PR other/18555
[official-gcc.git] / gcc / tree-sra.c
blob75e7682fcacf6e6ee3e7315a94c9309bd0b2a015
1 /* Scalar Replacement of Aggregates (SRA) converts some structure
2 references into scalar references, exposing them to the scalar
3 optimizers.
4 Copyright (C) 2008, 2009, 2010 Free Software Foundation, Inc.
5 Contributed by Martin Jambor <mjambor@suse.cz>
7 This file is part of GCC.
9 GCC is free software; you can redistribute it and/or modify it under
10 the terms of the GNU General Public License as published by the Free
11 Software Foundation; either version 3, or (at your option) any later
12 version.
14 GCC is distributed in the hope that it will be useful, but WITHOUT ANY
15 WARRANTY; without even the implied warranty of MERCHANTABILITY or
16 FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License
17 for more details.
19 You should have received a copy of the GNU General Public License
20 along with GCC; see the file COPYING3. If not see
21 <http://www.gnu.org/licenses/>. */
23 /* This file implements Scalar Reduction of Aggregates (SRA). SRA is run
24 twice, once in the early stages of compilation (early SRA) and once in the
25 late stages (late SRA). The aim of both is to turn references to scalar
26 parts of aggregates into uses of independent scalar variables.
28 The two passes are nearly identical, the only difference is that early SRA
29 does not scalarize unions which are used as the result in a GIMPLE_RETURN
30 statement because together with inlining this can lead to weird type
31 conversions.
33 Both passes operate in four stages:
35 1. The declarations that have properties which make them candidates for
36 scalarization are identified in function find_var_candidates(). The
37 candidates are stored in candidate_bitmap.
39 2. The function body is scanned. In the process, declarations which are
40 used in a manner that prevent their scalarization are removed from the
41 candidate bitmap. More importantly, for every access into an aggregate,
42 an access structure (struct access) is created by create_access() and
43 stored in a vector associated with the aggregate. Among other
44 information, the aggregate declaration, the offset and size of the access
45 and its type are stored in the structure.
47 On a related note, assign_link structures are created for every assign
48 statement between candidate aggregates and attached to the related
49 accesses.
51 3. The vectors of accesses are analyzed. They are first sorted according to
52 their offset and size and then scanned for partially overlapping accesses
53 (i.e. those which overlap but one is not entirely within another). Such
54 an access disqualifies the whole aggregate from being scalarized.
56 If there is no such inhibiting overlap, a representative access structure
57 is chosen for every unique combination of offset and size. Afterwards,
58 the pass builds a set of trees from these structures, in which children
59 of an access are within their parent (in terms of offset and size).
61 Then accesses are propagated whenever possible (i.e. in cases when it
62 does not create a partially overlapping access) across assign_links from
63 the right hand side to the left hand side.
65 Then the set of trees for each declaration is traversed again and those
66 accesses which should be replaced by a scalar are identified.
68 4. The function is traversed again, and for every reference into an
69 aggregate that has some component which is about to be scalarized,
70 statements are amended and new statements are created as necessary.
71 Finally, if a parameter got scalarized, the scalar replacements are
72 initialized with values from respective parameter aggregates. */
74 #include "config.h"
75 #include "system.h"
76 #include "coretypes.h"
77 #include "alloc-pool.h"
78 #include "tm.h"
79 #include "tree.h"
80 #include "gimple.h"
81 #include "cgraph.h"
82 #include "tree-flow.h"
83 #include "ipa-prop.h"
84 #include "tree-pretty-print.h"
85 #include "statistics.h"
86 #include "tree-dump.h"
87 #include "timevar.h"
88 #include "params.h"
89 #include "target.h"
90 #include "flags.h"
91 #include "dbgcnt.h"
92 #include "tree-inline.h"
93 #include "gimple-pretty-print.h"
95 /* Enumeration of all aggregate reductions we can do. */
96 enum sra_mode { SRA_MODE_EARLY_IPA, /* early call regularization */
97 SRA_MODE_EARLY_INTRA, /* early intraprocedural SRA */
98 SRA_MODE_INTRA }; /* late intraprocedural SRA */
100 /* Global variable describing which aggregate reduction we are performing at
101 the moment. */
102 static enum sra_mode sra_mode;
104 struct assign_link;
106 /* ACCESS represents each access to an aggregate variable (as a whole or a
107 part). It can also represent a group of accesses that refer to exactly the
108 same fragment of an aggregate (i.e. those that have exactly the same offset
109 and size). Such representatives for a single aggregate, once determined,
110 are linked in a linked list and have the group fields set.
112 Moreover, when doing intraprocedural SRA, a tree is built from those
113 representatives (by the means of first_child and next_sibling pointers), in
114 which all items in a subtree are "within" the root, i.e. their offset is
115 greater or equal to offset of the root and offset+size is smaller or equal
116 to offset+size of the root. Children of an access are sorted by offset.
118 Note that accesses to parts of vector and complex number types always
119 represented by an access to the whole complex number or a vector. It is a
120 duty of the modifying functions to replace them appropriately. */
122 struct access
124 /* Values returned by `get_ref_base_and_extent' for each component reference
125 If EXPR isn't a component reference just set `BASE = EXPR', `OFFSET = 0',
126 `SIZE = TREE_SIZE (TREE_TYPE (expr))'. */
127 HOST_WIDE_INT offset;
128 HOST_WIDE_INT size;
129 tree base;
131 /* Expression. It is context dependent so do not use it to create new
132 expressions to access the original aggregate. See PR 42154 for a
133 testcase. */
134 tree expr;
135 /* Type. */
136 tree type;
138 /* The statement this access belongs to. */
139 gimple stmt;
141 /* Next group representative for this aggregate. */
142 struct access *next_grp;
144 /* Pointer to the group representative. Pointer to itself if the struct is
145 the representative. */
146 struct access *group_representative;
148 /* If this access has any children (in terms of the definition above), this
149 points to the first one. */
150 struct access *first_child;
152 /* In intraprocedural SRA, pointer to the next sibling in the access tree as
153 described above. In IPA-SRA this is a pointer to the next access
154 belonging to the same group (having the same representative). */
155 struct access *next_sibling;
157 /* Pointers to the first and last element in the linked list of assign
158 links. */
159 struct assign_link *first_link, *last_link;
161 /* Pointer to the next access in the work queue. */
162 struct access *next_queued;
164 /* Replacement variable for this access "region." Never to be accessed
165 directly, always only by the means of get_access_replacement() and only
166 when grp_to_be_replaced flag is set. */
167 tree replacement_decl;
169 /* Is this particular access write access? */
170 unsigned write : 1;
172 /* Is this access an artificial one created to scalarize some record
173 entirely? */
174 unsigned total_scalarization : 1;
176 /* Is this access currently in the work queue? */
177 unsigned grp_queued : 1;
179 /* Does this group contain a write access? This flag is propagated down the
180 access tree. */
181 unsigned grp_write : 1;
183 /* Does this group contain a read access? This flag is propagated down the
184 access tree. */
185 unsigned grp_read : 1;
187 /* Does this group contain a read access that comes from an assignment
188 statement? This flag is propagated down the access tree. */
189 unsigned grp_assignment_read : 1;
191 /* Other passes of the analysis use this bit to make function
192 analyze_access_subtree create scalar replacements for this group if
193 possible. */
194 unsigned grp_hint : 1;
196 /* Is the subtree rooted in this access fully covered by scalar
197 replacements? */
198 unsigned grp_covered : 1;
200 /* If set to true, this access and all below it in an access tree must not be
201 scalarized. */
202 unsigned grp_unscalarizable_region : 1;
204 /* Whether data have been written to parts of the aggregate covered by this
205 access which is not to be scalarized. This flag is propagated up in the
206 access tree. */
207 unsigned grp_unscalarized_data : 1;
209 /* Does this access and/or group contain a write access through a
210 BIT_FIELD_REF? */
211 unsigned grp_partial_lhs : 1;
213 /* Set when a scalar replacement should be created for this variable. We do
214 the decision and creation at different places because create_tmp_var
215 cannot be called from within FOR_EACH_REFERENCED_VAR. */
216 unsigned grp_to_be_replaced : 1;
218 /* Is it possible that the group refers to data which might be (directly or
219 otherwise) modified? */
220 unsigned grp_maybe_modified : 1;
222 /* Set when this is a representative of a pointer to scalar (i.e. by
223 reference) parameter which we consider for turning into a plain scalar
224 (i.e. a by value parameter). */
225 unsigned grp_scalar_ptr : 1;
227 /* Set when we discover that this pointer is not safe to dereference in the
228 caller. */
229 unsigned grp_not_necessarilly_dereferenced : 1;
232 typedef struct access *access_p;
234 DEF_VEC_P (access_p);
235 DEF_VEC_ALLOC_P (access_p, heap);
237 /* Alloc pool for allocating access structures. */
238 static alloc_pool access_pool;
240 /* A structure linking lhs and rhs accesses from an aggregate assignment. They
241 are used to propagate subaccesses from rhs to lhs as long as they don't
242 conflict with what is already there. */
243 struct assign_link
245 struct access *lacc, *racc;
246 struct assign_link *next;
249 /* Alloc pool for allocating assign link structures. */
250 static alloc_pool link_pool;
252 /* Base (tree) -> Vector (VEC(access_p,heap) *) map. */
253 static struct pointer_map_t *base_access_vec;
255 /* Bitmap of candidates. */
256 static bitmap candidate_bitmap;
258 /* Bitmap of candidates which we should try to entirely scalarize away and
259 those which cannot be (because they are and need be used as a whole). */
260 static bitmap should_scalarize_away_bitmap, cannot_scalarize_away_bitmap;
262 /* Obstack for creation of fancy names. */
263 static struct obstack name_obstack;
265 /* Head of a linked list of accesses that need to have its subaccesses
266 propagated to their assignment counterparts. */
267 static struct access *work_queue_head;
269 /* Number of parameters of the analyzed function when doing early ipa SRA. */
270 static int func_param_count;
272 /* scan_function sets the following to true if it encounters a call to
273 __builtin_apply_args. */
274 static bool encountered_apply_args;
276 /* Set by scan_function when it finds a recursive call. */
277 static bool encountered_recursive_call;
279 /* Set by scan_function when it finds a recursive call with less actual
280 arguments than formal parameters.. */
281 static bool encountered_unchangable_recursive_call;
283 /* This is a table in which for each basic block and parameter there is a
284 distance (offset + size) in that parameter which is dereferenced and
285 accessed in that BB. */
286 static HOST_WIDE_INT *bb_dereferences;
287 /* Bitmap of BBs that can cause the function to "stop" progressing by
288 returning, throwing externally, looping infinitely or calling a function
289 which might abort etc.. */
290 static bitmap final_bbs;
292 /* Representative of no accesses at all. */
293 static struct access no_accesses_representant;
295 /* Predicate to test the special value. */
297 static inline bool
298 no_accesses_p (struct access *access)
300 return access == &no_accesses_representant;
303 /* Dump contents of ACCESS to file F in a human friendly way. If GRP is true,
304 representative fields are dumped, otherwise those which only describe the
305 individual access are. */
307 static struct
309 /* Number of processed aggregates is readily available in
310 analyze_all_variable_accesses and so is not stored here. */
312 /* Number of created scalar replacements. */
313 int replacements;
315 /* Number of times sra_modify_expr or sra_modify_assign themselves changed an
316 expression. */
317 int exprs;
319 /* Number of statements created by generate_subtree_copies. */
320 int subtree_copies;
322 /* Number of statements created by load_assign_lhs_subreplacements. */
323 int subreplacements;
325 /* Number of times sra_modify_assign has deleted a statement. */
326 int deleted;
328 /* Number of times sra_modify_assign has to deal with subaccesses of LHS and
329 RHS reparately due to type conversions or nonexistent matching
330 references. */
331 int separate_lhs_rhs_handling;
333 /* Number of parameters that were removed because they were unused. */
334 int deleted_unused_parameters;
336 /* Number of scalars passed as parameters by reference that have been
337 converted to be passed by value. */
338 int scalar_by_ref_to_by_val;
340 /* Number of aggregate parameters that were replaced by one or more of their
341 components. */
342 int aggregate_params_reduced;
344 /* Numbber of components created when splitting aggregate parameters. */
345 int param_reductions_created;
346 } sra_stats;
348 static void
349 dump_access (FILE *f, struct access *access, bool grp)
351 fprintf (f, "access { ");
352 fprintf (f, "base = (%d)'", DECL_UID (access->base));
353 print_generic_expr (f, access->base, 0);
354 fprintf (f, "', offset = " HOST_WIDE_INT_PRINT_DEC, access->offset);
355 fprintf (f, ", size = " HOST_WIDE_INT_PRINT_DEC, access->size);
356 fprintf (f, ", expr = ");
357 print_generic_expr (f, access->expr, 0);
358 fprintf (f, ", type = ");
359 print_generic_expr (f, access->type, 0);
360 if (grp)
361 fprintf (f, ", grp_write = %d, total_scalarization = %d, "
362 "grp_read = %d, grp_hint = %d, grp_assignment_read = %d,"
363 "grp_covered = %d, grp_unscalarizable_region = %d, "
364 "grp_unscalarized_data = %d, grp_partial_lhs = %d, "
365 "grp_to_be_replaced = %d, grp_maybe_modified = %d, "
366 "grp_not_necessarilly_dereferenced = %d\n",
367 access->grp_write, access->total_scalarization,
368 access->grp_read, access->grp_hint, access->grp_assignment_read,
369 access->grp_covered, access->grp_unscalarizable_region,
370 access->grp_unscalarized_data, access->grp_partial_lhs,
371 access->grp_to_be_replaced, access->grp_maybe_modified,
372 access->grp_not_necessarilly_dereferenced);
373 else
374 fprintf (f, ", write = %d, total_scalarization = %d, "
375 "grp_partial_lhs = %d\n",
376 access->write, access->total_scalarization,
377 access->grp_partial_lhs);
380 /* Dump a subtree rooted in ACCESS to file F, indent by LEVEL. */
382 static void
383 dump_access_tree_1 (FILE *f, struct access *access, int level)
387 int i;
389 for (i = 0; i < level; i++)
390 fputs ("* ", dump_file);
392 dump_access (f, access, true);
394 if (access->first_child)
395 dump_access_tree_1 (f, access->first_child, level + 1);
397 access = access->next_sibling;
399 while (access);
402 /* Dump all access trees for a variable, given the pointer to the first root in
403 ACCESS. */
405 static void
406 dump_access_tree (FILE *f, struct access *access)
408 for (; access; access = access->next_grp)
409 dump_access_tree_1 (f, access, 0);
412 /* Return true iff ACC is non-NULL and has subaccesses. */
414 static inline bool
415 access_has_children_p (struct access *acc)
417 return acc && acc->first_child;
420 /* Return a vector of pointers to accesses for the variable given in BASE or
421 NULL if there is none. */
423 static VEC (access_p, heap) *
424 get_base_access_vector (tree base)
426 void **slot;
428 slot = pointer_map_contains (base_access_vec, base);
429 if (!slot)
430 return NULL;
431 else
432 return *(VEC (access_p, heap) **) slot;
435 /* Find an access with required OFFSET and SIZE in a subtree of accesses rooted
436 in ACCESS. Return NULL if it cannot be found. */
438 static struct access *
439 find_access_in_subtree (struct access *access, HOST_WIDE_INT offset,
440 HOST_WIDE_INT size)
442 while (access && (access->offset != offset || access->size != size))
444 struct access *child = access->first_child;
446 while (child && (child->offset + child->size <= offset))
447 child = child->next_sibling;
448 access = child;
451 return access;
454 /* Return the first group representative for DECL or NULL if none exists. */
456 static struct access *
457 get_first_repr_for_decl (tree base)
459 VEC (access_p, heap) *access_vec;
461 access_vec = get_base_access_vector (base);
462 if (!access_vec)
463 return NULL;
465 return VEC_index (access_p, access_vec, 0);
468 /* Find an access representative for the variable BASE and given OFFSET and
469 SIZE. Requires that access trees have already been built. Return NULL if
470 it cannot be found. */
472 static struct access *
473 get_var_base_offset_size_access (tree base, HOST_WIDE_INT offset,
474 HOST_WIDE_INT size)
476 struct access *access;
478 access = get_first_repr_for_decl (base);
479 while (access && (access->offset + access->size <= offset))
480 access = access->next_grp;
481 if (!access)
482 return NULL;
484 return find_access_in_subtree (access, offset, size);
487 /* Add LINK to the linked list of assign links of RACC. */
488 static void
489 add_link_to_rhs (struct access *racc, struct assign_link *link)
491 gcc_assert (link->racc == racc);
493 if (!racc->first_link)
495 gcc_assert (!racc->last_link);
496 racc->first_link = link;
498 else
499 racc->last_link->next = link;
501 racc->last_link = link;
502 link->next = NULL;
505 /* Move all link structures in their linked list in OLD_RACC to the linked list
506 in NEW_RACC. */
507 static void
508 relink_to_new_repr (struct access *new_racc, struct access *old_racc)
510 if (!old_racc->first_link)
512 gcc_assert (!old_racc->last_link);
513 return;
516 if (new_racc->first_link)
518 gcc_assert (!new_racc->last_link->next);
519 gcc_assert (!old_racc->last_link || !old_racc->last_link->next);
521 new_racc->last_link->next = old_racc->first_link;
522 new_racc->last_link = old_racc->last_link;
524 else
526 gcc_assert (!new_racc->last_link);
528 new_racc->first_link = old_racc->first_link;
529 new_racc->last_link = old_racc->last_link;
531 old_racc->first_link = old_racc->last_link = NULL;
534 /* Add ACCESS to the work queue (which is actually a stack). */
536 static void
537 add_access_to_work_queue (struct access *access)
539 if (!access->grp_queued)
541 gcc_assert (!access->next_queued);
542 access->next_queued = work_queue_head;
543 access->grp_queued = 1;
544 work_queue_head = access;
548 /* Pop an access from the work queue, and return it, assuming there is one. */
550 static struct access *
551 pop_access_from_work_queue (void)
553 struct access *access = work_queue_head;
555 work_queue_head = access->next_queued;
556 access->next_queued = NULL;
557 access->grp_queued = 0;
558 return access;
562 /* Allocate necessary structures. */
564 static void
565 sra_initialize (void)
567 candidate_bitmap = BITMAP_ALLOC (NULL);
568 should_scalarize_away_bitmap = BITMAP_ALLOC (NULL);
569 cannot_scalarize_away_bitmap = BITMAP_ALLOC (NULL);
570 gcc_obstack_init (&name_obstack);
571 access_pool = create_alloc_pool ("SRA accesses", sizeof (struct access), 16);
572 link_pool = create_alloc_pool ("SRA links", sizeof (struct assign_link), 16);
573 base_access_vec = pointer_map_create ();
574 memset (&sra_stats, 0, sizeof (sra_stats));
575 encountered_apply_args = false;
576 encountered_recursive_call = false;
577 encountered_unchangable_recursive_call = false;
580 /* Hook fed to pointer_map_traverse, deallocate stored vectors. */
582 static bool
583 delete_base_accesses (const void *key ATTRIBUTE_UNUSED, void **value,
584 void *data ATTRIBUTE_UNUSED)
586 VEC (access_p, heap) *access_vec;
587 access_vec = (VEC (access_p, heap) *) *value;
588 VEC_free (access_p, heap, access_vec);
590 return true;
593 /* Deallocate all general structures. */
595 static void
596 sra_deinitialize (void)
598 BITMAP_FREE (candidate_bitmap);
599 BITMAP_FREE (should_scalarize_away_bitmap);
600 BITMAP_FREE (cannot_scalarize_away_bitmap);
601 free_alloc_pool (access_pool);
602 free_alloc_pool (link_pool);
603 obstack_free (&name_obstack, NULL);
605 pointer_map_traverse (base_access_vec, delete_base_accesses, NULL);
606 pointer_map_destroy (base_access_vec);
609 /* Remove DECL from candidates for SRA and write REASON to the dump file if
610 there is one. */
611 static void
612 disqualify_candidate (tree decl, const char *reason)
614 bitmap_clear_bit (candidate_bitmap, DECL_UID (decl));
616 if (dump_file && (dump_flags & TDF_DETAILS))
618 fprintf (dump_file, "! Disqualifying ");
619 print_generic_expr (dump_file, decl, 0);
620 fprintf (dump_file, " - %s\n", reason);
624 /* Return true iff the type contains a field or an element which does not allow
625 scalarization. */
627 static bool
628 type_internals_preclude_sra_p (tree type)
630 tree fld;
631 tree et;
633 switch (TREE_CODE (type))
635 case RECORD_TYPE:
636 case UNION_TYPE:
637 case QUAL_UNION_TYPE:
638 for (fld = TYPE_FIELDS (type); fld; fld = DECL_CHAIN (fld))
639 if (TREE_CODE (fld) == FIELD_DECL)
641 tree ft = TREE_TYPE (fld);
643 if (TREE_THIS_VOLATILE (fld)
644 || !DECL_FIELD_OFFSET (fld) || !DECL_SIZE (fld)
645 || !host_integerp (DECL_FIELD_OFFSET (fld), 1)
646 || !host_integerp (DECL_SIZE (fld), 1))
647 return true;
649 if (AGGREGATE_TYPE_P (ft)
650 && type_internals_preclude_sra_p (ft))
651 return true;
654 return false;
656 case ARRAY_TYPE:
657 et = TREE_TYPE (type);
659 if (AGGREGATE_TYPE_P (et))
660 return type_internals_preclude_sra_p (et);
661 else
662 return false;
664 default:
665 return false;
669 /* If T is an SSA_NAME, return NULL if it is not a default def or return its
670 base variable if it is. Return T if it is not an SSA_NAME. */
672 static tree
673 get_ssa_base_param (tree t)
675 if (TREE_CODE (t) == SSA_NAME)
677 if (SSA_NAME_IS_DEFAULT_DEF (t))
678 return SSA_NAME_VAR (t);
679 else
680 return NULL_TREE;
682 return t;
685 /* Mark a dereference of BASE of distance DIST in a basic block tht STMT
686 belongs to, unless the BB has already been marked as a potentially
687 final. */
689 static void
690 mark_parm_dereference (tree base, HOST_WIDE_INT dist, gimple stmt)
692 basic_block bb = gimple_bb (stmt);
693 int idx, parm_index = 0;
694 tree parm;
696 if (bitmap_bit_p (final_bbs, bb->index))
697 return;
699 for (parm = DECL_ARGUMENTS (current_function_decl);
700 parm && parm != base;
701 parm = DECL_CHAIN (parm))
702 parm_index++;
704 gcc_assert (parm_index < func_param_count);
706 idx = bb->index * func_param_count + parm_index;
707 if (bb_dereferences[idx] < dist)
708 bb_dereferences[idx] = dist;
711 /* Allocate an access structure for BASE, OFFSET and SIZE, clear it, fill in
712 the three fields. Also add it to the vector of accesses corresponding to
713 the base. Finally, return the new access. */
715 static struct access *
716 create_access_1 (tree base, HOST_WIDE_INT offset, HOST_WIDE_INT size)
718 VEC (access_p, heap) *vec;
719 struct access *access;
720 void **slot;
722 access = (struct access *) pool_alloc (access_pool);
723 memset (access, 0, sizeof (struct access));
724 access->base = base;
725 access->offset = offset;
726 access->size = size;
728 slot = pointer_map_contains (base_access_vec, base);
729 if (slot)
730 vec = (VEC (access_p, heap) *) *slot;
731 else
732 vec = VEC_alloc (access_p, heap, 32);
734 VEC_safe_push (access_p, heap, vec, access);
736 *((struct VEC (access_p,heap) **)
737 pointer_map_insert (base_access_vec, base)) = vec;
739 return access;
742 /* Create and insert access for EXPR. Return created access, or NULL if it is
743 not possible. */
745 static struct access *
746 create_access (tree expr, gimple stmt, bool write)
748 struct access *access;
749 HOST_WIDE_INT offset, size, max_size;
750 tree base = expr;
751 bool ptr, unscalarizable_region = false;
753 base = get_ref_base_and_extent (expr, &offset, &size, &max_size);
755 if (sra_mode == SRA_MODE_EARLY_IPA
756 && TREE_CODE (base) == MEM_REF)
758 base = get_ssa_base_param (TREE_OPERAND (base, 0));
759 if (!base)
760 return NULL;
761 ptr = true;
763 else
764 ptr = false;
766 if (!DECL_P (base) || !bitmap_bit_p (candidate_bitmap, DECL_UID (base)))
767 return NULL;
769 if (sra_mode == SRA_MODE_EARLY_IPA)
771 if (size < 0 || size != max_size)
773 disqualify_candidate (base, "Encountered a variable sized access.");
774 return NULL;
776 if ((offset % BITS_PER_UNIT) != 0 || (size % BITS_PER_UNIT) != 0)
778 disqualify_candidate (base,
779 "Encountered an acces not aligned to a byte.");
780 return NULL;
783 if (ptr)
784 mark_parm_dereference (base, offset + size, stmt);
786 else
788 if (size != max_size)
790 size = max_size;
791 unscalarizable_region = true;
793 if (size < 0)
795 disqualify_candidate (base, "Encountered an unconstrained access.");
796 return NULL;
800 access = create_access_1 (base, offset, size);
801 access->expr = expr;
802 access->type = TREE_TYPE (expr);
803 access->write = write;
804 access->grp_unscalarizable_region = unscalarizable_region;
805 access->stmt = stmt;
807 return access;
811 /* Return true iff TYPE is a RECORD_TYPE with fields that are either of gimple
812 register types or (recursively) records with only these two kinds of fields.
813 It also returns false if any of these records has a zero-size field as its
814 last field or has a bit-field. */
816 static bool
817 type_consists_of_records_p (tree type)
819 tree fld;
820 bool last_fld_has_zero_size = false;
822 if (TREE_CODE (type) != RECORD_TYPE)
823 return false;
825 for (fld = TYPE_FIELDS (type); fld; fld = DECL_CHAIN (fld))
826 if (TREE_CODE (fld) == FIELD_DECL)
828 tree ft = TREE_TYPE (fld);
830 if (DECL_BIT_FIELD (fld))
831 return false;
833 if (!is_gimple_reg_type (ft)
834 && !type_consists_of_records_p (ft))
835 return false;
837 last_fld_has_zero_size = tree_low_cst (DECL_SIZE (fld), 1) == 0;
840 if (last_fld_has_zero_size)
841 return false;
843 return true;
846 /* Create total_scalarization accesses for all scalar type fields in DECL that
847 must be of a RECORD_TYPE conforming to type_consists_of_records_p. BASE
848 must be the top-most VAR_DECL representing the variable, OFFSET must be the
849 offset of DECL within BASE. REF must be the memory reference expression for
850 the given decl. */
852 static void
853 completely_scalarize_record (tree base, tree decl, HOST_WIDE_INT offset,
854 tree ref)
856 tree fld, decl_type = TREE_TYPE (decl);
858 for (fld = TYPE_FIELDS (decl_type); fld; fld = DECL_CHAIN (fld))
859 if (TREE_CODE (fld) == FIELD_DECL)
861 HOST_WIDE_INT pos = offset + int_bit_position (fld);
862 tree ft = TREE_TYPE (fld);
863 tree nref = build3 (COMPONENT_REF, TREE_TYPE (fld), ref, fld,
864 NULL_TREE);
866 if (is_gimple_reg_type (ft))
868 struct access *access;
869 HOST_WIDE_INT size;
871 size = tree_low_cst (DECL_SIZE (fld), 1);
872 access = create_access_1 (base, pos, size);
873 access->expr = nref;
874 access->type = ft;
875 access->total_scalarization = 1;
876 /* Accesses for intraprocedural SRA can have their stmt NULL. */
878 else
879 completely_scalarize_record (base, fld, pos, nref);
884 /* Search the given tree for a declaration by skipping handled components and
885 exclude it from the candidates. */
887 static void
888 disqualify_base_of_expr (tree t, const char *reason)
890 t = get_base_address (t);
891 if (sra_mode == SRA_MODE_EARLY_IPA
892 && TREE_CODE (t) == MEM_REF)
893 t = get_ssa_base_param (TREE_OPERAND (t, 0));
895 if (t && DECL_P (t))
896 disqualify_candidate (t, reason);
899 /* Scan expression EXPR and create access structures for all accesses to
900 candidates for scalarization. Return the created access or NULL if none is
901 created. */
903 static struct access *
904 build_access_from_expr_1 (tree expr, gimple stmt, bool write)
906 struct access *ret = NULL;
907 bool partial_ref;
909 if (TREE_CODE (expr) == BIT_FIELD_REF
910 || TREE_CODE (expr) == IMAGPART_EXPR
911 || TREE_CODE (expr) == REALPART_EXPR)
913 expr = TREE_OPERAND (expr, 0);
914 partial_ref = true;
916 else
917 partial_ref = false;
919 /* We need to dive through V_C_Es in order to get the size of its parameter
920 and not the result type. Ada produces such statements. We are also
921 capable of handling the topmost V_C_E but not any of those buried in other
922 handled components. */
923 if (TREE_CODE (expr) == VIEW_CONVERT_EXPR)
924 expr = TREE_OPERAND (expr, 0);
926 if (contains_view_convert_expr_p (expr))
928 disqualify_base_of_expr (expr, "V_C_E under a different handled "
929 "component.");
930 return NULL;
933 switch (TREE_CODE (expr))
935 case MEM_REF:
936 if (TREE_CODE (TREE_OPERAND (expr, 0)) != ADDR_EXPR
937 && sra_mode != SRA_MODE_EARLY_IPA)
938 return NULL;
939 /* fall through */
940 case VAR_DECL:
941 case PARM_DECL:
942 case RESULT_DECL:
943 case COMPONENT_REF:
944 case ARRAY_REF:
945 case ARRAY_RANGE_REF:
946 ret = create_access (expr, stmt, write);
947 break;
949 default:
950 break;
953 if (write && partial_ref && ret)
954 ret->grp_partial_lhs = 1;
956 return ret;
959 /* Scan expression EXPR and create access structures for all accesses to
960 candidates for scalarization. Return true if any access has been inserted.
961 STMT must be the statement from which the expression is taken, WRITE must be
962 true if the expression is a store and false otherwise. */
964 static bool
965 build_access_from_expr (tree expr, gimple stmt, bool write)
967 struct access *access;
969 access = build_access_from_expr_1 (expr, stmt, write);
970 if (access)
972 /* This means the aggregate is accesses as a whole in a way other than an
973 assign statement and thus cannot be removed even if we had a scalar
974 replacement for everything. */
975 if (cannot_scalarize_away_bitmap)
976 bitmap_set_bit (cannot_scalarize_away_bitmap, DECL_UID (access->base));
977 return true;
979 return false;
982 /* Disqualify LHS and RHS for scalarization if STMT must end its basic block in
983 modes in which it matters, return true iff they have been disqualified. RHS
984 may be NULL, in that case ignore it. If we scalarize an aggregate in
985 intra-SRA we may need to add statements after each statement. This is not
986 possible if a statement unconditionally has to end the basic block. */
987 static bool
988 disqualify_ops_if_throwing_stmt (gimple stmt, tree lhs, tree rhs)
990 if ((sra_mode == SRA_MODE_EARLY_INTRA || sra_mode == SRA_MODE_INTRA)
991 && (stmt_can_throw_internal (stmt) || stmt_ends_bb_p (stmt)))
993 disqualify_base_of_expr (lhs, "LHS of a throwing stmt.");
994 if (rhs)
995 disqualify_base_of_expr (rhs, "RHS of a throwing stmt.");
996 return true;
998 return false;
1001 /* Scan expressions occuring in STMT, create access structures for all accesses
1002 to candidates for scalarization and remove those candidates which occur in
1003 statements or expressions that prevent them from being split apart. Return
1004 true if any access has been inserted. */
1006 static bool
1007 build_accesses_from_assign (gimple stmt)
1009 tree lhs, rhs;
1010 struct access *lacc, *racc;
1012 if (!gimple_assign_single_p (stmt))
1013 return false;
1015 lhs = gimple_assign_lhs (stmt);
1016 rhs = gimple_assign_rhs1 (stmt);
1018 if (disqualify_ops_if_throwing_stmt (stmt, lhs, rhs))
1019 return false;
1021 racc = build_access_from_expr_1 (rhs, stmt, false);
1022 lacc = build_access_from_expr_1 (lhs, stmt, true);
1024 if (racc)
1026 racc->grp_assignment_read = 1;
1027 if (should_scalarize_away_bitmap && !gimple_has_volatile_ops (stmt)
1028 && !is_gimple_reg_type (racc->type))
1029 bitmap_set_bit (should_scalarize_away_bitmap, DECL_UID (racc->base));
1032 if (lacc && racc
1033 && (sra_mode == SRA_MODE_EARLY_INTRA || sra_mode == SRA_MODE_INTRA)
1034 && !lacc->grp_unscalarizable_region
1035 && !racc->grp_unscalarizable_region
1036 && AGGREGATE_TYPE_P (TREE_TYPE (lhs))
1037 /* FIXME: Turn the following line into an assert after PR 40058 is
1038 fixed. */
1039 && lacc->size == racc->size
1040 && useless_type_conversion_p (lacc->type, racc->type))
1042 struct assign_link *link;
1044 link = (struct assign_link *) pool_alloc (link_pool);
1045 memset (link, 0, sizeof (struct assign_link));
1047 link->lacc = lacc;
1048 link->racc = racc;
1050 add_link_to_rhs (racc, link);
1053 return lacc || racc;
1056 /* Callback of walk_stmt_load_store_addr_ops visit_addr used to determine
1057 GIMPLE_ASM operands with memory constrains which cannot be scalarized. */
1059 static bool
1060 asm_visit_addr (gimple stmt ATTRIBUTE_UNUSED, tree op,
1061 void *data ATTRIBUTE_UNUSED)
1063 op = get_base_address (op);
1064 if (op
1065 && DECL_P (op))
1066 disqualify_candidate (op, "Non-scalarizable GIMPLE_ASM operand.");
1068 return false;
1071 /* Return true iff callsite CALL has at least as many actual arguments as there
1072 are formal parameters of the function currently processed by IPA-SRA. */
1074 static inline bool
1075 callsite_has_enough_arguments_p (gimple call)
1077 return gimple_call_num_args (call) >= (unsigned) func_param_count;
1080 /* Scan function and look for interesting expressions and create access
1081 structures for them. Return true iff any access is created. */
1083 static bool
1084 scan_function (void)
1086 basic_block bb;
1087 bool ret = false;
1089 FOR_EACH_BB (bb)
1091 gimple_stmt_iterator gsi;
1092 for (gsi = gsi_start_bb (bb); !gsi_end_p (gsi); gsi_next (&gsi))
1094 gimple stmt = gsi_stmt (gsi);
1095 tree t;
1096 unsigned i;
1098 if (final_bbs && stmt_can_throw_external (stmt))
1099 bitmap_set_bit (final_bbs, bb->index);
1100 switch (gimple_code (stmt))
1102 case GIMPLE_RETURN:
1103 t = gimple_return_retval (stmt);
1104 if (t != NULL_TREE)
1105 ret |= build_access_from_expr (t, stmt, false);
1106 if (final_bbs)
1107 bitmap_set_bit (final_bbs, bb->index);
1108 break;
1110 case GIMPLE_ASSIGN:
1111 ret |= build_accesses_from_assign (stmt);
1112 break;
1114 case GIMPLE_CALL:
1115 for (i = 0; i < gimple_call_num_args (stmt); i++)
1116 ret |= build_access_from_expr (gimple_call_arg (stmt, i),
1117 stmt, false);
1119 if (sra_mode == SRA_MODE_EARLY_IPA)
1121 tree dest = gimple_call_fndecl (stmt);
1122 int flags = gimple_call_flags (stmt);
1124 if (dest)
1126 if (DECL_BUILT_IN_CLASS (dest) == BUILT_IN_NORMAL
1127 && DECL_FUNCTION_CODE (dest) == BUILT_IN_APPLY_ARGS)
1128 encountered_apply_args = true;
1129 if (cgraph_get_node (dest)
1130 == cgraph_get_node (current_function_decl))
1132 encountered_recursive_call = true;
1133 if (!callsite_has_enough_arguments_p (stmt))
1134 encountered_unchangable_recursive_call = true;
1138 if (final_bbs
1139 && (flags & (ECF_CONST | ECF_PURE)) == 0)
1140 bitmap_set_bit (final_bbs, bb->index);
1143 t = gimple_call_lhs (stmt);
1144 if (t && !disqualify_ops_if_throwing_stmt (stmt, t, NULL))
1145 ret |= build_access_from_expr (t, stmt, true);
1146 break;
1148 case GIMPLE_ASM:
1149 walk_stmt_load_store_addr_ops (stmt, NULL, NULL, NULL,
1150 asm_visit_addr);
1151 if (final_bbs)
1152 bitmap_set_bit (final_bbs, bb->index);
1154 for (i = 0; i < gimple_asm_ninputs (stmt); i++)
1156 t = TREE_VALUE (gimple_asm_input_op (stmt, i));
1157 ret |= build_access_from_expr (t, stmt, false);
1159 for (i = 0; i < gimple_asm_noutputs (stmt); i++)
1161 t = TREE_VALUE (gimple_asm_output_op (stmt, i));
1162 ret |= build_access_from_expr (t, stmt, true);
1164 break;
1166 default:
1167 break;
1172 return ret;
1175 /* Helper of QSORT function. There are pointers to accesses in the array. An
1176 access is considered smaller than another if it has smaller offset or if the
1177 offsets are the same but is size is bigger. */
1179 static int
1180 compare_access_positions (const void *a, const void *b)
1182 const access_p *fp1 = (const access_p *) a;
1183 const access_p *fp2 = (const access_p *) b;
1184 const access_p f1 = *fp1;
1185 const access_p f2 = *fp2;
1187 if (f1->offset != f2->offset)
1188 return f1->offset < f2->offset ? -1 : 1;
1190 if (f1->size == f2->size)
1192 if (f1->type == f2->type)
1193 return 0;
1194 /* Put any non-aggregate type before any aggregate type. */
1195 else if (!is_gimple_reg_type (f1->type)
1196 && is_gimple_reg_type (f2->type))
1197 return 1;
1198 else if (is_gimple_reg_type (f1->type)
1199 && !is_gimple_reg_type (f2->type))
1200 return -1;
1201 /* Put any complex or vector type before any other scalar type. */
1202 else if (TREE_CODE (f1->type) != COMPLEX_TYPE
1203 && TREE_CODE (f1->type) != VECTOR_TYPE
1204 && (TREE_CODE (f2->type) == COMPLEX_TYPE
1205 || TREE_CODE (f2->type) == VECTOR_TYPE))
1206 return 1;
1207 else if ((TREE_CODE (f1->type) == COMPLEX_TYPE
1208 || TREE_CODE (f1->type) == VECTOR_TYPE)
1209 && TREE_CODE (f2->type) != COMPLEX_TYPE
1210 && TREE_CODE (f2->type) != VECTOR_TYPE)
1211 return -1;
1212 /* Put the integral type with the bigger precision first. */
1213 else if (INTEGRAL_TYPE_P (f1->type)
1214 && INTEGRAL_TYPE_P (f2->type))
1215 return TYPE_PRECISION (f2->type) - TYPE_PRECISION (f1->type);
1216 /* Put any integral type with non-full precision last. */
1217 else if (INTEGRAL_TYPE_P (f1->type)
1218 && (TREE_INT_CST_LOW (TYPE_SIZE (f1->type))
1219 != TYPE_PRECISION (f1->type)))
1220 return 1;
1221 else if (INTEGRAL_TYPE_P (f2->type)
1222 && (TREE_INT_CST_LOW (TYPE_SIZE (f2->type))
1223 != TYPE_PRECISION (f2->type)))
1224 return -1;
1225 /* Stabilize the sort. */
1226 return TYPE_UID (f1->type) - TYPE_UID (f2->type);
1229 /* We want the bigger accesses first, thus the opposite operator in the next
1230 line: */
1231 return f1->size > f2->size ? -1 : 1;
1235 /* Append a name of the declaration to the name obstack. A helper function for
1236 make_fancy_name. */
1238 static void
1239 make_fancy_decl_name (tree decl)
1241 char buffer[32];
1243 tree name = DECL_NAME (decl);
1244 if (name)
1245 obstack_grow (&name_obstack, IDENTIFIER_POINTER (name),
1246 IDENTIFIER_LENGTH (name));
1247 else
1249 sprintf (buffer, "D%u", DECL_UID (decl));
1250 obstack_grow (&name_obstack, buffer, strlen (buffer));
1254 /* Helper for make_fancy_name. */
1256 static void
1257 make_fancy_name_1 (tree expr)
1259 char buffer[32];
1260 tree index;
1262 if (DECL_P (expr))
1264 make_fancy_decl_name (expr);
1265 return;
1268 switch (TREE_CODE (expr))
1270 case COMPONENT_REF:
1271 make_fancy_name_1 (TREE_OPERAND (expr, 0));
1272 obstack_1grow (&name_obstack, '$');
1273 make_fancy_decl_name (TREE_OPERAND (expr, 1));
1274 break;
1276 case ARRAY_REF:
1277 make_fancy_name_1 (TREE_OPERAND (expr, 0));
1278 obstack_1grow (&name_obstack, '$');
1279 /* Arrays with only one element may not have a constant as their
1280 index. */
1281 index = TREE_OPERAND (expr, 1);
1282 if (TREE_CODE (index) != INTEGER_CST)
1283 break;
1284 sprintf (buffer, HOST_WIDE_INT_PRINT_DEC, TREE_INT_CST_LOW (index));
1285 obstack_grow (&name_obstack, buffer, strlen (buffer));
1286 break;
1288 case ADDR_EXPR:
1289 make_fancy_name_1 (TREE_OPERAND (expr, 0));
1290 break;
1292 case MEM_REF:
1293 make_fancy_name_1 (TREE_OPERAND (expr, 0));
1294 if (!integer_zerop (TREE_OPERAND (expr, 1)))
1296 obstack_1grow (&name_obstack, '$');
1297 sprintf (buffer, HOST_WIDE_INT_PRINT_DEC,
1298 TREE_INT_CST_LOW (TREE_OPERAND (expr, 1)));
1299 obstack_grow (&name_obstack, buffer, strlen (buffer));
1301 break;
1303 case BIT_FIELD_REF:
1304 case REALPART_EXPR:
1305 case IMAGPART_EXPR:
1306 gcc_unreachable (); /* we treat these as scalars. */
1307 break;
1308 default:
1309 break;
1313 /* Create a human readable name for replacement variable of ACCESS. */
1315 static char *
1316 make_fancy_name (tree expr)
1318 make_fancy_name_1 (expr);
1319 obstack_1grow (&name_obstack, '\0');
1320 return XOBFINISH (&name_obstack, char *);
1323 /* Helper function for build_ref_for_offset.
1325 FIXME: Eventually this should be rewritten to either re-use the
1326 original access expression unshared (which is good for alias
1327 analysis) or to build a MEM_REF expression. */
1329 static bool
1330 build_ref_for_offset_1 (tree *res, tree type, HOST_WIDE_INT offset,
1331 tree exp_type)
1333 while (1)
1335 tree fld;
1336 tree tr_size, index, minidx;
1337 HOST_WIDE_INT el_size;
1339 if (offset == 0 && exp_type
1340 && types_compatible_p (exp_type, type))
1341 return true;
1343 switch (TREE_CODE (type))
1345 case UNION_TYPE:
1346 case QUAL_UNION_TYPE:
1347 case RECORD_TYPE:
1348 for (fld = TYPE_FIELDS (type); fld; fld = DECL_CHAIN (fld))
1350 HOST_WIDE_INT pos, size;
1351 tree expr, *expr_ptr;
1353 if (TREE_CODE (fld) != FIELD_DECL)
1354 continue;
1356 pos = int_bit_position (fld);
1357 gcc_assert (TREE_CODE (type) == RECORD_TYPE || pos == 0);
1358 tr_size = DECL_SIZE (fld);
1359 if (!tr_size || !host_integerp (tr_size, 1))
1360 continue;
1361 size = tree_low_cst (tr_size, 1);
1362 if (size == 0)
1364 if (pos != offset)
1365 continue;
1367 else if (pos > offset || (pos + size) <= offset)
1368 continue;
1370 if (res)
1372 expr = build3 (COMPONENT_REF, TREE_TYPE (fld), *res, fld,
1373 NULL_TREE);
1374 expr_ptr = &expr;
1376 else
1377 expr_ptr = NULL;
1378 if (build_ref_for_offset_1 (expr_ptr, TREE_TYPE (fld),
1379 offset - pos, exp_type))
1381 if (res)
1382 *res = expr;
1383 return true;
1386 return false;
1388 case ARRAY_TYPE:
1389 tr_size = TYPE_SIZE (TREE_TYPE (type));
1390 if (!tr_size || !host_integerp (tr_size, 1))
1391 return false;
1392 el_size = tree_low_cst (tr_size, 1);
1394 minidx = TYPE_MIN_VALUE (TYPE_DOMAIN (type));
1395 if (TREE_CODE (minidx) != INTEGER_CST || el_size == 0)
1396 return false;
1397 if (res)
1399 index = build_int_cst (TYPE_DOMAIN (type), offset / el_size);
1400 if (!integer_zerop (minidx))
1401 index = int_const_binop (PLUS_EXPR, index, minidx, 0);
1402 *res = build4 (ARRAY_REF, TREE_TYPE (type), *res, index,
1403 NULL_TREE, NULL_TREE);
1405 offset = offset % el_size;
1406 type = TREE_TYPE (type);
1407 break;
1409 default:
1410 if (offset != 0)
1411 return false;
1413 if (exp_type)
1414 return false;
1415 else
1416 return true;
1421 /* Construct an expression that would reference a part of aggregate *EXPR of
1422 type TYPE at the given OFFSET of the type EXP_TYPE. If EXPR is NULL, the
1423 function only determines whether it can build such a reference without
1424 actually doing it, otherwise, the tree it points to is unshared first and
1425 then used as a base for furhter sub-references. */
1427 bool
1428 build_ref_for_offset (tree *expr, tree type, HOST_WIDE_INT offset,
1429 tree exp_type, bool allow_ptr)
1431 location_t loc = expr ? EXPR_LOCATION (*expr) : UNKNOWN_LOCATION;
1433 if (expr)
1434 *expr = unshare_expr (*expr);
1436 if (allow_ptr && POINTER_TYPE_P (type))
1438 type = TREE_TYPE (type);
1439 if (expr)
1440 *expr = build_simple_mem_ref_loc (loc, *expr);
1443 return build_ref_for_offset_1 (expr, type, offset, exp_type);
1446 /* Return true iff TYPE is stdarg va_list type. */
1448 static inline bool
1449 is_va_list_type (tree type)
1451 return TYPE_MAIN_VARIANT (type) == TYPE_MAIN_VARIANT (va_list_type_node);
1454 /* The very first phase of intraprocedural SRA. It marks in candidate_bitmap
1455 those with type which is suitable for scalarization. */
1457 static bool
1458 find_var_candidates (void)
1460 tree var, type;
1461 referenced_var_iterator rvi;
1462 bool ret = false;
1464 FOR_EACH_REFERENCED_VAR (var, rvi)
1466 if (TREE_CODE (var) != VAR_DECL && TREE_CODE (var) != PARM_DECL)
1467 continue;
1468 type = TREE_TYPE (var);
1470 if (!AGGREGATE_TYPE_P (type)
1471 || needs_to_live_in_memory (var)
1472 || TREE_THIS_VOLATILE (var)
1473 || !COMPLETE_TYPE_P (type)
1474 || !host_integerp (TYPE_SIZE (type), 1)
1475 || tree_low_cst (TYPE_SIZE (type), 1) == 0
1476 || type_internals_preclude_sra_p (type)
1477 /* Fix for PR 41089. tree-stdarg.c needs to have va_lists intact but
1478 we also want to schedule it rather late. Thus we ignore it in
1479 the early pass. */
1480 || (sra_mode == SRA_MODE_EARLY_INTRA
1481 && is_va_list_type (type)))
1482 continue;
1484 bitmap_set_bit (candidate_bitmap, DECL_UID (var));
1486 if (dump_file && (dump_flags & TDF_DETAILS))
1488 fprintf (dump_file, "Candidate (%d): ", DECL_UID (var));
1489 print_generic_expr (dump_file, var, 0);
1490 fprintf (dump_file, "\n");
1492 ret = true;
1495 return ret;
1498 /* Sort all accesses for the given variable, check for partial overlaps and
1499 return NULL if there are any. If there are none, pick a representative for
1500 each combination of offset and size and create a linked list out of them.
1501 Return the pointer to the first representative and make sure it is the first
1502 one in the vector of accesses. */
1504 static struct access *
1505 sort_and_splice_var_accesses (tree var)
1507 int i, j, access_count;
1508 struct access *res, **prev_acc_ptr = &res;
1509 VEC (access_p, heap) *access_vec;
1510 bool first = true;
1511 HOST_WIDE_INT low = -1, high = 0;
1513 access_vec = get_base_access_vector (var);
1514 if (!access_vec)
1515 return NULL;
1516 access_count = VEC_length (access_p, access_vec);
1518 /* Sort by <OFFSET, SIZE>. */
1519 qsort (VEC_address (access_p, access_vec), access_count, sizeof (access_p),
1520 compare_access_positions);
1522 i = 0;
1523 while (i < access_count)
1525 struct access *access = VEC_index (access_p, access_vec, i);
1526 bool grp_write = access->write;
1527 bool grp_read = !access->write;
1528 bool grp_assignment_read = access->grp_assignment_read;
1529 bool multiple_reads = false;
1530 bool total_scalarization = access->total_scalarization;
1531 bool grp_partial_lhs = access->grp_partial_lhs;
1532 bool first_scalar = is_gimple_reg_type (access->type);
1533 bool unscalarizable_region = access->grp_unscalarizable_region;
1535 if (first || access->offset >= high)
1537 first = false;
1538 low = access->offset;
1539 high = access->offset + access->size;
1541 else if (access->offset > low && access->offset + access->size > high)
1542 return NULL;
1543 else
1544 gcc_assert (access->offset >= low
1545 && access->offset + access->size <= high);
1547 j = i + 1;
1548 while (j < access_count)
1550 struct access *ac2 = VEC_index (access_p, access_vec, j);
1551 if (ac2->offset != access->offset || ac2->size != access->size)
1552 break;
1553 if (ac2->write)
1554 grp_write = true;
1555 else
1557 if (grp_read)
1558 multiple_reads = true;
1559 else
1560 grp_read = true;
1562 grp_assignment_read |= ac2->grp_assignment_read;
1563 grp_partial_lhs |= ac2->grp_partial_lhs;
1564 unscalarizable_region |= ac2->grp_unscalarizable_region;
1565 total_scalarization |= ac2->total_scalarization;
1566 relink_to_new_repr (access, ac2);
1568 /* If there are both aggregate-type and scalar-type accesses with
1569 this combination of size and offset, the comparison function
1570 should have put the scalars first. */
1571 gcc_assert (first_scalar || !is_gimple_reg_type (ac2->type));
1572 ac2->group_representative = access;
1573 j++;
1576 i = j;
1578 access->group_representative = access;
1579 access->grp_write = grp_write;
1580 access->grp_read = grp_read;
1581 access->grp_assignment_read = grp_assignment_read;
1582 access->grp_hint = multiple_reads || total_scalarization;
1583 access->grp_partial_lhs = grp_partial_lhs;
1584 access->grp_unscalarizable_region = unscalarizable_region;
1585 if (access->first_link)
1586 add_access_to_work_queue (access);
1588 *prev_acc_ptr = access;
1589 prev_acc_ptr = &access->next_grp;
1592 gcc_assert (res == VEC_index (access_p, access_vec, 0));
1593 return res;
1596 /* Create a variable for the given ACCESS which determines the type, name and a
1597 few other properties. Return the variable declaration and store it also to
1598 ACCESS->replacement. */
1600 static tree
1601 create_access_replacement (struct access *access, bool rename)
1603 tree repl;
1605 repl = create_tmp_var (access->type, "SR");
1606 get_var_ann (repl);
1607 add_referenced_var (repl);
1608 if (rename)
1609 mark_sym_for_renaming (repl);
1611 if (!access->grp_partial_lhs
1612 && (TREE_CODE (access->type) == COMPLEX_TYPE
1613 || TREE_CODE (access->type) == VECTOR_TYPE))
1614 DECL_GIMPLE_REG_P (repl) = 1;
1616 DECL_SOURCE_LOCATION (repl) = DECL_SOURCE_LOCATION (access->base);
1617 DECL_ARTIFICIAL (repl) = 1;
1618 DECL_IGNORED_P (repl) = DECL_IGNORED_P (access->base);
1620 if (DECL_NAME (access->base)
1621 && !DECL_IGNORED_P (access->base)
1622 && !DECL_ARTIFICIAL (access->base))
1624 char *pretty_name = make_fancy_name (access->expr);
1625 tree debug_expr = unshare_expr (access->expr), d;
1627 DECL_NAME (repl) = get_identifier (pretty_name);
1628 obstack_free (&name_obstack, pretty_name);
1630 /* Get rid of any SSA_NAMEs embedded in debug_expr,
1631 as DECL_DEBUG_EXPR isn't considered when looking for still
1632 used SSA_NAMEs and thus they could be freed. All debug info
1633 generation cares is whether something is constant or variable
1634 and that get_ref_base_and_extent works properly on the
1635 expression. */
1636 for (d = debug_expr; handled_component_p (d); d = TREE_OPERAND (d, 0))
1637 switch (TREE_CODE (d))
1639 case ARRAY_REF:
1640 case ARRAY_RANGE_REF:
1641 if (TREE_OPERAND (d, 1)
1642 && TREE_CODE (TREE_OPERAND (d, 1)) == SSA_NAME)
1643 TREE_OPERAND (d, 1) = SSA_NAME_VAR (TREE_OPERAND (d, 1));
1644 if (TREE_OPERAND (d, 3)
1645 && TREE_CODE (TREE_OPERAND (d, 3)) == SSA_NAME)
1646 TREE_OPERAND (d, 3) = SSA_NAME_VAR (TREE_OPERAND (d, 3));
1647 /* FALLTHRU */
1648 case COMPONENT_REF:
1649 if (TREE_OPERAND (d, 2)
1650 && TREE_CODE (TREE_OPERAND (d, 2)) == SSA_NAME)
1651 TREE_OPERAND (d, 2) = SSA_NAME_VAR (TREE_OPERAND (d, 2));
1652 break;
1653 default:
1654 break;
1656 SET_DECL_DEBUG_EXPR (repl, debug_expr);
1657 DECL_DEBUG_EXPR_IS_FROM (repl) = 1;
1658 TREE_NO_WARNING (repl) = TREE_NO_WARNING (access->base);
1660 else
1661 TREE_NO_WARNING (repl) = 1;
1663 if (dump_file)
1665 fprintf (dump_file, "Created a replacement for ");
1666 print_generic_expr (dump_file, access->base, 0);
1667 fprintf (dump_file, " offset: %u, size: %u: ",
1668 (unsigned) access->offset, (unsigned) access->size);
1669 print_generic_expr (dump_file, repl, 0);
1670 fprintf (dump_file, "\n");
1672 sra_stats.replacements++;
1674 return repl;
1677 /* Return ACCESS scalar replacement, create it if it does not exist yet. */
1679 static inline tree
1680 get_access_replacement (struct access *access)
1682 gcc_assert (access->grp_to_be_replaced);
1684 if (!access->replacement_decl)
1685 access->replacement_decl = create_access_replacement (access, true);
1686 return access->replacement_decl;
1689 /* Return ACCESS scalar replacement, create it if it does not exist yet but do
1690 not mark it for renaming. */
1692 static inline tree
1693 get_unrenamed_access_replacement (struct access *access)
1695 gcc_assert (!access->grp_to_be_replaced);
1697 if (!access->replacement_decl)
1698 access->replacement_decl = create_access_replacement (access, false);
1699 return access->replacement_decl;
1703 /* Build a subtree of accesses rooted in *ACCESS, and move the pointer in the
1704 linked list along the way. Stop when *ACCESS is NULL or the access pointed
1705 to it is not "within" the root. Return false iff some accesses partially
1706 overlap. */
1708 static bool
1709 build_access_subtree (struct access **access)
1711 struct access *root = *access, *last_child = NULL;
1712 HOST_WIDE_INT limit = root->offset + root->size;
1714 *access = (*access)->next_grp;
1715 while (*access && (*access)->offset + (*access)->size <= limit)
1717 if (!last_child)
1718 root->first_child = *access;
1719 else
1720 last_child->next_sibling = *access;
1721 last_child = *access;
1723 if (!build_access_subtree (access))
1724 return false;
1727 if (*access && (*access)->offset < limit)
1728 return false;
1730 return true;
1733 /* Build a tree of access representatives, ACCESS is the pointer to the first
1734 one, others are linked in a list by the next_grp field. Return false iff
1735 some accesses partially overlap. */
1737 static bool
1738 build_access_trees (struct access *access)
1740 while (access)
1742 struct access *root = access;
1744 if (!build_access_subtree (&access))
1745 return false;
1746 root->next_grp = access;
1748 return true;
1751 /* Return true if expr contains some ARRAY_REFs into a variable bounded
1752 array. */
1754 static bool
1755 expr_with_var_bounded_array_refs_p (tree expr)
1757 while (handled_component_p (expr))
1759 if (TREE_CODE (expr) == ARRAY_REF
1760 && !host_integerp (array_ref_low_bound (expr), 0))
1761 return true;
1762 expr = TREE_OPERAND (expr, 0);
1764 return false;
1767 enum mark_read_status { SRA_MR_NOT_READ, SRA_MR_READ, SRA_MR_ASSIGN_READ};
1769 /* Analyze the subtree of accesses rooted in ROOT, scheduling replacements when
1770 both seeming beneficial and when ALLOW_REPLACEMENTS allows it. Also set all
1771 sorts of access flags appropriately along the way, notably always set
1772 grp_read and grp_assign_read according to MARK_READ and grp_write when
1773 MARK_WRITE is true. */
1775 static bool
1776 analyze_access_subtree (struct access *root, bool allow_replacements,
1777 enum mark_read_status mark_read, bool mark_write)
1779 struct access *child;
1780 HOST_WIDE_INT limit = root->offset + root->size;
1781 HOST_WIDE_INT covered_to = root->offset;
1782 bool scalar = is_gimple_reg_type (root->type);
1783 bool hole = false, sth_created = false;
1784 bool direct_read = root->grp_read;
1786 if (mark_read == SRA_MR_ASSIGN_READ)
1788 root->grp_read = 1;
1789 root->grp_assignment_read = 1;
1791 if (mark_read == SRA_MR_READ)
1792 root->grp_read = 1;
1793 else if (root->grp_assignment_read)
1794 mark_read = SRA_MR_ASSIGN_READ;
1795 else if (root->grp_read)
1796 mark_read = SRA_MR_READ;
1798 if (mark_write)
1799 root->grp_write = true;
1800 else if (root->grp_write)
1801 mark_write = true;
1803 if (root->grp_unscalarizable_region)
1804 allow_replacements = false;
1806 if (allow_replacements && expr_with_var_bounded_array_refs_p (root->expr))
1807 allow_replacements = false;
1809 for (child = root->first_child; child; child = child->next_sibling)
1811 if (!hole && child->offset < covered_to)
1812 hole = true;
1813 else
1814 covered_to += child->size;
1816 sth_created |= analyze_access_subtree (child,
1817 allow_replacements && !scalar,
1818 mark_read, mark_write);
1820 root->grp_unscalarized_data |= child->grp_unscalarized_data;
1821 hole |= !child->grp_covered;
1824 if (allow_replacements && scalar && !root->first_child
1825 && (root->grp_hint
1826 || (root->grp_write && (direct_read || root->grp_assignment_read)))
1827 /* We must not ICE later on when trying to build an access to the
1828 original data within the aggregate even when it is impossible to do in
1829 a defined way like in the PR 42703 testcase. Therefore we check
1830 pre-emptively here that we will be able to do that. */
1831 && build_ref_for_offset (NULL, TREE_TYPE (root->base), root->offset,
1832 root->type, false))
1834 if (dump_file && (dump_flags & TDF_DETAILS))
1836 fprintf (dump_file, "Marking ");
1837 print_generic_expr (dump_file, root->base, 0);
1838 fprintf (dump_file, " offset: %u, size: %u: ",
1839 (unsigned) root->offset, (unsigned) root->size);
1840 fprintf (dump_file, " to be replaced.\n");
1843 root->grp_to_be_replaced = 1;
1844 sth_created = true;
1845 hole = false;
1847 else if (covered_to < limit)
1848 hole = true;
1850 if (sth_created && !hole)
1852 root->grp_covered = 1;
1853 return true;
1855 if (root->grp_write || TREE_CODE (root->base) == PARM_DECL)
1856 root->grp_unscalarized_data = 1; /* not covered and written to */
1857 if (sth_created)
1858 return true;
1859 return false;
1862 /* Analyze all access trees linked by next_grp by the means of
1863 analyze_access_subtree. */
1864 static bool
1865 analyze_access_trees (struct access *access)
1867 bool ret = false;
1869 while (access)
1871 if (analyze_access_subtree (access, true, SRA_MR_NOT_READ, false))
1872 ret = true;
1873 access = access->next_grp;
1876 return ret;
1879 /* Return true iff a potential new child of LACC at offset OFFSET and with size
1880 SIZE would conflict with an already existing one. If exactly such a child
1881 already exists in LACC, store a pointer to it in EXACT_MATCH. */
1883 static bool
1884 child_would_conflict_in_lacc (struct access *lacc, HOST_WIDE_INT norm_offset,
1885 HOST_WIDE_INT size, struct access **exact_match)
1887 struct access *child;
1889 for (child = lacc->first_child; child; child = child->next_sibling)
1891 if (child->offset == norm_offset && child->size == size)
1893 *exact_match = child;
1894 return true;
1897 if (child->offset < norm_offset + size
1898 && child->offset + child->size > norm_offset)
1899 return true;
1902 return false;
1905 /* Create a new child access of PARENT, with all properties just like MODEL
1906 except for its offset and with its grp_write false and grp_read true.
1907 Return the new access or NULL if it cannot be created. Note that this access
1908 is created long after all splicing and sorting, it's not located in any
1909 access vector and is automatically a representative of its group. */
1911 static struct access *
1912 create_artificial_child_access (struct access *parent, struct access *model,
1913 HOST_WIDE_INT new_offset)
1915 struct access *access;
1916 struct access **child;
1917 tree expr = parent->base;;
1919 gcc_assert (!model->grp_unscalarizable_region);
1921 if (!build_ref_for_offset (&expr, TREE_TYPE (expr), new_offset,
1922 model->type, false))
1923 return NULL;
1925 access = (struct access *) pool_alloc (access_pool);
1926 memset (access, 0, sizeof (struct access));
1927 access->base = parent->base;
1928 access->expr = expr;
1929 access->offset = new_offset;
1930 access->size = model->size;
1931 access->type = model->type;
1932 access->grp_write = true;
1933 access->grp_read = false;
1935 child = &parent->first_child;
1936 while (*child && (*child)->offset < new_offset)
1937 child = &(*child)->next_sibling;
1939 access->next_sibling = *child;
1940 *child = access;
1942 return access;
1946 /* Propagate all subaccesses of RACC across an assignment link to LACC. Return
1947 true if any new subaccess was created. Additionally, if RACC is a scalar
1948 access but LACC is not, change the type of the latter, if possible. */
1950 static bool
1951 propagate_subaccesses_across_link (struct access *lacc, struct access *racc)
1953 struct access *rchild;
1954 HOST_WIDE_INT norm_delta = lacc->offset - racc->offset;
1955 bool ret = false;
1957 if (is_gimple_reg_type (lacc->type)
1958 || lacc->grp_unscalarizable_region
1959 || racc->grp_unscalarizable_region)
1960 return false;
1962 if (!lacc->first_child && !racc->first_child
1963 && is_gimple_reg_type (racc->type))
1965 tree t = lacc->base;
1967 if (build_ref_for_offset (&t, TREE_TYPE (t), lacc->offset, racc->type,
1968 false))
1970 lacc->expr = t;
1971 lacc->type = racc->type;
1973 return false;
1976 for (rchild = racc->first_child; rchild; rchild = rchild->next_sibling)
1978 struct access *new_acc = NULL;
1979 HOST_WIDE_INT norm_offset = rchild->offset + norm_delta;
1981 if (rchild->grp_unscalarizable_region)
1982 continue;
1984 if (child_would_conflict_in_lacc (lacc, norm_offset, rchild->size,
1985 &new_acc))
1987 if (new_acc)
1989 rchild->grp_hint = 1;
1990 new_acc->grp_hint |= new_acc->grp_read;
1991 if (rchild->first_child)
1992 ret |= propagate_subaccesses_across_link (new_acc, rchild);
1994 continue;
1997 /* If a (part of) a union field is on the RHS of an assignment, it can
1998 have sub-accesses which do not make sense on the LHS (PR 40351).
1999 Check that this is not the case. */
2000 if (!build_ref_for_offset (NULL, TREE_TYPE (lacc->base), norm_offset,
2001 rchild->type, false))
2002 continue;
2004 rchild->grp_hint = 1;
2005 new_acc = create_artificial_child_access (lacc, rchild, norm_offset);
2006 if (new_acc)
2008 ret = true;
2009 if (racc->first_child)
2010 propagate_subaccesses_across_link (new_acc, rchild);
2014 return ret;
2017 /* Propagate all subaccesses across assignment links. */
2019 static void
2020 propagate_all_subaccesses (void)
2022 while (work_queue_head)
2024 struct access *racc = pop_access_from_work_queue ();
2025 struct assign_link *link;
2027 gcc_assert (racc->first_link);
2029 for (link = racc->first_link; link; link = link->next)
2031 struct access *lacc = link->lacc;
2033 if (!bitmap_bit_p (candidate_bitmap, DECL_UID (lacc->base)))
2034 continue;
2035 lacc = lacc->group_representative;
2036 if (propagate_subaccesses_across_link (lacc, racc)
2037 && lacc->first_link)
2038 add_access_to_work_queue (lacc);
2043 /* Go through all accesses collected throughout the (intraprocedural) analysis
2044 stage, exclude overlapping ones, identify representatives and build trees
2045 out of them, making decisions about scalarization on the way. Return true
2046 iff there are any to-be-scalarized variables after this stage. */
2048 static bool
2049 analyze_all_variable_accesses (void)
2051 int res = 0;
2052 bitmap tmp = BITMAP_ALLOC (NULL);
2053 bitmap_iterator bi;
2054 unsigned i, max_total_scalarization_size;
2056 max_total_scalarization_size = UNITS_PER_WORD * BITS_PER_UNIT
2057 * MOVE_RATIO (optimize_function_for_speed_p (cfun));
2059 EXECUTE_IF_SET_IN_BITMAP (candidate_bitmap, 0, i, bi)
2060 if (bitmap_bit_p (should_scalarize_away_bitmap, i)
2061 && !bitmap_bit_p (cannot_scalarize_away_bitmap, i))
2063 tree var = referenced_var (i);
2065 if (TREE_CODE (var) == VAR_DECL
2066 && ((unsigned) tree_low_cst (TYPE_SIZE (TREE_TYPE (var)), 1)
2067 <= max_total_scalarization_size)
2068 && type_consists_of_records_p (TREE_TYPE (var)))
2070 completely_scalarize_record (var, var, 0, var);
2071 if (dump_file && (dump_flags & TDF_DETAILS))
2073 fprintf (dump_file, "Will attempt to totally scalarize ");
2074 print_generic_expr (dump_file, var, 0);
2075 fprintf (dump_file, " (UID: %u): \n", DECL_UID (var));
2080 bitmap_copy (tmp, candidate_bitmap);
2081 EXECUTE_IF_SET_IN_BITMAP (tmp, 0, i, bi)
2083 tree var = referenced_var (i);
2084 struct access *access;
2086 access = sort_and_splice_var_accesses (var);
2087 if (!access || !build_access_trees (access))
2088 disqualify_candidate (var,
2089 "No or inhibitingly overlapping accesses.");
2092 propagate_all_subaccesses ();
2094 bitmap_copy (tmp, candidate_bitmap);
2095 EXECUTE_IF_SET_IN_BITMAP (tmp, 0, i, bi)
2097 tree var = referenced_var (i);
2098 struct access *access = get_first_repr_for_decl (var);
2100 if (analyze_access_trees (access))
2102 res++;
2103 if (dump_file && (dump_flags & TDF_DETAILS))
2105 fprintf (dump_file, "\nAccess trees for ");
2106 print_generic_expr (dump_file, var, 0);
2107 fprintf (dump_file, " (UID: %u): \n", DECL_UID (var));
2108 dump_access_tree (dump_file, access);
2109 fprintf (dump_file, "\n");
2112 else
2113 disqualify_candidate (var, "No scalar replacements to be created.");
2116 BITMAP_FREE (tmp);
2118 if (res)
2120 statistics_counter_event (cfun, "Scalarized aggregates", res);
2121 return true;
2123 else
2124 return false;
2127 /* Return true iff a reference statement into aggregate AGG can be built for
2128 every single to-be-replaced accesses that is a child of ACCESS, its sibling
2129 or a child of its sibling. TOP_OFFSET is the offset from the processed
2130 access subtree that has to be subtracted from offset of each access. */
2132 static bool
2133 ref_expr_for_all_replacements_p (struct access *access, tree agg,
2134 HOST_WIDE_INT top_offset)
2138 if (access->grp_to_be_replaced
2139 && !build_ref_for_offset (NULL, TREE_TYPE (agg),
2140 access->offset - top_offset,
2141 access->type, false))
2142 return false;
2144 if (access->first_child
2145 && !ref_expr_for_all_replacements_p (access->first_child, agg,
2146 top_offset))
2147 return false;
2149 access = access->next_sibling;
2151 while (access);
2153 return true;
2156 /* Generate statements copying scalar replacements of accesses within a subtree
2157 into or out of AGG. ACCESS is the first child of the root of the subtree to
2158 be processed. AGG is an aggregate type expression (can be a declaration but
2159 does not have to be, it can for example also be an indirect_ref).
2160 TOP_OFFSET is the offset of the processed subtree which has to be subtracted
2161 from offsets of individual accesses to get corresponding offsets for AGG.
2162 If CHUNK_SIZE is non-null, copy only replacements in the interval
2163 <start_offset, start_offset + chunk_size>, otherwise copy all. GSI is a
2164 statement iterator used to place the new statements. WRITE should be true
2165 when the statements should write from AGG to the replacement and false if
2166 vice versa. if INSERT_AFTER is true, new statements will be added after the
2167 current statement in GSI, they will be added before the statement
2168 otherwise. */
2170 static void
2171 generate_subtree_copies (struct access *access, tree agg,
2172 HOST_WIDE_INT top_offset,
2173 HOST_WIDE_INT start_offset, HOST_WIDE_INT chunk_size,
2174 gimple_stmt_iterator *gsi, bool write,
2175 bool insert_after)
2179 tree expr = agg;
2181 if (chunk_size && access->offset >= start_offset + chunk_size)
2182 return;
2184 if (access->grp_to_be_replaced
2185 && (chunk_size == 0
2186 || access->offset + access->size > start_offset))
2188 tree repl = get_access_replacement (access);
2189 bool ref_found;
2190 gimple stmt;
2192 ref_found = build_ref_for_offset (&expr, TREE_TYPE (agg),
2193 access->offset - top_offset,
2194 access->type, false);
2195 gcc_assert (ref_found);
2197 if (write)
2199 if (access->grp_partial_lhs)
2200 expr = force_gimple_operand_gsi (gsi, expr, true, NULL_TREE,
2201 !insert_after,
2202 insert_after ? GSI_NEW_STMT
2203 : GSI_SAME_STMT);
2204 stmt = gimple_build_assign (repl, expr);
2206 else
2208 TREE_NO_WARNING (repl) = 1;
2209 if (access->grp_partial_lhs)
2210 repl = force_gimple_operand_gsi (gsi, repl, true, NULL_TREE,
2211 !insert_after,
2212 insert_after ? GSI_NEW_STMT
2213 : GSI_SAME_STMT);
2214 stmt = gimple_build_assign (expr, repl);
2217 if (insert_after)
2218 gsi_insert_after (gsi, stmt, GSI_NEW_STMT);
2219 else
2220 gsi_insert_before (gsi, stmt, GSI_SAME_STMT);
2221 update_stmt (stmt);
2222 sra_stats.subtree_copies++;
2225 if (access->first_child)
2226 generate_subtree_copies (access->first_child, agg, top_offset,
2227 start_offset, chunk_size, gsi,
2228 write, insert_after);
2230 access = access->next_sibling;
2232 while (access);
2235 /* Assign zero to all scalar replacements in an access subtree. ACCESS is the
2236 the root of the subtree to be processed. GSI is the statement iterator used
2237 for inserting statements which are added after the current statement if
2238 INSERT_AFTER is true or before it otherwise. */
2240 static void
2241 init_subtree_with_zero (struct access *access, gimple_stmt_iterator *gsi,
2242 bool insert_after)
2245 struct access *child;
2247 if (access->grp_to_be_replaced)
2249 gimple stmt;
2251 stmt = gimple_build_assign (get_access_replacement (access),
2252 fold_convert (access->type,
2253 integer_zero_node));
2254 if (insert_after)
2255 gsi_insert_after (gsi, stmt, GSI_NEW_STMT);
2256 else
2257 gsi_insert_before (gsi, stmt, GSI_SAME_STMT);
2258 update_stmt (stmt);
2261 for (child = access->first_child; child; child = child->next_sibling)
2262 init_subtree_with_zero (child, gsi, insert_after);
2265 /* Search for an access representative for the given expression EXPR and
2266 return it or NULL if it cannot be found. */
2268 static struct access *
2269 get_access_for_expr (tree expr)
2271 HOST_WIDE_INT offset, size, max_size;
2272 tree base;
2274 /* FIXME: This should not be necessary but Ada produces V_C_Es with a type of
2275 a different size than the size of its argument and we need the latter
2276 one. */
2277 if (TREE_CODE (expr) == VIEW_CONVERT_EXPR)
2278 expr = TREE_OPERAND (expr, 0);
2280 base = get_ref_base_and_extent (expr, &offset, &size, &max_size);
2281 if (max_size == -1 || !DECL_P (base))
2282 return NULL;
2284 if (!bitmap_bit_p (candidate_bitmap, DECL_UID (base)))
2285 return NULL;
2287 return get_var_base_offset_size_access (base, offset, max_size);
2290 /* Replace the expression EXPR with a scalar replacement if there is one and
2291 generate other statements to do type conversion or subtree copying if
2292 necessary. GSI is used to place newly created statements, WRITE is true if
2293 the expression is being written to (it is on a LHS of a statement or output
2294 in an assembly statement). */
2296 static bool
2297 sra_modify_expr (tree *expr, gimple_stmt_iterator *gsi, bool write)
2299 struct access *access;
2300 tree type, bfr;
2302 if (TREE_CODE (*expr) == BIT_FIELD_REF)
2304 bfr = *expr;
2305 expr = &TREE_OPERAND (*expr, 0);
2307 else
2308 bfr = NULL_TREE;
2310 if (TREE_CODE (*expr) == REALPART_EXPR || TREE_CODE (*expr) == IMAGPART_EXPR)
2311 expr = &TREE_OPERAND (*expr, 0);
2312 access = get_access_for_expr (*expr);
2313 if (!access)
2314 return false;
2315 type = TREE_TYPE (*expr);
2317 if (access->grp_to_be_replaced)
2319 tree repl = get_access_replacement (access);
2320 /* If we replace a non-register typed access simply use the original
2321 access expression to extract the scalar component afterwards.
2322 This happens if scalarizing a function return value or parameter
2323 like in gcc.c-torture/execute/20041124-1.c, 20050316-1.c and
2324 gcc.c-torture/compile/20011217-1.c.
2326 We also want to use this when accessing a complex or vector which can
2327 be accessed as a different type too, potentially creating a need for
2328 type conversion (see PR42196) and when scalarized unions are involved
2329 in assembler statements (see PR42398). */
2330 if (!useless_type_conversion_p (type, access->type))
2332 tree ref = access->base;
2333 bool ok;
2335 ok = build_ref_for_offset (&ref, TREE_TYPE (ref),
2336 access->offset, access->type, false);
2337 gcc_assert (ok);
2339 if (write)
2341 gimple stmt;
2343 if (access->grp_partial_lhs)
2344 ref = force_gimple_operand_gsi (gsi, ref, true, NULL_TREE,
2345 false, GSI_NEW_STMT);
2346 stmt = gimple_build_assign (repl, ref);
2347 gsi_insert_after (gsi, stmt, GSI_NEW_STMT);
2349 else
2351 gimple stmt;
2353 if (access->grp_partial_lhs)
2354 repl = force_gimple_operand_gsi (gsi, repl, true, NULL_TREE,
2355 true, GSI_SAME_STMT);
2356 stmt = gimple_build_assign (ref, repl);
2357 gsi_insert_before (gsi, stmt, GSI_SAME_STMT);
2360 else
2361 *expr = repl;
2362 sra_stats.exprs++;
2365 if (access->first_child)
2367 HOST_WIDE_INT start_offset, chunk_size;
2368 if (bfr
2369 && host_integerp (TREE_OPERAND (bfr, 1), 1)
2370 && host_integerp (TREE_OPERAND (bfr, 2), 1))
2372 chunk_size = tree_low_cst (TREE_OPERAND (bfr, 1), 1);
2373 start_offset = access->offset
2374 + tree_low_cst (TREE_OPERAND (bfr, 2), 1);
2376 else
2377 start_offset = chunk_size = 0;
2379 generate_subtree_copies (access->first_child, access->base, 0,
2380 start_offset, chunk_size, gsi, write, write);
2382 return true;
2385 /* Where scalar replacements of the RHS have been written to when a replacement
2386 of a LHS of an assigments cannot be direclty loaded from a replacement of
2387 the RHS. */
2388 enum unscalarized_data_handling { SRA_UDH_NONE, /* Nothing done so far. */
2389 SRA_UDH_RIGHT, /* Data flushed to the RHS. */
2390 SRA_UDH_LEFT }; /* Data flushed to the LHS. */
2392 /* Store all replacements in the access tree rooted in TOP_RACC either to their
2393 base aggregate if there are unscalarized data or directly to LHS
2394 otherwise. */
2396 static enum unscalarized_data_handling
2397 handle_unscalarized_data_in_subtree (struct access *top_racc, tree lhs,
2398 gimple_stmt_iterator *gsi)
2400 if (top_racc->grp_unscalarized_data)
2402 generate_subtree_copies (top_racc->first_child, top_racc->base, 0, 0, 0,
2403 gsi, false, false);
2404 return SRA_UDH_RIGHT;
2406 else
2408 generate_subtree_copies (top_racc->first_child, lhs, top_racc->offset,
2409 0, 0, gsi, false, false);
2410 return SRA_UDH_LEFT;
2415 /* Try to generate statements to load all sub-replacements in an access
2416 (sub)tree (LACC is the first child) from scalar replacements in the TOP_RACC
2417 (sub)tree. If that is not possible, refresh the TOP_RACC base aggregate and
2418 load the accesses from it. LEFT_OFFSET is the offset of the left whole
2419 subtree being copied, RIGHT_OFFSET is the same thing for the right subtree.
2420 NEW_GSI is stmt iterator used for statement insertions after the original
2421 assignment, OLD_GSI is used to insert statements before the assignment.
2422 *REFRESHED keeps the information whether we have needed to refresh
2423 replacements of the LHS and from which side of the assignments this takes
2424 place. */
2426 static void
2427 load_assign_lhs_subreplacements (struct access *lacc, struct access *top_racc,
2428 HOST_WIDE_INT left_offset,
2429 HOST_WIDE_INT right_offset,
2430 gimple_stmt_iterator *old_gsi,
2431 gimple_stmt_iterator *new_gsi,
2432 enum unscalarized_data_handling *refreshed,
2433 tree lhs)
2435 location_t loc = EXPR_LOCATION (lacc->expr);
2438 if (lacc->grp_to_be_replaced)
2440 struct access *racc;
2441 HOST_WIDE_INT offset = lacc->offset - left_offset + right_offset;
2442 gimple stmt;
2443 tree rhs;
2445 racc = find_access_in_subtree (top_racc, offset, lacc->size);
2446 if (racc && racc->grp_to_be_replaced)
2448 rhs = get_access_replacement (racc);
2449 if (!useless_type_conversion_p (lacc->type, racc->type))
2450 rhs = fold_build1_loc (loc, VIEW_CONVERT_EXPR, lacc->type, rhs);
2452 else
2454 /* No suitable access on the right hand side, need to load from
2455 the aggregate. See if we have to update it first... */
2456 if (*refreshed == SRA_UDH_NONE)
2457 *refreshed = handle_unscalarized_data_in_subtree (top_racc,
2458 lhs, old_gsi);
2460 if (*refreshed == SRA_UDH_LEFT)
2462 bool repl_found;
2464 rhs = lacc->base;
2465 repl_found = build_ref_for_offset (&rhs, TREE_TYPE (rhs),
2466 lacc->offset, lacc->type,
2467 false);
2468 gcc_assert (repl_found);
2470 else
2472 bool repl_found;
2474 rhs = top_racc->base;
2475 repl_found = build_ref_for_offset (&rhs,
2476 TREE_TYPE (top_racc->base),
2477 offset, lacc->type, false);
2478 gcc_assert (repl_found);
2482 stmt = gimple_build_assign (get_access_replacement (lacc), rhs);
2483 gsi_insert_after (new_gsi, stmt, GSI_NEW_STMT);
2484 update_stmt (stmt);
2485 sra_stats.subreplacements++;
2487 else if (*refreshed == SRA_UDH_NONE
2488 && lacc->grp_read && !lacc->grp_covered)
2489 *refreshed = handle_unscalarized_data_in_subtree (top_racc, lhs,
2490 old_gsi);
2492 if (lacc->first_child)
2493 load_assign_lhs_subreplacements (lacc->first_child, top_racc,
2494 left_offset, right_offset,
2495 old_gsi, new_gsi, refreshed, lhs);
2496 lacc = lacc->next_sibling;
2498 while (lacc);
2501 /* Result code for SRA assignment modification. */
2502 enum assignment_mod_result { SRA_AM_NONE, /* nothing done for the stmt */
2503 SRA_AM_MODIFIED, /* stmt changed but not
2504 removed */
2505 SRA_AM_REMOVED }; /* stmt eliminated */
2507 /* Modify assignments with a CONSTRUCTOR on their RHS. STMT contains a pointer
2508 to the assignment and GSI is the statement iterator pointing at it. Returns
2509 the same values as sra_modify_assign. */
2511 static enum assignment_mod_result
2512 sra_modify_constructor_assign (gimple *stmt, gimple_stmt_iterator *gsi)
2514 tree lhs = gimple_assign_lhs (*stmt);
2515 struct access *acc;
2517 acc = get_access_for_expr (lhs);
2518 if (!acc)
2519 return SRA_AM_NONE;
2521 if (VEC_length (constructor_elt,
2522 CONSTRUCTOR_ELTS (gimple_assign_rhs1 (*stmt))) > 0)
2524 /* I have never seen this code path trigger but if it can happen the
2525 following should handle it gracefully. */
2526 if (access_has_children_p (acc))
2527 generate_subtree_copies (acc->first_child, acc->base, 0, 0, 0, gsi,
2528 true, true);
2529 return SRA_AM_MODIFIED;
2532 if (acc->grp_covered)
2534 init_subtree_with_zero (acc, gsi, false);
2535 unlink_stmt_vdef (*stmt);
2536 gsi_remove (gsi, true);
2537 return SRA_AM_REMOVED;
2539 else
2541 init_subtree_with_zero (acc, gsi, true);
2542 return SRA_AM_MODIFIED;
2546 /* Create and return a new suitable default definition SSA_NAME for RACC which
2547 is an access describing an uninitialized part of an aggregate that is being
2548 loaded. */
2550 static tree
2551 get_repl_default_def_ssa_name (struct access *racc)
2553 tree repl, decl;
2555 decl = get_unrenamed_access_replacement (racc);
2557 repl = gimple_default_def (cfun, decl);
2558 if (!repl)
2560 repl = make_ssa_name (decl, gimple_build_nop ());
2561 set_default_def (decl, repl);
2564 return repl;
2567 /* Examine both sides of the assignment statement pointed to by STMT, replace
2568 them with a scalare replacement if there is one and generate copying of
2569 replacements if scalarized aggregates have been used in the assignment. GSI
2570 is used to hold generated statements for type conversions and subtree
2571 copying. */
2573 static enum assignment_mod_result
2574 sra_modify_assign (gimple *stmt, gimple_stmt_iterator *gsi)
2576 struct access *lacc, *racc;
2577 tree lhs, rhs;
2578 bool modify_this_stmt = false;
2579 bool force_gimple_rhs = false;
2580 location_t loc = gimple_location (*stmt);
2581 gimple_stmt_iterator orig_gsi = *gsi;
2583 if (!gimple_assign_single_p (*stmt))
2584 return SRA_AM_NONE;
2585 lhs = gimple_assign_lhs (*stmt);
2586 rhs = gimple_assign_rhs1 (*stmt);
2588 if (TREE_CODE (rhs) == CONSTRUCTOR)
2589 return sra_modify_constructor_assign (stmt, gsi);
2591 if (TREE_CODE (rhs) == REALPART_EXPR || TREE_CODE (lhs) == REALPART_EXPR
2592 || TREE_CODE (rhs) == IMAGPART_EXPR || TREE_CODE (lhs) == IMAGPART_EXPR
2593 || TREE_CODE (rhs) == BIT_FIELD_REF || TREE_CODE (lhs) == BIT_FIELD_REF)
2595 modify_this_stmt = sra_modify_expr (gimple_assign_rhs1_ptr (*stmt),
2596 gsi, false);
2597 modify_this_stmt |= sra_modify_expr (gimple_assign_lhs_ptr (*stmt),
2598 gsi, true);
2599 return modify_this_stmt ? SRA_AM_MODIFIED : SRA_AM_NONE;
2602 lacc = get_access_for_expr (lhs);
2603 racc = get_access_for_expr (rhs);
2604 if (!lacc && !racc)
2605 return SRA_AM_NONE;
2607 if (lacc && lacc->grp_to_be_replaced)
2609 lhs = get_access_replacement (lacc);
2610 gimple_assign_set_lhs (*stmt, lhs);
2611 modify_this_stmt = true;
2612 if (lacc->grp_partial_lhs)
2613 force_gimple_rhs = true;
2614 sra_stats.exprs++;
2617 if (racc && racc->grp_to_be_replaced)
2619 rhs = get_access_replacement (racc);
2620 modify_this_stmt = true;
2621 if (racc->grp_partial_lhs)
2622 force_gimple_rhs = true;
2623 sra_stats.exprs++;
2626 if (modify_this_stmt)
2628 if (!useless_type_conversion_p (TREE_TYPE (lhs), TREE_TYPE (rhs)))
2630 /* If we can avoid creating a VIEW_CONVERT_EXPR do so.
2631 ??? This should move to fold_stmt which we simply should
2632 call after building a VIEW_CONVERT_EXPR here. */
2633 if (AGGREGATE_TYPE_P (TREE_TYPE (lhs))
2634 && !access_has_children_p (lacc))
2636 tree expr = lhs;
2637 if (build_ref_for_offset (&expr, TREE_TYPE (lhs), 0,
2638 TREE_TYPE (rhs), false))
2640 lhs = expr;
2641 gimple_assign_set_lhs (*stmt, expr);
2644 else if (AGGREGATE_TYPE_P (TREE_TYPE (rhs))
2645 && !access_has_children_p (racc))
2647 tree expr = rhs;
2648 if (build_ref_for_offset (&expr, TREE_TYPE (rhs), 0,
2649 TREE_TYPE (lhs), false))
2650 rhs = expr;
2652 if (!useless_type_conversion_p (TREE_TYPE (lhs), TREE_TYPE (rhs)))
2654 rhs = fold_build1_loc (loc, VIEW_CONVERT_EXPR, TREE_TYPE (lhs), rhs);
2655 if (is_gimple_reg_type (TREE_TYPE (lhs))
2656 && TREE_CODE (lhs) != SSA_NAME)
2657 force_gimple_rhs = true;
2662 /* From this point on, the function deals with assignments in between
2663 aggregates when at least one has scalar reductions of some of its
2664 components. There are three possible scenarios: Both the LHS and RHS have
2665 to-be-scalarized components, 2) only the RHS has or 3) only the LHS has.
2667 In the first case, we would like to load the LHS components from RHS
2668 components whenever possible. If that is not possible, we would like to
2669 read it directly from the RHS (after updating it by storing in it its own
2670 components). If there are some necessary unscalarized data in the LHS,
2671 those will be loaded by the original assignment too. If neither of these
2672 cases happen, the original statement can be removed. Most of this is done
2673 by load_assign_lhs_subreplacements.
2675 In the second case, we would like to store all RHS scalarized components
2676 directly into LHS and if they cover the aggregate completely, remove the
2677 statement too. In the third case, we want the LHS components to be loaded
2678 directly from the RHS (DSE will remove the original statement if it
2679 becomes redundant).
2681 This is a bit complex but manageable when types match and when unions do
2682 not cause confusion in a way that we cannot really load a component of LHS
2683 from the RHS or vice versa (the access representing this level can have
2684 subaccesses that are accessible only through a different union field at a
2685 higher level - different from the one used in the examined expression).
2686 Unions are fun.
2688 Therefore, I specially handle a fourth case, happening when there is a
2689 specific type cast or it is impossible to locate a scalarized subaccess on
2690 the other side of the expression. If that happens, I simply "refresh" the
2691 RHS by storing in it is scalarized components leave the original statement
2692 there to do the copying and then load the scalar replacements of the LHS.
2693 This is what the first branch does. */
2695 if (gimple_has_volatile_ops (*stmt)
2696 || contains_view_convert_expr_p (rhs)
2697 || contains_view_convert_expr_p (lhs)
2698 || (access_has_children_p (racc)
2699 && !ref_expr_for_all_replacements_p (racc, lhs, racc->offset))
2700 || (access_has_children_p (lacc)
2701 && !ref_expr_for_all_replacements_p (lacc, rhs, lacc->offset)))
2703 if (access_has_children_p (racc))
2704 generate_subtree_copies (racc->first_child, racc->base, 0, 0, 0,
2705 gsi, false, false);
2706 if (access_has_children_p (lacc))
2707 generate_subtree_copies (lacc->first_child, lacc->base, 0, 0, 0,
2708 gsi, true, true);
2709 sra_stats.separate_lhs_rhs_handling++;
2711 else
2713 if (access_has_children_p (lacc) && access_has_children_p (racc))
2715 gimple_stmt_iterator orig_gsi = *gsi;
2716 enum unscalarized_data_handling refreshed;
2718 if (lacc->grp_read && !lacc->grp_covered)
2719 refreshed = handle_unscalarized_data_in_subtree (racc, lhs, gsi);
2720 else
2721 refreshed = SRA_UDH_NONE;
2723 load_assign_lhs_subreplacements (lacc->first_child, racc,
2724 lacc->offset, racc->offset,
2725 &orig_gsi, gsi, &refreshed, lhs);
2726 if (refreshed != SRA_UDH_RIGHT)
2728 gsi_next (gsi);
2729 unlink_stmt_vdef (*stmt);
2730 gsi_remove (&orig_gsi, true);
2731 sra_stats.deleted++;
2732 return SRA_AM_REMOVED;
2735 else
2737 if (racc)
2739 if (!racc->grp_to_be_replaced && !racc->grp_unscalarized_data)
2741 if (dump_file)
2743 fprintf (dump_file, "Removing load: ");
2744 print_gimple_stmt (dump_file, *stmt, 0, 0);
2747 if (TREE_CODE (lhs) == SSA_NAME)
2749 rhs = get_repl_default_def_ssa_name (racc);
2750 if (!useless_type_conversion_p (TREE_TYPE (lhs),
2751 TREE_TYPE (rhs)))
2752 rhs = fold_build1_loc (loc, VIEW_CONVERT_EXPR,
2753 TREE_TYPE (lhs), rhs);
2755 else
2757 if (racc->first_child)
2758 generate_subtree_copies (racc->first_child, lhs,
2759 racc->offset, 0, 0, gsi,
2760 false, false);
2762 gcc_assert (*stmt == gsi_stmt (*gsi));
2763 unlink_stmt_vdef (*stmt);
2764 gsi_remove (gsi, true);
2765 sra_stats.deleted++;
2766 return SRA_AM_REMOVED;
2769 else if (racc->first_child)
2770 generate_subtree_copies (racc->first_child, lhs,
2771 racc->offset, 0, 0, gsi, false, true);
2773 if (access_has_children_p (lacc))
2774 generate_subtree_copies (lacc->first_child, rhs, lacc->offset,
2775 0, 0, gsi, true, true);
2779 /* This gimplification must be done after generate_subtree_copies, lest we
2780 insert the subtree copies in the middle of the gimplified sequence. */
2781 if (force_gimple_rhs)
2782 rhs = force_gimple_operand_gsi (&orig_gsi, rhs, true, NULL_TREE,
2783 true, GSI_SAME_STMT);
2784 if (gimple_assign_rhs1 (*stmt) != rhs)
2786 modify_this_stmt = true;
2787 gimple_assign_set_rhs_from_tree (&orig_gsi, rhs);
2788 gcc_assert (*stmt == gsi_stmt (orig_gsi));
2791 return modify_this_stmt ? SRA_AM_MODIFIED : SRA_AM_NONE;
2794 /* Traverse the function body and all modifications as decided in
2795 analyze_all_variable_accesses. Return true iff the CFG has been
2796 changed. */
2798 static bool
2799 sra_modify_function_body (void)
2801 bool cfg_changed = false;
2802 basic_block bb;
2804 FOR_EACH_BB (bb)
2806 gimple_stmt_iterator gsi = gsi_start_bb (bb);
2807 while (!gsi_end_p (gsi))
2809 gimple stmt = gsi_stmt (gsi);
2810 enum assignment_mod_result assign_result;
2811 bool modified = false, deleted = false;
2812 tree *t;
2813 unsigned i;
2815 switch (gimple_code (stmt))
2817 case GIMPLE_RETURN:
2818 t = gimple_return_retval_ptr (stmt);
2819 if (*t != NULL_TREE)
2820 modified |= sra_modify_expr (t, &gsi, false);
2821 break;
2823 case GIMPLE_ASSIGN:
2824 assign_result = sra_modify_assign (&stmt, &gsi);
2825 modified |= assign_result == SRA_AM_MODIFIED;
2826 deleted = assign_result == SRA_AM_REMOVED;
2827 break;
2829 case GIMPLE_CALL:
2830 /* Operands must be processed before the lhs. */
2831 for (i = 0; i < gimple_call_num_args (stmt); i++)
2833 t = gimple_call_arg_ptr (stmt, i);
2834 modified |= sra_modify_expr (t, &gsi, false);
2837 if (gimple_call_lhs (stmt))
2839 t = gimple_call_lhs_ptr (stmt);
2840 modified |= sra_modify_expr (t, &gsi, true);
2842 break;
2844 case GIMPLE_ASM:
2845 for (i = 0; i < gimple_asm_ninputs (stmt); i++)
2847 t = &TREE_VALUE (gimple_asm_input_op (stmt, i));
2848 modified |= sra_modify_expr (t, &gsi, false);
2850 for (i = 0; i < gimple_asm_noutputs (stmt); i++)
2852 t = &TREE_VALUE (gimple_asm_output_op (stmt, i));
2853 modified |= sra_modify_expr (t, &gsi, true);
2855 break;
2857 default:
2858 break;
2861 if (modified)
2863 update_stmt (stmt);
2864 if (maybe_clean_eh_stmt (stmt)
2865 && gimple_purge_dead_eh_edges (gimple_bb (stmt)))
2866 cfg_changed = true;
2868 if (!deleted)
2869 gsi_next (&gsi);
2873 return cfg_changed;
2876 /* Generate statements initializing scalar replacements of parts of function
2877 parameters. */
2879 static void
2880 initialize_parameter_reductions (void)
2882 gimple_stmt_iterator gsi;
2883 gimple_seq seq = NULL;
2884 tree parm;
2886 for (parm = DECL_ARGUMENTS (current_function_decl);
2887 parm;
2888 parm = DECL_CHAIN (parm))
2890 VEC (access_p, heap) *access_vec;
2891 struct access *access;
2893 if (!bitmap_bit_p (candidate_bitmap, DECL_UID (parm)))
2894 continue;
2895 access_vec = get_base_access_vector (parm);
2896 if (!access_vec)
2897 continue;
2899 if (!seq)
2901 seq = gimple_seq_alloc ();
2902 gsi = gsi_start (seq);
2905 for (access = VEC_index (access_p, access_vec, 0);
2906 access;
2907 access = access->next_grp)
2908 generate_subtree_copies (access, parm, 0, 0, 0, &gsi, true, true);
2911 if (seq)
2912 gsi_insert_seq_on_edge_immediate (single_succ_edge (ENTRY_BLOCK_PTR), seq);
2915 /* The "main" function of intraprocedural SRA passes. Runs the analysis and if
2916 it reveals there are components of some aggregates to be scalarized, it runs
2917 the required transformations. */
2918 static unsigned int
2919 perform_intra_sra (void)
2921 int ret = 0;
2922 sra_initialize ();
2924 if (!find_var_candidates ())
2925 goto out;
2927 if (!scan_function ())
2928 goto out;
2930 if (!analyze_all_variable_accesses ())
2931 goto out;
2933 if (sra_modify_function_body ())
2934 ret = TODO_update_ssa | TODO_cleanup_cfg;
2935 else
2936 ret = TODO_update_ssa;
2937 initialize_parameter_reductions ();
2939 statistics_counter_event (cfun, "Scalar replacements created",
2940 sra_stats.replacements);
2941 statistics_counter_event (cfun, "Modified expressions", sra_stats.exprs);
2942 statistics_counter_event (cfun, "Subtree copy stmts",
2943 sra_stats.subtree_copies);
2944 statistics_counter_event (cfun, "Subreplacement stmts",
2945 sra_stats.subreplacements);
2946 statistics_counter_event (cfun, "Deleted stmts", sra_stats.deleted);
2947 statistics_counter_event (cfun, "Separate LHS and RHS handling",
2948 sra_stats.separate_lhs_rhs_handling);
2950 out:
2951 sra_deinitialize ();
2952 return ret;
2955 /* Perform early intraprocedural SRA. */
2956 static unsigned int
2957 early_intra_sra (void)
2959 sra_mode = SRA_MODE_EARLY_INTRA;
2960 return perform_intra_sra ();
2963 /* Perform "late" intraprocedural SRA. */
2964 static unsigned int
2965 late_intra_sra (void)
2967 sra_mode = SRA_MODE_INTRA;
2968 return perform_intra_sra ();
2972 static bool
2973 gate_intra_sra (void)
2975 return flag_tree_sra != 0 && dbg_cnt (tree_sra);
2979 struct gimple_opt_pass pass_sra_early =
2982 GIMPLE_PASS,
2983 "esra", /* name */
2984 gate_intra_sra, /* gate */
2985 early_intra_sra, /* execute */
2986 NULL, /* sub */
2987 NULL, /* next */
2988 0, /* static_pass_number */
2989 TV_TREE_SRA, /* tv_id */
2990 PROP_cfg | PROP_ssa, /* properties_required */
2991 0, /* properties_provided */
2992 0, /* properties_destroyed */
2993 0, /* todo_flags_start */
2994 TODO_dump_func
2995 | TODO_update_ssa
2996 | TODO_ggc_collect
2997 | TODO_verify_ssa /* todo_flags_finish */
3001 struct gimple_opt_pass pass_sra =
3004 GIMPLE_PASS,
3005 "sra", /* name */
3006 gate_intra_sra, /* gate */
3007 late_intra_sra, /* execute */
3008 NULL, /* sub */
3009 NULL, /* next */
3010 0, /* static_pass_number */
3011 TV_TREE_SRA, /* tv_id */
3012 PROP_cfg | PROP_ssa, /* properties_required */
3013 0, /* properties_provided */
3014 0, /* properties_destroyed */
3015 TODO_update_address_taken, /* todo_flags_start */
3016 TODO_dump_func
3017 | TODO_update_ssa
3018 | TODO_ggc_collect
3019 | TODO_verify_ssa /* todo_flags_finish */
3024 /* Return true iff PARM (which must be a parm_decl) is an unused scalar
3025 parameter. */
3027 static bool
3028 is_unused_scalar_param (tree parm)
3030 tree name;
3031 return (is_gimple_reg (parm)
3032 && (!(name = gimple_default_def (cfun, parm))
3033 || has_zero_uses (name)));
3036 /* Scan immediate uses of a default definition SSA name of a parameter PARM and
3037 examine whether there are any direct or otherwise infeasible ones. If so,
3038 return true, otherwise return false. PARM must be a gimple register with a
3039 non-NULL default definition. */
3041 static bool
3042 ptr_parm_has_direct_uses (tree parm)
3044 imm_use_iterator ui;
3045 gimple stmt;
3046 tree name = gimple_default_def (cfun, parm);
3047 bool ret = false;
3049 FOR_EACH_IMM_USE_STMT (stmt, ui, name)
3051 int uses_ok = 0;
3052 use_operand_p use_p;
3054 if (is_gimple_debug (stmt))
3055 continue;
3057 /* Valid uses include dereferences on the lhs and the rhs. */
3058 if (gimple_has_lhs (stmt))
3060 tree lhs = gimple_get_lhs (stmt);
3061 while (handled_component_p (lhs))
3062 lhs = TREE_OPERAND (lhs, 0);
3063 if (TREE_CODE (lhs) == MEM_REF
3064 && TREE_OPERAND (lhs, 0) == name
3065 && integer_zerop (TREE_OPERAND (lhs, 1))
3066 && types_compatible_p (TREE_TYPE (lhs),
3067 TREE_TYPE (TREE_TYPE (name))))
3068 uses_ok++;
3070 if (gimple_assign_single_p (stmt))
3072 tree rhs = gimple_assign_rhs1 (stmt);
3073 while (handled_component_p (rhs))
3074 rhs = TREE_OPERAND (rhs, 0);
3075 if (TREE_CODE (rhs) == MEM_REF
3076 && TREE_OPERAND (rhs, 0) == name
3077 && integer_zerop (TREE_OPERAND (rhs, 1))
3078 && types_compatible_p (TREE_TYPE (rhs),
3079 TREE_TYPE (TREE_TYPE (name))))
3080 uses_ok++;
3082 else if (is_gimple_call (stmt))
3084 unsigned i;
3085 for (i = 0; i < gimple_call_num_args (stmt); ++i)
3087 tree arg = gimple_call_arg (stmt, i);
3088 while (handled_component_p (arg))
3089 arg = TREE_OPERAND (arg, 0);
3090 if (TREE_CODE (arg) == MEM_REF
3091 && TREE_OPERAND (arg, 0) == name
3092 && integer_zerop (TREE_OPERAND (arg, 1))
3093 && types_compatible_p (TREE_TYPE (arg),
3094 TREE_TYPE (TREE_TYPE (name))))
3095 uses_ok++;
3099 /* If the number of valid uses does not match the number of
3100 uses in this stmt there is an unhandled use. */
3101 FOR_EACH_IMM_USE_ON_STMT (use_p, ui)
3102 --uses_ok;
3104 if (uses_ok != 0)
3105 ret = true;
3107 if (ret)
3108 BREAK_FROM_IMM_USE_STMT (ui);
3111 return ret;
3114 /* Identify candidates for reduction for IPA-SRA based on their type and mark
3115 them in candidate_bitmap. Note that these do not necessarily include
3116 parameter which are unused and thus can be removed. Return true iff any
3117 such candidate has been found. */
3119 static bool
3120 find_param_candidates (void)
3122 tree parm;
3123 int count = 0;
3124 bool ret = false;
3126 for (parm = DECL_ARGUMENTS (current_function_decl);
3127 parm;
3128 parm = DECL_CHAIN (parm))
3130 tree type = TREE_TYPE (parm);
3132 count++;
3134 if (TREE_THIS_VOLATILE (parm)
3135 || TREE_ADDRESSABLE (parm)
3136 || (!is_gimple_reg_type (type) && is_va_list_type (type)))
3137 continue;
3139 if (is_unused_scalar_param (parm))
3141 ret = true;
3142 continue;
3145 if (POINTER_TYPE_P (type))
3147 type = TREE_TYPE (type);
3149 if (TREE_CODE (type) == FUNCTION_TYPE
3150 || TYPE_VOLATILE (type)
3151 || (TREE_CODE (type) == ARRAY_TYPE
3152 && TYPE_NONALIASED_COMPONENT (type))
3153 || !is_gimple_reg (parm)
3154 || is_va_list_type (type)
3155 || ptr_parm_has_direct_uses (parm))
3156 continue;
3158 else if (!AGGREGATE_TYPE_P (type))
3159 continue;
3161 if (!COMPLETE_TYPE_P (type)
3162 || !host_integerp (TYPE_SIZE (type), 1)
3163 || tree_low_cst (TYPE_SIZE (type), 1) == 0
3164 || (AGGREGATE_TYPE_P (type)
3165 && type_internals_preclude_sra_p (type)))
3166 continue;
3168 bitmap_set_bit (candidate_bitmap, DECL_UID (parm));
3169 ret = true;
3170 if (dump_file && (dump_flags & TDF_DETAILS))
3172 fprintf (dump_file, "Candidate (%d): ", DECL_UID (parm));
3173 print_generic_expr (dump_file, parm, 0);
3174 fprintf (dump_file, "\n");
3178 func_param_count = count;
3179 return ret;
3182 /* Callback of walk_aliased_vdefs, marks the access passed as DATA as
3183 maybe_modified. */
3185 static bool
3186 mark_maybe_modified (ao_ref *ao ATTRIBUTE_UNUSED, tree vdef ATTRIBUTE_UNUSED,
3187 void *data)
3189 struct access *repr = (struct access *) data;
3191 repr->grp_maybe_modified = 1;
3192 return true;
3195 /* Analyze what representatives (in linked lists accessible from
3196 REPRESENTATIVES) can be modified by side effects of statements in the
3197 current function. */
3199 static void
3200 analyze_modified_params (VEC (access_p, heap) *representatives)
3202 int i;
3204 for (i = 0; i < func_param_count; i++)
3206 struct access *repr;
3208 for (repr = VEC_index (access_p, representatives, i);
3209 repr;
3210 repr = repr->next_grp)
3212 struct access *access;
3213 bitmap visited;
3214 ao_ref ar;
3216 if (no_accesses_p (repr))
3217 continue;
3218 if (!POINTER_TYPE_P (TREE_TYPE (repr->base))
3219 || repr->grp_maybe_modified)
3220 continue;
3222 ao_ref_init (&ar, repr->expr);
3223 visited = BITMAP_ALLOC (NULL);
3224 for (access = repr; access; access = access->next_sibling)
3226 /* All accesses are read ones, otherwise grp_maybe_modified would
3227 be trivially set. */
3228 walk_aliased_vdefs (&ar, gimple_vuse (access->stmt),
3229 mark_maybe_modified, repr, &visited);
3230 if (repr->grp_maybe_modified)
3231 break;
3233 BITMAP_FREE (visited);
3238 /* Propagate distances in bb_dereferences in the opposite direction than the
3239 control flow edges, in each step storing the maximum of the current value
3240 and the minimum of all successors. These steps are repeated until the table
3241 stabilizes. Note that BBs which might terminate the functions (according to
3242 final_bbs bitmap) never updated in this way. */
3244 static void
3245 propagate_dereference_distances (void)
3247 VEC (basic_block, heap) *queue;
3248 basic_block bb;
3250 queue = VEC_alloc (basic_block, heap, last_basic_block_for_function (cfun));
3251 VEC_quick_push (basic_block, queue, ENTRY_BLOCK_PTR);
3252 FOR_EACH_BB (bb)
3254 VEC_quick_push (basic_block, queue, bb);
3255 bb->aux = bb;
3258 while (!VEC_empty (basic_block, queue))
3260 edge_iterator ei;
3261 edge e;
3262 bool change = false;
3263 int i;
3265 bb = VEC_pop (basic_block, queue);
3266 bb->aux = NULL;
3268 if (bitmap_bit_p (final_bbs, bb->index))
3269 continue;
3271 for (i = 0; i < func_param_count; i++)
3273 int idx = bb->index * func_param_count + i;
3274 bool first = true;
3275 HOST_WIDE_INT inh = 0;
3277 FOR_EACH_EDGE (e, ei, bb->succs)
3279 int succ_idx = e->dest->index * func_param_count + i;
3281 if (e->src == EXIT_BLOCK_PTR)
3282 continue;
3284 if (first)
3286 first = false;
3287 inh = bb_dereferences [succ_idx];
3289 else if (bb_dereferences [succ_idx] < inh)
3290 inh = bb_dereferences [succ_idx];
3293 if (!first && bb_dereferences[idx] < inh)
3295 bb_dereferences[idx] = inh;
3296 change = true;
3300 if (change && !bitmap_bit_p (final_bbs, bb->index))
3301 FOR_EACH_EDGE (e, ei, bb->preds)
3303 if (e->src->aux)
3304 continue;
3306 e->src->aux = e->src;
3307 VEC_quick_push (basic_block, queue, e->src);
3311 VEC_free (basic_block, heap, queue);
3314 /* Dump a dereferences TABLE with heading STR to file F. */
3316 static void
3317 dump_dereferences_table (FILE *f, const char *str, HOST_WIDE_INT *table)
3319 basic_block bb;
3321 fprintf (dump_file, str);
3322 FOR_BB_BETWEEN (bb, ENTRY_BLOCK_PTR, EXIT_BLOCK_PTR, next_bb)
3324 fprintf (f, "%4i %i ", bb->index, bitmap_bit_p (final_bbs, bb->index));
3325 if (bb != EXIT_BLOCK_PTR)
3327 int i;
3328 for (i = 0; i < func_param_count; i++)
3330 int idx = bb->index * func_param_count + i;
3331 fprintf (f, " %4" HOST_WIDE_INT_PRINT "d", table[idx]);
3334 fprintf (f, "\n");
3336 fprintf (dump_file, "\n");
3339 /* Determine what (parts of) parameters passed by reference that are not
3340 assigned to are not certainly dereferenced in this function and thus the
3341 dereferencing cannot be safely moved to the caller without potentially
3342 introducing a segfault. Mark such REPRESENTATIVES as
3343 grp_not_necessarilly_dereferenced.
3345 The dereferenced maximum "distance," i.e. the offset + size of the accessed
3346 part is calculated rather than simple booleans are calculated for each
3347 pointer parameter to handle cases when only a fraction of the whole
3348 aggregate is allocated (see testsuite/gcc.c-torture/execute/ipa-sra-2.c for
3349 an example).
3351 The maximum dereference distances for each pointer parameter and BB are
3352 already stored in bb_dereference. This routine simply propagates these
3353 values upwards by propagate_dereference_distances and then compares the
3354 distances of individual parameters in the ENTRY BB to the equivalent
3355 distances of each representative of a (fraction of a) parameter. */
3357 static void
3358 analyze_caller_dereference_legality (VEC (access_p, heap) *representatives)
3360 int i;
3362 if (dump_file && (dump_flags & TDF_DETAILS))
3363 dump_dereferences_table (dump_file,
3364 "Dereference table before propagation:\n",
3365 bb_dereferences);
3367 propagate_dereference_distances ();
3369 if (dump_file && (dump_flags & TDF_DETAILS))
3370 dump_dereferences_table (dump_file,
3371 "Dereference table after propagation:\n",
3372 bb_dereferences);
3374 for (i = 0; i < func_param_count; i++)
3376 struct access *repr = VEC_index (access_p, representatives, i);
3377 int idx = ENTRY_BLOCK_PTR->index * func_param_count + i;
3379 if (!repr || no_accesses_p (repr))
3380 continue;
3384 if ((repr->offset + repr->size) > bb_dereferences[idx])
3385 repr->grp_not_necessarilly_dereferenced = 1;
3386 repr = repr->next_grp;
3388 while (repr);
3392 /* Return the representative access for the parameter declaration PARM if it is
3393 a scalar passed by reference which is not written to and the pointer value
3394 is not used directly. Thus, if it is legal to dereference it in the caller
3395 and we can rule out modifications through aliases, such parameter should be
3396 turned into one passed by value. Return NULL otherwise. */
3398 static struct access *
3399 unmodified_by_ref_scalar_representative (tree parm)
3401 int i, access_count;
3402 struct access *repr;
3403 VEC (access_p, heap) *access_vec;
3405 access_vec = get_base_access_vector (parm);
3406 gcc_assert (access_vec);
3407 repr = VEC_index (access_p, access_vec, 0);
3408 if (repr->write)
3409 return NULL;
3410 repr->group_representative = repr;
3412 access_count = VEC_length (access_p, access_vec);
3413 for (i = 1; i < access_count; i++)
3415 struct access *access = VEC_index (access_p, access_vec, i);
3416 if (access->write)
3417 return NULL;
3418 access->group_representative = repr;
3419 access->next_sibling = repr->next_sibling;
3420 repr->next_sibling = access;
3423 repr->grp_read = 1;
3424 repr->grp_scalar_ptr = 1;
3425 return repr;
3428 /* Return true iff this access precludes IPA-SRA of the parameter it is
3429 associated with. */
3431 static bool
3432 access_precludes_ipa_sra_p (struct access *access)
3434 /* Avoid issues such as the second simple testcase in PR 42025. The problem
3435 is incompatible assign in a call statement (and possibly even in asm
3436 statements). This can be relaxed by using a new temporary but only for
3437 non-TREE_ADDRESSABLE types and is probably not worth the complexity. (In
3438 intraprocedural SRA we deal with this by keeping the old aggregate around,
3439 something we cannot do in IPA-SRA.) */
3440 if (access->write
3441 && (is_gimple_call (access->stmt)
3442 || gimple_code (access->stmt) == GIMPLE_ASM))
3443 return true;
3445 return false;
3449 /* Sort collected accesses for parameter PARM, identify representatives for
3450 each accessed region and link them together. Return NULL if there are
3451 different but overlapping accesses, return the special ptr value meaning
3452 there are no accesses for this parameter if that is the case and return the
3453 first representative otherwise. Set *RO_GRP if there is a group of accesses
3454 with only read (i.e. no write) accesses. */
3456 static struct access *
3457 splice_param_accesses (tree parm, bool *ro_grp)
3459 int i, j, access_count, group_count;
3460 int agg_size, total_size = 0;
3461 struct access *access, *res, **prev_acc_ptr = &res;
3462 VEC (access_p, heap) *access_vec;
3464 access_vec = get_base_access_vector (parm);
3465 if (!access_vec)
3466 return &no_accesses_representant;
3467 access_count = VEC_length (access_p, access_vec);
3469 qsort (VEC_address (access_p, access_vec), access_count, sizeof (access_p),
3470 compare_access_positions);
3472 i = 0;
3473 total_size = 0;
3474 group_count = 0;
3475 while (i < access_count)
3477 bool modification;
3478 access = VEC_index (access_p, access_vec, i);
3479 modification = access->write;
3480 if (access_precludes_ipa_sra_p (access))
3481 return NULL;
3483 /* Access is about to become group representative unless we find some
3484 nasty overlap which would preclude us from breaking this parameter
3485 apart. */
3487 j = i + 1;
3488 while (j < access_count)
3490 struct access *ac2 = VEC_index (access_p, access_vec, j);
3491 if (ac2->offset != access->offset)
3493 /* All or nothing law for parameters. */
3494 if (access->offset + access->size > ac2->offset)
3495 return NULL;
3496 else
3497 break;
3499 else if (ac2->size != access->size)
3500 return NULL;
3502 if (access_precludes_ipa_sra_p (ac2))
3503 return NULL;
3505 modification |= ac2->write;
3506 ac2->group_representative = access;
3507 ac2->next_sibling = access->next_sibling;
3508 access->next_sibling = ac2;
3509 j++;
3512 group_count++;
3513 access->grp_maybe_modified = modification;
3514 if (!modification)
3515 *ro_grp = true;
3516 *prev_acc_ptr = access;
3517 prev_acc_ptr = &access->next_grp;
3518 total_size += access->size;
3519 i = j;
3522 if (POINTER_TYPE_P (TREE_TYPE (parm)))
3523 agg_size = tree_low_cst (TYPE_SIZE (TREE_TYPE (TREE_TYPE (parm))), 1);
3524 else
3525 agg_size = tree_low_cst (TYPE_SIZE (TREE_TYPE (parm)), 1);
3526 if (total_size >= agg_size)
3527 return NULL;
3529 gcc_assert (group_count > 0);
3530 return res;
3533 /* Decide whether parameters with representative accesses given by REPR should
3534 be reduced into components. */
3536 static int
3537 decide_one_param_reduction (struct access *repr)
3539 int total_size, cur_parm_size, agg_size, new_param_count, parm_size_limit;
3540 bool by_ref;
3541 tree parm;
3543 parm = repr->base;
3544 cur_parm_size = tree_low_cst (TYPE_SIZE (TREE_TYPE (parm)), 1);
3545 gcc_assert (cur_parm_size > 0);
3547 if (POINTER_TYPE_P (TREE_TYPE (parm)))
3549 by_ref = true;
3550 agg_size = tree_low_cst (TYPE_SIZE (TREE_TYPE (TREE_TYPE (parm))), 1);
3552 else
3554 by_ref = false;
3555 agg_size = cur_parm_size;
3558 if (dump_file)
3560 struct access *acc;
3561 fprintf (dump_file, "Evaluating PARAM group sizes for ");
3562 print_generic_expr (dump_file, parm, 0);
3563 fprintf (dump_file, " (UID: %u): \n", DECL_UID (parm));
3564 for (acc = repr; acc; acc = acc->next_grp)
3565 dump_access (dump_file, acc, true);
3568 total_size = 0;
3569 new_param_count = 0;
3571 for (; repr; repr = repr->next_grp)
3573 gcc_assert (parm == repr->base);
3574 new_param_count++;
3576 if (!by_ref || (!repr->grp_maybe_modified
3577 && !repr->grp_not_necessarilly_dereferenced))
3578 total_size += repr->size;
3579 else
3580 total_size += cur_parm_size;
3583 gcc_assert (new_param_count > 0);
3585 if (optimize_function_for_size_p (cfun))
3586 parm_size_limit = cur_parm_size;
3587 else
3588 parm_size_limit = (PARAM_VALUE (PARAM_IPA_SRA_PTR_GROWTH_FACTOR)
3589 * cur_parm_size);
3591 if (total_size < agg_size
3592 && total_size <= parm_size_limit)
3594 if (dump_file)
3595 fprintf (dump_file, " ....will be split into %i components\n",
3596 new_param_count);
3597 return new_param_count;
3599 else
3600 return 0;
3603 /* The order of the following enums is important, we need to do extra work for
3604 UNUSED_PARAMS, BY_VAL_ACCESSES and UNMODIF_BY_REF_ACCESSES. */
3605 enum ipa_splicing_result { NO_GOOD_ACCESS, UNUSED_PARAMS, BY_VAL_ACCESSES,
3606 MODIF_BY_REF_ACCESSES, UNMODIF_BY_REF_ACCESSES };
3608 /* Identify representatives of all accesses to all candidate parameters for
3609 IPA-SRA. Return result based on what representatives have been found. */
3611 static enum ipa_splicing_result
3612 splice_all_param_accesses (VEC (access_p, heap) **representatives)
3614 enum ipa_splicing_result result = NO_GOOD_ACCESS;
3615 tree parm;
3616 struct access *repr;
3618 *representatives = VEC_alloc (access_p, heap, func_param_count);
3620 for (parm = DECL_ARGUMENTS (current_function_decl);
3621 parm;
3622 parm = DECL_CHAIN (parm))
3624 if (is_unused_scalar_param (parm))
3626 VEC_quick_push (access_p, *representatives,
3627 &no_accesses_representant);
3628 if (result == NO_GOOD_ACCESS)
3629 result = UNUSED_PARAMS;
3631 else if (POINTER_TYPE_P (TREE_TYPE (parm))
3632 && is_gimple_reg_type (TREE_TYPE (TREE_TYPE (parm)))
3633 && bitmap_bit_p (candidate_bitmap, DECL_UID (parm)))
3635 repr = unmodified_by_ref_scalar_representative (parm);
3636 VEC_quick_push (access_p, *representatives, repr);
3637 if (repr)
3638 result = UNMODIF_BY_REF_ACCESSES;
3640 else if (bitmap_bit_p (candidate_bitmap, DECL_UID (parm)))
3642 bool ro_grp = false;
3643 repr = splice_param_accesses (parm, &ro_grp);
3644 VEC_quick_push (access_p, *representatives, repr);
3646 if (repr && !no_accesses_p (repr))
3648 if (POINTER_TYPE_P (TREE_TYPE (parm)))
3650 if (ro_grp)
3651 result = UNMODIF_BY_REF_ACCESSES;
3652 else if (result < MODIF_BY_REF_ACCESSES)
3653 result = MODIF_BY_REF_ACCESSES;
3655 else if (result < BY_VAL_ACCESSES)
3656 result = BY_VAL_ACCESSES;
3658 else if (no_accesses_p (repr) && (result == NO_GOOD_ACCESS))
3659 result = UNUSED_PARAMS;
3661 else
3662 VEC_quick_push (access_p, *representatives, NULL);
3665 if (result == NO_GOOD_ACCESS)
3667 VEC_free (access_p, heap, *representatives);
3668 *representatives = NULL;
3669 return NO_GOOD_ACCESS;
3672 return result;
3675 /* Return the index of BASE in PARMS. Abort if it is not found. */
3677 static inline int
3678 get_param_index (tree base, VEC(tree, heap) *parms)
3680 int i, len;
3682 len = VEC_length (tree, parms);
3683 for (i = 0; i < len; i++)
3684 if (VEC_index (tree, parms, i) == base)
3685 return i;
3686 gcc_unreachable ();
3689 /* Convert the decisions made at the representative level into compact
3690 parameter adjustments. REPRESENTATIVES are pointers to first
3691 representatives of each param accesses, ADJUSTMENTS_COUNT is the expected
3692 final number of adjustments. */
3694 static ipa_parm_adjustment_vec
3695 turn_representatives_into_adjustments (VEC (access_p, heap) *representatives,
3696 int adjustments_count)
3698 VEC (tree, heap) *parms;
3699 ipa_parm_adjustment_vec adjustments;
3700 tree parm;
3701 int i;
3703 gcc_assert (adjustments_count > 0);
3704 parms = ipa_get_vector_of_formal_parms (current_function_decl);
3705 adjustments = VEC_alloc (ipa_parm_adjustment_t, heap, adjustments_count);
3706 parm = DECL_ARGUMENTS (current_function_decl);
3707 for (i = 0; i < func_param_count; i++, parm = DECL_CHAIN (parm))
3709 struct access *repr = VEC_index (access_p, representatives, i);
3711 if (!repr || no_accesses_p (repr))
3713 struct ipa_parm_adjustment *adj;
3715 adj = VEC_quick_push (ipa_parm_adjustment_t, adjustments, NULL);
3716 memset (adj, 0, sizeof (*adj));
3717 adj->base_index = get_param_index (parm, parms);
3718 adj->base = parm;
3719 if (!repr)
3720 adj->copy_param = 1;
3721 else
3722 adj->remove_param = 1;
3724 else
3726 struct ipa_parm_adjustment *adj;
3727 int index = get_param_index (parm, parms);
3729 for (; repr; repr = repr->next_grp)
3731 adj = VEC_quick_push (ipa_parm_adjustment_t, adjustments, NULL);
3732 memset (adj, 0, sizeof (*adj));
3733 gcc_assert (repr->base == parm);
3734 adj->base_index = index;
3735 adj->base = repr->base;
3736 adj->type = repr->type;
3737 adj->offset = repr->offset;
3738 adj->by_ref = (POINTER_TYPE_P (TREE_TYPE (repr->base))
3739 && (repr->grp_maybe_modified
3740 || repr->grp_not_necessarilly_dereferenced));
3745 VEC_free (tree, heap, parms);
3746 return adjustments;
3749 /* Analyze the collected accesses and produce a plan what to do with the
3750 parameters in the form of adjustments, NULL meaning nothing. */
3752 static ipa_parm_adjustment_vec
3753 analyze_all_param_acesses (void)
3755 enum ipa_splicing_result repr_state;
3756 bool proceed = false;
3757 int i, adjustments_count = 0;
3758 VEC (access_p, heap) *representatives;
3759 ipa_parm_adjustment_vec adjustments;
3761 repr_state = splice_all_param_accesses (&representatives);
3762 if (repr_state == NO_GOOD_ACCESS)
3763 return NULL;
3765 /* If there are any parameters passed by reference which are not modified
3766 directly, we need to check whether they can be modified indirectly. */
3767 if (repr_state == UNMODIF_BY_REF_ACCESSES)
3769 analyze_caller_dereference_legality (representatives);
3770 analyze_modified_params (representatives);
3773 for (i = 0; i < func_param_count; i++)
3775 struct access *repr = VEC_index (access_p, representatives, i);
3777 if (repr && !no_accesses_p (repr))
3779 if (repr->grp_scalar_ptr)
3781 adjustments_count++;
3782 if (repr->grp_not_necessarilly_dereferenced
3783 || repr->grp_maybe_modified)
3784 VEC_replace (access_p, representatives, i, NULL);
3785 else
3787 proceed = true;
3788 sra_stats.scalar_by_ref_to_by_val++;
3791 else
3793 int new_components = decide_one_param_reduction (repr);
3795 if (new_components == 0)
3797 VEC_replace (access_p, representatives, i, NULL);
3798 adjustments_count++;
3800 else
3802 adjustments_count += new_components;
3803 sra_stats.aggregate_params_reduced++;
3804 sra_stats.param_reductions_created += new_components;
3805 proceed = true;
3809 else
3811 if (no_accesses_p (repr))
3813 proceed = true;
3814 sra_stats.deleted_unused_parameters++;
3816 adjustments_count++;
3820 if (!proceed && dump_file)
3821 fprintf (dump_file, "NOT proceeding to change params.\n");
3823 if (proceed)
3824 adjustments = turn_representatives_into_adjustments (representatives,
3825 adjustments_count);
3826 else
3827 adjustments = NULL;
3829 VEC_free (access_p, heap, representatives);
3830 return adjustments;
3833 /* If a parameter replacement identified by ADJ does not yet exist in the form
3834 of declaration, create it and record it, otherwise return the previously
3835 created one. */
3837 static tree
3838 get_replaced_param_substitute (struct ipa_parm_adjustment *adj)
3840 tree repl;
3841 if (!adj->new_ssa_base)
3843 char *pretty_name = make_fancy_name (adj->base);
3845 repl = create_tmp_reg (TREE_TYPE (adj->base), "ISR");
3846 DECL_NAME (repl) = get_identifier (pretty_name);
3847 obstack_free (&name_obstack, pretty_name);
3849 get_var_ann (repl);
3850 add_referenced_var (repl);
3851 adj->new_ssa_base = repl;
3853 else
3854 repl = adj->new_ssa_base;
3855 return repl;
3858 /* Find the first adjustment for a particular parameter BASE in a vector of
3859 ADJUSTMENTS which is not a copy_param. Return NULL if there is no such
3860 adjustment. */
3862 static struct ipa_parm_adjustment *
3863 get_adjustment_for_base (ipa_parm_adjustment_vec adjustments, tree base)
3865 int i, len;
3867 len = VEC_length (ipa_parm_adjustment_t, adjustments);
3868 for (i = 0; i < len; i++)
3870 struct ipa_parm_adjustment *adj;
3872 adj = VEC_index (ipa_parm_adjustment_t, adjustments, i);
3873 if (!adj->copy_param && adj->base == base)
3874 return adj;
3877 return NULL;
3880 /* If the statement STMT defines an SSA_NAME of a parameter which is to be
3881 removed because its value is not used, replace the SSA_NAME with a one
3882 relating to a created VAR_DECL together all of its uses and return true.
3883 ADJUSTMENTS is a pointer to an adjustments vector. */
3885 static bool
3886 replace_removed_params_ssa_names (gimple stmt,
3887 ipa_parm_adjustment_vec adjustments)
3889 struct ipa_parm_adjustment *adj;
3890 tree lhs, decl, repl, name;
3892 if (gimple_code (stmt) == GIMPLE_PHI)
3893 lhs = gimple_phi_result (stmt);
3894 else if (is_gimple_assign (stmt))
3895 lhs = gimple_assign_lhs (stmt);
3896 else if (is_gimple_call (stmt))
3897 lhs = gimple_call_lhs (stmt);
3898 else
3899 gcc_unreachable ();
3901 if (TREE_CODE (lhs) != SSA_NAME)
3902 return false;
3903 decl = SSA_NAME_VAR (lhs);
3904 if (TREE_CODE (decl) != PARM_DECL)
3905 return false;
3907 adj = get_adjustment_for_base (adjustments, decl);
3908 if (!adj)
3909 return false;
3911 repl = get_replaced_param_substitute (adj);
3912 name = make_ssa_name (repl, stmt);
3914 if (dump_file)
3916 fprintf (dump_file, "replacing an SSA name of a removed param ");
3917 print_generic_expr (dump_file, lhs, 0);
3918 fprintf (dump_file, " with ");
3919 print_generic_expr (dump_file, name, 0);
3920 fprintf (dump_file, "\n");
3923 if (is_gimple_assign (stmt))
3924 gimple_assign_set_lhs (stmt, name);
3925 else if (is_gimple_call (stmt))
3926 gimple_call_set_lhs (stmt, name);
3927 else
3928 gimple_phi_set_result (stmt, name);
3930 replace_uses_by (lhs, name);
3931 release_ssa_name (lhs);
3932 return true;
3935 /* If the expression *EXPR should be replaced by a reduction of a parameter, do
3936 so. ADJUSTMENTS is a pointer to a vector of adjustments. CONVERT
3937 specifies whether the function should care about type incompatibility the
3938 current and new expressions. If it is false, the function will leave
3939 incompatibility issues to the caller. Return true iff the expression
3940 was modified. */
3942 static bool
3943 sra_ipa_modify_expr (tree *expr, bool convert,
3944 ipa_parm_adjustment_vec adjustments)
3946 int i, len;
3947 struct ipa_parm_adjustment *adj, *cand = NULL;
3948 HOST_WIDE_INT offset, size, max_size;
3949 tree base, src;
3951 len = VEC_length (ipa_parm_adjustment_t, adjustments);
3953 if (TREE_CODE (*expr) == BIT_FIELD_REF
3954 || TREE_CODE (*expr) == IMAGPART_EXPR
3955 || TREE_CODE (*expr) == REALPART_EXPR)
3957 expr = &TREE_OPERAND (*expr, 0);
3958 convert = true;
3961 base = get_ref_base_and_extent (*expr, &offset, &size, &max_size);
3962 if (!base || size == -1 || max_size == -1)
3963 return false;
3965 if (TREE_CODE (base) == MEM_REF)
3967 offset += mem_ref_offset (base).low * BITS_PER_UNIT;
3968 base = TREE_OPERAND (base, 0);
3971 base = get_ssa_base_param (base);
3972 if (!base || TREE_CODE (base) != PARM_DECL)
3973 return false;
3975 for (i = 0; i < len; i++)
3977 adj = VEC_index (ipa_parm_adjustment_t, adjustments, i);
3979 if (adj->base == base &&
3980 (adj->offset == offset || adj->remove_param))
3982 cand = adj;
3983 break;
3986 if (!cand || cand->copy_param || cand->remove_param)
3987 return false;
3989 if (cand->by_ref)
3990 src = build_simple_mem_ref (cand->reduction);
3991 else
3992 src = cand->reduction;
3994 if (dump_file && (dump_flags & TDF_DETAILS))
3996 fprintf (dump_file, "About to replace expr ");
3997 print_generic_expr (dump_file, *expr, 0);
3998 fprintf (dump_file, " with ");
3999 print_generic_expr (dump_file, src, 0);
4000 fprintf (dump_file, "\n");
4003 if (convert && !useless_type_conversion_p (TREE_TYPE (*expr), cand->type))
4005 tree vce = build1 (VIEW_CONVERT_EXPR, TREE_TYPE (*expr), src);
4006 *expr = vce;
4008 else
4009 *expr = src;
4010 return true;
4013 /* If the statement pointed to by STMT_PTR contains any expressions that need
4014 to replaced with a different one as noted by ADJUSTMENTS, do so. Handle any
4015 potential type incompatibilities (GSI is used to accommodate conversion
4016 statements and must point to the statement). Return true iff the statement
4017 was modified. */
4019 static bool
4020 sra_ipa_modify_assign (gimple *stmt_ptr, gimple_stmt_iterator *gsi,
4021 ipa_parm_adjustment_vec adjustments)
4023 gimple stmt = *stmt_ptr;
4024 tree *lhs_p, *rhs_p;
4025 bool any;
4027 if (!gimple_assign_single_p (stmt))
4028 return false;
4030 rhs_p = gimple_assign_rhs1_ptr (stmt);
4031 lhs_p = gimple_assign_lhs_ptr (stmt);
4033 any = sra_ipa_modify_expr (rhs_p, false, adjustments);
4034 any |= sra_ipa_modify_expr (lhs_p, false, adjustments);
4035 if (any)
4037 tree new_rhs = NULL_TREE;
4039 if (!useless_type_conversion_p (TREE_TYPE (*lhs_p), TREE_TYPE (*rhs_p)))
4041 if (TREE_CODE (*rhs_p) == CONSTRUCTOR)
4043 /* V_C_Es of constructors can cause trouble (PR 42714). */
4044 if (is_gimple_reg_type (TREE_TYPE (*lhs_p)))
4045 *rhs_p = fold_convert (TREE_TYPE (*lhs_p), integer_zero_node);
4046 else
4047 *rhs_p = build_constructor (TREE_TYPE (*lhs_p), 0);
4049 else
4050 new_rhs = fold_build1_loc (gimple_location (stmt),
4051 VIEW_CONVERT_EXPR, TREE_TYPE (*lhs_p),
4052 *rhs_p);
4054 else if (REFERENCE_CLASS_P (*rhs_p)
4055 && is_gimple_reg_type (TREE_TYPE (*lhs_p))
4056 && !is_gimple_reg (*lhs_p))
4057 /* This can happen when an assignment in between two single field
4058 structures is turned into an assignment in between two pointers to
4059 scalars (PR 42237). */
4060 new_rhs = *rhs_p;
4062 if (new_rhs)
4064 tree tmp = force_gimple_operand_gsi (gsi, new_rhs, true, NULL_TREE,
4065 true, GSI_SAME_STMT);
4067 gimple_assign_set_rhs_from_tree (gsi, tmp);
4070 return true;
4073 return false;
4076 /* Traverse the function body and all modifications as described in
4077 ADJUSTMENTS. Return true iff the CFG has been changed. */
4079 static bool
4080 ipa_sra_modify_function_body (ipa_parm_adjustment_vec adjustments)
4082 bool cfg_changed = false;
4083 basic_block bb;
4085 FOR_EACH_BB (bb)
4087 gimple_stmt_iterator gsi;
4089 for (gsi = gsi_start_phis (bb); !gsi_end_p (gsi); gsi_next (&gsi))
4090 replace_removed_params_ssa_names (gsi_stmt (gsi), adjustments);
4092 gsi = gsi_start_bb (bb);
4093 while (!gsi_end_p (gsi))
4095 gimple stmt = gsi_stmt (gsi);
4096 bool modified = false;
4097 tree *t;
4098 unsigned i;
4100 switch (gimple_code (stmt))
4102 case GIMPLE_RETURN:
4103 t = gimple_return_retval_ptr (stmt);
4104 if (*t != NULL_TREE)
4105 modified |= sra_ipa_modify_expr (t, true, adjustments);
4106 break;
4108 case GIMPLE_ASSIGN:
4109 modified |= sra_ipa_modify_assign (&stmt, &gsi, adjustments);
4110 modified |= replace_removed_params_ssa_names (stmt, adjustments);
4111 break;
4113 case GIMPLE_CALL:
4114 /* Operands must be processed before the lhs. */
4115 for (i = 0; i < gimple_call_num_args (stmt); i++)
4117 t = gimple_call_arg_ptr (stmt, i);
4118 modified |= sra_ipa_modify_expr (t, true, adjustments);
4121 if (gimple_call_lhs (stmt))
4123 t = gimple_call_lhs_ptr (stmt);
4124 modified |= sra_ipa_modify_expr (t, false, adjustments);
4125 modified |= replace_removed_params_ssa_names (stmt,
4126 adjustments);
4128 break;
4130 case GIMPLE_ASM:
4131 for (i = 0; i < gimple_asm_ninputs (stmt); i++)
4133 t = &TREE_VALUE (gimple_asm_input_op (stmt, i));
4134 modified |= sra_ipa_modify_expr (t, true, adjustments);
4136 for (i = 0; i < gimple_asm_noutputs (stmt); i++)
4138 t = &TREE_VALUE (gimple_asm_output_op (stmt, i));
4139 modified |= sra_ipa_modify_expr (t, false, adjustments);
4141 break;
4143 default:
4144 break;
4147 if (modified)
4149 update_stmt (stmt);
4150 if (maybe_clean_eh_stmt (stmt)
4151 && gimple_purge_dead_eh_edges (gimple_bb (stmt)))
4152 cfg_changed = true;
4154 gsi_next (&gsi);
4158 return cfg_changed;
4161 /* Call gimple_debug_bind_reset_value on all debug statements describing
4162 gimple register parameters that are being removed or replaced. */
4164 static void
4165 sra_ipa_reset_debug_stmts (ipa_parm_adjustment_vec adjustments)
4167 int i, len;
4169 len = VEC_length (ipa_parm_adjustment_t, adjustments);
4170 for (i = 0; i < len; i++)
4172 struct ipa_parm_adjustment *adj;
4173 imm_use_iterator ui;
4174 gimple stmt;
4175 tree name;
4177 adj = VEC_index (ipa_parm_adjustment_t, adjustments, i);
4178 if (adj->copy_param || !is_gimple_reg (adj->base))
4179 continue;
4180 name = gimple_default_def (cfun, adj->base);
4181 if (!name)
4182 continue;
4183 FOR_EACH_IMM_USE_STMT (stmt, ui, name)
4185 /* All other users must have been removed by
4186 ipa_sra_modify_function_body. */
4187 gcc_assert (is_gimple_debug (stmt));
4188 gimple_debug_bind_reset_value (stmt);
4189 update_stmt (stmt);
4194 /* Return true iff all callers have at least as many actual arguments as there
4195 are formal parameters in the current function. */
4197 static bool
4198 all_callers_have_enough_arguments_p (struct cgraph_node *node)
4200 struct cgraph_edge *cs;
4201 for (cs = node->callers; cs; cs = cs->next_caller)
4202 if (!callsite_has_enough_arguments_p (cs->call_stmt))
4203 return false;
4205 return true;
4209 /* Convert all callers of NODE to pass parameters as given in ADJUSTMENTS. */
4211 static void
4212 convert_callers (struct cgraph_node *node, tree old_decl,
4213 ipa_parm_adjustment_vec adjustments)
4215 tree old_cur_fndecl = current_function_decl;
4216 struct cgraph_edge *cs;
4217 basic_block this_block;
4218 bitmap recomputed_callers = BITMAP_ALLOC (NULL);
4220 for (cs = node->callers; cs; cs = cs->next_caller)
4222 current_function_decl = cs->caller->decl;
4223 push_cfun (DECL_STRUCT_FUNCTION (cs->caller->decl));
4225 if (dump_file)
4226 fprintf (dump_file, "Adjusting call (%i -> %i) %s -> %s\n",
4227 cs->caller->uid, cs->callee->uid,
4228 cgraph_node_name (cs->caller),
4229 cgraph_node_name (cs->callee));
4231 ipa_modify_call_arguments (cs, cs->call_stmt, adjustments);
4233 pop_cfun ();
4236 for (cs = node->callers; cs; cs = cs->next_caller)
4237 if (bitmap_set_bit (recomputed_callers, cs->caller->uid))
4238 compute_inline_parameters (cs->caller);
4239 BITMAP_FREE (recomputed_callers);
4241 current_function_decl = old_cur_fndecl;
4243 if (!encountered_recursive_call)
4244 return;
4246 FOR_EACH_BB (this_block)
4248 gimple_stmt_iterator gsi;
4250 for (gsi = gsi_start_bb (this_block); !gsi_end_p (gsi); gsi_next (&gsi))
4252 gimple stmt = gsi_stmt (gsi);
4253 tree call_fndecl;
4254 if (gimple_code (stmt) != GIMPLE_CALL)
4255 continue;
4256 call_fndecl = gimple_call_fndecl (stmt);
4257 if (call_fndecl == old_decl)
4259 if (dump_file)
4260 fprintf (dump_file, "Adjusting recursive call");
4261 gimple_call_set_fndecl (stmt, node->decl);
4262 ipa_modify_call_arguments (NULL, stmt, adjustments);
4267 return;
4270 /* Perform all the modification required in IPA-SRA for NODE to have parameters
4271 as given in ADJUSTMENTS. Return true iff the CFG has been changed. */
4273 static bool
4274 modify_function (struct cgraph_node *node, ipa_parm_adjustment_vec adjustments)
4276 struct cgraph_node *new_node;
4277 struct cgraph_edge *cs;
4278 bool cfg_changed;
4279 VEC (cgraph_edge_p, heap) * redirect_callers;
4280 int node_callers;
4282 node_callers = 0;
4283 for (cs = node->callers; cs != NULL; cs = cs->next_caller)
4284 node_callers++;
4285 redirect_callers = VEC_alloc (cgraph_edge_p, heap, node_callers);
4286 for (cs = node->callers; cs != NULL; cs = cs->next_caller)
4287 VEC_quick_push (cgraph_edge_p, redirect_callers, cs);
4289 rebuild_cgraph_edges ();
4290 pop_cfun ();
4291 current_function_decl = NULL_TREE;
4293 new_node = cgraph_function_versioning (node, redirect_callers, NULL, NULL,
4294 NULL, NULL, "isra");
4295 current_function_decl = new_node->decl;
4296 push_cfun (DECL_STRUCT_FUNCTION (new_node->decl));
4298 ipa_modify_formal_parameters (current_function_decl, adjustments, "ISRA");
4299 cfg_changed = ipa_sra_modify_function_body (adjustments);
4300 sra_ipa_reset_debug_stmts (adjustments);
4301 convert_callers (new_node, node->decl, adjustments);
4302 cgraph_make_node_local (new_node);
4303 return cfg_changed;
4306 /* Return false the function is apparently unsuitable for IPA-SRA based on it's
4307 attributes, return true otherwise. NODE is the cgraph node of the current
4308 function. */
4310 static bool
4311 ipa_sra_preliminary_function_checks (struct cgraph_node *node)
4313 if (!cgraph_node_can_be_local_p (node))
4315 if (dump_file)
4316 fprintf (dump_file, "Function not local to this compilation unit.\n");
4317 return false;
4320 if (!tree_versionable_function_p (node->decl))
4322 if (dump_file)
4323 fprintf (dump_file, "Function is not versionable.\n");
4324 return false;
4327 if (DECL_VIRTUAL_P (current_function_decl))
4329 if (dump_file)
4330 fprintf (dump_file, "Function is a virtual method.\n");
4331 return false;
4334 if ((DECL_COMDAT (node->decl) || DECL_EXTERNAL (node->decl))
4335 && node->global.size >= MAX_INLINE_INSNS_AUTO)
4337 if (dump_file)
4338 fprintf (dump_file, "Function too big to be made truly local.\n");
4339 return false;
4342 if (!node->callers)
4344 if (dump_file)
4345 fprintf (dump_file,
4346 "Function has no callers in this compilation unit.\n");
4347 return false;
4350 if (cfun->stdarg)
4352 if (dump_file)
4353 fprintf (dump_file, "Function uses stdarg. \n");
4354 return false;
4357 if (TYPE_ATTRIBUTES (TREE_TYPE (node->decl)))
4358 return false;
4360 return true;
4363 /* Perform early interprocedural SRA. */
4365 static unsigned int
4366 ipa_early_sra (void)
4368 struct cgraph_node *node = cgraph_node (current_function_decl);
4369 ipa_parm_adjustment_vec adjustments;
4370 int ret = 0;
4372 if (!ipa_sra_preliminary_function_checks (node))
4373 return 0;
4375 sra_initialize ();
4376 sra_mode = SRA_MODE_EARLY_IPA;
4378 if (!find_param_candidates ())
4380 if (dump_file)
4381 fprintf (dump_file, "Function has no IPA-SRA candidates.\n");
4382 goto simple_out;
4385 if (!all_callers_have_enough_arguments_p (node))
4387 if (dump_file)
4388 fprintf (dump_file, "There are callers with insufficient number of "
4389 "arguments.\n");
4390 goto simple_out;
4393 bb_dereferences = XCNEWVEC (HOST_WIDE_INT,
4394 func_param_count
4395 * last_basic_block_for_function (cfun));
4396 final_bbs = BITMAP_ALLOC (NULL);
4398 scan_function ();
4399 if (encountered_apply_args)
4401 if (dump_file)
4402 fprintf (dump_file, "Function calls __builtin_apply_args().\n");
4403 goto out;
4406 if (encountered_unchangable_recursive_call)
4408 if (dump_file)
4409 fprintf (dump_file, "Function calls itself with insufficient "
4410 "number of arguments.\n");
4411 goto out;
4414 adjustments = analyze_all_param_acesses ();
4415 if (!adjustments)
4416 goto out;
4417 if (dump_file)
4418 ipa_dump_param_adjustments (dump_file, adjustments, current_function_decl);
4420 if (modify_function (node, adjustments))
4421 ret = TODO_update_ssa | TODO_cleanup_cfg;
4422 else
4423 ret = TODO_update_ssa;
4424 VEC_free (ipa_parm_adjustment_t, heap, adjustments);
4426 statistics_counter_event (cfun, "Unused parameters deleted",
4427 sra_stats.deleted_unused_parameters);
4428 statistics_counter_event (cfun, "Scalar parameters converted to by-value",
4429 sra_stats.scalar_by_ref_to_by_val);
4430 statistics_counter_event (cfun, "Aggregate parameters broken up",
4431 sra_stats.aggregate_params_reduced);
4432 statistics_counter_event (cfun, "Aggregate parameter components created",
4433 sra_stats.param_reductions_created);
4435 out:
4436 BITMAP_FREE (final_bbs);
4437 free (bb_dereferences);
4438 simple_out:
4439 sra_deinitialize ();
4440 return ret;
4443 /* Return if early ipa sra shall be performed. */
4444 static bool
4445 ipa_early_sra_gate (void)
4447 return flag_ipa_sra && dbg_cnt (eipa_sra);
4450 struct gimple_opt_pass pass_early_ipa_sra =
4453 GIMPLE_PASS,
4454 "eipa_sra", /* name */
4455 ipa_early_sra_gate, /* gate */
4456 ipa_early_sra, /* execute */
4457 NULL, /* sub */
4458 NULL, /* next */
4459 0, /* static_pass_number */
4460 TV_IPA_SRA, /* tv_id */
4461 0, /* properties_required */
4462 0, /* properties_provided */
4463 0, /* properties_destroyed */
4464 0, /* todo_flags_start */
4465 TODO_dump_func | TODO_dump_cgraph /* todo_flags_finish */