* rtl.h (insn_location): Declare.
[official-gcc.git] / gcc / tree-ssa-loop-im.c
blobe957f92114151d11fb01b94b20db970066b4f677
1 /* Loop invariant motion.
2 Copyright (C) 2003-2014 Free Software Foundation, Inc.
4 This file is part of GCC.
6 GCC is free software; you can redistribute it and/or modify it
7 under the terms of the GNU General Public License as published by the
8 Free Software Foundation; either version 3, or (at your option) any
9 later version.
11 GCC is distributed in the hope that it will be useful, but WITHOUT
12 ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
13 FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License
14 for more details.
16 You should have received a copy of the GNU General Public License
17 along with GCC; see the file COPYING3. If not see
18 <http://www.gnu.org/licenses/>. */
20 #include "config.h"
21 #include "system.h"
22 #include "coretypes.h"
23 #include "tm.h"
24 #include "tree.h"
25 #include "tm_p.h"
26 #include "basic-block.h"
27 #include "gimple-pretty-print.h"
28 #include "pointer-set.h"
29 #include "hash-table.h"
30 #include "tree-ssa-alias.h"
31 #include "internal-fn.h"
32 #include "tree-eh.h"
33 #include "gimple-expr.h"
34 #include "is-a.h"
35 #include "gimple.h"
36 #include "gimplify.h"
37 #include "gimple-iterator.h"
38 #include "gimple-ssa.h"
39 #include "tree-cfg.h"
40 #include "tree-phinodes.h"
41 #include "ssa-iterators.h"
42 #include "stringpool.h"
43 #include "tree-ssanames.h"
44 #include "tree-ssa-loop-manip.h"
45 #include "tree-ssa-loop.h"
46 #include "tree-into-ssa.h"
47 #include "cfgloop.h"
48 #include "domwalk.h"
49 #include "params.h"
50 #include "tree-pass.h"
51 #include "flags.h"
52 #include "tree-affine.h"
53 #include "tree-ssa-propagate.h"
54 #include "trans-mem.h"
55 #include "gimple-fold.h"
57 /* TODO: Support for predicated code motion. I.e.
59 while (1)
61 if (cond)
63 a = inv;
64 something;
68 Where COND and INV are invariants, but evaluating INV may trap or be
69 invalid from some other reason if !COND. This may be transformed to
71 if (cond)
72 a = inv;
73 while (1)
75 if (cond)
76 something;
77 } */
79 /* The auxiliary data kept for each statement. */
81 struct lim_aux_data
83 struct loop *max_loop; /* The outermost loop in that the statement
84 is invariant. */
86 struct loop *tgt_loop; /* The loop out of that we want to move the
87 invariant. */
89 struct loop *always_executed_in;
90 /* The outermost loop for that we are sure
91 the statement is executed if the loop
92 is entered. */
94 unsigned cost; /* Cost of the computation performed by the
95 statement. */
97 vec<gimple> depends; /* Vector of statements that must be also
98 hoisted out of the loop when this statement
99 is hoisted; i.e. those that define the
100 operands of the statement and are inside of
101 the MAX_LOOP loop. */
104 /* Maps statements to their lim_aux_data. */
106 static struct pointer_map_t *lim_aux_data_map;
108 /* Description of a memory reference location. */
110 typedef struct mem_ref_loc
112 tree *ref; /* The reference itself. */
113 gimple stmt; /* The statement in that it occurs. */
114 } *mem_ref_loc_p;
117 /* Description of a memory reference. */
119 typedef struct mem_ref
121 unsigned id; /* ID assigned to the memory reference
122 (its index in memory_accesses.refs_list) */
123 hashval_t hash; /* Its hash value. */
125 /* The memory access itself and associated caching of alias-oracle
126 query meta-data. */
127 ao_ref mem;
129 bitmap stored; /* The set of loops in that this memory location
130 is stored to. */
131 vec<mem_ref_loc> accesses_in_loop;
132 /* The locations of the accesses. Vector
133 indexed by the loop number. */
135 /* The following sets are computed on demand. We keep both set and
136 its complement, so that we know whether the information was
137 already computed or not. */
138 bitmap_head indep_loop; /* The set of loops in that the memory
139 reference is independent, meaning:
140 If it is stored in the loop, this store
141 is independent on all other loads and
142 stores.
143 If it is only loaded, then it is independent
144 on all stores in the loop. */
145 bitmap_head dep_loop; /* The complement of INDEP_LOOP. */
146 } *mem_ref_p;
148 /* We use two bits per loop in the ref->{in,}dep_loop bitmaps, the first
149 to record (in)dependence against stores in the loop and its subloops, the
150 second to record (in)dependence against all references in the loop
151 and its subloops. */
152 #define LOOP_DEP_BIT(loopnum, storedp) (2 * (loopnum) + (storedp ? 1 : 0))
154 /* Mem_ref hashtable helpers. */
156 struct mem_ref_hasher : typed_noop_remove <mem_ref>
158 typedef mem_ref value_type;
159 typedef tree_node compare_type;
160 static inline hashval_t hash (const value_type *);
161 static inline bool equal (const value_type *, const compare_type *);
164 /* A hash function for struct mem_ref object OBJ. */
166 inline hashval_t
167 mem_ref_hasher::hash (const value_type *mem)
169 return mem->hash;
172 /* An equality function for struct mem_ref object MEM1 with
173 memory reference OBJ2. */
175 inline bool
176 mem_ref_hasher::equal (const value_type *mem1, const compare_type *obj2)
178 return operand_equal_p (mem1->mem.ref, (const_tree) obj2, 0);
182 /* Description of memory accesses in loops. */
184 static struct
186 /* The hash table of memory references accessed in loops. */
187 hash_table <mem_ref_hasher> refs;
189 /* The list of memory references. */
190 vec<mem_ref_p> refs_list;
192 /* The set of memory references accessed in each loop. */
193 vec<bitmap_head> refs_in_loop;
195 /* The set of memory references stored in each loop. */
196 vec<bitmap_head> refs_stored_in_loop;
198 /* The set of memory references stored in each loop, including subloops . */
199 vec<bitmap_head> all_refs_stored_in_loop;
201 /* Cache for expanding memory addresses. */
202 struct pointer_map_t *ttae_cache;
203 } memory_accesses;
205 /* Obstack for the bitmaps in the above data structures. */
206 static bitmap_obstack lim_bitmap_obstack;
207 static obstack mem_ref_obstack;
209 static bool ref_indep_loop_p (struct loop *, mem_ref_p);
211 /* Minimum cost of an expensive expression. */
212 #define LIM_EXPENSIVE ((unsigned) PARAM_VALUE (PARAM_LIM_EXPENSIVE))
214 /* The outermost loop for which execution of the header guarantees that the
215 block will be executed. */
216 #define ALWAYS_EXECUTED_IN(BB) ((struct loop *) (BB)->aux)
217 #define SET_ALWAYS_EXECUTED_IN(BB, VAL) ((BB)->aux = (void *) (VAL))
219 /* ID of the shared unanalyzable mem. */
220 #define UNANALYZABLE_MEM_ID 0
222 /* Whether the reference was analyzable. */
223 #define MEM_ANALYZABLE(REF) ((REF)->id != UNANALYZABLE_MEM_ID)
225 static struct lim_aux_data *
226 init_lim_data (gimple stmt)
228 void **p = pointer_map_insert (lim_aux_data_map, stmt);
230 *p = XCNEW (struct lim_aux_data);
231 return (struct lim_aux_data *) *p;
234 static struct lim_aux_data *
235 get_lim_data (gimple stmt)
237 void **p = pointer_map_contains (lim_aux_data_map, stmt);
238 if (!p)
239 return NULL;
241 return (struct lim_aux_data *) *p;
244 /* Releases the memory occupied by DATA. */
246 static void
247 free_lim_aux_data (struct lim_aux_data *data)
249 data->depends.release ();
250 free (data);
253 static void
254 clear_lim_data (gimple stmt)
256 void **p = pointer_map_contains (lim_aux_data_map, stmt);
257 if (!p)
258 return;
260 free_lim_aux_data ((struct lim_aux_data *) *p);
261 *p = NULL;
265 /* The possibilities of statement movement. */
266 enum move_pos
268 MOVE_IMPOSSIBLE, /* No movement -- side effect expression. */
269 MOVE_PRESERVE_EXECUTION, /* Must not cause the non-executed statement
270 become executed -- memory accesses, ... */
271 MOVE_POSSIBLE /* Unlimited movement. */
275 /* If it is possible to hoist the statement STMT unconditionally,
276 returns MOVE_POSSIBLE.
277 If it is possible to hoist the statement STMT, but we must avoid making
278 it executed if it would not be executed in the original program (e.g.
279 because it may trap), return MOVE_PRESERVE_EXECUTION.
280 Otherwise return MOVE_IMPOSSIBLE. */
282 enum move_pos
283 movement_possibility (gimple stmt)
285 tree lhs;
286 enum move_pos ret = MOVE_POSSIBLE;
288 if (flag_unswitch_loops
289 && gimple_code (stmt) == GIMPLE_COND)
291 /* If we perform unswitching, force the operands of the invariant
292 condition to be moved out of the loop. */
293 return MOVE_POSSIBLE;
296 if (gimple_code (stmt) == GIMPLE_PHI
297 && gimple_phi_num_args (stmt) <= 2
298 && !virtual_operand_p (gimple_phi_result (stmt))
299 && !SSA_NAME_OCCURS_IN_ABNORMAL_PHI (gimple_phi_result (stmt)))
300 return MOVE_POSSIBLE;
302 if (gimple_get_lhs (stmt) == NULL_TREE)
303 return MOVE_IMPOSSIBLE;
305 if (gimple_vdef (stmt))
306 return MOVE_IMPOSSIBLE;
308 if (stmt_ends_bb_p (stmt)
309 || gimple_has_volatile_ops (stmt)
310 || gimple_has_side_effects (stmt)
311 || stmt_could_throw_p (stmt))
312 return MOVE_IMPOSSIBLE;
314 if (is_gimple_call (stmt))
316 /* While pure or const call is guaranteed to have no side effects, we
317 cannot move it arbitrarily. Consider code like
319 char *s = something ();
321 while (1)
323 if (s)
324 t = strlen (s);
325 else
326 t = 0;
329 Here the strlen call cannot be moved out of the loop, even though
330 s is invariant. In addition to possibly creating a call with
331 invalid arguments, moving out a function call that is not executed
332 may cause performance regressions in case the call is costly and
333 not executed at all. */
334 ret = MOVE_PRESERVE_EXECUTION;
335 lhs = gimple_call_lhs (stmt);
337 else if (is_gimple_assign (stmt))
338 lhs = gimple_assign_lhs (stmt);
339 else
340 return MOVE_IMPOSSIBLE;
342 if (TREE_CODE (lhs) == SSA_NAME
343 && SSA_NAME_OCCURS_IN_ABNORMAL_PHI (lhs))
344 return MOVE_IMPOSSIBLE;
346 if (TREE_CODE (lhs) != SSA_NAME
347 || gimple_could_trap_p (stmt))
348 return MOVE_PRESERVE_EXECUTION;
350 /* Non local loads in a transaction cannot be hoisted out. Well,
351 unless the load happens on every path out of the loop, but we
352 don't take this into account yet. */
353 if (flag_tm
354 && gimple_in_transaction (stmt)
355 && gimple_assign_single_p (stmt))
357 tree rhs = gimple_assign_rhs1 (stmt);
358 if (DECL_P (rhs) && is_global_var (rhs))
360 if (dump_file)
362 fprintf (dump_file, "Cannot hoist conditional load of ");
363 print_generic_expr (dump_file, rhs, TDF_SLIM);
364 fprintf (dump_file, " because it is in a transaction.\n");
366 return MOVE_IMPOSSIBLE;
370 return ret;
373 /* Suppose that operand DEF is used inside the LOOP. Returns the outermost
374 loop to that we could move the expression using DEF if it did not have
375 other operands, i.e. the outermost loop enclosing LOOP in that the value
376 of DEF is invariant. */
378 static struct loop *
379 outermost_invariant_loop (tree def, struct loop *loop)
381 gimple def_stmt;
382 basic_block def_bb;
383 struct loop *max_loop;
384 struct lim_aux_data *lim_data;
386 if (!def)
387 return superloop_at_depth (loop, 1);
389 if (TREE_CODE (def) != SSA_NAME)
391 gcc_assert (is_gimple_min_invariant (def));
392 return superloop_at_depth (loop, 1);
395 def_stmt = SSA_NAME_DEF_STMT (def);
396 def_bb = gimple_bb (def_stmt);
397 if (!def_bb)
398 return superloop_at_depth (loop, 1);
400 max_loop = find_common_loop (loop, def_bb->loop_father);
402 lim_data = get_lim_data (def_stmt);
403 if (lim_data != NULL && lim_data->max_loop != NULL)
404 max_loop = find_common_loop (max_loop,
405 loop_outer (lim_data->max_loop));
406 if (max_loop == loop)
407 return NULL;
408 max_loop = superloop_at_depth (loop, loop_depth (max_loop) + 1);
410 return max_loop;
413 /* DATA is a structure containing information associated with a statement
414 inside LOOP. DEF is one of the operands of this statement.
416 Find the outermost loop enclosing LOOP in that value of DEF is invariant
417 and record this in DATA->max_loop field. If DEF itself is defined inside
418 this loop as well (i.e. we need to hoist it out of the loop if we want
419 to hoist the statement represented by DATA), record the statement in that
420 DEF is defined to the DATA->depends list. Additionally if ADD_COST is true,
421 add the cost of the computation of DEF to the DATA->cost.
423 If DEF is not invariant in LOOP, return false. Otherwise return TRUE. */
425 static bool
426 add_dependency (tree def, struct lim_aux_data *data, struct loop *loop,
427 bool add_cost)
429 gimple def_stmt = SSA_NAME_DEF_STMT (def);
430 basic_block def_bb = gimple_bb (def_stmt);
431 struct loop *max_loop;
432 struct lim_aux_data *def_data;
434 if (!def_bb)
435 return true;
437 max_loop = outermost_invariant_loop (def, loop);
438 if (!max_loop)
439 return false;
441 if (flow_loop_nested_p (data->max_loop, max_loop))
442 data->max_loop = max_loop;
444 def_data = get_lim_data (def_stmt);
445 if (!def_data)
446 return true;
448 if (add_cost
449 /* Only add the cost if the statement defining DEF is inside LOOP,
450 i.e. if it is likely that by moving the invariants dependent
451 on it, we will be able to avoid creating a new register for
452 it (since it will be only used in these dependent invariants). */
453 && def_bb->loop_father == loop)
454 data->cost += def_data->cost;
456 data->depends.safe_push (def_stmt);
458 return true;
461 /* Returns an estimate for a cost of statement STMT. The values here
462 are just ad-hoc constants, similar to costs for inlining. */
464 static unsigned
465 stmt_cost (gimple stmt)
467 /* Always try to create possibilities for unswitching. */
468 if (gimple_code (stmt) == GIMPLE_COND
469 || gimple_code (stmt) == GIMPLE_PHI)
470 return LIM_EXPENSIVE;
472 /* We should be hoisting calls if possible. */
473 if (is_gimple_call (stmt))
475 tree fndecl;
477 /* Unless the call is a builtin_constant_p; this always folds to a
478 constant, so moving it is useless. */
479 fndecl = gimple_call_fndecl (stmt);
480 if (fndecl
481 && DECL_BUILT_IN_CLASS (fndecl) == BUILT_IN_NORMAL
482 && DECL_FUNCTION_CODE (fndecl) == BUILT_IN_CONSTANT_P)
483 return 0;
485 return LIM_EXPENSIVE;
488 /* Hoisting memory references out should almost surely be a win. */
489 if (gimple_references_memory_p (stmt))
490 return LIM_EXPENSIVE;
492 if (gimple_code (stmt) != GIMPLE_ASSIGN)
493 return 1;
495 switch (gimple_assign_rhs_code (stmt))
497 case MULT_EXPR:
498 case WIDEN_MULT_EXPR:
499 case WIDEN_MULT_PLUS_EXPR:
500 case WIDEN_MULT_MINUS_EXPR:
501 case DOT_PROD_EXPR:
502 case FMA_EXPR:
503 case TRUNC_DIV_EXPR:
504 case CEIL_DIV_EXPR:
505 case FLOOR_DIV_EXPR:
506 case ROUND_DIV_EXPR:
507 case EXACT_DIV_EXPR:
508 case CEIL_MOD_EXPR:
509 case FLOOR_MOD_EXPR:
510 case ROUND_MOD_EXPR:
511 case TRUNC_MOD_EXPR:
512 case RDIV_EXPR:
513 /* Division and multiplication are usually expensive. */
514 return LIM_EXPENSIVE;
516 case LSHIFT_EXPR:
517 case RSHIFT_EXPR:
518 case WIDEN_LSHIFT_EXPR:
519 case LROTATE_EXPR:
520 case RROTATE_EXPR:
521 /* Shifts and rotates are usually expensive. */
522 return LIM_EXPENSIVE;
524 case CONSTRUCTOR:
525 /* Make vector construction cost proportional to the number
526 of elements. */
527 return CONSTRUCTOR_NELTS (gimple_assign_rhs1 (stmt));
529 case SSA_NAME:
530 case PAREN_EXPR:
531 /* Whether or not something is wrapped inside a PAREN_EXPR
532 should not change move cost. Nor should an intermediate
533 unpropagated SSA name copy. */
534 return 0;
536 default:
537 return 1;
541 /* Finds the outermost loop between OUTER and LOOP in that the memory reference
542 REF is independent. If REF is not independent in LOOP, NULL is returned
543 instead. */
545 static struct loop *
546 outermost_indep_loop (struct loop *outer, struct loop *loop, mem_ref_p ref)
548 struct loop *aloop;
550 if (ref->stored && bitmap_bit_p (ref->stored, loop->num))
551 return NULL;
553 for (aloop = outer;
554 aloop != loop;
555 aloop = superloop_at_depth (loop, loop_depth (aloop) + 1))
556 if ((!ref->stored || !bitmap_bit_p (ref->stored, aloop->num))
557 && ref_indep_loop_p (aloop, ref))
558 return aloop;
560 if (ref_indep_loop_p (loop, ref))
561 return loop;
562 else
563 return NULL;
566 /* If there is a simple load or store to a memory reference in STMT, returns
567 the location of the memory reference, and sets IS_STORE according to whether
568 it is a store or load. Otherwise, returns NULL. */
570 static tree *
571 simple_mem_ref_in_stmt (gimple stmt, bool *is_store)
573 tree *lhs, *rhs;
575 /* Recognize SSA_NAME = MEM and MEM = (SSA_NAME | invariant) patterns. */
576 if (!gimple_assign_single_p (stmt))
577 return NULL;
579 lhs = gimple_assign_lhs_ptr (stmt);
580 rhs = gimple_assign_rhs1_ptr (stmt);
582 if (TREE_CODE (*lhs) == SSA_NAME && gimple_vuse (stmt))
584 *is_store = false;
585 return rhs;
587 else if (gimple_vdef (stmt)
588 && (TREE_CODE (*rhs) == SSA_NAME || is_gimple_min_invariant (*rhs)))
590 *is_store = true;
591 return lhs;
593 else
594 return NULL;
597 /* Returns the memory reference contained in STMT. */
599 static mem_ref_p
600 mem_ref_in_stmt (gimple stmt)
602 bool store;
603 tree *mem = simple_mem_ref_in_stmt (stmt, &store);
604 hashval_t hash;
605 mem_ref_p ref;
607 if (!mem)
608 return NULL;
609 gcc_assert (!store);
611 hash = iterative_hash_expr (*mem, 0);
612 ref = memory_accesses.refs.find_with_hash (*mem, hash);
614 gcc_assert (ref != NULL);
615 return ref;
618 /* From a controlling predicate in DOM determine the arguments from
619 the PHI node PHI that are chosen if the predicate evaluates to
620 true and false and store them to *TRUE_ARG_P and *FALSE_ARG_P if
621 they are non-NULL. Returns true if the arguments can be determined,
622 else return false. */
624 static bool
625 extract_true_false_args_from_phi (basic_block dom, gimple phi,
626 tree *true_arg_p, tree *false_arg_p)
628 basic_block bb = gimple_bb (phi);
629 edge true_edge, false_edge, tem;
630 tree arg0 = NULL_TREE, arg1 = NULL_TREE;
632 /* We have to verify that one edge into the PHI node is dominated
633 by the true edge of the predicate block and the other edge
634 dominated by the false edge. This ensures that the PHI argument
635 we are going to take is completely determined by the path we
636 take from the predicate block.
637 We can only use BB dominance checks below if the destination of
638 the true/false edges are dominated by their edge, thus only
639 have a single predecessor. */
640 extract_true_false_edges_from_block (dom, &true_edge, &false_edge);
641 tem = EDGE_PRED (bb, 0);
642 if (tem == true_edge
643 || (single_pred_p (true_edge->dest)
644 && (tem->src == true_edge->dest
645 || dominated_by_p (CDI_DOMINATORS,
646 tem->src, true_edge->dest))))
647 arg0 = PHI_ARG_DEF (phi, tem->dest_idx);
648 else if (tem == false_edge
649 || (single_pred_p (false_edge->dest)
650 && (tem->src == false_edge->dest
651 || dominated_by_p (CDI_DOMINATORS,
652 tem->src, false_edge->dest))))
653 arg1 = PHI_ARG_DEF (phi, tem->dest_idx);
654 else
655 return false;
656 tem = EDGE_PRED (bb, 1);
657 if (tem == true_edge
658 || (single_pred_p (true_edge->dest)
659 && (tem->src == true_edge->dest
660 || dominated_by_p (CDI_DOMINATORS,
661 tem->src, true_edge->dest))))
662 arg0 = PHI_ARG_DEF (phi, tem->dest_idx);
663 else if (tem == false_edge
664 || (single_pred_p (false_edge->dest)
665 && (tem->src == false_edge->dest
666 || dominated_by_p (CDI_DOMINATORS,
667 tem->src, false_edge->dest))))
668 arg1 = PHI_ARG_DEF (phi, tem->dest_idx);
669 else
670 return false;
671 if (!arg0 || !arg1)
672 return false;
674 if (true_arg_p)
675 *true_arg_p = arg0;
676 if (false_arg_p)
677 *false_arg_p = arg1;
679 return true;
682 /* Determine the outermost loop to that it is possible to hoist a statement
683 STMT and store it to LIM_DATA (STMT)->max_loop. To do this we determine
684 the outermost loop in that the value computed by STMT is invariant.
685 If MUST_PRESERVE_EXEC is true, additionally choose such a loop that
686 we preserve the fact whether STMT is executed. It also fills other related
687 information to LIM_DATA (STMT).
689 The function returns false if STMT cannot be hoisted outside of the loop it
690 is defined in, and true otherwise. */
692 static bool
693 determine_max_movement (gimple stmt, bool must_preserve_exec)
695 basic_block bb = gimple_bb (stmt);
696 struct loop *loop = bb->loop_father;
697 struct loop *level;
698 struct lim_aux_data *lim_data = get_lim_data (stmt);
699 tree val;
700 ssa_op_iter iter;
702 if (must_preserve_exec)
703 level = ALWAYS_EXECUTED_IN (bb);
704 else
705 level = superloop_at_depth (loop, 1);
706 lim_data->max_loop = level;
708 if (gimple_code (stmt) == GIMPLE_PHI)
710 use_operand_p use_p;
711 unsigned min_cost = UINT_MAX;
712 unsigned total_cost = 0;
713 struct lim_aux_data *def_data;
715 /* We will end up promoting dependencies to be unconditionally
716 evaluated. For this reason the PHI cost (and thus the
717 cost we remove from the loop by doing the invariant motion)
718 is that of the cheapest PHI argument dependency chain. */
719 FOR_EACH_PHI_ARG (use_p, stmt, iter, SSA_OP_USE)
721 val = USE_FROM_PTR (use_p);
723 if (TREE_CODE (val) != SSA_NAME)
725 /* Assign const 1 to constants. */
726 min_cost = MIN (min_cost, 1);
727 total_cost += 1;
728 continue;
730 if (!add_dependency (val, lim_data, loop, false))
731 return false;
732 def_data = get_lim_data (SSA_NAME_DEF_STMT (val));
733 if (def_data)
735 min_cost = MIN (min_cost, def_data->cost);
736 total_cost += def_data->cost;
740 lim_data->cost += min_cost;
742 if (gimple_phi_num_args (stmt) > 1)
744 basic_block dom = get_immediate_dominator (CDI_DOMINATORS, bb);
745 gimple cond;
746 if (gsi_end_p (gsi_last_bb (dom)))
747 return false;
748 cond = gsi_stmt (gsi_last_bb (dom));
749 if (gimple_code (cond) != GIMPLE_COND)
750 return false;
751 /* Verify that this is an extended form of a diamond and
752 the PHI arguments are completely controlled by the
753 predicate in DOM. */
754 if (!extract_true_false_args_from_phi (dom, stmt, NULL, NULL))
755 return false;
757 /* Fold in dependencies and cost of the condition. */
758 FOR_EACH_SSA_TREE_OPERAND (val, cond, iter, SSA_OP_USE)
760 if (!add_dependency (val, lim_data, loop, false))
761 return false;
762 def_data = get_lim_data (SSA_NAME_DEF_STMT (val));
763 if (def_data)
764 total_cost += def_data->cost;
767 /* We want to avoid unconditionally executing very expensive
768 operations. As costs for our dependencies cannot be
769 negative just claim we are not invariand for this case.
770 We also are not sure whether the control-flow inside the
771 loop will vanish. */
772 if (total_cost - min_cost >= 2 * LIM_EXPENSIVE
773 && !(min_cost != 0
774 && total_cost / min_cost <= 2))
775 return false;
777 /* Assume that the control-flow in the loop will vanish.
778 ??? We should verify this and not artificially increase
779 the cost if that is not the case. */
780 lim_data->cost += stmt_cost (stmt);
783 return true;
785 else
786 FOR_EACH_SSA_TREE_OPERAND (val, stmt, iter, SSA_OP_USE)
787 if (!add_dependency (val, lim_data, loop, true))
788 return false;
790 if (gimple_vuse (stmt))
792 mem_ref_p ref = mem_ref_in_stmt (stmt);
794 if (ref)
796 lim_data->max_loop
797 = outermost_indep_loop (lim_data->max_loop, loop, ref);
798 if (!lim_data->max_loop)
799 return false;
801 else
803 if ((val = gimple_vuse (stmt)) != NULL_TREE)
805 if (!add_dependency (val, lim_data, loop, false))
806 return false;
811 lim_data->cost += stmt_cost (stmt);
813 return true;
816 /* Suppose that some statement in ORIG_LOOP is hoisted to the loop LEVEL,
817 and that one of the operands of this statement is computed by STMT.
818 Ensure that STMT (together with all the statements that define its
819 operands) is hoisted at least out of the loop LEVEL. */
821 static void
822 set_level (gimple stmt, struct loop *orig_loop, struct loop *level)
824 struct loop *stmt_loop = gimple_bb (stmt)->loop_father;
825 struct lim_aux_data *lim_data;
826 gimple dep_stmt;
827 unsigned i;
829 stmt_loop = find_common_loop (orig_loop, stmt_loop);
830 lim_data = get_lim_data (stmt);
831 if (lim_data != NULL && lim_data->tgt_loop != NULL)
832 stmt_loop = find_common_loop (stmt_loop,
833 loop_outer (lim_data->tgt_loop));
834 if (flow_loop_nested_p (stmt_loop, level))
835 return;
837 gcc_assert (level == lim_data->max_loop
838 || flow_loop_nested_p (lim_data->max_loop, level));
840 lim_data->tgt_loop = level;
841 FOR_EACH_VEC_ELT (lim_data->depends, i, dep_stmt)
842 set_level (dep_stmt, orig_loop, level);
845 /* Determines an outermost loop from that we want to hoist the statement STMT.
846 For now we chose the outermost possible loop. TODO -- use profiling
847 information to set it more sanely. */
849 static void
850 set_profitable_level (gimple stmt)
852 set_level (stmt, gimple_bb (stmt)->loop_father, get_lim_data (stmt)->max_loop);
855 /* Returns true if STMT is a call that has side effects. */
857 static bool
858 nonpure_call_p (gimple stmt)
860 if (gimple_code (stmt) != GIMPLE_CALL)
861 return false;
863 return gimple_has_side_effects (stmt);
866 /* Rewrite a/b to a*(1/b). Return the invariant stmt to process. */
868 static gimple
869 rewrite_reciprocal (gimple_stmt_iterator *bsi)
871 gimple stmt, stmt1, stmt2;
872 tree name, lhs, type;
873 tree real_one;
874 gimple_stmt_iterator gsi;
876 stmt = gsi_stmt (*bsi);
877 lhs = gimple_assign_lhs (stmt);
878 type = TREE_TYPE (lhs);
880 real_one = build_one_cst (type);
882 name = make_temp_ssa_name (type, NULL, "reciptmp");
883 stmt1 = gimple_build_assign_with_ops (RDIV_EXPR, name, real_one,
884 gimple_assign_rhs2 (stmt));
886 stmt2 = gimple_build_assign_with_ops (MULT_EXPR, lhs, name,
887 gimple_assign_rhs1 (stmt));
889 /* Replace division stmt with reciprocal and multiply stmts.
890 The multiply stmt is not invariant, so update iterator
891 and avoid rescanning. */
892 gsi = *bsi;
893 gsi_insert_before (bsi, stmt1, GSI_NEW_STMT);
894 gsi_replace (&gsi, stmt2, true);
896 /* Continue processing with invariant reciprocal statement. */
897 return stmt1;
900 /* Check if the pattern at *BSI is a bittest of the form
901 (A >> B) & 1 != 0 and in this case rewrite it to A & (1 << B) != 0. */
903 static gimple
904 rewrite_bittest (gimple_stmt_iterator *bsi)
906 gimple stmt, use_stmt, stmt1, stmt2;
907 tree lhs, name, t, a, b;
908 use_operand_p use;
910 stmt = gsi_stmt (*bsi);
911 lhs = gimple_assign_lhs (stmt);
913 /* Verify that the single use of lhs is a comparison against zero. */
914 if (TREE_CODE (lhs) != SSA_NAME
915 || !single_imm_use (lhs, &use, &use_stmt)
916 || gimple_code (use_stmt) != GIMPLE_COND)
917 return stmt;
918 if (gimple_cond_lhs (use_stmt) != lhs
919 || (gimple_cond_code (use_stmt) != NE_EXPR
920 && gimple_cond_code (use_stmt) != EQ_EXPR)
921 || !integer_zerop (gimple_cond_rhs (use_stmt)))
922 return stmt;
924 /* Get at the operands of the shift. The rhs is TMP1 & 1. */
925 stmt1 = SSA_NAME_DEF_STMT (gimple_assign_rhs1 (stmt));
926 if (gimple_code (stmt1) != GIMPLE_ASSIGN)
927 return stmt;
929 /* There is a conversion in between possibly inserted by fold. */
930 if (CONVERT_EXPR_CODE_P (gimple_assign_rhs_code (stmt1)))
932 t = gimple_assign_rhs1 (stmt1);
933 if (TREE_CODE (t) != SSA_NAME
934 || !has_single_use (t))
935 return stmt;
936 stmt1 = SSA_NAME_DEF_STMT (t);
937 if (gimple_code (stmt1) != GIMPLE_ASSIGN)
938 return stmt;
941 /* Verify that B is loop invariant but A is not. Verify that with
942 all the stmt walking we are still in the same loop. */
943 if (gimple_assign_rhs_code (stmt1) != RSHIFT_EXPR
944 || loop_containing_stmt (stmt1) != loop_containing_stmt (stmt))
945 return stmt;
947 a = gimple_assign_rhs1 (stmt1);
948 b = gimple_assign_rhs2 (stmt1);
950 if (outermost_invariant_loop (b, loop_containing_stmt (stmt1)) != NULL
951 && outermost_invariant_loop (a, loop_containing_stmt (stmt1)) == NULL)
953 gimple_stmt_iterator rsi;
955 /* 1 << B */
956 t = fold_build2 (LSHIFT_EXPR, TREE_TYPE (a),
957 build_int_cst (TREE_TYPE (a), 1), b);
958 name = make_temp_ssa_name (TREE_TYPE (a), NULL, "shifttmp");
959 stmt1 = gimple_build_assign (name, t);
961 /* A & (1 << B) */
962 t = fold_build2 (BIT_AND_EXPR, TREE_TYPE (a), a, name);
963 name = make_temp_ssa_name (TREE_TYPE (a), NULL, "shifttmp");
964 stmt2 = gimple_build_assign (name, t);
966 /* Replace the SSA_NAME we compare against zero. Adjust
967 the type of zero accordingly. */
968 SET_USE (use, name);
969 gimple_cond_set_rhs (use_stmt, build_int_cst_type (TREE_TYPE (name), 0));
971 /* Don't use gsi_replace here, none of the new assignments sets
972 the variable originally set in stmt. Move bsi to stmt1, and
973 then remove the original stmt, so that we get a chance to
974 retain debug info for it. */
975 rsi = *bsi;
976 gsi_insert_before (bsi, stmt1, GSI_NEW_STMT);
977 gsi_insert_before (&rsi, stmt2, GSI_SAME_STMT);
978 gsi_remove (&rsi, true);
980 return stmt1;
983 return stmt;
986 /* For each statement determines the outermost loop in that it is invariant,
987 - statements on whose motion it depends and the cost of the computation.
988 - This information is stored to the LIM_DATA structure associated with
989 - each statement. */
990 class invariantness_dom_walker : public dom_walker
992 public:
993 invariantness_dom_walker (cdi_direction direction)
994 : dom_walker (direction) {}
996 virtual void before_dom_children (basic_block);
999 /* Determine the outermost loops in that statements in basic block BB are
1000 invariant, and record them to the LIM_DATA associated with the statements.
1001 Callback for dom_walker. */
1003 void
1004 invariantness_dom_walker::before_dom_children (basic_block bb)
1006 enum move_pos pos;
1007 gimple_stmt_iterator bsi;
1008 gimple stmt;
1009 bool maybe_never = ALWAYS_EXECUTED_IN (bb) == NULL;
1010 struct loop *outermost = ALWAYS_EXECUTED_IN (bb);
1011 struct lim_aux_data *lim_data;
1013 if (!loop_outer (bb->loop_father))
1014 return;
1016 if (dump_file && (dump_flags & TDF_DETAILS))
1017 fprintf (dump_file, "Basic block %d (loop %d -- depth %d):\n\n",
1018 bb->index, bb->loop_father->num, loop_depth (bb->loop_father));
1020 /* Look at PHI nodes, but only if there is at most two.
1021 ??? We could relax this further by post-processing the inserted
1022 code and transforming adjacent cond-exprs with the same predicate
1023 to control flow again. */
1024 bsi = gsi_start_phis (bb);
1025 if (!gsi_end_p (bsi)
1026 && ((gsi_next (&bsi), gsi_end_p (bsi))
1027 || (gsi_next (&bsi), gsi_end_p (bsi))))
1028 for (bsi = gsi_start_phis (bb); !gsi_end_p (bsi); gsi_next (&bsi))
1030 stmt = gsi_stmt (bsi);
1032 pos = movement_possibility (stmt);
1033 if (pos == MOVE_IMPOSSIBLE)
1034 continue;
1036 lim_data = init_lim_data (stmt);
1037 lim_data->always_executed_in = outermost;
1039 if (!determine_max_movement (stmt, false))
1041 lim_data->max_loop = NULL;
1042 continue;
1045 if (dump_file && (dump_flags & TDF_DETAILS))
1047 print_gimple_stmt (dump_file, stmt, 2, 0);
1048 fprintf (dump_file, " invariant up to level %d, cost %d.\n\n",
1049 loop_depth (lim_data->max_loop),
1050 lim_data->cost);
1053 if (lim_data->cost >= LIM_EXPENSIVE)
1054 set_profitable_level (stmt);
1057 for (bsi = gsi_start_bb (bb); !gsi_end_p (bsi); gsi_next (&bsi))
1059 stmt = gsi_stmt (bsi);
1061 pos = movement_possibility (stmt);
1062 if (pos == MOVE_IMPOSSIBLE)
1064 if (nonpure_call_p (stmt))
1066 maybe_never = true;
1067 outermost = NULL;
1069 /* Make sure to note always_executed_in for stores to make
1070 store-motion work. */
1071 else if (stmt_makes_single_store (stmt))
1073 struct lim_aux_data *lim_data = init_lim_data (stmt);
1074 lim_data->always_executed_in = outermost;
1076 continue;
1079 if (is_gimple_assign (stmt)
1080 && (get_gimple_rhs_class (gimple_assign_rhs_code (stmt))
1081 == GIMPLE_BINARY_RHS))
1083 tree op0 = gimple_assign_rhs1 (stmt);
1084 tree op1 = gimple_assign_rhs2 (stmt);
1085 struct loop *ol1 = outermost_invariant_loop (op1,
1086 loop_containing_stmt (stmt));
1088 /* If divisor is invariant, convert a/b to a*(1/b), allowing reciprocal
1089 to be hoisted out of loop, saving expensive divide. */
1090 if (pos == MOVE_POSSIBLE
1091 && gimple_assign_rhs_code (stmt) == RDIV_EXPR
1092 && flag_unsafe_math_optimizations
1093 && !flag_trapping_math
1094 && ol1 != NULL
1095 && outermost_invariant_loop (op0, ol1) == NULL)
1096 stmt = rewrite_reciprocal (&bsi);
1098 /* If the shift count is invariant, convert (A >> B) & 1 to
1099 A & (1 << B) allowing the bit mask to be hoisted out of the loop
1100 saving an expensive shift. */
1101 if (pos == MOVE_POSSIBLE
1102 && gimple_assign_rhs_code (stmt) == BIT_AND_EXPR
1103 && integer_onep (op1)
1104 && TREE_CODE (op0) == SSA_NAME
1105 && has_single_use (op0))
1106 stmt = rewrite_bittest (&bsi);
1109 lim_data = init_lim_data (stmt);
1110 lim_data->always_executed_in = outermost;
1112 if (maybe_never && pos == MOVE_PRESERVE_EXECUTION)
1113 continue;
1115 if (!determine_max_movement (stmt, pos == MOVE_PRESERVE_EXECUTION))
1117 lim_data->max_loop = NULL;
1118 continue;
1121 if (dump_file && (dump_flags & TDF_DETAILS))
1123 print_gimple_stmt (dump_file, stmt, 2, 0);
1124 fprintf (dump_file, " invariant up to level %d, cost %d.\n\n",
1125 loop_depth (lim_data->max_loop),
1126 lim_data->cost);
1129 if (lim_data->cost >= LIM_EXPENSIVE)
1130 set_profitable_level (stmt);
1134 class move_computations_dom_walker : public dom_walker
1136 public:
1137 move_computations_dom_walker (cdi_direction direction)
1138 : dom_walker (direction), todo_ (0) {}
1140 virtual void before_dom_children (basic_block);
1142 unsigned int todo_;
1145 /* Hoist the statements in basic block BB out of the loops prescribed by
1146 data stored in LIM_DATA structures associated with each statement. Callback
1147 for walk_dominator_tree. */
1149 void
1150 move_computations_dom_walker::before_dom_children (basic_block bb)
1152 struct loop *level;
1153 gimple_stmt_iterator bsi;
1154 gimple stmt;
1155 unsigned cost = 0;
1156 struct lim_aux_data *lim_data;
1158 if (!loop_outer (bb->loop_father))
1159 return;
1161 for (bsi = gsi_start_phis (bb); !gsi_end_p (bsi); )
1163 gimple new_stmt;
1164 stmt = gsi_stmt (bsi);
1166 lim_data = get_lim_data (stmt);
1167 if (lim_data == NULL)
1169 gsi_next (&bsi);
1170 continue;
1173 cost = lim_data->cost;
1174 level = lim_data->tgt_loop;
1175 clear_lim_data (stmt);
1177 if (!level)
1179 gsi_next (&bsi);
1180 continue;
1183 if (dump_file && (dump_flags & TDF_DETAILS))
1185 fprintf (dump_file, "Moving PHI node\n");
1186 print_gimple_stmt (dump_file, stmt, 0, 0);
1187 fprintf (dump_file, "(cost %u) out of loop %d.\n\n",
1188 cost, level->num);
1191 if (gimple_phi_num_args (stmt) == 1)
1193 tree arg = PHI_ARG_DEF (stmt, 0);
1194 new_stmt = gimple_build_assign_with_ops (TREE_CODE (arg),
1195 gimple_phi_result (stmt),
1196 arg, NULL_TREE);
1198 else
1200 basic_block dom = get_immediate_dominator (CDI_DOMINATORS, bb);
1201 gimple cond = gsi_stmt (gsi_last_bb (dom));
1202 tree arg0 = NULL_TREE, arg1 = NULL_TREE, t;
1203 /* Get the PHI arguments corresponding to the true and false
1204 edges of COND. */
1205 extract_true_false_args_from_phi (dom, stmt, &arg0, &arg1);
1206 gcc_assert (arg0 && arg1);
1207 t = build2 (gimple_cond_code (cond), boolean_type_node,
1208 gimple_cond_lhs (cond), gimple_cond_rhs (cond));
1209 new_stmt = gimple_build_assign_with_ops (COND_EXPR,
1210 gimple_phi_result (stmt),
1211 t, arg0, arg1);
1212 todo_ |= TODO_cleanup_cfg;
1214 gsi_insert_on_edge (loop_preheader_edge (level), new_stmt);
1215 remove_phi_node (&bsi, false);
1218 for (bsi = gsi_start_bb (bb); !gsi_end_p (bsi); )
1220 edge e;
1222 stmt = gsi_stmt (bsi);
1224 lim_data = get_lim_data (stmt);
1225 if (lim_data == NULL)
1227 gsi_next (&bsi);
1228 continue;
1231 cost = lim_data->cost;
1232 level = lim_data->tgt_loop;
1233 clear_lim_data (stmt);
1235 if (!level)
1237 gsi_next (&bsi);
1238 continue;
1241 /* We do not really want to move conditionals out of the loop; we just
1242 placed it here to force its operands to be moved if necessary. */
1243 if (gimple_code (stmt) == GIMPLE_COND)
1244 continue;
1246 if (dump_file && (dump_flags & TDF_DETAILS))
1248 fprintf (dump_file, "Moving statement\n");
1249 print_gimple_stmt (dump_file, stmt, 0, 0);
1250 fprintf (dump_file, "(cost %u) out of loop %d.\n\n",
1251 cost, level->num);
1254 e = loop_preheader_edge (level);
1255 gcc_assert (!gimple_vdef (stmt));
1256 if (gimple_vuse (stmt))
1258 /* The new VUSE is the one from the virtual PHI in the loop
1259 header or the one already present. */
1260 gimple_stmt_iterator gsi2;
1261 for (gsi2 = gsi_start_phis (e->dest);
1262 !gsi_end_p (gsi2); gsi_next (&gsi2))
1264 gimple phi = gsi_stmt (gsi2);
1265 if (virtual_operand_p (gimple_phi_result (phi)))
1267 gimple_set_vuse (stmt, PHI_ARG_DEF_FROM_EDGE (phi, e));
1268 break;
1272 gsi_remove (&bsi, false);
1273 /* In case this is a stmt that is not unconditionally executed
1274 when the target loop header is executed and the stmt may
1275 invoke undefined integer or pointer overflow rewrite it to
1276 unsigned arithmetic. */
1277 if (is_gimple_assign (stmt)
1278 && INTEGRAL_TYPE_P (TREE_TYPE (gimple_assign_lhs (stmt)))
1279 && TYPE_OVERFLOW_UNDEFINED (TREE_TYPE (gimple_assign_lhs (stmt)))
1280 && arith_code_with_undefined_signed_overflow
1281 (gimple_assign_rhs_code (stmt))
1282 && (!ALWAYS_EXECUTED_IN (bb)
1283 || !(ALWAYS_EXECUTED_IN (bb) == level
1284 || flow_loop_nested_p (ALWAYS_EXECUTED_IN (bb), level))))
1285 gsi_insert_seq_on_edge (e, rewrite_to_defined_overflow (stmt));
1286 else
1287 gsi_insert_on_edge (e, stmt);
1291 /* Hoist the statements out of the loops prescribed by data stored in
1292 LIM_DATA structures associated with each statement.*/
1294 static unsigned int
1295 move_computations (void)
1297 move_computations_dom_walker walker (CDI_DOMINATORS);
1298 walker.walk (cfun->cfg->x_entry_block_ptr);
1300 gsi_commit_edge_inserts ();
1301 if (need_ssa_update_p (cfun))
1302 rewrite_into_loop_closed_ssa (NULL, TODO_update_ssa);
1304 return walker.todo_;
1307 /* Checks whether the statement defining variable *INDEX can be hoisted
1308 out of the loop passed in DATA. Callback for for_each_index. */
1310 static bool
1311 may_move_till (tree ref, tree *index, void *data)
1313 struct loop *loop = (struct loop *) data, *max_loop;
1315 /* If REF is an array reference, check also that the step and the lower
1316 bound is invariant in LOOP. */
1317 if (TREE_CODE (ref) == ARRAY_REF)
1319 tree step = TREE_OPERAND (ref, 3);
1320 tree lbound = TREE_OPERAND (ref, 2);
1322 max_loop = outermost_invariant_loop (step, loop);
1323 if (!max_loop)
1324 return false;
1326 max_loop = outermost_invariant_loop (lbound, loop);
1327 if (!max_loop)
1328 return false;
1331 max_loop = outermost_invariant_loop (*index, loop);
1332 if (!max_loop)
1333 return false;
1335 return true;
1338 /* If OP is SSA NAME, force the statement that defines it to be
1339 moved out of the LOOP. ORIG_LOOP is the loop in that EXPR is used. */
1341 static void
1342 force_move_till_op (tree op, struct loop *orig_loop, struct loop *loop)
1344 gimple stmt;
1346 if (!op
1347 || is_gimple_min_invariant (op))
1348 return;
1350 gcc_assert (TREE_CODE (op) == SSA_NAME);
1352 stmt = SSA_NAME_DEF_STMT (op);
1353 if (gimple_nop_p (stmt))
1354 return;
1356 set_level (stmt, orig_loop, loop);
1359 /* Forces statement defining invariants in REF (and *INDEX) to be moved out of
1360 the LOOP. The reference REF is used in the loop ORIG_LOOP. Callback for
1361 for_each_index. */
1363 struct fmt_data
1365 struct loop *loop;
1366 struct loop *orig_loop;
1369 static bool
1370 force_move_till (tree ref, tree *index, void *data)
1372 struct fmt_data *fmt_data = (struct fmt_data *) data;
1374 if (TREE_CODE (ref) == ARRAY_REF)
1376 tree step = TREE_OPERAND (ref, 3);
1377 tree lbound = TREE_OPERAND (ref, 2);
1379 force_move_till_op (step, fmt_data->orig_loop, fmt_data->loop);
1380 force_move_till_op (lbound, fmt_data->orig_loop, fmt_data->loop);
1383 force_move_till_op (*index, fmt_data->orig_loop, fmt_data->loop);
1385 return true;
1388 /* A function to free the mem_ref object OBJ. */
1390 static void
1391 memref_free (struct mem_ref *mem)
1393 mem->accesses_in_loop.release ();
1396 /* Allocates and returns a memory reference description for MEM whose hash
1397 value is HASH and id is ID. */
1399 static mem_ref_p
1400 mem_ref_alloc (tree mem, unsigned hash, unsigned id)
1402 mem_ref_p ref = XOBNEW (&mem_ref_obstack, struct mem_ref);
1403 ao_ref_init (&ref->mem, mem);
1404 ref->id = id;
1405 ref->hash = hash;
1406 ref->stored = NULL;
1407 bitmap_initialize (&ref->indep_loop, &lim_bitmap_obstack);
1408 bitmap_initialize (&ref->dep_loop, &lim_bitmap_obstack);
1409 ref->accesses_in_loop.create (1);
1411 return ref;
1414 /* Records memory reference location *LOC in LOOP to the memory reference
1415 description REF. The reference occurs in statement STMT. */
1417 static void
1418 record_mem_ref_loc (mem_ref_p ref, gimple stmt, tree *loc)
1420 mem_ref_loc aref;
1421 aref.stmt = stmt;
1422 aref.ref = loc;
1423 ref->accesses_in_loop.safe_push (aref);
1426 /* Set the LOOP bit in REF stored bitmap and allocate that if
1427 necessary. Return whether a bit was changed. */
1429 static bool
1430 set_ref_stored_in_loop (mem_ref_p ref, struct loop *loop)
1432 if (!ref->stored)
1433 ref->stored = BITMAP_ALLOC (&lim_bitmap_obstack);
1434 return bitmap_set_bit (ref->stored, loop->num);
1437 /* Marks reference REF as stored in LOOP. */
1439 static void
1440 mark_ref_stored (mem_ref_p ref, struct loop *loop)
1442 while (loop != current_loops->tree_root
1443 && set_ref_stored_in_loop (ref, loop))
1444 loop = loop_outer (loop);
1447 /* Gathers memory references in statement STMT in LOOP, storing the
1448 information about them in the memory_accesses structure. Marks
1449 the vops accessed through unrecognized statements there as
1450 well. */
1452 static void
1453 gather_mem_refs_stmt (struct loop *loop, gimple stmt)
1455 tree *mem = NULL;
1456 hashval_t hash;
1457 mem_ref **slot;
1458 mem_ref_p ref;
1459 bool is_stored;
1460 unsigned id;
1462 if (!gimple_vuse (stmt))
1463 return;
1465 mem = simple_mem_ref_in_stmt (stmt, &is_stored);
1466 if (!mem)
1468 /* We use the shared mem_ref for all unanalyzable refs. */
1469 id = UNANALYZABLE_MEM_ID;
1470 ref = memory_accesses.refs_list[id];
1471 if (dump_file && (dump_flags & TDF_DETAILS))
1473 fprintf (dump_file, "Unanalyzed memory reference %u: ", id);
1474 print_gimple_stmt (dump_file, stmt, 0, TDF_SLIM);
1476 is_stored = gimple_vdef (stmt);
1478 else
1480 hash = iterative_hash_expr (*mem, 0);
1481 slot = memory_accesses.refs.find_slot_with_hash (*mem, hash, INSERT);
1482 if (*slot)
1484 ref = (mem_ref_p) *slot;
1485 id = ref->id;
1487 else
1489 id = memory_accesses.refs_list.length ();
1490 ref = mem_ref_alloc (*mem, hash, id);
1491 memory_accesses.refs_list.safe_push (ref);
1492 *slot = ref;
1494 if (dump_file && (dump_flags & TDF_DETAILS))
1496 fprintf (dump_file, "Memory reference %u: ", id);
1497 print_generic_expr (dump_file, ref->mem.ref, TDF_SLIM);
1498 fprintf (dump_file, "\n");
1502 record_mem_ref_loc (ref, stmt, mem);
1504 bitmap_set_bit (&memory_accesses.refs_in_loop[loop->num], ref->id);
1505 if (is_stored)
1507 bitmap_set_bit (&memory_accesses.refs_stored_in_loop[loop->num], ref->id);
1508 mark_ref_stored (ref, loop);
1510 return;
1513 static unsigned *bb_loop_postorder;
1515 /* qsort sort function to sort blocks after their loop fathers postorder. */
1517 static int
1518 sort_bbs_in_loop_postorder_cmp (const void *bb1_, const void *bb2_)
1520 basic_block bb1 = *(basic_block *)const_cast<void *>(bb1_);
1521 basic_block bb2 = *(basic_block *)const_cast<void *>(bb2_);
1522 struct loop *loop1 = bb1->loop_father;
1523 struct loop *loop2 = bb2->loop_father;
1524 if (loop1->num == loop2->num)
1525 return 0;
1526 return bb_loop_postorder[loop1->num] < bb_loop_postorder[loop2->num] ? -1 : 1;
1529 /* qsort sort function to sort ref locs after their loop fathers postorder. */
1531 static int
1532 sort_locs_in_loop_postorder_cmp (const void *loc1_, const void *loc2_)
1534 mem_ref_loc *loc1 = (mem_ref_loc *)const_cast<void *>(loc1_);
1535 mem_ref_loc *loc2 = (mem_ref_loc *)const_cast<void *>(loc2_);
1536 struct loop *loop1 = gimple_bb (loc1->stmt)->loop_father;
1537 struct loop *loop2 = gimple_bb (loc2->stmt)->loop_father;
1538 if (loop1->num == loop2->num)
1539 return 0;
1540 return bb_loop_postorder[loop1->num] < bb_loop_postorder[loop2->num] ? -1 : 1;
1543 /* Gathers memory references in loops. */
1545 static void
1546 analyze_memory_references (void)
1548 gimple_stmt_iterator bsi;
1549 basic_block bb, *bbs;
1550 struct loop *loop, *outer;
1551 unsigned i, n;
1553 /* Collect all basic-blocks in loops and sort them after their
1554 loops postorder. */
1555 i = 0;
1556 bbs = XNEWVEC (basic_block, n_basic_blocks_for_fn (cfun) - NUM_FIXED_BLOCKS);
1557 FOR_EACH_BB_FN (bb, cfun)
1558 if (bb->loop_father != current_loops->tree_root)
1559 bbs[i++] = bb;
1560 n = i;
1561 qsort (bbs, n, sizeof (basic_block), sort_bbs_in_loop_postorder_cmp);
1563 /* Visit blocks in loop postorder and assign mem-ref IDs in that order.
1564 That results in better locality for all the bitmaps. */
1565 for (i = 0; i < n; ++i)
1567 basic_block bb = bbs[i];
1568 for (bsi = gsi_start_bb (bb); !gsi_end_p (bsi); gsi_next (&bsi))
1569 gather_mem_refs_stmt (bb->loop_father, gsi_stmt (bsi));
1572 /* Sort the location list of gathered memory references after their
1573 loop postorder number. */
1574 mem_ref *ref;
1575 FOR_EACH_VEC_ELT (memory_accesses.refs_list, i, ref)
1576 ref->accesses_in_loop.qsort (sort_locs_in_loop_postorder_cmp);
1578 free (bbs);
1579 // free (bb_loop_postorder);
1581 /* Propagate the information about accessed memory references up
1582 the loop hierarchy. */
1583 FOR_EACH_LOOP (loop, LI_FROM_INNERMOST)
1585 /* Finalize the overall touched references (including subloops). */
1586 bitmap_ior_into (&memory_accesses.all_refs_stored_in_loop[loop->num],
1587 &memory_accesses.refs_stored_in_loop[loop->num]);
1589 /* Propagate the information about accessed memory references up
1590 the loop hierarchy. */
1591 outer = loop_outer (loop);
1592 if (outer == current_loops->tree_root)
1593 continue;
1595 bitmap_ior_into (&memory_accesses.all_refs_stored_in_loop[outer->num],
1596 &memory_accesses.all_refs_stored_in_loop[loop->num]);
1600 /* Returns true if MEM1 and MEM2 may alias. TTAE_CACHE is used as a cache in
1601 tree_to_aff_combination_expand. */
1603 static bool
1604 mem_refs_may_alias_p (mem_ref_p mem1, mem_ref_p mem2,
1605 struct pointer_map_t **ttae_cache)
1607 /* Perform BASE + OFFSET analysis -- if MEM1 and MEM2 are based on the same
1608 object and their offset differ in such a way that the locations cannot
1609 overlap, then they cannot alias. */
1610 widest_int size1, size2;
1611 aff_tree off1, off2;
1613 /* Perform basic offset and type-based disambiguation. */
1614 if (!refs_may_alias_p_1 (&mem1->mem, &mem2->mem, true))
1615 return false;
1617 /* The expansion of addresses may be a bit expensive, thus we only do
1618 the check at -O2 and higher optimization levels. */
1619 if (optimize < 2)
1620 return true;
1622 get_inner_reference_aff (mem1->mem.ref, &off1, &size1);
1623 get_inner_reference_aff (mem2->mem.ref, &off2, &size2);
1624 aff_combination_expand (&off1, ttae_cache);
1625 aff_combination_expand (&off2, ttae_cache);
1626 aff_combination_scale (&off1, -1);
1627 aff_combination_add (&off2, &off1);
1629 if (aff_comb_cannot_overlap_p (&off2, size1, size2))
1630 return false;
1632 return true;
1635 /* Compare function for bsearch searching for reference locations
1636 in a loop. */
1638 static int
1639 find_ref_loc_in_loop_cmp (const void *loop_, const void *loc_)
1641 struct loop *loop = (struct loop *)const_cast<void *>(loop_);
1642 mem_ref_loc *loc = (mem_ref_loc *)const_cast<void *>(loc_);
1643 struct loop *loc_loop = gimple_bb (loc->stmt)->loop_father;
1644 if (loop->num == loc_loop->num
1645 || flow_loop_nested_p (loop, loc_loop))
1646 return 0;
1647 return (bb_loop_postorder[loop->num] < bb_loop_postorder[loc_loop->num]
1648 ? -1 : 1);
1651 /* Iterates over all locations of REF in LOOP and its subloops calling
1652 fn.operator() with the location as argument. When that operator
1653 returns true the iteration is stopped and true is returned.
1654 Otherwise false is returned. */
1656 template <typename FN>
1657 static bool
1658 for_all_locs_in_loop (struct loop *loop, mem_ref_p ref, FN fn)
1660 unsigned i;
1661 mem_ref_loc_p loc;
1663 /* Search for the cluster of locs in the accesses_in_loop vector
1664 which is sorted after postorder index of the loop father. */
1665 loc = ref->accesses_in_loop.bsearch (loop, find_ref_loc_in_loop_cmp);
1666 if (!loc)
1667 return false;
1669 /* We have found one location inside loop or its sub-loops. Iterate
1670 both forward and backward to cover the whole cluster. */
1671 i = loc - ref->accesses_in_loop.address ();
1672 while (i > 0)
1674 --i;
1675 mem_ref_loc_p l = &ref->accesses_in_loop[i];
1676 if (!flow_bb_inside_loop_p (loop, gimple_bb (l->stmt)))
1677 break;
1678 if (fn (l))
1679 return true;
1681 for (i = loc - ref->accesses_in_loop.address ();
1682 i < ref->accesses_in_loop.length (); ++i)
1684 mem_ref_loc_p l = &ref->accesses_in_loop[i];
1685 if (!flow_bb_inside_loop_p (loop, gimple_bb (l->stmt)))
1686 break;
1687 if (fn (l))
1688 return true;
1691 return false;
1694 /* Rewrites location LOC by TMP_VAR. */
1696 struct rewrite_mem_ref_loc
1698 rewrite_mem_ref_loc (tree tmp_var_) : tmp_var (tmp_var_) {}
1699 bool operator () (mem_ref_loc_p loc);
1700 tree tmp_var;
1703 bool
1704 rewrite_mem_ref_loc::operator () (mem_ref_loc_p loc)
1706 *loc->ref = tmp_var;
1707 update_stmt (loc->stmt);
1708 return false;
1711 /* Rewrites all references to REF in LOOP by variable TMP_VAR. */
1713 static void
1714 rewrite_mem_refs (struct loop *loop, mem_ref_p ref, tree tmp_var)
1716 for_all_locs_in_loop (loop, ref, rewrite_mem_ref_loc (tmp_var));
1719 /* Stores the first reference location in LOCP. */
1721 struct first_mem_ref_loc_1
1723 first_mem_ref_loc_1 (mem_ref_loc_p *locp_) : locp (locp_) {}
1724 bool operator () (mem_ref_loc_p loc);
1725 mem_ref_loc_p *locp;
1728 bool
1729 first_mem_ref_loc_1::operator () (mem_ref_loc_p loc)
1731 *locp = loc;
1732 return true;
1735 /* Returns the first reference location to REF in LOOP. */
1737 static mem_ref_loc_p
1738 first_mem_ref_loc (struct loop *loop, mem_ref_p ref)
1740 mem_ref_loc_p locp = NULL;
1741 for_all_locs_in_loop (loop, ref, first_mem_ref_loc_1 (&locp));
1742 return locp;
1745 struct prev_flag_edges {
1746 /* Edge to insert new flag comparison code. */
1747 edge append_cond_position;
1749 /* Edge for fall through from previous flag comparison. */
1750 edge last_cond_fallthru;
1753 /* Helper function for execute_sm. Emit code to store TMP_VAR into
1754 MEM along edge EX.
1756 The store is only done if MEM has changed. We do this so no
1757 changes to MEM occur on code paths that did not originally store
1758 into it.
1760 The common case for execute_sm will transform:
1762 for (...) {
1763 if (foo)
1764 stuff;
1765 else
1766 MEM = TMP_VAR;
1769 into:
1771 lsm = MEM;
1772 for (...) {
1773 if (foo)
1774 stuff;
1775 else
1776 lsm = TMP_VAR;
1778 MEM = lsm;
1780 This function will generate:
1782 lsm = MEM;
1784 lsm_flag = false;
1786 for (...) {
1787 if (foo)
1788 stuff;
1789 else {
1790 lsm = TMP_VAR;
1791 lsm_flag = true;
1794 if (lsm_flag) <--
1795 MEM = lsm; <--
1798 static void
1799 execute_sm_if_changed (edge ex, tree mem, tree tmp_var, tree flag)
1801 basic_block new_bb, then_bb, old_dest;
1802 bool loop_has_only_one_exit;
1803 edge then_old_edge, orig_ex = ex;
1804 gimple_stmt_iterator gsi;
1805 gimple stmt;
1806 struct prev_flag_edges *prev_edges = (struct prev_flag_edges *) ex->aux;
1807 bool irr = ex->flags & EDGE_IRREDUCIBLE_LOOP;
1809 /* ?? Insert store after previous store if applicable. See note
1810 below. */
1811 if (prev_edges)
1812 ex = prev_edges->append_cond_position;
1814 loop_has_only_one_exit = single_pred_p (ex->dest);
1816 if (loop_has_only_one_exit)
1817 ex = split_block_after_labels (ex->dest);
1819 old_dest = ex->dest;
1820 new_bb = split_edge (ex);
1821 then_bb = create_empty_bb (new_bb);
1822 if (irr)
1823 then_bb->flags = BB_IRREDUCIBLE_LOOP;
1824 add_bb_to_loop (then_bb, new_bb->loop_father);
1826 gsi = gsi_start_bb (new_bb);
1827 stmt = gimple_build_cond (NE_EXPR, flag, boolean_false_node,
1828 NULL_TREE, NULL_TREE);
1829 gsi_insert_after (&gsi, stmt, GSI_CONTINUE_LINKING);
1831 gsi = gsi_start_bb (then_bb);
1832 /* Insert actual store. */
1833 stmt = gimple_build_assign (unshare_expr (mem), tmp_var);
1834 gsi_insert_after (&gsi, stmt, GSI_CONTINUE_LINKING);
1836 make_edge (new_bb, then_bb,
1837 EDGE_TRUE_VALUE | (irr ? EDGE_IRREDUCIBLE_LOOP : 0));
1838 make_edge (new_bb, old_dest,
1839 EDGE_FALSE_VALUE | (irr ? EDGE_IRREDUCIBLE_LOOP : 0));
1840 then_old_edge = make_edge (then_bb, old_dest,
1841 EDGE_FALLTHRU | (irr ? EDGE_IRREDUCIBLE_LOOP : 0));
1843 set_immediate_dominator (CDI_DOMINATORS, then_bb, new_bb);
1845 if (prev_edges)
1847 basic_block prevbb = prev_edges->last_cond_fallthru->src;
1848 redirect_edge_succ (prev_edges->last_cond_fallthru, new_bb);
1849 set_immediate_dominator (CDI_DOMINATORS, new_bb, prevbb);
1850 set_immediate_dominator (CDI_DOMINATORS, old_dest,
1851 recompute_dominator (CDI_DOMINATORS, old_dest));
1854 /* ?? Because stores may alias, they must happen in the exact
1855 sequence they originally happened. Save the position right after
1856 the (_lsm) store we just created so we can continue appending after
1857 it and maintain the original order. */
1859 struct prev_flag_edges *p;
1861 if (orig_ex->aux)
1862 orig_ex->aux = NULL;
1863 alloc_aux_for_edge (orig_ex, sizeof (struct prev_flag_edges));
1864 p = (struct prev_flag_edges *) orig_ex->aux;
1865 p->append_cond_position = then_old_edge;
1866 p->last_cond_fallthru = find_edge (new_bb, old_dest);
1867 orig_ex->aux = (void *) p;
1870 if (!loop_has_only_one_exit)
1871 for (gsi = gsi_start_phis (old_dest); !gsi_end_p (gsi); gsi_next (&gsi))
1873 gimple phi = gsi_stmt (gsi);
1874 unsigned i;
1876 for (i = 0; i < gimple_phi_num_args (phi); i++)
1877 if (gimple_phi_arg_edge (phi, i)->src == new_bb)
1879 tree arg = gimple_phi_arg_def (phi, i);
1880 add_phi_arg (phi, arg, then_old_edge, UNKNOWN_LOCATION);
1881 update_stmt (phi);
1884 /* Remove the original fall through edge. This was the
1885 single_succ_edge (new_bb). */
1886 EDGE_SUCC (new_bb, 0)->flags &= ~EDGE_FALLTHRU;
1889 /* When REF is set on the location, set flag indicating the store. */
1891 struct sm_set_flag_if_changed
1893 sm_set_flag_if_changed (tree flag_) : flag (flag_) {}
1894 bool operator () (mem_ref_loc_p loc);
1895 tree flag;
1898 bool
1899 sm_set_flag_if_changed::operator () (mem_ref_loc_p loc)
1901 /* Only set the flag for writes. */
1902 if (is_gimple_assign (loc->stmt)
1903 && gimple_assign_lhs_ptr (loc->stmt) == loc->ref)
1905 gimple_stmt_iterator gsi = gsi_for_stmt (loc->stmt);
1906 gimple stmt = gimple_build_assign (flag, boolean_true_node);
1907 gsi_insert_after (&gsi, stmt, GSI_CONTINUE_LINKING);
1909 return false;
1912 /* Helper function for execute_sm. On every location where REF is
1913 set, set an appropriate flag indicating the store. */
1915 static tree
1916 execute_sm_if_changed_flag_set (struct loop *loop, mem_ref_p ref)
1918 tree flag;
1919 char *str = get_lsm_tmp_name (ref->mem.ref, ~0, "_flag");
1920 flag = create_tmp_reg (boolean_type_node, str);
1921 for_all_locs_in_loop (loop, ref, sm_set_flag_if_changed (flag));
1922 return flag;
1925 /* Executes store motion of memory reference REF from LOOP.
1926 Exits from the LOOP are stored in EXITS. The initialization of the
1927 temporary variable is put to the preheader of the loop, and assignments
1928 to the reference from the temporary variable are emitted to exits. */
1930 static void
1931 execute_sm (struct loop *loop, vec<edge> exits, mem_ref_p ref)
1933 tree tmp_var, store_flag = NULL_TREE;
1934 unsigned i;
1935 gimple load;
1936 struct fmt_data fmt_data;
1937 edge ex;
1938 struct lim_aux_data *lim_data;
1939 bool multi_threaded_model_p = false;
1940 gimple_stmt_iterator gsi;
1942 if (dump_file && (dump_flags & TDF_DETAILS))
1944 fprintf (dump_file, "Executing store motion of ");
1945 print_generic_expr (dump_file, ref->mem.ref, 0);
1946 fprintf (dump_file, " from loop %d\n", loop->num);
1949 tmp_var = create_tmp_reg (TREE_TYPE (ref->mem.ref),
1950 get_lsm_tmp_name (ref->mem.ref, ~0));
1952 fmt_data.loop = loop;
1953 fmt_data.orig_loop = loop;
1954 for_each_index (&ref->mem.ref, force_move_till, &fmt_data);
1956 if (bb_in_transaction (loop_preheader_edge (loop)->src)
1957 || !PARAM_VALUE (PARAM_ALLOW_STORE_DATA_RACES))
1958 multi_threaded_model_p = true;
1960 if (multi_threaded_model_p)
1961 store_flag = execute_sm_if_changed_flag_set (loop, ref);
1963 rewrite_mem_refs (loop, ref, tmp_var);
1965 /* Emit the load code on a random exit edge or into the latch if
1966 the loop does not exit, so that we are sure it will be processed
1967 by move_computations after all dependencies. */
1968 gsi = gsi_for_stmt (first_mem_ref_loc (loop, ref)->stmt);
1970 /* FIXME/TODO: For the multi-threaded variant, we could avoid this
1971 load altogether, since the store is predicated by a flag. We
1972 could, do the load only if it was originally in the loop. */
1973 load = gimple_build_assign (tmp_var, unshare_expr (ref->mem.ref));
1974 lim_data = init_lim_data (load);
1975 lim_data->max_loop = loop;
1976 lim_data->tgt_loop = loop;
1977 gsi_insert_before (&gsi, load, GSI_SAME_STMT);
1979 if (multi_threaded_model_p)
1981 load = gimple_build_assign (store_flag, boolean_false_node);
1982 lim_data = init_lim_data (load);
1983 lim_data->max_loop = loop;
1984 lim_data->tgt_loop = loop;
1985 gsi_insert_before (&gsi, load, GSI_SAME_STMT);
1988 /* Sink the store to every exit from the loop. */
1989 FOR_EACH_VEC_ELT (exits, i, ex)
1990 if (!multi_threaded_model_p)
1992 gimple store;
1993 store = gimple_build_assign (unshare_expr (ref->mem.ref), tmp_var);
1994 gsi_insert_on_edge (ex, store);
1996 else
1997 execute_sm_if_changed (ex, ref->mem.ref, tmp_var, store_flag);
2000 /* Hoists memory references MEM_REFS out of LOOP. EXITS is the list of exit
2001 edges of the LOOP. */
2003 static void
2004 hoist_memory_references (struct loop *loop, bitmap mem_refs,
2005 vec<edge> exits)
2007 mem_ref_p ref;
2008 unsigned i;
2009 bitmap_iterator bi;
2011 EXECUTE_IF_SET_IN_BITMAP (mem_refs, 0, i, bi)
2013 ref = memory_accesses.refs_list[i];
2014 execute_sm (loop, exits, ref);
2018 struct ref_always_accessed
2020 ref_always_accessed (struct loop *loop_, bool stored_p_)
2021 : loop (loop_), stored_p (stored_p_) {}
2022 bool operator () (mem_ref_loc_p loc);
2023 struct loop *loop;
2024 bool stored_p;
2027 bool
2028 ref_always_accessed::operator () (mem_ref_loc_p loc)
2030 struct loop *must_exec;
2032 if (!get_lim_data (loc->stmt))
2033 return false;
2035 /* If we require an always executed store make sure the statement
2036 stores to the reference. */
2037 if (stored_p)
2039 tree lhs = gimple_get_lhs (loc->stmt);
2040 if (!lhs
2041 || lhs != *loc->ref)
2042 return false;
2045 must_exec = get_lim_data (loc->stmt)->always_executed_in;
2046 if (!must_exec)
2047 return false;
2049 if (must_exec == loop
2050 || flow_loop_nested_p (must_exec, loop))
2051 return true;
2053 return false;
2056 /* Returns true if REF is always accessed in LOOP. If STORED_P is true
2057 make sure REF is always stored to in LOOP. */
2059 static bool
2060 ref_always_accessed_p (struct loop *loop, mem_ref_p ref, bool stored_p)
2062 return for_all_locs_in_loop (loop, ref,
2063 ref_always_accessed (loop, stored_p));
2066 /* Returns true if REF1 and REF2 are independent. */
2068 static bool
2069 refs_independent_p (mem_ref_p ref1, mem_ref_p ref2)
2071 if (ref1 == ref2)
2072 return true;
2074 if (dump_file && (dump_flags & TDF_DETAILS))
2075 fprintf (dump_file, "Querying dependency of refs %u and %u: ",
2076 ref1->id, ref2->id);
2078 if (mem_refs_may_alias_p (ref1, ref2, &memory_accesses.ttae_cache))
2080 if (dump_file && (dump_flags & TDF_DETAILS))
2081 fprintf (dump_file, "dependent.\n");
2082 return false;
2084 else
2086 if (dump_file && (dump_flags & TDF_DETAILS))
2087 fprintf (dump_file, "independent.\n");
2088 return true;
2092 /* Mark REF dependent on stores or loads (according to STORED_P) in LOOP
2093 and its super-loops. */
2095 static void
2096 record_dep_loop (struct loop *loop, mem_ref_p ref, bool stored_p)
2098 /* We can propagate dependent-in-loop bits up the loop
2099 hierarchy to all outer loops. */
2100 while (loop != current_loops->tree_root
2101 && bitmap_set_bit (&ref->dep_loop, LOOP_DEP_BIT (loop->num, stored_p)))
2102 loop = loop_outer (loop);
2105 /* Returns true if REF is independent on all other memory references in
2106 LOOP. */
2108 static bool
2109 ref_indep_loop_p_1 (struct loop *loop, mem_ref_p ref, bool stored_p)
2111 bitmap refs_to_check;
2112 unsigned i;
2113 bitmap_iterator bi;
2114 mem_ref_p aref;
2116 if (stored_p)
2117 refs_to_check = &memory_accesses.refs_in_loop[loop->num];
2118 else
2119 refs_to_check = &memory_accesses.refs_stored_in_loop[loop->num];
2121 if (bitmap_bit_p (refs_to_check, UNANALYZABLE_MEM_ID))
2122 return false;
2124 EXECUTE_IF_SET_IN_BITMAP (refs_to_check, 0, i, bi)
2126 aref = memory_accesses.refs_list[i];
2127 if (!refs_independent_p (ref, aref))
2128 return false;
2131 return true;
2134 /* Returns true if REF is independent on all other memory references in
2135 LOOP. Wrapper over ref_indep_loop_p_1, caching its results. */
2137 static bool
2138 ref_indep_loop_p_2 (struct loop *loop, mem_ref_p ref, bool stored_p)
2140 stored_p |= (ref->stored && bitmap_bit_p (ref->stored, loop->num));
2142 if (bitmap_bit_p (&ref->indep_loop, LOOP_DEP_BIT (loop->num, stored_p)))
2143 return true;
2144 if (bitmap_bit_p (&ref->dep_loop, LOOP_DEP_BIT (loop->num, stored_p)))
2145 return false;
2147 struct loop *inner = loop->inner;
2148 while (inner)
2150 if (!ref_indep_loop_p_2 (inner, ref, stored_p))
2151 return false;
2152 inner = inner->next;
2155 bool indep_p = ref_indep_loop_p_1 (loop, ref, stored_p);
2157 if (dump_file && (dump_flags & TDF_DETAILS))
2158 fprintf (dump_file, "Querying dependencies of ref %u in loop %d: %s\n",
2159 ref->id, loop->num, indep_p ? "independent" : "dependent");
2161 /* Record the computed result in the cache. */
2162 if (indep_p)
2164 if (bitmap_set_bit (&ref->indep_loop, LOOP_DEP_BIT (loop->num, stored_p))
2165 && stored_p)
2167 /* If it's independend against all refs then it's independent
2168 against stores, too. */
2169 bitmap_set_bit (&ref->indep_loop, LOOP_DEP_BIT (loop->num, false));
2172 else
2174 record_dep_loop (loop, ref, stored_p);
2175 if (!stored_p)
2177 /* If it's dependent against stores it's dependent against
2178 all refs, too. */
2179 record_dep_loop (loop, ref, true);
2183 return indep_p;
2186 /* Returns true if REF is independent on all other memory references in
2187 LOOP. */
2189 static bool
2190 ref_indep_loop_p (struct loop *loop, mem_ref_p ref)
2192 gcc_checking_assert (MEM_ANALYZABLE (ref));
2194 return ref_indep_loop_p_2 (loop, ref, false);
2197 /* Returns true if we can perform store motion of REF from LOOP. */
2199 static bool
2200 can_sm_ref_p (struct loop *loop, mem_ref_p ref)
2202 tree base;
2204 /* Can't hoist unanalyzable refs. */
2205 if (!MEM_ANALYZABLE (ref))
2206 return false;
2208 /* It should be movable. */
2209 if (!is_gimple_reg_type (TREE_TYPE (ref->mem.ref))
2210 || TREE_THIS_VOLATILE (ref->mem.ref)
2211 || !for_each_index (&ref->mem.ref, may_move_till, loop))
2212 return false;
2214 /* If it can throw fail, we do not properly update EH info. */
2215 if (tree_could_throw_p (ref->mem.ref))
2216 return false;
2218 /* If it can trap, it must be always executed in LOOP.
2219 Readonly memory locations may trap when storing to them, but
2220 tree_could_trap_p is a predicate for rvalues, so check that
2221 explicitly. */
2222 base = get_base_address (ref->mem.ref);
2223 if ((tree_could_trap_p (ref->mem.ref)
2224 || (DECL_P (base) && TREE_READONLY (base)))
2225 && !ref_always_accessed_p (loop, ref, true))
2226 return false;
2228 /* And it must be independent on all other memory references
2229 in LOOP. */
2230 if (!ref_indep_loop_p (loop, ref))
2231 return false;
2233 return true;
2236 /* Marks the references in LOOP for that store motion should be performed
2237 in REFS_TO_SM. SM_EXECUTED is the set of references for that store
2238 motion was performed in one of the outer loops. */
2240 static void
2241 find_refs_for_sm (struct loop *loop, bitmap sm_executed, bitmap refs_to_sm)
2243 bitmap refs = &memory_accesses.all_refs_stored_in_loop[loop->num];
2244 unsigned i;
2245 bitmap_iterator bi;
2246 mem_ref_p ref;
2248 EXECUTE_IF_AND_COMPL_IN_BITMAP (refs, sm_executed, 0, i, bi)
2250 ref = memory_accesses.refs_list[i];
2251 if (can_sm_ref_p (loop, ref))
2252 bitmap_set_bit (refs_to_sm, i);
2256 /* Checks whether LOOP (with exits stored in EXITS array) is suitable
2257 for a store motion optimization (i.e. whether we can insert statement
2258 on its exits). */
2260 static bool
2261 loop_suitable_for_sm (struct loop *loop ATTRIBUTE_UNUSED,
2262 vec<edge> exits)
2264 unsigned i;
2265 edge ex;
2267 FOR_EACH_VEC_ELT (exits, i, ex)
2268 if (ex->flags & (EDGE_ABNORMAL | EDGE_EH))
2269 return false;
2271 return true;
2274 /* Try to perform store motion for all memory references modified inside
2275 LOOP. SM_EXECUTED is the bitmap of the memory references for that
2276 store motion was executed in one of the outer loops. */
2278 static void
2279 store_motion_loop (struct loop *loop, bitmap sm_executed)
2281 vec<edge> exits = get_loop_exit_edges (loop);
2282 struct loop *subloop;
2283 bitmap sm_in_loop = BITMAP_ALLOC (&lim_bitmap_obstack);
2285 if (loop_suitable_for_sm (loop, exits))
2287 find_refs_for_sm (loop, sm_executed, sm_in_loop);
2288 hoist_memory_references (loop, sm_in_loop, exits);
2290 exits.release ();
2292 bitmap_ior_into (sm_executed, sm_in_loop);
2293 for (subloop = loop->inner; subloop != NULL; subloop = subloop->next)
2294 store_motion_loop (subloop, sm_executed);
2295 bitmap_and_compl_into (sm_executed, sm_in_loop);
2296 BITMAP_FREE (sm_in_loop);
2299 /* Try to perform store motion for all memory references modified inside
2300 loops. */
2302 static void
2303 store_motion (void)
2305 struct loop *loop;
2306 bitmap sm_executed = BITMAP_ALLOC (&lim_bitmap_obstack);
2308 for (loop = current_loops->tree_root->inner; loop != NULL; loop = loop->next)
2309 store_motion_loop (loop, sm_executed);
2311 BITMAP_FREE (sm_executed);
2312 gsi_commit_edge_inserts ();
2315 /* Fills ALWAYS_EXECUTED_IN information for basic blocks of LOOP, i.e.
2316 for each such basic block bb records the outermost loop for that execution
2317 of its header implies execution of bb. CONTAINS_CALL is the bitmap of
2318 blocks that contain a nonpure call. */
2320 static void
2321 fill_always_executed_in_1 (struct loop *loop, sbitmap contains_call)
2323 basic_block bb = NULL, *bbs, last = NULL;
2324 unsigned i;
2325 edge e;
2326 struct loop *inn_loop = loop;
2328 if (ALWAYS_EXECUTED_IN (loop->header) == NULL)
2330 bbs = get_loop_body_in_dom_order (loop);
2332 for (i = 0; i < loop->num_nodes; i++)
2334 edge_iterator ei;
2335 bb = bbs[i];
2337 if (dominated_by_p (CDI_DOMINATORS, loop->latch, bb))
2338 last = bb;
2340 if (bitmap_bit_p (contains_call, bb->index))
2341 break;
2343 FOR_EACH_EDGE (e, ei, bb->succs)
2344 if (!flow_bb_inside_loop_p (loop, e->dest))
2345 break;
2346 if (e)
2347 break;
2349 /* A loop might be infinite (TODO use simple loop analysis
2350 to disprove this if possible). */
2351 if (bb->flags & BB_IRREDUCIBLE_LOOP)
2352 break;
2354 if (!flow_bb_inside_loop_p (inn_loop, bb))
2355 break;
2357 if (bb->loop_father->header == bb)
2359 if (!dominated_by_p (CDI_DOMINATORS, loop->latch, bb))
2360 break;
2362 /* In a loop that is always entered we may proceed anyway.
2363 But record that we entered it and stop once we leave it. */
2364 inn_loop = bb->loop_father;
2368 while (1)
2370 SET_ALWAYS_EXECUTED_IN (last, loop);
2371 if (last == loop->header)
2372 break;
2373 last = get_immediate_dominator (CDI_DOMINATORS, last);
2376 free (bbs);
2379 for (loop = loop->inner; loop; loop = loop->next)
2380 fill_always_executed_in_1 (loop, contains_call);
2383 /* Fills ALWAYS_EXECUTED_IN information for basic blocks, i.e.
2384 for each such basic block bb records the outermost loop for that execution
2385 of its header implies execution of bb. */
2387 static void
2388 fill_always_executed_in (void)
2390 sbitmap contains_call = sbitmap_alloc (last_basic_block_for_fn (cfun));
2391 basic_block bb;
2392 struct loop *loop;
2394 bitmap_clear (contains_call);
2395 FOR_EACH_BB_FN (bb, cfun)
2397 gimple_stmt_iterator gsi;
2398 for (gsi = gsi_start_bb (bb); !gsi_end_p (gsi); gsi_next (&gsi))
2400 if (nonpure_call_p (gsi_stmt (gsi)))
2401 break;
2404 if (!gsi_end_p (gsi))
2405 bitmap_set_bit (contains_call, bb->index);
2408 for (loop = current_loops->tree_root->inner; loop; loop = loop->next)
2409 fill_always_executed_in_1 (loop, contains_call);
2411 sbitmap_free (contains_call);
2415 /* Compute the global information needed by the loop invariant motion pass. */
2417 static void
2418 tree_ssa_lim_initialize (void)
2420 struct loop *loop;
2421 unsigned i;
2423 bitmap_obstack_initialize (&lim_bitmap_obstack);
2424 gcc_obstack_init (&mem_ref_obstack);
2425 lim_aux_data_map = pointer_map_create ();
2427 if (flag_tm)
2428 compute_transaction_bits ();
2430 alloc_aux_for_edges (0);
2432 memory_accesses.refs.create (100);
2433 memory_accesses.refs_list.create (100);
2434 /* Allocate a special, unanalyzable mem-ref with ID zero. */
2435 memory_accesses.refs_list.quick_push
2436 (mem_ref_alloc (error_mark_node, 0, UNANALYZABLE_MEM_ID));
2438 memory_accesses.refs_in_loop.create (number_of_loops (cfun));
2439 memory_accesses.refs_in_loop.quick_grow (number_of_loops (cfun));
2440 memory_accesses.refs_stored_in_loop.create (number_of_loops (cfun));
2441 memory_accesses.refs_stored_in_loop.quick_grow (number_of_loops (cfun));
2442 memory_accesses.all_refs_stored_in_loop.create (number_of_loops (cfun));
2443 memory_accesses.all_refs_stored_in_loop.quick_grow (number_of_loops (cfun));
2445 for (i = 0; i < number_of_loops (cfun); i++)
2447 bitmap_initialize (&memory_accesses.refs_in_loop[i],
2448 &lim_bitmap_obstack);
2449 bitmap_initialize (&memory_accesses.refs_stored_in_loop[i],
2450 &lim_bitmap_obstack);
2451 bitmap_initialize (&memory_accesses.all_refs_stored_in_loop[i],
2452 &lim_bitmap_obstack);
2455 memory_accesses.ttae_cache = NULL;
2457 /* Initialize bb_loop_postorder with a mapping from loop->num to
2458 its postorder index. */
2459 i = 0;
2460 bb_loop_postorder = XNEWVEC (unsigned, number_of_loops (cfun));
2461 FOR_EACH_LOOP (loop, LI_FROM_INNERMOST)
2462 bb_loop_postorder[loop->num] = i++;
2465 /* Cleans up after the invariant motion pass. */
2467 static void
2468 tree_ssa_lim_finalize (void)
2470 basic_block bb;
2471 unsigned i;
2472 mem_ref_p ref;
2474 free_aux_for_edges ();
2476 FOR_EACH_BB_FN (bb, cfun)
2477 SET_ALWAYS_EXECUTED_IN (bb, NULL);
2479 bitmap_obstack_release (&lim_bitmap_obstack);
2480 pointer_map_destroy (lim_aux_data_map);
2482 memory_accesses.refs.dispose ();
2484 FOR_EACH_VEC_ELT (memory_accesses.refs_list, i, ref)
2485 memref_free (ref);
2486 memory_accesses.refs_list.release ();
2487 obstack_free (&mem_ref_obstack, NULL);
2489 memory_accesses.refs_in_loop.release ();
2490 memory_accesses.refs_stored_in_loop.release ();
2491 memory_accesses.all_refs_stored_in_loop.release ();
2493 if (memory_accesses.ttae_cache)
2494 free_affine_expand_cache (&memory_accesses.ttae_cache);
2496 free (bb_loop_postorder);
2499 /* Moves invariants from loops. Only "expensive" invariants are moved out --
2500 i.e. those that are likely to be win regardless of the register pressure. */
2502 unsigned int
2503 tree_ssa_lim (void)
2505 unsigned int todo;
2507 tree_ssa_lim_initialize ();
2509 /* Gathers information about memory accesses in the loops. */
2510 analyze_memory_references ();
2512 /* Fills ALWAYS_EXECUTED_IN information for basic blocks. */
2513 fill_always_executed_in ();
2515 /* For each statement determine the outermost loop in that it is
2516 invariant and cost for computing the invariant. */
2517 invariantness_dom_walker (CDI_DOMINATORS)
2518 .walk (cfun->cfg->x_entry_block_ptr);
2520 /* Execute store motion. Force the necessary invariants to be moved
2521 out of the loops as well. */
2522 store_motion ();
2524 /* Move the expressions that are expensive enough. */
2525 todo = move_computations ();
2527 tree_ssa_lim_finalize ();
2529 return todo;
2532 /* Loop invariant motion pass. */
2534 namespace {
2536 const pass_data pass_data_lim =
2538 GIMPLE_PASS, /* type */
2539 "lim", /* name */
2540 OPTGROUP_LOOP, /* optinfo_flags */
2541 true, /* has_execute */
2542 TV_LIM, /* tv_id */
2543 PROP_cfg, /* properties_required */
2544 0, /* properties_provided */
2545 0, /* properties_destroyed */
2546 0, /* todo_flags_start */
2547 0, /* todo_flags_finish */
2550 class pass_lim : public gimple_opt_pass
2552 public:
2553 pass_lim (gcc::context *ctxt)
2554 : gimple_opt_pass (pass_data_lim, ctxt)
2557 /* opt_pass methods: */
2558 opt_pass * clone () { return new pass_lim (m_ctxt); }
2559 virtual bool gate (function *) { return flag_tree_loop_im != 0; }
2560 virtual unsigned int execute (function *);
2562 }; // class pass_lim
2564 unsigned int
2565 pass_lim::execute (function *fun)
2567 if (number_of_loops (fun) <= 1)
2568 return 0;
2570 return tree_ssa_lim ();
2573 } // anon namespace
2575 gimple_opt_pass *
2576 make_pass_lim (gcc::context *ctxt)
2578 return new pass_lim (ctxt);