1 ------------------------------------------------------------------------------
3 -- GNAT COMPILER COMPONENTS --
9 -- Copyright (C) 1992-2024, Free Software Foundation, Inc. --
11 -- GNAT is free software; you can redistribute it and/or modify it under --
12 -- terms of the GNU General Public License as published by the Free Soft- --
13 -- ware Foundation; either version 3, or (at your option) any later ver- --
14 -- sion. GNAT is distributed in the hope that it will be useful, but WITH- --
15 -- OUT ANY WARRANTY; without even the implied warranty of MERCHANTABILITY --
16 -- or FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License --
17 -- for more details. You should have received a copy of the GNU General --
18 -- Public License distributed with GNAT; see file COPYING3. If not, go to --
19 -- http://www.gnu.org/licenses for a complete copy of the license. --
21 -- GNAT was originally developed by the GNAT team at New York University. --
22 -- Extensive contributions were provided by Ada Core Technologies Inc. --
24 ------------------------------------------------------------------------------
26 with Aspects
; use Aspects
;
27 with Atree
; use Atree
;
28 with Checks
; use Checks
;
29 with Einfo
; use Einfo
;
30 with Einfo
.Utils
; use Einfo
.Utils
;
31 with Elists
; use Elists
;
32 with Errout
; use Errout
;
33 with Expander
; use Expander
;
34 with Exp_Tss
; use Exp_Tss
;
35 with Exp_Util
; use Exp_Util
;
36 with Freeze
; use Freeze
;
37 with Itypes
; use Itypes
;
39 with Lib
.Xref
; use Lib
.Xref
;
40 with Namet
; use Namet
;
41 with Namet
.Sp
; use Namet
.Sp
;
42 with Nmake
; use Nmake
;
43 with Nlists
; use Nlists
;
45 with Restrict
; use Restrict
;
46 with Rident
; use Rident
;
48 with Sem_Aux
; use Sem_Aux
;
49 with Sem_Case
; use Sem_Case
;
50 with Sem_Cat
; use Sem_Cat
;
51 with Sem_Ch3
; use Sem_Ch3
;
52 with Sem_Ch8
; use Sem_Ch8
;
53 with Sem_Ch13
; use Sem_Ch13
;
54 with Sem_Dim
; use Sem_Dim
;
55 with Sem_Eval
; use Sem_Eval
;
56 with Sem_Res
; use Sem_Res
;
57 with Sem_Util
; use Sem_Util
;
58 with Sem_Type
; use Sem_Type
;
59 with Sem_Warn
; use Sem_Warn
;
60 with Sinfo
; use Sinfo
;
61 with Sinfo
.Nodes
; use Sinfo
.Nodes
;
62 with Sinfo
.Utils
; use Sinfo
.Utils
;
63 with Snames
; use Snames
;
64 with Stringt
; use Stringt
;
65 with Stand
; use Stand
;
66 with Style
; use Style
;
67 with Targparm
; use Targparm
;
68 with Tbuild
; use Tbuild
;
69 with Ttypes
; use Ttypes
;
70 with Uintp
; use Uintp
;
71 with Warnsw
; use Warnsw
;
73 package body Sem_Aggr
is
75 type Case_Bounds
is record
77 -- Low bound of choice. Once we sort the Case_Table, then entries
78 -- will be in order of ascending Choice_Lo values.
81 -- High Bound of choice. The sort does not pay any attention to the
82 -- high bound, so choices 1 .. 4 and 1 .. 5 could be in either order.
85 -- If there are duplicates or missing entries, then in the sorted
86 -- table, this records the highest value among Choice_Hi values
87 -- seen so far, including this entry.
90 -- The node of the choice
93 type Case_Table_Type
is array (Pos
range <>) of Case_Bounds
;
94 -- Table type used by Check_Case_Choices procedure
96 -----------------------
97 -- Local Subprograms --
98 -----------------------
100 procedure Sort_Case_Table
(Case_Table
: in out Case_Table_Type
);
101 -- Sort the Case Table using the Lower Bound of each Choice as the key. A
102 -- simple insertion sort is used since the choices in a case statement will
103 -- usually be in near sorted order.
105 procedure Check_Can_Never_Be_Null
(Typ
: Entity_Id
; Expr
: Node_Id
);
106 -- Ada 2005 (AI-231): Check bad usage of null for a component for which
107 -- null exclusion (NOT NULL) is specified. Typ can be an E_Array_Type for
108 -- the array case (the component type of the array will be used) or an
109 -- E_Component/E_Discriminant entity in the record case, in which case the
110 -- type of the component will be used for the test. If Typ is any other
111 -- kind of entity, the call is ignored. Expr is the component node in the
112 -- aggregate which is known to have a null value. A warning message will be
113 -- issued if the component is null excluding.
115 -- It would be better to pass the proper type for Typ ???
117 procedure Check_Expr_OK_In_Limited_Aggregate
(Expr
: Node_Id
);
118 -- Check that Expr is either not limited or else is one of the cases of
119 -- expressions allowed for a limited component association (namely, an
120 -- aggregate, function call, or <> notation). Report error for violations.
121 -- Expression is also OK in an instance or inlining context, because we
122 -- have already preanalyzed and it is known to be type correct.
124 ------------------------------------------------------
125 -- Subprograms used for RECORD AGGREGATE Processing --
126 ------------------------------------------------------
128 procedure Resolve_Record_Aggregate
(N
: Node_Id
; Typ
: Entity_Id
);
129 -- This procedure performs all the semantic checks required for record
130 -- aggregates. Note that for aggregates analysis and resolution go
131 -- hand in hand. Aggregate analysis has been delayed up to here and
132 -- it is done while resolving the aggregate.
134 -- N is the N_Aggregate node.
135 -- Typ is the record type for the aggregate resolution
137 -- While performing the semantic checks, this procedure builds a new
138 -- Component_Association_List where each record field appears alone in a
139 -- Component_Choice_List along with its corresponding expression. The
140 -- record fields in the Component_Association_List appear in the same order
141 -- in which they appear in the record type Typ.
143 -- Once this new Component_Association_List is built and all the semantic
144 -- checks performed, the original aggregate subtree is replaced with the
145 -- new named record aggregate just built. This new record aggregate has no
146 -- positional associations, so its Expressions field is set to No_List.
147 -- Note that subtree substitution is performed with Rewrite so as to be
148 -- able to retrieve the original aggregate.
150 -- The aggregate subtree manipulation performed by Resolve_Record_Aggregate
151 -- yields the aggregate format expected by Gigi. Typically, this kind of
152 -- tree manipulations are done in the expander. However, because the
153 -- semantic checks that need to be performed on record aggregates really go
154 -- hand in hand with the record aggregate normalization, the aggregate
155 -- subtree transformation is performed during resolution rather than
156 -- expansion. Had we decided otherwise we would have had to duplicate most
157 -- of the code in the expansion procedure Expand_Record_Aggregate. Note,
158 -- however, that all the expansion concerning aggregates for tagged records
159 -- is done in Expand_Record_Aggregate.
161 -- The algorithm of Resolve_Record_Aggregate proceeds as follows:
163 -- 1. Make sure that the record type against which the record aggregate
164 -- has to be resolved is not abstract. Furthermore if the type is a
165 -- null aggregate make sure the input aggregate N is also null.
167 -- 2. Verify that the structure of the aggregate is that of a record
168 -- aggregate. Specifically, look for component associations and ensure
169 -- that each choice list only has identifiers or the N_Others_Choice
170 -- node. Also make sure that if present, the N_Others_Choice occurs
171 -- last and by itself.
173 -- 3. If Typ contains discriminants, the values for each discriminant is
174 -- looked for. If the record type Typ has variants, we check that the
175 -- expressions corresponding to each discriminant ruling the (possibly
176 -- nested) variant parts of Typ, are static. This allows us to determine
177 -- the variant parts to which the rest of the aggregate must conform.
178 -- The names of discriminants with their values are saved in a new
179 -- association list, New_Assoc_List which is later augmented with the
180 -- names and values of the remaining components in the record type.
182 -- During this phase we also make sure that every discriminant is
183 -- assigned exactly one value. Note that when several values for a given
184 -- discriminant are found, semantic processing continues looking for
185 -- further errors. In this case it's the first discriminant value found
186 -- which we will be recorded.
188 -- IMPORTANT NOTE: For derived tagged types this procedure expects
189 -- First_Discriminant and Next_Discriminant to give the correct list
190 -- of discriminants, in the correct order.
192 -- 4. After all the discriminant values have been gathered, we can set the
193 -- Etype of the record aggregate. If Typ contains no discriminants this
194 -- is straightforward: the Etype of N is just Typ, otherwise a new
195 -- implicit constrained subtype of Typ is built to be the Etype of N.
197 -- 5. Gather the remaining record components according to the discriminant
198 -- values. This involves recursively traversing the record type
199 -- structure to see what variants are selected by the given discriminant
200 -- values. This processing is a little more convoluted if Typ is a
201 -- derived tagged types since we need to retrieve the record structure
202 -- of all the ancestors of Typ.
204 -- 6. After gathering the record components we look for their values in the
205 -- record aggregate and emit appropriate error messages should we not
206 -- find such values or should they be duplicated.
208 -- 7. We then make sure no illegal component names appear in the record
209 -- aggregate and make sure that the type of the record components
210 -- appearing in a same choice list is the same. Finally we ensure that
211 -- the others choice, if present, is used to provide the value of at
212 -- least a record component.
214 -- 8. The original aggregate node is replaced with the new named aggregate
215 -- built in steps 3 through 6, as explained earlier.
217 -- Given the complexity of record aggregate resolution, the primary goal of
218 -- this routine is clarity and simplicity rather than execution and storage
219 -- efficiency. If there are only positional components in the aggregate the
220 -- running time is linear. If there are associations the running time is
221 -- still linear as long as the order of the associations is not too far off
222 -- the order of the components in the record type. If this is not the case
223 -- the running time is at worst quadratic in the size of the association
226 procedure Check_Misspelled_Component
227 (Elements
: Elist_Id
;
228 Component
: Node_Id
);
229 -- Give possible misspelling diagnostic if Component is likely to be a
230 -- misspelling of one of the components of the Assoc_List. This is called
231 -- by Resolve_Aggr_Expr after producing an invalid component error message.
233 -----------------------------------------------------
234 -- Subprograms used for ARRAY AGGREGATE Processing --
235 -----------------------------------------------------
237 function Resolve_Array_Aggregate
240 Index_Constr
: Node_Id
;
241 Component_Typ
: Entity_Id
;
242 Others_Allowed
: Boolean) return Boolean;
243 -- This procedure performs the semantic checks for an array aggregate.
244 -- True is returned if the aggregate resolution succeeds.
246 -- The procedure works by recursively checking each nested aggregate.
247 -- Specifically, after checking a sub-aggregate nested at the i-th level
248 -- we recursively check all the subaggregates at the i+1-st level (if any).
249 -- Note that aggregates analysis and resolution go hand in hand.
250 -- Aggregate analysis has been delayed up to here and it is done while
251 -- resolving the aggregate.
253 -- N is the current N_Aggregate node to be checked.
255 -- Index is the index node corresponding to the array sub-aggregate that
256 -- we are currently checking (RM 4.3.3 (8)). Its Etype is the
257 -- corresponding index type (or subtype).
259 -- Index_Constr is the node giving the applicable index constraint if
260 -- any (RM 4.3.3 (10)). It "is a constraint provided by certain
261 -- contexts [...] that can be used to determine the bounds of the array
262 -- value specified by the aggregate". If Others_Allowed below is False
263 -- there is no applicable index constraint and this node is set to Index.
265 -- Component_Typ is the array component type.
267 -- Others_Allowed indicates whether an others choice is allowed
268 -- in the context where the top-level aggregate appeared.
270 -- The algorithm of Resolve_Array_Aggregate proceeds as follows:
272 -- 1. Make sure that the others choice, if present, is by itself and
273 -- appears last in the sub-aggregate. Check that we do not have
274 -- positional and named components in the array sub-aggregate (unless
275 -- the named association is an others choice). Finally if an others
276 -- choice is present, make sure it is allowed in the aggregate context.
278 -- 2. If the array sub-aggregate contains discrete_choices:
280 -- (A) Verify their validity. Specifically verify that:
282 -- (a) If a null range is present it must be the only possible
283 -- choice in the array aggregate.
285 -- (b) Ditto for a non static range.
287 -- (c) Ditto for a non static expression.
289 -- In addition this step analyzes and resolves each discrete_choice,
290 -- making sure that its type is the type of the corresponding Index.
291 -- If we are not at the lowest array aggregate level (in the case of
292 -- multi-dimensional aggregates) then invoke Resolve_Array_Aggregate
293 -- recursively on each component expression. Otherwise, resolve the
294 -- bottom level component expressions against the expected component
295 -- type ONLY IF the component corresponds to a single discrete choice
296 -- which is not an others choice (to see why read the DELAYED
297 -- COMPONENT RESOLUTION below).
299 -- (B) Determine the bounds of the sub-aggregate and lowest and
300 -- highest choice values.
302 -- 3. For positional aggregates:
304 -- (A) Loop over the component expressions either recursively invoking
305 -- Resolve_Array_Aggregate on each of these for multi-dimensional
306 -- array aggregates or resolving the bottom level component
307 -- expressions against the expected component type.
309 -- (B) Determine the bounds of the positional sub-aggregates.
311 -- 4. Try to determine statically whether the evaluation of the array
312 -- sub-aggregate raises Constraint_Error. If yes emit proper
313 -- warnings. The precise checks are the following:
315 -- (A) Check that the index range defined by aggregate bounds is
316 -- compatible with corresponding index subtype.
317 -- We also check against the base type. In fact it could be that
318 -- Low/High bounds of the base type are static whereas those of
319 -- the index subtype are not. Thus if we can statically catch
320 -- a problem with respect to the base type we are guaranteed
321 -- that the same problem will arise with the index subtype
323 -- (B) If we are dealing with a named aggregate containing an others
324 -- choice and at least one discrete choice then make sure the range
325 -- specified by the discrete choices does not overflow the
326 -- aggregate bounds. We also check against the index type and base
327 -- type bounds for the same reasons given in (A).
329 -- (C) If we are dealing with a positional aggregate with an others
330 -- choice make sure the number of positional elements specified
331 -- does not overflow the aggregate bounds. We also check against
332 -- the index type and base type bounds as mentioned in (A).
334 -- Finally construct an N_Range node giving the sub-aggregate bounds.
335 -- Set the Aggregate_Bounds field of the sub-aggregate to be this
336 -- N_Range. The routine Array_Aggr_Subtype below uses such N_Ranges
337 -- to build the appropriate aggregate subtype. Aggregate_Bounds
338 -- information is needed during expansion.
340 -- DELAYED COMPONENT RESOLUTION: The resolution of bottom level component
341 -- expressions in an array aggregate may call Duplicate_Subexpr or some
342 -- other routine that inserts code just outside the outermost aggregate.
343 -- If the array aggregate contains discrete choices or an others choice,
344 -- this may be wrong. Consider for instance the following example.
346 -- type Rec is record
350 -- type Acc_Rec is access Rec;
351 -- Arr : array (1..3) of Acc_Rec := (1 .. 3 => new Rec);
353 -- Then the transformation of "new Rec" that occurs during resolution
354 -- entails the following code modifications
356 -- P7b : constant Acc_Rec := new Rec;
358 -- Arr : array (1..3) of Acc_Rec := (1 .. 3 => P7b);
360 -- This code transformation is clearly wrong, since we need to call
361 -- "new Rec" for each of the 3 array elements. To avoid this problem we
362 -- delay resolution of the components of non positional array aggregates
363 -- to the expansion phase. As an optimization, if the discrete choice
364 -- specifies a single value we do not delay resolution.
366 function Array_Aggr_Subtype
(N
: Node_Id
; Typ
: Entity_Id
) return Entity_Id
;
367 -- This routine returns the type or subtype of an array aggregate.
369 -- N is the array aggregate node whose type we return.
371 -- Typ is the context type in which N occurs.
373 -- This routine creates an implicit array subtype whose bounds are
374 -- those defined by the aggregate. When this routine is invoked
375 -- Resolve_Array_Aggregate has already processed aggregate N. Thus the
376 -- Aggregate_Bounds of each sub-aggregate, is an N_Range node giving the
377 -- sub-aggregate bounds. When building the aggregate itype, this function
378 -- traverses the array aggregate N collecting such Aggregate_Bounds and
379 -- constructs the proper array aggregate itype.
381 -- Note that in the case of multidimensional aggregates each inner
382 -- sub-aggregate corresponding to a given array dimension, may provide a
383 -- different bounds. If it is possible to determine statically that
384 -- some sub-aggregates corresponding to the same index do not have the
385 -- same bounds, then a warning is emitted. If such check is not possible
386 -- statically (because some sub-aggregate bounds are dynamic expressions)
387 -- then this job is left to the expander. In all cases the particular
388 -- bounds that this function will chose for a given dimension is the first
389 -- N_Range node for a sub-aggregate corresponding to that dimension.
391 -- Note that the Raises_Constraint_Error flag of an array aggregate
392 -- whose evaluation is determined to raise CE by Resolve_Array_Aggregate,
393 -- is set in Resolve_Array_Aggregate but the aggregate is not
394 -- immediately replaced with a raise CE. In fact, Array_Aggr_Subtype must
395 -- first construct the proper itype for the aggregate (Gigi needs
396 -- this). After constructing the proper itype we will eventually replace
397 -- the top-level aggregate with a raise CE (done in Resolve_Aggregate).
398 -- Of course in cases such as:
400 -- type Arr is array (integer range <>) of Integer;
401 -- A : Arr := (positive range -1 .. 2 => 0);
403 -- The bounds of the aggregate itype are cooked up to look reasonable
404 -- (in this particular case the bounds will be 1 .. 2).
406 procedure Make_String_Into_Aggregate
(N
: Node_Id
);
407 -- A string literal can appear in a context in which a one dimensional
408 -- array of characters is expected. This procedure simply rewrites the
409 -- string as an aggregate, prior to resolution.
411 function Resolve_Null_Array_Aggregate
(N
: Node_Id
) return Boolean;
412 -- For the Ada 2022 construct, build a subtype with a null range for each
413 -- dimension, using the bounds from the context subtype (if the subtype
414 -- is constrained). If the subtype is unconstrained, then the bounds
415 -- are determined in much the same way as the bounds for a null string
416 -- literal with no applicable index constraint.
418 ---------------------------------
419 -- Delta aggregate processing --
420 ---------------------------------
422 procedure Resolve_Delta_Array_Aggregate
(N
: Node_Id
; Typ
: Entity_Id
);
423 procedure Resolve_Delta_Record_Aggregate
(N
: Node_Id
; Typ
: Entity_Id
);
424 procedure Resolve_Deep_Delta_Assoc
(N
: Node_Id
; Typ
: Entity_Id
);
425 -- Resolve the names/expressions in a component association for
426 -- a deep delta aggregate. Typ is the type of the enclosing object.
428 ------------------------
429 -- Array_Aggr_Subtype --
430 ------------------------
432 function Array_Aggr_Subtype
434 Typ
: Entity_Id
) return Entity_Id
436 Aggr_Dimension
: constant Pos
:= Number_Dimensions
(Typ
);
437 -- Number of aggregate index dimensions
439 Aggr_Range
: array (1 .. Aggr_Dimension
) of Node_Id
:= (others => Empty
);
440 -- Constrained N_Range of each index dimension in our aggregate itype
442 Aggr_Low
: array (1 .. Aggr_Dimension
) of Node_Id
:= (others => Empty
);
443 Aggr_High
: array (1 .. Aggr_Dimension
) of Node_Id
:= (others => Empty
);
444 -- Low and High bounds for each index dimension in our aggregate itype
446 Is_Fully_Positional
: Boolean := True;
448 procedure Collect_Aggr_Bounds
(N
: Node_Id
; Dim
: Pos
);
449 -- N is an array (sub-)aggregate. Dim is the dimension corresponding
450 -- to (sub-)aggregate N. This procedure collects and removes the side
451 -- effects of the constrained N_Range nodes corresponding to each index
452 -- dimension of our aggregate itype. These N_Range nodes are collected
453 -- in Aggr_Range above.
455 -- Likewise collect in Aggr_Low & Aggr_High above the low and high
456 -- bounds of each index dimension. If, when collecting, two bounds
457 -- corresponding to the same dimension are static and found to differ,
458 -- then emit a warning, and mark N as raising Constraint_Error.
460 -------------------------
461 -- Collect_Aggr_Bounds --
462 -------------------------
464 procedure Collect_Aggr_Bounds
(N
: Node_Id
; Dim
: Pos
) is
465 This_Range
: constant Node_Id
:= Aggregate_Bounds
(N
);
466 -- The aggregate range node of this specific sub-aggregate
468 This_Low
: constant Node_Id
:= Low_Bound
(This_Range
);
469 This_High
: constant Node_Id
:= High_Bound
(This_Range
);
470 -- The aggregate bounds of this specific sub-aggregate
476 Remove_Side_Effects
(This_Low
, Variable_Ref
=> True);
477 Remove_Side_Effects
(This_High
, Variable_Ref
=> True);
479 -- Collect the first N_Range for a given dimension that you find.
480 -- For a given dimension they must be all equal anyway.
482 if No
(Aggr_Range
(Dim
)) then
483 Aggr_Low
(Dim
) := This_Low
;
484 Aggr_High
(Dim
) := This_High
;
485 Aggr_Range
(Dim
) := This_Range
;
488 if Compile_Time_Known_Value
(This_Low
) then
489 if not Compile_Time_Known_Value
(Aggr_Low
(Dim
)) then
490 Aggr_Low
(Dim
) := This_Low
;
492 elsif Expr_Value
(This_Low
) /= Expr_Value
(Aggr_Low
(Dim
)) then
493 Set_Raises_Constraint_Error
(N
);
494 Error_Msg_Warn
:= SPARK_Mode
/= On
;
495 Error_Msg_N
("sub-aggregate low bound mismatch<<", N
);
496 Error_Msg_N
("\Constraint_Error [<<", N
);
500 if Compile_Time_Known_Value
(This_High
) then
501 if not Compile_Time_Known_Value
(Aggr_High
(Dim
)) then
502 Aggr_High
(Dim
) := This_High
;
505 Expr_Value
(This_High
) /= Expr_Value
(Aggr_High
(Dim
))
507 Set_Raises_Constraint_Error
(N
);
508 Error_Msg_Warn
:= SPARK_Mode
/= On
;
509 Error_Msg_N
("sub-aggregate high bound mismatch<<", N
);
510 Error_Msg_N
("\Constraint_Error [<<", N
);
515 if Dim
< Aggr_Dimension
then
517 -- Process positional components
519 if Present
(Expressions
(N
)) then
520 Expr
:= First
(Expressions
(N
));
521 while Present
(Expr
) loop
522 Collect_Aggr_Bounds
(Expr
, Dim
+ 1);
527 -- Process component associations
529 if Present
(Component_Associations
(N
)) then
530 Is_Fully_Positional
:= False;
532 Assoc
:= First
(Component_Associations
(N
));
533 while Present
(Assoc
) loop
534 Expr
:= Expression
(Assoc
);
535 Collect_Aggr_Bounds
(Expr
, Dim
+ 1);
540 end Collect_Aggr_Bounds
;
542 -- Array_Aggr_Subtype variables
545 -- The final itype of the overall aggregate
547 Index_Constraints
: constant List_Id
:= New_List
;
548 -- The list of index constraints of the aggregate itype
550 -- Start of processing for Array_Aggr_Subtype
553 -- Make sure that the list of index constraints is properly attached to
554 -- the tree, and then collect the aggregate bounds.
556 -- If no aggregaate bounds have been set, this is an aggregate with
557 -- iterator specifications and a dynamic size to be determined by
558 -- first pass of expanded code.
560 if No
(Aggregate_Bounds
(N
)) then
564 Set_Parent
(Index_Constraints
, N
);
566 -- When resolving a null aggregate we created a list of aggregate bounds
567 -- for the consecutive dimensions. The bounds for the first dimension
568 -- are attached as the Aggregate_Bounds of the aggregate node.
570 if Is_Null_Aggregate
(N
) then
572 This_Range
: Node_Id
:= Aggregate_Bounds
(N
);
574 for J
in 1 .. Aggr_Dimension
loop
575 Aggr_Range
(J
) := This_Range
;
576 Next_Index
(This_Range
);
578 -- Remove bounds from the list, so they can be reattached as
579 -- the First_Index/Next_Index again by the code that also
580 -- handles non-null aggregates.
582 Remove
(Aggr_Range
(J
));
586 Collect_Aggr_Bounds
(N
, 1);
589 -- Build the list of constrained indexes of our aggregate itype
591 for J
in 1 .. Aggr_Dimension
loop
592 Create_Index
: declare
593 Index_Base
: constant Entity_Id
:=
594 Base_Type
(Etype
(Aggr_Range
(J
)));
595 Index_Typ
: Entity_Id
;
598 -- Construct the Index subtype, and associate it with the range
599 -- construct that generates it.
602 Create_Itype
(Subtype_Kind
(Ekind
(Index_Base
)), Aggr_Range
(J
));
604 Set_Etype
(Index_Typ
, Index_Base
);
606 if Is_Character_Type
(Index_Base
) then
607 Set_Is_Character_Type
(Index_Typ
);
610 Set_Size_Info
(Index_Typ
, (Index_Base
));
611 Set_RM_Size
(Index_Typ
, RM_Size
(Index_Base
));
612 Set_First_Rep_Item
(Index_Typ
, First_Rep_Item
(Index_Base
));
613 Set_Scalar_Range
(Index_Typ
, Aggr_Range
(J
));
615 if Is_Discrete_Or_Fixed_Point_Type
(Index_Typ
) then
616 Set_RM_Size
(Index_Typ
, UI_From_Int
(Minimum_Size
(Index_Typ
)));
619 Set_Etype
(Aggr_Range
(J
), Index_Typ
);
621 Append
(Aggr_Range
(J
), To
=> Index_Constraints
);
625 -- Now build the Itype
627 Itype
:= Create_Itype
(E_Array_Subtype
, N
);
629 Set_First_Rep_Item
(Itype
, First_Rep_Item
(Typ
));
630 Set_Convention
(Itype
, Convention
(Typ
));
631 Set_Depends_On_Private
(Itype
, Has_Private_Component
(Typ
));
632 Set_Etype
(Itype
, Base_Type
(Typ
));
633 Set_Has_Alignment_Clause
(Itype
, Has_Alignment_Clause
(Typ
));
634 Set_Is_Aliased
(Itype
, Is_Aliased
(Typ
));
635 Set_Is_Independent
(Itype
, Is_Independent
(Typ
));
636 Set_Depends_On_Private
(Itype
, Depends_On_Private
(Typ
));
638 Copy_Suppress_Status
(Index_Check
, Typ
, Itype
);
639 Copy_Suppress_Status
(Length_Check
, Typ
, Itype
);
641 Set_First_Index
(Itype
, First
(Index_Constraints
));
642 Set_Is_Constrained
(Itype
, True);
643 Set_Is_Internal
(Itype
, True);
645 if Has_Predicates
(Typ
) then
646 Set_Has_Predicates
(Itype
);
648 -- If the base type has a predicate, capture the predicated parent
649 -- or the existing predicate function for SPARK use.
651 if Present
(Predicate_Function
(Typ
)) then
652 Set_Predicate_Function
(Itype
, Predicate_Function
(Typ
));
654 elsif Is_Itype
(Typ
) then
655 Set_Predicated_Parent
(Itype
, Predicated_Parent
(Typ
));
658 Set_Predicated_Parent
(Itype
, Typ
);
662 -- A simple optimization: purely positional aggregates of static
663 -- components should be passed to gigi unexpanded whenever possible, and
664 -- regardless of the staticness of the bounds themselves. Subsequent
665 -- checks in exp_aggr verify that type is not packed, etc.
667 Set_Size_Known_At_Compile_Time
670 and then Comes_From_Source
(N
)
671 and then Size_Known_At_Compile_Time
(Component_Type
(Typ
)));
673 -- We always need a freeze node for a packed array subtype, so that we
674 -- can build the Packed_Array_Impl_Type corresponding to the subtype. If
675 -- expansion is disabled, the packed array subtype is not built, and we
676 -- must not generate a freeze node for the type, or else it will appear
677 -- incomplete to gigi.
680 and then not In_Spec_Expression
681 and then Expander_Active
683 Freeze_Itype
(Itype
, N
);
687 end Array_Aggr_Subtype
;
689 --------------------------------
690 -- Check_Misspelled_Component --
691 --------------------------------
693 procedure Check_Misspelled_Component
694 (Elements
: Elist_Id
;
697 Max_Suggestions
: constant := 2;
699 Nr_Of_Suggestions
: Natural := 0;
700 Suggestion_1
: Entity_Id
:= Empty
;
701 Suggestion_2
: Entity_Id
:= Empty
;
702 Component_Elmt
: Elmt_Id
;
705 -- All the components of List are matched against Component and a count
706 -- is maintained of possible misspellings. When at the end of the
707 -- analysis there are one or two (not more) possible misspellings,
708 -- these misspellings will be suggested as possible corrections.
710 Component_Elmt
:= First_Elmt
(Elements
);
711 while Nr_Of_Suggestions
<= Max_Suggestions
712 and then Present
(Component_Elmt
)
714 if Is_Bad_Spelling_Of
715 (Chars
(Node
(Component_Elmt
)),
718 Nr_Of_Suggestions
:= Nr_Of_Suggestions
+ 1;
720 case Nr_Of_Suggestions
is
721 when 1 => Suggestion_1
:= Node
(Component_Elmt
);
722 when 2 => Suggestion_2
:= Node
(Component_Elmt
);
727 Next_Elmt
(Component_Elmt
);
730 -- Report at most two suggestions
732 if Nr_Of_Suggestions
= 1 then
733 Error_Msg_NE
-- CODEFIX
734 ("\possible misspelling of&", Component
, Suggestion_1
);
736 elsif Nr_Of_Suggestions
= 2 then
737 Error_Msg_Node_2
:= Suggestion_2
;
738 Error_Msg_NE
-- CODEFIX
739 ("\possible misspelling of& or&", Component
, Suggestion_1
);
741 end Check_Misspelled_Component
;
743 ----------------------------------------
744 -- Check_Expr_OK_In_Limited_Aggregate --
745 ----------------------------------------
747 procedure Check_Expr_OK_In_Limited_Aggregate
(Expr
: Node_Id
) is
749 if Is_Limited_Type
(Etype
(Expr
))
750 and then Comes_From_Source
(Expr
)
752 if In_Instance_Body
or else In_Inlined_Body
then
755 elsif not OK_For_Limited_Init
(Etype
(Expr
), Expr
) then
757 ("initialization not allowed for limited types", Expr
);
758 Explain_Limited_Type
(Etype
(Expr
), Expr
);
761 end Check_Expr_OK_In_Limited_Aggregate
;
767 function Is_Deep_Choice
769 Aggr_Type
: Type_Kind_Id
) return Boolean
771 Pref
: Node_Id
:= Choice
;
773 while not Is_Root_Prefix_Of_Deep_Choice
(Pref
) loop
774 Pref
:= Prefix
(Pref
);
777 if Is_Array_Type
(Aggr_Type
) then
778 return Paren_Count
(Pref
) > 0
779 and then Pref
/= Choice
;
781 return Pref
/= Choice
;
785 -------------------------
786 -- Is_Others_Aggregate --
787 -------------------------
789 function Is_Others_Aggregate
(Aggr
: Node_Id
) return Boolean is
790 Assoc
: constant List_Id
:= Component_Associations
(Aggr
);
793 return No
(Expressions
(Aggr
))
794 and then Nkind
(First
(Choice_List
(First
(Assoc
)))) = N_Others_Choice
;
795 end Is_Others_Aggregate
;
797 -----------------------------------
798 -- Is_Root_Prefix_Of_Deep_Choice --
799 -----------------------------------
801 function Is_Root_Prefix_Of_Deep_Choice
(Pref
: Node_Id
) return Boolean is
803 return Paren_Count
(Pref
) > 0
804 or else Nkind
(Pref
) not in N_Indexed_Component
805 | N_Selected_Component
;
806 end Is_Root_Prefix_Of_Deep_Choice
;
808 -------------------------
809 -- Is_Single_Aggregate --
810 -------------------------
812 function Is_Single_Aggregate
(Aggr
: Node_Id
) return Boolean is
813 Assoc
: constant List_Id
:= Component_Associations
(Aggr
);
816 return No
(Expressions
(Aggr
))
817 and then No
(Next
(First
(Assoc
)))
818 and then No
(Next
(First
(Choice_List
(First
(Assoc
)))));
819 end Is_Single_Aggregate
;
821 -----------------------
822 -- Is_Null_Aggregate --
823 -----------------------
825 function Is_Null_Aggregate
(N
: Node_Id
) return Boolean is
827 return Ada_Version
>= Ada_2022
828 and then Is_Homogeneous_Aggregate
(N
)
829 and then Is_Empty_List
(Expressions
(N
))
830 and then Is_Empty_List
(Component_Associations
(N
));
831 end Is_Null_Aggregate
;
833 ----------------------------------------
834 -- Is_Null_Array_Aggregate_High_Bound --
835 ----------------------------------------
837 function Is_Null_Array_Aggregate_High_Bound
(N
: Node_Id
) return Boolean is
838 Original_N
: constant Node_Id
:= Original_Node
(N
);
840 return Ada_Version
>= Ada_2022
841 and then not Comes_From_Source
(Original_N
)
842 and then Nkind
(Original_N
) = N_Attribute_Reference
844 Get_Attribute_Id
(Attribute_Name
(Original_N
)) = Attribute_Pred
845 and then Nkind
(Parent
(N
)) in N_Range | N_Op_Le
846 and then not Comes_From_Source
(Parent
(N
));
847 end Is_Null_Array_Aggregate_High_Bound
;
849 --------------------------------
850 -- Make_String_Into_Aggregate --
851 --------------------------------
853 procedure Make_String_Into_Aggregate
(N
: Node_Id
) is
854 Exprs
: constant List_Id
:= New_List
;
855 Loc
: constant Source_Ptr
:= Sloc
(N
);
856 Str
: constant String_Id
:= Strval
(N
);
857 Strlen
: constant Nat
:= String_Length
(Str
);
865 for J
in 1 .. Strlen
loop
866 C
:= Get_String_Char
(Str
, J
);
867 Set_Character_Literal_Name
(C
);
870 Make_Character_Literal
(P
,
872 Char_Literal_Value
=> UI_From_CC
(C
));
873 Set_Etype
(C_Node
, Any_Character
);
874 Append_To
(Exprs
, C_Node
);
877 -- Something special for wide strings???
880 New_N
:= Make_Aggregate
(Loc
, Expressions
=> Exprs
);
881 Set_Analyzed
(New_N
);
882 Set_Etype
(New_N
, Any_Composite
);
885 end Make_String_Into_Aggregate
;
887 -----------------------
888 -- Resolve_Aggregate --
889 -----------------------
891 procedure Resolve_Aggregate
(N
: Node_Id
; Typ
: Entity_Id
) is
892 Loc
: constant Source_Ptr
:= Sloc
(N
);
894 Aggr_Subtyp
: Entity_Id
;
895 -- The actual aggregate subtype. This is not necessarily the same as Typ
896 -- which is the subtype of the context in which the aggregate was found.
898 Others_Box
: Boolean := False;
899 -- Set to True if N represents a simple aggregate with only
900 -- (others => <>), not nested as part of another aggregate.
902 function Is_Full_Access_Aggregate
(N
: Node_Id
) return Boolean;
903 -- If a full access object is initialized with an aggregate or is
904 -- assigned an aggregate, we have to prevent a piecemeal access or
905 -- assignment to the object, even if the aggregate is to be expanded.
906 -- We create a temporary for the aggregate, and assign the temporary
907 -- instead, so that the back end can generate an atomic move for it.
908 -- This is only done in the context of an object declaration or an
909 -- assignment. Function is a noop and returns false in other contexts.
911 function Within_Aggregate
(N
: Node_Id
) return Boolean;
912 -- Return True if N is part of an N_Aggregate
914 ------------------------------
915 -- Is_Full_Access_Aggregate --
916 ------------------------------
918 function Is_Full_Access_Aggregate
(N
: Node_Id
) return Boolean is
919 Loc
: constant Source_Ptr
:= Sloc
(N
);
929 -- Aggregate may be qualified, so find outer context
931 if Nkind
(Par
) = N_Qualified_Expression
then
935 if not Comes_From_Source
(Par
) then
940 when N_Assignment_Statement
=>
941 Typ
:= Etype
(Name
(Par
));
943 if not Is_Full_Access
(Typ
)
944 and then not Is_Full_Access_Object
(Name
(Par
))
949 when N_Object_Declaration
=>
950 Typ
:= Etype
(Defining_Identifier
(Par
));
952 if not Is_Full_Access
(Typ
)
953 and then not Is_Full_Access
(Defining_Identifier
(Par
))
962 Temp
:= Make_Temporary
(Loc
, 'T', N
);
964 Make_Object_Declaration
(Loc
,
965 Defining_Identifier
=> Temp
,
966 Constant_Present
=> True,
967 Object_Definition
=> New_Occurrence_Of
(Typ
, Loc
),
968 Expression
=> Relocate_Node
(N
));
969 Insert_Action
(Par
, New_N
);
971 Rewrite
(N
, New_Occurrence_Of
(Temp
, Loc
));
972 Analyze_And_Resolve
(N
, Typ
);
975 end Is_Full_Access_Aggregate
;
977 ----------------------
978 -- Within_Aggregate --
979 ----------------------
981 function Within_Aggregate
(N
: Node_Id
) return Boolean is
982 P
: Node_Id
:= Parent
(N
);
984 while Present
(P
) loop
985 if Nkind
(P
) = N_Aggregate
then
993 end Within_Aggregate
;
995 -- Start of processing for Resolve_Aggregate
998 -- Ignore junk empty aggregate resulting from parser error
1000 if No
(Expressions
(N
))
1001 and then No
(Component_Associations
(N
))
1002 and then not Null_Record_Present
(N
)
1006 -- If the aggregate is assigned to a full access variable, we have
1007 -- to prevent a piecemeal assignment even if the aggregate is to be
1008 -- expanded. We create a temporary for the aggregate, and assign the
1009 -- temporary instead, so that the back end can generate an atomic move
1010 -- for it. This is properly an expansion activity but it must be done
1011 -- before resolution because aggregate resolution cannot be done twice.
1013 elsif Expander_Active
and then Is_Full_Access_Aggregate
(N
) then
1017 -- If the aggregate has box-initialized components, its type must be
1018 -- frozen so that initialization procedures can properly be called
1019 -- in the resolution that follows. The replacement of boxes with
1020 -- initialization calls is properly an expansion activity but it must
1021 -- be done during resolution.
1024 and then Present
(Component_Associations
(N
))
1028 First_Comp
: Boolean := True;
1031 Comp
:= First
(Component_Associations
(N
));
1032 while Present
(Comp
) loop
1033 if Box_Present
(Comp
) then
1035 and then No
(Expressions
(N
))
1036 and then Nkind
(First
(Choices
(Comp
))) = N_Others_Choice
1037 and then not Within_Aggregate
(N
)
1042 Insert_Actions
(N
, Freeze_Entity
(Typ
, N
));
1046 First_Comp
:= False;
1052 -- Check for aggregates not allowed in configurable run-time mode.
1053 -- We allow all cases of aggregates that do not come from source, since
1054 -- these are all assumed to be small (e.g. bounds of a string literal).
1055 -- We also allow aggregates of types we know to be small.
1057 if not Support_Aggregates_On_Target
1058 and then Comes_From_Source
(N
)
1059 and then (not Known_Static_Esize
(Typ
)
1060 or else Esize
(Typ
) > System_Max_Integer_Size
)
1062 Error_Msg_CRT
("aggregate", N
);
1065 -- Ada 2005 (AI-287): Limited aggregates allowed
1067 -- In an instance, ignore aggregate subcomponents that may be limited,
1068 -- because they originate in view conflicts. If the original aggregate
1069 -- is legal and the actuals are legal, the aggregate itself is legal.
1071 if Is_Limited_Type
(Typ
)
1072 and then Ada_Version
< Ada_2005
1073 and then not In_Instance
1075 Error_Msg_N
("aggregate type cannot be limited", N
);
1076 Explain_Limited_Type
(Typ
, N
);
1078 elsif Is_Class_Wide_Type
(Typ
) then
1079 Error_Msg_N
("type of aggregate cannot be class-wide", N
);
1081 elsif Typ
= Any_String
1082 or else Typ
= Any_Composite
1084 Error_Msg_N
("no unique type for aggregate", N
);
1085 Set_Etype
(N
, Any_Composite
);
1087 elsif Is_Array_Type
(Typ
) and then Null_Record_Present
(N
) then
1088 Error_Msg_N
("null record forbidden in array aggregate", N
);
1090 elsif Has_Aspect
(Typ
, Aspect_Aggregate
)
1091 and then Ekind
(Typ
) /= E_Record_Type
1092 and then Ada_Version
>= Ada_2022
1094 -- Check for Ada 2022 and () aggregate.
1096 if not Is_Homogeneous_Aggregate
(N
) then
1097 Error_Msg_N
("container aggregate must use '['], not ()", N
);
1100 Resolve_Container_Aggregate
(N
, Typ
);
1102 -- Check Ada 2022 empty aggregate [] initializing a record type that has
1103 -- aspect aggregate; the empty aggregate will be expanded into a call to
1104 -- the empty function specified in the aspect aggregate.
1106 elsif Has_Aspect
(Typ
, Aspect_Aggregate
)
1107 and then Ekind
(Typ
) = E_Record_Type
1108 and then Is_Homogeneous_Aggregate
(N
)
1109 and then Is_Empty_List
(Expressions
(N
))
1110 and then Is_Empty_List
(Component_Associations
(N
))
1111 and then Ada_Version
>= Ada_2022
1113 Resolve_Container_Aggregate
(N
, Typ
);
1115 elsif Is_Record_Type
(Typ
) then
1116 Resolve_Record_Aggregate
(N
, Typ
);
1118 elsif Is_Array_Type
(Typ
) then
1120 -- First a special test, for the case of a positional aggregate of
1121 -- characters which can be replaced by a string literal.
1123 -- Do not perform this transformation if this was a string literal
1124 -- to start with, whose components needed constraint checks, or if
1125 -- the component type is non-static, because it will require those
1126 -- checks and be transformed back into an aggregate. If the index
1127 -- type is not Integer the aggregate may represent a user-defined
1128 -- string type but the context might need the original type so we
1129 -- do not perform the transformation at this point.
1131 if Number_Dimensions
(Typ
) = 1
1132 and then Is_Standard_Character_Type
(Component_Type
(Typ
))
1133 and then No
(Component_Associations
(N
))
1134 and then not Is_Limited_Composite
(Typ
)
1135 and then not Is_Private_Composite
(Typ
)
1136 and then not Is_Bit_Packed_Array
(Typ
)
1137 and then Nkind
(Original_Node
(Parent
(N
))) /= N_String_Literal
1138 and then Is_OK_Static_Subtype
(Component_Type
(Typ
))
1139 and then Base_Type
(Etype
(First_Index
(Typ
))) =
1140 Base_Type
(Standard_Integer
)
1146 Expr
:= First
(Expressions
(N
));
1147 while Present
(Expr
) loop
1148 exit when Nkind
(Expr
) /= N_Character_Literal
;
1155 Expr
:= First
(Expressions
(N
));
1156 while Present
(Expr
) loop
1157 Store_String_Char
(UI_To_CC
(Char_Literal_Value
(Expr
)));
1161 Rewrite
(N
, Make_String_Literal
(Loc
, End_String
));
1163 Analyze_And_Resolve
(N
, Typ
);
1169 -- Here if we have a real aggregate to deal with
1171 Array_Aggregate
: declare
1172 Aggr_Resolved
: Boolean;
1173 Aggr_Typ
: constant Entity_Id
:= Etype
(Typ
);
1174 -- This is the unconstrained array type, which is the type against
1175 -- which the aggregate is to be resolved. Typ itself is the array
1176 -- type of the context which may not be the same subtype as the
1177 -- subtype for the final aggregate.
1179 Is_Null_Aggr
: constant Boolean := Is_Null_Aggregate
(N
);
1182 -- In the following we determine whether an OTHERS choice is
1183 -- allowed inside the array aggregate. The test checks the context
1184 -- in which the array aggregate occurs. If the context does not
1185 -- permit it, or the aggregate type is unconstrained, an OTHERS
1186 -- choice is not allowed (except that it is always allowed on the
1187 -- right-hand side of an assignment statement; in this case the
1188 -- constrainedness of the type doesn't matter, because an array
1189 -- object is always constrained).
1191 -- If expansion is disabled (generic context, or semantics-only
1192 -- mode) actual subtypes cannot be constructed, and the type of an
1193 -- object may be its unconstrained nominal type. However, if the
1194 -- context is an assignment statement, OTHERS is allowed, because
1195 -- the target of the assignment will have a constrained subtype
1196 -- when fully compiled. Ditto if the context is an initialization
1197 -- procedure where a component may have a predicate function that
1198 -- carries the base type.
1200 -- Note that there is no node for Explicit_Actual_Parameter.
1201 -- To test for this context we therefore have to test for node
1202 -- N_Parameter_Association which itself appears only if there is a
1203 -- formal parameter. Consequently we also need to test for
1204 -- N_Procedure_Call_Statement or N_Function_Call.
1206 -- The context may be an N_Reference node, created by expansion.
1207 -- Legality of the others clause was established in the source,
1208 -- so the context is legal.
1210 Set_Etype
(N
, Aggr_Typ
); -- May be overridden later on
1212 if Is_Null_Aggr
then
1214 Aggr_Resolved
:= Resolve_Null_Array_Aggregate
(N
);
1216 elsif Nkind
(Parent
(N
)) = N_Assignment_Statement
1217 or else Inside_Init_Proc
1218 or else (Is_Constrained
(Typ
)
1219 and then Nkind
(Parent
(N
)) in
1220 N_Parameter_Association
1222 | N_Procedure_Call_Statement
1223 | N_Generic_Association
1224 | N_Formal_Object_Declaration
1225 | N_Simple_Return_Statement
1226 | N_Object_Declaration
1227 | N_Component_Declaration
1228 | N_Parameter_Specification
1229 | N_Qualified_Expression
1230 | N_Unchecked_Type_Conversion
1233 | N_Extension_Aggregate
1234 | N_Component_Association
1235 | N_Case_Expression_Alternative
1237 | N_Expression_With_Actions
)
1240 Resolve_Array_Aggregate
1242 Index
=> First_Index
(Aggr_Typ
),
1243 Index_Constr
=> First_Index
(Typ
),
1244 Component_Typ
=> Component_Type
(Typ
),
1245 Others_Allowed
=> True);
1248 Resolve_Array_Aggregate
1250 Index
=> First_Index
(Aggr_Typ
),
1251 Index_Constr
=> First_Index
(Aggr_Typ
),
1252 Component_Typ
=> Component_Type
(Typ
),
1253 Others_Allowed
=> False);
1256 if not Aggr_Resolved
then
1258 -- A parenthesized expression may have been intended as an
1259 -- aggregate, leading to a type error when analyzing the
1260 -- component. This can also happen for a nested component
1261 -- (see Analyze_Aggr_Expr).
1263 if Paren_Count
(N
) > 0 then
1265 ("positional aggregate cannot have one component", N
);
1268 Aggr_Subtyp
:= Any_Composite
;
1271 Aggr_Subtyp
:= Array_Aggr_Subtype
(N
, Typ
);
1274 Set_Etype
(N
, Aggr_Subtyp
);
1275 end Array_Aggregate
;
1277 elsif Is_Private_Type
(Typ
)
1278 and then Present
(Full_View
(Typ
))
1279 and then (In_Inlined_Body
or In_Instance_Body
)
1280 and then Is_Composite_Type
(Full_View
(Typ
))
1282 Resolve
(N
, Full_View
(Typ
));
1285 Error_Msg_N
("illegal context for aggregate", N
);
1288 -- If we can determine statically that the evaluation of the aggregate
1289 -- raises Constraint_Error, then replace the aggregate with an
1290 -- N_Raise_Constraint_Error node, but set the Etype to the right
1291 -- aggregate subtype. Gigi needs this.
1293 if Raises_Constraint_Error
(N
) then
1294 Aggr_Subtyp
:= Etype
(N
);
1296 Make_Raise_Constraint_Error
(Loc
, Reason
=> CE_Range_Check_Failed
));
1297 Set_Raises_Constraint_Error
(N
);
1298 Set_Etype
(N
, Aggr_Subtyp
);
1302 if Warn_On_No_Value_Assigned
1304 and then not Is_Fully_Initialized_Type
(Etype
(N
))
1306 Error_Msg_N
("?v?aggregate not fully initialized", N
);
1309 Check_Function_Writable_Actuals
(N
);
1310 end Resolve_Aggregate
;
1312 -----------------------------
1313 -- Resolve_Array_Aggregate --
1314 -----------------------------
1316 function Resolve_Array_Aggregate
1319 Index_Constr
: Node_Id
;
1320 Component_Typ
: Entity_Id
;
1321 Others_Allowed
: Boolean) return Boolean
1323 Loc
: constant Source_Ptr
:= Sloc
(N
);
1325 Failure
: constant Boolean := False;
1326 Success
: constant Boolean := True;
1328 Index_Typ
: constant Entity_Id
:= Etype
(Index
);
1329 Index_Typ_Low
: constant Node_Id
:= Type_Low_Bound
(Index_Typ
);
1330 Index_Typ_High
: constant Node_Id
:= Type_High_Bound
(Index_Typ
);
1331 -- The type of the index corresponding to the array sub-aggregate along
1332 -- with its low and upper bounds.
1334 Index_Base
: constant Entity_Id
:= Base_Type
(Index_Typ
);
1335 Index_Base_Low
: constant Node_Id
:= Type_Low_Bound
(Index_Base
);
1336 Index_Base_High
: constant Node_Id
:= Type_High_Bound
(Index_Base
);
1337 -- Ditto for the base type
1339 Others_Present
: Boolean := False;
1341 Nb_Choices
: Nat
:= 0;
1342 -- Contains the overall number of named choices in this sub-aggregate
1344 function Add
(Val
: Uint
; To
: Node_Id
) return Node_Id
;
1345 -- Creates a new expression node where Val is added to expression To.
1346 -- Tries to constant fold whenever possible. To must be an already
1347 -- analyzed expression.
1349 procedure Check_Bound
(BH
: Node_Id
; AH
: in out Node_Id
);
1350 -- Checks that AH (the upper bound of an array aggregate) is less than
1351 -- or equal to BH (the upper bound of the index base type). If the check
1352 -- fails, a warning is emitted, the Raises_Constraint_Error flag of N is
1353 -- set, and AH is replaced with a duplicate of BH.
1355 procedure Check_Bounds
(L
, H
: Node_Id
; AL
, AH
: Node_Id
);
1356 -- Checks that range AL .. AH is compatible with range L .. H. Emits a
1357 -- warning if not and sets the Raises_Constraint_Error flag in N.
1359 procedure Check_Length
(L
, H
: Node_Id
; Len
: Uint
);
1360 -- Checks that range L .. H contains at least Len elements. Emits a
1361 -- warning if not and sets the Raises_Constraint_Error flag in N.
1363 function Dynamic_Or_Null_Range
(L
, H
: Node_Id
) return Boolean;
1364 -- Returns True if range L .. H is dynamic or null
1366 procedure Get
(Value
: out Uint
; From
: Node_Id
; OK
: out Boolean);
1367 -- Given expression node From, this routine sets OK to False if it
1368 -- cannot statically evaluate From. Otherwise it stores this static
1369 -- value into Value.
1371 function Resolve_Aggr_Expr
1373 Single_Elmt
: Boolean) return Boolean;
1374 -- Resolves aggregate expression Expr. Returns False if resolution
1375 -- fails. If Single_Elmt is set to False, the expression Expr may be
1376 -- used to initialize several array aggregate elements (this can happen
1377 -- for discrete choices such as "L .. H => Expr" or the OTHERS choice).
1378 -- In this event we do not resolve Expr unless expansion is disabled.
1379 -- To know why, see the DELAYED COMPONENT RESOLUTION note above.
1381 -- NOTE: In the case of "... => <>", we pass the N_Component_Association
1382 -- node as Expr, since there is no Expression and we need a Sloc for the
1385 procedure Resolve_Iterated_Component_Association
1387 Index_Typ
: Entity_Id
);
1390 procedure Warn_On_Null_Component_Association
(Expr
: Node_Id
);
1391 -- Expr is either a conditional expression or a case expression of an
1392 -- iterated component association initializing the aggregate N with
1393 -- components that can never be null. Report warning on associations
1394 -- that may initialize some component with a null value.
1400 function Add
(Val
: Uint
; To
: Node_Id
) return Node_Id
is
1406 if Raises_Constraint_Error
(To
) then
1410 -- First test if we can do constant folding
1412 if Compile_Time_Known_Value
(To
)
1413 or else Nkind
(To
) = N_Integer_Literal
1415 Expr_Pos
:= Make_Integer_Literal
(Loc
, Expr_Value
(To
) + Val
);
1416 Set_Is_Static_Expression
(Expr_Pos
);
1417 Set_Etype
(Expr_Pos
, Etype
(To
));
1418 Set_Analyzed
(Expr_Pos
, Analyzed
(To
));
1420 if not Is_Enumeration_Type
(Index_Typ
) then
1423 -- If we are dealing with enumeration return
1424 -- Index_Typ'Val (Expr_Pos)
1428 Make_Attribute_Reference
1430 Prefix
=> New_Occurrence_Of
(Index_Typ
, Loc
),
1431 Attribute_Name
=> Name_Val
,
1432 Expressions
=> New_List
(Expr_Pos
));
1438 -- If we are here no constant folding possible
1440 if not Is_Enumeration_Type
(Index_Base
) then
1443 Left_Opnd
=> Duplicate_Subexpr
(To
),
1444 Right_Opnd
=> Make_Integer_Literal
(Loc
, Val
));
1446 -- If we are dealing with enumeration return
1447 -- Index_Typ'Val (Index_Typ'Pos (To) + Val)
1451 Make_Attribute_Reference
1453 Prefix
=> New_Occurrence_Of
(Index_Typ
, Loc
),
1454 Attribute_Name
=> Name_Pos
,
1455 Expressions
=> New_List
(Duplicate_Subexpr
(To
)));
1459 Left_Opnd
=> To_Pos
,
1460 Right_Opnd
=> Make_Integer_Literal
(Loc
, Val
));
1463 Make_Attribute_Reference
1465 Prefix
=> New_Occurrence_Of
(Index_Typ
, Loc
),
1466 Attribute_Name
=> Name_Val
,
1467 Expressions
=> New_List
(Expr_Pos
));
1469 -- If the index type has a non standard representation, the
1470 -- attributes 'Val and 'Pos expand into function calls and the
1471 -- resulting expression is considered non-safe for reevaluation
1472 -- by the backend. Relocate it into a constant temporary in order
1473 -- to make it safe for reevaluation.
1475 if Has_Non_Standard_Rep
(Etype
(N
)) then
1480 Def_Id
:= Make_Temporary
(Loc
, 'R', Expr
);
1481 Set_Etype
(Def_Id
, Index_Typ
);
1483 Make_Object_Declaration
(Loc
,
1484 Defining_Identifier
=> Def_Id
,
1485 Object_Definition
=>
1486 New_Occurrence_Of
(Index_Typ
, Loc
),
1487 Constant_Present
=> True,
1488 Expression
=> Relocate_Node
(Expr
)));
1490 Expr
:= New_Occurrence_Of
(Def_Id
, Loc
);
1502 procedure Check_Bound
(BH
: Node_Id
; AH
: in out Node_Id
) is
1510 Get
(Value
=> Val_BH
, From
=> BH
, OK
=> OK_BH
);
1511 Get
(Value
=> Val_AH
, From
=> AH
, OK
=> OK_AH
);
1513 if OK_BH
and then OK_AH
and then Val_BH
< Val_AH
then
1514 Set_Raises_Constraint_Error
(N
);
1515 Error_Msg_Warn
:= SPARK_Mode
/= On
;
1516 Error_Msg_N
("upper bound out of range<<", AH
);
1517 Error_Msg_N
("\Constraint_Error [<<", AH
);
1519 -- You need to set AH to BH or else in the case of enumerations
1520 -- indexes we will not be able to resolve the aggregate bounds.
1522 AH
:= Duplicate_Subexpr
(BH
);
1530 procedure Check_Bounds
(L
, H
: Node_Id
; AL
, AH
: Node_Id
) is
1541 pragma Warnings
(Off
, OK_AL
);
1542 pragma Warnings
(Off
, OK_AH
);
1545 if Raises_Constraint_Error
(N
)
1546 or else Dynamic_Or_Null_Range
(AL
, AH
)
1551 Get
(Value
=> Val_L
, From
=> L
, OK
=> OK_L
);
1552 Get
(Value
=> Val_H
, From
=> H
, OK
=> OK_H
);
1554 Get
(Value
=> Val_AL
, From
=> AL
, OK
=> OK_AL
);
1555 Get
(Value
=> Val_AH
, From
=> AH
, OK
=> OK_AH
);
1557 if OK_L
and then Val_L
> Val_AL
then
1558 Set_Raises_Constraint_Error
(N
);
1559 Error_Msg_Warn
:= SPARK_Mode
/= On
;
1560 Error_Msg_N
("lower bound of aggregate out of range<<", N
);
1561 Error_Msg_N
("\Constraint_Error [<<", N
);
1564 if OK_H
and then Val_H
< Val_AH
then
1565 Set_Raises_Constraint_Error
(N
);
1566 Error_Msg_Warn
:= SPARK_Mode
/= On
;
1567 Error_Msg_N
("upper bound of aggregate out of range<<", N
);
1568 Error_Msg_N
("\Constraint_Error [<<", N
);
1576 procedure Check_Length
(L
, H
: Node_Id
; Len
: Uint
) is
1586 if Raises_Constraint_Error
(N
) then
1590 Get
(Value
=> Val_L
, From
=> L
, OK
=> OK_L
);
1591 Get
(Value
=> Val_H
, From
=> H
, OK
=> OK_H
);
1593 if not OK_L
or else not OK_H
then
1597 -- If null range length is zero
1599 if Val_L
> Val_H
then
1600 Range_Len
:= Uint_0
;
1602 Range_Len
:= Val_H
- Val_L
+ 1;
1605 if Range_Len
< Len
then
1606 Set_Raises_Constraint_Error
(N
);
1607 Error_Msg_Warn
:= SPARK_Mode
/= On
;
1608 Error_Msg_N
("too many elements<<", N
);
1609 Error_Msg_N
("\Constraint_Error [<<", N
);
1613 ---------------------------
1614 -- Dynamic_Or_Null_Range --
1615 ---------------------------
1617 function Dynamic_Or_Null_Range
(L
, H
: Node_Id
) return Boolean is
1625 Get
(Value
=> Val_L
, From
=> L
, OK
=> OK_L
);
1626 Get
(Value
=> Val_H
, From
=> H
, OK
=> OK_H
);
1628 return not OK_L
or else not OK_H
1629 or else not Is_OK_Static_Expression
(L
)
1630 or else not Is_OK_Static_Expression
(H
)
1631 or else Val_L
> Val_H
;
1632 end Dynamic_Or_Null_Range
;
1638 procedure Get
(Value
: out Uint
; From
: Node_Id
; OK
: out Boolean) is
1642 if Compile_Time_Known_Value
(From
) then
1643 Value
:= Expr_Value
(From
);
1645 -- If expression From is something like Some_Type'Val (10) then
1648 elsif Nkind
(From
) = N_Attribute_Reference
1649 and then Attribute_Name
(From
) = Name_Val
1650 and then Compile_Time_Known_Value
(First
(Expressions
(From
)))
1652 Value
:= Expr_Value
(First
(Expressions
(From
)));
1659 -----------------------
1660 -- Resolve_Aggr_Expr --
1661 -----------------------
1663 function Resolve_Aggr_Expr
1665 Single_Elmt
: Boolean) return Boolean
1667 Nxt_Ind
: constant Node_Id
:= Next_Index
(Index
);
1668 Nxt_Ind_Constr
: constant Node_Id
:= Next_Index
(Index_Constr
);
1669 -- Index is the current index corresponding to the expression
1671 Resolution_OK
: Boolean := True;
1672 -- Set to False if resolution of the expression failed
1675 -- Defend against previous errors
1677 if Nkind
(Expr
) = N_Error
1678 or else Error_Posted
(Expr
)
1683 -- If the array type against which we are resolving the aggregate
1684 -- has several dimensions, the expressions nested inside the
1685 -- aggregate must be further aggregates (or strings).
1687 if Present
(Nxt_Ind
) then
1688 if Nkind
(Expr
) /= N_Aggregate
then
1690 -- A string literal can appear where a one-dimensional array
1691 -- of characters is expected. If the literal looks like an
1692 -- operator, it is still an operator symbol, which will be
1693 -- transformed into a string when analyzed.
1695 if Is_Character_Type
(Component_Typ
)
1696 and then No
(Next_Index
(Nxt_Ind
))
1697 and then Nkind
(Expr
) in N_String_Literal | N_Operator_Symbol
1699 -- A string literal used in a multidimensional array
1700 -- aggregate in place of the final one-dimensional
1701 -- aggregate must not be enclosed in parentheses.
1703 if Paren_Count
(Expr
) /= 0 then
1704 Error_Msg_N
("no parenthesis allowed here", Expr
);
1707 Make_String_Into_Aggregate
(Expr
);
1710 Error_Msg_N
("nested array aggregate expected", Expr
);
1712 -- If the expression is parenthesized, this may be
1713 -- a missing component association for a 1-aggregate.
1715 if Paren_Count
(Expr
) > 0 then
1717 ("\if single-component aggregate is intended, "
1718 & "write e.g. (1 ='> ...)", Expr
);
1725 -- If it's "... => <>", nothing to resolve
1727 if Nkind
(Expr
) = N_Component_Association
then
1728 pragma Assert
(Box_Present
(Expr
));
1732 -- Ada 2005 (AI-231): Propagate the type to the nested aggregate.
1733 -- Required to check the null-exclusion attribute (if present).
1734 -- This value may be overridden later on.
1736 Set_Etype
(Expr
, Etype
(N
));
1738 Resolution_OK
:= Resolve_Array_Aggregate
1739 (Expr
, Nxt_Ind
, Nxt_Ind_Constr
, Component_Typ
, Others_Allowed
);
1742 -- If it's "... => <>", nothing to resolve
1744 if Nkind
(Expr
) = N_Component_Association
then
1745 pragma Assert
(Box_Present
(Expr
));
1749 -- Do not resolve the expressions of discrete or others choices
1750 -- unless the expression covers a single component, or the
1751 -- expander is inactive.
1753 -- In SPARK mode, expressions that can perform side effects will
1754 -- be recognized by the gnat2why back-end, and the whole
1755 -- subprogram will be ignored. So semantic analysis can be
1756 -- performed safely.
1759 or else not Expander_Active
1760 or else In_Spec_Expression
1762 Analyze_And_Resolve
(Expr
, Component_Typ
);
1763 Check_Expr_OK_In_Limited_Aggregate
(Expr
);
1764 Check_Non_Static_Context
(Expr
);
1765 Aggregate_Constraint_Checks
(Expr
, Component_Typ
);
1766 Check_Unset_Reference
(Expr
);
1770 -- If an aggregate component has a type with predicates, an explicit
1771 -- predicate check must be applied, as for an assignment statement,
1772 -- because the aggregate might not be expanded into individual
1773 -- component assignments. If the expression covers several components
1774 -- the analysis and the predicate check take place later.
1776 if Has_Predicates
(Component_Typ
)
1777 and then Analyzed
(Expr
)
1779 Apply_Predicate_Check
(Expr
, Component_Typ
);
1782 if Raises_Constraint_Error
(Expr
)
1783 and then Nkind
(Parent
(Expr
)) /= N_Component_Association
1785 Set_Raises_Constraint_Error
(N
);
1788 -- If the expression has been marked as requiring a range check,
1789 -- then generate it here. It's a bit odd to be generating such
1790 -- checks in the analyzer, but harmless since Generate_Range_Check
1791 -- does nothing (other than making sure Do_Range_Check is set) if
1792 -- the expander is not active.
1794 if Do_Range_Check
(Expr
) then
1795 Generate_Range_Check
(Expr
, Component_Typ
, CE_Range_Check_Failed
);
1798 return Resolution_OK
;
1799 end Resolve_Aggr_Expr
;
1801 --------------------------------------------
1802 -- Resolve_Iterated_Component_Association --
1803 --------------------------------------------
1805 procedure Resolve_Iterated_Component_Association
1807 Index_Typ
: Entity_Id
)
1809 Loc
: constant Source_Ptr
:= Sloc
(N
);
1810 Id
: constant Entity_Id
:= Defining_Identifier
(N
);
1812 -----------------------
1813 -- Remove_References --
1814 -----------------------
1816 function Remove_Reference
(N
: Node_Id
) return Traverse_Result
;
1817 -- Remove reference to the entity Id after analysis, so it can be
1818 -- properly reanalyzed after construct is expanded into a loop.
1820 function Remove_Reference
(N
: Node_Id
) return Traverse_Result
is
1822 if Nkind
(N
) = N_Identifier
1823 and then Present
(Entity
(N
))
1824 and then Entity
(N
) = Id
1826 Set_Entity
(N
, Empty
);
1827 Set_Etype
(N
, Empty
);
1829 Set_Analyzed
(N
, False);
1831 end Remove_Reference
;
1833 procedure Remove_References
is new Traverse_Proc
(Remove_Reference
);
1840 Expr
: constant Node_Id
:= Expression
(N
);
1842 -- Start of processing for Resolve_Iterated_Component_Association
1845 Error_Msg_Ada_2022_Feature
("iterated component", Loc
);
1847 -- Create a scope in which to introduce an index, to make it visible
1848 -- for the analysis of component expression.
1850 Scop
:= New_Internal_Entity
(E_Loop
, Current_Scope
, Loc
, 'L');
1851 Set_Etype
(Scop
, Standard_Void_Type
);
1852 Set_Parent
(Scop
, Parent
(N
));
1855 -- If there is iterator specification, then its preanalysis will make
1856 -- the index visible.
1858 if Present
(Iterator_Specification
(N
)) then
1859 Preanalyze
(Iterator_Specification
(N
));
1861 -- Otherwise, analyze discrete choices and make the index visible
1864 -- Insert index name into current scope but don't decorate it yet,
1865 -- so that a premature usage of this name in discrete choices will
1866 -- be nicely diagnosed.
1870 Choice
:= First
(Discrete_Choices
(N
));
1872 while Present
(Choice
) loop
1873 if Nkind
(Choice
) = N_Others_Choice
then
1874 Others_Present
:= True;
1879 -- Choice can be a subtype name, a range, or an expression
1881 if Is_Entity_Name
(Choice
)
1882 and then Is_Type
(Entity
(Choice
))
1884 Base_Type
(Entity
(Choice
)) = Base_Type
(Index_Typ
)
1889 Analyze_And_Resolve
(Choice
, Index_Typ
);
1896 -- Decorate the index variable
1898 Set_Etype
(Id
, Index_Typ
);
1899 Mutate_Ekind
(Id
, E_Variable
);
1900 Set_Is_Not_Self_Hidden
(Id
);
1901 Set_Scope
(Id
, Scop
);
1904 -- Analyze expression without expansion, to verify legality.
1905 -- When generating code, we then remove references to the index
1906 -- variable, because the expression will be analyzed anew after
1907 -- rewritting as a loop with a new index variable; when not
1908 -- generating code we leave the analyzed expression as it is.
1910 Dummy
:= Resolve_Aggr_Expr
(Expr
, Single_Elmt
=> False);
1912 if Operating_Mode
/= Check_Semantics
then
1913 Remove_References
(Expr
);
1916 -- An iterated_component_association may appear in a nested
1917 -- aggregate for a multidimensional structure: preserve the bounds
1918 -- computed for the expression, as well as the anonymous array
1919 -- type generated for it; both are needed during array expansion.
1921 if Nkind
(Expr
) = N_Aggregate
then
1922 Set_Aggregate_Bounds
(Expression
(N
), Aggregate_Bounds
(Expr
));
1923 Set_Etype
(Expression
(N
), Etype
(Expr
));
1927 end Resolve_Iterated_Component_Association
;
1929 ----------------------------------------
1930 -- Warn_On_Null_Component_Association --
1931 ----------------------------------------
1933 procedure Warn_On_Null_Component_Association
(Expr
: Node_Id
) is
1934 Comp_Typ
: constant Entity_Id
:= Component_Type
(Etype
(N
));
1936 procedure Check_Case_Expr
(N
: Node_Id
);
1937 -- Check if a case expression may initialize some component with a
1940 procedure Check_Cond_Expr
(N
: Node_Id
);
1941 -- Check if a conditional expression may initialize some component
1942 -- with a null value.
1944 procedure Check_Expr
(Expr
: Node_Id
);
1945 -- Check if an expression may initialize some component with a
1948 procedure Warn_On_Null_Expression_And_Rewrite
(Null_Expr
: Node_Id
);
1949 -- Report warning on known null expression and replace the expression
1950 -- by a raise constraint error node.
1952 ---------------------
1953 -- Check_Case_Expr --
1954 ---------------------
1956 procedure Check_Case_Expr
(N
: Node_Id
) is
1957 Alt_Node
: Node_Id
:= First
(Alternatives
(N
));
1960 while Present
(Alt_Node
) loop
1961 Check_Expr
(Expression
(Alt_Node
));
1964 end Check_Case_Expr
;
1966 ---------------------
1967 -- Check_Cond_Expr --
1968 ---------------------
1970 procedure Check_Cond_Expr
(N
: Node_Id
) is
1971 If_Expr
: Node_Id
:= N
;
1972 Then_Expr
: Node_Id
;
1973 Else_Expr
: Node_Id
;
1976 Then_Expr
:= Next
(First
(Expressions
(If_Expr
)));
1977 Else_Expr
:= Next
(Then_Expr
);
1979 Check_Expr
(Then_Expr
);
1981 -- Process elsif parts (if any)
1983 while Nkind
(Else_Expr
) = N_If_Expression
loop
1984 If_Expr
:= Else_Expr
;
1985 Then_Expr
:= Next
(First
(Expressions
(If_Expr
)));
1986 Else_Expr
:= Next
(Then_Expr
);
1988 Check_Expr
(Then_Expr
);
1991 if Known_Null
(Else_Expr
) then
1992 Warn_On_Null_Expression_And_Rewrite
(Else_Expr
);
1994 end Check_Cond_Expr
;
2000 procedure Check_Expr
(Expr
: Node_Id
) is
2002 if Known_Null
(Expr
) then
2003 Warn_On_Null_Expression_And_Rewrite
(Expr
);
2005 elsif Nkind
(Expr
) = N_If_Expression
then
2006 Check_Cond_Expr
(Expr
);
2008 elsif Nkind
(Expr
) = N_Case_Expression
then
2009 Check_Case_Expr
(Expr
);
2013 -----------------------------------------
2014 -- Warn_On_Null_Expression_And_Rewrite --
2015 -----------------------------------------
2017 procedure Warn_On_Null_Expression_And_Rewrite
(Null_Expr
: Node_Id
) is
2020 ("(Ada 2005) NULL not allowed in null-excluding component??",
2023 ("\Constraint_Error might be raised at run time??", Null_Expr
);
2025 -- We cannot use Apply_Compile_Time_Constraint_Error because in
2026 -- some cases the components are rewritten and the runtime error
2030 Make_Raise_Constraint_Error
(Sloc
(Null_Expr
),
2031 Reason
=> CE_Access_Check_Failed
));
2033 Set_Etype
(Null_Expr
, Comp_Typ
);
2034 Set_Analyzed
(Null_Expr
);
2035 end Warn_On_Null_Expression_And_Rewrite
;
2037 -- Start of processing for Warn_On_Null_Component_Association
2040 pragma Assert
(Can_Never_Be_Null
(Comp_Typ
));
2042 case Nkind
(Expr
) is
2043 when N_If_Expression
=>
2044 Check_Cond_Expr
(Expr
);
2046 when N_Case_Expression
=>
2047 Check_Case_Expr
(Expr
);
2050 pragma Assert
(False);
2053 end Warn_On_Null_Component_Association
;
2062 Aggr_Low
: Node_Id
:= Empty
;
2063 Aggr_High
: Node_Id
:= Empty
;
2064 -- The actual low and high bounds of this sub-aggregate
2066 Case_Table_Size
: Nat
;
2067 -- Contains the size of the case table needed to sort aggregate choices
2069 Choices_Low
: Node_Id
:= Empty
;
2070 Choices_High
: Node_Id
:= Empty
;
2071 -- The lowest and highest discrete choices values for a named aggregate
2073 Delete_Choice
: Boolean;
2074 -- Used when replacing a subtype choice with predicate by a list
2076 Has_Iterator_Specifications
: Boolean := False;
2077 -- Flag to indicate that all named associations are iterated component
2078 -- associations with iterator specifications, in which case the
2079 -- expansion will create two loops: one to evaluate the size and one
2080 -- to generate the elements (4.3.3 (20.2/5)).
2082 Nb_Elements
: Uint
:= Uint_0
;
2083 -- The number of elements in a positional aggregate
2085 Nb_Discrete_Choices
: Nat
:= 0;
2086 -- The overall number of discrete choices (not counting others choice)
2088 -- Start of processing for Resolve_Array_Aggregate
2091 -- Ignore junk empty aggregate resulting from parser error
2093 if No
(Expressions
(N
))
2094 and then No
(Component_Associations
(N
))
2095 and then not Null_Record_Present
(N
)
2100 -- Disable the warning for GNAT Mode to allow for easier transition.
2102 if Ada_Version_Explicit
>= Ada_2022
2103 and then Warn_On_Obsolescent_Feature
2104 and then not GNAT_Mode
2105 and then not Is_Homogeneous_Aggregate
(N
)
2106 and then not Is_Enum_Array_Aggregate
(N
)
2107 and then Is_Parenthesis_Aggregate
(N
)
2108 and then Nkind
(Parent
(N
)) /= N_Qualified_Expression
2109 and then Comes_From_Source
(N
)
2112 ("?j?array aggregate using () is an" &
2113 " obsolescent syntax, use '['] instead", N
);
2116 -- STEP 1: make sure the aggregate is correctly formatted
2118 if Is_Null_Aggregate
(N
) then
2121 elsif Present
(Component_Associations
(N
)) then
2123 -- Verify that all or none of the component associations
2124 -- include an iterator specification.
2126 Assoc
:= First
(Component_Associations
(N
));
2127 if Nkind
(Assoc
) = N_Iterated_Component_Association
2128 and then Present
(Iterator_Specification
(Assoc
))
2130 -- All other component associations must have an iterator spec.
2133 while Present
(Assoc
) loop
2134 if Nkind
(Assoc
) /= N_Iterated_Component_Association
2135 or else No
(Iterator_Specification
(Assoc
))
2137 Error_Msg_N
("mixed iterated component association"
2138 & " (RM 4.3.3 (17.1/5))",
2146 Has_Iterator_Specifications
:= True;
2149 -- or none of them do.
2152 while Present
(Assoc
) loop
2153 if Nkind
(Assoc
) = N_Iterated_Component_Association
2154 and then Present
(Iterator_Specification
(Assoc
))
2156 Error_Msg_N
("mixed iterated component association"
2157 & " (RM 4.3.3 (17.1/5))",
2167 Assoc
:= First
(Component_Associations
(N
));
2168 while Present
(Assoc
) loop
2169 if Nkind
(Assoc
) = N_Iterated_Component_Association
then
2170 Resolve_Iterated_Component_Association
(Assoc
, Index_Typ
);
2172 elsif Nkind
(Assoc
) /= N_Component_Association
then
2174 ("invalid component association for aggregate", Assoc
);
2178 Choice
:= First
(Choice_List
(Assoc
));
2179 Delete_Choice
:= False;
2180 while Present
(Choice
) loop
2181 if Nkind
(Choice
) = N_Others_Choice
then
2182 Others_Present
:= True;
2184 if Choice
/= First
(Choice_List
(Assoc
))
2185 or else Present
(Next
(Choice
))
2188 ("OTHERS must appear alone in a choice list", Choice
);
2192 if Present
(Next
(Assoc
)) then
2194 ("OTHERS must appear last in an aggregate", Choice
);
2198 if Ada_Version
= Ada_83
2199 and then Assoc
/= First
(Component_Associations
(N
))
2200 and then Nkind
(Parent
(N
)) in
2201 N_Assignment_Statement | N_Object_Declaration
2204 ("(Ada 83) illegal context for OTHERS choice", N
);
2207 elsif Is_Entity_Name
(Choice
) then
2211 E
: constant Entity_Id
:= Entity
(Choice
);
2217 if Is_Type
(E
) and then Has_Predicates
(E
) then
2218 Freeze_Before
(N
, E
);
2220 if Has_Dynamic_Predicate_Aspect
(E
)
2221 or else Has_Ghost_Predicate_Aspect
(E
)
2224 ("subtype& has non-static predicate, not allowed "
2225 & "in aggregate choice", Choice
, E
);
2227 elsif not Is_OK_Static_Subtype
(E
) then
2229 ("non-static subtype& has predicate, not allowed "
2230 & "in aggregate choice", Choice
, E
);
2233 -- If the subtype has a static predicate, replace the
2234 -- original choice with the list of individual values
2235 -- covered by the predicate.
2236 -- This should be deferred to expansion time ???
2238 if Present
(Static_Discrete_Predicate
(E
)) then
2239 Delete_Choice
:= True;
2242 P
:= First
(Static_Discrete_Predicate
(E
));
2243 while Present
(P
) loop
2245 Set_Sloc
(C
, Sloc
(Choice
));
2246 Append_To
(New_Cs
, C
);
2250 Insert_List_After
(Choice
, New_Cs
);
2256 Nb_Choices
:= Nb_Choices
+ 1;
2259 C
: constant Node_Id
:= Choice
;
2264 if Delete_Choice
then
2266 Nb_Choices
:= Nb_Choices
- 1;
2267 Delete_Choice
:= False;
2276 -- At this point we know that the others choice, if present, is by
2277 -- itself and appears last in the aggregate. Check if we have mixed
2278 -- positional and discrete associations (other than the others choice).
2280 if Present
(Expressions
(N
))
2281 and then (Nb_Choices
> 1
2282 or else (Nb_Choices
= 1 and then not Others_Present
))
2285 ("cannot mix named and positional associations in array aggregate",
2286 First
(Choice_List
(First
(Component_Associations
(N
)))));
2290 -- Test for the validity of an others choice if present
2292 if Others_Present
and then not Others_Allowed
then
2294 Others_N
: constant Node_Id
:=
2295 First
(Choice_List
(First
(Component_Associations
(N
))));
2297 Error_Msg_N
("OTHERS choice not allowed here", Others_N
);
2298 Error_Msg_N
("\qualify the aggregate with a constrained subtype "
2299 & "to provide bounds for it", Others_N
);
2304 -- Protect against cascaded errors
2306 if Etype
(Index_Typ
) = Any_Type
then
2310 -- STEP 2: Process named components
2312 if No
(Expressions
(N
)) then
2313 if Others_Present
then
2314 Case_Table_Size
:= Nb_Choices
- 1;
2316 Case_Table_Size
:= Nb_Choices
;
2320 function Empty_Range
(A
: Node_Id
) return Boolean;
2321 -- If an association covers an empty range, some warnings on the
2322 -- expression of the association can be disabled.
2328 function Empty_Range
(A
: Node_Id
) return Boolean is
2332 if Nkind
(A
) = N_Iterated_Component_Association
then
2333 R
:= First
(Discrete_Choices
(A
));
2335 R
:= First
(Choices
(A
));
2338 return No
(Next
(R
))
2339 and then Nkind
(R
) = N_Range
2340 and then Compile_Time_Compare
2341 (Low_Bound
(R
), High_Bound
(R
), False) = GT
;
2348 -- Denote the lowest and highest values in an aggregate choice
2350 S_Low
: Node_Id
:= Empty
;
2351 S_High
: Node_Id
:= Empty
;
2352 -- if a choice in an aggregate is a subtype indication these
2353 -- denote the lowest and highest values of the subtype
2355 Table
: Case_Table_Type
(1 .. Case_Table_Size
);
2356 -- Used to sort all the different choice values
2358 Single_Choice
: Boolean;
2359 -- Set to true every time there is a single discrete choice in a
2360 -- discrete association
2362 Prev_Nb_Discrete_Choices
: Nat
;
2363 -- Used to keep track of the number of discrete choices in the
2364 -- current association.
2366 Errors_Posted_On_Choices
: Boolean := False;
2367 -- Keeps track of whether any choices have semantic errors
2369 -- Start of processing for Step_2
2372 -- STEP 2 (A): Check discrete choices validity
2373 -- No need if this is an element iteration.
2375 Assoc
:= First
(Component_Associations
(N
));
2376 while Present
(Assoc
)
2377 and then Present
(Choice_List
(Assoc
))
2379 Prev_Nb_Discrete_Choices
:= Nb_Discrete_Choices
;
2380 Choice
:= First
(Choice_List
(Assoc
));
2385 if Nkind
(Choice
) = N_Others_Choice
then
2386 Single_Choice
:= False;
2389 -- Test for subtype mark without constraint
2391 elsif Is_Entity_Name
(Choice
) and then
2392 Is_Type
(Entity
(Choice
))
2394 if Base_Type
(Entity
(Choice
)) /= Index_Base
then
2396 ("invalid subtype mark in aggregate choice",
2401 -- Case of subtype indication
2403 elsif Nkind
(Choice
) = N_Subtype_Indication
then
2404 Resolve_Discrete_Subtype_Indication
(Choice
, Index_Base
);
2406 if Has_Dynamic_Predicate_Aspect
2407 (Entity
(Subtype_Mark
(Choice
)))
2408 or else Has_Ghost_Predicate_Aspect
2409 (Entity
(Subtype_Mark
(Choice
)))
2412 ("subtype& has non-static predicate, "
2413 & "not allowed in aggregate choice",
2414 Choice
, Entity
(Subtype_Mark
(Choice
)));
2417 -- Does the subtype indication evaluation raise CE?
2419 Get_Index_Bounds
(Subtype_Mark
(Choice
), S_Low
, S_High
);
2420 Get_Index_Bounds
(Choice
, Low
, High
);
2421 Check_Bounds
(S_Low
, S_High
, Low
, High
);
2423 -- Case of range or expression
2426 Resolve
(Choice
, Index_Base
);
2427 Check_Unset_Reference
(Choice
);
2428 Check_Non_Static_Context
(Choice
);
2430 -- If semantic errors were posted on the choice, then
2431 -- record that for possible early return from later
2432 -- processing (see handling of enumeration choices).
2434 if Error_Posted
(Choice
) then
2435 Errors_Posted_On_Choices
:= True;
2438 -- Do not range check a choice. This check is redundant
2439 -- since this test is already done when we check that the
2440 -- bounds of the array aggregate are within range.
2442 Set_Do_Range_Check
(Choice
, False);
2445 -- If we could not resolve the discrete choice stop here
2447 if Etype
(Choice
) = Any_Type
then
2450 -- If the discrete choice raises CE get its original bounds
2452 elsif Nkind
(Choice
) = N_Raise_Constraint_Error
then
2453 Set_Raises_Constraint_Error
(N
);
2454 Get_Index_Bounds
(Original_Node
(Choice
), Low
, High
);
2456 -- Otherwise get its bounds as usual
2459 Get_Index_Bounds
(Choice
, Low
, High
);
2462 if (Dynamic_Or_Null_Range
(Low
, High
)
2463 or else (Nkind
(Choice
) = N_Subtype_Indication
2465 Dynamic_Or_Null_Range
(S_Low
, S_High
)))
2466 and then Nb_Choices
/= 1
2469 ("dynamic or empty choice in aggregate "
2470 & "must be the only choice", Choice
);
2474 if not (All_Composite_Constraints_Static
(Low
)
2475 and then All_Composite_Constraints_Static
(High
)
2476 and then All_Composite_Constraints_Static
(S_Low
)
2477 and then All_Composite_Constraints_Static
(S_High
))
2479 Check_Restriction
(No_Dynamic_Sized_Objects
, Choice
);
2482 Nb_Discrete_Choices
:= Nb_Discrete_Choices
+ 1;
2483 Table
(Nb_Discrete_Choices
).Lo
:= Low
;
2484 Table
(Nb_Discrete_Choices
).Hi
:= High
;
2485 Table
(Nb_Discrete_Choices
).Choice
:= Choice
;
2491 -- Check if we have a single discrete choice and whether
2492 -- this discrete choice specifies a single value.
2495 Nb_Discrete_Choices
= Prev_Nb_Discrete_Choices
+ 1
2496 and then Low
= High
;
2502 -- Ada 2005 (AI-231)
2504 if Ada_Version
>= Ada_2005
2505 and then not Empty_Range
(Assoc
)
2507 if Known_Null
(Expression
(Assoc
)) then
2508 Check_Can_Never_Be_Null
(Etype
(N
), Expression
(Assoc
));
2510 -- Report warning on iterated component association that may
2511 -- initialize some component of an array of null-excluding
2512 -- access type components with a null value. For example:
2514 -- type AList is array (...) of not null access Integer;
2516 -- [for J in A'Range =>
2517 -- (if Func (J) = 0 then A(J)'Access else Null)];
2519 elsif Ada_Version
>= Ada_2022
2520 and then Can_Never_Be_Null
(Component_Type
(Etype
(N
)))
2521 and then Nkind
(Assoc
) = N_Iterated_Component_Association
2522 and then Nkind
(Expression
(Assoc
)) in N_If_Expression
2525 Warn_On_Null_Component_Association
(Expression
(Assoc
));
2529 -- Ada 2005 (AI-287): In case of default initialized component
2530 -- we delay the resolution to the expansion phase.
2532 if Box_Present
(Assoc
) then
2534 -- Ada 2005 (AI-287): In case of default initialization of a
2535 -- component the expander will generate calls to the
2536 -- corresponding initialization subprogram. We need to call
2537 -- Resolve_Aggr_Expr to check the rules about
2540 if not Resolve_Aggr_Expr
2541 (Assoc
, Single_Elmt
=> Single_Choice
)
2546 -- ??? Checks for dynamically tagged expressions below will
2547 -- be only applied to iterated_component_association after
2548 -- expansion; in particular, errors might not be reported when
2549 -- -gnatc switch is used.
2551 elsif Nkind
(Assoc
) = N_Iterated_Component_Association
then
2552 null; -- handled above, in a loop context
2554 elsif not Resolve_Aggr_Expr
2555 (Expression
(Assoc
), Single_Elmt
=> Single_Choice
)
2559 -- Check incorrect use of dynamically tagged expression
2561 -- We differentiate here two cases because the expression may
2562 -- not be decorated. For example, the analysis and resolution
2563 -- of the expression associated with the others choice will be
2564 -- done later with the full aggregate. In such case we
2565 -- duplicate the expression tree to analyze the copy and
2566 -- perform the required check.
2568 elsif No
(Etype
(Expression
(Assoc
))) then
2570 Save_Analysis
: constant Boolean := Full_Analysis
;
2571 Expr
: constant Node_Id
:=
2572 New_Copy_Tree
(Expression
(Assoc
));
2575 Expander_Mode_Save_And_Set
(False);
2576 Full_Analysis
:= False;
2578 -- Analyze the expression, making sure it is properly
2579 -- attached to the tree before we do the analysis.
2581 Set_Parent
(Expr
, Parent
(Expression
(Assoc
)));
2584 -- Compute its dimensions now, rather than at the end of
2585 -- resolution, because in the case of multidimensional
2586 -- aggregates subsequent expansion may lead to spurious
2589 Check_Expression_Dimensions
(Expr
, Component_Typ
);
2591 -- If the expression is a literal, propagate this info
2592 -- to the expression in the association, to enable some
2593 -- optimizations downstream.
2595 if Is_Entity_Name
(Expr
)
2596 and then Present
(Entity
(Expr
))
2597 and then Ekind
(Entity
(Expr
)) = E_Enumeration_Literal
2600 (Expression
(Assoc
), Component_Typ
);
2603 Full_Analysis
:= Save_Analysis
;
2604 Expander_Mode_Restore
;
2606 if Is_Tagged_Type
(Etype
(Expr
)) then
2607 Check_Dynamically_Tagged_Expression
2609 Typ
=> Component_Type
(Etype
(N
)),
2614 elsif Is_Tagged_Type
(Etype
(Expression
(Assoc
))) then
2615 Check_Dynamically_Tagged_Expression
2616 (Expr
=> Expression
(Assoc
),
2617 Typ
=> Component_Type
(Etype
(N
)),
2624 -- If aggregate contains more than one choice then these must be
2625 -- static. Check for duplicate and missing values.
2627 -- Note: there is duplicated code here wrt Check_Choice_Set in
2628 -- the body of Sem_Case, and it is possible we could just reuse
2629 -- that procedure. To be checked ???
2631 if Nb_Discrete_Choices
> 1 then
2632 Check_Choices
: declare
2634 -- Location of choice for messages
2638 -- High end of one range and Low end of the next. Should be
2639 -- contiguous if there is no hole in the list of values.
2643 -- End points of duplicated range
2645 Missing_Or_Duplicates
: Boolean := False;
2646 -- Set True if missing or duplicate choices found
2648 procedure Output_Bad_Choices
(Lo
, Hi
: Uint
; C
: Node_Id
);
2649 -- Output continuation message with a representation of the
2650 -- bounds (just Lo if Lo = Hi, else Lo .. Hi). C is the
2651 -- choice node where the message is to be posted.
2653 ------------------------
2654 -- Output_Bad_Choices --
2655 ------------------------
2657 procedure Output_Bad_Choices
(Lo
, Hi
: Uint
; C
: Node_Id
) is
2659 -- Enumeration type case
2661 if Is_Enumeration_Type
(Index_Typ
) then
2663 Chars
(Get_Enum_Lit_From_Pos
(Index_Typ
, Lo
, Loc
));
2665 Chars
(Get_Enum_Lit_From_Pos
(Index_Typ
, Hi
, Loc
));
2668 Error_Msg_N
("\\ %!", C
);
2670 Error_Msg_N
("\\ % .. %!", C
);
2673 -- Integer types case
2676 Error_Msg_Uint_1
:= Lo
;
2677 Error_Msg_Uint_2
:= Hi
;
2680 Error_Msg_N
("\\ ^!", C
);
2682 Error_Msg_N
("\\ ^ .. ^!", C
);
2685 end Output_Bad_Choices
;
2687 -- Start of processing for Check_Choices
2690 Sort_Case_Table
(Table
);
2692 -- First we do a quick linear loop to find out if we have
2693 -- any duplicates or missing entries (usually we have a
2694 -- legal aggregate, so this will get us out quickly).
2696 for J
in 1 .. Nb_Discrete_Choices
- 1 loop
2697 Hi_Val
:= Expr_Value
(Table
(J
).Hi
);
2698 Lo_Val
:= Expr_Value
(Table
(J
+ 1).Lo
);
2701 or else (Lo_Val
> Hi_Val
+ 1
2702 and then not Others_Present
)
2704 Missing_Or_Duplicates
:= True;
2709 -- If we have missing or duplicate entries, first fill in
2710 -- the Highest entries to make life easier in the following
2711 -- loops to detect bad entries.
2713 if Missing_Or_Duplicates
then
2714 Table
(1).Highest
:= Expr_Value
(Table
(1).Hi
);
2716 for J
in 2 .. Nb_Discrete_Choices
loop
2717 Table
(J
).Highest
:=
2719 (Table
(J
- 1).Highest
, Expr_Value
(Table
(J
).Hi
));
2722 -- Loop through table entries to find duplicate indexes
2724 for J
in 2 .. Nb_Discrete_Choices
loop
2725 Lo_Val
:= Expr_Value
(Table
(J
).Lo
);
2726 Hi_Val
:= Expr_Value
(Table
(J
).Hi
);
2728 -- Case where we have duplicates (the lower bound of
2729 -- this choice is less than or equal to the highest
2730 -- high bound found so far).
2732 if Lo_Val
<= Table
(J
- 1).Highest
then
2734 -- We move backwards looking for duplicates. We can
2735 -- abandon this loop as soon as we reach a choice
2736 -- highest value that is less than Lo_Val.
2738 for K
in reverse 1 .. J
- 1 loop
2739 exit when Table
(K
).Highest
< Lo_Val
;
2741 -- Here we may have duplicates between entries
2742 -- for K and J. Get range of duplicates.
2745 UI_Max
(Lo_Val
, Expr_Value
(Table
(K
).Lo
));
2747 UI_Min
(Hi_Val
, Expr_Value
(Table
(K
).Hi
));
2749 -- Nothing to do if duplicate range is null
2751 if Lo_Dup
> Hi_Dup
then
2754 -- Otherwise place proper message
2757 -- We place message on later choice, with a
2758 -- line reference to the earlier choice.
2760 if Sloc
(Table
(J
).Choice
) <
2761 Sloc
(Table
(K
).Choice
)
2763 Choice
:= Table
(K
).Choice
;
2764 Error_Msg_Sloc
:= Sloc
(Table
(J
).Choice
);
2766 Choice
:= Table
(J
).Choice
;
2767 Error_Msg_Sloc
:= Sloc
(Table
(K
).Choice
);
2770 if Lo_Dup
= Hi_Dup
then
2772 ("index value in array aggregate "
2773 & "duplicates the one given#!", Choice
);
2776 ("index values in array aggregate "
2777 & "duplicate those given#!", Choice
);
2780 Output_Bad_Choices
(Lo_Dup
, Hi_Dup
, Choice
);
2786 -- Loop through entries in table to find missing indexes.
2787 -- Not needed if others, since missing impossible.
2789 if not Others_Present
then
2790 for J
in 2 .. Nb_Discrete_Choices
loop
2791 Lo_Val
:= Expr_Value
(Table
(J
).Lo
);
2792 Hi_Val
:= Table
(J
- 1).Highest
;
2794 if Lo_Val
> Hi_Val
+ 1 then
2797 Error_Node
: Node_Id
;
2800 -- If the choice is the bound of a range in
2801 -- a subtype indication, it is not in the
2802 -- source lists for the aggregate itself, so
2803 -- post the error on the aggregate. Otherwise
2804 -- post it on choice itself.
2806 Choice
:= Table
(J
).Choice
;
2808 if Is_List_Member
(Choice
) then
2809 Error_Node
:= Choice
;
2814 if Hi_Val
+ 1 = Lo_Val
- 1 then
2816 ("missing index value "
2817 & "in array aggregate!", Error_Node
);
2820 ("missing index values "
2821 & "in array aggregate!", Error_Node
);
2825 (Hi_Val
+ 1, Lo_Val
- 1, Error_Node
);
2831 -- If either missing or duplicate values, return failure
2833 Set_Etype
(N
, Any_Composite
);
2839 if Has_Iterator_Specifications
then
2840 -- Bounds will be determined dynamically.
2845 -- STEP 2 (B): Compute aggregate bounds and min/max choices values
2847 if Nb_Discrete_Choices
> 0 then
2848 Choices_Low
:= Table
(1).Lo
;
2849 Choices_High
:= Table
(Nb_Discrete_Choices
).Hi
;
2852 -- If Others is present, then bounds of aggregate come from the
2853 -- index constraint (not the choices in the aggregate itself).
2855 if Others_Present
then
2856 Get_Index_Bounds
(Index_Constr
, Aggr_Low
, Aggr_High
);
2858 -- Abandon processing if either bound is already signalled as
2859 -- an error (prevents junk cascaded messages and blow ups).
2861 if Nkind
(Aggr_Low
) = N_Error
2863 Nkind
(Aggr_High
) = N_Error
2868 -- No others clause present
2871 -- Special processing if others allowed and not present. This
2872 -- means that the bounds of the aggregate come from the index
2873 -- constraint (and the length must match).
2875 if Others_Allowed
then
2876 Get_Index_Bounds
(Index_Constr
, Aggr_Low
, Aggr_High
);
2878 -- Abandon processing if either bound is already signalled
2879 -- as an error (stop junk cascaded messages and blow ups).
2881 if Nkind
(Aggr_Low
) = N_Error
2883 Nkind
(Aggr_High
) = N_Error
2888 -- If others allowed, and no others present, then the array
2889 -- should cover all index values. If it does not, we will
2890 -- get a length check warning, but there is two cases where
2891 -- an additional warning is useful:
2893 -- If we have no positional components, and the length is
2894 -- wrong (which we can tell by others being allowed with
2895 -- missing components), and the index type is an enumeration
2896 -- type, then issue appropriate warnings about these missing
2897 -- components. They are only warnings, since the aggregate
2898 -- is fine, it's just the wrong length. We skip this check
2899 -- for standard character types (since there are no literals
2900 -- and it is too much trouble to concoct them), and also if
2901 -- any of the bounds have values that are not known at
2904 -- Another case warranting a warning is when the length
2905 -- is right, but as above we have an index type that is
2906 -- an enumeration, and the bounds do not match. This is a
2907 -- case where dubious sliding is allowed and we generate a
2908 -- warning that the bounds do not match.
2910 if No
(Expressions
(N
))
2911 and then Nkind
(Index
) = N_Range
2912 and then Is_Enumeration_Type
(Etype
(Index
))
2913 and then not Is_Standard_Character_Type
(Etype
(Index
))
2914 and then Compile_Time_Known_Value
(Aggr_Low
)
2915 and then Compile_Time_Known_Value
(Aggr_High
)
2916 and then Compile_Time_Known_Value
(Choices_Low
)
2917 and then Compile_Time_Known_Value
(Choices_High
)
2919 -- If any of the expressions or range bounds in choices
2920 -- have semantic errors, then do not attempt further
2921 -- resolution, to prevent cascaded errors.
2923 if Errors_Posted_On_Choices
then
2928 ALo
: constant Node_Id
:= Expr_Value_E
(Aggr_Low
);
2929 AHi
: constant Node_Id
:= Expr_Value_E
(Aggr_High
);
2930 CLo
: constant Node_Id
:= Expr_Value_E
(Choices_Low
);
2931 CHi
: constant Node_Id
:= Expr_Value_E
(Choices_High
);
2936 -- Warning case 1, missing values at start/end. Only
2937 -- do the check if the number of entries is too small.
2939 if (Enumeration_Pos
(CHi
) - Enumeration_Pos
(CLo
))
2941 (Enumeration_Pos
(AHi
) - Enumeration_Pos
(ALo
))
2944 ("missing index value(s) in array aggregate??",
2947 -- Output missing value(s) at start
2949 if Chars
(ALo
) /= Chars
(CLo
) then
2952 if Chars
(ALo
) = Chars
(Ent
) then
2953 Error_Msg_Name_1
:= Chars
(ALo
);
2954 Error_Msg_N
("\ %??", N
);
2956 Error_Msg_Name_1
:= Chars
(ALo
);
2957 Error_Msg_Name_2
:= Chars
(Ent
);
2958 Error_Msg_N
("\ % .. %??", N
);
2962 -- Output missing value(s) at end
2964 if Chars
(AHi
) /= Chars
(CHi
) then
2967 if Chars
(AHi
) = Chars
(Ent
) then
2968 Error_Msg_Name_1
:= Chars
(Ent
);
2969 Error_Msg_N
("\ %??", N
);
2971 Error_Msg_Name_1
:= Chars
(Ent
);
2972 Error_Msg_Name_2
:= Chars
(AHi
);
2973 Error_Msg_N
("\ % .. %??", N
);
2977 -- Warning case 2, dubious sliding. The First_Subtype
2978 -- test distinguishes between a constrained type where
2979 -- sliding is not allowed (so we will get a warning
2980 -- later that Constraint_Error will be raised), and
2981 -- the unconstrained case where sliding is permitted.
2983 elsif (Enumeration_Pos
(CHi
) - Enumeration_Pos
(CLo
))
2985 (Enumeration_Pos
(AHi
) - Enumeration_Pos
(ALo
))
2986 and then Chars
(ALo
) /= Chars
(CLo
)
2988 not Is_Constrained
(First_Subtype
(Etype
(N
)))
2991 ("bounds of aggregate do not match target??", N
);
2997 -- If no others, aggregate bounds come from aggregate
2999 Aggr_Low
:= Choices_Low
;
3000 Aggr_High
:= Choices_High
;
3004 -- STEP 3: Process positional components
3007 -- STEP 3 (A): Process positional elements
3009 Expr
:= First
(Expressions
(N
));
3010 Nb_Elements
:= Uint_0
;
3011 while Present
(Expr
) loop
3012 Nb_Elements
:= Nb_Elements
+ 1;
3014 -- Ada 2005 (AI-231)
3016 if Ada_Version
>= Ada_2005
and then Known_Null
(Expr
) then
3017 Check_Can_Never_Be_Null
(Etype
(N
), Expr
);
3020 if not Resolve_Aggr_Expr
(Expr
, Single_Elmt
=> True) then
3024 -- Check incorrect use of dynamically tagged expression
3026 if Is_Tagged_Type
(Etype
(Expr
)) then
3027 Check_Dynamically_Tagged_Expression
3029 Typ
=> Component_Type
(Etype
(N
)),
3036 if Others_Present
then
3037 Assoc
:= Last
(Component_Associations
(N
));
3039 -- Ada 2005 (AI-231)
3041 if Ada_Version
>= Ada_2005
and then Known_Null
(Assoc
) then
3042 Check_Can_Never_Be_Null
(Etype
(N
), Expression
(Assoc
));
3045 -- Ada 2005 (AI-287): In case of default initialized component,
3046 -- we delay the resolution to the expansion phase.
3048 if Box_Present
(Assoc
) then
3050 -- Ada 2005 (AI-287): In case of default initialization of a
3051 -- component the expander will generate calls to the
3052 -- corresponding initialization subprogram. We need to call
3053 -- Resolve_Aggr_Expr to check the rules about
3056 if not Resolve_Aggr_Expr
(Assoc
, Single_Elmt
=> False) then
3060 elsif not Resolve_Aggr_Expr
(Expression
(Assoc
),
3061 Single_Elmt
=> False)
3065 -- Check incorrect use of dynamically tagged expression. The
3066 -- expression of the others choice has not been resolved yet.
3067 -- In order to diagnose the semantic error we create a duplicate
3068 -- tree to analyze it and perform the check.
3070 elsif Nkind
(Assoc
) /= N_Iterated_Component_Association
then
3072 Save_Analysis
: constant Boolean := Full_Analysis
;
3073 Expr
: constant Node_Id
:=
3074 New_Copy_Tree
(Expression
(Assoc
));
3077 Expander_Mode_Save_And_Set
(False);
3078 Full_Analysis
:= False;
3080 Full_Analysis
:= Save_Analysis
;
3081 Expander_Mode_Restore
;
3083 if Is_Tagged_Type
(Etype
(Expr
)) then
3084 Check_Dynamically_Tagged_Expression
3086 Typ
=> Component_Type
(Etype
(N
)),
3093 -- STEP 3 (B): Compute the aggregate bounds
3095 if Others_Present
then
3096 Get_Index_Bounds
(Index_Constr
, Aggr_Low
, Aggr_High
);
3099 if Others_Allowed
then
3100 Get_Index_Bounds
(Index_Constr
, Aggr_Low
, Discard
);
3102 Aggr_Low
:= Index_Typ_Low
;
3105 Aggr_High
:= Add
(Nb_Elements
- 1, To
=> Aggr_Low
);
3106 Check_Bound
(Index_Base_High
, Aggr_High
);
3110 -- STEP 4: Perform static aggregate checks and save the bounds
3114 Check_Bounds
(Index_Typ_Low
, Index_Typ_High
, Aggr_Low
, Aggr_High
);
3115 Check_Bounds
(Index_Base_Low
, Index_Base_High
, Aggr_Low
, Aggr_High
);
3119 if Others_Present
and then Nb_Discrete_Choices
> 0 then
3120 Check_Bounds
(Aggr_Low
, Aggr_High
, Choices_Low
, Choices_High
);
3121 Check_Bounds
(Index_Typ_Low
, Index_Typ_High
,
3122 Choices_Low
, Choices_High
);
3123 Check_Bounds
(Index_Base_Low
, Index_Base_High
,
3124 Choices_Low
, Choices_High
);
3128 elsif Others_Present
and then Nb_Elements
> 0 then
3129 Check_Length
(Aggr_Low
, Aggr_High
, Nb_Elements
);
3130 Check_Length
(Index_Typ_Low
, Index_Typ_High
, Nb_Elements
);
3131 Check_Length
(Index_Base_Low
, Index_Base_High
, Nb_Elements
);
3134 if Raises_Constraint_Error
(Aggr_Low
)
3135 or else Raises_Constraint_Error
(Aggr_High
)
3137 Set_Raises_Constraint_Error
(N
);
3140 Aggr_Low
:= Duplicate_Subexpr
(Aggr_Low
);
3142 -- Do not duplicate Aggr_High if Aggr_High = Aggr_Low + Nb_Elements
3143 -- since the addition node returned by Add is not yet analyzed. Attach
3144 -- to tree and analyze first. Reset analyzed flag to ensure it will get
3145 -- analyzed when it is a literal bound whose type must be properly set.
3147 if Others_Present
or else Nb_Discrete_Choices
> 0 then
3148 Aggr_High
:= Duplicate_Subexpr
(Aggr_High
);
3150 if Etype
(Aggr_High
) = Universal_Integer
then
3151 Set_Analyzed
(Aggr_High
, False);
3155 -- If the aggregate already has bounds attached to it, it means this is
3156 -- a positional aggregate created as an optimization by
3157 -- Exp_Aggr.Convert_To_Positional, so we don't want to change those
3160 if Present
(Aggregate_Bounds
(N
))
3161 and then not Others_Allowed
3162 and then not Comes_From_Source
(N
)
3164 Aggr_Low
:= Low_Bound
(Aggregate_Bounds
(N
));
3165 Aggr_High
:= High_Bound
(Aggregate_Bounds
(N
));
3168 Set_Aggregate_Bounds
3169 (N
, Make_Range
(Loc
, Low_Bound
=> Aggr_Low
, High_Bound
=> Aggr_High
));
3171 -- The bounds may contain expressions that must be inserted upwards.
3172 -- Attach them fully to the tree. After analysis, remove side effects
3173 -- from upper bound, if still needed.
3175 Set_Parent
(Aggregate_Bounds
(N
), N
);
3176 Analyze_And_Resolve
(Aggregate_Bounds
(N
), Index_Typ
);
3177 Check_Unset_Reference
(Aggregate_Bounds
(N
));
3179 if not Others_Present
and then Nb_Discrete_Choices
= 0 then
3181 (Aggregate_Bounds
(N
),
3182 Duplicate_Subexpr
(High_Bound
(Aggregate_Bounds
(N
))));
3185 -- Check the dimensions of each component in the array aggregate
3187 Analyze_Dimension_Array_Aggregate
(N
, Component_Typ
);
3190 end Resolve_Array_Aggregate
;
3192 ---------------------------------
3193 -- Resolve_Container_Aggregate --
3194 ---------------------------------
3196 procedure Resolve_Container_Aggregate
(N
: Node_Id
; Typ
: Entity_Id
) is
3197 procedure Resolve_Iterated_Association
3199 Key_Type
: Entity_Id
;
3200 Elmt_Type
: Entity_Id
);
3201 -- Resolve choices and expression in an iterated component association
3202 -- or an iterated element association, which has a key_expression.
3203 -- This is similar but not identical to the handling of this construct
3204 -- in an array aggregate.
3205 -- For a named container, the type of each choice must be compatible
3206 -- with the key type. For a positional container, the choice must be
3207 -- a subtype indication or an iterator specification that determines
3210 Asp
: constant Node_Id
:= Find_Value_Of_Aspect
(Typ
, Aspect_Aggregate
);
3212 Empty_Subp
: Node_Id
:= Empty
;
3213 Add_Named_Subp
: Node_Id
:= Empty
;
3214 Add_Unnamed_Subp
: Node_Id
:= Empty
;
3215 New_Indexed_Subp
: Node_Id
:= Empty
;
3216 Assign_Indexed_Subp
: Node_Id
:= Empty
;
3218 ----------------------------------
3219 -- Resolve_Iterated_Association --
3220 ----------------------------------
3222 procedure Resolve_Iterated_Association
3224 Key_Type
: Entity_Id
;
3225 Elmt_Type
: Entity_Id
)
3227 Loc
: constant Source_Ptr
:= Sloc
(N
);
3235 Typ
: Entity_Id
:= Empty
;
3238 Error_Msg_Ada_2022_Feature
("iterated component", Loc
);
3240 -- If this is an Iterated_Element_Association then either a
3241 -- an Iterator_Specification or a Loop_Parameter specification
3242 -- is present. In both cases a Key_Expression is present.
3244 if Nkind
(Comp
) = N_Iterated_Element_Association
then
3246 -- Create a temporary scope to avoid some modifications from
3247 -- escaping the Analyze call below. The original Tree will be
3248 -- reanalyzed later.
3250 Ent
:= New_Internal_Entity
3251 (E_Loop
, Current_Scope
, Sloc
(Comp
), 'L');
3252 Set_Etype
(Ent
, Standard_Void_Type
);
3253 Set_Parent
(Ent
, Parent
(Comp
));
3256 if Present
(Loop_Parameter_Specification
(Comp
)) then
3257 Copy
:= Copy_Separate_Tree
(Comp
);
3260 (Loop_Parameter_Specification
(Copy
));
3262 Id_Name
:= Chars
(Defining_Identifier
3263 (Loop_Parameter_Specification
(Comp
)));
3265 Copy
:= Copy_Separate_Tree
(Iterator_Specification
(Comp
));
3268 Id_Name
:= Chars
(Defining_Identifier
3269 (Iterator_Specification
(Comp
)));
3272 -- Key expression must have the type of the key. We preanalyze
3273 -- a copy of the original expression, because it will be
3274 -- reanalyzed and copied as needed during expansion of the
3275 -- corresponding loop.
3277 Key_Expr
:= Key_Expression
(Comp
);
3278 Preanalyze_And_Resolve
(New_Copy_Tree
(Key_Expr
), Key_Type
);
3283 elsif Present
(Iterator_Specification
(Comp
)) then
3284 -- Create a temporary scope to avoid some modifications from
3285 -- escaping the Analyze call below. The original Tree will be
3286 -- reanalyzed later.
3288 Ent
:= New_Internal_Entity
3289 (E_Loop
, Current_Scope
, Sloc
(Comp
), 'L');
3290 Set_Etype
(Ent
, Standard_Void_Type
);
3291 Set_Parent
(Ent
, Parent
(Comp
));
3294 Copy
:= Copy_Separate_Tree
(Iterator_Specification
(Comp
));
3296 Chars
(Defining_Identifier
(Iterator_Specification
(Comp
)));
3302 Typ
:= Etype
(Defining_Identifier
(Copy
));
3305 Choice
:= First
(Discrete_Choices
(Comp
));
3307 while Present
(Choice
) loop
3310 -- Choice can be a subtype name, a range, or an expression
3312 if Is_Entity_Name
(Choice
)
3313 and then Is_Type
(Entity
(Choice
))
3314 and then Base_Type
(Entity
(Choice
)) = Base_Type
(Key_Type
)
3318 elsif Present
(Key_Type
) then
3319 Analyze_And_Resolve
(Choice
, Key_Type
);
3322 Typ
:= Etype
(Choice
); -- assume unique for now
3328 Id_Name
:= Chars
(Defining_Identifier
(Comp
));
3331 -- Create a scope in which to introduce an index, which is usually
3332 -- visible in the expression for the component, and needed for its
3335 Id
:= Make_Defining_Identifier
(Sloc
(Comp
), Id_Name
);
3336 Ent
:= New_Internal_Entity
(E_Loop
,
3337 Current_Scope
, Sloc
(Comp
), 'L');
3338 Set_Etype
(Ent
, Standard_Void_Type
);
3339 Set_Parent
(Ent
, Parent
(Comp
));
3342 -- Insert and decorate the loop variable in the current scope.
3343 -- The expression has to be analyzed once the loop variable is
3344 -- directly visible. Mark the variable as referenced to prevent
3345 -- spurious warnings, given that subsequent uses of its name in the
3346 -- expression will reference the internal (synonym) loop variable.
3350 pragma Assert
(Present
(Typ
));
3351 Set_Etype
(Id
, Typ
);
3353 Mutate_Ekind
(Id
, E_Variable
);
3354 Set_Is_Not_Self_Hidden
(Id
);
3355 Set_Scope
(Id
, Ent
);
3356 Set_Referenced
(Id
);
3358 -- Analyze a copy of the expression, to verify legality. We use
3359 -- a copy because the expression will be analyzed anew when the
3360 -- enclosing aggregate is expanded, and the construct is rewritten
3361 -- as a loop with a new index variable.
3363 Expr
:= New_Copy_Tree
(Expression
(Comp
));
3364 Preanalyze_And_Resolve
(Expr
, Elmt_Type
);
3367 end Resolve_Iterated_Association
;
3369 -- Start of processing for Resolve_Container_Aggregate
3372 pragma Assert
(Nkind
(Asp
) = N_Aggregate
);
3375 Parse_Aspect_Aggregate
(Asp
,
3376 Empty_Subp
, Add_Named_Subp
, Add_Unnamed_Subp
,
3377 New_Indexed_Subp
, Assign_Indexed_Subp
);
3379 if Present
(Add_Unnamed_Subp
)
3380 and then No
(New_Indexed_Subp
)
3381 and then Present
(Etype
(Add_Unnamed_Subp
))
3382 and then Etype
(Add_Unnamed_Subp
) /= Any_Type
3385 Elmt_Type
: constant Entity_Id
:=
3387 (First_Formal
(Entity
(Add_Unnamed_Subp
))));
3391 if Present
(Expressions
(N
)) then
3392 -- positional aggregate
3394 Comp
:= First
(Expressions
(N
));
3395 while Present
(Comp
) loop
3396 Analyze_And_Resolve
(Comp
, Elmt_Type
);
3401 -- Empty aggregate, to be replaced by Empty during
3402 -- expansion, or iterated component association.
3404 if Present
(Component_Associations
(N
)) then
3406 Comp
: Node_Id
:= First
(Component_Associations
(N
));
3408 while Present
(Comp
) loop
3410 N_Iterated_Component_Association
3412 Error_Msg_N
("illegal component association "
3413 & "for unnamed container aggregate", Comp
);
3416 Resolve_Iterated_Association
3417 (Comp
, Empty
, Elmt_Type
);
3426 elsif Present
(Add_Named_Subp
)
3427 and then Etype
(Add_Named_Subp
) /= Any_Type
3430 -- Retrieves types of container, key, and element from the
3431 -- specified insertion procedure.
3433 Container
: constant Entity_Id
:=
3434 First_Formal
(Entity
(Add_Named_Subp
));
3435 Key_Type
: constant Entity_Id
:= Etype
(Next_Formal
(Container
));
3436 Elmt_Type
: constant Entity_Id
:=
3437 Etype
(Next_Formal
(Next_Formal
(Container
)));
3439 Comp_Assocs
: constant List_Id
:= Component_Associations
(N
);
3444 -- In the Add_Named case, the aggregate must consist of named
3445 -- associations (Add_Unnnamed is not allowed), so we issue an
3446 -- error if there are positional associations.
3449 and then Present
(Expressions
(N
))
3451 Error_Msg_N
("container aggregate must be "
3452 & "named, not positional", N
);
3456 Comp
:= First
(Comp_Assocs
);
3457 while Present
(Comp
) loop
3458 if Nkind
(Comp
) = N_Component_Association
then
3459 Choice
:= First
(Choices
(Comp
));
3461 while Present
(Choice
) loop
3462 Analyze_And_Resolve
(Choice
, Key_Type
);
3463 if not Is_Static_Expression
(Choice
) then
3464 Error_Msg_N
("choice must be static", Choice
);
3470 Analyze_And_Resolve
(Expression
(Comp
), Elmt_Type
);
3472 elsif Nkind
(Comp
) in
3473 N_Iterated_Component_Association |
3474 N_Iterated_Element_Association
3476 Resolve_Iterated_Association
3477 (Comp
, Key_Type
, Elmt_Type
);
3484 elsif Present
(Assign_Indexed_Subp
)
3485 and then Etype
(Assign_Indexed_Subp
) /= Any_Type
3487 -- Indexed Aggregate. Positional or indexed component
3488 -- can be present, but not both. Choices must be static
3489 -- values or ranges with static bounds.
3492 Container
: constant Entity_Id
:=
3493 First_Formal
(Entity
(Assign_Indexed_Subp
));
3494 Index_Type
: constant Entity_Id
:= Etype
(Next_Formal
(Container
));
3495 Comp_Type
: constant Entity_Id
:=
3496 Etype
(Next_Formal
(Next_Formal
(Container
)));
3499 Num_Choices
: Nat
:= 0;
3504 if Present
(Expressions
(N
)) then
3505 Comp
:= First
(Expressions
(N
));
3506 while Present
(Comp
) loop
3507 Analyze_And_Resolve
(Comp
, Comp_Type
);
3512 if Present
(Component_Associations
(N
))
3513 and then not Is_Empty_List
(Component_Associations
(N
))
3515 if Present
(Expressions
(N
))
3516 and then not Is_Empty_List
(Expressions
(N
))
3518 Error_Msg_N
("container aggregate cannot be "
3519 & "both positional and named", N
);
3523 Comp
:= First
(Component_Associations
(N
));
3525 while Present
(Comp
) loop
3526 if Nkind
(Comp
) = N_Component_Association
then
3527 Choice
:= First
(Choices
(Comp
));
3529 while Present
(Choice
) loop
3530 Analyze_And_Resolve
(Choice
, Index_Type
);
3531 Num_Choices
:= Num_Choices
+ 1;
3535 Analyze_And_Resolve
(Expression
(Comp
), Comp_Type
);
3537 elsif Nkind
(Comp
) in
3538 N_Iterated_Component_Association |
3539 N_Iterated_Element_Association
3541 Resolve_Iterated_Association
3542 (Comp
, Index_Type
, Comp_Type
);
3543 Num_Choices
:= Num_Choices
+ 1;
3549 -- The component associations in an indexed aggregate
3550 -- must denote a contiguous set of static values. We
3551 -- build a table of values/ranges and sort it, as is done
3552 -- elsewhere for case statements and array aggregates.
3553 -- If the aggregate has a single iterated association it
3554 -- is allowed to be nonstatic and there is nothing to check.
3556 if Num_Choices
> 1 then
3558 Table
: Case_Table_Type
(1 .. Num_Choices
);
3559 No_Choice
: Pos
:= 1;
3562 -- Traverse aggregate to determine size of needed table.
3563 -- Verify that bounds are static and that loops have no
3564 -- filters or key expressions.
3567 Comp
:= First
(Component_Associations
(N
));
3568 while Present
(Comp
) loop
3569 if Nkind
(Comp
) = N_Iterated_Element_Association
then
3571 (Loop_Parameter_Specification
(Comp
))
3573 if Present
(Iterator_Filter
3574 (Loop_Parameter_Specification
(Comp
)))
3577 ("iterator filter not allowed " &
3578 "in indexed aggregate", Comp
);
3581 elsif Present
(Key_Expression
3582 (Loop_Parameter_Specification
(Comp
)))
3585 ("key expression not allowed " &
3586 "in indexed aggregate", Comp
);
3592 -- If Nkind is N_Iterated_Component_Association,
3593 -- this corresponds to an iterator_specification
3594 -- with a loop_parameter_specification, and we
3595 -- have to pick up Discrete_Choices. In this case
3596 -- there will be just one "choice", which will
3597 -- typically be a range.
3599 if Nkind
(Comp
) = N_Iterated_Component_Association
3601 Choice
:= First
(Discrete_Choices
(Comp
));
3603 -- Case where there's a list of choices
3606 Choice
:= First
(Choices
(Comp
));
3609 while Present
(Choice
) loop
3610 Get_Index_Bounds
(Choice
, Lo
, Hi
);
3611 Table
(No_Choice
).Choice
:= Choice
;
3612 Table
(No_Choice
).Lo
:= Lo
;
3613 Table
(No_Choice
).Hi
:= Hi
;
3615 -- Verify staticness of value or range
3617 if not Is_Static_Expression
(Lo
)
3618 or else not Is_Static_Expression
(Hi
)
3621 ("nonstatic expression for index " &
3622 "for indexed aggregate", Choice
);
3626 No_Choice
:= No_Choice
+ 1;
3634 Sort_Case_Table
(Table
);
3636 for J
in 1 .. Num_Choices
- 1 loop
3637 Hi_Val
:= Expr_Value
(Table
(J
).Hi
);
3638 Lo_Val
:= Expr_Value
(Table
(J
+ 1).Lo
);
3640 if Lo_Val
= Hi_Val
then
3642 ("duplicate index in indexed aggregate",
3643 Table
(J
+ 1).Choice
);
3646 elsif Lo_Val
< Hi_Val
then
3648 ("overlapping indices in indexed aggregate",
3649 Table
(J
+ 1).Choice
);
3652 elsif Lo_Val
> Hi_Val
+ 1 then
3654 ("missing index values", Table
(J
+ 1).Choice
);
3663 end Resolve_Container_Aggregate
;
3665 -----------------------------
3666 -- Resolve_Delta_Aggregate --
3667 -----------------------------
3669 procedure Resolve_Delta_Aggregate
(N
: Node_Id
; Typ
: Entity_Id
) is
3670 Base
: constant Node_Id
:= Expression
(N
);
3673 Error_Msg_Ada_2022_Feature
("delta aggregate", Sloc
(N
));
3675 if not Is_Composite_Type
(Typ
) then
3676 Error_Msg_N
("not a composite type", N
);
3679 Analyze_And_Resolve
(Base
, Typ
);
3681 if Is_Array_Type
(Typ
) then
3682 -- For an array_delta_aggregate, the base_expression and each
3683 -- expression in every array_component_association shall be of a
3684 -- nonlimited type; RM 4.3.4(13/5). However, to prevent repeated
3685 -- errors we only check the base expression and not array component
3688 if Is_Limited_Type
(Etype
(Base
)) then
3690 ("array delta aggregate shall be of a nonlimited type", Base
);
3691 Explain_Limited_Type
(Etype
(Base
), Base
);
3694 Resolve_Delta_Array_Aggregate
(N
, Typ
);
3697 -- Delta aggregates for record types must use parentheses,
3698 -- not square brackets.
3700 if Is_Homogeneous_Aggregate
(N
) then
3702 ("delta aggregates for record types must use (), not '[']", N
);
3705 -- The base_expression of a record_delta_aggregate can be of a
3706 -- limited type only if it is newly constructed; RM 7.5(2.1/5).
3708 Check_Expr_OK_In_Limited_Aggregate
(Base
);
3710 Resolve_Delta_Record_Aggregate
(N
, Typ
);
3714 end Resolve_Delta_Aggregate
;
3716 -----------------------------------
3717 -- Resolve_Delta_Array_Aggregate --
3718 -----------------------------------
3720 procedure Resolve_Delta_Array_Aggregate
(N
: Node_Id
; Typ
: Entity_Id
) is
3721 Deltas
: constant List_Id
:= Component_Associations
(N
);
3722 Index_Type
: constant Entity_Id
:= Etype
(First_Index
(Typ
));
3728 Deep_Choice_Seen
: Boolean := False;
3731 Assoc
:= First
(Deltas
);
3732 while Present
(Assoc
) loop
3733 if Nkind
(Assoc
) = N_Iterated_Component_Association
then
3734 Choice
:= First
(Choice_List
(Assoc
));
3735 while Present
(Choice
) loop
3736 if Nkind
(Choice
) = N_Others_Choice
then
3738 ("OTHERS not allowed in delta aggregate", Choice
);
3740 elsif Nkind
(Choice
) = N_Subtype_Indication
then
3741 Resolve_Discrete_Subtype_Indication
3742 (Choice
, Base_Type
(Index_Type
));
3745 Analyze_And_Resolve
(Choice
, Index_Type
);
3752 Id
: constant Entity_Id
:= Defining_Identifier
(Assoc
);
3753 Ent
: constant Entity_Id
:=
3755 (E_Loop
, Current_Scope
, Sloc
(Assoc
), 'L');
3758 Set_Etype
(Ent
, Standard_Void_Type
);
3759 Set_Parent
(Ent
, Assoc
);
3762 if No
(Scope
(Id
)) then
3763 Set_Etype
(Id
, Index_Type
);
3764 Mutate_Ekind
(Id
, E_Variable
);
3765 Set_Is_Not_Self_Hidden
(Id
);
3766 Set_Scope
(Id
, Ent
);
3770 -- Resolve a copy of the expression, after setting
3771 -- its parent properly to preserve its context.
3773 Expr
:= New_Copy_Tree
(Expression
(Assoc
));
3774 Set_Parent
(Expr
, Assoc
);
3775 Analyze_And_Resolve
(Expr
, Component_Type
(Typ
));
3780 Choice
:= First
(Choice_List
(Assoc
));
3781 while Present
(Choice
) loop
3782 if Is_Deep_Choice
(Choice
, Typ
) then
3783 pragma Assert
(All_Extensions_Allowed
);
3784 Deep_Choice_Seen
:= True;
3786 -- a deep delta aggregate
3787 Resolve_Deep_Delta_Assoc
(Assoc
, Typ
);
3791 if Nkind
(Choice
) = N_Others_Choice
then
3793 ("OTHERS not allowed in delta aggregate", Choice
);
3795 elsif Is_Entity_Name
(Choice
)
3796 and then Is_Type
(Entity
(Choice
))
3798 -- Choice covers a range of values
3800 if Base_Type
(Entity
(Choice
)) /=
3801 Base_Type
(Index_Type
)
3804 ("choice does not match index type of &",
3808 elsif Nkind
(Choice
) = N_Subtype_Indication
then
3809 Resolve_Discrete_Subtype_Indication
3810 (Choice
, Base_Type
(Index_Type
));
3813 Resolve
(Choice
, Index_Type
);
3820 -- For an array_delta_aggregate, the array_component_association
3821 -- shall not use the box symbol <>; RM 4.3.4(11/5).
3824 (Box_Present
(Assoc
) xor Present
(Expression
(Assoc
)));
3826 if Box_Present
(Assoc
) then
3828 ("'<'> in array delta aggregate is not allowed", Assoc
);
3829 elsif not Deep_Choice_Seen
then
3830 Analyze_And_Resolve
(Expression
(Assoc
), Component_Type
(Typ
));
3836 end Resolve_Delta_Array_Aggregate
;
3838 ------------------------------------
3839 -- Resolve_Delta_Record_Aggregate --
3840 ------------------------------------
3842 procedure Resolve_Delta_Record_Aggregate
(N
: Node_Id
; Typ
: Entity_Id
) is
3844 -- Variables used to verify that discriminant-dependent components
3845 -- appear in the same variant.
3847 Comp_Ref
: Entity_Id
:= Empty
; -- init to avoid warning
3850 procedure Check_Variant
(Id
: Node_Id
);
3851 -- If a given component of the delta aggregate appears in a variant
3852 -- part, verify that it is within the same variant as that of previous
3853 -- specified variant components of the delta.
3855 function Get_Component_Type
3856 (Selector
: Node_Id
; Enclosing_Type
: Entity_Id
) return Entity_Id
;
3857 -- Locate component with a given name and return its type.
3858 -- If none found then report error and return Empty.
3860 function Nested_In
(V1
: Node_Id
; V2
: Node_Id
) return Boolean;
3861 -- Determine whether variant V1 is within variant V2
3863 function Variant_Depth
(N
: Node_Id
) return Natural;
3864 -- Determine the distance of a variant to the enclosing type declaration
3866 --------------------
3868 --------------------
3870 procedure Check_Variant
(Id
: Node_Id
) is
3872 Comp_Variant
: Node_Id
;
3875 if not Has_Discriminants
(Typ
) then
3879 Comp
:= First_Entity
(Typ
);
3880 while Present
(Comp
) loop
3881 exit when Chars
(Comp
) = Chars
(Id
);
3882 Next_Component
(Comp
);
3885 -- Find the variant, if any, whose component list includes the
3886 -- component declaration.
3888 Comp_Variant
:= Parent
(Parent
(List_Containing
(Parent
(Comp
))));
3889 if Nkind
(Comp_Variant
) = N_Variant
then
3890 if No
(Variant
) then
3891 Variant
:= Comp_Variant
;
3894 elsif Variant
/= Comp_Variant
then
3896 D1
: constant Integer := Variant_Depth
(Variant
);
3897 D2
: constant Integer := Variant_Depth
(Comp_Variant
);
3902 (D1
> D2
and then not Nested_In
(Variant
, Comp_Variant
))
3904 (D2
> D1
and then not Nested_In
(Comp_Variant
, Variant
))
3906 pragma Assert
(Present
(Comp_Ref
));
3907 Error_Msg_Node_2
:= Comp_Ref
;
3909 ("& and & appear in different variants", Id
, Comp
);
3911 -- Otherwise retain the deeper variant for subsequent tests
3914 Variant
:= Comp_Variant
;
3921 ------------------------
3922 -- Get_Component_Type --
3923 ------------------------
3925 function Get_Component_Type
3926 (Selector
: Node_Id
; Enclosing_Type
: Entity_Id
) return Entity_Id
3930 case Nkind
(Selector
) is
3931 when N_Selected_Component | N_Indexed_Component
=>
3932 -- a deep delta aggregate choice
3935 Prefix_Type
: constant Entity_Id
:=
3936 Get_Component_Type
(Prefix
(Selector
), Enclosing_Type
);
3938 if No
(Prefix_Type
) then
3939 pragma Assert
(Serious_Errors_Detected
> 0);
3943 -- Set the type of the prefix for GNATprove
3945 Set_Etype
(Prefix
(Selector
), Prefix_Type
);
3947 if Nkind
(Selector
) = N_Selected_Component
then
3948 return Get_Component_Type
3949 (Selector_Name
(Selector
),
3950 Enclosing_Type
=> Prefix_Type
);
3951 elsif not Is_Array_Type
(Prefix_Type
) then
3953 ("type& is not an array type",
3954 Selector
, Prefix_Type
);
3955 elsif Number_Dimensions
(Prefix_Type
) /= 1 then
3957 ("array type& not one-dimensional",
3958 Selector
, Prefix_Type
);
3959 elsif List_Length
(Expressions
(Selector
)) /= 1 then
3961 ("wrong number of indices for array type&",
3962 Selector
, Prefix_Type
);
3965 (First
(Expressions
(Selector
)),
3966 Etype
(First_Index
(Prefix_Type
)));
3967 return Component_Type
(Prefix_Type
);
3975 Comp
:= First_Entity
(Enclosing_Type
);
3976 while Present
(Comp
) loop
3977 if Chars
(Comp
) = Chars
(Selector
) then
3978 if Ekind
(Comp
) = E_Discriminant
then
3979 Error_Msg_N
("delta cannot apply to discriminant", Selector
);
3982 Set_Entity
(Selector
, Comp
);
3983 Set_Etype
(Selector
, Etype
(Comp
));
3985 return Etype
(Comp
);
3992 ("type& has no component with this name", Selector
, Enclosing_Type
);
3994 end Get_Component_Type
;
4000 function Nested_In
(V1
, V2
: Node_Id
) return Boolean is
4005 while Nkind
(Par
) /= N_Full_Type_Declaration
loop
4010 Par
:= Parent
(Par
);
4020 function Variant_Depth
(N
: Node_Id
) return Natural is
4027 while Nkind
(Par
) /= N_Full_Type_Declaration
loop
4029 Par
:= Parent
(Par
);
4037 Deltas
: constant List_Id
:= Component_Associations
(N
);
4041 Comp_Type
: Entity_Id
:= Empty
; -- init to avoid warning
4042 Deep_Choice
: Boolean;
4044 -- Start of processing for Resolve_Delta_Record_Aggregate
4049 Assoc
:= First
(Deltas
);
4050 while Present
(Assoc
) loop
4051 Choice
:= First
(Choice_List
(Assoc
));
4052 while Present
(Choice
) loop
4053 Deep_Choice
:= Nkind
(Choice
) /= N_Identifier
;
4055 Error_Msg_GNAT_Extension
4056 ("deep delta aggregate", Sloc
(Choice
));
4059 Comp_Type
:= Get_Component_Type
4060 (Selector
=> Choice
, Enclosing_Type
=> Typ
);
4062 -- Set the type of the choice for GNATprove
4065 Set_Etype
(Choice
, Comp_Type
);
4068 if Present
(Comp_Type
) then
4069 if not Deep_Choice
then
4070 -- ??? Not clear yet how RM 4.3.1(17.7) applies to a
4071 -- deep delta aggregate.
4072 Check_Variant
(Choice
);
4075 Comp_Type
:= Any_Type
;
4081 pragma Assert
(Present
(Comp_Type
));
4083 -- A record_component_association in record_delta_aggregate shall not
4084 -- use the box compound delimiter <> rather than an expression; see
4085 -- RM 4.3.1(17.3/5).
4087 pragma Assert
(Present
(Expression
(Assoc
)) xor Box_Present
(Assoc
));
4089 if Box_Present
(Assoc
) then
4091 ("'<'> in record delta aggregate is not allowed", Assoc
);
4093 Analyze_And_Resolve
(Expression
(Assoc
), Comp_Type
);
4095 -- The expression must not be of a limited type; RM 4.3.1(17.4/5)
4097 if Is_Limited_Type
(Etype
(Expression
(Assoc
))) then
4099 ("expression of a limited type in record delta aggregate " &
4101 Expression
(Assoc
));
4107 end Resolve_Delta_Record_Aggregate
;
4109 ------------------------------
4110 -- Resolve_Deep_Delta_Assoc --
4111 ------------------------------
4113 procedure Resolve_Deep_Delta_Assoc
(N
: Node_Id
; Typ
: Entity_Id
) is
4114 Choice
: constant Node_Id
:= First
(Choice_List
(N
));
4115 Enclosing_Type
: Entity_Id
:= Typ
;
4117 procedure Resolve_Choice_Prefix
4118 (Choice_Prefix
: Node_Id
; Enclosing_Type
: in out Entity_Id
);
4119 -- Recursively analyze selectors. Enclosing_Type is set to
4120 -- type of the last component.
4122 ---------------------------
4123 -- Resolve_Choice_Prefix --
4124 ---------------------------
4126 procedure Resolve_Choice_Prefix
4127 (Choice_Prefix
: Node_Id
; Enclosing_Type
: in out Entity_Id
)
4129 Selector
: Node_Id
:= Choice_Prefix
;
4131 if not Is_Root_Prefix_Of_Deep_Choice
(Choice_Prefix
) then
4132 Resolve_Choice_Prefix
(Prefix
(Choice_Prefix
), Enclosing_Type
);
4134 if Nkind
(Choice_Prefix
) = N_Selected_Component
then
4135 Selector
:= Selector_Name
(Choice_Prefix
);
4137 pragma Assert
(Nkind
(Choice_Prefix
) = N_Indexed_Component
);
4138 Selector
:= First
(Expressions
(Choice_Prefix
));
4142 if Is_Array_Type
(Enclosing_Type
) then
4143 Analyze_And_Resolve
(Selector
,
4144 Etype
(First_Index
(Enclosing_Type
)));
4145 Enclosing_Type
:= Component_Type
(Enclosing_Type
);
4148 Comp
: Entity_Id
:= First_Entity
(Enclosing_Type
);
4149 Found
: Boolean := False;
4151 while Present
(Comp
) and not Found
loop
4152 if Chars
(Comp
) = Chars
(Selector
) then
4153 if Ekind
(Comp
) = E_Discriminant
then
4154 Error_Msg_N
("delta cannot apply to discriminant",
4158 Set_Entity
(Selector
, Comp
);
4159 Set_Etype
(Selector
, Etype
(Comp
));
4160 Set_Analyzed
(Selector
);
4161 Enclosing_Type
:= Etype
(Comp
);
4168 ("type& has no component with this name",
4169 Selector
, Enclosing_Type
);
4174 -- Set the type of the prefix for GNATprove, except for the root
4175 -- prefix, whose type is already the expected one for a record
4176 -- delta aggregate, or the type of the array index for an
4177 -- array delta aggregate (the only case here really since
4178 -- Resolve_Deep_Delta_Assoc is only called for array delta
4181 if Selector
/= Choice_Prefix
then
4182 Set_Etype
(Choice_Prefix
, Enclosing_Type
);
4184 end Resolve_Choice_Prefix
;
4187 Unimplemented
: exception; -- TEMPORARY
4189 if Present
(Next
(Choice
)) then
4190 raise Unimplemented
;
4194 Resolve_Choice_Prefix
(Choice
, Enclosing_Type
);
4195 Analyze_And_Resolve
(Expression
(N
), Enclosing_Type
);
4196 end Resolve_Deep_Delta_Assoc
;
4198 ---------------------------------
4199 -- Resolve_Extension_Aggregate --
4200 ---------------------------------
4202 -- There are two cases to consider:
4204 -- a) If the ancestor part is a type mark, the components needed are the
4205 -- difference between the components of the expected type and the
4206 -- components of the given type mark.
4208 -- b) If the ancestor part is an expression, it must be unambiguous, and
4209 -- once we have its type we can also compute the needed components as in
4210 -- the previous case. In both cases, if the ancestor type is not the
4211 -- immediate ancestor, we have to build this ancestor recursively.
4213 -- In both cases, discriminants of the ancestor type do not play a role in
4214 -- the resolution of the needed components, because inherited discriminants
4215 -- cannot be used in a type extension. As a result we can compute
4216 -- independently the list of components of the ancestor type and of the
4219 procedure Resolve_Extension_Aggregate
(N
: Node_Id
; Typ
: Entity_Id
) is
4220 A
: constant Node_Id
:= Ancestor_Part
(N
);
4225 function Valid_Limited_Ancestor
(Anc
: Node_Id
) return Boolean;
4226 -- If the type is limited, verify that the ancestor part is a legal
4227 -- expression (aggregate or function call, including 'Input)) that does
4228 -- not require a copy, as specified in 7.5(2).
4230 function Valid_Ancestor_Type
return Boolean;
4231 -- Verify that the type of the ancestor part is a non-private ancestor
4232 -- of the expected type, which must be a type extension.
4234 ----------------------------
4235 -- Valid_Limited_Ancestor --
4236 ----------------------------
4238 function Valid_Limited_Ancestor
(Anc
: Node_Id
) return Boolean is
4240 if Is_Entity_Name
(Anc
) and then Is_Type
(Entity
(Anc
)) then
4243 -- The ancestor must be a call or an aggregate, but a call may
4244 -- have been expanded into a temporary, so check original node.
4246 elsif Nkind
(Anc
) in N_Aggregate
4247 | N_Extension_Aggregate
4252 elsif Nkind
(Original_Node
(Anc
)) = N_Function_Call
then
4255 elsif Nkind
(Anc
) = N_Attribute_Reference
4256 and then Attribute_Name
(Anc
) = Name_Input
4260 elsif Nkind
(Anc
) = N_Qualified_Expression
then
4261 return Valid_Limited_Ancestor
(Expression
(Anc
));
4263 elsif Nkind
(Anc
) = N_Raise_Expression
then
4269 end Valid_Limited_Ancestor
;
4271 -------------------------
4272 -- Valid_Ancestor_Type --
4273 -------------------------
4275 function Valid_Ancestor_Type
return Boolean is
4276 Imm_Type
: Entity_Id
;
4279 Imm_Type
:= Base_Type
(Typ
);
4280 while Is_Derived_Type
(Imm_Type
) loop
4281 if Etype
(Imm_Type
) = Base_Type
(A_Type
) then
4284 -- The base type of the parent type may appear as a private
4285 -- extension if it is declared as such in a parent unit of the
4286 -- current one. For consistency of the subsequent analysis use
4287 -- the partial view for the ancestor part.
4289 elsif Is_Private_Type
(Etype
(Imm_Type
))
4290 and then Present
(Full_View
(Etype
(Imm_Type
)))
4291 and then Base_Type
(A_Type
) = Full_View
(Etype
(Imm_Type
))
4293 A_Type
:= Etype
(Imm_Type
);
4296 -- The parent type may be a private extension. The aggregate is
4297 -- legal if the type of the aggregate is an extension of it that
4298 -- is not a private extension.
4300 elsif Is_Private_Type
(A_Type
)
4301 and then not Is_Private_Type
(Imm_Type
)
4302 and then Present
(Full_View
(A_Type
))
4303 and then Base_Type
(Full_View
(A_Type
)) = Etype
(Imm_Type
)
4307 -- The parent type may be a raise expression (which is legal in
4308 -- any expression context).
4310 elsif A_Type
= Raise_Type
then
4311 A_Type
:= Etype
(Imm_Type
);
4315 Imm_Type
:= Etype
(Base_Type
(Imm_Type
));
4319 -- If previous loop did not find a proper ancestor, report error
4321 Error_Msg_NE
("expect ancestor type of &", A
, Typ
);
4323 end Valid_Ancestor_Type
;
4325 -- Start of processing for Resolve_Extension_Aggregate
4328 -- Analyze the ancestor part and account for the case where it is a
4329 -- parameterless function call.
4332 Check_Parameterless_Call
(A
);
4334 if Is_Entity_Name
(A
) and then Is_Type
(Entity
(A
)) then
4336 -- AI05-0115: If the ancestor part is a subtype mark, the ancestor
4337 -- must not have unknown discriminants. To catch cases where the
4338 -- aggregate occurs at a place where the full view of the ancestor
4339 -- type is visible and doesn't have unknown discriminants, but the
4340 -- aggregate type was derived from a partial view that has unknown
4341 -- discriminants, we check whether the aggregate type has unknown
4342 -- discriminants (unknown discriminants were inherited), along
4343 -- with checking that the partial view of the ancestor has unknown
4344 -- discriminants. (It might be sufficient to replace the entire
4345 -- condition with Has_Unknown_Discriminants (Typ), but that might
4346 -- miss some cases, not clear, and causes error changes in some tests
4347 -- such as class-wide cases, that aren't clearly improvements. ???)
4349 if Has_Unknown_Discriminants
(Entity
(A
))
4350 or else (Has_Unknown_Discriminants
(Typ
)
4351 and then Partial_View_Has_Unknown_Discr
(Entity
(A
)))
4354 ("aggregate not available for type& whose ancestor "
4355 & "has unknown discriminants", N
, Typ
);
4359 if not Is_Tagged_Type
(Typ
) then
4360 Error_Msg_N
("type of extension aggregate must be tagged", N
);
4363 elsif Is_Limited_Type
(Typ
) then
4365 -- Ada 2005 (AI-287): Limited aggregates are allowed
4367 if Ada_Version
< Ada_2005
then
4368 Error_Msg_N
("aggregate type cannot be limited", N
);
4369 Explain_Limited_Type
(Typ
, N
);
4372 elsif Valid_Limited_Ancestor
(A
) then
4377 ("limited ancestor part must be aggregate or function call", A
);
4380 elsif Is_Class_Wide_Type
(Typ
) then
4381 Error_Msg_N
("aggregate cannot be of a class-wide type", N
);
4385 if Is_Entity_Name
(A
) and then Is_Type
(Entity
(A
)) then
4386 A_Type
:= Get_Full_View
(Entity
(A
));
4388 if Valid_Ancestor_Type
then
4389 Set_Entity
(A
, A_Type
);
4390 Set_Etype
(A
, A_Type
);
4392 Validate_Ancestor_Part
(N
);
4393 Resolve_Record_Aggregate
(N
, Typ
);
4396 elsif Nkind
(A
) /= N_Aggregate
then
4397 if Is_Overloaded
(A
) then
4400 Get_First_Interp
(A
, I
, It
);
4401 while Present
(It
.Typ
) loop
4403 -- Consider limited interpretations if Ada 2005 or higher
4405 if Is_Tagged_Type
(It
.Typ
)
4406 and then (Ada_Version
>= Ada_2005
4407 or else not Is_Limited_Type
(It
.Typ
))
4409 if A_Type
/= Any_Type
then
4410 Error_Msg_N
("cannot resolve expression", A
);
4417 Get_Next_Interp
(I
, It
);
4420 if A_Type
= Any_Type
then
4421 if Ada_Version
>= Ada_2005
then
4423 ("ancestor part must be of a tagged type", A
);
4426 ("ancestor part must be of a nonlimited tagged type", A
);
4433 A_Type
:= Etype
(A
);
4436 if Valid_Ancestor_Type
then
4437 Resolve
(A
, A_Type
);
4438 Check_Unset_Reference
(A
);
4439 Check_Non_Static_Context
(A
);
4441 -- The aggregate is illegal if the ancestor expression is a call
4442 -- to a function with a limited unconstrained result, unless the
4443 -- type of the aggregate is a null extension. This restriction
4444 -- was added in AI05-67 to simplify implementation.
4446 if Nkind
(A
) = N_Function_Call
4447 and then Is_Limited_Type
(A_Type
)
4448 and then not Is_Null_Extension
(Typ
)
4449 and then not Is_Constrained
(A_Type
)
4452 ("type of limited ancestor part must be constrained", A
);
4454 -- Reject the use of CPP constructors that leave objects partially
4455 -- initialized. For example:
4457 -- type CPP_Root is tagged limited record ...
4458 -- pragma Import (CPP, CPP_Root);
4460 -- type CPP_DT is new CPP_Root and Iface ...
4461 -- pragma Import (CPP, CPP_DT);
4463 -- type Ada_DT is new CPP_DT with ...
4465 -- Obj : Ada_DT := Ada_DT'(New_CPP_Root with others => <>);
4467 -- Using the constructor of CPP_Root the slots of the dispatch
4468 -- table of CPP_DT cannot be set, and the secondary tag of
4469 -- CPP_DT is unknown.
4471 elsif Nkind
(A
) = N_Function_Call
4472 and then Is_CPP_Constructor_Call
(A
)
4473 and then Enclosing_CPP_Parent
(Typ
) /= A_Type
4476 ("??must use 'C'P'P constructor for type &", A
,
4477 Enclosing_CPP_Parent
(Typ
));
4479 -- The following call is not needed if the previous warning
4480 -- is promoted to an error.
4482 Resolve_Record_Aggregate
(N
, Typ
);
4484 elsif Is_Class_Wide_Type
(Etype
(A
))
4485 and then Nkind
(Original_Node
(A
)) = N_Function_Call
4487 -- If the ancestor part is a dispatching call, it appears
4488 -- statically to be a legal ancestor, but it yields any member
4489 -- of the class, and it is not possible to determine whether
4490 -- it is an ancestor of the extension aggregate (much less
4491 -- which ancestor). It is not possible to determine the
4492 -- components of the extension part.
4494 -- This check implements AI-306, which in fact was motivated by
4495 -- an AdaCore query to the ARG after this test was added.
4497 Error_Msg_N
("ancestor part must be statically tagged", A
);
4500 Resolve_Record_Aggregate
(N
, Typ
);
4505 Error_Msg_N
("no unique type for this aggregate", A
);
4508 Check_Function_Writable_Actuals
(N
);
4509 end Resolve_Extension_Aggregate
;
4511 ----------------------------------
4512 -- Resolve_Null_Array_Aggregate --
4513 ----------------------------------
4515 function Resolve_Null_Array_Aggregate
(N
: Node_Id
) return Boolean is
4516 -- Never returns False, but declared as a function to match
4517 -- other Resolve_Mumble functions.
4519 Loc
: constant Source_Ptr
:= Sloc
(N
);
4520 Typ
: constant Entity_Id
:= Etype
(N
);
4524 Constr
: constant List_Id
:= New_List
;
4527 -- Attach the list of constraints at the location of the aggregate, so
4528 -- the individual constraints can be analyzed.
4530 Set_Parent
(Constr
, N
);
4532 -- Create a constrained subtype with null dimensions
4534 Index
:= First_Index
(Typ
);
4535 while Present
(Index
) loop
4536 Get_Index_Bounds
(Index
, L
=> Lo
, H
=> Hi
);
4538 -- The upper bound is the predecessor of the lower bound
4540 Hi
:= Make_Attribute_Reference
4542 Prefix
=> New_Occurrence_Of
(Etype
(Index
), Loc
),
4543 Attribute_Name
=> Name_Pred
,
4544 Expressions
=> New_List
(New_Copy_Tree
(Lo
)));
4546 Append
(Make_Range
(Loc
, New_Copy_Tree
(Lo
), Hi
), Constr
);
4547 Analyze_And_Resolve
(Last
(Constr
), Etype
(Index
));
4552 Set_Compile_Time_Known_Aggregate
(N
);
4553 Set_Aggregate_Bounds
(N
, First
(Constr
));
4556 end Resolve_Null_Array_Aggregate
;
4558 ------------------------------
4559 -- Resolve_Record_Aggregate --
4560 ------------------------------
4562 procedure Resolve_Record_Aggregate
(N
: Node_Id
; Typ
: Entity_Id
) is
4563 New_Assoc_List
: constant List_Id
:= New_List
;
4564 -- New_Assoc_List is the newly built list of N_Component_Association
4567 Others_Etype
: Entity_Id
:= Empty
;
4568 -- This variable is used to save the Etype of the last record component
4569 -- that takes its value from the others choice. Its purpose is:
4571 -- (a) make sure the others choice is useful
4573 -- (b) make sure the type of all the components whose value is
4574 -- subsumed by the others choice are the same.
4576 -- This variable is updated as a side effect of function Get_Value.
4578 Box_Node
: Node_Id
:= Empty
;
4579 Is_Box_Present
: Boolean := False;
4580 Is_Box_Init_By_Default
: Boolean := False;
4581 Others_Box
: Natural := 0;
4582 -- Ada 2005 (AI-287): Variables used in case of default initialization
4583 -- to provide a functionality similar to Others_Etype. Box_Present
4584 -- indicates that the component takes its default initialization;
4585 -- Others_Box counts the number of components of the current aggregate
4586 -- (which may be a sub-aggregate of a larger one) that are default-
4587 -- initialized. A value of One indicates that an others_box is present.
4588 -- Any larger value indicates that the others_box is not redundant.
4589 -- These variables, similar to Others_Etype, are also updated as a side
4590 -- effect of function Get_Value. Box_Node is used to place a warning on
4591 -- a redundant others_box.
4593 procedure Add_Association
4594 (Component
: Entity_Id
;
4596 Assoc_List
: List_Id
;
4597 Is_Box_Present
: Boolean := False);
4598 -- Builds a new N_Component_Association node which associates Component
4599 -- to expression Expr and adds it to the association list being built,
4600 -- either New_Assoc_List, or the association being built for an inner
4603 function Discriminant_Present
(Input_Discr
: Entity_Id
) return Boolean;
4604 -- If aggregate N is a regular aggregate this routine will return True.
4605 -- Otherwise, if N is an extension aggregate, then Input_Discr denotes
4606 -- a discriminant whose value may already have been specified by N's
4607 -- ancestor part. This routine checks whether this is indeed the case
4608 -- and if so returns False, signaling that no value for Input_Discr
4609 -- should appear in N's aggregate part. Also, in this case, the routine
4610 -- appends to New_Assoc_List the discriminant value specified in the
4613 -- If the aggregate is in a context with expansion delayed, it will be
4614 -- reanalyzed. The inherited discriminant values must not be reinserted
4615 -- in the component list to prevent spurious errors, but they must be
4616 -- present on first analysis to build the proper subtype indications.
4617 -- The flag Inherited_Discriminant is used to prevent the re-insertion.
4619 function Find_Private_Ancestor
(Typ
: Entity_Id
) return Entity_Id
;
4620 -- AI05-0115: Find earlier ancestor in the derivation chain that is
4621 -- derived from private view Typ. Whether the aggregate is legal depends
4622 -- on the current visibility of the type as well as that of the parent
4626 (Compon
: Entity_Id
;
4628 Consider_Others_Choice
: Boolean := False) return Node_Id
;
4629 -- Given a record component stored in parameter Compon, this function
4630 -- returns its value as it appears in the list From, which is a list
4631 -- of N_Component_Association nodes.
4633 -- If no component association has a choice for the searched component,
4634 -- the value provided by the others choice is returned, if there is one,
4635 -- and Consider_Others_Choice is set to true. Otherwise Empty is
4636 -- returned. If there is more than one component association giving a
4637 -- value for the searched record component, an error message is emitted
4638 -- and the first found value is returned.
4640 -- If Consider_Others_Choice is set and the returned expression comes
4641 -- from the others choice, then Others_Etype is set as a side effect.
4642 -- An error message is emitted if the components taking their value from
4643 -- the others choice do not have same type.
4645 procedure Resolve_Aggr_Expr
(Expr
: Node_Id
; Component
: Entity_Id
);
4646 -- Analyzes and resolves expression Expr against the Etype of the
4647 -- Component. This routine also applies all appropriate checks to Expr.
4648 -- It finally saves a Expr in the newly created association list that
4649 -- will be attached to the final record aggregate. Note that if the
4650 -- Parent pointer of Expr is not set then Expr was produced with a
4651 -- New_Copy_Tree or some such.
4653 procedure Rewrite_Range
(Root_Type
: Entity_Id
; Rge
: Node_Id
);
4654 -- Rewrite a range node Rge when its bounds refer to non-stored
4655 -- discriminants from Root_Type, to replace them with the stored
4656 -- discriminant values. This is required in GNATprove mode, and is
4657 -- adopted in all modes to avoid special-casing GNATprove mode.
4659 ---------------------
4660 -- Add_Association --
4661 ---------------------
4663 procedure Add_Association
4664 (Component
: Entity_Id
;
4666 Assoc_List
: List_Id
;
4667 Is_Box_Present
: Boolean := False)
4669 Choice_List
: constant List_Id
:= New_List
;
4673 -- If this is a box association the expression is missing, so use the
4674 -- Sloc of the aggregate itself for the new association.
4676 pragma Assert
(Present
(Expr
) xor Is_Box_Present
);
4678 if Present
(Expr
) then
4684 Append_To
(Choice_List
, New_Occurrence_Of
(Component
, Loc
));
4686 Append_To
(Assoc_List
,
4687 Make_Component_Association
(Loc
,
4688 Choices
=> Choice_List
,
4690 Box_Present
=> Is_Box_Present
));
4692 -- If this association has a box for a component that is initialized
4693 -- by default, then set flag on the new association to indicate that
4694 -- the original association was for such a box-initialized component.
4696 if Is_Box_Init_By_Default
then
4697 Set_Was_Default_Init_Box_Association
(Last
(Assoc_List
));
4699 end Add_Association
;
4701 --------------------------
4702 -- Discriminant_Present --
4703 --------------------------
4705 function Discriminant_Present
(Input_Discr
: Entity_Id
) return Boolean is
4706 Regular_Aggr
: constant Boolean := Nkind
(N
) /= N_Extension_Aggregate
;
4708 Ancestor_Is_Subtyp
: Boolean;
4713 Ancestor_Typ
: Entity_Id
;
4714 Comp_Assoc
: Node_Id
;
4716 Discr_Expr
: Node_Id
;
4717 Discr_Val
: Elmt_Id
:= No_Elmt
;
4718 Orig_Discr
: Entity_Id
;
4721 if Regular_Aggr
then
4725 -- Check whether inherited discriminant values have already been
4726 -- inserted in the aggregate. This will be the case if we are
4727 -- re-analyzing an aggregate whose expansion was delayed.
4729 if Present
(Component_Associations
(N
)) then
4730 Comp_Assoc
:= First
(Component_Associations
(N
));
4731 while Present
(Comp_Assoc
) loop
4732 if Inherited_Discriminant
(Comp_Assoc
) then
4740 Ancestor
:= Ancestor_Part
(N
);
4741 Ancestor_Typ
:= Etype
(Ancestor
);
4742 Loc
:= Sloc
(Ancestor
);
4744 -- For a private type with unknown discriminants, use the underlying
4745 -- record view if it is available.
4747 if Has_Unknown_Discriminants
(Ancestor_Typ
)
4748 and then Present
(Full_View
(Ancestor_Typ
))
4749 and then Present
(Underlying_Record_View
(Full_View
(Ancestor_Typ
)))
4751 Ancestor_Typ
:= Underlying_Record_View
(Full_View
(Ancestor_Typ
));
4754 Ancestor_Is_Subtyp
:=
4755 Is_Entity_Name
(Ancestor
) and then Is_Type
(Entity
(Ancestor
));
4757 -- If the ancestor part has no discriminants clearly N's aggregate
4758 -- part must provide a value for Discr.
4760 if not Has_Discriminants
(Ancestor_Typ
) then
4763 -- If the ancestor part is an unconstrained subtype mark then the
4764 -- Discr must be present in N's aggregate part.
4766 elsif Ancestor_Is_Subtyp
4767 and then not Is_Constrained
(Entity
(Ancestor
))
4772 -- Now look to see if Discr was specified in the ancestor part
4774 if Ancestor_Is_Subtyp
then
4776 First_Elmt
(Discriminant_Constraint
(Entity
(Ancestor
)));
4779 Orig_Discr
:= Original_Record_Component
(Input_Discr
);
4781 Discr
:= First_Discriminant
(Ancestor_Typ
);
4782 while Present
(Discr
) loop
4784 -- If Ancestor has already specified Disc value then insert its
4785 -- value in the final aggregate.
4787 if Original_Record_Component
(Discr
) = Orig_Discr
then
4788 if Ancestor_Is_Subtyp
then
4789 Discr_Expr
:= New_Copy_Tree
(Node
(Discr_Val
));
4792 Make_Selected_Component
(Loc
,
4793 Prefix
=> Duplicate_Subexpr
(Ancestor
),
4794 Selector_Name
=> New_Occurrence_Of
(Input_Discr
, Loc
));
4797 Resolve_Aggr_Expr
(Discr_Expr
, Input_Discr
);
4798 Set_Inherited_Discriminant
(Last
(New_Assoc_List
));
4802 Next_Discriminant
(Discr
);
4804 if Ancestor_Is_Subtyp
then
4805 Next_Elmt
(Discr_Val
);
4810 end Discriminant_Present
;
4812 ---------------------------
4813 -- Find_Private_Ancestor --
4814 ---------------------------
4816 function Find_Private_Ancestor
(Typ
: Entity_Id
) return Entity_Id
is
4822 if Has_Private_Ancestor
(Par
)
4823 and then not Has_Private_Ancestor
(Etype
(Base_Type
(Par
)))
4827 elsif not Is_Derived_Type
(Par
) then
4831 Par
:= Etype
(Base_Type
(Par
));
4834 end Find_Private_Ancestor
;
4841 (Compon
: Entity_Id
;
4843 Consider_Others_Choice
: Boolean := False) return Node_Id
4845 Typ
: constant Entity_Id
:= Etype
(Compon
);
4847 Expr
: Node_Id
:= Empty
;
4848 Selector_Name
: Node_Id
;
4851 Is_Box_Present
:= False;
4852 Is_Box_Init_By_Default
:= False;
4858 Assoc
:= First
(From
);
4859 while Present
(Assoc
) loop
4860 Selector_Name
:= First
(Choices
(Assoc
));
4861 while Present
(Selector_Name
) loop
4862 if Nkind
(Selector_Name
) = N_Others_Choice
then
4863 if Consider_Others_Choice
and then No
(Expr
) then
4865 -- We need to duplicate the expression for each
4866 -- successive component covered by the others choice.
4867 -- This is redundant if the others_choice covers only
4868 -- one component (small optimization possible???), but
4869 -- indispensable otherwise, because each one must be
4870 -- expanded individually to preserve side effects.
4872 -- Ada 2005 (AI-287): In case of default initialization
4873 -- of components, we duplicate the corresponding default
4874 -- expression (from the record type declaration). The
4875 -- copy must carry the sloc of the association (not the
4876 -- original expression) to prevent spurious elaboration
4877 -- checks when the default includes function calls.
4879 if Box_Present
(Assoc
) then
4880 Others_Box
:= Others_Box
+ 1;
4881 Is_Box_Present
:= True;
4883 if Expander_Active
then
4885 New_Copy_Tree_And_Copy_Dimensions
4886 (Expression
(Parent
(Compon
)),
4887 New_Sloc
=> Sloc
(Assoc
));
4889 return Expression
(Parent
(Compon
));
4893 if Present
(Others_Etype
)
4894 and then Base_Type
(Others_Etype
) /= Base_Type
(Typ
)
4896 -- If the components are of an anonymous access
4897 -- type they are distinct, but this is legal in
4898 -- Ada 2012 as long as designated types match.
4900 if (Ekind
(Typ
) = E_Anonymous_Access_Type
4901 or else Ekind
(Typ
) =
4902 E_Anonymous_Access_Subprogram_Type
)
4903 and then Designated_Type
(Typ
) =
4904 Designated_Type
(Others_Etype
)
4909 ("components in OTHERS choice must have same "
4910 & "type", Selector_Name
);
4914 Others_Etype
:= Typ
;
4916 -- Copy the expression so that it is resolved
4917 -- independently for each component, This is needed
4918 -- for accessibility checks on components of anonymous
4919 -- access types, even in compile_only mode.
4921 if not Inside_A_Generic
then
4923 New_Copy_Tree_And_Copy_Dimensions
4924 (Expression
(Assoc
));
4926 return Expression
(Assoc
);
4931 elsif Chars
(Compon
) = Chars
(Selector_Name
) then
4934 -- Ada 2005 (AI-231)
4936 if Ada_Version
>= Ada_2005
4937 and then Known_Null
(Expression
(Assoc
))
4939 Check_Can_Never_Be_Null
(Compon
, Expression
(Assoc
));
4942 -- We need to duplicate the expression when several
4943 -- components are grouped together with a "|" choice.
4944 -- For instance "filed1 | filed2 => Expr"
4946 -- Ada 2005 (AI-287)
4948 if Box_Present
(Assoc
) then
4949 Is_Box_Present
:= True;
4951 -- Duplicate the default expression of the component
4952 -- from the record type declaration, so a new copy
4953 -- can be attached to the association.
4955 -- Note that we always copy the default expression,
4956 -- even when the association has a single choice, in
4957 -- order to create a proper association for the
4958 -- expanded aggregate.
4960 -- Component may have no default, in which case the
4961 -- expression is empty and the component is default-
4962 -- initialized, but an association for the component
4963 -- exists, and it is not covered by an others clause.
4965 -- Scalar and private types have no initialization
4966 -- procedure, so they remain uninitialized. If the
4967 -- target of the aggregate is a constant this
4968 -- deserves a warning.
4970 if No
(Expression
(Parent
(Compon
)))
4971 and then not Has_Non_Null_Base_Init_Proc
(Typ
)
4972 and then not Has_Aspect
(Typ
, Aspect_Default_Value
)
4973 and then not Is_Concurrent_Type
(Typ
)
4974 and then Nkind
(Parent
(N
)) = N_Object_Declaration
4975 and then Constant_Present
(Parent
(N
))
4977 Error_Msg_Node_2
:= Typ
;
4979 ("??component& of type& is uninitialized",
4980 Assoc
, Selector_Name
);
4982 -- An additional reminder if the component type
4983 -- is a generic formal.
4985 if Is_Generic_Type
(Base_Type
(Typ
)) then
4987 ("\instance should provide actual type with "
4988 & "initialization for&", Assoc
, Typ
);
4993 New_Copy_Tree_And_Copy_Dimensions
4994 (Expression
(Parent
(Compon
)));
4997 if Present
(Next
(Selector_Name
)) then
4998 Expr
:= New_Copy_Tree_And_Copy_Dimensions
4999 (Expression
(Assoc
));
5001 Expr
:= Expression
(Assoc
);
5005 Generate_Reference
(Compon
, Selector_Name
, 'm');
5009 ("more than one value supplied for &",
5010 Selector_Name
, Compon
);
5015 Next
(Selector_Name
);
5024 -----------------------
5025 -- Resolve_Aggr_Expr --
5026 -----------------------
5028 procedure Resolve_Aggr_Expr
(Expr
: Node_Id
; Component
: Entity_Id
) is
5029 function Has_Expansion_Delayed
(Expr
: Node_Id
) return Boolean;
5030 -- If the expression is an aggregate (possibly qualified) then its
5031 -- expansion is delayed until the enclosing aggregate is expanded
5032 -- into assignments. In that case, do not generate checks on the
5033 -- expression, because they will be generated later, and will other-
5034 -- wise force a copy (to remove side effects) that would leave a
5035 -- dynamic-sized aggregate in the code, something that gigi cannot
5038 ---------------------------
5039 -- Has_Expansion_Delayed --
5040 ---------------------------
5042 function Has_Expansion_Delayed
(Expr
: Node_Id
) return Boolean is
5045 (Nkind
(Expr
) in N_Aggregate | N_Extension_Aggregate
5046 and then Present
(Etype
(Expr
))
5047 and then Is_Record_Type
(Etype
(Expr
))
5048 and then Expansion_Delayed
(Expr
))
5050 (Nkind
(Expr
) = N_Qualified_Expression
5051 and then Has_Expansion_Delayed
(Expression
(Expr
)));
5052 end Has_Expansion_Delayed
;
5056 Expr_Type
: Entity_Id
:= Empty
;
5057 New_C
: Entity_Id
:= Component
;
5061 -- Set to True if the resolved Expr node needs to be relocated when
5062 -- attached to the newly created association list. This node need not
5063 -- be relocated if its parent pointer is not set. In fact in this
5064 -- case Expr is the output of a New_Copy_Tree call. If Relocate is
5065 -- True then we have analyzed the expression node in the original
5066 -- aggregate and hence it needs to be relocated when moved over to
5067 -- the new association list.
5069 -- Start of processing for Resolve_Aggr_Expr
5072 -- If the type of the component is elementary or the type of the
5073 -- aggregate does not contain discriminants, use the type of the
5074 -- component to resolve Expr.
5076 if Is_Elementary_Type
(Etype
(Component
))
5077 or else not Has_Discriminants
(Etype
(N
))
5079 Expr_Type
:= Etype
(Component
);
5081 -- Otherwise we have to pick up the new type of the component from
5082 -- the new constrained subtype of the aggregate. In fact components
5083 -- which are of a composite type might be constrained by a
5084 -- discriminant, and we want to resolve Expr against the subtype were
5085 -- all discriminant occurrences are replaced with their actual value.
5088 New_C
:= First_Component
(Etype
(N
));
5089 while Present
(New_C
) loop
5090 if Chars
(New_C
) = Chars
(Component
) then
5091 Expr_Type
:= Etype
(New_C
);
5095 Next_Component
(New_C
);
5098 pragma Assert
(Present
(Expr_Type
));
5100 -- For each range in an array type where a discriminant has been
5101 -- replaced with the constraint, check that this range is within
5102 -- the range of the base type. This checks is done in the init
5103 -- proc for regular objects, but has to be done here for
5104 -- aggregates since no init proc is called for them.
5106 if Is_Array_Type
(Expr_Type
) then
5109 -- Range of the current constrained index in the array
5111 Orig_Index
: Node_Id
:= First_Index
(Etype
(Component
));
5112 -- Range corresponding to the range Index above in the
5113 -- original unconstrained record type. The bounds of this
5114 -- range may be governed by discriminants.
5116 Unconstr_Index
: Node_Id
:= First_Index
(Etype
(Expr_Type
));
5117 -- Range corresponding to the range Index above for the
5118 -- unconstrained array type. This range is needed to apply
5122 Index
:= First_Index
(Expr_Type
);
5123 while Present
(Index
) loop
5124 if Depends_On_Discriminant
(Orig_Index
) then
5125 Apply_Range_Check
(Index
, Etype
(Unconstr_Index
));
5129 Next_Index
(Orig_Index
);
5130 Next_Index
(Unconstr_Index
);
5136 -- If the Parent pointer of Expr is not set, Expr is an expression
5137 -- duplicated by New_Tree_Copy (this happens for record aggregates
5138 -- that look like (Field1 | Filed2 => Expr) or (others => Expr)).
5139 -- Such a duplicated expression must be attached to the tree
5140 -- before analysis and resolution to enforce the rule that a tree
5141 -- fragment should never be analyzed or resolved unless it is
5142 -- attached to the current compilation unit.
5144 if No
(Parent
(Expr
)) then
5145 Set_Parent
(Expr
, N
);
5151 Analyze_And_Resolve
(Expr
, Expr_Type
);
5152 Check_Expr_OK_In_Limited_Aggregate
(Expr
);
5153 Check_Non_Static_Context
(Expr
);
5154 Check_Unset_Reference
(Expr
);
5156 -- Check wrong use of class-wide types
5158 if Is_Class_Wide_Type
(Etype
(Expr
)) then
5159 Error_Msg_N
("dynamically tagged expression not allowed", Expr
);
5162 if not Has_Expansion_Delayed
(Expr
) then
5163 Aggregate_Constraint_Checks
(Expr
, Expr_Type
);
5166 -- If an aggregate component has a type with predicates, an explicit
5167 -- predicate check must be applied, as for an assignment statement,
5168 -- because the aggregate might not be expanded into individual
5169 -- component assignments.
5171 if Has_Predicates
(Expr_Type
)
5172 and then Analyzed
(Expr
)
5174 Apply_Predicate_Check
(Expr
, Expr_Type
);
5177 if Raises_Constraint_Error
(Expr
) then
5178 Set_Raises_Constraint_Error
(N
);
5181 -- If the expression has been marked as requiring a range check, then
5182 -- generate it here. It's a bit odd to be generating such checks in
5183 -- the analyzer, but harmless since Generate_Range_Check does nothing
5184 -- (other than making sure Do_Range_Check is set) if the expander is
5187 if Do_Range_Check
(Expr
) then
5188 Generate_Range_Check
(Expr
, Expr_Type
, CE_Range_Check_Failed
);
5191 -- Add association Component => Expr if the caller requests it
5194 New_Expr
:= Relocate_Node
(Expr
);
5196 -- Since New_Expr is not gonna be analyzed later on, we need to
5197 -- propagate here the dimensions form Expr to New_Expr.
5199 Copy_Dimensions
(Expr
, New_Expr
);
5205 Add_Association
(New_C
, New_Expr
, New_Assoc_List
);
5206 end Resolve_Aggr_Expr
;
5212 procedure Rewrite_Range
(Root_Type
: Entity_Id
; Rge
: Node_Id
) is
5213 procedure Rewrite_Bound
5216 Expr_Disc
: Node_Id
);
5217 -- Rewrite a bound of the range Bound, when it is equal to the
5218 -- non-stored discriminant Disc, into the stored discriminant
5225 procedure Rewrite_Bound
5228 Expr_Disc
: Node_Id
)
5231 if Nkind
(Bound
) /= N_Identifier
then
5235 -- We expect either the discriminant or the discriminal
5237 if Entity
(Bound
) = Disc
5238 or else (Ekind
(Entity
(Bound
)) = E_In_Parameter
5239 and then Discriminal_Link
(Entity
(Bound
)) = Disc
)
5241 Rewrite
(Bound
, New_Copy_Tree
(Expr_Disc
));
5247 Low
, High
: Node_Id
;
5249 Expr_Disc
: Elmt_Id
;
5251 -- Start of processing for Rewrite_Range
5254 if Has_Discriminants
(Root_Type
) and then Nkind
(Rge
) = N_Range
then
5255 Low
:= Low_Bound
(Rge
);
5256 High
:= High_Bound
(Rge
);
5258 Disc
:= First_Discriminant
(Root_Type
);
5259 Expr_Disc
:= First_Elmt
(Stored_Constraint
(Etype
(N
)));
5260 while Present
(Disc
) loop
5261 Rewrite_Bound
(Low
, Disc
, Node
(Expr_Disc
));
5262 Rewrite_Bound
(High
, Disc
, Node
(Expr_Disc
));
5263 Next_Discriminant
(Disc
);
5264 Next_Elmt
(Expr_Disc
);
5271 Components
: constant Elist_Id
:= New_Elmt_List
;
5272 -- Components is the list of the record components whose value must be
5273 -- provided in the aggregate. This list does include discriminants.
5275 Component
: Entity_Id
;
5276 Component_Elmt
: Elmt_Id
;
5278 Positional_Expr
: Node_Id
;
5280 -- Start of processing for Resolve_Record_Aggregate
5283 -- A record aggregate is restricted in SPARK:
5285 -- Each named association can have only a single choice.
5286 -- OTHERS cannot be used.
5287 -- Positional and named associations cannot be mixed.
5289 if Present
(Component_Associations
(N
)) then
5294 Assoc
:= First
(Component_Associations
(N
));
5295 while Present
(Assoc
) loop
5296 if Nkind
(Assoc
) = N_Iterated_Component_Association
then
5298 ("iterated component association can only appear in an "
5299 & "array aggregate", N
);
5300 raise Unrecoverable_Error
;
5308 -- We may end up calling Duplicate_Subexpr on expressions that are
5309 -- attached to New_Assoc_List. For this reason we need to attach it
5310 -- to the tree by setting its parent pointer to N. This parent point
5311 -- will change in STEP 8 below.
5313 Set_Parent
(New_Assoc_List
, N
);
5315 -- STEP 1: abstract type and null record verification
5317 if Is_Abstract_Type
(Typ
) then
5318 Error_Msg_N
("type of aggregate cannot be abstract", N
);
5321 if No
(First_Entity
(Typ
)) and then Null_Record_Present
(N
) then
5325 elsif Present
(First_Entity
(Typ
))
5326 and then Null_Record_Present
(N
)
5327 and then not Is_Tagged_Type
(Typ
)
5329 Error_Msg_N
("record aggregate cannot be null", N
);
5332 -- If the type has no components, then the aggregate should either
5333 -- have "null record", or in Ada 2005 it could instead have a single
5334 -- component association given by "others => <>". For Ada 95 we flag an
5335 -- error at this point, but for Ada 2005 we proceed with checking the
5336 -- associations below, which will catch the case where it's not an
5337 -- aggregate with "others => <>". Note that the legality of a <>
5338 -- aggregate for a null record type was established by AI05-016.
5340 elsif No
(First_Entity
(Typ
))
5341 and then Ada_Version
< Ada_2005
5343 Error_Msg_N
("record aggregate must be null", N
);
5347 -- A record aggregate can only use parentheses
5349 if Nkind
(N
) = N_Aggregate
5350 and then Is_Homogeneous_Aggregate
(N
)
5352 Error_Msg_N
("record aggregate must use (), not '[']", N
);
5356 -- STEP 2: Verify aggregate structure
5360 Bad_Aggregate
: Boolean := False;
5361 Selector_Name
: Node_Id
;
5364 if Present
(Component_Associations
(N
)) then
5365 Assoc
:= First
(Component_Associations
(N
));
5370 while Present
(Assoc
) loop
5371 Selector_Name
:= First
(Choices
(Assoc
));
5372 while Present
(Selector_Name
) loop
5373 if Nkind
(Selector_Name
) = N_Identifier
then
5376 elsif Nkind
(Selector_Name
) = N_Others_Choice
then
5377 if Selector_Name
/= First
(Choices
(Assoc
))
5378 or else Present
(Next
(Selector_Name
))
5381 ("OTHERS must appear alone in a choice list",
5385 elsif Present
(Next
(Assoc
)) then
5387 ("OTHERS must appear last in an aggregate",
5391 -- (Ada 2005): If this is an association with a box,
5392 -- indicate that the association need not represent
5395 elsif Box_Present
(Assoc
) then
5402 ("selector name should be identifier or OTHERS",
5404 Bad_Aggregate
:= True;
5407 Next
(Selector_Name
);
5413 if Bad_Aggregate
then
5418 -- STEP 3: Find discriminant Values
5421 Discrim
: Entity_Id
;
5422 Missing_Discriminants
: Boolean := False;
5425 if Present
(Expressions
(N
)) then
5426 Positional_Expr
:= First
(Expressions
(N
));
5428 Positional_Expr
:= Empty
;
5431 -- AI05-0115: if the ancestor part is a subtype mark, the ancestor
5432 -- must not have unknown discriminants.
5433 -- ??? We are not checking any subtype mark here and this code is not
5434 -- exercised by any test, so it's likely wrong (in particular
5435 -- we should not use Root_Type here but the subtype mark, if any),
5436 -- and possibly not needed.
5438 if Is_Derived_Type
(Typ
)
5439 and then Has_Unknown_Discriminants
(Root_Type
(Typ
))
5440 and then Nkind
(N
) /= N_Extension_Aggregate
5443 ("aggregate not available for type& whose ancestor "
5444 & "has unknown discriminants", N
, Typ
);
5447 if Has_Unknown_Discriminants
(Typ
)
5448 and then Present
(Underlying_Record_View
(Typ
))
5450 Discrim
:= First_Discriminant
(Underlying_Record_View
(Typ
));
5451 elsif Has_Discriminants
(Typ
) then
5452 Discrim
:= First_Discriminant
(Typ
);
5457 -- First find the discriminant values in the positional components
5459 while Present
(Discrim
) and then Present
(Positional_Expr
) loop
5460 if Discriminant_Present
(Discrim
) then
5461 Resolve_Aggr_Expr
(Positional_Expr
, Discrim
);
5463 -- Ada 2005 (AI-231)
5465 if Ada_Version
>= Ada_2005
5466 and then Known_Null
(Positional_Expr
)
5468 Check_Can_Never_Be_Null
(Discrim
, Positional_Expr
);
5471 Next
(Positional_Expr
);
5474 if Present
(Get_Value
(Discrim
, Component_Associations
(N
))) then
5476 ("more than one value supplied for discriminant&",
5480 Next_Discriminant
(Discrim
);
5483 -- Find remaining discriminant values if any among named components
5485 while Present
(Discrim
) loop
5486 Expr
:= Get_Value
(Discrim
, Component_Associations
(N
), True);
5488 if not Discriminant_Present
(Discrim
) then
5489 if Present
(Expr
) then
5491 ("more than one value supplied for discriminant &",
5495 elsif No
(Expr
) then
5497 ("no value supplied for discriminant &", N
, Discrim
);
5498 Missing_Discriminants
:= True;
5501 Resolve_Aggr_Expr
(Expr
, Discrim
);
5504 Next_Discriminant
(Discrim
);
5507 if Missing_Discriminants
then
5511 -- At this point and until the beginning of STEP 6, New_Assoc_List
5512 -- contains only the discriminants and their values.
5516 -- STEP 4: Set the Etype of the record aggregate
5518 if Has_Discriminants
(Typ
)
5519 or else (Has_Unknown_Discriminants
(Typ
)
5520 and then Present
(Underlying_Record_View
(Typ
)))
5522 Build_Constrained_Itype
(N
, Typ
, New_Assoc_List
);
5527 -- STEP 5: Get remaining components according to discriminant values
5531 Errors_Found
: Boolean := False;
5532 Record_Def
: Node_Id
;
5533 Parent_Typ
: Entity_Id
;
5534 Parent_Typ_List
: Elist_Id
;
5535 Parent_Elmt
: Elmt_Id
;
5536 Root_Typ
: Entity_Id
;
5539 if Is_Derived_Type
(Typ
) and then Is_Tagged_Type
(Typ
) then
5540 Parent_Typ_List
:= New_Elmt_List
;
5542 -- If this is an extension aggregate, the component list must
5543 -- include all components that are not in the given ancestor type.
5544 -- Otherwise, the component list must include components of all
5545 -- ancestors, starting with the root.
5547 if Nkind
(N
) = N_Extension_Aggregate
then
5548 Root_Typ
:= Base_Type
(Etype
(Ancestor_Part
(N
)));
5551 -- AI05-0115: check legality of aggregate for type with a
5552 -- private ancestor.
5554 Root_Typ
:= Root_Type
(Typ
);
5555 if Has_Private_Ancestor
(Typ
) then
5557 Ancestor
: constant Entity_Id
:=
5558 Find_Private_Ancestor
(Typ
);
5559 Ancestor_Unit
: constant Entity_Id
:=
5561 (Get_Source_Unit
(Ancestor
));
5562 Parent_Unit
: constant Entity_Id
:=
5563 Cunit_Entity
(Get_Source_Unit
5564 (Base_Type
(Etype
(Ancestor
))));
5566 -- Check whether we are in a scope that has full view
5567 -- over the private ancestor and its parent. This can
5568 -- only happen if the derivation takes place in a child
5569 -- unit of the unit that declares the parent, and we are
5570 -- in the private part or body of that child unit, else
5571 -- the aggregate is illegal.
5573 if Is_Child_Unit
(Ancestor_Unit
)
5574 and then Scope
(Ancestor_Unit
) = Parent_Unit
5575 and then In_Open_Scopes
(Scope
(Ancestor
))
5577 (In_Private_Part
(Scope
(Ancestor
))
5578 or else In_Package_Body
(Scope
(Ancestor
)))
5584 ("type of aggregate has private ancestor&!",
5586 Error_Msg_N
("must use extension aggregate!", N
);
5592 Dnode
:= Declaration_Node
(Base_Type
(Root_Typ
));
5594 -- If we don't get a full declaration, then we have some error
5595 -- which will get signalled later so skip this part. Otherwise
5596 -- gather components of root that apply to the aggregate type.
5597 -- We use the base type in case there is an applicable stored
5598 -- constraint that renames the discriminants of the root.
5600 if Nkind
(Dnode
) = N_Full_Type_Declaration
then
5601 Record_Def
:= Type_Definition
(Dnode
);
5604 Component_List
(Record_Def
),
5605 Governed_By
=> New_Assoc_List
,
5607 Report_Errors
=> Errors_Found
);
5609 if Errors_Found
then
5611 ("discriminant controlling variant part is not static",
5618 Parent_Typ
:= Base_Type
(Typ
);
5619 while Parent_Typ
/= Root_Typ
loop
5620 Prepend_Elmt
(Parent_Typ
, To
=> Parent_Typ_List
);
5621 Parent_Typ
:= Etype
(Parent_Typ
);
5623 -- Check whether a private parent requires the use of
5624 -- an extension aggregate.
5626 if Nkind
(Parent
(Base_Type
(Parent_Typ
))) =
5627 N_Private_Type_Declaration
5628 or else Nkind
(Parent
(Base_Type
(Parent_Typ
))) =
5629 N_Private_Extension_Declaration
5631 if Nkind
(N
) /= N_Extension_Aggregate
then
5633 ("type of aggregate has private ancestor&!",
5635 Error_Msg_N
("must use extension aggregate!", N
);
5638 elsif Parent_Typ
/= Root_Typ
then
5640 ("ancestor part of aggregate must be private type&",
5641 Ancestor_Part
(N
), Parent_Typ
);
5645 -- The current view of ancestor part may be a private type,
5646 -- while the context type is always non-private.
5648 elsif Is_Private_Type
(Root_Typ
)
5649 and then Present
(Full_View
(Root_Typ
))
5650 and then Nkind
(N
) = N_Extension_Aggregate
5652 exit when Base_Type
(Full_View
(Root_Typ
)) = Parent_Typ
;
5656 -- Now collect components from all other ancestors, beginning
5657 -- with the current type. If the type has unknown discriminants
5658 -- use the component list of the Underlying_Record_View, which
5659 -- needs to be used for the subsequent expansion of the aggregate
5660 -- into assignments.
5662 Parent_Elmt
:= First_Elmt
(Parent_Typ_List
);
5663 while Present
(Parent_Elmt
) loop
5664 Parent_Typ
:= Node
(Parent_Elmt
);
5666 if Has_Unknown_Discriminants
(Parent_Typ
)
5667 and then Present
(Underlying_Record_View
(Typ
))
5669 Parent_Typ
:= Underlying_Record_View
(Parent_Typ
);
5672 Record_Def
:= Type_Definition
(Parent
(Base_Type
(Parent_Typ
)));
5673 Gather_Components
(Parent_Typ
,
5674 Component_List
(Record_Extension_Part
(Record_Def
)),
5675 Governed_By
=> New_Assoc_List
,
5677 Report_Errors
=> Errors_Found
);
5679 Next_Elmt
(Parent_Elmt
);
5682 -- Typ is not a derived tagged type
5685 Record_Def
:= Type_Definition
(Parent
(Base_Type
(Typ
)));
5687 if Null_Present
(Record_Def
) then
5690 elsif not Has_Unknown_Discriminants
(Typ
) then
5693 Component_List
(Record_Def
),
5694 Governed_By
=> New_Assoc_List
,
5696 Report_Errors
=> Errors_Found
);
5700 (Base_Type
(Underlying_Record_View
(Typ
)),
5701 Component_List
(Record_Def
),
5702 Governed_By
=> New_Assoc_List
,
5704 Report_Errors
=> Errors_Found
);
5708 if Errors_Found
then
5713 -- STEP 6: Find component Values
5715 Component_Elmt
:= First_Elmt
(Components
);
5717 -- First scan the remaining positional associations in the aggregate.
5718 -- Remember that at this point Positional_Expr contains the current
5719 -- positional association if any is left after looking for discriminant
5720 -- values in step 3.
5722 while Present
(Positional_Expr
) and then Present
(Component_Elmt
) loop
5723 Component
:= Node
(Component_Elmt
);
5724 Resolve_Aggr_Expr
(Positional_Expr
, Component
);
5726 -- Ada 2005 (AI-231)
5728 if Ada_Version
>= Ada_2005
and then Known_Null
(Positional_Expr
) then
5729 Check_Can_Never_Be_Null
(Component
, Positional_Expr
);
5732 if Present
(Get_Value
(Component
, Component_Associations
(N
))) then
5734 ("more than one value supplied for component &", N
, Component
);
5737 Next
(Positional_Expr
);
5738 Next_Elmt
(Component_Elmt
);
5741 if Present
(Positional_Expr
) then
5743 ("too many components for record aggregate", Positional_Expr
);
5746 -- Now scan for the named arguments of the aggregate
5748 while Present
(Component_Elmt
) loop
5749 Component
:= Node
(Component_Elmt
);
5750 Expr
:= Get_Value
(Component
, Component_Associations
(N
), True);
5752 -- Note: The previous call to Get_Value sets the value of the
5753 -- variable Is_Box_Present.
5755 -- Ada 2005 (AI-287): Handle components with default initialization.
5756 -- Note: This feature was originally added to Ada 2005 for limited
5757 -- but it was finally allowed with any type.
5759 if Is_Box_Present
then
5760 Check_Box_Component
: declare
5761 Ctyp
: constant Entity_Id
:= Etype
(Component
);
5764 -- Initially assume that the box is for a default-initialized
5765 -- component and reset to False in cases where that's not true.
5767 Is_Box_Init_By_Default
:= True;
5769 -- If there is a default expression for the aggregate, copy
5770 -- it into a new association. This copy must modify the scopes
5771 -- of internal types that may be attached to the expression
5772 -- (e.g. index subtypes of arrays) because in general the type
5773 -- declaration and the aggregate appear in different scopes,
5774 -- and the backend requires the scope of the type to match the
5775 -- point at which it is elaborated.
5777 -- If the component has an initialization procedure (IP) we
5778 -- pass the component to the expander, which will generate
5779 -- the call to such IP.
5781 -- If the component has discriminants, their values must
5782 -- be taken from their subtype. This is indispensable for
5783 -- constraints that are given by the current instance of an
5784 -- enclosing type, to allow the expansion of the aggregate to
5785 -- replace the reference to the current instance by the target
5786 -- object of the aggregate.
5788 if Is_Case_Choice_Pattern
(N
) then
5790 -- Do not transform box component values in a case-choice
5794 (Component
=> Component
,
5796 Assoc_List
=> New_Assoc_List
,
5797 Is_Box_Present
=> True);
5799 elsif Present
(Parent
(Component
))
5800 and then Nkind
(Parent
(Component
)) = N_Component_Declaration
5801 and then Present
(Expression
(Parent
(Component
)))
5803 -- If component declaration has an initialization expression
5804 -- then this is not a case of default initialization.
5806 Is_Box_Init_By_Default
:= False;
5809 New_Copy_Tree_And_Copy_Dimensions
5810 (Expression
(Parent
(Component
)),
5811 New_Scope
=> Current_Scope
,
5812 New_Sloc
=> Sloc
(N
));
5814 -- As the type of the copied default expression may refer
5815 -- to discriminants of the record type declaration, these
5816 -- non-stored discriminants need to be rewritten into stored
5817 -- discriminant values for the aggregate. This is required
5818 -- in GNATprove mode, and is adopted in all modes to avoid
5819 -- special-casing GNATprove mode.
5821 if Is_Array_Type
(Etype
(Expr
)) then
5823 Rec_Typ
: constant Entity_Id
:= Scope
(Component
);
5824 -- Root record type whose discriminants may be used as
5825 -- bounds in range nodes.
5832 -- Rewrite the range nodes occurring in the indexes
5835 Index
:= First_Index
(Etype
(Expr
));
5836 while Present
(Index
) loop
5837 Rewrite_Range
(Rec_Typ
, Index
);
5839 (Rec_Typ
, Scalar_Range
(Etype
(Index
)));
5844 -- Rewrite the range nodes occurring as aggregate
5845 -- bounds and component associations.
5847 if Nkind
(Expr
) = N_Aggregate
then
5848 if Present
(Aggregate_Bounds
(Expr
)) then
5849 Rewrite_Range
(Rec_Typ
, Aggregate_Bounds
(Expr
));
5852 if Present
(Component_Associations
(Expr
)) then
5853 Assoc
:= First
(Component_Associations
(Expr
));
5854 while Present
(Assoc
) loop
5855 Choice
:= First
(Choices
(Assoc
));
5856 while Present
(Choice
) loop
5857 Rewrite_Range
(Rec_Typ
, Choice
);
5870 (Component
=> Component
,
5872 Assoc_List
=> New_Assoc_List
);
5873 Set_Has_Self_Reference
(N
);
5875 elsif Needs_Simple_Initialization
(Ctyp
)
5876 or else Has_Non_Null_Base_Init_Proc
(Ctyp
)
5877 or else not Expander_Active
5880 (Component
=> Component
,
5882 Assoc_List
=> New_Assoc_List
,
5883 Is_Box_Present
=> True);
5885 -- Otherwise we only need to resolve the expression if the
5886 -- component has partially initialized values (required to
5887 -- expand the corresponding assignments and run-time checks).
5889 elsif Present
(Expr
)
5890 and then Is_Partially_Initialized_Type
(Ctyp
)
5892 Resolve_Aggr_Expr
(Expr
, Component
);
5894 end Check_Box_Component
;
5896 elsif No
(Expr
) then
5898 -- Ignore hidden components associated with the position of the
5899 -- interface tags: these are initialized dynamically.
5901 if No
(Related_Type
(Component
)) then
5903 ("no value supplied for component &!", N
, Component
);
5907 Resolve_Aggr_Expr
(Expr
, Component
);
5910 Next_Elmt
(Component_Elmt
);
5913 -- STEP 7: check for invalid components + check type in choice list
5917 New_Assoc
: Node_Id
;
5923 -- Type of first component in choice list
5926 if Present
(Component_Associations
(N
)) then
5927 Assoc
:= First
(Component_Associations
(N
));
5932 Verification
: while Present
(Assoc
) loop
5933 Selectr
:= First
(Choices
(Assoc
));
5936 if Nkind
(Selectr
) = N_Others_Choice
then
5938 -- Ada 2005 (AI-287): others choice may have expression or box
5940 if No
(Others_Etype
) and then Others_Box
= 0 then
5942 ("OTHERS must represent at least one component", Selectr
);
5944 elsif Others_Box
= 1 and then Warn_On_Redundant_Constructs
then
5945 Error_Msg_N
("OTHERS choice is redundant?r?", Box_Node
);
5947 ("\previous choices cover all components?r?", Box_Node
);
5953 while Present
(Selectr
) loop
5955 New_Assoc
:= First
(New_Assoc_List
);
5956 while Present
(New_Assoc
) loop
5957 Component
:= First
(Choices
(New_Assoc
));
5959 if Chars
(Selectr
) = Chars
(Component
) then
5961 Check_Identifier
(Selectr
, Entity
(Component
));
5970 -- If we found an association, then this is a legal component
5971 -- of the type in question.
5973 pragma Assert
(if Present
(New_Assoc
) then Present
(Component
));
5975 -- If no association, this is not a legal component of the type
5976 -- in question, unless its association is provided with a box.
5978 if No
(New_Assoc
) then
5979 if Box_Present
(Parent
(Selectr
)) then
5981 -- This may still be a bogus component with a box. Scan
5982 -- list of components to verify that a component with
5983 -- that name exists.
5989 C
:= First_Component
(Typ
);
5990 while Present
(C
) loop
5991 if Chars
(C
) = Chars
(Selectr
) then
5993 -- If the context is an extension aggregate,
5994 -- the component must not be inherited from
5995 -- the ancestor part of the aggregate.
5997 if Nkind
(N
) /= N_Extension_Aggregate
5999 Scope
(Original_Record_Component
(C
)) /=
6000 Etype
(Ancestor_Part
(N
))
6010 Error_Msg_Node_2
:= Typ
;
6011 Error_Msg_N
("& is not a component of}", Selectr
);
6015 elsif Chars
(Selectr
) /= Name_uTag
6016 and then Chars
(Selectr
) /= Name_uParent
6018 if not Has_Discriminants
(Typ
) then
6019 Error_Msg_Node_2
:= Typ
;
6020 Error_Msg_N
("& is not a component of}", Selectr
);
6023 ("& is not a component of the aggregate subtype",
6027 Check_Misspelled_Component
(Components
, Selectr
);
6030 elsif No
(Typech
) then
6031 Typech
:= Base_Type
(Etype
(Component
));
6033 -- AI05-0199: In Ada 2012, several components of anonymous
6034 -- access types can appear in a choice list, as long as the
6035 -- designated types match.
6037 elsif Typech
/= Base_Type
(Etype
(Component
)) then
6038 if Ada_Version
>= Ada_2012
6039 and then Ekind
(Typech
) = E_Anonymous_Access_Type
6041 Ekind
(Etype
(Component
)) = E_Anonymous_Access_Type
6042 and then Base_Type
(Designated_Type
(Typech
)) =
6043 Base_Type
(Designated_Type
(Etype
(Component
)))
6045 Subtypes_Statically_Match
(Typech
, (Etype
(Component
)))
6049 elsif not Box_Present
(Parent
(Selectr
)) then
6051 ("components in choice list must have same type",
6060 end loop Verification
;
6063 -- STEP 8: replace the original aggregate
6066 New_Aggregate
: constant Node_Id
:= New_Copy
(N
);
6069 Set_Expressions
(New_Aggregate
, No_List
);
6070 Set_Etype
(New_Aggregate
, Etype
(N
));
6071 Set_Component_Associations
(New_Aggregate
, New_Assoc_List
);
6072 Set_Check_Actuals
(New_Aggregate
, Check_Actuals
(N
));
6074 Rewrite
(N
, New_Aggregate
);
6077 -- Check the dimensions of the components in the record aggregate
6079 Analyze_Dimension_Extension_Or_Record_Aggregate
(N
);
6080 end Resolve_Record_Aggregate
;
6082 -----------------------------
6083 -- Check_Can_Never_Be_Null --
6084 -----------------------------
6086 procedure Check_Can_Never_Be_Null
(Typ
: Entity_Id
; Expr
: Node_Id
) is
6087 Comp_Typ
: Entity_Id
;
6091 (Ada_Version
>= Ada_2005
6092 and then Present
(Expr
)
6093 and then Known_Null
(Expr
));
6096 when E_Array_Type
=>
6097 Comp_Typ
:= Component_Type
(Typ
);
6102 Comp_Typ
:= Etype
(Typ
);
6108 if Can_Never_Be_Null
(Comp_Typ
) then
6110 -- Here we know we have a constraint error. Note that we do not use
6111 -- Apply_Compile_Time_Constraint_Error here to the Expr, which might
6112 -- seem the more natural approach. That's because in some cases the
6113 -- components are rewritten, and the replacement would be missed.
6114 -- We do not mark the whole aggregate as raising a constraint error,
6115 -- because the association may be a null array range.
6118 ("(Ada 2005) NULL not allowed in null-excluding component??", Expr
);
6120 ("\Constraint_Error will be raised at run time??", Expr
);
6123 Make_Raise_Constraint_Error
6124 (Sloc
(Expr
), Reason
=> CE_Access_Check_Failed
));
6125 Set_Etype
(Expr
, Comp_Typ
);
6126 Set_Analyzed
(Expr
);
6128 end Check_Can_Never_Be_Null
;
6130 ---------------------
6131 -- Sort_Case_Table --
6132 ---------------------
6134 procedure Sort_Case_Table
(Case_Table
: in out Case_Table_Type
) is
6135 U
: constant Int
:= Case_Table
'Last;
6143 T
:= Case_Table
(K
+ 1);
6147 and then Expr_Value
(Case_Table
(J
- 1).Lo
) > Expr_Value
(T
.Lo
)
6149 Case_Table
(J
) := Case_Table
(J
- 1);
6153 Case_Table
(J
) := T
;
6156 end Sort_Case_Table
;