PR other/18555
[official-gcc.git] / gcc / caller-save.c
blob9ca8592bf34c465eeba22925bba875eaa7715bfb
1 /* Save and restore call-clobbered registers which are live across a call.
2 Copyright (C) 1989, 1992, 1994, 1995, 1997, 1998, 1999, 2000,
3 2001, 2002, 2003, 2004, 2005, 2006, 2007, 2008, 2009, 2010
4 Free Software Foundation, Inc.
6 This file is part of GCC.
8 GCC is free software; you can redistribute it and/or modify it under
9 the terms of the GNU General Public License as published by the Free
10 Software Foundation; either version 3, or (at your option) any later
11 version.
13 GCC is distributed in the hope that it will be useful, but WITHOUT ANY
14 WARRANTY; without even the implied warranty of MERCHANTABILITY or
15 FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License
16 for more details.
18 You should have received a copy of the GNU General Public License
19 along with GCC; see the file COPYING3. If not see
20 <http://www.gnu.org/licenses/>. */
22 #include "config.h"
23 #include "system.h"
24 #include "coretypes.h"
25 #include "tm.h"
26 #include "rtl.h"
27 #include "regs.h"
28 #include "insn-config.h"
29 #include "flags.h"
30 #include "hard-reg-set.h"
31 #include "recog.h"
32 #include "basic-block.h"
33 #include "df.h"
34 #include "reload.h"
35 #include "function.h"
36 #include "expr.h"
37 #include "diagnostic-core.h"
38 #include "toplev.h"
39 #include "tm_p.h"
40 #include "addresses.h"
41 #include "output.h"
42 #include "ggc.h"
44 #define MOVE_MAX_WORDS (MOVE_MAX / UNITS_PER_WORD)
46 #define regno_save_mode \
47 (this_target_reload->x_regno_save_mode)
48 #define cached_reg_save_code \
49 (this_target_reload->x_cached_reg_save_code)
50 #define cached_reg_restore_code \
51 (this_target_reload->x_cached_reg_restore_code)
53 /* For each hard register, a place on the stack where it can be saved,
54 if needed. */
56 static rtx
57 regno_save_mem[FIRST_PSEUDO_REGISTER][MAX_MOVE_MAX / MIN_UNITS_PER_WORD + 1];
59 /* The number of elements in the subsequent array. */
60 static int save_slots_num;
62 /* Allocated slots so far. */
63 static rtx save_slots[FIRST_PSEUDO_REGISTER];
65 /* Set of hard regs currently residing in save area (during insn scan). */
67 static HARD_REG_SET hard_regs_saved;
69 /* Number of registers currently in hard_regs_saved. */
71 static int n_regs_saved;
73 /* Computed by mark_referenced_regs, all regs referenced in a given
74 insn. */
75 static HARD_REG_SET referenced_regs;
78 typedef void refmarker_fn (rtx *loc, enum machine_mode mode, int hardregno,
79 void *mark_arg);
81 static int reg_save_code (int, enum machine_mode);
82 static int reg_restore_code (int, enum machine_mode);
84 struct saved_hard_reg;
85 static void initiate_saved_hard_regs (void);
86 static struct saved_hard_reg *new_saved_hard_reg (int, int);
87 static void finish_saved_hard_regs (void);
88 static int saved_hard_reg_compare_func (const void *, const void *);
90 static void mark_set_regs (rtx, const_rtx, void *);
91 static void mark_referenced_regs (rtx *, refmarker_fn *mark, void *mark_arg);
92 static refmarker_fn mark_reg_as_referenced;
93 static refmarker_fn replace_reg_with_saved_mem;
94 static int insert_save (struct insn_chain *, int, int, HARD_REG_SET *,
95 enum machine_mode *);
96 static int insert_restore (struct insn_chain *, int, int, int,
97 enum machine_mode *);
98 static struct insn_chain *insert_one_insn (struct insn_chain *, int, int,
99 rtx);
100 static void add_stored_regs (rtx, const_rtx, void *);
104 static GTY(()) rtx savepat;
105 static GTY(()) rtx restpat;
106 static GTY(()) rtx test_reg;
107 static GTY(()) rtx test_mem;
108 static GTY(()) rtx saveinsn;
109 static GTY(()) rtx restinsn;
111 /* Return the INSN_CODE used to save register REG in mode MODE. */
112 static int
113 reg_save_code (int reg, enum machine_mode mode)
115 bool ok;
116 if (cached_reg_save_code[reg][mode])
117 return cached_reg_save_code[reg][mode];
118 if (!HARD_REGNO_MODE_OK (reg, mode))
120 cached_reg_save_code[reg][mode] = -1;
121 cached_reg_restore_code[reg][mode] = -1;
122 return -1;
125 /* Update the register number and modes of the register
126 and memory operand. */
127 SET_REGNO_RAW (test_reg, reg);
128 PUT_MODE (test_reg, mode);
129 PUT_MODE (test_mem, mode);
131 /* Force re-recognition of the modified insns. */
132 INSN_CODE (saveinsn) = -1;
133 INSN_CODE (restinsn) = -1;
135 cached_reg_save_code[reg][mode] = recog_memoized (saveinsn);
136 cached_reg_restore_code[reg][mode] = recog_memoized (restinsn);
138 /* Now extract both insns and see if we can meet their
139 constraints. */
140 ok = (cached_reg_save_code[reg][mode] != -1
141 && cached_reg_restore_code[reg][mode] != -1);
142 if (ok)
144 extract_insn (saveinsn);
145 ok = constrain_operands (1);
146 extract_insn (restinsn);
147 ok &= constrain_operands (1);
150 if (! ok)
152 cached_reg_save_code[reg][mode] = -1;
153 cached_reg_restore_code[reg][mode] = -1;
155 gcc_assert (cached_reg_save_code[reg][mode]);
156 return cached_reg_save_code[reg][mode];
159 /* Return the INSN_CODE used to restore register REG in mode MODE. */
160 static int
161 reg_restore_code (int reg, enum machine_mode mode)
163 if (cached_reg_restore_code[reg][mode])
164 return cached_reg_restore_code[reg][mode];
165 /* Populate our cache. */
166 reg_save_code (reg, mode);
167 return cached_reg_restore_code[reg][mode];
170 /* Initialize for caller-save.
172 Look at all the hard registers that are used by a call and for which
173 reginfo.c has not already excluded from being used across a call.
175 Ensure that we can find a mode to save the register and that there is a
176 simple insn to save and restore the register. This latter check avoids
177 problems that would occur if we tried to save the MQ register of some
178 machines directly into memory. */
180 void
181 init_caller_save (void)
183 rtx addr_reg;
184 int offset;
185 rtx address;
186 int i, j;
188 if (caller_save_initialized_p)
189 return;
191 caller_save_initialized_p = true;
193 CLEAR_HARD_REG_SET (no_caller_save_reg_set);
194 /* First find all the registers that we need to deal with and all
195 the modes that they can have. If we can't find a mode to use,
196 we can't have the register live over calls. */
198 for (i = 0; i < FIRST_PSEUDO_REGISTER; i++)
200 if (call_used_regs[i]
201 && !TEST_HARD_REG_BIT (call_fixed_reg_set, i))
203 for (j = 1; j <= MOVE_MAX_WORDS; j++)
205 regno_save_mode[i][j] = HARD_REGNO_CALLER_SAVE_MODE (i, j,
206 VOIDmode);
207 if (regno_save_mode[i][j] == VOIDmode && j == 1)
209 SET_HARD_REG_BIT (call_fixed_reg_set, i);
213 else
214 regno_save_mode[i][1] = VOIDmode;
217 /* The following code tries to approximate the conditions under which
218 we can easily save and restore a register without scratch registers or
219 other complexities. It will usually work, except under conditions where
220 the validity of an insn operand is dependent on the address offset.
221 No such cases are currently known.
223 We first find a typical offset from some BASE_REG_CLASS register.
224 This address is chosen by finding the first register in the class
225 and by finding the smallest power of two that is a valid offset from
226 that register in every mode we will use to save registers. */
228 for (i = 0; i < FIRST_PSEUDO_REGISTER; i++)
229 if (TEST_HARD_REG_BIT
230 (reg_class_contents
231 [(int) base_reg_class (regno_save_mode[i][1], PLUS, CONST_INT)], i))
232 break;
234 gcc_assert (i < FIRST_PSEUDO_REGISTER);
236 addr_reg = gen_rtx_REG (Pmode, i);
238 for (offset = 1 << (HOST_BITS_PER_INT / 2); offset; offset >>= 1)
240 address = gen_rtx_PLUS (Pmode, addr_reg, GEN_INT (offset));
242 for (i = 0; i < FIRST_PSEUDO_REGISTER; i++)
243 if (regno_save_mode[i][1] != VOIDmode
244 && ! strict_memory_address_p (regno_save_mode[i][1], address))
245 break;
247 if (i == FIRST_PSEUDO_REGISTER)
248 break;
251 /* If we didn't find a valid address, we must use register indirect. */
252 if (offset == 0)
253 address = addr_reg;
255 /* Next we try to form an insn to save and restore the register. We
256 see if such an insn is recognized and meets its constraints.
258 To avoid lots of unnecessary RTL allocation, we construct all the RTL
259 once, then modify the memory and register operands in-place. */
261 test_reg = gen_rtx_REG (VOIDmode, 0);
262 test_mem = gen_rtx_MEM (VOIDmode, address);
263 savepat = gen_rtx_SET (VOIDmode, test_mem, test_reg);
264 restpat = gen_rtx_SET (VOIDmode, test_reg, test_mem);
266 saveinsn = gen_rtx_INSN (VOIDmode, 0, 0, 0, 0, savepat, 0, -1, 0);
267 restinsn = gen_rtx_INSN (VOIDmode, 0, 0, 0, 0, restpat, 0, -1, 0);
269 for (i = 0; i < FIRST_PSEUDO_REGISTER; i++)
270 for (j = 1; j <= MOVE_MAX_WORDS; j++)
271 if (reg_save_code (i,regno_save_mode[i][j]) == -1)
273 regno_save_mode[i][j] = VOIDmode;
274 if (j == 1)
276 SET_HARD_REG_BIT (call_fixed_reg_set, i);
277 if (call_used_regs[i])
278 SET_HARD_REG_BIT (no_caller_save_reg_set, i);
285 /* Initialize save areas by showing that we haven't allocated any yet. */
287 void
288 init_save_areas (void)
290 int i, j;
292 for (i = 0; i < FIRST_PSEUDO_REGISTER; i++)
293 for (j = 1; j <= MOVE_MAX_WORDS; j++)
294 regno_save_mem[i][j] = 0;
295 save_slots_num = 0;
299 /* The structure represents a hard register which should be saved
300 through the call. It is used when the integrated register
301 allocator (IRA) is used and sharing save slots is on. */
302 struct saved_hard_reg
304 /* Order number starting with 0. */
305 int num;
306 /* The hard regno. */
307 int hard_regno;
308 /* Execution frequency of all calls through which given hard
309 register should be saved. */
310 int call_freq;
311 /* Stack slot reserved to save the hard register through calls. */
312 rtx slot;
313 /* True if it is first hard register in the chain of hard registers
314 sharing the same stack slot. */
315 int first_p;
316 /* Order number of the next hard register structure with the same
317 slot in the chain. -1 represents end of the chain. */
318 int next;
321 /* Map: hard register number to the corresponding structure. */
322 static struct saved_hard_reg *hard_reg_map[FIRST_PSEUDO_REGISTER];
324 /* The number of all structures representing hard registers should be
325 saved, in order words, the number of used elements in the following
326 array. */
327 static int saved_regs_num;
329 /* Pointers to all the structures. Index is the order number of the
330 corresponding structure. */
331 static struct saved_hard_reg *all_saved_regs[FIRST_PSEUDO_REGISTER];
333 /* First called function for work with saved hard registers. */
334 static void
335 initiate_saved_hard_regs (void)
337 int i;
339 saved_regs_num = 0;
340 for (i = 0; i < FIRST_PSEUDO_REGISTER; i++)
341 hard_reg_map[i] = NULL;
344 /* Allocate and return new saved hard register with given REGNO and
345 CALL_FREQ. */
346 static struct saved_hard_reg *
347 new_saved_hard_reg (int regno, int call_freq)
349 struct saved_hard_reg *saved_reg;
351 saved_reg
352 = (struct saved_hard_reg *) xmalloc (sizeof (struct saved_hard_reg));
353 hard_reg_map[regno] = all_saved_regs[saved_regs_num] = saved_reg;
354 saved_reg->num = saved_regs_num++;
355 saved_reg->hard_regno = regno;
356 saved_reg->call_freq = call_freq;
357 saved_reg->first_p = FALSE;
358 saved_reg->next = -1;
359 return saved_reg;
362 /* Free memory allocated for the saved hard registers. */
363 static void
364 finish_saved_hard_regs (void)
366 int i;
368 for (i = 0; i < saved_regs_num; i++)
369 free (all_saved_regs[i]);
372 /* The function is used to sort the saved hard register structures
373 according their frequency. */
374 static int
375 saved_hard_reg_compare_func (const void *v1p, const void *v2p)
377 const struct saved_hard_reg *p1 = *(struct saved_hard_reg * const *) v1p;
378 const struct saved_hard_reg *p2 = *(struct saved_hard_reg * const *) v2p;
380 if (flag_omit_frame_pointer)
382 if (p1->call_freq - p2->call_freq != 0)
383 return p1->call_freq - p2->call_freq;
385 else if (p2->call_freq - p1->call_freq != 0)
386 return p2->call_freq - p1->call_freq;
388 return p1->num - p2->num;
391 /* Allocate save areas for any hard registers that might need saving.
392 We take a conservative approach here and look for call-clobbered hard
393 registers that are assigned to pseudos that cross calls. This may
394 overestimate slightly (especially if some of these registers are later
395 used as spill registers), but it should not be significant.
397 For IRA we use priority coloring to decrease stack slots needed for
398 saving hard registers through calls. We build conflicts for them
399 to do coloring.
401 Future work:
403 In the fallback case we should iterate backwards across all possible
404 modes for the save, choosing the largest available one instead of
405 falling back to the smallest mode immediately. (eg TF -> DF -> SF).
407 We do not try to use "move multiple" instructions that exist
408 on some machines (such as the 68k moveml). It could be a win to try
409 and use them when possible. The hard part is doing it in a way that is
410 machine independent since they might be saving non-consecutive
411 registers. (imagine caller-saving d0,d1,a0,a1 on the 68k) */
413 void
414 setup_save_areas (void)
416 int i, j, k;
417 unsigned int r;
418 HARD_REG_SET hard_regs_used;
420 /* Allocate space in the save area for the largest multi-register
421 pseudos first, then work backwards to single register
422 pseudos. */
424 /* Find and record all call-used hard-registers in this function. */
425 CLEAR_HARD_REG_SET (hard_regs_used);
426 for (i = FIRST_PSEUDO_REGISTER; i < max_regno; i++)
427 if (reg_renumber[i] >= 0 && REG_N_CALLS_CROSSED (i) > 0)
429 unsigned int regno = reg_renumber[i];
430 unsigned int endregno
431 = end_hard_regno (GET_MODE (regno_reg_rtx[i]), regno);
432 for (r = regno; r < endregno; r++)
433 if (call_used_regs[r])
434 SET_HARD_REG_BIT (hard_regs_used, r);
437 if (optimize && flag_ira_share_save_slots)
439 rtx insn, slot;
440 struct insn_chain *chain, *next;
441 char *saved_reg_conflicts;
442 unsigned int regno;
443 int next_k, freq;
444 struct saved_hard_reg *saved_reg, *saved_reg2, *saved_reg3;
445 int call_saved_regs_num;
446 struct saved_hard_reg *call_saved_regs[FIRST_PSEUDO_REGISTER];
447 HARD_REG_SET hard_regs_to_save, used_regs, this_insn_sets;
448 reg_set_iterator rsi;
449 int best_slot_num;
450 int prev_save_slots_num;
451 rtx prev_save_slots[FIRST_PSEUDO_REGISTER];
453 initiate_saved_hard_regs ();
454 /* Create hard reg saved regs. */
455 for (chain = reload_insn_chain; chain != 0; chain = next)
457 insn = chain->insn;
458 next = chain->next;
459 if (!CALL_P (insn)
460 || find_reg_note (insn, REG_NORETURN, NULL))
461 continue;
462 freq = REG_FREQ_FROM_BB (BLOCK_FOR_INSN (insn));
463 REG_SET_TO_HARD_REG_SET (hard_regs_to_save,
464 &chain->live_throughout);
465 COPY_HARD_REG_SET (used_regs, call_used_reg_set);
467 /* Record all registers set in this call insn. These don't
468 need to be saved. N.B. the call insn might set a subreg
469 of a multi-hard-reg pseudo; then the pseudo is considered
470 live during the call, but the subreg that is set
471 isn't. */
472 CLEAR_HARD_REG_SET (this_insn_sets);
473 note_stores (PATTERN (insn), mark_set_regs, &this_insn_sets);
474 /* Sibcalls are considered to set the return value. */
475 if (SIBLING_CALL_P (insn) && crtl->return_rtx)
476 mark_set_regs (crtl->return_rtx, NULL_RTX, &this_insn_sets);
478 AND_COMPL_HARD_REG_SET (used_regs, call_fixed_reg_set);
479 AND_COMPL_HARD_REG_SET (used_regs, this_insn_sets);
480 AND_HARD_REG_SET (hard_regs_to_save, used_regs);
481 for (regno = 0; regno < FIRST_PSEUDO_REGISTER; regno++)
482 if (TEST_HARD_REG_BIT (hard_regs_to_save, regno))
484 if (hard_reg_map[regno] != NULL)
485 hard_reg_map[regno]->call_freq += freq;
486 else
487 saved_reg = new_saved_hard_reg (regno, freq);
489 /* Look through all live pseudos, mark their hard registers. */
490 EXECUTE_IF_SET_IN_REG_SET
491 (&chain->live_throughout, FIRST_PSEUDO_REGISTER, regno, rsi)
493 int r = reg_renumber[regno];
494 int bound;
496 if (r < 0)
497 continue;
499 bound = r + hard_regno_nregs[r][PSEUDO_REGNO_MODE (regno)];
500 for (; r < bound; r++)
501 if (TEST_HARD_REG_BIT (used_regs, r))
503 if (hard_reg_map[r] != NULL)
504 hard_reg_map[r]->call_freq += freq;
505 else
506 saved_reg = new_saved_hard_reg (r, freq);
507 SET_HARD_REG_BIT (hard_regs_to_save, r);
511 /* Find saved hard register conflicts. */
512 saved_reg_conflicts = (char *) xmalloc (saved_regs_num * saved_regs_num);
513 memset (saved_reg_conflicts, 0, saved_regs_num * saved_regs_num);
514 for (chain = reload_insn_chain; chain != 0; chain = next)
516 call_saved_regs_num = 0;
517 insn = chain->insn;
518 next = chain->next;
519 if (!CALL_P (insn)
520 || find_reg_note (insn, REG_NORETURN, NULL))
521 continue;
522 REG_SET_TO_HARD_REG_SET (hard_regs_to_save,
523 &chain->live_throughout);
524 COPY_HARD_REG_SET (used_regs, call_used_reg_set);
526 /* Record all registers set in this call insn. These don't
527 need to be saved. N.B. the call insn might set a subreg
528 of a multi-hard-reg pseudo; then the pseudo is considered
529 live during the call, but the subreg that is set
530 isn't. */
531 CLEAR_HARD_REG_SET (this_insn_sets);
532 note_stores (PATTERN (insn), mark_set_regs, &this_insn_sets);
533 /* Sibcalls are considered to set the return value,
534 compare df-scan.c:df_get_call_refs. */
535 if (SIBLING_CALL_P (insn) && crtl->return_rtx)
536 mark_set_regs (crtl->return_rtx, NULL_RTX, &this_insn_sets);
538 AND_COMPL_HARD_REG_SET (used_regs, call_fixed_reg_set);
539 AND_COMPL_HARD_REG_SET (used_regs, this_insn_sets);
540 AND_HARD_REG_SET (hard_regs_to_save, used_regs);
541 for (regno = 0; regno < FIRST_PSEUDO_REGISTER; regno++)
542 if (TEST_HARD_REG_BIT (hard_regs_to_save, regno))
544 gcc_assert (hard_reg_map[regno] != NULL);
545 call_saved_regs[call_saved_regs_num++] = hard_reg_map[regno];
547 /* Look through all live pseudos, mark their hard registers. */
548 EXECUTE_IF_SET_IN_REG_SET
549 (&chain->live_throughout, FIRST_PSEUDO_REGISTER, regno, rsi)
551 int r = reg_renumber[regno];
552 int bound;
554 if (r < 0)
555 continue;
557 bound = r + hard_regno_nregs[r][PSEUDO_REGNO_MODE (regno)];
558 for (; r < bound; r++)
559 if (TEST_HARD_REG_BIT (used_regs, r))
560 call_saved_regs[call_saved_regs_num++] = hard_reg_map[r];
562 for (i = 0; i < call_saved_regs_num; i++)
564 saved_reg = call_saved_regs[i];
565 for (j = 0; j < call_saved_regs_num; j++)
566 if (i != j)
568 saved_reg2 = call_saved_regs[j];
569 saved_reg_conflicts[saved_reg->num * saved_regs_num
570 + saved_reg2->num]
571 = saved_reg_conflicts[saved_reg2->num * saved_regs_num
572 + saved_reg->num]
573 = TRUE;
577 /* Sort saved hard regs. */
578 qsort (all_saved_regs, saved_regs_num, sizeof (struct saved_hard_reg *),
579 saved_hard_reg_compare_func);
580 /* Initiate slots available from the previous reload
581 iteration. */
582 prev_save_slots_num = save_slots_num;
583 memcpy (prev_save_slots, save_slots, save_slots_num * sizeof (rtx));
584 save_slots_num = 0;
585 /* Allocate stack slots for the saved hard registers. */
586 for (i = 0; i < saved_regs_num; i++)
588 saved_reg = all_saved_regs[i];
589 regno = saved_reg->hard_regno;
590 for (j = 0; j < i; j++)
592 saved_reg2 = all_saved_regs[j];
593 if (! saved_reg2->first_p)
594 continue;
595 slot = saved_reg2->slot;
596 for (k = j; k >= 0; k = next_k)
598 saved_reg3 = all_saved_regs[k];
599 next_k = saved_reg3->next;
600 if (saved_reg_conflicts[saved_reg->num * saved_regs_num
601 + saved_reg3->num])
602 break;
604 if (k < 0
605 && (GET_MODE_SIZE (regno_save_mode[regno][1])
606 <= GET_MODE_SIZE (regno_save_mode
607 [saved_reg2->hard_regno][1])))
609 saved_reg->slot
610 = adjust_address_nv
611 (slot, regno_save_mode[saved_reg->hard_regno][1], 0);
612 regno_save_mem[regno][1] = saved_reg->slot;
613 saved_reg->next = saved_reg2->next;
614 saved_reg2->next = i;
615 if (dump_file != NULL)
616 fprintf (dump_file, "%d uses slot of %d\n",
617 regno, saved_reg2->hard_regno);
618 break;
621 if (j == i)
623 saved_reg->first_p = TRUE;
624 for (best_slot_num = -1, j = 0; j < prev_save_slots_num; j++)
626 slot = prev_save_slots[j];
627 if (slot == NULL_RTX)
628 continue;
629 if (GET_MODE_SIZE (regno_save_mode[regno][1])
630 <= GET_MODE_SIZE (GET_MODE (slot))
631 && best_slot_num < 0)
632 best_slot_num = j;
633 if (GET_MODE (slot) == regno_save_mode[regno][1])
634 break;
636 if (best_slot_num >= 0)
638 saved_reg->slot = prev_save_slots[best_slot_num];
639 saved_reg->slot
640 = adjust_address_nv
641 (saved_reg->slot,
642 regno_save_mode[saved_reg->hard_regno][1], 0);
643 if (dump_file != NULL)
644 fprintf (dump_file,
645 "%d uses a slot from prev iteration\n", regno);
646 prev_save_slots[best_slot_num] = NULL_RTX;
647 if (best_slot_num + 1 == prev_save_slots_num)
648 prev_save_slots_num--;
650 else
652 saved_reg->slot
653 = assign_stack_local_1
654 (regno_save_mode[regno][1],
655 GET_MODE_SIZE (regno_save_mode[regno][1]), 0, true);
656 if (dump_file != NULL)
657 fprintf (dump_file, "%d uses a new slot\n", regno);
659 regno_save_mem[regno][1] = saved_reg->slot;
660 save_slots[save_slots_num++] = saved_reg->slot;
663 free (saved_reg_conflicts);
664 finish_saved_hard_regs ();
666 else
668 /* Now run through all the call-used hard-registers and allocate
669 space for them in the caller-save area. Try to allocate space
670 in a manner which allows multi-register saves/restores to be done. */
672 for (i = 0; i < FIRST_PSEUDO_REGISTER; i++)
673 for (j = MOVE_MAX_WORDS; j > 0; j--)
675 int do_save = 1;
677 /* If no mode exists for this size, try another. Also break out
678 if we have already saved this hard register. */
679 if (regno_save_mode[i][j] == VOIDmode || regno_save_mem[i][1] != 0)
680 continue;
682 /* See if any register in this group has been saved. */
683 for (k = 0; k < j; k++)
684 if (regno_save_mem[i + k][1])
686 do_save = 0;
687 break;
689 if (! do_save)
690 continue;
692 for (k = 0; k < j; k++)
693 if (! TEST_HARD_REG_BIT (hard_regs_used, i + k))
695 do_save = 0;
696 break;
698 if (! do_save)
699 continue;
701 /* We have found an acceptable mode to store in. Since
702 hard register is always saved in the widest mode
703 available, the mode may be wider than necessary, it is
704 OK to reduce the alignment of spill space. We will
705 verify that it is equal to or greater than required
706 when we restore and save the hard register in
707 insert_restore and insert_save. */
708 regno_save_mem[i][j]
709 = assign_stack_local_1 (regno_save_mode[i][j],
710 GET_MODE_SIZE (regno_save_mode[i][j]),
711 0, true);
713 /* Setup single word save area just in case... */
714 for (k = 0; k < j; k++)
715 /* This should not depend on WORDS_BIG_ENDIAN.
716 The order of words in regs is the same as in memory. */
717 regno_save_mem[i + k][1]
718 = adjust_address_nv (regno_save_mem[i][j],
719 regno_save_mode[i + k][1],
720 k * UNITS_PER_WORD);
724 /* Now loop again and set the alias set of any save areas we made to
725 the alias set used to represent frame objects. */
726 for (i = 0; i < FIRST_PSEUDO_REGISTER; i++)
727 for (j = MOVE_MAX_WORDS; j > 0; j--)
728 if (regno_save_mem[i][j] != 0)
729 set_mem_alias_set (regno_save_mem[i][j], get_frame_alias_set ());
734 /* Find the places where hard regs are live across calls and save them. */
736 void
737 save_call_clobbered_regs (void)
739 struct insn_chain *chain, *next, *last = NULL;
740 enum machine_mode save_mode [FIRST_PSEUDO_REGISTER];
742 /* Computed in mark_set_regs, holds all registers set by the current
743 instruction. */
744 HARD_REG_SET this_insn_sets;
746 CLEAR_HARD_REG_SET (hard_regs_saved);
747 n_regs_saved = 0;
749 for (chain = reload_insn_chain; chain != 0; chain = next)
751 rtx insn = chain->insn;
752 enum rtx_code code = GET_CODE (insn);
754 next = chain->next;
756 gcc_assert (!chain->is_caller_save_insn);
758 if (NONDEBUG_INSN_P (insn))
760 /* If some registers have been saved, see if INSN references
761 any of them. We must restore them before the insn if so. */
763 if (n_regs_saved)
765 int regno;
766 HARD_REG_SET this_insn_sets;
768 if (code == JUMP_INSN)
769 /* Restore all registers if this is a JUMP_INSN. */
770 COPY_HARD_REG_SET (referenced_regs, hard_regs_saved);
771 else
773 CLEAR_HARD_REG_SET (referenced_regs);
774 mark_referenced_regs (&PATTERN (insn),
775 mark_reg_as_referenced, NULL);
776 AND_HARD_REG_SET (referenced_regs, hard_regs_saved);
779 for (regno = 0; regno < FIRST_PSEUDO_REGISTER; regno++)
780 if (TEST_HARD_REG_BIT (referenced_regs, regno))
781 regno += insert_restore (chain, 1, regno, MOVE_MAX_WORDS,
782 save_mode);
783 /* If a saved register is set after the call, this means we no
784 longer should restore it. This can happen when parts of a
785 multi-word pseudo do not conflict with other pseudos, so
786 IRA may allocate the same hard register for both. One may
787 be live across the call, while the other is set
788 afterwards. */
789 CLEAR_HARD_REG_SET (this_insn_sets);
790 note_stores (PATTERN (insn), mark_set_regs, &this_insn_sets);
791 AND_COMPL_HARD_REG_SET (hard_regs_saved, this_insn_sets);
794 if (code == CALL_INSN
795 && ! SIBLING_CALL_P (insn)
796 && ! find_reg_note (insn, REG_NORETURN, NULL))
798 unsigned regno;
799 HARD_REG_SET hard_regs_to_save;
800 reg_set_iterator rsi;
802 /* Use the register life information in CHAIN to compute which
803 regs are live during the call. */
804 REG_SET_TO_HARD_REG_SET (hard_regs_to_save,
805 &chain->live_throughout);
806 /* Save hard registers always in the widest mode available. */
807 for (regno = 0; regno < FIRST_PSEUDO_REGISTER; regno++)
808 if (TEST_HARD_REG_BIT (hard_regs_to_save, regno))
809 save_mode [regno] = regno_save_mode [regno][1];
810 else
811 save_mode [regno] = VOIDmode;
813 /* Look through all live pseudos, mark their hard registers
814 and choose proper mode for saving. */
815 EXECUTE_IF_SET_IN_REG_SET
816 (&chain->live_throughout, FIRST_PSEUDO_REGISTER, regno, rsi)
818 int r = reg_renumber[regno];
819 int nregs;
820 enum machine_mode mode;
822 if (r < 0)
823 continue;
824 nregs = hard_regno_nregs[r][PSEUDO_REGNO_MODE (regno)];
825 mode = HARD_REGNO_CALLER_SAVE_MODE
826 (r, nregs, PSEUDO_REGNO_MODE (regno));
827 if (GET_MODE_BITSIZE (mode)
828 > GET_MODE_BITSIZE (save_mode[r]))
829 save_mode[r] = mode;
830 while (nregs-- > 0)
831 SET_HARD_REG_BIT (hard_regs_to_save, r + nregs);
834 /* Record all registers set in this call insn. These don't need
835 to be saved. N.B. the call insn might set a subreg of a
836 multi-hard-reg pseudo; then the pseudo is considered live
837 during the call, but the subreg that is set isn't. */
838 CLEAR_HARD_REG_SET (this_insn_sets);
839 note_stores (PATTERN (insn), mark_set_regs, &this_insn_sets);
841 /* Compute which hard regs must be saved before this call. */
842 AND_COMPL_HARD_REG_SET (hard_regs_to_save, call_fixed_reg_set);
843 AND_COMPL_HARD_REG_SET (hard_regs_to_save, this_insn_sets);
844 AND_COMPL_HARD_REG_SET (hard_regs_to_save, hard_regs_saved);
845 AND_HARD_REG_SET (hard_regs_to_save, call_used_reg_set);
847 for (regno = 0; regno < FIRST_PSEUDO_REGISTER; regno++)
848 if (TEST_HARD_REG_BIT (hard_regs_to_save, regno))
849 regno += insert_save (chain, 1, regno, &hard_regs_to_save, save_mode);
851 /* Must recompute n_regs_saved. */
852 n_regs_saved = 0;
853 for (regno = 0; regno < FIRST_PSEUDO_REGISTER; regno++)
854 if (TEST_HARD_REG_BIT (hard_regs_saved, regno))
855 n_regs_saved++;
857 last = chain;
859 else if (DEBUG_INSN_P (insn) && n_regs_saved)
860 mark_referenced_regs (&PATTERN (insn),
861 replace_reg_with_saved_mem,
862 save_mode);
864 if (chain->next == 0 || chain->next->block != chain->block)
866 int regno;
867 /* At the end of the basic block, we must restore any registers that
868 remain saved. If the last insn in the block is a JUMP_INSN, put
869 the restore before the insn, otherwise, put it after the insn. */
871 if (n_regs_saved
872 && DEBUG_INSN_P (insn)
873 && last
874 && last->block == chain->block)
876 rtx ins, prev;
877 basic_block bb = BLOCK_FOR_INSN (insn);
879 /* When adding hard reg restores after a DEBUG_INSN, move
880 all notes between last real insn and this DEBUG_INSN after
881 the DEBUG_INSN, otherwise we could get code
882 -g/-g0 differences. */
883 for (ins = PREV_INSN (insn); ins != last->insn; ins = prev)
885 prev = PREV_INSN (ins);
886 if (NOTE_P (ins))
888 NEXT_INSN (prev) = NEXT_INSN (ins);
889 PREV_INSN (NEXT_INSN (ins)) = prev;
890 PREV_INSN (ins) = insn;
891 NEXT_INSN (ins) = NEXT_INSN (insn);
892 NEXT_INSN (insn) = ins;
893 if (NEXT_INSN (ins))
894 PREV_INSN (NEXT_INSN (ins)) = ins;
895 if (BB_END (bb) == insn)
896 BB_END (bb) = ins;
898 else
899 gcc_assert (DEBUG_INSN_P (ins));
902 last = NULL;
904 if (n_regs_saved)
905 for (regno = 0; regno < FIRST_PSEUDO_REGISTER; regno++)
906 if (TEST_HARD_REG_BIT (hard_regs_saved, regno))
907 regno += insert_restore (chain, JUMP_P (insn),
908 regno, MOVE_MAX_WORDS, save_mode);
913 /* Here from note_stores, or directly from save_call_clobbered_regs, when
914 an insn stores a value in a register.
915 Set the proper bit or bits in this_insn_sets. All pseudos that have
916 been assigned hard regs have had their register number changed already,
917 so we can ignore pseudos. */
918 static void
919 mark_set_regs (rtx reg, const_rtx setter ATTRIBUTE_UNUSED, void *data)
921 int regno, endregno, i;
922 HARD_REG_SET *this_insn_sets = (HARD_REG_SET *) data;
924 if (GET_CODE (reg) == SUBREG)
926 rtx inner = SUBREG_REG (reg);
927 if (!REG_P (inner) || REGNO (inner) >= FIRST_PSEUDO_REGISTER)
928 return;
929 regno = subreg_regno (reg);
930 endregno = regno + subreg_nregs (reg);
932 else if (REG_P (reg)
933 && REGNO (reg) < FIRST_PSEUDO_REGISTER)
935 regno = REGNO (reg);
936 endregno = END_HARD_REGNO (reg);
938 else
939 return;
941 for (i = regno; i < endregno; i++)
942 SET_HARD_REG_BIT (*this_insn_sets, i);
945 /* Here from note_stores when an insn stores a value in a register.
946 Set the proper bit or bits in the passed regset. All pseudos that have
947 been assigned hard regs have had their register number changed already,
948 so we can ignore pseudos. */
949 static void
950 add_stored_regs (rtx reg, const_rtx setter, void *data)
952 int regno, endregno, i;
953 enum machine_mode mode = GET_MODE (reg);
954 int offset = 0;
956 if (GET_CODE (setter) == CLOBBER)
957 return;
959 if (GET_CODE (reg) == SUBREG
960 && REG_P (SUBREG_REG (reg))
961 && REGNO (SUBREG_REG (reg)) < FIRST_PSEUDO_REGISTER)
963 offset = subreg_regno_offset (REGNO (SUBREG_REG (reg)),
964 GET_MODE (SUBREG_REG (reg)),
965 SUBREG_BYTE (reg),
966 GET_MODE (reg));
967 regno = REGNO (SUBREG_REG (reg)) + offset;
968 endregno = regno + subreg_nregs (reg);
970 else
972 if (!REG_P (reg) || REGNO (reg) >= FIRST_PSEUDO_REGISTER)
973 return;
975 regno = REGNO (reg) + offset;
976 endregno = end_hard_regno (mode, regno);
979 for (i = regno; i < endregno; i++)
980 SET_REGNO_REG_SET ((regset) data, i);
983 /* Walk X and record all referenced registers in REFERENCED_REGS. */
984 static void
985 mark_referenced_regs (rtx *loc, refmarker_fn *mark, void *arg)
987 enum rtx_code code = GET_CODE (*loc);
988 const char *fmt;
989 int i, j;
991 if (code == SET)
992 mark_referenced_regs (&SET_SRC (*loc), mark, arg);
993 if (code == SET || code == CLOBBER)
995 loc = &SET_DEST (*loc);
996 code = GET_CODE (*loc);
997 if ((code == REG && REGNO (*loc) < FIRST_PSEUDO_REGISTER)
998 || code == PC || code == CC0
999 || (code == SUBREG && REG_P (SUBREG_REG (*loc))
1000 && REGNO (SUBREG_REG (*loc)) < FIRST_PSEUDO_REGISTER
1001 /* If we're setting only part of a multi-word register,
1002 we shall mark it as referenced, because the words
1003 that are not being set should be restored. */
1004 && ((GET_MODE_SIZE (GET_MODE (*loc))
1005 >= GET_MODE_SIZE (GET_MODE (SUBREG_REG (*loc))))
1006 || (GET_MODE_SIZE (GET_MODE (SUBREG_REG (*loc)))
1007 <= UNITS_PER_WORD))))
1008 return;
1010 if (code == MEM || code == SUBREG)
1012 loc = &XEXP (*loc, 0);
1013 code = GET_CODE (*loc);
1016 if (code == REG)
1018 int regno = REGNO (*loc);
1019 int hardregno = (regno < FIRST_PSEUDO_REGISTER ? regno
1020 : reg_renumber[regno]);
1022 if (hardregno >= 0)
1023 mark (loc, GET_MODE (*loc), hardregno, arg);
1024 else if (arg)
1025 /* ??? Will we ever end up with an equiv expression in a debug
1026 insn, that would have required restoring a reg, or will
1027 reload take care of it for us? */
1028 return;
1029 /* If this is a pseudo that did not get a hard register, scan its
1030 memory location, since it might involve the use of another
1031 register, which might be saved. */
1032 else if (reg_equiv_mem[regno] != 0)
1033 mark_referenced_regs (&XEXP (reg_equiv_mem[regno], 0), mark, arg);
1034 else if (reg_equiv_address[regno] != 0)
1035 mark_referenced_regs (&reg_equiv_address[regno], mark, arg);
1036 return;
1039 fmt = GET_RTX_FORMAT (code);
1040 for (i = GET_RTX_LENGTH (code) - 1; i >= 0; i--)
1042 if (fmt[i] == 'e')
1043 mark_referenced_regs (&XEXP (*loc, i), mark, arg);
1044 else if (fmt[i] == 'E')
1045 for (j = XVECLEN (*loc, i) - 1; j >= 0; j--)
1046 mark_referenced_regs (&XVECEXP (*loc, i, j), mark, arg);
1050 /* Parameter function for mark_referenced_regs() that adds registers
1051 present in the insn and in equivalent mems and addresses to
1052 referenced_regs. */
1054 static void
1055 mark_reg_as_referenced (rtx *loc ATTRIBUTE_UNUSED,
1056 enum machine_mode mode,
1057 int hardregno,
1058 void *arg ATTRIBUTE_UNUSED)
1060 add_to_hard_reg_set (&referenced_regs, mode, hardregno);
1063 /* Parameter function for mark_referenced_regs() that replaces
1064 registers referenced in a debug_insn that would have been restored,
1065 should it be a non-debug_insn, with their save locations. */
1067 static void
1068 replace_reg_with_saved_mem (rtx *loc,
1069 enum machine_mode mode,
1070 int regno,
1071 void *arg)
1073 unsigned int i, nregs = hard_regno_nregs [regno][mode];
1074 rtx mem;
1075 enum machine_mode *save_mode = (enum machine_mode *)arg;
1077 for (i = 0; i < nregs; i++)
1078 if (TEST_HARD_REG_BIT (hard_regs_saved, regno + i))
1079 break;
1081 /* If none of the registers in the range would need restoring, we're
1082 all set. */
1083 if (i == nregs)
1084 return;
1086 while (++i < nregs)
1087 if (!TEST_HARD_REG_BIT (hard_regs_saved, regno + i))
1088 break;
1090 if (i == nregs
1091 && regno_save_mem[regno][nregs])
1093 mem = copy_rtx (regno_save_mem[regno][nregs]);
1095 if (nregs == (unsigned int) hard_regno_nregs[regno][save_mode[regno]])
1096 mem = adjust_address_nv (mem, save_mode[regno], 0);
1098 if (GET_MODE (mem) != mode)
1100 /* This is gen_lowpart_if_possible(), but without validating
1101 the newly-formed address. */
1102 int offset = 0;
1104 if (WORDS_BIG_ENDIAN)
1105 offset = (MAX (GET_MODE_SIZE (GET_MODE (mem)), UNITS_PER_WORD)
1106 - MAX (GET_MODE_SIZE (mode), UNITS_PER_WORD));
1107 if (BYTES_BIG_ENDIAN)
1108 /* Adjust the address so that the address-after-the-data is
1109 unchanged. */
1110 offset -= (MIN (UNITS_PER_WORD, GET_MODE_SIZE (mode))
1111 - MIN (UNITS_PER_WORD, GET_MODE_SIZE (GET_MODE (mem))));
1113 mem = adjust_address_nv (mem, mode, offset);
1116 else
1118 mem = gen_rtx_CONCATN (mode, rtvec_alloc (nregs));
1119 for (i = 0; i < nregs; i++)
1120 if (TEST_HARD_REG_BIT (hard_regs_saved, regno + i))
1122 gcc_assert (regno_save_mem[regno + i][1]);
1123 XVECEXP (mem, 0, i) = copy_rtx (regno_save_mem[regno + i][1]);
1125 else
1127 gcc_assert (save_mode[regno] != VOIDmode);
1128 XVECEXP (mem, 0, i) = gen_rtx_REG (save_mode [regno],
1129 regno + i);
1133 gcc_assert (GET_MODE (mem) == mode);
1134 *loc = mem;
1138 /* Insert a sequence of insns to restore. Place these insns in front of
1139 CHAIN if BEFORE_P is nonzero, behind the insn otherwise. MAXRESTORE is
1140 the maximum number of registers which should be restored during this call.
1141 It should never be less than 1 since we only work with entire registers.
1143 Note that we have verified in init_caller_save that we can do this
1144 with a simple SET, so use it. Set INSN_CODE to what we save there
1145 since the address might not be valid so the insn might not be recognized.
1146 These insns will be reloaded and have register elimination done by
1147 find_reload, so we need not worry about that here.
1149 Return the extra number of registers saved. */
1151 static int
1152 insert_restore (struct insn_chain *chain, int before_p, int regno,
1153 int maxrestore, enum machine_mode *save_mode)
1155 int i, k;
1156 rtx pat = NULL_RTX;
1157 int code;
1158 unsigned int numregs = 0;
1159 struct insn_chain *new_chain;
1160 rtx mem;
1162 /* A common failure mode if register status is not correct in the
1163 RTL is for this routine to be called with a REGNO we didn't
1164 expect to save. That will cause us to write an insn with a (nil)
1165 SET_DEST or SET_SRC. Instead of doing so and causing a crash
1166 later, check for this common case here instead. This will remove
1167 one step in debugging such problems. */
1168 gcc_assert (regno_save_mem[regno][1]);
1170 /* Get the pattern to emit and update our status.
1172 See if we can restore `maxrestore' registers at once. Work
1173 backwards to the single register case. */
1174 for (i = maxrestore; i > 0; i--)
1176 int j;
1177 int ok = 1;
1179 if (regno_save_mem[regno][i] == 0)
1180 continue;
1182 for (j = 0; j < i; j++)
1183 if (! TEST_HARD_REG_BIT (hard_regs_saved, regno + j))
1185 ok = 0;
1186 break;
1188 /* Must do this one restore at a time. */
1189 if (! ok)
1190 continue;
1192 numregs = i;
1193 break;
1196 mem = regno_save_mem [regno][numregs];
1197 if (save_mode [regno] != VOIDmode
1198 && save_mode [regno] != GET_MODE (mem)
1199 && numregs == (unsigned int) hard_regno_nregs[regno][save_mode [regno]]
1200 /* Check that insn to restore REGNO in save_mode[regno] is
1201 correct. */
1202 && reg_save_code (regno, save_mode[regno]) >= 0)
1203 mem = adjust_address_nv (mem, save_mode[regno], 0);
1204 else
1205 mem = copy_rtx (mem);
1207 /* Verify that the alignment of spill space is equal to or greater
1208 than required. */
1209 gcc_assert (MIN (MAX_SUPPORTED_STACK_ALIGNMENT,
1210 GET_MODE_ALIGNMENT (GET_MODE (mem))) <= MEM_ALIGN (mem));
1212 pat = gen_rtx_SET (VOIDmode,
1213 gen_rtx_REG (GET_MODE (mem),
1214 regno), mem);
1215 code = reg_restore_code (regno, GET_MODE (mem));
1216 new_chain = insert_one_insn (chain, before_p, code, pat);
1218 /* Clear status for all registers we restored. */
1219 for (k = 0; k < i; k++)
1221 CLEAR_HARD_REG_BIT (hard_regs_saved, regno + k);
1222 SET_REGNO_REG_SET (&new_chain->dead_or_set, regno + k);
1223 n_regs_saved--;
1226 /* Tell our callers how many extra registers we saved/restored. */
1227 return numregs - 1;
1230 /* Like insert_restore above, but save registers instead. */
1232 static int
1233 insert_save (struct insn_chain *chain, int before_p, int regno,
1234 HARD_REG_SET (*to_save), enum machine_mode *save_mode)
1236 int i;
1237 unsigned int k;
1238 rtx pat = NULL_RTX;
1239 int code;
1240 unsigned int numregs = 0;
1241 struct insn_chain *new_chain;
1242 rtx mem;
1244 /* A common failure mode if register status is not correct in the
1245 RTL is for this routine to be called with a REGNO we didn't
1246 expect to save. That will cause us to write an insn with a (nil)
1247 SET_DEST or SET_SRC. Instead of doing so and causing a crash
1248 later, check for this common case here. This will remove one
1249 step in debugging such problems. */
1250 gcc_assert (regno_save_mem[regno][1]);
1252 /* Get the pattern to emit and update our status.
1254 See if we can save several registers with a single instruction.
1255 Work backwards to the single register case. */
1256 for (i = MOVE_MAX_WORDS; i > 0; i--)
1258 int j;
1259 int ok = 1;
1260 if (regno_save_mem[regno][i] == 0)
1261 continue;
1263 for (j = 0; j < i; j++)
1264 if (! TEST_HARD_REG_BIT (*to_save, regno + j))
1266 ok = 0;
1267 break;
1269 /* Must do this one save at a time. */
1270 if (! ok)
1271 continue;
1273 numregs = i;
1274 break;
1277 mem = regno_save_mem [regno][numregs];
1278 if (save_mode [regno] != VOIDmode
1279 && save_mode [regno] != GET_MODE (mem)
1280 && numregs == (unsigned int) hard_regno_nregs[regno][save_mode [regno]]
1281 /* Check that insn to save REGNO in save_mode[regno] is
1282 correct. */
1283 && reg_save_code (regno, save_mode[regno]) >= 0)
1284 mem = adjust_address_nv (mem, save_mode[regno], 0);
1285 else
1286 mem = copy_rtx (mem);
1288 /* Verify that the alignment of spill space is equal to or greater
1289 than required. */
1290 gcc_assert (MIN (MAX_SUPPORTED_STACK_ALIGNMENT,
1291 GET_MODE_ALIGNMENT (GET_MODE (mem))) <= MEM_ALIGN (mem));
1293 pat = gen_rtx_SET (VOIDmode, mem,
1294 gen_rtx_REG (GET_MODE (mem),
1295 regno));
1296 code = reg_save_code (regno, GET_MODE (mem));
1297 new_chain = insert_one_insn (chain, before_p, code, pat);
1299 /* Set hard_regs_saved and dead_or_set for all the registers we saved. */
1300 for (k = 0; k < numregs; k++)
1302 SET_HARD_REG_BIT (hard_regs_saved, regno + k);
1303 SET_REGNO_REG_SET (&new_chain->dead_or_set, regno + k);
1304 n_regs_saved++;
1307 /* Tell our callers how many extra registers we saved/restored. */
1308 return numregs - 1;
1311 /* A for_each_rtx callback used by add_used_regs. Add the hard-register
1312 equivalent of each REG to regset DATA. */
1314 static int
1315 add_used_regs_1 (rtx *loc, void *data)
1317 int regno, i;
1318 regset live;
1319 rtx x;
1321 x = *loc;
1322 live = (regset) data;
1323 if (REG_P (x))
1325 regno = REGNO (x);
1326 if (!HARD_REGISTER_NUM_P (regno))
1327 regno = reg_renumber[regno];
1328 if (regno >= 0)
1329 for (i = hard_regno_nregs[regno][GET_MODE (x)] - 1; i >= 0; i--)
1330 SET_REGNO_REG_SET (live, regno + i);
1332 return 0;
1335 /* A note_uses callback used by insert_one_insn. Add the hard-register
1336 equivalent of each REG to regset DATA. */
1338 static void
1339 add_used_regs (rtx *loc, void *data)
1341 for_each_rtx (loc, add_used_regs_1, data);
1344 /* Emit a new caller-save insn and set the code. */
1345 static struct insn_chain *
1346 insert_one_insn (struct insn_chain *chain, int before_p, int code, rtx pat)
1348 rtx insn = chain->insn;
1349 struct insn_chain *new_chain;
1351 #ifdef HAVE_cc0
1352 /* If INSN references CC0, put our insns in front of the insn that sets
1353 CC0. This is always safe, since the only way we could be passed an
1354 insn that references CC0 is for a restore, and doing a restore earlier
1355 isn't a problem. We do, however, assume here that CALL_INSNs don't
1356 reference CC0. Guard against non-INSN's like CODE_LABEL. */
1358 if ((NONJUMP_INSN_P (insn) || JUMP_P (insn))
1359 && before_p
1360 && reg_referenced_p (cc0_rtx, PATTERN (insn)))
1361 chain = chain->prev, insn = chain->insn;
1362 #endif
1364 new_chain = new_insn_chain ();
1365 if (before_p)
1367 rtx link;
1369 new_chain->prev = chain->prev;
1370 if (new_chain->prev != 0)
1371 new_chain->prev->next = new_chain;
1372 else
1373 reload_insn_chain = new_chain;
1375 chain->prev = new_chain;
1376 new_chain->next = chain;
1377 new_chain->insn = emit_insn_before (pat, insn);
1378 /* ??? It would be nice if we could exclude the already / still saved
1379 registers from the live sets. */
1380 COPY_REG_SET (&new_chain->live_throughout, &chain->live_throughout);
1381 note_uses (&PATTERN (chain->insn), add_used_regs,
1382 &new_chain->live_throughout);
1383 /* If CHAIN->INSN is a call, then the registers which contain
1384 the arguments to the function are live in the new insn. */
1385 if (CALL_P (chain->insn))
1386 for (link = CALL_INSN_FUNCTION_USAGE (chain->insn);
1387 link != NULL_RTX;
1388 link = XEXP (link, 1))
1389 note_uses (&XEXP (link, 0), add_used_regs,
1390 &new_chain->live_throughout);
1392 CLEAR_REG_SET (&new_chain->dead_or_set);
1393 if (chain->insn == BB_HEAD (BASIC_BLOCK (chain->block)))
1394 BB_HEAD (BASIC_BLOCK (chain->block)) = new_chain->insn;
1396 else
1398 new_chain->next = chain->next;
1399 if (new_chain->next != 0)
1400 new_chain->next->prev = new_chain;
1401 chain->next = new_chain;
1402 new_chain->prev = chain;
1403 new_chain->insn = emit_insn_after (pat, insn);
1404 /* ??? It would be nice if we could exclude the already / still saved
1405 registers from the live sets, and observe REG_UNUSED notes. */
1406 COPY_REG_SET (&new_chain->live_throughout, &chain->live_throughout);
1407 /* Registers that are set in CHAIN->INSN live in the new insn.
1408 (Unless there is a REG_UNUSED note for them, but we don't
1409 look for them here.) */
1410 note_stores (PATTERN (chain->insn), add_stored_regs,
1411 &new_chain->live_throughout);
1412 CLEAR_REG_SET (&new_chain->dead_or_set);
1413 if (chain->insn == BB_END (BASIC_BLOCK (chain->block)))
1414 BB_END (BASIC_BLOCK (chain->block)) = new_chain->insn;
1416 new_chain->block = chain->block;
1417 new_chain->is_caller_save_insn = 1;
1419 INSN_CODE (new_chain->insn) = code;
1420 return new_chain;
1422 #include "gt-caller-save.h"