gcc/ChangeLog:
[official-gcc.git] / gcc / ira-costs.c
blobc3bddb7f7d09b338dcabd7bb4042458c85789490
1 /* IRA hard register and memory cost calculation for allocnos or pseudos.
2 Copyright (C) 2006-2017 Free Software Foundation, Inc.
3 Contributed by Vladimir Makarov <vmakarov@redhat.com>.
5 This file is part of GCC.
7 GCC is free software; you can redistribute it and/or modify it under
8 the terms of the GNU General Public License as published by the Free
9 Software Foundation; either version 3, or (at your option) any later
10 version.
12 GCC is distributed in the hope that it will be useful, but WITHOUT ANY
13 WARRANTY; without even the implied warranty of MERCHANTABILITY or
14 FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License
15 for more details.
17 You should have received a copy of the GNU General Public License
18 along with GCC; see the file COPYING3. If not see
19 <http://www.gnu.org/licenses/>. */
21 #include "config.h"
22 #include "system.h"
23 #include "coretypes.h"
24 #include "backend.h"
25 #include "target.h"
26 #include "rtl.h"
27 #include "tree.h"
28 #include "predict.h"
29 #include "memmodel.h"
30 #include "tm_p.h"
31 #include "insn-config.h"
32 #include "regs.h"
33 #include "ira.h"
34 #include "ira-int.h"
35 #include "addresses.h"
36 #include "reload.h"
38 /* The flags is set up every time when we calculate pseudo register
39 classes through function ira_set_pseudo_classes. */
40 static bool pseudo_classes_defined_p = false;
42 /* TRUE if we work with allocnos. Otherwise we work with pseudos. */
43 static bool allocno_p;
45 /* Number of elements in array `costs'. */
46 static int cost_elements_num;
48 /* The `costs' struct records the cost of using hard registers of each
49 class considered for the calculation and of using memory for each
50 allocno or pseudo. */
51 struct costs
53 int mem_cost;
54 /* Costs for register classes start here. We process only some
55 allocno classes. */
56 int cost[1];
59 #define max_struct_costs_size \
60 (this_target_ira_int->x_max_struct_costs_size)
61 #define init_cost \
62 (this_target_ira_int->x_init_cost)
63 #define temp_costs \
64 (this_target_ira_int->x_temp_costs)
65 #define op_costs \
66 (this_target_ira_int->x_op_costs)
67 #define this_op_costs \
68 (this_target_ira_int->x_this_op_costs)
70 /* Costs of each class for each allocno or pseudo. */
71 static struct costs *costs;
73 /* Accumulated costs of each class for each allocno. */
74 static struct costs *total_allocno_costs;
76 /* It is the current size of struct costs. */
77 static int struct_costs_size;
79 /* Return pointer to structure containing costs of allocno or pseudo
80 with given NUM in array ARR. */
81 #define COSTS(arr, num) \
82 ((struct costs *) ((char *) (arr) + (num) * struct_costs_size))
84 /* Return index in COSTS when processing reg with REGNO. */
85 #define COST_INDEX(regno) (allocno_p \
86 ? ALLOCNO_NUM (ira_curr_regno_allocno_map[regno]) \
87 : (int) regno)
89 /* Record register class preferences of each allocno or pseudo. Null
90 value means no preferences. It happens on the 1st iteration of the
91 cost calculation. */
92 static enum reg_class *pref;
94 /* Allocated buffers for pref. */
95 static enum reg_class *pref_buffer;
97 /* Record allocno class of each allocno with the same regno. */
98 static enum reg_class *regno_aclass;
100 /* Record cost gains for not allocating a register with an invariant
101 equivalence. */
102 static int *regno_equiv_gains;
104 /* Execution frequency of the current insn. */
105 static int frequency;
109 /* Info about reg classes whose costs are calculated for a pseudo. */
110 struct cost_classes
112 /* Number of the cost classes in the subsequent array. */
113 int num;
114 /* Container of the cost classes. */
115 enum reg_class classes[N_REG_CLASSES];
116 /* Map reg class -> index of the reg class in the previous array.
117 -1 if it is not a cost class. */
118 int index[N_REG_CLASSES];
119 /* Map hard regno index of first class in array CLASSES containing
120 the hard regno, -1 otherwise. */
121 int hard_regno_index[FIRST_PSEUDO_REGISTER];
124 /* Types of pointers to the structure above. */
125 typedef struct cost_classes *cost_classes_t;
126 typedef const struct cost_classes *const_cost_classes_t;
128 /* Info about cost classes for each pseudo. */
129 static cost_classes_t *regno_cost_classes;
131 /* Helper for cost_classes hashing. */
133 struct cost_classes_hasher : pointer_hash <cost_classes>
135 static inline hashval_t hash (const cost_classes *);
136 static inline bool equal (const cost_classes *, const cost_classes *);
137 static inline void remove (cost_classes *);
140 /* Returns hash value for cost classes info HV. */
141 inline hashval_t
142 cost_classes_hasher::hash (const cost_classes *hv)
144 return iterative_hash (&hv->classes, sizeof (enum reg_class) * hv->num, 0);
147 /* Compares cost classes info HV1 and HV2. */
148 inline bool
149 cost_classes_hasher::equal (const cost_classes *hv1, const cost_classes *hv2)
151 return (hv1->num == hv2->num
152 && memcmp (hv1->classes, hv2->classes,
153 sizeof (enum reg_class) * hv1->num) == 0);
156 /* Delete cost classes info V from the hash table. */
157 inline void
158 cost_classes_hasher::remove (cost_classes *v)
160 ira_free (v);
163 /* Hash table of unique cost classes. */
164 static hash_table<cost_classes_hasher> *cost_classes_htab;
166 /* Map allocno class -> cost classes for pseudo of given allocno
167 class. */
168 static cost_classes_t cost_classes_aclass_cache[N_REG_CLASSES];
170 /* Map mode -> cost classes for pseudo of give mode. */
171 static cost_classes_t cost_classes_mode_cache[MAX_MACHINE_MODE];
173 /* Cost classes that include all classes in ira_important_classes. */
174 static cost_classes all_cost_classes;
176 /* Use the array of classes in CLASSES_PTR to fill out the rest of
177 the structure. */
178 static void
179 complete_cost_classes (cost_classes_t classes_ptr)
181 for (int i = 0; i < N_REG_CLASSES; i++)
182 classes_ptr->index[i] = -1;
183 for (int i = 0; i < FIRST_PSEUDO_REGISTER; i++)
184 classes_ptr->hard_regno_index[i] = -1;
185 for (int i = 0; i < classes_ptr->num; i++)
187 enum reg_class cl = classes_ptr->classes[i];
188 classes_ptr->index[cl] = i;
189 for (int j = ira_class_hard_regs_num[cl] - 1; j >= 0; j--)
191 unsigned int hard_regno = ira_class_hard_regs[cl][j];
192 if (classes_ptr->hard_regno_index[hard_regno] < 0)
193 classes_ptr->hard_regno_index[hard_regno] = i;
198 /* Initialize info about the cost classes for each pseudo. */
199 static void
200 initiate_regno_cost_classes (void)
202 int size = sizeof (cost_classes_t) * max_reg_num ();
204 regno_cost_classes = (cost_classes_t *) ira_allocate (size);
205 memset (regno_cost_classes, 0, size);
206 memset (cost_classes_aclass_cache, 0,
207 sizeof (cost_classes_t) * N_REG_CLASSES);
208 memset (cost_classes_mode_cache, 0,
209 sizeof (cost_classes_t) * MAX_MACHINE_MODE);
210 cost_classes_htab = new hash_table<cost_classes_hasher> (200);
211 all_cost_classes.num = ira_important_classes_num;
212 for (int i = 0; i < ira_important_classes_num; i++)
213 all_cost_classes.classes[i] = ira_important_classes[i];
214 complete_cost_classes (&all_cost_classes);
217 /* Create new cost classes from cost classes FROM and set up members
218 index and hard_regno_index. Return the new classes. The function
219 implements some common code of two functions
220 setup_regno_cost_classes_by_aclass and
221 setup_regno_cost_classes_by_mode. */
222 static cost_classes_t
223 setup_cost_classes (cost_classes_t from)
225 cost_classes_t classes_ptr;
227 classes_ptr = (cost_classes_t) ira_allocate (sizeof (struct cost_classes));
228 classes_ptr->num = from->num;
229 for (int i = 0; i < from->num; i++)
230 classes_ptr->classes[i] = from->classes[i];
231 complete_cost_classes (classes_ptr);
232 return classes_ptr;
235 /* Return a version of FULL that only considers registers in REGS that are
236 valid for mode MODE. Both FULL and the returned class are globally
237 allocated. */
238 static cost_classes_t
239 restrict_cost_classes (cost_classes_t full, machine_mode mode,
240 const HARD_REG_SET &regs)
242 static struct cost_classes narrow;
243 int map[N_REG_CLASSES];
244 narrow.num = 0;
245 for (int i = 0; i < full->num; i++)
247 /* Assume that we'll drop the class. */
248 map[i] = -1;
250 /* Ignore classes that are too small for the mode. */
251 enum reg_class cl = full->classes[i];
252 if (!contains_reg_of_mode[cl][mode])
253 continue;
255 /* Calculate the set of registers in CL that belong to REGS and
256 are valid for MODE. */
257 HARD_REG_SET valid_for_cl;
258 COPY_HARD_REG_SET (valid_for_cl, reg_class_contents[cl]);
259 AND_HARD_REG_SET (valid_for_cl, regs);
260 AND_COMPL_HARD_REG_SET (valid_for_cl,
261 ira_prohibited_class_mode_regs[cl][mode]);
262 AND_COMPL_HARD_REG_SET (valid_for_cl, ira_no_alloc_regs);
263 if (hard_reg_set_empty_p (valid_for_cl))
264 continue;
266 /* Don't use this class if the set of valid registers is a subset
267 of an existing class. For example, suppose we have two classes
268 GR_REGS and FR_REGS and a union class GR_AND_FR_REGS. Suppose
269 that the mode changes allowed by FR_REGS are not as general as
270 the mode changes allowed by GR_REGS.
272 In this situation, the mode changes for GR_AND_FR_REGS could
273 either be seen as the union or the intersection of the mode
274 changes allowed by the two subclasses. The justification for
275 the union-based definition would be that, if you want a mode
276 change that's only allowed by GR_REGS, you can pick a register
277 from the GR_REGS subclass. The justification for the
278 intersection-based definition would be that every register
279 from the class would allow the mode change.
281 However, if we have a register that needs to be in GR_REGS,
282 using GR_AND_FR_REGS with the intersection-based definition
283 would be too pessimistic, since it would bring in restrictions
284 that only apply to FR_REGS. Conversely, if we have a register
285 that needs to be in FR_REGS, using GR_AND_FR_REGS with the
286 union-based definition would lose the extra restrictions
287 placed on FR_REGS. GR_AND_FR_REGS is therefore only useful
288 for cases where GR_REGS and FP_REGS are both valid. */
289 int pos;
290 for (pos = 0; pos < narrow.num; ++pos)
292 enum reg_class cl2 = narrow.classes[pos];
293 if (hard_reg_set_subset_p (valid_for_cl, reg_class_contents[cl2]))
294 break;
296 map[i] = pos;
297 if (pos == narrow.num)
299 /* If several classes are equivalent, prefer to use the one
300 that was chosen as the allocno class. */
301 enum reg_class cl2 = ira_allocno_class_translate[cl];
302 if (ira_class_hard_regs_num[cl] == ira_class_hard_regs_num[cl2])
303 cl = cl2;
304 narrow.classes[narrow.num++] = cl;
307 if (narrow.num == full->num)
308 return full;
310 cost_classes **slot = cost_classes_htab->find_slot (&narrow, INSERT);
311 if (*slot == NULL)
313 cost_classes_t classes = setup_cost_classes (&narrow);
314 /* Map equivalent classes to the representative that we chose above. */
315 for (int i = 0; i < ira_important_classes_num; i++)
317 enum reg_class cl = ira_important_classes[i];
318 int index = full->index[cl];
319 if (index >= 0)
320 classes->index[cl] = map[index];
322 *slot = classes;
324 return *slot;
327 /* Setup cost classes for pseudo REGNO whose allocno class is ACLASS.
328 This function is used when we know an initial approximation of
329 allocno class of the pseudo already, e.g. on the second iteration
330 of class cost calculation or after class cost calculation in
331 register-pressure sensitive insn scheduling or register-pressure
332 sensitive loop-invariant motion. */
333 static void
334 setup_regno_cost_classes_by_aclass (int regno, enum reg_class aclass)
336 static struct cost_classes classes;
337 cost_classes_t classes_ptr;
338 enum reg_class cl;
339 int i;
340 cost_classes **slot;
341 HARD_REG_SET temp, temp2;
342 bool exclude_p;
344 if ((classes_ptr = cost_classes_aclass_cache[aclass]) == NULL)
346 COPY_HARD_REG_SET (temp, reg_class_contents[aclass]);
347 AND_COMPL_HARD_REG_SET (temp, ira_no_alloc_regs);
348 /* We exclude classes from consideration which are subsets of
349 ACLASS only if ACLASS is an uniform class. */
350 exclude_p = ira_uniform_class_p[aclass];
351 classes.num = 0;
352 for (i = 0; i < ira_important_classes_num; i++)
354 cl = ira_important_classes[i];
355 if (exclude_p)
357 /* Exclude non-uniform classes which are subsets of
358 ACLASS. */
359 COPY_HARD_REG_SET (temp2, reg_class_contents[cl]);
360 AND_COMPL_HARD_REG_SET (temp2, ira_no_alloc_regs);
361 if (hard_reg_set_subset_p (temp2, temp) && cl != aclass)
362 continue;
364 classes.classes[classes.num++] = cl;
366 slot = cost_classes_htab->find_slot (&classes, INSERT);
367 if (*slot == NULL)
369 classes_ptr = setup_cost_classes (&classes);
370 *slot = classes_ptr;
372 classes_ptr = cost_classes_aclass_cache[aclass] = (cost_classes_t) *slot;
374 if (regno_reg_rtx[regno] != NULL_RTX)
376 /* Restrict the classes to those that are valid for REGNO's mode
377 (which might for example exclude singleton classes if the mode
378 requires two registers). Also restrict the classes to those that
379 are valid for subregs of REGNO. */
380 const HARD_REG_SET *valid_regs = valid_mode_changes_for_regno (regno);
381 if (!valid_regs)
382 valid_regs = &reg_class_contents[ALL_REGS];
383 classes_ptr = restrict_cost_classes (classes_ptr,
384 PSEUDO_REGNO_MODE (regno),
385 *valid_regs);
387 regno_cost_classes[regno] = classes_ptr;
390 /* Setup cost classes for pseudo REGNO with MODE. Usage of MODE can
391 decrease number of cost classes for the pseudo, if hard registers
392 of some important classes can not hold a value of MODE. So the
393 pseudo can not get hard register of some important classes and cost
394 calculation for such important classes is only wasting CPU
395 time. */
396 static void
397 setup_regno_cost_classes_by_mode (int regno, machine_mode mode)
399 if (const HARD_REG_SET *valid_regs = valid_mode_changes_for_regno (regno))
400 regno_cost_classes[regno] = restrict_cost_classes (&all_cost_classes,
401 mode, *valid_regs);
402 else
404 if (cost_classes_mode_cache[mode] == NULL)
405 cost_classes_mode_cache[mode]
406 = restrict_cost_classes (&all_cost_classes, mode,
407 reg_class_contents[ALL_REGS]);
408 regno_cost_classes[regno] = cost_classes_mode_cache[mode];
412 /* Finalize info about the cost classes for each pseudo. */
413 static void
414 finish_regno_cost_classes (void)
416 ira_free (regno_cost_classes);
417 delete cost_classes_htab;
418 cost_classes_htab = NULL;
423 /* Compute the cost of loading X into (if TO_P is TRUE) or from (if
424 TO_P is FALSE) a register of class RCLASS in mode MODE. X must not
425 be a pseudo register. */
426 static int
427 copy_cost (rtx x, machine_mode mode, reg_class_t rclass, bool to_p,
428 secondary_reload_info *prev_sri)
430 secondary_reload_info sri;
431 reg_class_t secondary_class = NO_REGS;
433 /* If X is a SCRATCH, there is actually nothing to move since we are
434 assuming optimal allocation. */
435 if (GET_CODE (x) == SCRATCH)
436 return 0;
438 /* Get the class we will actually use for a reload. */
439 rclass = targetm.preferred_reload_class (x, rclass);
441 /* If we need a secondary reload for an intermediate, the cost is
442 that to load the input into the intermediate register, then to
443 copy it. */
444 sri.prev_sri = prev_sri;
445 sri.extra_cost = 0;
446 /* PR 68770: Secondary reload might examine the t_icode field. */
447 sri.t_icode = CODE_FOR_nothing;
449 secondary_class = targetm.secondary_reload (to_p, x, rclass, mode, &sri);
451 if (secondary_class != NO_REGS)
453 ira_init_register_move_cost_if_necessary (mode);
454 return (ira_register_move_cost[mode][(int) secondary_class][(int) rclass]
455 + sri.extra_cost
456 + copy_cost (x, mode, secondary_class, to_p, &sri));
459 /* For memory, use the memory move cost, for (hard) registers, use
460 the cost to move between the register classes, and use 2 for
461 everything else (constants). */
462 if (MEM_P (x) || rclass == NO_REGS)
463 return sri.extra_cost
464 + ira_memory_move_cost[mode][(int) rclass][to_p != 0];
465 else if (REG_P (x))
467 reg_class_t x_class = REGNO_REG_CLASS (REGNO (x));
469 ira_init_register_move_cost_if_necessary (mode);
470 return (sri.extra_cost
471 + ira_register_move_cost[mode][(int) x_class][(int) rclass]);
473 else
474 /* If this is a constant, we may eventually want to call rtx_cost
475 here. */
476 return sri.extra_cost + COSTS_N_INSNS (1);
481 /* Record the cost of using memory or hard registers of various
482 classes for the operands in INSN.
484 N_ALTS is the number of alternatives.
485 N_OPS is the number of operands.
486 OPS is an array of the operands.
487 MODES are the modes of the operands, in case any are VOIDmode.
488 CONSTRAINTS are the constraints to use for the operands. This array
489 is modified by this procedure.
491 This procedure works alternative by alternative. For each
492 alternative we assume that we will be able to allocate all allocnos
493 to their ideal register class and calculate the cost of using that
494 alternative. Then we compute, for each operand that is a
495 pseudo-register, the cost of having the allocno allocated to each
496 register class and using it in that alternative. To this cost is
497 added the cost of the alternative.
499 The cost of each class for this insn is its lowest cost among all
500 the alternatives. */
501 static void
502 record_reg_classes (int n_alts, int n_ops, rtx *ops,
503 machine_mode *modes, const char **constraints,
504 rtx_insn *insn, enum reg_class *pref)
506 int alt;
507 int i, j, k;
508 int insn_allows_mem[MAX_RECOG_OPERANDS];
509 move_table *move_in_cost, *move_out_cost;
510 short (*mem_cost)[2];
512 for (i = 0; i < n_ops; i++)
513 insn_allows_mem[i] = 0;
515 /* Process each alternative, each time minimizing an operand's cost
516 with the cost for each operand in that alternative. */
517 alternative_mask preferred = get_preferred_alternatives (insn);
518 for (alt = 0; alt < n_alts; alt++)
520 enum reg_class classes[MAX_RECOG_OPERANDS];
521 int allows_mem[MAX_RECOG_OPERANDS];
522 enum reg_class rclass;
523 int alt_fail = 0;
524 int alt_cost = 0, op_cost_add;
526 if (!TEST_BIT (preferred, alt))
528 for (i = 0; i < recog_data.n_operands; i++)
529 constraints[i] = skip_alternative (constraints[i]);
531 continue;
534 for (i = 0; i < n_ops; i++)
536 unsigned char c;
537 const char *p = constraints[i];
538 rtx op = ops[i];
539 machine_mode mode = modes[i];
540 int allows_addr = 0;
541 int win = 0;
543 /* Initially show we know nothing about the register class. */
544 classes[i] = NO_REGS;
545 allows_mem[i] = 0;
547 /* If this operand has no constraints at all, we can
548 conclude nothing about it since anything is valid. */
549 if (*p == 0)
551 if (REG_P (op) && REGNO (op) >= FIRST_PSEUDO_REGISTER)
552 memset (this_op_costs[i], 0, struct_costs_size);
553 continue;
556 /* If this alternative is only relevant when this operand
557 matches a previous operand, we do different things
558 depending on whether this operand is a allocno-reg or not.
559 We must process any modifiers for the operand before we
560 can make this test. */
561 while (*p == '%' || *p == '=' || *p == '+' || *p == '&')
562 p++;
564 if (p[0] >= '0' && p[0] <= '0' + i)
566 /* Copy class and whether memory is allowed from the
567 matching alternative. Then perform any needed cost
568 computations and/or adjustments. */
569 j = p[0] - '0';
570 classes[i] = classes[j];
571 allows_mem[i] = allows_mem[j];
572 if (allows_mem[i])
573 insn_allows_mem[i] = 1;
575 if (! REG_P (op) || REGNO (op) < FIRST_PSEUDO_REGISTER)
577 /* If this matches the other operand, we have no
578 added cost and we win. */
579 if (rtx_equal_p (ops[j], op))
580 win = 1;
581 /* If we can put the other operand into a register,
582 add to the cost of this alternative the cost to
583 copy this operand to the register used for the
584 other operand. */
585 else if (classes[j] != NO_REGS)
587 alt_cost += copy_cost (op, mode, classes[j], 1, NULL);
588 win = 1;
591 else if (! REG_P (ops[j])
592 || REGNO (ops[j]) < FIRST_PSEUDO_REGISTER)
594 /* This op is an allocno but the one it matches is
595 not. */
597 /* If we can't put the other operand into a
598 register, this alternative can't be used. */
600 if (classes[j] == NO_REGS)
601 alt_fail = 1;
602 /* Otherwise, add to the cost of this alternative
603 the cost to copy the other operand to the hard
604 register used for this operand. */
605 else
606 alt_cost += copy_cost (ops[j], mode, classes[j], 1, NULL);
608 else
610 /* The costs of this operand are not the same as the
611 other operand since move costs are not symmetric.
612 Moreover, if we cannot tie them, this alternative
613 needs to do a copy, which is one insn. */
614 struct costs *pp = this_op_costs[i];
615 int *pp_costs = pp->cost;
616 cost_classes_t cost_classes_ptr
617 = regno_cost_classes[REGNO (op)];
618 enum reg_class *cost_classes = cost_classes_ptr->classes;
619 bool in_p = recog_data.operand_type[i] != OP_OUT;
620 bool out_p = recog_data.operand_type[i] != OP_IN;
621 enum reg_class op_class = classes[i];
623 ira_init_register_move_cost_if_necessary (mode);
624 if (! in_p)
626 ira_assert (out_p);
627 if (op_class == NO_REGS)
629 mem_cost = ira_memory_move_cost[mode];
630 for (k = cost_classes_ptr->num - 1; k >= 0; k--)
632 rclass = cost_classes[k];
633 pp_costs[k] = mem_cost[rclass][0] * frequency;
636 else
638 move_out_cost = ira_may_move_out_cost[mode];
639 for (k = cost_classes_ptr->num - 1; k >= 0; k--)
641 rclass = cost_classes[k];
642 pp_costs[k]
643 = move_out_cost[op_class][rclass] * frequency;
647 else if (! out_p)
649 ira_assert (in_p);
650 if (op_class == NO_REGS)
652 mem_cost = ira_memory_move_cost[mode];
653 for (k = cost_classes_ptr->num - 1; k >= 0; k--)
655 rclass = cost_classes[k];
656 pp_costs[k] = mem_cost[rclass][1] * frequency;
659 else
661 move_in_cost = ira_may_move_in_cost[mode];
662 for (k = cost_classes_ptr->num - 1; k >= 0; k--)
664 rclass = cost_classes[k];
665 pp_costs[k]
666 = move_in_cost[rclass][op_class] * frequency;
670 else
672 if (op_class == NO_REGS)
674 mem_cost = ira_memory_move_cost[mode];
675 for (k = cost_classes_ptr->num - 1; k >= 0; k--)
677 rclass = cost_classes[k];
678 pp_costs[k] = ((mem_cost[rclass][0]
679 + mem_cost[rclass][1])
680 * frequency);
683 else
685 move_in_cost = ira_may_move_in_cost[mode];
686 move_out_cost = ira_may_move_out_cost[mode];
687 for (k = cost_classes_ptr->num - 1; k >= 0; k--)
689 rclass = cost_classes[k];
690 pp_costs[k] = ((move_in_cost[rclass][op_class]
691 + move_out_cost[op_class][rclass])
692 * frequency);
697 /* If the alternative actually allows memory, make
698 things a bit cheaper since we won't need an extra
699 insn to load it. */
700 pp->mem_cost
701 = ((out_p ? ira_memory_move_cost[mode][op_class][0] : 0)
702 + (in_p ? ira_memory_move_cost[mode][op_class][1] : 0)
703 - allows_mem[i]) * frequency;
705 /* If we have assigned a class to this allocno in
706 our first pass, add a cost to this alternative
707 corresponding to what we would add if this
708 allocno were not in the appropriate class. */
709 if (pref)
711 enum reg_class pref_class = pref[COST_INDEX (REGNO (op))];
713 if (pref_class == NO_REGS)
714 alt_cost
715 += ((out_p
716 ? ira_memory_move_cost[mode][op_class][0] : 0)
717 + (in_p
718 ? ira_memory_move_cost[mode][op_class][1]
719 : 0));
720 else if (ira_reg_class_intersect
721 [pref_class][op_class] == NO_REGS)
722 alt_cost
723 += ira_register_move_cost[mode][pref_class][op_class];
725 if (REGNO (ops[i]) != REGNO (ops[j])
726 && ! find_reg_note (insn, REG_DEAD, op))
727 alt_cost += 2;
729 p++;
733 /* Scan all the constraint letters. See if the operand
734 matches any of the constraints. Collect the valid
735 register classes and see if this operand accepts
736 memory. */
737 while ((c = *p))
739 switch (c)
741 case '*':
742 /* Ignore the next letter for this pass. */
743 c = *++p;
744 break;
746 case '^':
747 alt_cost += 2;
748 break;
750 case '?':
751 alt_cost += 2;
752 break;
754 case 'g':
755 if (MEM_P (op)
756 || (CONSTANT_P (op)
757 && (! flag_pic || LEGITIMATE_PIC_OPERAND_P (op))))
758 win = 1;
759 insn_allows_mem[i] = allows_mem[i] = 1;
760 classes[i] = ira_reg_class_subunion[classes[i]][GENERAL_REGS];
761 break;
763 default:
764 enum constraint_num cn = lookup_constraint (p);
765 enum reg_class cl;
766 switch (get_constraint_type (cn))
768 case CT_REGISTER:
769 cl = reg_class_for_constraint (cn);
770 if (cl != NO_REGS)
771 classes[i] = ira_reg_class_subunion[classes[i]][cl];
772 break;
774 case CT_CONST_INT:
775 if (CONST_INT_P (op)
776 && insn_const_int_ok_for_constraint (INTVAL (op), cn))
777 win = 1;
778 break;
780 case CT_MEMORY:
781 /* Every MEM can be reloaded to fit. */
782 insn_allows_mem[i] = allows_mem[i] = 1;
783 if (MEM_P (op))
784 win = 1;
785 break;
787 case CT_SPECIAL_MEMORY:
788 insn_allows_mem[i] = allows_mem[i] = 1;
789 if (MEM_P (op) && constraint_satisfied_p (op, cn))
790 win = 1;
791 break;
793 case CT_ADDRESS:
794 /* Every address can be reloaded to fit. */
795 allows_addr = 1;
796 if (address_operand (op, GET_MODE (op))
797 || constraint_satisfied_p (op, cn))
798 win = 1;
799 /* We know this operand is an address, so we
800 want it to be allocated to a hard register
801 that can be the base of an address,
802 i.e. BASE_REG_CLASS. */
803 classes[i]
804 = ira_reg_class_subunion[classes[i]]
805 [base_reg_class (VOIDmode, ADDR_SPACE_GENERIC,
806 ADDRESS, SCRATCH)];
807 break;
809 case CT_FIXED_FORM:
810 if (constraint_satisfied_p (op, cn))
811 win = 1;
812 break;
814 break;
816 p += CONSTRAINT_LEN (c, p);
817 if (c == ',')
818 break;
821 constraints[i] = p;
823 if (alt_fail)
824 break;
826 /* How we account for this operand now depends on whether it
827 is a pseudo register or not. If it is, we first check if
828 any register classes are valid. If not, we ignore this
829 alternative, since we want to assume that all allocnos get
830 allocated for register preferencing. If some register
831 class is valid, compute the costs of moving the allocno
832 into that class. */
833 if (REG_P (op) && REGNO (op) >= FIRST_PSEUDO_REGISTER)
835 if (classes[i] == NO_REGS && ! allows_mem[i])
837 /* We must always fail if the operand is a REG, but
838 we did not find a suitable class and memory is
839 not allowed.
841 Otherwise we may perform an uninitialized read
842 from this_op_costs after the `continue' statement
843 below. */
844 alt_fail = 1;
846 else
848 unsigned int regno = REGNO (op);
849 struct costs *pp = this_op_costs[i];
850 int *pp_costs = pp->cost;
851 cost_classes_t cost_classes_ptr = regno_cost_classes[regno];
852 enum reg_class *cost_classes = cost_classes_ptr->classes;
853 bool in_p = recog_data.operand_type[i] != OP_OUT;
854 bool out_p = recog_data.operand_type[i] != OP_IN;
855 enum reg_class op_class = classes[i];
857 ira_init_register_move_cost_if_necessary (mode);
858 if (! in_p)
860 ira_assert (out_p);
861 if (op_class == NO_REGS)
863 mem_cost = ira_memory_move_cost[mode];
864 for (k = cost_classes_ptr->num - 1; k >= 0; k--)
866 rclass = cost_classes[k];
867 pp_costs[k] = mem_cost[rclass][0] * frequency;
870 else
872 move_out_cost = ira_may_move_out_cost[mode];
873 for (k = cost_classes_ptr->num - 1; k >= 0; k--)
875 rclass = cost_classes[k];
876 pp_costs[k]
877 = move_out_cost[op_class][rclass] * frequency;
881 else if (! out_p)
883 ira_assert (in_p);
884 if (op_class == NO_REGS)
886 mem_cost = ira_memory_move_cost[mode];
887 for (k = cost_classes_ptr->num - 1; k >= 0; k--)
889 rclass = cost_classes[k];
890 pp_costs[k] = mem_cost[rclass][1] * frequency;
893 else
895 move_in_cost = ira_may_move_in_cost[mode];
896 for (k = cost_classes_ptr->num - 1; k >= 0; k--)
898 rclass = cost_classes[k];
899 pp_costs[k]
900 = move_in_cost[rclass][op_class] * frequency;
904 else
906 if (op_class == NO_REGS)
908 mem_cost = ira_memory_move_cost[mode];
909 for (k = cost_classes_ptr->num - 1; k >= 0; k--)
911 rclass = cost_classes[k];
912 pp_costs[k] = ((mem_cost[rclass][0]
913 + mem_cost[rclass][1])
914 * frequency);
917 else
919 move_in_cost = ira_may_move_in_cost[mode];
920 move_out_cost = ira_may_move_out_cost[mode];
921 for (k = cost_classes_ptr->num - 1; k >= 0; k--)
923 rclass = cost_classes[k];
924 pp_costs[k] = ((move_in_cost[rclass][op_class]
925 + move_out_cost[op_class][rclass])
926 * frequency);
931 if (op_class == NO_REGS)
932 /* Although we don't need insn to reload from
933 memory, still accessing memory is usually more
934 expensive than a register. */
935 pp->mem_cost = frequency;
936 else
937 /* If the alternative actually allows memory, make
938 things a bit cheaper since we won't need an
939 extra insn to load it. */
940 pp->mem_cost
941 = ((out_p ? ira_memory_move_cost[mode][op_class][0] : 0)
942 + (in_p ? ira_memory_move_cost[mode][op_class][1] : 0)
943 - allows_mem[i]) * frequency;
944 /* If we have assigned a class to this allocno in
945 our first pass, add a cost to this alternative
946 corresponding to what we would add if this
947 allocno were not in the appropriate class. */
948 if (pref)
950 enum reg_class pref_class = pref[COST_INDEX (REGNO (op))];
952 if (pref_class == NO_REGS)
954 if (op_class != NO_REGS)
955 alt_cost
956 += ((out_p
957 ? ira_memory_move_cost[mode][op_class][0]
958 : 0)
959 + (in_p
960 ? ira_memory_move_cost[mode][op_class][1]
961 : 0));
963 else if (op_class == NO_REGS)
964 alt_cost
965 += ((out_p
966 ? ira_memory_move_cost[mode][pref_class][1]
967 : 0)
968 + (in_p
969 ? ira_memory_move_cost[mode][pref_class][0]
970 : 0));
971 else if (ira_reg_class_intersect[pref_class][op_class]
972 == NO_REGS)
973 alt_cost += (ira_register_move_cost
974 [mode][pref_class][op_class]);
979 /* Otherwise, if this alternative wins, either because we
980 have already determined that or if we have a hard
981 register of the proper class, there is no cost for this
982 alternative. */
983 else if (win || (REG_P (op)
984 && reg_fits_class_p (op, classes[i],
985 0, GET_MODE (op))))
988 /* If registers are valid, the cost of this alternative
989 includes copying the object to and/or from a
990 register. */
991 else if (classes[i] != NO_REGS)
993 if (recog_data.operand_type[i] != OP_OUT)
994 alt_cost += copy_cost (op, mode, classes[i], 1, NULL);
996 if (recog_data.operand_type[i] != OP_IN)
997 alt_cost += copy_cost (op, mode, classes[i], 0, NULL);
999 /* The only other way this alternative can be used is if
1000 this is a constant that could be placed into memory. */
1001 else if (CONSTANT_P (op) && (allows_addr || allows_mem[i]))
1002 alt_cost += ira_memory_move_cost[mode][classes[i]][1];
1003 else
1004 alt_fail = 1;
1006 if (alt_fail)
1007 break;
1010 if (alt_fail)
1012 /* The loop above might have exited early once the failure
1013 was seen. Skip over the constraints for the remaining
1014 operands. */
1015 i += 1;
1016 for (; i < n_ops; ++i)
1017 constraints[i] = skip_alternative (constraints[i]);
1018 continue;
1021 op_cost_add = alt_cost * frequency;
1022 /* Finally, update the costs with the information we've
1023 calculated about this alternative. */
1024 for (i = 0; i < n_ops; i++)
1025 if (REG_P (ops[i]) && REGNO (ops[i]) >= FIRST_PSEUDO_REGISTER)
1027 struct costs *pp = op_costs[i], *qq = this_op_costs[i];
1028 int *pp_costs = pp->cost, *qq_costs = qq->cost;
1029 int scale = 1 + (recog_data.operand_type[i] == OP_INOUT);
1030 cost_classes_t cost_classes_ptr
1031 = regno_cost_classes[REGNO (ops[i])];
1033 pp->mem_cost = MIN (pp->mem_cost,
1034 (qq->mem_cost + op_cost_add) * scale);
1036 for (k = cost_classes_ptr->num - 1; k >= 0; k--)
1037 pp_costs[k]
1038 = MIN (pp_costs[k], (qq_costs[k] + op_cost_add) * scale);
1042 if (allocno_p)
1043 for (i = 0; i < n_ops; i++)
1045 ira_allocno_t a;
1046 rtx op = ops[i];
1048 if (! REG_P (op) || REGNO (op) < FIRST_PSEUDO_REGISTER)
1049 continue;
1050 a = ira_curr_regno_allocno_map [REGNO (op)];
1051 if (! ALLOCNO_BAD_SPILL_P (a) && insn_allows_mem[i] == 0)
1052 ALLOCNO_BAD_SPILL_P (a) = true;
1059 /* Wrapper around REGNO_OK_FOR_INDEX_P, to allow pseudo registers. */
1060 static inline bool
1061 ok_for_index_p_nonstrict (rtx reg)
1063 unsigned regno = REGNO (reg);
1065 return regno >= FIRST_PSEUDO_REGISTER || REGNO_OK_FOR_INDEX_P (regno);
1068 /* A version of regno_ok_for_base_p for use here, when all
1069 pseudo-registers should count as OK. Arguments as for
1070 regno_ok_for_base_p. */
1071 static inline bool
1072 ok_for_base_p_nonstrict (rtx reg, machine_mode mode, addr_space_t as,
1073 enum rtx_code outer_code, enum rtx_code index_code)
1075 unsigned regno = REGNO (reg);
1077 if (regno >= FIRST_PSEUDO_REGISTER)
1078 return true;
1079 return ok_for_base_p_1 (regno, mode, as, outer_code, index_code);
1082 /* Record the pseudo registers we must reload into hard registers in a
1083 subexpression of a memory address, X.
1085 If CONTEXT is 0, we are looking at the base part of an address,
1086 otherwise we are looking at the index part.
1088 MODE and AS are the mode and address space of the memory reference;
1089 OUTER_CODE and INDEX_CODE give the context that the rtx appears in.
1090 These four arguments are passed down to base_reg_class.
1092 SCALE is twice the amount to multiply the cost by (it is twice so
1093 we can represent half-cost adjustments). */
1094 static void
1095 record_address_regs (machine_mode mode, addr_space_t as, rtx x,
1096 int context, enum rtx_code outer_code,
1097 enum rtx_code index_code, int scale)
1099 enum rtx_code code = GET_CODE (x);
1100 enum reg_class rclass;
1102 if (context == 1)
1103 rclass = INDEX_REG_CLASS;
1104 else
1105 rclass = base_reg_class (mode, as, outer_code, index_code);
1107 switch (code)
1109 case CONST_INT:
1110 case CONST:
1111 case CC0:
1112 case PC:
1113 case SYMBOL_REF:
1114 case LABEL_REF:
1115 return;
1117 case PLUS:
1118 /* When we have an address that is a sum, we must determine
1119 whether registers are "base" or "index" regs. If there is a
1120 sum of two registers, we must choose one to be the "base".
1121 Luckily, we can use the REG_POINTER to make a good choice
1122 most of the time. We only need to do this on machines that
1123 can have two registers in an address and where the base and
1124 index register classes are different.
1126 ??? This code used to set REGNO_POINTER_FLAG in some cases,
1127 but that seems bogus since it should only be set when we are
1128 sure the register is being used as a pointer. */
1130 rtx arg0 = XEXP (x, 0);
1131 rtx arg1 = XEXP (x, 1);
1132 enum rtx_code code0 = GET_CODE (arg0);
1133 enum rtx_code code1 = GET_CODE (arg1);
1135 /* Look inside subregs. */
1136 if (code0 == SUBREG)
1137 arg0 = SUBREG_REG (arg0), code0 = GET_CODE (arg0);
1138 if (code1 == SUBREG)
1139 arg1 = SUBREG_REG (arg1), code1 = GET_CODE (arg1);
1141 /* If this machine only allows one register per address, it
1142 must be in the first operand. */
1143 if (MAX_REGS_PER_ADDRESS == 1)
1144 record_address_regs (mode, as, arg0, 0, PLUS, code1, scale);
1146 /* If index and base registers are the same on this machine,
1147 just record registers in any non-constant operands. We
1148 assume here, as well as in the tests below, that all
1149 addresses are in canonical form. */
1150 else if (INDEX_REG_CLASS
1151 == base_reg_class (VOIDmode, as, PLUS, SCRATCH))
1153 record_address_regs (mode, as, arg0, context, PLUS, code1, scale);
1154 if (! CONSTANT_P (arg1))
1155 record_address_regs (mode, as, arg1, context, PLUS, code0, scale);
1158 /* If the second operand is a constant integer, it doesn't
1159 change what class the first operand must be. */
1160 else if (CONST_SCALAR_INT_P (arg1))
1161 record_address_regs (mode, as, arg0, context, PLUS, code1, scale);
1162 /* If the second operand is a symbolic constant, the first
1163 operand must be an index register. */
1164 else if (code1 == SYMBOL_REF || code1 == CONST || code1 == LABEL_REF)
1165 record_address_regs (mode, as, arg0, 1, PLUS, code1, scale);
1166 /* If both operands are registers but one is already a hard
1167 register of index or reg-base class, give the other the
1168 class that the hard register is not. */
1169 else if (code0 == REG && code1 == REG
1170 && REGNO (arg0) < FIRST_PSEUDO_REGISTER
1171 && (ok_for_base_p_nonstrict (arg0, mode, as, PLUS, REG)
1172 || ok_for_index_p_nonstrict (arg0)))
1173 record_address_regs (mode, as, arg1,
1174 ok_for_base_p_nonstrict (arg0, mode, as,
1175 PLUS, REG) ? 1 : 0,
1176 PLUS, REG, scale);
1177 else if (code0 == REG && code1 == REG
1178 && REGNO (arg1) < FIRST_PSEUDO_REGISTER
1179 && (ok_for_base_p_nonstrict (arg1, mode, as, PLUS, REG)
1180 || ok_for_index_p_nonstrict (arg1)))
1181 record_address_regs (mode, as, arg0,
1182 ok_for_base_p_nonstrict (arg1, mode, as,
1183 PLUS, REG) ? 1 : 0,
1184 PLUS, REG, scale);
1185 /* If one operand is known to be a pointer, it must be the
1186 base with the other operand the index. Likewise if the
1187 other operand is a MULT. */
1188 else if ((code0 == REG && REG_POINTER (arg0)) || code1 == MULT)
1190 record_address_regs (mode, as, arg0, 0, PLUS, code1, scale);
1191 record_address_regs (mode, as, arg1, 1, PLUS, code0, scale);
1193 else if ((code1 == REG && REG_POINTER (arg1)) || code0 == MULT)
1195 record_address_regs (mode, as, arg0, 1, PLUS, code1, scale);
1196 record_address_regs (mode, as, arg1, 0, PLUS, code0, scale);
1198 /* Otherwise, count equal chances that each might be a base or
1199 index register. This case should be rare. */
1200 else
1202 record_address_regs (mode, as, arg0, 0, PLUS, code1, scale / 2);
1203 record_address_regs (mode, as, arg0, 1, PLUS, code1, scale / 2);
1204 record_address_regs (mode, as, arg1, 0, PLUS, code0, scale / 2);
1205 record_address_regs (mode, as, arg1, 1, PLUS, code0, scale / 2);
1208 break;
1210 /* Double the importance of an allocno that is incremented or
1211 decremented, since it would take two extra insns if it ends
1212 up in the wrong place. */
1213 case POST_MODIFY:
1214 case PRE_MODIFY:
1215 record_address_regs (mode, as, XEXP (x, 0), 0, code,
1216 GET_CODE (XEXP (XEXP (x, 1), 1)), 2 * scale);
1217 if (REG_P (XEXP (XEXP (x, 1), 1)))
1218 record_address_regs (mode, as, XEXP (XEXP (x, 1), 1), 1, code, REG,
1219 2 * scale);
1220 break;
1222 case POST_INC:
1223 case PRE_INC:
1224 case POST_DEC:
1225 case PRE_DEC:
1226 /* Double the importance of an allocno that is incremented or
1227 decremented, since it would take two extra insns if it ends
1228 up in the wrong place. */
1229 record_address_regs (mode, as, XEXP (x, 0), 0, code, SCRATCH, 2 * scale);
1230 break;
1232 case REG:
1234 struct costs *pp;
1235 int *pp_costs;
1236 enum reg_class i;
1237 int k, regno, add_cost;
1238 cost_classes_t cost_classes_ptr;
1239 enum reg_class *cost_classes;
1240 move_table *move_in_cost;
1242 if (REGNO (x) < FIRST_PSEUDO_REGISTER)
1243 break;
1245 regno = REGNO (x);
1246 if (allocno_p)
1247 ALLOCNO_BAD_SPILL_P (ira_curr_regno_allocno_map[regno]) = true;
1248 pp = COSTS (costs, COST_INDEX (regno));
1249 add_cost = (ira_memory_move_cost[Pmode][rclass][1] * scale) / 2;
1250 if (INT_MAX - add_cost < pp->mem_cost)
1251 pp->mem_cost = INT_MAX;
1252 else
1253 pp->mem_cost += add_cost;
1254 cost_classes_ptr = regno_cost_classes[regno];
1255 cost_classes = cost_classes_ptr->classes;
1256 pp_costs = pp->cost;
1257 ira_init_register_move_cost_if_necessary (Pmode);
1258 move_in_cost = ira_may_move_in_cost[Pmode];
1259 for (k = cost_classes_ptr->num - 1; k >= 0; k--)
1261 i = cost_classes[k];
1262 add_cost = (move_in_cost[i][rclass] * scale) / 2;
1263 if (INT_MAX - add_cost < pp_costs[k])
1264 pp_costs[k] = INT_MAX;
1265 else
1266 pp_costs[k] += add_cost;
1269 break;
1271 default:
1273 const char *fmt = GET_RTX_FORMAT (code);
1274 int i;
1275 for (i = GET_RTX_LENGTH (code) - 1; i >= 0; i--)
1276 if (fmt[i] == 'e')
1277 record_address_regs (mode, as, XEXP (x, i), context, code, SCRATCH,
1278 scale);
1285 /* Calculate the costs of insn operands. */
1286 static void
1287 record_operand_costs (rtx_insn *insn, enum reg_class *pref)
1289 const char *constraints[MAX_RECOG_OPERANDS];
1290 machine_mode modes[MAX_RECOG_OPERANDS];
1291 rtx ops[MAX_RECOG_OPERANDS];
1292 rtx set;
1293 int i;
1295 for (i = 0; i < recog_data.n_operands; i++)
1297 constraints[i] = recog_data.constraints[i];
1298 modes[i] = recog_data.operand_mode[i];
1301 /* If we get here, we are set up to record the costs of all the
1302 operands for this insn. Start by initializing the costs. Then
1303 handle any address registers. Finally record the desired classes
1304 for any allocnos, doing it twice if some pair of operands are
1305 commutative. */
1306 for (i = 0; i < recog_data.n_operands; i++)
1308 memcpy (op_costs[i], init_cost, struct_costs_size);
1310 ops[i] = recog_data.operand[i];
1311 if (GET_CODE (recog_data.operand[i]) == SUBREG)
1312 recog_data.operand[i] = SUBREG_REG (recog_data.operand[i]);
1314 if (MEM_P (recog_data.operand[i]))
1315 record_address_regs (GET_MODE (recog_data.operand[i]),
1316 MEM_ADDR_SPACE (recog_data.operand[i]),
1317 XEXP (recog_data.operand[i], 0),
1318 0, MEM, SCRATCH, frequency * 2);
1319 else if (constraints[i][0] == 'p'
1320 || (insn_extra_address_constraint
1321 (lookup_constraint (constraints[i]))))
1322 record_address_regs (VOIDmode, ADDR_SPACE_GENERIC,
1323 recog_data.operand[i], 0, ADDRESS, SCRATCH,
1324 frequency * 2);
1327 /* Check for commutative in a separate loop so everything will have
1328 been initialized. We must do this even if one operand is a
1329 constant--see addsi3 in m68k.md. */
1330 for (i = 0; i < (int) recog_data.n_operands - 1; i++)
1331 if (constraints[i][0] == '%')
1333 const char *xconstraints[MAX_RECOG_OPERANDS];
1334 int j;
1336 /* Handle commutative operands by swapping the constraints.
1337 We assume the modes are the same. */
1338 for (j = 0; j < recog_data.n_operands; j++)
1339 xconstraints[j] = constraints[j];
1341 xconstraints[i] = constraints[i+1];
1342 xconstraints[i+1] = constraints[i];
1343 record_reg_classes (recog_data.n_alternatives, recog_data.n_operands,
1344 recog_data.operand, modes,
1345 xconstraints, insn, pref);
1347 record_reg_classes (recog_data.n_alternatives, recog_data.n_operands,
1348 recog_data.operand, modes,
1349 constraints, insn, pref);
1351 /* If this insn is a single set copying operand 1 to operand 0 and
1352 one operand is an allocno with the other a hard reg or an allocno
1353 that prefers a hard register that is in its own register class
1354 then we may want to adjust the cost of that register class to -1.
1356 Avoid the adjustment if the source does not die to avoid
1357 stressing of register allocator by preferencing two colliding
1358 registers into single class.
1360 Also avoid the adjustment if a copy between hard registers of the
1361 class is expensive (ten times the cost of a default copy is
1362 considered arbitrarily expensive). This avoids losing when the
1363 preferred class is very expensive as the source of a copy
1364 instruction. */
1365 if ((set = single_set (insn)) != NULL_RTX
1366 /* In rare cases the single set insn might have less 2 operands
1367 as the source can be a fixed special reg. */
1368 && recog_data.n_operands > 1
1369 && ops[0] == SET_DEST (set) && ops[1] == SET_SRC (set))
1371 int regno, other_regno;
1372 rtx dest = SET_DEST (set);
1373 rtx src = SET_SRC (set);
1375 if (GET_CODE (dest) == SUBREG
1376 && (GET_MODE_SIZE (GET_MODE (dest))
1377 == GET_MODE_SIZE (GET_MODE (SUBREG_REG (dest)))))
1378 dest = SUBREG_REG (dest);
1379 if (GET_CODE (src) == SUBREG
1380 && (GET_MODE_SIZE (GET_MODE (src))
1381 == GET_MODE_SIZE (GET_MODE (SUBREG_REG (src)))))
1382 src = SUBREG_REG (src);
1383 if (REG_P (src) && REG_P (dest)
1384 && find_regno_note (insn, REG_DEAD, REGNO (src))
1385 && (((regno = REGNO (src)) >= FIRST_PSEUDO_REGISTER
1386 && (other_regno = REGNO (dest)) < FIRST_PSEUDO_REGISTER)
1387 || ((regno = REGNO (dest)) >= FIRST_PSEUDO_REGISTER
1388 && (other_regno = REGNO (src)) < FIRST_PSEUDO_REGISTER)))
1390 machine_mode mode = GET_MODE (src);
1391 cost_classes_t cost_classes_ptr = regno_cost_classes[regno];
1392 enum reg_class *cost_classes = cost_classes_ptr->classes;
1393 reg_class_t rclass;
1394 int k, nr;
1396 i = regno == (int) REGNO (src) ? 1 : 0;
1397 for (k = cost_classes_ptr->num - 1; k >= 0; k--)
1399 rclass = cost_classes[k];
1400 if (TEST_HARD_REG_BIT (reg_class_contents[rclass], other_regno)
1401 && (reg_class_size[(int) rclass]
1402 == ira_reg_class_max_nregs [(int) rclass][(int) mode]))
1404 if (reg_class_size[rclass] == 1)
1405 op_costs[i]->cost[k] = -frequency;
1406 else
1408 for (nr = 0;
1409 nr < hard_regno_nregs[other_regno][mode];
1410 nr++)
1411 if (! TEST_HARD_REG_BIT (reg_class_contents[rclass],
1412 other_regno + nr))
1413 break;
1415 if (nr == hard_regno_nregs[other_regno][mode])
1416 op_costs[i]->cost[k] = -frequency;
1426 /* Process one insn INSN. Scan it and record each time it would save
1427 code to put a certain allocnos in a certain class. Return the last
1428 insn processed, so that the scan can be continued from there. */
1429 static rtx_insn *
1430 scan_one_insn (rtx_insn *insn)
1432 enum rtx_code pat_code;
1433 rtx set, note;
1434 int i, k;
1435 bool counted_mem;
1437 if (!NONDEBUG_INSN_P (insn))
1438 return insn;
1440 pat_code = GET_CODE (PATTERN (insn));
1441 if (pat_code == USE || pat_code == CLOBBER || pat_code == ASM_INPUT)
1442 return insn;
1444 counted_mem = false;
1445 set = single_set (insn);
1446 extract_insn (insn);
1448 /* If this insn loads a parameter from its stack slot, then it
1449 represents a savings, rather than a cost, if the parameter is
1450 stored in memory. Record this fact.
1452 Similarly if we're loading other constants from memory (constant
1453 pool, TOC references, small data areas, etc) and this is the only
1454 assignment to the destination pseudo.
1456 Don't do this if SET_SRC (set) isn't a general operand, if it is
1457 a memory requiring special instructions to load it, decreasing
1458 mem_cost might result in it being loaded using the specialized
1459 instruction into a register, then stored into stack and loaded
1460 again from the stack. See PR52208.
1462 Don't do this if SET_SRC (set) has side effect. See PR56124. */
1463 if (set != 0 && REG_P (SET_DEST (set)) && MEM_P (SET_SRC (set))
1464 && (note = find_reg_note (insn, REG_EQUIV, NULL_RTX)) != NULL_RTX
1465 && ((MEM_P (XEXP (note, 0))
1466 && !side_effects_p (SET_SRC (set)))
1467 || (CONSTANT_P (XEXP (note, 0))
1468 && targetm.legitimate_constant_p (GET_MODE (SET_DEST (set)),
1469 XEXP (note, 0))
1470 && REG_N_SETS (REGNO (SET_DEST (set))) == 1))
1471 && general_operand (SET_SRC (set), GET_MODE (SET_SRC (set))))
1473 enum reg_class cl = GENERAL_REGS;
1474 rtx reg = SET_DEST (set);
1475 int num = COST_INDEX (REGNO (reg));
1477 COSTS (costs, num)->mem_cost
1478 -= ira_memory_move_cost[GET_MODE (reg)][cl][1] * frequency;
1479 record_address_regs (GET_MODE (SET_SRC (set)),
1480 MEM_ADDR_SPACE (SET_SRC (set)),
1481 XEXP (SET_SRC (set), 0), 0, MEM, SCRATCH,
1482 frequency * 2);
1483 counted_mem = true;
1486 record_operand_costs (insn, pref);
1488 /* Now add the cost for each operand to the total costs for its
1489 allocno. */
1490 for (i = 0; i < recog_data.n_operands; i++)
1491 if (REG_P (recog_data.operand[i])
1492 && REGNO (recog_data.operand[i]) >= FIRST_PSEUDO_REGISTER)
1494 int regno = REGNO (recog_data.operand[i]);
1495 struct costs *p = COSTS (costs, COST_INDEX (regno));
1496 struct costs *q = op_costs[i];
1497 int *p_costs = p->cost, *q_costs = q->cost;
1498 cost_classes_t cost_classes_ptr = regno_cost_classes[regno];
1499 int add_cost;
1501 /* If the already accounted for the memory "cost" above, don't
1502 do so again. */
1503 if (!counted_mem)
1505 add_cost = q->mem_cost;
1506 if (add_cost > 0 && INT_MAX - add_cost < p->mem_cost)
1507 p->mem_cost = INT_MAX;
1508 else
1509 p->mem_cost += add_cost;
1511 for (k = cost_classes_ptr->num - 1; k >= 0; k--)
1513 add_cost = q_costs[k];
1514 if (add_cost > 0 && INT_MAX - add_cost < p_costs[k])
1515 p_costs[k] = INT_MAX;
1516 else
1517 p_costs[k] += add_cost;
1521 return insn;
1526 /* Print allocnos costs to file F. */
1527 static void
1528 print_allocno_costs (FILE *f)
1530 int k;
1531 ira_allocno_t a;
1532 ira_allocno_iterator ai;
1534 ira_assert (allocno_p);
1535 fprintf (f, "\n");
1536 FOR_EACH_ALLOCNO (a, ai)
1538 int i, rclass;
1539 basic_block bb;
1540 int regno = ALLOCNO_REGNO (a);
1541 cost_classes_t cost_classes_ptr = regno_cost_classes[regno];
1542 enum reg_class *cost_classes = cost_classes_ptr->classes;
1544 i = ALLOCNO_NUM (a);
1545 fprintf (f, " a%d(r%d,", i, regno);
1546 if ((bb = ALLOCNO_LOOP_TREE_NODE (a)->bb) != NULL)
1547 fprintf (f, "b%d", bb->index);
1548 else
1549 fprintf (f, "l%d", ALLOCNO_LOOP_TREE_NODE (a)->loop_num);
1550 fprintf (f, ") costs:");
1551 for (k = 0; k < cost_classes_ptr->num; k++)
1553 rclass = cost_classes[k];
1554 fprintf (f, " %s:%d", reg_class_names[rclass],
1555 COSTS (costs, i)->cost[k]);
1556 if (flag_ira_region == IRA_REGION_ALL
1557 || flag_ira_region == IRA_REGION_MIXED)
1558 fprintf (f, ",%d", COSTS (total_allocno_costs, i)->cost[k]);
1560 fprintf (f, " MEM:%i", COSTS (costs, i)->mem_cost);
1561 if (flag_ira_region == IRA_REGION_ALL
1562 || flag_ira_region == IRA_REGION_MIXED)
1563 fprintf (f, ",%d", COSTS (total_allocno_costs, i)->mem_cost);
1564 fprintf (f, "\n");
1568 /* Print pseudo costs to file F. */
1569 static void
1570 print_pseudo_costs (FILE *f)
1572 int regno, k;
1573 int rclass;
1574 cost_classes_t cost_classes_ptr;
1575 enum reg_class *cost_classes;
1577 ira_assert (! allocno_p);
1578 fprintf (f, "\n");
1579 for (regno = max_reg_num () - 1; regno >= FIRST_PSEUDO_REGISTER; regno--)
1581 if (REG_N_REFS (regno) <= 0)
1582 continue;
1583 cost_classes_ptr = regno_cost_classes[regno];
1584 cost_classes = cost_classes_ptr->classes;
1585 fprintf (f, " r%d costs:", regno);
1586 for (k = 0; k < cost_classes_ptr->num; k++)
1588 rclass = cost_classes[k];
1589 fprintf (f, " %s:%d", reg_class_names[rclass],
1590 COSTS (costs, regno)->cost[k]);
1592 fprintf (f, " MEM:%i\n", COSTS (costs, regno)->mem_cost);
1596 /* Traverse the BB represented by LOOP_TREE_NODE to update the allocno
1597 costs. */
1598 static void
1599 process_bb_for_costs (basic_block bb)
1601 rtx_insn *insn;
1603 frequency = REG_FREQ_FROM_BB (bb);
1604 if (frequency == 0)
1605 frequency = 1;
1606 FOR_BB_INSNS (bb, insn)
1607 insn = scan_one_insn (insn);
1610 /* Traverse the BB represented by LOOP_TREE_NODE to update the allocno
1611 costs. */
1612 static void
1613 process_bb_node_for_costs (ira_loop_tree_node_t loop_tree_node)
1615 basic_block bb;
1617 bb = loop_tree_node->bb;
1618 if (bb != NULL)
1619 process_bb_for_costs (bb);
1622 /* Find costs of register classes and memory for allocnos or pseudos
1623 and their best costs. Set up preferred, alternative and allocno
1624 classes for pseudos. */
1625 static void
1626 find_costs_and_classes (FILE *dump_file)
1628 int i, k, start, max_cost_classes_num;
1629 int pass;
1630 basic_block bb;
1631 enum reg_class *regno_best_class, new_class;
1633 init_recog ();
1634 regno_best_class
1635 = (enum reg_class *) ira_allocate (max_reg_num ()
1636 * sizeof (enum reg_class));
1637 for (i = max_reg_num () - 1; i >= FIRST_PSEUDO_REGISTER; i--)
1638 regno_best_class[i] = NO_REGS;
1639 if (!resize_reg_info () && allocno_p
1640 && pseudo_classes_defined_p && flag_expensive_optimizations)
1642 ira_allocno_t a;
1643 ira_allocno_iterator ai;
1645 pref = pref_buffer;
1646 max_cost_classes_num = 1;
1647 FOR_EACH_ALLOCNO (a, ai)
1649 pref[ALLOCNO_NUM (a)] = reg_preferred_class (ALLOCNO_REGNO (a));
1650 setup_regno_cost_classes_by_aclass
1651 (ALLOCNO_REGNO (a), pref[ALLOCNO_NUM (a)]);
1652 max_cost_classes_num
1653 = MAX (max_cost_classes_num,
1654 regno_cost_classes[ALLOCNO_REGNO (a)]->num);
1656 start = 1;
1658 else
1660 pref = NULL;
1661 max_cost_classes_num = ira_important_classes_num;
1662 for (i = max_reg_num () - 1; i >= FIRST_PSEUDO_REGISTER; i--)
1663 if (regno_reg_rtx[i] != NULL_RTX)
1664 setup_regno_cost_classes_by_mode (i, PSEUDO_REGNO_MODE (i));
1665 else
1666 setup_regno_cost_classes_by_aclass (i, ALL_REGS);
1667 start = 0;
1669 if (allocno_p)
1670 /* Clear the flag for the next compiled function. */
1671 pseudo_classes_defined_p = false;
1672 /* Normally we scan the insns once and determine the best class to
1673 use for each allocno. However, if -fexpensive-optimizations are
1674 on, we do so twice, the second time using the tentative best
1675 classes to guide the selection. */
1676 for (pass = start; pass <= flag_expensive_optimizations; pass++)
1678 if ((!allocno_p || internal_flag_ira_verbose > 0) && dump_file)
1679 fprintf (dump_file,
1680 "\nPass %i for finding pseudo/allocno costs\n\n", pass);
1682 if (pass != start)
1684 max_cost_classes_num = 1;
1685 for (i = max_reg_num () - 1; i >= FIRST_PSEUDO_REGISTER; i--)
1687 setup_regno_cost_classes_by_aclass (i, regno_best_class[i]);
1688 max_cost_classes_num
1689 = MAX (max_cost_classes_num, regno_cost_classes[i]->num);
1693 struct_costs_size
1694 = sizeof (struct costs) + sizeof (int) * (max_cost_classes_num - 1);
1695 /* Zero out our accumulation of the cost of each class for each
1696 allocno. */
1697 memset (costs, 0, cost_elements_num * struct_costs_size);
1699 if (allocno_p)
1701 /* Scan the instructions and record each time it would save code
1702 to put a certain allocno in a certain class. */
1703 ira_traverse_loop_tree (true, ira_loop_tree_root,
1704 process_bb_node_for_costs, NULL);
1706 memcpy (total_allocno_costs, costs,
1707 max_struct_costs_size * ira_allocnos_num);
1709 else
1711 basic_block bb;
1713 FOR_EACH_BB_FN (bb, cfun)
1714 process_bb_for_costs (bb);
1717 if (pass == 0)
1718 pref = pref_buffer;
1720 /* Now for each allocno look at how desirable each class is and
1721 find which class is preferred. */
1722 for (i = max_reg_num () - 1; i >= FIRST_PSEUDO_REGISTER; i--)
1724 ira_allocno_t a, parent_a;
1725 int rclass, a_num, parent_a_num, add_cost;
1726 ira_loop_tree_node_t parent;
1727 int best_cost, allocno_cost;
1728 enum reg_class best, alt_class;
1729 cost_classes_t cost_classes_ptr = regno_cost_classes[i];
1730 enum reg_class *cost_classes = cost_classes_ptr->classes;
1731 int *i_costs = temp_costs->cost;
1732 int i_mem_cost;
1733 int equiv_savings = regno_equiv_gains[i];
1735 if (! allocno_p)
1737 if (regno_reg_rtx[i] == NULL_RTX)
1738 continue;
1739 memcpy (temp_costs, COSTS (costs, i), struct_costs_size);
1740 i_mem_cost = temp_costs->mem_cost;
1742 else
1744 if (ira_regno_allocno_map[i] == NULL)
1745 continue;
1746 memset (temp_costs, 0, struct_costs_size);
1747 i_mem_cost = 0;
1748 /* Find cost of all allocnos with the same regno. */
1749 for (a = ira_regno_allocno_map[i];
1750 a != NULL;
1751 a = ALLOCNO_NEXT_REGNO_ALLOCNO (a))
1753 int *a_costs, *p_costs;
1755 a_num = ALLOCNO_NUM (a);
1756 if ((flag_ira_region == IRA_REGION_ALL
1757 || flag_ira_region == IRA_REGION_MIXED)
1758 && (parent = ALLOCNO_LOOP_TREE_NODE (a)->parent) != NULL
1759 && (parent_a = parent->regno_allocno_map[i]) != NULL
1760 /* There are no caps yet. */
1761 && bitmap_bit_p (ALLOCNO_LOOP_TREE_NODE
1762 (a)->border_allocnos,
1763 ALLOCNO_NUM (a)))
1765 /* Propagate costs to upper levels in the region
1766 tree. */
1767 parent_a_num = ALLOCNO_NUM (parent_a);
1768 a_costs = COSTS (total_allocno_costs, a_num)->cost;
1769 p_costs = COSTS (total_allocno_costs, parent_a_num)->cost;
1770 for (k = cost_classes_ptr->num - 1; k >= 0; k--)
1772 add_cost = a_costs[k];
1773 if (add_cost > 0 && INT_MAX - add_cost < p_costs[k])
1774 p_costs[k] = INT_MAX;
1775 else
1776 p_costs[k] += add_cost;
1778 add_cost = COSTS (total_allocno_costs, a_num)->mem_cost;
1779 if (add_cost > 0
1780 && (INT_MAX - add_cost
1781 < COSTS (total_allocno_costs,
1782 parent_a_num)->mem_cost))
1783 COSTS (total_allocno_costs, parent_a_num)->mem_cost
1784 = INT_MAX;
1785 else
1786 COSTS (total_allocno_costs, parent_a_num)->mem_cost
1787 += add_cost;
1789 if (i >= first_moveable_pseudo && i < last_moveable_pseudo)
1790 COSTS (total_allocno_costs, parent_a_num)->mem_cost = 0;
1792 a_costs = COSTS (costs, a_num)->cost;
1793 for (k = cost_classes_ptr->num - 1; k >= 0; k--)
1795 add_cost = a_costs[k];
1796 if (add_cost > 0 && INT_MAX - add_cost < i_costs[k])
1797 i_costs[k] = INT_MAX;
1798 else
1799 i_costs[k] += add_cost;
1801 add_cost = COSTS (costs, a_num)->mem_cost;
1802 if (add_cost > 0 && INT_MAX - add_cost < i_mem_cost)
1803 i_mem_cost = INT_MAX;
1804 else
1805 i_mem_cost += add_cost;
1808 if (i >= first_moveable_pseudo && i < last_moveable_pseudo)
1809 i_mem_cost = 0;
1810 else if (equiv_savings < 0)
1811 i_mem_cost = -equiv_savings;
1812 else if (equiv_savings > 0)
1814 i_mem_cost = 0;
1815 for (k = cost_classes_ptr->num - 1; k >= 0; k--)
1816 i_costs[k] += equiv_savings;
1819 best_cost = (1 << (HOST_BITS_PER_INT - 2)) - 1;
1820 best = ALL_REGS;
1821 alt_class = NO_REGS;
1822 /* Find best common class for all allocnos with the same
1823 regno. */
1824 for (k = 0; k < cost_classes_ptr->num; k++)
1826 rclass = cost_classes[k];
1827 if (i_costs[k] < best_cost)
1829 best_cost = i_costs[k];
1830 best = (enum reg_class) rclass;
1832 else if (i_costs[k] == best_cost)
1833 best = ira_reg_class_subunion[best][rclass];
1834 if (pass == flag_expensive_optimizations
1835 /* We still prefer registers to memory even at this
1836 stage if their costs are the same. We will make
1837 a final decision during assigning hard registers
1838 when we have all info including more accurate
1839 costs which might be affected by assigning hard
1840 registers to other pseudos because the pseudos
1841 involved in moves can be coalesced. */
1842 && i_costs[k] <= i_mem_cost
1843 && (reg_class_size[reg_class_subunion[alt_class][rclass]]
1844 > reg_class_size[alt_class]))
1845 alt_class = reg_class_subunion[alt_class][rclass];
1847 alt_class = ira_allocno_class_translate[alt_class];
1848 if (best_cost > i_mem_cost
1849 && ! non_spilled_static_chain_regno_p (i))
1850 regno_aclass[i] = NO_REGS;
1851 else if (!optimize && !targetm.class_likely_spilled_p (best))
1852 /* Registers in the alternative class are likely to need
1853 longer or slower sequences than registers in the best class.
1854 When optimizing we make some effort to use the best class
1855 over the alternative class where possible, but at -O0 we
1856 effectively give the alternative class equal weight.
1857 We then run the risk of using slower alternative registers
1858 when plenty of registers from the best class are still free.
1859 This is especially true because live ranges tend to be very
1860 short in -O0 code and so register pressure tends to be low.
1862 Avoid that by ignoring the alternative class if the best
1863 class has plenty of registers.
1865 The union class arrays give important classes and only
1866 part of it are allocno classes. So translate them into
1867 allocno classes. */
1868 regno_aclass[i] = ira_allocno_class_translate[best];
1869 else
1871 /* Make the common class the biggest class of best and
1872 alt_class. Translate the common class into an
1873 allocno class too. */
1874 regno_aclass[i] = (ira_allocno_class_translate
1875 [ira_reg_class_superunion[best][alt_class]]);
1876 ira_assert (regno_aclass[i] != NO_REGS
1877 && ira_reg_allocno_class_p[regno_aclass[i]]);
1879 if ((new_class
1880 = (reg_class) (targetm.ira_change_pseudo_allocno_class
1881 (i, regno_aclass[i], best))) != regno_aclass[i])
1883 regno_aclass[i] = new_class;
1884 if (hard_reg_set_subset_p (reg_class_contents[new_class],
1885 reg_class_contents[best]))
1886 best = new_class;
1887 if (hard_reg_set_subset_p (reg_class_contents[new_class],
1888 reg_class_contents[alt_class]))
1889 alt_class = new_class;
1891 if (pass == flag_expensive_optimizations)
1893 if (best_cost > i_mem_cost
1894 /* Do not assign NO_REGS to static chain pointer
1895 pseudo when non-local goto is used. */
1896 && ! non_spilled_static_chain_regno_p (i))
1897 best = alt_class = NO_REGS;
1898 else if (best == alt_class)
1899 alt_class = NO_REGS;
1900 setup_reg_classes (i, best, alt_class, regno_aclass[i]);
1901 if ((!allocno_p || internal_flag_ira_verbose > 2)
1902 && dump_file != NULL)
1903 fprintf (dump_file,
1904 " r%d: preferred %s, alternative %s, allocno %s\n",
1905 i, reg_class_names[best], reg_class_names[alt_class],
1906 reg_class_names[regno_aclass[i]]);
1908 regno_best_class[i] = best;
1909 if (! allocno_p)
1911 pref[i] = (best_cost > i_mem_cost
1912 && ! non_spilled_static_chain_regno_p (i)
1913 ? NO_REGS : best);
1914 continue;
1916 for (a = ira_regno_allocno_map[i];
1917 a != NULL;
1918 a = ALLOCNO_NEXT_REGNO_ALLOCNO (a))
1920 enum reg_class aclass = regno_aclass[i];
1921 int a_num = ALLOCNO_NUM (a);
1922 int *total_a_costs = COSTS (total_allocno_costs, a_num)->cost;
1923 int *a_costs = COSTS (costs, a_num)->cost;
1925 if (aclass == NO_REGS)
1926 best = NO_REGS;
1927 else
1929 /* Finding best class which is subset of the common
1930 class. */
1931 best_cost = (1 << (HOST_BITS_PER_INT - 2)) - 1;
1932 allocno_cost = best_cost;
1933 best = ALL_REGS;
1934 for (k = 0; k < cost_classes_ptr->num; k++)
1936 rclass = cost_classes[k];
1937 if (! ira_class_subset_p[rclass][aclass])
1938 continue;
1939 if (total_a_costs[k] < best_cost)
1941 best_cost = total_a_costs[k];
1942 allocno_cost = a_costs[k];
1943 best = (enum reg_class) rclass;
1945 else if (total_a_costs[k] == best_cost)
1947 best = ira_reg_class_subunion[best][rclass];
1948 allocno_cost = MAX (allocno_cost, a_costs[k]);
1951 ALLOCNO_CLASS_COST (a) = allocno_cost;
1953 if (internal_flag_ira_verbose > 2 && dump_file != NULL
1954 && (pass == 0 || pref[a_num] != best))
1956 fprintf (dump_file, " a%d (r%d,", a_num, i);
1957 if ((bb = ALLOCNO_LOOP_TREE_NODE (a)->bb) != NULL)
1958 fprintf (dump_file, "b%d", bb->index);
1959 else
1960 fprintf (dump_file, "l%d",
1961 ALLOCNO_LOOP_TREE_NODE (a)->loop_num);
1962 fprintf (dump_file, ") best %s, allocno %s\n",
1963 reg_class_names[best],
1964 reg_class_names[aclass]);
1966 pref[a_num] = best;
1967 if (pass == flag_expensive_optimizations && best != aclass
1968 && ira_class_hard_regs_num[best] > 0
1969 && (ira_reg_class_max_nregs[best][ALLOCNO_MODE (a)]
1970 >= ira_class_hard_regs_num[best]))
1972 int ind = cost_classes_ptr->index[aclass];
1974 ira_assert (ind >= 0);
1975 ira_init_register_move_cost_if_necessary (ALLOCNO_MODE (a));
1976 ira_add_allocno_pref (a, ira_class_hard_regs[best][0],
1977 (a_costs[ind] - ALLOCNO_CLASS_COST (a))
1978 / (ira_register_move_cost
1979 [ALLOCNO_MODE (a)][best][aclass]));
1980 for (k = 0; k < cost_classes_ptr->num; k++)
1981 if (ira_class_subset_p[cost_classes[k]][best])
1982 a_costs[k] = a_costs[ind];
1987 if (internal_flag_ira_verbose > 4 && dump_file)
1989 if (allocno_p)
1990 print_allocno_costs (dump_file);
1991 else
1992 print_pseudo_costs (dump_file);
1993 fprintf (dump_file,"\n");
1996 ira_free (regno_best_class);
2001 /* Process moves involving hard regs to modify allocno hard register
2002 costs. We can do this only after determining allocno class. If a
2003 hard register forms a register class, then moves with the hard
2004 register are already taken into account in class costs for the
2005 allocno. */
2006 static void
2007 process_bb_node_for_hard_reg_moves (ira_loop_tree_node_t loop_tree_node)
2009 int i, freq, src_regno, dst_regno, hard_regno, a_regno;
2010 bool to_p;
2011 ira_allocno_t a, curr_a;
2012 ira_loop_tree_node_t curr_loop_tree_node;
2013 enum reg_class rclass;
2014 basic_block bb;
2015 rtx_insn *insn;
2016 rtx set, src, dst;
2018 bb = loop_tree_node->bb;
2019 if (bb == NULL)
2020 return;
2021 freq = REG_FREQ_FROM_BB (bb);
2022 if (freq == 0)
2023 freq = 1;
2024 FOR_BB_INSNS (bb, insn)
2026 if (!NONDEBUG_INSN_P (insn))
2027 continue;
2028 set = single_set (insn);
2029 if (set == NULL_RTX)
2030 continue;
2031 dst = SET_DEST (set);
2032 src = SET_SRC (set);
2033 if (! REG_P (dst) || ! REG_P (src))
2034 continue;
2035 dst_regno = REGNO (dst);
2036 src_regno = REGNO (src);
2037 if (dst_regno >= FIRST_PSEUDO_REGISTER
2038 && src_regno < FIRST_PSEUDO_REGISTER)
2040 hard_regno = src_regno;
2041 a = ira_curr_regno_allocno_map[dst_regno];
2042 to_p = true;
2044 else if (src_regno >= FIRST_PSEUDO_REGISTER
2045 && dst_regno < FIRST_PSEUDO_REGISTER)
2047 hard_regno = dst_regno;
2048 a = ira_curr_regno_allocno_map[src_regno];
2049 to_p = false;
2051 else
2052 continue;
2053 rclass = ALLOCNO_CLASS (a);
2054 if (! TEST_HARD_REG_BIT (reg_class_contents[rclass], hard_regno))
2055 continue;
2056 i = ira_class_hard_reg_index[rclass][hard_regno];
2057 if (i < 0)
2058 continue;
2059 a_regno = ALLOCNO_REGNO (a);
2060 for (curr_loop_tree_node = ALLOCNO_LOOP_TREE_NODE (a);
2061 curr_loop_tree_node != NULL;
2062 curr_loop_tree_node = curr_loop_tree_node->parent)
2063 if ((curr_a = curr_loop_tree_node->regno_allocno_map[a_regno]) != NULL)
2064 ira_add_allocno_pref (curr_a, hard_regno, freq);
2066 int cost;
2067 enum reg_class hard_reg_class;
2068 machine_mode mode;
2070 mode = ALLOCNO_MODE (a);
2071 hard_reg_class = REGNO_REG_CLASS (hard_regno);
2072 ira_init_register_move_cost_if_necessary (mode);
2073 cost = (to_p ? ira_register_move_cost[mode][hard_reg_class][rclass]
2074 : ira_register_move_cost[mode][rclass][hard_reg_class]) * freq;
2075 ira_allocate_and_set_costs (&ALLOCNO_HARD_REG_COSTS (a), rclass,
2076 ALLOCNO_CLASS_COST (a));
2077 ira_allocate_and_set_costs (&ALLOCNO_CONFLICT_HARD_REG_COSTS (a),
2078 rclass, 0);
2079 ALLOCNO_HARD_REG_COSTS (a)[i] -= cost;
2080 ALLOCNO_CONFLICT_HARD_REG_COSTS (a)[i] -= cost;
2081 ALLOCNO_CLASS_COST (a) = MIN (ALLOCNO_CLASS_COST (a),
2082 ALLOCNO_HARD_REG_COSTS (a)[i]);
2087 /* After we find hard register and memory costs for allocnos, define
2088 its class and modify hard register cost because insns moving
2089 allocno to/from hard registers. */
2090 static void
2091 setup_allocno_class_and_costs (void)
2093 int i, j, n, regno, hard_regno, num;
2094 int *reg_costs;
2095 enum reg_class aclass, rclass;
2096 ira_allocno_t a;
2097 ira_allocno_iterator ai;
2098 cost_classes_t cost_classes_ptr;
2100 ira_assert (allocno_p);
2101 FOR_EACH_ALLOCNO (a, ai)
2103 i = ALLOCNO_NUM (a);
2104 regno = ALLOCNO_REGNO (a);
2105 aclass = regno_aclass[regno];
2106 cost_classes_ptr = regno_cost_classes[regno];
2107 ira_assert (pref[i] == NO_REGS || aclass != NO_REGS);
2108 ALLOCNO_MEMORY_COST (a) = COSTS (costs, i)->mem_cost;
2109 ira_set_allocno_class (a, aclass);
2110 if (aclass == NO_REGS)
2111 continue;
2112 if (optimize && ALLOCNO_CLASS (a) != pref[i])
2114 n = ira_class_hard_regs_num[aclass];
2115 ALLOCNO_HARD_REG_COSTS (a)
2116 = reg_costs = ira_allocate_cost_vector (aclass);
2117 for (j = n - 1; j >= 0; j--)
2119 hard_regno = ira_class_hard_regs[aclass][j];
2120 if (TEST_HARD_REG_BIT (reg_class_contents[pref[i]], hard_regno))
2121 reg_costs[j] = ALLOCNO_CLASS_COST (a);
2122 else
2124 rclass = REGNO_REG_CLASS (hard_regno);
2125 num = cost_classes_ptr->index[rclass];
2126 if (num < 0)
2128 num = cost_classes_ptr->hard_regno_index[hard_regno];
2129 ira_assert (num >= 0);
2131 reg_costs[j] = COSTS (costs, i)->cost[num];
2136 if (optimize)
2137 ira_traverse_loop_tree (true, ira_loop_tree_root,
2138 process_bb_node_for_hard_reg_moves, NULL);
2143 /* Function called once during compiler work. */
2144 void
2145 ira_init_costs_once (void)
2147 int i;
2149 init_cost = NULL;
2150 for (i = 0; i < MAX_RECOG_OPERANDS; i++)
2152 op_costs[i] = NULL;
2153 this_op_costs[i] = NULL;
2155 temp_costs = NULL;
2158 /* Free allocated temporary cost vectors. */
2159 void
2160 target_ira_int::free_ira_costs ()
2162 int i;
2164 free (x_init_cost);
2165 x_init_cost = NULL;
2166 for (i = 0; i < MAX_RECOG_OPERANDS; i++)
2168 free (x_op_costs[i]);
2169 free (x_this_op_costs[i]);
2170 x_op_costs[i] = x_this_op_costs[i] = NULL;
2172 free (x_temp_costs);
2173 x_temp_costs = NULL;
2176 /* This is called each time register related information is
2177 changed. */
2178 void
2179 ira_init_costs (void)
2181 int i;
2183 this_target_ira_int->free_ira_costs ();
2184 max_struct_costs_size
2185 = sizeof (struct costs) + sizeof (int) * (ira_important_classes_num - 1);
2186 /* Don't use ira_allocate because vectors live through several IRA
2187 calls. */
2188 init_cost = (struct costs *) xmalloc (max_struct_costs_size);
2189 init_cost->mem_cost = 1000000;
2190 for (i = 0; i < ira_important_classes_num; i++)
2191 init_cost->cost[i] = 1000000;
2192 for (i = 0; i < MAX_RECOG_OPERANDS; i++)
2194 op_costs[i] = (struct costs *) xmalloc (max_struct_costs_size);
2195 this_op_costs[i] = (struct costs *) xmalloc (max_struct_costs_size);
2197 temp_costs = (struct costs *) xmalloc (max_struct_costs_size);
2202 /* Common initialization function for ira_costs and
2203 ira_set_pseudo_classes. */
2204 static void
2205 init_costs (void)
2207 init_subregs_of_mode ();
2208 costs = (struct costs *) ira_allocate (max_struct_costs_size
2209 * cost_elements_num);
2210 pref_buffer = (enum reg_class *) ira_allocate (sizeof (enum reg_class)
2211 * cost_elements_num);
2212 regno_aclass = (enum reg_class *) ira_allocate (sizeof (enum reg_class)
2213 * max_reg_num ());
2214 regno_equiv_gains = (int *) ira_allocate (sizeof (int) * max_reg_num ());
2215 memset (regno_equiv_gains, 0, sizeof (int) * max_reg_num ());
2218 /* Common finalization function for ira_costs and
2219 ira_set_pseudo_classes. */
2220 static void
2221 finish_costs (void)
2223 finish_subregs_of_mode ();
2224 ira_free (regno_equiv_gains);
2225 ira_free (regno_aclass);
2226 ira_free (pref_buffer);
2227 ira_free (costs);
2230 /* Entry function which defines register class, memory and hard
2231 register costs for each allocno. */
2232 void
2233 ira_costs (void)
2235 allocno_p = true;
2236 cost_elements_num = ira_allocnos_num;
2237 init_costs ();
2238 total_allocno_costs = (struct costs *) ira_allocate (max_struct_costs_size
2239 * ira_allocnos_num);
2240 initiate_regno_cost_classes ();
2241 calculate_elim_costs_all_insns ();
2242 find_costs_and_classes (ira_dump_file);
2243 setup_allocno_class_and_costs ();
2244 finish_regno_cost_classes ();
2245 finish_costs ();
2246 ira_free (total_allocno_costs);
2249 /* Entry function which defines classes for pseudos.
2250 Set pseudo_classes_defined_p only if DEFINE_PSEUDO_CLASSES is true. */
2251 void
2252 ira_set_pseudo_classes (bool define_pseudo_classes, FILE *dump_file)
2254 allocno_p = false;
2255 internal_flag_ira_verbose = flag_ira_verbose;
2256 cost_elements_num = max_reg_num ();
2257 init_costs ();
2258 initiate_regno_cost_classes ();
2259 find_costs_and_classes (dump_file);
2260 finish_regno_cost_classes ();
2261 if (define_pseudo_classes)
2262 pseudo_classes_defined_p = true;
2264 finish_costs ();
2269 /* Change hard register costs for allocnos which lives through
2270 function calls. This is called only when we found all intersected
2271 calls during building allocno live ranges. */
2272 void
2273 ira_tune_allocno_costs (void)
2275 int j, n, regno;
2276 int cost, min_cost, *reg_costs;
2277 enum reg_class aclass, rclass;
2278 machine_mode mode;
2279 ira_allocno_t a;
2280 ira_allocno_iterator ai;
2281 ira_allocno_object_iterator oi;
2282 ira_object_t obj;
2283 bool skip_p;
2284 HARD_REG_SET *crossed_calls_clobber_regs;
2286 FOR_EACH_ALLOCNO (a, ai)
2288 aclass = ALLOCNO_CLASS (a);
2289 if (aclass == NO_REGS)
2290 continue;
2291 mode = ALLOCNO_MODE (a);
2292 n = ira_class_hard_regs_num[aclass];
2293 min_cost = INT_MAX;
2294 if (ALLOCNO_CALLS_CROSSED_NUM (a)
2295 != ALLOCNO_CHEAP_CALLS_CROSSED_NUM (a))
2297 ira_allocate_and_set_costs
2298 (&ALLOCNO_HARD_REG_COSTS (a), aclass,
2299 ALLOCNO_CLASS_COST (a));
2300 reg_costs = ALLOCNO_HARD_REG_COSTS (a);
2301 for (j = n - 1; j >= 0; j--)
2303 regno = ira_class_hard_regs[aclass][j];
2304 skip_p = false;
2305 FOR_EACH_ALLOCNO_OBJECT (a, obj, oi)
2307 if (ira_hard_reg_set_intersection_p (regno, mode,
2308 OBJECT_CONFLICT_HARD_REGS
2309 (obj)))
2311 skip_p = true;
2312 break;
2315 if (skip_p)
2316 continue;
2317 rclass = REGNO_REG_CLASS (regno);
2318 cost = 0;
2319 crossed_calls_clobber_regs
2320 = &(ALLOCNO_CROSSED_CALLS_CLOBBERED_REGS (a));
2321 if (ira_hard_reg_set_intersection_p (regno, mode,
2322 *crossed_calls_clobber_regs)
2323 && (ira_hard_reg_set_intersection_p (regno, mode,
2324 call_used_reg_set)
2325 || HARD_REGNO_CALL_PART_CLOBBERED (regno, mode)))
2326 cost += (ALLOCNO_CALL_FREQ (a)
2327 * (ira_memory_move_cost[mode][rclass][0]
2328 + ira_memory_move_cost[mode][rclass][1]));
2329 #ifdef IRA_HARD_REGNO_ADD_COST_MULTIPLIER
2330 cost += ((ira_memory_move_cost[mode][rclass][0]
2331 + ira_memory_move_cost[mode][rclass][1])
2332 * ALLOCNO_FREQ (a)
2333 * IRA_HARD_REGNO_ADD_COST_MULTIPLIER (regno) / 2);
2334 #endif
2335 if (INT_MAX - cost < reg_costs[j])
2336 reg_costs[j] = INT_MAX;
2337 else
2338 reg_costs[j] += cost;
2339 if (min_cost > reg_costs[j])
2340 min_cost = reg_costs[j];
2343 if (min_cost != INT_MAX)
2344 ALLOCNO_CLASS_COST (a) = min_cost;
2346 /* Some targets allow pseudos to be allocated to unaligned sequences
2347 of hard registers. However, selecting an unaligned sequence can
2348 unnecessarily restrict later allocations. So increase the cost of
2349 unaligned hard regs to encourage the use of aligned hard regs. */
2351 const int nregs = ira_reg_class_max_nregs[aclass][ALLOCNO_MODE (a)];
2353 if (nregs > 1)
2355 ira_allocate_and_set_costs
2356 (&ALLOCNO_HARD_REG_COSTS (a), aclass, ALLOCNO_CLASS_COST (a));
2357 reg_costs = ALLOCNO_HARD_REG_COSTS (a);
2358 for (j = n - 1; j >= 0; j--)
2360 regno = ira_non_ordered_class_hard_regs[aclass][j];
2361 if ((regno % nregs) != 0)
2363 int index = ira_class_hard_reg_index[aclass][regno];
2364 ira_assert (index != -1);
2365 reg_costs[index] += ALLOCNO_FREQ (a);
2373 /* Add COST to the estimated gain for eliminating REGNO with its
2374 equivalence. If COST is zero, record that no such elimination is
2375 possible. */
2377 void
2378 ira_adjust_equiv_reg_cost (unsigned regno, int cost)
2380 if (cost == 0)
2381 regno_equiv_gains[regno] = 0;
2382 else
2383 regno_equiv_gains[regno] += cost;
2386 void
2387 ira_costs_c_finalize (void)
2389 this_target_ira_int->free_ira_costs ();