Get_First_Interp
(Name
(N
), I
, It
);
3967 while Present
(It
.Nam
) loop
3968 if Operator_Hidden_By
(It
.Nam
) then
3969 Set_Etype
(N
, Prev_T
);
3973 Get_Next_Interp
(I
, It
);
3978 -- If operator matches formals, record its name on the call.
3979 -- If the operator is overloaded, Resolve will select the
3980 -- correct one from the list of interpretations. The call
3981 -- node itself carries the first candidate.
3983 Set_Entity
(Name
(N
), Nam
);
3986 elsif Report
and then Etype
(N
) = Any_Type
then
3987 Error_Msg_N
("incompatible arguments for operator", N
);
3991 -- Normalize_Actuals has chained the named associations in the
3992 -- correct order of the formals.
3994 Actual
:= First_Actual
(N
);
3995 Formal
:= First_Formal
(Nam
);
3996 First_Form
:= Formal
;
3998 -- If we are analyzing a call rewritten from object notation, skip
3999 -- first actual, which may be rewritten later as an explicit
4003 Next_Actual
(Actual
);
4004 Next_Formal
(Formal
);
4007 while Present
(Actual
) and then Present
(Formal
) loop
4008 if Nkind
(Parent
(Actual
)) /= N_Parameter_Association
4009 or else Chars
(Selector_Name
(Parent
(Actual
))) = Chars
(Formal
)
4011 -- The actual can be compatible with the formal, but we must
4012 -- also check that the context is not an address type that is
4013 -- visibly an integer type. In this case the use of literals is
4014 -- illegal, except in the body of descendants of system, where
4015 -- arithmetic operations on address are of course used.
4017 if Has_Compatible_Type
(Actual
, Etype
(Formal
))
4019 (Etype
(Actual
) /= Universal_Integer
4020 or else not Is_Descendant_Of_Address
(Etype
(Formal
))
4021 or else In_Predefined_Unit
(N
))
4023 Next_Actual
(Actual
);
4024 Next_Formal
(Formal
);
4026 -- In Allow_Integer_Address mode, we allow an actual integer to
4027 -- match a formal address type and vice versa. We only do this
4028 -- if we are certain that an error will otherwise be issued
4030 elsif Address_Integer_Convert_OK
4031 (Etype
(Actual
), Etype
(Formal
))
4032 and then (Report
and not Is_Indexed
and not Is_Indirect
)
4034 -- Handle this case by introducing an unchecked conversion
4037 Unchecked_Convert_To
(Etype
(Formal
),
4038 Relocate_Node
(Actual
)));
4039 Analyze_And_Resolve
(Actual
, Etype
(Formal
));
4040 Next_Actual
(Actual
);
4041 Next_Formal
(Formal
);
4043 -- Under relaxed RM semantics silently replace occurrences of
4044 -- null by System.Address_Null. We only do this if we know that
4045 -- an error will otherwise be issued.
4047 elsif Null_To_Null_Address_Convert_OK
(Actual
, Etype
(Formal
))
4048 and then (Report
and not Is_Indexed
and not Is_Indirect
)
4050 Replace_Null_By_Null_Address
(Actual
);
4051 Analyze_And_Resolve
(Actual
, Etype
(Formal
));
4052 Next_Actual
(Actual
);
4053 Next_Formal
(Formal
);
4055 elsif Compatible_Types_In_Predicate
4056 (Etype
(Formal
), Etype
(Actual
))
4058 Next_Actual
(Actual
);
4059 Next_Formal
(Formal
);
4061 -- A current instance used as an actual of a function,
4062 -- whose body has not been seen, may include a formal
4063 -- whose type is an incomplete view of an enclosing
4064 -- type declaration containing the current call (e.g.
4065 -- in the Expression for a component declaration).
4067 -- In this case, update the signature of the subprogram
4068 -- so the formal has the type of the full view.
4070 elsif Inside_Init_Proc
4071 and then Nkind
(Actual
) = N_Identifier
4072 and then Ekind
(Etype
(Formal
)) = E_Incomplete_Type
4073 and then Etype
(Actual
) = Full_View
(Etype
(Formal
))
4075 Set_Etype
(Formal
, Etype
(Actual
));
4076 Next_Actual
(Actual
);
4077 Next_Formal
(Formal
);
4079 -- Handle failed type check
4082 if Debug_Flag_E
then
4083 Write_Str
(" type checking fails in call ");
4084 Write_Int
(Int
(N
));
4085 Write_Str
(" with formal ");
4086 Write_Int
(Int
(Formal
));
4087 Write_Str
(" in subprogram ");
4088 Write_Int
(Int
(Nam
));
4092 -- Comment needed on the following test???
4094 if Report
and not Is_Indexed
and not Is_Indirect
then
4096 -- Ada 2005 (AI-251): Complete the error notification
4097 -- to help new Ada 2005 users.
4099 if Is_Class_Wide_Type
(Etype
(Formal
))
4100 and then Is_Interface
(Etype
(Etype
(Formal
)))
4101 and then not Interface_Present_In_Ancestor
4102 (Typ
=> Etype
(Actual
),
4103 Iface
=> Etype
(Etype
(Formal
)))
4106 ("(Ada 2005) does not implement interface }",
4107 Actual
, Etype
(Etype
(Formal
)));
4110 -- If we are going to output a secondary error message
4111 -- below, we need to have Wrong_Type output the main one.
4114 (Actual
, Etype
(Formal
), Multiple
=> All_Errors_Mode
);
4116 if Nkind
(Actual
) = N_Op_Eq
4117 and then Nkind
(Left_Opnd
(Actual
)) = N_Identifier
4119 Formal
:= First_Formal
(Nam
);
4120 while Present
(Formal
) loop
4121 if Chars
(Left_Opnd
(Actual
)) = Chars
(Formal
) then
4122 Error_Msg_N
-- CODEFIX
4123 ("possible misspelling of `='>`!", Actual
);
4127 Next_Formal
(Formal
);
4131 if All_Errors_Mode
then
4132 Error_Msg_Sloc
:= Sloc
(Nam
);
4134 if Etype
(Formal
) = Any_Type
then
4136 ("there is no legal actual parameter", Actual
);
4139 if Is_Overloadable
(Nam
)
4140 and then Present
(Alias
(Nam
))
4141 and then not Comes_From_Source
(Nam
)
4144 ("\\ =='> in call to inherited operation & #!",
4147 elsif Ekind
(Nam
) = E_Subprogram_Type
then
4149 Access_To_Subprogram_Typ
:
4150 constant Entity_Id
:=
4152 (Associated_Node_For_Itype
(Nam
));
4155 ("\\ =='> in call to dereference of &#!",
4156 Actual
, Access_To_Subprogram_Typ
);
4161 ("\\ =='> in call to &#!", Actual
, Nam
);
4171 -- Normalize_Actuals has verified that a default value exists
4172 -- for this formal. Current actual names a subsequent formal.
4174 Next_Formal
(Formal
);
4178 -- Due to our current model of controlled type expansion we may
4179 -- have resolved a user call to a non-visible controlled primitive
4180 -- since these inherited subprograms may be generated in the current
4181 -- scope. This is a side effect of the need for the expander to be
4182 -- able to resolve internally generated calls.
4184 -- Specifically, the issue appears when predefined controlled
4185 -- operations get called on a type extension whose parent is a
4186 -- private extension completed with a controlled extension - see
4190 -- type Par_Typ is tagged private;
4192 -- type Par_Typ is new Controlled with null record;
4195 -- procedure Main is
4196 -- type Ext_Typ is new Par_Typ with null record;
4199 -- Finalize (Obj); -- Will improperly resolve
4202 -- To avoid breaking privacy, Is_Hidden gets set elsewhere on such
4203 -- primitives, but we still need to verify that Nam is indeed a
4204 -- non-visible controlled subprogram. So, we do that here and issue
4205 -- the appropriate error.
4208 and then not In_Instance
4209 and then not Comes_From_Source
(Nam
)
4210 and then Comes_From_Source
(N
)
4212 -- Verify Nam is a non-visible controlled primitive
4214 and then Chars
(Nam
) in Name_Adjust
4217 and then Ekind
(Nam
) = E_Procedure
4218 and then Is_Controlled
(Etype
(First_Form
))
4219 and then No
(Next_Formal
(First_Form
))
4220 and then not Is_Visibly_Controlled
(Etype
(First_Form
))
4222 Error_Msg_Node_2
:= Etype
(First_Form
);
4223 Error_Msg_NE
("call to non-visible controlled primitive & on type"
4227 -- On exit, all actuals match
4229 Indicate_Name_And_Type
;
4231 end Analyze_One_Call
;
4233 ---------------------------
4234 -- Analyze_Operator_Call --
4235 ---------------------------
4237 procedure Analyze_Operator_Call
(N
: Node_Id
; Op_Id
: Entity_Id
) is
4238 Op_Name
: constant Name_Id
:= Chars
(Op_Id
);
4239 Act1
: constant Node_Id
:= First_Actual
(N
);
4240 Act2
: constant Node_Id
:= Next_Actual
(Act1
);
4243 -- Binary operator case
4245 if Present
(Act2
) then
4247 -- If more than two operands, then not binary operator after all
4249 if Present
(Next_Actual
(Act2
)) then
4253 -- Otherwise action depends on operator
4264 Find_Arithmetic_Types
(Act1
, Act2
, Op_Id
, N
);
4270 Find_Boolean_Types
(Act1
, Act2
, Op_Id
, N
);
4279 Find_Comparison_Equality_Types
(Act1
, Act2
, Op_Id
, N
);
4281 when Name_Op_Concat
=>
4282 Find_Concatenation_Types
(Act1
, Act2
, Op_Id
, N
);
4284 -- Is this when others, or should it be an abort???
4290 -- Unary operator case
4298 Find_Unary_Types
(Act1
, Op_Id
, N
);
4301 Find_Negation_Types
(Act1
, Op_Id
, N
);
4303 -- Is this when others correct, or should it be an abort???
4309 end Analyze_Operator_Call
;
4311 -------------------------------------------
4312 -- Analyze_Overloaded_Selected_Component --
4313 -------------------------------------------
4315 procedure Analyze_Overloaded_Selected_Component
(N
: Node_Id
) is
4316 Nam
: constant Node_Id
:= Prefix
(N
);
4317 Sel
: constant Node_Id
:= Selector_Name
(N
);
4324 Set_Etype
(Sel
, Any_Type
);
4326 Get_First_Interp
(Nam
, I
, It
);
4327 while Present
(It
.Typ
) loop
4328 if Is_Access_Type
(It
.Typ
) then
4329 T
:= Designated_Type
(It
.Typ
);
4330 Error_Msg_NW
(Warn_On_Dereference
, "?d?implicit dereference", N
);
4335 -- Locate the component. For a private prefix the selector can denote
4338 if Is_Record_Type
(T
) or else Is_Private_Type
(T
) then
4340 -- If the prefix is a class-wide type, the visible components are
4341 -- those of the base type.
4343 if Is_Class_Wide_Type
(T
) then
4347 Comp
:= First_Entity
(T
);
4348 while Present
(Comp
) loop
4349 if Chars
(Comp
) = Chars
(Sel
)
4350 and then Is_Visible_Component
(Comp
, Sel
)
4353 -- AI05-105: if the context is an object renaming with
4354 -- an anonymous access type, the expected type of the
4355 -- object must be anonymous. This is a name resolution rule.
4357 if Nkind
(Parent
(N
)) /= N_Object_Renaming_Declaration
4358 or else No
(Access_Definition
(Parent
(N
)))
4359 or else Is_Anonymous_Access_Type
(Etype
(Comp
))
4361 Set_Entity
(Sel
, Comp
);
4362 Set_Etype
(Sel
, Etype
(Comp
));
4363 Add_One_Interp
(N
, Etype
(Comp
), Etype
(Comp
));
4364 Check_Implicit_Dereference
(N
, Etype
(Comp
));
4366 -- This also specifies a candidate to resolve the name.
4367 -- Further overloading will be resolved from context.
4368 -- The selector name itself does not carry overloading
4371 Set_Etype
(Nam
, It
.Typ
);
4374 -- Named access type in the context of a renaming
4375 -- declaration with an access definition. Remove
4376 -- inapplicable candidate.
4385 elsif Is_Concurrent_Type
(T
) then
4386 Comp
:= First_Entity
(T
);
4387 while Present
(Comp
)
4388 and then Comp
/= First_Private_Entity
(T
)
4390 if Chars
(Comp
) = Chars
(Sel
) then
4391 if Is_Overloadable
(Comp
) then
4392 Add_One_Interp
(Sel
, Comp
, Etype
(Comp
));
4394 Set_Entity_With_Checks
(Sel
, Comp
);
4395 Generate_Reference
(Comp
, Sel
);
4398 Set_Etype
(Sel
, Etype
(Comp
));
4399 Set_Etype
(N
, Etype
(Comp
));
4400 Set_Etype
(Nam
, It
.Typ
);
4406 Set_Is_Overloaded
(N
, Is_Overloaded
(Sel
));
4409 Get_Next_Interp
(I
, It
);
4412 if Etype
(N
) = Any_Type
4413 and then not Try_Object_Operation
(N
)
4415 Error_Msg_NE
("undefined selector& for overloaded prefix", N
, Sel
);
4416 Set_Entity
(Sel
, Any_Id
);
4417 Set_Etype
(Sel
, Any_Type
);
4419 end Analyze_Overloaded_Selected_Component
;
4421 ----------------------------------
4422 -- Analyze_Qualified_Expression --
4423 ----------------------------------
4425 procedure Analyze_Qualified_Expression
(N
: Node_Id
) is
4426 Expr
: constant Node_Id
:= Expression
(N
);
4427 Mark
: constant Entity_Id
:= Subtype_Mark
(N
);
4437 if Nkind
(Enclosing_Declaration
(N
)) in
4438 N_Formal_Type_Declaration |
4439 N_Full_Type_Declaration |
4440 N_Incomplete_Type_Declaration |
4441 N_Protected_Type_Declaration |
4442 N_Private_Extension_Declaration |
4443 N_Private_Type_Declaration |
4444 N_Subtype_Declaration |
4445 N_Task_Type_Declaration
4446 and then T
= Defining_Identifier
(Enclosing_Declaration
(N
))
4448 Error_Msg_N
("current instance not allowed", Mark
);
4454 Analyze_Expression
(Expr
);
4456 if T
= Any_Type
then
4460 Check_Fully_Declared
(T
, N
);
4462 -- If expected type is class-wide, check for exact match before
4463 -- expansion, because if the expression is a dispatching call it
4464 -- may be rewritten as explicit dereference with class-wide result.
4465 -- If expression is overloaded, retain only interpretations that
4466 -- will yield exact matches.
4468 if Is_Class_Wide_Type
(T
) then
4469 if not Is_Overloaded
(Expr
) then
4470 if Base_Type
(Etype
(Expr
)) /= Base_Type
(T
)
4471 and then Etype
(Expr
) /= Raise_Type
4473 if Nkind
(Expr
) = N_Aggregate
then
4474 Error_Msg_N
("type of aggregate cannot be class-wide", Expr
);
4476 Wrong_Type
(Expr
, T
);
4481 Get_First_Interp
(Expr
, I
, It
);
4483 while Present
(It
.Nam
) loop
4484 if Base_Type
(It
.Typ
) /= Base_Type
(T
) then
4488 Get_Next_Interp
(I
, It
);
4492 end Analyze_Qualified_Expression
;
4494 -----------------------------------
4495 -- Analyze_Quantified_Expression --
4496 -----------------------------------
4498 procedure Analyze_Quantified_Expression
(N
: Node_Id
) is
4499 function Is_Empty_Range
(Typ
: Entity_Id
) return Boolean;
4500 -- Return True if the iterator is part of a quantified expression and
4501 -- the range is known to be statically empty.
4503 function No_Else_Or_Trivial_True
(If_Expr
: Node_Id
) return Boolean;
4504 -- Determine whether if expression If_Expr lacks an else part or if it
4505 -- has one, it evaluates to True.
4507 --------------------
4508 -- Is_Empty_Range --
4509 --------------------
4511 function Is_Empty_Range
(Typ
: Entity_Id
) return Boolean is
4513 return Is_Array_Type
(Typ
)
4514 and then Compile_Time_Known_Bounds
(Typ
)
4516 Expr_Value
(Type_Low_Bound
(Etype
(First_Index
(Typ
)))) >
4517 Expr_Value
(Type_High_Bound
(Etype
(First_Index
(Typ
))));
4520 -----------------------------
4521 -- No_Else_Or_Trivial_True --
4522 -----------------------------
4524 function No_Else_Or_Trivial_True
(If_Expr
: Node_Id
) return Boolean is
4525 Else_Expr
: constant Node_Id
:=
4526 Next
(Next
(First
(Expressions
(If_Expr
))));
4530 or else (Compile_Time_Known_Value
(Else_Expr
)
4531 and then Is_True
(Expr_Value
(Else_Expr
)));
4532 end No_Else_Or_Trivial_True
;
4536 Cond
: constant Node_Id
:= Condition
(N
);
4537 Loc
: constant Source_Ptr
:= Sloc
(N
);
4538 Loop_Id
: Entity_Id
;
4539 QE_Scop
: Entity_Id
;
4541 -- Start of processing for Analyze_Quantified_Expression
4544 -- Create a scope to emulate the loop-like behavior of the quantified
4545 -- expression. The scope is needed to provide proper visibility of the
4548 QE_Scop
:= New_Internal_Entity
(E_Loop
, Current_Scope
, Loc
, 'L');
4549 Set_Etype
(QE_Scop
, Standard_Void_Type
);
4550 Set_Scope
(QE_Scop
, Current_Scope
);
4551 Set_Parent
(QE_Scop
, N
);
4553 Push_Scope
(QE_Scop
);
4555 -- All constituents are preanalyzed and resolved to avoid untimely
4556 -- generation of various temporaries and types. Full analysis and
4557 -- expansion is carried out when the quantified expression is
4558 -- transformed into an expression with actions.
4560 if Present
(Iterator_Specification
(N
)) then
4561 Preanalyze
(Iterator_Specification
(N
));
4563 -- Do not proceed with the analysis when the range of iteration is
4566 if Is_Entity_Name
(Name
(Iterator_Specification
(N
)))
4567 and then Is_Empty_Range
(Etype
(Name
(Iterator_Specification
(N
))))
4569 Preanalyze_And_Resolve
(Condition
(N
), Standard_Boolean
);
4572 -- Emit a warning and replace expression with its static value
4574 if All_Present
(N
) then
4576 ("??quantified expression with ALL "
4577 & "over a null range has value True", N
);
4578 Rewrite
(N
, New_Occurrence_Of
(Standard_True
, Loc
));
4582 ("??quantified expression with SOME "
4583 & "over a null range has value False", N
);
4584 Rewrite
(N
, New_Occurrence_Of
(Standard_False
, Loc
));
4591 else pragma Assert
(Present
(Loop_Parameter_Specification
(N
)));
4593 Loop_Par
: constant Node_Id
:= Loop_Parameter_Specification
(N
);
4596 Preanalyze
(Loop_Par
);
4598 if Nkind
(Discrete_Subtype_Definition
(Loop_Par
)) = N_Function_Call
4599 and then Parent
(Loop_Par
) /= N
4601 -- The parser cannot distinguish between a loop specification
4602 -- and an iterator specification. If after preanalysis the
4603 -- proper form has been recognized, rewrite the expression to
4604 -- reflect the right kind. This is needed for proper ASIS
4605 -- navigation. If expansion is enabled, the transformation is
4606 -- performed when the expression is rewritten as a loop.
4607 -- Is this still needed???
4609 Set_Iterator_Specification
(N
,
4610 New_Copy_Tree
(Iterator_Specification
(Parent
(Loop_Par
))));
4612 Set_Defining_Identifier
(Iterator_Specification
(N
),
4613 Relocate_Node
(Defining_Identifier
(Loop_Par
)));
4614 Set_Name
(Iterator_Specification
(N
),
4615 Relocate_Node
(Discrete_Subtype_Definition
(Loop_Par
)));
4616 Set_Comes_From_Source
(Iterator_Specification
(N
),
4617 Comes_From_Source
(Loop_Parameter_Specification
(N
)));
4618 Set_Loop_Parameter_Specification
(N
, Empty
);
4623 Preanalyze_And_Resolve
(Cond
, Standard_Boolean
);
4626 Set_Etype
(N
, Standard_Boolean
);
4628 -- Verify that the loop variable is used within the condition of the
4629 -- quantified expression.
4631 if Present
(Iterator_Specification
(N
)) then
4632 Loop_Id
:= Defining_Identifier
(Iterator_Specification
(N
));
4634 Loop_Id
:= Defining_Identifier
(Loop_Parameter_Specification
(N
));
4638 type Subexpr_Kind
is (Full
, Conjunct
, Disjunct
);
4640 procedure Check_Subexpr
(Expr
: Node_Id
; Kind
: Subexpr_Kind
);
4641 -- Check that the quantified variable appears in every sub-expression
4642 -- of the quantified expression. If Kind is Full, Expr is the full
4643 -- expression. If Kind is Conjunct (resp. Disjunct), Expr is a
4644 -- conjunct (resp. disjunct) of the full expression.
4650 procedure Check_Subexpr
(Expr
: Node_Id
; Kind
: Subexpr_Kind
) is
4652 if Nkind
(Expr
) in N_Op_And | N_And_Then
4653 and then Kind
/= Disjunct
4655 Check_Subexpr
(Left_Opnd
(Expr
), Conjunct
);
4656 Check_Subexpr
(Right_Opnd
(Expr
), Conjunct
);
4658 elsif Nkind
(Expr
) in N_Op_Or | N_Or_Else
4659 and then Kind
/= Conjunct
4661 Check_Subexpr
(Left_Opnd
(Expr
), Disjunct
);
4662 Check_Subexpr
(Right_Opnd
(Expr
), Disjunct
);
4665 and then not Referenced
(Loop_Id
, Expr
)
4668 Sub
: constant String :=
4669 (if Kind
= Conjunct
then "conjunct" else "disjunct");
4672 ("?.t?unused variable & in " & Sub
, Expr
, Loop_Id
);
4674 ("\consider extracting " & Sub
& " from quantified "
4675 & "expression", Expr
, Loop_Id
);
4681 if Warn_On_Suspicious_Contract
4682 and then not Is_Internal_Name
(Chars
(Loop_Id
))
4684 -- Generating C, this check causes spurious warnings on inlined
4685 -- postconditions; we can safely disable it because this check
4686 -- was previously performed when analyzing the internally built
4687 -- postconditions procedure.
4689 and then not (Modify_Tree_For_C
and In_Inlined_Body
)
4691 if not Referenced
(Loop_Id
, Cond
) then
4692 Error_Msg_N
("?.t?unused variable &", Loop_Id
);
4694 Check_Subexpr
(Cond
, Kind
=> Full
);
4699 -- Diagnose a possible misuse of the SOME existential quantifier. When
4700 -- we have a quantified expression of the form:
4702 -- for some X => (if P then Q [else True])
4704 -- any value for X that makes P False results in the if expression being
4705 -- trivially True, and so also results in the quantified expression
4706 -- being trivially True.
4708 if Warn_On_Suspicious_Contract
4709 and then not All_Present
(N
)
4710 and then Nkind
(Cond
) = N_If_Expression
4711 and then No_Else_Or_Trivial_True
(Cond
)
4713 Error_Msg_N
("?.t?suspicious expression", N
);
4714 Error_Msg_N
("\\did you mean (for all X ='> (if P then Q))", N
);
4715 Error_Msg_N
("\\or (for some X ='> P and then Q) instead'?", N
);
4717 end Analyze_Quantified_Expression
;
4723 procedure Analyze_Range
(N
: Node_Id
) is
4724 L
: constant Node_Id
:= Low_Bound
(N
);
4725 H
: constant Node_Id
:= High_Bound
(N
);
4726 I1
, I2
: Interp_Index
;
4729 procedure Check_Common_Type
(T1
, T2
: Entity_Id
);
4730 -- Verify the compatibility of two types, and choose the
4731 -- non universal one if the other is universal.
4733 procedure Check_High_Bound
(T
: Entity_Id
);
4734 -- Test one interpretation of the low bound against all those
4735 -- of the high bound.
4737 procedure Check_Universal_Expression
(N
: Node_Id
);
4738 -- In Ada 83, reject bounds of a universal range that are not literals
4741 -----------------------
4742 -- Check_Common_Type --
4743 -----------------------
4745 procedure Check_Common_Type
(T1
, T2
: Entity_Id
) is
4747 if Covers
(T1
=> T1
, T2
=> T2
)
4749 Covers
(T1
=> T2
, T2
=> T1
)
4751 if Is_Universal_Numeric_Type
(T1
)
4752 or else T1
= Any_Character
4754 Add_One_Interp
(N
, Base_Type
(T2
), Base_Type
(T2
));
4757 Add_One_Interp
(N
, T1
, T1
);
4760 Add_One_Interp
(N
, Base_Type
(T1
), Base_Type
(T1
));
4763 end Check_Common_Type
;
4765 ----------------------
4766 -- Check_High_Bound --
4767 ----------------------
4769 procedure Check_High_Bound
(T
: Entity_Id
) is
4771 if not Is_Overloaded
(H
) then
4772 Check_Common_Type
(T
, Etype
(H
));
4774 Get_First_Interp
(H
, I2
, It2
);
4775 while Present
(It2
.Typ
) loop
4776 Check_Common_Type
(T
, It2
.Typ
);
4777 Get_Next_Interp
(I2
, It2
);
4780 end Check_High_Bound
;
4782 --------------------------------
4783 -- Check_Universal_Expression --
4784 --------------------------------
4786 procedure Check_Universal_Expression
(N
: Node_Id
) is
4788 if Etype
(N
) = Universal_Integer
4789 and then Nkind
(N
) /= N_Integer_Literal
4790 and then not Is_Entity_Name
(N
)
4791 and then Nkind
(N
) /= N_Attribute_Reference
4793 Error_Msg_N
("illegal bound in discrete range", N
);
4795 end Check_Universal_Expression
;
4797 -- Start of processing for Analyze_Range
4800 Set_Etype
(N
, Any_Type
);
4801 Analyze_Expression
(L
);
4802 Analyze_Expression
(H
);
4804 if Etype
(L
) = Any_Type
or else Etype
(H
) = Any_Type
then
4808 if not Is_Overloaded
(L
) then
4809 Check_High_Bound
(Etype
(L
));
4811 Get_First_Interp
(L
, I1
, It1
);
4812 while Present
(It1
.Typ
) loop
4813 Check_High_Bound
(It1
.Typ
);
4814 Get_Next_Interp
(I1
, It1
);
4818 -- If result is Any_Type, then we did not find a compatible pair
4820 if Etype
(N
) = Any_Type
then
4821 Error_Msg_N
("incompatible types in range", N
);
4825 if Ada_Version
= Ada_83
4827 (Nkind
(Parent
(N
)) = N_Loop_Parameter_Specification
4828 or else Nkind
(Parent
(N
)) = N_Constrained_Array_Definition
)
4830 Check_Universal_Expression
(L
);
4831 Check_Universal_Expression
(H
);
4834 Check_Function_Writable_Actuals
(N
);
4837 -----------------------
4838 -- Analyze_Reference --
4839 -----------------------
4841 procedure Analyze_Reference
(N
: Node_Id
) is
4842 P
: constant Node_Id
:= Prefix
(N
);
4845 Acc_Type
: Entity_Id
;
4850 -- An interesting error check, if we take the 'Ref of an object for
4851 -- which a pragma Atomic or Volatile has been given, and the type of the
4852 -- object is not Atomic or Volatile, then we are in trouble. The problem
4853 -- is that no trace of the atomic/volatile status will remain for the
4854 -- backend to respect when it deals with the resulting pointer, since
4855 -- the pointer type will not be marked atomic (it is a pointer to the
4856 -- base type of the object).
4858 -- It is not clear if that can ever occur, but in case it does, we will
4859 -- generate an error message. Not clear if this message can ever be
4860 -- generated, and pretty clear that it represents a bug if it is, still
4861 -- seems worth checking, except in CodePeer mode where we do not really
4862 -- care and don't want to bother the user.
4866 if Is_Entity_Name
(P
)
4867 and then Is_Object_Reference
(P
)
4868 and then not CodePeer_Mode
4873 if (Has_Atomic_Components
(E
)
4874 and then not Has_Atomic_Components
(T
))
4876 (Has_Volatile_Components
(E
)
4877 and then not Has_Volatile_Components
(T
))
4878 or else (Is_Atomic
(E
) and then not Is_Atomic
(T
))
4879 or else (Is_Volatile
(E
) and then not Is_Volatile
(T
))
4881 Error_Msg_N
("cannot take reference to Atomic/Volatile object", N
);
4885 -- Carry on with normal processing
4887 Acc_Type
:= Create_Itype
(E_Allocator_Type
, N
);
4888 Set_Etype
(Acc_Type
, Acc_Type
);
4889 Set_Directly_Designated_Type
(Acc_Type
, Etype
(P
));
4890 Set_Etype
(N
, Acc_Type
);
4891 end Analyze_Reference
;
4893 --------------------------------
4894 -- Analyze_Selected_Component --
4895 --------------------------------
4897 -- Prefix is a record type or a task or protected type. In the latter case,
4898 -- the selector must denote a visible entry.
4900 procedure Analyze_Selected_Component
(N
: Node_Id
) is
4901 Name
: constant Node_Id
:= Prefix
(N
);
4902 Sel
: constant Node_Id
:= Selector_Name
(N
);
4904 Comp
: Entity_Id
:= Empty
;
4905 Has_Candidate
: Boolean := False;
4906 Hidden_Comp
: Entity_Id
;
4908 Is_Private_Op
: Boolean;
4910 Prefix_Type
: Entity_Id
;
4912 Type_To_Use
: Entity_Id
;
4913 -- In most cases this is the Prefix_Type, but if the Prefix_Type is
4914 -- a class-wide type, we use its root type, whose components are
4915 -- present in the class-wide type.
4917 Is_Single_Concurrent_Object
: Boolean;
4918 -- Set True if the prefix is a single task or a single protected object
4920 function Constraint_Has_Unprefixed_Discriminant_Reference
4921 (Typ
: Entity_Id
) return Boolean;
4922 -- Given a subtype that is subject to a discriminant-dependent
4923 -- constraint, returns True if any of the values of the constraint
4924 -- (i.e., any of the index values for an index constraint, any of
4925 -- the discriminant values for a discriminant constraint)
4926 -- are unprefixed discriminant names.
4928 function Has_Mode_Conformant_Spec
(Comp
: Entity_Id
) return Boolean;
4929 -- It is known that the parent of N denotes a subprogram call. Comp
4930 -- is an overloadable component of the concurrent type of the prefix.
4931 -- Determine whether all formals of the parent of N and Comp are mode
4932 -- conformant. If the parent node is not analyzed yet it may be an
4933 -- indexed component rather than a function call.
4935 function Has_Dereference
(Nod
: Node_Id
) return Boolean;
4936 -- Check whether prefix includes a dereference, explicit or implicit,
4937 -- at any recursive level.
4939 function Try_By_Protected_Procedure_Prefixed_View
return Boolean;
4940 -- Return True if N is an access attribute whose prefix is a prefixed
4941 -- class-wide (synchronized or protected) interface view for which some
4942 -- interpretation is a procedure with synchronization kind By_Protected
4943 -- _Procedure, and collect all its interpretations (since it may be an
4944 -- overloaded interface primitive); otherwise return False.
4946 function Try_Selected_Component_In_Instance
4947 (Typ
: Entity_Id
) return Boolean;
4948 -- If Typ is the actual for a formal derived type, or a derived type
4949 -- thereof, the component inherited from the generic parent may not
4950 -- be visible in the actual, but the selected component is legal. Climb
4951 -- up the derivation chain of the generic parent type and return True if
4952 -- we find the proper ancestor type; otherwise return False.
4954 ------------------------------------------------------
4955 -- Constraint_Has_Unprefixed_Discriminant_Reference --
4956 ------------------------------------------------------
4958 function Constraint_Has_Unprefixed_Discriminant_Reference
4959 (Typ
: Entity_Id
) return Boolean
4961 function Is_Discriminant_Name
(N
: Node_Id
) return Boolean is
4962 (Nkind
(N
) = N_Identifier
4963 and then Ekind
(Entity
(N
)) = E_Discriminant
);
4965 if Is_Array_Type
(Typ
) then
4967 Index
: Node_Id
:= First_Index
(Typ
);
4970 while Present
(Index
) loop
4972 if Nkind
(Rng
) = N_Subtype_Indication
then
4973 Rng
:= Range_Expression
(Constraint
(Rng
));
4976 if Nkind
(Rng
) = N_Range
then
4977 if Is_Discriminant_Name
(Low_Bound
(Rng
))
4978 or else Is_Discriminant_Name
(High_Bound
(Rng
))
4989 Elmt
: Elmt_Id
:= First_Elmt
(Discriminant_Constraint
(Typ
));
4991 while Present
(Elmt
) loop
4992 if Is_Discriminant_Name
(Node
(Elmt
)) then
5001 end Constraint_Has_Unprefixed_Discriminant_Reference
;
5003 ------------------------------
5004 -- Has_Mode_Conformant_Spec --
5005 ------------------------------
5007 function Has_Mode_Conformant_Spec
(Comp
: Entity_Id
) return Boolean is
5008 Comp_Param
: Entity_Id
;
5010 Param_Typ
: Entity_Id
;
5013 Comp_Param
:= First_Formal
(Comp
);
5015 if Nkind
(Parent
(N
)) = N_Indexed_Component
then
5016 Param
:= First
(Expressions
(Parent
(N
)));
5018 Param
:= First
(Parameter_Associations
(Parent
(N
)));
5021 while Present
(Comp_Param
)
5022 and then Present
(Param
)
5024 Param_Typ
:= Find_Parameter_Type
(Param
);
5026 if Present
(Param_Typ
)
5028 not Conforming_Types
5029 (Etype
(Comp_Param
), Param_Typ
, Mode_Conformant
)
5034 Next_Formal
(Comp_Param
);
5038 -- One of the specs has additional formals; there is no match, unless
5039 -- this may be an indexing of a parameterless call.
5041 -- Note that when expansion is disabled, the corresponding record
5042 -- type of synchronized types is not constructed, so that there is
5043 -- no point is attempting an interpretation as a prefixed call, as
5044 -- this is bound to fail because the primitive operations will not
5045 -- be properly located.
5047 if Present
(Comp_Param
) or else Present
(Param
) then
5048 if Needs_No_Actuals
(Comp
)
5049 and then Is_Array_Type
(Etype
(Comp
))
5050 and then not Expander_Active
5059 end Has_Mode_Conformant_Spec
;
5061 ---------------------
5062 -- Has_Dereference --
5063 ---------------------
5065 function Has_Dereference
(Nod
: Node_Id
) return Boolean is
5067 if Nkind
(Nod
) = N_Explicit_Dereference
then
5070 elsif Is_Access_Type
(Etype
(Nod
)) then
5073 elsif Nkind
(Nod
) in N_Indexed_Component | N_Selected_Component
then
5074 return Has_Dereference
(Prefix
(Nod
));
5079 end Has_Dereference
;
5081 ----------------------------------------------
5082 -- Try_By_Protected_Procedure_Prefixed_View --
5083 ----------------------------------------------
5085 function Try_By_Protected_Procedure_Prefixed_View
return Boolean is
5086 Candidate
: Node_Id
:= Empty
;
5091 if Nkind
(Parent
(N
)) = N_Attribute_Reference
5092 and then Attribute_Name
(Parent
(N
)) in
5094 | Name_Unchecked_Access
5095 | Name_Unrestricted_Access
5096 and then Is_Class_Wide_Type
(Prefix_Type
)
5097 and then (Is_Synchronized_Interface
(Prefix_Type
)
5098 or else Is_Protected_Interface
(Prefix_Type
))
5100 -- If we have not found yet any interpretation then mark this
5101 -- one as the first interpretation (cf. Add_One_Interp).
5103 if No
(Etype
(Sel
)) then
5104 Set_Etype
(Sel
, Any_Type
);
5107 Elmt
:= First_Elmt
(Primitive_Operations
(Etype
(Prefix_Type
)));
5108 while Present
(Elmt
) loop
5109 Prim
:= Node
(Elmt
);
5111 if Chars
(Prim
) = Chars
(Sel
)
5112 and then Is_By_Protected_Procedure
(Prim
)
5114 Candidate
:= New_Copy
(Prim
);
5116 -- Skip the controlling formal; required to check type
5117 -- conformance of the target access to protected type
5118 -- (see Conforming_Types).
5120 Set_First_Entity
(Candidate
,
5121 Next_Entity
(First_Entity
(Prim
)));
5123 Add_One_Interp
(Sel
, Candidate
, Etype
(Prim
));
5124 Set_Etype
(N
, Etype
(Prim
));
5131 -- Propagate overloaded attribute
5133 if Present
(Candidate
) and then Is_Overloaded
(Sel
) then
5134 Set_Is_Overloaded
(N
);
5137 return Present
(Candidate
);
5138 end Try_By_Protected_Procedure_Prefixed_View
;
5140 ----------------------------------------
5141 -- Try_Selected_Component_In_Instance --
5142 ----------------------------------------
5144 function Try_Selected_Component_In_Instance
5145 (Typ
: Entity_Id
) return Boolean
5147 procedure Find_Component_In_Instance
(Rec
: Entity_Id
);
5148 -- In an instance, a component of a private extension may not be
5149 -- visible while it was visible in the generic. Search candidate
5150 -- scope for a component with the proper identifier. If a match is
5151 -- found, the Etype of both N and Sel are set from this component,
5152 -- and the entity of Sel is set to reference this component. If no
5153 -- match is found, Entity (Sel) remains unset. For a derived type
5154 -- that is an actual of the instance, the desired component may be
5155 -- found in any ancestor.
5157 --------------------------------
5158 -- Find_Component_In_Instance --
5159 --------------------------------
5161 procedure Find_Component_In_Instance
(Rec
: Entity_Id
) is
5167 while Present
(Typ
) loop
5168 Comp
:= First_Component
(Typ
);
5169 while Present
(Comp
) loop
5170 if Chars
(Comp
) = Chars
(Sel
) then
5171 Set_Entity_With_Checks
(Sel
, Comp
);
5172 Set_Etype
(Sel
, Etype
(Comp
));
5173 Set_Etype
(N
, Etype
(Comp
));
5177 Next_Component
(Comp
);
5180 -- If not found, the component may be declared in the parent
5181 -- type or its full view, if any.
5183 if Is_Derived_Type
(Typ
) then
5186 if Is_Private_Type
(Typ
) then
5187 Typ
:= Full_View
(Typ
);
5195 -- If we fall through, no match, so no changes made
5198 end Find_Component_In_Instance
;
5204 -- Start of processing for Try_Selected_Component_In_Instance
5207 pragma Assert
(In_Instance
and then Is_Tagged_Type
(Typ
));
5208 pragma Assert
(Etype
(N
) = Any_Type
);
5210 -- Climb up derivation chain to generic actual subtype
5213 while not Is_Generic_Actual_Type
(Par
) loop
5214 if Ekind
(Par
) = E_Record_Type
then
5215 Par
:= Parent_Subtype
(Par
);
5218 exit when Par
= Etype
(Par
);
5223 -- If Par is a generic actual, look for component in ancestor types.
5224 -- Skip this if we have no Declaration_Node, as is the case for
5228 and then Is_Generic_Actual_Type
(Par
)
5229 and then Present
(Declaration_Node
(Par
))
5231 Par
:= Generic_Parent_Type
(Declaration_Node
(Par
));
5233 Find_Component_In_Instance
(Par
);
5234 exit when Present
(Entity
(Sel
))
5235 or else Par
= Etype
(Par
);
5239 -- Another special case: the type is an extension of a private
5240 -- type T, either is an actual in an instance or is immediately
5241 -- visible, and we are in the body of the instance, which means
5242 -- the generic body had a full view of the type declaration for
5243 -- T or some ancestor that defines the component in question.
5244 -- This happens because Is_Visible_Component returned False on
5245 -- this component, as T or the ancestor is still private since
5246 -- the Has_Private_View mechanism is bypassed because T or the
5247 -- ancestor is not directly referenced in the generic body.
5249 elsif Is_Derived_Type
(Typ
)
5250 and then (Used_As_Generic_Actual
(Typ
)
5251 or else Is_Immediately_Visible
(Typ
))
5252 and then In_Instance_Body
5254 Find_Component_In_Instance
(Parent_Subtype
(Typ
));
5257 return Etype
(N
) /= Any_Type
;
5258 end Try_Selected_Component_In_Instance
;
5260 -- Start of processing for Analyze_Selected_Component
5263 Set_Etype
(N
, Any_Type
);
5265 if Is_Overloaded
(Name
) then
5266 Analyze_Overloaded_Selected_Component
(N
);
5269 elsif Etype
(Name
) = Any_Type
then
5270 Set_Entity
(Sel
, Any_Id
);
5271 Set_Etype
(Sel
, Any_Type
);
5275 Prefix_Type
:= Etype
(Name
);
5278 if Is_Access_Type
(Prefix_Type
) then
5280 -- A RACW object can never be used as prefix of a selected component
5281 -- since that means it is dereferenced without being a controlling
5282 -- operand of a dispatching operation (RM E.2.2(16/1)). Before
5283 -- reporting an error, we must check whether this is actually a
5284 -- dispatching call in prefix form.
5286 if Is_Remote_Access_To_Class_Wide_Type
(Prefix_Type
)
5287 and then Comes_From_Source
(N
)
5289 if Try_Object_Operation
(N
) then
5293 ("invalid dereference of a remote access-to-class-wide value",
5297 -- Normal case of selected component applied to access type
5300 Error_Msg_NW
(Warn_On_Dereference
, "?d?implicit dereference", N
);
5301 Prefix_Type
:= Implicitly_Designated_Type
(Prefix_Type
);
5304 -- If we have an explicit dereference of a remote access-to-class-wide
5305 -- value, then issue an error (see RM-E.2.2(16/1)). However we first
5306 -- have to check for the case of a prefix that is a controlling operand
5307 -- of a prefixed dispatching call, as the dereference is legal in that
5308 -- case. Normally this condition is checked in Validate_Remote_Access_
5309 -- To_Class_Wide_Type, but we have to defer the checking for selected
5310 -- component prefixes because of the prefixed dispatching call case.
5311 -- Note that implicit dereferences are checked for this just above.
5313 elsif Nkind
(Name
) = N_Explicit_Dereference
5314 and then Is_Remote_Access_To_Class_Wide_Type
(Etype
(Prefix
(Name
)))
5315 and then Comes_From_Source
(N
)
5317 if Try_Object_Operation
(N
) then
5321 ("invalid dereference of a remote access-to-class-wide value",
5326 -- (Ada 2005): if the prefix is the limited view of a type, and
5327 -- the context already includes the full view, use the full view
5328 -- in what follows, either to retrieve a component of to find
5329 -- a primitive operation. If the prefix is an explicit dereference,
5330 -- set the type of the prefix to reflect this transformation.
5331 -- If the nonlimited view is itself an incomplete type, get the
5332 -- full view if available.
5334 if From_Limited_With
(Prefix_Type
)
5335 and then Has_Non_Limited_View
(Prefix_Type
)
5337 Prefix_Type
:= Get_Full_View
(Non_Limited_View
(Prefix_Type
));
5339 if Nkind
(N
) = N_Explicit_Dereference
then
5340 Set_Etype
(Prefix
(N
), Prefix_Type
);
5344 if Ekind
(Prefix_Type
) = E_Private_Subtype
then
5345 Prefix_Type
:= Base_Type
(Prefix_Type
);
5348 Type_To_Use
:= Prefix_Type
;
5350 -- For class-wide types, use the entity list of the root type. This
5351 -- indirection is specially important for private extensions because
5352 -- only the root type get switched (not the class-wide type).
5354 if Is_Class_Wide_Type
(Prefix_Type
) then
5355 Type_To_Use
:= Root_Type
(Prefix_Type
);
5358 -- If the prefix is a single concurrent object, use its name in error
5359 -- messages, rather than that of its anonymous type.
5361 Is_Single_Concurrent_Object
:=
5362 Is_Concurrent_Type
(Prefix_Type
)
5363 and then Is_Internal_Name
(Chars
(Prefix_Type
))
5364 and then not Is_Derived_Type
(Prefix_Type
)
5365 and then Is_Entity_Name
(Name
);
5367 -- Avoid initializing Comp if that initialization is not needed
5368 -- (and, more importantly, if the call to First_Entity could fail).
5370 if Has_Discriminants
(Type_To_Use
)
5371 or else Is_Record_Type
(Type_To_Use
)
5372 or else Is_Private_Type
(Type_To_Use
)
5373 or else Is_Concurrent_Type
(Type_To_Use
)
5375 Comp
:= First_Entity
(Type_To_Use
);
5378 -- If the selector has an original discriminant, the node appears in
5379 -- an instance. Replace the discriminant with the corresponding one
5380 -- in the current discriminated type. For nested generics, this must
5381 -- be done transitively, so note the new original discriminant.
5383 if Nkind
(Sel
) = N_Identifier
5384 and then In_Instance
5385 and then Present
(Original_Discriminant
(Sel
))
5387 Comp
:= Find_Corresponding_Discriminant
(Sel
, Prefix_Type
);
5389 -- Mark entity before rewriting, for completeness and because
5390 -- subsequent semantic checks might examine the original node.
5392 Set_Entity
(Sel
, Comp
);
5393 Rewrite
(Selector_Name
(N
), New_Occurrence_Of
(Comp
, Sloc
(N
)));
5394 Set_Original_Discriminant
(Selector_Name
(N
), Comp
);
5395 Set_Etype
(N
, Etype
(Comp
));
5396 Check_Implicit_Dereference
(N
, Etype
(Comp
));
5398 elsif Is_Record_Type
(Prefix_Type
) then
5400 -- Find a component with the given name. If the node is a prefixed
5401 -- call, do not examine components whose visibility may be
5404 while Present
(Comp
)
5405 and then not Is_Prefixed_Call
(N
)
5407 -- When the selector has been resolved to a function then we may be
5408 -- looking at a prefixed call which has been preanalyzed already as
5409 -- part of a class condition. In such cases it is possible for a
5410 -- derived type to declare a component which has the same name as
5411 -- a primitive used in a parent's class condition.
5413 -- Avoid seeing components as possible interpretations of the
5414 -- selected component when this is true.
5416 and then not (Inside_Class_Condition_Preanalysis
5417 and then Present
(Entity
(Sel
))
5418 and then Ekind
(Entity
(Sel
)) = E_Function
)
5420 if Chars
(Comp
) = Chars
(Sel
)
5421 and then Is_Visible_Component
(Comp
, N
)
5423 Set_Entity_With_Checks
(Sel
, Comp
);
5424 Set_Etype
(Sel
, Etype
(Comp
));
5426 if Ekind
(Comp
) = E_Discriminant
then
5427 if Is_Unchecked_Union
(Base_Type
(Prefix_Type
)) then
5429 ("cannot reference discriminant of unchecked union",
5433 if Is_Generic_Type
(Prefix_Type
)
5435 Is_Generic_Type
(Root_Type
(Prefix_Type
))
5437 Set_Original_Discriminant
(Sel
, Comp
);
5441 -- Resolve the prefix early otherwise it is not possible to
5442 -- build the actual subtype of the component: it may need
5443 -- to duplicate this prefix and duplication is only allowed
5444 -- on fully resolved expressions.
5448 -- Ada 2005 (AI-50217): Check wrong use of incomplete types or
5449 -- subtypes in a package specification.
5452 -- limited with Pkg;
5454 -- type Acc_Inc is access Pkg.T;
5456 -- N : Natural := X.all.Comp; -- ERROR, limited view
5457 -- end Pkg; -- Comp is not visible
5459 if Nkind
(Name
) = N_Explicit_Dereference
5460 and then From_Limited_With
(Etype
(Prefix
(Name
)))
5461 and then not Is_Potentially_Use_Visible
(Etype
(Name
))
5462 and then Nkind
(Parent
(Cunit_Entity
(Current_Sem_Unit
))) =
5463 N_Package_Specification
5466 ("premature usage of incomplete}", Prefix
(Name
),
5467 Etype
(Prefix
(Name
)));
5470 -- We never need an actual subtype for the case of a selection
5471 -- for a indexed component of a non-packed array, since in
5472 -- this case gigi generates all the checks and can find the
5473 -- necessary bounds information.
5475 -- We also do not need an actual subtype for the case of a
5476 -- first, last, length, or range attribute applied to a
5477 -- non-packed array, since gigi can again get the bounds in
5478 -- these cases (gigi cannot handle the packed case, since it
5479 -- has the bounds of the packed array type, not the original
5480 -- bounds of the type). However, if the prefix is itself a
5481 -- selected component, as in a.b.c (i), gigi may regard a.b.c
5482 -- as a dynamic-sized temporary, so we do generate an actual
5483 -- subtype for this case.
5485 Parent_N
:= Parent
(N
);
5487 if not Is_Packed
(Etype
(Comp
))
5489 ((Nkind
(Parent_N
) = N_Indexed_Component
5490 and then Nkind
(Name
) /= N_Selected_Component
)
5492 (Nkind
(Parent_N
) = N_Attribute_Reference
5494 Attribute_Name
(Parent_N
) in Name_First
5499 Set_Etype
(N
, Etype
(Comp
));
5501 -- If full analysis is not enabled, we do not generate an
5502 -- actual subtype, because in the absence of expansion
5503 -- reference to a formal of a protected type, for example,
5504 -- will not be properly transformed, and will lead to
5505 -- out-of-scope references in gigi.
5507 -- In all other cases, we currently build an actual subtype.
5508 -- It seems likely that many of these cases can be avoided,
5509 -- but right now, the front end makes direct references to the
5510 -- bounds (e.g. in generating a length check), and if we do
5511 -- not make an actual subtype, we end up getting a direct
5512 -- reference to a discriminant, which will not do.
5514 elsif Full_Analysis
then
5516 Build_Actual_Subtype_Of_Component
(Etype
(Comp
), N
);
5517 Insert_Action
(N
, Act_Decl
);
5519 if No
(Act_Decl
) then
5520 Set_Etype
(N
, Etype
(Comp
));
5523 -- If discriminants were present in the component
5524 -- declaration, they have been replaced by the
5525 -- actual values in the prefix object.
5528 Subt
: constant Entity_Id
:=
5529 Defining_Identifier
(Act_Decl
);
5531 Set_Etype
(Subt
, Base_Type
(Etype
(Comp
)));
5532 Set_Etype
(N
, Subt
);
5536 -- If Etype (Comp) is an access type whose designated subtype
5537 -- is constrained by an unprefixed discriminant value,
5538 -- then ideally we would build a new subtype with an
5539 -- appropriately prefixed discriminant value and use that
5540 -- instead, as is done in Build_Actual_Subtype_Of_Component.
5541 -- That turns out to be difficult in this context (with
5542 -- Full_Analysis = False, we could be processing a selected
5543 -- component that occurs in a Postcondition pragma;
5544 -- PPC pragmas are odd because they can contain references
5545 -- to formal parameters that occur outside the subprogram).
5546 -- So instead we punt on building a new subtype and we
5547 -- use the base type instead. This might introduce
5548 -- correctness problems if N were the target of an
5549 -- assignment (because a required check might be omitted);
5550 -- fortunately, that's impossible because a reference to the
5551 -- current instance of a type does not denote a variable view
5552 -- when the reference occurs within an aspect_specification.
5553 -- GNAT's Precondition and Postcondition pragmas follow the
5554 -- same rules as a Pre or Post aspect_specification.
5556 elsif Has_Discriminant_Dependent_Constraint
(Comp
)
5557 and then Ekind
(Etype
(Comp
)) = E_Access_Subtype
5558 and then Constraint_Has_Unprefixed_Discriminant_Reference
5559 (Designated_Type
(Etype
(Comp
)))
5561 Set_Etype
(N
, Base_Type
(Etype
(Comp
)));
5563 -- If Full_Analysis not enabled, just set the Etype
5566 Set_Etype
(N
, Etype
(Comp
));
5569 Check_Implicit_Dereference
(N
, Etype
(N
));
5573 -- If the prefix is a private extension, check only the visible
5574 -- components of the partial view. This must include the tag,
5575 -- which can appear in expanded code in a tag check.
5577 if Ekind
(Type_To_Use
) = E_Record_Type_With_Private
5578 and then Chars
(Selector_Name
(N
)) /= Name_uTag
5580 exit when Comp
= Last_Entity
(Type_To_Use
);
5586 -- Ada 2005 (AI-252): The selected component can be interpreted as
5587 -- a prefixed view of a subprogram. Depending on the context, this is
5588 -- either a name that can appear in a renaming declaration, or part
5589 -- of an enclosing call given in prefix form.
5591 -- Ada 2005 (AI05-0030): In the case of dispatching requeue, the
5592 -- selected component should resolve to a name.
5594 -- Extension feature: Also support calls with prefixed views for
5595 -- untagged record types.
5597 if Ada_Version
>= Ada_2005
5598 and then (Is_Tagged_Type
(Prefix_Type
)
5599 or else Core_Extensions_Allowed
)
5600 and then not Is_Concurrent_Type
(Prefix_Type
)
5602 if Nkind
(Parent
(N
)) = N_Generic_Association
5603 or else Nkind
(Parent
(N
)) = N_Requeue_Statement
5604 or else Nkind
(Parent
(N
)) = N_Subprogram_Renaming_Declaration
5606 if Find_Primitive_Operation
(N
) then
5610 elsif Try_By_Protected_Procedure_Prefixed_View
then
5613 -- If the prefix type is the actual for a formal derived type,
5614 -- or a derived type thereof, the component inherited from the
5615 -- generic parent may not be visible in the actual, but the
5616 -- selected component is legal. This case must be handled before
5617 -- trying the object.operation notation to avoid reporting
5618 -- spurious errors, but must be skipped when Is_Prefixed_Call has
5619 -- been set (because that means that this node was resolved to an
5620 -- Object.Operation call when the generic unit was analyzed).
5623 and then not Is_Prefixed_Call
(N
)
5624 and then Is_Tagged_Type
(Prefix_Type
)
5625 and then Try_Selected_Component_In_Instance
(Type_To_Use
)
5629 elsif Try_Object_Operation
(N
) then
5633 -- If the transformation fails, it will be necessary to redo the
5634 -- analysis with all errors enabled, to indicate candidate
5635 -- interpretations and reasons for each failure ???
5639 elsif Is_Private_Type
(Prefix_Type
) then
5641 -- Allow access only to discriminants of the type. If the type has
5642 -- no full view, gigi uses the parent type for the components, so we
5643 -- do the same here.
5645 if No
(Full_View
(Prefix_Type
)) then
5646 Type_To_Use
:= Root_Type
(Base_Type
(Prefix_Type
));
5647 Comp
:= First_Entity
(Type_To_Use
);
5650 while Present
(Comp
) loop
5651 if Chars
(Comp
) = Chars
(Sel
) then
5652 if Ekind
(Comp
) = E_Discriminant
then
5653 Set_Entity_With_Checks
(Sel
, Comp
);
5654 Generate_Reference
(Comp
, Sel
);
5656 Set_Etype
(Sel
, Etype
(Comp
));
5657 Set_Etype
(N
, Etype
(Comp
));
5658 Check_Implicit_Dereference
(N
, Etype
(N
));
5660 if Is_Generic_Type
(Prefix_Type
)
5661 or else Is_Generic_Type
(Root_Type
(Prefix_Type
))
5663 Set_Original_Discriminant
(Sel
, Comp
);
5666 -- Before declaring an error, check whether this is tagged
5667 -- private type and a call to a primitive operation.
5669 elsif Ada_Version
>= Ada_2005
5670 and then Is_Tagged_Type
(Prefix_Type
)
5671 and then Try_Object_Operation
(N
)
5676 Error_Msg_Node_2
:= First_Subtype
(Prefix_Type
);
5677 Error_Msg_NE
("invisible selector& for }", N
, Sel
);
5678 Set_Entity
(Sel
, Any_Id
);
5679 Set_Etype
(N
, Any_Type
);
5688 -- Extension feature: Also support calls with prefixed views for
5689 -- untagged private types.
5691 if Core_Extensions_Allowed
then
5692 if Try_Object_Operation
(N
) then
5697 elsif Is_Concurrent_Type
(Prefix_Type
) then
5699 -- Find visible operation with given name. For a protected type,
5700 -- the possible candidates are discriminants, entries or protected
5701 -- subprograms. For a task type, the set can only include entries or
5702 -- discriminants if the task type is not an enclosing scope. If it
5703 -- is an enclosing scope (e.g. in an inner task) then all entities
5704 -- are visible, but the prefix must denote the enclosing scope, i.e.
5705 -- can only be a direct name or an expanded name.
5707 Set_Etype
(Sel
, Any_Type
);
5708 Hidden_Comp
:= Empty
;
5709 In_Scope
:= In_Open_Scopes
(Prefix_Type
);
5710 Is_Private_Op
:= False;
5712 while Present
(Comp
) loop
5714 -- Do not examine private operations of the type if not within
5717 if Chars
(Comp
) = Chars
(Sel
) then
5718 if Is_Overloadable
(Comp
)
5720 or else Comp
/= First_Private_Entity
(Type_To_Use
))
5722 Add_One_Interp
(Sel
, Comp
, Etype
(Comp
));
5723 if Comp
= First_Private_Entity
(Type_To_Use
) then
5724 Is_Private_Op
:= True;
5727 -- If the prefix is tagged, the correct interpretation may
5728 -- lie in the primitive or class-wide operations of the
5729 -- type. Perform a simple conformance check to determine
5730 -- whether Try_Object_Operation should be invoked even if
5731 -- a visible entity is found.
5733 if Is_Tagged_Type
(Prefix_Type
)
5734 and then Nkind
(Parent
(N
)) in N_Function_Call
5735 | N_Indexed_Component
5736 | N_Procedure_Call_Statement
5737 and then Has_Mode_Conformant_Spec
(Comp
)
5739 Has_Candidate
:= True;
5742 -- Note: a selected component may not denote a component of a
5743 -- protected type (4.1.3(7)).
5745 elsif Ekind
(Comp
) in E_Discriminant | E_Entry_Family
5747 and then not Is_Protected_Type
(Prefix_Type
)
5748 and then Is_Entity_Name
(Name
))
5750 Set_Entity_With_Checks
(Sel
, Comp
);
5751 Generate_Reference
(Comp
, Sel
);
5753 -- The selector is not overloadable, so we have a candidate
5756 Has_Candidate
:= True;
5759 if Ekind
(Comp
) = E_Component
then
5760 Hidden_Comp
:= Comp
;
5766 Set_Etype
(Sel
, Etype
(Comp
));
5767 Set_Etype
(N
, Etype
(Comp
));
5769 if Ekind
(Comp
) = E_Discriminant
then
5770 Set_Original_Discriminant
(Sel
, Comp
);
5775 if Comp
= First_Private_Entity
(Type_To_Use
) then
5776 if Etype
(Sel
) /= Any_Type
then
5778 -- If the first private entity's name matches, then treat
5779 -- it as a private op: needed for the error check for
5780 -- illegal selection of private entities further below.
5782 if Chars
(Comp
) = Chars
(Sel
) then
5783 Is_Private_Op
:= True;
5786 -- We have a candidate, so exit the loop
5791 -- Indicate that subsequent operations are private,
5792 -- for better error reporting.
5794 Is_Private_Op
:= True;
5798 -- Do not examine private operations if not within scope of
5799 -- the synchronized type.
5801 exit when not In_Scope
5803 Comp
= First_Private_Entity
(Base_Type
(Prefix_Type
));
5807 -- If the scope is a current instance, the prefix cannot be an
5808 -- expression of the same type, unless the selector designates a
5809 -- public operation (otherwise that would represent an attempt to
5810 -- reach an internal entity of another synchronized object).
5812 -- This is legal if prefix is an access to such type and there is
5813 -- a dereference, or is a component with a dereferenced prefix.
5814 -- It is also legal if the prefix is a component of a task type,
5815 -- and the selector is one of the task operations.
5818 and then not Is_Entity_Name
(Name
)
5819 and then not Has_Dereference
(Name
)
5821 if Is_Task_Type
(Prefix_Type
)
5822 and then Present
(Entity
(Sel
))
5823 and then Is_Entry
(Entity
(Sel
))
5827 elsif Is_Protected_Type
(Prefix_Type
)
5828 and then Is_Overloadable
(Entity
(Sel
))
5829 and then not Is_Private_Op
5835 ("invalid reference to internal operation of some object of "
5836 & "type &", N
, Type_To_Use
);
5837 Set_Entity
(Sel
, Any_Id
);
5838 Set_Etype
(Sel
, Any_Type
);
5842 -- Another special case: the prefix may denote an object of the type
5843 -- (but not a type) in which case this is an external call and the
5844 -- operation must be public.
5847 and then Is_Object_Reference
(Original_Node
(Prefix
(N
)))
5848 and then Comes_From_Source
(N
)
5849 and then Is_Private_Op
5851 if Present
(Hidden_Comp
) then
5853 ("invalid reference to private component of object of type "
5854 & "&", N
, Type_To_Use
);
5858 ("invalid reference to private operation of some object of "
5859 & "type &", N
, Type_To_Use
);
5862 Set_Entity
(Sel
, Any_Id
);
5863 Set_Etype
(Sel
, Any_Type
);
5867 -- If there is no visible entity with the given name or none of the
5868 -- visible entities are plausible interpretations, check whether
5869 -- there is some other primitive operation with that name.
5871 if Ada_Version
>= Ada_2005
and then Is_Tagged_Type
(Prefix_Type
) then
5872 if (Etype
(N
) = Any_Type
5873 or else not Has_Candidate
)
5874 and then Try_Object_Operation
(N
)
5878 -- If the context is not syntactically a procedure call, it
5879 -- may be a call to a primitive function declared outside of
5880 -- the synchronized type.
5882 -- If the context is a procedure call, there might still be
5883 -- an overloading between an entry and a primitive procedure
5884 -- declared outside of the synchronized type, called in prefix
5885 -- notation. This is harder to disambiguate because in one case
5886 -- the controlling formal is implicit ???
5888 elsif Nkind
(Parent
(N
)) /= N_Procedure_Call_Statement
5889 and then Nkind
(Parent
(N
)) /= N_Indexed_Component
5890 and then Try_Object_Operation
(N
)
5895 -- Ada 2012 (AI05-0090-1): If we found a candidate of a call to an
5896 -- entry or procedure of a tagged concurrent type we must check
5897 -- if there are class-wide subprograms covering the primitive. If
5898 -- true then Try_Object_Operation reports the error.
5901 and then Is_Concurrent_Type
(Prefix_Type
)
5902 and then Nkind
(Parent
(N
)) = N_Procedure_Call_Statement
5904 -- Duplicate the call. This is required to avoid problems with
5905 -- the tree transformations performed by Try_Object_Operation.
5906 -- Set properly the parent of the copied call, because it is
5907 -- about to be reanalyzed.
5910 Par
: constant Node_Id
:= New_Copy_Tree
(Parent
(N
));
5913 Set_Parent
(Par
, Parent
(Parent
(N
)));
5915 if Try_Object_Operation
5916 (Sinfo
.Nodes
.Name
(Par
), CW_Test_Only
=> True)
5924 if Etype
(N
) = Any_Type
and then Is_Protected_Type
(Prefix_Type
) then
5926 -- Case of a prefix of a protected type: selector might denote
5927 -- an invisible private component.
5929 Comp
:= First_Private_Entity
(Base_Type
(Prefix_Type
));
5930 while Present
(Comp
) and then Chars
(Comp
) /= Chars
(Sel
) loop
5934 if Present
(Comp
) then
5935 if Is_Single_Concurrent_Object
then
5936 Error_Msg_Node_2
:= Entity
(Name
);
5937 Error_Msg_NE
("invisible selector& for &", N
, Sel
);
5940 Error_Msg_Node_2
:= First_Subtype
(Prefix_Type
);
5941 Error_Msg_NE
("invisible selector& for }", N
, Sel
);
5947 Set_Is_Overloaded
(N
, Is_Overloaded
(Sel
));
5949 -- Extension feature: Also support calls with prefixed views for
5952 elsif Core_Extensions_Allowed
5953 and then Try_Object_Operation
(N
)
5960 Error_Msg_NE
("invalid prefix in selected component&", N
, Sel
);
5963 -- If N still has no type, the component is not defined in the prefix
5965 if Etype
(N
) = Any_Type
then
5967 if Is_Single_Concurrent_Object
then
5968 Error_Msg_Node_2
:= Entity
(Name
);
5969 Error_Msg_NE
("no selector& for&", N
, Sel
);
5971 Check_Misspelled_Selector
(Type_To_Use
, Sel
);
5973 -- If this is a derived formal type, the parent may have different
5974 -- visibility at this point. Try for an inherited component before
5975 -- reporting an error.
5977 elsif Is_Generic_Type
(Prefix_Type
)
5978 and then Ekind
(Prefix_Type
) = E_Record_Type_With_Private
5979 and then Prefix_Type
/= Etype
(Prefix_Type
)
5980 and then Is_Record_Type
(Etype
(Prefix_Type
))
5982 Set_Etype
(Prefix
(N
), Etype
(Prefix_Type
));
5983 Analyze_Selected_Component
(N
);
5986 -- Similarly, if this is the actual for a formal derived type, or
5987 -- a derived type thereof, the component inherited from the generic
5988 -- parent may not be visible in the actual, but the selected
5989 -- component is legal.
5991 elsif In_Instance
and then Is_Tagged_Type
(Prefix_Type
) then
5993 -- Climb up the derivation chain of the generic parent type until
5994 -- we find the proper ancestor type.
5996 if Try_Selected_Component_In_Instance
(Type_To_Use
) then
5999 -- The search above must have eventually succeeded, since the
6000 -- selected component was legal in the generic.
6003 raise Program_Error
;
6006 -- Component not found, specialize error message when appropriate
6009 if Ekind
(Prefix_Type
) = E_Record_Subtype
then
6011 -- Check whether this is a component of the base type which
6012 -- is absent from a statically constrained subtype. This will
6013 -- raise constraint error at run time, but is not a compile-
6014 -- time error. When the selector is illegal for base type as
6015 -- well fall through and generate a compilation error anyway.
6017 Comp
:= First_Component
(Base_Type
(Prefix_Type
));
6018 while Present
(Comp
) loop
6019 if Chars
(Comp
) = Chars
(Sel
)
6020 and then Is_Visible_Component
(Comp
, Sel
)
6022 Set_Entity_With_Checks
(Sel
, Comp
);
6023 Generate_Reference
(Comp
, Sel
);
6024 Set_Etype
(Sel
, Etype
(Comp
));
6025 Set_Etype
(N
, Etype
(Comp
));
6027 -- Emit appropriate message. The node will be replaced
6028 -- by an appropriate raise statement.
6030 -- Note that in GNATprove mode, as with all calls to
6031 -- apply a compile time constraint error, this will be
6032 -- made into an error to simplify the processing of the
6033 -- formal verification backend.
6035 Apply_Compile_Time_Constraint_Error
6036 (N
, "component not present in }??",
6037 CE_Discriminant_Check_Failed
,
6040 GNATprove_Mode
or not In_Instance_Not_Visible
);
6044 Next_Component
(Comp
);
6049 Error_Msg_Node_2
:= First_Subtype
(Prefix_Type
);
6050 Error_Msg_NE
("no selector& for}", N
, Sel
);
6052 -- Add information in the case of an incomplete prefix
6054 if Is_Incomplete_Type
(Type_To_Use
) then
6056 Inc
: constant Entity_Id
:= First_Subtype
(Type_To_Use
);
6059 if From_Limited_With
(Scope
(Type_To_Use
)) then
6061 ("\limited view of& has no components", N
, Inc
);
6065 ("\premature usage of incomplete type&", N
, Inc
);
6067 if Nkind
(Parent
(Inc
)) =
6068 N_Incomplete_Type_Declaration
6070 -- Record location of premature use in entity so that
6071 -- a continuation message is generated when the
6072 -- completion is seen.
6074 Set_Premature_Use
(Parent
(Inc
), N
);
6080 Check_Misspelled_Selector
(Type_To_Use
, Sel
);
6083 Set_Entity
(Sel
, Any_Id
);
6084 Set_Etype
(Sel
, Any_Type
);
6086 end Analyze_Selected_Component
;
6088 ---------------------------
6089 -- Analyze_Short_Circuit --
6090 ---------------------------
6092 procedure Analyze_Short_Circuit
(N
: Node_Id
) is
6093 L
: constant Node_Id
:= Left_Opnd
(N
);
6094 R
: constant Node_Id
:= Right_Opnd
(N
);
6099 Set_Etype
(N
, Any_Type
);
6100 Analyze_Expression
(L
);
6101 Analyze_Expression
(R
);
6103 if not Is_Overloaded
(L
) then
6104 if Root_Type
(Etype
(L
)) = Standard_Boolean
6105 and then Has_Compatible_Type
(R
, Etype
(L
))
6107 Add_One_Interp
(N
, Etype
(L
), Etype
(L
));
6111 Get_First_Interp
(L
, Ind
, It
);
6112 while Present
(It
.Typ
) loop
6113 if Root_Type
(It
.Typ
) = Standard_Boolean
6114 and then Has_Compatible_Type
(R
, It
.Typ
)
6116 Add_One_Interp
(N
, It
.Typ
, It
.Typ
);
6119 Get_Next_Interp
(Ind
, It
);
6123 -- Here we have failed to find an interpretation. Clearly we know that
6124 -- it is not the case that both operands can have an interpretation of
6125 -- Boolean, but this is by far the most likely intended interpretation.
6126 -- So we simply resolve both operands as Booleans, and at least one of
6127 -- these resolutions will generate an error message, and we do not need
6128 -- to give another error message on the short circuit operation itself.
6130 if Etype
(N
) = Any_Type
then
6131 Resolve
(L
, Standard_Boolean
);
6132 Resolve
(R
, Standard_Boolean
);
6133 Set_Etype
(N
, Standard_Boolean
);
6137 if Nkind
(L
) not in N_Short_Circuit | N_Op_And | N_Op_Or | N_Op_Xor
6139 Check_Xtra_Parens_Precedence
(L
);
6142 if Nkind
(R
) not in N_Short_Circuit | N_Op_And | N_Op_Or | N_Op_Xor
6144 Check_Xtra_Parens_Precedence
(R
);
6147 end Analyze_Short_Circuit
;
6153 procedure Analyze_Slice
(N
: Node_Id
) is
6154 D
: constant Node_Id
:= Discrete_Range
(N
);
6155 P
: constant Node_Id
:= Prefix
(N
);
6156 Array_Type
: Entity_Id
;
6157 Index_Type
: Entity_Id
;
6159 procedure Analyze_Overloaded_Slice
;
6160 -- If the prefix is overloaded, select those interpretations that
6161 -- yield a one-dimensional array type.
6163 ------------------------------
6164 -- Analyze_Overloaded_Slice --
6165 ------------------------------
6167 procedure Analyze_Overloaded_Slice
is
6173 Set_Etype
(N
, Any_Type
);
6175 Get_First_Interp
(P
, I
, It
);
6176 while Present
(It
.Nam
) loop
6179 if Is_Access_Type
(Typ
) then
6180 Typ
:= Designated_Type
(Typ
);
6182 (Warn_On_Dereference
, "?d?implicit dereference", N
);
6185 if Is_Array_Type
(Typ
)
6186 and then Number_Dimensions
(Typ
) = 1
6187 and then Has_Compatible_Type
(D
, Etype
(First_Index
(Typ
)))
6189 Add_One_Interp
(N
, Typ
, Typ
);
6192 Get_Next_Interp
(I
, It
);
6195 if Etype
(N
) = Any_Type
then
6196 Error_Msg_N
("expect array type in prefix of slice", N
);
6198 end Analyze_Overloaded_Slice
;
6200 -- Start of processing for Analyze_Slice
6206 if Is_Overloaded
(P
) then
6207 Analyze_Overloaded_Slice
;
6210 Array_Type
:= Etype
(P
);
6211 Set_Etype
(N
, Any_Type
);
6213 if Is_Access_Type
(Array_Type
) then
6214 Error_Msg_NW
(Warn_On_Dereference
, "?d?implicit dereference", N
);
6215 Array_Type
:= Implicitly_Designated_Type
(Array_Type
);
6218 if not Is_Array_Type
(Array_Type
) then
6219 Wrong_Type
(P
, Any_Array
);
6221 elsif Number_Dimensions
(Array_Type
) > 1 then
6223 ("type is not one-dimensional array in slice prefix", N
);
6226 if Ekind
(Array_Type
) = E_String_Literal_Subtype
then
6227 Index_Type
:= Etype
(String_Literal_Low_Bound
(Array_Type
));
6229 Index_Type
:= Etype
(First_Index
(Array_Type
));
6232 if not Has_Compatible_Type
(D
, Index_Type
) then
6233 Wrong_Type
(D
, Index_Type
);
6235 Set_Etype
(N
, Array_Type
);
6241 -----------------------------
6242 -- Analyze_Type_Conversion --
6243 -----------------------------
6245 procedure Analyze_Type_Conversion
(N
: Node_Id
) is
6246 Expr
: constant Node_Id
:= Expression
(N
);
6247 Mark
: constant Entity_Id
:= Subtype_Mark
(N
);
6252 -- If Conversion_OK is set, then the Etype is already set, and the only
6253 -- processing required is to analyze the expression. This is used to
6254 -- construct certain "illegal" conversions which are not allowed by Ada
6255 -- semantics, but can be handled by Gigi, see Sinfo for further details.
6257 if Conversion_OK
(N
) then
6262 -- Otherwise full type analysis is required, as well as some semantic
6263 -- checks to make sure the argument of the conversion is appropriate.
6266 Typ
:= Entity
(Mark
);
6269 Analyze_Expression
(Expr
);
6271 Check_Fully_Declared
(Typ
, N
);
6272 Validate_Remote_Type_Type_Conversion
(N
);
6274 -- Only remaining step is validity checks on the argument. These
6275 -- are skipped if the conversion does not come from the source.
6277 if not Comes_From_Source
(N
) then
6280 -- If there was an error in a generic unit, no need to replicate the
6281 -- error message. Conversely, constant-folding in the generic may
6282 -- transform the argument of a conversion into a string literal, which
6283 -- is legal. Therefore the following tests are not performed in an
6284 -- instance. The same applies to an inlined body.
6286 elsif In_Instance
or In_Inlined_Body
then
6289 elsif Nkind
(Expr
) = N_Null
then
6290 Error_Msg_N
("argument of conversion cannot be null", N
);
6291 Error_Msg_N
("\use qualified expression instead", N
);
6292 Set_Etype
(N
, Any_Type
);
6294 elsif Nkind
(Expr
) = N_Aggregate
then
6295 Error_Msg_N
("argument of conversion cannot be aggregate", N
);
6296 Error_Msg_N
("\use qualified expression instead", N
);
6298 elsif Nkind
(Expr
) = N_Allocator
then
6299 Error_Msg_N
("argument of conversion cannot be allocator", N
);
6300 Error_Msg_N
("\use qualified expression instead", N
);
6302 elsif Nkind
(Expr
) = N_String_Literal
then
6303 Error_Msg_N
("argument of conversion cannot be string literal", N
);
6304 Error_Msg_N
("\use qualified expression instead", N
);
6306 elsif Nkind
(Expr
) = N_Character_Literal
then
6307 if Ada_Version
= Ada_83
then
6308 Resolve
(Expr
, Typ
);
6311 ("argument of conversion cannot be character literal", N
);
6312 Error_Msg_N
("\use qualified expression instead", N
);
6315 elsif Nkind
(Expr
) = N_Attribute_Reference
6316 and then Attribute_Name
(Expr
) in Name_Access
6317 | Name_Unchecked_Access
6318 | Name_Unrestricted_Access
6321 ("argument of conversion cannot be access attribute", N
);
6322 Error_Msg_N
("\use qualified expression instead", N
);
6325 -- A formal parameter of a specific tagged type whose related subprogram
6326 -- is subject to pragma Extensions_Visible with value "False" cannot
6327 -- appear in a class-wide conversion (SPARK RM 6.1.7(3)). Do not check
6328 -- internally generated expressions.
6330 if Is_Class_Wide_Type
(Typ
)
6331 and then Comes_From_Source
(Expr
)
6332 and then Is_EVF_Expression
(Expr
)
6335 ("formal parameter cannot be converted to class-wide type when "
6336 & "Extensions_Visible is False", Expr
);
6338 end Analyze_Type_Conversion
;
6340 ----------------------
6341 -- Analyze_Unary_Op --
6342 ----------------------
6344 procedure Analyze_Unary_Op
(N
: Node_Id
) is
6345 R
: constant Node_Id
:= Right_Opnd
(N
);
6350 Set_Etype
(N
, Any_Type
);
6351 Candidate_Type
:= Empty
;
6353 Analyze_Expression
(R
);
6355 -- If the entity is already set, the node is the instantiation of a
6356 -- generic node with a non-local reference, or was manufactured by a
6357 -- call to Make_Op_xxx. In either case the entity is known to be valid,
6358 -- and we do not need to collect interpretations, instead we just get
6359 -- the single possible interpretation.
6361 if Present
(Entity
(N
)) then
6362 Op_Id
:= Entity
(N
);
6364 if Ekind
(Op_Id
) = E_Operator
then
6365 Find_Unary_Types
(R
, Op_Id
, N
);
6367 Add_One_Interp
(N
, Op_Id
, Etype
(Op_Id
));
6371 Op_Id
:= Get_Name_Entity_Id
(Chars
(N
));
6372 while Present
(Op_Id
) loop
6373 if Ekind
(Op_Id
) = E_Operator
then
6374 if No
(Next_Entity
(First_Entity
(Op_Id
))) then
6375 Find_Unary_Types
(R
, Op_Id
, N
);
6378 elsif Is_Overloadable
(Op_Id
) then
6379 Analyze_User_Defined_Unary_Op
(N
, Op_Id
);
6382 Op_Id
:= Homonym
(Op_Id
);
6387 end Analyze_Unary_Op
;
6389 ----------------------------------
6390 -- Analyze_Unchecked_Expression --
6391 ----------------------------------
6393 procedure Analyze_Unchecked_Expression
(N
: Node_Id
) is
6394 Expr
: constant Node_Id
:= Expression
(N
);
6397 Analyze
(Expr
, Suppress
=> All_Checks
);
6398 Set_Etype
(N
, Etype
(Expr
));
6399 Save_Interps
(Expr
, N
);
6400 end Analyze_Unchecked_Expression
;
6402 ---------------------------------------
6403 -- Analyze_Unchecked_Type_Conversion --
6404 ---------------------------------------
6406 procedure Analyze_Unchecked_Type_Conversion
(N
: Node_Id
) is
6407 Expr
: constant Node_Id
:= Expression
(N
);
6408 Mark
: constant Entity_Id
:= Subtype_Mark
(N
);
6412 Set_Etype
(N
, Entity
(Mark
));
6413 Analyze_Expression
(Expr
);
6414 end Analyze_Unchecked_Type_Conversion
;
6416 ------------------------------------
6417 -- Analyze_User_Defined_Binary_Op --
6418 ------------------------------------
6420 procedure Analyze_User_Defined_Binary_Op
6422 Op_Id
: Entity_Id
) is
6425 F1
: constant Entity_Id
:= First_Formal
(Op_Id
);
6426 F2
: constant Entity_Id
:= Next_Formal
(F1
);
6429 -- Verify that Op_Id is a visible binary function. Note that since
6430 -- we know Op_Id is overloaded, potentially use visible means use
6431 -- visible for sure (RM 9.4(11)). Be prepared for previous errors.
6433 if Ekind
(Op_Id
) = E_Function
6434 and then Present
(F2
)
6435 and then (Is_Immediately_Visible
(Op_Id
)
6436 or else Is_Potentially_Use_Visible
(Op_Id
))
6437 and then (Has_Compatible_Type
(Left_Opnd
(N
), Etype
(F1
))
6438 or else Etype
(F1
) = Any_Type
)
6439 and then (Has_Compatible_Type
(Right_Opnd
(N
), Etype
(F2
))
6440 or else Etype
(F2
) = Any_Type
)
6442 Add_One_Interp
(N
, Op_Id
, Base_Type
(Etype
(Op_Id
)));
6444 -- If the operands are overloaded, indicate that the current
6445 -- type is a viable candidate. This is redundant in most cases,
6446 -- but for equality and comparison operators where the context
6447 -- does not impose a type on the operands, setting the proper
6448 -- type is necessary to avoid subsequent ambiguities during
6449 -- resolution, when both user-defined and predefined operators
6450 -- may be candidates.
6452 if Is_Overloaded
(Left_Opnd
(N
)) then
6453 Set_Etype
(Left_Opnd
(N
), Etype
(F1
));
6456 if Is_Overloaded
(Right_Opnd
(N
)) then
6457 Set_Etype
(Right_Opnd
(N
), Etype
(F2
));
6460 if Debug_Flag_E
then
6461 Write_Str
("user defined operator ");
6462 Write_Name
(Chars
(Op_Id
));
6463 Write_Str
(" on node ");
6464 Write_Int
(Int
(N
));
6469 end Analyze_User_Defined_Binary_Op
;
6471 -----------------------------------
6472 -- Analyze_User_Defined_Unary_Op --
6473 -----------------------------------
6475 procedure Analyze_User_Defined_Unary_Op
6480 -- Only do analysis if the operator Comes_From_Source, since otherwise
6481 -- the operator was generated by the expander, and all such operators
6482 -- always refer to the operators in package Standard.
6484 if Comes_From_Source
(N
) then
6486 F
: constant Entity_Id
:= First_Formal
(Op_Id
);
6489 -- Verify that Op_Id is a visible unary function. Note that since
6490 -- we know Op_Id is overloaded, potentially use visible means use
6491 -- visible for sure (RM 9.4(11)).
6493 if Ekind
(Op_Id
) = E_Function
6494 and then No
(Next_Formal
(F
))
6495 and then (Is_Immediately_Visible
(Op_Id
)
6496 or else Is_Potentially_Use_Visible
(Op_Id
))
6497 and then Has_Compatible_Type
(Right_Opnd
(N
), Etype
(F
))
6499 Add_One_Interp
(N
, Op_Id
, Etype
(Op_Id
));
6503 end Analyze_User_Defined_Unary_Op
;
6505 ---------------------------
6506 -- Check_Arithmetic_Pair --
6507 ---------------------------
6509 procedure Check_Arithmetic_Pair
6510 (T1
, T2
: Entity_Id
;
6514 Op_Name
: constant Name_Id
:= Chars
(Op_Id
);
6516 function Has_Fixed_Op
(Typ
: Entity_Id
; Op
: Entity_Id
) return Boolean;
6517 -- Check whether the fixed-point type Typ has a user-defined operator
6518 -- (multiplication or division) that should hide the corresponding
6519 -- predefined operator. Used to implement Ada 2005 AI-264, to make
6520 -- such operators more visible and therefore useful.
6522 -- If the name of the operation is an expanded name with prefix
6523 -- Standard, the predefined universal fixed operator is available,
6524 -- as specified by AI-420 (RM 4.5.5 (19.1/2)).
6530 function Has_Fixed_Op
(Typ
: Entity_Id
; Op
: Entity_Id
) return Boolean is
6531 Bas
: constant Entity_Id
:= Base_Type
(Typ
);
6537 -- If the universal_fixed operation is given explicitly the rule
6538 -- concerning primitive operations of the type do not apply.
6540 if Nkind
(N
) = N_Function_Call
6541 and then Nkind
(Name
(N
)) = N_Expanded_Name
6542 and then Entity
(Prefix
(Name
(N
))) = Standard_Standard
6547 -- The operation is treated as primitive if it is declared in the
6548 -- same scope as the type, and therefore on the same entity chain.
6550 Ent
:= Next_Entity
(Typ
);
6551 while Present
(Ent
) loop
6552 if Chars
(Ent
) = Chars
(Op
) then
6553 F1
:= First_Formal
(Ent
);
6554 F2
:= Next_Formal
(F1
);
6556 -- The operation counts as primitive if either operand or
6557 -- result are of the given base type, and both operands are
6558 -- fixed point types.
6560 if (Base_Type
(Etype
(F1
)) = Bas
6561 and then Is_Fixed_Point_Type
(Etype
(F2
)))
6564 (Base_Type
(Etype
(F2
)) = Bas
6565 and then Is_Fixed_Point_Type
(Etype
(F1
)))
6568 (Base_Type
(Etype
(Ent
)) = Bas
6569 and then Is_Fixed_Point_Type
(Etype
(F1
))
6570 and then Is_Fixed_Point_Type
(Etype
(F2
)))
6582 -- Start of processing for Check_Arithmetic_Pair
6585 if Op_Name
in Name_Op_Add | Name_Op_Subtract
then
6586 if Is_Numeric_Type
(T1
)
6587 and then Is_Numeric_Type
(T2
)
6588 and then (Covers
(T1
=> T1
, T2
=> T2
)
6590 Covers
(T1
=> T2
, T2
=> T1
))
6592 Add_One_Interp
(N
, Op_Id
, Specific_Type
(T1
, T2
));
6595 elsif Op_Name
in Name_Op_Multiply | Name_Op_Divide
then
6596 if Is_Fixed_Point_Type
(T1
)
6597 and then (Is_Fixed_Point_Type
(T2
) or else T2
= Universal_Real
)
6599 -- Add one interpretation with universal fixed result
6601 if not Has_Fixed_Op
(T1
, Op_Id
)
6602 or else Nkind
(Parent
(N
)) = N_Type_Conversion
6604 Add_One_Interp
(N
, Op_Id
, Universal_Fixed
);
6607 elsif Is_Fixed_Point_Type
(T2
)
6608 and then T1
= Universal_Real
6610 (not Has_Fixed_Op
(T1
, Op_Id
)
6611 or else Nkind
(Parent
(N
)) = N_Type_Conversion
)
6613 Add_One_Interp
(N
, Op_Id
, Universal_Fixed
);
6615 elsif Is_Numeric_Type
(T1
)
6616 and then Is_Numeric_Type
(T2
)
6617 and then (Covers
(T1
=> T1
, T2
=> T2
)
6619 Covers
(T1
=> T2
, T2
=> T1
))
6621 Add_One_Interp
(N
, Op_Id
, Specific_Type
(T1
, T2
));
6623 elsif Is_Fixed_Point_Type
(T1
)
6624 and then (Base_Type
(T2
) = Base_Type
(Standard_Integer
)
6625 or else T2
= Universal_Integer
)
6627 Add_One_Interp
(N
, Op_Id
, T1
);
6629 elsif T2
= Universal_Real
6630 and then Base_Type
(T1
) = Base_Type
(Standard_Integer
)
6631 and then Op_Name
= Name_Op_Multiply
6633 Add_One_Interp
(N
, Op_Id
, Any_Fixed
);
6635 elsif T1
= Universal_Real
6636 and then Base_Type
(T2
) = Base_Type
(Standard_Integer
)
6638 Add_One_Interp
(N
, Op_Id
, Any_Fixed
);
6640 elsif Is_Fixed_Point_Type
(T2
)
6641 and then (Base_Type
(T1
) = Base_Type
(Standard_Integer
)
6642 or else T1
= Universal_Integer
)
6643 and then Op_Name
= Name_Op_Multiply
6645 Add_One_Interp
(N
, Op_Id
, T2
);
6647 elsif T1
= Universal_Real
and then T2
= Universal_Integer
then
6648 Add_One_Interp
(N
, Op_Id
, T1
);
6650 elsif T2
= Universal_Real
6651 and then T1
= Universal_Integer
6652 and then Op_Name
= Name_Op_Multiply
6654 Add_One_Interp
(N
, Op_Id
, T2
);
6657 elsif Op_Name
= Name_Op_Mod
or else Op_Name
= Name_Op_Rem
then
6659 if Is_Integer_Type
(T1
)
6660 and then (Covers
(T1
=> T1
, T2
=> T2
)
6662 Covers
(T1
=> T2
, T2
=> T1
))
6664 Add_One_Interp
(N
, Op_Id
, Specific_Type
(T1
, T2
));
6667 elsif Op_Name
= Name_Op_Expon
then
6668 if Is_Numeric_Type
(T1
)
6669 and then not Is_Fixed_Point_Type
(T1
)
6670 and then (Base_Type
(T2
) = Base_Type
(Standard_Integer
)
6671 or else T2
= Universal_Integer
)
6673 Add_One_Interp
(N
, Op_Id
, Base_Type
(T1
));
6676 else pragma Assert
(Nkind
(N
) in N_Op_Shift
);
6678 -- If not one of the predefined operators, the node may be one
6679 -- of the intrinsic functions. Its kind is always specific, and
6680 -- we can use it directly, rather than the name of the operation.
6682 if Is_Integer_Type
(T1
)
6683 and then (Base_Type
(T2
) = Base_Type
(Standard_Integer
)
6684 or else T2
= Universal_Integer
)
6686 Add_One_Interp
(N
, Op_Id
, Base_Type
(T1
));
6689 end Check_Arithmetic_Pair
;
6691 -------------------------------
6692 -- Check_Misspelled_Selector --
6693 -------------------------------
6695 procedure Check_Misspelled_Selector
6696 (Prefix
: Entity_Id
;
6699 Max_Suggestions
: constant := 2;
6700 Nr_Of_Suggestions
: Natural := 0;
6702 Suggestion_1
: Entity_Id
:= Empty
;
6703 Suggestion_2
: Entity_Id
:= Empty
;
6708 -- All the components of the prefix of selector Sel are matched against
6709 -- Sel and a count is maintained of possible misspellings. When at
6710 -- the end of the analysis there are one or two (not more) possible
6711 -- misspellings, these misspellings will be suggested as possible
6714 if not (Is_Private_Type
(Prefix
) or else Is_Record_Type
(Prefix
)) then
6716 -- Concurrent types should be handled as well ???
6721 Comp
:= First_Entity
(Prefix
);
6722 while Nr_Of_Suggestions
<= Max_Suggestions
and then Present
(Comp
) loop
6723 if Is_Visible_Component
(Comp
, Sel
) then
6724 if Is_Bad_Spelling_Of
(Chars
(Comp
), Chars
(Sel
)) then
6725 Nr_Of_Suggestions
:= Nr_Of_Suggestions
+ 1;
6727 case Nr_Of_Suggestions
is
6728 when 1 => Suggestion_1
:= Comp
;
6729 when 2 => Suggestion_2
:= Comp
;
6730 when others => null;
6738 -- Report at most two suggestions
6740 if Nr_Of_Suggestions
= 1 then
6741 Error_Msg_NE
-- CODEFIX
6742 ("\possible misspelling of&", Sel
, Suggestion_1
);
6744 elsif Nr_Of_Suggestions
= 2 then
6745 Error_Msg_Node_2
:= Suggestion_2
;
6746 Error_Msg_NE
-- CODEFIX
6747 ("\possible misspelling of& or&", Sel
, Suggestion_1
);
6749 end Check_Misspelled_Selector
;
6755 procedure Diagnose_Call
(N
: Node_Id
; Nam
: Node_Id
) is
6761 Num_Actuals
: Natural;
6762 Num_Interps
: Natural;
6763 Void_Interp_Seen
: Boolean := False;
6766 pragma Warnings
(Off
, Boolean);
6770 Actual
:= First_Actual
(N
);
6772 while Present
(Actual
) loop
6773 -- Ada 2005 (AI-50217): Post an error in case of premature
6774 -- usage of an entity from the limited view.
6776 if not Analyzed
(Etype
(Actual
))
6777 and then From_Limited_With
(Etype
(Actual
))
6778 and then Ada_Version
>= Ada_2005
6780 Error_Msg_Qual_Level
:= 1;
6782 ("missing with_clause for scope of imported type&",
6783 Actual
, Etype
(Actual
));
6784 Error_Msg_Qual_Level
:= 0;
6787 Num_Actuals
:= Num_Actuals
+ 1;
6788 Next_Actual
(Actual
);
6791 -- Before listing the possible candidates, check whether this is
6792 -- a prefix of a selected component that has been rewritten as a
6793 -- parameterless function call because there is a callable candidate
6794 -- interpretation. If there is a hidden package in the list of homonyms
6795 -- of the function name (bad programming style in any case) suggest that
6796 -- this is the intended entity.
6798 if No
(Parameter_Associations
(N
))
6799 and then Nkind
(Parent
(N
)) = N_Selected_Component
6800 and then Nkind
(Parent
(Parent
(N
))) in N_Declaration
6801 and then Is_Overloaded
(Nam
)
6807 Ent
:= Current_Entity
(Nam
);
6808 while Present
(Ent
) loop
6809 if Ekind
(Ent
) = E_Package
then
6811 ("no legal interpretations as function call,!", Nam
);
6812 Error_Msg_NE
("\package& is not visible", N
, Ent
);
6814 Rewrite
(Parent
(N
),
6815 New_Occurrence_Of
(Any_Type
, Sloc
(N
)));
6819 Ent
:= Homonym
(Ent
);
6824 -- If this is a call to an operation of a concurrent type, the failed
6825 -- interpretations have been removed from the name. Recover them now
6826 -- in order to provide full diagnostics.
6828 if Nkind
(Parent
(Nam
)) = N_Selected_Component
then
6829 Set_Entity
(Nam
, Empty
);
6830 New_Nam
:= New_Copy_Tree
(Parent
(Nam
));
6831 Set_Is_Overloaded
(New_Nam
, False);
6832 Set_Is_Overloaded
(Selector_Name
(New_Nam
), False);
6833 Set_Parent
(New_Nam
, Parent
(Parent
(Nam
)));
6834 Analyze_Selected_Component
(New_Nam
);
6835 Get_First_Interp
(Selector_Name
(New_Nam
), X
, It
);
6837 Get_First_Interp
(Nam
, X
, It
);
6840 -- If the number of actuals is 2, then remove interpretations involving
6841 -- a unary "+" operator as they might yield confusing errors downstream.
6844 and then Nkind
(Parent
(Nam
)) /= N_Selected_Component
6848 while Present
(It
.Nam
) loop
6849 if Ekind
(It
.Nam
) = E_Operator
6850 and then Chars
(It
.Nam
) = Name_Op_Add
6851 and then (No
(First_Formal
(It
.Nam
))
6852 or else No
(Next_Formal
(First_Formal
(It
.Nam
))))
6856 Num_Interps
:= Num_Interps
+ 1;
6859 Get_Next_Interp
(X
, It
);
6862 if Num_Interps
= 0 then
6863 Error_Msg_N
("!too many arguments in call to&", Nam
);
6867 Get_First_Interp
(Nam
, X
, It
);
6870 Num_Interps
:= 2; -- at least
6873 -- Analyze each candidate call again with full error reporting for each
6875 if Num_Interps
> 1 then
6876 Error_Msg_N
("!no candidate interpretations match the actuals:", Nam
);
6879 Err_Mode
:= All_Errors_Mode
;
6880 All_Errors_Mode
:= True;
6882 while Present
(It
.Nam
) loop
6883 if Etype
(It
.Nam
) = Standard_Void_Type
then
6884 Void_Interp_Seen
:= True;
6887 Analyze_One_Call
(N
, It
.Nam
, True, Success
);
6888 Get_Next_Interp
(X
, It
);
6891 if Nkind
(N
) = N_Function_Call
then
6892 Get_First_Interp
(Nam
, X
, It
);
6895 and then Ekind
(Entity
(Name
(N
))) = E_Function
6896 and then Present
(Homonym
(Entity
(Name
(N
))))
6898 -- A name may appear overloaded if it has a homonym, even if that
6899 -- homonym is non-overloadable, in which case the overload list is
6900 -- in fact empty. This specialized case deserves a special message
6901 -- if the homonym is a child package.
6904 Nam
: constant Node_Id
:= Name
(N
);
6905 H
: constant Entity_Id
:= Homonym
(Entity
(Nam
));
6908 if Ekind
(H
) = E_Package
and then Is_Child_Unit
(H
) then
6909 Error_Msg_Qual_Level
:= 2;
6910 Error_Msg_NE
("if an entity in package& is meant, ", Nam
, H
);
6911 Error_Msg_NE
("\use a fully qualified name", Nam
, H
);
6912 Error_Msg_Qual_Level
:= 0;
6917 while Present
(It
.Nam
) loop
6918 if Ekind
(It
.Nam
) in E_Function | E_Operator
then
6921 Get_Next_Interp
(X
, It
);
6925 -- If all interpretations are procedures, this deserves a more
6926 -- precise message. Ditto if this appears as the prefix of a
6927 -- selected component, which may be a lexical error.
6930 ("\context requires function call, found procedure name", Nam
);
6932 if Nkind
(Parent
(N
)) = N_Selected_Component
6933 and then N
= Prefix
(Parent
(N
))
6935 Error_Msg_N
-- CODEFIX
6936 ("\period should probably be semicolon", Parent
(N
));
6940 elsif Nkind
(N
) = N_Procedure_Call_Statement
6941 and then not Void_Interp_Seen
6943 Error_Msg_N
("\function name found in procedure call", Nam
);
6946 All_Errors_Mode
:= Err_Mode
;
6949 ---------------------------
6950 -- Find_Arithmetic_Types --
6951 ---------------------------
6953 procedure Find_Arithmetic_Types
6958 procedure Check_Right_Argument
(T
: Entity_Id
);
6959 -- Check right operand of operator
6961 --------------------------
6962 -- Check_Right_Argument --
6963 --------------------------
6965 procedure Check_Right_Argument
(T
: Entity_Id
) is
6970 if not Is_Overloaded
(R
) then
6971 Check_Arithmetic_Pair
(T
, Etype
(R
), Op_Id
, N
);
6974 Get_First_Interp
(R
, I
, It
);
6975 while Present
(It
.Typ
) loop
6976 Check_Arithmetic_Pair
(T
, It
.Typ
, Op_Id
, N
);
6977 Get_Next_Interp
(I
, It
);
6980 end Check_Right_Argument
;
6987 -- Start of processing for Find_Arithmetic_Types
6990 if not Is_Overloaded
(L
) then
6991 Check_Right_Argument
(Etype
(L
));
6994 Get_First_Interp
(L
, I
, It
);
6995 while Present
(It
.Typ
) loop
6996 Check_Right_Argument
(It
.Typ
);
6997 Get_Next_Interp
(I
, It
);
7000 end Find_Arithmetic_Types
;
7002 ------------------------
7003 -- Find_Boolean_Types --
7004 ------------------------
7006 procedure Find_Boolean_Types
7011 procedure Check_Boolean_Pair
(T1
, T2
: Entity_Id
);
7012 -- Check operand pair of operator
7014 procedure Check_Right_Argument
(T
: Entity_Id
);
7015 -- Check right operand of operator
7017 ------------------------
7018 -- Check_Boolean_Pair --
7019 ------------------------
7021 procedure Check_Boolean_Pair
(T1
, T2
: Entity_Id
) is
7025 if Valid_Boolean_Arg
(T1
)
7026 and then Valid_Boolean_Arg
(T2
)
7027 and then (Covers
(T1
=> T1
, T2
=> T2
)
7028 or else Covers
(T1
=> T2
, T2
=> T1
))
7030 T
:= Specific_Type
(T1
, T2
);
7032 if T
= Universal_Integer
then
7036 Add_One_Interp
(N
, Op_Id
, T
);
7038 end Check_Boolean_Pair
;
7040 --------------------------
7041 -- Check_Right_Argument --
7042 --------------------------
7044 procedure Check_Right_Argument
(T
: Entity_Id
) is
7049 -- Defend against previous error
7051 if Nkind
(R
) = N_Error
then
7054 elsif not Is_Overloaded
(R
) then
7055 Check_Boolean_Pair
(T
, Etype
(R
));
7058 Get_First_Interp
(R
, I
, It
);
7059 while Present
(It
.Typ
) loop
7060 Check_Boolean_Pair
(T
, It
.Typ
);
7061 Get_Next_Interp
(I
, It
);
7064 end Check_Right_Argument
;
7071 -- Start of processing for Find_Boolean_Types
7074 if not Is_Overloaded
(L
) then
7075 Check_Right_Argument
(Etype
(L
));
7078 Get_First_Interp
(L
, I
, It
);
7079 while Present
(It
.Typ
) loop
7080 Check_Right_Argument
(It
.Typ
);
7081 Get_Next_Interp
(I
, It
);
7084 end Find_Boolean_Types
;
7086 ------------------------------------
7087 -- Find_Comparison_Equality_Types --
7088 ------------------------------------
7090 -- The context of the operator plays no role in resolving the operands,
7091 -- so that if there is more than one interpretation of the operands that
7092 -- is compatible with the comparison or equality, then the operation is
7093 -- ambiguous, but this cannot be reported at this point because there is
7094 -- no guarantee that the operation will be resolved to this operator yet.
7096 procedure Find_Comparison_Equality_Types
7101 Op_Name
: constant Name_Id
:= Chars
(Op_Id
);
7102 Op_Typ
: Entity_Id
renames Standard_Boolean
;
7104 function Try_Left_Interp
(T
: Entity_Id
) return Entity_Id
;
7105 -- Try an interpretation of the left operand with type T. Return the
7106 -- type of the interpretation of the right operand making up a valid
7107 -- operand pair, or else Any_Type if the right operand is ambiguous,
7108 -- otherwise Empty if no such pair exists.
7110 function Is_Valid_Comparison_Type
(T
: Entity_Id
) return Boolean;
7111 -- Return true if T is a valid comparison type
7113 function Is_Valid_Equality_Type
7115 Anon_Access
: Boolean) return Boolean;
7116 -- Return true if T is a valid equality type
7118 function Is_Valid_Pair
(T1
, T2
: Entity_Id
) return Boolean;
7119 -- Return true if T1 and T2 constitute a valid pair of operand types for
7120 -- L and R respectively.
7122 ---------------------
7123 -- Try_Left_Interp --
7124 ---------------------
7126 function Try_Left_Interp
(T
: Entity_Id
) return Entity_Id
is
7130 Valid_I
: Interp_Index
;
7133 -- Defend against previous error
7135 if Nkind
(R
) = N_Error
then
7138 -- Loop through the interpretations of the right operand
7140 elsif not Is_Overloaded
(R
) then
7141 if Is_Valid_Pair
(T
, Etype
(R
)) then
7149 Get_First_Interp
(R
, I
, It
);
7150 while Present
(It
.Typ
) loop
7151 if Is_Valid_Pair
(T
, It
.Typ
) then
7152 -- If several interpretations are possible, disambiguate
7155 and then Base_Type
(It
.Typ
) /= Base_Type
(R_Typ
)
7157 It
:= Disambiguate
(R
, Valid_I
, I
, Any_Type
);
7159 if It
= No_Interp
then
7171 Get_Next_Interp
(I
, It
);
7174 if Present
(R_Typ
) then
7180 end Try_Left_Interp
;
7182 ------------------------------
7183 -- Is_Valid_Comparison_Type --
7184 ------------------------------
7186 function Is_Valid_Comparison_Type
(T
: Entity_Id
) return Boolean is
7188 -- The operation must be performed in a context where the operators
7189 -- of the base type are visible.
7191 if Is_Visible_Operator
(N
, Base_Type
(T
)) then
7194 -- Save candidate type for subsequent error message, if any
7197 if Valid_Comparison_Arg
(T
) then
7198 Candidate_Type
:= T
;
7204 -- Defer to the common implementation for the rest
7206 return Valid_Comparison_Arg
(T
);
7207 end Is_Valid_Comparison_Type
;
7209 ----------------------------
7210 -- Is_Valid_Equality_Type --
7211 ----------------------------
7213 function Is_Valid_Equality_Type
7215 Anon_Access
: Boolean) return Boolean
7218 -- The operation must be performed in a context where the operators
7219 -- of the base type are visible. Deal with special types used with
7220 -- access types before type resolution is done.
7222 if Ekind
(T
) = E_Access_Attribute_Type
7223 or else (Ekind
(T
) in E_Access_Subprogram_Type
7224 | E_Access_Protected_Subprogram_Type
7226 Ekind
(Designated_Type
(T
)) /= E_Subprogram_Type
)
7227 or else Is_Visible_Operator
(N
, Base_Type
(T
))
7231 -- AI95-0230: Keep restriction imposed by Ada 83 and 95, do not allow
7232 -- anonymous access types in universal_access equality operators.
7234 elsif Anon_Access
then
7235 if Ada_Version
< Ada_2005
then
7239 -- Save candidate type for subsequent error message, if any
7242 if Valid_Equality_Arg
(T
) then
7243 Candidate_Type
:= T
;
7249 -- For the use of a "/=" operator on a tagged type, several possible
7250 -- interpretations of equality need to be considered, we don't want
7251 -- the default inequality declared in Standard to be chosen, and the
7252 -- "/=" operator will be rewritten as a negation of "=" (see the end
7253 -- of Analyze_Comparison_Equality_Op). This ensures the rewriting
7254 -- occurs during analysis rather than being delayed until expansion.
7255 -- Note that, if the node is N_Op_Ne but Op_Id is Name_Op_Eq, then we
7256 -- still proceed with the interpretation, because this indicates
7257 -- the aforementioned rewriting case where the interpretation to be
7258 -- considered is actually that of the "=" operator.
7260 if Nkind
(N
) = N_Op_Ne
7261 and then Op_Name
/= Name_Op_Eq
7262 and then Is_Tagged_Type
(T
)
7266 -- Defer to the common implementation for the rest
7269 return Valid_Equality_Arg
(T
);
7271 end Is_Valid_Equality_Type
;
7277 function Is_Valid_Pair
(T1
, T2
: Entity_Id
) return Boolean is
7279 if Op_Name
= Name_Op_Eq
or else Op_Name
= Name_Op_Ne
then
7281 Anon_Access
: constant Boolean :=
7282 Is_Anonymous_Access_Type
(T1
)
7283 or else Is_Anonymous_Access_Type
(T2
);
7284 -- RM 4.5.2(9.1/2): At least one of the operands of an equality
7285 -- operator for universal_access shall be of specific anonymous
7289 if not Is_Valid_Equality_Type
(T1
, Anon_Access
)
7290 or else not Is_Valid_Equality_Type
(T2
, Anon_Access
)
7297 if not Is_Valid_Comparison_Type
(T1
)
7298 or else not Is_Valid_Comparison_Type
(T2
)
7304 return Covers
(T1
=> T1
, T2
=> T2
)
7305 or else Covers
(T1
=> T2
, T2
=> T1
)
7306 or else Is_User_Defined_Literal
(L
, T2
)
7307 or else Is_User_Defined_Literal
(R
, T1
);
7317 Valid_I
: Interp_Index
;
7319 -- Start of processing for Find_Comparison_Equality_Types
7322 -- Loop through the interpretations of the left operand
7324 if not Is_Overloaded
(L
) then
7325 T
:= Try_Left_Interp
(Etype
(L
));
7329 Add_One_Interp
(N
, Op_Id
, Op_Typ
, Find_Unique_Type
(L
, R
));
7337 Get_First_Interp
(L
, I
, It
);
7338 while Present
(It
.Typ
) loop
7339 T
:= Try_Left_Interp
(It
.Typ
);
7342 -- If several interpretations are possible, disambiguate
7345 and then Base_Type
(It
.Typ
) /= Base_Type
(L_Typ
)
7347 It
:= Disambiguate
(L
, Valid_I
, I
, Any_Type
);
7349 if It
= No_Interp
then
7363 Get_Next_Interp
(I
, It
);
7366 if Present
(L_Typ
) then
7367 Set_Etype
(L
, L_Typ
);
7368 Set_Etype
(R
, R_Typ
);
7369 Add_One_Interp
(N
, Op_Id
, Op_Typ
, Find_Unique_Type
(L
, R
));
7372 end Find_Comparison_Equality_Types
;
7374 ------------------------------
7375 -- Find_Concatenation_Types --
7376 ------------------------------
7378 procedure Find_Concatenation_Types
7383 Is_String
: constant Boolean := Nkind
(L
) = N_String_Literal
7385 Nkind
(R
) = N_String_Literal
;
7386 Op_Type
: constant Entity_Id
:= Etype
(Op_Id
);
7389 if Is_Array_Type
(Op_Type
)
7391 -- Small but very effective optimization: if at least one operand is a
7392 -- string literal, then the type of the operator must be either array
7393 -- of characters or array of strings.
7395 and then (not Is_String
7397 Is_Character_Type
(Component_Type
(Op_Type
))
7399 Is_String_Type
(Component_Type
(Op_Type
)))
7401 and then not Is_Limited_Type
(Op_Type
)
7403 and then (Has_Compatible_Type
(L
, Op_Type
)
7405 Has_Compatible_Type
(L
, Component_Type
(Op_Type
)))
7407 and then (Has_Compatible_Type
(R
, Op_Type
)
7409 Has_Compatible_Type
(R
, Component_Type
(Op_Type
)))
7411 Add_One_Interp
(N
, Op_Id
, Op_Type
);
7413 end Find_Concatenation_Types
;
7415 -------------------------
7416 -- Find_Negation_Types --
7417 -------------------------
7419 procedure Find_Negation_Types
7424 Index
: Interp_Index
;
7428 if not Is_Overloaded
(R
) then
7429 if Etype
(R
) = Universal_Integer
then
7430 Add_One_Interp
(N
, Op_Id
, Any_Modular
);
7431 elsif Valid_Boolean_Arg
(Etype
(R
)) then
7432 Add_One_Interp
(N
, Op_Id
, Etype
(R
));
7436 Get_First_Interp
(R
, Index
, It
);
7437 while Present
(It
.Typ
) loop
7438 if Valid_Boolean_Arg
(It
.Typ
) then
7439 Add_One_Interp
(N
, Op_Id
, It
.Typ
);
7442 Get_Next_Interp
(Index
, It
);
7445 end Find_Negation_Types
;
7447 ------------------------------
7448 -- Find_Primitive_Operation --
7449 ------------------------------
7451 function Find_Primitive_Operation
(N
: Node_Id
) return Boolean is
7452 Obj
: constant Node_Id
:= Prefix
(N
);
7453 Op
: constant Node_Id
:= Selector_Name
(N
);
7460 Set_Etype
(Op
, Any_Type
);
7462 if Is_Access_Type
(Etype
(Obj
)) then
7463 Typ
:= Designated_Type
(Etype
(Obj
));
7468 if Is_Class_Wide_Type
(Typ
) then
7469 Typ
:= Root_Type
(Typ
);
7472 Prims
:= Primitive_Operations
(Typ
);
7474 Prim
:= First_Elmt
(Prims
);
7475 while Present
(Prim
) loop
7476 if Chars
(Node
(Prim
)) = Chars
(Op
) then
7477 Add_One_Interp
(Op
, Node
(Prim
), Etype
(Node
(Prim
)));
7478 Set_Etype
(N
, Etype
(Node
(Prim
)));
7484 -- Now look for class-wide operations of the type or any of its
7485 -- ancestors by iterating over the homonyms of the selector.
7488 Cls_Type
: constant Entity_Id
:= Class_Wide_Type
(Typ
);
7492 Hom
:= Current_Entity
(Op
);
7493 while Present
(Hom
) loop
7494 if (Ekind
(Hom
) = E_Procedure
7496 Ekind
(Hom
) = E_Function
)
7497 and then Scope
(Hom
) = Scope
(Typ
)
7498 and then Present
(First_Formal
(Hom
))
7500 (Base_Type
(Etype
(First_Formal
(Hom
))) = Cls_Type
7502 (Is_Access_Type
(Etype
(First_Formal
(Hom
)))
7504 Ekind
(Etype
(First_Formal
(Hom
))) =
7505 E_Anonymous_Access_Type
7508 (Designated_Type
(Etype
(First_Formal
(Hom
)))) =
7511 Add_One_Interp
(Op
, Hom
, Etype
(Hom
));
7512 Set_Etype
(N
, Etype
(Hom
));
7515 Hom
:= Homonym
(Hom
);
7519 return Etype
(Op
) /= Any_Type
;
7520 end Find_Primitive_Operation
;
7522 ----------------------
7523 -- Find_Unary_Types --
7524 ----------------------
7526 procedure Find_Unary_Types
7531 Index
: Interp_Index
;
7535 if not Is_Overloaded
(R
) then
7536 if Is_Numeric_Type
(Etype
(R
)) then
7538 -- In an instance a generic actual may be a numeric type even if
7539 -- the formal in the generic unit was not. In that case, the
7540 -- predefined operator was not a possible interpretation in the
7541 -- generic, and cannot be one in the instance, unless the operator
7542 -- is an actual of an instance.
7546 not Is_Numeric_Type
(Corresponding_Generic_Type
(Etype
(R
)))
7550 Add_One_Interp
(N
, Op_Id
, Base_Type
(Etype
(R
)));
7555 Get_First_Interp
(R
, Index
, It
);
7556 while Present
(It
.Typ
) loop
7557 if Is_Numeric_Type
(It
.Typ
) then
7561 (Corresponding_Generic_Type
(Etype
(It
.Typ
)))
7566 Add_One_Interp
(N
, Op_Id
, Base_Type
(It
.Typ
));
7570 Get_Next_Interp
(Index
, It
);
7573 end Find_Unary_Types
;
7579 function Junk_Operand
(N
: Node_Id
) return Boolean is
7583 if Error_Posted
(N
) then
7587 -- Get entity to be tested
7589 if Is_Entity_Name
(N
)
7590 and then Present
(Entity
(N
))
7594 -- An odd case, a procedure name gets converted to a very peculiar
7595 -- function call, and here is where we detect this happening.
7597 elsif Nkind
(N
) = N_Function_Call
7598 and then Is_Entity_Name
(Name
(N
))
7599 and then Present
(Entity
(Name
(N
)))
7603 -- Another odd case, there are at least some cases of selected
7604 -- components where the selected component is not marked as having
7605 -- an entity, even though the selector does have an entity
7607 elsif Nkind
(N
) = N_Selected_Component
7608 and then Present
(Entity
(Selector_Name
(N
)))
7610 Enode
:= Selector_Name
(N
);
7616 -- Now test the entity we got to see if it is a bad case
7618 case Ekind
(Entity
(Enode
)) is
7621 ("package name cannot be used as operand", Enode
);
7623 when Generic_Unit_Kind
=>
7625 ("generic unit name cannot be used as operand", Enode
);
7629 ("subtype name cannot be used as operand", Enode
);
7633 ("entry name cannot be used as operand", Enode
);
7637 ("procedure name cannot be used as operand", Enode
);
7641 ("exception name cannot be used as operand", Enode
);
7648 ("label name cannot be used as operand", Enode
);
7657 --------------------
7658 -- Operator_Check --
7659 --------------------
7661 procedure Operator_Check
(N
: Node_Id
) is
7663 Remove_Abstract_Operations
(N
);
7665 -- Test for case of no interpretation found for operator
7667 if Etype
(N
) = Any_Type
then
7669 L
: constant Node_Id
:=
7670 (if Nkind
(N
) in N_Binary_Op
then Left_Opnd
(N
) else Empty
);
7671 R
: constant Node_Id
:= Right_Opnd
(N
);
7674 -- If either operand has no type, then don't complain further,
7675 -- since this simply means that we have a propagated error.
7678 or else Etype
(R
) = Any_Type
7679 or else (Nkind
(N
) in N_Binary_Op
and then Etype
(L
) = Any_Type
)
7681 -- For the rather unusual case where one of the operands is
7682 -- a Raise_Expression, whose initial type is Any_Type, use
7683 -- the type of the other operand.
7685 if Nkind
(L
) = N_Raise_Expression
then
7686 Set_Etype
(L
, Etype
(R
));
7687 Set_Etype
(N
, Etype
(R
));
7689 elsif Nkind
(R
) = N_Raise_Expression
then
7690 Set_Etype
(R
, Etype
(L
));
7691 Set_Etype
(N
, Etype
(L
));
7696 -- We explicitly check for the case of concatenation of component
7697 -- with component to avoid reporting spurious matching array types
7698 -- that might happen to be lurking in distant packages (such as
7699 -- run-time packages). This also prevents inconsistencies in the
7700 -- messages for certain ACVC B tests, which can vary depending on
7701 -- types declared in run-time interfaces. Another improvement when
7702 -- aggregates are present is to look for a well-typed operand.
7704 elsif Present
(Candidate_Type
)
7705 and then (Nkind
(N
) /= N_Op_Concat
7706 or else Is_Array_Type
(Etype
(L
))
7707 or else Is_Array_Type
(Etype
(R
)))
7709 if Nkind
(N
) = N_Op_Concat
then
7710 if Etype
(L
) /= Any_Composite
7711 and then Is_Array_Type
(Etype
(L
))
7713 Candidate_Type
:= Etype
(L
);
7715 elsif Etype
(R
) /= Any_Composite
7716 and then Is_Array_Type
(Etype
(R
))
7718 Candidate_Type
:= Etype
(R
);
7722 Error_Msg_NE
-- CODEFIX
7723 ("operator for} is not directly visible!",
7724 N
, First_Subtype
(Candidate_Type
));
7727 U
: constant Node_Id
:=
7728 Cunit
(Get_Source_Unit
(Candidate_Type
));
7730 if Unit_Is_Visible
(U
) then
7731 Error_Msg_N
-- CODEFIX
7732 ("use clause would make operation legal!", N
);
7734 Error_Msg_NE
-- CODEFIX
7735 ("add with_clause and use_clause for&!",
7736 N
, Defining_Entity
(Unit
(U
)));
7741 -- If either operand is a junk operand (e.g. package name), then
7742 -- post appropriate error messages, but do not complain further.
7744 -- Note that the use of OR in this test instead of OR ELSE is
7745 -- quite deliberate, we may as well check both operands in the
7746 -- binary operator case.
7748 elsif Junk_Operand
(R
)
7749 or -- really mean OR here and not OR ELSE, see above
7750 (Nkind
(N
) in N_Binary_Op
and then Junk_Operand
(L
))
7754 -- The handling of user-defined literals is deferred to the second
7755 -- pass of resolution.
7757 elsif Has_Possible_User_Defined_Literal
(N
) then
7760 -- If we have a logical operator, one of whose operands is
7761 -- Boolean, then we know that the other operand cannot resolve to
7762 -- Boolean (since we got no interpretations), but in that case we
7763 -- pretty much know that the other operand should be Boolean, so
7764 -- resolve it that way (generating an error).
7766 elsif Nkind
(N
) in N_Op_And | N_Op_Or | N_Op_Xor
then
7767 if Etype
(L
) = Standard_Boolean
then
7768 Resolve
(R
, Standard_Boolean
);
7770 elsif Etype
(R
) = Standard_Boolean
then
7771 Resolve
(L
, Standard_Boolean
);
7775 -- For an arithmetic operator or comparison operator, if one
7776 -- of the operands is numeric, then we know the other operand
7777 -- is not the same numeric type. If it is a non-numeric type,
7778 -- then probably it is intended to match the other operand.
7780 elsif Nkind
(N
) in N_Op_Add
7791 -- If Allow_Integer_Address is active, check whether the
7792 -- operation becomes legal after converting an operand.
7794 if Is_Numeric_Type
(Etype
(L
))
7795 and then not Is_Numeric_Type
(Etype
(R
))
7797 if Address_Integer_Convert_OK
(Etype
(R
), Etype
(L
)) then
7799 Unchecked_Convert_To
(
7800 Standard_Address
, Relocate_Node
(L
)));
7802 Unchecked_Convert_To
(
7803 Standard_Address
, Relocate_Node
(R
)));
7805 if Nkind
(N
) in N_Op_Ge | N_Op_Gt | N_Op_Le | N_Op_Lt
then
7806 Analyze_Comparison_Equality_Op
(N
);
7808 Analyze_Arithmetic_Op
(N
);
7811 Resolve
(R
, Etype
(L
));
7816 elsif Is_Numeric_Type
(Etype
(R
))
7817 and then not Is_Numeric_Type
(Etype
(L
))
7819 if Address_Integer_Convert_OK
(Etype
(L
), Etype
(R
)) then
7821 Unchecked_Convert_To
(
7822 Standard_Address
, Relocate_Node
(L
)));
7824 Unchecked_Convert_To
(
7825 Standard_Address
, Relocate_Node
(R
)));
7827 if Nkind
(N
) in N_Op_Ge | N_Op_Gt | N_Op_Le | N_Op_Lt
then
7828 Analyze_Comparison_Equality_Op
(N
);
7830 Analyze_Arithmetic_Op
(N
);
7836 Resolve
(L
, Etype
(R
));
7841 elsif Allow_Integer_Address
7842 and then Is_Descendant_Of_Address
(Etype
(L
))
7843 and then Is_Descendant_Of_Address
(Etype
(R
))
7844 and then not Error_Posted
(N
)
7847 Addr_Type
: constant Entity_Id
:= Etype
(L
);
7851 Unchecked_Convert_To
(
7852 Standard_Address
, Relocate_Node
(L
)));
7854 Unchecked_Convert_To
(
7855 Standard_Address
, Relocate_Node
(R
)));
7857 if Nkind
(N
) in N_Op_Ge | N_Op_Gt | N_Op_Le | N_Op_Lt
then
7858 Analyze_Comparison_Equality_Op
(N
);
7860 Analyze_Arithmetic_Op
(N
);
7863 -- If this is an operand in an enclosing arithmetic
7864 -- operation, Convert the result as an address so that
7865 -- arithmetic folding of address can continue.
7867 if Nkind
(Parent
(N
)) in N_Op
then
7869 Unchecked_Convert_To
(Addr_Type
, Relocate_Node
(N
)));
7875 -- Under relaxed RM semantics silently replace occurrences of
7876 -- null by System.Address_Null.
7878 elsif Null_To_Null_Address_Convert_OK
(N
) then
7879 Replace_Null_By_Null_Address
(N
);
7881 if Nkind
(N
) in N_Op_Ge | N_Op_Gt | N_Op_Le | N_Op_Lt
then
7882 Analyze_Comparison_Equality_Op
(N
);
7884 Analyze_Arithmetic_Op
(N
);
7890 -- Comparisons on A'Access are common enough to deserve a
7893 elsif Nkind
(N
) in N_Op_Eq | N_Op_Ne
7894 and then Ekind
(Etype
(L
)) = E_Access_Attribute_Type
7895 and then Ekind
(Etype
(R
)) = E_Access_Attribute_Type
7898 ("two access attributes cannot be compared directly", N
);
7900 ("\use qualified expression for one of the operands",
7904 -- Another one for C programmers
7906 elsif Nkind
(N
) = N_Op_Concat
7907 and then Valid_Boolean_Arg
(Etype
(L
))
7908 and then Valid_Boolean_Arg
(Etype
(R
))
7910 Error_Msg_N
("invalid operands for concatenation", N
);
7911 Error_Msg_N
-- CODEFIX
7912 ("\maybe AND was meant", N
);
7915 -- A special case for comparison of access parameter with null
7917 elsif Nkind
(N
) = N_Op_Eq
7918 and then Is_Entity_Name
(L
)
7919 and then Nkind
(Parent
(Entity
(L
))) = N_Parameter_Specification
7920 and then Nkind
(Parameter_Type
(Parent
(Entity
(L
)))) =
7922 and then Nkind
(R
) = N_Null
7924 Error_Msg_N
("access parameter is not allowed to be null", L
);
7925 Error_Msg_N
("\(call would raise Constraint_Error)", L
);
7928 -- Another special case for exponentiation, where the right
7929 -- operand must be Natural, independently of the base.
7931 elsif Nkind
(N
) = N_Op_Expon
7932 and then Is_Numeric_Type
(Etype
(L
))
7933 and then not Is_Overloaded
(R
)
7935 First_Subtype
(Base_Type
(Etype
(R
))) /= Standard_Integer
7936 and then Base_Type
(Etype
(R
)) /= Universal_Integer
7938 if Ada_Version
>= Ada_2012
7939 and then Has_Dimension_System
(Etype
(L
))
7942 ("exponent for dimensioned type must be a rational" &
7943 ", found}", R
, Etype
(R
));
7946 ("exponent must be of type Natural, found}", R
, Etype
(R
));
7951 elsif Nkind
(N
) in N_Op_Eq | N_Op_Ne
then
7952 if Address_Integer_Convert_OK
(Etype
(R
), Etype
(L
)) then
7954 Unchecked_Convert_To
(
7955 Standard_Address
, Relocate_Node
(L
)));
7957 Unchecked_Convert_To
(
7958 Standard_Address
, Relocate_Node
(R
)));
7959 Analyze_Comparison_Equality_Op
(N
);
7962 -- Under relaxed RM semantics silently replace occurrences of
7963 -- null by System.Address_Null.
7965 elsif Null_To_Null_Address_Convert_OK
(N
) then
7966 Replace_Null_By_Null_Address
(N
);
7967 Analyze_Comparison_Equality_Op
(N
);
7972 -- If we fall through then just give general message
7974 Unresolved_Operator
(N
);
7979 ---------------------------------------
7980 -- Has_Possible_User_Defined_Literal --
7981 ---------------------------------------
7983 function Has_Possible_User_Defined_Literal
(N
: Node_Id
) return Boolean is
7984 R
: constant Node_Id
:= Right_Opnd
(N
);
7986 procedure Check_Literal_Opnd
(Opnd
: Node_Id
);
7987 -- If an operand is a literal to which an aspect may apply,
7988 -- add the corresponding type to operator node.
7990 ------------------------
7991 -- Check_Literal_Opnd --
7992 ------------------------
7994 procedure Check_Literal_Opnd
(Opnd
: Node_Id
) is
7996 if Nkind
(Opnd
) in N_Numeric_Or_String_Literal
7997 or else (Is_Entity_Name
(Opnd
)
7998 and then Present
(Entity
(Opnd
))
7999 and then Is_Named_Number
(Entity
(Opnd
)))
8001 Add_One_Interp
(N
, Etype
(Opnd
), Etype
(Opnd
));
8003 end Check_Literal_Opnd
;
8005 -- Start of processing for Has_Possible_User_Defined_Literal
8008 if Ada_Version
< Ada_2022
then
8012 Check_Literal_Opnd
(R
);
8014 -- Check left operand only if right one did not provide a
8015 -- possible interpretation. Note that literal types are not
8016 -- overloadable, in the sense that there is no overloadable
8017 -- entity name whose several interpretations can be used to
8018 -- indicate possible resulting types, so there is no way to
8019 -- provide more than one interpretation to the operator node.
8020 -- The choice of one operand over the other is arbitrary at
8021 -- this point, and may lead to spurious resolution when both
8022 -- operands are literals of different kinds, but the second
8023 -- pass of resolution will examine anew both operands to
8024 -- determine whether a user-defined literal may apply to
8027 if Nkind
(N
) in N_Binary_Op
and then Etype
(N
) = Any_Type
then
8028 Check_Literal_Opnd
(Left_Opnd
(N
));
8031 return Etype
(N
) /= Any_Type
;
8032 end Has_Possible_User_Defined_Literal
;
8034 -----------------------------------------------
8035 -- Nondispatching_Call_To_Abstract_Operation --
8036 -----------------------------------------------
8038 procedure Nondispatching_Call_To_Abstract_Operation
8040 Abstract_Op
: Entity_Id
)
8042 Typ
: constant Entity_Id
:= Etype
(N
);
8045 -- In an instance body, this is a runtime check, but one we know will
8046 -- fail, so give an appropriate warning. As usual this kind of warning
8047 -- is an error in SPARK mode.
8049 Error_Msg_Sloc
:= Sloc
(Abstract_Op
);
8051 if In_Instance_Body
and then SPARK_Mode
/= On
then
8053 ("??cannot call abstract operation& declared#",
8055 Error_Msg_N
("\Program_Error [??", N
);
8057 Make_Raise_Program_Error
(Sloc
(N
),
8058 Reason
=> PE_Explicit_Raise
));
8064 ("cannot call abstract operation& declared#",
8066 Set_Etype
(N
, Any_Type
);
8068 end Nondispatching_Call_To_Abstract_Operation
;
8070 ----------------------------------------------
8071 -- Possible_Type_For_Conditional_Expression --
8072 ----------------------------------------------
8074 function Possible_Type_For_Conditional_Expression
8075 (T1
, T2
: Entity_Id
) return Entity_Id
8077 function Is_Access_Protected_Subprogram_Attribute
8078 (T
: Entity_Id
) return Boolean;
8079 -- Return true if T is the type of an access-to-protected-subprogram
8082 function Is_Access_Subprogram_Attribute
(T
: Entity_Id
) return Boolean;
8083 -- Return true if T is the type of an access-to-subprogram attribute
8085 ----------------------------------------------
8086 -- Is_Access_Protected_Subprogram_Attribute --
8087 ----------------------------------------------
8089 function Is_Access_Protected_Subprogram_Attribute
8090 (T
: Entity_Id
) return Boolean
8093 return Ekind
(T
) = E_Access_Protected_Subprogram_Type
8094 and then Ekind
(Designated_Type
(T
)) /= E_Subprogram_Type
;
8095 end Is_Access_Protected_Subprogram_Attribute
;
8097 ------------------------------------
8098 -- Is_Access_Subprogram_Attribute --
8099 ------------------------------------
8101 function Is_Access_Subprogram_Attribute
(T
: Entity_Id
) return Boolean is
8103 return Ekind
(T
) = E_Access_Subprogram_Type
8104 and then Ekind
(Designated_Type
(T
)) /= E_Subprogram_Type
;
8105 end Is_Access_Subprogram_Attribute
;
8107 -- Start of processing for Possible_Type_For_Conditional_Expression
8110 -- If both types are those of similar access attributes or allocators,
8111 -- pick one of them, for example the first.
8113 if Ekind
(T1
) in E_Access_Attribute_Type | E_Allocator_Type
8114 and then Ekind
(T2
) in E_Access_Attribute_Type | E_Allocator_Type
8118 elsif Is_Access_Subprogram_Attribute
(T1
)
8119 and then Is_Access_Subprogram_Attribute
(T2
)
8121 Subtype_Conformant
(Designated_Type
(T1
), Designated_Type
(T2
))
8125 elsif Is_Access_Protected_Subprogram_Attribute
(T1
)
8126 and then Is_Access_Protected_Subprogram_Attribute
(T2
)
8128 Subtype_Conformant
(Designated_Type
(T1
), Designated_Type
(T2
))
8132 -- The other case to be considered is a pair of tagged types
8134 elsif Is_Tagged_Type
(T1
) and then Is_Tagged_Type
(T2
) then
8135 -- Covers performs the same checks when T1 or T2 are a CW type, so
8136 -- we don't need to do them again here.
8138 if not Is_Class_Wide_Type
(T1
) and then Is_Ancestor
(T1
, T2
) then
8141 elsif not Is_Class_Wide_Type
(T2
) and then Is_Ancestor
(T2
, T1
) then
8144 -- Neither type is an ancestor of the other, but they may have one in
8145 -- common, so we pick the first type as above. We could perform here
8146 -- the computation of the nearest common ancestors of T1 and T2, but
8147 -- this would require a significant amount of work and the practical
8148 -- benefit would very likely be negligible.
8154 -- Otherwise no type is possible
8159 end Possible_Type_For_Conditional_Expression
;
8161 --------------------------------
8162 -- Remove_Abstract_Operations --
8163 --------------------------------
8165 procedure Remove_Abstract_Operations
(N
: Node_Id
) is
8166 Abstract_Op
: Entity_Id
:= Empty
;
8167 Address_Descendant
: Boolean := False;
8171 -- AI-310: If overloaded, remove abstract non-dispatching operations. We
8172 -- activate this if either extensions are enabled, or if the abstract
8173 -- operation in question comes from a predefined file. This latter test
8174 -- allows us to use abstract to make operations invisible to users. In
8175 -- particular, if type Address is non-private and abstract subprograms
8176 -- are used to hide its operators, they will be truly hidden.
8178 type Operand_Position
is (First_Op
, Second_Op
);
8179 Univ_Type
: constant Entity_Id
:= Universal_Interpretation
(N
);
8181 procedure Remove_Address_Interpretations
(Op
: Operand_Position
);
8182 -- Ambiguities may arise when the operands are literal and the address
8183 -- operations in s-auxdec are visible. In that case, remove the
8184 -- interpretation of a literal as Address, to retain the semantics
8185 -- of Address as a private type.
8187 ------------------------------------
8188 -- Remove_Address_Interpretations --
8189 ------------------------------------
8191 procedure Remove_Address_Interpretations
(Op
: Operand_Position
) is
8195 if Is_Overloaded
(N
) then
8196 Get_First_Interp
(N
, I
, It
);
8197 while Present
(It
.Nam
) loop
8198 Formal
:= First_Entity
(It
.Nam
);
8200 if Op
= Second_Op
then
8201 Next_Entity
(Formal
);
8204 if Is_Descendant_Of_Address
(Etype
(Formal
)) then
8205 Address_Descendant
:= True;
8209 Get_Next_Interp
(I
, It
);
8212 end Remove_Address_Interpretations
;
8214 -- Start of processing for Remove_Abstract_Operations
8217 if Is_Overloaded
(N
) then
8218 if Debug_Flag_V
then
8219 Write_Line
("Remove_Abstract_Operations: ");
8220 Write_Overloads
(N
);
8223 Get_First_Interp
(N
, I
, It
);
8225 while Present
(It
.Nam
) loop
8226 if Is_Overloadable
(It
.Nam
)
8227 and then Is_Abstract_Subprogram
(It
.Nam
)
8228 and then not Is_Dispatching_Operation
(It
.Nam
)
8230 Abstract_Op
:= It
.Nam
;
8232 if Is_Descendant_Of_Address
(It
.Typ
) then
8233 Address_Descendant
:= True;
8237 -- In Ada 2005, this operation does not participate in overload
8238 -- resolution. If the operation is defined in a predefined
8239 -- unit, it is one of the operations declared abstract in some
8240 -- variants of System, and it must be removed as well.
8242 elsif Ada_Version
>= Ada_2005
8243 or else In_Predefined_Unit
(It
.Nam
)
8250 Get_Next_Interp
(I
, It
);
8253 if No
(Abstract_Op
) then
8255 -- If some interpretation yields an integer type, it is still
8256 -- possible that there are address interpretations. Remove them
8257 -- if one operand is a literal, to avoid spurious ambiguities
8258 -- on systems where Address is a visible integer type.
8260 if Is_Overloaded
(N
)
8261 and then Nkind
(N
) in N_Op
8262 and then Is_Integer_Type
(Etype
(N
))
8264 if Nkind
(N
) in N_Binary_Op
then
8265 if Nkind
(Right_Opnd
(N
)) = N_Integer_Literal
then
8266 Remove_Address_Interpretations
(Second_Op
);
8268 elsif Nkind
(Left_Opnd
(N
)) = N_Integer_Literal
then
8269 Remove_Address_Interpretations
(First_Op
);
8274 elsif Nkind
(N
) in N_Op
then
8276 -- Remove interpretations that treat literals as addresses. This
8277 -- is never appropriate, even when Address is defined as a visible
8278 -- Integer type. The reason is that we would really prefer Address
8279 -- to behave as a private type, even in this case. If Address is a
8280 -- visible integer type, we get lots of overload ambiguities.
8282 if Nkind
(N
) in N_Binary_Op
then
8284 U1
: constant Boolean :=
8285 Present
(Universal_Interpretation
(Right_Opnd
(N
)));
8286 U2
: constant Boolean :=
8287 Present
(Universal_Interpretation
(Left_Opnd
(N
)));
8291 Remove_Address_Interpretations
(Second_Op
);
8295 Remove_Address_Interpretations
(First_Op
);
8298 if not (U1
and U2
) then
8300 -- Remove corresponding predefined operator, which is
8301 -- always added to the overload set.
8303 Get_First_Interp
(N
, I
, It
);
8304 while Present
(It
.Nam
) loop
8305 if Scope
(It
.Nam
) = Standard_Standard
8306 and then Base_Type
(It
.Typ
) =
8307 Base_Type
(Etype
(Abstract_Op
))
8312 Get_Next_Interp
(I
, It
);
8315 elsif Is_Overloaded
(N
)
8316 and then Present
(Univ_Type
)
8318 -- If both operands have a universal interpretation,
8319 -- it is still necessary to remove interpretations that
8320 -- yield Address. Any remaining ambiguities will be
8321 -- removed in Disambiguate.
8323 Get_First_Interp
(N
, I
, It
);
8324 while Present
(It
.Nam
) loop
8325 if Is_Descendant_Of_Address
(It
.Typ
) then
8328 elsif not Is_Type
(It
.Nam
) then
8329 Set_Entity
(N
, It
.Nam
);
8332 Get_Next_Interp
(I
, It
);
8338 elsif Nkind
(N
) = N_Function_Call
8340 (Nkind
(Name
(N
)) = N_Operator_Symbol
8342 (Nkind
(Name
(N
)) = N_Expanded_Name
8344 Nkind
(Selector_Name
(Name
(N
))) = N_Operator_Symbol
))
8348 Arg1
: constant Node_Id
:= First
(Parameter_Associations
(N
));
8349 U1
: constant Boolean :=
8350 Present
(Universal_Interpretation
(Arg1
));
8351 U2
: constant Boolean :=
8352 Present
(Next
(Arg1
)) and then
8353 Present
(Universal_Interpretation
(Next
(Arg1
)));
8357 Remove_Address_Interpretations
(First_Op
);
8361 Remove_Address_Interpretations
(Second_Op
);
8364 if not (U1
and U2
) then
8365 Get_First_Interp
(N
, I
, It
);
8366 while Present
(It
.Nam
) loop
8367 if Scope
(It
.Nam
) = Standard_Standard
8368 and then It
.Typ
= Base_Type
(Etype
(Abstract_Op
))
8373 Get_Next_Interp
(I
, It
);
8379 -- If the removal has left no valid interpretations, emit an error
8380 -- message now and label node as illegal.
8382 if Present
(Abstract_Op
) then
8383 Get_First_Interp
(N
, I
, It
);
8387 -- Removal of abstract operation left no viable candidate
8389 Nondispatching_Call_To_Abstract_Operation
(N
, Abstract_Op
);
8391 -- In Ada 2005, an abstract operation may disable predefined
8392 -- operators. Since the context is not yet known, we mark the
8393 -- predefined operators as potentially hidden. Do not include
8394 -- predefined operators when addresses are involved since this
8395 -- case is handled separately.
8397 elsif Ada_Version
>= Ada_2005
and then not Address_Descendant
then
8398 while Present
(It
.Nam
) loop
8399 if Is_Numeric_Type
(It
.Typ
)
8400 and then Scope
(It
.Typ
) = Standard_Standard
8401 and then Ekind
(It
.Nam
) = E_Operator
8403 Set_Abstract_Op
(I
, Abstract_Op
);
8406 Get_Next_Interp
(I
, It
);
8411 if Debug_Flag_V
then
8412 Write_Line
("Remove_Abstract_Operations done: ");
8413 Write_Overloads
(N
);
8416 end Remove_Abstract_Operations
;
8418 ----------------------------
8419 -- Try_Container_Indexing --
8420 ----------------------------
8422 function Try_Container_Indexing
8425 Exprs
: List_Id
) return Boolean
8427 Pref_Typ
: Entity_Id
:= Etype
(Prefix
);
8429 function Constant_Indexing_OK
return Boolean;
8430 -- Constant_Indexing is legal if there is no Variable_Indexing defined
8431 -- for the type, or else node not a target of assignment, or an actual
8432 -- for an IN OUT or OUT formal (RM 4.1.6 (11)).
8434 function Expr_Matches_In_Formal
8436 Par
: Node_Id
) return Boolean;
8437 -- Find formal corresponding to given indexed component that is an
8438 -- actual in a call. Note that the enclosing subprogram call has not
8439 -- been analyzed yet, and the parameter list is not normalized, so
8440 -- that if the argument is a parameter association we must match it
8441 -- by name and not by position.
8443 function Find_Indexing_Operations
8446 Is_Constant
: Boolean) return Node_Id
;
8447 -- Return a reference to the primitive operation of type T denoted by
8448 -- name Nam. If the operation is overloaded, the reference carries all
8449 -- interpretations. Flag Is_Constant should be set when the context is
8450 -- constant indexing.
8452 --------------------------
8453 -- Constant_Indexing_OK --
8454 --------------------------
8456 function Constant_Indexing_OK
return Boolean is
8460 if No
(Find_Value_Of_Aspect
(Pref_Typ
, Aspect_Variable_Indexing
)) then
8463 elsif not Is_Variable
(Prefix
) then
8468 while Present
(Par
) loop
8469 if Nkind
(Parent
(Par
)) = N_Assignment_Statement
8470 and then Par
= Name
(Parent
(Par
))
8474 -- The call may be overloaded, in which case we assume that its
8475 -- resolution does not depend on the type of the parameter that
8476 -- includes the indexing operation.
8478 elsif Nkind
(Parent
(Par
)) in N_Subprogram_Call
then
8480 if not Is_Entity_Name
(Name
(Parent
(Par
))) then
8482 -- ??? We don't know what to do with an N_Selected_Component
8483 -- node for a prefixed-notation call to AA.BB where AA's
8484 -- type is known, but BB has not yet been resolved. In that
8485 -- case, the preceding Is_Entity_Name call returns False.
8486 -- Incorrectly returning False here will usually work
8487 -- better than incorrectly returning True, so that's what
8497 -- We should look for an interpretation with the proper
8498 -- number of formals, and determine whether it is an
8499 -- In_Parameter, but for now we examine the formal that
8500 -- corresponds to the indexing, and assume that variable
8501 -- indexing is required if some interpretation has an
8502 -- assignable formal at that position. Still does not
8503 -- cover the most complex cases ???
8505 if Is_Overloaded
(Name
(Parent
(Par
))) then
8507 Proc
: constant Node_Id
:= Name
(Parent
(Par
));
8512 Get_First_Interp
(Proc
, I
, It
);
8513 while Present
(It
.Nam
) loop
8514 if not Expr_Matches_In_Formal
(It
.Nam
, Par
) then
8518 Get_Next_Interp
(I
, It
);
8522 -- All interpretations have a matching in-mode formal
8527 Proc
:= Entity
(Name
(Parent
(Par
)));
8529 -- If this is an indirect call, get formals from
8532 if Is_Access_Subprogram_Type
(Etype
(Proc
)) then
8533 Proc
:= Designated_Type
(Etype
(Proc
));
8537 return Expr_Matches_In_Formal
(Proc
, Par
);
8540 elsif Nkind
(Parent
(Par
)) = N_Object_Renaming_Declaration
then
8543 -- If the indexed component is a prefix it may be the first actual
8544 -- of a prefixed call. Retrieve the called entity, if any, and
8545 -- check its first formal. Determine if the context is a procedure
8546 -- or function call.
8548 elsif Nkind
(Parent
(Par
)) = N_Selected_Component
then
8550 Sel
: constant Node_Id
:= Selector_Name
(Parent
(Par
));
8551 Nam
: constant Entity_Id
:= Current_Entity
(Sel
);
8554 if Present
(Nam
) and then Is_Overloadable
(Nam
) then
8555 if Nkind
(Parent
(Parent
(Par
))) =
8556 N_Procedure_Call_Statement
8560 elsif Ekind
(Nam
) = E_Function
8561 and then Present
(First_Formal
(Nam
))
8563 return Ekind
(First_Formal
(Nam
)) = E_In_Parameter
;
8568 elsif Nkind
(Par
) in N_Op
then
8572 Par
:= Parent
(Par
);
8575 -- In all other cases, constant indexing is legal
8578 end Constant_Indexing_OK
;
8580 ----------------------------
8581 -- Expr_Matches_In_Formal --
8582 ----------------------------
8584 function Expr_Matches_In_Formal
8586 Par
: Node_Id
) return Boolean
8592 Formal
:= First_Formal
(Subp
);
8593 Actual
:= First
(Parameter_Associations
((Parent
(Par
))));
8595 if Nkind
(Par
) /= N_Parameter_Association
then
8597 -- Match by position
8599 while Present
(Actual
) and then Present
(Formal
) loop
8600 exit when Actual
= Par
;
8603 if Present
(Formal
) then
8604 Next_Formal
(Formal
);
8606 -- Otherwise this is a parameter mismatch, the error is
8607 -- reported elsewhere, or else variable indexing is implied.
8617 while Present
(Formal
) loop
8618 exit when Chars
(Formal
) = Chars
(Selector_Name
(Par
));
8619 Next_Formal
(Formal
);
8627 return Present
(Formal
) and then Ekind
(Formal
) = E_In_Parameter
;
8628 end Expr_Matches_In_Formal
;
8630 ------------------------------
8631 -- Find_Indexing_Operations --
8632 ------------------------------
8634 function Find_Indexing_Operations
8637 Is_Constant
: Boolean) return Node_Id
8639 procedure Inspect_Declarations
8641 Ref
: in out Node_Id
);
8642 -- Traverse the declarative list where type Typ resides and collect
8643 -- all suitable interpretations in node Ref.
8645 procedure Inspect_Primitives
8647 Ref
: in out Node_Id
);
8648 -- Traverse the list of primitive operations of type Typ and collect
8649 -- all suitable interpretations in node Ref.
8651 function Is_OK_Candidate
8652 (Subp_Id
: Entity_Id
;
8653 Typ
: Entity_Id
) return Boolean;
8654 -- Determine whether subprogram Subp_Id is a suitable indexing
8655 -- operation for type Typ. To qualify as such, the subprogram must
8656 -- be a function, have at least two parameters, and the type of the
8657 -- first parameter must be either Typ, or Typ'Class, or access [to
8658 -- constant] with designated type Typ or Typ'Class.
8660 procedure Record_Interp
(Subp_Id
: Entity_Id
; Ref
: in out Node_Id
);
8661 -- Store subprogram Subp_Id as an interpretation in node Ref
8663 --------------------------
8664 -- Inspect_Declarations --
8665 --------------------------
8667 procedure Inspect_Declarations
8669 Ref
: in out Node_Id
)
8671 Typ_Decl
: constant Node_Id
:= Declaration_Node
(Typ
);
8673 Subp_Id
: Entity_Id
;
8676 -- Ensure that the routine is not called with itypes, which lack a
8677 -- declarative node.
8679 pragma Assert
(Present
(Typ_Decl
));
8680 pragma Assert
(Is_List_Member
(Typ_Decl
));
8682 Decl
:= First
(List_Containing
(Typ_Decl
));
8683 while Present
(Decl
) loop
8684 if Nkind
(Decl
) = N_Subprogram_Declaration
then
8685 Subp_Id
:= Defining_Entity
(Decl
);
8687 if Is_OK_Candidate
(Subp_Id
, Typ
) then
8688 Record_Interp
(Subp_Id
, Ref
);
8694 end Inspect_Declarations
;
8696 ------------------------
8697 -- Inspect_Primitives --
8698 ------------------------
8700 procedure Inspect_Primitives
8702 Ref
: in out Node_Id
)
8704 Prim_Elmt
: Elmt_Id
;
8705 Prim_Id
: Entity_Id
;
8708 Prim_Elmt
:= First_Elmt
(Primitive_Operations
(Typ
));
8709 while Present
(Prim_Elmt
) loop
8710 Prim_Id
:= Node
(Prim_Elmt
);
8712 if Is_OK_Candidate
(Prim_Id
, Typ
) then
8713 Record_Interp
(Prim_Id
, Ref
);
8716 Next_Elmt
(Prim_Elmt
);
8718 end Inspect_Primitives
;
8720 ---------------------
8721 -- Is_OK_Candidate --
8722 ---------------------
8724 function Is_OK_Candidate
8725 (Subp_Id
: Entity_Id
;
8726 Typ
: Entity_Id
) return Boolean
8729 Formal_Typ
: Entity_Id
;
8730 Param_Typ
: Node_Id
;
8733 -- To classify as a suitable candidate, the subprogram must be a
8734 -- function whose name matches the argument of aspect Constant or
8735 -- Variable_Indexing.
8737 if Ekind
(Subp_Id
) = E_Function
and then Chars
(Subp_Id
) = Nam
then
8738 Formal
:= First_Formal
(Subp_Id
);
8740 -- The candidate requires at least two parameters
8742 if Present
(Formal
) and then Present
(Next_Formal
(Formal
)) then
8743 Formal_Typ
:= Empty
;
8744 Param_Typ
:= Parameter_Type
(Parent
(Formal
));
8746 -- Use the designated type when the first parameter is of an
8749 if Nkind
(Param_Typ
) = N_Access_Definition
8750 and then Present
(Subtype_Mark
(Param_Typ
))
8752 -- When the context is a constant indexing, the access
8753 -- definition must be access-to-constant. This does not
8754 -- apply to variable indexing.
8757 or else Constant_Present
(Param_Typ
)
8759 Formal_Typ
:= Etype
(Subtype_Mark
(Param_Typ
));
8762 -- Otherwise use the parameter type
8765 Formal_Typ
:= Etype
(Param_Typ
);
8768 if Present
(Formal_Typ
) then
8770 -- Use the specific type when the parameter type is
8773 if Is_Class_Wide_Type
(Formal_Typ
) then
8774 Formal_Typ
:= Etype
(Base_Type
(Formal_Typ
));
8777 -- Use the full view when the parameter type is private
8780 if Is_Incomplete_Or_Private_Type
(Formal_Typ
)
8781 and then Present
(Full_View
(Formal_Typ
))
8783 Formal_Typ
:= Full_View
(Formal_Typ
);
8786 -- The type of the first parameter must denote the type
8787 -- of the container or acts as its ancestor type.
8791 or else Is_Ancestor
(Formal_Typ
, Typ
);
8797 end Is_OK_Candidate
;
8803 procedure Record_Interp
(Subp_Id
: Entity_Id
; Ref
: in out Node_Id
) is
8805 if Present
(Ref
) then
8806 Add_One_Interp
(Ref
, Subp_Id
, Etype
(Subp_Id
));
8808 -- Otherwise this is the first interpretation. Create a reference
8809 -- where all remaining interpretations will be collected.
8812 Ref
:= New_Occurrence_Of
(Subp_Id
, Sloc
(T
));
8821 -- Start of processing for Find_Indexing_Operations
8826 -- Use the specific type when the parameter type is class-wide
8828 if Is_Class_Wide_Type
(Typ
) then
8829 Typ
:= Root_Type
(Typ
);
8833 Typ
:= Underlying_Type
(Base_Type
(Typ
));
8835 Inspect_Primitives
(Typ
, Ref
);
8837 -- Now look for explicit declarations of an indexing operation.
8838 -- If the type is private the operation may be declared in the
8839 -- visible part that contains the partial view.
8841 if Is_Private_Type
(T
) then
8842 Inspect_Declarations
(T
, Ref
);
8845 Inspect_Declarations
(Typ
, Ref
);
8848 end Find_Indexing_Operations
;
8852 Loc
: constant Source_Ptr
:= Sloc
(N
);
8856 Func_Name
: Node_Id
;
8859 Is_Constant_Indexing
: Boolean := False;
8860 -- This flag reflects the nature of the container indexing. Note that
8861 -- the context may be suited for constant indexing, but the type may
8862 -- lack a Constant_Indexing annotation.
8864 -- Start of processing for Try_Container_Indexing
8867 -- Node may have been analyzed already when testing for a prefixed
8868 -- call, in which case do not redo analysis.
8870 if Present
(Generalized_Indexing
(N
)) then
8874 -- An explicit dereference needs to be created in the case of a prefix
8875 -- that's an access.
8877 -- It seems that this should be done elsewhere, but not clear where that
8878 -- should happen. Normally Insert_Explicit_Dereference is called via
8879 -- Resolve_Implicit_Dereference, called from Resolve_Indexed_Component,
8880 -- but that won't be called in this case because we transform the
8881 -- indexing to a call. Resolve_Call.Check_Prefixed_Call takes care of
8882 -- implicit dereferencing and referencing on prefixed calls, but that
8883 -- would be too late, even if we expanded to a prefix call, because
8884 -- Process_Indexed_Component will flag an error before the resolution
8887 if Is_Access_Type
(Pref_Typ
) then
8888 Pref_Typ
:= Implicitly_Designated_Type
(Pref_Typ
);
8889 Insert_Explicit_Dereference
(Prefix
);
8890 Error_Msg_NW
(Warn_On_Dereference
, "?d?implicit dereference", N
);
8895 -- If indexing a class-wide container, obtain indexing primitive from
8898 if Is_Class_Wide_Type
(C_Type
) then
8899 C_Type
:= Etype
(Base_Type
(C_Type
));
8902 -- Check whether the type has a specified indexing aspect
8906 -- The context is suitable for constant indexing, so obtain the name of
8907 -- the indexing function from aspect Constant_Indexing.
8909 if Constant_Indexing_OK
then
8911 Find_Value_Of_Aspect
(Pref_Typ
, Aspect_Constant_Indexing
);
8914 if Present
(Func_Name
) then
8915 Is_Constant_Indexing
:= True;
8917 -- Otherwise attempt variable indexing
8921 Find_Value_Of_Aspect
(Pref_Typ
, Aspect_Variable_Indexing
);
8924 -- The type is not subject to either form of indexing, therefore the
8925 -- indexed component does not denote container indexing. If this is a
8926 -- true error, it is diagnosed by the caller.
8928 if No
(Func_Name
) then
8930 -- The prefix itself may be an indexing of a container. Rewrite it
8931 -- as such and retry.
8933 if Has_Implicit_Dereference
(Pref_Typ
) then
8934 Build_Explicit_Dereference
8935 (Prefix
, Get_Reference_Discriminant
(Pref_Typ
));
8936 return Try_Container_Indexing
(N
, Prefix
, Exprs
);
8938 -- Otherwise this is definitely not container indexing
8944 -- If the container type is derived from another container type, the
8945 -- value of the inherited aspect is the Reference operation declared
8946 -- for the parent type.
8948 -- However, Reference is also a primitive operation of the type, and the
8949 -- inherited operation has a different signature. We retrieve the right
8950 -- ones (the function may be overloaded) from the list of primitive
8951 -- operations of the derived type.
8953 -- Note that predefined containers are typically all derived from one of
8954 -- the Controlled types. The code below is motivated by containers that
8955 -- are derived from other types with a Reference aspect.
8956 -- Note as well that we need to examine the base type, given that
8957 -- the container object may be a constrained subtype or itype that
8958 -- does not have an explicit declaration.
8960 elsif Is_Derived_Type
(C_Type
)
8961 and then Etype
(First_Formal
(Entity
(Func_Name
))) /= Pref_Typ
8964 Find_Indexing_Operations
8965 (T
=> Base_Type
(C_Type
),
8966 Nam
=> Chars
(Func_Name
),
8967 Is_Constant
=> Is_Constant_Indexing
);
8970 Assoc
:= New_List
(Relocate_Node
(Prefix
));
8972 -- A generalized indexing may have nore than one index expression, so
8973 -- transfer all of them to the argument list to be used in the call.
8974 -- Note that there may be named associations, in which case the node
8975 -- was rewritten earlier as a call, and has been transformed back into
8976 -- an indexed expression to share the following processing.
8978 -- The generalized indexing node is the one on which analysis and
8979 -- resolution take place. Before expansion the original node is replaced
8980 -- with the generalized indexing node, which is a call, possibly with a
8981 -- dereference operation.
8983 -- Create argument list for function call that represents generalized
8984 -- indexing. Note that indices (i.e. actuals) may themselves be
8992 Arg
:= First
(Exprs
);
8993 while Present
(Arg
) loop
8994 New_Arg
:= Relocate_Node
(Arg
);
8996 -- The arguments can be parameter associations, in which case the
8997 -- explicit actual parameter carries the overloadings.
8999 if Nkind
(New_Arg
) /= N_Parameter_Association
then
9000 Save_Interps
(Arg
, New_Arg
);
9003 Append
(New_Arg
, Assoc
);
9008 if not Is_Overloaded
(Func_Name
) then
9009 Func
:= Entity
(Func_Name
);
9011 -- Can happen in case of e.g. cascaded errors
9018 Make_Function_Call
(Loc
,
9019 Name
=> New_Occurrence_Of
(Func
, Loc
),
9020 Parameter_Associations
=> Assoc
);
9022 Set_Parent
(Indexing
, Parent
(N
));
9023 Set_Generalized_Indexing
(N
, Indexing
);
9025 Set_Etype
(N
, Etype
(Indexing
));
9027 -- If the return type of the indexing function is a reference type,
9028 -- add the dereference as a possible interpretation. Note that the
9029 -- indexing aspect may be a function that returns the element type
9030 -- with no intervening implicit dereference, and that the reference
9031 -- discriminant is not the first discriminant.
9033 if Has_Discriminants
(Etype
(Func
)) then
9034 Check_Implicit_Dereference
(N
, Etype
(Func
));
9038 -- If there are multiple indexing functions, build a function call
9039 -- and analyze it for each of the possible interpretations.
9042 Make_Function_Call
(Loc
,
9044 Make_Identifier
(Loc
, Chars
(Func_Name
)),
9045 Parameter_Associations
=> Assoc
);
9046 Set_Parent
(Indexing
, Parent
(N
));
9047 Set_Generalized_Indexing
(N
, Indexing
);
9048 Set_Etype
(N
, Any_Type
);
9049 Set_Etype
(Name
(Indexing
), Any_Type
);
9057 Get_First_Interp
(Func_Name
, I
, It
);
9058 Set_Etype
(Indexing
, Any_Type
);
9060 -- Analyze each candidate function with the given actuals
9062 while Present
(It
.Nam
) loop
9063 Analyze_One_Call
(Indexing
, It
.Nam
, False, Success
);
9064 Get_Next_Interp
(I
, It
);
9067 -- If there are several successful candidates, resolution will
9068 -- be by result. Mark the interpretations of the function name
9071 if Is_Overloaded
(Indexing
) then
9072 Get_First_Interp
(Indexing
, I
, It
);
9074 while Present
(It
.Nam
) loop
9075 Add_One_Interp
(Name
(Indexing
), It
.Nam
, It
.Typ
);
9076 Get_Next_Interp
(I
, It
);
9080 Set_Etype
(Name
(Indexing
), Etype
(Indexing
));
9083 -- Now add the candidate interpretations to the indexing node
9084 -- itself, to be replaced later by the function call.
9086 if Is_Overloaded
(Name
(Indexing
)) then
9087 Get_First_Interp
(Name
(Indexing
), I
, It
);
9089 while Present
(It
.Nam
) loop
9090 Add_One_Interp
(N
, It
.Nam
, It
.Typ
);
9092 -- Add dereference interpretation if the result type has
9093 -- implicit reference discriminants.
9095 if Has_Discriminants
(Etype
(It
.Nam
)) then
9096 Check_Implicit_Dereference
(N
, Etype
(It
.Nam
));
9099 Get_Next_Interp
(I
, It
);
9103 Set_Etype
(N
, Etype
(Name
(Indexing
)));
9104 if Has_Discriminants
(Etype
(N
)) then
9105 Check_Implicit_Dereference
(N
, Etype
(N
));
9111 if Etype
(Indexing
) = Any_Type
then
9113 ("container cannot be indexed with&", N
, Etype
(First
(Exprs
)));
9114 Rewrite
(N
, New_Occurrence_Of
(Any_Id
, Loc
));
9118 end Try_Container_Indexing
;
9120 -----------------------
9121 -- Try_Indirect_Call --
9122 -----------------------
9124 function Try_Indirect_Call
9127 Typ
: Entity_Id
) return Boolean
9133 pragma Warnings
(Off
, Call_OK
);
9136 Normalize_Actuals
(N
, Designated_Type
(Typ
), False, Call_OK
);
9138 Actual
:= First_Actual
(N
);
9139 Formal
:= First_Formal
(Designated_Type
(Typ
));
9140 while Present
(Actual
) and then Present
(Formal
) loop
9141 if not Has_Compatible_Type
(Actual
, Etype
(Formal
)) then
9146 Next_Formal
(Formal
);
9149 if No
(Actual
) and then No
(Formal
) then
9150 Add_One_Interp
(N
, Nam
, Etype
(Designated_Type
(Typ
)));
9152 -- Nam is a candidate interpretation for the name in the call,
9153 -- if it is not an indirect call.
9155 if not Is_Type
(Nam
)
9156 and then Is_Entity_Name
(Name
(N
))
9158 Set_Entity
(Name
(N
), Nam
);
9166 end Try_Indirect_Call
;
9168 ----------------------
9169 -- Try_Indexed_Call --
9170 ----------------------
9172 function Try_Indexed_Call
9176 Skip_First
: Boolean) return Boolean
9178 Loc
: constant Source_Ptr
:= Sloc
(N
);
9179 Actuals
: constant List_Id
:= Parameter_Associations
(N
);
9184 Actual
:= First
(Actuals
);
9186 -- If the call was originally written in prefix form, skip the first
9187 -- actual, which is obviously not defaulted.
9193 Index
:= First_Index
(Typ
);
9194 while Present
(Actual
) and then Present
(Index
) loop
9196 -- If the parameter list has a named association, the expression
9197 -- is definitely a call and not an indexed component.
9199 if Nkind
(Actual
) = N_Parameter_Association
then
9203 if Is_Entity_Name
(Actual
)
9204 and then Is_Type
(Entity
(Actual
))
9205 and then No
(Next
(Actual
))
9207 -- A single actual that is a type name indicates a slice if the
9208 -- type is discrete, and an error otherwise.
9210 if Is_Discrete_Type
(Entity
(Actual
)) then
9214 Make_Function_Call
(Loc
,
9215 Name
=> Relocate_Node
(Name
(N
))),
9217 New_Occurrence_Of
(Entity
(Actual
), Sloc
(Actual
))));
9222 Error_Msg_N
("invalid use of type in expression", Actual
);
9223 Set_Etype
(N
, Any_Type
);
9228 elsif not Has_Compatible_Type
(Actual
, Etype
(Index
)) then
9236 if No
(Actual
) and then No
(Index
) then
9237 Add_One_Interp
(N
, Nam
, Component_Type
(Typ
));
9239 -- Nam is a candidate interpretation for the name in the call,
9240 -- if it is not an indirect call.
9242 if not Is_Type
(Nam
)
9243 and then Is_Entity_Name
(Name
(N
))
9245 Set_Entity
(Name
(N
), Nam
);
9252 end Try_Indexed_Call
;
9254 --------------------------
9255 -- Try_Object_Operation --
9256 --------------------------
9258 function Try_Object_Operation
9260 CW_Test_Only
: Boolean := False;
9261 Allow_Extensions
: Boolean := False) return Boolean
9263 K
: constant Node_Kind
:= Nkind
(Parent
(N
));
9264 Is_Subprg_Call
: constant Boolean := K
in N_Subprogram_Call
;
9265 Loc
: constant Source_Ptr
:= Sloc
(N
);
9266 Obj
: constant Node_Id
:= Prefix
(N
);
9268 Subprog
: constant Node_Id
:=
9269 Make_Identifier
(Sloc
(Selector_Name
(N
)),
9270 Chars
=> Chars
(Selector_Name
(N
)));
9271 -- Identifier on which possible interpretations will be collected
9273 Report_Error
: Boolean := False;
9274 -- If no candidate interpretation matches the context, redo analysis
9275 -- with Report_Error True to provide additional information.
9278 Candidate
: Entity_Id
:= Empty
;
9279 New_Call_Node
: Node_Id
:= Empty
;
9280 Node_To_Replace
: Node_Id
;
9281 Obj_Type
: Entity_Id
:= Etype
(Obj
);
9282 Success
: Boolean := False;
9284 procedure Complete_Object_Operation
9285 (Call_Node
: Node_Id
;
9286 Node_To_Replace
: Node_Id
);
9287 -- Make Subprog the name of Call_Node, replace Node_To_Replace with
9288 -- Call_Node, insert the object (or its dereference) as the first actual
9289 -- in the call, and complete the analysis of the call.
9291 procedure Report_Ambiguity
(Op
: Entity_Id
);
9292 -- If a prefixed procedure call is ambiguous, indicate whether the call
9293 -- includes an implicit dereference or an implicit 'Access.
9295 procedure Transform_Object_Operation
9296 (Call_Node
: out Node_Id
;
9297 Node_To_Replace
: out Node_Id
);
9298 -- Transform Obj.Operation (X, Y, ...) into Operation (Obj, X, Y ...).
9299 -- Call_Node is the resulting subprogram call, Node_To_Replace is
9300 -- either N or the parent of N, and Subprog is a reference to the
9301 -- subprogram we are trying to match. Note that the transformation
9302 -- may be partially destructive for the parent of N, so it needs to
9303 -- be undone in the case where Try_Object_Operation returns false.
9305 function Try_Class_Wide_Operation
9306 (Call_Node
: Node_Id
;
9307 Node_To_Replace
: Node_Id
) return Boolean;
9308 -- Traverse all ancestor types looking for a class-wide subprogram for
9309 -- which the current operation is a valid non-dispatching call.
9311 procedure Try_One_Prefix_Interpretation
(T
: Entity_Id
);
9312 -- If prefix is overloaded, its interpretation may include different
9313 -- tagged types, and we must examine the primitive operations and the
9314 -- class-wide operations of each in order to find candidate
9315 -- interpretations for the call as a whole.
9317 function Try_Primitive_Operation
9318 (Call_Node
: Node_Id
;
9319 Node_To_Replace
: Node_Id
) return Boolean;
9320 -- Traverse the list of primitive subprograms looking for a dispatching
9321 -- operation for which the current node is a valid call.
9323 function Valid_Candidate
9326 Subp
: Entity_Id
) return Entity_Id
;
9327 -- If the subprogram is a valid interpretation, record it, and add to
9328 -- the list of interpretations of Subprog. Otherwise return Empty.
9330 -------------------------------
9331 -- Complete_Object_Operation --
9332 -------------------------------
9334 procedure Complete_Object_Operation
9335 (Call_Node
: Node_Id
;
9336 Node_To_Replace
: Node_Id
)
9338 Control
: constant Entity_Id
:= First_Formal
(Entity
(Subprog
));
9339 Formal_Type
: constant Entity_Id
:= Etype
(Control
);
9340 First_Actual
: Node_Id
;
9343 -- Place the name of the operation, with its interpretations,
9344 -- on the rewritten call.
9346 Set_Name
(Call_Node
, Subprog
);
9348 First_Actual
:= First
(Parameter_Associations
(Call_Node
));
9350 -- For cross-reference purposes, treat the new node as being in the
9351 -- source if the original one is. Set entity and type, even though
9352 -- they may be overwritten during resolution if overloaded.
9354 Set_Comes_From_Source
(Subprog
, Comes_From_Source
(N
));
9355 Set_Comes_From_Source
(Call_Node
, Comes_From_Source
(N
));
9357 if Nkind
(N
) = N_Selected_Component
9358 and then not Inside_A_Generic
9360 Set_Entity
(Selector_Name
(N
), Entity
(Subprog
));
9361 Set_Etype
(Selector_Name
(N
), Etype
(Entity
(Subprog
)));
9364 -- If need be, rewrite first actual as an explicit dereference. If
9365 -- the call is overloaded, the rewriting can only be done once the
9366 -- primitive operation is identified.
9368 if Is_Overloaded
(Subprog
) then
9370 -- The prefix itself may be overloaded, and its interpretations
9371 -- must be propagated to the new actual in the call.
9373 if Is_Overloaded
(Obj
) then
9374 Save_Interps
(Obj
, First_Actual
);
9377 Rewrite
(First_Actual
, Obj
);
9379 elsif not Is_Access_Type
(Formal_Type
)
9380 and then Is_Access_Type
(Etype
(Obj
))
9382 Rewrite
(First_Actual
,
9383 Make_Explicit_Dereference
(Sloc
(Obj
), Obj
));
9384 Analyze
(First_Actual
);
9386 -- If we need to introduce an explicit dereference, verify that
9387 -- the resulting actual is compatible with the mode of the formal.
9389 if Ekind
(First_Formal
(Entity
(Subprog
))) /= E_In_Parameter
9390 and then Is_Access_Constant
(Etype
(Obj
))
9393 ("expect variable in call to&", Prefix
(N
), Entity
(Subprog
));
9396 -- Conversely, if the formal is an access parameter and the object is
9397 -- not an access type or a reference type (i.e. a type with the
9398 -- Implicit_Dereference aspect specified), replace the actual with a
9399 -- 'Access reference. Its analysis will check that the object is
9402 elsif Is_Access_Type
(Formal_Type
)
9403 and then not Is_Access_Type
(Etype
(Obj
))
9405 (not Has_Implicit_Dereference
(Etype
(Obj
))
9407 not Is_Access_Type
(Designated_Type
(Etype
9408 (Get_Reference_Discriminant
(Etype
(Obj
))))))
9410 -- A special case: A.all'Access is illegal if A is an access to a
9411 -- constant and the context requires an access to a variable.
9413 if not Is_Access_Constant
(Formal_Type
) then
9414 if (Nkind
(Obj
) = N_Explicit_Dereference
9415 and then Is_Access_Constant
(Etype
(Prefix
(Obj
))))
9416 or else not Is_Variable
(Obj
)
9419 ("actual for & must be a variable", Obj
, Control
);
9423 Rewrite
(First_Actual
,
9424 Make_Attribute_Reference
(Loc
,
9425 Attribute_Name
=> Name_Access
,
9426 Prefix
=> Relocate_Node
(Obj
)));
9428 -- If the object is not overloaded verify that taking access of
9429 -- it is legal. Otherwise check is made during resolution.
9431 if not Is_Overloaded
(Obj
)
9432 and then not Is_Aliased_View
(Obj
)
9435 ("object in prefixed call to & must be aliased "
9436 & "(RM 4.1.3 (13 1/2))", Prefix
(First_Actual
), Subprog
);
9439 Analyze
(First_Actual
);
9442 if Is_Overloaded
(Obj
) then
9443 Save_Interps
(Obj
, First_Actual
);
9446 Rewrite
(First_Actual
, Obj
);
9449 if In_Extended_Main_Source_Unit
(Current_Scope
) then
9450 -- The operation is obtained from the dispatch table and not by
9451 -- visibility, and may be declared in a unit that is not
9452 -- explicitly referenced in the source, but is nevertheless
9453 -- required in the context of the current unit. Indicate that
9454 -- operation and its scope are referenced, to prevent spurious and
9455 -- misleading warnings. If the operation is overloaded, all
9456 -- primitives are in the same scope and we can use any of them.
9457 -- Don't do that outside the main unit since otherwise this will
9458 -- e.g. prevent the detection of some unused with clauses.
9460 Set_Referenced
(Entity
(Subprog
), True);
9461 Set_Referenced
(Scope
(Entity
(Subprog
)), True);
9464 Rewrite
(Node_To_Replace
, Call_Node
);
9466 -- Propagate the interpretations collected in subprog to the new
9467 -- function call node, to be resolved from context.
9469 if Is_Overloaded
(Subprog
) then
9470 Save_Interps
(Subprog
, Node_To_Replace
);
9473 Analyze
(Node_To_Replace
);
9475 -- If the operation has been rewritten into a call, which may get
9476 -- subsequently an explicit dereference, preserve the type on the
9477 -- original node (selected component or indexed component) for
9478 -- subsequent legality tests, e.g. Is_Variable. which examines
9479 -- the original node.
9481 if Nkind
(Node_To_Replace
) = N_Function_Call
then
9483 (Original_Node
(Node_To_Replace
), Etype
(Node_To_Replace
));
9486 end Complete_Object_Operation
;
9488 ----------------------
9489 -- Report_Ambiguity --
9490 ----------------------
9492 procedure Report_Ambiguity
(Op
: Entity_Id
) is
9493 Access_Actual
: constant Boolean :=
9494 Is_Access_Type
(Etype
(Prefix
(N
)));
9495 Access_Formal
: Boolean := False;
9498 Error_Msg_Sloc
:= Sloc
(Op
);
9500 if Present
(First_Formal
(Op
)) then
9501 Access_Formal
:= Is_Access_Type
(Etype
(First_Formal
(Op
)));
9504 if Access_Formal
and then not Access_Actual
then
9505 if Nkind
(Parent
(Op
)) = N_Full_Type_Declaration
then
9507 ("\possible interpretation "
9508 & "(inherited, with implicit 'Access) #", N
);
9511 ("\possible interpretation (with implicit 'Access) #", N
);
9514 elsif not Access_Formal
and then Access_Actual
then
9515 if Nkind
(Parent
(Op
)) = N_Full_Type_Declaration
then
9517 ("\possible interpretation "
9518 & "(inherited, with implicit dereference) #", N
);
9521 ("\possible interpretation (with implicit dereference) #", N
);
9525 if Nkind
(Parent
(Op
)) = N_Full_Type_Declaration
then
9526 Error_Msg_N
("\possible interpretation (inherited)#", N
);
9528 Error_Msg_N
-- CODEFIX
9529 ("\possible interpretation#", N
);
9532 end Report_Ambiguity
;
9534 --------------------------------
9535 -- Transform_Object_Operation --
9536 --------------------------------
9538 procedure Transform_Object_Operation
9539 (Call_Node
: out Node_Id
;
9540 Node_To_Replace
: out Node_Id
)
9542 Dummy
: constant Node_Id
:= New_Copy
(Obj
);
9543 -- Placeholder used as a first parameter in the call, replaced
9544 -- eventually by the proper object.
9546 Parent_Node
: constant Node_Id
:= Parent
(N
);
9552 -- Common case covering 1) Call to a procedure and 2) Call to a
9553 -- function that has some additional actuals.
9555 if Nkind
(Parent_Node
) in N_Subprogram_Call
9557 -- N is a selected component node containing the name of the
9558 -- subprogram. If N is not the name of the parent node we must
9559 -- not replace the parent node by the new construct. This case
9560 -- occurs when N is a parameterless call to a subprogram that
9561 -- is an actual parameter of a call to another subprogram. For
9563 -- Some_Subprogram (..., Obj.Operation, ...)
9565 and then N
= Name
(Parent_Node
)
9567 Node_To_Replace
:= Parent_Node
;
9569 Actuals
:= Parameter_Associations
(Parent_Node
);
9571 if Present
(Actuals
) then
9572 Prepend
(Dummy
, Actuals
);
9574 Actuals
:= New_List
(Dummy
);
9577 if Nkind
(Parent_Node
) = N_Procedure_Call_Statement
then
9579 Make_Procedure_Call_Statement
(Loc
,
9580 Name
=> New_Copy
(Subprog
),
9581 Parameter_Associations
=> Actuals
);
9585 Make_Function_Call
(Loc
,
9586 Name
=> New_Copy
(Subprog
),
9587 Parameter_Associations
=> Actuals
);
9590 -- Before analysis, a function call appears as an indexed component
9591 -- if there are no named associations.
9593 elsif Nkind
(Parent_Node
) = N_Indexed_Component
9594 and then N
= Prefix
(Parent_Node
)
9596 Node_To_Replace
:= Parent_Node
;
9597 Actuals
:= Expressions
(Parent_Node
);
9599 Actual
:= First
(Actuals
);
9600 while Present
(Actual
) loop
9605 Prepend
(Dummy
, Actuals
);
9608 Make_Function_Call
(Loc
,
9609 Name
=> New_Copy
(Subprog
),
9610 Parameter_Associations
=> Actuals
);
9612 -- Parameterless call: Obj.F is rewritten as F (Obj)
9615 Node_To_Replace
:= N
;
9618 Make_Function_Call
(Loc
,
9619 Name
=> New_Copy
(Subprog
),
9620 Parameter_Associations
=> New_List
(Dummy
));
9622 end Transform_Object_Operation
;
9624 ------------------------------
9625 -- Try_Class_Wide_Operation --
9626 ------------------------------
9628 function Try_Class_Wide_Operation
9629 (Call_Node
: Node_Id
;
9630 Node_To_Replace
: Node_Id
) return Boolean
9632 Anc_Type
: Entity_Id
;
9633 Matching_Op
: Entity_Id
:= Empty
;
9636 procedure Traverse_Homonyms
9637 (Anc_Type
: Entity_Id
;
9638 Error
: out Boolean);
9639 -- Traverse the homonym chain of the subprogram searching for those
9640 -- homonyms whose first formal has the Anc_Type's class-wide type,
9641 -- or an anonymous access type designating the class-wide type. If
9642 -- an ambiguity is detected, then Error is set to True.
9644 procedure Traverse_Interfaces
9645 (Anc_Type
: Entity_Id
;
9646 Error
: out Boolean);
9647 -- Traverse the list of interfaces, if any, associated with Anc_Type
9648 -- and search for acceptable class-wide homonyms associated with each
9649 -- interface. If an ambiguity is detected, then Error is set to True.
9651 -----------------------
9652 -- Traverse_Homonyms --
9653 -----------------------
9655 procedure Traverse_Homonyms
9656 (Anc_Type
: Entity_Id
;
9657 Error
: out Boolean)
9659 function First_Formal_Match
9660 (Subp_Id
: Entity_Id
;
9661 Typ
: Entity_Id
) return Boolean;
9662 -- Predicate to verify that the first foramal of class-wide
9663 -- subprogram Subp_Id matches type Typ of the prefix.
9665 ------------------------
9666 -- First_Formal_Match --
9667 ------------------------
9669 function First_Formal_Match
9670 (Subp_Id
: Entity_Id
;
9671 Typ
: Entity_Id
) return Boolean
9673 Ctrl
: constant Entity_Id
:= First_Formal
(Subp_Id
);
9679 (Base_Type
(Etype
(Ctrl
)) = Typ
9681 (Ekind
(Etype
(Ctrl
)) = E_Anonymous_Access_Type
9683 Base_Type
(Designated_Type
(Etype
(Ctrl
))) =
9685 end First_Formal_Match
;
9689 CW_Typ
: constant Entity_Id
:= Class_Wide_Type
(Anc_Type
);
9691 Candidate
: Entity_Id
;
9692 -- If homonym is a renaming, examine the renamed program
9698 -- Start of processing for Traverse_Homonyms
9703 -- Find a non-hidden operation whose first parameter is of the
9704 -- class-wide type, a subtype thereof, or an anonymous access
9705 -- to same. If in an instance, the operation can be considered
9706 -- even if hidden (it may be hidden because the instantiation
9707 -- is expanded after the containing package has been analyzed).
9708 -- If the subprogram is a generic actual in an enclosing instance,
9709 -- it appears as a renaming that is a candidate interpretation as
9712 Hom
:= Current_Entity
(Subprog
);
9713 while Present
(Hom
) loop
9714 if Ekind
(Hom
) in E_Procedure | E_Function
9715 and then Present
(Renamed_Entity
(Hom
))
9716 and then Is_Generic_Actual_Subprogram
(Hom
)
9717 and then In_Open_Scopes
(Scope
(Hom
))
9719 Candidate
:= Renamed_Entity
(Hom
);
9724 if Ekind
(Candidate
) in E_Function | E_Procedure
9725 and then (not Is_Hidden
(Candidate
) or else In_Instance
)
9726 and then Scope
(Candidate
) = Scope
(Base_Type
(Anc_Type
))
9727 and then First_Formal_Match
(Candidate
, CW_Typ
)
9729 -- If the context is a procedure call, ignore functions
9730 -- in the name of the call.
9732 if Ekind
(Candidate
) = E_Function
9733 and then Nkind
(Parent
(N
)) = N_Procedure_Call_Statement
9734 and then N
= Name
(Parent
(N
))
9738 -- If the context is a function call, ignore procedures
9739 -- in the name of the call.
9741 elsif Ekind
(Candidate
) = E_Procedure
9742 and then Nkind
(Parent
(N
)) /= N_Procedure_Call_Statement
9747 Set_Etype
(Call_Node
, Any_Type
);
9748 Set_Is_Overloaded
(Call_Node
, False);
9751 if No
(Matching_Op
) then
9752 Hom_Ref
:= New_Occurrence_Of
(Candidate
, Sloc
(Subprog
));
9754 Set_Etype
(Call_Node
, Any_Type
);
9755 Set_Name
(Call_Node
, Hom_Ref
);
9756 Set_Parent
(Call_Node
, Parent
(Node_To_Replace
));
9761 Report
=> Report_Error
,
9763 Skip_First
=> True);
9766 Valid_Candidate
(Success
, Call_Node
, Candidate
);
9772 Report
=> Report_Error
,
9774 Skip_First
=> True);
9776 -- The same operation may be encountered on two homonym
9777 -- traversals, before and after looking at interfaces.
9778 -- Check for this case before reporting a real ambiguity.
9781 (Valid_Candidate
(Success
, Call_Node
, Candidate
))
9782 and then Nkind
(Call_Node
) /= N_Function_Call
9783 and then Candidate
/= Matching_Op
9785 Error_Msg_NE
("ambiguous call to&", N
, Hom
);
9786 Report_Ambiguity
(Matching_Op
);
9787 Report_Ambiguity
(Hom
);
9788 Check_Ambiguous_Aggregate
(New_Call_Node
);
9796 Hom
:= Homonym
(Hom
);
9798 end Traverse_Homonyms
;
9800 -------------------------
9801 -- Traverse_Interfaces --
9802 -------------------------
9804 procedure Traverse_Interfaces
9805 (Anc_Type
: Entity_Id
;
9806 Error
: out Boolean)
9808 Intface_List
: constant List_Id
:=
9809 Abstract_Interface_List
(Anc_Type
);
9815 Intface
:= First
(Intface_List
);
9816 while Present
(Intface
) loop
9818 -- Look for acceptable class-wide homonyms associated with the
9821 Traverse_Homonyms
(Etype
(Intface
), Error
);
9827 -- Continue the search by looking at each of the interface's
9828 -- associated interface ancestors.
9830 Traverse_Interfaces
(Etype
(Intface
), Error
);
9838 end Traverse_Interfaces
;
9840 -- Start of processing for Try_Class_Wide_Operation
9843 -- If we are searching only for conflicting class-wide subprograms
9844 -- then initialize directly Matching_Op with the target entity.
9846 if CW_Test_Only
then
9847 Matching_Op
:= Entity
(Selector_Name
(N
));
9850 -- Loop through ancestor types (including interfaces), traversing
9851 -- the homonym chain of the subprogram, trying out those homonyms
9852 -- whose first formal has the class-wide type of the ancestor, or
9853 -- an anonymous access type designating the class-wide type.
9855 Anc_Type
:= Obj_Type
;
9857 -- Look for a match among homonyms associated with the ancestor
9859 Traverse_Homonyms
(Anc_Type
, Error
);
9865 -- Continue the search for matches among homonyms associated with
9866 -- any interfaces implemented by the ancestor.
9868 Traverse_Interfaces
(Anc_Type
, Error
);
9874 exit when Etype
(Anc_Type
) = Anc_Type
;
9875 Anc_Type
:= Etype
(Anc_Type
);
9878 if Present
(Matching_Op
) then
9879 Set_Etype
(Call_Node
, Etype
(Matching_Op
));
9882 return Present
(Matching_Op
);
9883 end Try_Class_Wide_Operation
;
9885 -----------------------------------
9886 -- Try_One_Prefix_Interpretation --
9887 -----------------------------------
9889 procedure Try_One_Prefix_Interpretation
(T
: Entity_Id
) is
9890 Prev_Obj_Type
: constant Entity_Id
:= Obj_Type
;
9891 -- If the interpretation does not have a valid candidate type,
9892 -- preserve current value of Obj_Type for subsequent errors.
9897 if Is_Access_Type
(Obj_Type
) then
9898 Obj_Type
:= Designated_Type
(Obj_Type
);
9902 in E_Private_Subtype | E_Record_Subtype_With_Private
9904 Obj_Type
:= Base_Type
(Obj_Type
);
9907 if Is_Class_Wide_Type
(Obj_Type
) then
9908 Obj_Type
:= Etype
(Class_Wide_Type
(Obj_Type
));
9911 -- The type may have be obtained through a limited_with clause,
9912 -- in which case the primitive operations are available on its
9913 -- nonlimited view. If still incomplete, retrieve full view.
9915 if Ekind
(Obj_Type
) = E_Incomplete_Type
9916 and then From_Limited_With
(Obj_Type
)
9917 and then Has_Non_Limited_View
(Obj_Type
)
9919 Obj_Type
:= Get_Full_View
(Non_Limited_View
(Obj_Type
));
9922 -- If the object is not tagged, or the type is still an incomplete
9923 -- type, this is not a prefixed call. Restore the previous type as
9924 -- the current one is not a legal candidate.
9926 -- Extension feature: Calls with prefixed views are also supported
9927 -- for untagged types, so skip the early return when extensions are
9928 -- enabled, unless the type doesn't have a primitive operations list
9929 -- (such as in the case of predefined types).
9931 if (not Is_Tagged_Type
(Obj_Type
)
9933 (not (Core_Extensions_Allowed
or Allow_Extensions
)
9934 or else No
(Primitive_Operations
(Obj_Type
))))
9935 or else Is_Incomplete_Type
(Obj_Type
)
9937 Obj_Type
:= Prev_Obj_Type
;
9942 Dup_Call_Node
: constant Node_Id
:= New_Copy
(New_Call_Node
);
9944 Prim_Result
: Boolean := False;
9947 if not CW_Test_Only
then
9949 Try_Primitive_Operation
9950 (Call_Node
=> New_Call_Node
,
9951 Node_To_Replace
=> Node_To_Replace
);
9953 -- Extension feature: In the case where the prefix is of an
9954 -- access type, and a primitive wasn't found for the designated
9955 -- type, then if the access type has primitives we attempt a
9956 -- prefixed call using one of its primitives. (It seems that
9957 -- this isn't quite right to give preference to the designated
9958 -- type in the case where both the access and designated types
9959 -- have homographic prefixed-view operations that could result
9960 -- in an ambiguity, but handling properly may be tricky. ???)
9962 if (Core_Extensions_Allowed
or Allow_Extensions
)
9963 and then not Prim_Result
9964 and then Is_Named_Access_Type
(Prev_Obj_Type
)
9965 and then Present
(Direct_Primitive_Operations
(Prev_Obj_Type
))
9967 -- Temporarily reset Obj_Type to the original access type
9969 Obj_Type
:= Prev_Obj_Type
;
9972 Try_Primitive_Operation
9973 (Call_Node
=> New_Call_Node
,
9974 Node_To_Replace
=> Node_To_Replace
);
9976 -- Restore Obj_Type to the designated type (is this really
9977 -- necessary, or should it only be done when Prim_Result is
9980 Obj_Type
:= Designated_Type
(Obj_Type
);
9984 -- Check if there is a class-wide subprogram covering the
9985 -- primitive. This check must be done even if a candidate
9986 -- was found in order to report ambiguous calls.
9988 if not Prim_Result
then
9990 Try_Class_Wide_Operation
9991 (Call_Node
=> New_Call_Node
,
9992 Node_To_Replace
=> Node_To_Replace
);
9994 -- If we found a primitive we search for class-wide subprograms
9995 -- using a duplicate of the call node (done to avoid missing its
9996 -- decoration if there is no ambiguity).
10000 Try_Class_Wide_Operation
10001 (Call_Node
=> Dup_Call_Node
,
10002 Node_To_Replace
=> Node_To_Replace
);
10005 end Try_One_Prefix_Interpretation
;
10007 -----------------------------
10008 -- Try_Primitive_Operation --
10009 -----------------------------
10011 function Try_Primitive_Operation
10012 (Call_Node
: Node_Id
;
10013 Node_To_Replace
: Node_Id
) return Boolean
10016 Prim_Op
: Entity_Id
;
10017 Matching_Op
: Entity_Id
:= Empty
;
10018 Prim_Op_Ref
: Node_Id
:= Empty
;
10020 Corr_Type
: Entity_Id
:= Empty
;
10021 -- If the prefix is a synchronized type, the controlling type of
10022 -- the primitive operation is the corresponding record type, else
10023 -- this is the object type itself.
10025 Success
: Boolean := False;
10027 function Collect_Generic_Type_Ops
(T
: Entity_Id
) return Elist_Id
;
10028 -- For tagged types the candidate interpretations are found in
10029 -- the list of primitive operations of the type and its ancestors.
10030 -- For formal tagged types we have to find the operations declared
10031 -- in the same scope as the type (including in the generic formal
10032 -- part) because the type itself carries no primitive operations,
10033 -- except for formal derived types that inherit the operations of
10034 -- the parent and progenitors.
10036 -- If the context is a generic subprogram body, the generic formals
10037 -- are visible by name, but are not in the entity list of the
10038 -- subprogram because that list starts with the subprogram formals.
10039 -- We retrieve the candidate operations from the generic declaration.
10041 function Extended_Primitive_Ops
(T
: Entity_Id
) return Elist_Id
;
10042 -- Prefix notation can also be used on operations that are not
10043 -- primitives of the type, but are declared in the same immediate
10044 -- declarative part, which can only mean the corresponding package
10045 -- body (see RM 4.1.3 (9.2/3)). If we are in that body we extend the
10046 -- list of primitives with body operations with the same name that
10047 -- may be candidates, so that Try_Primitive_Operations can examine
10048 -- them if no real primitive is found.
10050 function Is_Private_Overriding
(Op
: Entity_Id
) return Boolean;
10051 -- An operation that overrides an inherited operation in the private
10052 -- part of its package may be hidden, but if the inherited operation
10053 -- is visible a direct call to it will dispatch to the private one,
10054 -- which is therefore a valid candidate.
10056 function Names_Match
10057 (Obj_Type
: Entity_Id
;
10058 Prim_Op
: Entity_Id
;
10059 Subprog
: Entity_Id
) return Boolean;
10060 -- Return True if the names of Prim_Op and Subprog match. If Obj_Type
10061 -- is a protected type then compare also the original name of Prim_Op
10062 -- with the name of Subprog (since the expander may have added a
10063 -- prefix to its original name --see Exp_Ch9.Build_Selected_Name).
10065 function Valid_First_Argument_Of
(Op
: Entity_Id
) return Boolean;
10066 -- Verify that the prefix, dereferenced if need be, is a valid
10067 -- controlling argument in a call to Op. The remaining actuals
10068 -- are checked in the subsequent call to Analyze_One_Call.
10070 ------------------------------
10071 -- Collect_Generic_Type_Ops --
10072 ------------------------------
10074 function Collect_Generic_Type_Ops
(T
: Entity_Id
) return Elist_Id
is
10075 Bas
: constant Entity_Id
:= Base_Type
(T
);
10076 Candidates
: constant Elist_Id
:= New_Elmt_List
;
10078 Formal
: Entity_Id
;
10080 procedure Check_Candidate
;
10081 -- The operation is a candidate if its first parameter is a
10082 -- controlling operand of the desired type.
10084 -----------------------
10085 -- Check_Candidate; --
10086 -----------------------
10088 procedure Check_Candidate
is
10090 Formal
:= First_Formal
(Subp
);
10092 if Present
(Formal
)
10093 and then Is_Controlling_Formal
(Formal
)
10095 (Base_Type
(Etype
(Formal
)) = Bas
10097 (Is_Access_Type
(Etype
(Formal
))
10098 and then Designated_Type
(Etype
(Formal
)) = Bas
))
10100 Append_Elmt
(Subp
, Candidates
);
10102 end Check_Candidate
;
10104 -- Start of processing for Collect_Generic_Type_Ops
10107 if Is_Derived_Type
(T
) then
10108 return Primitive_Operations
(T
);
10110 elsif Ekind
(Scope
(T
)) in E_Procedure | E_Function
then
10112 -- Scan the list of generic formals to find subprograms
10113 -- that may have a first controlling formal of the type.
10115 if Nkind
(Unit_Declaration_Node
(Scope
(T
))) =
10116 N_Generic_Subprogram_Declaration
10123 First
(Generic_Formal_Declarations
10124 (Unit_Declaration_Node
(Scope
(T
))));
10125 while Present
(Decl
) loop
10126 if Nkind
(Decl
) in N_Formal_Subprogram_Declaration
then
10127 Subp
:= Defining_Entity
(Decl
);
10138 -- Scan the list of entities declared in the same scope as
10139 -- the type. In general this will be an open scope, given that
10140 -- the call we are analyzing can only appear within a generic
10141 -- declaration or body (either the one that declares T, or a
10144 -- For a subtype representing a generic actual type, go to the
10147 if Is_Generic_Actual_Type
(T
) then
10148 Subp
:= First_Entity
(Scope
(Base_Type
(T
)));
10150 Subp
:= First_Entity
(Scope
(T
));
10153 while Present
(Subp
) loop
10154 if Is_Overloadable
(Subp
) then
10158 Next_Entity
(Subp
);
10163 end Collect_Generic_Type_Ops
;
10165 ----------------------------
10166 -- Extended_Primitive_Ops --
10167 ----------------------------
10169 function Extended_Primitive_Ops
(T
: Entity_Id
) return Elist_Id
is
10170 Type_Scope
: constant Entity_Id
:= Scope
(T
);
10171 Op_List
: Elist_Id
:= Primitive_Operations
(T
);
10173 if Is_Package_Or_Generic_Package
(Type_Scope
)
10174 and then ((In_Package_Body
(Type_Scope
)
10175 and then In_Open_Scopes
(Type_Scope
)) or else In_Instance_Body
)
10177 -- Retrieve list of declarations of package body if possible
10180 The_Body
: constant Node_Id
:=
10181 Corresponding_Body
(Unit_Declaration_Node
(Type_Scope
));
10183 if Present
(The_Body
) then
10185 Body_Decls
: constant List_Id
:=
10186 Declarations
(Unit_Declaration_Node
(The_Body
));
10187 Op_Found
: Boolean := False;
10188 Op
: Entity_Id
:= Current_Entity
(Subprog
);
10190 while Present
(Op
) loop
10191 if Comes_From_Source
(Op
)
10192 and then Is_Overloadable
(Op
)
10194 -- Exclude overriding primitive operations of a
10195 -- type extension declared in the package body,
10196 -- to prevent duplicates in extended list.
10198 and then not Is_Primitive
(Op
)
10199 and then Is_List_Member
10200 (Unit_Declaration_Node
(Op
))
10201 and then List_Containing
10202 (Unit_Declaration_Node
(Op
)) = Body_Decls
10204 if not Op_Found
then
10205 -- Copy list of primitives so it is not
10206 -- affected for other uses.
10208 Op_List
:= New_Copy_Elist
(Op_List
);
10212 Append_Elmt
(Op
, Op_List
);
10215 Op
:= Homonym
(Op
);
10223 end Extended_Primitive_Ops
;
10225 ---------------------------
10226 -- Is_Private_Overriding --
10227 ---------------------------
10229 function Is_Private_Overriding
(Op
: Entity_Id
) return Boolean is
10230 Visible_Op
: Entity_Id
;
10233 -- The subprogram may be overloaded with both visible and private
10234 -- entities with the same name. We have to scan the chain of
10235 -- homonyms to determine whether there is a previous implicit
10236 -- declaration in the same scope that is overridden by the
10237 -- private candidate.
10239 Visible_Op
:= Homonym
(Op
);
10240 while Present
(Visible_Op
) loop
10241 if Scope
(Op
) /= Scope
(Visible_Op
) then
10244 elsif not Comes_From_Source
(Visible_Op
)
10245 and then Alias
(Visible_Op
) = Op
10247 -- If Visible_Op or what it overrides is not hidden, then we
10248 -- have found what we're looking for.
10250 if not Is_Hidden
(Visible_Op
)
10251 or else not Is_Hidden
(Overridden_Operation
(Op
))
10257 Visible_Op
:= Homonym
(Visible_Op
);
10261 end Is_Private_Overriding
;
10267 function Names_Match
10268 (Obj_Type
: Entity_Id
;
10269 Prim_Op
: Entity_Id
;
10270 Subprog
: Entity_Id
) return Boolean is
10272 -- Common case: exact match
10274 if Chars
(Prim_Op
) = Chars
(Subprog
) then
10277 -- For protected type primitives the expander may have built the
10278 -- name of the dispatching primitive prepending the type name to
10279 -- avoid conflicts with the name of the protected subprogram (see
10280 -- Exp_Ch9.Build_Selected_Name).
10282 elsif Is_Protected_Type
(Obj_Type
) then
10284 Present
(Original_Protected_Subprogram
(Prim_Op
))
10285 and then Chars
(Original_Protected_Subprogram
(Prim_Op
)) =
10288 -- In an instance, the selector name may be a generic actual that
10289 -- renames a primitive operation of the type of the prefix.
10291 elsif In_Instance
and then Present
(Current_Entity
(Subprog
)) then
10293 Subp
: constant Entity_Id
:= Current_Entity
(Subprog
);
10296 and then Is_Subprogram
(Subp
)
10297 and then Present
(Renamed_Entity
(Subp
))
10298 and then Is_Generic_Actual_Subprogram
(Subp
)
10299 and then Chars
(Renamed_Entity
(Subp
)) = Chars
(Prim_Op
)
10309 -----------------------------
10310 -- Valid_First_Argument_Of --
10311 -----------------------------
10313 function Valid_First_Argument_Of
(Op
: Entity_Id
) return Boolean is
10314 Typ
: Entity_Id
:= Etype
(First_Formal
(Op
));
10317 if Is_Concurrent_Type
(Typ
)
10318 and then Present
(Corresponding_Record_Type
(Typ
))
10320 Typ
:= Corresponding_Record_Type
(Typ
);
10323 -- Simple case. Object may be a subtype of the tagged type or may
10324 -- be the corresponding record of a synchronized type.
10326 return Obj_Type
= Typ
10327 or else Base_Type
(Obj_Type
) = Base_Type
(Typ
)
10328 or else Corr_Type
= Typ
10330 -- Object may be of a derived type whose parent has unknown
10331 -- discriminants, in which case the type matches the underlying
10332 -- record view of its base.
10335 (Has_Unknown_Discriminants
(Typ
)
10336 and then Typ
= Underlying_Record_View
(Base_Type
(Obj_Type
)))
10338 -- Prefix can be dereferenced
10341 (Is_Access_Type
(Corr_Type
)
10342 and then Designated_Type
(Corr_Type
) = Typ
)
10344 -- Formal is an access parameter, for which the object can
10345 -- provide an access.
10348 (Ekind
(Typ
) = E_Anonymous_Access_Type
10350 Base_Type
(Designated_Type
(Typ
)) = Base_Type
(Corr_Type
));
10351 end Valid_First_Argument_Of
;
10353 -- Start of processing for Try_Primitive_Operation
10356 -- Look for subprograms in the list of primitive operations. The name
10357 -- must be identical, and the kind of call indicates the expected
10358 -- kind of operation (function or procedure). If the type is a
10359 -- (tagged) synchronized type, the primitive ops are attached to the
10360 -- corresponding record (base) type.
10362 if Is_Concurrent_Type
(Obj_Type
) then
10363 if Present
(Corresponding_Record_Type
(Obj_Type
)) then
10364 Corr_Type
:= Base_Type
(Corresponding_Record_Type
(Obj_Type
));
10365 Elmt
:= First_Elmt
(Primitive_Operations
(Corr_Type
));
10367 Corr_Type
:= Obj_Type
;
10368 Elmt
:= First_Elmt
(Collect_Generic_Type_Ops
(Obj_Type
));
10371 elsif not Is_Generic_Type
(Obj_Type
) then
10372 Corr_Type
:= Obj_Type
;
10373 Elmt
:= First_Elmt
(Extended_Primitive_Ops
(Obj_Type
));
10376 Corr_Type
:= Obj_Type
;
10377 Elmt
:= First_Elmt
(Collect_Generic_Type_Ops
(Obj_Type
));
10380 while Present
(Elmt
) loop
10381 Prim_Op
:= Node
(Elmt
);
10383 if Names_Match
(Obj_Type
, Prim_Op
, Subprog
)
10384 and then Present
(First_Formal
(Prim_Op
))
10385 and then Valid_First_Argument_Of
(Prim_Op
)
10387 (Nkind
(Call_Node
) = N_Function_Call
)
10389 (Ekind
(Prim_Op
) = E_Function
)
10391 -- Ada 2005 (AI-251): If this primitive operation corresponds
10392 -- to an immediate ancestor interface there is no need to add
10393 -- it to the list of interpretations; the corresponding aliased
10394 -- primitive is also in this list of primitive operations and
10395 -- will be used instead.
10397 if (Present
(Interface_Alias
(Prim_Op
))
10398 and then Is_Ancestor
(Find_Dispatching_Type
10399 (Alias
(Prim_Op
)), Corr_Type
))
10401 -- Do not consider hidden primitives unless the type is in an
10402 -- open scope or we are within an instance, where visibility
10403 -- is known to be correct, or else if this is an overriding
10404 -- operation in the private part for an inherited operation.
10406 or else (Is_Hidden
(Prim_Op
)
10407 and then not Is_Immediately_Visible
(Obj_Type
)
10408 and then not In_Instance
10409 and then not Is_Private_Overriding
(Prim_Op
))
10414 Set_Etype
(Call_Node
, Any_Type
);
10415 Set_Is_Overloaded
(Call_Node
, False);
10417 if No
(Matching_Op
) then
10418 Prim_Op_Ref
:= New_Occurrence_Of
(Prim_Op
, Sloc
(Subprog
));
10419 Candidate
:= Prim_Op
;
10421 Set_Parent
(Call_Node
, Parent
(Node_To_Replace
));
10423 Set_Name
(Call_Node
, Prim_Op_Ref
);
10429 Report
=> Report_Error
,
10430 Success
=> Success
,
10431 Skip_First
=> True);
10433 Matching_Op
:= Valid_Candidate
(Success
, Call_Node
, Prim_Op
);
10435 -- More than one interpretation, collect for subsequent
10436 -- disambiguation. If this is a procedure call and there
10437 -- is another match, report ambiguity now.
10443 Report
=> Report_Error
,
10444 Success
=> Success
,
10445 Skip_First
=> True);
10447 if Present
(Valid_Candidate
(Success
, Call_Node
, Prim_Op
))
10448 and then Nkind
(Call_Node
) /= N_Function_Call
10450 Error_Msg_NE
("ambiguous call to&", N
, Prim_Op
);
10451 Report_Ambiguity
(Matching_Op
);
10452 Report_Ambiguity
(Prim_Op
);
10453 Check_Ambiguous_Aggregate
(Call_Node
);
10463 if Present
(Matching_Op
) then
10464 Set_Etype
(Call_Node
, Etype
(Matching_Op
));
10467 return Present
(Matching_Op
);
10468 end Try_Primitive_Operation
;
10470 ---------------------
10471 -- Valid_Candidate --
10472 ---------------------
10474 function Valid_Candidate
10475 (Success
: Boolean;
10477 Subp
: Entity_Id
) return Entity_Id
10479 Arr_Type
: Entity_Id
;
10480 Comp_Type
: Entity_Id
;
10483 -- If the subprogram is a valid interpretation, record it in global
10484 -- variable Subprog, to collect all possible overloadings.
10487 if Subp
/= Entity
(Subprog
) then
10488 Add_One_Interp
(Subprog
, Subp
, Etype
(Subp
));
10492 -- If the call may be an indexed call, retrieve component type of
10493 -- resulting expression, and add possible interpretation.
10496 Comp_Type
:= Empty
;
10498 if Nkind
(Call
) = N_Function_Call
10499 and then Nkind
(Parent
(N
)) = N_Indexed_Component
10500 and then Needs_One_Actual
(Subp
)
10502 if Is_Array_Type
(Etype
(Subp
)) then
10503 Arr_Type
:= Etype
(Subp
);
10505 elsif Is_Access_Type
(Etype
(Subp
))
10506 and then Is_Array_Type
(Designated_Type
(Etype
(Subp
)))
10508 Arr_Type
:= Designated_Type
(Etype
(Subp
));
10512 if Present
(Arr_Type
) then
10514 -- Verify that the actuals (excluding the object) match the types
10522 Actual
:= Next
(First_Actual
(Call
));
10523 Index
:= First_Index
(Arr_Type
);
10524 while Present
(Actual
) and then Present
(Index
) loop
10525 if not Has_Compatible_Type
(Actual
, Etype
(Index
)) then
10530 Next_Actual
(Actual
);
10531 Next_Index
(Index
);
10535 and then No
(Index
)
10536 and then Present
(Arr_Type
)
10538 Comp_Type
:= Component_Type
(Arr_Type
);
10542 if Present
(Comp_Type
)
10543 and then Etype
(Subprog
) /= Comp_Type
10545 Add_One_Interp
(Subprog
, Subp
, Comp_Type
);
10549 if Etype
(Call
) /= Any_Type
then
10554 end Valid_Candidate
;
10556 -- Start of processing for Try_Object_Operation
10559 Analyze_Expression
(Obj
);
10561 -- Analyze the actuals if node is known to be a subprogram call
10563 if Is_Subprg_Call
and then N
= Name
(Parent
(N
)) then
10564 Actual
:= First
(Parameter_Associations
(Parent
(N
)));
10565 while Present
(Actual
) loop
10566 Analyze_Expression
(Actual
);
10571 -- Build a subprogram call node, using a copy of Obj as its first
10572 -- actual. This is a placeholder, to be replaced by an explicit
10573 -- dereference when needed.
10575 Transform_Object_Operation
10576 (Call_Node
=> New_Call_Node
,
10577 Node_To_Replace
=> Node_To_Replace
);
10579 Set_Etype
(New_Call_Node
, Any_Type
);
10580 Set_Etype
(Subprog
, Any_Type
);
10581 Set_Parent
(New_Call_Node
, Parent
(Node_To_Replace
));
10583 if not Is_Overloaded
(Obj
) then
10584 Try_One_Prefix_Interpretation
(Obj_Type
);
10591 Get_First_Interp
(Obj
, I
, It
);
10592 while Present
(It
.Nam
) loop
10593 Try_One_Prefix_Interpretation
(It
.Typ
);
10594 Get_Next_Interp
(I
, It
);
10599 if Etype
(New_Call_Node
) /= Any_Type
then
10601 -- No need to complete the tree transformations if we are only
10602 -- searching for conflicting class-wide subprograms
10604 if CW_Test_Only
then
10607 Complete_Object_Operation
10608 (Call_Node
=> New_Call_Node
,
10609 Node_To_Replace
=> Node_To_Replace
);
10613 elsif Present
(Candidate
) then
10615 -- The argument list is not type correct. Re-analyze with error
10616 -- reporting enabled, and use one of the possible candidates.
10617 -- In All_Errors_Mode, re-analyze all failed interpretations.
10619 if All_Errors_Mode
then
10620 Report_Error
:= True;
10621 if Try_Primitive_Operation
10622 (Call_Node
=> New_Call_Node
,
10623 Node_To_Replace
=> Node_To_Replace
)
10626 Try_Class_Wide_Operation
10627 (Call_Node
=> New_Call_Node
,
10628 Node_To_Replace
=> Node_To_Replace
)
10635 (N
=> New_Call_Node
,
10638 Success
=> Success
,
10639 Skip_First
=> True);
10641 -- The error may hot have been reported yet for overloaded
10642 -- prefixed calls, depending on the non-matching candidate,
10643 -- in which case provide a concise error now.
10645 if Serious_Errors_Detected
= 0 then
10647 ("cannot resolve prefixed call to primitive operation of&",
10652 -- No need for further errors
10657 -- There was no candidate operation, but Analyze_Selected_Component
10658 -- may continue the analysis so we need to undo the change possibly
10659 -- made to the Parent of N earlier by Transform_Object_Operation.
10662 Parent_Node
: constant Node_Id
:= Parent
(N
);
10665 if Node_To_Replace
= Parent_Node
then
10666 Remove
(First
(Parameter_Associations
(New_Call_Node
)));
10668 (Parameter_Associations
(New_Call_Node
), Parent_Node
);
10674 end Try_Object_Operation
;
10676 -------------------------
10677 -- Unresolved_Operator --
10678 -------------------------
10680 procedure Unresolved_Operator
(N
: Node_Id
) is
10681 L
: constant Node_Id
:=
10682 (if Nkind
(N
) in N_Binary_Op
then Left_Opnd
(N
) else Empty
);
10683 R
: constant Node_Id
:= Right_Opnd
(N
);
10688 -- Note that in the following messages, if the operand is overloaded we
10689 -- choose an arbitrary type to complain about, but that is probably more
10690 -- useful than not giving a type at all.
10692 if Nkind
(N
) in N_Unary_Op
then
10693 Error_Msg_Node_2
:= Etype
(R
);
10694 Error_Msg_N
("operator& not defined for}", N
);
10696 elsif Nkind
(N
) in N_Binary_Op
then
10697 if not Is_Overloaded
(L
)
10698 and then not Is_Overloaded
(R
)
10699 and then Base_Type
(Etype
(L
)) = Base_Type
(Etype
(R
))
10701 Error_Msg_Node_2
:= First_Subtype
(Etype
(R
));
10702 Error_Msg_N
("there is no applicable operator& for}", N
);
10705 -- Another attempt to find a fix: one of the candidate
10706 -- interpretations may not be use-visible. This has
10707 -- already been checked for predefined operators, so
10708 -- we examine only user-defined functions.
10710 Op_Id
:= Get_Name_Entity_Id
(Chars
(N
));
10712 while Present
(Op_Id
) loop
10713 if Ekind
(Op_Id
) /= E_Operator
10714 and then Is_Overloadable
(Op_Id
)
10715 and then not Is_Immediately_Visible
(Op_Id
)
10716 and then not In_Use
(Scope
(Op_Id
))
10717 and then not Is_Abstract_Subprogram
(Op_Id
)
10718 and then not Is_Hidden
(Op_Id
)
10719 and then Ekind
(Scope
(Op_Id
)) = E_Package
10720 and then Has_Compatible_Type
(L
, Etype
(First_Formal
(Op_Id
)))
10721 and then Present
(Next_Formal
(First_Formal
(Op_Id
)))
10723 Has_Compatible_Type
10724 (R
, Etype
(Next_Formal
(First_Formal
(Op_Id
))))
10726 Error_Msg_N
("no legal interpretation for operator&", N
);
10727 Error_Msg_NE
("\use clause on& would make operation legal",
10732 Op_Id
:= Homonym
(Op_Id
);
10736 Error_Msg_N
("invalid operand types for operator&", N
);
10738 if Nkind
(N
) /= N_Op_Concat
then
10739 Error_Msg_NE
("\left operand has}!", N
, Etype
(L
));
10740 Error_Msg_NE
("\right operand has}!", N
, Etype
(R
));
10742 -- For multiplication and division operators with
10743 -- a fixed-point operand and an integer operand,
10744 -- indicate that the integer operand should be of
10747 if Nkind
(N
) in N_Op_Multiply | N_Op_Divide
10748 and then Is_Fixed_Point_Type
(Etype
(L
))
10749 and then Is_Integer_Type
(Etype
(R
))
10751 Error_Msg_N
("\convert right operand to `Integer`", N
);
10753 elsif Nkind
(N
) = N_Op_Multiply
10754 and then Is_Fixed_Point_Type
(Etype
(R
))
10755 and then Is_Integer_Type
(Etype
(L
))
10757 Error_Msg_N
("\convert left operand to `Integer`", N
);
10760 -- For concatenation operators it is more difficult to
10761 -- determine which is the wrong operand. It is worth
10762 -- flagging explicitly an access type, for those who
10763 -- might think that a dereference happens here.
10765 elsif Is_Access_Type
(Etype
(L
)) then
10766 Error_Msg_N
("\left operand is access type", N
);
10768 elsif Is_Access_Type
(Etype
(R
)) then
10769 Error_Msg_N
("\right operand is access type", N
);
10774 end Unresolved_Operator
;
10780 procedure wpo
(T
: Entity_Id
) is
10785 if not Is_Tagged_Type
(T
) then
10789 E
:= First_Elmt
(Primitive_Operations
(Base_Type
(T
)));
10790 while Present
(E
) loop
10792 Write_Int
(Int
(Op
));
10793 Write_Str
(" === ");
10794 Write_Name
(Chars
(Op
));
10795 Write_Str
(" in ");
10796 Write_Name
(Chars
(Scope
(Op
)));