* rtl.h (insn_location): Declare.
[official-gcc.git] / gcc / tree-cfg.c
blobacf08fc7bed80dc50e51af93fca14f5c802c5cb0
1 /* Control flow functions for trees.
2 Copyright (C) 2001-2014 Free Software Foundation, Inc.
3 Contributed by Diego Novillo <dnovillo@redhat.com>
5 This file is part of GCC.
7 GCC is free software; you can redistribute it and/or modify
8 it under the terms of the GNU General Public License as published by
9 the Free Software Foundation; either version 3, or (at your option)
10 any later version.
12 GCC is distributed in the hope that it will be useful,
13 but WITHOUT ANY WARRANTY; without even the implied warranty of
14 MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
15 GNU General Public License for more details.
17 You should have received a copy of the GNU General Public License
18 along with GCC; see the file COPYING3. If not see
19 <http://www.gnu.org/licenses/>. */
21 #include "config.h"
22 #include "system.h"
23 #include "coretypes.h"
24 #include "hash-table.h"
25 #include "tm.h"
26 #include "tree.h"
27 #include "trans-mem.h"
28 #include "stor-layout.h"
29 #include "print-tree.h"
30 #include "tm_p.h"
31 #include "basic-block.h"
32 #include "flags.h"
33 #include "function.h"
34 #include "gimple-pretty-print.h"
35 #include "pointer-set.h"
36 #include "tree-ssa-alias.h"
37 #include "internal-fn.h"
38 #include "gimple-fold.h"
39 #include "tree-eh.h"
40 #include "gimple-expr.h"
41 #include "is-a.h"
42 #include "gimple.h"
43 #include "gimple-iterator.h"
44 #include "gimplify-me.h"
45 #include "gimple-walk.h"
46 #include "gimple-ssa.h"
47 #include "cgraph.h"
48 #include "tree-cfg.h"
49 #include "tree-phinodes.h"
50 #include "ssa-iterators.h"
51 #include "stringpool.h"
52 #include "tree-ssanames.h"
53 #include "tree-ssa-loop-manip.h"
54 #include "tree-ssa-loop-niter.h"
55 #include "tree-into-ssa.h"
56 #include "expr.h"
57 #include "tree-dfa.h"
58 #include "tree-ssa.h"
59 #include "tree-dump.h"
60 #include "tree-pass.h"
61 #include "diagnostic-core.h"
62 #include "except.h"
63 #include "cfgloop.h"
64 #include "tree-ssa-propagate.h"
65 #include "value-prof.h"
66 #include "tree-inline.h"
67 #include "target.h"
68 #include "tree-ssa-live.h"
69 #include "omp-low.h"
70 #include "tree-cfgcleanup.h"
71 #include "wide-int.h"
72 #include "wide-int-print.h"
74 /* This file contains functions for building the Control Flow Graph (CFG)
75 for a function tree. */
77 /* Local declarations. */
79 /* Initial capacity for the basic block array. */
80 static const int initial_cfg_capacity = 20;
82 /* This hash table allows us to efficiently lookup all CASE_LABEL_EXPRs
83 which use a particular edge. The CASE_LABEL_EXPRs are chained together
84 via their CASE_CHAIN field, which we clear after we're done with the
85 hash table to prevent problems with duplication of GIMPLE_SWITCHes.
87 Access to this list of CASE_LABEL_EXPRs allows us to efficiently
88 update the case vector in response to edge redirections.
90 Right now this table is set up and torn down at key points in the
91 compilation process. It would be nice if we could make the table
92 more persistent. The key is getting notification of changes to
93 the CFG (particularly edge removal, creation and redirection). */
95 static struct pointer_map_t *edge_to_cases;
97 /* If we record edge_to_cases, this bitmap will hold indexes
98 of basic blocks that end in a GIMPLE_SWITCH which we touched
99 due to edge manipulations. */
101 static bitmap touched_switch_bbs;
103 /* CFG statistics. */
104 struct cfg_stats_d
106 long num_merged_labels;
109 static struct cfg_stats_d cfg_stats;
111 /* Hash table to store last discriminator assigned for each locus. */
112 struct locus_discrim_map
114 location_t locus;
115 int discriminator;
118 /* Hashtable helpers. */
120 struct locus_discrim_hasher : typed_free_remove <locus_discrim_map>
122 typedef locus_discrim_map value_type;
123 typedef locus_discrim_map compare_type;
124 static inline hashval_t hash (const value_type *);
125 static inline bool equal (const value_type *, const compare_type *);
128 /* Trivial hash function for a location_t. ITEM is a pointer to
129 a hash table entry that maps a location_t to a discriminator. */
131 inline hashval_t
132 locus_discrim_hasher::hash (const value_type *item)
134 return LOCATION_LINE (item->locus);
137 /* Equality function for the locus-to-discriminator map. A and B
138 point to the two hash table entries to compare. */
140 inline bool
141 locus_discrim_hasher::equal (const value_type *a, const compare_type *b)
143 return LOCATION_LINE (a->locus) == LOCATION_LINE (b->locus);
146 static hash_table <locus_discrim_hasher> discriminator_per_locus;
148 /* Basic blocks and flowgraphs. */
149 static void make_blocks (gimple_seq);
151 /* Edges. */
152 static void make_edges (void);
153 static void assign_discriminators (void);
154 static void make_cond_expr_edges (basic_block);
155 static void make_gimple_switch_edges (basic_block);
156 static bool make_goto_expr_edges (basic_block);
157 static void make_gimple_asm_edges (basic_block);
158 static edge gimple_redirect_edge_and_branch (edge, basic_block);
159 static edge gimple_try_redirect_by_replacing_jump (edge, basic_block);
161 /* Various helpers. */
162 static inline bool stmt_starts_bb_p (gimple, gimple);
163 static int gimple_verify_flow_info (void);
164 static void gimple_make_forwarder_block (edge);
165 static gimple first_non_label_stmt (basic_block);
166 static bool verify_gimple_transaction (gimple);
168 /* Flowgraph optimization and cleanup. */
169 static void gimple_merge_blocks (basic_block, basic_block);
170 static bool gimple_can_merge_blocks_p (basic_block, basic_block);
171 static void remove_bb (basic_block);
172 static edge find_taken_edge_computed_goto (basic_block, tree);
173 static edge find_taken_edge_cond_expr (basic_block, tree);
174 static edge find_taken_edge_switch_expr (basic_block, tree);
175 static tree find_case_label_for_value (gimple, tree);
177 void
178 init_empty_tree_cfg_for_function (struct function *fn)
180 /* Initialize the basic block array. */
181 init_flow (fn);
182 profile_status_for_fn (fn) = PROFILE_ABSENT;
183 n_basic_blocks_for_fn (fn) = NUM_FIXED_BLOCKS;
184 last_basic_block_for_fn (fn) = NUM_FIXED_BLOCKS;
185 vec_alloc (basic_block_info_for_fn (fn), initial_cfg_capacity);
186 vec_safe_grow_cleared (basic_block_info_for_fn (fn),
187 initial_cfg_capacity);
189 /* Build a mapping of labels to their associated blocks. */
190 vec_alloc (label_to_block_map_for_fn (fn), initial_cfg_capacity);
191 vec_safe_grow_cleared (label_to_block_map_for_fn (fn),
192 initial_cfg_capacity);
194 SET_BASIC_BLOCK_FOR_FN (fn, ENTRY_BLOCK, ENTRY_BLOCK_PTR_FOR_FN (fn));
195 SET_BASIC_BLOCK_FOR_FN (fn, EXIT_BLOCK, EXIT_BLOCK_PTR_FOR_FN (fn));
197 ENTRY_BLOCK_PTR_FOR_FN (fn)->next_bb
198 = EXIT_BLOCK_PTR_FOR_FN (fn);
199 EXIT_BLOCK_PTR_FOR_FN (fn)->prev_bb
200 = ENTRY_BLOCK_PTR_FOR_FN (fn);
203 void
204 init_empty_tree_cfg (void)
206 init_empty_tree_cfg_for_function (cfun);
209 /*---------------------------------------------------------------------------
210 Create basic blocks
211 ---------------------------------------------------------------------------*/
213 /* Entry point to the CFG builder for trees. SEQ is the sequence of
214 statements to be added to the flowgraph. */
216 static void
217 build_gimple_cfg (gimple_seq seq)
219 /* Register specific gimple functions. */
220 gimple_register_cfg_hooks ();
222 memset ((void *) &cfg_stats, 0, sizeof (cfg_stats));
224 init_empty_tree_cfg ();
226 make_blocks (seq);
228 /* Make sure there is always at least one block, even if it's empty. */
229 if (n_basic_blocks_for_fn (cfun) == NUM_FIXED_BLOCKS)
230 create_empty_bb (ENTRY_BLOCK_PTR_FOR_FN (cfun));
232 /* Adjust the size of the array. */
233 if (basic_block_info_for_fn (cfun)->length ()
234 < (size_t) n_basic_blocks_for_fn (cfun))
235 vec_safe_grow_cleared (basic_block_info_for_fn (cfun),
236 n_basic_blocks_for_fn (cfun));
238 /* To speed up statement iterator walks, we first purge dead labels. */
239 cleanup_dead_labels ();
241 /* Group case nodes to reduce the number of edges.
242 We do this after cleaning up dead labels because otherwise we miss
243 a lot of obvious case merging opportunities. */
244 group_case_labels ();
246 /* Create the edges of the flowgraph. */
247 discriminator_per_locus.create (13);
248 make_edges ();
249 assign_discriminators ();
250 cleanup_dead_labels ();
251 discriminator_per_locus.dispose ();
255 /* Look for ANNOTATE calls with loop annotation kind; if found, remove
256 them and propagate the information to the loop. We assume that the
257 annotations come immediately before the condition of the loop. */
259 static void
260 replace_loop_annotate ()
262 struct loop *loop;
263 basic_block bb;
264 gimple_stmt_iterator gsi;
265 gimple stmt;
267 FOR_EACH_LOOP (loop, 0)
269 gsi = gsi_last_bb (loop->header);
270 stmt = gsi_stmt (gsi);
271 if (!(stmt && gimple_code (stmt) == GIMPLE_COND))
272 continue;
273 for (gsi_prev_nondebug (&gsi); !gsi_end_p (gsi); gsi_prev (&gsi))
275 stmt = gsi_stmt (gsi);
276 if (gimple_code (stmt) != GIMPLE_CALL)
277 break;
278 if (!gimple_call_internal_p (stmt)
279 || gimple_call_internal_fn (stmt) != IFN_ANNOTATE)
280 break;
281 switch ((annot_expr_kind) tree_to_shwi (gimple_call_arg (stmt, 1)))
283 case annot_expr_ivdep_kind:
284 loop->safelen = INT_MAX;
285 break;
286 case annot_expr_no_vector_kind:
287 loop->dont_vectorize = true;
288 break;
289 case annot_expr_vector_kind:
290 loop->force_vectorize = true;
291 cfun->has_force_vectorize_loops = true;
292 break;
293 default:
294 gcc_unreachable ();
296 stmt = gimple_build_assign (gimple_call_lhs (stmt),
297 gimple_call_arg (stmt, 0));
298 gsi_replace (&gsi, stmt, true);
302 /* Remove IFN_ANNOTATE. Safeguard for the case loop->latch == NULL. */
303 FOR_EACH_BB_FN (bb, cfun)
305 for (gsi = gsi_last_bb (bb); !gsi_end_p (gsi); gsi_prev (&gsi))
307 stmt = gsi_stmt (gsi);
308 if (gimple_code (stmt) != GIMPLE_CALL)
309 break;
310 if (!gimple_call_internal_p (stmt)
311 || gimple_call_internal_fn (stmt) != IFN_ANNOTATE)
312 break;
313 switch ((annot_expr_kind) tree_to_shwi (gimple_call_arg (stmt, 1)))
315 case annot_expr_ivdep_kind:
316 case annot_expr_no_vector_kind:
317 case annot_expr_vector_kind:
318 break;
319 default:
320 gcc_unreachable ();
322 warning_at (gimple_location (stmt), 0, "ignoring loop annotation");
323 stmt = gimple_build_assign (gimple_call_lhs (stmt),
324 gimple_call_arg (stmt, 0));
325 gsi_replace (&gsi, stmt, true);
331 static unsigned int
332 execute_build_cfg (void)
334 gimple_seq body = gimple_body (current_function_decl);
336 build_gimple_cfg (body);
337 gimple_set_body (current_function_decl, NULL);
338 if (dump_file && (dump_flags & TDF_DETAILS))
340 fprintf (dump_file, "Scope blocks:\n");
341 dump_scope_blocks (dump_file, dump_flags);
343 cleanup_tree_cfg ();
344 loop_optimizer_init (AVOID_CFG_MODIFICATIONS);
345 replace_loop_annotate ();
346 return 0;
349 namespace {
351 const pass_data pass_data_build_cfg =
353 GIMPLE_PASS, /* type */
354 "cfg", /* name */
355 OPTGROUP_NONE, /* optinfo_flags */
356 true, /* has_execute */
357 TV_TREE_CFG, /* tv_id */
358 PROP_gimple_leh, /* properties_required */
359 ( PROP_cfg | PROP_loops ), /* properties_provided */
360 0, /* properties_destroyed */
361 0, /* todo_flags_start */
362 0, /* todo_flags_finish */
365 class pass_build_cfg : public gimple_opt_pass
367 public:
368 pass_build_cfg (gcc::context *ctxt)
369 : gimple_opt_pass (pass_data_build_cfg, ctxt)
372 /* opt_pass methods: */
373 virtual unsigned int execute (function *) { return execute_build_cfg (); }
375 }; // class pass_build_cfg
377 } // anon namespace
379 gimple_opt_pass *
380 make_pass_build_cfg (gcc::context *ctxt)
382 return new pass_build_cfg (ctxt);
386 /* Return true if T is a computed goto. */
388 bool
389 computed_goto_p (gimple t)
391 return (gimple_code (t) == GIMPLE_GOTO
392 && TREE_CODE (gimple_goto_dest (t)) != LABEL_DECL);
395 /* Returns true for edge E where e->src ends with a GIMPLE_COND and
396 the other edge points to a bb with just __builtin_unreachable ().
397 I.e. return true for C->M edge in:
398 <bb C>:
400 if (something)
401 goto <bb N>;
402 else
403 goto <bb M>;
404 <bb N>:
405 __builtin_unreachable ();
406 <bb M>: */
408 bool
409 assert_unreachable_fallthru_edge_p (edge e)
411 basic_block pred_bb = e->src;
412 gimple last = last_stmt (pred_bb);
413 if (last && gimple_code (last) == GIMPLE_COND)
415 basic_block other_bb = EDGE_SUCC (pred_bb, 0)->dest;
416 if (other_bb == e->dest)
417 other_bb = EDGE_SUCC (pred_bb, 1)->dest;
418 if (EDGE_COUNT (other_bb->succs) == 0)
420 gimple_stmt_iterator gsi = gsi_after_labels (other_bb);
421 gimple stmt;
423 if (gsi_end_p (gsi))
424 return false;
425 stmt = gsi_stmt (gsi);
426 while (is_gimple_debug (stmt) || gimple_clobber_p (stmt))
428 gsi_next (&gsi);
429 if (gsi_end_p (gsi))
430 return false;
431 stmt = gsi_stmt (gsi);
433 return gimple_call_builtin_p (stmt, BUILT_IN_UNREACHABLE);
436 return false;
440 /* Build a flowgraph for the sequence of stmts SEQ. */
442 static void
443 make_blocks (gimple_seq seq)
445 gimple_stmt_iterator i = gsi_start (seq);
446 gimple stmt = NULL;
447 bool start_new_block = true;
448 bool first_stmt_of_seq = true;
449 basic_block bb = ENTRY_BLOCK_PTR_FOR_FN (cfun);
451 while (!gsi_end_p (i))
453 gimple prev_stmt;
455 prev_stmt = stmt;
456 stmt = gsi_stmt (i);
458 /* If the statement starts a new basic block or if we have determined
459 in a previous pass that we need to create a new block for STMT, do
460 so now. */
461 if (start_new_block || stmt_starts_bb_p (stmt, prev_stmt))
463 if (!first_stmt_of_seq)
464 gsi_split_seq_before (&i, &seq);
465 bb = create_basic_block (seq, NULL, bb);
466 start_new_block = false;
469 /* Now add STMT to BB and create the subgraphs for special statement
470 codes. */
471 gimple_set_bb (stmt, bb);
473 /* If STMT is a basic block terminator, set START_NEW_BLOCK for the
474 next iteration. */
475 if (stmt_ends_bb_p (stmt))
477 /* If the stmt can make abnormal goto use a new temporary
478 for the assignment to the LHS. This makes sure the old value
479 of the LHS is available on the abnormal edge. Otherwise
480 we will end up with overlapping life-ranges for abnormal
481 SSA names. */
482 if (gimple_has_lhs (stmt)
483 && stmt_can_make_abnormal_goto (stmt)
484 && is_gimple_reg_type (TREE_TYPE (gimple_get_lhs (stmt))))
486 tree lhs = gimple_get_lhs (stmt);
487 tree tmp = create_tmp_var (TREE_TYPE (lhs), NULL);
488 gimple s = gimple_build_assign (lhs, tmp);
489 gimple_set_location (s, gimple_location (stmt));
490 gimple_set_block (s, gimple_block (stmt));
491 gimple_set_lhs (stmt, tmp);
492 if (TREE_CODE (TREE_TYPE (tmp)) == COMPLEX_TYPE
493 || TREE_CODE (TREE_TYPE (tmp)) == VECTOR_TYPE)
494 DECL_GIMPLE_REG_P (tmp) = 1;
495 gsi_insert_after (&i, s, GSI_SAME_STMT);
497 start_new_block = true;
500 gsi_next (&i);
501 first_stmt_of_seq = false;
506 /* Create and return a new empty basic block after bb AFTER. */
508 static basic_block
509 create_bb (void *h, void *e, basic_block after)
511 basic_block bb;
513 gcc_assert (!e);
515 /* Create and initialize a new basic block. Since alloc_block uses
516 GC allocation that clears memory to allocate a basic block, we do
517 not have to clear the newly allocated basic block here. */
518 bb = alloc_block ();
520 bb->index = last_basic_block_for_fn (cfun);
521 bb->flags = BB_NEW;
522 set_bb_seq (bb, h ? (gimple_seq) h : NULL);
524 /* Add the new block to the linked list of blocks. */
525 link_block (bb, after);
527 /* Grow the basic block array if needed. */
528 if ((size_t) last_basic_block_for_fn (cfun)
529 == basic_block_info_for_fn (cfun)->length ())
531 size_t new_size =
532 (last_basic_block_for_fn (cfun)
533 + (last_basic_block_for_fn (cfun) + 3) / 4);
534 vec_safe_grow_cleared (basic_block_info_for_fn (cfun), new_size);
537 /* Add the newly created block to the array. */
538 SET_BASIC_BLOCK_FOR_FN (cfun, last_basic_block_for_fn (cfun), bb);
540 n_basic_blocks_for_fn (cfun)++;
541 last_basic_block_for_fn (cfun)++;
543 return bb;
547 /*---------------------------------------------------------------------------
548 Edge creation
549 ---------------------------------------------------------------------------*/
551 /* Fold COND_EXPR_COND of each COND_EXPR. */
553 void
554 fold_cond_expr_cond (void)
556 basic_block bb;
558 FOR_EACH_BB_FN (bb, cfun)
560 gimple stmt = last_stmt (bb);
562 if (stmt && gimple_code (stmt) == GIMPLE_COND)
564 location_t loc = gimple_location (stmt);
565 tree cond;
566 bool zerop, onep;
568 fold_defer_overflow_warnings ();
569 cond = fold_binary_loc (loc, gimple_cond_code (stmt), boolean_type_node,
570 gimple_cond_lhs (stmt), gimple_cond_rhs (stmt));
571 if (cond)
573 zerop = integer_zerop (cond);
574 onep = integer_onep (cond);
576 else
577 zerop = onep = false;
579 fold_undefer_overflow_warnings (zerop || onep,
580 stmt,
581 WARN_STRICT_OVERFLOW_CONDITIONAL);
582 if (zerop)
583 gimple_cond_make_false (stmt);
584 else if (onep)
585 gimple_cond_make_true (stmt);
590 /* If basic block BB has an abnormal edge to a basic block
591 containing IFN_ABNORMAL_DISPATCHER internal call, return
592 that the dispatcher's basic block, otherwise return NULL. */
594 basic_block
595 get_abnormal_succ_dispatcher (basic_block bb)
597 edge e;
598 edge_iterator ei;
600 FOR_EACH_EDGE (e, ei, bb->succs)
601 if ((e->flags & (EDGE_ABNORMAL | EDGE_EH)) == EDGE_ABNORMAL)
603 gimple_stmt_iterator gsi
604 = gsi_start_nondebug_after_labels_bb (e->dest);
605 gimple g = gsi_stmt (gsi);
606 if (g
607 && is_gimple_call (g)
608 && gimple_call_internal_p (g)
609 && gimple_call_internal_fn (g) == IFN_ABNORMAL_DISPATCHER)
610 return e->dest;
612 return NULL;
615 /* Helper function for make_edges. Create a basic block with
616 with ABNORMAL_DISPATCHER internal call in it if needed, and
617 create abnormal edges from BBS to it and from it to FOR_BB
618 if COMPUTED_GOTO is false, otherwise factor the computed gotos. */
620 static void
621 handle_abnormal_edges (basic_block *dispatcher_bbs,
622 basic_block for_bb, int *bb_to_omp_idx,
623 auto_vec<basic_block> *bbs, bool computed_goto)
625 basic_block *dispatcher = dispatcher_bbs + (computed_goto ? 1 : 0);
626 unsigned int idx = 0;
627 basic_block bb;
628 bool inner = false;
630 if (bb_to_omp_idx)
632 dispatcher = dispatcher_bbs + 2 * bb_to_omp_idx[for_bb->index];
633 if (bb_to_omp_idx[for_bb->index] != 0)
634 inner = true;
637 /* If the dispatcher has been created already, then there are basic
638 blocks with abnormal edges to it, so just make a new edge to
639 for_bb. */
640 if (*dispatcher == NULL)
642 /* Check if there are any basic blocks that need to have
643 abnormal edges to this dispatcher. If there are none, return
644 early. */
645 if (bb_to_omp_idx == NULL)
647 if (bbs->is_empty ())
648 return;
650 else
652 FOR_EACH_VEC_ELT (*bbs, idx, bb)
653 if (bb_to_omp_idx[bb->index] == bb_to_omp_idx[for_bb->index])
654 break;
655 if (bb == NULL)
656 return;
659 /* Create the dispatcher bb. */
660 *dispatcher = create_basic_block (NULL, NULL, for_bb);
661 if (computed_goto)
663 /* Factor computed gotos into a common computed goto site. Also
664 record the location of that site so that we can un-factor the
665 gotos after we have converted back to normal form. */
666 gimple_stmt_iterator gsi = gsi_start_bb (*dispatcher);
668 /* Create the destination of the factored goto. Each original
669 computed goto will put its desired destination into this
670 variable and jump to the label we create immediately below. */
671 tree var = create_tmp_var (ptr_type_node, "gotovar");
673 /* Build a label for the new block which will contain the
674 factored computed goto. */
675 tree factored_label_decl
676 = create_artificial_label (UNKNOWN_LOCATION);
677 gimple factored_computed_goto_label
678 = gimple_build_label (factored_label_decl);
679 gsi_insert_after (&gsi, factored_computed_goto_label, GSI_NEW_STMT);
681 /* Build our new computed goto. */
682 gimple factored_computed_goto = gimple_build_goto (var);
683 gsi_insert_after (&gsi, factored_computed_goto, GSI_NEW_STMT);
685 FOR_EACH_VEC_ELT (*bbs, idx, bb)
687 if (bb_to_omp_idx
688 && bb_to_omp_idx[bb->index] != bb_to_omp_idx[for_bb->index])
689 continue;
691 gsi = gsi_last_bb (bb);
692 gimple last = gsi_stmt (gsi);
694 gcc_assert (computed_goto_p (last));
696 /* Copy the original computed goto's destination into VAR. */
697 gimple assignment
698 = gimple_build_assign (var, gimple_goto_dest (last));
699 gsi_insert_before (&gsi, assignment, GSI_SAME_STMT);
701 edge e = make_edge (bb, *dispatcher, EDGE_FALLTHRU);
702 e->goto_locus = gimple_location (last);
703 gsi_remove (&gsi, true);
706 else
708 tree arg = inner ? boolean_true_node : boolean_false_node;
709 gimple g = gimple_build_call_internal (IFN_ABNORMAL_DISPATCHER,
710 1, arg);
711 gimple_stmt_iterator gsi = gsi_after_labels (*dispatcher);
712 gsi_insert_after (&gsi, g, GSI_NEW_STMT);
714 /* Create predecessor edges of the dispatcher. */
715 FOR_EACH_VEC_ELT (*bbs, idx, bb)
717 if (bb_to_omp_idx
718 && bb_to_omp_idx[bb->index] != bb_to_omp_idx[for_bb->index])
719 continue;
720 make_edge (bb, *dispatcher, EDGE_ABNORMAL);
725 make_edge (*dispatcher, for_bb, EDGE_ABNORMAL);
728 /* Join all the blocks in the flowgraph. */
730 static void
731 make_edges (void)
733 basic_block bb;
734 struct omp_region *cur_region = NULL;
735 auto_vec<basic_block> ab_edge_goto;
736 auto_vec<basic_block> ab_edge_call;
737 int *bb_to_omp_idx = NULL;
738 int cur_omp_region_idx = 0;
740 /* Create an edge from entry to the first block with executable
741 statements in it. */
742 make_edge (ENTRY_BLOCK_PTR_FOR_FN (cfun),
743 BASIC_BLOCK_FOR_FN (cfun, NUM_FIXED_BLOCKS),
744 EDGE_FALLTHRU);
746 /* Traverse the basic block array placing edges. */
747 FOR_EACH_BB_FN (bb, cfun)
749 gimple last = last_stmt (bb);
750 bool fallthru;
752 if (bb_to_omp_idx)
753 bb_to_omp_idx[bb->index] = cur_omp_region_idx;
755 if (last)
757 enum gimple_code code = gimple_code (last);
758 switch (code)
760 case GIMPLE_GOTO:
761 if (make_goto_expr_edges (bb))
762 ab_edge_goto.safe_push (bb);
763 fallthru = false;
764 break;
765 case GIMPLE_RETURN:
766 make_edge (bb, EXIT_BLOCK_PTR_FOR_FN (cfun), 0);
767 fallthru = false;
768 break;
769 case GIMPLE_COND:
770 make_cond_expr_edges (bb);
771 fallthru = false;
772 break;
773 case GIMPLE_SWITCH:
774 make_gimple_switch_edges (bb);
775 fallthru = false;
776 break;
777 case GIMPLE_RESX:
778 make_eh_edges (last);
779 fallthru = false;
780 break;
781 case GIMPLE_EH_DISPATCH:
782 fallthru = make_eh_dispatch_edges (last);
783 break;
785 case GIMPLE_CALL:
786 /* If this function receives a nonlocal goto, then we need to
787 make edges from this call site to all the nonlocal goto
788 handlers. */
789 if (stmt_can_make_abnormal_goto (last))
790 ab_edge_call.safe_push (bb);
792 /* If this statement has reachable exception handlers, then
793 create abnormal edges to them. */
794 make_eh_edges (last);
796 /* BUILTIN_RETURN is really a return statement. */
797 if (gimple_call_builtin_p (last, BUILT_IN_RETURN))
799 make_edge (bb, EXIT_BLOCK_PTR_FOR_FN (cfun), 0);
800 fallthru = false;
802 /* Some calls are known not to return. */
803 else
804 fallthru = !(gimple_call_flags (last) & ECF_NORETURN);
805 break;
807 case GIMPLE_ASSIGN:
808 /* A GIMPLE_ASSIGN may throw internally and thus be considered
809 control-altering. */
810 if (is_ctrl_altering_stmt (last))
811 make_eh_edges (last);
812 fallthru = true;
813 break;
815 case GIMPLE_ASM:
816 make_gimple_asm_edges (bb);
817 fallthru = true;
818 break;
820 CASE_GIMPLE_OMP:
821 fallthru = make_gimple_omp_edges (bb, &cur_region,
822 &cur_omp_region_idx);
823 if (cur_region && bb_to_omp_idx == NULL)
824 bb_to_omp_idx = XCNEWVEC (int, n_basic_blocks_for_fn (cfun));
825 break;
827 case GIMPLE_TRANSACTION:
829 tree abort_label = gimple_transaction_label (last);
830 if (abort_label)
831 make_edge (bb, label_to_block (abort_label), EDGE_TM_ABORT);
832 fallthru = true;
834 break;
836 default:
837 gcc_assert (!stmt_ends_bb_p (last));
838 fallthru = true;
841 else
842 fallthru = true;
844 if (fallthru)
845 make_edge (bb, bb->next_bb, EDGE_FALLTHRU);
848 /* Computed gotos are hell to deal with, especially if there are
849 lots of them with a large number of destinations. So we factor
850 them to a common computed goto location before we build the
851 edge list. After we convert back to normal form, we will un-factor
852 the computed gotos since factoring introduces an unwanted jump.
853 For non-local gotos and abnormal edges from calls to calls that return
854 twice or forced labels, factor the abnormal edges too, by having all
855 abnormal edges from the calls go to a common artificial basic block
856 with ABNORMAL_DISPATCHER internal call and abnormal edges from that
857 basic block to all forced labels and calls returning twice.
858 We do this per-OpenMP structured block, because those regions
859 are guaranteed to be single entry single exit by the standard,
860 so it is not allowed to enter or exit such regions abnormally this way,
861 thus all computed gotos, non-local gotos and setjmp/longjmp calls
862 must not transfer control across SESE region boundaries. */
863 if (!ab_edge_goto.is_empty () || !ab_edge_call.is_empty ())
865 gimple_stmt_iterator gsi;
866 basic_block dispatcher_bb_array[2] = { NULL, NULL };
867 basic_block *dispatcher_bbs = dispatcher_bb_array;
868 int count = n_basic_blocks_for_fn (cfun);
870 if (bb_to_omp_idx)
871 dispatcher_bbs = XCNEWVEC (basic_block, 2 * count);
873 FOR_EACH_BB_FN (bb, cfun)
875 for (gsi = gsi_start_bb (bb); !gsi_end_p (gsi); gsi_next (&gsi))
877 gimple label_stmt = gsi_stmt (gsi);
878 tree target;
880 if (gimple_code (label_stmt) != GIMPLE_LABEL)
881 break;
883 target = gimple_label_label (label_stmt);
885 /* Make an edge to every label block that has been marked as a
886 potential target for a computed goto or a non-local goto. */
887 if (FORCED_LABEL (target))
888 handle_abnormal_edges (dispatcher_bbs, bb, bb_to_omp_idx,
889 &ab_edge_goto, true);
890 if (DECL_NONLOCAL (target))
892 handle_abnormal_edges (dispatcher_bbs, bb, bb_to_omp_idx,
893 &ab_edge_call, false);
894 break;
898 if (!gsi_end_p (gsi) && is_gimple_debug (gsi_stmt (gsi)))
899 gsi_next_nondebug (&gsi);
900 if (!gsi_end_p (gsi))
902 /* Make an edge to every setjmp-like call. */
903 gimple call_stmt = gsi_stmt (gsi);
904 if (is_gimple_call (call_stmt)
905 && ((gimple_call_flags (call_stmt) & ECF_RETURNS_TWICE)
906 || gimple_call_builtin_p (call_stmt,
907 BUILT_IN_SETJMP_RECEIVER)))
908 handle_abnormal_edges (dispatcher_bbs, bb, bb_to_omp_idx,
909 &ab_edge_call, false);
913 if (bb_to_omp_idx)
914 XDELETE (dispatcher_bbs);
917 XDELETE (bb_to_omp_idx);
919 free_omp_regions ();
921 /* Fold COND_EXPR_COND of each COND_EXPR. */
922 fold_cond_expr_cond ();
925 /* Find the next available discriminator value for LOCUS. The
926 discriminator distinguishes among several basic blocks that
927 share a common locus, allowing for more accurate sample-based
928 profiling. */
930 static int
931 next_discriminator_for_locus (location_t locus)
933 struct locus_discrim_map item;
934 struct locus_discrim_map **slot;
936 item.locus = locus;
937 item.discriminator = 0;
938 slot = discriminator_per_locus.find_slot_with_hash (
939 &item, LOCATION_LINE (locus), INSERT);
940 gcc_assert (slot);
941 if (*slot == HTAB_EMPTY_ENTRY)
943 *slot = XNEW (struct locus_discrim_map);
944 gcc_assert (*slot);
945 (*slot)->locus = locus;
946 (*slot)->discriminator = 0;
948 (*slot)->discriminator++;
949 return (*slot)->discriminator;
952 /* Return TRUE if LOCUS1 and LOCUS2 refer to the same source line. */
954 static bool
955 same_line_p (location_t locus1, location_t locus2)
957 expanded_location from, to;
959 if (locus1 == locus2)
960 return true;
962 from = expand_location (locus1);
963 to = expand_location (locus2);
965 if (from.line != to.line)
966 return false;
967 if (from.file == to.file)
968 return true;
969 return (from.file != NULL
970 && to.file != NULL
971 && filename_cmp (from.file, to.file) == 0);
974 /* Assign discriminators to each basic block. */
976 static void
977 assign_discriminators (void)
979 basic_block bb;
981 FOR_EACH_BB_FN (bb, cfun)
983 edge e;
984 edge_iterator ei;
985 gimple last = last_stmt (bb);
986 location_t locus = last ? gimple_location (last) : UNKNOWN_LOCATION;
988 if (locus == UNKNOWN_LOCATION)
989 continue;
991 FOR_EACH_EDGE (e, ei, bb->succs)
993 gimple first = first_non_label_stmt (e->dest);
994 gimple last = last_stmt (e->dest);
995 if ((first && same_line_p (locus, gimple_location (first)))
996 || (last && same_line_p (locus, gimple_location (last))))
998 if (e->dest->discriminator != 0 && bb->discriminator == 0)
999 bb->discriminator = next_discriminator_for_locus (locus);
1000 else
1001 e->dest->discriminator = next_discriminator_for_locus (locus);
1007 /* Create the edges for a GIMPLE_COND starting at block BB. */
1009 static void
1010 make_cond_expr_edges (basic_block bb)
1012 gimple entry = last_stmt (bb);
1013 gimple then_stmt, else_stmt;
1014 basic_block then_bb, else_bb;
1015 tree then_label, else_label;
1016 edge e;
1018 gcc_assert (entry);
1019 gcc_assert (gimple_code (entry) == GIMPLE_COND);
1021 /* Entry basic blocks for each component. */
1022 then_label = gimple_cond_true_label (entry);
1023 else_label = gimple_cond_false_label (entry);
1024 then_bb = label_to_block (then_label);
1025 else_bb = label_to_block (else_label);
1026 then_stmt = first_stmt (then_bb);
1027 else_stmt = first_stmt (else_bb);
1029 e = make_edge (bb, then_bb, EDGE_TRUE_VALUE);
1030 e->goto_locus = gimple_location (then_stmt);
1031 e = make_edge (bb, else_bb, EDGE_FALSE_VALUE);
1032 if (e)
1033 e->goto_locus = gimple_location (else_stmt);
1035 /* We do not need the labels anymore. */
1036 gimple_cond_set_true_label (entry, NULL_TREE);
1037 gimple_cond_set_false_label (entry, NULL_TREE);
1041 /* Called for each element in the hash table (P) as we delete the
1042 edge to cases hash table.
1044 Clear all the TREE_CHAINs to prevent problems with copying of
1045 SWITCH_EXPRs and structure sharing rules, then free the hash table
1046 element. */
1048 static bool
1049 edge_to_cases_cleanup (const void *key ATTRIBUTE_UNUSED, void **value,
1050 void *data ATTRIBUTE_UNUSED)
1052 tree t, next;
1054 for (t = (tree) *value; t; t = next)
1056 next = CASE_CHAIN (t);
1057 CASE_CHAIN (t) = NULL;
1060 *value = NULL;
1061 return true;
1064 /* Start recording information mapping edges to case labels. */
1066 void
1067 start_recording_case_labels (void)
1069 gcc_assert (edge_to_cases == NULL);
1070 edge_to_cases = pointer_map_create ();
1071 touched_switch_bbs = BITMAP_ALLOC (NULL);
1074 /* Return nonzero if we are recording information for case labels. */
1076 static bool
1077 recording_case_labels_p (void)
1079 return (edge_to_cases != NULL);
1082 /* Stop recording information mapping edges to case labels and
1083 remove any information we have recorded. */
1084 void
1085 end_recording_case_labels (void)
1087 bitmap_iterator bi;
1088 unsigned i;
1089 pointer_map_traverse (edge_to_cases, edge_to_cases_cleanup, NULL);
1090 pointer_map_destroy (edge_to_cases);
1091 edge_to_cases = NULL;
1092 EXECUTE_IF_SET_IN_BITMAP (touched_switch_bbs, 0, i, bi)
1094 basic_block bb = BASIC_BLOCK_FOR_FN (cfun, i);
1095 if (bb)
1097 gimple stmt = last_stmt (bb);
1098 if (stmt && gimple_code (stmt) == GIMPLE_SWITCH)
1099 group_case_labels_stmt (stmt);
1102 BITMAP_FREE (touched_switch_bbs);
1105 /* If we are inside a {start,end}_recording_cases block, then return
1106 a chain of CASE_LABEL_EXPRs from T which reference E.
1108 Otherwise return NULL. */
1110 static tree
1111 get_cases_for_edge (edge e, gimple t)
1113 void **slot;
1114 size_t i, n;
1116 /* If we are not recording cases, then we do not have CASE_LABEL_EXPR
1117 chains available. Return NULL so the caller can detect this case. */
1118 if (!recording_case_labels_p ())
1119 return NULL;
1121 slot = pointer_map_contains (edge_to_cases, e);
1122 if (slot)
1123 return (tree) *slot;
1125 /* If we did not find E in the hash table, then this must be the first
1126 time we have been queried for information about E & T. Add all the
1127 elements from T to the hash table then perform the query again. */
1129 n = gimple_switch_num_labels (t);
1130 for (i = 0; i < n; i++)
1132 tree elt = gimple_switch_label (t, i);
1133 tree lab = CASE_LABEL (elt);
1134 basic_block label_bb = label_to_block (lab);
1135 edge this_edge = find_edge (e->src, label_bb);
1137 /* Add it to the chain of CASE_LABEL_EXPRs referencing E, or create
1138 a new chain. */
1139 slot = pointer_map_insert (edge_to_cases, this_edge);
1140 CASE_CHAIN (elt) = (tree) *slot;
1141 *slot = elt;
1144 return (tree) *pointer_map_contains (edge_to_cases, e);
1147 /* Create the edges for a GIMPLE_SWITCH starting at block BB. */
1149 static void
1150 make_gimple_switch_edges (basic_block bb)
1152 gimple entry = last_stmt (bb);
1153 size_t i, n;
1155 n = gimple_switch_num_labels (entry);
1157 for (i = 0; i < n; ++i)
1159 tree lab = CASE_LABEL (gimple_switch_label (entry, i));
1160 basic_block label_bb = label_to_block (lab);
1161 make_edge (bb, label_bb, 0);
1166 /* Return the basic block holding label DEST. */
1168 basic_block
1169 label_to_block_fn (struct function *ifun, tree dest)
1171 int uid = LABEL_DECL_UID (dest);
1173 /* We would die hard when faced by an undefined label. Emit a label to
1174 the very first basic block. This will hopefully make even the dataflow
1175 and undefined variable warnings quite right. */
1176 if (seen_error () && uid < 0)
1178 gimple_stmt_iterator gsi =
1179 gsi_start_bb (BASIC_BLOCK_FOR_FN (cfun, NUM_FIXED_BLOCKS));
1180 gimple stmt;
1182 stmt = gimple_build_label (dest);
1183 gsi_insert_before (&gsi, stmt, GSI_NEW_STMT);
1184 uid = LABEL_DECL_UID (dest);
1186 if (vec_safe_length (ifun->cfg->x_label_to_block_map) <= (unsigned int) uid)
1187 return NULL;
1188 return (*ifun->cfg->x_label_to_block_map)[uid];
1191 /* Create edges for a goto statement at block BB. Returns true
1192 if abnormal edges should be created. */
1194 static bool
1195 make_goto_expr_edges (basic_block bb)
1197 gimple_stmt_iterator last = gsi_last_bb (bb);
1198 gimple goto_t = gsi_stmt (last);
1200 /* A simple GOTO creates normal edges. */
1201 if (simple_goto_p (goto_t))
1203 tree dest = gimple_goto_dest (goto_t);
1204 basic_block label_bb = label_to_block (dest);
1205 edge e = make_edge (bb, label_bb, EDGE_FALLTHRU);
1206 e->goto_locus = gimple_location (goto_t);
1207 gsi_remove (&last, true);
1208 return false;
1211 /* A computed GOTO creates abnormal edges. */
1212 return true;
1215 /* Create edges for an asm statement with labels at block BB. */
1217 static void
1218 make_gimple_asm_edges (basic_block bb)
1220 gimple stmt = last_stmt (bb);
1221 int i, n = gimple_asm_nlabels (stmt);
1223 for (i = 0; i < n; ++i)
1225 tree label = TREE_VALUE (gimple_asm_label_op (stmt, i));
1226 basic_block label_bb = label_to_block (label);
1227 make_edge (bb, label_bb, 0);
1231 /*---------------------------------------------------------------------------
1232 Flowgraph analysis
1233 ---------------------------------------------------------------------------*/
1235 /* Cleanup useless labels in basic blocks. This is something we wish
1236 to do early because it allows us to group case labels before creating
1237 the edges for the CFG, and it speeds up block statement iterators in
1238 all passes later on.
1239 We rerun this pass after CFG is created, to get rid of the labels that
1240 are no longer referenced. After then we do not run it any more, since
1241 (almost) no new labels should be created. */
1243 /* A map from basic block index to the leading label of that block. */
1244 static struct label_record
1246 /* The label. */
1247 tree label;
1249 /* True if the label is referenced from somewhere. */
1250 bool used;
1251 } *label_for_bb;
1253 /* Given LABEL return the first label in the same basic block. */
1255 static tree
1256 main_block_label (tree label)
1258 basic_block bb = label_to_block (label);
1259 tree main_label = label_for_bb[bb->index].label;
1261 /* label_to_block possibly inserted undefined label into the chain. */
1262 if (!main_label)
1264 label_for_bb[bb->index].label = label;
1265 main_label = label;
1268 label_for_bb[bb->index].used = true;
1269 return main_label;
1272 /* Clean up redundant labels within the exception tree. */
1274 static void
1275 cleanup_dead_labels_eh (void)
1277 eh_landing_pad lp;
1278 eh_region r;
1279 tree lab;
1280 int i;
1282 if (cfun->eh == NULL)
1283 return;
1285 for (i = 1; vec_safe_iterate (cfun->eh->lp_array, i, &lp); ++i)
1286 if (lp && lp->post_landing_pad)
1288 lab = main_block_label (lp->post_landing_pad);
1289 if (lab != lp->post_landing_pad)
1291 EH_LANDING_PAD_NR (lp->post_landing_pad) = 0;
1292 EH_LANDING_PAD_NR (lab) = lp->index;
1296 FOR_ALL_EH_REGION (r)
1297 switch (r->type)
1299 case ERT_CLEANUP:
1300 case ERT_MUST_NOT_THROW:
1301 break;
1303 case ERT_TRY:
1305 eh_catch c;
1306 for (c = r->u.eh_try.first_catch; c ; c = c->next_catch)
1308 lab = c->label;
1309 if (lab)
1310 c->label = main_block_label (lab);
1313 break;
1315 case ERT_ALLOWED_EXCEPTIONS:
1316 lab = r->u.allowed.label;
1317 if (lab)
1318 r->u.allowed.label = main_block_label (lab);
1319 break;
1324 /* Cleanup redundant labels. This is a three-step process:
1325 1) Find the leading label for each block.
1326 2) Redirect all references to labels to the leading labels.
1327 3) Cleanup all useless labels. */
1329 void
1330 cleanup_dead_labels (void)
1332 basic_block bb;
1333 label_for_bb = XCNEWVEC (struct label_record, last_basic_block_for_fn (cfun));
1335 /* Find a suitable label for each block. We use the first user-defined
1336 label if there is one, or otherwise just the first label we see. */
1337 FOR_EACH_BB_FN (bb, cfun)
1339 gimple_stmt_iterator i;
1341 for (i = gsi_start_bb (bb); !gsi_end_p (i); gsi_next (&i))
1343 tree label;
1344 gimple stmt = gsi_stmt (i);
1346 if (gimple_code (stmt) != GIMPLE_LABEL)
1347 break;
1349 label = gimple_label_label (stmt);
1351 /* If we have not yet seen a label for the current block,
1352 remember this one and see if there are more labels. */
1353 if (!label_for_bb[bb->index].label)
1355 label_for_bb[bb->index].label = label;
1356 continue;
1359 /* If we did see a label for the current block already, but it
1360 is an artificially created label, replace it if the current
1361 label is a user defined label. */
1362 if (!DECL_ARTIFICIAL (label)
1363 && DECL_ARTIFICIAL (label_for_bb[bb->index].label))
1365 label_for_bb[bb->index].label = label;
1366 break;
1371 /* Now redirect all jumps/branches to the selected label.
1372 First do so for each block ending in a control statement. */
1373 FOR_EACH_BB_FN (bb, cfun)
1375 gimple stmt = last_stmt (bb);
1376 tree label, new_label;
1378 if (!stmt)
1379 continue;
1381 switch (gimple_code (stmt))
1383 case GIMPLE_COND:
1384 label = gimple_cond_true_label (stmt);
1385 if (label)
1387 new_label = main_block_label (label);
1388 if (new_label != label)
1389 gimple_cond_set_true_label (stmt, new_label);
1392 label = gimple_cond_false_label (stmt);
1393 if (label)
1395 new_label = main_block_label (label);
1396 if (new_label != label)
1397 gimple_cond_set_false_label (stmt, new_label);
1399 break;
1401 case GIMPLE_SWITCH:
1403 size_t i, n = gimple_switch_num_labels (stmt);
1405 /* Replace all destination labels. */
1406 for (i = 0; i < n; ++i)
1408 tree case_label = gimple_switch_label (stmt, i);
1409 label = CASE_LABEL (case_label);
1410 new_label = main_block_label (label);
1411 if (new_label != label)
1412 CASE_LABEL (case_label) = new_label;
1414 break;
1417 case GIMPLE_ASM:
1419 int i, n = gimple_asm_nlabels (stmt);
1421 for (i = 0; i < n; ++i)
1423 tree cons = gimple_asm_label_op (stmt, i);
1424 tree label = main_block_label (TREE_VALUE (cons));
1425 TREE_VALUE (cons) = label;
1427 break;
1430 /* We have to handle gotos until they're removed, and we don't
1431 remove them until after we've created the CFG edges. */
1432 case GIMPLE_GOTO:
1433 if (!computed_goto_p (stmt))
1435 label = gimple_goto_dest (stmt);
1436 new_label = main_block_label (label);
1437 if (new_label != label)
1438 gimple_goto_set_dest (stmt, new_label);
1440 break;
1442 case GIMPLE_TRANSACTION:
1444 tree label = gimple_transaction_label (stmt);
1445 if (label)
1447 tree new_label = main_block_label (label);
1448 if (new_label != label)
1449 gimple_transaction_set_label (stmt, new_label);
1452 break;
1454 default:
1455 break;
1459 /* Do the same for the exception region tree labels. */
1460 cleanup_dead_labels_eh ();
1462 /* Finally, purge dead labels. All user-defined labels and labels that
1463 can be the target of non-local gotos and labels which have their
1464 address taken are preserved. */
1465 FOR_EACH_BB_FN (bb, cfun)
1467 gimple_stmt_iterator i;
1468 tree label_for_this_bb = label_for_bb[bb->index].label;
1470 if (!label_for_this_bb)
1471 continue;
1473 /* If the main label of the block is unused, we may still remove it. */
1474 if (!label_for_bb[bb->index].used)
1475 label_for_this_bb = NULL;
1477 for (i = gsi_start_bb (bb); !gsi_end_p (i); )
1479 tree label;
1480 gimple stmt = gsi_stmt (i);
1482 if (gimple_code (stmt) != GIMPLE_LABEL)
1483 break;
1485 label = gimple_label_label (stmt);
1487 if (label == label_for_this_bb
1488 || !DECL_ARTIFICIAL (label)
1489 || DECL_NONLOCAL (label)
1490 || FORCED_LABEL (label))
1491 gsi_next (&i);
1492 else
1493 gsi_remove (&i, true);
1497 free (label_for_bb);
1500 /* Scan the sorted vector of cases in STMT (a GIMPLE_SWITCH) and combine
1501 the ones jumping to the same label.
1502 Eg. three separate entries 1: 2: 3: become one entry 1..3: */
1504 void
1505 group_case_labels_stmt (gimple stmt)
1507 int old_size = gimple_switch_num_labels (stmt);
1508 int i, j, new_size = old_size;
1509 basic_block default_bb = NULL;
1511 default_bb = label_to_block (CASE_LABEL (gimple_switch_default_label (stmt)));
1513 /* Look for possible opportunities to merge cases. */
1514 i = 1;
1515 while (i < old_size)
1517 tree base_case, base_high;
1518 basic_block base_bb;
1520 base_case = gimple_switch_label (stmt, i);
1522 gcc_assert (base_case);
1523 base_bb = label_to_block (CASE_LABEL (base_case));
1525 /* Discard cases that have the same destination as the
1526 default case. */
1527 if (base_bb == default_bb)
1529 gimple_switch_set_label (stmt, i, NULL_TREE);
1530 i++;
1531 new_size--;
1532 continue;
1535 base_high = CASE_HIGH (base_case)
1536 ? CASE_HIGH (base_case)
1537 : CASE_LOW (base_case);
1538 i++;
1540 /* Try to merge case labels. Break out when we reach the end
1541 of the label vector or when we cannot merge the next case
1542 label with the current one. */
1543 while (i < old_size)
1545 tree merge_case = gimple_switch_label (stmt, i);
1546 basic_block merge_bb = label_to_block (CASE_LABEL (merge_case));
1547 wide_int bhp1 = wi::add (base_high, 1);
1549 /* Merge the cases if they jump to the same place,
1550 and their ranges are consecutive. */
1551 if (merge_bb == base_bb
1552 && wi::eq_p (CASE_LOW (merge_case), bhp1))
1554 base_high = CASE_HIGH (merge_case) ?
1555 CASE_HIGH (merge_case) : CASE_LOW (merge_case);
1556 CASE_HIGH (base_case) = base_high;
1557 gimple_switch_set_label (stmt, i, NULL_TREE);
1558 new_size--;
1559 i++;
1561 else
1562 break;
1566 /* Compress the case labels in the label vector, and adjust the
1567 length of the vector. */
1568 for (i = 0, j = 0; i < new_size; i++)
1570 while (! gimple_switch_label (stmt, j))
1571 j++;
1572 gimple_switch_set_label (stmt, i,
1573 gimple_switch_label (stmt, j++));
1576 gcc_assert (new_size <= old_size);
1577 gimple_switch_set_num_labels (stmt, new_size);
1580 /* Look for blocks ending in a multiway branch (a GIMPLE_SWITCH),
1581 and scan the sorted vector of cases. Combine the ones jumping to the
1582 same label. */
1584 void
1585 group_case_labels (void)
1587 basic_block bb;
1589 FOR_EACH_BB_FN (bb, cfun)
1591 gimple stmt = last_stmt (bb);
1592 if (stmt && gimple_code (stmt) == GIMPLE_SWITCH)
1593 group_case_labels_stmt (stmt);
1597 /* Checks whether we can merge block B into block A. */
1599 static bool
1600 gimple_can_merge_blocks_p (basic_block a, basic_block b)
1602 gimple stmt;
1603 gimple_stmt_iterator gsi;
1605 if (!single_succ_p (a))
1606 return false;
1608 if (single_succ_edge (a)->flags & EDGE_COMPLEX)
1609 return false;
1611 if (single_succ (a) != b)
1612 return false;
1614 if (!single_pred_p (b))
1615 return false;
1617 if (b == EXIT_BLOCK_PTR_FOR_FN (cfun))
1618 return false;
1620 /* If A ends by a statement causing exceptions or something similar, we
1621 cannot merge the blocks. */
1622 stmt = last_stmt (a);
1623 if (stmt && stmt_ends_bb_p (stmt))
1624 return false;
1626 /* Do not allow a block with only a non-local label to be merged. */
1627 if (stmt
1628 && gimple_code (stmt) == GIMPLE_LABEL
1629 && DECL_NONLOCAL (gimple_label_label (stmt)))
1630 return false;
1632 /* Examine the labels at the beginning of B. */
1633 for (gsi = gsi_start_bb (b); !gsi_end_p (gsi); gsi_next (&gsi))
1635 tree lab;
1636 stmt = gsi_stmt (gsi);
1637 if (gimple_code (stmt) != GIMPLE_LABEL)
1638 break;
1639 lab = gimple_label_label (stmt);
1641 /* Do not remove user forced labels or for -O0 any user labels. */
1642 if (!DECL_ARTIFICIAL (lab) && (!optimize || FORCED_LABEL (lab)))
1643 return false;
1646 /* Protect the loop latches. */
1647 if (current_loops && b->loop_father->latch == b)
1648 return false;
1650 /* It must be possible to eliminate all phi nodes in B. If ssa form
1651 is not up-to-date and a name-mapping is registered, we cannot eliminate
1652 any phis. Symbols marked for renaming are never a problem though. */
1653 for (gsi = gsi_start_phis (b); !gsi_end_p (gsi); gsi_next (&gsi))
1655 gimple phi = gsi_stmt (gsi);
1656 /* Technically only new names matter. */
1657 if (name_registered_for_update_p (PHI_RESULT (phi)))
1658 return false;
1661 /* When not optimizing, don't merge if we'd lose goto_locus. */
1662 if (!optimize
1663 && single_succ_edge (a)->goto_locus != UNKNOWN_LOCATION)
1665 location_t goto_locus = single_succ_edge (a)->goto_locus;
1666 gimple_stmt_iterator prev, next;
1667 prev = gsi_last_nondebug_bb (a);
1668 next = gsi_after_labels (b);
1669 if (!gsi_end_p (next) && is_gimple_debug (gsi_stmt (next)))
1670 gsi_next_nondebug (&next);
1671 if ((gsi_end_p (prev)
1672 || gimple_location (gsi_stmt (prev)) != goto_locus)
1673 && (gsi_end_p (next)
1674 || gimple_location (gsi_stmt (next)) != goto_locus))
1675 return false;
1678 return true;
1681 /* Replaces all uses of NAME by VAL. */
1683 void
1684 replace_uses_by (tree name, tree val)
1686 imm_use_iterator imm_iter;
1687 use_operand_p use;
1688 gimple stmt;
1689 edge e;
1691 FOR_EACH_IMM_USE_STMT (stmt, imm_iter, name)
1693 /* Mark the block if we change the last stmt in it. */
1694 if (cfgcleanup_altered_bbs
1695 && stmt_ends_bb_p (stmt))
1696 bitmap_set_bit (cfgcleanup_altered_bbs, gimple_bb (stmt)->index);
1698 FOR_EACH_IMM_USE_ON_STMT (use, imm_iter)
1700 replace_exp (use, val);
1702 if (gimple_code (stmt) == GIMPLE_PHI)
1704 e = gimple_phi_arg_edge (stmt, PHI_ARG_INDEX_FROM_USE (use));
1705 if (e->flags & EDGE_ABNORMAL)
1707 /* This can only occur for virtual operands, since
1708 for the real ones SSA_NAME_OCCURS_IN_ABNORMAL_PHI (name))
1709 would prevent replacement. */
1710 gcc_checking_assert (virtual_operand_p (name));
1711 SSA_NAME_OCCURS_IN_ABNORMAL_PHI (val) = 1;
1716 if (gimple_code (stmt) != GIMPLE_PHI)
1718 gimple_stmt_iterator gsi = gsi_for_stmt (stmt);
1719 gimple orig_stmt = stmt;
1720 size_t i;
1722 /* FIXME. It shouldn't be required to keep TREE_CONSTANT
1723 on ADDR_EXPRs up-to-date on GIMPLE. Propagation will
1724 only change sth from non-invariant to invariant, and only
1725 when propagating constants. */
1726 if (is_gimple_min_invariant (val))
1727 for (i = 0; i < gimple_num_ops (stmt); i++)
1729 tree op = gimple_op (stmt, i);
1730 /* Operands may be empty here. For example, the labels
1731 of a GIMPLE_COND are nulled out following the creation
1732 of the corresponding CFG edges. */
1733 if (op && TREE_CODE (op) == ADDR_EXPR)
1734 recompute_tree_invariant_for_addr_expr (op);
1737 if (fold_stmt (&gsi))
1738 stmt = gsi_stmt (gsi);
1740 if (maybe_clean_or_replace_eh_stmt (orig_stmt, stmt))
1741 gimple_purge_dead_eh_edges (gimple_bb (stmt));
1743 update_stmt (stmt);
1747 gcc_checking_assert (has_zero_uses (name));
1749 /* Also update the trees stored in loop structures. */
1750 if (current_loops)
1752 struct loop *loop;
1754 FOR_EACH_LOOP (loop, 0)
1756 substitute_in_loop_info (loop, name, val);
1761 /* Merge block B into block A. */
1763 static void
1764 gimple_merge_blocks (basic_block a, basic_block b)
1766 gimple_stmt_iterator last, gsi, psi;
1768 if (dump_file)
1769 fprintf (dump_file, "Merging blocks %d and %d\n", a->index, b->index);
1771 /* Remove all single-valued PHI nodes from block B of the form
1772 V_i = PHI <V_j> by propagating V_j to all the uses of V_i. */
1773 gsi = gsi_last_bb (a);
1774 for (psi = gsi_start_phis (b); !gsi_end_p (psi); )
1776 gimple phi = gsi_stmt (psi);
1777 tree def = gimple_phi_result (phi), use = gimple_phi_arg_def (phi, 0);
1778 gimple copy;
1779 bool may_replace_uses = (virtual_operand_p (def)
1780 || may_propagate_copy (def, use));
1782 /* In case we maintain loop closed ssa form, do not propagate arguments
1783 of loop exit phi nodes. */
1784 if (current_loops
1785 && loops_state_satisfies_p (LOOP_CLOSED_SSA)
1786 && !virtual_operand_p (def)
1787 && TREE_CODE (use) == SSA_NAME
1788 && a->loop_father != b->loop_father)
1789 may_replace_uses = false;
1791 if (!may_replace_uses)
1793 gcc_assert (!virtual_operand_p (def));
1795 /* Note that just emitting the copies is fine -- there is no problem
1796 with ordering of phi nodes. This is because A is the single
1797 predecessor of B, therefore results of the phi nodes cannot
1798 appear as arguments of the phi nodes. */
1799 copy = gimple_build_assign (def, use);
1800 gsi_insert_after (&gsi, copy, GSI_NEW_STMT);
1801 remove_phi_node (&psi, false);
1803 else
1805 /* If we deal with a PHI for virtual operands, we can simply
1806 propagate these without fussing with folding or updating
1807 the stmt. */
1808 if (virtual_operand_p (def))
1810 imm_use_iterator iter;
1811 use_operand_p use_p;
1812 gimple stmt;
1814 FOR_EACH_IMM_USE_STMT (stmt, iter, def)
1815 FOR_EACH_IMM_USE_ON_STMT (use_p, iter)
1816 SET_USE (use_p, use);
1818 if (SSA_NAME_OCCURS_IN_ABNORMAL_PHI (def))
1819 SSA_NAME_OCCURS_IN_ABNORMAL_PHI (use) = 1;
1821 else
1822 replace_uses_by (def, use);
1824 remove_phi_node (&psi, true);
1828 /* Ensure that B follows A. */
1829 move_block_after (b, a);
1831 gcc_assert (single_succ_edge (a)->flags & EDGE_FALLTHRU);
1832 gcc_assert (!last_stmt (a) || !stmt_ends_bb_p (last_stmt (a)));
1834 /* Remove labels from B and set gimple_bb to A for other statements. */
1835 for (gsi = gsi_start_bb (b); !gsi_end_p (gsi);)
1837 gimple stmt = gsi_stmt (gsi);
1838 if (gimple_code (stmt) == GIMPLE_LABEL)
1840 tree label = gimple_label_label (stmt);
1841 int lp_nr;
1843 gsi_remove (&gsi, false);
1845 /* Now that we can thread computed gotos, we might have
1846 a situation where we have a forced label in block B
1847 However, the label at the start of block B might still be
1848 used in other ways (think about the runtime checking for
1849 Fortran assigned gotos). So we can not just delete the
1850 label. Instead we move the label to the start of block A. */
1851 if (FORCED_LABEL (label))
1853 gimple_stmt_iterator dest_gsi = gsi_start_bb (a);
1854 gsi_insert_before (&dest_gsi, stmt, GSI_NEW_STMT);
1856 /* Other user labels keep around in a form of a debug stmt. */
1857 else if (!DECL_ARTIFICIAL (label) && MAY_HAVE_DEBUG_STMTS)
1859 gimple dbg = gimple_build_debug_bind (label,
1860 integer_zero_node,
1861 stmt);
1862 gimple_debug_bind_reset_value (dbg);
1863 gsi_insert_before (&gsi, dbg, GSI_SAME_STMT);
1866 lp_nr = EH_LANDING_PAD_NR (label);
1867 if (lp_nr)
1869 eh_landing_pad lp = get_eh_landing_pad_from_number (lp_nr);
1870 lp->post_landing_pad = NULL;
1873 else
1875 gimple_set_bb (stmt, a);
1876 gsi_next (&gsi);
1880 /* When merging two BBs, if their counts are different, the larger count
1881 is selected as the new bb count. This is to handle inconsistent
1882 profiles. */
1883 if (a->loop_father == b->loop_father)
1885 a->count = MAX (a->count, b->count);
1886 a->frequency = MAX (a->frequency, b->frequency);
1889 /* Merge the sequences. */
1890 last = gsi_last_bb (a);
1891 gsi_insert_seq_after (&last, bb_seq (b), GSI_NEW_STMT);
1892 set_bb_seq (b, NULL);
1894 if (cfgcleanup_altered_bbs)
1895 bitmap_set_bit (cfgcleanup_altered_bbs, a->index);
1899 /* Return the one of two successors of BB that is not reachable by a
1900 complex edge, if there is one. Else, return BB. We use
1901 this in optimizations that use post-dominators for their heuristics,
1902 to catch the cases in C++ where function calls are involved. */
1904 basic_block
1905 single_noncomplex_succ (basic_block bb)
1907 edge e0, e1;
1908 if (EDGE_COUNT (bb->succs) != 2)
1909 return bb;
1911 e0 = EDGE_SUCC (bb, 0);
1912 e1 = EDGE_SUCC (bb, 1);
1913 if (e0->flags & EDGE_COMPLEX)
1914 return e1->dest;
1915 if (e1->flags & EDGE_COMPLEX)
1916 return e0->dest;
1918 return bb;
1921 /* T is CALL_EXPR. Set current_function_calls_* flags. */
1923 void
1924 notice_special_calls (gimple call)
1926 int flags = gimple_call_flags (call);
1928 if (flags & ECF_MAY_BE_ALLOCA)
1929 cfun->calls_alloca = true;
1930 if (flags & ECF_RETURNS_TWICE)
1931 cfun->calls_setjmp = true;
1935 /* Clear flags set by notice_special_calls. Used by dead code removal
1936 to update the flags. */
1938 void
1939 clear_special_calls (void)
1941 cfun->calls_alloca = false;
1942 cfun->calls_setjmp = false;
1945 /* Remove PHI nodes associated with basic block BB and all edges out of BB. */
1947 static void
1948 remove_phi_nodes_and_edges_for_unreachable_block (basic_block bb)
1950 /* Since this block is no longer reachable, we can just delete all
1951 of its PHI nodes. */
1952 remove_phi_nodes (bb);
1954 /* Remove edges to BB's successors. */
1955 while (EDGE_COUNT (bb->succs) > 0)
1956 remove_edge (EDGE_SUCC (bb, 0));
1960 /* Remove statements of basic block BB. */
1962 static void
1963 remove_bb (basic_block bb)
1965 gimple_stmt_iterator i;
1967 if (dump_file)
1969 fprintf (dump_file, "Removing basic block %d\n", bb->index);
1970 if (dump_flags & TDF_DETAILS)
1972 dump_bb (dump_file, bb, 0, TDF_BLOCKS);
1973 fprintf (dump_file, "\n");
1977 if (current_loops)
1979 struct loop *loop = bb->loop_father;
1981 /* If a loop gets removed, clean up the information associated
1982 with it. */
1983 if (loop->latch == bb
1984 || loop->header == bb)
1985 free_numbers_of_iterations_estimates_loop (loop);
1988 /* Remove all the instructions in the block. */
1989 if (bb_seq (bb) != NULL)
1991 /* Walk backwards so as to get a chance to substitute all
1992 released DEFs into debug stmts. See
1993 eliminate_unnecessary_stmts() in tree-ssa-dce.c for more
1994 details. */
1995 for (i = gsi_last_bb (bb); !gsi_end_p (i);)
1997 gimple stmt = gsi_stmt (i);
1998 if (gimple_code (stmt) == GIMPLE_LABEL
1999 && (FORCED_LABEL (gimple_label_label (stmt))
2000 || DECL_NONLOCAL (gimple_label_label (stmt))))
2002 basic_block new_bb;
2003 gimple_stmt_iterator new_gsi;
2005 /* A non-reachable non-local label may still be referenced.
2006 But it no longer needs to carry the extra semantics of
2007 non-locality. */
2008 if (DECL_NONLOCAL (gimple_label_label (stmt)))
2010 DECL_NONLOCAL (gimple_label_label (stmt)) = 0;
2011 FORCED_LABEL (gimple_label_label (stmt)) = 1;
2014 new_bb = bb->prev_bb;
2015 new_gsi = gsi_start_bb (new_bb);
2016 gsi_remove (&i, false);
2017 gsi_insert_before (&new_gsi, stmt, GSI_NEW_STMT);
2019 else
2021 /* Release SSA definitions if we are in SSA. Note that we
2022 may be called when not in SSA. For example,
2023 final_cleanup calls this function via
2024 cleanup_tree_cfg. */
2025 if (gimple_in_ssa_p (cfun))
2026 release_defs (stmt);
2028 gsi_remove (&i, true);
2031 if (gsi_end_p (i))
2032 i = gsi_last_bb (bb);
2033 else
2034 gsi_prev (&i);
2038 remove_phi_nodes_and_edges_for_unreachable_block (bb);
2039 bb->il.gimple.seq = NULL;
2040 bb->il.gimple.phi_nodes = NULL;
2044 /* Given a basic block BB ending with COND_EXPR or SWITCH_EXPR, and a
2045 predicate VAL, return the edge that will be taken out of the block.
2046 If VAL does not match a unique edge, NULL is returned. */
2048 edge
2049 find_taken_edge (basic_block bb, tree val)
2051 gimple stmt;
2053 stmt = last_stmt (bb);
2055 gcc_assert (stmt);
2056 gcc_assert (is_ctrl_stmt (stmt));
2058 if (val == NULL)
2059 return NULL;
2061 if (!is_gimple_min_invariant (val))
2062 return NULL;
2064 if (gimple_code (stmt) == GIMPLE_COND)
2065 return find_taken_edge_cond_expr (bb, val);
2067 if (gimple_code (stmt) == GIMPLE_SWITCH)
2068 return find_taken_edge_switch_expr (bb, val);
2070 if (computed_goto_p (stmt))
2072 /* Only optimize if the argument is a label, if the argument is
2073 not a label then we can not construct a proper CFG.
2075 It may be the case that we only need to allow the LABEL_REF to
2076 appear inside an ADDR_EXPR, but we also allow the LABEL_REF to
2077 appear inside a LABEL_EXPR just to be safe. */
2078 if ((TREE_CODE (val) == ADDR_EXPR || TREE_CODE (val) == LABEL_EXPR)
2079 && TREE_CODE (TREE_OPERAND (val, 0)) == LABEL_DECL)
2080 return find_taken_edge_computed_goto (bb, TREE_OPERAND (val, 0));
2081 return NULL;
2084 gcc_unreachable ();
2087 /* Given a constant value VAL and the entry block BB to a GOTO_EXPR
2088 statement, determine which of the outgoing edges will be taken out of the
2089 block. Return NULL if either edge may be taken. */
2091 static edge
2092 find_taken_edge_computed_goto (basic_block bb, tree val)
2094 basic_block dest;
2095 edge e = NULL;
2097 dest = label_to_block (val);
2098 if (dest)
2100 e = find_edge (bb, dest);
2101 gcc_assert (e != NULL);
2104 return e;
2107 /* Given a constant value VAL and the entry block BB to a COND_EXPR
2108 statement, determine which of the two edges will be taken out of the
2109 block. Return NULL if either edge may be taken. */
2111 static edge
2112 find_taken_edge_cond_expr (basic_block bb, tree val)
2114 edge true_edge, false_edge;
2116 extract_true_false_edges_from_block (bb, &true_edge, &false_edge);
2118 gcc_assert (TREE_CODE (val) == INTEGER_CST);
2119 return (integer_zerop (val) ? false_edge : true_edge);
2122 /* Given an INTEGER_CST VAL and the entry block BB to a SWITCH_EXPR
2123 statement, determine which edge will be taken out of the block. Return
2124 NULL if any edge may be taken. */
2126 static edge
2127 find_taken_edge_switch_expr (basic_block bb, tree val)
2129 basic_block dest_bb;
2130 edge e;
2131 gimple switch_stmt;
2132 tree taken_case;
2134 switch_stmt = last_stmt (bb);
2135 taken_case = find_case_label_for_value (switch_stmt, val);
2136 dest_bb = label_to_block (CASE_LABEL (taken_case));
2138 e = find_edge (bb, dest_bb);
2139 gcc_assert (e);
2140 return e;
2144 /* Return the CASE_LABEL_EXPR that SWITCH_STMT will take for VAL.
2145 We can make optimal use here of the fact that the case labels are
2146 sorted: We can do a binary search for a case matching VAL. */
2148 static tree
2149 find_case_label_for_value (gimple switch_stmt, tree val)
2151 size_t low, high, n = gimple_switch_num_labels (switch_stmt);
2152 tree default_case = gimple_switch_default_label (switch_stmt);
2154 for (low = 0, high = n; high - low > 1; )
2156 size_t i = (high + low) / 2;
2157 tree t = gimple_switch_label (switch_stmt, i);
2158 int cmp;
2160 /* Cache the result of comparing CASE_LOW and val. */
2161 cmp = tree_int_cst_compare (CASE_LOW (t), val);
2163 if (cmp > 0)
2164 high = i;
2165 else
2166 low = i;
2168 if (CASE_HIGH (t) == NULL)
2170 /* A singe-valued case label. */
2171 if (cmp == 0)
2172 return t;
2174 else
2176 /* A case range. We can only handle integer ranges. */
2177 if (cmp <= 0 && tree_int_cst_compare (CASE_HIGH (t), val) >= 0)
2178 return t;
2182 return default_case;
2186 /* Dump a basic block on stderr. */
2188 void
2189 gimple_debug_bb (basic_block bb)
2191 dump_bb (stderr, bb, 0, TDF_VOPS|TDF_MEMSYMS|TDF_BLOCKS);
2195 /* Dump basic block with index N on stderr. */
2197 basic_block
2198 gimple_debug_bb_n (int n)
2200 gimple_debug_bb (BASIC_BLOCK_FOR_FN (cfun, n));
2201 return BASIC_BLOCK_FOR_FN (cfun, n);
2205 /* Dump the CFG on stderr.
2207 FLAGS are the same used by the tree dumping functions
2208 (see TDF_* in dumpfile.h). */
2210 void
2211 gimple_debug_cfg (int flags)
2213 gimple_dump_cfg (stderr, flags);
2217 /* Dump the program showing basic block boundaries on the given FILE.
2219 FLAGS are the same used by the tree dumping functions (see TDF_* in
2220 tree.h). */
2222 void
2223 gimple_dump_cfg (FILE *file, int flags)
2225 if (flags & TDF_DETAILS)
2227 dump_function_header (file, current_function_decl, flags);
2228 fprintf (file, ";; \n%d basic blocks, %d edges, last basic block %d.\n\n",
2229 n_basic_blocks_for_fn (cfun), n_edges_for_fn (cfun),
2230 last_basic_block_for_fn (cfun));
2232 brief_dump_cfg (file, flags | TDF_COMMENT);
2233 fprintf (file, "\n");
2236 if (flags & TDF_STATS)
2237 dump_cfg_stats (file);
2239 dump_function_to_file (current_function_decl, file, flags | TDF_BLOCKS);
2243 /* Dump CFG statistics on FILE. */
2245 void
2246 dump_cfg_stats (FILE *file)
2248 static long max_num_merged_labels = 0;
2249 unsigned long size, total = 0;
2250 long num_edges;
2251 basic_block bb;
2252 const char * const fmt_str = "%-30s%-13s%12s\n";
2253 const char * const fmt_str_1 = "%-30s%13d%11lu%c\n";
2254 const char * const fmt_str_2 = "%-30s%13ld%11lu%c\n";
2255 const char * const fmt_str_3 = "%-43s%11lu%c\n";
2256 const char *funcname = current_function_name ();
2258 fprintf (file, "\nCFG Statistics for %s\n\n", funcname);
2260 fprintf (file, "---------------------------------------------------------\n");
2261 fprintf (file, fmt_str, "", " Number of ", "Memory");
2262 fprintf (file, fmt_str, "", " instances ", "used ");
2263 fprintf (file, "---------------------------------------------------------\n");
2265 size = n_basic_blocks_for_fn (cfun) * sizeof (struct basic_block_def);
2266 total += size;
2267 fprintf (file, fmt_str_1, "Basic blocks", n_basic_blocks_for_fn (cfun),
2268 SCALE (size), LABEL (size));
2270 num_edges = 0;
2271 FOR_EACH_BB_FN (bb, cfun)
2272 num_edges += EDGE_COUNT (bb->succs);
2273 size = num_edges * sizeof (struct edge_def);
2274 total += size;
2275 fprintf (file, fmt_str_2, "Edges", num_edges, SCALE (size), LABEL (size));
2277 fprintf (file, "---------------------------------------------------------\n");
2278 fprintf (file, fmt_str_3, "Total memory used by CFG data", SCALE (total),
2279 LABEL (total));
2280 fprintf (file, "---------------------------------------------------------\n");
2281 fprintf (file, "\n");
2283 if (cfg_stats.num_merged_labels > max_num_merged_labels)
2284 max_num_merged_labels = cfg_stats.num_merged_labels;
2286 fprintf (file, "Coalesced label blocks: %ld (Max so far: %ld)\n",
2287 cfg_stats.num_merged_labels, max_num_merged_labels);
2289 fprintf (file, "\n");
2293 /* Dump CFG statistics on stderr. Keep extern so that it's always
2294 linked in the final executable. */
2296 DEBUG_FUNCTION void
2297 debug_cfg_stats (void)
2299 dump_cfg_stats (stderr);
2302 /*---------------------------------------------------------------------------
2303 Miscellaneous helpers
2304 ---------------------------------------------------------------------------*/
2306 /* Return true if T, a GIMPLE_CALL, can make an abnormal transfer of control
2307 flow. Transfers of control flow associated with EH are excluded. */
2309 static bool
2310 call_can_make_abnormal_goto (gimple t)
2312 /* If the function has no non-local labels, then a call cannot make an
2313 abnormal transfer of control. */
2314 if (!cfun->has_nonlocal_label
2315 && !cfun->calls_setjmp)
2316 return false;
2318 /* Likewise if the call has no side effects. */
2319 if (!gimple_has_side_effects (t))
2320 return false;
2322 /* Likewise if the called function is leaf. */
2323 if (gimple_call_flags (t) & ECF_LEAF)
2324 return false;
2326 return true;
2330 /* Return true if T can make an abnormal transfer of control flow.
2331 Transfers of control flow associated with EH are excluded. */
2333 bool
2334 stmt_can_make_abnormal_goto (gimple t)
2336 if (computed_goto_p (t))
2337 return true;
2338 if (is_gimple_call (t))
2339 return call_can_make_abnormal_goto (t);
2340 return false;
2344 /* Return true if T represents a stmt that always transfers control. */
2346 bool
2347 is_ctrl_stmt (gimple t)
2349 switch (gimple_code (t))
2351 case GIMPLE_COND:
2352 case GIMPLE_SWITCH:
2353 case GIMPLE_GOTO:
2354 case GIMPLE_RETURN:
2355 case GIMPLE_RESX:
2356 return true;
2357 default:
2358 return false;
2363 /* Return true if T is a statement that may alter the flow of control
2364 (e.g., a call to a non-returning function). */
2366 bool
2367 is_ctrl_altering_stmt (gimple t)
2369 gcc_assert (t);
2371 switch (gimple_code (t))
2373 case GIMPLE_CALL:
2375 int flags = gimple_call_flags (t);
2377 /* A call alters control flow if it can make an abnormal goto. */
2378 if (call_can_make_abnormal_goto (t))
2379 return true;
2381 /* A call also alters control flow if it does not return. */
2382 if (flags & ECF_NORETURN)
2383 return true;
2385 /* TM ending statements have backedges out of the transaction.
2386 Return true so we split the basic block containing them.
2387 Note that the TM_BUILTIN test is merely an optimization. */
2388 if ((flags & ECF_TM_BUILTIN)
2389 && is_tm_ending_fndecl (gimple_call_fndecl (t)))
2390 return true;
2392 /* BUILT_IN_RETURN call is same as return statement. */
2393 if (gimple_call_builtin_p (t, BUILT_IN_RETURN))
2394 return true;
2396 break;
2398 case GIMPLE_EH_DISPATCH:
2399 /* EH_DISPATCH branches to the individual catch handlers at
2400 this level of a try or allowed-exceptions region. It can
2401 fallthru to the next statement as well. */
2402 return true;
2404 case GIMPLE_ASM:
2405 if (gimple_asm_nlabels (t) > 0)
2406 return true;
2407 break;
2409 CASE_GIMPLE_OMP:
2410 /* OpenMP directives alter control flow. */
2411 return true;
2413 case GIMPLE_TRANSACTION:
2414 /* A transaction start alters control flow. */
2415 return true;
2417 default:
2418 break;
2421 /* If a statement can throw, it alters control flow. */
2422 return stmt_can_throw_internal (t);
2426 /* Return true if T is a simple local goto. */
2428 bool
2429 simple_goto_p (gimple t)
2431 return (gimple_code (t) == GIMPLE_GOTO
2432 && TREE_CODE (gimple_goto_dest (t)) == LABEL_DECL);
2436 /* Return true if STMT should start a new basic block. PREV_STMT is
2437 the statement preceding STMT. It is used when STMT is a label or a
2438 case label. Labels should only start a new basic block if their
2439 previous statement wasn't a label. Otherwise, sequence of labels
2440 would generate unnecessary basic blocks that only contain a single
2441 label. */
2443 static inline bool
2444 stmt_starts_bb_p (gimple stmt, gimple prev_stmt)
2446 if (stmt == NULL)
2447 return false;
2449 /* Labels start a new basic block only if the preceding statement
2450 wasn't a label of the same type. This prevents the creation of
2451 consecutive blocks that have nothing but a single label. */
2452 if (gimple_code (stmt) == GIMPLE_LABEL)
2454 /* Nonlocal and computed GOTO targets always start a new block. */
2455 if (DECL_NONLOCAL (gimple_label_label (stmt))
2456 || FORCED_LABEL (gimple_label_label (stmt)))
2457 return true;
2459 if (prev_stmt && gimple_code (prev_stmt) == GIMPLE_LABEL)
2461 if (DECL_NONLOCAL (gimple_label_label (prev_stmt)))
2462 return true;
2464 cfg_stats.num_merged_labels++;
2465 return false;
2467 else
2468 return true;
2470 else if (gimple_code (stmt) == GIMPLE_CALL
2471 && gimple_call_flags (stmt) & ECF_RETURNS_TWICE)
2472 /* setjmp acts similar to a nonlocal GOTO target and thus should
2473 start a new block. */
2474 return true;
2476 return false;
2480 /* Return true if T should end a basic block. */
2482 bool
2483 stmt_ends_bb_p (gimple t)
2485 return is_ctrl_stmt (t) || is_ctrl_altering_stmt (t);
2488 /* Remove block annotations and other data structures. */
2490 void
2491 delete_tree_cfg_annotations (void)
2493 vec_free (label_to_block_map_for_fn (cfun));
2497 /* Return the first statement in basic block BB. */
2499 gimple
2500 first_stmt (basic_block bb)
2502 gimple_stmt_iterator i = gsi_start_bb (bb);
2503 gimple stmt = NULL;
2505 while (!gsi_end_p (i) && is_gimple_debug ((stmt = gsi_stmt (i))))
2507 gsi_next (&i);
2508 stmt = NULL;
2510 return stmt;
2513 /* Return the first non-label statement in basic block BB. */
2515 static gimple
2516 first_non_label_stmt (basic_block bb)
2518 gimple_stmt_iterator i = gsi_start_bb (bb);
2519 while (!gsi_end_p (i) && gimple_code (gsi_stmt (i)) == GIMPLE_LABEL)
2520 gsi_next (&i);
2521 return !gsi_end_p (i) ? gsi_stmt (i) : NULL;
2524 /* Return the last statement in basic block BB. */
2526 gimple
2527 last_stmt (basic_block bb)
2529 gimple_stmt_iterator i = gsi_last_bb (bb);
2530 gimple stmt = NULL;
2532 while (!gsi_end_p (i) && is_gimple_debug ((stmt = gsi_stmt (i))))
2534 gsi_prev (&i);
2535 stmt = NULL;
2537 return stmt;
2540 /* Return the last statement of an otherwise empty block. Return NULL
2541 if the block is totally empty, or if it contains more than one
2542 statement. */
2544 gimple
2545 last_and_only_stmt (basic_block bb)
2547 gimple_stmt_iterator i = gsi_last_nondebug_bb (bb);
2548 gimple last, prev;
2550 if (gsi_end_p (i))
2551 return NULL;
2553 last = gsi_stmt (i);
2554 gsi_prev_nondebug (&i);
2555 if (gsi_end_p (i))
2556 return last;
2558 /* Empty statements should no longer appear in the instruction stream.
2559 Everything that might have appeared before should be deleted by
2560 remove_useless_stmts, and the optimizers should just gsi_remove
2561 instead of smashing with build_empty_stmt.
2563 Thus the only thing that should appear here in a block containing
2564 one executable statement is a label. */
2565 prev = gsi_stmt (i);
2566 if (gimple_code (prev) == GIMPLE_LABEL)
2567 return last;
2568 else
2569 return NULL;
2572 /* Reinstall those PHI arguments queued in OLD_EDGE to NEW_EDGE. */
2574 static void
2575 reinstall_phi_args (edge new_edge, edge old_edge)
2577 edge_var_map_vector *v;
2578 edge_var_map *vm;
2579 int i;
2580 gimple_stmt_iterator phis;
2582 v = redirect_edge_var_map_vector (old_edge);
2583 if (!v)
2584 return;
2586 for (i = 0, phis = gsi_start_phis (new_edge->dest);
2587 v->iterate (i, &vm) && !gsi_end_p (phis);
2588 i++, gsi_next (&phis))
2590 gimple phi = gsi_stmt (phis);
2591 tree result = redirect_edge_var_map_result (vm);
2592 tree arg = redirect_edge_var_map_def (vm);
2594 gcc_assert (result == gimple_phi_result (phi));
2596 add_phi_arg (phi, arg, new_edge, redirect_edge_var_map_location (vm));
2599 redirect_edge_var_map_clear (old_edge);
2602 /* Returns the basic block after which the new basic block created
2603 by splitting edge EDGE_IN should be placed. Tries to keep the new block
2604 near its "logical" location. This is of most help to humans looking
2605 at debugging dumps. */
2607 static basic_block
2608 split_edge_bb_loc (edge edge_in)
2610 basic_block dest = edge_in->dest;
2611 basic_block dest_prev = dest->prev_bb;
2613 if (dest_prev)
2615 edge e = find_edge (dest_prev, dest);
2616 if (e && !(e->flags & EDGE_COMPLEX))
2617 return edge_in->src;
2619 return dest_prev;
2622 /* Split a (typically critical) edge EDGE_IN. Return the new block.
2623 Abort on abnormal edges. */
2625 static basic_block
2626 gimple_split_edge (edge edge_in)
2628 basic_block new_bb, after_bb, dest;
2629 edge new_edge, e;
2631 /* Abnormal edges cannot be split. */
2632 gcc_assert (!(edge_in->flags & EDGE_ABNORMAL));
2634 dest = edge_in->dest;
2636 after_bb = split_edge_bb_loc (edge_in);
2638 new_bb = create_empty_bb (after_bb);
2639 new_bb->frequency = EDGE_FREQUENCY (edge_in);
2640 new_bb->count = edge_in->count;
2641 new_edge = make_edge (new_bb, dest, EDGE_FALLTHRU);
2642 new_edge->probability = REG_BR_PROB_BASE;
2643 new_edge->count = edge_in->count;
2645 e = redirect_edge_and_branch (edge_in, new_bb);
2646 gcc_assert (e == edge_in);
2647 reinstall_phi_args (new_edge, e);
2649 return new_bb;
2653 /* Verify properties of the address expression T with base object BASE. */
2655 static tree
2656 verify_address (tree t, tree base)
2658 bool old_constant;
2659 bool old_side_effects;
2660 bool new_constant;
2661 bool new_side_effects;
2663 old_constant = TREE_CONSTANT (t);
2664 old_side_effects = TREE_SIDE_EFFECTS (t);
2666 recompute_tree_invariant_for_addr_expr (t);
2667 new_side_effects = TREE_SIDE_EFFECTS (t);
2668 new_constant = TREE_CONSTANT (t);
2670 if (old_constant != new_constant)
2672 error ("constant not recomputed when ADDR_EXPR changed");
2673 return t;
2675 if (old_side_effects != new_side_effects)
2677 error ("side effects not recomputed when ADDR_EXPR changed");
2678 return t;
2681 if (!(TREE_CODE (base) == VAR_DECL
2682 || TREE_CODE (base) == PARM_DECL
2683 || TREE_CODE (base) == RESULT_DECL))
2684 return NULL_TREE;
2686 if (DECL_GIMPLE_REG_P (base))
2688 error ("DECL_GIMPLE_REG_P set on a variable with address taken");
2689 return base;
2692 return NULL_TREE;
2695 /* Callback for walk_tree, check that all elements with address taken are
2696 properly noticed as such. The DATA is an int* that is 1 if TP was seen
2697 inside a PHI node. */
2699 static tree
2700 verify_expr (tree *tp, int *walk_subtrees, void *data ATTRIBUTE_UNUSED)
2702 tree t = *tp, x;
2704 if (TYPE_P (t))
2705 *walk_subtrees = 0;
2707 /* Check operand N for being valid GIMPLE and give error MSG if not. */
2708 #define CHECK_OP(N, MSG) \
2709 do { if (!is_gimple_val (TREE_OPERAND (t, N))) \
2710 { error (MSG); return TREE_OPERAND (t, N); }} while (0)
2712 switch (TREE_CODE (t))
2714 case SSA_NAME:
2715 if (SSA_NAME_IN_FREE_LIST (t))
2717 error ("SSA name in freelist but still referenced");
2718 return *tp;
2720 break;
2722 case INDIRECT_REF:
2723 error ("INDIRECT_REF in gimple IL");
2724 return t;
2726 case MEM_REF:
2727 x = TREE_OPERAND (t, 0);
2728 if (!POINTER_TYPE_P (TREE_TYPE (x))
2729 || !is_gimple_mem_ref_addr (x))
2731 error ("invalid first operand of MEM_REF");
2732 return x;
2734 if (TREE_CODE (TREE_OPERAND (t, 1)) != INTEGER_CST
2735 || !POINTER_TYPE_P (TREE_TYPE (TREE_OPERAND (t, 1))))
2737 error ("invalid offset operand of MEM_REF");
2738 return TREE_OPERAND (t, 1);
2740 if (TREE_CODE (x) == ADDR_EXPR
2741 && (x = verify_address (x, TREE_OPERAND (x, 0))))
2742 return x;
2743 *walk_subtrees = 0;
2744 break;
2746 case ASSERT_EXPR:
2747 x = fold (ASSERT_EXPR_COND (t));
2748 if (x == boolean_false_node)
2750 error ("ASSERT_EXPR with an always-false condition");
2751 return *tp;
2753 break;
2755 case MODIFY_EXPR:
2756 error ("MODIFY_EXPR not expected while having tuples");
2757 return *tp;
2759 case ADDR_EXPR:
2761 tree tem;
2763 gcc_assert (is_gimple_address (t));
2765 /* Skip any references (they will be checked when we recurse down the
2766 tree) and ensure that any variable used as a prefix is marked
2767 addressable. */
2768 for (x = TREE_OPERAND (t, 0);
2769 handled_component_p (x);
2770 x = TREE_OPERAND (x, 0))
2773 if ((tem = verify_address (t, x)))
2774 return tem;
2776 if (!(TREE_CODE (x) == VAR_DECL
2777 || TREE_CODE (x) == PARM_DECL
2778 || TREE_CODE (x) == RESULT_DECL))
2779 return NULL;
2781 if (!TREE_ADDRESSABLE (x))
2783 error ("address taken, but ADDRESSABLE bit not set");
2784 return x;
2787 break;
2790 case COND_EXPR:
2791 x = COND_EXPR_COND (t);
2792 if (!INTEGRAL_TYPE_P (TREE_TYPE (x)))
2794 error ("non-integral used in condition");
2795 return x;
2797 if (!is_gimple_condexpr (x))
2799 error ("invalid conditional operand");
2800 return x;
2802 break;
2804 case NON_LVALUE_EXPR:
2805 case TRUTH_NOT_EXPR:
2806 gcc_unreachable ();
2808 CASE_CONVERT:
2809 case FIX_TRUNC_EXPR:
2810 case FLOAT_EXPR:
2811 case NEGATE_EXPR:
2812 case ABS_EXPR:
2813 case BIT_NOT_EXPR:
2814 CHECK_OP (0, "invalid operand to unary operator");
2815 break;
2817 case REALPART_EXPR:
2818 case IMAGPART_EXPR:
2819 case BIT_FIELD_REF:
2820 if (!is_gimple_reg_type (TREE_TYPE (t)))
2822 error ("non-scalar BIT_FIELD_REF, IMAGPART_EXPR or REALPART_EXPR");
2823 return t;
2826 if (TREE_CODE (t) == BIT_FIELD_REF)
2828 tree t0 = TREE_OPERAND (t, 0);
2829 tree t1 = TREE_OPERAND (t, 1);
2830 tree t2 = TREE_OPERAND (t, 2);
2831 if (!tree_fits_uhwi_p (t1)
2832 || !tree_fits_uhwi_p (t2))
2834 error ("invalid position or size operand to BIT_FIELD_REF");
2835 return t;
2837 if (INTEGRAL_TYPE_P (TREE_TYPE (t))
2838 && (TYPE_PRECISION (TREE_TYPE (t))
2839 != tree_to_uhwi (t1)))
2841 error ("integral result type precision does not match "
2842 "field size of BIT_FIELD_REF");
2843 return t;
2845 else if (!INTEGRAL_TYPE_P (TREE_TYPE (t))
2846 && TYPE_MODE (TREE_TYPE (t)) != BLKmode
2847 && (GET_MODE_PRECISION (TYPE_MODE (TREE_TYPE (t)))
2848 != tree_to_uhwi (t1)))
2850 error ("mode precision of non-integral result does not "
2851 "match field size of BIT_FIELD_REF");
2852 return t;
2854 if (!AGGREGATE_TYPE_P (TREE_TYPE (t0))
2855 && (tree_to_uhwi (t1) + tree_to_uhwi (t2)
2856 > tree_to_uhwi (TYPE_SIZE (TREE_TYPE (t0)))))
2858 error ("position plus size exceeds size of referenced object in "
2859 "BIT_FIELD_REF");
2860 return t;
2863 t = TREE_OPERAND (t, 0);
2865 /* Fall-through. */
2866 case COMPONENT_REF:
2867 case ARRAY_REF:
2868 case ARRAY_RANGE_REF:
2869 case VIEW_CONVERT_EXPR:
2870 /* We have a nest of references. Verify that each of the operands
2871 that determine where to reference is either a constant or a variable,
2872 verify that the base is valid, and then show we've already checked
2873 the subtrees. */
2874 while (handled_component_p (t))
2876 if (TREE_CODE (t) == COMPONENT_REF && TREE_OPERAND (t, 2))
2877 CHECK_OP (2, "invalid COMPONENT_REF offset operator");
2878 else if (TREE_CODE (t) == ARRAY_REF
2879 || TREE_CODE (t) == ARRAY_RANGE_REF)
2881 CHECK_OP (1, "invalid array index");
2882 if (TREE_OPERAND (t, 2))
2883 CHECK_OP (2, "invalid array lower bound");
2884 if (TREE_OPERAND (t, 3))
2885 CHECK_OP (3, "invalid array stride");
2887 else if (TREE_CODE (t) == BIT_FIELD_REF
2888 || TREE_CODE (t) == REALPART_EXPR
2889 || TREE_CODE (t) == IMAGPART_EXPR)
2891 error ("non-top-level BIT_FIELD_REF, IMAGPART_EXPR or "
2892 "REALPART_EXPR");
2893 return t;
2896 t = TREE_OPERAND (t, 0);
2899 if (!is_gimple_min_invariant (t) && !is_gimple_lvalue (t))
2901 error ("invalid reference prefix");
2902 return t;
2904 *walk_subtrees = 0;
2905 break;
2906 case PLUS_EXPR:
2907 case MINUS_EXPR:
2908 /* PLUS_EXPR and MINUS_EXPR don't work on pointers, they should be done using
2909 POINTER_PLUS_EXPR. */
2910 if (POINTER_TYPE_P (TREE_TYPE (t)))
2912 error ("invalid operand to plus/minus, type is a pointer");
2913 return t;
2915 CHECK_OP (0, "invalid operand to binary operator");
2916 CHECK_OP (1, "invalid operand to binary operator");
2917 break;
2919 case POINTER_PLUS_EXPR:
2920 /* Check to make sure the first operand is a pointer or reference type. */
2921 if (!POINTER_TYPE_P (TREE_TYPE (TREE_OPERAND (t, 0))))
2923 error ("invalid operand to pointer plus, first operand is not a pointer");
2924 return t;
2926 /* Check to make sure the second operand is a ptrofftype. */
2927 if (!ptrofftype_p (TREE_TYPE (TREE_OPERAND (t, 1))))
2929 error ("invalid operand to pointer plus, second operand is not an "
2930 "integer type of appropriate width");
2931 return t;
2933 /* FALLTHROUGH */
2934 case LT_EXPR:
2935 case LE_EXPR:
2936 case GT_EXPR:
2937 case GE_EXPR:
2938 case EQ_EXPR:
2939 case NE_EXPR:
2940 case UNORDERED_EXPR:
2941 case ORDERED_EXPR:
2942 case UNLT_EXPR:
2943 case UNLE_EXPR:
2944 case UNGT_EXPR:
2945 case UNGE_EXPR:
2946 case UNEQ_EXPR:
2947 case LTGT_EXPR:
2948 case MULT_EXPR:
2949 case TRUNC_DIV_EXPR:
2950 case CEIL_DIV_EXPR:
2951 case FLOOR_DIV_EXPR:
2952 case ROUND_DIV_EXPR:
2953 case TRUNC_MOD_EXPR:
2954 case CEIL_MOD_EXPR:
2955 case FLOOR_MOD_EXPR:
2956 case ROUND_MOD_EXPR:
2957 case RDIV_EXPR:
2958 case EXACT_DIV_EXPR:
2959 case MIN_EXPR:
2960 case MAX_EXPR:
2961 case LSHIFT_EXPR:
2962 case RSHIFT_EXPR:
2963 case LROTATE_EXPR:
2964 case RROTATE_EXPR:
2965 case BIT_IOR_EXPR:
2966 case BIT_XOR_EXPR:
2967 case BIT_AND_EXPR:
2968 CHECK_OP (0, "invalid operand to binary operator");
2969 CHECK_OP (1, "invalid operand to binary operator");
2970 break;
2972 case CONSTRUCTOR:
2973 if (TREE_CONSTANT (t) && TREE_CODE (TREE_TYPE (t)) == VECTOR_TYPE)
2974 *walk_subtrees = 0;
2975 break;
2977 case CASE_LABEL_EXPR:
2978 if (CASE_CHAIN (t))
2980 error ("invalid CASE_CHAIN");
2981 return t;
2983 break;
2985 default:
2986 break;
2988 return NULL;
2990 #undef CHECK_OP
2994 /* Verify if EXPR is either a GIMPLE ID or a GIMPLE indirect reference.
2995 Returns true if there is an error, otherwise false. */
2997 static bool
2998 verify_types_in_gimple_min_lval (tree expr)
3000 tree op;
3002 if (is_gimple_id (expr))
3003 return false;
3005 if (TREE_CODE (expr) != TARGET_MEM_REF
3006 && TREE_CODE (expr) != MEM_REF)
3008 error ("invalid expression for min lvalue");
3009 return true;
3012 /* TARGET_MEM_REFs are strange beasts. */
3013 if (TREE_CODE (expr) == TARGET_MEM_REF)
3014 return false;
3016 op = TREE_OPERAND (expr, 0);
3017 if (!is_gimple_val (op))
3019 error ("invalid operand in indirect reference");
3020 debug_generic_stmt (op);
3021 return true;
3023 /* Memory references now generally can involve a value conversion. */
3025 return false;
3028 /* Verify if EXPR is a valid GIMPLE reference expression. If
3029 REQUIRE_LVALUE is true verifies it is an lvalue. Returns true
3030 if there is an error, otherwise false. */
3032 static bool
3033 verify_types_in_gimple_reference (tree expr, bool require_lvalue)
3035 while (handled_component_p (expr))
3037 tree op = TREE_OPERAND (expr, 0);
3039 if (TREE_CODE (expr) == ARRAY_REF
3040 || TREE_CODE (expr) == ARRAY_RANGE_REF)
3042 if (!is_gimple_val (TREE_OPERAND (expr, 1))
3043 || (TREE_OPERAND (expr, 2)
3044 && !is_gimple_val (TREE_OPERAND (expr, 2)))
3045 || (TREE_OPERAND (expr, 3)
3046 && !is_gimple_val (TREE_OPERAND (expr, 3))))
3048 error ("invalid operands to array reference");
3049 debug_generic_stmt (expr);
3050 return true;
3054 /* Verify if the reference array element types are compatible. */
3055 if (TREE_CODE (expr) == ARRAY_REF
3056 && !useless_type_conversion_p (TREE_TYPE (expr),
3057 TREE_TYPE (TREE_TYPE (op))))
3059 error ("type mismatch in array reference");
3060 debug_generic_stmt (TREE_TYPE (expr));
3061 debug_generic_stmt (TREE_TYPE (TREE_TYPE (op)));
3062 return true;
3064 if (TREE_CODE (expr) == ARRAY_RANGE_REF
3065 && !useless_type_conversion_p (TREE_TYPE (TREE_TYPE (expr)),
3066 TREE_TYPE (TREE_TYPE (op))))
3068 error ("type mismatch in array range reference");
3069 debug_generic_stmt (TREE_TYPE (TREE_TYPE (expr)));
3070 debug_generic_stmt (TREE_TYPE (TREE_TYPE (op)));
3071 return true;
3074 if ((TREE_CODE (expr) == REALPART_EXPR
3075 || TREE_CODE (expr) == IMAGPART_EXPR)
3076 && !useless_type_conversion_p (TREE_TYPE (expr),
3077 TREE_TYPE (TREE_TYPE (op))))
3079 error ("type mismatch in real/imagpart reference");
3080 debug_generic_stmt (TREE_TYPE (expr));
3081 debug_generic_stmt (TREE_TYPE (TREE_TYPE (op)));
3082 return true;
3085 if (TREE_CODE (expr) == COMPONENT_REF
3086 && !useless_type_conversion_p (TREE_TYPE (expr),
3087 TREE_TYPE (TREE_OPERAND (expr, 1))))
3089 error ("type mismatch in component reference");
3090 debug_generic_stmt (TREE_TYPE (expr));
3091 debug_generic_stmt (TREE_TYPE (TREE_OPERAND (expr, 1)));
3092 return true;
3095 if (TREE_CODE (expr) == VIEW_CONVERT_EXPR)
3097 /* For VIEW_CONVERT_EXPRs which are allowed here too, we only check
3098 that their operand is not an SSA name or an invariant when
3099 requiring an lvalue (this usually means there is a SRA or IPA-SRA
3100 bug). Otherwise there is nothing to verify, gross mismatches at
3101 most invoke undefined behavior. */
3102 if (require_lvalue
3103 && (TREE_CODE (op) == SSA_NAME
3104 || is_gimple_min_invariant (op)))
3106 error ("conversion of an SSA_NAME on the left hand side");
3107 debug_generic_stmt (expr);
3108 return true;
3110 else if (TREE_CODE (op) == SSA_NAME
3111 && TYPE_SIZE (TREE_TYPE (expr)) != TYPE_SIZE (TREE_TYPE (op)))
3113 error ("conversion of register to a different size");
3114 debug_generic_stmt (expr);
3115 return true;
3117 else if (!handled_component_p (op))
3118 return false;
3121 expr = op;
3124 if (TREE_CODE (expr) == MEM_REF)
3126 if (!is_gimple_mem_ref_addr (TREE_OPERAND (expr, 0)))
3128 error ("invalid address operand in MEM_REF");
3129 debug_generic_stmt (expr);
3130 return true;
3132 if (TREE_CODE (TREE_OPERAND (expr, 1)) != INTEGER_CST
3133 || !POINTER_TYPE_P (TREE_TYPE (TREE_OPERAND (expr, 1))))
3135 error ("invalid offset operand in MEM_REF");
3136 debug_generic_stmt (expr);
3137 return true;
3140 else if (TREE_CODE (expr) == TARGET_MEM_REF)
3142 if (!TMR_BASE (expr)
3143 || !is_gimple_mem_ref_addr (TMR_BASE (expr)))
3145 error ("invalid address operand in TARGET_MEM_REF");
3146 return true;
3148 if (!TMR_OFFSET (expr)
3149 || TREE_CODE (TMR_OFFSET (expr)) != INTEGER_CST
3150 || !POINTER_TYPE_P (TREE_TYPE (TMR_OFFSET (expr))))
3152 error ("invalid offset operand in TARGET_MEM_REF");
3153 debug_generic_stmt (expr);
3154 return true;
3158 return ((require_lvalue || !is_gimple_min_invariant (expr))
3159 && verify_types_in_gimple_min_lval (expr));
3162 /* Returns true if there is one pointer type in TYPE_POINTER_TO (SRC_OBJ)
3163 list of pointer-to types that is trivially convertible to DEST. */
3165 static bool
3166 one_pointer_to_useless_type_conversion_p (tree dest, tree src_obj)
3168 tree src;
3170 if (!TYPE_POINTER_TO (src_obj))
3171 return true;
3173 for (src = TYPE_POINTER_TO (src_obj); src; src = TYPE_NEXT_PTR_TO (src))
3174 if (useless_type_conversion_p (dest, src))
3175 return true;
3177 return false;
3180 /* Return true if TYPE1 is a fixed-point type and if conversions to and
3181 from TYPE2 can be handled by FIXED_CONVERT_EXPR. */
3183 static bool
3184 valid_fixed_convert_types_p (tree type1, tree type2)
3186 return (FIXED_POINT_TYPE_P (type1)
3187 && (INTEGRAL_TYPE_P (type2)
3188 || SCALAR_FLOAT_TYPE_P (type2)
3189 || FIXED_POINT_TYPE_P (type2)));
3192 /* Verify the contents of a GIMPLE_CALL STMT. Returns true when there
3193 is a problem, otherwise false. */
3195 static bool
3196 verify_gimple_call (gimple stmt)
3198 tree fn = gimple_call_fn (stmt);
3199 tree fntype, fndecl;
3200 unsigned i;
3202 if (gimple_call_internal_p (stmt))
3204 if (fn)
3206 error ("gimple call has two targets");
3207 debug_generic_stmt (fn);
3208 return true;
3211 else
3213 if (!fn)
3215 error ("gimple call has no target");
3216 return true;
3220 if (fn && !is_gimple_call_addr (fn))
3222 error ("invalid function in gimple call");
3223 debug_generic_stmt (fn);
3224 return true;
3227 if (fn
3228 && (!POINTER_TYPE_P (TREE_TYPE (fn))
3229 || (TREE_CODE (TREE_TYPE (TREE_TYPE (fn))) != FUNCTION_TYPE
3230 && TREE_CODE (TREE_TYPE (TREE_TYPE (fn))) != METHOD_TYPE)))
3232 error ("non-function in gimple call");
3233 return true;
3236 fndecl = gimple_call_fndecl (stmt);
3237 if (fndecl
3238 && TREE_CODE (fndecl) == FUNCTION_DECL
3239 && DECL_LOOPING_CONST_OR_PURE_P (fndecl)
3240 && !DECL_PURE_P (fndecl)
3241 && !TREE_READONLY (fndecl))
3243 error ("invalid pure const state for function");
3244 return true;
3247 if (gimple_call_lhs (stmt)
3248 && (!is_gimple_lvalue (gimple_call_lhs (stmt))
3249 || verify_types_in_gimple_reference (gimple_call_lhs (stmt), true)))
3251 error ("invalid LHS in gimple call");
3252 return true;
3255 if (gimple_call_lhs (stmt) && gimple_call_noreturn_p (stmt))
3257 error ("LHS in noreturn call");
3258 return true;
3261 fntype = gimple_call_fntype (stmt);
3262 if (fntype
3263 && gimple_call_lhs (stmt)
3264 && !useless_type_conversion_p (TREE_TYPE (gimple_call_lhs (stmt)),
3265 TREE_TYPE (fntype))
3266 /* ??? At least C++ misses conversions at assignments from
3267 void * call results.
3268 ??? Java is completely off. Especially with functions
3269 returning java.lang.Object.
3270 For now simply allow arbitrary pointer type conversions. */
3271 && !(POINTER_TYPE_P (TREE_TYPE (gimple_call_lhs (stmt)))
3272 && POINTER_TYPE_P (TREE_TYPE (fntype))))
3274 error ("invalid conversion in gimple call");
3275 debug_generic_stmt (TREE_TYPE (gimple_call_lhs (stmt)));
3276 debug_generic_stmt (TREE_TYPE (fntype));
3277 return true;
3280 if (gimple_call_chain (stmt)
3281 && !is_gimple_val (gimple_call_chain (stmt)))
3283 error ("invalid static chain in gimple call");
3284 debug_generic_stmt (gimple_call_chain (stmt));
3285 return true;
3288 /* If there is a static chain argument, this should not be an indirect
3289 call, and the decl should have DECL_STATIC_CHAIN set. */
3290 if (gimple_call_chain (stmt))
3292 if (!gimple_call_fndecl (stmt))
3294 error ("static chain in indirect gimple call");
3295 return true;
3297 fn = TREE_OPERAND (fn, 0);
3299 if (!DECL_STATIC_CHAIN (fn))
3301 error ("static chain with function that doesn%'t use one");
3302 return true;
3306 /* ??? The C frontend passes unpromoted arguments in case it
3307 didn't see a function declaration before the call. So for now
3308 leave the call arguments mostly unverified. Once we gimplify
3309 unit-at-a-time we have a chance to fix this. */
3311 for (i = 0; i < gimple_call_num_args (stmt); ++i)
3313 tree arg = gimple_call_arg (stmt, i);
3314 if ((is_gimple_reg_type (TREE_TYPE (arg))
3315 && !is_gimple_val (arg))
3316 || (!is_gimple_reg_type (TREE_TYPE (arg))
3317 && !is_gimple_lvalue (arg)))
3319 error ("invalid argument to gimple call");
3320 debug_generic_expr (arg);
3321 return true;
3325 return false;
3328 /* Verifies the gimple comparison with the result type TYPE and
3329 the operands OP0 and OP1. */
3331 static bool
3332 verify_gimple_comparison (tree type, tree op0, tree op1)
3334 tree op0_type = TREE_TYPE (op0);
3335 tree op1_type = TREE_TYPE (op1);
3337 if (!is_gimple_val (op0) || !is_gimple_val (op1))
3339 error ("invalid operands in gimple comparison");
3340 return true;
3343 /* For comparisons we do not have the operations type as the
3344 effective type the comparison is carried out in. Instead
3345 we require that either the first operand is trivially
3346 convertible into the second, or the other way around.
3347 Because we special-case pointers to void we allow
3348 comparisons of pointers with the same mode as well. */
3349 if (!useless_type_conversion_p (op0_type, op1_type)
3350 && !useless_type_conversion_p (op1_type, op0_type)
3351 && (!POINTER_TYPE_P (op0_type)
3352 || !POINTER_TYPE_P (op1_type)
3353 || TYPE_MODE (op0_type) != TYPE_MODE (op1_type)))
3355 error ("mismatching comparison operand types");
3356 debug_generic_expr (op0_type);
3357 debug_generic_expr (op1_type);
3358 return true;
3361 /* The resulting type of a comparison may be an effective boolean type. */
3362 if (INTEGRAL_TYPE_P (type)
3363 && (TREE_CODE (type) == BOOLEAN_TYPE
3364 || TYPE_PRECISION (type) == 1))
3366 if (TREE_CODE (op0_type) == VECTOR_TYPE
3367 || TREE_CODE (op1_type) == VECTOR_TYPE)
3369 error ("vector comparison returning a boolean");
3370 debug_generic_expr (op0_type);
3371 debug_generic_expr (op1_type);
3372 return true;
3375 /* Or an integer vector type with the same size and element count
3376 as the comparison operand types. */
3377 else if (TREE_CODE (type) == VECTOR_TYPE
3378 && TREE_CODE (TREE_TYPE (type)) == INTEGER_TYPE)
3380 if (TREE_CODE (op0_type) != VECTOR_TYPE
3381 || TREE_CODE (op1_type) != VECTOR_TYPE)
3383 error ("non-vector operands in vector comparison");
3384 debug_generic_expr (op0_type);
3385 debug_generic_expr (op1_type);
3386 return true;
3389 if (TYPE_VECTOR_SUBPARTS (type) != TYPE_VECTOR_SUBPARTS (op0_type)
3390 || (GET_MODE_SIZE (TYPE_MODE (TREE_TYPE (type)))
3391 != GET_MODE_SIZE (TYPE_MODE (TREE_TYPE (op0_type))))
3392 /* The result of a vector comparison is of signed
3393 integral type. */
3394 || TYPE_UNSIGNED (TREE_TYPE (type)))
3396 error ("invalid vector comparison resulting type");
3397 debug_generic_expr (type);
3398 return true;
3401 else
3403 error ("bogus comparison result type");
3404 debug_generic_expr (type);
3405 return true;
3408 return false;
3411 /* Verify a gimple assignment statement STMT with an unary rhs.
3412 Returns true if anything is wrong. */
3414 static bool
3415 verify_gimple_assign_unary (gimple stmt)
3417 enum tree_code rhs_code = gimple_assign_rhs_code (stmt);
3418 tree lhs = gimple_assign_lhs (stmt);
3419 tree lhs_type = TREE_TYPE (lhs);
3420 tree rhs1 = gimple_assign_rhs1 (stmt);
3421 tree rhs1_type = TREE_TYPE (rhs1);
3423 if (!is_gimple_reg (lhs))
3425 error ("non-register as LHS of unary operation");
3426 return true;
3429 if (!is_gimple_val (rhs1))
3431 error ("invalid operand in unary operation");
3432 return true;
3435 /* First handle conversions. */
3436 switch (rhs_code)
3438 CASE_CONVERT:
3440 /* Allow conversions from pointer type to integral type only if
3441 there is no sign or zero extension involved.
3442 For targets were the precision of ptrofftype doesn't match that
3443 of pointers we need to allow arbitrary conversions to ptrofftype. */
3444 if ((POINTER_TYPE_P (lhs_type)
3445 && INTEGRAL_TYPE_P (rhs1_type))
3446 || (POINTER_TYPE_P (rhs1_type)
3447 && INTEGRAL_TYPE_P (lhs_type)
3448 && (TYPE_PRECISION (rhs1_type) >= TYPE_PRECISION (lhs_type)
3449 || ptrofftype_p (sizetype))))
3450 return false;
3452 /* Allow conversion from integral to offset type and vice versa. */
3453 if ((TREE_CODE (lhs_type) == OFFSET_TYPE
3454 && INTEGRAL_TYPE_P (rhs1_type))
3455 || (INTEGRAL_TYPE_P (lhs_type)
3456 && TREE_CODE (rhs1_type) == OFFSET_TYPE))
3457 return false;
3459 /* Otherwise assert we are converting between types of the
3460 same kind. */
3461 if (INTEGRAL_TYPE_P (lhs_type) != INTEGRAL_TYPE_P (rhs1_type))
3463 error ("invalid types in nop conversion");
3464 debug_generic_expr (lhs_type);
3465 debug_generic_expr (rhs1_type);
3466 return true;
3469 return false;
3472 case ADDR_SPACE_CONVERT_EXPR:
3474 if (!POINTER_TYPE_P (rhs1_type) || !POINTER_TYPE_P (lhs_type)
3475 || (TYPE_ADDR_SPACE (TREE_TYPE (rhs1_type))
3476 == TYPE_ADDR_SPACE (TREE_TYPE (lhs_type))))
3478 error ("invalid types in address space conversion");
3479 debug_generic_expr (lhs_type);
3480 debug_generic_expr (rhs1_type);
3481 return true;
3484 return false;
3487 case FIXED_CONVERT_EXPR:
3489 if (!valid_fixed_convert_types_p (lhs_type, rhs1_type)
3490 && !valid_fixed_convert_types_p (rhs1_type, lhs_type))
3492 error ("invalid types in fixed-point conversion");
3493 debug_generic_expr (lhs_type);
3494 debug_generic_expr (rhs1_type);
3495 return true;
3498 return false;
3501 case FLOAT_EXPR:
3503 if ((!INTEGRAL_TYPE_P (rhs1_type) || !SCALAR_FLOAT_TYPE_P (lhs_type))
3504 && (!VECTOR_INTEGER_TYPE_P (rhs1_type)
3505 || !VECTOR_FLOAT_TYPE_P (lhs_type)))
3507 error ("invalid types in conversion to floating point");
3508 debug_generic_expr (lhs_type);
3509 debug_generic_expr (rhs1_type);
3510 return true;
3513 return false;
3516 case FIX_TRUNC_EXPR:
3518 if ((!INTEGRAL_TYPE_P (lhs_type) || !SCALAR_FLOAT_TYPE_P (rhs1_type))
3519 && (!VECTOR_INTEGER_TYPE_P (lhs_type)
3520 || !VECTOR_FLOAT_TYPE_P (rhs1_type)))
3522 error ("invalid types in conversion to integer");
3523 debug_generic_expr (lhs_type);
3524 debug_generic_expr (rhs1_type);
3525 return true;
3528 return false;
3531 case VEC_UNPACK_HI_EXPR:
3532 case VEC_UNPACK_LO_EXPR:
3533 case REDUC_MAX_EXPR:
3534 case REDUC_MIN_EXPR:
3535 case REDUC_PLUS_EXPR:
3536 case VEC_UNPACK_FLOAT_HI_EXPR:
3537 case VEC_UNPACK_FLOAT_LO_EXPR:
3538 /* FIXME. */
3539 return false;
3541 case NEGATE_EXPR:
3542 case ABS_EXPR:
3543 case BIT_NOT_EXPR:
3544 case PAREN_EXPR:
3545 case NON_LVALUE_EXPR:
3546 case CONJ_EXPR:
3547 break;
3549 default:
3550 gcc_unreachable ();
3553 /* For the remaining codes assert there is no conversion involved. */
3554 if (!useless_type_conversion_p (lhs_type, rhs1_type))
3556 error ("non-trivial conversion in unary operation");
3557 debug_generic_expr (lhs_type);
3558 debug_generic_expr (rhs1_type);
3559 return true;
3562 return false;
3565 /* Verify a gimple assignment statement STMT with a binary rhs.
3566 Returns true if anything is wrong. */
3568 static bool
3569 verify_gimple_assign_binary (gimple stmt)
3571 enum tree_code rhs_code = gimple_assign_rhs_code (stmt);
3572 tree lhs = gimple_assign_lhs (stmt);
3573 tree lhs_type = TREE_TYPE (lhs);
3574 tree rhs1 = gimple_assign_rhs1 (stmt);
3575 tree rhs1_type = TREE_TYPE (rhs1);
3576 tree rhs2 = gimple_assign_rhs2 (stmt);
3577 tree rhs2_type = TREE_TYPE (rhs2);
3579 if (!is_gimple_reg (lhs))
3581 error ("non-register as LHS of binary operation");
3582 return true;
3585 if (!is_gimple_val (rhs1)
3586 || !is_gimple_val (rhs2))
3588 error ("invalid operands in binary operation");
3589 return true;
3592 /* First handle operations that involve different types. */
3593 switch (rhs_code)
3595 case COMPLEX_EXPR:
3597 if (TREE_CODE (lhs_type) != COMPLEX_TYPE
3598 || !(INTEGRAL_TYPE_P (rhs1_type)
3599 || SCALAR_FLOAT_TYPE_P (rhs1_type))
3600 || !(INTEGRAL_TYPE_P (rhs2_type)
3601 || SCALAR_FLOAT_TYPE_P (rhs2_type)))
3603 error ("type mismatch in complex expression");
3604 debug_generic_expr (lhs_type);
3605 debug_generic_expr (rhs1_type);
3606 debug_generic_expr (rhs2_type);
3607 return true;
3610 return false;
3613 case LSHIFT_EXPR:
3614 case RSHIFT_EXPR:
3615 case LROTATE_EXPR:
3616 case RROTATE_EXPR:
3618 /* Shifts and rotates are ok on integral types, fixed point
3619 types and integer vector types. */
3620 if ((!INTEGRAL_TYPE_P (rhs1_type)
3621 && !FIXED_POINT_TYPE_P (rhs1_type)
3622 && !(TREE_CODE (rhs1_type) == VECTOR_TYPE
3623 && INTEGRAL_TYPE_P (TREE_TYPE (rhs1_type))))
3624 || (!INTEGRAL_TYPE_P (rhs2_type)
3625 /* Vector shifts of vectors are also ok. */
3626 && !(TREE_CODE (rhs1_type) == VECTOR_TYPE
3627 && INTEGRAL_TYPE_P (TREE_TYPE (rhs1_type))
3628 && TREE_CODE (rhs2_type) == VECTOR_TYPE
3629 && INTEGRAL_TYPE_P (TREE_TYPE (rhs2_type))))
3630 || !useless_type_conversion_p (lhs_type, rhs1_type))
3632 error ("type mismatch in shift expression");
3633 debug_generic_expr (lhs_type);
3634 debug_generic_expr (rhs1_type);
3635 debug_generic_expr (rhs2_type);
3636 return true;
3639 return false;
3642 case VEC_LSHIFT_EXPR:
3643 case VEC_RSHIFT_EXPR:
3645 if (TREE_CODE (rhs1_type) != VECTOR_TYPE
3646 || !(INTEGRAL_TYPE_P (TREE_TYPE (rhs1_type))
3647 || POINTER_TYPE_P (TREE_TYPE (rhs1_type))
3648 || FIXED_POINT_TYPE_P (TREE_TYPE (rhs1_type))
3649 || SCALAR_FLOAT_TYPE_P (TREE_TYPE (rhs1_type)))
3650 || (!INTEGRAL_TYPE_P (rhs2_type)
3651 && (TREE_CODE (rhs2_type) != VECTOR_TYPE
3652 || !INTEGRAL_TYPE_P (TREE_TYPE (rhs2_type))))
3653 || !useless_type_conversion_p (lhs_type, rhs1_type))
3655 error ("type mismatch in vector shift expression");
3656 debug_generic_expr (lhs_type);
3657 debug_generic_expr (rhs1_type);
3658 debug_generic_expr (rhs2_type);
3659 return true;
3661 /* For shifting a vector of non-integral components we
3662 only allow shifting by a constant multiple of the element size. */
3663 if (!INTEGRAL_TYPE_P (TREE_TYPE (rhs1_type))
3664 && (TREE_CODE (rhs2) != INTEGER_CST
3665 || !div_if_zero_remainder (rhs2,
3666 TYPE_SIZE (TREE_TYPE (rhs1_type)))))
3668 error ("non-element sized vector shift of floating point vector");
3669 return true;
3672 return false;
3675 case WIDEN_LSHIFT_EXPR:
3677 if (!INTEGRAL_TYPE_P (lhs_type)
3678 || !INTEGRAL_TYPE_P (rhs1_type)
3679 || TREE_CODE (rhs2) != INTEGER_CST
3680 || (2 * TYPE_PRECISION (rhs1_type) > TYPE_PRECISION (lhs_type)))
3682 error ("type mismatch in widening vector shift expression");
3683 debug_generic_expr (lhs_type);
3684 debug_generic_expr (rhs1_type);
3685 debug_generic_expr (rhs2_type);
3686 return true;
3689 return false;
3692 case VEC_WIDEN_LSHIFT_HI_EXPR:
3693 case VEC_WIDEN_LSHIFT_LO_EXPR:
3695 if (TREE_CODE (rhs1_type) != VECTOR_TYPE
3696 || TREE_CODE (lhs_type) != VECTOR_TYPE
3697 || !INTEGRAL_TYPE_P (TREE_TYPE (rhs1_type))
3698 || !INTEGRAL_TYPE_P (TREE_TYPE (lhs_type))
3699 || TREE_CODE (rhs2) != INTEGER_CST
3700 || (2 * TYPE_PRECISION (TREE_TYPE (rhs1_type))
3701 > TYPE_PRECISION (TREE_TYPE (lhs_type))))
3703 error ("type mismatch in widening vector shift expression");
3704 debug_generic_expr (lhs_type);
3705 debug_generic_expr (rhs1_type);
3706 debug_generic_expr (rhs2_type);
3707 return true;
3710 return false;
3713 case PLUS_EXPR:
3714 case MINUS_EXPR:
3716 tree lhs_etype = lhs_type;
3717 tree rhs1_etype = rhs1_type;
3718 tree rhs2_etype = rhs2_type;
3719 if (TREE_CODE (lhs_type) == VECTOR_TYPE)
3721 if (TREE_CODE (rhs1_type) != VECTOR_TYPE
3722 || TREE_CODE (rhs2_type) != VECTOR_TYPE)
3724 error ("invalid non-vector operands to vector valued plus");
3725 return true;
3727 lhs_etype = TREE_TYPE (lhs_type);
3728 rhs1_etype = TREE_TYPE (rhs1_type);
3729 rhs2_etype = TREE_TYPE (rhs2_type);
3731 if (POINTER_TYPE_P (lhs_etype)
3732 || POINTER_TYPE_P (rhs1_etype)
3733 || POINTER_TYPE_P (rhs2_etype))
3735 error ("invalid (pointer) operands to plus/minus");
3736 return true;
3739 /* Continue with generic binary expression handling. */
3740 break;
3743 case POINTER_PLUS_EXPR:
3745 if (!POINTER_TYPE_P (rhs1_type)
3746 || !useless_type_conversion_p (lhs_type, rhs1_type)
3747 || !ptrofftype_p (rhs2_type))
3749 error ("type mismatch in pointer plus expression");
3750 debug_generic_stmt (lhs_type);
3751 debug_generic_stmt (rhs1_type);
3752 debug_generic_stmt (rhs2_type);
3753 return true;
3756 return false;
3759 case TRUTH_ANDIF_EXPR:
3760 case TRUTH_ORIF_EXPR:
3761 case TRUTH_AND_EXPR:
3762 case TRUTH_OR_EXPR:
3763 case TRUTH_XOR_EXPR:
3765 gcc_unreachable ();
3767 case LT_EXPR:
3768 case LE_EXPR:
3769 case GT_EXPR:
3770 case GE_EXPR:
3771 case EQ_EXPR:
3772 case NE_EXPR:
3773 case UNORDERED_EXPR:
3774 case ORDERED_EXPR:
3775 case UNLT_EXPR:
3776 case UNLE_EXPR:
3777 case UNGT_EXPR:
3778 case UNGE_EXPR:
3779 case UNEQ_EXPR:
3780 case LTGT_EXPR:
3781 /* Comparisons are also binary, but the result type is not
3782 connected to the operand types. */
3783 return verify_gimple_comparison (lhs_type, rhs1, rhs2);
3785 case WIDEN_MULT_EXPR:
3786 if (TREE_CODE (lhs_type) != INTEGER_TYPE)
3787 return true;
3788 return ((2 * TYPE_PRECISION (rhs1_type) > TYPE_PRECISION (lhs_type))
3789 || (TYPE_PRECISION (rhs1_type) != TYPE_PRECISION (rhs2_type)));
3791 case WIDEN_SUM_EXPR:
3792 case VEC_WIDEN_MULT_HI_EXPR:
3793 case VEC_WIDEN_MULT_LO_EXPR:
3794 case VEC_WIDEN_MULT_EVEN_EXPR:
3795 case VEC_WIDEN_MULT_ODD_EXPR:
3796 case VEC_PACK_TRUNC_EXPR:
3797 case VEC_PACK_SAT_EXPR:
3798 case VEC_PACK_FIX_TRUNC_EXPR:
3799 /* FIXME. */
3800 return false;
3802 case MULT_EXPR:
3803 case MULT_HIGHPART_EXPR:
3804 case TRUNC_DIV_EXPR:
3805 case CEIL_DIV_EXPR:
3806 case FLOOR_DIV_EXPR:
3807 case ROUND_DIV_EXPR:
3808 case TRUNC_MOD_EXPR:
3809 case CEIL_MOD_EXPR:
3810 case FLOOR_MOD_EXPR:
3811 case ROUND_MOD_EXPR:
3812 case RDIV_EXPR:
3813 case EXACT_DIV_EXPR:
3814 case MIN_EXPR:
3815 case MAX_EXPR:
3816 case BIT_IOR_EXPR:
3817 case BIT_XOR_EXPR:
3818 case BIT_AND_EXPR:
3819 /* Continue with generic binary expression handling. */
3820 break;
3822 default:
3823 gcc_unreachable ();
3826 if (!useless_type_conversion_p (lhs_type, rhs1_type)
3827 || !useless_type_conversion_p (lhs_type, rhs2_type))
3829 error ("type mismatch in binary expression");
3830 debug_generic_stmt (lhs_type);
3831 debug_generic_stmt (rhs1_type);
3832 debug_generic_stmt (rhs2_type);
3833 return true;
3836 return false;
3839 /* Verify a gimple assignment statement STMT with a ternary rhs.
3840 Returns true if anything is wrong. */
3842 static bool
3843 verify_gimple_assign_ternary (gimple stmt)
3845 enum tree_code rhs_code = gimple_assign_rhs_code (stmt);
3846 tree lhs = gimple_assign_lhs (stmt);
3847 tree lhs_type = TREE_TYPE (lhs);
3848 tree rhs1 = gimple_assign_rhs1 (stmt);
3849 tree rhs1_type = TREE_TYPE (rhs1);
3850 tree rhs2 = gimple_assign_rhs2 (stmt);
3851 tree rhs2_type = TREE_TYPE (rhs2);
3852 tree rhs3 = gimple_assign_rhs3 (stmt);
3853 tree rhs3_type = TREE_TYPE (rhs3);
3855 if (!is_gimple_reg (lhs))
3857 error ("non-register as LHS of ternary operation");
3858 return true;
3861 if (((rhs_code == VEC_COND_EXPR || rhs_code == COND_EXPR)
3862 ? !is_gimple_condexpr (rhs1) : !is_gimple_val (rhs1))
3863 || !is_gimple_val (rhs2)
3864 || !is_gimple_val (rhs3))
3866 error ("invalid operands in ternary operation");
3867 return true;
3870 /* First handle operations that involve different types. */
3871 switch (rhs_code)
3873 case WIDEN_MULT_PLUS_EXPR:
3874 case WIDEN_MULT_MINUS_EXPR:
3875 if ((!INTEGRAL_TYPE_P (rhs1_type)
3876 && !FIXED_POINT_TYPE_P (rhs1_type))
3877 || !useless_type_conversion_p (rhs1_type, rhs2_type)
3878 || !useless_type_conversion_p (lhs_type, rhs3_type)
3879 || 2 * TYPE_PRECISION (rhs1_type) > TYPE_PRECISION (lhs_type)
3880 || TYPE_PRECISION (rhs1_type) != TYPE_PRECISION (rhs2_type))
3882 error ("type mismatch in widening multiply-accumulate expression");
3883 debug_generic_expr (lhs_type);
3884 debug_generic_expr (rhs1_type);
3885 debug_generic_expr (rhs2_type);
3886 debug_generic_expr (rhs3_type);
3887 return true;
3889 break;
3891 case FMA_EXPR:
3892 if (!useless_type_conversion_p (lhs_type, rhs1_type)
3893 || !useless_type_conversion_p (lhs_type, rhs2_type)
3894 || !useless_type_conversion_p (lhs_type, rhs3_type))
3896 error ("type mismatch in fused multiply-add expression");
3897 debug_generic_expr (lhs_type);
3898 debug_generic_expr (rhs1_type);
3899 debug_generic_expr (rhs2_type);
3900 debug_generic_expr (rhs3_type);
3901 return true;
3903 break;
3905 case COND_EXPR:
3906 case VEC_COND_EXPR:
3907 if (!useless_type_conversion_p (lhs_type, rhs2_type)
3908 || !useless_type_conversion_p (lhs_type, rhs3_type))
3910 error ("type mismatch in conditional expression");
3911 debug_generic_expr (lhs_type);
3912 debug_generic_expr (rhs2_type);
3913 debug_generic_expr (rhs3_type);
3914 return true;
3916 break;
3918 case VEC_PERM_EXPR:
3919 if (!useless_type_conversion_p (lhs_type, rhs1_type)
3920 || !useless_type_conversion_p (lhs_type, rhs2_type))
3922 error ("type mismatch in vector permute expression");
3923 debug_generic_expr (lhs_type);
3924 debug_generic_expr (rhs1_type);
3925 debug_generic_expr (rhs2_type);
3926 debug_generic_expr (rhs3_type);
3927 return true;
3930 if (TREE_CODE (rhs1_type) != VECTOR_TYPE
3931 || TREE_CODE (rhs2_type) != VECTOR_TYPE
3932 || TREE_CODE (rhs3_type) != VECTOR_TYPE)
3934 error ("vector types expected in vector permute expression");
3935 debug_generic_expr (lhs_type);
3936 debug_generic_expr (rhs1_type);
3937 debug_generic_expr (rhs2_type);
3938 debug_generic_expr (rhs3_type);
3939 return true;
3942 if (TYPE_VECTOR_SUBPARTS (rhs1_type) != TYPE_VECTOR_SUBPARTS (rhs2_type)
3943 || TYPE_VECTOR_SUBPARTS (rhs2_type)
3944 != TYPE_VECTOR_SUBPARTS (rhs3_type)
3945 || TYPE_VECTOR_SUBPARTS (rhs3_type)
3946 != TYPE_VECTOR_SUBPARTS (lhs_type))
3948 error ("vectors with different element number found "
3949 "in vector permute expression");
3950 debug_generic_expr (lhs_type);
3951 debug_generic_expr (rhs1_type);
3952 debug_generic_expr (rhs2_type);
3953 debug_generic_expr (rhs3_type);
3954 return true;
3957 if (TREE_CODE (TREE_TYPE (rhs3_type)) != INTEGER_TYPE
3958 || GET_MODE_BITSIZE (TYPE_MODE (TREE_TYPE (rhs3_type)))
3959 != GET_MODE_BITSIZE (TYPE_MODE (TREE_TYPE (rhs1_type))))
3961 error ("invalid mask type in vector permute expression");
3962 debug_generic_expr (lhs_type);
3963 debug_generic_expr (rhs1_type);
3964 debug_generic_expr (rhs2_type);
3965 debug_generic_expr (rhs3_type);
3966 return true;
3969 return false;
3971 case DOT_PROD_EXPR:
3972 case REALIGN_LOAD_EXPR:
3973 /* FIXME. */
3974 return false;
3976 default:
3977 gcc_unreachable ();
3979 return false;
3982 /* Verify a gimple assignment statement STMT with a single rhs.
3983 Returns true if anything is wrong. */
3985 static bool
3986 verify_gimple_assign_single (gimple stmt)
3988 enum tree_code rhs_code = gimple_assign_rhs_code (stmt);
3989 tree lhs = gimple_assign_lhs (stmt);
3990 tree lhs_type = TREE_TYPE (lhs);
3991 tree rhs1 = gimple_assign_rhs1 (stmt);
3992 tree rhs1_type = TREE_TYPE (rhs1);
3993 bool res = false;
3995 if (!useless_type_conversion_p (lhs_type, rhs1_type))
3997 error ("non-trivial conversion at assignment");
3998 debug_generic_expr (lhs_type);
3999 debug_generic_expr (rhs1_type);
4000 return true;
4003 if (gimple_clobber_p (stmt)
4004 && !(DECL_P (lhs) || TREE_CODE (lhs) == MEM_REF))
4006 error ("non-decl/MEM_REF LHS in clobber statement");
4007 debug_generic_expr (lhs);
4008 return true;
4011 if (handled_component_p (lhs)
4012 || TREE_CODE (lhs) == MEM_REF
4013 || TREE_CODE (lhs) == TARGET_MEM_REF)
4014 res |= verify_types_in_gimple_reference (lhs, true);
4016 /* Special codes we cannot handle via their class. */
4017 switch (rhs_code)
4019 case ADDR_EXPR:
4021 tree op = TREE_OPERAND (rhs1, 0);
4022 if (!is_gimple_addressable (op))
4024 error ("invalid operand in unary expression");
4025 return true;
4028 /* Technically there is no longer a need for matching types, but
4029 gimple hygiene asks for this check. In LTO we can end up
4030 combining incompatible units and thus end up with addresses
4031 of globals that change their type to a common one. */
4032 if (!in_lto_p
4033 && !types_compatible_p (TREE_TYPE (op),
4034 TREE_TYPE (TREE_TYPE (rhs1)))
4035 && !one_pointer_to_useless_type_conversion_p (TREE_TYPE (rhs1),
4036 TREE_TYPE (op)))
4038 error ("type mismatch in address expression");
4039 debug_generic_stmt (TREE_TYPE (rhs1));
4040 debug_generic_stmt (TREE_TYPE (op));
4041 return true;
4044 return verify_types_in_gimple_reference (op, true);
4047 /* tcc_reference */
4048 case INDIRECT_REF:
4049 error ("INDIRECT_REF in gimple IL");
4050 return true;
4052 case COMPONENT_REF:
4053 case BIT_FIELD_REF:
4054 case ARRAY_REF:
4055 case ARRAY_RANGE_REF:
4056 case VIEW_CONVERT_EXPR:
4057 case REALPART_EXPR:
4058 case IMAGPART_EXPR:
4059 case TARGET_MEM_REF:
4060 case MEM_REF:
4061 if (!is_gimple_reg (lhs)
4062 && is_gimple_reg_type (TREE_TYPE (lhs)))
4064 error ("invalid rhs for gimple memory store");
4065 debug_generic_stmt (lhs);
4066 debug_generic_stmt (rhs1);
4067 return true;
4069 return res || verify_types_in_gimple_reference (rhs1, false);
4071 /* tcc_constant */
4072 case SSA_NAME:
4073 case INTEGER_CST:
4074 case REAL_CST:
4075 case FIXED_CST:
4076 case COMPLEX_CST:
4077 case VECTOR_CST:
4078 case STRING_CST:
4079 return res;
4081 /* tcc_declaration */
4082 case CONST_DECL:
4083 return res;
4084 case VAR_DECL:
4085 case PARM_DECL:
4086 if (!is_gimple_reg (lhs)
4087 && !is_gimple_reg (rhs1)
4088 && is_gimple_reg_type (TREE_TYPE (lhs)))
4090 error ("invalid rhs for gimple memory store");
4091 debug_generic_stmt (lhs);
4092 debug_generic_stmt (rhs1);
4093 return true;
4095 return res;
4097 case CONSTRUCTOR:
4098 if (TREE_CODE (rhs1_type) == VECTOR_TYPE)
4100 unsigned int i;
4101 tree elt_i, elt_v, elt_t = NULL_TREE;
4103 if (CONSTRUCTOR_NELTS (rhs1) == 0)
4104 return res;
4105 /* For vector CONSTRUCTORs we require that either it is empty
4106 CONSTRUCTOR, or it is a CONSTRUCTOR of smaller vector elements
4107 (then the element count must be correct to cover the whole
4108 outer vector and index must be NULL on all elements, or it is
4109 a CONSTRUCTOR of scalar elements, where we as an exception allow
4110 smaller number of elements (assuming zero filling) and
4111 consecutive indexes as compared to NULL indexes (such
4112 CONSTRUCTORs can appear in the IL from FEs). */
4113 FOR_EACH_CONSTRUCTOR_ELT (CONSTRUCTOR_ELTS (rhs1), i, elt_i, elt_v)
4115 if (elt_t == NULL_TREE)
4117 elt_t = TREE_TYPE (elt_v);
4118 if (TREE_CODE (elt_t) == VECTOR_TYPE)
4120 tree elt_t = TREE_TYPE (elt_v);
4121 if (!useless_type_conversion_p (TREE_TYPE (rhs1_type),
4122 TREE_TYPE (elt_t)))
4124 error ("incorrect type of vector CONSTRUCTOR"
4125 " elements");
4126 debug_generic_stmt (rhs1);
4127 return true;
4129 else if (CONSTRUCTOR_NELTS (rhs1)
4130 * TYPE_VECTOR_SUBPARTS (elt_t)
4131 != TYPE_VECTOR_SUBPARTS (rhs1_type))
4133 error ("incorrect number of vector CONSTRUCTOR"
4134 " elements");
4135 debug_generic_stmt (rhs1);
4136 return true;
4139 else if (!useless_type_conversion_p (TREE_TYPE (rhs1_type),
4140 elt_t))
4142 error ("incorrect type of vector CONSTRUCTOR elements");
4143 debug_generic_stmt (rhs1);
4144 return true;
4146 else if (CONSTRUCTOR_NELTS (rhs1)
4147 > TYPE_VECTOR_SUBPARTS (rhs1_type))
4149 error ("incorrect number of vector CONSTRUCTOR elements");
4150 debug_generic_stmt (rhs1);
4151 return true;
4154 else if (!useless_type_conversion_p (elt_t, TREE_TYPE (elt_v)))
4156 error ("incorrect type of vector CONSTRUCTOR elements");
4157 debug_generic_stmt (rhs1);
4158 return true;
4160 if (elt_i != NULL_TREE
4161 && (TREE_CODE (elt_t) == VECTOR_TYPE
4162 || TREE_CODE (elt_i) != INTEGER_CST
4163 || compare_tree_int (elt_i, i) != 0))
4165 error ("vector CONSTRUCTOR with non-NULL element index");
4166 debug_generic_stmt (rhs1);
4167 return true;
4171 return res;
4172 case OBJ_TYPE_REF:
4173 case ASSERT_EXPR:
4174 case WITH_SIZE_EXPR:
4175 /* FIXME. */
4176 return res;
4178 default:;
4181 return res;
4184 /* Verify the contents of a GIMPLE_ASSIGN STMT. Returns true when there
4185 is a problem, otherwise false. */
4187 static bool
4188 verify_gimple_assign (gimple stmt)
4190 switch (gimple_assign_rhs_class (stmt))
4192 case GIMPLE_SINGLE_RHS:
4193 return verify_gimple_assign_single (stmt);
4195 case GIMPLE_UNARY_RHS:
4196 return verify_gimple_assign_unary (stmt);
4198 case GIMPLE_BINARY_RHS:
4199 return verify_gimple_assign_binary (stmt);
4201 case GIMPLE_TERNARY_RHS:
4202 return verify_gimple_assign_ternary (stmt);
4204 default:
4205 gcc_unreachable ();
4209 /* Verify the contents of a GIMPLE_RETURN STMT. Returns true when there
4210 is a problem, otherwise false. */
4212 static bool
4213 verify_gimple_return (gimple stmt)
4215 tree op = gimple_return_retval (stmt);
4216 tree restype = TREE_TYPE (TREE_TYPE (cfun->decl));
4218 /* We cannot test for present return values as we do not fix up missing
4219 return values from the original source. */
4220 if (op == NULL)
4221 return false;
4223 if (!is_gimple_val (op)
4224 && TREE_CODE (op) != RESULT_DECL)
4226 error ("invalid operand in return statement");
4227 debug_generic_stmt (op);
4228 return true;
4231 if ((TREE_CODE (op) == RESULT_DECL
4232 && DECL_BY_REFERENCE (op))
4233 || (TREE_CODE (op) == SSA_NAME
4234 && SSA_NAME_VAR (op)
4235 && TREE_CODE (SSA_NAME_VAR (op)) == RESULT_DECL
4236 && DECL_BY_REFERENCE (SSA_NAME_VAR (op))))
4237 op = TREE_TYPE (op);
4239 if (!useless_type_conversion_p (restype, TREE_TYPE (op)))
4241 error ("invalid conversion in return statement");
4242 debug_generic_stmt (restype);
4243 debug_generic_stmt (TREE_TYPE (op));
4244 return true;
4247 return false;
4251 /* Verify the contents of a GIMPLE_GOTO STMT. Returns true when there
4252 is a problem, otherwise false. */
4254 static bool
4255 verify_gimple_goto (gimple stmt)
4257 tree dest = gimple_goto_dest (stmt);
4259 /* ??? We have two canonical forms of direct goto destinations, a
4260 bare LABEL_DECL and an ADDR_EXPR of a LABEL_DECL. */
4261 if (TREE_CODE (dest) != LABEL_DECL
4262 && (!is_gimple_val (dest)
4263 || !POINTER_TYPE_P (TREE_TYPE (dest))))
4265 error ("goto destination is neither a label nor a pointer");
4266 return true;
4269 return false;
4272 /* Verify the contents of a GIMPLE_SWITCH STMT. Returns true when there
4273 is a problem, otherwise false. */
4275 static bool
4276 verify_gimple_switch (gimple stmt)
4278 unsigned int i, n;
4279 tree elt, prev_upper_bound = NULL_TREE;
4280 tree index_type, elt_type = NULL_TREE;
4282 if (!is_gimple_val (gimple_switch_index (stmt)))
4284 error ("invalid operand to switch statement");
4285 debug_generic_stmt (gimple_switch_index (stmt));
4286 return true;
4289 index_type = TREE_TYPE (gimple_switch_index (stmt));
4290 if (! INTEGRAL_TYPE_P (index_type))
4292 error ("non-integral type switch statement");
4293 debug_generic_expr (index_type);
4294 return true;
4297 elt = gimple_switch_label (stmt, 0);
4298 if (CASE_LOW (elt) != NULL_TREE || CASE_HIGH (elt) != NULL_TREE)
4300 error ("invalid default case label in switch statement");
4301 debug_generic_expr (elt);
4302 return true;
4305 n = gimple_switch_num_labels (stmt);
4306 for (i = 1; i < n; i++)
4308 elt = gimple_switch_label (stmt, i);
4310 if (! CASE_LOW (elt))
4312 error ("invalid case label in switch statement");
4313 debug_generic_expr (elt);
4314 return true;
4316 if (CASE_HIGH (elt)
4317 && ! tree_int_cst_lt (CASE_LOW (elt), CASE_HIGH (elt)))
4319 error ("invalid case range in switch statement");
4320 debug_generic_expr (elt);
4321 return true;
4324 if (elt_type)
4326 if (TREE_TYPE (CASE_LOW (elt)) != elt_type
4327 || (CASE_HIGH (elt) && TREE_TYPE (CASE_HIGH (elt)) != elt_type))
4329 error ("type mismatch for case label in switch statement");
4330 debug_generic_expr (elt);
4331 return true;
4334 else
4336 elt_type = TREE_TYPE (CASE_LOW (elt));
4337 if (TYPE_PRECISION (index_type) < TYPE_PRECISION (elt_type))
4339 error ("type precision mismatch in switch statement");
4340 return true;
4344 if (prev_upper_bound)
4346 if (! tree_int_cst_lt (prev_upper_bound, CASE_LOW (elt)))
4348 error ("case labels not sorted in switch statement");
4349 return true;
4353 prev_upper_bound = CASE_HIGH (elt);
4354 if (! prev_upper_bound)
4355 prev_upper_bound = CASE_LOW (elt);
4358 return false;
4361 /* Verify a gimple debug statement STMT.
4362 Returns true if anything is wrong. */
4364 static bool
4365 verify_gimple_debug (gimple stmt ATTRIBUTE_UNUSED)
4367 /* There isn't much that could be wrong in a gimple debug stmt. A
4368 gimple debug bind stmt, for example, maps a tree, that's usually
4369 a VAR_DECL or a PARM_DECL, but that could also be some scalarized
4370 component or member of an aggregate type, to another tree, that
4371 can be an arbitrary expression. These stmts expand into debug
4372 insns, and are converted to debug notes by var-tracking.c. */
4373 return false;
4376 /* Verify a gimple label statement STMT.
4377 Returns true if anything is wrong. */
4379 static bool
4380 verify_gimple_label (gimple stmt)
4382 tree decl = gimple_label_label (stmt);
4383 int uid;
4384 bool err = false;
4386 if (TREE_CODE (decl) != LABEL_DECL)
4387 return true;
4388 if (!DECL_NONLOCAL (decl) && !FORCED_LABEL (decl)
4389 && DECL_CONTEXT (decl) != current_function_decl)
4391 error ("label's context is not the current function decl");
4392 err |= true;
4395 uid = LABEL_DECL_UID (decl);
4396 if (cfun->cfg
4397 && (uid == -1
4398 || (*label_to_block_map_for_fn (cfun))[uid] != gimple_bb (stmt)))
4400 error ("incorrect entry in label_to_block_map");
4401 err |= true;
4404 uid = EH_LANDING_PAD_NR (decl);
4405 if (uid)
4407 eh_landing_pad lp = get_eh_landing_pad_from_number (uid);
4408 if (decl != lp->post_landing_pad)
4410 error ("incorrect setting of landing pad number");
4411 err |= true;
4415 return err;
4418 /* Verify the GIMPLE statement STMT. Returns true if there is an
4419 error, otherwise false. */
4421 static bool
4422 verify_gimple_stmt (gimple stmt)
4424 switch (gimple_code (stmt))
4426 case GIMPLE_ASSIGN:
4427 return verify_gimple_assign (stmt);
4429 case GIMPLE_LABEL:
4430 return verify_gimple_label (stmt);
4432 case GIMPLE_CALL:
4433 return verify_gimple_call (stmt);
4435 case GIMPLE_COND:
4436 if (TREE_CODE_CLASS (gimple_cond_code (stmt)) != tcc_comparison)
4438 error ("invalid comparison code in gimple cond");
4439 return true;
4441 if (!(!gimple_cond_true_label (stmt)
4442 || TREE_CODE (gimple_cond_true_label (stmt)) == LABEL_DECL)
4443 || !(!gimple_cond_false_label (stmt)
4444 || TREE_CODE (gimple_cond_false_label (stmt)) == LABEL_DECL))
4446 error ("invalid labels in gimple cond");
4447 return true;
4450 return verify_gimple_comparison (boolean_type_node,
4451 gimple_cond_lhs (stmt),
4452 gimple_cond_rhs (stmt));
4454 case GIMPLE_GOTO:
4455 return verify_gimple_goto (stmt);
4457 case GIMPLE_SWITCH:
4458 return verify_gimple_switch (stmt);
4460 case GIMPLE_RETURN:
4461 return verify_gimple_return (stmt);
4463 case GIMPLE_ASM:
4464 return false;
4466 case GIMPLE_TRANSACTION:
4467 return verify_gimple_transaction (stmt);
4469 /* Tuples that do not have tree operands. */
4470 case GIMPLE_NOP:
4471 case GIMPLE_PREDICT:
4472 case GIMPLE_RESX:
4473 case GIMPLE_EH_DISPATCH:
4474 case GIMPLE_EH_MUST_NOT_THROW:
4475 return false;
4477 CASE_GIMPLE_OMP:
4478 /* OpenMP directives are validated by the FE and never operated
4479 on by the optimizers. Furthermore, GIMPLE_OMP_FOR may contain
4480 non-gimple expressions when the main index variable has had
4481 its address taken. This does not affect the loop itself
4482 because the header of an GIMPLE_OMP_FOR is merely used to determine
4483 how to setup the parallel iteration. */
4484 return false;
4486 case GIMPLE_DEBUG:
4487 return verify_gimple_debug (stmt);
4489 default:
4490 gcc_unreachable ();
4494 /* Verify the contents of a GIMPLE_PHI. Returns true if there is a problem,
4495 and false otherwise. */
4497 static bool
4498 verify_gimple_phi (gimple phi)
4500 bool err = false;
4501 unsigned i;
4502 tree phi_result = gimple_phi_result (phi);
4503 bool virtual_p;
4505 if (!phi_result)
4507 error ("invalid PHI result");
4508 return true;
4511 virtual_p = virtual_operand_p (phi_result);
4512 if (TREE_CODE (phi_result) != SSA_NAME
4513 || (virtual_p
4514 && SSA_NAME_VAR (phi_result) != gimple_vop (cfun)))
4516 error ("invalid PHI result");
4517 err = true;
4520 for (i = 0; i < gimple_phi_num_args (phi); i++)
4522 tree t = gimple_phi_arg_def (phi, i);
4524 if (!t)
4526 error ("missing PHI def");
4527 err |= true;
4528 continue;
4530 /* Addressable variables do have SSA_NAMEs but they
4531 are not considered gimple values. */
4532 else if ((TREE_CODE (t) == SSA_NAME
4533 && virtual_p != virtual_operand_p (t))
4534 || (virtual_p
4535 && (TREE_CODE (t) != SSA_NAME
4536 || SSA_NAME_VAR (t) != gimple_vop (cfun)))
4537 || (!virtual_p
4538 && !is_gimple_val (t)))
4540 error ("invalid PHI argument");
4541 debug_generic_expr (t);
4542 err |= true;
4544 #ifdef ENABLE_TYPES_CHECKING
4545 if (!useless_type_conversion_p (TREE_TYPE (phi_result), TREE_TYPE (t)))
4547 error ("incompatible types in PHI argument %u", i);
4548 debug_generic_stmt (TREE_TYPE (phi_result));
4549 debug_generic_stmt (TREE_TYPE (t));
4550 err |= true;
4552 #endif
4555 return err;
4558 /* Verify the GIMPLE statements inside the sequence STMTS. */
4560 static bool
4561 verify_gimple_in_seq_2 (gimple_seq stmts)
4563 gimple_stmt_iterator ittr;
4564 bool err = false;
4566 for (ittr = gsi_start (stmts); !gsi_end_p (ittr); gsi_next (&ittr))
4568 gimple stmt = gsi_stmt (ittr);
4570 switch (gimple_code (stmt))
4572 case GIMPLE_BIND:
4573 err |= verify_gimple_in_seq_2 (gimple_bind_body (stmt));
4574 break;
4576 case GIMPLE_TRY:
4577 err |= verify_gimple_in_seq_2 (gimple_try_eval (stmt));
4578 err |= verify_gimple_in_seq_2 (gimple_try_cleanup (stmt));
4579 break;
4581 case GIMPLE_EH_FILTER:
4582 err |= verify_gimple_in_seq_2 (gimple_eh_filter_failure (stmt));
4583 break;
4585 case GIMPLE_EH_ELSE:
4586 err |= verify_gimple_in_seq_2 (gimple_eh_else_n_body (stmt));
4587 err |= verify_gimple_in_seq_2 (gimple_eh_else_e_body (stmt));
4588 break;
4590 case GIMPLE_CATCH:
4591 err |= verify_gimple_in_seq_2 (gimple_catch_handler (stmt));
4592 break;
4594 case GIMPLE_TRANSACTION:
4595 err |= verify_gimple_transaction (stmt);
4596 break;
4598 default:
4600 bool err2 = verify_gimple_stmt (stmt);
4601 if (err2)
4602 debug_gimple_stmt (stmt);
4603 err |= err2;
4608 return err;
4611 /* Verify the contents of a GIMPLE_TRANSACTION. Returns true if there
4612 is a problem, otherwise false. */
4614 static bool
4615 verify_gimple_transaction (gimple stmt)
4617 tree lab = gimple_transaction_label (stmt);
4618 if (lab != NULL && TREE_CODE (lab) != LABEL_DECL)
4619 return true;
4620 return verify_gimple_in_seq_2 (gimple_transaction_body (stmt));
4624 /* Verify the GIMPLE statements inside the statement list STMTS. */
4626 DEBUG_FUNCTION void
4627 verify_gimple_in_seq (gimple_seq stmts)
4629 timevar_push (TV_TREE_STMT_VERIFY);
4630 if (verify_gimple_in_seq_2 (stmts))
4631 internal_error ("verify_gimple failed");
4632 timevar_pop (TV_TREE_STMT_VERIFY);
4635 /* Return true when the T can be shared. */
4637 static bool
4638 tree_node_can_be_shared (tree t)
4640 if (IS_TYPE_OR_DECL_P (t)
4641 || is_gimple_min_invariant (t)
4642 || TREE_CODE (t) == SSA_NAME
4643 || t == error_mark_node
4644 || TREE_CODE (t) == IDENTIFIER_NODE)
4645 return true;
4647 if (TREE_CODE (t) == CASE_LABEL_EXPR)
4648 return true;
4650 if (DECL_P (t))
4651 return true;
4653 return false;
4656 /* Called via walk_tree. Verify tree sharing. */
4658 static tree
4659 verify_node_sharing_1 (tree *tp, int *walk_subtrees, void *data)
4661 struct pointer_set_t *visited = (struct pointer_set_t *) data;
4663 if (tree_node_can_be_shared (*tp))
4665 *walk_subtrees = false;
4666 return NULL;
4669 if (pointer_set_insert (visited, *tp))
4670 return *tp;
4672 return NULL;
4675 /* Called via walk_gimple_stmt. Verify tree sharing. */
4677 static tree
4678 verify_node_sharing (tree *tp, int *walk_subtrees, void *data)
4680 struct walk_stmt_info *wi = (struct walk_stmt_info *) data;
4681 return verify_node_sharing_1 (tp, walk_subtrees, wi->info);
4684 static bool eh_error_found;
4685 static int
4686 verify_eh_throw_stmt_node (void **slot, void *data)
4688 struct throw_stmt_node *node = (struct throw_stmt_node *)*slot;
4689 struct pointer_set_t *visited = (struct pointer_set_t *) data;
4691 if (!pointer_set_contains (visited, node->stmt))
4693 error ("dead STMT in EH table");
4694 debug_gimple_stmt (node->stmt);
4695 eh_error_found = true;
4697 return 1;
4700 /* Verify if the location LOCs block is in BLOCKS. */
4702 static bool
4703 verify_location (pointer_set_t *blocks, location_t loc)
4705 tree block = LOCATION_BLOCK (loc);
4706 if (block != NULL_TREE
4707 && !pointer_set_contains (blocks, block))
4709 error ("location references block not in block tree");
4710 return true;
4712 if (block != NULL_TREE)
4713 return verify_location (blocks, BLOCK_SOURCE_LOCATION (block));
4714 return false;
4717 /* Called via walk_tree. Verify that expressions have no blocks. */
4719 static tree
4720 verify_expr_no_block (tree *tp, int *walk_subtrees, void *)
4722 if (!EXPR_P (*tp))
4724 *walk_subtrees = false;
4725 return NULL;
4728 location_t loc = EXPR_LOCATION (*tp);
4729 if (LOCATION_BLOCK (loc) != NULL)
4730 return *tp;
4732 return NULL;
4735 /* Called via walk_tree. Verify locations of expressions. */
4737 static tree
4738 verify_expr_location_1 (tree *tp, int *walk_subtrees, void *data)
4740 struct pointer_set_t *blocks = (struct pointer_set_t *) data;
4742 if (TREE_CODE (*tp) == VAR_DECL
4743 && DECL_HAS_DEBUG_EXPR_P (*tp))
4745 tree t = DECL_DEBUG_EXPR (*tp);
4746 tree addr = walk_tree (&t, verify_expr_no_block, NULL, NULL);
4747 if (addr)
4748 return addr;
4750 if ((TREE_CODE (*tp) == VAR_DECL
4751 || TREE_CODE (*tp) == PARM_DECL
4752 || TREE_CODE (*tp) == RESULT_DECL)
4753 && DECL_HAS_VALUE_EXPR_P (*tp))
4755 tree t = DECL_VALUE_EXPR (*tp);
4756 tree addr = walk_tree (&t, verify_expr_no_block, NULL, NULL);
4757 if (addr)
4758 return addr;
4761 if (!EXPR_P (*tp))
4763 *walk_subtrees = false;
4764 return NULL;
4767 location_t loc = EXPR_LOCATION (*tp);
4768 if (verify_location (blocks, loc))
4769 return *tp;
4771 return NULL;
4774 /* Called via walk_gimple_op. Verify locations of expressions. */
4776 static tree
4777 verify_expr_location (tree *tp, int *walk_subtrees, void *data)
4779 struct walk_stmt_info *wi = (struct walk_stmt_info *) data;
4780 return verify_expr_location_1 (tp, walk_subtrees, wi->info);
4783 /* Insert all subblocks of BLOCK into BLOCKS and recurse. */
4785 static void
4786 collect_subblocks (pointer_set_t *blocks, tree block)
4788 tree t;
4789 for (t = BLOCK_SUBBLOCKS (block); t; t = BLOCK_CHAIN (t))
4791 pointer_set_insert (blocks, t);
4792 collect_subblocks (blocks, t);
4796 /* Verify the GIMPLE statements in the CFG of FN. */
4798 DEBUG_FUNCTION void
4799 verify_gimple_in_cfg (struct function *fn, bool verify_nothrow)
4801 basic_block bb;
4802 bool err = false;
4803 struct pointer_set_t *visited, *visited_stmts, *blocks;
4805 timevar_push (TV_TREE_STMT_VERIFY);
4806 visited = pointer_set_create ();
4807 visited_stmts = pointer_set_create ();
4809 /* Collect all BLOCKs referenced by the BLOCK tree of FN. */
4810 blocks = pointer_set_create ();
4811 if (DECL_INITIAL (fn->decl))
4813 pointer_set_insert (blocks, DECL_INITIAL (fn->decl));
4814 collect_subblocks (blocks, DECL_INITIAL (fn->decl));
4817 FOR_EACH_BB_FN (bb, fn)
4819 gimple_stmt_iterator gsi;
4821 for (gsi = gsi_start_phis (bb); !gsi_end_p (gsi); gsi_next (&gsi))
4823 gimple phi = gsi_stmt (gsi);
4824 bool err2 = false;
4825 unsigned i;
4827 pointer_set_insert (visited_stmts, phi);
4829 if (gimple_bb (phi) != bb)
4831 error ("gimple_bb (phi) is set to a wrong basic block");
4832 err2 = true;
4835 err2 |= verify_gimple_phi (phi);
4837 /* Only PHI arguments have locations. */
4838 if (gimple_location (phi) != UNKNOWN_LOCATION)
4840 error ("PHI node with location");
4841 err2 = true;
4844 for (i = 0; i < gimple_phi_num_args (phi); i++)
4846 tree arg = gimple_phi_arg_def (phi, i);
4847 tree addr = walk_tree (&arg, verify_node_sharing_1,
4848 visited, NULL);
4849 if (addr)
4851 error ("incorrect sharing of tree nodes");
4852 debug_generic_expr (addr);
4853 err2 |= true;
4855 location_t loc = gimple_phi_arg_location (phi, i);
4856 if (virtual_operand_p (gimple_phi_result (phi))
4857 && loc != UNKNOWN_LOCATION)
4859 error ("virtual PHI with argument locations");
4860 err2 = true;
4862 addr = walk_tree (&arg, verify_expr_location_1, blocks, NULL);
4863 if (addr)
4865 debug_generic_expr (addr);
4866 err2 = true;
4868 err2 |= verify_location (blocks, loc);
4871 if (err2)
4872 debug_gimple_stmt (phi);
4873 err |= err2;
4876 for (gsi = gsi_start_bb (bb); !gsi_end_p (gsi); gsi_next (&gsi))
4878 gimple stmt = gsi_stmt (gsi);
4879 bool err2 = false;
4880 struct walk_stmt_info wi;
4881 tree addr;
4882 int lp_nr;
4884 pointer_set_insert (visited_stmts, stmt);
4886 if (gimple_bb (stmt) != bb)
4888 error ("gimple_bb (stmt) is set to a wrong basic block");
4889 err2 = true;
4892 err2 |= verify_gimple_stmt (stmt);
4893 err2 |= verify_location (blocks, gimple_location (stmt));
4895 memset (&wi, 0, sizeof (wi));
4896 wi.info = (void *) visited;
4897 addr = walk_gimple_op (stmt, verify_node_sharing, &wi);
4898 if (addr)
4900 error ("incorrect sharing of tree nodes");
4901 debug_generic_expr (addr);
4902 err2 |= true;
4905 memset (&wi, 0, sizeof (wi));
4906 wi.info = (void *) blocks;
4907 addr = walk_gimple_op (stmt, verify_expr_location, &wi);
4908 if (addr)
4910 debug_generic_expr (addr);
4911 err2 |= true;
4914 /* ??? Instead of not checking these stmts at all the walker
4915 should know its context via wi. */
4916 if (!is_gimple_debug (stmt)
4917 && !is_gimple_omp (stmt))
4919 memset (&wi, 0, sizeof (wi));
4920 addr = walk_gimple_op (stmt, verify_expr, &wi);
4921 if (addr)
4923 debug_generic_expr (addr);
4924 inform (gimple_location (stmt), "in statement");
4925 err2 |= true;
4929 /* If the statement is marked as part of an EH region, then it is
4930 expected that the statement could throw. Verify that when we
4931 have optimizations that simplify statements such that we prove
4932 that they cannot throw, that we update other data structures
4933 to match. */
4934 lp_nr = lookup_stmt_eh_lp (stmt);
4935 if (lp_nr > 0)
4937 if (!stmt_could_throw_p (stmt))
4939 if (verify_nothrow)
4941 error ("statement marked for throw, but doesn%'t");
4942 err2 |= true;
4945 else if (!gsi_one_before_end_p (gsi))
4947 error ("statement marked for throw in middle of block");
4948 err2 |= true;
4952 if (err2)
4953 debug_gimple_stmt (stmt);
4954 err |= err2;
4958 eh_error_found = false;
4959 if (get_eh_throw_stmt_table (cfun))
4960 htab_traverse (get_eh_throw_stmt_table (cfun),
4961 verify_eh_throw_stmt_node,
4962 visited_stmts);
4964 if (err || eh_error_found)
4965 internal_error ("verify_gimple failed");
4967 pointer_set_destroy (visited);
4968 pointer_set_destroy (visited_stmts);
4969 pointer_set_destroy (blocks);
4970 verify_histograms ();
4971 timevar_pop (TV_TREE_STMT_VERIFY);
4975 /* Verifies that the flow information is OK. */
4977 static int
4978 gimple_verify_flow_info (void)
4980 int err = 0;
4981 basic_block bb;
4982 gimple_stmt_iterator gsi;
4983 gimple stmt;
4984 edge e;
4985 edge_iterator ei;
4987 if (ENTRY_BLOCK_PTR_FOR_FN (cfun)->il.gimple.seq
4988 || ENTRY_BLOCK_PTR_FOR_FN (cfun)->il.gimple.phi_nodes)
4990 error ("ENTRY_BLOCK has IL associated with it");
4991 err = 1;
4994 if (EXIT_BLOCK_PTR_FOR_FN (cfun)->il.gimple.seq
4995 || EXIT_BLOCK_PTR_FOR_FN (cfun)->il.gimple.phi_nodes)
4997 error ("EXIT_BLOCK has IL associated with it");
4998 err = 1;
5001 FOR_EACH_EDGE (e, ei, EXIT_BLOCK_PTR_FOR_FN (cfun)->preds)
5002 if (e->flags & EDGE_FALLTHRU)
5004 error ("fallthru to exit from bb %d", e->src->index);
5005 err = 1;
5008 FOR_EACH_BB_FN (bb, cfun)
5010 bool found_ctrl_stmt = false;
5012 stmt = NULL;
5014 /* Skip labels on the start of basic block. */
5015 for (gsi = gsi_start_bb (bb); !gsi_end_p (gsi); gsi_next (&gsi))
5017 tree label;
5018 gimple prev_stmt = stmt;
5020 stmt = gsi_stmt (gsi);
5022 if (gimple_code (stmt) != GIMPLE_LABEL)
5023 break;
5025 label = gimple_label_label (stmt);
5026 if (prev_stmt && DECL_NONLOCAL (label))
5028 error ("nonlocal label ");
5029 print_generic_expr (stderr, label, 0);
5030 fprintf (stderr, " is not first in a sequence of labels in bb %d",
5031 bb->index);
5032 err = 1;
5035 if (prev_stmt && EH_LANDING_PAD_NR (label) != 0)
5037 error ("EH landing pad label ");
5038 print_generic_expr (stderr, label, 0);
5039 fprintf (stderr, " is not first in a sequence of labels in bb %d",
5040 bb->index);
5041 err = 1;
5044 if (label_to_block (label) != bb)
5046 error ("label ");
5047 print_generic_expr (stderr, label, 0);
5048 fprintf (stderr, " to block does not match in bb %d",
5049 bb->index);
5050 err = 1;
5053 if (decl_function_context (label) != current_function_decl)
5055 error ("label ");
5056 print_generic_expr (stderr, label, 0);
5057 fprintf (stderr, " has incorrect context in bb %d",
5058 bb->index);
5059 err = 1;
5063 /* Verify that body of basic block BB is free of control flow. */
5064 for (; !gsi_end_p (gsi); gsi_next (&gsi))
5066 gimple stmt = gsi_stmt (gsi);
5068 if (found_ctrl_stmt)
5070 error ("control flow in the middle of basic block %d",
5071 bb->index);
5072 err = 1;
5075 if (stmt_ends_bb_p (stmt))
5076 found_ctrl_stmt = true;
5078 if (gimple_code (stmt) == GIMPLE_LABEL)
5080 error ("label ");
5081 print_generic_expr (stderr, gimple_label_label (stmt), 0);
5082 fprintf (stderr, " in the middle of basic block %d", bb->index);
5083 err = 1;
5087 gsi = gsi_last_bb (bb);
5088 if (gsi_end_p (gsi))
5089 continue;
5091 stmt = gsi_stmt (gsi);
5093 if (gimple_code (stmt) == GIMPLE_LABEL)
5094 continue;
5096 err |= verify_eh_edges (stmt);
5098 if (is_ctrl_stmt (stmt))
5100 FOR_EACH_EDGE (e, ei, bb->succs)
5101 if (e->flags & EDGE_FALLTHRU)
5103 error ("fallthru edge after a control statement in bb %d",
5104 bb->index);
5105 err = 1;
5109 if (gimple_code (stmt) != GIMPLE_COND)
5111 /* Verify that there are no edges with EDGE_TRUE/FALSE_FLAG set
5112 after anything else but if statement. */
5113 FOR_EACH_EDGE (e, ei, bb->succs)
5114 if (e->flags & (EDGE_TRUE_VALUE | EDGE_FALSE_VALUE))
5116 error ("true/false edge after a non-GIMPLE_COND in bb %d",
5117 bb->index);
5118 err = 1;
5122 switch (gimple_code (stmt))
5124 case GIMPLE_COND:
5126 edge true_edge;
5127 edge false_edge;
5129 extract_true_false_edges_from_block (bb, &true_edge, &false_edge);
5131 if (!true_edge
5132 || !false_edge
5133 || !(true_edge->flags & EDGE_TRUE_VALUE)
5134 || !(false_edge->flags & EDGE_FALSE_VALUE)
5135 || (true_edge->flags & (EDGE_FALLTHRU | EDGE_ABNORMAL))
5136 || (false_edge->flags & (EDGE_FALLTHRU | EDGE_ABNORMAL))
5137 || EDGE_COUNT (bb->succs) >= 3)
5139 error ("wrong outgoing edge flags at end of bb %d",
5140 bb->index);
5141 err = 1;
5144 break;
5146 case GIMPLE_GOTO:
5147 if (simple_goto_p (stmt))
5149 error ("explicit goto at end of bb %d", bb->index);
5150 err = 1;
5152 else
5154 /* FIXME. We should double check that the labels in the
5155 destination blocks have their address taken. */
5156 FOR_EACH_EDGE (e, ei, bb->succs)
5157 if ((e->flags & (EDGE_FALLTHRU | EDGE_TRUE_VALUE
5158 | EDGE_FALSE_VALUE))
5159 || !(e->flags & EDGE_ABNORMAL))
5161 error ("wrong outgoing edge flags at end of bb %d",
5162 bb->index);
5163 err = 1;
5166 break;
5168 case GIMPLE_CALL:
5169 if (!gimple_call_builtin_p (stmt, BUILT_IN_RETURN))
5170 break;
5171 /* ... fallthru ... */
5172 case GIMPLE_RETURN:
5173 if (!single_succ_p (bb)
5174 || (single_succ_edge (bb)->flags
5175 & (EDGE_FALLTHRU | EDGE_ABNORMAL
5176 | EDGE_TRUE_VALUE | EDGE_FALSE_VALUE)))
5178 error ("wrong outgoing edge flags at end of bb %d", bb->index);
5179 err = 1;
5181 if (single_succ (bb) != EXIT_BLOCK_PTR_FOR_FN (cfun))
5183 error ("return edge does not point to exit in bb %d",
5184 bb->index);
5185 err = 1;
5187 break;
5189 case GIMPLE_SWITCH:
5191 tree prev;
5192 edge e;
5193 size_t i, n;
5195 n = gimple_switch_num_labels (stmt);
5197 /* Mark all the destination basic blocks. */
5198 for (i = 0; i < n; ++i)
5200 tree lab = CASE_LABEL (gimple_switch_label (stmt, i));
5201 basic_block label_bb = label_to_block (lab);
5202 gcc_assert (!label_bb->aux || label_bb->aux == (void *)1);
5203 label_bb->aux = (void *)1;
5206 /* Verify that the case labels are sorted. */
5207 prev = gimple_switch_label (stmt, 0);
5208 for (i = 1; i < n; ++i)
5210 tree c = gimple_switch_label (stmt, i);
5211 if (!CASE_LOW (c))
5213 error ("found default case not at the start of "
5214 "case vector");
5215 err = 1;
5216 continue;
5218 if (CASE_LOW (prev)
5219 && !tree_int_cst_lt (CASE_LOW (prev), CASE_LOW (c)))
5221 error ("case labels not sorted: ");
5222 print_generic_expr (stderr, prev, 0);
5223 fprintf (stderr," is greater than ");
5224 print_generic_expr (stderr, c, 0);
5225 fprintf (stderr," but comes before it.\n");
5226 err = 1;
5228 prev = c;
5230 /* VRP will remove the default case if it can prove it will
5231 never be executed. So do not verify there always exists
5232 a default case here. */
5234 FOR_EACH_EDGE (e, ei, bb->succs)
5236 if (!e->dest->aux)
5238 error ("extra outgoing edge %d->%d",
5239 bb->index, e->dest->index);
5240 err = 1;
5243 e->dest->aux = (void *)2;
5244 if ((e->flags & (EDGE_FALLTHRU | EDGE_ABNORMAL
5245 | EDGE_TRUE_VALUE | EDGE_FALSE_VALUE)))
5247 error ("wrong outgoing edge flags at end of bb %d",
5248 bb->index);
5249 err = 1;
5253 /* Check that we have all of them. */
5254 for (i = 0; i < n; ++i)
5256 tree lab = CASE_LABEL (gimple_switch_label (stmt, i));
5257 basic_block label_bb = label_to_block (lab);
5259 if (label_bb->aux != (void *)2)
5261 error ("missing edge %i->%i", bb->index, label_bb->index);
5262 err = 1;
5266 FOR_EACH_EDGE (e, ei, bb->succs)
5267 e->dest->aux = (void *)0;
5269 break;
5271 case GIMPLE_EH_DISPATCH:
5272 err |= verify_eh_dispatch_edge (stmt);
5273 break;
5275 default:
5276 break;
5280 if (dom_info_state (CDI_DOMINATORS) >= DOM_NO_FAST_QUERY)
5281 verify_dominators (CDI_DOMINATORS);
5283 return err;
5287 /* Updates phi nodes after creating a forwarder block joined
5288 by edge FALLTHRU. */
5290 static void
5291 gimple_make_forwarder_block (edge fallthru)
5293 edge e;
5294 edge_iterator ei;
5295 basic_block dummy, bb;
5296 tree var;
5297 gimple_stmt_iterator gsi;
5299 dummy = fallthru->src;
5300 bb = fallthru->dest;
5302 if (single_pred_p (bb))
5303 return;
5305 /* If we redirected a branch we must create new PHI nodes at the
5306 start of BB. */
5307 for (gsi = gsi_start_phis (dummy); !gsi_end_p (gsi); gsi_next (&gsi))
5309 gimple phi, new_phi;
5311 phi = gsi_stmt (gsi);
5312 var = gimple_phi_result (phi);
5313 new_phi = create_phi_node (var, bb);
5314 gimple_phi_set_result (phi, copy_ssa_name (var, phi));
5315 add_phi_arg (new_phi, gimple_phi_result (phi), fallthru,
5316 UNKNOWN_LOCATION);
5319 /* Add the arguments we have stored on edges. */
5320 FOR_EACH_EDGE (e, ei, bb->preds)
5322 if (e == fallthru)
5323 continue;
5325 flush_pending_stmts (e);
5330 /* Return a non-special label in the head of basic block BLOCK.
5331 Create one if it doesn't exist. */
5333 tree
5334 gimple_block_label (basic_block bb)
5336 gimple_stmt_iterator i, s = gsi_start_bb (bb);
5337 bool first = true;
5338 tree label;
5339 gimple stmt;
5341 for (i = s; !gsi_end_p (i); first = false, gsi_next (&i))
5343 stmt = gsi_stmt (i);
5344 if (gimple_code (stmt) != GIMPLE_LABEL)
5345 break;
5346 label = gimple_label_label (stmt);
5347 if (!DECL_NONLOCAL (label))
5349 if (!first)
5350 gsi_move_before (&i, &s);
5351 return label;
5355 label = create_artificial_label (UNKNOWN_LOCATION);
5356 stmt = gimple_build_label (label);
5357 gsi_insert_before (&s, stmt, GSI_NEW_STMT);
5358 return label;
5362 /* Attempt to perform edge redirection by replacing a possibly complex
5363 jump instruction by a goto or by removing the jump completely.
5364 This can apply only if all edges now point to the same block. The
5365 parameters and return values are equivalent to
5366 redirect_edge_and_branch. */
5368 static edge
5369 gimple_try_redirect_by_replacing_jump (edge e, basic_block target)
5371 basic_block src = e->src;
5372 gimple_stmt_iterator i;
5373 gimple stmt;
5375 /* We can replace or remove a complex jump only when we have exactly
5376 two edges. */
5377 if (EDGE_COUNT (src->succs) != 2
5378 /* Verify that all targets will be TARGET. Specifically, the
5379 edge that is not E must also go to TARGET. */
5380 || EDGE_SUCC (src, EDGE_SUCC (src, 0) == e)->dest != target)
5381 return NULL;
5383 i = gsi_last_bb (src);
5384 if (gsi_end_p (i))
5385 return NULL;
5387 stmt = gsi_stmt (i);
5389 if (gimple_code (stmt) == GIMPLE_COND || gimple_code (stmt) == GIMPLE_SWITCH)
5391 gsi_remove (&i, true);
5392 e = ssa_redirect_edge (e, target);
5393 e->flags = EDGE_FALLTHRU;
5394 return e;
5397 return NULL;
5401 /* Redirect E to DEST. Return NULL on failure. Otherwise, return the
5402 edge representing the redirected branch. */
5404 static edge
5405 gimple_redirect_edge_and_branch (edge e, basic_block dest)
5407 basic_block bb = e->src;
5408 gimple_stmt_iterator gsi;
5409 edge ret;
5410 gimple stmt;
5412 if (e->flags & EDGE_ABNORMAL)
5413 return NULL;
5415 if (e->dest == dest)
5416 return NULL;
5418 if (e->flags & EDGE_EH)
5419 return redirect_eh_edge (e, dest);
5421 if (e->src != ENTRY_BLOCK_PTR_FOR_FN (cfun))
5423 ret = gimple_try_redirect_by_replacing_jump (e, dest);
5424 if (ret)
5425 return ret;
5428 gsi = gsi_last_bb (bb);
5429 stmt = gsi_end_p (gsi) ? NULL : gsi_stmt (gsi);
5431 switch (stmt ? gimple_code (stmt) : GIMPLE_ERROR_MARK)
5433 case GIMPLE_COND:
5434 /* For COND_EXPR, we only need to redirect the edge. */
5435 break;
5437 case GIMPLE_GOTO:
5438 /* No non-abnormal edges should lead from a non-simple goto, and
5439 simple ones should be represented implicitly. */
5440 gcc_unreachable ();
5442 case GIMPLE_SWITCH:
5444 tree label = gimple_block_label (dest);
5445 tree cases = get_cases_for_edge (e, stmt);
5447 /* If we have a list of cases associated with E, then use it
5448 as it's a lot faster than walking the entire case vector. */
5449 if (cases)
5451 edge e2 = find_edge (e->src, dest);
5452 tree last, first;
5454 first = cases;
5455 while (cases)
5457 last = cases;
5458 CASE_LABEL (cases) = label;
5459 cases = CASE_CHAIN (cases);
5462 /* If there was already an edge in the CFG, then we need
5463 to move all the cases associated with E to E2. */
5464 if (e2)
5466 tree cases2 = get_cases_for_edge (e2, stmt);
5468 CASE_CHAIN (last) = CASE_CHAIN (cases2);
5469 CASE_CHAIN (cases2) = first;
5471 bitmap_set_bit (touched_switch_bbs, gimple_bb (stmt)->index);
5473 else
5475 size_t i, n = gimple_switch_num_labels (stmt);
5477 for (i = 0; i < n; i++)
5479 tree elt = gimple_switch_label (stmt, i);
5480 if (label_to_block (CASE_LABEL (elt)) == e->dest)
5481 CASE_LABEL (elt) = label;
5485 break;
5487 case GIMPLE_ASM:
5489 int i, n = gimple_asm_nlabels (stmt);
5490 tree label = NULL;
5492 for (i = 0; i < n; ++i)
5494 tree cons = gimple_asm_label_op (stmt, i);
5495 if (label_to_block (TREE_VALUE (cons)) == e->dest)
5497 if (!label)
5498 label = gimple_block_label (dest);
5499 TREE_VALUE (cons) = label;
5503 /* If we didn't find any label matching the former edge in the
5504 asm labels, we must be redirecting the fallthrough
5505 edge. */
5506 gcc_assert (label || (e->flags & EDGE_FALLTHRU));
5508 break;
5510 case GIMPLE_RETURN:
5511 gsi_remove (&gsi, true);
5512 e->flags |= EDGE_FALLTHRU;
5513 break;
5515 case GIMPLE_OMP_RETURN:
5516 case GIMPLE_OMP_CONTINUE:
5517 case GIMPLE_OMP_SECTIONS_SWITCH:
5518 case GIMPLE_OMP_FOR:
5519 /* The edges from OMP constructs can be simply redirected. */
5520 break;
5522 case GIMPLE_EH_DISPATCH:
5523 if (!(e->flags & EDGE_FALLTHRU))
5524 redirect_eh_dispatch_edge (stmt, e, dest);
5525 break;
5527 case GIMPLE_TRANSACTION:
5528 /* The ABORT edge has a stored label associated with it, otherwise
5529 the edges are simply redirectable. */
5530 if (e->flags == 0)
5531 gimple_transaction_set_label (stmt, gimple_block_label (dest));
5532 break;
5534 default:
5535 /* Otherwise it must be a fallthru edge, and we don't need to
5536 do anything besides redirecting it. */
5537 gcc_assert (e->flags & EDGE_FALLTHRU);
5538 break;
5541 /* Update/insert PHI nodes as necessary. */
5543 /* Now update the edges in the CFG. */
5544 e = ssa_redirect_edge (e, dest);
5546 return e;
5549 /* Returns true if it is possible to remove edge E by redirecting
5550 it to the destination of the other edge from E->src. */
5552 static bool
5553 gimple_can_remove_branch_p (const_edge e)
5555 if (e->flags & (EDGE_ABNORMAL | EDGE_EH))
5556 return false;
5558 return true;
5561 /* Simple wrapper, as we can always redirect fallthru edges. */
5563 static basic_block
5564 gimple_redirect_edge_and_branch_force (edge e, basic_block dest)
5566 e = gimple_redirect_edge_and_branch (e, dest);
5567 gcc_assert (e);
5569 return NULL;
5573 /* Splits basic block BB after statement STMT (but at least after the
5574 labels). If STMT is NULL, BB is split just after the labels. */
5576 static basic_block
5577 gimple_split_block (basic_block bb, void *stmt)
5579 gimple_stmt_iterator gsi;
5580 gimple_stmt_iterator gsi_tgt;
5581 gimple act;
5582 gimple_seq list;
5583 basic_block new_bb;
5584 edge e;
5585 edge_iterator ei;
5587 new_bb = create_empty_bb (bb);
5589 /* Redirect the outgoing edges. */
5590 new_bb->succs = bb->succs;
5591 bb->succs = NULL;
5592 FOR_EACH_EDGE (e, ei, new_bb->succs)
5593 e->src = new_bb;
5595 if (stmt && gimple_code ((gimple) stmt) == GIMPLE_LABEL)
5596 stmt = NULL;
5598 /* Move everything from GSI to the new basic block. */
5599 for (gsi = gsi_start_bb (bb); !gsi_end_p (gsi); gsi_next (&gsi))
5601 act = gsi_stmt (gsi);
5602 if (gimple_code (act) == GIMPLE_LABEL)
5603 continue;
5605 if (!stmt)
5606 break;
5608 if (stmt == act)
5610 gsi_next (&gsi);
5611 break;
5615 if (gsi_end_p (gsi))
5616 return new_bb;
5618 /* Split the statement list - avoid re-creating new containers as this
5619 brings ugly quadratic memory consumption in the inliner.
5620 (We are still quadratic since we need to update stmt BB pointers,
5621 sadly.) */
5622 gsi_split_seq_before (&gsi, &list);
5623 set_bb_seq (new_bb, list);
5624 for (gsi_tgt = gsi_start (list);
5625 !gsi_end_p (gsi_tgt); gsi_next (&gsi_tgt))
5626 gimple_set_bb (gsi_stmt (gsi_tgt), new_bb);
5628 return new_bb;
5632 /* Moves basic block BB after block AFTER. */
5634 static bool
5635 gimple_move_block_after (basic_block bb, basic_block after)
5637 if (bb->prev_bb == after)
5638 return true;
5640 unlink_block (bb);
5641 link_block (bb, after);
5643 return true;
5647 /* Return TRUE if block BB has no executable statements, otherwise return
5648 FALSE. */
5650 static bool
5651 gimple_empty_block_p (basic_block bb)
5653 /* BB must have no executable statements. */
5654 gimple_stmt_iterator gsi = gsi_after_labels (bb);
5655 if (phi_nodes (bb))
5656 return false;
5657 if (gsi_end_p (gsi))
5658 return true;
5659 if (is_gimple_debug (gsi_stmt (gsi)))
5660 gsi_next_nondebug (&gsi);
5661 return gsi_end_p (gsi);
5665 /* Split a basic block if it ends with a conditional branch and if the
5666 other part of the block is not empty. */
5668 static basic_block
5669 gimple_split_block_before_cond_jump (basic_block bb)
5671 gimple last, split_point;
5672 gimple_stmt_iterator gsi = gsi_last_nondebug_bb (bb);
5673 if (gsi_end_p (gsi))
5674 return NULL;
5675 last = gsi_stmt (gsi);
5676 if (gimple_code (last) != GIMPLE_COND
5677 && gimple_code (last) != GIMPLE_SWITCH)
5678 return NULL;
5679 gsi_prev_nondebug (&gsi);
5680 split_point = gsi_stmt (gsi);
5681 return split_block (bb, split_point)->dest;
5685 /* Return true if basic_block can be duplicated. */
5687 static bool
5688 gimple_can_duplicate_bb_p (const_basic_block bb ATTRIBUTE_UNUSED)
5690 return true;
5693 /* Create a duplicate of the basic block BB. NOTE: This does not
5694 preserve SSA form. */
5696 static basic_block
5697 gimple_duplicate_bb (basic_block bb)
5699 basic_block new_bb;
5700 gimple_stmt_iterator gsi, gsi_tgt;
5701 gimple_seq phis = phi_nodes (bb);
5702 gimple phi, stmt, copy;
5704 new_bb = create_empty_bb (EXIT_BLOCK_PTR_FOR_FN (cfun)->prev_bb);
5706 /* Copy the PHI nodes. We ignore PHI node arguments here because
5707 the incoming edges have not been setup yet. */
5708 for (gsi = gsi_start (phis); !gsi_end_p (gsi); gsi_next (&gsi))
5710 phi = gsi_stmt (gsi);
5711 copy = create_phi_node (NULL_TREE, new_bb);
5712 create_new_def_for (gimple_phi_result (phi), copy,
5713 gimple_phi_result_ptr (copy));
5714 gimple_set_uid (copy, gimple_uid (phi));
5717 gsi_tgt = gsi_start_bb (new_bb);
5718 for (gsi = gsi_start_bb (bb); !gsi_end_p (gsi); gsi_next (&gsi))
5720 def_operand_p def_p;
5721 ssa_op_iter op_iter;
5722 tree lhs;
5724 stmt = gsi_stmt (gsi);
5725 if (gimple_code (stmt) == GIMPLE_LABEL)
5726 continue;
5728 /* Don't duplicate label debug stmts. */
5729 if (gimple_debug_bind_p (stmt)
5730 && TREE_CODE (gimple_debug_bind_get_var (stmt))
5731 == LABEL_DECL)
5732 continue;
5734 /* Create a new copy of STMT and duplicate STMT's virtual
5735 operands. */
5736 copy = gimple_copy (stmt);
5737 gsi_insert_after (&gsi_tgt, copy, GSI_NEW_STMT);
5739 maybe_duplicate_eh_stmt (copy, stmt);
5740 gimple_duplicate_stmt_histograms (cfun, copy, cfun, stmt);
5742 /* When copying around a stmt writing into a local non-user
5743 aggregate, make sure it won't share stack slot with other
5744 vars. */
5745 lhs = gimple_get_lhs (stmt);
5746 if (lhs && TREE_CODE (lhs) != SSA_NAME)
5748 tree base = get_base_address (lhs);
5749 if (base
5750 && (TREE_CODE (base) == VAR_DECL
5751 || TREE_CODE (base) == RESULT_DECL)
5752 && DECL_IGNORED_P (base)
5753 && !TREE_STATIC (base)
5754 && !DECL_EXTERNAL (base)
5755 && (TREE_CODE (base) != VAR_DECL
5756 || !DECL_HAS_VALUE_EXPR_P (base)))
5757 DECL_NONSHAREABLE (base) = 1;
5760 /* Create new names for all the definitions created by COPY and
5761 add replacement mappings for each new name. */
5762 FOR_EACH_SSA_DEF_OPERAND (def_p, copy, op_iter, SSA_OP_ALL_DEFS)
5763 create_new_def_for (DEF_FROM_PTR (def_p), copy, def_p);
5766 return new_bb;
5769 /* Adds phi node arguments for edge E_COPY after basic block duplication. */
5771 static void
5772 add_phi_args_after_copy_edge (edge e_copy)
5774 basic_block bb, bb_copy = e_copy->src, dest;
5775 edge e;
5776 edge_iterator ei;
5777 gimple phi, phi_copy;
5778 tree def;
5779 gimple_stmt_iterator psi, psi_copy;
5781 if (gimple_seq_empty_p (phi_nodes (e_copy->dest)))
5782 return;
5784 bb = bb_copy->flags & BB_DUPLICATED ? get_bb_original (bb_copy) : bb_copy;
5786 if (e_copy->dest->flags & BB_DUPLICATED)
5787 dest = get_bb_original (e_copy->dest);
5788 else
5789 dest = e_copy->dest;
5791 e = find_edge (bb, dest);
5792 if (!e)
5794 /* During loop unrolling the target of the latch edge is copied.
5795 In this case we are not looking for edge to dest, but to
5796 duplicated block whose original was dest. */
5797 FOR_EACH_EDGE (e, ei, bb->succs)
5799 if ((e->dest->flags & BB_DUPLICATED)
5800 && get_bb_original (e->dest) == dest)
5801 break;
5804 gcc_assert (e != NULL);
5807 for (psi = gsi_start_phis (e->dest),
5808 psi_copy = gsi_start_phis (e_copy->dest);
5809 !gsi_end_p (psi);
5810 gsi_next (&psi), gsi_next (&psi_copy))
5812 phi = gsi_stmt (psi);
5813 phi_copy = gsi_stmt (psi_copy);
5814 def = PHI_ARG_DEF_FROM_EDGE (phi, e);
5815 add_phi_arg (phi_copy, def, e_copy,
5816 gimple_phi_arg_location_from_edge (phi, e));
5821 /* Basic block BB_COPY was created by code duplication. Add phi node
5822 arguments for edges going out of BB_COPY. The blocks that were
5823 duplicated have BB_DUPLICATED set. */
5825 void
5826 add_phi_args_after_copy_bb (basic_block bb_copy)
5828 edge e_copy;
5829 edge_iterator ei;
5831 FOR_EACH_EDGE (e_copy, ei, bb_copy->succs)
5833 add_phi_args_after_copy_edge (e_copy);
5837 /* Blocks in REGION_COPY array of length N_REGION were created by
5838 duplication of basic blocks. Add phi node arguments for edges
5839 going from these blocks. If E_COPY is not NULL, also add
5840 phi node arguments for its destination.*/
5842 void
5843 add_phi_args_after_copy (basic_block *region_copy, unsigned n_region,
5844 edge e_copy)
5846 unsigned i;
5848 for (i = 0; i < n_region; i++)
5849 region_copy[i]->flags |= BB_DUPLICATED;
5851 for (i = 0; i < n_region; i++)
5852 add_phi_args_after_copy_bb (region_copy[i]);
5853 if (e_copy)
5854 add_phi_args_after_copy_edge (e_copy);
5856 for (i = 0; i < n_region; i++)
5857 region_copy[i]->flags &= ~BB_DUPLICATED;
5860 /* Duplicates a REGION (set of N_REGION basic blocks) with just a single
5861 important exit edge EXIT. By important we mean that no SSA name defined
5862 inside region is live over the other exit edges of the region. All entry
5863 edges to the region must go to ENTRY->dest. The edge ENTRY is redirected
5864 to the duplicate of the region. Dominance and loop information is
5865 updated if UPDATE_DOMINANCE is true, but not the SSA web. If
5866 UPDATE_DOMINANCE is false then we assume that the caller will update the
5867 dominance information after calling this function. The new basic
5868 blocks are stored to REGION_COPY in the same order as they had in REGION,
5869 provided that REGION_COPY is not NULL.
5870 The function returns false if it is unable to copy the region,
5871 true otherwise. */
5873 bool
5874 gimple_duplicate_sese_region (edge entry, edge exit,
5875 basic_block *region, unsigned n_region,
5876 basic_block *region_copy,
5877 bool update_dominance)
5879 unsigned i;
5880 bool free_region_copy = false, copying_header = false;
5881 struct loop *loop = entry->dest->loop_father;
5882 edge exit_copy;
5883 vec<basic_block> doms;
5884 edge redirected;
5885 int total_freq = 0, entry_freq = 0;
5886 gcov_type total_count = 0, entry_count = 0;
5888 if (!can_copy_bbs_p (region, n_region))
5889 return false;
5891 /* Some sanity checking. Note that we do not check for all possible
5892 missuses of the functions. I.e. if you ask to copy something weird,
5893 it will work, but the state of structures probably will not be
5894 correct. */
5895 for (i = 0; i < n_region; i++)
5897 /* We do not handle subloops, i.e. all the blocks must belong to the
5898 same loop. */
5899 if (region[i]->loop_father != loop)
5900 return false;
5902 if (region[i] != entry->dest
5903 && region[i] == loop->header)
5904 return false;
5907 /* In case the function is used for loop header copying (which is the primary
5908 use), ensure that EXIT and its copy will be new latch and entry edges. */
5909 if (loop->header == entry->dest)
5911 copying_header = true;
5913 if (!dominated_by_p (CDI_DOMINATORS, loop->latch, exit->src))
5914 return false;
5916 for (i = 0; i < n_region; i++)
5917 if (region[i] != exit->src
5918 && dominated_by_p (CDI_DOMINATORS, region[i], exit->src))
5919 return false;
5922 initialize_original_copy_tables ();
5924 if (copying_header)
5925 set_loop_copy (loop, loop_outer (loop));
5926 else
5927 set_loop_copy (loop, loop);
5929 if (!region_copy)
5931 region_copy = XNEWVEC (basic_block, n_region);
5932 free_region_copy = true;
5935 /* Record blocks outside the region that are dominated by something
5936 inside. */
5937 if (update_dominance)
5939 doms.create (0);
5940 doms = get_dominated_by_region (CDI_DOMINATORS, region, n_region);
5943 if (entry->dest->count)
5945 total_count = entry->dest->count;
5946 entry_count = entry->count;
5947 /* Fix up corner cases, to avoid division by zero or creation of negative
5948 frequencies. */
5949 if (entry_count > total_count)
5950 entry_count = total_count;
5952 else
5954 total_freq = entry->dest->frequency;
5955 entry_freq = EDGE_FREQUENCY (entry);
5956 /* Fix up corner cases, to avoid division by zero or creation of negative
5957 frequencies. */
5958 if (total_freq == 0)
5959 total_freq = 1;
5960 else if (entry_freq > total_freq)
5961 entry_freq = total_freq;
5964 copy_bbs (region, n_region, region_copy, &exit, 1, &exit_copy, loop,
5965 split_edge_bb_loc (entry), update_dominance);
5966 if (total_count)
5968 scale_bbs_frequencies_gcov_type (region, n_region,
5969 total_count - entry_count,
5970 total_count);
5971 scale_bbs_frequencies_gcov_type (region_copy, n_region, entry_count,
5972 total_count);
5974 else
5976 scale_bbs_frequencies_int (region, n_region, total_freq - entry_freq,
5977 total_freq);
5978 scale_bbs_frequencies_int (region_copy, n_region, entry_freq, total_freq);
5981 if (copying_header)
5983 loop->header = exit->dest;
5984 loop->latch = exit->src;
5987 /* Redirect the entry and add the phi node arguments. */
5988 redirected = redirect_edge_and_branch (entry, get_bb_copy (entry->dest));
5989 gcc_assert (redirected != NULL);
5990 flush_pending_stmts (entry);
5992 /* Concerning updating of dominators: We must recount dominators
5993 for entry block and its copy. Anything that is outside of the
5994 region, but was dominated by something inside needs recounting as
5995 well. */
5996 if (update_dominance)
5998 set_immediate_dominator (CDI_DOMINATORS, entry->dest, entry->src);
5999 doms.safe_push (get_bb_original (entry->dest));
6000 iterate_fix_dominators (CDI_DOMINATORS, doms, false);
6001 doms.release ();
6004 /* Add the other PHI node arguments. */
6005 add_phi_args_after_copy (region_copy, n_region, NULL);
6007 if (free_region_copy)
6008 free (region_copy);
6010 free_original_copy_tables ();
6011 return true;
6014 /* Checks if BB is part of the region defined by N_REGION BBS. */
6015 static bool
6016 bb_part_of_region_p (basic_block bb, basic_block* bbs, unsigned n_region)
6018 unsigned int n;
6020 for (n = 0; n < n_region; n++)
6022 if (bb == bbs[n])
6023 return true;
6025 return false;
6028 /* Duplicates REGION consisting of N_REGION blocks. The new blocks
6029 are stored to REGION_COPY in the same order in that they appear
6030 in REGION, if REGION_COPY is not NULL. ENTRY is the entry to
6031 the region, EXIT an exit from it. The condition guarding EXIT
6032 is moved to ENTRY. Returns true if duplication succeeds, false
6033 otherwise.
6035 For example,
6037 some_code;
6038 if (cond)
6040 else
6043 is transformed to
6045 if (cond)
6047 some_code;
6050 else
6052 some_code;
6057 bool
6058 gimple_duplicate_sese_tail (edge entry ATTRIBUTE_UNUSED, edge exit ATTRIBUTE_UNUSED,
6059 basic_block *region ATTRIBUTE_UNUSED, unsigned n_region ATTRIBUTE_UNUSED,
6060 basic_block *region_copy ATTRIBUTE_UNUSED)
6062 unsigned i;
6063 bool free_region_copy = false;
6064 struct loop *loop = exit->dest->loop_father;
6065 struct loop *orig_loop = entry->dest->loop_father;
6066 basic_block switch_bb, entry_bb, nentry_bb;
6067 vec<basic_block> doms;
6068 int total_freq = 0, exit_freq = 0;
6069 gcov_type total_count = 0, exit_count = 0;
6070 edge exits[2], nexits[2], e;
6071 gimple_stmt_iterator gsi;
6072 gimple cond_stmt;
6073 edge sorig, snew;
6074 basic_block exit_bb;
6075 gimple_stmt_iterator psi;
6076 gimple phi;
6077 tree def;
6078 struct loop *target, *aloop, *cloop;
6080 gcc_assert (EDGE_COUNT (exit->src->succs) == 2);
6081 exits[0] = exit;
6082 exits[1] = EDGE_SUCC (exit->src, EDGE_SUCC (exit->src, 0) == exit);
6084 if (!can_copy_bbs_p (region, n_region))
6085 return false;
6087 initialize_original_copy_tables ();
6088 set_loop_copy (orig_loop, loop);
6090 target= loop;
6091 for (aloop = orig_loop->inner; aloop; aloop = aloop->next)
6093 if (bb_part_of_region_p (aloop->header, region, n_region))
6095 cloop = duplicate_loop (aloop, target);
6096 duplicate_subloops (aloop, cloop);
6100 if (!region_copy)
6102 region_copy = XNEWVEC (basic_block, n_region);
6103 free_region_copy = true;
6106 gcc_assert (!need_ssa_update_p (cfun));
6108 /* Record blocks outside the region that are dominated by something
6109 inside. */
6110 doms = get_dominated_by_region (CDI_DOMINATORS, region, n_region);
6112 if (exit->src->count)
6114 total_count = exit->src->count;
6115 exit_count = exit->count;
6116 /* Fix up corner cases, to avoid division by zero or creation of negative
6117 frequencies. */
6118 if (exit_count > total_count)
6119 exit_count = total_count;
6121 else
6123 total_freq = exit->src->frequency;
6124 exit_freq = EDGE_FREQUENCY (exit);
6125 /* Fix up corner cases, to avoid division by zero or creation of negative
6126 frequencies. */
6127 if (total_freq == 0)
6128 total_freq = 1;
6129 if (exit_freq > total_freq)
6130 exit_freq = total_freq;
6133 copy_bbs (region, n_region, region_copy, exits, 2, nexits, orig_loop,
6134 split_edge_bb_loc (exit), true);
6135 if (total_count)
6137 scale_bbs_frequencies_gcov_type (region, n_region,
6138 total_count - exit_count,
6139 total_count);
6140 scale_bbs_frequencies_gcov_type (region_copy, n_region, exit_count,
6141 total_count);
6143 else
6145 scale_bbs_frequencies_int (region, n_region, total_freq - exit_freq,
6146 total_freq);
6147 scale_bbs_frequencies_int (region_copy, n_region, exit_freq, total_freq);
6150 /* Create the switch block, and put the exit condition to it. */
6151 entry_bb = entry->dest;
6152 nentry_bb = get_bb_copy (entry_bb);
6153 if (!last_stmt (entry->src)
6154 || !stmt_ends_bb_p (last_stmt (entry->src)))
6155 switch_bb = entry->src;
6156 else
6157 switch_bb = split_edge (entry);
6158 set_immediate_dominator (CDI_DOMINATORS, nentry_bb, switch_bb);
6160 gsi = gsi_last_bb (switch_bb);
6161 cond_stmt = last_stmt (exit->src);
6162 gcc_assert (gimple_code (cond_stmt) == GIMPLE_COND);
6163 cond_stmt = gimple_copy (cond_stmt);
6165 gsi_insert_after (&gsi, cond_stmt, GSI_NEW_STMT);
6167 sorig = single_succ_edge (switch_bb);
6168 sorig->flags = exits[1]->flags;
6169 snew = make_edge (switch_bb, nentry_bb, exits[0]->flags);
6171 /* Register the new edge from SWITCH_BB in loop exit lists. */
6172 rescan_loop_exit (snew, true, false);
6174 /* Add the PHI node arguments. */
6175 add_phi_args_after_copy (region_copy, n_region, snew);
6177 /* Get rid of now superfluous conditions and associated edges (and phi node
6178 arguments). */
6179 exit_bb = exit->dest;
6181 e = redirect_edge_and_branch (exits[0], exits[1]->dest);
6182 PENDING_STMT (e) = NULL;
6184 /* The latch of ORIG_LOOP was copied, and so was the backedge
6185 to the original header. We redirect this backedge to EXIT_BB. */
6186 for (i = 0; i < n_region; i++)
6187 if (get_bb_original (region_copy[i]) == orig_loop->latch)
6189 gcc_assert (single_succ_edge (region_copy[i]));
6190 e = redirect_edge_and_branch (single_succ_edge (region_copy[i]), exit_bb);
6191 PENDING_STMT (e) = NULL;
6192 for (psi = gsi_start_phis (exit_bb);
6193 !gsi_end_p (psi);
6194 gsi_next (&psi))
6196 phi = gsi_stmt (psi);
6197 def = PHI_ARG_DEF (phi, nexits[0]->dest_idx);
6198 add_phi_arg (phi, def, e, gimple_phi_arg_location_from_edge (phi, e));
6201 e = redirect_edge_and_branch (nexits[1], nexits[0]->dest);
6202 PENDING_STMT (e) = NULL;
6204 /* Anything that is outside of the region, but was dominated by something
6205 inside needs to update dominance info. */
6206 iterate_fix_dominators (CDI_DOMINATORS, doms, false);
6207 doms.release ();
6208 /* Update the SSA web. */
6209 update_ssa (TODO_update_ssa);
6211 if (free_region_copy)
6212 free (region_copy);
6214 free_original_copy_tables ();
6215 return true;
6218 /* Add all the blocks dominated by ENTRY to the array BBS_P. Stop
6219 adding blocks when the dominator traversal reaches EXIT. This
6220 function silently assumes that ENTRY strictly dominates EXIT. */
6222 void
6223 gather_blocks_in_sese_region (basic_block entry, basic_block exit,
6224 vec<basic_block> *bbs_p)
6226 basic_block son;
6228 for (son = first_dom_son (CDI_DOMINATORS, entry);
6229 son;
6230 son = next_dom_son (CDI_DOMINATORS, son))
6232 bbs_p->safe_push (son);
6233 if (son != exit)
6234 gather_blocks_in_sese_region (son, exit, bbs_p);
6238 /* Replaces *TP with a duplicate (belonging to function TO_CONTEXT).
6239 The duplicates are recorded in VARS_MAP. */
6241 static void
6242 replace_by_duplicate_decl (tree *tp, struct pointer_map_t *vars_map,
6243 tree to_context)
6245 tree t = *tp, new_t;
6246 struct function *f = DECL_STRUCT_FUNCTION (to_context);
6247 void **loc;
6249 if (DECL_CONTEXT (t) == to_context)
6250 return;
6252 loc = pointer_map_contains (vars_map, t);
6254 if (!loc)
6256 loc = pointer_map_insert (vars_map, t);
6258 if (SSA_VAR_P (t))
6260 new_t = copy_var_decl (t, DECL_NAME (t), TREE_TYPE (t));
6261 add_local_decl (f, new_t);
6263 else
6265 gcc_assert (TREE_CODE (t) == CONST_DECL);
6266 new_t = copy_node (t);
6268 DECL_CONTEXT (new_t) = to_context;
6270 *loc = new_t;
6272 else
6273 new_t = (tree) *loc;
6275 *tp = new_t;
6279 /* Creates an ssa name in TO_CONTEXT equivalent to NAME.
6280 VARS_MAP maps old ssa names and var_decls to the new ones. */
6282 static tree
6283 replace_ssa_name (tree name, struct pointer_map_t *vars_map,
6284 tree to_context)
6286 void **loc;
6287 tree new_name;
6289 gcc_assert (!virtual_operand_p (name));
6291 loc = pointer_map_contains (vars_map, name);
6293 if (!loc)
6295 tree decl = SSA_NAME_VAR (name);
6296 if (decl)
6298 replace_by_duplicate_decl (&decl, vars_map, to_context);
6299 new_name = make_ssa_name_fn (DECL_STRUCT_FUNCTION (to_context),
6300 decl, SSA_NAME_DEF_STMT (name));
6301 if (SSA_NAME_IS_DEFAULT_DEF (name))
6302 set_ssa_default_def (DECL_STRUCT_FUNCTION (to_context),
6303 decl, new_name);
6305 else
6306 new_name = copy_ssa_name_fn (DECL_STRUCT_FUNCTION (to_context),
6307 name, SSA_NAME_DEF_STMT (name));
6309 loc = pointer_map_insert (vars_map, name);
6310 *loc = new_name;
6312 else
6313 new_name = (tree) *loc;
6315 return new_name;
6318 struct move_stmt_d
6320 tree orig_block;
6321 tree new_block;
6322 tree from_context;
6323 tree to_context;
6324 struct pointer_map_t *vars_map;
6325 htab_t new_label_map;
6326 struct pointer_map_t *eh_map;
6327 bool remap_decls_p;
6330 /* Helper for move_block_to_fn. Set TREE_BLOCK in every expression
6331 contained in *TP if it has been ORIG_BLOCK previously and change the
6332 DECL_CONTEXT of every local variable referenced in *TP. */
6334 static tree
6335 move_stmt_op (tree *tp, int *walk_subtrees, void *data)
6337 struct walk_stmt_info *wi = (struct walk_stmt_info *) data;
6338 struct move_stmt_d *p = (struct move_stmt_d *) wi->info;
6339 tree t = *tp;
6341 if (EXPR_P (t))
6343 tree block = TREE_BLOCK (t);
6344 if (block == p->orig_block
6345 || (p->orig_block == NULL_TREE
6346 && block != NULL_TREE))
6347 TREE_SET_BLOCK (t, p->new_block);
6348 #ifdef ENABLE_CHECKING
6349 else if (block != NULL_TREE)
6351 while (block && TREE_CODE (block) == BLOCK && block != p->orig_block)
6352 block = BLOCK_SUPERCONTEXT (block);
6353 gcc_assert (block == p->orig_block);
6355 #endif
6357 else if (DECL_P (t) || TREE_CODE (t) == SSA_NAME)
6359 if (TREE_CODE (t) == SSA_NAME)
6360 *tp = replace_ssa_name (t, p->vars_map, p->to_context);
6361 else if (TREE_CODE (t) == LABEL_DECL)
6363 if (p->new_label_map)
6365 struct tree_map in, *out;
6366 in.base.from = t;
6367 out = (struct tree_map *)
6368 htab_find_with_hash (p->new_label_map, &in, DECL_UID (t));
6369 if (out)
6370 *tp = t = out->to;
6373 DECL_CONTEXT (t) = p->to_context;
6375 else if (p->remap_decls_p)
6377 /* Replace T with its duplicate. T should no longer appear in the
6378 parent function, so this looks wasteful; however, it may appear
6379 in referenced_vars, and more importantly, as virtual operands of
6380 statements, and in alias lists of other variables. It would be
6381 quite difficult to expunge it from all those places. ??? It might
6382 suffice to do this for addressable variables. */
6383 if ((TREE_CODE (t) == VAR_DECL
6384 && !is_global_var (t))
6385 || TREE_CODE (t) == CONST_DECL)
6386 replace_by_duplicate_decl (tp, p->vars_map, p->to_context);
6388 *walk_subtrees = 0;
6390 else if (TYPE_P (t))
6391 *walk_subtrees = 0;
6393 return NULL_TREE;
6396 /* Helper for move_stmt_r. Given an EH region number for the source
6397 function, map that to the duplicate EH regio number in the dest. */
6399 static int
6400 move_stmt_eh_region_nr (int old_nr, struct move_stmt_d *p)
6402 eh_region old_r, new_r;
6403 void **slot;
6405 old_r = get_eh_region_from_number (old_nr);
6406 slot = pointer_map_contains (p->eh_map, old_r);
6407 new_r = (eh_region) *slot;
6409 return new_r->index;
6412 /* Similar, but operate on INTEGER_CSTs. */
6414 static tree
6415 move_stmt_eh_region_tree_nr (tree old_t_nr, struct move_stmt_d *p)
6417 int old_nr, new_nr;
6419 old_nr = tree_to_shwi (old_t_nr);
6420 new_nr = move_stmt_eh_region_nr (old_nr, p);
6422 return build_int_cst (integer_type_node, new_nr);
6425 /* Like move_stmt_op, but for gimple statements.
6427 Helper for move_block_to_fn. Set GIMPLE_BLOCK in every expression
6428 contained in the current statement in *GSI_P and change the
6429 DECL_CONTEXT of every local variable referenced in the current
6430 statement. */
6432 static tree
6433 move_stmt_r (gimple_stmt_iterator *gsi_p, bool *handled_ops_p,
6434 struct walk_stmt_info *wi)
6436 struct move_stmt_d *p = (struct move_stmt_d *) wi->info;
6437 gimple stmt = gsi_stmt (*gsi_p);
6438 tree block = gimple_block (stmt);
6440 if (block == p->orig_block
6441 || (p->orig_block == NULL_TREE
6442 && block != NULL_TREE))
6443 gimple_set_block (stmt, p->new_block);
6445 switch (gimple_code (stmt))
6447 case GIMPLE_CALL:
6448 /* Remap the region numbers for __builtin_eh_{pointer,filter}. */
6450 tree r, fndecl = gimple_call_fndecl (stmt);
6451 if (fndecl && DECL_BUILT_IN_CLASS (fndecl) == BUILT_IN_NORMAL)
6452 switch (DECL_FUNCTION_CODE (fndecl))
6454 case BUILT_IN_EH_COPY_VALUES:
6455 r = gimple_call_arg (stmt, 1);
6456 r = move_stmt_eh_region_tree_nr (r, p);
6457 gimple_call_set_arg (stmt, 1, r);
6458 /* FALLTHRU */
6460 case BUILT_IN_EH_POINTER:
6461 case BUILT_IN_EH_FILTER:
6462 r = gimple_call_arg (stmt, 0);
6463 r = move_stmt_eh_region_tree_nr (r, p);
6464 gimple_call_set_arg (stmt, 0, r);
6465 break;
6467 default:
6468 break;
6471 break;
6473 case GIMPLE_RESX:
6475 int r = gimple_resx_region (stmt);
6476 r = move_stmt_eh_region_nr (r, p);
6477 gimple_resx_set_region (stmt, r);
6479 break;
6481 case GIMPLE_EH_DISPATCH:
6483 int r = gimple_eh_dispatch_region (stmt);
6484 r = move_stmt_eh_region_nr (r, p);
6485 gimple_eh_dispatch_set_region (stmt, r);
6487 break;
6489 case GIMPLE_OMP_RETURN:
6490 case GIMPLE_OMP_CONTINUE:
6491 break;
6492 default:
6493 if (is_gimple_omp (stmt))
6495 /* Do not remap variables inside OMP directives. Variables
6496 referenced in clauses and directive header belong to the
6497 parent function and should not be moved into the child
6498 function. */
6499 bool save_remap_decls_p = p->remap_decls_p;
6500 p->remap_decls_p = false;
6501 *handled_ops_p = true;
6503 walk_gimple_seq_mod (gimple_omp_body_ptr (stmt), move_stmt_r,
6504 move_stmt_op, wi);
6506 p->remap_decls_p = save_remap_decls_p;
6508 break;
6511 return NULL_TREE;
6514 /* Move basic block BB from function CFUN to function DEST_FN. The
6515 block is moved out of the original linked list and placed after
6516 block AFTER in the new list. Also, the block is removed from the
6517 original array of blocks and placed in DEST_FN's array of blocks.
6518 If UPDATE_EDGE_COUNT_P is true, the edge counts on both CFGs is
6519 updated to reflect the moved edges.
6521 The local variables are remapped to new instances, VARS_MAP is used
6522 to record the mapping. */
6524 static void
6525 move_block_to_fn (struct function *dest_cfun, basic_block bb,
6526 basic_block after, bool update_edge_count_p,
6527 struct move_stmt_d *d)
6529 struct control_flow_graph *cfg;
6530 edge_iterator ei;
6531 edge e;
6532 gimple_stmt_iterator si;
6533 unsigned old_len, new_len;
6535 /* Remove BB from dominance structures. */
6536 delete_from_dominance_info (CDI_DOMINATORS, bb);
6538 /* Move BB from its current loop to the copy in the new function. */
6539 if (current_loops)
6541 struct loop *new_loop = (struct loop *)bb->loop_father->aux;
6542 if (new_loop)
6543 bb->loop_father = new_loop;
6546 /* Link BB to the new linked list. */
6547 move_block_after (bb, after);
6549 /* Update the edge count in the corresponding flowgraphs. */
6550 if (update_edge_count_p)
6551 FOR_EACH_EDGE (e, ei, bb->succs)
6553 cfun->cfg->x_n_edges--;
6554 dest_cfun->cfg->x_n_edges++;
6557 /* Remove BB from the original basic block array. */
6558 (*cfun->cfg->x_basic_block_info)[bb->index] = NULL;
6559 cfun->cfg->x_n_basic_blocks--;
6561 /* Grow DEST_CFUN's basic block array if needed. */
6562 cfg = dest_cfun->cfg;
6563 cfg->x_n_basic_blocks++;
6564 if (bb->index >= cfg->x_last_basic_block)
6565 cfg->x_last_basic_block = bb->index + 1;
6567 old_len = vec_safe_length (cfg->x_basic_block_info);
6568 if ((unsigned) cfg->x_last_basic_block >= old_len)
6570 new_len = cfg->x_last_basic_block + (cfg->x_last_basic_block + 3) / 4;
6571 vec_safe_grow_cleared (cfg->x_basic_block_info, new_len);
6574 (*cfg->x_basic_block_info)[bb->index] = bb;
6576 /* Remap the variables in phi nodes. */
6577 for (si = gsi_start_phis (bb); !gsi_end_p (si); )
6579 gimple phi = gsi_stmt (si);
6580 use_operand_p use;
6581 tree op = PHI_RESULT (phi);
6582 ssa_op_iter oi;
6583 unsigned i;
6585 if (virtual_operand_p (op))
6587 /* Remove the phi nodes for virtual operands (alias analysis will be
6588 run for the new function, anyway). */
6589 remove_phi_node (&si, true);
6590 continue;
6593 SET_PHI_RESULT (phi,
6594 replace_ssa_name (op, d->vars_map, dest_cfun->decl));
6595 FOR_EACH_PHI_ARG (use, phi, oi, SSA_OP_USE)
6597 op = USE_FROM_PTR (use);
6598 if (TREE_CODE (op) == SSA_NAME)
6599 SET_USE (use, replace_ssa_name (op, d->vars_map, dest_cfun->decl));
6602 for (i = 0; i < EDGE_COUNT (bb->preds); i++)
6604 location_t locus = gimple_phi_arg_location (phi, i);
6605 tree block = LOCATION_BLOCK (locus);
6607 if (locus == UNKNOWN_LOCATION)
6608 continue;
6609 if (d->orig_block == NULL_TREE || block == d->orig_block)
6611 if (d->new_block == NULL_TREE)
6612 locus = LOCATION_LOCUS (locus);
6613 else
6614 locus = COMBINE_LOCATION_DATA (line_table, locus, d->new_block);
6615 gimple_phi_arg_set_location (phi, i, locus);
6619 gsi_next (&si);
6622 for (si = gsi_start_bb (bb); !gsi_end_p (si); gsi_next (&si))
6624 gimple stmt = gsi_stmt (si);
6625 struct walk_stmt_info wi;
6627 memset (&wi, 0, sizeof (wi));
6628 wi.info = d;
6629 walk_gimple_stmt (&si, move_stmt_r, move_stmt_op, &wi);
6631 if (gimple_code (stmt) == GIMPLE_LABEL)
6633 tree label = gimple_label_label (stmt);
6634 int uid = LABEL_DECL_UID (label);
6636 gcc_assert (uid > -1);
6638 old_len = vec_safe_length (cfg->x_label_to_block_map);
6639 if (old_len <= (unsigned) uid)
6641 new_len = 3 * uid / 2 + 1;
6642 vec_safe_grow_cleared (cfg->x_label_to_block_map, new_len);
6645 (*cfg->x_label_to_block_map)[uid] = bb;
6646 (*cfun->cfg->x_label_to_block_map)[uid] = NULL;
6648 gcc_assert (DECL_CONTEXT (label) == dest_cfun->decl);
6650 if (uid >= dest_cfun->cfg->last_label_uid)
6651 dest_cfun->cfg->last_label_uid = uid + 1;
6654 maybe_duplicate_eh_stmt_fn (dest_cfun, stmt, cfun, stmt, d->eh_map, 0);
6655 remove_stmt_from_eh_lp_fn (cfun, stmt);
6657 gimple_duplicate_stmt_histograms (dest_cfun, stmt, cfun, stmt);
6658 gimple_remove_stmt_histograms (cfun, stmt);
6660 /* We cannot leave any operands allocated from the operand caches of
6661 the current function. */
6662 free_stmt_operands (cfun, stmt);
6663 push_cfun (dest_cfun);
6664 update_stmt (stmt);
6665 pop_cfun ();
6668 FOR_EACH_EDGE (e, ei, bb->succs)
6669 if (e->goto_locus != UNKNOWN_LOCATION)
6671 tree block = LOCATION_BLOCK (e->goto_locus);
6672 if (d->orig_block == NULL_TREE
6673 || block == d->orig_block)
6674 e->goto_locus = d->new_block ?
6675 COMBINE_LOCATION_DATA (line_table, e->goto_locus, d->new_block) :
6676 LOCATION_LOCUS (e->goto_locus);
6680 /* Examine the statements in BB (which is in SRC_CFUN); find and return
6681 the outermost EH region. Use REGION as the incoming base EH region. */
6683 static eh_region
6684 find_outermost_region_in_block (struct function *src_cfun,
6685 basic_block bb, eh_region region)
6687 gimple_stmt_iterator si;
6689 for (si = gsi_start_bb (bb); !gsi_end_p (si); gsi_next (&si))
6691 gimple stmt = gsi_stmt (si);
6692 eh_region stmt_region;
6693 int lp_nr;
6695 lp_nr = lookup_stmt_eh_lp_fn (src_cfun, stmt);
6696 stmt_region = get_eh_region_from_lp_number_fn (src_cfun, lp_nr);
6697 if (stmt_region)
6699 if (region == NULL)
6700 region = stmt_region;
6701 else if (stmt_region != region)
6703 region = eh_region_outermost (src_cfun, stmt_region, region);
6704 gcc_assert (region != NULL);
6709 return region;
6712 static tree
6713 new_label_mapper (tree decl, void *data)
6715 htab_t hash = (htab_t) data;
6716 struct tree_map *m;
6717 void **slot;
6719 gcc_assert (TREE_CODE (decl) == LABEL_DECL);
6721 m = XNEW (struct tree_map);
6722 m->hash = DECL_UID (decl);
6723 m->base.from = decl;
6724 m->to = create_artificial_label (UNKNOWN_LOCATION);
6725 LABEL_DECL_UID (m->to) = LABEL_DECL_UID (decl);
6726 if (LABEL_DECL_UID (m->to) >= cfun->cfg->last_label_uid)
6727 cfun->cfg->last_label_uid = LABEL_DECL_UID (m->to) + 1;
6729 slot = htab_find_slot_with_hash (hash, m, m->hash, INSERT);
6730 gcc_assert (*slot == NULL);
6732 *slot = m;
6734 return m->to;
6737 /* Change DECL_CONTEXT of all BLOCK_VARS in block, including
6738 subblocks. */
6740 static void
6741 replace_block_vars_by_duplicates (tree block, struct pointer_map_t *vars_map,
6742 tree to_context)
6744 tree *tp, t;
6746 for (tp = &BLOCK_VARS (block); *tp; tp = &DECL_CHAIN (*tp))
6748 t = *tp;
6749 if (TREE_CODE (t) != VAR_DECL && TREE_CODE (t) != CONST_DECL)
6750 continue;
6751 replace_by_duplicate_decl (&t, vars_map, to_context);
6752 if (t != *tp)
6754 if (TREE_CODE (*tp) == VAR_DECL && DECL_HAS_VALUE_EXPR_P (*tp))
6756 SET_DECL_VALUE_EXPR (t, DECL_VALUE_EXPR (*tp));
6757 DECL_HAS_VALUE_EXPR_P (t) = 1;
6759 DECL_CHAIN (t) = DECL_CHAIN (*tp);
6760 *tp = t;
6764 for (block = BLOCK_SUBBLOCKS (block); block; block = BLOCK_CHAIN (block))
6765 replace_block_vars_by_duplicates (block, vars_map, to_context);
6768 /* Fixup the loop arrays and numbers after moving LOOP and its subloops
6769 from FN1 to FN2. */
6771 static void
6772 fixup_loop_arrays_after_move (struct function *fn1, struct function *fn2,
6773 struct loop *loop)
6775 /* Discard it from the old loop array. */
6776 (*get_loops (fn1))[loop->num] = NULL;
6778 /* Place it in the new loop array, assigning it a new number. */
6779 loop->num = number_of_loops (fn2);
6780 vec_safe_push (loops_for_fn (fn2)->larray, loop);
6782 /* Recurse to children. */
6783 for (loop = loop->inner; loop; loop = loop->next)
6784 fixup_loop_arrays_after_move (fn1, fn2, loop);
6787 /* Move a single-entry, single-exit region delimited by ENTRY_BB and
6788 EXIT_BB to function DEST_CFUN. The whole region is replaced by a
6789 single basic block in the original CFG and the new basic block is
6790 returned. DEST_CFUN must not have a CFG yet.
6792 Note that the region need not be a pure SESE region. Blocks inside
6793 the region may contain calls to abort/exit. The only restriction
6794 is that ENTRY_BB should be the only entry point and it must
6795 dominate EXIT_BB.
6797 Change TREE_BLOCK of all statements in ORIG_BLOCK to the new
6798 functions outermost BLOCK, move all subblocks of ORIG_BLOCK
6799 to the new function.
6801 All local variables referenced in the region are assumed to be in
6802 the corresponding BLOCK_VARS and unexpanded variable lists
6803 associated with DEST_CFUN. */
6805 basic_block
6806 move_sese_region_to_fn (struct function *dest_cfun, basic_block entry_bb,
6807 basic_block exit_bb, tree orig_block)
6809 vec<basic_block> bbs, dom_bbs;
6810 basic_block dom_entry = get_immediate_dominator (CDI_DOMINATORS, entry_bb);
6811 basic_block after, bb, *entry_pred, *exit_succ, abb;
6812 struct function *saved_cfun = cfun;
6813 int *entry_flag, *exit_flag;
6814 unsigned *entry_prob, *exit_prob;
6815 unsigned i, num_entry_edges, num_exit_edges, num_nodes;
6816 edge e;
6817 edge_iterator ei;
6818 htab_t new_label_map;
6819 struct pointer_map_t *vars_map, *eh_map;
6820 struct loop *loop = entry_bb->loop_father;
6821 struct loop *loop0 = get_loop (saved_cfun, 0);
6822 struct move_stmt_d d;
6824 /* If ENTRY does not strictly dominate EXIT, this cannot be an SESE
6825 region. */
6826 gcc_assert (entry_bb != exit_bb
6827 && (!exit_bb
6828 || dominated_by_p (CDI_DOMINATORS, exit_bb, entry_bb)));
6830 /* Collect all the blocks in the region. Manually add ENTRY_BB
6831 because it won't be added by dfs_enumerate_from. */
6832 bbs.create (0);
6833 bbs.safe_push (entry_bb);
6834 gather_blocks_in_sese_region (entry_bb, exit_bb, &bbs);
6836 /* The blocks that used to be dominated by something in BBS will now be
6837 dominated by the new block. */
6838 dom_bbs = get_dominated_by_region (CDI_DOMINATORS,
6839 bbs.address (),
6840 bbs.length ());
6842 /* Detach ENTRY_BB and EXIT_BB from CFUN->CFG. We need to remember
6843 the predecessor edges to ENTRY_BB and the successor edges to
6844 EXIT_BB so that we can re-attach them to the new basic block that
6845 will replace the region. */
6846 num_entry_edges = EDGE_COUNT (entry_bb->preds);
6847 entry_pred = XNEWVEC (basic_block, num_entry_edges);
6848 entry_flag = XNEWVEC (int, num_entry_edges);
6849 entry_prob = XNEWVEC (unsigned, num_entry_edges);
6850 i = 0;
6851 for (ei = ei_start (entry_bb->preds); (e = ei_safe_edge (ei)) != NULL;)
6853 entry_prob[i] = e->probability;
6854 entry_flag[i] = e->flags;
6855 entry_pred[i++] = e->src;
6856 remove_edge (e);
6859 if (exit_bb)
6861 num_exit_edges = EDGE_COUNT (exit_bb->succs);
6862 exit_succ = XNEWVEC (basic_block, num_exit_edges);
6863 exit_flag = XNEWVEC (int, num_exit_edges);
6864 exit_prob = XNEWVEC (unsigned, num_exit_edges);
6865 i = 0;
6866 for (ei = ei_start (exit_bb->succs); (e = ei_safe_edge (ei)) != NULL;)
6868 exit_prob[i] = e->probability;
6869 exit_flag[i] = e->flags;
6870 exit_succ[i++] = e->dest;
6871 remove_edge (e);
6874 else
6876 num_exit_edges = 0;
6877 exit_succ = NULL;
6878 exit_flag = NULL;
6879 exit_prob = NULL;
6882 /* Switch context to the child function to initialize DEST_FN's CFG. */
6883 gcc_assert (dest_cfun->cfg == NULL);
6884 push_cfun (dest_cfun);
6886 init_empty_tree_cfg ();
6888 /* Initialize EH information for the new function. */
6889 eh_map = NULL;
6890 new_label_map = NULL;
6891 if (saved_cfun->eh)
6893 eh_region region = NULL;
6895 FOR_EACH_VEC_ELT (bbs, i, bb)
6896 region = find_outermost_region_in_block (saved_cfun, bb, region);
6898 init_eh_for_function ();
6899 if (region != NULL)
6901 new_label_map = htab_create (17, tree_map_hash, tree_map_eq, free);
6902 eh_map = duplicate_eh_regions (saved_cfun, region, 0,
6903 new_label_mapper, new_label_map);
6907 /* Initialize an empty loop tree. */
6908 struct loops *loops = ggc_cleared_alloc<struct loops> ();
6909 init_loops_structure (dest_cfun, loops, 1);
6910 loops->state = LOOPS_MAY_HAVE_MULTIPLE_LATCHES;
6911 set_loops_for_fn (dest_cfun, loops);
6913 /* Move the outlined loop tree part. */
6914 num_nodes = bbs.length ();
6915 FOR_EACH_VEC_ELT (bbs, i, bb)
6917 if (bb->loop_father->header == bb)
6919 struct loop *this_loop = bb->loop_father;
6920 struct loop *outer = loop_outer (this_loop);
6921 if (outer == loop
6922 /* If the SESE region contains some bbs ending with
6923 a noreturn call, those are considered to belong
6924 to the outermost loop in saved_cfun, rather than
6925 the entry_bb's loop_father. */
6926 || outer == loop0)
6928 if (outer != loop)
6929 num_nodes -= this_loop->num_nodes;
6930 flow_loop_tree_node_remove (bb->loop_father);
6931 flow_loop_tree_node_add (get_loop (dest_cfun, 0), this_loop);
6932 fixup_loop_arrays_after_move (saved_cfun, cfun, this_loop);
6935 else if (bb->loop_father == loop0 && loop0 != loop)
6936 num_nodes--;
6938 /* Remove loop exits from the outlined region. */
6939 if (loops_for_fn (saved_cfun)->exits)
6940 FOR_EACH_EDGE (e, ei, bb->succs)
6942 void **slot = htab_find_slot_with_hash
6943 (loops_for_fn (saved_cfun)->exits, e,
6944 htab_hash_pointer (e), NO_INSERT);
6945 if (slot)
6946 htab_clear_slot (loops_for_fn (saved_cfun)->exits, slot);
6951 /* Adjust the number of blocks in the tree root of the outlined part. */
6952 get_loop (dest_cfun, 0)->num_nodes = bbs.length () + 2;
6954 /* Setup a mapping to be used by move_block_to_fn. */
6955 loop->aux = current_loops->tree_root;
6956 loop0->aux = current_loops->tree_root;
6958 pop_cfun ();
6960 /* Move blocks from BBS into DEST_CFUN. */
6961 gcc_assert (bbs.length () >= 2);
6962 after = dest_cfun->cfg->x_entry_block_ptr;
6963 vars_map = pointer_map_create ();
6965 memset (&d, 0, sizeof (d));
6966 d.orig_block = orig_block;
6967 d.new_block = DECL_INITIAL (dest_cfun->decl);
6968 d.from_context = cfun->decl;
6969 d.to_context = dest_cfun->decl;
6970 d.vars_map = vars_map;
6971 d.new_label_map = new_label_map;
6972 d.eh_map = eh_map;
6973 d.remap_decls_p = true;
6975 FOR_EACH_VEC_ELT (bbs, i, bb)
6977 /* No need to update edge counts on the last block. It has
6978 already been updated earlier when we detached the region from
6979 the original CFG. */
6980 move_block_to_fn (dest_cfun, bb, after, bb != exit_bb, &d);
6981 after = bb;
6984 loop->aux = NULL;
6985 loop0->aux = NULL;
6986 /* Loop sizes are no longer correct, fix them up. */
6987 loop->num_nodes -= num_nodes;
6988 for (struct loop *outer = loop_outer (loop);
6989 outer; outer = loop_outer (outer))
6990 outer->num_nodes -= num_nodes;
6991 loop0->num_nodes -= bbs.length () - num_nodes;
6993 if (saved_cfun->has_simduid_loops || saved_cfun->has_force_vectorize_loops)
6995 struct loop *aloop;
6996 for (i = 0; vec_safe_iterate (loops->larray, i, &aloop); i++)
6997 if (aloop != NULL)
6999 if (aloop->simduid)
7001 replace_by_duplicate_decl (&aloop->simduid, d.vars_map,
7002 d.to_context);
7003 dest_cfun->has_simduid_loops = true;
7005 if (aloop->force_vectorize)
7006 dest_cfun->has_force_vectorize_loops = true;
7010 /* Rewire BLOCK_SUBBLOCKS of orig_block. */
7011 if (orig_block)
7013 tree block;
7014 gcc_assert (BLOCK_SUBBLOCKS (DECL_INITIAL (dest_cfun->decl))
7015 == NULL_TREE);
7016 BLOCK_SUBBLOCKS (DECL_INITIAL (dest_cfun->decl))
7017 = BLOCK_SUBBLOCKS (orig_block);
7018 for (block = BLOCK_SUBBLOCKS (orig_block);
7019 block; block = BLOCK_CHAIN (block))
7020 BLOCK_SUPERCONTEXT (block) = DECL_INITIAL (dest_cfun->decl);
7021 BLOCK_SUBBLOCKS (orig_block) = NULL_TREE;
7024 replace_block_vars_by_duplicates (DECL_INITIAL (dest_cfun->decl),
7025 vars_map, dest_cfun->decl);
7027 if (new_label_map)
7028 htab_delete (new_label_map);
7029 if (eh_map)
7030 pointer_map_destroy (eh_map);
7031 pointer_map_destroy (vars_map);
7033 /* Rewire the entry and exit blocks. The successor to the entry
7034 block turns into the successor of DEST_FN's ENTRY_BLOCK_PTR in
7035 the child function. Similarly, the predecessor of DEST_FN's
7036 EXIT_BLOCK_PTR turns into the predecessor of EXIT_BLOCK_PTR. We
7037 need to switch CFUN between DEST_CFUN and SAVED_CFUN so that the
7038 various CFG manipulation function get to the right CFG.
7040 FIXME, this is silly. The CFG ought to become a parameter to
7041 these helpers. */
7042 push_cfun (dest_cfun);
7043 make_edge (ENTRY_BLOCK_PTR_FOR_FN (cfun), entry_bb, EDGE_FALLTHRU);
7044 if (exit_bb)
7045 make_edge (exit_bb, EXIT_BLOCK_PTR_FOR_FN (cfun), 0);
7046 pop_cfun ();
7048 /* Back in the original function, the SESE region has disappeared,
7049 create a new basic block in its place. */
7050 bb = create_empty_bb (entry_pred[0]);
7051 if (current_loops)
7052 add_bb_to_loop (bb, loop);
7053 for (i = 0; i < num_entry_edges; i++)
7055 e = make_edge (entry_pred[i], bb, entry_flag[i]);
7056 e->probability = entry_prob[i];
7059 for (i = 0; i < num_exit_edges; i++)
7061 e = make_edge (bb, exit_succ[i], exit_flag[i]);
7062 e->probability = exit_prob[i];
7065 set_immediate_dominator (CDI_DOMINATORS, bb, dom_entry);
7066 FOR_EACH_VEC_ELT (dom_bbs, i, abb)
7067 set_immediate_dominator (CDI_DOMINATORS, abb, bb);
7068 dom_bbs.release ();
7070 if (exit_bb)
7072 free (exit_prob);
7073 free (exit_flag);
7074 free (exit_succ);
7076 free (entry_prob);
7077 free (entry_flag);
7078 free (entry_pred);
7079 bbs.release ();
7081 return bb;
7085 /* Dump FUNCTION_DECL FN to file FILE using FLAGS (see TDF_* in dumpfile.h)
7088 void
7089 dump_function_to_file (tree fndecl, FILE *file, int flags)
7091 tree arg, var, old_current_fndecl = current_function_decl;
7092 struct function *dsf;
7093 bool ignore_topmost_bind = false, any_var = false;
7094 basic_block bb;
7095 tree chain;
7096 bool tmclone = (TREE_CODE (fndecl) == FUNCTION_DECL
7097 && decl_is_tm_clone (fndecl));
7098 struct function *fun = DECL_STRUCT_FUNCTION (fndecl);
7100 current_function_decl = fndecl;
7101 fprintf (file, "%s %s(", function_name (fun), tmclone ? "[tm-clone] " : "");
7103 arg = DECL_ARGUMENTS (fndecl);
7104 while (arg)
7106 print_generic_expr (file, TREE_TYPE (arg), dump_flags);
7107 fprintf (file, " ");
7108 print_generic_expr (file, arg, dump_flags);
7109 if (flags & TDF_VERBOSE)
7110 print_node (file, "", arg, 4);
7111 if (DECL_CHAIN (arg))
7112 fprintf (file, ", ");
7113 arg = DECL_CHAIN (arg);
7115 fprintf (file, ")\n");
7117 if (flags & TDF_VERBOSE)
7118 print_node (file, "", fndecl, 2);
7120 dsf = DECL_STRUCT_FUNCTION (fndecl);
7121 if (dsf && (flags & TDF_EH))
7122 dump_eh_tree (file, dsf);
7124 if (flags & TDF_RAW && !gimple_has_body_p (fndecl))
7126 dump_node (fndecl, TDF_SLIM | flags, file);
7127 current_function_decl = old_current_fndecl;
7128 return;
7131 /* When GIMPLE is lowered, the variables are no longer available in
7132 BIND_EXPRs, so display them separately. */
7133 if (fun && fun->decl == fndecl && (fun->curr_properties & PROP_gimple_lcf))
7135 unsigned ix;
7136 ignore_topmost_bind = true;
7138 fprintf (file, "{\n");
7139 if (!vec_safe_is_empty (fun->local_decls))
7140 FOR_EACH_LOCAL_DECL (fun, ix, var)
7142 print_generic_decl (file, var, flags);
7143 if (flags & TDF_VERBOSE)
7144 print_node (file, "", var, 4);
7145 fprintf (file, "\n");
7147 any_var = true;
7149 if (gimple_in_ssa_p (cfun))
7150 for (ix = 1; ix < num_ssa_names; ++ix)
7152 tree name = ssa_name (ix);
7153 if (name && !SSA_NAME_VAR (name))
7155 fprintf (file, " ");
7156 print_generic_expr (file, TREE_TYPE (name), flags);
7157 fprintf (file, " ");
7158 print_generic_expr (file, name, flags);
7159 fprintf (file, ";\n");
7161 any_var = true;
7166 if (fun && fun->decl == fndecl
7167 && fun->cfg
7168 && basic_block_info_for_fn (fun))
7170 /* If the CFG has been built, emit a CFG-based dump. */
7171 if (!ignore_topmost_bind)
7172 fprintf (file, "{\n");
7174 if (any_var && n_basic_blocks_for_fn (fun))
7175 fprintf (file, "\n");
7177 FOR_EACH_BB_FN (bb, fun)
7178 dump_bb (file, bb, 2, flags | TDF_COMMENT);
7180 fprintf (file, "}\n");
7182 else if (DECL_SAVED_TREE (fndecl) == NULL)
7184 /* The function is now in GIMPLE form but the CFG has not been
7185 built yet. Emit the single sequence of GIMPLE statements
7186 that make up its body. */
7187 gimple_seq body = gimple_body (fndecl);
7189 if (gimple_seq_first_stmt (body)
7190 && gimple_seq_first_stmt (body) == gimple_seq_last_stmt (body)
7191 && gimple_code (gimple_seq_first_stmt (body)) == GIMPLE_BIND)
7192 print_gimple_seq (file, body, 0, flags);
7193 else
7195 if (!ignore_topmost_bind)
7196 fprintf (file, "{\n");
7198 if (any_var)
7199 fprintf (file, "\n");
7201 print_gimple_seq (file, body, 2, flags);
7202 fprintf (file, "}\n");
7205 else
7207 int indent;
7209 /* Make a tree based dump. */
7210 chain = DECL_SAVED_TREE (fndecl);
7211 if (chain && TREE_CODE (chain) == BIND_EXPR)
7213 if (ignore_topmost_bind)
7215 chain = BIND_EXPR_BODY (chain);
7216 indent = 2;
7218 else
7219 indent = 0;
7221 else
7223 if (!ignore_topmost_bind)
7224 fprintf (file, "{\n");
7225 indent = 2;
7228 if (any_var)
7229 fprintf (file, "\n");
7231 print_generic_stmt_indented (file, chain, flags, indent);
7232 if (ignore_topmost_bind)
7233 fprintf (file, "}\n");
7236 if (flags & TDF_ENUMERATE_LOCALS)
7237 dump_enumerated_decls (file, flags);
7238 fprintf (file, "\n\n");
7240 current_function_decl = old_current_fndecl;
7243 /* Dump FUNCTION_DECL FN to stderr using FLAGS (see TDF_* in tree.h) */
7245 DEBUG_FUNCTION void
7246 debug_function (tree fn, int flags)
7248 dump_function_to_file (fn, stderr, flags);
7252 /* Print on FILE the indexes for the predecessors of basic_block BB. */
7254 static void
7255 print_pred_bbs (FILE *file, basic_block bb)
7257 edge e;
7258 edge_iterator ei;
7260 FOR_EACH_EDGE (e, ei, bb->preds)
7261 fprintf (file, "bb_%d ", e->src->index);
7265 /* Print on FILE the indexes for the successors of basic_block BB. */
7267 static void
7268 print_succ_bbs (FILE *file, basic_block bb)
7270 edge e;
7271 edge_iterator ei;
7273 FOR_EACH_EDGE (e, ei, bb->succs)
7274 fprintf (file, "bb_%d ", e->dest->index);
7277 /* Print to FILE the basic block BB following the VERBOSITY level. */
7279 void
7280 print_loops_bb (FILE *file, basic_block bb, int indent, int verbosity)
7282 char *s_indent = (char *) alloca ((size_t) indent + 1);
7283 memset ((void *) s_indent, ' ', (size_t) indent);
7284 s_indent[indent] = '\0';
7286 /* Print basic_block's header. */
7287 if (verbosity >= 2)
7289 fprintf (file, "%s bb_%d (preds = {", s_indent, bb->index);
7290 print_pred_bbs (file, bb);
7291 fprintf (file, "}, succs = {");
7292 print_succ_bbs (file, bb);
7293 fprintf (file, "})\n");
7296 /* Print basic_block's body. */
7297 if (verbosity >= 3)
7299 fprintf (file, "%s {\n", s_indent);
7300 dump_bb (file, bb, indent + 4, TDF_VOPS|TDF_MEMSYMS);
7301 fprintf (file, "%s }\n", s_indent);
7305 static void print_loop_and_siblings (FILE *, struct loop *, int, int);
7307 /* Pretty print LOOP on FILE, indented INDENT spaces. Following
7308 VERBOSITY level this outputs the contents of the loop, or just its
7309 structure. */
7311 static void
7312 print_loop (FILE *file, struct loop *loop, int indent, int verbosity)
7314 char *s_indent;
7315 basic_block bb;
7317 if (loop == NULL)
7318 return;
7320 s_indent = (char *) alloca ((size_t) indent + 1);
7321 memset ((void *) s_indent, ' ', (size_t) indent);
7322 s_indent[indent] = '\0';
7324 /* Print loop's header. */
7325 fprintf (file, "%sloop_%d (", s_indent, loop->num);
7326 if (loop->header)
7327 fprintf (file, "header = %d", loop->header->index);
7328 else
7330 fprintf (file, "deleted)\n");
7331 return;
7333 if (loop->latch)
7334 fprintf (file, ", latch = %d", loop->latch->index);
7335 else
7336 fprintf (file, ", multiple latches");
7337 fprintf (file, ", niter = ");
7338 print_generic_expr (file, loop->nb_iterations, 0);
7340 if (loop->any_upper_bound)
7342 fprintf (file, ", upper_bound = ");
7343 print_decu (loop->nb_iterations_upper_bound, file);
7346 if (loop->any_estimate)
7348 fprintf (file, ", estimate = ");
7349 print_decu (loop->nb_iterations_estimate, file);
7351 fprintf (file, ")\n");
7353 /* Print loop's body. */
7354 if (verbosity >= 1)
7356 fprintf (file, "%s{\n", s_indent);
7357 FOR_EACH_BB_FN (bb, cfun)
7358 if (bb->loop_father == loop)
7359 print_loops_bb (file, bb, indent, verbosity);
7361 print_loop_and_siblings (file, loop->inner, indent + 2, verbosity);
7362 fprintf (file, "%s}\n", s_indent);
7366 /* Print the LOOP and its sibling loops on FILE, indented INDENT
7367 spaces. Following VERBOSITY level this outputs the contents of the
7368 loop, or just its structure. */
7370 static void
7371 print_loop_and_siblings (FILE *file, struct loop *loop, int indent,
7372 int verbosity)
7374 if (loop == NULL)
7375 return;
7377 print_loop (file, loop, indent, verbosity);
7378 print_loop_and_siblings (file, loop->next, indent, verbosity);
7381 /* Follow a CFG edge from the entry point of the program, and on entry
7382 of a loop, pretty print the loop structure on FILE. */
7384 void
7385 print_loops (FILE *file, int verbosity)
7387 basic_block bb;
7389 bb = ENTRY_BLOCK_PTR_FOR_FN (cfun);
7390 if (bb && bb->loop_father)
7391 print_loop_and_siblings (file, bb->loop_father, 0, verbosity);
7394 /* Dump a loop. */
7396 DEBUG_FUNCTION void
7397 debug (struct loop &ref)
7399 print_loop (stderr, &ref, 0, /*verbosity*/0);
7402 DEBUG_FUNCTION void
7403 debug (struct loop *ptr)
7405 if (ptr)
7406 debug (*ptr);
7407 else
7408 fprintf (stderr, "<nil>\n");
7411 /* Dump a loop verbosely. */
7413 DEBUG_FUNCTION void
7414 debug_verbose (struct loop &ref)
7416 print_loop (stderr, &ref, 0, /*verbosity*/3);
7419 DEBUG_FUNCTION void
7420 debug_verbose (struct loop *ptr)
7422 if (ptr)
7423 debug (*ptr);
7424 else
7425 fprintf (stderr, "<nil>\n");
7429 /* Debugging loops structure at tree level, at some VERBOSITY level. */
7431 DEBUG_FUNCTION void
7432 debug_loops (int verbosity)
7434 print_loops (stderr, verbosity);
7437 /* Print on stderr the code of LOOP, at some VERBOSITY level. */
7439 DEBUG_FUNCTION void
7440 debug_loop (struct loop *loop, int verbosity)
7442 print_loop (stderr, loop, 0, verbosity);
7445 /* Print on stderr the code of loop number NUM, at some VERBOSITY
7446 level. */
7448 DEBUG_FUNCTION void
7449 debug_loop_num (unsigned num, int verbosity)
7451 debug_loop (get_loop (cfun, num), verbosity);
7454 /* Return true if BB ends with a call, possibly followed by some
7455 instructions that must stay with the call. Return false,
7456 otherwise. */
7458 static bool
7459 gimple_block_ends_with_call_p (basic_block bb)
7461 gimple_stmt_iterator gsi = gsi_last_nondebug_bb (bb);
7462 return !gsi_end_p (gsi) && is_gimple_call (gsi_stmt (gsi));
7466 /* Return true if BB ends with a conditional branch. Return false,
7467 otherwise. */
7469 static bool
7470 gimple_block_ends_with_condjump_p (const_basic_block bb)
7472 gimple stmt = last_stmt (CONST_CAST_BB (bb));
7473 return (stmt && gimple_code (stmt) == GIMPLE_COND);
7477 /* Return true if we need to add fake edge to exit at statement T.
7478 Helper function for gimple_flow_call_edges_add. */
7480 static bool
7481 need_fake_edge_p (gimple t)
7483 tree fndecl = NULL_TREE;
7484 int call_flags = 0;
7486 /* NORETURN and LONGJMP calls already have an edge to exit.
7487 CONST and PURE calls do not need one.
7488 We don't currently check for CONST and PURE here, although
7489 it would be a good idea, because those attributes are
7490 figured out from the RTL in mark_constant_function, and
7491 the counter incrementation code from -fprofile-arcs
7492 leads to different results from -fbranch-probabilities. */
7493 if (is_gimple_call (t))
7495 fndecl = gimple_call_fndecl (t);
7496 call_flags = gimple_call_flags (t);
7499 if (is_gimple_call (t)
7500 && fndecl
7501 && DECL_BUILT_IN (fndecl)
7502 && (call_flags & ECF_NOTHROW)
7503 && !(call_flags & ECF_RETURNS_TWICE)
7504 /* fork() doesn't really return twice, but the effect of
7505 wrapping it in __gcov_fork() which calls __gcov_flush()
7506 and clears the counters before forking has the same
7507 effect as returning twice. Force a fake edge. */
7508 && !(DECL_BUILT_IN_CLASS (fndecl) == BUILT_IN_NORMAL
7509 && DECL_FUNCTION_CODE (fndecl) == BUILT_IN_FORK))
7510 return false;
7512 if (is_gimple_call (t))
7514 edge_iterator ei;
7515 edge e;
7516 basic_block bb;
7518 if (!(call_flags & ECF_NORETURN))
7519 return true;
7521 bb = gimple_bb (t);
7522 FOR_EACH_EDGE (e, ei, bb->succs)
7523 if ((e->flags & EDGE_FAKE) == 0)
7524 return true;
7527 if (gimple_code (t) == GIMPLE_ASM
7528 && (gimple_asm_volatile_p (t) || gimple_asm_input_p (t)))
7529 return true;
7531 return false;
7535 /* Add fake edges to the function exit for any non constant and non
7536 noreturn calls (or noreturn calls with EH/abnormal edges),
7537 volatile inline assembly in the bitmap of blocks specified by BLOCKS
7538 or to the whole CFG if BLOCKS is zero. Return the number of blocks
7539 that were split.
7541 The goal is to expose cases in which entering a basic block does
7542 not imply that all subsequent instructions must be executed. */
7544 static int
7545 gimple_flow_call_edges_add (sbitmap blocks)
7547 int i;
7548 int blocks_split = 0;
7549 int last_bb = last_basic_block_for_fn (cfun);
7550 bool check_last_block = false;
7552 if (n_basic_blocks_for_fn (cfun) == NUM_FIXED_BLOCKS)
7553 return 0;
7555 if (! blocks)
7556 check_last_block = true;
7557 else
7558 check_last_block = bitmap_bit_p (blocks,
7559 EXIT_BLOCK_PTR_FOR_FN (cfun)->prev_bb->index);
7561 /* In the last basic block, before epilogue generation, there will be
7562 a fallthru edge to EXIT. Special care is required if the last insn
7563 of the last basic block is a call because make_edge folds duplicate
7564 edges, which would result in the fallthru edge also being marked
7565 fake, which would result in the fallthru edge being removed by
7566 remove_fake_edges, which would result in an invalid CFG.
7568 Moreover, we can't elide the outgoing fake edge, since the block
7569 profiler needs to take this into account in order to solve the minimal
7570 spanning tree in the case that the call doesn't return.
7572 Handle this by adding a dummy instruction in a new last basic block. */
7573 if (check_last_block)
7575 basic_block bb = EXIT_BLOCK_PTR_FOR_FN (cfun)->prev_bb;
7576 gimple_stmt_iterator gsi = gsi_last_nondebug_bb (bb);
7577 gimple t = NULL;
7579 if (!gsi_end_p (gsi))
7580 t = gsi_stmt (gsi);
7582 if (t && need_fake_edge_p (t))
7584 edge e;
7586 e = find_edge (bb, EXIT_BLOCK_PTR_FOR_FN (cfun));
7587 if (e)
7589 gsi_insert_on_edge (e, gimple_build_nop ());
7590 gsi_commit_edge_inserts ();
7595 /* Now add fake edges to the function exit for any non constant
7596 calls since there is no way that we can determine if they will
7597 return or not... */
7598 for (i = 0; i < last_bb; i++)
7600 basic_block bb = BASIC_BLOCK_FOR_FN (cfun, i);
7601 gimple_stmt_iterator gsi;
7602 gimple stmt, last_stmt;
7604 if (!bb)
7605 continue;
7607 if (blocks && !bitmap_bit_p (blocks, i))
7608 continue;
7610 gsi = gsi_last_nondebug_bb (bb);
7611 if (!gsi_end_p (gsi))
7613 last_stmt = gsi_stmt (gsi);
7616 stmt = gsi_stmt (gsi);
7617 if (need_fake_edge_p (stmt))
7619 edge e;
7621 /* The handling above of the final block before the
7622 epilogue should be enough to verify that there is
7623 no edge to the exit block in CFG already.
7624 Calling make_edge in such case would cause us to
7625 mark that edge as fake and remove it later. */
7626 #ifdef ENABLE_CHECKING
7627 if (stmt == last_stmt)
7629 e = find_edge (bb, EXIT_BLOCK_PTR_FOR_FN (cfun));
7630 gcc_assert (e == NULL);
7632 #endif
7634 /* Note that the following may create a new basic block
7635 and renumber the existing basic blocks. */
7636 if (stmt != last_stmt)
7638 e = split_block (bb, stmt);
7639 if (e)
7640 blocks_split++;
7642 make_edge (bb, EXIT_BLOCK_PTR_FOR_FN (cfun), EDGE_FAKE);
7644 gsi_prev (&gsi);
7646 while (!gsi_end_p (gsi));
7650 if (blocks_split)
7651 verify_flow_info ();
7653 return blocks_split;
7656 /* Removes edge E and all the blocks dominated by it, and updates dominance
7657 information. The IL in E->src needs to be updated separately.
7658 If dominance info is not available, only the edge E is removed.*/
7660 void
7661 remove_edge_and_dominated_blocks (edge e)
7663 vec<basic_block> bbs_to_remove = vNULL;
7664 vec<basic_block> bbs_to_fix_dom = vNULL;
7665 bitmap df, df_idom;
7666 edge f;
7667 edge_iterator ei;
7668 bool none_removed = false;
7669 unsigned i;
7670 basic_block bb, dbb;
7671 bitmap_iterator bi;
7673 if (!dom_info_available_p (CDI_DOMINATORS))
7675 remove_edge (e);
7676 return;
7679 /* No updating is needed for edges to exit. */
7680 if (e->dest == EXIT_BLOCK_PTR_FOR_FN (cfun))
7682 if (cfgcleanup_altered_bbs)
7683 bitmap_set_bit (cfgcleanup_altered_bbs, e->src->index);
7684 remove_edge (e);
7685 return;
7688 /* First, we find the basic blocks to remove. If E->dest has a predecessor
7689 that is not dominated by E->dest, then this set is empty. Otherwise,
7690 all the basic blocks dominated by E->dest are removed.
7692 Also, to DF_IDOM we store the immediate dominators of the blocks in
7693 the dominance frontier of E (i.e., of the successors of the
7694 removed blocks, if there are any, and of E->dest otherwise). */
7695 FOR_EACH_EDGE (f, ei, e->dest->preds)
7697 if (f == e)
7698 continue;
7700 if (!dominated_by_p (CDI_DOMINATORS, f->src, e->dest))
7702 none_removed = true;
7703 break;
7707 df = BITMAP_ALLOC (NULL);
7708 df_idom = BITMAP_ALLOC (NULL);
7710 if (none_removed)
7711 bitmap_set_bit (df_idom,
7712 get_immediate_dominator (CDI_DOMINATORS, e->dest)->index);
7713 else
7715 bbs_to_remove = get_all_dominated_blocks (CDI_DOMINATORS, e->dest);
7716 FOR_EACH_VEC_ELT (bbs_to_remove, i, bb)
7718 FOR_EACH_EDGE (f, ei, bb->succs)
7720 if (f->dest != EXIT_BLOCK_PTR_FOR_FN (cfun))
7721 bitmap_set_bit (df, f->dest->index);
7724 FOR_EACH_VEC_ELT (bbs_to_remove, i, bb)
7725 bitmap_clear_bit (df, bb->index);
7727 EXECUTE_IF_SET_IN_BITMAP (df, 0, i, bi)
7729 bb = BASIC_BLOCK_FOR_FN (cfun, i);
7730 bitmap_set_bit (df_idom,
7731 get_immediate_dominator (CDI_DOMINATORS, bb)->index);
7735 if (cfgcleanup_altered_bbs)
7737 /* Record the set of the altered basic blocks. */
7738 bitmap_set_bit (cfgcleanup_altered_bbs, e->src->index);
7739 bitmap_ior_into (cfgcleanup_altered_bbs, df);
7742 /* Remove E and the cancelled blocks. */
7743 if (none_removed)
7744 remove_edge (e);
7745 else
7747 /* Walk backwards so as to get a chance to substitute all
7748 released DEFs into debug stmts. See
7749 eliminate_unnecessary_stmts() in tree-ssa-dce.c for more
7750 details. */
7751 for (i = bbs_to_remove.length (); i-- > 0; )
7752 delete_basic_block (bbs_to_remove[i]);
7755 /* Update the dominance information. The immediate dominator may change only
7756 for blocks whose immediate dominator belongs to DF_IDOM:
7758 Suppose that idom(X) = Y before removal of E and idom(X) != Y after the
7759 removal. Let Z the arbitrary block such that idom(Z) = Y and
7760 Z dominates X after the removal. Before removal, there exists a path P
7761 from Y to X that avoids Z. Let F be the last edge on P that is
7762 removed, and let W = F->dest. Before removal, idom(W) = Y (since Y
7763 dominates W, and because of P, Z does not dominate W), and W belongs to
7764 the dominance frontier of E. Therefore, Y belongs to DF_IDOM. */
7765 EXECUTE_IF_SET_IN_BITMAP (df_idom, 0, i, bi)
7767 bb = BASIC_BLOCK_FOR_FN (cfun, i);
7768 for (dbb = first_dom_son (CDI_DOMINATORS, bb);
7769 dbb;
7770 dbb = next_dom_son (CDI_DOMINATORS, dbb))
7771 bbs_to_fix_dom.safe_push (dbb);
7774 iterate_fix_dominators (CDI_DOMINATORS, bbs_to_fix_dom, true);
7776 BITMAP_FREE (df);
7777 BITMAP_FREE (df_idom);
7778 bbs_to_remove.release ();
7779 bbs_to_fix_dom.release ();
7782 /* Purge dead EH edges from basic block BB. */
7784 bool
7785 gimple_purge_dead_eh_edges (basic_block bb)
7787 bool changed = false;
7788 edge e;
7789 edge_iterator ei;
7790 gimple stmt = last_stmt (bb);
7792 if (stmt && stmt_can_throw_internal (stmt))
7793 return false;
7795 for (ei = ei_start (bb->succs); (e = ei_safe_edge (ei)); )
7797 if (e->flags & EDGE_EH)
7799 remove_edge_and_dominated_blocks (e);
7800 changed = true;
7802 else
7803 ei_next (&ei);
7806 return changed;
7809 /* Purge dead EH edges from basic block listed in BLOCKS. */
7811 bool
7812 gimple_purge_all_dead_eh_edges (const_bitmap blocks)
7814 bool changed = false;
7815 unsigned i;
7816 bitmap_iterator bi;
7818 EXECUTE_IF_SET_IN_BITMAP (blocks, 0, i, bi)
7820 basic_block bb = BASIC_BLOCK_FOR_FN (cfun, i);
7822 /* Earlier gimple_purge_dead_eh_edges could have removed
7823 this basic block already. */
7824 gcc_assert (bb || changed);
7825 if (bb != NULL)
7826 changed |= gimple_purge_dead_eh_edges (bb);
7829 return changed;
7832 /* Purge dead abnormal call edges from basic block BB. */
7834 bool
7835 gimple_purge_dead_abnormal_call_edges (basic_block bb)
7837 bool changed = false;
7838 edge e;
7839 edge_iterator ei;
7840 gimple stmt = last_stmt (bb);
7842 if (!cfun->has_nonlocal_label
7843 && !cfun->calls_setjmp)
7844 return false;
7846 if (stmt && stmt_can_make_abnormal_goto (stmt))
7847 return false;
7849 for (ei = ei_start (bb->succs); (e = ei_safe_edge (ei)); )
7851 if (e->flags & EDGE_ABNORMAL)
7853 if (e->flags & EDGE_FALLTHRU)
7854 e->flags &= ~EDGE_ABNORMAL;
7855 else
7856 remove_edge_and_dominated_blocks (e);
7857 changed = true;
7859 else
7860 ei_next (&ei);
7863 return changed;
7866 /* Purge dead abnormal call edges from basic block listed in BLOCKS. */
7868 bool
7869 gimple_purge_all_dead_abnormal_call_edges (const_bitmap blocks)
7871 bool changed = false;
7872 unsigned i;
7873 bitmap_iterator bi;
7875 EXECUTE_IF_SET_IN_BITMAP (blocks, 0, i, bi)
7877 basic_block bb = BASIC_BLOCK_FOR_FN (cfun, i);
7879 /* Earlier gimple_purge_dead_abnormal_call_edges could have removed
7880 this basic block already. */
7881 gcc_assert (bb || changed);
7882 if (bb != NULL)
7883 changed |= gimple_purge_dead_abnormal_call_edges (bb);
7886 return changed;
7889 /* This function is called whenever a new edge is created or
7890 redirected. */
7892 static void
7893 gimple_execute_on_growing_pred (edge e)
7895 basic_block bb = e->dest;
7897 if (!gimple_seq_empty_p (phi_nodes (bb)))
7898 reserve_phi_args_for_new_edge (bb);
7901 /* This function is called immediately before edge E is removed from
7902 the edge vector E->dest->preds. */
7904 static void
7905 gimple_execute_on_shrinking_pred (edge e)
7907 if (!gimple_seq_empty_p (phi_nodes (e->dest)))
7908 remove_phi_args (e);
7911 /*---------------------------------------------------------------------------
7912 Helper functions for Loop versioning
7913 ---------------------------------------------------------------------------*/
7915 /* Adjust phi nodes for 'first' basic block. 'second' basic block is a copy
7916 of 'first'. Both of them are dominated by 'new_head' basic block. When
7917 'new_head' was created by 'second's incoming edge it received phi arguments
7918 on the edge by split_edge(). Later, additional edge 'e' was created to
7919 connect 'new_head' and 'first'. Now this routine adds phi args on this
7920 additional edge 'e' that new_head to second edge received as part of edge
7921 splitting. */
7923 static void
7924 gimple_lv_adjust_loop_header_phi (basic_block first, basic_block second,
7925 basic_block new_head, edge e)
7927 gimple phi1, phi2;
7928 gimple_stmt_iterator psi1, psi2;
7929 tree def;
7930 edge e2 = find_edge (new_head, second);
7932 /* Because NEW_HEAD has been created by splitting SECOND's incoming
7933 edge, we should always have an edge from NEW_HEAD to SECOND. */
7934 gcc_assert (e2 != NULL);
7936 /* Browse all 'second' basic block phi nodes and add phi args to
7937 edge 'e' for 'first' head. PHI args are always in correct order. */
7939 for (psi2 = gsi_start_phis (second),
7940 psi1 = gsi_start_phis (first);
7941 !gsi_end_p (psi2) && !gsi_end_p (psi1);
7942 gsi_next (&psi2), gsi_next (&psi1))
7944 phi1 = gsi_stmt (psi1);
7945 phi2 = gsi_stmt (psi2);
7946 def = PHI_ARG_DEF (phi2, e2->dest_idx);
7947 add_phi_arg (phi1, def, e, gimple_phi_arg_location_from_edge (phi2, e2));
7952 /* Adds a if else statement to COND_BB with condition COND_EXPR.
7953 SECOND_HEAD is the destination of the THEN and FIRST_HEAD is
7954 the destination of the ELSE part. */
7956 static void
7957 gimple_lv_add_condition_to_bb (basic_block first_head ATTRIBUTE_UNUSED,
7958 basic_block second_head ATTRIBUTE_UNUSED,
7959 basic_block cond_bb, void *cond_e)
7961 gimple_stmt_iterator gsi;
7962 gimple new_cond_expr;
7963 tree cond_expr = (tree) cond_e;
7964 edge e0;
7966 /* Build new conditional expr */
7967 new_cond_expr = gimple_build_cond_from_tree (cond_expr,
7968 NULL_TREE, NULL_TREE);
7970 /* Add new cond in cond_bb. */
7971 gsi = gsi_last_bb (cond_bb);
7972 gsi_insert_after (&gsi, new_cond_expr, GSI_NEW_STMT);
7974 /* Adjust edges appropriately to connect new head with first head
7975 as well as second head. */
7976 e0 = single_succ_edge (cond_bb);
7977 e0->flags &= ~EDGE_FALLTHRU;
7978 e0->flags |= EDGE_FALSE_VALUE;
7982 /* Do book-keeping of basic block BB for the profile consistency checker.
7983 If AFTER_PASS is 0, do pre-pass accounting, or if AFTER_PASS is 1
7984 then do post-pass accounting. Store the counting in RECORD. */
7985 static void
7986 gimple_account_profile_record (basic_block bb, int after_pass,
7987 struct profile_record *record)
7989 gimple_stmt_iterator i;
7990 for (i = gsi_start_bb (bb); !gsi_end_p (i); gsi_next (&i))
7992 record->size[after_pass]
7993 += estimate_num_insns (gsi_stmt (i), &eni_size_weights);
7994 if (profile_status_for_fn (cfun) == PROFILE_READ)
7995 record->time[after_pass]
7996 += estimate_num_insns (gsi_stmt (i),
7997 &eni_time_weights) * bb->count;
7998 else if (profile_status_for_fn (cfun) == PROFILE_GUESSED)
7999 record->time[after_pass]
8000 += estimate_num_insns (gsi_stmt (i),
8001 &eni_time_weights) * bb->frequency;
8005 struct cfg_hooks gimple_cfg_hooks = {
8006 "gimple",
8007 gimple_verify_flow_info,
8008 gimple_dump_bb, /* dump_bb */
8009 gimple_dump_bb_for_graph, /* dump_bb_for_graph */
8010 create_bb, /* create_basic_block */
8011 gimple_redirect_edge_and_branch, /* redirect_edge_and_branch */
8012 gimple_redirect_edge_and_branch_force, /* redirect_edge_and_branch_force */
8013 gimple_can_remove_branch_p, /* can_remove_branch_p */
8014 remove_bb, /* delete_basic_block */
8015 gimple_split_block, /* split_block */
8016 gimple_move_block_after, /* move_block_after */
8017 gimple_can_merge_blocks_p, /* can_merge_blocks_p */
8018 gimple_merge_blocks, /* merge_blocks */
8019 gimple_predict_edge, /* predict_edge */
8020 gimple_predicted_by_p, /* predicted_by_p */
8021 gimple_can_duplicate_bb_p, /* can_duplicate_block_p */
8022 gimple_duplicate_bb, /* duplicate_block */
8023 gimple_split_edge, /* split_edge */
8024 gimple_make_forwarder_block, /* make_forward_block */
8025 NULL, /* tidy_fallthru_edge */
8026 NULL, /* force_nonfallthru */
8027 gimple_block_ends_with_call_p,/* block_ends_with_call_p */
8028 gimple_block_ends_with_condjump_p, /* block_ends_with_condjump_p */
8029 gimple_flow_call_edges_add, /* flow_call_edges_add */
8030 gimple_execute_on_growing_pred, /* execute_on_growing_pred */
8031 gimple_execute_on_shrinking_pred, /* execute_on_shrinking_pred */
8032 gimple_duplicate_loop_to_header_edge, /* duplicate loop for trees */
8033 gimple_lv_add_condition_to_bb, /* lv_add_condition_to_bb */
8034 gimple_lv_adjust_loop_header_phi, /* lv_adjust_loop_header_phi*/
8035 extract_true_false_edges_from_block, /* extract_cond_bb_edges */
8036 flush_pending_stmts, /* flush_pending_stmts */
8037 gimple_empty_block_p, /* block_empty_p */
8038 gimple_split_block_before_cond_jump, /* split_block_before_cond_jump */
8039 gimple_account_profile_record,
8043 /* Split all critical edges. */
8045 unsigned int
8046 split_critical_edges (void)
8048 basic_block bb;
8049 edge e;
8050 edge_iterator ei;
8052 /* split_edge can redirect edges out of SWITCH_EXPRs, which can get
8053 expensive. So we want to enable recording of edge to CASE_LABEL_EXPR
8054 mappings around the calls to split_edge. */
8055 start_recording_case_labels ();
8056 FOR_ALL_BB_FN (bb, cfun)
8058 FOR_EACH_EDGE (e, ei, bb->succs)
8060 if (EDGE_CRITICAL_P (e) && !(e->flags & EDGE_ABNORMAL))
8061 split_edge (e);
8062 /* PRE inserts statements to edges and expects that
8063 since split_critical_edges was done beforehand, committing edge
8064 insertions will not split more edges. In addition to critical
8065 edges we must split edges that have multiple successors and
8066 end by control flow statements, such as RESX.
8067 Go ahead and split them too. This matches the logic in
8068 gimple_find_edge_insert_loc. */
8069 else if ((!single_pred_p (e->dest)
8070 || !gimple_seq_empty_p (phi_nodes (e->dest))
8071 || e->dest == EXIT_BLOCK_PTR_FOR_FN (cfun))
8072 && e->src != ENTRY_BLOCK_PTR_FOR_FN (cfun)
8073 && !(e->flags & EDGE_ABNORMAL))
8075 gimple_stmt_iterator gsi;
8077 gsi = gsi_last_bb (e->src);
8078 if (!gsi_end_p (gsi)
8079 && stmt_ends_bb_p (gsi_stmt (gsi))
8080 && (gimple_code (gsi_stmt (gsi)) != GIMPLE_RETURN
8081 && !gimple_call_builtin_p (gsi_stmt (gsi),
8082 BUILT_IN_RETURN)))
8083 split_edge (e);
8087 end_recording_case_labels ();
8088 return 0;
8091 namespace {
8093 const pass_data pass_data_split_crit_edges =
8095 GIMPLE_PASS, /* type */
8096 "crited", /* name */
8097 OPTGROUP_NONE, /* optinfo_flags */
8098 true, /* has_execute */
8099 TV_TREE_SPLIT_EDGES, /* tv_id */
8100 PROP_cfg, /* properties_required */
8101 PROP_no_crit_edges, /* properties_provided */
8102 0, /* properties_destroyed */
8103 0, /* todo_flags_start */
8104 0, /* todo_flags_finish */
8107 class pass_split_crit_edges : public gimple_opt_pass
8109 public:
8110 pass_split_crit_edges (gcc::context *ctxt)
8111 : gimple_opt_pass (pass_data_split_crit_edges, ctxt)
8114 /* opt_pass methods: */
8115 virtual unsigned int execute (function *) { return split_critical_edges (); }
8117 opt_pass * clone () { return new pass_split_crit_edges (m_ctxt); }
8118 }; // class pass_split_crit_edges
8120 } // anon namespace
8122 gimple_opt_pass *
8123 make_pass_split_crit_edges (gcc::context *ctxt)
8125 return new pass_split_crit_edges (ctxt);
8129 /* Build a ternary operation and gimplify it. Emit code before GSI.
8130 Return the gimple_val holding the result. */
8132 tree
8133 gimplify_build3 (gimple_stmt_iterator *gsi, enum tree_code code,
8134 tree type, tree a, tree b, tree c)
8136 tree ret;
8137 location_t loc = gimple_location (gsi_stmt (*gsi));
8139 ret = fold_build3_loc (loc, code, type, a, b, c);
8140 STRIP_NOPS (ret);
8142 return force_gimple_operand_gsi (gsi, ret, true, NULL, true,
8143 GSI_SAME_STMT);
8146 /* Build a binary operation and gimplify it. Emit code before GSI.
8147 Return the gimple_val holding the result. */
8149 tree
8150 gimplify_build2 (gimple_stmt_iterator *gsi, enum tree_code code,
8151 tree type, tree a, tree b)
8153 tree ret;
8155 ret = fold_build2_loc (gimple_location (gsi_stmt (*gsi)), code, type, a, b);
8156 STRIP_NOPS (ret);
8158 return force_gimple_operand_gsi (gsi, ret, true, NULL, true,
8159 GSI_SAME_STMT);
8162 /* Build a unary operation and gimplify it. Emit code before GSI.
8163 Return the gimple_val holding the result. */
8165 tree
8166 gimplify_build1 (gimple_stmt_iterator *gsi, enum tree_code code, tree type,
8167 tree a)
8169 tree ret;
8171 ret = fold_build1_loc (gimple_location (gsi_stmt (*gsi)), code, type, a);
8172 STRIP_NOPS (ret);
8174 return force_gimple_operand_gsi (gsi, ret, true, NULL, true,
8175 GSI_SAME_STMT);
8180 /* Given a basic block B which ends with a conditional and has
8181 precisely two successors, determine which of the edges is taken if
8182 the conditional is true and which is taken if the conditional is
8183 false. Set TRUE_EDGE and FALSE_EDGE appropriately. */
8185 void
8186 extract_true_false_edges_from_block (basic_block b,
8187 edge *true_edge,
8188 edge *false_edge)
8190 edge e = EDGE_SUCC (b, 0);
8192 if (e->flags & EDGE_TRUE_VALUE)
8194 *true_edge = e;
8195 *false_edge = EDGE_SUCC (b, 1);
8197 else
8199 *false_edge = e;
8200 *true_edge = EDGE_SUCC (b, 1);
8204 /* Emit return warnings. */
8206 namespace {
8208 const pass_data pass_data_warn_function_return =
8210 GIMPLE_PASS, /* type */
8211 "*warn_function_return", /* name */
8212 OPTGROUP_NONE, /* optinfo_flags */
8213 true, /* has_execute */
8214 TV_NONE, /* tv_id */
8215 PROP_cfg, /* properties_required */
8216 0, /* properties_provided */
8217 0, /* properties_destroyed */
8218 0, /* todo_flags_start */
8219 0, /* todo_flags_finish */
8222 class pass_warn_function_return : public gimple_opt_pass
8224 public:
8225 pass_warn_function_return (gcc::context *ctxt)
8226 : gimple_opt_pass (pass_data_warn_function_return, ctxt)
8229 /* opt_pass methods: */
8230 virtual unsigned int execute (function *);
8232 }; // class pass_warn_function_return
8234 unsigned int
8235 pass_warn_function_return::execute (function *fun)
8237 source_location location;
8238 gimple last;
8239 edge e;
8240 edge_iterator ei;
8242 if (!targetm.warn_func_return (fun->decl))
8243 return 0;
8245 /* If we have a path to EXIT, then we do return. */
8246 if (TREE_THIS_VOLATILE (fun->decl)
8247 && EDGE_COUNT (EXIT_BLOCK_PTR_FOR_FN (fun)->preds) > 0)
8249 location = UNKNOWN_LOCATION;
8250 FOR_EACH_EDGE (e, ei, EXIT_BLOCK_PTR_FOR_FN (fun)->preds)
8252 last = last_stmt (e->src);
8253 if ((gimple_code (last) == GIMPLE_RETURN
8254 || gimple_call_builtin_p (last, BUILT_IN_RETURN))
8255 && (location = gimple_location (last)) != UNKNOWN_LOCATION)
8256 break;
8258 if (location == UNKNOWN_LOCATION)
8259 location = cfun->function_end_locus;
8260 warning_at (location, 0, "%<noreturn%> function does return");
8263 /* If we see "return;" in some basic block, then we do reach the end
8264 without returning a value. */
8265 else if (warn_return_type
8266 && !TREE_NO_WARNING (fun->decl)
8267 && EDGE_COUNT (EXIT_BLOCK_PTR_FOR_FN (fun)->preds) > 0
8268 && !VOID_TYPE_P (TREE_TYPE (TREE_TYPE (fun->decl))))
8270 FOR_EACH_EDGE (e, ei, EXIT_BLOCK_PTR_FOR_FN (fun)->preds)
8272 gimple last = last_stmt (e->src);
8273 if (gimple_code (last) == GIMPLE_RETURN
8274 && gimple_return_retval (last) == NULL
8275 && !gimple_no_warning_p (last))
8277 location = gimple_location (last);
8278 if (location == UNKNOWN_LOCATION)
8279 location = fun->function_end_locus;
8280 warning_at (location, OPT_Wreturn_type, "control reaches end of non-void function");
8281 TREE_NO_WARNING (fun->decl) = 1;
8282 break;
8286 return 0;
8289 } // anon namespace
8291 gimple_opt_pass *
8292 make_pass_warn_function_return (gcc::context *ctxt)
8294 return new pass_warn_function_return (ctxt);
8297 /* Walk a gimplified function and warn for functions whose return value is
8298 ignored and attribute((warn_unused_result)) is set. This is done before
8299 inlining, so we don't have to worry about that. */
8301 static void
8302 do_warn_unused_result (gimple_seq seq)
8304 tree fdecl, ftype;
8305 gimple_stmt_iterator i;
8307 for (i = gsi_start (seq); !gsi_end_p (i); gsi_next (&i))
8309 gimple g = gsi_stmt (i);
8311 switch (gimple_code (g))
8313 case GIMPLE_BIND:
8314 do_warn_unused_result (gimple_bind_body (g));
8315 break;
8316 case GIMPLE_TRY:
8317 do_warn_unused_result (gimple_try_eval (g));
8318 do_warn_unused_result (gimple_try_cleanup (g));
8319 break;
8320 case GIMPLE_CATCH:
8321 do_warn_unused_result (gimple_catch_handler (g));
8322 break;
8323 case GIMPLE_EH_FILTER:
8324 do_warn_unused_result (gimple_eh_filter_failure (g));
8325 break;
8327 case GIMPLE_CALL:
8328 if (gimple_call_lhs (g))
8329 break;
8330 if (gimple_call_internal_p (g))
8331 break;
8333 /* This is a naked call, as opposed to a GIMPLE_CALL with an
8334 LHS. All calls whose value is ignored should be
8335 represented like this. Look for the attribute. */
8336 fdecl = gimple_call_fndecl (g);
8337 ftype = gimple_call_fntype (g);
8339 if (lookup_attribute ("warn_unused_result", TYPE_ATTRIBUTES (ftype)))
8341 location_t loc = gimple_location (g);
8343 if (fdecl)
8344 warning_at (loc, OPT_Wunused_result,
8345 "ignoring return value of %qD, "
8346 "declared with attribute warn_unused_result",
8347 fdecl);
8348 else
8349 warning_at (loc, OPT_Wunused_result,
8350 "ignoring return value of function "
8351 "declared with attribute warn_unused_result");
8353 break;
8355 default:
8356 /* Not a container, not a call, or a call whose value is used. */
8357 break;
8362 namespace {
8364 const pass_data pass_data_warn_unused_result =
8366 GIMPLE_PASS, /* type */
8367 "*warn_unused_result", /* name */
8368 OPTGROUP_NONE, /* optinfo_flags */
8369 true, /* has_execute */
8370 TV_NONE, /* tv_id */
8371 PROP_gimple_any, /* properties_required */
8372 0, /* properties_provided */
8373 0, /* properties_destroyed */
8374 0, /* todo_flags_start */
8375 0, /* todo_flags_finish */
8378 class pass_warn_unused_result : public gimple_opt_pass
8380 public:
8381 pass_warn_unused_result (gcc::context *ctxt)
8382 : gimple_opt_pass (pass_data_warn_unused_result, ctxt)
8385 /* opt_pass methods: */
8386 virtual bool gate (function *) { return flag_warn_unused_result; }
8387 virtual unsigned int execute (function *)
8389 do_warn_unused_result (gimple_body (current_function_decl));
8390 return 0;
8393 }; // class pass_warn_unused_result
8395 } // anon namespace
8397 gimple_opt_pass *
8398 make_pass_warn_unused_result (gcc::context *ctxt)
8400 return new pass_warn_unused_result (ctxt);
8403 /* IPA passes, compilation of earlier functions or inlining
8404 might have changed some properties, such as marked functions nothrow,
8405 pure, const or noreturn.
8406 Remove redundant edges and basic blocks, and create new ones if necessary.
8408 This pass can't be executed as stand alone pass from pass manager, because
8409 in between inlining and this fixup the verify_flow_info would fail. */
8411 unsigned int
8412 execute_fixup_cfg (void)
8414 basic_block bb;
8415 gimple_stmt_iterator gsi;
8416 int todo = 0;
8417 gcov_type count_scale;
8418 edge e;
8419 edge_iterator ei;
8421 count_scale
8422 = GCOV_COMPUTE_SCALE (cgraph_get_node (current_function_decl)->count,
8423 ENTRY_BLOCK_PTR_FOR_FN (cfun)->count);
8425 ENTRY_BLOCK_PTR_FOR_FN (cfun)->count =
8426 cgraph_get_node (current_function_decl)->count;
8427 EXIT_BLOCK_PTR_FOR_FN (cfun)->count =
8428 apply_scale (EXIT_BLOCK_PTR_FOR_FN (cfun)->count,
8429 count_scale);
8431 FOR_EACH_EDGE (e, ei, ENTRY_BLOCK_PTR_FOR_FN (cfun)->succs)
8432 e->count = apply_scale (e->count, count_scale);
8434 FOR_EACH_BB_FN (bb, cfun)
8436 bb->count = apply_scale (bb->count, count_scale);
8437 for (gsi = gsi_start_bb (bb); !gsi_end_p (gsi);)
8439 gimple stmt = gsi_stmt (gsi);
8440 tree decl = is_gimple_call (stmt)
8441 ? gimple_call_fndecl (stmt)
8442 : NULL;
8443 if (decl)
8445 int flags = gimple_call_flags (stmt);
8446 if (flags & (ECF_CONST | ECF_PURE | ECF_LOOPING_CONST_OR_PURE))
8448 if (gimple_purge_dead_abnormal_call_edges (bb))
8449 todo |= TODO_cleanup_cfg;
8451 if (gimple_in_ssa_p (cfun))
8453 todo |= TODO_update_ssa | TODO_cleanup_cfg;
8454 update_stmt (stmt);
8458 if (flags & ECF_NORETURN
8459 && fixup_noreturn_call (stmt))
8460 todo |= TODO_cleanup_cfg;
8463 /* Remove stores to variables we marked write-only.
8464 Keep access when store has side effect, i.e. in case when source
8465 is volatile. */
8466 if (gimple_store_p (stmt)
8467 && !gimple_has_side_effects (stmt))
8469 tree lhs = get_base_address (gimple_get_lhs (stmt));
8471 if (TREE_CODE (lhs) == VAR_DECL
8472 && (TREE_STATIC (lhs) || DECL_EXTERNAL (lhs))
8473 && varpool_get_node (lhs)->writeonly)
8475 unlink_stmt_vdef (stmt);
8476 gsi_remove (&gsi, true);
8477 release_defs (stmt);
8478 todo |= TODO_update_ssa | TODO_cleanup_cfg;
8479 continue;
8482 /* For calls we can simply remove LHS when it is known
8483 to be write-only. */
8484 if (is_gimple_call (stmt)
8485 && gimple_get_lhs (stmt))
8487 tree lhs = get_base_address (gimple_get_lhs (stmt));
8489 if (TREE_CODE (lhs) == VAR_DECL
8490 && (TREE_STATIC (lhs) || DECL_EXTERNAL (lhs))
8491 && varpool_get_node (lhs)->writeonly)
8493 gimple_call_set_lhs (stmt, NULL);
8494 update_stmt (stmt);
8495 todo |= TODO_update_ssa | TODO_cleanup_cfg;
8499 if (maybe_clean_eh_stmt (stmt)
8500 && gimple_purge_dead_eh_edges (bb))
8501 todo |= TODO_cleanup_cfg;
8502 gsi_next (&gsi);
8505 FOR_EACH_EDGE (e, ei, bb->succs)
8506 e->count = apply_scale (e->count, count_scale);
8508 /* If we have a basic block with no successors that does not
8509 end with a control statement or a noreturn call end it with
8510 a call to __builtin_unreachable. This situation can occur
8511 when inlining a noreturn call that does in fact return. */
8512 if (EDGE_COUNT (bb->succs) == 0)
8514 gimple stmt = last_stmt (bb);
8515 if (!stmt
8516 || (!is_ctrl_stmt (stmt)
8517 && (!is_gimple_call (stmt)
8518 || (gimple_call_flags (stmt) & ECF_NORETURN) == 0)))
8520 stmt = gimple_build_call
8521 (builtin_decl_implicit (BUILT_IN_UNREACHABLE), 0);
8522 gimple_stmt_iterator gsi = gsi_last_bb (bb);
8523 gsi_insert_after (&gsi, stmt, GSI_NEW_STMT);
8527 if (count_scale != REG_BR_PROB_BASE)
8528 compute_function_frequency ();
8530 /* We just processed all calls. */
8531 if (cfun->gimple_df)
8532 vec_free (MODIFIED_NORETURN_CALLS (cfun));
8534 /* Dump a textual representation of the flowgraph. */
8535 if (dump_file)
8536 gimple_dump_cfg (dump_file, dump_flags);
8538 if (current_loops
8539 && (todo & TODO_cleanup_cfg))
8540 loops_state_set (LOOPS_NEED_FIXUP);
8542 return todo;
8545 namespace {
8547 const pass_data pass_data_fixup_cfg =
8549 GIMPLE_PASS, /* type */
8550 "*free_cfg_annotations", /* name */
8551 OPTGROUP_NONE, /* optinfo_flags */
8552 true, /* has_execute */
8553 TV_NONE, /* tv_id */
8554 PROP_cfg, /* properties_required */
8555 0, /* properties_provided */
8556 0, /* properties_destroyed */
8557 0, /* todo_flags_start */
8558 0, /* todo_flags_finish */
8561 class pass_fixup_cfg : public gimple_opt_pass
8563 public:
8564 pass_fixup_cfg (gcc::context *ctxt)
8565 : gimple_opt_pass (pass_data_fixup_cfg, ctxt)
8568 /* opt_pass methods: */
8569 opt_pass * clone () { return new pass_fixup_cfg (m_ctxt); }
8570 virtual unsigned int execute (function *) { return execute_fixup_cfg (); }
8572 }; // class pass_fixup_cfg
8574 } // anon namespace
8576 gimple_opt_pass *
8577 make_pass_fixup_cfg (gcc::context *ctxt)
8579 return new pass_fixup_cfg (ctxt);
8582 /* Garbage collection support for edge_def. */
8584 extern void gt_ggc_mx (tree&);
8585 extern void gt_ggc_mx (gimple&);
8586 extern void gt_ggc_mx (rtx&);
8587 extern void gt_ggc_mx (basic_block&);
8589 void
8590 gt_ggc_mx (edge_def *e)
8592 tree block = LOCATION_BLOCK (e->goto_locus);
8593 gt_ggc_mx (e->src);
8594 gt_ggc_mx (e->dest);
8595 if (current_ir_type () == IR_GIMPLE)
8596 gt_ggc_mx (e->insns.g);
8597 else
8598 gt_ggc_mx (e->insns.r);
8599 gt_ggc_mx (block);
8602 /* PCH support for edge_def. */
8604 extern void gt_pch_nx (tree&);
8605 extern void gt_pch_nx (gimple&);
8606 extern void gt_pch_nx (rtx&);
8607 extern void gt_pch_nx (basic_block&);
8609 void
8610 gt_pch_nx (edge_def *e)
8612 tree block = LOCATION_BLOCK (e->goto_locus);
8613 gt_pch_nx (e->src);
8614 gt_pch_nx (e->dest);
8615 if (current_ir_type () == IR_GIMPLE)
8616 gt_pch_nx (e->insns.g);
8617 else
8618 gt_pch_nx (e->insns.r);
8619 gt_pch_nx (block);
8622 void
8623 gt_pch_nx (edge_def *e, gt_pointer_operator op, void *cookie)
8625 tree block = LOCATION_BLOCK (e->goto_locus);
8626 op (&(e->src), cookie);
8627 op (&(e->dest), cookie);
8628 if (current_ir_type () == IR_GIMPLE)
8629 op (&(e->insns.g), cookie);
8630 else
8631 op (&(e->insns.r), cookie);
8632 op (&(block), cookie);