* rtl.h (insn_location): Declare.
[official-gcc.git] / gcc / var-tracking.c
blob9e71165e1c78c040d29d35e2cbd37f11b7584dfa
1 /* Variable tracking routines for the GNU compiler.
2 Copyright (C) 2002-2014 Free Software Foundation, Inc.
4 This file is part of GCC.
6 GCC is free software; you can redistribute it and/or modify it
7 under the terms of the GNU General Public License as published by
8 the Free Software Foundation; either version 3, or (at your option)
9 any later version.
11 GCC is distributed in the hope that it will be useful, but WITHOUT
12 ANY WARRANTY; without even the implied warranty of MERCHANTABILITY
13 or FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public
14 License for more details.
16 You should have received a copy of the GNU General Public License
17 along with GCC; see the file COPYING3. If not see
18 <http://www.gnu.org/licenses/>. */
20 /* This file contains the variable tracking pass. It computes where
21 variables are located (which registers or where in memory) at each position
22 in instruction stream and emits notes describing the locations.
23 Debug information (DWARF2 location lists) is finally generated from
24 these notes.
25 With this debug information, it is possible to show variables
26 even when debugging optimized code.
28 How does the variable tracking pass work?
30 First, it scans RTL code for uses, stores and clobbers (register/memory
31 references in instructions), for call insns and for stack adjustments
32 separately for each basic block and saves them to an array of micro
33 operations.
34 The micro operations of one instruction are ordered so that
35 pre-modifying stack adjustment < use < use with no var < call insn <
36 < clobber < set < post-modifying stack adjustment
38 Then, a forward dataflow analysis is performed to find out how locations
39 of variables change through code and to propagate the variable locations
40 along control flow graph.
41 The IN set for basic block BB is computed as a union of OUT sets of BB's
42 predecessors, the OUT set for BB is copied from the IN set for BB and
43 is changed according to micro operations in BB.
45 The IN and OUT sets for basic blocks consist of a current stack adjustment
46 (used for adjusting offset of variables addressed using stack pointer),
47 the table of structures describing the locations of parts of a variable
48 and for each physical register a linked list for each physical register.
49 The linked list is a list of variable parts stored in the register,
50 i.e. it is a list of triplets (reg, decl, offset) where decl is
51 REG_EXPR (reg) and offset is REG_OFFSET (reg). The linked list is used for
52 effective deleting appropriate variable parts when we set or clobber the
53 register.
55 There may be more than one variable part in a register. The linked lists
56 should be pretty short so it is a good data structure here.
57 For example in the following code, register allocator may assign same
58 register to variables A and B, and both of them are stored in the same
59 register in CODE:
61 if (cond)
62 set A;
63 else
64 set B;
65 CODE;
66 if (cond)
67 use A;
68 else
69 use B;
71 Finally, the NOTE_INSN_VAR_LOCATION notes describing the variable locations
72 are emitted to appropriate positions in RTL code. Each such a note describes
73 the location of one variable at the point in instruction stream where the
74 note is. There is no need to emit a note for each variable before each
75 instruction, we only emit these notes where the location of variable changes
76 (this means that we also emit notes for changes between the OUT set of the
77 previous block and the IN set of the current block).
79 The notes consist of two parts:
80 1. the declaration (from REG_EXPR or MEM_EXPR)
81 2. the location of a variable - it is either a simple register/memory
82 reference (for simple variables, for example int),
83 or a parallel of register/memory references (for a large variables
84 which consist of several parts, for example long long).
88 #include "config.h"
89 #include "system.h"
90 #include "coretypes.h"
91 #include "tm.h"
92 #include "rtl.h"
93 #include "tree.h"
94 #include "varasm.h"
95 #include "stor-layout.h"
96 #include "pointer-set.h"
97 #include "hash-table.h"
98 #include "basic-block.h"
99 #include "tm_p.h"
100 #include "hard-reg-set.h"
101 #include "flags.h"
102 #include "insn-config.h"
103 #include "reload.h"
104 #include "sbitmap.h"
105 #include "alloc-pool.h"
106 #include "fibheap.h"
107 #include "regs.h"
108 #include "expr.h"
109 #include "tree-pass.h"
110 #include "bitmap.h"
111 #include "tree-dfa.h"
112 #include "tree-ssa.h"
113 #include "cselib.h"
114 #include "target.h"
115 #include "params.h"
116 #include "diagnostic.h"
117 #include "tree-pretty-print.h"
118 #include "recog.h"
119 #include "tm_p.h"
120 #include "alias.h"
122 /* var-tracking.c assumes that tree code with the same value as VALUE rtx code
123 has no chance to appear in REG_EXPR/MEM_EXPRs and isn't a decl.
124 Currently the value is the same as IDENTIFIER_NODE, which has such
125 a property. If this compile time assertion ever fails, make sure that
126 the new tree code that equals (int) VALUE has the same property. */
127 extern char check_value_val[(int) VALUE == (int) IDENTIFIER_NODE ? 1 : -1];
129 /* Type of micro operation. */
130 enum micro_operation_type
132 MO_USE, /* Use location (REG or MEM). */
133 MO_USE_NO_VAR,/* Use location which is not associated with a variable
134 or the variable is not trackable. */
135 MO_VAL_USE, /* Use location which is associated with a value. */
136 MO_VAL_LOC, /* Use location which appears in a debug insn. */
137 MO_VAL_SET, /* Set location associated with a value. */
138 MO_SET, /* Set location. */
139 MO_COPY, /* Copy the same portion of a variable from one
140 location to another. */
141 MO_CLOBBER, /* Clobber location. */
142 MO_CALL, /* Call insn. */
143 MO_ADJUST /* Adjust stack pointer. */
147 static const char * const ATTRIBUTE_UNUSED
148 micro_operation_type_name[] = {
149 "MO_USE",
150 "MO_USE_NO_VAR",
151 "MO_VAL_USE",
152 "MO_VAL_LOC",
153 "MO_VAL_SET",
154 "MO_SET",
155 "MO_COPY",
156 "MO_CLOBBER",
157 "MO_CALL",
158 "MO_ADJUST"
161 /* Where shall the note be emitted? BEFORE or AFTER the instruction.
162 Notes emitted as AFTER_CALL are to take effect during the call,
163 rather than after the call. */
164 enum emit_note_where
166 EMIT_NOTE_BEFORE_INSN,
167 EMIT_NOTE_AFTER_INSN,
168 EMIT_NOTE_AFTER_CALL_INSN
171 /* Structure holding information about micro operation. */
172 typedef struct micro_operation_def
174 /* Type of micro operation. */
175 enum micro_operation_type type;
177 /* The instruction which the micro operation is in, for MO_USE,
178 MO_USE_NO_VAR, MO_CALL and MO_ADJUST, or the subsequent
179 instruction or note in the original flow (before any var-tracking
180 notes are inserted, to simplify emission of notes), for MO_SET
181 and MO_CLOBBER. */
182 rtx insn;
184 union {
185 /* Location. For MO_SET and MO_COPY, this is the SET that
186 performs the assignment, if known, otherwise it is the target
187 of the assignment. For MO_VAL_USE and MO_VAL_SET, it is a
188 CONCAT of the VALUE and the LOC associated with it. For
189 MO_VAL_LOC, it is a CONCAT of the VALUE and the VAR_LOCATION
190 associated with it. */
191 rtx loc;
193 /* Stack adjustment. */
194 HOST_WIDE_INT adjust;
195 } u;
196 } micro_operation;
199 /* A declaration of a variable, or an RTL value being handled like a
200 declaration. */
201 typedef void *decl_or_value;
203 /* Return true if a decl_or_value DV is a DECL or NULL. */
204 static inline bool
205 dv_is_decl_p (decl_or_value dv)
207 return !dv || (int) TREE_CODE ((tree) dv) != (int) VALUE;
210 /* Return true if a decl_or_value is a VALUE rtl. */
211 static inline bool
212 dv_is_value_p (decl_or_value dv)
214 return dv && !dv_is_decl_p (dv);
217 /* Return the decl in the decl_or_value. */
218 static inline tree
219 dv_as_decl (decl_or_value dv)
221 gcc_checking_assert (dv_is_decl_p (dv));
222 return (tree) dv;
225 /* Return the value in the decl_or_value. */
226 static inline rtx
227 dv_as_value (decl_or_value dv)
229 gcc_checking_assert (dv_is_value_p (dv));
230 return (rtx)dv;
233 /* Return the opaque pointer in the decl_or_value. */
234 static inline void *
235 dv_as_opaque (decl_or_value dv)
237 return dv;
241 /* Description of location of a part of a variable. The content of a physical
242 register is described by a chain of these structures.
243 The chains are pretty short (usually 1 or 2 elements) and thus
244 chain is the best data structure. */
245 typedef struct attrs_def
247 /* Pointer to next member of the list. */
248 struct attrs_def *next;
250 /* The rtx of register. */
251 rtx loc;
253 /* The declaration corresponding to LOC. */
254 decl_or_value dv;
256 /* Offset from start of DECL. */
257 HOST_WIDE_INT offset;
258 } *attrs;
260 /* Structure for chaining the locations. */
261 typedef struct location_chain_def
263 /* Next element in the chain. */
264 struct location_chain_def *next;
266 /* The location (REG, MEM or VALUE). */
267 rtx loc;
269 /* The "value" stored in this location. */
270 rtx set_src;
272 /* Initialized? */
273 enum var_init_status init;
274 } *location_chain;
276 /* A vector of loc_exp_dep holds the active dependencies of a one-part
277 DV on VALUEs, i.e., the VALUEs expanded so as to form the current
278 location of DV. Each entry is also part of VALUE' s linked-list of
279 backlinks back to DV. */
280 typedef struct loc_exp_dep_s
282 /* The dependent DV. */
283 decl_or_value dv;
284 /* The dependency VALUE or DECL_DEBUG. */
285 rtx value;
286 /* The next entry in VALUE's backlinks list. */
287 struct loc_exp_dep_s *next;
288 /* A pointer to the pointer to this entry (head or prev's next) in
289 the doubly-linked list. */
290 struct loc_exp_dep_s **pprev;
291 } loc_exp_dep;
294 /* This data structure holds information about the depth of a variable
295 expansion. */
296 typedef struct expand_depth_struct
298 /* This measures the complexity of the expanded expression. It
299 grows by one for each level of expansion that adds more than one
300 operand. */
301 int complexity;
302 /* This counts the number of ENTRY_VALUE expressions in an
303 expansion. We want to minimize their use. */
304 int entryvals;
305 } expand_depth;
307 /* This data structure is allocated for one-part variables at the time
308 of emitting notes. */
309 struct onepart_aux
311 /* Doubly-linked list of dependent DVs. These are DVs whose cur_loc
312 computation used the expansion of this variable, and that ought
313 to be notified should this variable change. If the DV's cur_loc
314 expanded to NULL, all components of the loc list are regarded as
315 active, so that any changes in them give us a chance to get a
316 location. Otherwise, only components of the loc that expanded to
317 non-NULL are regarded as active dependencies. */
318 loc_exp_dep *backlinks;
319 /* This holds the LOC that was expanded into cur_loc. We need only
320 mark a one-part variable as changed if the FROM loc is removed,
321 or if it has no known location and a loc is added, or if it gets
322 a change notification from any of its active dependencies. */
323 rtx from;
324 /* The depth of the cur_loc expression. */
325 expand_depth depth;
326 /* Dependencies actively used when expand FROM into cur_loc. */
327 vec<loc_exp_dep, va_heap, vl_embed> deps;
330 /* Structure describing one part of variable. */
331 typedef struct variable_part_def
333 /* Chain of locations of the part. */
334 location_chain loc_chain;
336 /* Location which was last emitted to location list. */
337 rtx cur_loc;
339 union variable_aux
341 /* The offset in the variable, if !var->onepart. */
342 HOST_WIDE_INT offset;
344 /* Pointer to auxiliary data, if var->onepart and emit_notes. */
345 struct onepart_aux *onepaux;
346 } aux;
347 } variable_part;
349 /* Maximum number of location parts. */
350 #define MAX_VAR_PARTS 16
352 /* Enumeration type used to discriminate various types of one-part
353 variables. */
354 typedef enum onepart_enum
356 /* Not a one-part variable. */
357 NOT_ONEPART = 0,
358 /* A one-part DECL that is not a DEBUG_EXPR_DECL. */
359 ONEPART_VDECL = 1,
360 /* A DEBUG_EXPR_DECL. */
361 ONEPART_DEXPR = 2,
362 /* A VALUE. */
363 ONEPART_VALUE = 3
364 } onepart_enum_t;
366 /* Structure describing where the variable is located. */
367 typedef struct variable_def
369 /* The declaration of the variable, or an RTL value being handled
370 like a declaration. */
371 decl_or_value dv;
373 /* Reference count. */
374 int refcount;
376 /* Number of variable parts. */
377 char n_var_parts;
379 /* What type of DV this is, according to enum onepart_enum. */
380 ENUM_BITFIELD (onepart_enum) onepart : CHAR_BIT;
382 /* True if this variable_def struct is currently in the
383 changed_variables hash table. */
384 bool in_changed_variables;
386 /* The variable parts. */
387 variable_part var_part[1];
388 } *variable;
389 typedef const struct variable_def *const_variable;
391 /* Pointer to the BB's information specific to variable tracking pass. */
392 #define VTI(BB) ((variable_tracking_info) (BB)->aux)
394 /* Macro to access MEM_OFFSET as an HOST_WIDE_INT. Evaluates MEM twice. */
395 #define INT_MEM_OFFSET(mem) (MEM_OFFSET_KNOWN_P (mem) ? MEM_OFFSET (mem) : 0)
397 #if ENABLE_CHECKING && (GCC_VERSION >= 2007)
399 /* Access VAR's Ith part's offset, checking that it's not a one-part
400 variable. */
401 #define VAR_PART_OFFSET(var, i) __extension__ \
402 (*({ variable const __v = (var); \
403 gcc_checking_assert (!__v->onepart); \
404 &__v->var_part[(i)].aux.offset; }))
406 /* Access VAR's one-part auxiliary data, checking that it is a
407 one-part variable. */
408 #define VAR_LOC_1PAUX(var) __extension__ \
409 (*({ variable const __v = (var); \
410 gcc_checking_assert (__v->onepart); \
411 &__v->var_part[0].aux.onepaux; }))
413 #else
414 #define VAR_PART_OFFSET(var, i) ((var)->var_part[(i)].aux.offset)
415 #define VAR_LOC_1PAUX(var) ((var)->var_part[0].aux.onepaux)
416 #endif
418 /* These are accessor macros for the one-part auxiliary data. When
419 convenient for users, they're guarded by tests that the data was
420 allocated. */
421 #define VAR_LOC_DEP_LST(var) (VAR_LOC_1PAUX (var) \
422 ? VAR_LOC_1PAUX (var)->backlinks \
423 : NULL)
424 #define VAR_LOC_DEP_LSTP(var) (VAR_LOC_1PAUX (var) \
425 ? &VAR_LOC_1PAUX (var)->backlinks \
426 : NULL)
427 #define VAR_LOC_FROM(var) (VAR_LOC_1PAUX (var)->from)
428 #define VAR_LOC_DEPTH(var) (VAR_LOC_1PAUX (var)->depth)
429 #define VAR_LOC_DEP_VEC(var) (VAR_LOC_1PAUX (var) \
430 ? &VAR_LOC_1PAUX (var)->deps \
431 : NULL)
435 typedef unsigned int dvuid;
437 /* Return the uid of DV. */
439 static inline dvuid
440 dv_uid (decl_or_value dv)
442 if (dv_is_value_p (dv))
443 return CSELIB_VAL_PTR (dv_as_value (dv))->uid;
444 else
445 return DECL_UID (dv_as_decl (dv));
448 /* Compute the hash from the uid. */
450 static inline hashval_t
451 dv_uid2hash (dvuid uid)
453 return uid;
456 /* The hash function for a mask table in a shared_htab chain. */
458 static inline hashval_t
459 dv_htab_hash (decl_or_value dv)
461 return dv_uid2hash (dv_uid (dv));
464 static void variable_htab_free (void *);
466 /* Variable hashtable helpers. */
468 struct variable_hasher
470 typedef variable_def value_type;
471 typedef void compare_type;
472 static inline hashval_t hash (const value_type *);
473 static inline bool equal (const value_type *, const compare_type *);
474 static inline void remove (value_type *);
477 /* The hash function for variable_htab, computes the hash value
478 from the declaration of variable X. */
480 inline hashval_t
481 variable_hasher::hash (const value_type *v)
483 return dv_htab_hash (v->dv);
486 /* Compare the declaration of variable X with declaration Y. */
488 inline bool
489 variable_hasher::equal (const value_type *v, const compare_type *y)
491 decl_or_value dv = CONST_CAST2 (decl_or_value, const void *, y);
493 return (dv_as_opaque (v->dv) == dv_as_opaque (dv));
496 /* Free the element of VARIABLE_HTAB (its type is struct variable_def). */
498 inline void
499 variable_hasher::remove (value_type *var)
501 variable_htab_free (var);
504 typedef hash_table <variable_hasher> variable_table_type;
505 typedef variable_table_type::iterator variable_iterator_type;
507 /* Structure for passing some other parameters to function
508 emit_note_insn_var_location. */
509 typedef struct emit_note_data_def
511 /* The instruction which the note will be emitted before/after. */
512 rtx insn;
514 /* Where the note will be emitted (before/after insn)? */
515 enum emit_note_where where;
517 /* The variables and values active at this point. */
518 variable_table_type vars;
519 } emit_note_data;
521 /* Structure holding a refcounted hash table. If refcount > 1,
522 it must be first unshared before modified. */
523 typedef struct shared_hash_def
525 /* Reference count. */
526 int refcount;
528 /* Actual hash table. */
529 variable_table_type htab;
530 } *shared_hash;
532 /* Structure holding the IN or OUT set for a basic block. */
533 typedef struct dataflow_set_def
535 /* Adjustment of stack offset. */
536 HOST_WIDE_INT stack_adjust;
538 /* Attributes for registers (lists of attrs). */
539 attrs regs[FIRST_PSEUDO_REGISTER];
541 /* Variable locations. */
542 shared_hash vars;
544 /* Vars that is being traversed. */
545 shared_hash traversed_vars;
546 } dataflow_set;
548 /* The structure (one for each basic block) containing the information
549 needed for variable tracking. */
550 typedef struct variable_tracking_info_def
552 /* The vector of micro operations. */
553 vec<micro_operation> mos;
555 /* The IN and OUT set for dataflow analysis. */
556 dataflow_set in;
557 dataflow_set out;
559 /* The permanent-in dataflow set for this block. This is used to
560 hold values for which we had to compute entry values. ??? This
561 should probably be dynamically allocated, to avoid using more
562 memory in non-debug builds. */
563 dataflow_set *permp;
565 /* Has the block been visited in DFS? */
566 bool visited;
568 /* Has the block been flooded in VTA? */
569 bool flooded;
571 } *variable_tracking_info;
573 /* Alloc pool for struct attrs_def. */
574 static alloc_pool attrs_pool;
576 /* Alloc pool for struct variable_def with MAX_VAR_PARTS entries. */
577 static alloc_pool var_pool;
579 /* Alloc pool for struct variable_def with a single var_part entry. */
580 static alloc_pool valvar_pool;
582 /* Alloc pool for struct location_chain_def. */
583 static alloc_pool loc_chain_pool;
585 /* Alloc pool for struct shared_hash_def. */
586 static alloc_pool shared_hash_pool;
588 /* Alloc pool for struct loc_exp_dep_s for NOT_ONEPART variables. */
589 static alloc_pool loc_exp_dep_pool;
591 /* Changed variables, notes will be emitted for them. */
592 static variable_table_type changed_variables;
594 /* Shall notes be emitted? */
595 static bool emit_notes;
597 /* Values whose dynamic location lists have gone empty, but whose
598 cselib location lists are still usable. Use this to hold the
599 current location, the backlinks, etc, during emit_notes. */
600 static variable_table_type dropped_values;
602 /* Empty shared hashtable. */
603 static shared_hash empty_shared_hash;
605 /* Scratch register bitmap used by cselib_expand_value_rtx. */
606 static bitmap scratch_regs = NULL;
608 #ifdef HAVE_window_save
609 typedef struct GTY(()) parm_reg {
610 rtx outgoing;
611 rtx incoming;
612 } parm_reg_t;
615 /* Vector of windowed parameter registers, if any. */
616 static vec<parm_reg_t, va_gc> *windowed_parm_regs = NULL;
617 #endif
619 /* Variable used to tell whether cselib_process_insn called our hook. */
620 static bool cselib_hook_called;
622 /* Local function prototypes. */
623 static void stack_adjust_offset_pre_post (rtx, HOST_WIDE_INT *,
624 HOST_WIDE_INT *);
625 static void insn_stack_adjust_offset_pre_post (rtx, HOST_WIDE_INT *,
626 HOST_WIDE_INT *);
627 static bool vt_stack_adjustments (void);
629 static void init_attrs_list_set (attrs *);
630 static void attrs_list_clear (attrs *);
631 static attrs attrs_list_member (attrs, decl_or_value, HOST_WIDE_INT);
632 static void attrs_list_insert (attrs *, decl_or_value, HOST_WIDE_INT, rtx);
633 static void attrs_list_copy (attrs *, attrs);
634 static void attrs_list_union (attrs *, attrs);
636 static variable_def **unshare_variable (dataflow_set *set, variable_def **slot,
637 variable var, enum var_init_status);
638 static void vars_copy (variable_table_type, variable_table_type);
639 static tree var_debug_decl (tree);
640 static void var_reg_set (dataflow_set *, rtx, enum var_init_status, rtx);
641 static void var_reg_delete_and_set (dataflow_set *, rtx, bool,
642 enum var_init_status, rtx);
643 static void var_reg_delete (dataflow_set *, rtx, bool);
644 static void var_regno_delete (dataflow_set *, int);
645 static void var_mem_set (dataflow_set *, rtx, enum var_init_status, rtx);
646 static void var_mem_delete_and_set (dataflow_set *, rtx, bool,
647 enum var_init_status, rtx);
648 static void var_mem_delete (dataflow_set *, rtx, bool);
650 static void dataflow_set_init (dataflow_set *);
651 static void dataflow_set_clear (dataflow_set *);
652 static void dataflow_set_copy (dataflow_set *, dataflow_set *);
653 static int variable_union_info_cmp_pos (const void *, const void *);
654 static void dataflow_set_union (dataflow_set *, dataflow_set *);
655 static location_chain find_loc_in_1pdv (rtx, variable, variable_table_type);
656 static bool canon_value_cmp (rtx, rtx);
657 static int loc_cmp (rtx, rtx);
658 static bool variable_part_different_p (variable_part *, variable_part *);
659 static bool onepart_variable_different_p (variable, variable);
660 static bool variable_different_p (variable, variable);
661 static bool dataflow_set_different (dataflow_set *, dataflow_set *);
662 static void dataflow_set_destroy (dataflow_set *);
664 static bool contains_symbol_ref (rtx);
665 static bool track_expr_p (tree, bool);
666 static bool same_variable_part_p (rtx, tree, HOST_WIDE_INT);
667 static int add_uses (rtx *, void *);
668 static void add_uses_1 (rtx *, void *);
669 static void add_stores (rtx, const_rtx, void *);
670 static bool compute_bb_dataflow (basic_block);
671 static bool vt_find_locations (void);
673 static void dump_attrs_list (attrs);
674 static void dump_var (variable);
675 static void dump_vars (variable_table_type);
676 static void dump_dataflow_set (dataflow_set *);
677 static void dump_dataflow_sets (void);
679 static void set_dv_changed (decl_or_value, bool);
680 static void variable_was_changed (variable, dataflow_set *);
681 static variable_def **set_slot_part (dataflow_set *, rtx, variable_def **,
682 decl_or_value, HOST_WIDE_INT,
683 enum var_init_status, rtx);
684 static void set_variable_part (dataflow_set *, rtx,
685 decl_or_value, HOST_WIDE_INT,
686 enum var_init_status, rtx, enum insert_option);
687 static variable_def **clobber_slot_part (dataflow_set *, rtx,
688 variable_def **, HOST_WIDE_INT, rtx);
689 static void clobber_variable_part (dataflow_set *, rtx,
690 decl_or_value, HOST_WIDE_INT, rtx);
691 static variable_def **delete_slot_part (dataflow_set *, rtx, variable_def **,
692 HOST_WIDE_INT);
693 static void delete_variable_part (dataflow_set *, rtx,
694 decl_or_value, HOST_WIDE_INT);
695 static void emit_notes_in_bb (basic_block, dataflow_set *);
696 static void vt_emit_notes (void);
698 static bool vt_get_decl_and_offset (rtx, tree *, HOST_WIDE_INT *);
699 static void vt_add_function_parameters (void);
700 static bool vt_initialize (void);
701 static void vt_finalize (void);
703 /* Given a SET, calculate the amount of stack adjustment it contains
704 PRE- and POST-modifying stack pointer.
705 This function is similar to stack_adjust_offset. */
707 static void
708 stack_adjust_offset_pre_post (rtx pattern, HOST_WIDE_INT *pre,
709 HOST_WIDE_INT *post)
711 rtx src = SET_SRC (pattern);
712 rtx dest = SET_DEST (pattern);
713 enum rtx_code code;
715 if (dest == stack_pointer_rtx)
717 /* (set (reg sp) (plus (reg sp) (const_int))) */
718 code = GET_CODE (src);
719 if (! (code == PLUS || code == MINUS)
720 || XEXP (src, 0) != stack_pointer_rtx
721 || !CONST_INT_P (XEXP (src, 1)))
722 return;
724 if (code == MINUS)
725 *post += INTVAL (XEXP (src, 1));
726 else
727 *post -= INTVAL (XEXP (src, 1));
729 else if (MEM_P (dest))
731 /* (set (mem (pre_dec (reg sp))) (foo)) */
732 src = XEXP (dest, 0);
733 code = GET_CODE (src);
735 switch (code)
737 case PRE_MODIFY:
738 case POST_MODIFY:
739 if (XEXP (src, 0) == stack_pointer_rtx)
741 rtx val = XEXP (XEXP (src, 1), 1);
742 /* We handle only adjustments by constant amount. */
743 gcc_assert (GET_CODE (XEXP (src, 1)) == PLUS &&
744 CONST_INT_P (val));
746 if (code == PRE_MODIFY)
747 *pre -= INTVAL (val);
748 else
749 *post -= INTVAL (val);
750 break;
752 return;
754 case PRE_DEC:
755 if (XEXP (src, 0) == stack_pointer_rtx)
757 *pre += GET_MODE_SIZE (GET_MODE (dest));
758 break;
760 return;
762 case POST_DEC:
763 if (XEXP (src, 0) == stack_pointer_rtx)
765 *post += GET_MODE_SIZE (GET_MODE (dest));
766 break;
768 return;
770 case PRE_INC:
771 if (XEXP (src, 0) == stack_pointer_rtx)
773 *pre -= GET_MODE_SIZE (GET_MODE (dest));
774 break;
776 return;
778 case POST_INC:
779 if (XEXP (src, 0) == stack_pointer_rtx)
781 *post -= GET_MODE_SIZE (GET_MODE (dest));
782 break;
784 return;
786 default:
787 return;
792 /* Given an INSN, calculate the amount of stack adjustment it contains
793 PRE- and POST-modifying stack pointer. */
795 static void
796 insn_stack_adjust_offset_pre_post (rtx insn, HOST_WIDE_INT *pre,
797 HOST_WIDE_INT *post)
799 rtx pattern;
801 *pre = 0;
802 *post = 0;
804 pattern = PATTERN (insn);
805 if (RTX_FRAME_RELATED_P (insn))
807 rtx expr = find_reg_note (insn, REG_FRAME_RELATED_EXPR, NULL_RTX);
808 if (expr)
809 pattern = XEXP (expr, 0);
812 if (GET_CODE (pattern) == SET)
813 stack_adjust_offset_pre_post (pattern, pre, post);
814 else if (GET_CODE (pattern) == PARALLEL
815 || GET_CODE (pattern) == SEQUENCE)
817 int i;
819 /* There may be stack adjustments inside compound insns. Search
820 for them. */
821 for ( i = XVECLEN (pattern, 0) - 1; i >= 0; i--)
822 if (GET_CODE (XVECEXP (pattern, 0, i)) == SET)
823 stack_adjust_offset_pre_post (XVECEXP (pattern, 0, i), pre, post);
827 /* Compute stack adjustments for all blocks by traversing DFS tree.
828 Return true when the adjustments on all incoming edges are consistent.
829 Heavily borrowed from pre_and_rev_post_order_compute. */
831 static bool
832 vt_stack_adjustments (void)
834 edge_iterator *stack;
835 int sp;
837 /* Initialize entry block. */
838 VTI (ENTRY_BLOCK_PTR_FOR_FN (cfun))->visited = true;
839 VTI (ENTRY_BLOCK_PTR_FOR_FN (cfun))->in.stack_adjust =
840 INCOMING_FRAME_SP_OFFSET;
841 VTI (ENTRY_BLOCK_PTR_FOR_FN (cfun))->out.stack_adjust =
842 INCOMING_FRAME_SP_OFFSET;
844 /* Allocate stack for back-tracking up CFG. */
845 stack = XNEWVEC (edge_iterator, n_basic_blocks_for_fn (cfun) + 1);
846 sp = 0;
848 /* Push the first edge on to the stack. */
849 stack[sp++] = ei_start (ENTRY_BLOCK_PTR_FOR_FN (cfun)->succs);
851 while (sp)
853 edge_iterator ei;
854 basic_block src;
855 basic_block dest;
857 /* Look at the edge on the top of the stack. */
858 ei = stack[sp - 1];
859 src = ei_edge (ei)->src;
860 dest = ei_edge (ei)->dest;
862 /* Check if the edge destination has been visited yet. */
863 if (!VTI (dest)->visited)
865 rtx insn;
866 HOST_WIDE_INT pre, post, offset;
867 VTI (dest)->visited = true;
868 VTI (dest)->in.stack_adjust = offset = VTI (src)->out.stack_adjust;
870 if (dest != EXIT_BLOCK_PTR_FOR_FN (cfun))
871 for (insn = BB_HEAD (dest);
872 insn != NEXT_INSN (BB_END (dest));
873 insn = NEXT_INSN (insn))
874 if (INSN_P (insn))
876 insn_stack_adjust_offset_pre_post (insn, &pre, &post);
877 offset += pre + post;
880 VTI (dest)->out.stack_adjust = offset;
882 if (EDGE_COUNT (dest->succs) > 0)
883 /* Since the DEST node has been visited for the first
884 time, check its successors. */
885 stack[sp++] = ei_start (dest->succs);
887 else
889 /* We can end up with different stack adjustments for the exit block
890 of a shrink-wrapped function if stack_adjust_offset_pre_post
891 doesn't understand the rtx pattern used to restore the stack
892 pointer in the epilogue. For example, on s390(x), the stack
893 pointer is often restored via a load-multiple instruction
894 and so no stack_adjust offset is recorded for it. This means
895 that the stack offset at the end of the epilogue block is the
896 the same as the offset before the epilogue, whereas other paths
897 to the exit block will have the correct stack_adjust.
899 It is safe to ignore these differences because (a) we never
900 use the stack_adjust for the exit block in this pass and
901 (b) dwarf2cfi checks whether the CFA notes in a shrink-wrapped
902 function are correct.
904 We must check whether the adjustments on other edges are
905 the same though. */
906 if (dest != EXIT_BLOCK_PTR_FOR_FN (cfun)
907 && VTI (dest)->in.stack_adjust != VTI (src)->out.stack_adjust)
909 free (stack);
910 return false;
913 if (! ei_one_before_end_p (ei))
914 /* Go to the next edge. */
915 ei_next (&stack[sp - 1]);
916 else
917 /* Return to previous level if there are no more edges. */
918 sp--;
922 free (stack);
923 return true;
926 /* arg_pointer_rtx resp. frame_pointer_rtx if stack_pointer_rtx or
927 hard_frame_pointer_rtx is being mapped to it and offset for it. */
928 static rtx cfa_base_rtx;
929 static HOST_WIDE_INT cfa_base_offset;
931 /* Compute a CFA-based value for an ADJUSTMENT made to stack_pointer_rtx
932 or hard_frame_pointer_rtx. */
934 static inline rtx
935 compute_cfa_pointer (HOST_WIDE_INT adjustment)
937 return plus_constant (Pmode, cfa_base_rtx, adjustment + cfa_base_offset);
940 /* Adjustment for hard_frame_pointer_rtx to cfa base reg,
941 or -1 if the replacement shouldn't be done. */
942 static HOST_WIDE_INT hard_frame_pointer_adjustment = -1;
944 /* Data for adjust_mems callback. */
946 struct adjust_mem_data
948 bool store;
949 enum machine_mode mem_mode;
950 HOST_WIDE_INT stack_adjust;
951 rtx side_effects;
954 /* Helper for adjust_mems. Return 1 if *loc is unsuitable for
955 transformation of wider mode arithmetics to narrower mode,
956 -1 if it is suitable and subexpressions shouldn't be
957 traversed and 0 if it is suitable and subexpressions should
958 be traversed. Called through for_each_rtx. */
960 static int
961 use_narrower_mode_test (rtx *loc, void *data)
963 rtx subreg = (rtx) data;
965 if (CONSTANT_P (*loc))
966 return -1;
967 switch (GET_CODE (*loc))
969 case REG:
970 if (cselib_lookup (*loc, GET_MODE (SUBREG_REG (subreg)), 0, VOIDmode))
971 return 1;
972 if (!validate_subreg (GET_MODE (subreg), GET_MODE (*loc),
973 *loc, subreg_lowpart_offset (GET_MODE (subreg),
974 GET_MODE (*loc))))
975 return 1;
976 return -1;
977 case PLUS:
978 case MINUS:
979 case MULT:
980 return 0;
981 case ASHIFT:
982 if (for_each_rtx (&XEXP (*loc, 0), use_narrower_mode_test, data))
983 return 1;
984 else
985 return -1;
986 default:
987 return 1;
991 /* Transform X into narrower mode MODE from wider mode WMODE. */
993 static rtx
994 use_narrower_mode (rtx x, enum machine_mode mode, enum machine_mode wmode)
996 rtx op0, op1;
997 if (CONSTANT_P (x))
998 return lowpart_subreg (mode, x, wmode);
999 switch (GET_CODE (x))
1001 case REG:
1002 return lowpart_subreg (mode, x, wmode);
1003 case PLUS:
1004 case MINUS:
1005 case MULT:
1006 op0 = use_narrower_mode (XEXP (x, 0), mode, wmode);
1007 op1 = use_narrower_mode (XEXP (x, 1), mode, wmode);
1008 return simplify_gen_binary (GET_CODE (x), mode, op0, op1);
1009 case ASHIFT:
1010 op0 = use_narrower_mode (XEXP (x, 0), mode, wmode);
1011 return simplify_gen_binary (ASHIFT, mode, op0, XEXP (x, 1));
1012 default:
1013 gcc_unreachable ();
1017 /* Helper function for adjusting used MEMs. */
1019 static rtx
1020 adjust_mems (rtx loc, const_rtx old_rtx, void *data)
1022 struct adjust_mem_data *amd = (struct adjust_mem_data *) data;
1023 rtx mem, addr = loc, tem;
1024 enum machine_mode mem_mode_save;
1025 bool store_save;
1026 switch (GET_CODE (loc))
1028 case REG:
1029 /* Don't do any sp or fp replacements outside of MEM addresses
1030 on the LHS. */
1031 if (amd->mem_mode == VOIDmode && amd->store)
1032 return loc;
1033 if (loc == stack_pointer_rtx
1034 && !frame_pointer_needed
1035 && cfa_base_rtx)
1036 return compute_cfa_pointer (amd->stack_adjust);
1037 else if (loc == hard_frame_pointer_rtx
1038 && frame_pointer_needed
1039 && hard_frame_pointer_adjustment != -1
1040 && cfa_base_rtx)
1041 return compute_cfa_pointer (hard_frame_pointer_adjustment);
1042 gcc_checking_assert (loc != virtual_incoming_args_rtx);
1043 return loc;
1044 case MEM:
1045 mem = loc;
1046 if (!amd->store)
1048 mem = targetm.delegitimize_address (mem);
1049 if (mem != loc && !MEM_P (mem))
1050 return simplify_replace_fn_rtx (mem, old_rtx, adjust_mems, data);
1053 addr = XEXP (mem, 0);
1054 mem_mode_save = amd->mem_mode;
1055 amd->mem_mode = GET_MODE (mem);
1056 store_save = amd->store;
1057 amd->store = false;
1058 addr = simplify_replace_fn_rtx (addr, old_rtx, adjust_mems, data);
1059 amd->store = store_save;
1060 amd->mem_mode = mem_mode_save;
1061 if (mem == loc)
1062 addr = targetm.delegitimize_address (addr);
1063 if (addr != XEXP (mem, 0))
1064 mem = replace_equiv_address_nv (mem, addr);
1065 if (!amd->store)
1066 mem = avoid_constant_pool_reference (mem);
1067 return mem;
1068 case PRE_INC:
1069 case PRE_DEC:
1070 addr = gen_rtx_PLUS (GET_MODE (loc), XEXP (loc, 0),
1071 gen_int_mode (GET_CODE (loc) == PRE_INC
1072 ? GET_MODE_SIZE (amd->mem_mode)
1073 : -GET_MODE_SIZE (amd->mem_mode),
1074 GET_MODE (loc)));
1075 case POST_INC:
1076 case POST_DEC:
1077 if (addr == loc)
1078 addr = XEXP (loc, 0);
1079 gcc_assert (amd->mem_mode != VOIDmode && amd->mem_mode != BLKmode);
1080 addr = simplify_replace_fn_rtx (addr, old_rtx, adjust_mems, data);
1081 tem = gen_rtx_PLUS (GET_MODE (loc), XEXP (loc, 0),
1082 gen_int_mode ((GET_CODE (loc) == PRE_INC
1083 || GET_CODE (loc) == POST_INC)
1084 ? GET_MODE_SIZE (amd->mem_mode)
1085 : -GET_MODE_SIZE (amd->mem_mode),
1086 GET_MODE (loc)));
1087 store_save = amd->store;
1088 amd->store = false;
1089 tem = simplify_replace_fn_rtx (tem, old_rtx, adjust_mems, data);
1090 amd->store = store_save;
1091 amd->side_effects = alloc_EXPR_LIST (0,
1092 gen_rtx_SET (VOIDmode,
1093 XEXP (loc, 0), tem),
1094 amd->side_effects);
1095 return addr;
1096 case PRE_MODIFY:
1097 addr = XEXP (loc, 1);
1098 case POST_MODIFY:
1099 if (addr == loc)
1100 addr = XEXP (loc, 0);
1101 gcc_assert (amd->mem_mode != VOIDmode);
1102 addr = simplify_replace_fn_rtx (addr, old_rtx, adjust_mems, data);
1103 store_save = amd->store;
1104 amd->store = false;
1105 tem = simplify_replace_fn_rtx (XEXP (loc, 1), old_rtx,
1106 adjust_mems, data);
1107 amd->store = store_save;
1108 amd->side_effects = alloc_EXPR_LIST (0,
1109 gen_rtx_SET (VOIDmode,
1110 XEXP (loc, 0), tem),
1111 amd->side_effects);
1112 return addr;
1113 case SUBREG:
1114 /* First try without delegitimization of whole MEMs and
1115 avoid_constant_pool_reference, which is more likely to succeed. */
1116 store_save = amd->store;
1117 amd->store = true;
1118 addr = simplify_replace_fn_rtx (SUBREG_REG (loc), old_rtx, adjust_mems,
1119 data);
1120 amd->store = store_save;
1121 mem = simplify_replace_fn_rtx (addr, old_rtx, adjust_mems, data);
1122 if (mem == SUBREG_REG (loc))
1124 tem = loc;
1125 goto finish_subreg;
1127 tem = simplify_gen_subreg (GET_MODE (loc), mem,
1128 GET_MODE (SUBREG_REG (loc)),
1129 SUBREG_BYTE (loc));
1130 if (tem)
1131 goto finish_subreg;
1132 tem = simplify_gen_subreg (GET_MODE (loc), addr,
1133 GET_MODE (SUBREG_REG (loc)),
1134 SUBREG_BYTE (loc));
1135 if (tem == NULL_RTX)
1136 tem = gen_rtx_raw_SUBREG (GET_MODE (loc), addr, SUBREG_BYTE (loc));
1137 finish_subreg:
1138 if (MAY_HAVE_DEBUG_INSNS
1139 && GET_CODE (tem) == SUBREG
1140 && (GET_CODE (SUBREG_REG (tem)) == PLUS
1141 || GET_CODE (SUBREG_REG (tem)) == MINUS
1142 || GET_CODE (SUBREG_REG (tem)) == MULT
1143 || GET_CODE (SUBREG_REG (tem)) == ASHIFT)
1144 && GET_MODE_CLASS (GET_MODE (tem)) == MODE_INT
1145 && GET_MODE_CLASS (GET_MODE (SUBREG_REG (tem))) == MODE_INT
1146 && GET_MODE_SIZE (GET_MODE (tem))
1147 < GET_MODE_SIZE (GET_MODE (SUBREG_REG (tem)))
1148 && subreg_lowpart_p (tem)
1149 && !for_each_rtx (&SUBREG_REG (tem), use_narrower_mode_test, tem))
1150 return use_narrower_mode (SUBREG_REG (tem), GET_MODE (tem),
1151 GET_MODE (SUBREG_REG (tem)));
1152 return tem;
1153 case ASM_OPERANDS:
1154 /* Don't do any replacements in second and following
1155 ASM_OPERANDS of inline-asm with multiple sets.
1156 ASM_OPERANDS_INPUT_VEC, ASM_OPERANDS_INPUT_CONSTRAINT_VEC
1157 and ASM_OPERANDS_LABEL_VEC need to be equal between
1158 all the ASM_OPERANDs in the insn and adjust_insn will
1159 fix this up. */
1160 if (ASM_OPERANDS_OUTPUT_IDX (loc) != 0)
1161 return loc;
1162 break;
1163 default:
1164 break;
1166 return NULL_RTX;
1169 /* Helper function for replacement of uses. */
1171 static void
1172 adjust_mem_uses (rtx *x, void *data)
1174 rtx new_x = simplify_replace_fn_rtx (*x, NULL_RTX, adjust_mems, data);
1175 if (new_x != *x)
1176 validate_change (NULL_RTX, x, new_x, true);
1179 /* Helper function for replacement of stores. */
1181 static void
1182 adjust_mem_stores (rtx loc, const_rtx expr, void *data)
1184 if (MEM_P (loc))
1186 rtx new_dest = simplify_replace_fn_rtx (SET_DEST (expr), NULL_RTX,
1187 adjust_mems, data);
1188 if (new_dest != SET_DEST (expr))
1190 rtx xexpr = CONST_CAST_RTX (expr);
1191 validate_change (NULL_RTX, &SET_DEST (xexpr), new_dest, true);
1196 /* Simplify INSN. Remove all {PRE,POST}_{INC,DEC,MODIFY} rtxes,
1197 replace them with their value in the insn and add the side-effects
1198 as other sets to the insn. */
1200 static void
1201 adjust_insn (basic_block bb, rtx insn)
1203 struct adjust_mem_data amd;
1204 rtx set;
1206 #ifdef HAVE_window_save
1207 /* If the target machine has an explicit window save instruction, the
1208 transformation OUTGOING_REGNO -> INCOMING_REGNO is done there. */
1209 if (RTX_FRAME_RELATED_P (insn)
1210 && find_reg_note (insn, REG_CFA_WINDOW_SAVE, NULL_RTX))
1212 unsigned int i, nregs = vec_safe_length (windowed_parm_regs);
1213 rtx rtl = gen_rtx_PARALLEL (VOIDmode, rtvec_alloc (nregs * 2));
1214 parm_reg_t *p;
1216 FOR_EACH_VEC_SAFE_ELT (windowed_parm_regs, i, p)
1218 XVECEXP (rtl, 0, i * 2)
1219 = gen_rtx_SET (VOIDmode, p->incoming, p->outgoing);
1220 /* Do not clobber the attached DECL, but only the REG. */
1221 XVECEXP (rtl, 0, i * 2 + 1)
1222 = gen_rtx_CLOBBER (GET_MODE (p->outgoing),
1223 gen_raw_REG (GET_MODE (p->outgoing),
1224 REGNO (p->outgoing)));
1227 validate_change (NULL_RTX, &PATTERN (insn), rtl, true);
1228 return;
1230 #endif
1232 amd.mem_mode = VOIDmode;
1233 amd.stack_adjust = -VTI (bb)->out.stack_adjust;
1234 amd.side_effects = NULL_RTX;
1236 amd.store = true;
1237 note_stores (PATTERN (insn), adjust_mem_stores, &amd);
1239 amd.store = false;
1240 if (GET_CODE (PATTERN (insn)) == PARALLEL
1241 && asm_noperands (PATTERN (insn)) > 0
1242 && GET_CODE (XVECEXP (PATTERN (insn), 0, 0)) == SET)
1244 rtx body, set0;
1245 int i;
1247 /* inline-asm with multiple sets is tiny bit more complicated,
1248 because the 3 vectors in ASM_OPERANDS need to be shared between
1249 all ASM_OPERANDS in the instruction. adjust_mems will
1250 not touch ASM_OPERANDS other than the first one, asm_noperands
1251 test above needs to be called before that (otherwise it would fail)
1252 and afterwards this code fixes it up. */
1253 note_uses (&PATTERN (insn), adjust_mem_uses, &amd);
1254 body = PATTERN (insn);
1255 set0 = XVECEXP (body, 0, 0);
1256 gcc_checking_assert (GET_CODE (set0) == SET
1257 && GET_CODE (SET_SRC (set0)) == ASM_OPERANDS
1258 && ASM_OPERANDS_OUTPUT_IDX (SET_SRC (set0)) == 0);
1259 for (i = 1; i < XVECLEN (body, 0); i++)
1260 if (GET_CODE (XVECEXP (body, 0, i)) != SET)
1261 break;
1262 else
1264 set = XVECEXP (body, 0, i);
1265 gcc_checking_assert (GET_CODE (SET_SRC (set)) == ASM_OPERANDS
1266 && ASM_OPERANDS_OUTPUT_IDX (SET_SRC (set))
1267 == i);
1268 if (ASM_OPERANDS_INPUT_VEC (SET_SRC (set))
1269 != ASM_OPERANDS_INPUT_VEC (SET_SRC (set0))
1270 || ASM_OPERANDS_INPUT_CONSTRAINT_VEC (SET_SRC (set))
1271 != ASM_OPERANDS_INPUT_CONSTRAINT_VEC (SET_SRC (set0))
1272 || ASM_OPERANDS_LABEL_VEC (SET_SRC (set))
1273 != ASM_OPERANDS_LABEL_VEC (SET_SRC (set0)))
1275 rtx newsrc = shallow_copy_rtx (SET_SRC (set));
1276 ASM_OPERANDS_INPUT_VEC (newsrc)
1277 = ASM_OPERANDS_INPUT_VEC (SET_SRC (set0));
1278 ASM_OPERANDS_INPUT_CONSTRAINT_VEC (newsrc)
1279 = ASM_OPERANDS_INPUT_CONSTRAINT_VEC (SET_SRC (set0));
1280 ASM_OPERANDS_LABEL_VEC (newsrc)
1281 = ASM_OPERANDS_LABEL_VEC (SET_SRC (set0));
1282 validate_change (NULL_RTX, &SET_SRC (set), newsrc, true);
1286 else
1287 note_uses (&PATTERN (insn), adjust_mem_uses, &amd);
1289 /* For read-only MEMs containing some constant, prefer those
1290 constants. */
1291 set = single_set (insn);
1292 if (set && MEM_P (SET_SRC (set)) && MEM_READONLY_P (SET_SRC (set)))
1294 rtx note = find_reg_equal_equiv_note (insn);
1296 if (note && CONSTANT_P (XEXP (note, 0)))
1297 validate_change (NULL_RTX, &SET_SRC (set), XEXP (note, 0), true);
1300 if (amd.side_effects)
1302 rtx *pat, new_pat, s;
1303 int i, oldn, newn;
1305 pat = &PATTERN (insn);
1306 if (GET_CODE (*pat) == COND_EXEC)
1307 pat = &COND_EXEC_CODE (*pat);
1308 if (GET_CODE (*pat) == PARALLEL)
1309 oldn = XVECLEN (*pat, 0);
1310 else
1311 oldn = 1;
1312 for (s = amd.side_effects, newn = 0; s; newn++)
1313 s = XEXP (s, 1);
1314 new_pat = gen_rtx_PARALLEL (VOIDmode, rtvec_alloc (oldn + newn));
1315 if (GET_CODE (*pat) == PARALLEL)
1316 for (i = 0; i < oldn; i++)
1317 XVECEXP (new_pat, 0, i) = XVECEXP (*pat, 0, i);
1318 else
1319 XVECEXP (new_pat, 0, 0) = *pat;
1320 for (s = amd.side_effects, i = oldn; i < oldn + newn; i++, s = XEXP (s, 1))
1321 XVECEXP (new_pat, 0, i) = XEXP (s, 0);
1322 free_EXPR_LIST_list (&amd.side_effects);
1323 validate_change (NULL_RTX, pat, new_pat, true);
1327 /* Return the DEBUG_EXPR of a DEBUG_EXPR_DECL or the VALUE in DV. */
1328 static inline rtx
1329 dv_as_rtx (decl_or_value dv)
1331 tree decl;
1333 if (dv_is_value_p (dv))
1334 return dv_as_value (dv);
1336 decl = dv_as_decl (dv);
1338 gcc_checking_assert (TREE_CODE (decl) == DEBUG_EXPR_DECL);
1339 return DECL_RTL_KNOWN_SET (decl);
1342 /* Return nonzero if a decl_or_value must not have more than one
1343 variable part. The returned value discriminates among various
1344 kinds of one-part DVs ccording to enum onepart_enum. */
1345 static inline onepart_enum_t
1346 dv_onepart_p (decl_or_value dv)
1348 tree decl;
1350 if (!MAY_HAVE_DEBUG_INSNS)
1351 return NOT_ONEPART;
1353 if (dv_is_value_p (dv))
1354 return ONEPART_VALUE;
1356 decl = dv_as_decl (dv);
1358 if (TREE_CODE (decl) == DEBUG_EXPR_DECL)
1359 return ONEPART_DEXPR;
1361 if (target_for_debug_bind (decl) != NULL_TREE)
1362 return ONEPART_VDECL;
1364 return NOT_ONEPART;
1367 /* Return the variable pool to be used for a dv of type ONEPART. */
1368 static inline alloc_pool
1369 onepart_pool (onepart_enum_t onepart)
1371 return onepart ? valvar_pool : var_pool;
1374 /* Build a decl_or_value out of a decl. */
1375 static inline decl_or_value
1376 dv_from_decl (tree decl)
1378 decl_or_value dv;
1379 dv = decl;
1380 gcc_checking_assert (dv_is_decl_p (dv));
1381 return dv;
1384 /* Build a decl_or_value out of a value. */
1385 static inline decl_or_value
1386 dv_from_value (rtx value)
1388 decl_or_value dv;
1389 dv = value;
1390 gcc_checking_assert (dv_is_value_p (dv));
1391 return dv;
1394 /* Return a value or the decl of a debug_expr as a decl_or_value. */
1395 static inline decl_or_value
1396 dv_from_rtx (rtx x)
1398 decl_or_value dv;
1400 switch (GET_CODE (x))
1402 case DEBUG_EXPR:
1403 dv = dv_from_decl (DEBUG_EXPR_TREE_DECL (x));
1404 gcc_checking_assert (DECL_RTL_KNOWN_SET (DEBUG_EXPR_TREE_DECL (x)) == x);
1405 break;
1407 case VALUE:
1408 dv = dv_from_value (x);
1409 break;
1411 default:
1412 gcc_unreachable ();
1415 return dv;
1418 extern void debug_dv (decl_or_value dv);
1420 DEBUG_FUNCTION void
1421 debug_dv (decl_or_value dv)
1423 if (dv_is_value_p (dv))
1424 debug_rtx (dv_as_value (dv));
1425 else
1426 debug_generic_stmt (dv_as_decl (dv));
1429 static void loc_exp_dep_clear (variable var);
1431 /* Free the element of VARIABLE_HTAB (its type is struct variable_def). */
1433 static void
1434 variable_htab_free (void *elem)
1436 int i;
1437 variable var = (variable) elem;
1438 location_chain node, next;
1440 gcc_checking_assert (var->refcount > 0);
1442 var->refcount--;
1443 if (var->refcount > 0)
1444 return;
1446 for (i = 0; i < var->n_var_parts; i++)
1448 for (node = var->var_part[i].loc_chain; node; node = next)
1450 next = node->next;
1451 pool_free (loc_chain_pool, node);
1453 var->var_part[i].loc_chain = NULL;
1455 if (var->onepart && VAR_LOC_1PAUX (var))
1457 loc_exp_dep_clear (var);
1458 if (VAR_LOC_DEP_LST (var))
1459 VAR_LOC_DEP_LST (var)->pprev = NULL;
1460 XDELETE (VAR_LOC_1PAUX (var));
1461 /* These may be reused across functions, so reset
1462 e.g. NO_LOC_P. */
1463 if (var->onepart == ONEPART_DEXPR)
1464 set_dv_changed (var->dv, true);
1466 pool_free (onepart_pool (var->onepart), var);
1469 /* Initialize the set (array) SET of attrs to empty lists. */
1471 static void
1472 init_attrs_list_set (attrs *set)
1474 int i;
1476 for (i = 0; i < FIRST_PSEUDO_REGISTER; i++)
1477 set[i] = NULL;
1480 /* Make the list *LISTP empty. */
1482 static void
1483 attrs_list_clear (attrs *listp)
1485 attrs list, next;
1487 for (list = *listp; list; list = next)
1489 next = list->next;
1490 pool_free (attrs_pool, list);
1492 *listp = NULL;
1495 /* Return true if the pair of DECL and OFFSET is the member of the LIST. */
1497 static attrs
1498 attrs_list_member (attrs list, decl_or_value dv, HOST_WIDE_INT offset)
1500 for (; list; list = list->next)
1501 if (dv_as_opaque (list->dv) == dv_as_opaque (dv) && list->offset == offset)
1502 return list;
1503 return NULL;
1506 /* Insert the triplet DECL, OFFSET, LOC to the list *LISTP. */
1508 static void
1509 attrs_list_insert (attrs *listp, decl_or_value dv,
1510 HOST_WIDE_INT offset, rtx loc)
1512 attrs list;
1514 list = (attrs) pool_alloc (attrs_pool);
1515 list->loc = loc;
1516 list->dv = dv;
1517 list->offset = offset;
1518 list->next = *listp;
1519 *listp = list;
1522 /* Copy all nodes from SRC and create a list *DSTP of the copies. */
1524 static void
1525 attrs_list_copy (attrs *dstp, attrs src)
1527 attrs n;
1529 attrs_list_clear (dstp);
1530 for (; src; src = src->next)
1532 n = (attrs) pool_alloc (attrs_pool);
1533 n->loc = src->loc;
1534 n->dv = src->dv;
1535 n->offset = src->offset;
1536 n->next = *dstp;
1537 *dstp = n;
1541 /* Add all nodes from SRC which are not in *DSTP to *DSTP. */
1543 static void
1544 attrs_list_union (attrs *dstp, attrs src)
1546 for (; src; src = src->next)
1548 if (!attrs_list_member (*dstp, src->dv, src->offset))
1549 attrs_list_insert (dstp, src->dv, src->offset, src->loc);
1553 /* Combine nodes that are not onepart nodes from SRC and SRC2 into
1554 *DSTP. */
1556 static void
1557 attrs_list_mpdv_union (attrs *dstp, attrs src, attrs src2)
1559 gcc_assert (!*dstp);
1560 for (; src; src = src->next)
1562 if (!dv_onepart_p (src->dv))
1563 attrs_list_insert (dstp, src->dv, src->offset, src->loc);
1565 for (src = src2; src; src = src->next)
1567 if (!dv_onepart_p (src->dv)
1568 && !attrs_list_member (*dstp, src->dv, src->offset))
1569 attrs_list_insert (dstp, src->dv, src->offset, src->loc);
1573 /* Shared hashtable support. */
1575 /* Return true if VARS is shared. */
1577 static inline bool
1578 shared_hash_shared (shared_hash vars)
1580 return vars->refcount > 1;
1583 /* Return the hash table for VARS. */
1585 static inline variable_table_type
1586 shared_hash_htab (shared_hash vars)
1588 return vars->htab;
1591 /* Return true if VAR is shared, or maybe because VARS is shared. */
1593 static inline bool
1594 shared_var_p (variable var, shared_hash vars)
1596 /* Don't count an entry in the changed_variables table as a duplicate. */
1597 return ((var->refcount > 1 + (int) var->in_changed_variables)
1598 || shared_hash_shared (vars));
1601 /* Copy variables into a new hash table. */
1603 static shared_hash
1604 shared_hash_unshare (shared_hash vars)
1606 shared_hash new_vars = (shared_hash) pool_alloc (shared_hash_pool);
1607 gcc_assert (vars->refcount > 1);
1608 new_vars->refcount = 1;
1609 new_vars->htab.create (vars->htab.elements () + 3);
1610 vars_copy (new_vars->htab, vars->htab);
1611 vars->refcount--;
1612 return new_vars;
1615 /* Increment reference counter on VARS and return it. */
1617 static inline shared_hash
1618 shared_hash_copy (shared_hash vars)
1620 vars->refcount++;
1621 return vars;
1624 /* Decrement reference counter and destroy hash table if not shared
1625 anymore. */
1627 static void
1628 shared_hash_destroy (shared_hash vars)
1630 gcc_checking_assert (vars->refcount > 0);
1631 if (--vars->refcount == 0)
1633 vars->htab.dispose ();
1634 pool_free (shared_hash_pool, vars);
1638 /* Unshare *PVARS if shared and return slot for DV. If INS is
1639 INSERT, insert it if not already present. */
1641 static inline variable_def **
1642 shared_hash_find_slot_unshare_1 (shared_hash *pvars, decl_or_value dv,
1643 hashval_t dvhash, enum insert_option ins)
1645 if (shared_hash_shared (*pvars))
1646 *pvars = shared_hash_unshare (*pvars);
1647 return shared_hash_htab (*pvars).find_slot_with_hash (dv, dvhash, ins);
1650 static inline variable_def **
1651 shared_hash_find_slot_unshare (shared_hash *pvars, decl_or_value dv,
1652 enum insert_option ins)
1654 return shared_hash_find_slot_unshare_1 (pvars, dv, dv_htab_hash (dv), ins);
1657 /* Return slot for DV, if it is already present in the hash table.
1658 If it is not present, insert it only VARS is not shared, otherwise
1659 return NULL. */
1661 static inline variable_def **
1662 shared_hash_find_slot_1 (shared_hash vars, decl_or_value dv, hashval_t dvhash)
1664 return shared_hash_htab (vars).find_slot_with_hash (dv, dvhash,
1665 shared_hash_shared (vars)
1666 ? NO_INSERT : INSERT);
1669 static inline variable_def **
1670 shared_hash_find_slot (shared_hash vars, decl_or_value dv)
1672 return shared_hash_find_slot_1 (vars, dv, dv_htab_hash (dv));
1675 /* Return slot for DV only if it is already present in the hash table. */
1677 static inline variable_def **
1678 shared_hash_find_slot_noinsert_1 (shared_hash vars, decl_or_value dv,
1679 hashval_t dvhash)
1681 return shared_hash_htab (vars).find_slot_with_hash (dv, dvhash, NO_INSERT);
1684 static inline variable_def **
1685 shared_hash_find_slot_noinsert (shared_hash vars, decl_or_value dv)
1687 return shared_hash_find_slot_noinsert_1 (vars, dv, dv_htab_hash (dv));
1690 /* Return variable for DV or NULL if not already present in the hash
1691 table. */
1693 static inline variable
1694 shared_hash_find_1 (shared_hash vars, decl_or_value dv, hashval_t dvhash)
1696 return shared_hash_htab (vars).find_with_hash (dv, dvhash);
1699 static inline variable
1700 shared_hash_find (shared_hash vars, decl_or_value dv)
1702 return shared_hash_find_1 (vars, dv, dv_htab_hash (dv));
1705 /* Return true if TVAL is better than CVAL as a canonival value. We
1706 choose lowest-numbered VALUEs, using the RTX address as a
1707 tie-breaker. The idea is to arrange them into a star topology,
1708 such that all of them are at most one step away from the canonical
1709 value, and the canonical value has backlinks to all of them, in
1710 addition to all the actual locations. We don't enforce this
1711 topology throughout the entire dataflow analysis, though.
1714 static inline bool
1715 canon_value_cmp (rtx tval, rtx cval)
1717 return !cval
1718 || CSELIB_VAL_PTR (tval)->uid < CSELIB_VAL_PTR (cval)->uid;
1721 static bool dst_can_be_shared;
1723 /* Return a copy of a variable VAR and insert it to dataflow set SET. */
1725 static variable_def **
1726 unshare_variable (dataflow_set *set, variable_def **slot, variable var,
1727 enum var_init_status initialized)
1729 variable new_var;
1730 int i;
1732 new_var = (variable) pool_alloc (onepart_pool (var->onepart));
1733 new_var->dv = var->dv;
1734 new_var->refcount = 1;
1735 var->refcount--;
1736 new_var->n_var_parts = var->n_var_parts;
1737 new_var->onepart = var->onepart;
1738 new_var->in_changed_variables = false;
1740 if (! flag_var_tracking_uninit)
1741 initialized = VAR_INIT_STATUS_INITIALIZED;
1743 for (i = 0; i < var->n_var_parts; i++)
1745 location_chain node;
1746 location_chain *nextp;
1748 if (i == 0 && var->onepart)
1750 /* One-part auxiliary data is only used while emitting
1751 notes, so propagate it to the new variable in the active
1752 dataflow set. If we're not emitting notes, this will be
1753 a no-op. */
1754 gcc_checking_assert (!VAR_LOC_1PAUX (var) || emit_notes);
1755 VAR_LOC_1PAUX (new_var) = VAR_LOC_1PAUX (var);
1756 VAR_LOC_1PAUX (var) = NULL;
1758 else
1759 VAR_PART_OFFSET (new_var, i) = VAR_PART_OFFSET (var, i);
1760 nextp = &new_var->var_part[i].loc_chain;
1761 for (node = var->var_part[i].loc_chain; node; node = node->next)
1763 location_chain new_lc;
1765 new_lc = (location_chain) pool_alloc (loc_chain_pool);
1766 new_lc->next = NULL;
1767 if (node->init > initialized)
1768 new_lc->init = node->init;
1769 else
1770 new_lc->init = initialized;
1771 if (node->set_src && !(MEM_P (node->set_src)))
1772 new_lc->set_src = node->set_src;
1773 else
1774 new_lc->set_src = NULL;
1775 new_lc->loc = node->loc;
1777 *nextp = new_lc;
1778 nextp = &new_lc->next;
1781 new_var->var_part[i].cur_loc = var->var_part[i].cur_loc;
1784 dst_can_be_shared = false;
1785 if (shared_hash_shared (set->vars))
1786 slot = shared_hash_find_slot_unshare (&set->vars, var->dv, NO_INSERT);
1787 else if (set->traversed_vars && set->vars != set->traversed_vars)
1788 slot = shared_hash_find_slot_noinsert (set->vars, var->dv);
1789 *slot = new_var;
1790 if (var->in_changed_variables)
1792 variable_def **cslot
1793 = changed_variables.find_slot_with_hash (var->dv,
1794 dv_htab_hash (var->dv), NO_INSERT);
1795 gcc_assert (*cslot == (void *) var);
1796 var->in_changed_variables = false;
1797 variable_htab_free (var);
1798 *cslot = new_var;
1799 new_var->in_changed_variables = true;
1801 return slot;
1804 /* Copy all variables from hash table SRC to hash table DST. */
1806 static void
1807 vars_copy (variable_table_type dst, variable_table_type src)
1809 variable_iterator_type hi;
1810 variable var;
1812 FOR_EACH_HASH_TABLE_ELEMENT (src, var, variable, hi)
1814 variable_def **dstp;
1815 var->refcount++;
1816 dstp = dst.find_slot_with_hash (var->dv, dv_htab_hash (var->dv), INSERT);
1817 *dstp = var;
1821 /* Map a decl to its main debug decl. */
1823 static inline tree
1824 var_debug_decl (tree decl)
1826 if (decl && TREE_CODE (decl) == VAR_DECL
1827 && DECL_HAS_DEBUG_EXPR_P (decl))
1829 tree debugdecl = DECL_DEBUG_EXPR (decl);
1830 if (DECL_P (debugdecl))
1831 decl = debugdecl;
1834 return decl;
1837 /* Set the register LOC to contain DV, OFFSET. */
1839 static void
1840 var_reg_decl_set (dataflow_set *set, rtx loc, enum var_init_status initialized,
1841 decl_or_value dv, HOST_WIDE_INT offset, rtx set_src,
1842 enum insert_option iopt)
1844 attrs node;
1845 bool decl_p = dv_is_decl_p (dv);
1847 if (decl_p)
1848 dv = dv_from_decl (var_debug_decl (dv_as_decl (dv)));
1850 for (node = set->regs[REGNO (loc)]; node; node = node->next)
1851 if (dv_as_opaque (node->dv) == dv_as_opaque (dv)
1852 && node->offset == offset)
1853 break;
1854 if (!node)
1855 attrs_list_insert (&set->regs[REGNO (loc)], dv, offset, loc);
1856 set_variable_part (set, loc, dv, offset, initialized, set_src, iopt);
1859 /* Set the register to contain REG_EXPR (LOC), REG_OFFSET (LOC). */
1861 static void
1862 var_reg_set (dataflow_set *set, rtx loc, enum var_init_status initialized,
1863 rtx set_src)
1865 tree decl = REG_EXPR (loc);
1866 HOST_WIDE_INT offset = REG_OFFSET (loc);
1868 var_reg_decl_set (set, loc, initialized,
1869 dv_from_decl (decl), offset, set_src, INSERT);
1872 static enum var_init_status
1873 get_init_value (dataflow_set *set, rtx loc, decl_or_value dv)
1875 variable var;
1876 int i;
1877 enum var_init_status ret_val = VAR_INIT_STATUS_UNKNOWN;
1879 if (! flag_var_tracking_uninit)
1880 return VAR_INIT_STATUS_INITIALIZED;
1882 var = shared_hash_find (set->vars, dv);
1883 if (var)
1885 for (i = 0; i < var->n_var_parts && ret_val == VAR_INIT_STATUS_UNKNOWN; i++)
1887 location_chain nextp;
1888 for (nextp = var->var_part[i].loc_chain; nextp; nextp = nextp->next)
1889 if (rtx_equal_p (nextp->loc, loc))
1891 ret_val = nextp->init;
1892 break;
1897 return ret_val;
1900 /* Delete current content of register LOC in dataflow set SET and set
1901 the register to contain REG_EXPR (LOC), REG_OFFSET (LOC). If
1902 MODIFY is true, any other live copies of the same variable part are
1903 also deleted from the dataflow set, otherwise the variable part is
1904 assumed to be copied from another location holding the same
1905 part. */
1907 static void
1908 var_reg_delete_and_set (dataflow_set *set, rtx loc, bool modify,
1909 enum var_init_status initialized, rtx set_src)
1911 tree decl = REG_EXPR (loc);
1912 HOST_WIDE_INT offset = REG_OFFSET (loc);
1913 attrs node, next;
1914 attrs *nextp;
1916 decl = var_debug_decl (decl);
1918 if (initialized == VAR_INIT_STATUS_UNKNOWN)
1919 initialized = get_init_value (set, loc, dv_from_decl (decl));
1921 nextp = &set->regs[REGNO (loc)];
1922 for (node = *nextp; node; node = next)
1924 next = node->next;
1925 if (dv_as_opaque (node->dv) != decl || node->offset != offset)
1927 delete_variable_part (set, node->loc, node->dv, node->offset);
1928 pool_free (attrs_pool, node);
1929 *nextp = next;
1931 else
1933 node->loc = loc;
1934 nextp = &node->next;
1937 if (modify)
1938 clobber_variable_part (set, loc, dv_from_decl (decl), offset, set_src);
1939 var_reg_set (set, loc, initialized, set_src);
1942 /* Delete the association of register LOC in dataflow set SET with any
1943 variables that aren't onepart. If CLOBBER is true, also delete any
1944 other live copies of the same variable part, and delete the
1945 association with onepart dvs too. */
1947 static void
1948 var_reg_delete (dataflow_set *set, rtx loc, bool clobber)
1950 attrs *nextp = &set->regs[REGNO (loc)];
1951 attrs node, next;
1953 if (clobber)
1955 tree decl = REG_EXPR (loc);
1956 HOST_WIDE_INT offset = REG_OFFSET (loc);
1958 decl = var_debug_decl (decl);
1960 clobber_variable_part (set, NULL, dv_from_decl (decl), offset, NULL);
1963 for (node = *nextp; node; node = next)
1965 next = node->next;
1966 if (clobber || !dv_onepart_p (node->dv))
1968 delete_variable_part (set, node->loc, node->dv, node->offset);
1969 pool_free (attrs_pool, node);
1970 *nextp = next;
1972 else
1973 nextp = &node->next;
1977 /* Delete content of register with number REGNO in dataflow set SET. */
1979 static void
1980 var_regno_delete (dataflow_set *set, int regno)
1982 attrs *reg = &set->regs[regno];
1983 attrs node, next;
1985 for (node = *reg; node; node = next)
1987 next = node->next;
1988 delete_variable_part (set, node->loc, node->dv, node->offset);
1989 pool_free (attrs_pool, node);
1991 *reg = NULL;
1994 /* Return true if I is the negated value of a power of two. */
1995 static bool
1996 negative_power_of_two_p (HOST_WIDE_INT i)
1998 unsigned HOST_WIDE_INT x = -(unsigned HOST_WIDE_INT)i;
1999 return x == (x & -x);
2002 /* Strip constant offsets and alignments off of LOC. Return the base
2003 expression. */
2005 static rtx
2006 vt_get_canonicalize_base (rtx loc)
2008 while ((GET_CODE (loc) == PLUS
2009 || GET_CODE (loc) == AND)
2010 && GET_CODE (XEXP (loc, 1)) == CONST_INT
2011 && (GET_CODE (loc) != AND
2012 || negative_power_of_two_p (INTVAL (XEXP (loc, 1)))))
2013 loc = XEXP (loc, 0);
2015 return loc;
2018 /* This caches canonicalized addresses for VALUEs, computed using
2019 information in the global cselib table. */
2020 static struct pointer_map_t *global_get_addr_cache;
2022 /* This caches canonicalized addresses for VALUEs, computed using
2023 information from the global cache and information pertaining to a
2024 basic block being analyzed. */
2025 static struct pointer_map_t *local_get_addr_cache;
2027 static rtx vt_canonicalize_addr (dataflow_set *, rtx);
2029 /* Return the canonical address for LOC, that must be a VALUE, using a
2030 cached global equivalence or computing it and storing it in the
2031 global cache. */
2033 static rtx
2034 get_addr_from_global_cache (rtx const loc)
2036 rtx x;
2037 void **slot;
2039 gcc_checking_assert (GET_CODE (loc) == VALUE);
2041 slot = pointer_map_insert (global_get_addr_cache, loc);
2042 if (*slot)
2043 return (rtx)*slot;
2045 x = canon_rtx (get_addr (loc));
2047 /* Tentative, avoiding infinite recursion. */
2048 *slot = x;
2050 if (x != loc)
2052 rtx nx = vt_canonicalize_addr (NULL, x);
2053 if (nx != x)
2055 /* The table may have moved during recursion, recompute
2056 SLOT. */
2057 slot = pointer_map_contains (global_get_addr_cache, loc);
2058 *slot = x = nx;
2062 return x;
2065 /* Return the canonical address for LOC, that must be a VALUE, using a
2066 cached local equivalence or computing it and storing it in the
2067 local cache. */
2069 static rtx
2070 get_addr_from_local_cache (dataflow_set *set, rtx const loc)
2072 rtx x;
2073 void **slot;
2074 decl_or_value dv;
2075 variable var;
2076 location_chain l;
2078 gcc_checking_assert (GET_CODE (loc) == VALUE);
2080 slot = pointer_map_insert (local_get_addr_cache, loc);
2081 if (*slot)
2082 return (rtx)*slot;
2084 x = get_addr_from_global_cache (loc);
2086 /* Tentative, avoiding infinite recursion. */
2087 *slot = x;
2089 /* Recurse to cache local expansion of X, or if we need to search
2090 for a VALUE in the expansion. */
2091 if (x != loc)
2093 rtx nx = vt_canonicalize_addr (set, x);
2094 if (nx != x)
2096 slot = pointer_map_contains (local_get_addr_cache, loc);
2097 *slot = x = nx;
2099 return x;
2102 dv = dv_from_rtx (x);
2103 var = shared_hash_find (set->vars, dv);
2104 if (!var)
2105 return x;
2107 /* Look for an improved equivalent expression. */
2108 for (l = var->var_part[0].loc_chain; l; l = l->next)
2110 rtx base = vt_get_canonicalize_base (l->loc);
2111 if (GET_CODE (base) == VALUE
2112 && canon_value_cmp (base, loc))
2114 rtx nx = vt_canonicalize_addr (set, l->loc);
2115 if (x != nx)
2117 slot = pointer_map_contains (local_get_addr_cache, loc);
2118 *slot = x = nx;
2120 break;
2124 return x;
2127 /* Canonicalize LOC using equivalences from SET in addition to those
2128 in the cselib static table. It expects a VALUE-based expression,
2129 and it will only substitute VALUEs with other VALUEs or
2130 function-global equivalences, so that, if two addresses have base
2131 VALUEs that are locally or globally related in ways that
2132 memrefs_conflict_p cares about, they will both canonicalize to
2133 expressions that have the same base VALUE.
2135 The use of VALUEs as canonical base addresses enables the canonical
2136 RTXs to remain unchanged globally, if they resolve to a constant,
2137 or throughout a basic block otherwise, so that they can be cached
2138 and the cache needs not be invalidated when REGs, MEMs or such
2139 change. */
2141 static rtx
2142 vt_canonicalize_addr (dataflow_set *set, rtx oloc)
2144 HOST_WIDE_INT ofst = 0;
2145 enum machine_mode mode = GET_MODE (oloc);
2146 rtx loc = oloc;
2147 rtx x;
2148 bool retry = true;
2150 while (retry)
2152 while (GET_CODE (loc) == PLUS
2153 && GET_CODE (XEXP (loc, 1)) == CONST_INT)
2155 ofst += INTVAL (XEXP (loc, 1));
2156 loc = XEXP (loc, 0);
2159 /* Alignment operations can't normally be combined, so just
2160 canonicalize the base and we're done. We'll normally have
2161 only one stack alignment anyway. */
2162 if (GET_CODE (loc) == AND
2163 && GET_CODE (XEXP (loc, 1)) == CONST_INT
2164 && negative_power_of_two_p (INTVAL (XEXP (loc, 1))))
2166 x = vt_canonicalize_addr (set, XEXP (loc, 0));
2167 if (x != XEXP (loc, 0))
2168 loc = gen_rtx_AND (mode, x, XEXP (loc, 1));
2169 retry = false;
2172 if (GET_CODE (loc) == VALUE)
2174 if (set)
2175 loc = get_addr_from_local_cache (set, loc);
2176 else
2177 loc = get_addr_from_global_cache (loc);
2179 /* Consolidate plus_constants. */
2180 while (ofst && GET_CODE (loc) == PLUS
2181 && GET_CODE (XEXP (loc, 1)) == CONST_INT)
2183 ofst += INTVAL (XEXP (loc, 1));
2184 loc = XEXP (loc, 0);
2187 retry = false;
2189 else
2191 x = canon_rtx (loc);
2192 if (retry)
2193 retry = (x != loc);
2194 loc = x;
2198 /* Add OFST back in. */
2199 if (ofst)
2201 /* Don't build new RTL if we can help it. */
2202 if (GET_CODE (oloc) == PLUS
2203 && XEXP (oloc, 0) == loc
2204 && INTVAL (XEXP (oloc, 1)) == ofst)
2205 return oloc;
2207 loc = plus_constant (mode, loc, ofst);
2210 return loc;
2213 /* Return true iff there's a true dependence between MLOC and LOC.
2214 MADDR must be a canonicalized version of MLOC's address. */
2216 static inline bool
2217 vt_canon_true_dep (dataflow_set *set, rtx mloc, rtx maddr, rtx loc)
2219 if (GET_CODE (loc) != MEM)
2220 return false;
2222 rtx addr = vt_canonicalize_addr (set, XEXP (loc, 0));
2223 if (!canon_true_dependence (mloc, GET_MODE (mloc), maddr, loc, addr))
2224 return false;
2226 return true;
2229 /* Hold parameters for the hashtab traversal function
2230 drop_overlapping_mem_locs, see below. */
2232 struct overlapping_mems
2234 dataflow_set *set;
2235 rtx loc, addr;
2238 /* Remove all MEMs that overlap with COMS->LOC from the location list
2239 of a hash table entry for a value. COMS->ADDR must be a
2240 canonicalized form of COMS->LOC's address, and COMS->LOC must be
2241 canonicalized itself. */
2244 drop_overlapping_mem_locs (variable_def **slot, overlapping_mems *coms)
2246 dataflow_set *set = coms->set;
2247 rtx mloc = coms->loc, addr = coms->addr;
2248 variable var = *slot;
2250 if (var->onepart == ONEPART_VALUE)
2252 location_chain loc, *locp;
2253 bool changed = false;
2254 rtx cur_loc;
2256 gcc_assert (var->n_var_parts == 1);
2258 if (shared_var_p (var, set->vars))
2260 for (loc = var->var_part[0].loc_chain; loc; loc = loc->next)
2261 if (vt_canon_true_dep (set, mloc, addr, loc->loc))
2262 break;
2264 if (!loc)
2265 return 1;
2267 slot = unshare_variable (set, slot, var, VAR_INIT_STATUS_UNKNOWN);
2268 var = *slot;
2269 gcc_assert (var->n_var_parts == 1);
2272 if (VAR_LOC_1PAUX (var))
2273 cur_loc = VAR_LOC_FROM (var);
2274 else
2275 cur_loc = var->var_part[0].cur_loc;
2277 for (locp = &var->var_part[0].loc_chain, loc = *locp;
2278 loc; loc = *locp)
2280 if (!vt_canon_true_dep (set, mloc, addr, loc->loc))
2282 locp = &loc->next;
2283 continue;
2286 *locp = loc->next;
2287 /* If we have deleted the location which was last emitted
2288 we have to emit new location so add the variable to set
2289 of changed variables. */
2290 if (cur_loc == loc->loc)
2292 changed = true;
2293 var->var_part[0].cur_loc = NULL;
2294 if (VAR_LOC_1PAUX (var))
2295 VAR_LOC_FROM (var) = NULL;
2297 pool_free (loc_chain_pool, loc);
2300 if (!var->var_part[0].loc_chain)
2302 var->n_var_parts--;
2303 changed = true;
2305 if (changed)
2306 variable_was_changed (var, set);
2309 return 1;
2312 /* Remove from SET all VALUE bindings to MEMs that overlap with LOC. */
2314 static void
2315 clobber_overlapping_mems (dataflow_set *set, rtx loc)
2317 struct overlapping_mems coms;
2319 gcc_checking_assert (GET_CODE (loc) == MEM);
2321 coms.set = set;
2322 coms.loc = canon_rtx (loc);
2323 coms.addr = vt_canonicalize_addr (set, XEXP (loc, 0));
2325 set->traversed_vars = set->vars;
2326 shared_hash_htab (set->vars)
2327 .traverse <overlapping_mems*, drop_overlapping_mem_locs> (&coms);
2328 set->traversed_vars = NULL;
2331 /* Set the location of DV, OFFSET as the MEM LOC. */
2333 static void
2334 var_mem_decl_set (dataflow_set *set, rtx loc, enum var_init_status initialized,
2335 decl_or_value dv, HOST_WIDE_INT offset, rtx set_src,
2336 enum insert_option iopt)
2338 if (dv_is_decl_p (dv))
2339 dv = dv_from_decl (var_debug_decl (dv_as_decl (dv)));
2341 set_variable_part (set, loc, dv, offset, initialized, set_src, iopt);
2344 /* Set the location part of variable MEM_EXPR (LOC) in dataflow set
2345 SET to LOC.
2346 Adjust the address first if it is stack pointer based. */
2348 static void
2349 var_mem_set (dataflow_set *set, rtx loc, enum var_init_status initialized,
2350 rtx set_src)
2352 tree decl = MEM_EXPR (loc);
2353 HOST_WIDE_INT offset = INT_MEM_OFFSET (loc);
2355 var_mem_decl_set (set, loc, initialized,
2356 dv_from_decl (decl), offset, set_src, INSERT);
2359 /* Delete and set the location part of variable MEM_EXPR (LOC) in
2360 dataflow set SET to LOC. If MODIFY is true, any other live copies
2361 of the same variable part are also deleted from the dataflow set,
2362 otherwise the variable part is assumed to be copied from another
2363 location holding the same part.
2364 Adjust the address first if it is stack pointer based. */
2366 static void
2367 var_mem_delete_and_set (dataflow_set *set, rtx loc, bool modify,
2368 enum var_init_status initialized, rtx set_src)
2370 tree decl = MEM_EXPR (loc);
2371 HOST_WIDE_INT offset = INT_MEM_OFFSET (loc);
2373 clobber_overlapping_mems (set, loc);
2374 decl = var_debug_decl (decl);
2376 if (initialized == VAR_INIT_STATUS_UNKNOWN)
2377 initialized = get_init_value (set, loc, dv_from_decl (decl));
2379 if (modify)
2380 clobber_variable_part (set, NULL, dv_from_decl (decl), offset, set_src);
2381 var_mem_set (set, loc, initialized, set_src);
2384 /* Delete the location part LOC from dataflow set SET. If CLOBBER is
2385 true, also delete any other live copies of the same variable part.
2386 Adjust the address first if it is stack pointer based. */
2388 static void
2389 var_mem_delete (dataflow_set *set, rtx loc, bool clobber)
2391 tree decl = MEM_EXPR (loc);
2392 HOST_WIDE_INT offset = INT_MEM_OFFSET (loc);
2394 clobber_overlapping_mems (set, loc);
2395 decl = var_debug_decl (decl);
2396 if (clobber)
2397 clobber_variable_part (set, NULL, dv_from_decl (decl), offset, NULL);
2398 delete_variable_part (set, loc, dv_from_decl (decl), offset);
2401 /* Return true if LOC should not be expanded for location expressions,
2402 or used in them. */
2404 static inline bool
2405 unsuitable_loc (rtx loc)
2407 switch (GET_CODE (loc))
2409 case PC:
2410 case SCRATCH:
2411 case CC0:
2412 case ASM_INPUT:
2413 case ASM_OPERANDS:
2414 return true;
2416 default:
2417 return false;
2421 /* Bind VAL to LOC in SET. If MODIFIED, detach LOC from any values
2422 bound to it. */
2424 static inline void
2425 val_bind (dataflow_set *set, rtx val, rtx loc, bool modified)
2427 if (REG_P (loc))
2429 if (modified)
2430 var_regno_delete (set, REGNO (loc));
2431 var_reg_decl_set (set, loc, VAR_INIT_STATUS_INITIALIZED,
2432 dv_from_value (val), 0, NULL_RTX, INSERT);
2434 else if (MEM_P (loc))
2436 struct elt_loc_list *l = CSELIB_VAL_PTR (val)->locs;
2438 if (modified)
2439 clobber_overlapping_mems (set, loc);
2441 if (l && GET_CODE (l->loc) == VALUE)
2442 l = canonical_cselib_val (CSELIB_VAL_PTR (l->loc))->locs;
2444 /* If this MEM is a global constant, we don't need it in the
2445 dynamic tables. ??? We should test this before emitting the
2446 micro-op in the first place. */
2447 while (l)
2448 if (GET_CODE (l->loc) == MEM && XEXP (l->loc, 0) == XEXP (loc, 0))
2449 break;
2450 else
2451 l = l->next;
2453 if (!l)
2454 var_mem_decl_set (set, loc, VAR_INIT_STATUS_INITIALIZED,
2455 dv_from_value (val), 0, NULL_RTX, INSERT);
2457 else
2459 /* Other kinds of equivalences are necessarily static, at least
2460 so long as we do not perform substitutions while merging
2461 expressions. */
2462 gcc_unreachable ();
2463 set_variable_part (set, loc, dv_from_value (val), 0,
2464 VAR_INIT_STATUS_INITIALIZED, NULL_RTX, INSERT);
2468 /* Bind a value to a location it was just stored in. If MODIFIED
2469 holds, assume the location was modified, detaching it from any
2470 values bound to it. */
2472 static void
2473 val_store (dataflow_set *set, rtx val, rtx loc, rtx insn, bool modified)
2475 cselib_val *v = CSELIB_VAL_PTR (val);
2477 gcc_assert (cselib_preserved_value_p (v));
2479 if (dump_file)
2481 fprintf (dump_file, "%i: ", insn ? INSN_UID (insn) : 0);
2482 print_inline_rtx (dump_file, loc, 0);
2483 fprintf (dump_file, " evaluates to ");
2484 print_inline_rtx (dump_file, val, 0);
2485 if (v->locs)
2487 struct elt_loc_list *l;
2488 for (l = v->locs; l; l = l->next)
2490 fprintf (dump_file, "\n%i: ", INSN_UID (l->setting_insn));
2491 print_inline_rtx (dump_file, l->loc, 0);
2494 fprintf (dump_file, "\n");
2497 gcc_checking_assert (!unsuitable_loc (loc));
2499 val_bind (set, val, loc, modified);
2502 /* Clear (canonical address) slots that reference X. */
2504 static bool
2505 local_get_addr_clear_given_value (const void *v ATTRIBUTE_UNUSED,
2506 void **slot, void *x)
2508 if (vt_get_canonicalize_base ((rtx)*slot) == x)
2509 *slot = NULL;
2510 return true;
2513 /* Reset this node, detaching all its equivalences. Return the slot
2514 in the variable hash table that holds dv, if there is one. */
2516 static void
2517 val_reset (dataflow_set *set, decl_or_value dv)
2519 variable var = shared_hash_find (set->vars, dv) ;
2520 location_chain node;
2521 rtx cval;
2523 if (!var || !var->n_var_parts)
2524 return;
2526 gcc_assert (var->n_var_parts == 1);
2528 if (var->onepart == ONEPART_VALUE)
2530 rtx x = dv_as_value (dv);
2531 void **slot;
2533 /* Relationships in the global cache don't change, so reset the
2534 local cache entry only. */
2535 slot = pointer_map_contains (local_get_addr_cache, x);
2536 if (slot)
2538 /* If the value resolved back to itself, odds are that other
2539 values may have cached it too. These entries now refer
2540 to the old X, so detach them too. Entries that used the
2541 old X but resolved to something else remain ok as long as
2542 that something else isn't also reset. */
2543 if (*slot == x)
2544 pointer_map_traverse (local_get_addr_cache,
2545 local_get_addr_clear_given_value, x);
2546 *slot = NULL;
2550 cval = NULL;
2551 for (node = var->var_part[0].loc_chain; node; node = node->next)
2552 if (GET_CODE (node->loc) == VALUE
2553 && canon_value_cmp (node->loc, cval))
2554 cval = node->loc;
2556 for (node = var->var_part[0].loc_chain; node; node = node->next)
2557 if (GET_CODE (node->loc) == VALUE && cval != node->loc)
2559 /* Redirect the equivalence link to the new canonical
2560 value, or simply remove it if it would point at
2561 itself. */
2562 if (cval)
2563 set_variable_part (set, cval, dv_from_value (node->loc),
2564 0, node->init, node->set_src, NO_INSERT);
2565 delete_variable_part (set, dv_as_value (dv),
2566 dv_from_value (node->loc), 0);
2569 if (cval)
2571 decl_or_value cdv = dv_from_value (cval);
2573 /* Keep the remaining values connected, accummulating links
2574 in the canonical value. */
2575 for (node = var->var_part[0].loc_chain; node; node = node->next)
2577 if (node->loc == cval)
2578 continue;
2579 else if (GET_CODE (node->loc) == REG)
2580 var_reg_decl_set (set, node->loc, node->init, cdv, 0,
2581 node->set_src, NO_INSERT);
2582 else if (GET_CODE (node->loc) == MEM)
2583 var_mem_decl_set (set, node->loc, node->init, cdv, 0,
2584 node->set_src, NO_INSERT);
2585 else
2586 set_variable_part (set, node->loc, cdv, 0,
2587 node->init, node->set_src, NO_INSERT);
2591 /* We remove this last, to make sure that the canonical value is not
2592 removed to the point of requiring reinsertion. */
2593 if (cval)
2594 delete_variable_part (set, dv_as_value (dv), dv_from_value (cval), 0);
2596 clobber_variable_part (set, NULL, dv, 0, NULL);
2599 /* Find the values in a given location and map the val to another
2600 value, if it is unique, or add the location as one holding the
2601 value. */
2603 static void
2604 val_resolve (dataflow_set *set, rtx val, rtx loc, rtx insn)
2606 decl_or_value dv = dv_from_value (val);
2608 if (dump_file && (dump_flags & TDF_DETAILS))
2610 if (insn)
2611 fprintf (dump_file, "%i: ", INSN_UID (insn));
2612 else
2613 fprintf (dump_file, "head: ");
2614 print_inline_rtx (dump_file, val, 0);
2615 fputs (" is at ", dump_file);
2616 print_inline_rtx (dump_file, loc, 0);
2617 fputc ('\n', dump_file);
2620 val_reset (set, dv);
2622 gcc_checking_assert (!unsuitable_loc (loc));
2624 if (REG_P (loc))
2626 attrs node, found = NULL;
2628 for (node = set->regs[REGNO (loc)]; node; node = node->next)
2629 if (dv_is_value_p (node->dv)
2630 && GET_MODE (dv_as_value (node->dv)) == GET_MODE (loc))
2632 found = node;
2634 /* Map incoming equivalences. ??? Wouldn't it be nice if
2635 we just started sharing the location lists? Maybe a
2636 circular list ending at the value itself or some
2637 such. */
2638 set_variable_part (set, dv_as_value (node->dv),
2639 dv_from_value (val), node->offset,
2640 VAR_INIT_STATUS_INITIALIZED, NULL_RTX, INSERT);
2641 set_variable_part (set, val, node->dv, node->offset,
2642 VAR_INIT_STATUS_INITIALIZED, NULL_RTX, INSERT);
2645 /* If we didn't find any equivalence, we need to remember that
2646 this value is held in the named register. */
2647 if (found)
2648 return;
2650 /* ??? Attempt to find and merge equivalent MEMs or other
2651 expressions too. */
2653 val_bind (set, val, loc, false);
2656 /* Initialize dataflow set SET to be empty.
2657 VARS_SIZE is the initial size of hash table VARS. */
2659 static void
2660 dataflow_set_init (dataflow_set *set)
2662 init_attrs_list_set (set->regs);
2663 set->vars = shared_hash_copy (empty_shared_hash);
2664 set->stack_adjust = 0;
2665 set->traversed_vars = NULL;
2668 /* Delete the contents of dataflow set SET. */
2670 static void
2671 dataflow_set_clear (dataflow_set *set)
2673 int i;
2675 for (i = 0; i < FIRST_PSEUDO_REGISTER; i++)
2676 attrs_list_clear (&set->regs[i]);
2678 shared_hash_destroy (set->vars);
2679 set->vars = shared_hash_copy (empty_shared_hash);
2682 /* Copy the contents of dataflow set SRC to DST. */
2684 static void
2685 dataflow_set_copy (dataflow_set *dst, dataflow_set *src)
2687 int i;
2689 for (i = 0; i < FIRST_PSEUDO_REGISTER; i++)
2690 attrs_list_copy (&dst->regs[i], src->regs[i]);
2692 shared_hash_destroy (dst->vars);
2693 dst->vars = shared_hash_copy (src->vars);
2694 dst->stack_adjust = src->stack_adjust;
2697 /* Information for merging lists of locations for a given offset of variable.
2699 struct variable_union_info
2701 /* Node of the location chain. */
2702 location_chain lc;
2704 /* The sum of positions in the input chains. */
2705 int pos;
2707 /* The position in the chain of DST dataflow set. */
2708 int pos_dst;
2711 /* Buffer for location list sorting and its allocated size. */
2712 static struct variable_union_info *vui_vec;
2713 static int vui_allocated;
2715 /* Compare function for qsort, order the structures by POS element. */
2717 static int
2718 variable_union_info_cmp_pos (const void *n1, const void *n2)
2720 const struct variable_union_info *const i1 =
2721 (const struct variable_union_info *) n1;
2722 const struct variable_union_info *const i2 =
2723 ( const struct variable_union_info *) n2;
2725 if (i1->pos != i2->pos)
2726 return i1->pos - i2->pos;
2728 return (i1->pos_dst - i2->pos_dst);
2731 /* Compute union of location parts of variable *SLOT and the same variable
2732 from hash table DATA. Compute "sorted" union of the location chains
2733 for common offsets, i.e. the locations of a variable part are sorted by
2734 a priority where the priority is the sum of the positions in the 2 chains
2735 (if a location is only in one list the position in the second list is
2736 defined to be larger than the length of the chains).
2737 When we are updating the location parts the newest location is in the
2738 beginning of the chain, so when we do the described "sorted" union
2739 we keep the newest locations in the beginning. */
2741 static int
2742 variable_union (variable src, dataflow_set *set)
2744 variable dst;
2745 variable_def **dstp;
2746 int i, j, k;
2748 dstp = shared_hash_find_slot (set->vars, src->dv);
2749 if (!dstp || !*dstp)
2751 src->refcount++;
2753 dst_can_be_shared = false;
2754 if (!dstp)
2755 dstp = shared_hash_find_slot_unshare (&set->vars, src->dv, INSERT);
2757 *dstp = src;
2759 /* Continue traversing the hash table. */
2760 return 1;
2762 else
2763 dst = *dstp;
2765 gcc_assert (src->n_var_parts);
2766 gcc_checking_assert (src->onepart == dst->onepart);
2768 /* We can combine one-part variables very efficiently, because their
2769 entries are in canonical order. */
2770 if (src->onepart)
2772 location_chain *nodep, dnode, snode;
2774 gcc_assert (src->n_var_parts == 1
2775 && dst->n_var_parts == 1);
2777 snode = src->var_part[0].loc_chain;
2778 gcc_assert (snode);
2780 restart_onepart_unshared:
2781 nodep = &dst->var_part[0].loc_chain;
2782 dnode = *nodep;
2783 gcc_assert (dnode);
2785 while (snode)
2787 int r = dnode ? loc_cmp (dnode->loc, snode->loc) : 1;
2789 if (r > 0)
2791 location_chain nnode;
2793 if (shared_var_p (dst, set->vars))
2795 dstp = unshare_variable (set, dstp, dst,
2796 VAR_INIT_STATUS_INITIALIZED);
2797 dst = *dstp;
2798 goto restart_onepart_unshared;
2801 *nodep = nnode = (location_chain) pool_alloc (loc_chain_pool);
2802 nnode->loc = snode->loc;
2803 nnode->init = snode->init;
2804 if (!snode->set_src || MEM_P (snode->set_src))
2805 nnode->set_src = NULL;
2806 else
2807 nnode->set_src = snode->set_src;
2808 nnode->next = dnode;
2809 dnode = nnode;
2811 else if (r == 0)
2812 gcc_checking_assert (rtx_equal_p (dnode->loc, snode->loc));
2814 if (r >= 0)
2815 snode = snode->next;
2817 nodep = &dnode->next;
2818 dnode = *nodep;
2821 return 1;
2824 gcc_checking_assert (!src->onepart);
2826 /* Count the number of location parts, result is K. */
2827 for (i = 0, j = 0, k = 0;
2828 i < src->n_var_parts && j < dst->n_var_parts; k++)
2830 if (VAR_PART_OFFSET (src, i) == VAR_PART_OFFSET (dst, j))
2832 i++;
2833 j++;
2835 else if (VAR_PART_OFFSET (src, i) < VAR_PART_OFFSET (dst, j))
2836 i++;
2837 else
2838 j++;
2840 k += src->n_var_parts - i;
2841 k += dst->n_var_parts - j;
2843 /* We track only variables whose size is <= MAX_VAR_PARTS bytes
2844 thus there are at most MAX_VAR_PARTS different offsets. */
2845 gcc_checking_assert (dst->onepart ? k == 1 : k <= MAX_VAR_PARTS);
2847 if (dst->n_var_parts != k && shared_var_p (dst, set->vars))
2849 dstp = unshare_variable (set, dstp, dst, VAR_INIT_STATUS_UNKNOWN);
2850 dst = *dstp;
2853 i = src->n_var_parts - 1;
2854 j = dst->n_var_parts - 1;
2855 dst->n_var_parts = k;
2857 for (k--; k >= 0; k--)
2859 location_chain node, node2;
2861 if (i >= 0 && j >= 0
2862 && VAR_PART_OFFSET (src, i) == VAR_PART_OFFSET (dst, j))
2864 /* Compute the "sorted" union of the chains, i.e. the locations which
2865 are in both chains go first, they are sorted by the sum of
2866 positions in the chains. */
2867 int dst_l, src_l;
2868 int ii, jj, n;
2869 struct variable_union_info *vui;
2871 /* If DST is shared compare the location chains.
2872 If they are different we will modify the chain in DST with
2873 high probability so make a copy of DST. */
2874 if (shared_var_p (dst, set->vars))
2876 for (node = src->var_part[i].loc_chain,
2877 node2 = dst->var_part[j].loc_chain; node && node2;
2878 node = node->next, node2 = node2->next)
2880 if (!((REG_P (node2->loc)
2881 && REG_P (node->loc)
2882 && REGNO (node2->loc) == REGNO (node->loc))
2883 || rtx_equal_p (node2->loc, node->loc)))
2885 if (node2->init < node->init)
2886 node2->init = node->init;
2887 break;
2890 if (node || node2)
2892 dstp = unshare_variable (set, dstp, dst,
2893 VAR_INIT_STATUS_UNKNOWN);
2894 dst = (variable)*dstp;
2898 src_l = 0;
2899 for (node = src->var_part[i].loc_chain; node; node = node->next)
2900 src_l++;
2901 dst_l = 0;
2902 for (node = dst->var_part[j].loc_chain; node; node = node->next)
2903 dst_l++;
2905 if (dst_l == 1)
2907 /* The most common case, much simpler, no qsort is needed. */
2908 location_chain dstnode = dst->var_part[j].loc_chain;
2909 dst->var_part[k].loc_chain = dstnode;
2910 VAR_PART_OFFSET (dst, k) = VAR_PART_OFFSET (dst, j);
2911 node2 = dstnode;
2912 for (node = src->var_part[i].loc_chain; node; node = node->next)
2913 if (!((REG_P (dstnode->loc)
2914 && REG_P (node->loc)
2915 && REGNO (dstnode->loc) == REGNO (node->loc))
2916 || rtx_equal_p (dstnode->loc, node->loc)))
2918 location_chain new_node;
2920 /* Copy the location from SRC. */
2921 new_node = (location_chain) pool_alloc (loc_chain_pool);
2922 new_node->loc = node->loc;
2923 new_node->init = node->init;
2924 if (!node->set_src || MEM_P (node->set_src))
2925 new_node->set_src = NULL;
2926 else
2927 new_node->set_src = node->set_src;
2928 node2->next = new_node;
2929 node2 = new_node;
2931 node2->next = NULL;
2933 else
2935 if (src_l + dst_l > vui_allocated)
2937 vui_allocated = MAX (vui_allocated * 2, src_l + dst_l);
2938 vui_vec = XRESIZEVEC (struct variable_union_info, vui_vec,
2939 vui_allocated);
2941 vui = vui_vec;
2943 /* Fill in the locations from DST. */
2944 for (node = dst->var_part[j].loc_chain, jj = 0; node;
2945 node = node->next, jj++)
2947 vui[jj].lc = node;
2948 vui[jj].pos_dst = jj;
2950 /* Pos plus value larger than a sum of 2 valid positions. */
2951 vui[jj].pos = jj + src_l + dst_l;
2954 /* Fill in the locations from SRC. */
2955 n = dst_l;
2956 for (node = src->var_part[i].loc_chain, ii = 0; node;
2957 node = node->next, ii++)
2959 /* Find location from NODE. */
2960 for (jj = 0; jj < dst_l; jj++)
2962 if ((REG_P (vui[jj].lc->loc)
2963 && REG_P (node->loc)
2964 && REGNO (vui[jj].lc->loc) == REGNO (node->loc))
2965 || rtx_equal_p (vui[jj].lc->loc, node->loc))
2967 vui[jj].pos = jj + ii;
2968 break;
2971 if (jj >= dst_l) /* The location has not been found. */
2973 location_chain new_node;
2975 /* Copy the location from SRC. */
2976 new_node = (location_chain) pool_alloc (loc_chain_pool);
2977 new_node->loc = node->loc;
2978 new_node->init = node->init;
2979 if (!node->set_src || MEM_P (node->set_src))
2980 new_node->set_src = NULL;
2981 else
2982 new_node->set_src = node->set_src;
2983 vui[n].lc = new_node;
2984 vui[n].pos_dst = src_l + dst_l;
2985 vui[n].pos = ii + src_l + dst_l;
2986 n++;
2990 if (dst_l == 2)
2992 /* Special case still very common case. For dst_l == 2
2993 all entries dst_l ... n-1 are sorted, with for i >= dst_l
2994 vui[i].pos == i + src_l + dst_l. */
2995 if (vui[0].pos > vui[1].pos)
2997 /* Order should be 1, 0, 2... */
2998 dst->var_part[k].loc_chain = vui[1].lc;
2999 vui[1].lc->next = vui[0].lc;
3000 if (n >= 3)
3002 vui[0].lc->next = vui[2].lc;
3003 vui[n - 1].lc->next = NULL;
3005 else
3006 vui[0].lc->next = NULL;
3007 ii = 3;
3009 else
3011 dst->var_part[k].loc_chain = vui[0].lc;
3012 if (n >= 3 && vui[2].pos < vui[1].pos)
3014 /* Order should be 0, 2, 1, 3... */
3015 vui[0].lc->next = vui[2].lc;
3016 vui[2].lc->next = vui[1].lc;
3017 if (n >= 4)
3019 vui[1].lc->next = vui[3].lc;
3020 vui[n - 1].lc->next = NULL;
3022 else
3023 vui[1].lc->next = NULL;
3024 ii = 4;
3026 else
3028 /* Order should be 0, 1, 2... */
3029 ii = 1;
3030 vui[n - 1].lc->next = NULL;
3033 for (; ii < n; ii++)
3034 vui[ii - 1].lc->next = vui[ii].lc;
3036 else
3038 qsort (vui, n, sizeof (struct variable_union_info),
3039 variable_union_info_cmp_pos);
3041 /* Reconnect the nodes in sorted order. */
3042 for (ii = 1; ii < n; ii++)
3043 vui[ii - 1].lc->next = vui[ii].lc;
3044 vui[n - 1].lc->next = NULL;
3045 dst->var_part[k].loc_chain = vui[0].lc;
3048 VAR_PART_OFFSET (dst, k) = VAR_PART_OFFSET (dst, j);
3050 i--;
3051 j--;
3053 else if ((i >= 0 && j >= 0
3054 && VAR_PART_OFFSET (src, i) < VAR_PART_OFFSET (dst, j))
3055 || i < 0)
3057 dst->var_part[k] = dst->var_part[j];
3058 j--;
3060 else if ((i >= 0 && j >= 0
3061 && VAR_PART_OFFSET (src, i) > VAR_PART_OFFSET (dst, j))
3062 || j < 0)
3064 location_chain *nextp;
3066 /* Copy the chain from SRC. */
3067 nextp = &dst->var_part[k].loc_chain;
3068 for (node = src->var_part[i].loc_chain; node; node = node->next)
3070 location_chain new_lc;
3072 new_lc = (location_chain) pool_alloc (loc_chain_pool);
3073 new_lc->next = NULL;
3074 new_lc->init = node->init;
3075 if (!node->set_src || MEM_P (node->set_src))
3076 new_lc->set_src = NULL;
3077 else
3078 new_lc->set_src = node->set_src;
3079 new_lc->loc = node->loc;
3081 *nextp = new_lc;
3082 nextp = &new_lc->next;
3085 VAR_PART_OFFSET (dst, k) = VAR_PART_OFFSET (src, i);
3086 i--;
3088 dst->var_part[k].cur_loc = NULL;
3091 if (flag_var_tracking_uninit)
3092 for (i = 0; i < src->n_var_parts && i < dst->n_var_parts; i++)
3094 location_chain node, node2;
3095 for (node = src->var_part[i].loc_chain; node; node = node->next)
3096 for (node2 = dst->var_part[i].loc_chain; node2; node2 = node2->next)
3097 if (rtx_equal_p (node->loc, node2->loc))
3099 if (node->init > node2->init)
3100 node2->init = node->init;
3104 /* Continue traversing the hash table. */
3105 return 1;
3108 /* Compute union of dataflow sets SRC and DST and store it to DST. */
3110 static void
3111 dataflow_set_union (dataflow_set *dst, dataflow_set *src)
3113 int i;
3115 for (i = 0; i < FIRST_PSEUDO_REGISTER; i++)
3116 attrs_list_union (&dst->regs[i], src->regs[i]);
3118 if (dst->vars == empty_shared_hash)
3120 shared_hash_destroy (dst->vars);
3121 dst->vars = shared_hash_copy (src->vars);
3123 else
3125 variable_iterator_type hi;
3126 variable var;
3128 FOR_EACH_HASH_TABLE_ELEMENT (shared_hash_htab (src->vars),
3129 var, variable, hi)
3130 variable_union (var, dst);
3134 /* Whether the value is currently being expanded. */
3135 #define VALUE_RECURSED_INTO(x) \
3136 (RTL_FLAG_CHECK2 ("VALUE_RECURSED_INTO", (x), VALUE, DEBUG_EXPR)->used)
3138 /* Whether no expansion was found, saving useless lookups.
3139 It must only be set when VALUE_CHANGED is clear. */
3140 #define NO_LOC_P(x) \
3141 (RTL_FLAG_CHECK2 ("NO_LOC_P", (x), VALUE, DEBUG_EXPR)->return_val)
3143 /* Whether cur_loc in the value needs to be (re)computed. */
3144 #define VALUE_CHANGED(x) \
3145 (RTL_FLAG_CHECK1 ("VALUE_CHANGED", (x), VALUE)->frame_related)
3146 /* Whether cur_loc in the decl needs to be (re)computed. */
3147 #define DECL_CHANGED(x) TREE_VISITED (x)
3149 /* Record (if NEWV) that DV needs to have its cur_loc recomputed. For
3150 user DECLs, this means they're in changed_variables. Values and
3151 debug exprs may be left with this flag set if no user variable
3152 requires them to be evaluated. */
3154 static inline void
3155 set_dv_changed (decl_or_value dv, bool newv)
3157 switch (dv_onepart_p (dv))
3159 case ONEPART_VALUE:
3160 if (newv)
3161 NO_LOC_P (dv_as_value (dv)) = false;
3162 VALUE_CHANGED (dv_as_value (dv)) = newv;
3163 break;
3165 case ONEPART_DEXPR:
3166 if (newv)
3167 NO_LOC_P (DECL_RTL_KNOWN_SET (dv_as_decl (dv))) = false;
3168 /* Fall through... */
3170 default:
3171 DECL_CHANGED (dv_as_decl (dv)) = newv;
3172 break;
3176 /* Return true if DV needs to have its cur_loc recomputed. */
3178 static inline bool
3179 dv_changed_p (decl_or_value dv)
3181 return (dv_is_value_p (dv)
3182 ? VALUE_CHANGED (dv_as_value (dv))
3183 : DECL_CHANGED (dv_as_decl (dv)));
3186 /* Return a location list node whose loc is rtx_equal to LOC, in the
3187 location list of a one-part variable or value VAR, or in that of
3188 any values recursively mentioned in the location lists. VARS must
3189 be in star-canonical form. */
3191 static location_chain
3192 find_loc_in_1pdv (rtx loc, variable var, variable_table_type vars)
3194 location_chain node;
3195 enum rtx_code loc_code;
3197 if (!var)
3198 return NULL;
3200 gcc_checking_assert (var->onepart);
3202 if (!var->n_var_parts)
3203 return NULL;
3205 gcc_checking_assert (loc != dv_as_opaque (var->dv));
3207 loc_code = GET_CODE (loc);
3208 for (node = var->var_part[0].loc_chain; node; node = node->next)
3210 decl_or_value dv;
3211 variable rvar;
3213 if (GET_CODE (node->loc) != loc_code)
3215 if (GET_CODE (node->loc) != VALUE)
3216 continue;
3218 else if (loc == node->loc)
3219 return node;
3220 else if (loc_code != VALUE)
3222 if (rtx_equal_p (loc, node->loc))
3223 return node;
3224 continue;
3227 /* Since we're in star-canonical form, we don't need to visit
3228 non-canonical nodes: one-part variables and non-canonical
3229 values would only point back to the canonical node. */
3230 if (dv_is_value_p (var->dv)
3231 && !canon_value_cmp (node->loc, dv_as_value (var->dv)))
3233 /* Skip all subsequent VALUEs. */
3234 while (node->next && GET_CODE (node->next->loc) == VALUE)
3236 node = node->next;
3237 gcc_checking_assert (!canon_value_cmp (node->loc,
3238 dv_as_value (var->dv)));
3239 if (loc == node->loc)
3240 return node;
3242 continue;
3245 gcc_checking_assert (node == var->var_part[0].loc_chain);
3246 gcc_checking_assert (!node->next);
3248 dv = dv_from_value (node->loc);
3249 rvar = vars.find_with_hash (dv, dv_htab_hash (dv));
3250 return find_loc_in_1pdv (loc, rvar, vars);
3253 /* ??? Gotta look in cselib_val locations too. */
3255 return NULL;
3258 /* Hash table iteration argument passed to variable_merge. */
3259 struct dfset_merge
3261 /* The set in which the merge is to be inserted. */
3262 dataflow_set *dst;
3263 /* The set that we're iterating in. */
3264 dataflow_set *cur;
3265 /* The set that may contain the other dv we are to merge with. */
3266 dataflow_set *src;
3267 /* Number of onepart dvs in src. */
3268 int src_onepart_cnt;
3271 /* Insert LOC in *DNODE, if it's not there yet. The list must be in
3272 loc_cmp order, and it is maintained as such. */
3274 static void
3275 insert_into_intersection (location_chain *nodep, rtx loc,
3276 enum var_init_status status)
3278 location_chain node;
3279 int r;
3281 for (node = *nodep; node; nodep = &node->next, node = *nodep)
3282 if ((r = loc_cmp (node->loc, loc)) == 0)
3284 node->init = MIN (node->init, status);
3285 return;
3287 else if (r > 0)
3288 break;
3290 node = (location_chain) pool_alloc (loc_chain_pool);
3292 node->loc = loc;
3293 node->set_src = NULL;
3294 node->init = status;
3295 node->next = *nodep;
3296 *nodep = node;
3299 /* Insert in DEST the intersection of the locations present in both
3300 S1NODE and S2VAR, directly or indirectly. S1NODE is from a
3301 variable in DSM->cur, whereas S2VAR is from DSM->src. dvar is in
3302 DSM->dst. */
3304 static void
3305 intersect_loc_chains (rtx val, location_chain *dest, struct dfset_merge *dsm,
3306 location_chain s1node, variable s2var)
3308 dataflow_set *s1set = dsm->cur;
3309 dataflow_set *s2set = dsm->src;
3310 location_chain found;
3312 if (s2var)
3314 location_chain s2node;
3316 gcc_checking_assert (s2var->onepart);
3318 if (s2var->n_var_parts)
3320 s2node = s2var->var_part[0].loc_chain;
3322 for (; s1node && s2node;
3323 s1node = s1node->next, s2node = s2node->next)
3324 if (s1node->loc != s2node->loc)
3325 break;
3326 else if (s1node->loc == val)
3327 continue;
3328 else
3329 insert_into_intersection (dest, s1node->loc,
3330 MIN (s1node->init, s2node->init));
3334 for (; s1node; s1node = s1node->next)
3336 if (s1node->loc == val)
3337 continue;
3339 if ((found = find_loc_in_1pdv (s1node->loc, s2var,
3340 shared_hash_htab (s2set->vars))))
3342 insert_into_intersection (dest, s1node->loc,
3343 MIN (s1node->init, found->init));
3344 continue;
3347 if (GET_CODE (s1node->loc) == VALUE
3348 && !VALUE_RECURSED_INTO (s1node->loc))
3350 decl_or_value dv = dv_from_value (s1node->loc);
3351 variable svar = shared_hash_find (s1set->vars, dv);
3352 if (svar)
3354 if (svar->n_var_parts == 1)
3356 VALUE_RECURSED_INTO (s1node->loc) = true;
3357 intersect_loc_chains (val, dest, dsm,
3358 svar->var_part[0].loc_chain,
3359 s2var);
3360 VALUE_RECURSED_INTO (s1node->loc) = false;
3365 /* ??? gotta look in cselib_val locations too. */
3367 /* ??? if the location is equivalent to any location in src,
3368 searched recursively
3370 add to dst the values needed to represent the equivalence
3372 telling whether locations S is equivalent to another dv's
3373 location list:
3375 for each location D in the list
3377 if S and D satisfy rtx_equal_p, then it is present
3379 else if D is a value, recurse without cycles
3381 else if S and D have the same CODE and MODE
3383 for each operand oS and the corresponding oD
3385 if oS and oD are not equivalent, then S an D are not equivalent
3387 else if they are RTX vectors
3389 if any vector oS element is not equivalent to its respective oD,
3390 then S and D are not equivalent
3398 /* Return -1 if X should be before Y in a location list for a 1-part
3399 variable, 1 if Y should be before X, and 0 if they're equivalent
3400 and should not appear in the list. */
3402 static int
3403 loc_cmp (rtx x, rtx y)
3405 int i, j, r;
3406 RTX_CODE code = GET_CODE (x);
3407 const char *fmt;
3409 if (x == y)
3410 return 0;
3412 if (REG_P (x))
3414 if (!REG_P (y))
3415 return -1;
3416 gcc_assert (GET_MODE (x) == GET_MODE (y));
3417 if (REGNO (x) == REGNO (y))
3418 return 0;
3419 else if (REGNO (x) < REGNO (y))
3420 return -1;
3421 else
3422 return 1;
3425 if (REG_P (y))
3426 return 1;
3428 if (MEM_P (x))
3430 if (!MEM_P (y))
3431 return -1;
3432 gcc_assert (GET_MODE (x) == GET_MODE (y));
3433 return loc_cmp (XEXP (x, 0), XEXP (y, 0));
3436 if (MEM_P (y))
3437 return 1;
3439 if (GET_CODE (x) == VALUE)
3441 if (GET_CODE (y) != VALUE)
3442 return -1;
3443 /* Don't assert the modes are the same, that is true only
3444 when not recursing. (subreg:QI (value:SI 1:1) 0)
3445 and (subreg:QI (value:DI 2:2) 0) can be compared,
3446 even when the modes are different. */
3447 if (canon_value_cmp (x, y))
3448 return -1;
3449 else
3450 return 1;
3453 if (GET_CODE (y) == VALUE)
3454 return 1;
3456 /* Entry value is the least preferable kind of expression. */
3457 if (GET_CODE (x) == ENTRY_VALUE)
3459 if (GET_CODE (y) != ENTRY_VALUE)
3460 return 1;
3461 gcc_assert (GET_MODE (x) == GET_MODE (y));
3462 return loc_cmp (ENTRY_VALUE_EXP (x), ENTRY_VALUE_EXP (y));
3465 if (GET_CODE (y) == ENTRY_VALUE)
3466 return -1;
3468 if (GET_CODE (x) == GET_CODE (y))
3469 /* Compare operands below. */;
3470 else if (GET_CODE (x) < GET_CODE (y))
3471 return -1;
3472 else
3473 return 1;
3475 gcc_assert (GET_MODE (x) == GET_MODE (y));
3477 if (GET_CODE (x) == DEBUG_EXPR)
3479 if (DEBUG_TEMP_UID (DEBUG_EXPR_TREE_DECL (x))
3480 < DEBUG_TEMP_UID (DEBUG_EXPR_TREE_DECL (y)))
3481 return -1;
3482 gcc_checking_assert (DEBUG_TEMP_UID (DEBUG_EXPR_TREE_DECL (x))
3483 > DEBUG_TEMP_UID (DEBUG_EXPR_TREE_DECL (y)));
3484 return 1;
3487 fmt = GET_RTX_FORMAT (code);
3488 for (i = 0; i < GET_RTX_LENGTH (code); i++)
3489 switch (fmt[i])
3491 case 'w':
3492 if (XWINT (x, i) == XWINT (y, i))
3493 break;
3494 else if (XWINT (x, i) < XWINT (y, i))
3495 return -1;
3496 else
3497 return 1;
3499 case 'n':
3500 case 'i':
3501 if (XINT (x, i) == XINT (y, i))
3502 break;
3503 else if (XINT (x, i) < XINT (y, i))
3504 return -1;
3505 else
3506 return 1;
3508 case 'V':
3509 case 'E':
3510 /* Compare the vector length first. */
3511 if (XVECLEN (x, i) == XVECLEN (y, i))
3512 /* Compare the vectors elements. */;
3513 else if (XVECLEN (x, i) < XVECLEN (y, i))
3514 return -1;
3515 else
3516 return 1;
3518 for (j = 0; j < XVECLEN (x, i); j++)
3519 if ((r = loc_cmp (XVECEXP (x, i, j),
3520 XVECEXP (y, i, j))))
3521 return r;
3522 break;
3524 case 'e':
3525 if ((r = loc_cmp (XEXP (x, i), XEXP (y, i))))
3526 return r;
3527 break;
3529 case 'S':
3530 case 's':
3531 if (XSTR (x, i) == XSTR (y, i))
3532 break;
3533 if (!XSTR (x, i))
3534 return -1;
3535 if (!XSTR (y, i))
3536 return 1;
3537 if ((r = strcmp (XSTR (x, i), XSTR (y, i))) == 0)
3538 break;
3539 else if (r < 0)
3540 return -1;
3541 else
3542 return 1;
3544 case 'u':
3545 /* These are just backpointers, so they don't matter. */
3546 break;
3548 case '0':
3549 case 't':
3550 break;
3552 /* It is believed that rtx's at this level will never
3553 contain anything but integers and other rtx's,
3554 except for within LABEL_REFs and SYMBOL_REFs. */
3555 default:
3556 gcc_unreachable ();
3558 if (CONST_WIDE_INT_P (x))
3560 /* Compare the vector length first. */
3561 if (CONST_WIDE_INT_NUNITS (x) >= CONST_WIDE_INT_NUNITS (y))
3562 return 1;
3563 else if (CONST_WIDE_INT_NUNITS (x) < CONST_WIDE_INT_NUNITS (y))
3564 return -1;
3566 /* Compare the vectors elements. */;
3567 for (j = CONST_WIDE_INT_NUNITS (x) - 1; j >= 0 ; j--)
3569 if (CONST_WIDE_INT_ELT (x, j) < CONST_WIDE_INT_ELT (y, j))
3570 return -1;
3571 if (CONST_WIDE_INT_ELT (x, j) > CONST_WIDE_INT_ELT (y, j))
3572 return 1;
3576 return 0;
3579 #if ENABLE_CHECKING
3580 /* Check the order of entries in one-part variables. */
3583 canonicalize_loc_order_check (variable_def **slot,
3584 dataflow_set *data ATTRIBUTE_UNUSED)
3586 variable var = *slot;
3587 location_chain node, next;
3589 #ifdef ENABLE_RTL_CHECKING
3590 int i;
3591 for (i = 0; i < var->n_var_parts; i++)
3592 gcc_assert (var->var_part[0].cur_loc == NULL);
3593 gcc_assert (!var->in_changed_variables);
3594 #endif
3596 if (!var->onepart)
3597 return 1;
3599 gcc_assert (var->n_var_parts == 1);
3600 node = var->var_part[0].loc_chain;
3601 gcc_assert (node);
3603 while ((next = node->next))
3605 gcc_assert (loc_cmp (node->loc, next->loc) < 0);
3606 node = next;
3609 return 1;
3611 #endif
3613 /* Mark with VALUE_RECURSED_INTO values that have neighbors that are
3614 more likely to be chosen as canonical for an equivalence set.
3615 Ensure less likely values can reach more likely neighbors, making
3616 the connections bidirectional. */
3619 canonicalize_values_mark (variable_def **slot, dataflow_set *set)
3621 variable var = *slot;
3622 decl_or_value dv = var->dv;
3623 rtx val;
3624 location_chain node;
3626 if (!dv_is_value_p (dv))
3627 return 1;
3629 gcc_checking_assert (var->n_var_parts == 1);
3631 val = dv_as_value (dv);
3633 for (node = var->var_part[0].loc_chain; node; node = node->next)
3634 if (GET_CODE (node->loc) == VALUE)
3636 if (canon_value_cmp (node->loc, val))
3637 VALUE_RECURSED_INTO (val) = true;
3638 else
3640 decl_or_value odv = dv_from_value (node->loc);
3641 variable_def **oslot;
3642 oslot = shared_hash_find_slot_noinsert (set->vars, odv);
3644 set_slot_part (set, val, oslot, odv, 0,
3645 node->init, NULL_RTX);
3647 VALUE_RECURSED_INTO (node->loc) = true;
3651 return 1;
3654 /* Remove redundant entries from equivalence lists in onepart
3655 variables, canonicalizing equivalence sets into star shapes. */
3658 canonicalize_values_star (variable_def **slot, dataflow_set *set)
3660 variable var = *slot;
3661 decl_or_value dv = var->dv;
3662 location_chain node;
3663 decl_or_value cdv;
3664 rtx val, cval;
3665 variable_def **cslot;
3666 bool has_value;
3667 bool has_marks;
3669 if (!var->onepart)
3670 return 1;
3672 gcc_checking_assert (var->n_var_parts == 1);
3674 if (dv_is_value_p (dv))
3676 cval = dv_as_value (dv);
3677 if (!VALUE_RECURSED_INTO (cval))
3678 return 1;
3679 VALUE_RECURSED_INTO (cval) = false;
3681 else
3682 cval = NULL_RTX;
3684 restart:
3685 val = cval;
3686 has_value = false;
3687 has_marks = false;
3689 gcc_assert (var->n_var_parts == 1);
3691 for (node = var->var_part[0].loc_chain; node; node = node->next)
3692 if (GET_CODE (node->loc) == VALUE)
3694 has_value = true;
3695 if (VALUE_RECURSED_INTO (node->loc))
3696 has_marks = true;
3697 if (canon_value_cmp (node->loc, cval))
3698 cval = node->loc;
3701 if (!has_value)
3702 return 1;
3704 if (cval == val)
3706 if (!has_marks || dv_is_decl_p (dv))
3707 return 1;
3709 /* Keep it marked so that we revisit it, either after visiting a
3710 child node, or after visiting a new parent that might be
3711 found out. */
3712 VALUE_RECURSED_INTO (val) = true;
3714 for (node = var->var_part[0].loc_chain; node; node = node->next)
3715 if (GET_CODE (node->loc) == VALUE
3716 && VALUE_RECURSED_INTO (node->loc))
3718 cval = node->loc;
3719 restart_with_cval:
3720 VALUE_RECURSED_INTO (cval) = false;
3721 dv = dv_from_value (cval);
3722 slot = shared_hash_find_slot_noinsert (set->vars, dv);
3723 if (!slot)
3725 gcc_assert (dv_is_decl_p (var->dv));
3726 /* The canonical value was reset and dropped.
3727 Remove it. */
3728 clobber_variable_part (set, NULL, var->dv, 0, NULL);
3729 return 1;
3731 var = *slot;
3732 gcc_assert (dv_is_value_p (var->dv));
3733 if (var->n_var_parts == 0)
3734 return 1;
3735 gcc_assert (var->n_var_parts == 1);
3736 goto restart;
3739 VALUE_RECURSED_INTO (val) = false;
3741 return 1;
3744 /* Push values to the canonical one. */
3745 cdv = dv_from_value (cval);
3746 cslot = shared_hash_find_slot_noinsert (set->vars, cdv);
3748 for (node = var->var_part[0].loc_chain; node; node = node->next)
3749 if (node->loc != cval)
3751 cslot = set_slot_part (set, node->loc, cslot, cdv, 0,
3752 node->init, NULL_RTX);
3753 if (GET_CODE (node->loc) == VALUE)
3755 decl_or_value ndv = dv_from_value (node->loc);
3757 set_variable_part (set, cval, ndv, 0, node->init, NULL_RTX,
3758 NO_INSERT);
3760 if (canon_value_cmp (node->loc, val))
3762 /* If it could have been a local minimum, it's not any more,
3763 since it's now neighbor to cval, so it may have to push
3764 to it. Conversely, if it wouldn't have prevailed over
3765 val, then whatever mark it has is fine: if it was to
3766 push, it will now push to a more canonical node, but if
3767 it wasn't, then it has already pushed any values it might
3768 have to. */
3769 VALUE_RECURSED_INTO (node->loc) = true;
3770 /* Make sure we visit node->loc by ensuring we cval is
3771 visited too. */
3772 VALUE_RECURSED_INTO (cval) = true;
3774 else if (!VALUE_RECURSED_INTO (node->loc))
3775 /* If we have no need to "recurse" into this node, it's
3776 already "canonicalized", so drop the link to the old
3777 parent. */
3778 clobber_variable_part (set, cval, ndv, 0, NULL);
3780 else if (GET_CODE (node->loc) == REG)
3782 attrs list = set->regs[REGNO (node->loc)], *listp;
3784 /* Change an existing attribute referring to dv so that it
3785 refers to cdv, removing any duplicate this might
3786 introduce, and checking that no previous duplicates
3787 existed, all in a single pass. */
3789 while (list)
3791 if (list->offset == 0
3792 && (dv_as_opaque (list->dv) == dv_as_opaque (dv)
3793 || dv_as_opaque (list->dv) == dv_as_opaque (cdv)))
3794 break;
3796 list = list->next;
3799 gcc_assert (list);
3800 if (dv_as_opaque (list->dv) == dv_as_opaque (dv))
3802 list->dv = cdv;
3803 for (listp = &list->next; (list = *listp); listp = &list->next)
3805 if (list->offset)
3806 continue;
3808 if (dv_as_opaque (list->dv) == dv_as_opaque (cdv))
3810 *listp = list->next;
3811 pool_free (attrs_pool, list);
3812 list = *listp;
3813 break;
3816 gcc_assert (dv_as_opaque (list->dv) != dv_as_opaque (dv));
3819 else if (dv_as_opaque (list->dv) == dv_as_opaque (cdv))
3821 for (listp = &list->next; (list = *listp); listp = &list->next)
3823 if (list->offset)
3824 continue;
3826 if (dv_as_opaque (list->dv) == dv_as_opaque (dv))
3828 *listp = list->next;
3829 pool_free (attrs_pool, list);
3830 list = *listp;
3831 break;
3834 gcc_assert (dv_as_opaque (list->dv) != dv_as_opaque (cdv));
3837 else
3838 gcc_unreachable ();
3840 #if ENABLE_CHECKING
3841 while (list)
3843 if (list->offset == 0
3844 && (dv_as_opaque (list->dv) == dv_as_opaque (dv)
3845 || dv_as_opaque (list->dv) == dv_as_opaque (cdv)))
3846 gcc_unreachable ();
3848 list = list->next;
3850 #endif
3854 if (val)
3855 set_slot_part (set, val, cslot, cdv, 0,
3856 VAR_INIT_STATUS_INITIALIZED, NULL_RTX);
3858 slot = clobber_slot_part (set, cval, slot, 0, NULL);
3860 /* Variable may have been unshared. */
3861 var = *slot;
3862 gcc_checking_assert (var->n_var_parts && var->var_part[0].loc_chain->loc == cval
3863 && var->var_part[0].loc_chain->next == NULL);
3865 if (VALUE_RECURSED_INTO (cval))
3866 goto restart_with_cval;
3868 return 1;
3871 /* Bind one-part variables to the canonical value in an equivalence
3872 set. Not doing this causes dataflow convergence failure in rare
3873 circumstances, see PR42873. Unfortunately we can't do this
3874 efficiently as part of canonicalize_values_star, since we may not
3875 have determined or even seen the canonical value of a set when we
3876 get to a variable that references another member of the set. */
3879 canonicalize_vars_star (variable_def **slot, dataflow_set *set)
3881 variable var = *slot;
3882 decl_or_value dv = var->dv;
3883 location_chain node;
3884 rtx cval;
3885 decl_or_value cdv;
3886 variable_def **cslot;
3887 variable cvar;
3888 location_chain cnode;
3890 if (!var->onepart || var->onepart == ONEPART_VALUE)
3891 return 1;
3893 gcc_assert (var->n_var_parts == 1);
3895 node = var->var_part[0].loc_chain;
3897 if (GET_CODE (node->loc) != VALUE)
3898 return 1;
3900 gcc_assert (!node->next);
3901 cval = node->loc;
3903 /* Push values to the canonical one. */
3904 cdv = dv_from_value (cval);
3905 cslot = shared_hash_find_slot_noinsert (set->vars, cdv);
3906 if (!cslot)
3907 return 1;
3908 cvar = *cslot;
3909 gcc_assert (cvar->n_var_parts == 1);
3911 cnode = cvar->var_part[0].loc_chain;
3913 /* CVAL is canonical if its value list contains non-VALUEs or VALUEs
3914 that are not “more canonical” than it. */
3915 if (GET_CODE (cnode->loc) != VALUE
3916 || !canon_value_cmp (cnode->loc, cval))
3917 return 1;
3919 /* CVAL was found to be non-canonical. Change the variable to point
3920 to the canonical VALUE. */
3921 gcc_assert (!cnode->next);
3922 cval = cnode->loc;
3924 slot = set_slot_part (set, cval, slot, dv, 0,
3925 node->init, node->set_src);
3926 clobber_slot_part (set, cval, slot, 0, node->set_src);
3928 return 1;
3931 /* Combine variable or value in *S1SLOT (in DSM->cur) with the
3932 corresponding entry in DSM->src. Multi-part variables are combined
3933 with variable_union, whereas onepart dvs are combined with
3934 intersection. */
3936 static int
3937 variable_merge_over_cur (variable s1var, struct dfset_merge *dsm)
3939 dataflow_set *dst = dsm->dst;
3940 variable_def **dstslot;
3941 variable s2var, dvar = NULL;
3942 decl_or_value dv = s1var->dv;
3943 onepart_enum_t onepart = s1var->onepart;
3944 rtx val;
3945 hashval_t dvhash;
3946 location_chain node, *nodep;
3948 /* If the incoming onepart variable has an empty location list, then
3949 the intersection will be just as empty. For other variables,
3950 it's always union. */
3951 gcc_checking_assert (s1var->n_var_parts
3952 && s1var->var_part[0].loc_chain);
3954 if (!onepart)
3955 return variable_union (s1var, dst);
3957 gcc_checking_assert (s1var->n_var_parts == 1);
3959 dvhash = dv_htab_hash (dv);
3960 if (dv_is_value_p (dv))
3961 val = dv_as_value (dv);
3962 else
3963 val = NULL;
3965 s2var = shared_hash_find_1 (dsm->src->vars, dv, dvhash);
3966 if (!s2var)
3968 dst_can_be_shared = false;
3969 return 1;
3972 dsm->src_onepart_cnt--;
3973 gcc_assert (s2var->var_part[0].loc_chain
3974 && s2var->onepart == onepart
3975 && s2var->n_var_parts == 1);
3977 dstslot = shared_hash_find_slot_noinsert_1 (dst->vars, dv, dvhash);
3978 if (dstslot)
3980 dvar = *dstslot;
3981 gcc_assert (dvar->refcount == 1
3982 && dvar->onepart == onepart
3983 && dvar->n_var_parts == 1);
3984 nodep = &dvar->var_part[0].loc_chain;
3986 else
3988 nodep = &node;
3989 node = NULL;
3992 if (!dstslot && !onepart_variable_different_p (s1var, s2var))
3994 dstslot = shared_hash_find_slot_unshare_1 (&dst->vars, dv,
3995 dvhash, INSERT);
3996 *dstslot = dvar = s2var;
3997 dvar->refcount++;
3999 else
4001 dst_can_be_shared = false;
4003 intersect_loc_chains (val, nodep, dsm,
4004 s1var->var_part[0].loc_chain, s2var);
4006 if (!dstslot)
4008 if (node)
4010 dvar = (variable) pool_alloc (onepart_pool (onepart));
4011 dvar->dv = dv;
4012 dvar->refcount = 1;
4013 dvar->n_var_parts = 1;
4014 dvar->onepart = onepart;
4015 dvar->in_changed_variables = false;
4016 dvar->var_part[0].loc_chain = node;
4017 dvar->var_part[0].cur_loc = NULL;
4018 if (onepart)
4019 VAR_LOC_1PAUX (dvar) = NULL;
4020 else
4021 VAR_PART_OFFSET (dvar, 0) = 0;
4023 dstslot
4024 = shared_hash_find_slot_unshare_1 (&dst->vars, dv, dvhash,
4025 INSERT);
4026 gcc_assert (!*dstslot);
4027 *dstslot = dvar;
4029 else
4030 return 1;
4034 nodep = &dvar->var_part[0].loc_chain;
4035 while ((node = *nodep))
4037 location_chain *nextp = &node->next;
4039 if (GET_CODE (node->loc) == REG)
4041 attrs list;
4043 for (list = dst->regs[REGNO (node->loc)]; list; list = list->next)
4044 if (GET_MODE (node->loc) == GET_MODE (list->loc)
4045 && dv_is_value_p (list->dv))
4046 break;
4048 if (!list)
4049 attrs_list_insert (&dst->regs[REGNO (node->loc)],
4050 dv, 0, node->loc);
4051 /* If this value became canonical for another value that had
4052 this register, we want to leave it alone. */
4053 else if (dv_as_value (list->dv) != val)
4055 dstslot = set_slot_part (dst, dv_as_value (list->dv),
4056 dstslot, dv, 0,
4057 node->init, NULL_RTX);
4058 dstslot = delete_slot_part (dst, node->loc, dstslot, 0);
4060 /* Since nextp points into the removed node, we can't
4061 use it. The pointer to the next node moved to nodep.
4062 However, if the variable we're walking is unshared
4063 during our walk, we'll keep walking the location list
4064 of the previously-shared variable, in which case the
4065 node won't have been removed, and we'll want to skip
4066 it. That's why we test *nodep here. */
4067 if (*nodep != node)
4068 nextp = nodep;
4071 else
4072 /* Canonicalization puts registers first, so we don't have to
4073 walk it all. */
4074 break;
4075 nodep = nextp;
4078 if (dvar != *dstslot)
4079 dvar = *dstslot;
4080 nodep = &dvar->var_part[0].loc_chain;
4082 if (val)
4084 /* Mark all referenced nodes for canonicalization, and make sure
4085 we have mutual equivalence links. */
4086 VALUE_RECURSED_INTO (val) = true;
4087 for (node = *nodep; node; node = node->next)
4088 if (GET_CODE (node->loc) == VALUE)
4090 VALUE_RECURSED_INTO (node->loc) = true;
4091 set_variable_part (dst, val, dv_from_value (node->loc), 0,
4092 node->init, NULL, INSERT);
4095 dstslot = shared_hash_find_slot_noinsert_1 (dst->vars, dv, dvhash);
4096 gcc_assert (*dstslot == dvar);
4097 canonicalize_values_star (dstslot, dst);
4098 gcc_checking_assert (dstslot
4099 == shared_hash_find_slot_noinsert_1 (dst->vars,
4100 dv, dvhash));
4101 dvar = *dstslot;
4103 else
4105 bool has_value = false, has_other = false;
4107 /* If we have one value and anything else, we're going to
4108 canonicalize this, so make sure all values have an entry in
4109 the table and are marked for canonicalization. */
4110 for (node = *nodep; node; node = node->next)
4112 if (GET_CODE (node->loc) == VALUE)
4114 /* If this was marked during register canonicalization,
4115 we know we have to canonicalize values. */
4116 if (has_value)
4117 has_other = true;
4118 has_value = true;
4119 if (has_other)
4120 break;
4122 else
4124 has_other = true;
4125 if (has_value)
4126 break;
4130 if (has_value && has_other)
4132 for (node = *nodep; node; node = node->next)
4134 if (GET_CODE (node->loc) == VALUE)
4136 decl_or_value dv = dv_from_value (node->loc);
4137 variable_def **slot = NULL;
4139 if (shared_hash_shared (dst->vars))
4140 slot = shared_hash_find_slot_noinsert (dst->vars, dv);
4141 if (!slot)
4142 slot = shared_hash_find_slot_unshare (&dst->vars, dv,
4143 INSERT);
4144 if (!*slot)
4146 variable var = (variable) pool_alloc (onepart_pool
4147 (ONEPART_VALUE));
4148 var->dv = dv;
4149 var->refcount = 1;
4150 var->n_var_parts = 1;
4151 var->onepart = ONEPART_VALUE;
4152 var->in_changed_variables = false;
4153 var->var_part[0].loc_chain = NULL;
4154 var->var_part[0].cur_loc = NULL;
4155 VAR_LOC_1PAUX (var) = NULL;
4156 *slot = var;
4159 VALUE_RECURSED_INTO (node->loc) = true;
4163 dstslot = shared_hash_find_slot_noinsert_1 (dst->vars, dv, dvhash);
4164 gcc_assert (*dstslot == dvar);
4165 canonicalize_values_star (dstslot, dst);
4166 gcc_checking_assert (dstslot
4167 == shared_hash_find_slot_noinsert_1 (dst->vars,
4168 dv, dvhash));
4169 dvar = *dstslot;
4173 if (!onepart_variable_different_p (dvar, s2var))
4175 variable_htab_free (dvar);
4176 *dstslot = dvar = s2var;
4177 dvar->refcount++;
4179 else if (s2var != s1var && !onepart_variable_different_p (dvar, s1var))
4181 variable_htab_free (dvar);
4182 *dstslot = dvar = s1var;
4183 dvar->refcount++;
4184 dst_can_be_shared = false;
4186 else
4187 dst_can_be_shared = false;
4189 return 1;
4192 /* Copy s2slot (in DSM->src) to DSM->dst if the variable is a
4193 multi-part variable. Unions of multi-part variables and
4194 intersections of one-part ones will be handled in
4195 variable_merge_over_cur(). */
4197 static int
4198 variable_merge_over_src (variable s2var, struct dfset_merge *dsm)
4200 dataflow_set *dst = dsm->dst;
4201 decl_or_value dv = s2var->dv;
4203 if (!s2var->onepart)
4205 variable_def **dstp = shared_hash_find_slot (dst->vars, dv);
4206 *dstp = s2var;
4207 s2var->refcount++;
4208 return 1;
4211 dsm->src_onepart_cnt++;
4212 return 1;
4215 /* Combine dataflow set information from SRC2 into DST, using PDST
4216 to carry over information across passes. */
4218 static void
4219 dataflow_set_merge (dataflow_set *dst, dataflow_set *src2)
4221 dataflow_set cur = *dst;
4222 dataflow_set *src1 = &cur;
4223 struct dfset_merge dsm;
4224 int i;
4225 size_t src1_elems, src2_elems;
4226 variable_iterator_type hi;
4227 variable var;
4229 src1_elems = shared_hash_htab (src1->vars).elements ();
4230 src2_elems = shared_hash_htab (src2->vars).elements ();
4231 dataflow_set_init (dst);
4232 dst->stack_adjust = cur.stack_adjust;
4233 shared_hash_destroy (dst->vars);
4234 dst->vars = (shared_hash) pool_alloc (shared_hash_pool);
4235 dst->vars->refcount = 1;
4236 dst->vars->htab.create (MAX (src1_elems, src2_elems));
4238 for (i = 0; i < FIRST_PSEUDO_REGISTER; i++)
4239 attrs_list_mpdv_union (&dst->regs[i], src1->regs[i], src2->regs[i]);
4241 dsm.dst = dst;
4242 dsm.src = src2;
4243 dsm.cur = src1;
4244 dsm.src_onepart_cnt = 0;
4246 FOR_EACH_HASH_TABLE_ELEMENT (shared_hash_htab (dsm.src->vars),
4247 var, variable, hi)
4248 variable_merge_over_src (var, &dsm);
4249 FOR_EACH_HASH_TABLE_ELEMENT (shared_hash_htab (dsm.cur->vars),
4250 var, variable, hi)
4251 variable_merge_over_cur (var, &dsm);
4253 if (dsm.src_onepart_cnt)
4254 dst_can_be_shared = false;
4256 dataflow_set_destroy (src1);
4259 /* Mark register equivalences. */
4261 static void
4262 dataflow_set_equiv_regs (dataflow_set *set)
4264 int i;
4265 attrs list, *listp;
4267 for (i = 0; i < FIRST_PSEUDO_REGISTER; i++)
4269 rtx canon[NUM_MACHINE_MODES];
4271 /* If the list is empty or one entry, no need to canonicalize
4272 anything. */
4273 if (set->regs[i] == NULL || set->regs[i]->next == NULL)
4274 continue;
4276 memset (canon, 0, sizeof (canon));
4278 for (list = set->regs[i]; list; list = list->next)
4279 if (list->offset == 0 && dv_is_value_p (list->dv))
4281 rtx val = dv_as_value (list->dv);
4282 rtx *cvalp = &canon[(int)GET_MODE (val)];
4283 rtx cval = *cvalp;
4285 if (canon_value_cmp (val, cval))
4286 *cvalp = val;
4289 for (list = set->regs[i]; list; list = list->next)
4290 if (list->offset == 0 && dv_onepart_p (list->dv))
4292 rtx cval = canon[(int)GET_MODE (list->loc)];
4294 if (!cval)
4295 continue;
4297 if (dv_is_value_p (list->dv))
4299 rtx val = dv_as_value (list->dv);
4301 if (val == cval)
4302 continue;
4304 VALUE_RECURSED_INTO (val) = true;
4305 set_variable_part (set, val, dv_from_value (cval), 0,
4306 VAR_INIT_STATUS_INITIALIZED,
4307 NULL, NO_INSERT);
4310 VALUE_RECURSED_INTO (cval) = true;
4311 set_variable_part (set, cval, list->dv, 0,
4312 VAR_INIT_STATUS_INITIALIZED, NULL, NO_INSERT);
4315 for (listp = &set->regs[i]; (list = *listp);
4316 listp = list ? &list->next : listp)
4317 if (list->offset == 0 && dv_onepart_p (list->dv))
4319 rtx cval = canon[(int)GET_MODE (list->loc)];
4320 variable_def **slot;
4322 if (!cval)
4323 continue;
4325 if (dv_is_value_p (list->dv))
4327 rtx val = dv_as_value (list->dv);
4328 if (!VALUE_RECURSED_INTO (val))
4329 continue;
4332 slot = shared_hash_find_slot_noinsert (set->vars, list->dv);
4333 canonicalize_values_star (slot, set);
4334 if (*listp != list)
4335 list = NULL;
4340 /* Remove any redundant values in the location list of VAR, which must
4341 be unshared and 1-part. */
4343 static void
4344 remove_duplicate_values (variable var)
4346 location_chain node, *nodep;
4348 gcc_assert (var->onepart);
4349 gcc_assert (var->n_var_parts == 1);
4350 gcc_assert (var->refcount == 1);
4352 for (nodep = &var->var_part[0].loc_chain; (node = *nodep); )
4354 if (GET_CODE (node->loc) == VALUE)
4356 if (VALUE_RECURSED_INTO (node->loc))
4358 /* Remove duplicate value node. */
4359 *nodep = node->next;
4360 pool_free (loc_chain_pool, node);
4361 continue;
4363 else
4364 VALUE_RECURSED_INTO (node->loc) = true;
4366 nodep = &node->next;
4369 for (node = var->var_part[0].loc_chain; node; node = node->next)
4370 if (GET_CODE (node->loc) == VALUE)
4372 gcc_assert (VALUE_RECURSED_INTO (node->loc));
4373 VALUE_RECURSED_INTO (node->loc) = false;
4378 /* Hash table iteration argument passed to variable_post_merge. */
4379 struct dfset_post_merge
4381 /* The new input set for the current block. */
4382 dataflow_set *set;
4383 /* Pointer to the permanent input set for the current block, or
4384 NULL. */
4385 dataflow_set **permp;
4388 /* Create values for incoming expressions associated with one-part
4389 variables that don't have value numbers for them. */
4392 variable_post_merge_new_vals (variable_def **slot, dfset_post_merge *dfpm)
4394 dataflow_set *set = dfpm->set;
4395 variable var = *slot;
4396 location_chain node;
4398 if (!var->onepart || !var->n_var_parts)
4399 return 1;
4401 gcc_assert (var->n_var_parts == 1);
4403 if (dv_is_decl_p (var->dv))
4405 bool check_dupes = false;
4407 restart:
4408 for (node = var->var_part[0].loc_chain; node; node = node->next)
4410 if (GET_CODE (node->loc) == VALUE)
4411 gcc_assert (!VALUE_RECURSED_INTO (node->loc));
4412 else if (GET_CODE (node->loc) == REG)
4414 attrs att, *attp, *curp = NULL;
4416 if (var->refcount != 1)
4418 slot = unshare_variable (set, slot, var,
4419 VAR_INIT_STATUS_INITIALIZED);
4420 var = *slot;
4421 goto restart;
4424 for (attp = &set->regs[REGNO (node->loc)]; (att = *attp);
4425 attp = &att->next)
4426 if (att->offset == 0
4427 && GET_MODE (att->loc) == GET_MODE (node->loc))
4429 if (dv_is_value_p (att->dv))
4431 rtx cval = dv_as_value (att->dv);
4432 node->loc = cval;
4433 check_dupes = true;
4434 break;
4436 else if (dv_as_opaque (att->dv) == dv_as_opaque (var->dv))
4437 curp = attp;
4440 if (!curp)
4442 curp = attp;
4443 while (*curp)
4444 if ((*curp)->offset == 0
4445 && GET_MODE ((*curp)->loc) == GET_MODE (node->loc)
4446 && dv_as_opaque ((*curp)->dv) == dv_as_opaque (var->dv))
4447 break;
4448 else
4449 curp = &(*curp)->next;
4450 gcc_assert (*curp);
4453 if (!att)
4455 decl_or_value cdv;
4456 rtx cval;
4458 if (!*dfpm->permp)
4460 *dfpm->permp = XNEW (dataflow_set);
4461 dataflow_set_init (*dfpm->permp);
4464 for (att = (*dfpm->permp)->regs[REGNO (node->loc)];
4465 att; att = att->next)
4466 if (GET_MODE (att->loc) == GET_MODE (node->loc))
4468 gcc_assert (att->offset == 0
4469 && dv_is_value_p (att->dv));
4470 val_reset (set, att->dv);
4471 break;
4474 if (att)
4476 cdv = att->dv;
4477 cval = dv_as_value (cdv);
4479 else
4481 /* Create a unique value to hold this register,
4482 that ought to be found and reused in
4483 subsequent rounds. */
4484 cselib_val *v;
4485 gcc_assert (!cselib_lookup (node->loc,
4486 GET_MODE (node->loc), 0,
4487 VOIDmode));
4488 v = cselib_lookup (node->loc, GET_MODE (node->loc), 1,
4489 VOIDmode);
4490 cselib_preserve_value (v);
4491 cselib_invalidate_rtx (node->loc);
4492 cval = v->val_rtx;
4493 cdv = dv_from_value (cval);
4494 if (dump_file)
4495 fprintf (dump_file,
4496 "Created new value %u:%u for reg %i\n",
4497 v->uid, v->hash, REGNO (node->loc));
4500 var_reg_decl_set (*dfpm->permp, node->loc,
4501 VAR_INIT_STATUS_INITIALIZED,
4502 cdv, 0, NULL, INSERT);
4504 node->loc = cval;
4505 check_dupes = true;
4508 /* Remove attribute referring to the decl, which now
4509 uses the value for the register, already existing or
4510 to be added when we bring perm in. */
4511 att = *curp;
4512 *curp = att->next;
4513 pool_free (attrs_pool, att);
4517 if (check_dupes)
4518 remove_duplicate_values (var);
4521 return 1;
4524 /* Reset values in the permanent set that are not associated with the
4525 chosen expression. */
4528 variable_post_merge_perm_vals (variable_def **pslot, dfset_post_merge *dfpm)
4530 dataflow_set *set = dfpm->set;
4531 variable pvar = *pslot, var;
4532 location_chain pnode;
4533 decl_or_value dv;
4534 attrs att;
4536 gcc_assert (dv_is_value_p (pvar->dv)
4537 && pvar->n_var_parts == 1);
4538 pnode = pvar->var_part[0].loc_chain;
4539 gcc_assert (pnode
4540 && !pnode->next
4541 && REG_P (pnode->loc));
4543 dv = pvar->dv;
4545 var = shared_hash_find (set->vars, dv);
4546 if (var)
4548 /* Although variable_post_merge_new_vals may have made decls
4549 non-star-canonical, values that pre-existed in canonical form
4550 remain canonical, and newly-created values reference a single
4551 REG, so they are canonical as well. Since VAR has the
4552 location list for a VALUE, using find_loc_in_1pdv for it is
4553 fine, since VALUEs don't map back to DECLs. */
4554 if (find_loc_in_1pdv (pnode->loc, var, shared_hash_htab (set->vars)))
4555 return 1;
4556 val_reset (set, dv);
4559 for (att = set->regs[REGNO (pnode->loc)]; att; att = att->next)
4560 if (att->offset == 0
4561 && GET_MODE (att->loc) == GET_MODE (pnode->loc)
4562 && dv_is_value_p (att->dv))
4563 break;
4565 /* If there is a value associated with this register already, create
4566 an equivalence. */
4567 if (att && dv_as_value (att->dv) != dv_as_value (dv))
4569 rtx cval = dv_as_value (att->dv);
4570 set_variable_part (set, cval, dv, 0, pnode->init, NULL, INSERT);
4571 set_variable_part (set, dv_as_value (dv), att->dv, 0, pnode->init,
4572 NULL, INSERT);
4574 else if (!att)
4576 attrs_list_insert (&set->regs[REGNO (pnode->loc)],
4577 dv, 0, pnode->loc);
4578 variable_union (pvar, set);
4581 return 1;
4584 /* Just checking stuff and registering register attributes for
4585 now. */
4587 static void
4588 dataflow_post_merge_adjust (dataflow_set *set, dataflow_set **permp)
4590 struct dfset_post_merge dfpm;
4592 dfpm.set = set;
4593 dfpm.permp = permp;
4595 shared_hash_htab (set->vars)
4596 .traverse <dfset_post_merge*, variable_post_merge_new_vals> (&dfpm);
4597 if (*permp)
4598 shared_hash_htab ((*permp)->vars)
4599 .traverse <dfset_post_merge*, variable_post_merge_perm_vals> (&dfpm);
4600 shared_hash_htab (set->vars)
4601 .traverse <dataflow_set *, canonicalize_values_star> (set);
4602 shared_hash_htab (set->vars)
4603 .traverse <dataflow_set *, canonicalize_vars_star> (set);
4606 /* Return a node whose loc is a MEM that refers to EXPR in the
4607 location list of a one-part variable or value VAR, or in that of
4608 any values recursively mentioned in the location lists. */
4610 static location_chain
4611 find_mem_expr_in_1pdv (tree expr, rtx val, variable_table_type vars)
4613 location_chain node;
4614 decl_or_value dv;
4615 variable var;
4616 location_chain where = NULL;
4618 if (!val)
4619 return NULL;
4621 gcc_assert (GET_CODE (val) == VALUE
4622 && !VALUE_RECURSED_INTO (val));
4624 dv = dv_from_value (val);
4625 var = vars.find_with_hash (dv, dv_htab_hash (dv));
4627 if (!var)
4628 return NULL;
4630 gcc_assert (var->onepart);
4632 if (!var->n_var_parts)
4633 return NULL;
4635 VALUE_RECURSED_INTO (val) = true;
4637 for (node = var->var_part[0].loc_chain; node; node = node->next)
4638 if (MEM_P (node->loc)
4639 && MEM_EXPR (node->loc) == expr
4640 && INT_MEM_OFFSET (node->loc) == 0)
4642 where = node;
4643 break;
4645 else if (GET_CODE (node->loc) == VALUE
4646 && !VALUE_RECURSED_INTO (node->loc)
4647 && (where = find_mem_expr_in_1pdv (expr, node->loc, vars)))
4648 break;
4650 VALUE_RECURSED_INTO (val) = false;
4652 return where;
4655 /* Return TRUE if the value of MEM may vary across a call. */
4657 static bool
4658 mem_dies_at_call (rtx mem)
4660 tree expr = MEM_EXPR (mem);
4661 tree decl;
4663 if (!expr)
4664 return true;
4666 decl = get_base_address (expr);
4668 if (!decl)
4669 return true;
4671 if (!DECL_P (decl))
4672 return true;
4674 return (may_be_aliased (decl)
4675 || (!TREE_READONLY (decl) && is_global_var (decl)));
4678 /* Remove all MEMs from the location list of a hash table entry for a
4679 one-part variable, except those whose MEM attributes map back to
4680 the variable itself, directly or within a VALUE. */
4683 dataflow_set_preserve_mem_locs (variable_def **slot, dataflow_set *set)
4685 variable var = *slot;
4687 if (var->onepart == ONEPART_VDECL || var->onepart == ONEPART_DEXPR)
4689 tree decl = dv_as_decl (var->dv);
4690 location_chain loc, *locp;
4691 bool changed = false;
4693 if (!var->n_var_parts)
4694 return 1;
4696 gcc_assert (var->n_var_parts == 1);
4698 if (shared_var_p (var, set->vars))
4700 for (loc = var->var_part[0].loc_chain; loc; loc = loc->next)
4702 /* We want to remove dying MEMs that doesn't refer to DECL. */
4703 if (GET_CODE (loc->loc) == MEM
4704 && (MEM_EXPR (loc->loc) != decl
4705 || INT_MEM_OFFSET (loc->loc) != 0)
4706 && !mem_dies_at_call (loc->loc))
4707 break;
4708 /* We want to move here MEMs that do refer to DECL. */
4709 else if (GET_CODE (loc->loc) == VALUE
4710 && find_mem_expr_in_1pdv (decl, loc->loc,
4711 shared_hash_htab (set->vars)))
4712 break;
4715 if (!loc)
4716 return 1;
4718 slot = unshare_variable (set, slot, var, VAR_INIT_STATUS_UNKNOWN);
4719 var = *slot;
4720 gcc_assert (var->n_var_parts == 1);
4723 for (locp = &var->var_part[0].loc_chain, loc = *locp;
4724 loc; loc = *locp)
4726 rtx old_loc = loc->loc;
4727 if (GET_CODE (old_loc) == VALUE)
4729 location_chain mem_node
4730 = find_mem_expr_in_1pdv (decl, loc->loc,
4731 shared_hash_htab (set->vars));
4733 /* ??? This picks up only one out of multiple MEMs that
4734 refer to the same variable. Do we ever need to be
4735 concerned about dealing with more than one, or, given
4736 that they should all map to the same variable
4737 location, their addresses will have been merged and
4738 they will be regarded as equivalent? */
4739 if (mem_node)
4741 loc->loc = mem_node->loc;
4742 loc->set_src = mem_node->set_src;
4743 loc->init = MIN (loc->init, mem_node->init);
4747 if (GET_CODE (loc->loc) != MEM
4748 || (MEM_EXPR (loc->loc) == decl
4749 && INT_MEM_OFFSET (loc->loc) == 0)
4750 || !mem_dies_at_call (loc->loc))
4752 if (old_loc != loc->loc && emit_notes)
4754 if (old_loc == var->var_part[0].cur_loc)
4756 changed = true;
4757 var->var_part[0].cur_loc = NULL;
4760 locp = &loc->next;
4761 continue;
4764 if (emit_notes)
4766 if (old_loc == var->var_part[0].cur_loc)
4768 changed = true;
4769 var->var_part[0].cur_loc = NULL;
4772 *locp = loc->next;
4773 pool_free (loc_chain_pool, loc);
4776 if (!var->var_part[0].loc_chain)
4778 var->n_var_parts--;
4779 changed = true;
4781 if (changed)
4782 variable_was_changed (var, set);
4785 return 1;
4788 /* Remove all MEMs from the location list of a hash table entry for a
4789 value. */
4792 dataflow_set_remove_mem_locs (variable_def **slot, dataflow_set *set)
4794 variable var = *slot;
4796 if (var->onepart == ONEPART_VALUE)
4798 location_chain loc, *locp;
4799 bool changed = false;
4800 rtx cur_loc;
4802 gcc_assert (var->n_var_parts == 1);
4804 if (shared_var_p (var, set->vars))
4806 for (loc = var->var_part[0].loc_chain; loc; loc = loc->next)
4807 if (GET_CODE (loc->loc) == MEM
4808 && mem_dies_at_call (loc->loc))
4809 break;
4811 if (!loc)
4812 return 1;
4814 slot = unshare_variable (set, slot, var, VAR_INIT_STATUS_UNKNOWN);
4815 var = *slot;
4816 gcc_assert (var->n_var_parts == 1);
4819 if (VAR_LOC_1PAUX (var))
4820 cur_loc = VAR_LOC_FROM (var);
4821 else
4822 cur_loc = var->var_part[0].cur_loc;
4824 for (locp = &var->var_part[0].loc_chain, loc = *locp;
4825 loc; loc = *locp)
4827 if (GET_CODE (loc->loc) != MEM
4828 || !mem_dies_at_call (loc->loc))
4830 locp = &loc->next;
4831 continue;
4834 *locp = loc->next;
4835 /* If we have deleted the location which was last emitted
4836 we have to emit new location so add the variable to set
4837 of changed variables. */
4838 if (cur_loc == loc->loc)
4840 changed = true;
4841 var->var_part[0].cur_loc = NULL;
4842 if (VAR_LOC_1PAUX (var))
4843 VAR_LOC_FROM (var) = NULL;
4845 pool_free (loc_chain_pool, loc);
4848 if (!var->var_part[0].loc_chain)
4850 var->n_var_parts--;
4851 changed = true;
4853 if (changed)
4854 variable_was_changed (var, set);
4857 return 1;
4860 /* Remove all variable-location information about call-clobbered
4861 registers, as well as associations between MEMs and VALUEs. */
4863 static void
4864 dataflow_set_clear_at_call (dataflow_set *set)
4866 unsigned int r;
4867 hard_reg_set_iterator hrsi;
4869 EXECUTE_IF_SET_IN_HARD_REG_SET (regs_invalidated_by_call, 0, r, hrsi)
4870 var_regno_delete (set, r);
4872 if (MAY_HAVE_DEBUG_INSNS)
4874 set->traversed_vars = set->vars;
4875 shared_hash_htab (set->vars)
4876 .traverse <dataflow_set *, dataflow_set_preserve_mem_locs> (set);
4877 set->traversed_vars = set->vars;
4878 shared_hash_htab (set->vars)
4879 .traverse <dataflow_set *, dataflow_set_remove_mem_locs> (set);
4880 set->traversed_vars = NULL;
4884 static bool
4885 variable_part_different_p (variable_part *vp1, variable_part *vp2)
4887 location_chain lc1, lc2;
4889 for (lc1 = vp1->loc_chain; lc1; lc1 = lc1->next)
4891 for (lc2 = vp2->loc_chain; lc2; lc2 = lc2->next)
4893 if (REG_P (lc1->loc) && REG_P (lc2->loc))
4895 if (REGNO (lc1->loc) == REGNO (lc2->loc))
4896 break;
4898 if (rtx_equal_p (lc1->loc, lc2->loc))
4899 break;
4901 if (!lc2)
4902 return true;
4904 return false;
4907 /* Return true if one-part variables VAR1 and VAR2 are different.
4908 They must be in canonical order. */
4910 static bool
4911 onepart_variable_different_p (variable var1, variable var2)
4913 location_chain lc1, lc2;
4915 if (var1 == var2)
4916 return false;
4918 gcc_assert (var1->n_var_parts == 1
4919 && var2->n_var_parts == 1);
4921 lc1 = var1->var_part[0].loc_chain;
4922 lc2 = var2->var_part[0].loc_chain;
4924 gcc_assert (lc1 && lc2);
4926 while (lc1 && lc2)
4928 if (loc_cmp (lc1->loc, lc2->loc))
4929 return true;
4930 lc1 = lc1->next;
4931 lc2 = lc2->next;
4934 return lc1 != lc2;
4937 /* Return true if variables VAR1 and VAR2 are different. */
4939 static bool
4940 variable_different_p (variable var1, variable var2)
4942 int i;
4944 if (var1 == var2)
4945 return false;
4947 if (var1->onepart != var2->onepart)
4948 return true;
4950 if (var1->n_var_parts != var2->n_var_parts)
4951 return true;
4953 if (var1->onepart && var1->n_var_parts)
4955 gcc_checking_assert (dv_as_opaque (var1->dv) == dv_as_opaque (var2->dv)
4956 && var1->n_var_parts == 1);
4957 /* One-part values have locations in a canonical order. */
4958 return onepart_variable_different_p (var1, var2);
4961 for (i = 0; i < var1->n_var_parts; i++)
4963 if (VAR_PART_OFFSET (var1, i) != VAR_PART_OFFSET (var2, i))
4964 return true;
4965 if (variable_part_different_p (&var1->var_part[i], &var2->var_part[i]))
4966 return true;
4967 if (variable_part_different_p (&var2->var_part[i], &var1->var_part[i]))
4968 return true;
4970 return false;
4973 /* Return true if dataflow sets OLD_SET and NEW_SET differ. */
4975 static bool
4976 dataflow_set_different (dataflow_set *old_set, dataflow_set *new_set)
4978 variable_iterator_type hi;
4979 variable var1;
4981 if (old_set->vars == new_set->vars)
4982 return false;
4984 if (shared_hash_htab (old_set->vars).elements ()
4985 != shared_hash_htab (new_set->vars).elements ())
4986 return true;
4988 FOR_EACH_HASH_TABLE_ELEMENT (shared_hash_htab (old_set->vars),
4989 var1, variable, hi)
4991 variable_table_type htab = shared_hash_htab (new_set->vars);
4992 variable var2 = htab.find_with_hash (var1->dv, dv_htab_hash (var1->dv));
4993 if (!var2)
4995 if (dump_file && (dump_flags & TDF_DETAILS))
4997 fprintf (dump_file, "dataflow difference found: removal of:\n");
4998 dump_var (var1);
5000 return true;
5003 if (variable_different_p (var1, var2))
5005 if (dump_file && (dump_flags & TDF_DETAILS))
5007 fprintf (dump_file, "dataflow difference found: "
5008 "old and new follow:\n");
5009 dump_var (var1);
5010 dump_var (var2);
5012 return true;
5016 /* No need to traverse the second hashtab, if both have the same number
5017 of elements and the second one had all entries found in the first one,
5018 then it can't have any extra entries. */
5019 return false;
5022 /* Free the contents of dataflow set SET. */
5024 static void
5025 dataflow_set_destroy (dataflow_set *set)
5027 int i;
5029 for (i = 0; i < FIRST_PSEUDO_REGISTER; i++)
5030 attrs_list_clear (&set->regs[i]);
5032 shared_hash_destroy (set->vars);
5033 set->vars = NULL;
5036 /* Return true if RTL X contains a SYMBOL_REF. */
5038 static bool
5039 contains_symbol_ref (rtx x)
5041 const char *fmt;
5042 RTX_CODE code;
5043 int i;
5045 if (!x)
5046 return false;
5048 code = GET_CODE (x);
5049 if (code == SYMBOL_REF)
5050 return true;
5052 fmt = GET_RTX_FORMAT (code);
5053 for (i = GET_RTX_LENGTH (code) - 1; i >= 0; i--)
5055 if (fmt[i] == 'e')
5057 if (contains_symbol_ref (XEXP (x, i)))
5058 return true;
5060 else if (fmt[i] == 'E')
5062 int j;
5063 for (j = 0; j < XVECLEN (x, i); j++)
5064 if (contains_symbol_ref (XVECEXP (x, i, j)))
5065 return true;
5069 return false;
5072 /* Shall EXPR be tracked? */
5074 static bool
5075 track_expr_p (tree expr, bool need_rtl)
5077 rtx decl_rtl;
5078 tree realdecl;
5080 if (TREE_CODE (expr) == DEBUG_EXPR_DECL)
5081 return DECL_RTL_SET_P (expr);
5083 /* If EXPR is not a parameter or a variable do not track it. */
5084 if (TREE_CODE (expr) != VAR_DECL && TREE_CODE (expr) != PARM_DECL)
5085 return 0;
5087 /* It also must have a name... */
5088 if (!DECL_NAME (expr) && need_rtl)
5089 return 0;
5091 /* ... and a RTL assigned to it. */
5092 decl_rtl = DECL_RTL_IF_SET (expr);
5093 if (!decl_rtl && need_rtl)
5094 return 0;
5096 /* If this expression is really a debug alias of some other declaration, we
5097 don't need to track this expression if the ultimate declaration is
5098 ignored. */
5099 realdecl = expr;
5100 if (TREE_CODE (realdecl) == VAR_DECL && DECL_HAS_DEBUG_EXPR_P (realdecl))
5102 realdecl = DECL_DEBUG_EXPR (realdecl);
5103 if (!DECL_P (realdecl))
5105 if (handled_component_p (realdecl)
5106 || (TREE_CODE (realdecl) == MEM_REF
5107 && TREE_CODE (TREE_OPERAND (realdecl, 0)) == ADDR_EXPR))
5109 HOST_WIDE_INT bitsize, bitpos, maxsize;
5110 tree innerdecl
5111 = get_ref_base_and_extent (realdecl, &bitpos, &bitsize,
5112 &maxsize);
5113 if (!DECL_P (innerdecl)
5114 || DECL_IGNORED_P (innerdecl)
5115 /* Do not track declarations for parts of tracked parameters
5116 since we want to track them as a whole instead. */
5117 || (TREE_CODE (innerdecl) == PARM_DECL
5118 && DECL_MODE (innerdecl) != BLKmode
5119 && TREE_CODE (TREE_TYPE (innerdecl)) != UNION_TYPE)
5120 || TREE_STATIC (innerdecl)
5121 || bitsize <= 0
5122 || bitpos + bitsize > 256
5123 || bitsize != maxsize)
5124 return 0;
5125 else
5126 realdecl = expr;
5128 else
5129 return 0;
5133 /* Do not track EXPR if REALDECL it should be ignored for debugging
5134 purposes. */
5135 if (DECL_IGNORED_P (realdecl))
5136 return 0;
5138 /* Do not track global variables until we are able to emit correct location
5139 list for them. */
5140 if (TREE_STATIC (realdecl))
5141 return 0;
5143 /* When the EXPR is a DECL for alias of some variable (see example)
5144 the TREE_STATIC flag is not used. Disable tracking all DECLs whose
5145 DECL_RTL contains SYMBOL_REF.
5147 Example:
5148 extern char **_dl_argv_internal __attribute__ ((alias ("_dl_argv")));
5149 char **_dl_argv;
5151 if (decl_rtl && MEM_P (decl_rtl)
5152 && contains_symbol_ref (XEXP (decl_rtl, 0)))
5153 return 0;
5155 /* If RTX is a memory it should not be very large (because it would be
5156 an array or struct). */
5157 if (decl_rtl && MEM_P (decl_rtl))
5159 /* Do not track structures and arrays. */
5160 if (GET_MODE (decl_rtl) == BLKmode
5161 || AGGREGATE_TYPE_P (TREE_TYPE (realdecl)))
5162 return 0;
5163 if (MEM_SIZE_KNOWN_P (decl_rtl)
5164 && MEM_SIZE (decl_rtl) > MAX_VAR_PARTS)
5165 return 0;
5168 DECL_CHANGED (expr) = 0;
5169 DECL_CHANGED (realdecl) = 0;
5170 return 1;
5173 /* Determine whether a given LOC refers to the same variable part as
5174 EXPR+OFFSET. */
5176 static bool
5177 same_variable_part_p (rtx loc, tree expr, HOST_WIDE_INT offset)
5179 tree expr2;
5180 HOST_WIDE_INT offset2;
5182 if (! DECL_P (expr))
5183 return false;
5185 if (REG_P (loc))
5187 expr2 = REG_EXPR (loc);
5188 offset2 = REG_OFFSET (loc);
5190 else if (MEM_P (loc))
5192 expr2 = MEM_EXPR (loc);
5193 offset2 = INT_MEM_OFFSET (loc);
5195 else
5196 return false;
5198 if (! expr2 || ! DECL_P (expr2))
5199 return false;
5201 expr = var_debug_decl (expr);
5202 expr2 = var_debug_decl (expr2);
5204 return (expr == expr2 && offset == offset2);
5207 /* LOC is a REG or MEM that we would like to track if possible.
5208 If EXPR is null, we don't know what expression LOC refers to,
5209 otherwise it refers to EXPR + OFFSET. STORE_REG_P is true if
5210 LOC is an lvalue register.
5212 Return true if EXPR is nonnull and if LOC, or some lowpart of it,
5213 is something we can track. When returning true, store the mode of
5214 the lowpart we can track in *MODE_OUT (if nonnull) and its offset
5215 from EXPR in *OFFSET_OUT (if nonnull). */
5217 static bool
5218 track_loc_p (rtx loc, tree expr, HOST_WIDE_INT offset, bool store_reg_p,
5219 enum machine_mode *mode_out, HOST_WIDE_INT *offset_out)
5221 enum machine_mode mode;
5223 if (expr == NULL || !track_expr_p (expr, true))
5224 return false;
5226 /* If REG was a paradoxical subreg, its REG_ATTRS will describe the
5227 whole subreg, but only the old inner part is really relevant. */
5228 mode = GET_MODE (loc);
5229 if (REG_P (loc) && !HARD_REGISTER_NUM_P (ORIGINAL_REGNO (loc)))
5231 enum machine_mode pseudo_mode;
5233 pseudo_mode = PSEUDO_REGNO_MODE (ORIGINAL_REGNO (loc));
5234 if (GET_MODE_SIZE (mode) > GET_MODE_SIZE (pseudo_mode))
5236 offset += byte_lowpart_offset (pseudo_mode, mode);
5237 mode = pseudo_mode;
5241 /* If LOC is a paradoxical lowpart of EXPR, refer to EXPR itself.
5242 Do the same if we are storing to a register and EXPR occupies
5243 the whole of register LOC; in that case, the whole of EXPR is
5244 being changed. We exclude complex modes from the second case
5245 because the real and imaginary parts are represented as separate
5246 pseudo registers, even if the whole complex value fits into one
5247 hard register. */
5248 if ((GET_MODE_SIZE (mode) > GET_MODE_SIZE (DECL_MODE (expr))
5249 || (store_reg_p
5250 && !COMPLEX_MODE_P (DECL_MODE (expr))
5251 && hard_regno_nregs[REGNO (loc)][DECL_MODE (expr)] == 1))
5252 && offset + byte_lowpart_offset (DECL_MODE (expr), mode) == 0)
5254 mode = DECL_MODE (expr);
5255 offset = 0;
5258 if (offset < 0 || offset >= MAX_VAR_PARTS)
5259 return false;
5261 if (mode_out)
5262 *mode_out = mode;
5263 if (offset_out)
5264 *offset_out = offset;
5265 return true;
5268 /* Return the MODE lowpart of LOC, or null if LOC is not something we
5269 want to track. When returning nonnull, make sure that the attributes
5270 on the returned value are updated. */
5272 static rtx
5273 var_lowpart (enum machine_mode mode, rtx loc)
5275 unsigned int offset, reg_offset, regno;
5277 if (GET_MODE (loc) == mode)
5278 return loc;
5280 if (!REG_P (loc) && !MEM_P (loc))
5281 return NULL;
5283 offset = byte_lowpart_offset (mode, GET_MODE (loc));
5285 if (MEM_P (loc))
5286 return adjust_address_nv (loc, mode, offset);
5288 reg_offset = subreg_lowpart_offset (mode, GET_MODE (loc));
5289 regno = REGNO (loc) + subreg_regno_offset (REGNO (loc), GET_MODE (loc),
5290 reg_offset, mode);
5291 return gen_rtx_REG_offset (loc, mode, regno, offset);
5294 /* Carry information about uses and stores while walking rtx. */
5296 struct count_use_info
5298 /* The insn where the RTX is. */
5299 rtx insn;
5301 /* The basic block where insn is. */
5302 basic_block bb;
5304 /* The array of n_sets sets in the insn, as determined by cselib. */
5305 struct cselib_set *sets;
5306 int n_sets;
5308 /* True if we're counting stores, false otherwise. */
5309 bool store_p;
5312 /* Find a VALUE corresponding to X. */
5314 static inline cselib_val *
5315 find_use_val (rtx x, enum machine_mode mode, struct count_use_info *cui)
5317 int i;
5319 if (cui->sets)
5321 /* This is called after uses are set up and before stores are
5322 processed by cselib, so it's safe to look up srcs, but not
5323 dsts. So we look up expressions that appear in srcs or in
5324 dest expressions, but we search the sets array for dests of
5325 stores. */
5326 if (cui->store_p)
5328 /* Some targets represent memset and memcpy patterns
5329 by (set (mem:BLK ...) (reg:[QHSD]I ...)) or
5330 (set (mem:BLK ...) (const_int ...)) or
5331 (set (mem:BLK ...) (mem:BLK ...)). Don't return anything
5332 in that case, otherwise we end up with mode mismatches. */
5333 if (mode == BLKmode && MEM_P (x))
5334 return NULL;
5335 for (i = 0; i < cui->n_sets; i++)
5336 if (cui->sets[i].dest == x)
5337 return cui->sets[i].src_elt;
5339 else
5340 return cselib_lookup (x, mode, 0, VOIDmode);
5343 return NULL;
5346 /* Replace all registers and addresses in an expression with VALUE
5347 expressions that map back to them, unless the expression is a
5348 register. If no mapping is or can be performed, returns NULL. */
5350 static rtx
5351 replace_expr_with_values (rtx loc)
5353 if (REG_P (loc) || GET_CODE (loc) == ENTRY_VALUE)
5354 return NULL;
5355 else if (MEM_P (loc))
5357 cselib_val *addr = cselib_lookup (XEXP (loc, 0),
5358 get_address_mode (loc), 0,
5359 GET_MODE (loc));
5360 if (addr)
5361 return replace_equiv_address_nv (loc, addr->val_rtx);
5362 else
5363 return NULL;
5365 else
5366 return cselib_subst_to_values (loc, VOIDmode);
5369 /* Return true if *X is a DEBUG_EXPR. Usable as an argument to
5370 for_each_rtx to tell whether there are any DEBUG_EXPRs within
5371 RTX. */
5373 static int
5374 rtx_debug_expr_p (rtx *x, void *data ATTRIBUTE_UNUSED)
5376 rtx loc = *x;
5378 return GET_CODE (loc) == DEBUG_EXPR;
5381 /* Determine what kind of micro operation to choose for a USE. Return
5382 MO_CLOBBER if no micro operation is to be generated. */
5384 static enum micro_operation_type
5385 use_type (rtx loc, struct count_use_info *cui, enum machine_mode *modep)
5387 tree expr;
5389 if (cui && cui->sets)
5391 if (GET_CODE (loc) == VAR_LOCATION)
5393 if (track_expr_p (PAT_VAR_LOCATION_DECL (loc), false))
5395 rtx ploc = PAT_VAR_LOCATION_LOC (loc);
5396 if (! VAR_LOC_UNKNOWN_P (ploc))
5398 cselib_val *val = cselib_lookup (ploc, GET_MODE (loc), 1,
5399 VOIDmode);
5401 /* ??? flag_float_store and volatile mems are never
5402 given values, but we could in theory use them for
5403 locations. */
5404 gcc_assert (val || 1);
5406 return MO_VAL_LOC;
5408 else
5409 return MO_CLOBBER;
5412 if (REG_P (loc) || MEM_P (loc))
5414 if (modep)
5415 *modep = GET_MODE (loc);
5416 if (cui->store_p)
5418 if (REG_P (loc)
5419 || (find_use_val (loc, GET_MODE (loc), cui)
5420 && cselib_lookup (XEXP (loc, 0),
5421 get_address_mode (loc), 0,
5422 GET_MODE (loc))))
5423 return MO_VAL_SET;
5425 else
5427 cselib_val *val = find_use_val (loc, GET_MODE (loc), cui);
5429 if (val && !cselib_preserved_value_p (val))
5430 return MO_VAL_USE;
5435 if (REG_P (loc))
5437 gcc_assert (REGNO (loc) < FIRST_PSEUDO_REGISTER);
5439 if (loc == cfa_base_rtx)
5440 return MO_CLOBBER;
5441 expr = REG_EXPR (loc);
5443 if (!expr)
5444 return MO_USE_NO_VAR;
5445 else if (target_for_debug_bind (var_debug_decl (expr)))
5446 return MO_CLOBBER;
5447 else if (track_loc_p (loc, expr, REG_OFFSET (loc),
5448 false, modep, NULL))
5449 return MO_USE;
5450 else
5451 return MO_USE_NO_VAR;
5453 else if (MEM_P (loc))
5455 expr = MEM_EXPR (loc);
5457 if (!expr)
5458 return MO_CLOBBER;
5459 else if (target_for_debug_bind (var_debug_decl (expr)))
5460 return MO_CLOBBER;
5461 else if (track_loc_p (loc, expr, INT_MEM_OFFSET (loc),
5462 false, modep, NULL)
5463 /* Multi-part variables shouldn't refer to one-part
5464 variable names such as VALUEs (never happens) or
5465 DEBUG_EXPRs (only happens in the presence of debug
5466 insns). */
5467 && (!MAY_HAVE_DEBUG_INSNS
5468 || !for_each_rtx (&XEXP (loc, 0), rtx_debug_expr_p, NULL)))
5469 return MO_USE;
5470 else
5471 return MO_CLOBBER;
5474 return MO_CLOBBER;
5477 /* Log to OUT information about micro-operation MOPT involving X in
5478 INSN of BB. */
5480 static inline void
5481 log_op_type (rtx x, basic_block bb, rtx insn,
5482 enum micro_operation_type mopt, FILE *out)
5484 fprintf (out, "bb %i op %i insn %i %s ",
5485 bb->index, VTI (bb)->mos.length (),
5486 INSN_UID (insn), micro_operation_type_name[mopt]);
5487 print_inline_rtx (out, x, 2);
5488 fputc ('\n', out);
5491 /* Tell whether the CONCAT used to holds a VALUE and its location
5492 needs value resolution, i.e., an attempt of mapping the location
5493 back to other incoming values. */
5494 #define VAL_NEEDS_RESOLUTION(x) \
5495 (RTL_FLAG_CHECK1 ("VAL_NEEDS_RESOLUTION", (x), CONCAT)->volatil)
5496 /* Whether the location in the CONCAT is a tracked expression, that
5497 should also be handled like a MO_USE. */
5498 #define VAL_HOLDS_TRACK_EXPR(x) \
5499 (RTL_FLAG_CHECK1 ("VAL_HOLDS_TRACK_EXPR", (x), CONCAT)->used)
5500 /* Whether the location in the CONCAT should be handled like a MO_COPY
5501 as well. */
5502 #define VAL_EXPR_IS_COPIED(x) \
5503 (RTL_FLAG_CHECK1 ("VAL_EXPR_IS_COPIED", (x), CONCAT)->jump)
5504 /* Whether the location in the CONCAT should be handled like a
5505 MO_CLOBBER as well. */
5506 #define VAL_EXPR_IS_CLOBBERED(x) \
5507 (RTL_FLAG_CHECK1 ("VAL_EXPR_IS_CLOBBERED", (x), CONCAT)->unchanging)
5509 /* All preserved VALUEs. */
5510 static vec<rtx> preserved_values;
5512 /* Ensure VAL is preserved and remember it in a vector for vt_emit_notes. */
5514 static void
5515 preserve_value (cselib_val *val)
5517 cselib_preserve_value (val);
5518 preserved_values.safe_push (val->val_rtx);
5521 /* Helper function for MO_VAL_LOC handling. Return non-zero if
5522 any rtxes not suitable for CONST use not replaced by VALUEs
5523 are discovered. */
5525 static int
5526 non_suitable_const (rtx *x, void *data ATTRIBUTE_UNUSED)
5528 if (*x == NULL_RTX)
5529 return 0;
5531 switch (GET_CODE (*x))
5533 case REG:
5534 case DEBUG_EXPR:
5535 case PC:
5536 case SCRATCH:
5537 case CC0:
5538 case ASM_INPUT:
5539 case ASM_OPERANDS:
5540 return 1;
5541 case MEM:
5542 return !MEM_READONLY_P (*x);
5543 default:
5544 return 0;
5548 /* Add uses (register and memory references) LOC which will be tracked
5549 to VTI (bb)->mos. INSN is instruction which the LOC is part of. */
5551 static int
5552 add_uses (rtx *ploc, void *data)
5554 rtx loc = *ploc;
5555 enum machine_mode mode = VOIDmode;
5556 struct count_use_info *cui = (struct count_use_info *)data;
5557 enum micro_operation_type type = use_type (loc, cui, &mode);
5559 if (type != MO_CLOBBER)
5561 basic_block bb = cui->bb;
5562 micro_operation mo;
5564 mo.type = type;
5565 mo.u.loc = type == MO_USE ? var_lowpart (mode, loc) : loc;
5566 mo.insn = cui->insn;
5568 if (type == MO_VAL_LOC)
5570 rtx oloc = loc;
5571 rtx vloc = PAT_VAR_LOCATION_LOC (oloc);
5572 cselib_val *val;
5574 gcc_assert (cui->sets);
5576 if (MEM_P (vloc)
5577 && !REG_P (XEXP (vloc, 0))
5578 && !MEM_P (XEXP (vloc, 0)))
5580 rtx mloc = vloc;
5581 enum machine_mode address_mode = get_address_mode (mloc);
5582 cselib_val *val
5583 = cselib_lookup (XEXP (mloc, 0), address_mode, 0,
5584 GET_MODE (mloc));
5586 if (val && !cselib_preserved_value_p (val))
5587 preserve_value (val);
5590 if (CONSTANT_P (vloc)
5591 && (GET_CODE (vloc) != CONST
5592 || for_each_rtx (&vloc, non_suitable_const, NULL)))
5593 /* For constants don't look up any value. */;
5594 else if (!VAR_LOC_UNKNOWN_P (vloc) && !unsuitable_loc (vloc)
5595 && (val = find_use_val (vloc, GET_MODE (oloc), cui)))
5597 enum machine_mode mode2;
5598 enum micro_operation_type type2;
5599 rtx nloc = NULL;
5600 bool resolvable = REG_P (vloc) || MEM_P (vloc);
5602 if (resolvable)
5603 nloc = replace_expr_with_values (vloc);
5605 if (nloc)
5607 oloc = shallow_copy_rtx (oloc);
5608 PAT_VAR_LOCATION_LOC (oloc) = nloc;
5611 oloc = gen_rtx_CONCAT (mode, val->val_rtx, oloc);
5613 type2 = use_type (vloc, 0, &mode2);
5615 gcc_assert (type2 == MO_USE || type2 == MO_USE_NO_VAR
5616 || type2 == MO_CLOBBER);
5618 if (type2 == MO_CLOBBER
5619 && !cselib_preserved_value_p (val))
5621 VAL_NEEDS_RESOLUTION (oloc) = resolvable;
5622 preserve_value (val);
5625 else if (!VAR_LOC_UNKNOWN_P (vloc))
5627 oloc = shallow_copy_rtx (oloc);
5628 PAT_VAR_LOCATION_LOC (oloc) = gen_rtx_UNKNOWN_VAR_LOC ();
5631 mo.u.loc = oloc;
5633 else if (type == MO_VAL_USE)
5635 enum machine_mode mode2 = VOIDmode;
5636 enum micro_operation_type type2;
5637 cselib_val *val = find_use_val (loc, GET_MODE (loc), cui);
5638 rtx vloc, oloc = loc, nloc;
5640 gcc_assert (cui->sets);
5642 if (MEM_P (oloc)
5643 && !REG_P (XEXP (oloc, 0))
5644 && !MEM_P (XEXP (oloc, 0)))
5646 rtx mloc = oloc;
5647 enum machine_mode address_mode = get_address_mode (mloc);
5648 cselib_val *val
5649 = cselib_lookup (XEXP (mloc, 0), address_mode, 0,
5650 GET_MODE (mloc));
5652 if (val && !cselib_preserved_value_p (val))
5653 preserve_value (val);
5656 type2 = use_type (loc, 0, &mode2);
5658 gcc_assert (type2 == MO_USE || type2 == MO_USE_NO_VAR
5659 || type2 == MO_CLOBBER);
5661 if (type2 == MO_USE)
5662 vloc = var_lowpart (mode2, loc);
5663 else
5664 vloc = oloc;
5666 /* The loc of a MO_VAL_USE may have two forms:
5668 (concat val src): val is at src, a value-based
5669 representation.
5671 (concat (concat val use) src): same as above, with use as
5672 the MO_USE tracked value, if it differs from src.
5676 gcc_checking_assert (REG_P (loc) || MEM_P (loc));
5677 nloc = replace_expr_with_values (loc);
5678 if (!nloc)
5679 nloc = oloc;
5681 if (vloc != nloc)
5682 oloc = gen_rtx_CONCAT (mode2, val->val_rtx, vloc);
5683 else
5684 oloc = val->val_rtx;
5686 mo.u.loc = gen_rtx_CONCAT (mode, oloc, nloc);
5688 if (type2 == MO_USE)
5689 VAL_HOLDS_TRACK_EXPR (mo.u.loc) = 1;
5690 if (!cselib_preserved_value_p (val))
5692 VAL_NEEDS_RESOLUTION (mo.u.loc) = 1;
5693 preserve_value (val);
5696 else
5697 gcc_assert (type == MO_USE || type == MO_USE_NO_VAR);
5699 if (dump_file && (dump_flags & TDF_DETAILS))
5700 log_op_type (mo.u.loc, cui->bb, cui->insn, mo.type, dump_file);
5701 VTI (bb)->mos.safe_push (mo);
5704 return 0;
5707 /* Helper function for finding all uses of REG/MEM in X in insn INSN. */
5709 static void
5710 add_uses_1 (rtx *x, void *cui)
5712 for_each_rtx (x, add_uses, cui);
5715 /* This is the value used during expansion of locations. We want it
5716 to be unbounded, so that variables expanded deep in a recursion
5717 nest are fully evaluated, so that their values are cached
5718 correctly. We avoid recursion cycles through other means, and we
5719 don't unshare RTL, so excess complexity is not a problem. */
5720 #define EXPR_DEPTH (INT_MAX)
5721 /* We use this to keep too-complex expressions from being emitted as
5722 location notes, and then to debug information. Users can trade
5723 compile time for ridiculously complex expressions, although they're
5724 seldom useful, and they may often have to be discarded as not
5725 representable anyway. */
5726 #define EXPR_USE_DEPTH (PARAM_VALUE (PARAM_MAX_VARTRACK_EXPR_DEPTH))
5728 /* Attempt to reverse the EXPR operation in the debug info and record
5729 it in the cselib table. Say for reg1 = reg2 + 6 even when reg2 is
5730 no longer live we can express its value as VAL - 6. */
5732 static void
5733 reverse_op (rtx val, const_rtx expr, rtx insn)
5735 rtx src, arg, ret;
5736 cselib_val *v;
5737 struct elt_loc_list *l;
5738 enum rtx_code code;
5739 int count;
5741 if (GET_CODE (expr) != SET)
5742 return;
5744 if (!REG_P (SET_DEST (expr)) || GET_MODE (val) != GET_MODE (SET_DEST (expr)))
5745 return;
5747 src = SET_SRC (expr);
5748 switch (GET_CODE (src))
5750 case PLUS:
5751 case MINUS:
5752 case XOR:
5753 case NOT:
5754 case NEG:
5755 if (!REG_P (XEXP (src, 0)))
5756 return;
5757 break;
5758 case SIGN_EXTEND:
5759 case ZERO_EXTEND:
5760 if (!REG_P (XEXP (src, 0)) && !MEM_P (XEXP (src, 0)))
5761 return;
5762 break;
5763 default:
5764 return;
5767 if (!SCALAR_INT_MODE_P (GET_MODE (src)) || XEXP (src, 0) == cfa_base_rtx)
5768 return;
5770 v = cselib_lookup (XEXP (src, 0), GET_MODE (XEXP (src, 0)), 0, VOIDmode);
5771 if (!v || !cselib_preserved_value_p (v))
5772 return;
5774 /* Use canonical V to avoid creating multiple redundant expressions
5775 for different VALUES equivalent to V. */
5776 v = canonical_cselib_val (v);
5778 /* Adding a reverse op isn't useful if V already has an always valid
5779 location. Ignore ENTRY_VALUE, while it is always constant, we should
5780 prefer non-ENTRY_VALUE locations whenever possible. */
5781 for (l = v->locs, count = 0; l; l = l->next, count++)
5782 if (CONSTANT_P (l->loc)
5783 && (GET_CODE (l->loc) != CONST || !references_value_p (l->loc, 0)))
5784 return;
5785 /* Avoid creating too large locs lists. */
5786 else if (count == PARAM_VALUE (PARAM_MAX_VARTRACK_REVERSE_OP_SIZE))
5787 return;
5789 switch (GET_CODE (src))
5791 case NOT:
5792 case NEG:
5793 if (GET_MODE (v->val_rtx) != GET_MODE (val))
5794 return;
5795 ret = gen_rtx_fmt_e (GET_CODE (src), GET_MODE (val), val);
5796 break;
5797 case SIGN_EXTEND:
5798 case ZERO_EXTEND:
5799 ret = gen_lowpart_SUBREG (GET_MODE (v->val_rtx), val);
5800 break;
5801 case XOR:
5802 code = XOR;
5803 goto binary;
5804 case PLUS:
5805 code = MINUS;
5806 goto binary;
5807 case MINUS:
5808 code = PLUS;
5809 goto binary;
5810 binary:
5811 if (GET_MODE (v->val_rtx) != GET_MODE (val))
5812 return;
5813 arg = XEXP (src, 1);
5814 if (!CONST_INT_P (arg) && GET_CODE (arg) != SYMBOL_REF)
5816 arg = cselib_expand_value_rtx (arg, scratch_regs, 5);
5817 if (arg == NULL_RTX)
5818 return;
5819 if (!CONST_INT_P (arg) && GET_CODE (arg) != SYMBOL_REF)
5820 return;
5822 ret = simplify_gen_binary (code, GET_MODE (val), val, arg);
5823 if (ret == val)
5824 /* Ensure ret isn't VALUE itself (which can happen e.g. for
5825 (plus (reg1) (reg2)) when reg2 is known to be 0), as that
5826 breaks a lot of routines during var-tracking. */
5827 ret = gen_rtx_fmt_ee (PLUS, GET_MODE (val), val, const0_rtx);
5828 break;
5829 default:
5830 gcc_unreachable ();
5833 cselib_add_permanent_equiv (v, ret, insn);
5836 /* Add stores (register and memory references) LOC which will be tracked
5837 to VTI (bb)->mos. EXPR is the RTL expression containing the store.
5838 CUIP->insn is instruction which the LOC is part of. */
5840 static void
5841 add_stores (rtx loc, const_rtx expr, void *cuip)
5843 enum machine_mode mode = VOIDmode, mode2;
5844 struct count_use_info *cui = (struct count_use_info *)cuip;
5845 basic_block bb = cui->bb;
5846 micro_operation mo;
5847 rtx oloc = loc, nloc, src = NULL;
5848 enum micro_operation_type type = use_type (loc, cui, &mode);
5849 bool track_p = false;
5850 cselib_val *v;
5851 bool resolve, preserve;
5853 if (type == MO_CLOBBER)
5854 return;
5856 mode2 = mode;
5858 if (REG_P (loc))
5860 gcc_assert (loc != cfa_base_rtx);
5861 if ((GET_CODE (expr) == CLOBBER && type != MO_VAL_SET)
5862 || !(track_p = use_type (loc, NULL, &mode2) == MO_USE)
5863 || GET_CODE (expr) == CLOBBER)
5865 mo.type = MO_CLOBBER;
5866 mo.u.loc = loc;
5867 if (GET_CODE (expr) == SET
5868 && SET_DEST (expr) == loc
5869 && !unsuitable_loc (SET_SRC (expr))
5870 && find_use_val (loc, mode, cui))
5872 gcc_checking_assert (type == MO_VAL_SET);
5873 mo.u.loc = gen_rtx_SET (VOIDmode, loc, SET_SRC (expr));
5876 else
5878 if (GET_CODE (expr) == SET
5879 && SET_DEST (expr) == loc
5880 && GET_CODE (SET_SRC (expr)) != ASM_OPERANDS)
5881 src = var_lowpart (mode2, SET_SRC (expr));
5882 loc = var_lowpart (mode2, loc);
5884 if (src == NULL)
5886 mo.type = MO_SET;
5887 mo.u.loc = loc;
5889 else
5891 rtx xexpr = gen_rtx_SET (VOIDmode, loc, src);
5892 if (same_variable_part_p (src, REG_EXPR (loc), REG_OFFSET (loc)))
5894 /* If this is an instruction copying (part of) a parameter
5895 passed by invisible reference to its register location,
5896 pretend it's a SET so that the initial memory location
5897 is discarded, as the parameter register can be reused
5898 for other purposes and we do not track locations based
5899 on generic registers. */
5900 if (MEM_P (src)
5901 && REG_EXPR (loc)
5902 && TREE_CODE (REG_EXPR (loc)) == PARM_DECL
5903 && DECL_MODE (REG_EXPR (loc)) != BLKmode
5904 && MEM_P (DECL_INCOMING_RTL (REG_EXPR (loc)))
5905 && XEXP (DECL_INCOMING_RTL (REG_EXPR (loc)), 0)
5906 != arg_pointer_rtx)
5907 mo.type = MO_SET;
5908 else
5909 mo.type = MO_COPY;
5911 else
5912 mo.type = MO_SET;
5913 mo.u.loc = xexpr;
5916 mo.insn = cui->insn;
5918 else if (MEM_P (loc)
5919 && ((track_p = use_type (loc, NULL, &mode2) == MO_USE)
5920 || cui->sets))
5922 if (MEM_P (loc) && type == MO_VAL_SET
5923 && !REG_P (XEXP (loc, 0))
5924 && !MEM_P (XEXP (loc, 0)))
5926 rtx mloc = loc;
5927 enum machine_mode address_mode = get_address_mode (mloc);
5928 cselib_val *val = cselib_lookup (XEXP (mloc, 0),
5929 address_mode, 0,
5930 GET_MODE (mloc));
5932 if (val && !cselib_preserved_value_p (val))
5933 preserve_value (val);
5936 if (GET_CODE (expr) == CLOBBER || !track_p)
5938 mo.type = MO_CLOBBER;
5939 mo.u.loc = track_p ? var_lowpart (mode2, loc) : loc;
5941 else
5943 if (GET_CODE (expr) == SET
5944 && SET_DEST (expr) == loc
5945 && GET_CODE (SET_SRC (expr)) != ASM_OPERANDS)
5946 src = var_lowpart (mode2, SET_SRC (expr));
5947 loc = var_lowpart (mode2, loc);
5949 if (src == NULL)
5951 mo.type = MO_SET;
5952 mo.u.loc = loc;
5954 else
5956 rtx xexpr = gen_rtx_SET (VOIDmode, loc, src);
5957 if (same_variable_part_p (SET_SRC (xexpr),
5958 MEM_EXPR (loc),
5959 INT_MEM_OFFSET (loc)))
5960 mo.type = MO_COPY;
5961 else
5962 mo.type = MO_SET;
5963 mo.u.loc = xexpr;
5966 mo.insn = cui->insn;
5968 else
5969 return;
5971 if (type != MO_VAL_SET)
5972 goto log_and_return;
5974 v = find_use_val (oloc, mode, cui);
5976 if (!v)
5977 goto log_and_return;
5979 resolve = preserve = !cselib_preserved_value_p (v);
5981 /* We cannot track values for multiple-part variables, so we track only
5982 locations for tracked parameters passed either by invisible reference
5983 or directly in multiple locations. */
5984 if (track_p
5985 && REG_P (loc)
5986 && REG_EXPR (loc)
5987 && TREE_CODE (REG_EXPR (loc)) == PARM_DECL
5988 && DECL_MODE (REG_EXPR (loc)) != BLKmode
5989 && TREE_CODE (TREE_TYPE (REG_EXPR (loc))) != UNION_TYPE
5990 && ((MEM_P (DECL_INCOMING_RTL (REG_EXPR (loc)))
5991 && XEXP (DECL_INCOMING_RTL (REG_EXPR (loc)), 0) != arg_pointer_rtx)
5992 || (GET_CODE (DECL_INCOMING_RTL (REG_EXPR (loc))) == PARALLEL
5993 && XVECLEN (DECL_INCOMING_RTL (REG_EXPR (loc)), 0) > 1)))
5995 /* Although we don't use the value here, it could be used later by the
5996 mere virtue of its existence as the operand of the reverse operation
5997 that gave rise to it (typically extension/truncation). Make sure it
5998 is preserved as required by vt_expand_var_loc_chain. */
5999 if (preserve)
6000 preserve_value (v);
6001 goto log_and_return;
6004 if (loc == stack_pointer_rtx
6005 && hard_frame_pointer_adjustment != -1
6006 && preserve)
6007 cselib_set_value_sp_based (v);
6009 nloc = replace_expr_with_values (oloc);
6010 if (nloc)
6011 oloc = nloc;
6013 if (GET_CODE (PATTERN (cui->insn)) == COND_EXEC)
6015 cselib_val *oval = cselib_lookup (oloc, GET_MODE (oloc), 0, VOIDmode);
6017 gcc_assert (oval != v);
6018 gcc_assert (REG_P (oloc) || MEM_P (oloc));
6020 if (oval && !cselib_preserved_value_p (oval))
6022 micro_operation moa;
6024 preserve_value (oval);
6026 moa.type = MO_VAL_USE;
6027 moa.u.loc = gen_rtx_CONCAT (mode, oval->val_rtx, oloc);
6028 VAL_NEEDS_RESOLUTION (moa.u.loc) = 1;
6029 moa.insn = cui->insn;
6031 if (dump_file && (dump_flags & TDF_DETAILS))
6032 log_op_type (moa.u.loc, cui->bb, cui->insn,
6033 moa.type, dump_file);
6034 VTI (bb)->mos.safe_push (moa);
6037 resolve = false;
6039 else if (resolve && GET_CODE (mo.u.loc) == SET)
6041 if (REG_P (SET_SRC (expr)) || MEM_P (SET_SRC (expr)))
6042 nloc = replace_expr_with_values (SET_SRC (expr));
6043 else
6044 nloc = NULL_RTX;
6046 /* Avoid the mode mismatch between oexpr and expr. */
6047 if (!nloc && mode != mode2)
6049 nloc = SET_SRC (expr);
6050 gcc_assert (oloc == SET_DEST (expr));
6053 if (nloc && nloc != SET_SRC (mo.u.loc))
6054 oloc = gen_rtx_SET (GET_MODE (mo.u.loc), oloc, nloc);
6055 else
6057 if (oloc == SET_DEST (mo.u.loc))
6058 /* No point in duplicating. */
6059 oloc = mo.u.loc;
6060 if (!REG_P (SET_SRC (mo.u.loc)))
6061 resolve = false;
6064 else if (!resolve)
6066 if (GET_CODE (mo.u.loc) == SET
6067 && oloc == SET_DEST (mo.u.loc))
6068 /* No point in duplicating. */
6069 oloc = mo.u.loc;
6071 else
6072 resolve = false;
6074 loc = gen_rtx_CONCAT (mode, v->val_rtx, oloc);
6076 if (mo.u.loc != oloc)
6077 loc = gen_rtx_CONCAT (GET_MODE (mo.u.loc), loc, mo.u.loc);
6079 /* The loc of a MO_VAL_SET may have various forms:
6081 (concat val dst): dst now holds val
6083 (concat val (set dst src)): dst now holds val, copied from src
6085 (concat (concat val dstv) dst): dst now holds val; dstv is dst
6086 after replacing mems and non-top-level regs with values.
6088 (concat (concat val dstv) (set dst src)): dst now holds val,
6089 copied from src. dstv is a value-based representation of dst, if
6090 it differs from dst. If resolution is needed, src is a REG, and
6091 its mode is the same as that of val.
6093 (concat (concat val (set dstv srcv)) (set dst src)): src
6094 copied to dst, holding val. dstv and srcv are value-based
6095 representations of dst and src, respectively.
6099 if (GET_CODE (PATTERN (cui->insn)) != COND_EXEC)
6100 reverse_op (v->val_rtx, expr, cui->insn);
6102 mo.u.loc = loc;
6104 if (track_p)
6105 VAL_HOLDS_TRACK_EXPR (loc) = 1;
6106 if (preserve)
6108 VAL_NEEDS_RESOLUTION (loc) = resolve;
6109 preserve_value (v);
6111 if (mo.type == MO_CLOBBER)
6112 VAL_EXPR_IS_CLOBBERED (loc) = 1;
6113 if (mo.type == MO_COPY)
6114 VAL_EXPR_IS_COPIED (loc) = 1;
6116 mo.type = MO_VAL_SET;
6118 log_and_return:
6119 if (dump_file && (dump_flags & TDF_DETAILS))
6120 log_op_type (mo.u.loc, cui->bb, cui->insn, mo.type, dump_file);
6121 VTI (bb)->mos.safe_push (mo);
6124 /* Arguments to the call. */
6125 static rtx call_arguments;
6127 /* Compute call_arguments. */
6129 static void
6130 prepare_call_arguments (basic_block bb, rtx insn)
6132 rtx link, x, call;
6133 rtx prev, cur, next;
6134 rtx this_arg = NULL_RTX;
6135 tree type = NULL_TREE, t, fndecl = NULL_TREE;
6136 tree obj_type_ref = NULL_TREE;
6137 CUMULATIVE_ARGS args_so_far_v;
6138 cumulative_args_t args_so_far;
6140 memset (&args_so_far_v, 0, sizeof (args_so_far_v));
6141 args_so_far = pack_cumulative_args (&args_so_far_v);
6142 call = get_call_rtx_from (insn);
6143 if (call)
6145 if (GET_CODE (XEXP (XEXP (call, 0), 0)) == SYMBOL_REF)
6147 rtx symbol = XEXP (XEXP (call, 0), 0);
6148 if (SYMBOL_REF_DECL (symbol))
6149 fndecl = SYMBOL_REF_DECL (symbol);
6151 if (fndecl == NULL_TREE)
6152 fndecl = MEM_EXPR (XEXP (call, 0));
6153 if (fndecl
6154 && TREE_CODE (TREE_TYPE (fndecl)) != FUNCTION_TYPE
6155 && TREE_CODE (TREE_TYPE (fndecl)) != METHOD_TYPE)
6156 fndecl = NULL_TREE;
6157 if (fndecl && TYPE_ARG_TYPES (TREE_TYPE (fndecl)))
6158 type = TREE_TYPE (fndecl);
6159 if (fndecl && TREE_CODE (fndecl) != FUNCTION_DECL)
6161 if (TREE_CODE (fndecl) == INDIRECT_REF
6162 && TREE_CODE (TREE_OPERAND (fndecl, 0)) == OBJ_TYPE_REF)
6163 obj_type_ref = TREE_OPERAND (fndecl, 0);
6164 fndecl = NULL_TREE;
6166 if (type)
6168 for (t = TYPE_ARG_TYPES (type); t && t != void_list_node;
6169 t = TREE_CHAIN (t))
6170 if (TREE_CODE (TREE_VALUE (t)) == REFERENCE_TYPE
6171 && INTEGRAL_TYPE_P (TREE_TYPE (TREE_VALUE (t))))
6172 break;
6173 if ((t == NULL || t == void_list_node) && obj_type_ref == NULL_TREE)
6174 type = NULL;
6175 else
6177 int nargs ATTRIBUTE_UNUSED = list_length (TYPE_ARG_TYPES (type));
6178 link = CALL_INSN_FUNCTION_USAGE (insn);
6179 #ifndef PCC_STATIC_STRUCT_RETURN
6180 if (aggregate_value_p (TREE_TYPE (type), type)
6181 && targetm.calls.struct_value_rtx (type, 0) == 0)
6183 tree struct_addr = build_pointer_type (TREE_TYPE (type));
6184 enum machine_mode mode = TYPE_MODE (struct_addr);
6185 rtx reg;
6186 INIT_CUMULATIVE_ARGS (args_so_far_v, type, NULL_RTX, fndecl,
6187 nargs + 1);
6188 reg = targetm.calls.function_arg (args_so_far, mode,
6189 struct_addr, true);
6190 targetm.calls.function_arg_advance (args_so_far, mode,
6191 struct_addr, true);
6192 if (reg == NULL_RTX)
6194 for (; link; link = XEXP (link, 1))
6195 if (GET_CODE (XEXP (link, 0)) == USE
6196 && MEM_P (XEXP (XEXP (link, 0), 0)))
6198 link = XEXP (link, 1);
6199 break;
6203 else
6204 #endif
6205 INIT_CUMULATIVE_ARGS (args_so_far_v, type, NULL_RTX, fndecl,
6206 nargs);
6207 if (obj_type_ref && TYPE_ARG_TYPES (type) != void_list_node)
6209 enum machine_mode mode;
6210 t = TYPE_ARG_TYPES (type);
6211 mode = TYPE_MODE (TREE_VALUE (t));
6212 this_arg = targetm.calls.function_arg (args_so_far, mode,
6213 TREE_VALUE (t), true);
6214 if (this_arg && !REG_P (this_arg))
6215 this_arg = NULL_RTX;
6216 else if (this_arg == NULL_RTX)
6218 for (; link; link = XEXP (link, 1))
6219 if (GET_CODE (XEXP (link, 0)) == USE
6220 && MEM_P (XEXP (XEXP (link, 0), 0)))
6222 this_arg = XEXP (XEXP (link, 0), 0);
6223 break;
6230 t = type ? TYPE_ARG_TYPES (type) : NULL_TREE;
6232 for (link = CALL_INSN_FUNCTION_USAGE (insn); link; link = XEXP (link, 1))
6233 if (GET_CODE (XEXP (link, 0)) == USE)
6235 rtx item = NULL_RTX;
6236 x = XEXP (XEXP (link, 0), 0);
6237 if (GET_MODE (link) == VOIDmode
6238 || GET_MODE (link) == BLKmode
6239 || (GET_MODE (link) != GET_MODE (x)
6240 && (GET_MODE_CLASS (GET_MODE (link)) != MODE_INT
6241 || GET_MODE_CLASS (GET_MODE (x)) != MODE_INT)))
6242 /* Can't do anything for these, if the original type mode
6243 isn't known or can't be converted. */;
6244 else if (REG_P (x))
6246 cselib_val *val = cselib_lookup (x, GET_MODE (x), 0, VOIDmode);
6247 if (val && cselib_preserved_value_p (val))
6248 item = val->val_rtx;
6249 else if (GET_MODE_CLASS (GET_MODE (x)) == MODE_INT)
6251 enum machine_mode mode = GET_MODE (x);
6253 while ((mode = GET_MODE_WIDER_MODE (mode)) != VOIDmode
6254 && GET_MODE_BITSIZE (mode) <= BITS_PER_WORD)
6256 rtx reg = simplify_subreg (mode, x, GET_MODE (x), 0);
6258 if (reg == NULL_RTX || !REG_P (reg))
6259 continue;
6260 val = cselib_lookup (reg, mode, 0, VOIDmode);
6261 if (val && cselib_preserved_value_p (val))
6263 item = val->val_rtx;
6264 break;
6269 else if (MEM_P (x))
6271 rtx mem = x;
6272 cselib_val *val;
6274 if (!frame_pointer_needed)
6276 struct adjust_mem_data amd;
6277 amd.mem_mode = VOIDmode;
6278 amd.stack_adjust = -VTI (bb)->out.stack_adjust;
6279 amd.side_effects = NULL_RTX;
6280 amd.store = true;
6281 mem = simplify_replace_fn_rtx (mem, NULL_RTX, adjust_mems,
6282 &amd);
6283 gcc_assert (amd.side_effects == NULL_RTX);
6285 val = cselib_lookup (mem, GET_MODE (mem), 0, VOIDmode);
6286 if (val && cselib_preserved_value_p (val))
6287 item = val->val_rtx;
6288 else if (GET_MODE_CLASS (GET_MODE (mem)) != MODE_INT)
6290 /* For non-integer stack argument see also if they weren't
6291 initialized by integers. */
6292 enum machine_mode imode = int_mode_for_mode (GET_MODE (mem));
6293 if (imode != GET_MODE (mem) && imode != BLKmode)
6295 val = cselib_lookup (adjust_address_nv (mem, imode, 0),
6296 imode, 0, VOIDmode);
6297 if (val && cselib_preserved_value_p (val))
6298 item = lowpart_subreg (GET_MODE (x), val->val_rtx,
6299 imode);
6303 if (item)
6305 rtx x2 = x;
6306 if (GET_MODE (item) != GET_MODE (link))
6307 item = lowpart_subreg (GET_MODE (link), item, GET_MODE (item));
6308 if (GET_MODE (x2) != GET_MODE (link))
6309 x2 = lowpart_subreg (GET_MODE (link), x2, GET_MODE (x2));
6310 item = gen_rtx_CONCAT (GET_MODE (link), x2, item);
6311 call_arguments
6312 = gen_rtx_EXPR_LIST (VOIDmode, item, call_arguments);
6314 if (t && t != void_list_node)
6316 tree argtype = TREE_VALUE (t);
6317 enum machine_mode mode = TYPE_MODE (argtype);
6318 rtx reg;
6319 if (pass_by_reference (&args_so_far_v, mode, argtype, true))
6321 argtype = build_pointer_type (argtype);
6322 mode = TYPE_MODE (argtype);
6324 reg = targetm.calls.function_arg (args_so_far, mode,
6325 argtype, true);
6326 if (TREE_CODE (argtype) == REFERENCE_TYPE
6327 && INTEGRAL_TYPE_P (TREE_TYPE (argtype))
6328 && reg
6329 && REG_P (reg)
6330 && GET_MODE (reg) == mode
6331 && GET_MODE_CLASS (mode) == MODE_INT
6332 && REG_P (x)
6333 && REGNO (x) == REGNO (reg)
6334 && GET_MODE (x) == mode
6335 && item)
6337 enum machine_mode indmode
6338 = TYPE_MODE (TREE_TYPE (argtype));
6339 rtx mem = gen_rtx_MEM (indmode, x);
6340 cselib_val *val = cselib_lookup (mem, indmode, 0, VOIDmode);
6341 if (val && cselib_preserved_value_p (val))
6343 item = gen_rtx_CONCAT (indmode, mem, val->val_rtx);
6344 call_arguments = gen_rtx_EXPR_LIST (VOIDmode, item,
6345 call_arguments);
6347 else
6349 struct elt_loc_list *l;
6350 tree initial;
6352 /* Try harder, when passing address of a constant
6353 pool integer it can be easily read back. */
6354 item = XEXP (item, 1);
6355 if (GET_CODE (item) == SUBREG)
6356 item = SUBREG_REG (item);
6357 gcc_assert (GET_CODE (item) == VALUE);
6358 val = CSELIB_VAL_PTR (item);
6359 for (l = val->locs; l; l = l->next)
6360 if (GET_CODE (l->loc) == SYMBOL_REF
6361 && TREE_CONSTANT_POOL_ADDRESS_P (l->loc)
6362 && SYMBOL_REF_DECL (l->loc)
6363 && DECL_INITIAL (SYMBOL_REF_DECL (l->loc)))
6365 initial = DECL_INITIAL (SYMBOL_REF_DECL (l->loc));
6366 if (tree_fits_shwi_p (initial))
6368 item = GEN_INT (tree_to_shwi (initial));
6369 item = gen_rtx_CONCAT (indmode, mem, item);
6370 call_arguments
6371 = gen_rtx_EXPR_LIST (VOIDmode, item,
6372 call_arguments);
6374 break;
6378 targetm.calls.function_arg_advance (args_so_far, mode,
6379 argtype, true);
6380 t = TREE_CHAIN (t);
6384 /* Add debug arguments. */
6385 if (fndecl
6386 && TREE_CODE (fndecl) == FUNCTION_DECL
6387 && DECL_HAS_DEBUG_ARGS_P (fndecl))
6389 vec<tree, va_gc> **debug_args = decl_debug_args_lookup (fndecl);
6390 if (debug_args)
6392 unsigned int ix;
6393 tree param;
6394 for (ix = 0; vec_safe_iterate (*debug_args, ix, &param); ix += 2)
6396 rtx item;
6397 tree dtemp = (**debug_args)[ix + 1];
6398 enum machine_mode mode = DECL_MODE (dtemp);
6399 item = gen_rtx_DEBUG_PARAMETER_REF (mode, param);
6400 item = gen_rtx_CONCAT (mode, item, DECL_RTL_KNOWN_SET (dtemp));
6401 call_arguments = gen_rtx_EXPR_LIST (VOIDmode, item,
6402 call_arguments);
6407 /* Reverse call_arguments chain. */
6408 prev = NULL_RTX;
6409 for (cur = call_arguments; cur; cur = next)
6411 next = XEXP (cur, 1);
6412 XEXP (cur, 1) = prev;
6413 prev = cur;
6415 call_arguments = prev;
6417 x = get_call_rtx_from (insn);
6418 if (x)
6420 x = XEXP (XEXP (x, 0), 0);
6421 if (GET_CODE (x) == SYMBOL_REF)
6422 /* Don't record anything. */;
6423 else if (CONSTANT_P (x))
6425 x = gen_rtx_CONCAT (GET_MODE (x) == VOIDmode ? Pmode : GET_MODE (x),
6426 pc_rtx, x);
6427 call_arguments
6428 = gen_rtx_EXPR_LIST (VOIDmode, x, call_arguments);
6430 else
6432 cselib_val *val = cselib_lookup (x, GET_MODE (x), 0, VOIDmode);
6433 if (val && cselib_preserved_value_p (val))
6435 x = gen_rtx_CONCAT (GET_MODE (x), pc_rtx, val->val_rtx);
6436 call_arguments
6437 = gen_rtx_EXPR_LIST (VOIDmode, x, call_arguments);
6441 if (this_arg)
6443 enum machine_mode mode
6444 = TYPE_MODE (TREE_TYPE (OBJ_TYPE_REF_EXPR (obj_type_ref)));
6445 rtx clobbered = gen_rtx_MEM (mode, this_arg);
6446 HOST_WIDE_INT token
6447 = tree_to_shwi (OBJ_TYPE_REF_TOKEN (obj_type_ref));
6448 if (token)
6449 clobbered = plus_constant (mode, clobbered,
6450 token * GET_MODE_SIZE (mode));
6451 clobbered = gen_rtx_MEM (mode, clobbered);
6452 x = gen_rtx_CONCAT (mode, gen_rtx_CLOBBER (VOIDmode, pc_rtx), clobbered);
6453 call_arguments
6454 = gen_rtx_EXPR_LIST (VOIDmode, x, call_arguments);
6458 /* Callback for cselib_record_sets_hook, that records as micro
6459 operations uses and stores in an insn after cselib_record_sets has
6460 analyzed the sets in an insn, but before it modifies the stored
6461 values in the internal tables, unless cselib_record_sets doesn't
6462 call it directly (perhaps because we're not doing cselib in the
6463 first place, in which case sets and n_sets will be 0). */
6465 static void
6466 add_with_sets (rtx insn, struct cselib_set *sets, int n_sets)
6468 basic_block bb = BLOCK_FOR_INSN (insn);
6469 int n1, n2;
6470 struct count_use_info cui;
6471 micro_operation *mos;
6473 cselib_hook_called = true;
6475 cui.insn = insn;
6476 cui.bb = bb;
6477 cui.sets = sets;
6478 cui.n_sets = n_sets;
6480 n1 = VTI (bb)->mos.length ();
6481 cui.store_p = false;
6482 note_uses (&PATTERN (insn), add_uses_1, &cui);
6483 n2 = VTI (bb)->mos.length () - 1;
6484 mos = VTI (bb)->mos.address ();
6486 /* Order the MO_USEs to be before MO_USE_NO_VARs and MO_VAL_USE, and
6487 MO_VAL_LOC last. */
6488 while (n1 < n2)
6490 while (n1 < n2 && mos[n1].type == MO_USE)
6491 n1++;
6492 while (n1 < n2 && mos[n2].type != MO_USE)
6493 n2--;
6494 if (n1 < n2)
6496 micro_operation sw;
6498 sw = mos[n1];
6499 mos[n1] = mos[n2];
6500 mos[n2] = sw;
6504 n2 = VTI (bb)->mos.length () - 1;
6505 while (n1 < n2)
6507 while (n1 < n2 && mos[n1].type != MO_VAL_LOC)
6508 n1++;
6509 while (n1 < n2 && mos[n2].type == MO_VAL_LOC)
6510 n2--;
6511 if (n1 < n2)
6513 micro_operation sw;
6515 sw = mos[n1];
6516 mos[n1] = mos[n2];
6517 mos[n2] = sw;
6521 if (CALL_P (insn))
6523 micro_operation mo;
6525 mo.type = MO_CALL;
6526 mo.insn = insn;
6527 mo.u.loc = call_arguments;
6528 call_arguments = NULL_RTX;
6530 if (dump_file && (dump_flags & TDF_DETAILS))
6531 log_op_type (PATTERN (insn), bb, insn, mo.type, dump_file);
6532 VTI (bb)->mos.safe_push (mo);
6535 n1 = VTI (bb)->mos.length ();
6536 /* This will record NEXT_INSN (insn), such that we can
6537 insert notes before it without worrying about any
6538 notes that MO_USEs might emit after the insn. */
6539 cui.store_p = true;
6540 note_stores (PATTERN (insn), add_stores, &cui);
6541 n2 = VTI (bb)->mos.length () - 1;
6542 mos = VTI (bb)->mos.address ();
6544 /* Order the MO_VAL_USEs first (note_stores does nothing
6545 on DEBUG_INSNs, so there are no MO_VAL_LOCs from this
6546 insn), then MO_CLOBBERs, then MO_SET/MO_COPY/MO_VAL_SET. */
6547 while (n1 < n2)
6549 while (n1 < n2 && mos[n1].type == MO_VAL_USE)
6550 n1++;
6551 while (n1 < n2 && mos[n2].type != MO_VAL_USE)
6552 n2--;
6553 if (n1 < n2)
6555 micro_operation sw;
6557 sw = mos[n1];
6558 mos[n1] = mos[n2];
6559 mos[n2] = sw;
6563 n2 = VTI (bb)->mos.length () - 1;
6564 while (n1 < n2)
6566 while (n1 < n2 && mos[n1].type == MO_CLOBBER)
6567 n1++;
6568 while (n1 < n2 && mos[n2].type != MO_CLOBBER)
6569 n2--;
6570 if (n1 < n2)
6572 micro_operation sw;
6574 sw = mos[n1];
6575 mos[n1] = mos[n2];
6576 mos[n2] = sw;
6581 static enum var_init_status
6582 find_src_status (dataflow_set *in, rtx src)
6584 tree decl = NULL_TREE;
6585 enum var_init_status status = VAR_INIT_STATUS_UNINITIALIZED;
6587 if (! flag_var_tracking_uninit)
6588 status = VAR_INIT_STATUS_INITIALIZED;
6590 if (src && REG_P (src))
6591 decl = var_debug_decl (REG_EXPR (src));
6592 else if (src && MEM_P (src))
6593 decl = var_debug_decl (MEM_EXPR (src));
6595 if (src && decl)
6596 status = get_init_value (in, src, dv_from_decl (decl));
6598 return status;
6601 /* SRC is the source of an assignment. Use SET to try to find what
6602 was ultimately assigned to SRC. Return that value if known,
6603 otherwise return SRC itself. */
6605 static rtx
6606 find_src_set_src (dataflow_set *set, rtx src)
6608 tree decl = NULL_TREE; /* The variable being copied around. */
6609 rtx set_src = NULL_RTX; /* The value for "decl" stored in "src". */
6610 variable var;
6611 location_chain nextp;
6612 int i;
6613 bool found;
6615 if (src && REG_P (src))
6616 decl = var_debug_decl (REG_EXPR (src));
6617 else if (src && MEM_P (src))
6618 decl = var_debug_decl (MEM_EXPR (src));
6620 if (src && decl)
6622 decl_or_value dv = dv_from_decl (decl);
6624 var = shared_hash_find (set->vars, dv);
6625 if (var)
6627 found = false;
6628 for (i = 0; i < var->n_var_parts && !found; i++)
6629 for (nextp = var->var_part[i].loc_chain; nextp && !found;
6630 nextp = nextp->next)
6631 if (rtx_equal_p (nextp->loc, src))
6633 set_src = nextp->set_src;
6634 found = true;
6640 return set_src;
6643 /* Compute the changes of variable locations in the basic block BB. */
6645 static bool
6646 compute_bb_dataflow (basic_block bb)
6648 unsigned int i;
6649 micro_operation *mo;
6650 bool changed;
6651 dataflow_set old_out;
6652 dataflow_set *in = &VTI (bb)->in;
6653 dataflow_set *out = &VTI (bb)->out;
6655 dataflow_set_init (&old_out);
6656 dataflow_set_copy (&old_out, out);
6657 dataflow_set_copy (out, in);
6659 if (MAY_HAVE_DEBUG_INSNS)
6660 local_get_addr_cache = pointer_map_create ();
6662 FOR_EACH_VEC_ELT (VTI (bb)->mos, i, mo)
6664 rtx insn = mo->insn;
6666 switch (mo->type)
6668 case MO_CALL:
6669 dataflow_set_clear_at_call (out);
6670 break;
6672 case MO_USE:
6674 rtx loc = mo->u.loc;
6676 if (REG_P (loc))
6677 var_reg_set (out, loc, VAR_INIT_STATUS_UNINITIALIZED, NULL);
6678 else if (MEM_P (loc))
6679 var_mem_set (out, loc, VAR_INIT_STATUS_UNINITIALIZED, NULL);
6681 break;
6683 case MO_VAL_LOC:
6685 rtx loc = mo->u.loc;
6686 rtx val, vloc;
6687 tree var;
6689 if (GET_CODE (loc) == CONCAT)
6691 val = XEXP (loc, 0);
6692 vloc = XEXP (loc, 1);
6694 else
6696 val = NULL_RTX;
6697 vloc = loc;
6700 var = PAT_VAR_LOCATION_DECL (vloc);
6702 clobber_variable_part (out, NULL_RTX,
6703 dv_from_decl (var), 0, NULL_RTX);
6704 if (val)
6706 if (VAL_NEEDS_RESOLUTION (loc))
6707 val_resolve (out, val, PAT_VAR_LOCATION_LOC (vloc), insn);
6708 set_variable_part (out, val, dv_from_decl (var), 0,
6709 VAR_INIT_STATUS_INITIALIZED, NULL_RTX,
6710 INSERT);
6712 else if (!VAR_LOC_UNKNOWN_P (PAT_VAR_LOCATION_LOC (vloc)))
6713 set_variable_part (out, PAT_VAR_LOCATION_LOC (vloc),
6714 dv_from_decl (var), 0,
6715 VAR_INIT_STATUS_INITIALIZED, NULL_RTX,
6716 INSERT);
6718 break;
6720 case MO_VAL_USE:
6722 rtx loc = mo->u.loc;
6723 rtx val, vloc, uloc;
6725 vloc = uloc = XEXP (loc, 1);
6726 val = XEXP (loc, 0);
6728 if (GET_CODE (val) == CONCAT)
6730 uloc = XEXP (val, 1);
6731 val = XEXP (val, 0);
6734 if (VAL_NEEDS_RESOLUTION (loc))
6735 val_resolve (out, val, vloc, insn);
6736 else
6737 val_store (out, val, uloc, insn, false);
6739 if (VAL_HOLDS_TRACK_EXPR (loc))
6741 if (GET_CODE (uloc) == REG)
6742 var_reg_set (out, uloc, VAR_INIT_STATUS_UNINITIALIZED,
6743 NULL);
6744 else if (GET_CODE (uloc) == MEM)
6745 var_mem_set (out, uloc, VAR_INIT_STATUS_UNINITIALIZED,
6746 NULL);
6749 break;
6751 case MO_VAL_SET:
6753 rtx loc = mo->u.loc;
6754 rtx val, vloc, uloc;
6755 rtx dstv, srcv;
6757 vloc = loc;
6758 uloc = XEXP (vloc, 1);
6759 val = XEXP (vloc, 0);
6760 vloc = uloc;
6762 if (GET_CODE (uloc) == SET)
6764 dstv = SET_DEST (uloc);
6765 srcv = SET_SRC (uloc);
6767 else
6769 dstv = uloc;
6770 srcv = NULL;
6773 if (GET_CODE (val) == CONCAT)
6775 dstv = vloc = XEXP (val, 1);
6776 val = XEXP (val, 0);
6779 if (GET_CODE (vloc) == SET)
6781 srcv = SET_SRC (vloc);
6783 gcc_assert (val != srcv);
6784 gcc_assert (vloc == uloc || VAL_NEEDS_RESOLUTION (loc));
6786 dstv = vloc = SET_DEST (vloc);
6788 if (VAL_NEEDS_RESOLUTION (loc))
6789 val_resolve (out, val, srcv, insn);
6791 else if (VAL_NEEDS_RESOLUTION (loc))
6793 gcc_assert (GET_CODE (uloc) == SET
6794 && GET_CODE (SET_SRC (uloc)) == REG);
6795 val_resolve (out, val, SET_SRC (uloc), insn);
6798 if (VAL_HOLDS_TRACK_EXPR (loc))
6800 if (VAL_EXPR_IS_CLOBBERED (loc))
6802 if (REG_P (uloc))
6803 var_reg_delete (out, uloc, true);
6804 else if (MEM_P (uloc))
6806 gcc_assert (MEM_P (dstv));
6807 gcc_assert (MEM_ATTRS (dstv) == MEM_ATTRS (uloc));
6808 var_mem_delete (out, dstv, true);
6811 else
6813 bool copied_p = VAL_EXPR_IS_COPIED (loc);
6814 rtx src = NULL, dst = uloc;
6815 enum var_init_status status = VAR_INIT_STATUS_INITIALIZED;
6817 if (GET_CODE (uloc) == SET)
6819 src = SET_SRC (uloc);
6820 dst = SET_DEST (uloc);
6823 if (copied_p)
6825 if (flag_var_tracking_uninit)
6827 status = find_src_status (in, src);
6829 if (status == VAR_INIT_STATUS_UNKNOWN)
6830 status = find_src_status (out, src);
6833 src = find_src_set_src (in, src);
6836 if (REG_P (dst))
6837 var_reg_delete_and_set (out, dst, !copied_p,
6838 status, srcv);
6839 else if (MEM_P (dst))
6841 gcc_assert (MEM_P (dstv));
6842 gcc_assert (MEM_ATTRS (dstv) == MEM_ATTRS (dst));
6843 var_mem_delete_and_set (out, dstv, !copied_p,
6844 status, srcv);
6848 else if (REG_P (uloc))
6849 var_regno_delete (out, REGNO (uloc));
6850 else if (MEM_P (uloc))
6852 gcc_checking_assert (GET_CODE (vloc) == MEM);
6853 gcc_checking_assert (dstv == vloc);
6854 if (dstv != vloc)
6855 clobber_overlapping_mems (out, vloc);
6858 val_store (out, val, dstv, insn, true);
6860 break;
6862 case MO_SET:
6864 rtx loc = mo->u.loc;
6865 rtx set_src = NULL;
6867 if (GET_CODE (loc) == SET)
6869 set_src = SET_SRC (loc);
6870 loc = SET_DEST (loc);
6873 if (REG_P (loc))
6874 var_reg_delete_and_set (out, loc, true, VAR_INIT_STATUS_INITIALIZED,
6875 set_src);
6876 else if (MEM_P (loc))
6877 var_mem_delete_and_set (out, loc, true, VAR_INIT_STATUS_INITIALIZED,
6878 set_src);
6880 break;
6882 case MO_COPY:
6884 rtx loc = mo->u.loc;
6885 enum var_init_status src_status;
6886 rtx set_src = NULL;
6888 if (GET_CODE (loc) == SET)
6890 set_src = SET_SRC (loc);
6891 loc = SET_DEST (loc);
6894 if (! flag_var_tracking_uninit)
6895 src_status = VAR_INIT_STATUS_INITIALIZED;
6896 else
6898 src_status = find_src_status (in, set_src);
6900 if (src_status == VAR_INIT_STATUS_UNKNOWN)
6901 src_status = find_src_status (out, set_src);
6904 set_src = find_src_set_src (in, set_src);
6906 if (REG_P (loc))
6907 var_reg_delete_and_set (out, loc, false, src_status, set_src);
6908 else if (MEM_P (loc))
6909 var_mem_delete_and_set (out, loc, false, src_status, set_src);
6911 break;
6913 case MO_USE_NO_VAR:
6915 rtx loc = mo->u.loc;
6917 if (REG_P (loc))
6918 var_reg_delete (out, loc, false);
6919 else if (MEM_P (loc))
6920 var_mem_delete (out, loc, false);
6922 break;
6924 case MO_CLOBBER:
6926 rtx loc = mo->u.loc;
6928 if (REG_P (loc))
6929 var_reg_delete (out, loc, true);
6930 else if (MEM_P (loc))
6931 var_mem_delete (out, loc, true);
6933 break;
6935 case MO_ADJUST:
6936 out->stack_adjust += mo->u.adjust;
6937 break;
6941 if (MAY_HAVE_DEBUG_INSNS)
6943 pointer_map_destroy (local_get_addr_cache);
6944 local_get_addr_cache = NULL;
6946 dataflow_set_equiv_regs (out);
6947 shared_hash_htab (out->vars)
6948 .traverse <dataflow_set *, canonicalize_values_mark> (out);
6949 shared_hash_htab (out->vars)
6950 .traverse <dataflow_set *, canonicalize_values_star> (out);
6951 #if ENABLE_CHECKING
6952 shared_hash_htab (out->vars)
6953 .traverse <dataflow_set *, canonicalize_loc_order_check> (out);
6954 #endif
6956 changed = dataflow_set_different (&old_out, out);
6957 dataflow_set_destroy (&old_out);
6958 return changed;
6961 /* Find the locations of variables in the whole function. */
6963 static bool
6964 vt_find_locations (void)
6966 fibheap_t worklist, pending, fibheap_swap;
6967 sbitmap visited, in_worklist, in_pending, sbitmap_swap;
6968 basic_block bb;
6969 edge e;
6970 int *bb_order;
6971 int *rc_order;
6972 int i;
6973 int htabsz = 0;
6974 int htabmax = PARAM_VALUE (PARAM_MAX_VARTRACK_SIZE);
6975 bool success = true;
6977 timevar_push (TV_VAR_TRACKING_DATAFLOW);
6978 /* Compute reverse completion order of depth first search of the CFG
6979 so that the data-flow runs faster. */
6980 rc_order = XNEWVEC (int, n_basic_blocks_for_fn (cfun) - NUM_FIXED_BLOCKS);
6981 bb_order = XNEWVEC (int, last_basic_block_for_fn (cfun));
6982 pre_and_rev_post_order_compute (NULL, rc_order, false);
6983 for (i = 0; i < n_basic_blocks_for_fn (cfun) - NUM_FIXED_BLOCKS; i++)
6984 bb_order[rc_order[i]] = i;
6985 free (rc_order);
6987 worklist = fibheap_new ();
6988 pending = fibheap_new ();
6989 visited = sbitmap_alloc (last_basic_block_for_fn (cfun));
6990 in_worklist = sbitmap_alloc (last_basic_block_for_fn (cfun));
6991 in_pending = sbitmap_alloc (last_basic_block_for_fn (cfun));
6992 bitmap_clear (in_worklist);
6994 FOR_EACH_BB_FN (bb, cfun)
6995 fibheap_insert (pending, bb_order[bb->index], bb);
6996 bitmap_ones (in_pending);
6998 while (success && !fibheap_empty (pending))
7000 fibheap_swap = pending;
7001 pending = worklist;
7002 worklist = fibheap_swap;
7003 sbitmap_swap = in_pending;
7004 in_pending = in_worklist;
7005 in_worklist = sbitmap_swap;
7007 bitmap_clear (visited);
7009 while (!fibheap_empty (worklist))
7011 bb = (basic_block) fibheap_extract_min (worklist);
7012 bitmap_clear_bit (in_worklist, bb->index);
7013 gcc_assert (!bitmap_bit_p (visited, bb->index));
7014 if (!bitmap_bit_p (visited, bb->index))
7016 bool changed;
7017 edge_iterator ei;
7018 int oldinsz, oldoutsz;
7020 bitmap_set_bit (visited, bb->index);
7022 if (VTI (bb)->in.vars)
7024 htabsz
7025 -= shared_hash_htab (VTI (bb)->in.vars).size ()
7026 + shared_hash_htab (VTI (bb)->out.vars).size ();
7027 oldinsz = shared_hash_htab (VTI (bb)->in.vars).elements ();
7028 oldoutsz = shared_hash_htab (VTI (bb)->out.vars).elements ();
7030 else
7031 oldinsz = oldoutsz = 0;
7033 if (MAY_HAVE_DEBUG_INSNS)
7035 dataflow_set *in = &VTI (bb)->in, *first_out = NULL;
7036 bool first = true, adjust = false;
7038 /* Calculate the IN set as the intersection of
7039 predecessor OUT sets. */
7041 dataflow_set_clear (in);
7042 dst_can_be_shared = true;
7044 FOR_EACH_EDGE (e, ei, bb->preds)
7045 if (!VTI (e->src)->flooded)
7046 gcc_assert (bb_order[bb->index]
7047 <= bb_order[e->src->index]);
7048 else if (first)
7050 dataflow_set_copy (in, &VTI (e->src)->out);
7051 first_out = &VTI (e->src)->out;
7052 first = false;
7054 else
7056 dataflow_set_merge (in, &VTI (e->src)->out);
7057 adjust = true;
7060 if (adjust)
7062 dataflow_post_merge_adjust (in, &VTI (bb)->permp);
7063 #if ENABLE_CHECKING
7064 /* Merge and merge_adjust should keep entries in
7065 canonical order. */
7066 shared_hash_htab (in->vars)
7067 .traverse <dataflow_set *,
7068 canonicalize_loc_order_check> (in);
7069 #endif
7070 if (dst_can_be_shared)
7072 shared_hash_destroy (in->vars);
7073 in->vars = shared_hash_copy (first_out->vars);
7077 VTI (bb)->flooded = true;
7079 else
7081 /* Calculate the IN set as union of predecessor OUT sets. */
7082 dataflow_set_clear (&VTI (bb)->in);
7083 FOR_EACH_EDGE (e, ei, bb->preds)
7084 dataflow_set_union (&VTI (bb)->in, &VTI (e->src)->out);
7087 changed = compute_bb_dataflow (bb);
7088 htabsz += shared_hash_htab (VTI (bb)->in.vars).size ()
7089 + shared_hash_htab (VTI (bb)->out.vars).size ();
7091 if (htabmax && htabsz > htabmax)
7093 if (MAY_HAVE_DEBUG_INSNS)
7094 inform (DECL_SOURCE_LOCATION (cfun->decl),
7095 "variable tracking size limit exceeded with "
7096 "-fvar-tracking-assignments, retrying without");
7097 else
7098 inform (DECL_SOURCE_LOCATION (cfun->decl),
7099 "variable tracking size limit exceeded");
7100 success = false;
7101 break;
7104 if (changed)
7106 FOR_EACH_EDGE (e, ei, bb->succs)
7108 if (e->dest == EXIT_BLOCK_PTR_FOR_FN (cfun))
7109 continue;
7111 if (bitmap_bit_p (visited, e->dest->index))
7113 if (!bitmap_bit_p (in_pending, e->dest->index))
7115 /* Send E->DEST to next round. */
7116 bitmap_set_bit (in_pending, e->dest->index);
7117 fibheap_insert (pending,
7118 bb_order[e->dest->index],
7119 e->dest);
7122 else if (!bitmap_bit_p (in_worklist, e->dest->index))
7124 /* Add E->DEST to current round. */
7125 bitmap_set_bit (in_worklist, e->dest->index);
7126 fibheap_insert (worklist, bb_order[e->dest->index],
7127 e->dest);
7132 if (dump_file)
7133 fprintf (dump_file,
7134 "BB %i: in %i (was %i), out %i (was %i), rem %i + %i, tsz %i\n",
7135 bb->index,
7136 (int)shared_hash_htab (VTI (bb)->in.vars).size (),
7137 oldinsz,
7138 (int)shared_hash_htab (VTI (bb)->out.vars).size (),
7139 oldoutsz,
7140 (int)worklist->nodes, (int)pending->nodes, htabsz);
7142 if (dump_file && (dump_flags & TDF_DETAILS))
7144 fprintf (dump_file, "BB %i IN:\n", bb->index);
7145 dump_dataflow_set (&VTI (bb)->in);
7146 fprintf (dump_file, "BB %i OUT:\n", bb->index);
7147 dump_dataflow_set (&VTI (bb)->out);
7153 if (success && MAY_HAVE_DEBUG_INSNS)
7154 FOR_EACH_BB_FN (bb, cfun)
7155 gcc_assert (VTI (bb)->flooded);
7157 free (bb_order);
7158 fibheap_delete (worklist);
7159 fibheap_delete (pending);
7160 sbitmap_free (visited);
7161 sbitmap_free (in_worklist);
7162 sbitmap_free (in_pending);
7164 timevar_pop (TV_VAR_TRACKING_DATAFLOW);
7165 return success;
7168 /* Print the content of the LIST to dump file. */
7170 static void
7171 dump_attrs_list (attrs list)
7173 for (; list; list = list->next)
7175 if (dv_is_decl_p (list->dv))
7176 print_mem_expr (dump_file, dv_as_decl (list->dv));
7177 else
7178 print_rtl_single (dump_file, dv_as_value (list->dv));
7179 fprintf (dump_file, "+" HOST_WIDE_INT_PRINT_DEC, list->offset);
7181 fprintf (dump_file, "\n");
7184 /* Print the information about variable *SLOT to dump file. */
7187 dump_var_tracking_slot (variable_def **slot, void *data ATTRIBUTE_UNUSED)
7189 variable var = *slot;
7191 dump_var (var);
7193 /* Continue traversing the hash table. */
7194 return 1;
7197 /* Print the information about variable VAR to dump file. */
7199 static void
7200 dump_var (variable var)
7202 int i;
7203 location_chain node;
7205 if (dv_is_decl_p (var->dv))
7207 const_tree decl = dv_as_decl (var->dv);
7209 if (DECL_NAME (decl))
7211 fprintf (dump_file, " name: %s",
7212 IDENTIFIER_POINTER (DECL_NAME (decl)));
7213 if (dump_flags & TDF_UID)
7214 fprintf (dump_file, "D.%u", DECL_UID (decl));
7216 else if (TREE_CODE (decl) == DEBUG_EXPR_DECL)
7217 fprintf (dump_file, " name: D#%u", DEBUG_TEMP_UID (decl));
7218 else
7219 fprintf (dump_file, " name: D.%u", DECL_UID (decl));
7220 fprintf (dump_file, "\n");
7222 else
7224 fputc (' ', dump_file);
7225 print_rtl_single (dump_file, dv_as_value (var->dv));
7228 for (i = 0; i < var->n_var_parts; i++)
7230 fprintf (dump_file, " offset %ld\n",
7231 (long)(var->onepart ? 0 : VAR_PART_OFFSET (var, i)));
7232 for (node = var->var_part[i].loc_chain; node; node = node->next)
7234 fprintf (dump_file, " ");
7235 if (node->init == VAR_INIT_STATUS_UNINITIALIZED)
7236 fprintf (dump_file, "[uninit]");
7237 print_rtl_single (dump_file, node->loc);
7242 /* Print the information about variables from hash table VARS to dump file. */
7244 static void
7245 dump_vars (variable_table_type vars)
7247 if (vars.elements () > 0)
7249 fprintf (dump_file, "Variables:\n");
7250 vars.traverse <void *, dump_var_tracking_slot> (NULL);
7254 /* Print the dataflow set SET to dump file. */
7256 static void
7257 dump_dataflow_set (dataflow_set *set)
7259 int i;
7261 fprintf (dump_file, "Stack adjustment: " HOST_WIDE_INT_PRINT_DEC "\n",
7262 set->stack_adjust);
7263 for (i = 0; i < FIRST_PSEUDO_REGISTER; i++)
7265 if (set->regs[i])
7267 fprintf (dump_file, "Reg %d:", i);
7268 dump_attrs_list (set->regs[i]);
7271 dump_vars (shared_hash_htab (set->vars));
7272 fprintf (dump_file, "\n");
7275 /* Print the IN and OUT sets for each basic block to dump file. */
7277 static void
7278 dump_dataflow_sets (void)
7280 basic_block bb;
7282 FOR_EACH_BB_FN (bb, cfun)
7284 fprintf (dump_file, "\nBasic block %d:\n", bb->index);
7285 fprintf (dump_file, "IN:\n");
7286 dump_dataflow_set (&VTI (bb)->in);
7287 fprintf (dump_file, "OUT:\n");
7288 dump_dataflow_set (&VTI (bb)->out);
7292 /* Return the variable for DV in dropped_values, inserting one if
7293 requested with INSERT. */
7295 static inline variable
7296 variable_from_dropped (decl_or_value dv, enum insert_option insert)
7298 variable_def **slot;
7299 variable empty_var;
7300 onepart_enum_t onepart;
7302 slot = dropped_values.find_slot_with_hash (dv, dv_htab_hash (dv), insert);
7304 if (!slot)
7305 return NULL;
7307 if (*slot)
7308 return *slot;
7310 gcc_checking_assert (insert == INSERT);
7312 onepart = dv_onepart_p (dv);
7314 gcc_checking_assert (onepart == ONEPART_VALUE || onepart == ONEPART_DEXPR);
7316 empty_var = (variable) pool_alloc (onepart_pool (onepart));
7317 empty_var->dv = dv;
7318 empty_var->refcount = 1;
7319 empty_var->n_var_parts = 0;
7320 empty_var->onepart = onepart;
7321 empty_var->in_changed_variables = false;
7322 empty_var->var_part[0].loc_chain = NULL;
7323 empty_var->var_part[0].cur_loc = NULL;
7324 VAR_LOC_1PAUX (empty_var) = NULL;
7325 set_dv_changed (dv, true);
7327 *slot = empty_var;
7329 return empty_var;
7332 /* Recover the one-part aux from dropped_values. */
7334 static struct onepart_aux *
7335 recover_dropped_1paux (variable var)
7337 variable dvar;
7339 gcc_checking_assert (var->onepart);
7341 if (VAR_LOC_1PAUX (var))
7342 return VAR_LOC_1PAUX (var);
7344 if (var->onepart == ONEPART_VDECL)
7345 return NULL;
7347 dvar = variable_from_dropped (var->dv, NO_INSERT);
7349 if (!dvar)
7350 return NULL;
7352 VAR_LOC_1PAUX (var) = VAR_LOC_1PAUX (dvar);
7353 VAR_LOC_1PAUX (dvar) = NULL;
7355 return VAR_LOC_1PAUX (var);
7358 /* Add variable VAR to the hash table of changed variables and
7359 if it has no locations delete it from SET's hash table. */
7361 static void
7362 variable_was_changed (variable var, dataflow_set *set)
7364 hashval_t hash = dv_htab_hash (var->dv);
7366 if (emit_notes)
7368 variable_def **slot;
7370 /* Remember this decl or VALUE has been added to changed_variables. */
7371 set_dv_changed (var->dv, true);
7373 slot = changed_variables.find_slot_with_hash (var->dv, hash, INSERT);
7375 if (*slot)
7377 variable old_var = *slot;
7378 gcc_assert (old_var->in_changed_variables);
7379 old_var->in_changed_variables = false;
7380 if (var != old_var && var->onepart)
7382 /* Restore the auxiliary info from an empty variable
7383 previously created for changed_variables, so it is
7384 not lost. */
7385 gcc_checking_assert (!VAR_LOC_1PAUX (var));
7386 VAR_LOC_1PAUX (var) = VAR_LOC_1PAUX (old_var);
7387 VAR_LOC_1PAUX (old_var) = NULL;
7389 variable_htab_free (*slot);
7392 if (set && var->n_var_parts == 0)
7394 onepart_enum_t onepart = var->onepart;
7395 variable empty_var = NULL;
7396 variable_def **dslot = NULL;
7398 if (onepart == ONEPART_VALUE || onepart == ONEPART_DEXPR)
7400 dslot = dropped_values.find_slot_with_hash (var->dv,
7401 dv_htab_hash (var->dv),
7402 INSERT);
7403 empty_var = *dslot;
7405 if (empty_var)
7407 gcc_checking_assert (!empty_var->in_changed_variables);
7408 if (!VAR_LOC_1PAUX (var))
7410 VAR_LOC_1PAUX (var) = VAR_LOC_1PAUX (empty_var);
7411 VAR_LOC_1PAUX (empty_var) = NULL;
7413 else
7414 gcc_checking_assert (!VAR_LOC_1PAUX (empty_var));
7418 if (!empty_var)
7420 empty_var = (variable) pool_alloc (onepart_pool (onepart));
7421 empty_var->dv = var->dv;
7422 empty_var->refcount = 1;
7423 empty_var->n_var_parts = 0;
7424 empty_var->onepart = onepart;
7425 if (dslot)
7427 empty_var->refcount++;
7428 *dslot = empty_var;
7431 else
7432 empty_var->refcount++;
7433 empty_var->in_changed_variables = true;
7434 *slot = empty_var;
7435 if (onepart)
7437 empty_var->var_part[0].loc_chain = NULL;
7438 empty_var->var_part[0].cur_loc = NULL;
7439 VAR_LOC_1PAUX (empty_var) = VAR_LOC_1PAUX (var);
7440 VAR_LOC_1PAUX (var) = NULL;
7442 goto drop_var;
7444 else
7446 if (var->onepart && !VAR_LOC_1PAUX (var))
7447 recover_dropped_1paux (var);
7448 var->refcount++;
7449 var->in_changed_variables = true;
7450 *slot = var;
7453 else
7455 gcc_assert (set);
7456 if (var->n_var_parts == 0)
7458 variable_def **slot;
7460 drop_var:
7461 slot = shared_hash_find_slot_noinsert (set->vars, var->dv);
7462 if (slot)
7464 if (shared_hash_shared (set->vars))
7465 slot = shared_hash_find_slot_unshare (&set->vars, var->dv,
7466 NO_INSERT);
7467 shared_hash_htab (set->vars).clear_slot (slot);
7473 /* Look for the index in VAR->var_part corresponding to OFFSET.
7474 Return -1 if not found. If INSERTION_POINT is non-NULL, the
7475 referenced int will be set to the index that the part has or should
7476 have, if it should be inserted. */
7478 static inline int
7479 find_variable_location_part (variable var, HOST_WIDE_INT offset,
7480 int *insertion_point)
7482 int pos, low, high;
7484 if (var->onepart)
7486 if (offset != 0)
7487 return -1;
7489 if (insertion_point)
7490 *insertion_point = 0;
7492 return var->n_var_parts - 1;
7495 /* Find the location part. */
7496 low = 0;
7497 high = var->n_var_parts;
7498 while (low != high)
7500 pos = (low + high) / 2;
7501 if (VAR_PART_OFFSET (var, pos) < offset)
7502 low = pos + 1;
7503 else
7504 high = pos;
7506 pos = low;
7508 if (insertion_point)
7509 *insertion_point = pos;
7511 if (pos < var->n_var_parts && VAR_PART_OFFSET (var, pos) == offset)
7512 return pos;
7514 return -1;
7517 static variable_def **
7518 set_slot_part (dataflow_set *set, rtx loc, variable_def **slot,
7519 decl_or_value dv, HOST_WIDE_INT offset,
7520 enum var_init_status initialized, rtx set_src)
7522 int pos;
7523 location_chain node, next;
7524 location_chain *nextp;
7525 variable var;
7526 onepart_enum_t onepart;
7528 var = *slot;
7530 if (var)
7531 onepart = var->onepart;
7532 else
7533 onepart = dv_onepart_p (dv);
7535 gcc_checking_assert (offset == 0 || !onepart);
7536 gcc_checking_assert (loc != dv_as_opaque (dv));
7538 if (! flag_var_tracking_uninit)
7539 initialized = VAR_INIT_STATUS_INITIALIZED;
7541 if (!var)
7543 /* Create new variable information. */
7544 var = (variable) pool_alloc (onepart_pool (onepart));
7545 var->dv = dv;
7546 var->refcount = 1;
7547 var->n_var_parts = 1;
7548 var->onepart = onepart;
7549 var->in_changed_variables = false;
7550 if (var->onepart)
7551 VAR_LOC_1PAUX (var) = NULL;
7552 else
7553 VAR_PART_OFFSET (var, 0) = offset;
7554 var->var_part[0].loc_chain = NULL;
7555 var->var_part[0].cur_loc = NULL;
7556 *slot = var;
7557 pos = 0;
7558 nextp = &var->var_part[0].loc_chain;
7560 else if (onepart)
7562 int r = -1, c = 0;
7564 gcc_assert (dv_as_opaque (var->dv) == dv_as_opaque (dv));
7566 pos = 0;
7568 if (GET_CODE (loc) == VALUE)
7570 for (nextp = &var->var_part[0].loc_chain; (node = *nextp);
7571 nextp = &node->next)
7572 if (GET_CODE (node->loc) == VALUE)
7574 if (node->loc == loc)
7576 r = 0;
7577 break;
7579 if (canon_value_cmp (node->loc, loc))
7580 c++;
7581 else
7583 r = 1;
7584 break;
7587 else if (REG_P (node->loc) || MEM_P (node->loc))
7588 c++;
7589 else
7591 r = 1;
7592 break;
7595 else if (REG_P (loc))
7597 for (nextp = &var->var_part[0].loc_chain; (node = *nextp);
7598 nextp = &node->next)
7599 if (REG_P (node->loc))
7601 if (REGNO (node->loc) < REGNO (loc))
7602 c++;
7603 else
7605 if (REGNO (node->loc) == REGNO (loc))
7606 r = 0;
7607 else
7608 r = 1;
7609 break;
7612 else
7614 r = 1;
7615 break;
7618 else if (MEM_P (loc))
7620 for (nextp = &var->var_part[0].loc_chain; (node = *nextp);
7621 nextp = &node->next)
7622 if (REG_P (node->loc))
7623 c++;
7624 else if (MEM_P (node->loc))
7626 if ((r = loc_cmp (XEXP (node->loc, 0), XEXP (loc, 0))) >= 0)
7627 break;
7628 else
7629 c++;
7631 else
7633 r = 1;
7634 break;
7637 else
7638 for (nextp = &var->var_part[0].loc_chain; (node = *nextp);
7639 nextp = &node->next)
7640 if ((r = loc_cmp (node->loc, loc)) >= 0)
7641 break;
7642 else
7643 c++;
7645 if (r == 0)
7646 return slot;
7648 if (shared_var_p (var, set->vars))
7650 slot = unshare_variable (set, slot, var, initialized);
7651 var = *slot;
7652 for (nextp = &var->var_part[0].loc_chain; c;
7653 nextp = &(*nextp)->next)
7654 c--;
7655 gcc_assert ((!node && !*nextp) || node->loc == (*nextp)->loc);
7658 else
7660 int inspos = 0;
7662 gcc_assert (dv_as_decl (var->dv) == dv_as_decl (dv));
7664 pos = find_variable_location_part (var, offset, &inspos);
7666 if (pos >= 0)
7668 node = var->var_part[pos].loc_chain;
7670 if (node
7671 && ((REG_P (node->loc) && REG_P (loc)
7672 && REGNO (node->loc) == REGNO (loc))
7673 || rtx_equal_p (node->loc, loc)))
7675 /* LOC is in the beginning of the chain so we have nothing
7676 to do. */
7677 if (node->init < initialized)
7678 node->init = initialized;
7679 if (set_src != NULL)
7680 node->set_src = set_src;
7682 return slot;
7684 else
7686 /* We have to make a copy of a shared variable. */
7687 if (shared_var_p (var, set->vars))
7689 slot = unshare_variable (set, slot, var, initialized);
7690 var = *slot;
7694 else
7696 /* We have not found the location part, new one will be created. */
7698 /* We have to make a copy of the shared variable. */
7699 if (shared_var_p (var, set->vars))
7701 slot = unshare_variable (set, slot, var, initialized);
7702 var = *slot;
7705 /* We track only variables whose size is <= MAX_VAR_PARTS bytes
7706 thus there are at most MAX_VAR_PARTS different offsets. */
7707 gcc_assert (var->n_var_parts < MAX_VAR_PARTS
7708 && (!var->n_var_parts || !onepart));
7710 /* We have to move the elements of array starting at index
7711 inspos to the next position. */
7712 for (pos = var->n_var_parts; pos > inspos; pos--)
7713 var->var_part[pos] = var->var_part[pos - 1];
7715 var->n_var_parts++;
7716 gcc_checking_assert (!onepart);
7717 VAR_PART_OFFSET (var, pos) = offset;
7718 var->var_part[pos].loc_chain = NULL;
7719 var->var_part[pos].cur_loc = NULL;
7722 /* Delete the location from the list. */
7723 nextp = &var->var_part[pos].loc_chain;
7724 for (node = var->var_part[pos].loc_chain; node; node = next)
7726 next = node->next;
7727 if ((REG_P (node->loc) && REG_P (loc)
7728 && REGNO (node->loc) == REGNO (loc))
7729 || rtx_equal_p (node->loc, loc))
7731 /* Save these values, to assign to the new node, before
7732 deleting this one. */
7733 if (node->init > initialized)
7734 initialized = node->init;
7735 if (node->set_src != NULL && set_src == NULL)
7736 set_src = node->set_src;
7737 if (var->var_part[pos].cur_loc == node->loc)
7738 var->var_part[pos].cur_loc = NULL;
7739 pool_free (loc_chain_pool, node);
7740 *nextp = next;
7741 break;
7743 else
7744 nextp = &node->next;
7747 nextp = &var->var_part[pos].loc_chain;
7750 /* Add the location to the beginning. */
7751 node = (location_chain) pool_alloc (loc_chain_pool);
7752 node->loc = loc;
7753 node->init = initialized;
7754 node->set_src = set_src;
7755 node->next = *nextp;
7756 *nextp = node;
7758 /* If no location was emitted do so. */
7759 if (var->var_part[pos].cur_loc == NULL)
7760 variable_was_changed (var, set);
7762 return slot;
7765 /* Set the part of variable's location in the dataflow set SET. The
7766 variable part is specified by variable's declaration in DV and
7767 offset OFFSET and the part's location by LOC. IOPT should be
7768 NO_INSERT if the variable is known to be in SET already and the
7769 variable hash table must not be resized, and INSERT otherwise. */
7771 static void
7772 set_variable_part (dataflow_set *set, rtx loc,
7773 decl_or_value dv, HOST_WIDE_INT offset,
7774 enum var_init_status initialized, rtx set_src,
7775 enum insert_option iopt)
7777 variable_def **slot;
7779 if (iopt == NO_INSERT)
7780 slot = shared_hash_find_slot_noinsert (set->vars, dv);
7781 else
7783 slot = shared_hash_find_slot (set->vars, dv);
7784 if (!slot)
7785 slot = shared_hash_find_slot_unshare (&set->vars, dv, iopt);
7787 set_slot_part (set, loc, slot, dv, offset, initialized, set_src);
7790 /* Remove all recorded register locations for the given variable part
7791 from dataflow set SET, except for those that are identical to loc.
7792 The variable part is specified by variable's declaration or value
7793 DV and offset OFFSET. */
7795 static variable_def **
7796 clobber_slot_part (dataflow_set *set, rtx loc, variable_def **slot,
7797 HOST_WIDE_INT offset, rtx set_src)
7799 variable var = *slot;
7800 int pos = find_variable_location_part (var, offset, NULL);
7802 if (pos >= 0)
7804 location_chain node, next;
7806 /* Remove the register locations from the dataflow set. */
7807 next = var->var_part[pos].loc_chain;
7808 for (node = next; node; node = next)
7810 next = node->next;
7811 if (node->loc != loc
7812 && (!flag_var_tracking_uninit
7813 || !set_src
7814 || MEM_P (set_src)
7815 || !rtx_equal_p (set_src, node->set_src)))
7817 if (REG_P (node->loc))
7819 attrs anode, anext;
7820 attrs *anextp;
7822 /* Remove the variable part from the register's
7823 list, but preserve any other variable parts
7824 that might be regarded as live in that same
7825 register. */
7826 anextp = &set->regs[REGNO (node->loc)];
7827 for (anode = *anextp; anode; anode = anext)
7829 anext = anode->next;
7830 if (dv_as_opaque (anode->dv) == dv_as_opaque (var->dv)
7831 && anode->offset == offset)
7833 pool_free (attrs_pool, anode);
7834 *anextp = anext;
7836 else
7837 anextp = &anode->next;
7841 slot = delete_slot_part (set, node->loc, slot, offset);
7846 return slot;
7849 /* Remove all recorded register locations for the given variable part
7850 from dataflow set SET, except for those that are identical to loc.
7851 The variable part is specified by variable's declaration or value
7852 DV and offset OFFSET. */
7854 static void
7855 clobber_variable_part (dataflow_set *set, rtx loc, decl_or_value dv,
7856 HOST_WIDE_INT offset, rtx set_src)
7858 variable_def **slot;
7860 if (!dv_as_opaque (dv)
7861 || (!dv_is_value_p (dv) && ! DECL_P (dv_as_decl (dv))))
7862 return;
7864 slot = shared_hash_find_slot_noinsert (set->vars, dv);
7865 if (!slot)
7866 return;
7868 clobber_slot_part (set, loc, slot, offset, set_src);
7871 /* Delete the part of variable's location from dataflow set SET. The
7872 variable part is specified by its SET->vars slot SLOT and offset
7873 OFFSET and the part's location by LOC. */
7875 static variable_def **
7876 delete_slot_part (dataflow_set *set, rtx loc, variable_def **slot,
7877 HOST_WIDE_INT offset)
7879 variable var = *slot;
7880 int pos = find_variable_location_part (var, offset, NULL);
7882 if (pos >= 0)
7884 location_chain node, next;
7885 location_chain *nextp;
7886 bool changed;
7887 rtx cur_loc;
7889 if (shared_var_p (var, set->vars))
7891 /* If the variable contains the location part we have to
7892 make a copy of the variable. */
7893 for (node = var->var_part[pos].loc_chain; node;
7894 node = node->next)
7896 if ((REG_P (node->loc) && REG_P (loc)
7897 && REGNO (node->loc) == REGNO (loc))
7898 || rtx_equal_p (node->loc, loc))
7900 slot = unshare_variable (set, slot, var,
7901 VAR_INIT_STATUS_UNKNOWN);
7902 var = *slot;
7903 break;
7908 if (pos == 0 && var->onepart && VAR_LOC_1PAUX (var))
7909 cur_loc = VAR_LOC_FROM (var);
7910 else
7911 cur_loc = var->var_part[pos].cur_loc;
7913 /* Delete the location part. */
7914 changed = false;
7915 nextp = &var->var_part[pos].loc_chain;
7916 for (node = *nextp; node; node = next)
7918 next = node->next;
7919 if ((REG_P (node->loc) && REG_P (loc)
7920 && REGNO (node->loc) == REGNO (loc))
7921 || rtx_equal_p (node->loc, loc))
7923 /* If we have deleted the location which was last emitted
7924 we have to emit new location so add the variable to set
7925 of changed variables. */
7926 if (cur_loc == node->loc)
7928 changed = true;
7929 var->var_part[pos].cur_loc = NULL;
7930 if (pos == 0 && var->onepart && VAR_LOC_1PAUX (var))
7931 VAR_LOC_FROM (var) = NULL;
7933 pool_free (loc_chain_pool, node);
7934 *nextp = next;
7935 break;
7937 else
7938 nextp = &node->next;
7941 if (var->var_part[pos].loc_chain == NULL)
7943 changed = true;
7944 var->n_var_parts--;
7945 while (pos < var->n_var_parts)
7947 var->var_part[pos] = var->var_part[pos + 1];
7948 pos++;
7951 if (changed)
7952 variable_was_changed (var, set);
7955 return slot;
7958 /* Delete the part of variable's location from dataflow set SET. The
7959 variable part is specified by variable's declaration or value DV
7960 and offset OFFSET and the part's location by LOC. */
7962 static void
7963 delete_variable_part (dataflow_set *set, rtx loc, decl_or_value dv,
7964 HOST_WIDE_INT offset)
7966 variable_def **slot = shared_hash_find_slot_noinsert (set->vars, dv);
7967 if (!slot)
7968 return;
7970 delete_slot_part (set, loc, slot, offset);
7974 /* Structure for passing some other parameters to function
7975 vt_expand_loc_callback. */
7976 struct expand_loc_callback_data
7978 /* The variables and values active at this point. */
7979 variable_table_type vars;
7981 /* Stack of values and debug_exprs under expansion, and their
7982 children. */
7983 auto_vec<rtx, 4> expanding;
7985 /* Stack of values and debug_exprs whose expansion hit recursion
7986 cycles. They will have VALUE_RECURSED_INTO marked when added to
7987 this list. This flag will be cleared if any of its dependencies
7988 resolves to a valid location. So, if the flag remains set at the
7989 end of the search, we know no valid location for this one can
7990 possibly exist. */
7991 auto_vec<rtx, 4> pending;
7993 /* The maximum depth among the sub-expressions under expansion.
7994 Zero indicates no expansion so far. */
7995 expand_depth depth;
7998 /* Allocate the one-part auxiliary data structure for VAR, with enough
7999 room for COUNT dependencies. */
8001 static void
8002 loc_exp_dep_alloc (variable var, int count)
8004 size_t allocsize;
8006 gcc_checking_assert (var->onepart);
8008 /* We can be called with COUNT == 0 to allocate the data structure
8009 without any dependencies, e.g. for the backlinks only. However,
8010 if we are specifying a COUNT, then the dependency list must have
8011 been emptied before. It would be possible to adjust pointers or
8012 force it empty here, but this is better done at an earlier point
8013 in the algorithm, so we instead leave an assertion to catch
8014 errors. */
8015 gcc_checking_assert (!count
8016 || VAR_LOC_DEP_VEC (var) == NULL
8017 || VAR_LOC_DEP_VEC (var)->is_empty ());
8019 if (VAR_LOC_1PAUX (var) && VAR_LOC_DEP_VEC (var)->space (count))
8020 return;
8022 allocsize = offsetof (struct onepart_aux, deps)
8023 + vec<loc_exp_dep, va_heap, vl_embed>::embedded_size (count);
8025 if (VAR_LOC_1PAUX (var))
8027 VAR_LOC_1PAUX (var) = XRESIZEVAR (struct onepart_aux,
8028 VAR_LOC_1PAUX (var), allocsize);
8029 /* If the reallocation moves the onepaux structure, the
8030 back-pointer to BACKLINKS in the first list member will still
8031 point to its old location. Adjust it. */
8032 if (VAR_LOC_DEP_LST (var))
8033 VAR_LOC_DEP_LST (var)->pprev = VAR_LOC_DEP_LSTP (var);
8035 else
8037 VAR_LOC_1PAUX (var) = XNEWVAR (struct onepart_aux, allocsize);
8038 *VAR_LOC_DEP_LSTP (var) = NULL;
8039 VAR_LOC_FROM (var) = NULL;
8040 VAR_LOC_DEPTH (var).complexity = 0;
8041 VAR_LOC_DEPTH (var).entryvals = 0;
8043 VAR_LOC_DEP_VEC (var)->embedded_init (count);
8046 /* Remove all entries from the vector of active dependencies of VAR,
8047 removing them from the back-links lists too. */
8049 static void
8050 loc_exp_dep_clear (variable var)
8052 while (VAR_LOC_DEP_VEC (var) && !VAR_LOC_DEP_VEC (var)->is_empty ())
8054 loc_exp_dep *led = &VAR_LOC_DEP_VEC (var)->last ();
8055 if (led->next)
8056 led->next->pprev = led->pprev;
8057 if (led->pprev)
8058 *led->pprev = led->next;
8059 VAR_LOC_DEP_VEC (var)->pop ();
8063 /* Insert an active dependency from VAR on X to the vector of
8064 dependencies, and add the corresponding back-link to X's list of
8065 back-links in VARS. */
8067 static void
8068 loc_exp_insert_dep (variable var, rtx x, variable_table_type vars)
8070 decl_or_value dv;
8071 variable xvar;
8072 loc_exp_dep *led;
8074 dv = dv_from_rtx (x);
8076 /* ??? Build a vector of variables parallel to EXPANDING, to avoid
8077 an additional look up? */
8078 xvar = vars.find_with_hash (dv, dv_htab_hash (dv));
8080 if (!xvar)
8082 xvar = variable_from_dropped (dv, NO_INSERT);
8083 gcc_checking_assert (xvar);
8086 /* No point in adding the same backlink more than once. This may
8087 arise if say the same value appears in two complex expressions in
8088 the same loc_list, or even more than once in a single
8089 expression. */
8090 if (VAR_LOC_DEP_LST (xvar) && VAR_LOC_DEP_LST (xvar)->dv == var->dv)
8091 return;
8093 if (var->onepart == NOT_ONEPART)
8094 led = (loc_exp_dep *) pool_alloc (loc_exp_dep_pool);
8095 else
8097 loc_exp_dep empty;
8098 memset (&empty, 0, sizeof (empty));
8099 VAR_LOC_DEP_VEC (var)->quick_push (empty);
8100 led = &VAR_LOC_DEP_VEC (var)->last ();
8102 led->dv = var->dv;
8103 led->value = x;
8105 loc_exp_dep_alloc (xvar, 0);
8106 led->pprev = VAR_LOC_DEP_LSTP (xvar);
8107 led->next = *led->pprev;
8108 if (led->next)
8109 led->next->pprev = &led->next;
8110 *led->pprev = led;
8113 /* Create active dependencies of VAR on COUNT values starting at
8114 VALUE, and corresponding back-links to the entries in VARS. Return
8115 true if we found any pending-recursion results. */
8117 static bool
8118 loc_exp_dep_set (variable var, rtx result, rtx *value, int count,
8119 variable_table_type vars)
8121 bool pending_recursion = false;
8123 gcc_checking_assert (VAR_LOC_DEP_VEC (var) == NULL
8124 || VAR_LOC_DEP_VEC (var)->is_empty ());
8126 /* Set up all dependencies from last_child (as set up at the end of
8127 the loop above) to the end. */
8128 loc_exp_dep_alloc (var, count);
8130 while (count--)
8132 rtx x = *value++;
8134 if (!pending_recursion)
8135 pending_recursion = !result && VALUE_RECURSED_INTO (x);
8137 loc_exp_insert_dep (var, x, vars);
8140 return pending_recursion;
8143 /* Notify the back-links of IVAR that are pending recursion that we
8144 have found a non-NIL value for it, so they are cleared for another
8145 attempt to compute a current location. */
8147 static void
8148 notify_dependents_of_resolved_value (variable ivar, variable_table_type vars)
8150 loc_exp_dep *led, *next;
8152 for (led = VAR_LOC_DEP_LST (ivar); led; led = next)
8154 decl_or_value dv = led->dv;
8155 variable var;
8157 next = led->next;
8159 if (dv_is_value_p (dv))
8161 rtx value = dv_as_value (dv);
8163 /* If we have already resolved it, leave it alone. */
8164 if (!VALUE_RECURSED_INTO (value))
8165 continue;
8167 /* Check that VALUE_RECURSED_INTO, true from the test above,
8168 implies NO_LOC_P. */
8169 gcc_checking_assert (NO_LOC_P (value));
8171 /* We won't notify variables that are being expanded,
8172 because their dependency list is cleared before
8173 recursing. */
8174 NO_LOC_P (value) = false;
8175 VALUE_RECURSED_INTO (value) = false;
8177 gcc_checking_assert (dv_changed_p (dv));
8179 else
8181 gcc_checking_assert (dv_onepart_p (dv) != NOT_ONEPART);
8182 if (!dv_changed_p (dv))
8183 continue;
8186 var = vars.find_with_hash (dv, dv_htab_hash (dv));
8188 if (!var)
8189 var = variable_from_dropped (dv, NO_INSERT);
8191 if (var)
8192 notify_dependents_of_resolved_value (var, vars);
8194 if (next)
8195 next->pprev = led->pprev;
8196 if (led->pprev)
8197 *led->pprev = next;
8198 led->next = NULL;
8199 led->pprev = NULL;
8203 static rtx vt_expand_loc_callback (rtx x, bitmap regs,
8204 int max_depth, void *data);
8206 /* Return the combined depth, when one sub-expression evaluated to
8207 BEST_DEPTH and the previous known depth was SAVED_DEPTH. */
8209 static inline expand_depth
8210 update_depth (expand_depth saved_depth, expand_depth best_depth)
8212 /* If we didn't find anything, stick with what we had. */
8213 if (!best_depth.complexity)
8214 return saved_depth;
8216 /* If we found hadn't found anything, use the depth of the current
8217 expression. Do NOT add one extra level, we want to compute the
8218 maximum depth among sub-expressions. We'll increment it later,
8219 if appropriate. */
8220 if (!saved_depth.complexity)
8221 return best_depth;
8223 /* Combine the entryval count so that regardless of which one we
8224 return, the entryval count is accurate. */
8225 best_depth.entryvals = saved_depth.entryvals
8226 = best_depth.entryvals + saved_depth.entryvals;
8228 if (saved_depth.complexity < best_depth.complexity)
8229 return best_depth;
8230 else
8231 return saved_depth;
8234 /* Expand VAR to a location RTX, updating its cur_loc. Use REGS and
8235 DATA for cselib expand callback. If PENDRECP is given, indicate in
8236 it whether any sub-expression couldn't be fully evaluated because
8237 it is pending recursion resolution. */
8239 static inline rtx
8240 vt_expand_var_loc_chain (variable var, bitmap regs, void *data, bool *pendrecp)
8242 struct expand_loc_callback_data *elcd
8243 = (struct expand_loc_callback_data *) data;
8244 location_chain loc, next;
8245 rtx result = NULL;
8246 int first_child, result_first_child, last_child;
8247 bool pending_recursion;
8248 rtx loc_from = NULL;
8249 struct elt_loc_list *cloc = NULL;
8250 expand_depth depth = { 0, 0 }, saved_depth = elcd->depth;
8251 int wanted_entryvals, found_entryvals = 0;
8253 /* Clear all backlinks pointing at this, so that we're not notified
8254 while we're active. */
8255 loc_exp_dep_clear (var);
8257 retry:
8258 if (var->onepart == ONEPART_VALUE)
8260 cselib_val *val = CSELIB_VAL_PTR (dv_as_value (var->dv));
8262 gcc_checking_assert (cselib_preserved_value_p (val));
8264 cloc = val->locs;
8267 first_child = result_first_child = last_child
8268 = elcd->expanding.length ();
8270 wanted_entryvals = found_entryvals;
8272 /* Attempt to expand each available location in turn. */
8273 for (next = loc = var->n_var_parts ? var->var_part[0].loc_chain : NULL;
8274 loc || cloc; loc = next)
8276 result_first_child = last_child;
8278 if (!loc)
8280 loc_from = cloc->loc;
8281 next = loc;
8282 cloc = cloc->next;
8283 if (unsuitable_loc (loc_from))
8284 continue;
8286 else
8288 loc_from = loc->loc;
8289 next = loc->next;
8292 gcc_checking_assert (!unsuitable_loc (loc_from));
8294 elcd->depth.complexity = elcd->depth.entryvals = 0;
8295 result = cselib_expand_value_rtx_cb (loc_from, regs, EXPR_DEPTH,
8296 vt_expand_loc_callback, data);
8297 last_child = elcd->expanding.length ();
8299 if (result)
8301 depth = elcd->depth;
8303 gcc_checking_assert (depth.complexity
8304 || result_first_child == last_child);
8306 if (last_child - result_first_child != 1)
8308 if (!depth.complexity && GET_CODE (result) == ENTRY_VALUE)
8309 depth.entryvals++;
8310 depth.complexity++;
8313 if (depth.complexity <= EXPR_USE_DEPTH)
8315 if (depth.entryvals <= wanted_entryvals)
8316 break;
8317 else if (!found_entryvals || depth.entryvals < found_entryvals)
8318 found_entryvals = depth.entryvals;
8321 result = NULL;
8324 /* Set it up in case we leave the loop. */
8325 depth.complexity = depth.entryvals = 0;
8326 loc_from = NULL;
8327 result_first_child = first_child;
8330 if (!loc_from && wanted_entryvals < found_entryvals)
8332 /* We found entries with ENTRY_VALUEs and skipped them. Since
8333 we could not find any expansions without ENTRY_VALUEs, but we
8334 found at least one with them, go back and get an entry with
8335 the minimum number ENTRY_VALUE count that we found. We could
8336 avoid looping, but since each sub-loc is already resolved,
8337 the re-expansion should be trivial. ??? Should we record all
8338 attempted locs as dependencies, so that we retry the
8339 expansion should any of them change, in the hope it can give
8340 us a new entry without an ENTRY_VALUE? */
8341 elcd->expanding.truncate (first_child);
8342 goto retry;
8345 /* Register all encountered dependencies as active. */
8346 pending_recursion = loc_exp_dep_set
8347 (var, result, elcd->expanding.address () + result_first_child,
8348 last_child - result_first_child, elcd->vars);
8350 elcd->expanding.truncate (first_child);
8352 /* Record where the expansion came from. */
8353 gcc_checking_assert (!result || !pending_recursion);
8354 VAR_LOC_FROM (var) = loc_from;
8355 VAR_LOC_DEPTH (var) = depth;
8357 gcc_checking_assert (!depth.complexity == !result);
8359 elcd->depth = update_depth (saved_depth, depth);
8361 /* Indicate whether any of the dependencies are pending recursion
8362 resolution. */
8363 if (pendrecp)
8364 *pendrecp = pending_recursion;
8366 if (!pendrecp || !pending_recursion)
8367 var->var_part[0].cur_loc = result;
8369 return result;
8372 /* Callback for cselib_expand_value, that looks for expressions
8373 holding the value in the var-tracking hash tables. Return X for
8374 standard processing, anything else is to be used as-is. */
8376 static rtx
8377 vt_expand_loc_callback (rtx x, bitmap regs,
8378 int max_depth ATTRIBUTE_UNUSED,
8379 void *data)
8381 struct expand_loc_callback_data *elcd
8382 = (struct expand_loc_callback_data *) data;
8383 decl_or_value dv;
8384 variable var;
8385 rtx result, subreg;
8386 bool pending_recursion = false;
8387 bool from_empty = false;
8389 switch (GET_CODE (x))
8391 case SUBREG:
8392 subreg = cselib_expand_value_rtx_cb (SUBREG_REG (x), regs,
8393 EXPR_DEPTH,
8394 vt_expand_loc_callback, data);
8396 if (!subreg)
8397 return NULL;
8399 result = simplify_gen_subreg (GET_MODE (x), subreg,
8400 GET_MODE (SUBREG_REG (x)),
8401 SUBREG_BYTE (x));
8403 /* Invalid SUBREGs are ok in debug info. ??? We could try
8404 alternate expansions for the VALUE as well. */
8405 if (!result)
8406 result = gen_rtx_raw_SUBREG (GET_MODE (x), subreg, SUBREG_BYTE (x));
8408 return result;
8410 case DEBUG_EXPR:
8411 case VALUE:
8412 dv = dv_from_rtx (x);
8413 break;
8415 default:
8416 return x;
8419 elcd->expanding.safe_push (x);
8421 /* Check that VALUE_RECURSED_INTO implies NO_LOC_P. */
8422 gcc_checking_assert (!VALUE_RECURSED_INTO (x) || NO_LOC_P (x));
8424 if (NO_LOC_P (x))
8426 gcc_checking_assert (VALUE_RECURSED_INTO (x) || !dv_changed_p (dv));
8427 return NULL;
8430 var = elcd->vars.find_with_hash (dv, dv_htab_hash (dv));
8432 if (!var)
8434 from_empty = true;
8435 var = variable_from_dropped (dv, INSERT);
8438 gcc_checking_assert (var);
8440 if (!dv_changed_p (dv))
8442 gcc_checking_assert (!NO_LOC_P (x));
8443 gcc_checking_assert (var->var_part[0].cur_loc);
8444 gcc_checking_assert (VAR_LOC_1PAUX (var));
8445 gcc_checking_assert (VAR_LOC_1PAUX (var)->depth.complexity);
8447 elcd->depth = update_depth (elcd->depth, VAR_LOC_1PAUX (var)->depth);
8449 return var->var_part[0].cur_loc;
8452 VALUE_RECURSED_INTO (x) = true;
8453 /* This is tentative, but it makes some tests simpler. */
8454 NO_LOC_P (x) = true;
8456 gcc_checking_assert (var->n_var_parts == 1 || from_empty);
8458 result = vt_expand_var_loc_chain (var, regs, data, &pending_recursion);
8460 if (pending_recursion)
8462 gcc_checking_assert (!result);
8463 elcd->pending.safe_push (x);
8465 else
8467 NO_LOC_P (x) = !result;
8468 VALUE_RECURSED_INTO (x) = false;
8469 set_dv_changed (dv, false);
8471 if (result)
8472 notify_dependents_of_resolved_value (var, elcd->vars);
8475 return result;
8478 /* While expanding variables, we may encounter recursion cycles
8479 because of mutual (possibly indirect) dependencies between two
8480 particular variables (or values), say A and B. If we're trying to
8481 expand A when we get to B, which in turn attempts to expand A, if
8482 we can't find any other expansion for B, we'll add B to this
8483 pending-recursion stack, and tentatively return NULL for its
8484 location. This tentative value will be used for any other
8485 occurrences of B, unless A gets some other location, in which case
8486 it will notify B that it is worth another try at computing a
8487 location for it, and it will use the location computed for A then.
8488 At the end of the expansion, the tentative NULL locations become
8489 final for all members of PENDING that didn't get a notification.
8490 This function performs this finalization of NULL locations. */
8492 static void
8493 resolve_expansions_pending_recursion (vec<rtx, va_heap> *pending)
8495 while (!pending->is_empty ())
8497 rtx x = pending->pop ();
8498 decl_or_value dv;
8500 if (!VALUE_RECURSED_INTO (x))
8501 continue;
8503 gcc_checking_assert (NO_LOC_P (x));
8504 VALUE_RECURSED_INTO (x) = false;
8505 dv = dv_from_rtx (x);
8506 gcc_checking_assert (dv_changed_p (dv));
8507 set_dv_changed (dv, false);
8511 /* Initialize expand_loc_callback_data D with variable hash table V.
8512 It must be a macro because of alloca (vec stack). */
8513 #define INIT_ELCD(d, v) \
8514 do \
8516 (d).vars = (v); \
8517 (d).depth.complexity = (d).depth.entryvals = 0; \
8519 while (0)
8520 /* Finalize expand_loc_callback_data D, resolved to location L. */
8521 #define FINI_ELCD(d, l) \
8522 do \
8524 resolve_expansions_pending_recursion (&(d).pending); \
8525 (d).pending.release (); \
8526 (d).expanding.release (); \
8528 if ((l) && MEM_P (l)) \
8529 (l) = targetm.delegitimize_address (l); \
8531 while (0)
8533 /* Expand VALUEs and DEBUG_EXPRs in LOC to a location, using the
8534 equivalences in VARS, updating their CUR_LOCs in the process. */
8536 static rtx
8537 vt_expand_loc (rtx loc, variable_table_type vars)
8539 struct expand_loc_callback_data data;
8540 rtx result;
8542 if (!MAY_HAVE_DEBUG_INSNS)
8543 return loc;
8545 INIT_ELCD (data, vars);
8547 result = cselib_expand_value_rtx_cb (loc, scratch_regs, EXPR_DEPTH,
8548 vt_expand_loc_callback, &data);
8550 FINI_ELCD (data, result);
8552 return result;
8555 /* Expand the one-part VARiable to a location, using the equivalences
8556 in VARS, updating their CUR_LOCs in the process. */
8558 static rtx
8559 vt_expand_1pvar (variable var, variable_table_type vars)
8561 struct expand_loc_callback_data data;
8562 rtx loc;
8564 gcc_checking_assert (var->onepart && var->n_var_parts == 1);
8566 if (!dv_changed_p (var->dv))
8567 return var->var_part[0].cur_loc;
8569 INIT_ELCD (data, vars);
8571 loc = vt_expand_var_loc_chain (var, scratch_regs, &data, NULL);
8573 gcc_checking_assert (data.expanding.is_empty ());
8575 FINI_ELCD (data, loc);
8577 return loc;
8580 /* Emit the NOTE_INSN_VAR_LOCATION for variable *VARP. DATA contains
8581 additional parameters: WHERE specifies whether the note shall be emitted
8582 before or after instruction INSN. */
8585 emit_note_insn_var_location (variable_def **varp, emit_note_data *data)
8587 variable var = *varp;
8588 rtx insn = data->insn;
8589 enum emit_note_where where = data->where;
8590 variable_table_type vars = data->vars;
8591 rtx note, note_vl;
8592 int i, j, n_var_parts;
8593 bool complete;
8594 enum var_init_status initialized = VAR_INIT_STATUS_UNINITIALIZED;
8595 HOST_WIDE_INT last_limit;
8596 tree type_size_unit;
8597 HOST_WIDE_INT offsets[MAX_VAR_PARTS];
8598 rtx loc[MAX_VAR_PARTS];
8599 tree decl;
8600 location_chain lc;
8602 gcc_checking_assert (var->onepart == NOT_ONEPART
8603 || var->onepart == ONEPART_VDECL);
8605 decl = dv_as_decl (var->dv);
8607 complete = true;
8608 last_limit = 0;
8609 n_var_parts = 0;
8610 if (!var->onepart)
8611 for (i = 0; i < var->n_var_parts; i++)
8612 if (var->var_part[i].cur_loc == NULL && var->var_part[i].loc_chain)
8613 var->var_part[i].cur_loc = var->var_part[i].loc_chain->loc;
8614 for (i = 0; i < var->n_var_parts; i++)
8616 enum machine_mode mode, wider_mode;
8617 rtx loc2;
8618 HOST_WIDE_INT offset;
8620 if (i == 0 && var->onepart)
8622 gcc_checking_assert (var->n_var_parts == 1);
8623 offset = 0;
8624 initialized = VAR_INIT_STATUS_INITIALIZED;
8625 loc2 = vt_expand_1pvar (var, vars);
8627 else
8629 if (last_limit < VAR_PART_OFFSET (var, i))
8631 complete = false;
8632 break;
8634 else if (last_limit > VAR_PART_OFFSET (var, i))
8635 continue;
8636 offset = VAR_PART_OFFSET (var, i);
8637 loc2 = var->var_part[i].cur_loc;
8638 if (loc2 && GET_CODE (loc2) == MEM
8639 && GET_CODE (XEXP (loc2, 0)) == VALUE)
8641 rtx depval = XEXP (loc2, 0);
8643 loc2 = vt_expand_loc (loc2, vars);
8645 if (loc2)
8646 loc_exp_insert_dep (var, depval, vars);
8648 if (!loc2)
8650 complete = false;
8651 continue;
8653 gcc_checking_assert (GET_CODE (loc2) != VALUE);
8654 for (lc = var->var_part[i].loc_chain; lc; lc = lc->next)
8655 if (var->var_part[i].cur_loc == lc->loc)
8657 initialized = lc->init;
8658 break;
8660 gcc_assert (lc);
8663 offsets[n_var_parts] = offset;
8664 if (!loc2)
8666 complete = false;
8667 continue;
8669 loc[n_var_parts] = loc2;
8670 mode = GET_MODE (var->var_part[i].cur_loc);
8671 if (mode == VOIDmode && var->onepart)
8672 mode = DECL_MODE (decl);
8673 last_limit = offsets[n_var_parts] + GET_MODE_SIZE (mode);
8675 /* Attempt to merge adjacent registers or memory. */
8676 wider_mode = GET_MODE_WIDER_MODE (mode);
8677 for (j = i + 1; j < var->n_var_parts; j++)
8678 if (last_limit <= VAR_PART_OFFSET (var, j))
8679 break;
8680 if (j < var->n_var_parts
8681 && wider_mode != VOIDmode
8682 && var->var_part[j].cur_loc
8683 && mode == GET_MODE (var->var_part[j].cur_loc)
8684 && (REG_P (loc[n_var_parts]) || MEM_P (loc[n_var_parts]))
8685 && last_limit == (var->onepart ? 0 : VAR_PART_OFFSET (var, j))
8686 && (loc2 = vt_expand_loc (var->var_part[j].cur_loc, vars))
8687 && GET_CODE (loc[n_var_parts]) == GET_CODE (loc2))
8689 rtx new_loc = NULL;
8691 if (REG_P (loc[n_var_parts])
8692 && hard_regno_nregs[REGNO (loc[n_var_parts])][mode] * 2
8693 == hard_regno_nregs[REGNO (loc[n_var_parts])][wider_mode]
8694 && end_hard_regno (mode, REGNO (loc[n_var_parts]))
8695 == REGNO (loc2))
8697 if (! WORDS_BIG_ENDIAN && ! BYTES_BIG_ENDIAN)
8698 new_loc = simplify_subreg (wider_mode, loc[n_var_parts],
8699 mode, 0);
8700 else if (WORDS_BIG_ENDIAN && BYTES_BIG_ENDIAN)
8701 new_loc = simplify_subreg (wider_mode, loc2, mode, 0);
8702 if (new_loc)
8704 if (!REG_P (new_loc)
8705 || REGNO (new_loc) != REGNO (loc[n_var_parts]))
8706 new_loc = NULL;
8707 else
8708 REG_ATTRS (new_loc) = REG_ATTRS (loc[n_var_parts]);
8711 else if (MEM_P (loc[n_var_parts])
8712 && GET_CODE (XEXP (loc2, 0)) == PLUS
8713 && REG_P (XEXP (XEXP (loc2, 0), 0))
8714 && CONST_INT_P (XEXP (XEXP (loc2, 0), 1)))
8716 if ((REG_P (XEXP (loc[n_var_parts], 0))
8717 && rtx_equal_p (XEXP (loc[n_var_parts], 0),
8718 XEXP (XEXP (loc2, 0), 0))
8719 && INTVAL (XEXP (XEXP (loc2, 0), 1))
8720 == GET_MODE_SIZE (mode))
8721 || (GET_CODE (XEXP (loc[n_var_parts], 0)) == PLUS
8722 && CONST_INT_P (XEXP (XEXP (loc[n_var_parts], 0), 1))
8723 && rtx_equal_p (XEXP (XEXP (loc[n_var_parts], 0), 0),
8724 XEXP (XEXP (loc2, 0), 0))
8725 && INTVAL (XEXP (XEXP (loc[n_var_parts], 0), 1))
8726 + GET_MODE_SIZE (mode)
8727 == INTVAL (XEXP (XEXP (loc2, 0), 1))))
8728 new_loc = adjust_address_nv (loc[n_var_parts],
8729 wider_mode, 0);
8732 if (new_loc)
8734 loc[n_var_parts] = new_loc;
8735 mode = wider_mode;
8736 last_limit = offsets[n_var_parts] + GET_MODE_SIZE (mode);
8737 i = j;
8740 ++n_var_parts;
8742 type_size_unit = TYPE_SIZE_UNIT (TREE_TYPE (decl));
8743 if ((unsigned HOST_WIDE_INT) last_limit < TREE_INT_CST_LOW (type_size_unit))
8744 complete = false;
8746 if (! flag_var_tracking_uninit)
8747 initialized = VAR_INIT_STATUS_INITIALIZED;
8749 note_vl = NULL_RTX;
8750 if (!complete)
8751 note_vl = gen_rtx_VAR_LOCATION (VOIDmode, decl, NULL_RTX, initialized);
8752 else if (n_var_parts == 1)
8754 rtx expr_list;
8756 if (offsets[0] || GET_CODE (loc[0]) == PARALLEL)
8757 expr_list = gen_rtx_EXPR_LIST (VOIDmode, loc[0], GEN_INT (offsets[0]));
8758 else
8759 expr_list = loc[0];
8761 note_vl = gen_rtx_VAR_LOCATION (VOIDmode, decl, expr_list, initialized);
8763 else if (n_var_parts)
8765 rtx parallel;
8767 for (i = 0; i < n_var_parts; i++)
8768 loc[i]
8769 = gen_rtx_EXPR_LIST (VOIDmode, loc[i], GEN_INT (offsets[i]));
8771 parallel = gen_rtx_PARALLEL (VOIDmode,
8772 gen_rtvec_v (n_var_parts, loc));
8773 note_vl = gen_rtx_VAR_LOCATION (VOIDmode, decl,
8774 parallel, initialized);
8777 if (where != EMIT_NOTE_BEFORE_INSN)
8779 note = emit_note_after (NOTE_INSN_VAR_LOCATION, insn);
8780 if (where == EMIT_NOTE_AFTER_CALL_INSN)
8781 NOTE_DURING_CALL_P (note) = true;
8783 else
8785 /* Make sure that the call related notes come first. */
8786 while (NEXT_INSN (insn)
8787 && NOTE_P (insn)
8788 && ((NOTE_KIND (insn) == NOTE_INSN_VAR_LOCATION
8789 && NOTE_DURING_CALL_P (insn))
8790 || NOTE_KIND (insn) == NOTE_INSN_CALL_ARG_LOCATION))
8791 insn = NEXT_INSN (insn);
8792 if (NOTE_P (insn)
8793 && ((NOTE_KIND (insn) == NOTE_INSN_VAR_LOCATION
8794 && NOTE_DURING_CALL_P (insn))
8795 || NOTE_KIND (insn) == NOTE_INSN_CALL_ARG_LOCATION))
8796 note = emit_note_after (NOTE_INSN_VAR_LOCATION, insn);
8797 else
8798 note = emit_note_before (NOTE_INSN_VAR_LOCATION, insn);
8800 NOTE_VAR_LOCATION (note) = note_vl;
8802 set_dv_changed (var->dv, false);
8803 gcc_assert (var->in_changed_variables);
8804 var->in_changed_variables = false;
8805 changed_variables.clear_slot (varp);
8807 /* Continue traversing the hash table. */
8808 return 1;
8811 /* While traversing changed_variables, push onto DATA (a stack of RTX
8812 values) entries that aren't user variables. */
8815 var_track_values_to_stack (variable_def **slot,
8816 vec<rtx, va_heap> *changed_values_stack)
8818 variable var = *slot;
8820 if (var->onepart == ONEPART_VALUE)
8821 changed_values_stack->safe_push (dv_as_value (var->dv));
8822 else if (var->onepart == ONEPART_DEXPR)
8823 changed_values_stack->safe_push (DECL_RTL_KNOWN_SET (dv_as_decl (var->dv)));
8825 return 1;
8828 /* Remove from changed_variables the entry whose DV corresponds to
8829 value or debug_expr VAL. */
8830 static void
8831 remove_value_from_changed_variables (rtx val)
8833 decl_or_value dv = dv_from_rtx (val);
8834 variable_def **slot;
8835 variable var;
8837 slot = changed_variables.find_slot_with_hash (dv, dv_htab_hash (dv),
8838 NO_INSERT);
8839 var = *slot;
8840 var->in_changed_variables = false;
8841 changed_variables.clear_slot (slot);
8844 /* If VAL (a value or debug_expr) has backlinks to variables actively
8845 dependent on it in HTAB or in CHANGED_VARIABLES, mark them as
8846 changed, adding to CHANGED_VALUES_STACK any dependencies that may
8847 have dependencies of their own to notify. */
8849 static void
8850 notify_dependents_of_changed_value (rtx val, variable_table_type htab,
8851 vec<rtx, va_heap> *changed_values_stack)
8853 variable_def **slot;
8854 variable var;
8855 loc_exp_dep *led;
8856 decl_or_value dv = dv_from_rtx (val);
8858 slot = changed_variables.find_slot_with_hash (dv, dv_htab_hash (dv),
8859 NO_INSERT);
8860 if (!slot)
8861 slot = htab.find_slot_with_hash (dv, dv_htab_hash (dv), NO_INSERT);
8862 if (!slot)
8863 slot = dropped_values.find_slot_with_hash (dv, dv_htab_hash (dv),
8864 NO_INSERT);
8865 var = *slot;
8867 while ((led = VAR_LOC_DEP_LST (var)))
8869 decl_or_value ldv = led->dv;
8870 variable ivar;
8872 /* Deactivate and remove the backlink, as it was “used up”. It
8873 makes no sense to attempt to notify the same entity again:
8874 either it will be recomputed and re-register an active
8875 dependency, or it will still have the changed mark. */
8876 if (led->next)
8877 led->next->pprev = led->pprev;
8878 if (led->pprev)
8879 *led->pprev = led->next;
8880 led->next = NULL;
8881 led->pprev = NULL;
8883 if (dv_changed_p (ldv))
8884 continue;
8886 switch (dv_onepart_p (ldv))
8888 case ONEPART_VALUE:
8889 case ONEPART_DEXPR:
8890 set_dv_changed (ldv, true);
8891 changed_values_stack->safe_push (dv_as_rtx (ldv));
8892 break;
8894 case ONEPART_VDECL:
8895 ivar = htab.find_with_hash (ldv, dv_htab_hash (ldv));
8896 gcc_checking_assert (!VAR_LOC_DEP_LST (ivar));
8897 variable_was_changed (ivar, NULL);
8898 break;
8900 case NOT_ONEPART:
8901 pool_free (loc_exp_dep_pool, led);
8902 ivar = htab.find_with_hash (ldv, dv_htab_hash (ldv));
8903 if (ivar)
8905 int i = ivar->n_var_parts;
8906 while (i--)
8908 rtx loc = ivar->var_part[i].cur_loc;
8910 if (loc && GET_CODE (loc) == MEM
8911 && XEXP (loc, 0) == val)
8913 variable_was_changed (ivar, NULL);
8914 break;
8918 break;
8920 default:
8921 gcc_unreachable ();
8926 /* Take out of changed_variables any entries that don't refer to use
8927 variables. Back-propagate change notifications from values and
8928 debug_exprs to their active dependencies in HTAB or in
8929 CHANGED_VARIABLES. */
8931 static void
8932 process_changed_values (variable_table_type htab)
8934 int i, n;
8935 rtx val;
8936 auto_vec<rtx, 20> changed_values_stack;
8938 /* Move values from changed_variables to changed_values_stack. */
8939 changed_variables
8940 .traverse <vec<rtx, va_heap>*, var_track_values_to_stack>
8941 (&changed_values_stack);
8943 /* Back-propagate change notifications in values while popping
8944 them from the stack. */
8945 for (n = i = changed_values_stack.length ();
8946 i > 0; i = changed_values_stack.length ())
8948 val = changed_values_stack.pop ();
8949 notify_dependents_of_changed_value (val, htab, &changed_values_stack);
8951 /* This condition will hold when visiting each of the entries
8952 originally in changed_variables. We can't remove them
8953 earlier because this could drop the backlinks before we got a
8954 chance to use them. */
8955 if (i == n)
8957 remove_value_from_changed_variables (val);
8958 n--;
8963 /* Emit NOTE_INSN_VAR_LOCATION note for each variable from a chain
8964 CHANGED_VARIABLES and delete this chain. WHERE specifies whether
8965 the notes shall be emitted before of after instruction INSN. */
8967 static void
8968 emit_notes_for_changes (rtx insn, enum emit_note_where where,
8969 shared_hash vars)
8971 emit_note_data data;
8972 variable_table_type htab = shared_hash_htab (vars);
8974 if (!changed_variables.elements ())
8975 return;
8977 if (MAY_HAVE_DEBUG_INSNS)
8978 process_changed_values (htab);
8980 data.insn = insn;
8981 data.where = where;
8982 data.vars = htab;
8984 changed_variables
8985 .traverse <emit_note_data*, emit_note_insn_var_location> (&data);
8988 /* Add variable *SLOT to the chain CHANGED_VARIABLES if it differs from the
8989 same variable in hash table DATA or is not there at all. */
8992 emit_notes_for_differences_1 (variable_def **slot, variable_table_type new_vars)
8994 variable old_var, new_var;
8996 old_var = *slot;
8997 new_var = new_vars.find_with_hash (old_var->dv, dv_htab_hash (old_var->dv));
8999 if (!new_var)
9001 /* Variable has disappeared. */
9002 variable empty_var = NULL;
9004 if (old_var->onepart == ONEPART_VALUE
9005 || old_var->onepart == ONEPART_DEXPR)
9007 empty_var = variable_from_dropped (old_var->dv, NO_INSERT);
9008 if (empty_var)
9010 gcc_checking_assert (!empty_var->in_changed_variables);
9011 if (!VAR_LOC_1PAUX (old_var))
9013 VAR_LOC_1PAUX (old_var) = VAR_LOC_1PAUX (empty_var);
9014 VAR_LOC_1PAUX (empty_var) = NULL;
9016 else
9017 gcc_checking_assert (!VAR_LOC_1PAUX (empty_var));
9021 if (!empty_var)
9023 empty_var = (variable) pool_alloc (onepart_pool (old_var->onepart));
9024 empty_var->dv = old_var->dv;
9025 empty_var->refcount = 0;
9026 empty_var->n_var_parts = 0;
9027 empty_var->onepart = old_var->onepart;
9028 empty_var->in_changed_variables = false;
9031 if (empty_var->onepart)
9033 /* Propagate the auxiliary data to (ultimately)
9034 changed_variables. */
9035 empty_var->var_part[0].loc_chain = NULL;
9036 empty_var->var_part[0].cur_loc = NULL;
9037 VAR_LOC_1PAUX (empty_var) = VAR_LOC_1PAUX (old_var);
9038 VAR_LOC_1PAUX (old_var) = NULL;
9040 variable_was_changed (empty_var, NULL);
9041 /* Continue traversing the hash table. */
9042 return 1;
9044 /* Update cur_loc and one-part auxiliary data, before new_var goes
9045 through variable_was_changed. */
9046 if (old_var != new_var && new_var->onepart)
9048 gcc_checking_assert (VAR_LOC_1PAUX (new_var) == NULL);
9049 VAR_LOC_1PAUX (new_var) = VAR_LOC_1PAUX (old_var);
9050 VAR_LOC_1PAUX (old_var) = NULL;
9051 new_var->var_part[0].cur_loc = old_var->var_part[0].cur_loc;
9053 if (variable_different_p (old_var, new_var))
9054 variable_was_changed (new_var, NULL);
9056 /* Continue traversing the hash table. */
9057 return 1;
9060 /* Add variable *SLOT to the chain CHANGED_VARIABLES if it is not in hash
9061 table DATA. */
9064 emit_notes_for_differences_2 (variable_def **slot, variable_table_type old_vars)
9066 variable old_var, new_var;
9068 new_var = *slot;
9069 old_var = old_vars.find_with_hash (new_var->dv, dv_htab_hash (new_var->dv));
9070 if (!old_var)
9072 int i;
9073 for (i = 0; i < new_var->n_var_parts; i++)
9074 new_var->var_part[i].cur_loc = NULL;
9075 variable_was_changed (new_var, NULL);
9078 /* Continue traversing the hash table. */
9079 return 1;
9082 /* Emit notes before INSN for differences between dataflow sets OLD_SET and
9083 NEW_SET. */
9085 static void
9086 emit_notes_for_differences (rtx insn, dataflow_set *old_set,
9087 dataflow_set *new_set)
9089 shared_hash_htab (old_set->vars)
9090 .traverse <variable_table_type, emit_notes_for_differences_1>
9091 (shared_hash_htab (new_set->vars));
9092 shared_hash_htab (new_set->vars)
9093 .traverse <variable_table_type, emit_notes_for_differences_2>
9094 (shared_hash_htab (old_set->vars));
9095 emit_notes_for_changes (insn, EMIT_NOTE_BEFORE_INSN, new_set->vars);
9098 /* Return the next insn after INSN that is not a NOTE_INSN_VAR_LOCATION. */
9100 static rtx
9101 next_non_note_insn_var_location (rtx insn)
9103 while (insn)
9105 insn = NEXT_INSN (insn);
9106 if (insn == 0
9107 || !NOTE_P (insn)
9108 || NOTE_KIND (insn) != NOTE_INSN_VAR_LOCATION)
9109 break;
9112 return insn;
9115 /* Emit the notes for changes of location parts in the basic block BB. */
9117 static void
9118 emit_notes_in_bb (basic_block bb, dataflow_set *set)
9120 unsigned int i;
9121 micro_operation *mo;
9123 dataflow_set_clear (set);
9124 dataflow_set_copy (set, &VTI (bb)->in);
9126 FOR_EACH_VEC_ELT (VTI (bb)->mos, i, mo)
9128 rtx insn = mo->insn;
9129 rtx next_insn = next_non_note_insn_var_location (insn);
9131 switch (mo->type)
9133 case MO_CALL:
9134 dataflow_set_clear_at_call (set);
9135 emit_notes_for_changes (insn, EMIT_NOTE_AFTER_CALL_INSN, set->vars);
9137 rtx arguments = mo->u.loc, *p = &arguments, note;
9138 while (*p)
9140 XEXP (XEXP (*p, 0), 1)
9141 = vt_expand_loc (XEXP (XEXP (*p, 0), 1),
9142 shared_hash_htab (set->vars));
9143 /* If expansion is successful, keep it in the list. */
9144 if (XEXP (XEXP (*p, 0), 1))
9145 p = &XEXP (*p, 1);
9146 /* Otherwise, if the following item is data_value for it,
9147 drop it too too. */
9148 else if (XEXP (*p, 1)
9149 && REG_P (XEXP (XEXP (*p, 0), 0))
9150 && MEM_P (XEXP (XEXP (XEXP (*p, 1), 0), 0))
9151 && REG_P (XEXP (XEXP (XEXP (XEXP (*p, 1), 0), 0),
9153 && REGNO (XEXP (XEXP (*p, 0), 0))
9154 == REGNO (XEXP (XEXP (XEXP (XEXP (*p, 1), 0),
9155 0), 0)))
9156 *p = XEXP (XEXP (*p, 1), 1);
9157 /* Just drop this item. */
9158 else
9159 *p = XEXP (*p, 1);
9161 note = emit_note_after (NOTE_INSN_CALL_ARG_LOCATION, insn);
9162 NOTE_VAR_LOCATION (note) = arguments;
9164 break;
9166 case MO_USE:
9168 rtx loc = mo->u.loc;
9170 if (REG_P (loc))
9171 var_reg_set (set, loc, VAR_INIT_STATUS_UNINITIALIZED, NULL);
9172 else
9173 var_mem_set (set, loc, VAR_INIT_STATUS_UNINITIALIZED, NULL);
9175 emit_notes_for_changes (insn, EMIT_NOTE_BEFORE_INSN, set->vars);
9177 break;
9179 case MO_VAL_LOC:
9181 rtx loc = mo->u.loc;
9182 rtx val, vloc;
9183 tree var;
9185 if (GET_CODE (loc) == CONCAT)
9187 val = XEXP (loc, 0);
9188 vloc = XEXP (loc, 1);
9190 else
9192 val = NULL_RTX;
9193 vloc = loc;
9196 var = PAT_VAR_LOCATION_DECL (vloc);
9198 clobber_variable_part (set, NULL_RTX,
9199 dv_from_decl (var), 0, NULL_RTX);
9200 if (val)
9202 if (VAL_NEEDS_RESOLUTION (loc))
9203 val_resolve (set, val, PAT_VAR_LOCATION_LOC (vloc), insn);
9204 set_variable_part (set, val, dv_from_decl (var), 0,
9205 VAR_INIT_STATUS_INITIALIZED, NULL_RTX,
9206 INSERT);
9208 else if (!VAR_LOC_UNKNOWN_P (PAT_VAR_LOCATION_LOC (vloc)))
9209 set_variable_part (set, PAT_VAR_LOCATION_LOC (vloc),
9210 dv_from_decl (var), 0,
9211 VAR_INIT_STATUS_INITIALIZED, NULL_RTX,
9212 INSERT);
9214 emit_notes_for_changes (insn, EMIT_NOTE_AFTER_INSN, set->vars);
9216 break;
9218 case MO_VAL_USE:
9220 rtx loc = mo->u.loc;
9221 rtx val, vloc, uloc;
9223 vloc = uloc = XEXP (loc, 1);
9224 val = XEXP (loc, 0);
9226 if (GET_CODE (val) == CONCAT)
9228 uloc = XEXP (val, 1);
9229 val = XEXP (val, 0);
9232 if (VAL_NEEDS_RESOLUTION (loc))
9233 val_resolve (set, val, vloc, insn);
9234 else
9235 val_store (set, val, uloc, insn, false);
9237 if (VAL_HOLDS_TRACK_EXPR (loc))
9239 if (GET_CODE (uloc) == REG)
9240 var_reg_set (set, uloc, VAR_INIT_STATUS_UNINITIALIZED,
9241 NULL);
9242 else if (GET_CODE (uloc) == MEM)
9243 var_mem_set (set, uloc, VAR_INIT_STATUS_UNINITIALIZED,
9244 NULL);
9247 emit_notes_for_changes (insn, EMIT_NOTE_BEFORE_INSN, set->vars);
9249 break;
9251 case MO_VAL_SET:
9253 rtx loc = mo->u.loc;
9254 rtx val, vloc, uloc;
9255 rtx dstv, srcv;
9257 vloc = loc;
9258 uloc = XEXP (vloc, 1);
9259 val = XEXP (vloc, 0);
9260 vloc = uloc;
9262 if (GET_CODE (uloc) == SET)
9264 dstv = SET_DEST (uloc);
9265 srcv = SET_SRC (uloc);
9267 else
9269 dstv = uloc;
9270 srcv = NULL;
9273 if (GET_CODE (val) == CONCAT)
9275 dstv = vloc = XEXP (val, 1);
9276 val = XEXP (val, 0);
9279 if (GET_CODE (vloc) == SET)
9281 srcv = SET_SRC (vloc);
9283 gcc_assert (val != srcv);
9284 gcc_assert (vloc == uloc || VAL_NEEDS_RESOLUTION (loc));
9286 dstv = vloc = SET_DEST (vloc);
9288 if (VAL_NEEDS_RESOLUTION (loc))
9289 val_resolve (set, val, srcv, insn);
9291 else if (VAL_NEEDS_RESOLUTION (loc))
9293 gcc_assert (GET_CODE (uloc) == SET
9294 && GET_CODE (SET_SRC (uloc)) == REG);
9295 val_resolve (set, val, SET_SRC (uloc), insn);
9298 if (VAL_HOLDS_TRACK_EXPR (loc))
9300 if (VAL_EXPR_IS_CLOBBERED (loc))
9302 if (REG_P (uloc))
9303 var_reg_delete (set, uloc, true);
9304 else if (MEM_P (uloc))
9306 gcc_assert (MEM_P (dstv));
9307 gcc_assert (MEM_ATTRS (dstv) == MEM_ATTRS (uloc));
9308 var_mem_delete (set, dstv, true);
9311 else
9313 bool copied_p = VAL_EXPR_IS_COPIED (loc);
9314 rtx src = NULL, dst = uloc;
9315 enum var_init_status status = VAR_INIT_STATUS_INITIALIZED;
9317 if (GET_CODE (uloc) == SET)
9319 src = SET_SRC (uloc);
9320 dst = SET_DEST (uloc);
9323 if (copied_p)
9325 status = find_src_status (set, src);
9327 src = find_src_set_src (set, src);
9330 if (REG_P (dst))
9331 var_reg_delete_and_set (set, dst, !copied_p,
9332 status, srcv);
9333 else if (MEM_P (dst))
9335 gcc_assert (MEM_P (dstv));
9336 gcc_assert (MEM_ATTRS (dstv) == MEM_ATTRS (dst));
9337 var_mem_delete_and_set (set, dstv, !copied_p,
9338 status, srcv);
9342 else if (REG_P (uloc))
9343 var_regno_delete (set, REGNO (uloc));
9344 else if (MEM_P (uloc))
9346 gcc_checking_assert (GET_CODE (vloc) == MEM);
9347 gcc_checking_assert (vloc == dstv);
9348 if (vloc != dstv)
9349 clobber_overlapping_mems (set, vloc);
9352 val_store (set, val, dstv, insn, true);
9354 emit_notes_for_changes (next_insn, EMIT_NOTE_BEFORE_INSN,
9355 set->vars);
9357 break;
9359 case MO_SET:
9361 rtx loc = mo->u.loc;
9362 rtx set_src = NULL;
9364 if (GET_CODE (loc) == SET)
9366 set_src = SET_SRC (loc);
9367 loc = SET_DEST (loc);
9370 if (REG_P (loc))
9371 var_reg_delete_and_set (set, loc, true, VAR_INIT_STATUS_INITIALIZED,
9372 set_src);
9373 else
9374 var_mem_delete_and_set (set, loc, true, VAR_INIT_STATUS_INITIALIZED,
9375 set_src);
9377 emit_notes_for_changes (next_insn, EMIT_NOTE_BEFORE_INSN,
9378 set->vars);
9380 break;
9382 case MO_COPY:
9384 rtx loc = mo->u.loc;
9385 enum var_init_status src_status;
9386 rtx set_src = NULL;
9388 if (GET_CODE (loc) == SET)
9390 set_src = SET_SRC (loc);
9391 loc = SET_DEST (loc);
9394 src_status = find_src_status (set, set_src);
9395 set_src = find_src_set_src (set, set_src);
9397 if (REG_P (loc))
9398 var_reg_delete_and_set (set, loc, false, src_status, set_src);
9399 else
9400 var_mem_delete_and_set (set, loc, false, src_status, set_src);
9402 emit_notes_for_changes (next_insn, EMIT_NOTE_BEFORE_INSN,
9403 set->vars);
9405 break;
9407 case MO_USE_NO_VAR:
9409 rtx loc = mo->u.loc;
9411 if (REG_P (loc))
9412 var_reg_delete (set, loc, false);
9413 else
9414 var_mem_delete (set, loc, false);
9416 emit_notes_for_changes (insn, EMIT_NOTE_AFTER_INSN, set->vars);
9418 break;
9420 case MO_CLOBBER:
9422 rtx loc = mo->u.loc;
9424 if (REG_P (loc))
9425 var_reg_delete (set, loc, true);
9426 else
9427 var_mem_delete (set, loc, true);
9429 emit_notes_for_changes (next_insn, EMIT_NOTE_BEFORE_INSN,
9430 set->vars);
9432 break;
9434 case MO_ADJUST:
9435 set->stack_adjust += mo->u.adjust;
9436 break;
9441 /* Emit notes for the whole function. */
9443 static void
9444 vt_emit_notes (void)
9446 basic_block bb;
9447 dataflow_set cur;
9449 gcc_assert (!changed_variables.elements ());
9451 /* Free memory occupied by the out hash tables, as they aren't used
9452 anymore. */
9453 FOR_EACH_BB_FN (bb, cfun)
9454 dataflow_set_clear (&VTI (bb)->out);
9456 /* Enable emitting notes by functions (mainly by set_variable_part and
9457 delete_variable_part). */
9458 emit_notes = true;
9460 if (MAY_HAVE_DEBUG_INSNS)
9462 dropped_values.create (cselib_get_next_uid () * 2);
9463 loc_exp_dep_pool = create_alloc_pool ("loc_exp_dep pool",
9464 sizeof (loc_exp_dep), 64);
9467 dataflow_set_init (&cur);
9469 FOR_EACH_BB_FN (bb, cfun)
9471 /* Emit the notes for changes of variable locations between two
9472 subsequent basic blocks. */
9473 emit_notes_for_differences (BB_HEAD (bb), &cur, &VTI (bb)->in);
9475 if (MAY_HAVE_DEBUG_INSNS)
9476 local_get_addr_cache = pointer_map_create ();
9478 /* Emit the notes for the changes in the basic block itself. */
9479 emit_notes_in_bb (bb, &cur);
9481 if (MAY_HAVE_DEBUG_INSNS)
9482 pointer_map_destroy (local_get_addr_cache);
9483 local_get_addr_cache = NULL;
9485 /* Free memory occupied by the in hash table, we won't need it
9486 again. */
9487 dataflow_set_clear (&VTI (bb)->in);
9489 #ifdef ENABLE_CHECKING
9490 shared_hash_htab (cur.vars)
9491 .traverse <variable_table_type, emit_notes_for_differences_1>
9492 (shared_hash_htab (empty_shared_hash));
9493 #endif
9494 dataflow_set_destroy (&cur);
9496 if (MAY_HAVE_DEBUG_INSNS)
9497 dropped_values.dispose ();
9499 emit_notes = false;
9502 /* If there is a declaration and offset associated with register/memory RTL
9503 assign declaration to *DECLP and offset to *OFFSETP, and return true. */
9505 static bool
9506 vt_get_decl_and_offset (rtx rtl, tree *declp, HOST_WIDE_INT *offsetp)
9508 if (REG_P (rtl))
9510 if (REG_ATTRS (rtl))
9512 *declp = REG_EXPR (rtl);
9513 *offsetp = REG_OFFSET (rtl);
9514 return true;
9517 else if (GET_CODE (rtl) == PARALLEL)
9519 tree decl = NULL_TREE;
9520 HOST_WIDE_INT offset = MAX_VAR_PARTS;
9521 int len = XVECLEN (rtl, 0), i;
9523 for (i = 0; i < len; i++)
9525 rtx reg = XEXP (XVECEXP (rtl, 0, i), 0);
9526 if (!REG_P (reg) || !REG_ATTRS (reg))
9527 break;
9528 if (!decl)
9529 decl = REG_EXPR (reg);
9530 if (REG_EXPR (reg) != decl)
9531 break;
9532 if (REG_OFFSET (reg) < offset)
9533 offset = REG_OFFSET (reg);
9536 if (i == len)
9538 *declp = decl;
9539 *offsetp = offset;
9540 return true;
9543 else if (MEM_P (rtl))
9545 if (MEM_ATTRS (rtl))
9547 *declp = MEM_EXPR (rtl);
9548 *offsetp = INT_MEM_OFFSET (rtl);
9549 return true;
9552 return false;
9555 /* Record the value for the ENTRY_VALUE of RTL as a global equivalence
9556 of VAL. */
9558 static void
9559 record_entry_value (cselib_val *val, rtx rtl)
9561 rtx ev = gen_rtx_ENTRY_VALUE (GET_MODE (rtl));
9563 ENTRY_VALUE_EXP (ev) = rtl;
9565 cselib_add_permanent_equiv (val, ev, get_insns ());
9568 /* Insert function parameter PARM in IN and OUT sets of ENTRY_BLOCK. */
9570 static void
9571 vt_add_function_parameter (tree parm)
9573 rtx decl_rtl = DECL_RTL_IF_SET (parm);
9574 rtx incoming = DECL_INCOMING_RTL (parm);
9575 tree decl;
9576 enum machine_mode mode;
9577 HOST_WIDE_INT offset;
9578 dataflow_set *out;
9579 decl_or_value dv;
9581 if (TREE_CODE (parm) != PARM_DECL)
9582 return;
9584 if (!decl_rtl || !incoming)
9585 return;
9587 if (GET_MODE (decl_rtl) == BLKmode || GET_MODE (incoming) == BLKmode)
9588 return;
9590 /* If there is a DRAP register or a pseudo in internal_arg_pointer,
9591 rewrite the incoming location of parameters passed on the stack
9592 into MEMs based on the argument pointer, so that incoming doesn't
9593 depend on a pseudo. */
9594 if (MEM_P (incoming)
9595 && (XEXP (incoming, 0) == crtl->args.internal_arg_pointer
9596 || (GET_CODE (XEXP (incoming, 0)) == PLUS
9597 && XEXP (XEXP (incoming, 0), 0)
9598 == crtl->args.internal_arg_pointer
9599 && CONST_INT_P (XEXP (XEXP (incoming, 0), 1)))))
9601 HOST_WIDE_INT off = -FIRST_PARM_OFFSET (current_function_decl);
9602 if (GET_CODE (XEXP (incoming, 0)) == PLUS)
9603 off += INTVAL (XEXP (XEXP (incoming, 0), 1));
9604 incoming
9605 = replace_equiv_address_nv (incoming,
9606 plus_constant (Pmode,
9607 arg_pointer_rtx, off));
9610 #ifdef HAVE_window_save
9611 /* DECL_INCOMING_RTL uses the INCOMING_REGNO of parameter registers.
9612 If the target machine has an explicit window save instruction, the
9613 actual entry value is the corresponding OUTGOING_REGNO instead. */
9614 if (HAVE_window_save && !crtl->uses_only_leaf_regs)
9616 if (REG_P (incoming)
9617 && HARD_REGISTER_P (incoming)
9618 && OUTGOING_REGNO (REGNO (incoming)) != REGNO (incoming))
9620 parm_reg_t p;
9621 p.incoming = incoming;
9622 incoming
9623 = gen_rtx_REG_offset (incoming, GET_MODE (incoming),
9624 OUTGOING_REGNO (REGNO (incoming)), 0);
9625 p.outgoing = incoming;
9626 vec_safe_push (windowed_parm_regs, p);
9628 else if (GET_CODE (incoming) == PARALLEL)
9630 rtx outgoing
9631 = gen_rtx_PARALLEL (VOIDmode, rtvec_alloc (XVECLEN (incoming, 0)));
9632 int i;
9634 for (i = 0; i < XVECLEN (incoming, 0); i++)
9636 rtx reg = XEXP (XVECEXP (incoming, 0, i), 0);
9637 parm_reg_t p;
9638 p.incoming = reg;
9639 reg = gen_rtx_REG_offset (reg, GET_MODE (reg),
9640 OUTGOING_REGNO (REGNO (reg)), 0);
9641 p.outgoing = reg;
9642 XVECEXP (outgoing, 0, i)
9643 = gen_rtx_EXPR_LIST (VOIDmode, reg,
9644 XEXP (XVECEXP (incoming, 0, i), 1));
9645 vec_safe_push (windowed_parm_regs, p);
9648 incoming = outgoing;
9650 else if (MEM_P (incoming)
9651 && REG_P (XEXP (incoming, 0))
9652 && HARD_REGISTER_P (XEXP (incoming, 0)))
9654 rtx reg = XEXP (incoming, 0);
9655 if (OUTGOING_REGNO (REGNO (reg)) != REGNO (reg))
9657 parm_reg_t p;
9658 p.incoming = reg;
9659 reg = gen_raw_REG (GET_MODE (reg), OUTGOING_REGNO (REGNO (reg)));
9660 p.outgoing = reg;
9661 vec_safe_push (windowed_parm_regs, p);
9662 incoming = replace_equiv_address_nv (incoming, reg);
9666 #endif
9668 if (!vt_get_decl_and_offset (incoming, &decl, &offset))
9670 if (MEM_P (incoming))
9672 /* This means argument is passed by invisible reference. */
9673 offset = 0;
9674 decl = parm;
9676 else
9678 if (!vt_get_decl_and_offset (decl_rtl, &decl, &offset))
9679 return;
9680 offset += byte_lowpart_offset (GET_MODE (incoming),
9681 GET_MODE (decl_rtl));
9685 if (!decl)
9686 return;
9688 if (parm != decl)
9690 /* If that DECL_RTL wasn't a pseudo that got spilled to
9691 memory, bail out. Otherwise, the spill slot sharing code
9692 will force the memory to reference spill_slot_decl (%sfp),
9693 so we don't match above. That's ok, the pseudo must have
9694 referenced the entire parameter, so just reset OFFSET. */
9695 if (decl != get_spill_slot_decl (false))
9696 return;
9697 offset = 0;
9700 if (!track_loc_p (incoming, parm, offset, false, &mode, &offset))
9701 return;
9703 out = &VTI (ENTRY_BLOCK_PTR_FOR_FN (cfun))->out;
9705 dv = dv_from_decl (parm);
9707 if (target_for_debug_bind (parm)
9708 /* We can't deal with these right now, because this kind of
9709 variable is single-part. ??? We could handle parallels
9710 that describe multiple locations for the same single
9711 value, but ATM we don't. */
9712 && GET_CODE (incoming) != PARALLEL)
9714 cselib_val *val;
9715 rtx lowpart;
9717 /* ??? We shouldn't ever hit this, but it may happen because
9718 arguments passed by invisible reference aren't dealt with
9719 above: incoming-rtl will have Pmode rather than the
9720 expected mode for the type. */
9721 if (offset)
9722 return;
9724 lowpart = var_lowpart (mode, incoming);
9725 if (!lowpart)
9726 return;
9728 val = cselib_lookup_from_insn (lowpart, mode, true,
9729 VOIDmode, get_insns ());
9731 /* ??? Float-typed values in memory are not handled by
9732 cselib. */
9733 if (val)
9735 preserve_value (val);
9736 set_variable_part (out, val->val_rtx, dv, offset,
9737 VAR_INIT_STATUS_INITIALIZED, NULL, INSERT);
9738 dv = dv_from_value (val->val_rtx);
9741 if (MEM_P (incoming))
9743 val = cselib_lookup_from_insn (XEXP (incoming, 0), mode, true,
9744 VOIDmode, get_insns ());
9745 if (val)
9747 preserve_value (val);
9748 incoming = replace_equiv_address_nv (incoming, val->val_rtx);
9753 if (REG_P (incoming))
9755 incoming = var_lowpart (mode, incoming);
9756 gcc_assert (REGNO (incoming) < FIRST_PSEUDO_REGISTER);
9757 attrs_list_insert (&out->regs[REGNO (incoming)], dv, offset,
9758 incoming);
9759 set_variable_part (out, incoming, dv, offset,
9760 VAR_INIT_STATUS_INITIALIZED, NULL, INSERT);
9761 if (dv_is_value_p (dv))
9763 record_entry_value (CSELIB_VAL_PTR (dv_as_value (dv)), incoming);
9764 if (TREE_CODE (TREE_TYPE (parm)) == REFERENCE_TYPE
9765 && INTEGRAL_TYPE_P (TREE_TYPE (TREE_TYPE (parm))))
9767 enum machine_mode indmode
9768 = TYPE_MODE (TREE_TYPE (TREE_TYPE (parm)));
9769 rtx mem = gen_rtx_MEM (indmode, incoming);
9770 cselib_val *val = cselib_lookup_from_insn (mem, indmode, true,
9771 VOIDmode,
9772 get_insns ());
9773 if (val)
9775 preserve_value (val);
9776 record_entry_value (val, mem);
9777 set_variable_part (out, mem, dv_from_value (val->val_rtx), 0,
9778 VAR_INIT_STATUS_INITIALIZED, NULL, INSERT);
9783 else if (GET_CODE (incoming) == PARALLEL && !dv_onepart_p (dv))
9785 int i;
9787 for (i = 0; i < XVECLEN (incoming, 0); i++)
9789 rtx reg = XEXP (XVECEXP (incoming, 0, i), 0);
9790 offset = REG_OFFSET (reg);
9791 gcc_assert (REGNO (reg) < FIRST_PSEUDO_REGISTER);
9792 attrs_list_insert (&out->regs[REGNO (reg)], dv, offset, reg);
9793 set_variable_part (out, reg, dv, offset,
9794 VAR_INIT_STATUS_INITIALIZED, NULL, INSERT);
9797 else if (MEM_P (incoming))
9799 incoming = var_lowpart (mode, incoming);
9800 set_variable_part (out, incoming, dv, offset,
9801 VAR_INIT_STATUS_INITIALIZED, NULL, INSERT);
9805 /* Insert function parameters to IN and OUT sets of ENTRY_BLOCK. */
9807 static void
9808 vt_add_function_parameters (void)
9810 tree parm;
9812 for (parm = DECL_ARGUMENTS (current_function_decl);
9813 parm; parm = DECL_CHAIN (parm))
9814 vt_add_function_parameter (parm);
9816 if (DECL_HAS_VALUE_EXPR_P (DECL_RESULT (current_function_decl)))
9818 tree vexpr = DECL_VALUE_EXPR (DECL_RESULT (current_function_decl));
9820 if (TREE_CODE (vexpr) == INDIRECT_REF)
9821 vexpr = TREE_OPERAND (vexpr, 0);
9823 if (TREE_CODE (vexpr) == PARM_DECL
9824 && DECL_ARTIFICIAL (vexpr)
9825 && !DECL_IGNORED_P (vexpr)
9826 && DECL_NAMELESS (vexpr))
9827 vt_add_function_parameter (vexpr);
9831 /* Initialize cfa_base_rtx, create a preserved VALUE for it and
9832 ensure it isn't flushed during cselib_reset_table.
9833 Can be called only if frame_pointer_rtx resp. arg_pointer_rtx
9834 has been eliminated. */
9836 static void
9837 vt_init_cfa_base (void)
9839 cselib_val *val;
9841 #ifdef FRAME_POINTER_CFA_OFFSET
9842 cfa_base_rtx = frame_pointer_rtx;
9843 cfa_base_offset = -FRAME_POINTER_CFA_OFFSET (current_function_decl);
9844 #else
9845 cfa_base_rtx = arg_pointer_rtx;
9846 cfa_base_offset = -ARG_POINTER_CFA_OFFSET (current_function_decl);
9847 #endif
9848 if (cfa_base_rtx == hard_frame_pointer_rtx
9849 || !fixed_regs[REGNO (cfa_base_rtx)])
9851 cfa_base_rtx = NULL_RTX;
9852 return;
9854 if (!MAY_HAVE_DEBUG_INSNS)
9855 return;
9857 /* Tell alias analysis that cfa_base_rtx should share
9858 find_base_term value with stack pointer or hard frame pointer. */
9859 if (!frame_pointer_needed)
9860 vt_equate_reg_base_value (cfa_base_rtx, stack_pointer_rtx);
9861 else if (!crtl->stack_realign_tried)
9862 vt_equate_reg_base_value (cfa_base_rtx, hard_frame_pointer_rtx);
9864 val = cselib_lookup_from_insn (cfa_base_rtx, GET_MODE (cfa_base_rtx), 1,
9865 VOIDmode, get_insns ());
9866 preserve_value (val);
9867 cselib_preserve_cfa_base_value (val, REGNO (cfa_base_rtx));
9870 /* Allocate and initialize the data structures for variable tracking
9871 and parse the RTL to get the micro operations. */
9873 static bool
9874 vt_initialize (void)
9876 basic_block bb;
9877 HOST_WIDE_INT fp_cfa_offset = -1;
9879 alloc_aux_for_blocks (sizeof (struct variable_tracking_info_def));
9881 attrs_pool = create_alloc_pool ("attrs_def pool",
9882 sizeof (struct attrs_def), 1024);
9883 var_pool = create_alloc_pool ("variable_def pool",
9884 sizeof (struct variable_def)
9885 + (MAX_VAR_PARTS - 1)
9886 * sizeof (((variable)NULL)->var_part[0]), 64);
9887 loc_chain_pool = create_alloc_pool ("location_chain_def pool",
9888 sizeof (struct location_chain_def),
9889 1024);
9890 shared_hash_pool = create_alloc_pool ("shared_hash_def pool",
9891 sizeof (struct shared_hash_def), 256);
9892 empty_shared_hash = (shared_hash) pool_alloc (shared_hash_pool);
9893 empty_shared_hash->refcount = 1;
9894 empty_shared_hash->htab.create (1);
9895 changed_variables.create (10);
9897 /* Init the IN and OUT sets. */
9898 FOR_ALL_BB_FN (bb, cfun)
9900 VTI (bb)->visited = false;
9901 VTI (bb)->flooded = false;
9902 dataflow_set_init (&VTI (bb)->in);
9903 dataflow_set_init (&VTI (bb)->out);
9904 VTI (bb)->permp = NULL;
9907 if (MAY_HAVE_DEBUG_INSNS)
9909 cselib_init (CSELIB_RECORD_MEMORY | CSELIB_PRESERVE_CONSTANTS);
9910 scratch_regs = BITMAP_ALLOC (NULL);
9911 valvar_pool = create_alloc_pool ("small variable_def pool",
9912 sizeof (struct variable_def), 256);
9913 preserved_values.create (256);
9914 global_get_addr_cache = pointer_map_create ();
9916 else
9918 scratch_regs = NULL;
9919 valvar_pool = NULL;
9920 global_get_addr_cache = NULL;
9923 if (MAY_HAVE_DEBUG_INSNS)
9925 rtx reg, expr;
9926 int ofst;
9927 cselib_val *val;
9929 #ifdef FRAME_POINTER_CFA_OFFSET
9930 reg = frame_pointer_rtx;
9931 ofst = FRAME_POINTER_CFA_OFFSET (current_function_decl);
9932 #else
9933 reg = arg_pointer_rtx;
9934 ofst = ARG_POINTER_CFA_OFFSET (current_function_decl);
9935 #endif
9937 ofst -= INCOMING_FRAME_SP_OFFSET;
9939 val = cselib_lookup_from_insn (reg, GET_MODE (reg), 1,
9940 VOIDmode, get_insns ());
9941 preserve_value (val);
9942 if (reg != hard_frame_pointer_rtx && fixed_regs[REGNO (reg)])
9943 cselib_preserve_cfa_base_value (val, REGNO (reg));
9944 expr = plus_constant (GET_MODE (stack_pointer_rtx),
9945 stack_pointer_rtx, -ofst);
9946 cselib_add_permanent_equiv (val, expr, get_insns ());
9948 if (ofst)
9950 val = cselib_lookup_from_insn (stack_pointer_rtx,
9951 GET_MODE (stack_pointer_rtx), 1,
9952 VOIDmode, get_insns ());
9953 preserve_value (val);
9954 expr = plus_constant (GET_MODE (reg), reg, ofst);
9955 cselib_add_permanent_equiv (val, expr, get_insns ());
9959 /* In order to factor out the adjustments made to the stack pointer or to
9960 the hard frame pointer and thus be able to use DW_OP_fbreg operations
9961 instead of individual location lists, we're going to rewrite MEMs based
9962 on them into MEMs based on the CFA by de-eliminating stack_pointer_rtx
9963 or hard_frame_pointer_rtx to the virtual CFA pointer frame_pointer_rtx
9964 resp. arg_pointer_rtx. We can do this either when there is no frame
9965 pointer in the function and stack adjustments are consistent for all
9966 basic blocks or when there is a frame pointer and no stack realignment.
9967 But we first have to check that frame_pointer_rtx resp. arg_pointer_rtx
9968 has been eliminated. */
9969 if (!frame_pointer_needed)
9971 rtx reg, elim;
9973 if (!vt_stack_adjustments ())
9974 return false;
9976 #ifdef FRAME_POINTER_CFA_OFFSET
9977 reg = frame_pointer_rtx;
9978 #else
9979 reg = arg_pointer_rtx;
9980 #endif
9981 elim = eliminate_regs (reg, VOIDmode, NULL_RTX);
9982 if (elim != reg)
9984 if (GET_CODE (elim) == PLUS)
9985 elim = XEXP (elim, 0);
9986 if (elim == stack_pointer_rtx)
9987 vt_init_cfa_base ();
9990 else if (!crtl->stack_realign_tried)
9992 rtx reg, elim;
9994 #ifdef FRAME_POINTER_CFA_OFFSET
9995 reg = frame_pointer_rtx;
9996 fp_cfa_offset = FRAME_POINTER_CFA_OFFSET (current_function_decl);
9997 #else
9998 reg = arg_pointer_rtx;
9999 fp_cfa_offset = ARG_POINTER_CFA_OFFSET (current_function_decl);
10000 #endif
10001 elim = eliminate_regs (reg, VOIDmode, NULL_RTX);
10002 if (elim != reg)
10004 if (GET_CODE (elim) == PLUS)
10006 fp_cfa_offset -= INTVAL (XEXP (elim, 1));
10007 elim = XEXP (elim, 0);
10009 if (elim != hard_frame_pointer_rtx)
10010 fp_cfa_offset = -1;
10012 else
10013 fp_cfa_offset = -1;
10016 /* If the stack is realigned and a DRAP register is used, we're going to
10017 rewrite MEMs based on it representing incoming locations of parameters
10018 passed on the stack into MEMs based on the argument pointer. Although
10019 we aren't going to rewrite other MEMs, we still need to initialize the
10020 virtual CFA pointer in order to ensure that the argument pointer will
10021 be seen as a constant throughout the function.
10023 ??? This doesn't work if FRAME_POINTER_CFA_OFFSET is defined. */
10024 else if (stack_realign_drap)
10026 rtx reg, elim;
10028 #ifdef FRAME_POINTER_CFA_OFFSET
10029 reg = frame_pointer_rtx;
10030 #else
10031 reg = arg_pointer_rtx;
10032 #endif
10033 elim = eliminate_regs (reg, VOIDmode, NULL_RTX);
10034 if (elim != reg)
10036 if (GET_CODE (elim) == PLUS)
10037 elim = XEXP (elim, 0);
10038 if (elim == hard_frame_pointer_rtx)
10039 vt_init_cfa_base ();
10043 hard_frame_pointer_adjustment = -1;
10045 vt_add_function_parameters ();
10047 FOR_EACH_BB_FN (bb, cfun)
10049 rtx insn;
10050 HOST_WIDE_INT pre, post = 0;
10051 basic_block first_bb, last_bb;
10053 if (MAY_HAVE_DEBUG_INSNS)
10055 cselib_record_sets_hook = add_with_sets;
10056 if (dump_file && (dump_flags & TDF_DETAILS))
10057 fprintf (dump_file, "first value: %i\n",
10058 cselib_get_next_uid ());
10061 first_bb = bb;
10062 for (;;)
10064 edge e;
10065 if (bb->next_bb == EXIT_BLOCK_PTR_FOR_FN (cfun)
10066 || ! single_pred_p (bb->next_bb))
10067 break;
10068 e = find_edge (bb, bb->next_bb);
10069 if (! e || (e->flags & EDGE_FALLTHRU) == 0)
10070 break;
10071 bb = bb->next_bb;
10073 last_bb = bb;
10075 /* Add the micro-operations to the vector. */
10076 FOR_BB_BETWEEN (bb, first_bb, last_bb->next_bb, next_bb)
10078 HOST_WIDE_INT offset = VTI (bb)->out.stack_adjust;
10079 VTI (bb)->out.stack_adjust = VTI (bb)->in.stack_adjust;
10080 for (insn = BB_HEAD (bb); insn != NEXT_INSN (BB_END (bb));
10081 insn = NEXT_INSN (insn))
10083 if (INSN_P (insn))
10085 if (!frame_pointer_needed)
10087 insn_stack_adjust_offset_pre_post (insn, &pre, &post);
10088 if (pre)
10090 micro_operation mo;
10091 mo.type = MO_ADJUST;
10092 mo.u.adjust = pre;
10093 mo.insn = insn;
10094 if (dump_file && (dump_flags & TDF_DETAILS))
10095 log_op_type (PATTERN (insn), bb, insn,
10096 MO_ADJUST, dump_file);
10097 VTI (bb)->mos.safe_push (mo);
10098 VTI (bb)->out.stack_adjust += pre;
10102 cselib_hook_called = false;
10103 adjust_insn (bb, insn);
10104 if (MAY_HAVE_DEBUG_INSNS)
10106 if (CALL_P (insn))
10107 prepare_call_arguments (bb, insn);
10108 cselib_process_insn (insn);
10109 if (dump_file && (dump_flags & TDF_DETAILS))
10111 print_rtl_single (dump_file, insn);
10112 dump_cselib_table (dump_file);
10115 if (!cselib_hook_called)
10116 add_with_sets (insn, 0, 0);
10117 cancel_changes (0);
10119 if (!frame_pointer_needed && post)
10121 micro_operation mo;
10122 mo.type = MO_ADJUST;
10123 mo.u.adjust = post;
10124 mo.insn = insn;
10125 if (dump_file && (dump_flags & TDF_DETAILS))
10126 log_op_type (PATTERN (insn), bb, insn,
10127 MO_ADJUST, dump_file);
10128 VTI (bb)->mos.safe_push (mo);
10129 VTI (bb)->out.stack_adjust += post;
10132 if (fp_cfa_offset != -1
10133 && hard_frame_pointer_adjustment == -1
10134 && fp_setter_insn (insn))
10136 vt_init_cfa_base ();
10137 hard_frame_pointer_adjustment = fp_cfa_offset;
10138 /* Disassociate sp from fp now. */
10139 if (MAY_HAVE_DEBUG_INSNS)
10141 cselib_val *v;
10142 cselib_invalidate_rtx (stack_pointer_rtx);
10143 v = cselib_lookup (stack_pointer_rtx, Pmode, 1,
10144 VOIDmode);
10145 if (v && !cselib_preserved_value_p (v))
10147 cselib_set_value_sp_based (v);
10148 preserve_value (v);
10154 gcc_assert (offset == VTI (bb)->out.stack_adjust);
10157 bb = last_bb;
10159 if (MAY_HAVE_DEBUG_INSNS)
10161 cselib_preserve_only_values ();
10162 cselib_reset_table (cselib_get_next_uid ());
10163 cselib_record_sets_hook = NULL;
10167 hard_frame_pointer_adjustment = -1;
10168 VTI (ENTRY_BLOCK_PTR_FOR_FN (cfun))->flooded = true;
10169 cfa_base_rtx = NULL_RTX;
10170 return true;
10173 /* This is *not* reset after each function. It gives each
10174 NOTE_INSN_DELETED_DEBUG_LABEL in the entire compilation
10175 a unique label number. */
10177 static int debug_label_num = 1;
10179 /* Get rid of all debug insns from the insn stream. */
10181 static void
10182 delete_debug_insns (void)
10184 basic_block bb;
10185 rtx insn, next;
10187 if (!MAY_HAVE_DEBUG_INSNS)
10188 return;
10190 FOR_EACH_BB_FN (bb, cfun)
10192 FOR_BB_INSNS_SAFE (bb, insn, next)
10193 if (DEBUG_INSN_P (insn))
10195 tree decl = INSN_VAR_LOCATION_DECL (insn);
10196 if (TREE_CODE (decl) == LABEL_DECL
10197 && DECL_NAME (decl)
10198 && !DECL_RTL_SET_P (decl))
10200 PUT_CODE (insn, NOTE);
10201 NOTE_KIND (insn) = NOTE_INSN_DELETED_DEBUG_LABEL;
10202 NOTE_DELETED_LABEL_NAME (insn)
10203 = IDENTIFIER_POINTER (DECL_NAME (decl));
10204 SET_DECL_RTL (decl, insn);
10205 CODE_LABEL_NUMBER (insn) = debug_label_num++;
10207 else
10208 delete_insn (insn);
10213 /* Run a fast, BB-local only version of var tracking, to take care of
10214 information that we don't do global analysis on, such that not all
10215 information is lost. If SKIPPED holds, we're skipping the global
10216 pass entirely, so we should try to use information it would have
10217 handled as well.. */
10219 static void
10220 vt_debug_insns_local (bool skipped ATTRIBUTE_UNUSED)
10222 /* ??? Just skip it all for now. */
10223 delete_debug_insns ();
10226 /* Free the data structures needed for variable tracking. */
10228 static void
10229 vt_finalize (void)
10231 basic_block bb;
10233 FOR_EACH_BB_FN (bb, cfun)
10235 VTI (bb)->mos.release ();
10238 FOR_ALL_BB_FN (bb, cfun)
10240 dataflow_set_destroy (&VTI (bb)->in);
10241 dataflow_set_destroy (&VTI (bb)->out);
10242 if (VTI (bb)->permp)
10244 dataflow_set_destroy (VTI (bb)->permp);
10245 XDELETE (VTI (bb)->permp);
10248 free_aux_for_blocks ();
10249 empty_shared_hash->htab.dispose ();
10250 changed_variables.dispose ();
10251 free_alloc_pool (attrs_pool);
10252 free_alloc_pool (var_pool);
10253 free_alloc_pool (loc_chain_pool);
10254 free_alloc_pool (shared_hash_pool);
10256 if (MAY_HAVE_DEBUG_INSNS)
10258 if (global_get_addr_cache)
10259 pointer_map_destroy (global_get_addr_cache);
10260 global_get_addr_cache = NULL;
10261 if (loc_exp_dep_pool)
10262 free_alloc_pool (loc_exp_dep_pool);
10263 loc_exp_dep_pool = NULL;
10264 free_alloc_pool (valvar_pool);
10265 preserved_values.release ();
10266 cselib_finish ();
10267 BITMAP_FREE (scratch_regs);
10268 scratch_regs = NULL;
10271 #ifdef HAVE_window_save
10272 vec_free (windowed_parm_regs);
10273 #endif
10275 if (vui_vec)
10276 XDELETEVEC (vui_vec);
10277 vui_vec = NULL;
10278 vui_allocated = 0;
10281 /* The entry point to variable tracking pass. */
10283 static inline unsigned int
10284 variable_tracking_main_1 (void)
10286 bool success;
10288 if (flag_var_tracking_assignments < 0)
10290 delete_debug_insns ();
10291 return 0;
10294 if (n_basic_blocks_for_fn (cfun) > 500 &&
10295 n_edges_for_fn (cfun) / n_basic_blocks_for_fn (cfun) >= 20)
10297 vt_debug_insns_local (true);
10298 return 0;
10301 mark_dfs_back_edges ();
10302 if (!vt_initialize ())
10304 vt_finalize ();
10305 vt_debug_insns_local (true);
10306 return 0;
10309 success = vt_find_locations ();
10311 if (!success && flag_var_tracking_assignments > 0)
10313 vt_finalize ();
10315 delete_debug_insns ();
10317 /* This is later restored by our caller. */
10318 flag_var_tracking_assignments = 0;
10320 success = vt_initialize ();
10321 gcc_assert (success);
10323 success = vt_find_locations ();
10326 if (!success)
10328 vt_finalize ();
10329 vt_debug_insns_local (false);
10330 return 0;
10333 if (dump_file && (dump_flags & TDF_DETAILS))
10335 dump_dataflow_sets ();
10336 dump_reg_info (dump_file);
10337 dump_flow_info (dump_file, dump_flags);
10340 timevar_push (TV_VAR_TRACKING_EMIT);
10341 vt_emit_notes ();
10342 timevar_pop (TV_VAR_TRACKING_EMIT);
10344 vt_finalize ();
10345 vt_debug_insns_local (false);
10346 return 0;
10349 unsigned int
10350 variable_tracking_main (void)
10352 unsigned int ret;
10353 int save = flag_var_tracking_assignments;
10355 ret = variable_tracking_main_1 ();
10357 flag_var_tracking_assignments = save;
10359 return ret;
10362 namespace {
10364 const pass_data pass_data_variable_tracking =
10366 RTL_PASS, /* type */
10367 "vartrack", /* name */
10368 OPTGROUP_NONE, /* optinfo_flags */
10369 true, /* has_execute */
10370 TV_VAR_TRACKING, /* tv_id */
10371 0, /* properties_required */
10372 0, /* properties_provided */
10373 0, /* properties_destroyed */
10374 0, /* todo_flags_start */
10375 0, /* todo_flags_finish */
10378 class pass_variable_tracking : public rtl_opt_pass
10380 public:
10381 pass_variable_tracking (gcc::context *ctxt)
10382 : rtl_opt_pass (pass_data_variable_tracking, ctxt)
10385 /* opt_pass methods: */
10386 virtual bool gate (function *)
10388 return (flag_var_tracking && !targetm.delay_vartrack);
10391 virtual unsigned int execute (function *)
10393 return variable_tracking_main ();
10396 }; // class pass_variable_tracking
10398 } // anon namespace
10400 rtl_opt_pass *
10401 make_pass_variable_tracking (gcc::context *ctxt)
10403 return new pass_variable_tracking (ctxt);