1 /* Conditional constant propagation pass for the GNU compiler.
2 Copyright (C) 2000-2021 Free Software Foundation, Inc.
3 Adapted from original RTL SSA-CCP by Daniel Berlin <dberlin@dberlin.org>
4 Adapted to GIMPLE trees by Diego Novillo <dnovillo@redhat.com>
6 This file is part of GCC.
8 GCC is free software; you can redistribute it and/or modify it
9 under the terms of the GNU General Public License as published by the
10 Free Software Foundation; either version 3, or (at your option) any
13 GCC is distributed in the hope that it will be useful, but WITHOUT
14 ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
15 FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License
18 You should have received a copy of the GNU General Public License
19 along with GCC; see the file COPYING3. If not see
20 <http://www.gnu.org/licenses/>. */
22 /* Conditional constant propagation (CCP) is based on the SSA
23 propagation engine (tree-ssa-propagate.c). Constant assignments of
24 the form VAR = CST are propagated from the assignments into uses of
25 VAR, which in turn may generate new constants. The simulation uses
26 a four level lattice to keep track of constant values associated
27 with SSA names. Given an SSA name V_i, it may take one of the
30 UNINITIALIZED -> the initial state of the value. This value
31 is replaced with a correct initial value
32 the first time the value is used, so the
33 rest of the pass does not need to care about
34 it. Using this value simplifies initialization
35 of the pass, and prevents us from needlessly
36 scanning statements that are never reached.
38 UNDEFINED -> V_i is a local variable whose definition
39 has not been processed yet. Therefore we
40 don't yet know if its value is a constant
43 CONSTANT -> V_i has been found to hold a constant
46 VARYING -> V_i cannot take a constant value, or if it
47 does, it is not possible to determine it
50 The core of SSA-CCP is in ccp_visit_stmt and ccp_visit_phi_node:
52 1- In ccp_visit_stmt, we are interested in assignments whose RHS
53 evaluates into a constant and conditional jumps whose predicate
54 evaluates into a boolean true or false. When an assignment of
55 the form V_i = CONST is found, V_i's lattice value is set to
56 CONSTANT and CONST is associated with it. This causes the
57 propagation engine to add all the SSA edges coming out the
58 assignment into the worklists, so that statements that use V_i
61 If the statement is a conditional with a constant predicate, we
62 mark the outgoing edges as executable or not executable
63 depending on the predicate's value. This is then used when
64 visiting PHI nodes to know when a PHI argument can be ignored.
67 2- In ccp_visit_phi_node, if all the PHI arguments evaluate to the
68 same constant C, then the LHS of the PHI is set to C. This
69 evaluation is known as the "meet operation". Since one of the
70 goals of this evaluation is to optimistically return constant
71 values as often as possible, it uses two main short cuts:
73 - If an argument is flowing in through a non-executable edge, it
74 is ignored. This is useful in cases like this:
80 a_11 = PHI (a_9, a_10)
82 If PRED is known to always evaluate to false, then we can
83 assume that a_11 will always take its value from a_10, meaning
84 that instead of consider it VARYING (a_9 and a_10 have
85 different values), we can consider it CONSTANT 100.
87 - If an argument has an UNDEFINED value, then it does not affect
88 the outcome of the meet operation. If a variable V_i has an
89 UNDEFINED value, it means that either its defining statement
90 hasn't been visited yet or V_i has no defining statement, in
91 which case the original symbol 'V' is being used
92 uninitialized. Since 'V' is a local variable, the compiler
93 may assume any initial value for it.
96 After propagation, every variable V_i that ends up with a lattice
97 value of CONSTANT will have the associated constant value in the
98 array CONST_VAL[i].VALUE. That is fed into substitute_and_fold for
99 final substitution and folding.
101 This algorithm uses wide-ints at the max precision of the target.
102 This means that, with one uninteresting exception, variables with
103 UNSIGNED types never go to VARYING because the bits above the
104 precision of the type of the variable are always zero. The
105 uninteresting case is a variable of UNSIGNED type that has the
106 maximum precision of the target. Such variables can go to VARYING,
107 but this causes no loss of infomation since these variables will
112 Constant propagation with conditional branches,
113 Wegman and Zadeck, ACM TOPLAS 13(2):181-210.
115 Building an Optimizing Compiler,
116 Robert Morgan, Butterworth-Heinemann, 1998, Section 8.9.
118 Advanced Compiler Design and Implementation,
119 Steven Muchnick, Morgan Kaufmann, 1997, Section 12.6 */
123 #include "coretypes.h"
128 #include "tree-pass.h"
130 #include "gimple-pretty-print.h"
131 #include "fold-const.h"
132 #include "gimple-fold.h"
134 #include "gimplify.h"
135 #include "gimple-iterator.h"
136 #include "tree-cfg.h"
137 #include "tree-ssa-propagate.h"
139 #include "builtins.h"
141 #include "stor-layout.h"
142 #include "optabs-query.h"
143 #include "tree-ssa-ccp.h"
144 #include "tree-dfa.h"
145 #include "diagnostic-core.h"
146 #include "stringpool.h"
148 #include "tree-vector-builder.h"
150 #include "alloc-pool.h"
151 #include "symbol-summary.h"
152 #include "ipa-utils.h"
153 #include "ipa-prop.h"
155 /* Possible lattice values. */
164 class ccp_prop_value_t
{
167 ccp_lattice_t lattice_val
;
169 /* Propagated value. */
172 /* Mask that applies to the propagated value during CCP. For X
173 with a CONSTANT lattice value X & ~mask == value & ~mask. The
174 zero bits in the mask cover constant values. The ones mean no
179 class ccp_propagate
: public ssa_propagation_engine
182 enum ssa_prop_result
visit_stmt (gimple
*, edge
*, tree
*) FINAL OVERRIDE
;
183 enum ssa_prop_result
visit_phi (gphi
*) FINAL OVERRIDE
;
186 /* Array of propagated constant values. After propagation,
187 CONST_VAL[I].VALUE holds the constant value for SSA_NAME(I). If
188 the constant is held in an SSA name representing a memory store
189 (i.e., a VDEF), CONST_VAL[I].MEM_REF will contain the actual
190 memory reference used to store (i.e., the LHS of the assignment
192 static ccp_prop_value_t
*const_val
;
193 static unsigned n_const_val
;
195 static void canonicalize_value (ccp_prop_value_t
*);
196 static void ccp_lattice_meet (ccp_prop_value_t
*, ccp_prop_value_t
*);
198 /* Dump constant propagation value VAL to file OUTF prefixed by PREFIX. */
201 dump_lattice_value (FILE *outf
, const char *prefix
, ccp_prop_value_t val
)
203 switch (val
.lattice_val
)
206 fprintf (outf
, "%sUNINITIALIZED", prefix
);
209 fprintf (outf
, "%sUNDEFINED", prefix
);
212 fprintf (outf
, "%sVARYING", prefix
);
215 if (TREE_CODE (val
.value
) != INTEGER_CST
218 fprintf (outf
, "%sCONSTANT ", prefix
);
219 print_generic_expr (outf
, val
.value
, dump_flags
);
223 widest_int cval
= wi::bit_and_not (wi::to_widest (val
.value
),
225 fprintf (outf
, "%sCONSTANT ", prefix
);
226 print_hex (cval
, outf
);
227 fprintf (outf
, " (");
228 print_hex (val
.mask
, outf
);
238 /* Print lattice value VAL to stderr. */
240 void debug_lattice_value (ccp_prop_value_t val
);
243 debug_lattice_value (ccp_prop_value_t val
)
245 dump_lattice_value (stderr
, "", val
);
246 fprintf (stderr
, "\n");
249 /* Extend NONZERO_BITS to a full mask, based on sgn. */
252 extend_mask (const wide_int
&nonzero_bits
, signop sgn
)
254 return widest_int::from (nonzero_bits
, sgn
);
257 /* Compute a default value for variable VAR and store it in the
258 CONST_VAL array. The following rules are used to get default
261 1- Global and static variables that are declared constant are
264 2- Any other value is considered UNDEFINED. This is useful when
265 considering PHI nodes. PHI arguments that are undefined do not
266 change the constant value of the PHI node, which allows for more
267 constants to be propagated.
269 3- Variables defined by statements other than assignments and PHI
270 nodes are considered VARYING.
272 4- Initial values of variables that are not GIMPLE registers are
273 considered VARYING. */
275 static ccp_prop_value_t
276 get_default_value (tree var
)
278 ccp_prop_value_t val
= { UNINITIALIZED
, NULL_TREE
, 0 };
281 stmt
= SSA_NAME_DEF_STMT (var
);
283 if (gimple_nop_p (stmt
))
285 /* Variables defined by an empty statement are those used
286 before being initialized. If VAR is a local variable, we
287 can assume initially that it is UNDEFINED, otherwise we must
288 consider it VARYING. */
289 if (!virtual_operand_p (var
)
290 && SSA_NAME_VAR (var
)
291 && TREE_CODE (SSA_NAME_VAR (var
)) == VAR_DECL
)
292 val
.lattice_val
= UNDEFINED
;
295 val
.lattice_val
= VARYING
;
297 if (flag_tree_bit_ccp
)
299 wide_int nonzero_bits
= get_nonzero_bits (var
);
303 if (SSA_NAME_VAR (var
)
304 && TREE_CODE (SSA_NAME_VAR (var
)) == PARM_DECL
305 && ipcp_get_parm_bits (SSA_NAME_VAR (var
), &value
, &mask
))
307 val
.lattice_val
= CONSTANT
;
309 widest_int ipa_value
= wi::to_widest (value
);
310 /* Unknown bits from IPA CP must be equal to zero. */
311 gcc_assert (wi::bit_and (ipa_value
, mask
) == 0);
313 if (nonzero_bits
!= -1)
314 val
.mask
&= extend_mask (nonzero_bits
,
315 TYPE_SIGN (TREE_TYPE (var
)));
317 else if (nonzero_bits
!= -1)
319 val
.lattice_val
= CONSTANT
;
320 val
.value
= build_zero_cst (TREE_TYPE (var
));
321 val
.mask
= extend_mask (nonzero_bits
,
322 TYPE_SIGN (TREE_TYPE (var
)));
327 else if (is_gimple_assign (stmt
))
330 if (gimple_assign_single_p (stmt
)
331 && DECL_P (gimple_assign_rhs1 (stmt
))
332 && (cst
= get_symbol_constant_value (gimple_assign_rhs1 (stmt
))))
334 val
.lattice_val
= CONSTANT
;
339 /* Any other variable defined by an assignment is considered
341 val
.lattice_val
= UNDEFINED
;
344 else if ((is_gimple_call (stmt
)
345 && gimple_call_lhs (stmt
) != NULL_TREE
)
346 || gimple_code (stmt
) == GIMPLE_PHI
)
348 /* A variable defined by a call or a PHI node is considered
350 val
.lattice_val
= UNDEFINED
;
354 /* Otherwise, VAR will never take on a constant value. */
355 val
.lattice_val
= VARYING
;
363 /* Get the constant value associated with variable VAR. */
365 static inline ccp_prop_value_t
*
368 ccp_prop_value_t
*val
;
370 if (const_val
== NULL
371 || SSA_NAME_VERSION (var
) >= n_const_val
)
374 val
= &const_val
[SSA_NAME_VERSION (var
)];
375 if (val
->lattice_val
== UNINITIALIZED
)
376 *val
= get_default_value (var
);
378 canonicalize_value (val
);
383 /* Return the constant tree value associated with VAR. */
386 get_constant_value (tree var
)
388 ccp_prop_value_t
*val
;
389 if (TREE_CODE (var
) != SSA_NAME
)
391 if (is_gimple_min_invariant (var
))
395 val
= get_value (var
);
397 && val
->lattice_val
== CONSTANT
398 && (TREE_CODE (val
->value
) != INTEGER_CST
404 /* Sets the value associated with VAR to VARYING. */
407 set_value_varying (tree var
)
409 ccp_prop_value_t
*val
= &const_val
[SSA_NAME_VERSION (var
)];
411 val
->lattice_val
= VARYING
;
412 val
->value
= NULL_TREE
;
416 /* For integer constants, make sure to drop TREE_OVERFLOW. */
419 canonicalize_value (ccp_prop_value_t
*val
)
421 if (val
->lattice_val
!= CONSTANT
)
424 if (TREE_OVERFLOW_P (val
->value
))
425 val
->value
= drop_tree_overflow (val
->value
);
428 /* Return whether the lattice transition is valid. */
431 valid_lattice_transition (ccp_prop_value_t old_val
, ccp_prop_value_t new_val
)
433 /* Lattice transitions must always be monotonically increasing in
435 if (old_val
.lattice_val
< new_val
.lattice_val
)
438 if (old_val
.lattice_val
!= new_val
.lattice_val
)
441 if (!old_val
.value
&& !new_val
.value
)
444 /* Now both lattice values are CONSTANT. */
446 /* Allow arbitrary copy changes as we might look through PHI <a_1, ...>
447 when only a single copy edge is executable. */
448 if (TREE_CODE (old_val
.value
) == SSA_NAME
449 && TREE_CODE (new_val
.value
) == SSA_NAME
)
452 /* Allow transitioning from a constant to a copy. */
453 if (is_gimple_min_invariant (old_val
.value
)
454 && TREE_CODE (new_val
.value
) == SSA_NAME
)
457 /* Allow transitioning from PHI <&x, not executable> == &x
458 to PHI <&x, &y> == common alignment. */
459 if (TREE_CODE (old_val
.value
) != INTEGER_CST
460 && TREE_CODE (new_val
.value
) == INTEGER_CST
)
463 /* Bit-lattices have to agree in the still valid bits. */
464 if (TREE_CODE (old_val
.value
) == INTEGER_CST
465 && TREE_CODE (new_val
.value
) == INTEGER_CST
)
466 return (wi::bit_and_not (wi::to_widest (old_val
.value
), new_val
.mask
)
467 == wi::bit_and_not (wi::to_widest (new_val
.value
), new_val
.mask
));
469 /* Otherwise constant values have to agree. */
470 if (operand_equal_p (old_val
.value
, new_val
.value
, 0))
473 /* At least the kinds and types should agree now. */
474 if (TREE_CODE (old_val
.value
) != TREE_CODE (new_val
.value
)
475 || !types_compatible_p (TREE_TYPE (old_val
.value
),
476 TREE_TYPE (new_val
.value
)))
479 /* For floats and !HONOR_NANS allow transitions from (partial) NaN
481 tree type
= TREE_TYPE (new_val
.value
);
482 if (SCALAR_FLOAT_TYPE_P (type
)
483 && !HONOR_NANS (type
))
485 if (REAL_VALUE_ISNAN (TREE_REAL_CST (old_val
.value
)))
488 else if (VECTOR_FLOAT_TYPE_P (type
)
489 && !HONOR_NANS (type
))
492 = tree_vector_builder::binary_encoded_nelts (old_val
.value
,
494 for (unsigned int i
= 0; i
< count
; ++i
)
495 if (!REAL_VALUE_ISNAN
496 (TREE_REAL_CST (VECTOR_CST_ENCODED_ELT (old_val
.value
, i
)))
497 && !operand_equal_p (VECTOR_CST_ENCODED_ELT (old_val
.value
, i
),
498 VECTOR_CST_ENCODED_ELT (new_val
.value
, i
), 0))
502 else if (COMPLEX_FLOAT_TYPE_P (type
)
503 && !HONOR_NANS (type
))
505 if (!REAL_VALUE_ISNAN (TREE_REAL_CST (TREE_REALPART (old_val
.value
)))
506 && !operand_equal_p (TREE_REALPART (old_val
.value
),
507 TREE_REALPART (new_val
.value
), 0))
509 if (!REAL_VALUE_ISNAN (TREE_REAL_CST (TREE_IMAGPART (old_val
.value
)))
510 && !operand_equal_p (TREE_IMAGPART (old_val
.value
),
511 TREE_IMAGPART (new_val
.value
), 0))
518 /* Set the value for variable VAR to NEW_VAL. Return true if the new
519 value is different from VAR's previous value. */
522 set_lattice_value (tree var
, ccp_prop_value_t
*new_val
)
524 /* We can deal with old UNINITIALIZED values just fine here. */
525 ccp_prop_value_t
*old_val
= &const_val
[SSA_NAME_VERSION (var
)];
527 canonicalize_value (new_val
);
529 /* We have to be careful to not go up the bitwise lattice
530 represented by the mask. Instead of dropping to VARYING
531 use the meet operator to retain a conservative value.
532 Missed optimizations like PR65851 makes this necessary.
533 It also ensures we converge to a stable lattice solution. */
534 if (old_val
->lattice_val
!= UNINITIALIZED
)
535 ccp_lattice_meet (new_val
, old_val
);
537 gcc_checking_assert (valid_lattice_transition (*old_val
, *new_val
));
539 /* If *OLD_VAL and NEW_VAL are the same, return false to inform the
540 caller that this was a non-transition. */
541 if (old_val
->lattice_val
!= new_val
->lattice_val
542 || (new_val
->lattice_val
== CONSTANT
543 && (TREE_CODE (new_val
->value
) != TREE_CODE (old_val
->value
)
544 || (TREE_CODE (new_val
->value
) == INTEGER_CST
545 && (new_val
->mask
!= old_val
->mask
546 || (wi::bit_and_not (wi::to_widest (old_val
->value
),
548 != wi::bit_and_not (wi::to_widest (new_val
->value
),
550 || (TREE_CODE (new_val
->value
) != INTEGER_CST
551 && !operand_equal_p (new_val
->value
, old_val
->value
, 0)))))
553 /* ??? We would like to delay creation of INTEGER_CSTs from
554 partially constants here. */
556 if (dump_file
&& (dump_flags
& TDF_DETAILS
))
558 dump_lattice_value (dump_file
, "Lattice value changed to ", *new_val
);
559 fprintf (dump_file
, ". Adding SSA edges to worklist.\n");
564 gcc_assert (new_val
->lattice_val
!= UNINITIALIZED
);
571 static ccp_prop_value_t
get_value_for_expr (tree
, bool);
572 static ccp_prop_value_t
bit_value_binop (enum tree_code
, tree
, tree
, tree
);
573 void bit_value_binop (enum tree_code
, signop
, int, widest_int
*, widest_int
*,
574 signop
, int, const widest_int
&, const widest_int
&,
575 signop
, int, const widest_int
&, const widest_int
&);
577 /* Return a widest_int that can be used for bitwise simplifications
581 value_to_wide_int (ccp_prop_value_t val
)
584 && TREE_CODE (val
.value
) == INTEGER_CST
)
585 return wi::to_widest (val
.value
);
590 /* Return the value for the address expression EXPR based on alignment
593 static ccp_prop_value_t
594 get_value_from_alignment (tree expr
)
596 tree type
= TREE_TYPE (expr
);
597 ccp_prop_value_t val
;
598 unsigned HOST_WIDE_INT bitpos
;
601 gcc_assert (TREE_CODE (expr
) == ADDR_EXPR
);
603 get_pointer_alignment_1 (expr
, &align
, &bitpos
);
604 val
.mask
= wi::bit_and_not
605 (POINTER_TYPE_P (type
) || TYPE_UNSIGNED (type
)
606 ? wi::mask
<widest_int
> (TYPE_PRECISION (type
), false)
608 align
/ BITS_PER_UNIT
- 1);
610 = wi::sext (val
.mask
, TYPE_PRECISION (type
)) == -1 ? VARYING
: CONSTANT
;
611 if (val
.lattice_val
== CONSTANT
)
612 val
.value
= build_int_cstu (type
, bitpos
/ BITS_PER_UNIT
);
614 val
.value
= NULL_TREE
;
619 /* Return the value for the tree operand EXPR. If FOR_BITS_P is true
620 return constant bits extracted from alignment information for
621 invariant addresses. */
623 static ccp_prop_value_t
624 get_value_for_expr (tree expr
, bool for_bits_p
)
626 ccp_prop_value_t val
;
628 if (TREE_CODE (expr
) == SSA_NAME
)
630 ccp_prop_value_t
*val_
= get_value (expr
);
635 val
.lattice_val
= VARYING
;
636 val
.value
= NULL_TREE
;
640 && val
.lattice_val
== CONSTANT
)
642 if (TREE_CODE (val
.value
) == ADDR_EXPR
)
643 val
= get_value_from_alignment (val
.value
);
644 else if (TREE_CODE (val
.value
) != INTEGER_CST
)
646 val
.lattice_val
= VARYING
;
647 val
.value
= NULL_TREE
;
651 /* Fall back to a copy value. */
653 && val
.lattice_val
== VARYING
654 && !SSA_NAME_OCCURS_IN_ABNORMAL_PHI (expr
))
656 val
.lattice_val
= CONSTANT
;
661 else if (is_gimple_min_invariant (expr
)
662 && (!for_bits_p
|| TREE_CODE (expr
) == INTEGER_CST
))
664 val
.lattice_val
= CONSTANT
;
667 canonicalize_value (&val
);
669 else if (TREE_CODE (expr
) == ADDR_EXPR
)
670 val
= get_value_from_alignment (expr
);
673 val
.lattice_val
= VARYING
;
675 val
.value
= NULL_TREE
;
678 if (val
.lattice_val
== VARYING
679 && TYPE_UNSIGNED (TREE_TYPE (expr
)))
680 val
.mask
= wi::zext (val
.mask
, TYPE_PRECISION (TREE_TYPE (expr
)));
685 /* Return the likely CCP lattice value for STMT.
687 If STMT has no operands, then return CONSTANT.
689 Else if undefinedness of operands of STMT cause its value to be
690 undefined, then return UNDEFINED.
692 Else if any operands of STMT are constants, then return CONSTANT.
694 Else return VARYING. */
697 likely_value (gimple
*stmt
)
699 bool has_constant_operand
, has_undefined_operand
, all_undefined_operands
;
700 bool has_nsa_operand
;
705 enum gimple_code code
= gimple_code (stmt
);
707 /* This function appears to be called only for assignments, calls,
708 conditionals, and switches, due to the logic in visit_stmt. */
709 gcc_assert (code
== GIMPLE_ASSIGN
710 || code
== GIMPLE_CALL
711 || code
== GIMPLE_COND
712 || code
== GIMPLE_SWITCH
);
714 /* If the statement has volatile operands, it won't fold to a
716 if (gimple_has_volatile_ops (stmt
))
719 /* Arrive here for more complex cases. */
720 has_constant_operand
= false;
721 has_undefined_operand
= false;
722 all_undefined_operands
= true;
723 has_nsa_operand
= false;
724 FOR_EACH_SSA_TREE_OPERAND (use
, stmt
, iter
, SSA_OP_USE
)
726 ccp_prop_value_t
*val
= get_value (use
);
728 if (val
&& val
->lattice_val
== UNDEFINED
)
729 has_undefined_operand
= true;
731 all_undefined_operands
= false;
733 if (val
&& val
->lattice_val
== CONSTANT
)
734 has_constant_operand
= true;
736 if (SSA_NAME_IS_DEFAULT_DEF (use
)
737 || !prop_simulate_again_p (SSA_NAME_DEF_STMT (use
)))
738 has_nsa_operand
= true;
741 /* There may be constants in regular rhs operands. For calls we
742 have to ignore lhs, fndecl and static chain, otherwise only
744 for (i
= (is_gimple_call (stmt
) ? 2 : 0) + gimple_has_lhs (stmt
);
745 i
< gimple_num_ops (stmt
); ++i
)
747 tree op
= gimple_op (stmt
, i
);
748 if (!op
|| TREE_CODE (op
) == SSA_NAME
)
750 if (is_gimple_min_invariant (op
))
751 has_constant_operand
= true;
754 if (has_constant_operand
)
755 all_undefined_operands
= false;
757 if (has_undefined_operand
758 && code
== GIMPLE_CALL
759 && gimple_call_internal_p (stmt
))
760 switch (gimple_call_internal_fn (stmt
))
762 /* These 3 builtins use the first argument just as a magic
763 way how to find out a decl uid. */
764 case IFN_GOMP_SIMD_LANE
:
765 case IFN_GOMP_SIMD_VF
:
766 case IFN_GOMP_SIMD_LAST_LANE
:
767 has_undefined_operand
= false;
773 /* If the operation combines operands like COMPLEX_EXPR make sure to
774 not mark the result UNDEFINED if only one part of the result is
776 if (has_undefined_operand
&& all_undefined_operands
)
778 else if (code
== GIMPLE_ASSIGN
&& has_undefined_operand
)
780 switch (gimple_assign_rhs_code (stmt
))
782 /* Unary operators are handled with all_undefined_operands. */
785 case POINTER_PLUS_EXPR
:
787 /* Not MIN_EXPR, MAX_EXPR. One VARYING operand may be selected.
788 Not bitwise operators, one VARYING operand may specify the
790 Not logical operators for the same reason, apart from XOR.
791 Not COMPLEX_EXPR as one VARYING operand makes the result partly
792 not UNDEFINED. Not *DIV_EXPR, comparisons and shifts because
793 the undefined operand may be promoted. */
797 /* If any part of an address is UNDEFINED, like the index
798 of an ARRAY_EXPR, then treat the result as UNDEFINED. */
805 /* If there was an UNDEFINED operand but the result may be not UNDEFINED
806 fall back to CONSTANT. During iteration UNDEFINED may still drop
808 if (has_undefined_operand
)
811 /* We do not consider virtual operands here -- load from read-only
812 memory may have only VARYING virtual operands, but still be
813 constant. Also we can combine the stmt with definitions from
814 operands whose definitions are not simulated again. */
815 if (has_constant_operand
817 || gimple_references_memory_p (stmt
))
823 /* Returns true if STMT cannot be constant. */
826 surely_varying_stmt_p (gimple
*stmt
)
828 /* If the statement has operands that we cannot handle, it cannot be
830 if (gimple_has_volatile_ops (stmt
))
833 /* If it is a call and does not return a value or is not a
834 builtin and not an indirect call or a call to function with
835 assume_aligned/alloc_align attribute, it is varying. */
836 if (is_gimple_call (stmt
))
838 tree fndecl
, fntype
= gimple_call_fntype (stmt
);
839 if (!gimple_call_lhs (stmt
)
840 || ((fndecl
= gimple_call_fndecl (stmt
)) != NULL_TREE
841 && !fndecl_built_in_p (fndecl
)
842 && !lookup_attribute ("assume_aligned",
843 TYPE_ATTRIBUTES (fntype
))
844 && !lookup_attribute ("alloc_align",
845 TYPE_ATTRIBUTES (fntype
))))
849 /* Any other store operation is not interesting. */
850 else if (gimple_vdef (stmt
))
853 /* Anything other than assignments and conditional jumps are not
854 interesting for CCP. */
855 if (gimple_code (stmt
) != GIMPLE_ASSIGN
856 && gimple_code (stmt
) != GIMPLE_COND
857 && gimple_code (stmt
) != GIMPLE_SWITCH
858 && gimple_code (stmt
) != GIMPLE_CALL
)
864 /* Initialize local data structures for CCP. */
867 ccp_initialize (void)
871 n_const_val
= num_ssa_names
;
872 const_val
= XCNEWVEC (ccp_prop_value_t
, n_const_val
);
874 /* Initialize simulation flags for PHI nodes and statements. */
875 FOR_EACH_BB_FN (bb
, cfun
)
877 gimple_stmt_iterator i
;
879 for (i
= gsi_start_bb (bb
); !gsi_end_p (i
); gsi_next (&i
))
881 gimple
*stmt
= gsi_stmt (i
);
884 /* If the statement is a control insn, then we do not
885 want to avoid simulating the statement once. Failure
886 to do so means that those edges will never get added. */
887 if (stmt_ends_bb_p (stmt
))
890 is_varying
= surely_varying_stmt_p (stmt
);
897 /* If the statement will not produce a constant, mark
898 all its outputs VARYING. */
899 FOR_EACH_SSA_TREE_OPERAND (def
, stmt
, iter
, SSA_OP_ALL_DEFS
)
900 set_value_varying (def
);
902 prop_set_simulate_again (stmt
, !is_varying
);
906 /* Now process PHI nodes. We never clear the simulate_again flag on
907 phi nodes, since we do not know which edges are executable yet,
908 except for phi nodes for virtual operands when we do not do store ccp. */
909 FOR_EACH_BB_FN (bb
, cfun
)
913 for (i
= gsi_start_phis (bb
); !gsi_end_p (i
); gsi_next (&i
))
915 gphi
*phi
= i
.phi ();
917 if (virtual_operand_p (gimple_phi_result (phi
)))
918 prop_set_simulate_again (phi
, false);
920 prop_set_simulate_again (phi
, true);
925 /* Debug count support. Reset the values of ssa names
926 VARYING when the total number ssa names analyzed is
927 beyond the debug count specified. */
933 for (i
= 0; i
< num_ssa_names
; i
++)
937 const_val
[i
].lattice_val
= VARYING
;
938 const_val
[i
].mask
= -1;
939 const_val
[i
].value
= NULL_TREE
;
945 /* We want to provide our own GET_VALUE and FOLD_STMT virtual methods. */
946 class ccp_folder
: public substitute_and_fold_engine
949 tree
value_of_expr (tree
, gimple
*) FINAL OVERRIDE
;
950 bool fold_stmt (gimple_stmt_iterator
*) FINAL OVERRIDE
;
953 /* This method just wraps GET_CONSTANT_VALUE for now. Over time
954 naked calls to GET_CONSTANT_VALUE should be eliminated in favor
955 of calling member functions. */
958 ccp_folder::value_of_expr (tree op
, gimple
*)
960 return get_constant_value (op
);
963 /* Do final substitution of propagated values, cleanup the flowgraph and
964 free allocated storage. If NONZERO_P, record nonzero bits.
966 Return TRUE when something was optimized. */
969 ccp_finalize (bool nonzero_p
)
971 bool something_changed
;
977 /* Derive alignment and misalignment information from partially
978 constant pointers in the lattice or nonzero bits from partially
979 constant integers. */
980 FOR_EACH_SSA_NAME (i
, name
, cfun
)
982 ccp_prop_value_t
*val
;
983 unsigned int tem
, align
;
985 if (!POINTER_TYPE_P (TREE_TYPE (name
))
986 && (!INTEGRAL_TYPE_P (TREE_TYPE (name
))
987 /* Don't record nonzero bits before IPA to avoid
988 using too much memory. */
992 val
= get_value (name
);
993 if (val
->lattice_val
!= CONSTANT
994 || TREE_CODE (val
->value
) != INTEGER_CST
998 if (POINTER_TYPE_P (TREE_TYPE (name
)))
1000 /* Trailing mask bits specify the alignment, trailing value
1001 bits the misalignment. */
1002 tem
= val
->mask
.to_uhwi ();
1003 align
= least_bit_hwi (tem
);
1005 set_ptr_info_alignment (get_ptr_info (name
), align
,
1006 (TREE_INT_CST_LOW (val
->value
)
1011 unsigned int precision
= TYPE_PRECISION (TREE_TYPE (val
->value
));
1012 wide_int nonzero_bits
1013 = (wide_int::from (val
->mask
, precision
, UNSIGNED
)
1014 | wi::to_wide (val
->value
));
1015 nonzero_bits
&= get_nonzero_bits (name
);
1016 set_nonzero_bits (name
, nonzero_bits
);
1020 /* Perform substitutions based on the known constant values. */
1021 class ccp_folder ccp_folder
;
1022 something_changed
= ccp_folder
.substitute_and_fold ();
1026 return something_changed
;
1030 /* Compute the meet operator between *VAL1 and *VAL2. Store the result
1033 any M UNDEFINED = any
1034 any M VARYING = VARYING
1035 Ci M Cj = Ci if (i == j)
1036 Ci M Cj = VARYING if (i != j)
1040 ccp_lattice_meet (ccp_prop_value_t
*val1
, ccp_prop_value_t
*val2
)
1042 if (val1
->lattice_val
== UNDEFINED
1043 /* For UNDEFINED M SSA we can't always SSA because its definition
1044 may not dominate the PHI node. Doing optimistic copy propagation
1045 also causes a lot of gcc.dg/uninit-pred*.c FAILs. */
1046 && (val2
->lattice_val
!= CONSTANT
1047 || TREE_CODE (val2
->value
) != SSA_NAME
))
1049 /* UNDEFINED M any = any */
1052 else if (val2
->lattice_val
== UNDEFINED
1054 && (val1
->lattice_val
!= CONSTANT
1055 || TREE_CODE (val1
->value
) != SSA_NAME
))
1057 /* any M UNDEFINED = any
1058 Nothing to do. VAL1 already contains the value we want. */
1061 else if (val1
->lattice_val
== VARYING
1062 || val2
->lattice_val
== VARYING
)
1064 /* any M VARYING = VARYING. */
1065 val1
->lattice_val
= VARYING
;
1067 val1
->value
= NULL_TREE
;
1069 else if (val1
->lattice_val
== CONSTANT
1070 && val2
->lattice_val
== CONSTANT
1071 && TREE_CODE (val1
->value
) == INTEGER_CST
1072 && TREE_CODE (val2
->value
) == INTEGER_CST
)
1074 /* Ci M Cj = Ci if (i == j)
1075 Ci M Cj = VARYING if (i != j)
1077 For INTEGER_CSTs mask unequal bits. If no equal bits remain,
1079 val1
->mask
= (val1
->mask
| val2
->mask
1080 | (wi::to_widest (val1
->value
)
1081 ^ wi::to_widest (val2
->value
)));
1082 if (wi::sext (val1
->mask
, TYPE_PRECISION (TREE_TYPE (val1
->value
))) == -1)
1084 val1
->lattice_val
= VARYING
;
1085 val1
->value
= NULL_TREE
;
1088 else if (val1
->lattice_val
== CONSTANT
1089 && val2
->lattice_val
== CONSTANT
1090 && operand_equal_p (val1
->value
, val2
->value
, 0))
1092 /* Ci M Cj = Ci if (i == j)
1093 Ci M Cj = VARYING if (i != j)
1095 VAL1 already contains the value we want for equivalent values. */
1097 else if (val1
->lattice_val
== CONSTANT
1098 && val2
->lattice_val
== CONSTANT
1099 && (TREE_CODE (val1
->value
) == ADDR_EXPR
1100 || TREE_CODE (val2
->value
) == ADDR_EXPR
))
1102 /* When not equal addresses are involved try meeting for
1104 ccp_prop_value_t tem
= *val2
;
1105 if (TREE_CODE (val1
->value
) == ADDR_EXPR
)
1106 *val1
= get_value_for_expr (val1
->value
, true);
1107 if (TREE_CODE (val2
->value
) == ADDR_EXPR
)
1108 tem
= get_value_for_expr (val2
->value
, true);
1109 ccp_lattice_meet (val1
, &tem
);
1113 /* Any other combination is VARYING. */
1114 val1
->lattice_val
= VARYING
;
1116 val1
->value
= NULL_TREE
;
1121 /* Loop through the PHI_NODE's parameters for BLOCK and compare their
1122 lattice values to determine PHI_NODE's lattice value. The value of a
1123 PHI node is determined calling ccp_lattice_meet with all the arguments
1124 of the PHI node that are incoming via executable edges. */
1126 enum ssa_prop_result
1127 ccp_propagate::visit_phi (gphi
*phi
)
1130 ccp_prop_value_t new_val
;
1132 if (dump_file
&& (dump_flags
& TDF_DETAILS
))
1134 fprintf (dump_file
, "\nVisiting PHI node: ");
1135 print_gimple_stmt (dump_file
, phi
, 0, dump_flags
);
1138 new_val
.lattice_val
= UNDEFINED
;
1139 new_val
.value
= NULL_TREE
;
1143 bool non_exec_edge
= false;
1144 for (i
= 0; i
< gimple_phi_num_args (phi
); i
++)
1146 /* Compute the meet operator over all the PHI arguments flowing
1147 through executable edges. */
1148 edge e
= gimple_phi_arg_edge (phi
, i
);
1150 if (dump_file
&& (dump_flags
& TDF_DETAILS
))
1153 "\tArgument #%d (%d -> %d %sexecutable)\n",
1154 i
, e
->src
->index
, e
->dest
->index
,
1155 (e
->flags
& EDGE_EXECUTABLE
) ? "" : "not ");
1158 /* If the incoming edge is executable, Compute the meet operator for
1159 the existing value of the PHI node and the current PHI argument. */
1160 if (e
->flags
& EDGE_EXECUTABLE
)
1162 tree arg
= gimple_phi_arg (phi
, i
)->def
;
1163 ccp_prop_value_t arg_val
= get_value_for_expr (arg
, false);
1171 ccp_lattice_meet (&new_val
, &arg_val
);
1173 if (dump_file
&& (dump_flags
& TDF_DETAILS
))
1175 fprintf (dump_file
, "\t");
1176 print_generic_expr (dump_file
, arg
, dump_flags
);
1177 dump_lattice_value (dump_file
, "\tValue: ", arg_val
);
1178 fprintf (dump_file
, "\n");
1181 if (new_val
.lattice_val
== VARYING
)
1185 non_exec_edge
= true;
1188 /* In case there were non-executable edges and the value is a copy
1189 make sure its definition dominates the PHI node. */
1191 && new_val
.lattice_val
== CONSTANT
1192 && TREE_CODE (new_val
.value
) == SSA_NAME
1193 && ! SSA_NAME_IS_DEFAULT_DEF (new_val
.value
)
1194 && ! dominated_by_p (CDI_DOMINATORS
, gimple_bb (phi
),
1195 gimple_bb (SSA_NAME_DEF_STMT (new_val
.value
))))
1197 new_val
.lattice_val
= VARYING
;
1198 new_val
.value
= NULL_TREE
;
1202 if (dump_file
&& (dump_flags
& TDF_DETAILS
))
1204 dump_lattice_value (dump_file
, "\n PHI node value: ", new_val
);
1205 fprintf (dump_file
, "\n\n");
1208 /* Make the transition to the new value. */
1209 if (set_lattice_value (gimple_phi_result (phi
), &new_val
))
1211 if (new_val
.lattice_val
== VARYING
)
1212 return SSA_PROP_VARYING
;
1214 return SSA_PROP_INTERESTING
;
1217 return SSA_PROP_NOT_INTERESTING
;
1220 /* Return the constant value for OP or OP otherwise. */
1223 valueize_op (tree op
)
1225 if (TREE_CODE (op
) == SSA_NAME
)
1227 tree tem
= get_constant_value (op
);
1234 /* Return the constant value for OP, but signal to not follow SSA
1235 edges if the definition may be simulated again. */
1238 valueize_op_1 (tree op
)
1240 if (TREE_CODE (op
) == SSA_NAME
)
1242 /* If the definition may be simulated again we cannot follow
1243 this SSA edge as the SSA propagator does not necessarily
1244 re-visit the use. */
1245 gimple
*def_stmt
= SSA_NAME_DEF_STMT (op
);
1246 if (!gimple_nop_p (def_stmt
)
1247 && prop_simulate_again_p (def_stmt
))
1249 tree tem
= get_constant_value (op
);
1256 /* CCP specific front-end to the non-destructive constant folding
1259 Attempt to simplify the RHS of STMT knowing that one or more
1260 operands are constants.
1262 If simplification is possible, return the simplified RHS,
1263 otherwise return the original RHS or NULL_TREE. */
1266 ccp_fold (gimple
*stmt
)
1268 location_t loc
= gimple_location (stmt
);
1269 switch (gimple_code (stmt
))
1273 /* Handle comparison operators that can appear in GIMPLE form. */
1274 tree op0
= valueize_op (gimple_cond_lhs (stmt
));
1275 tree op1
= valueize_op (gimple_cond_rhs (stmt
));
1276 enum tree_code code
= gimple_cond_code (stmt
);
1277 return fold_binary_loc (loc
, code
, boolean_type_node
, op0
, op1
);
1282 /* Return the constant switch index. */
1283 return valueize_op (gimple_switch_index (as_a
<gswitch
*> (stmt
)));
1288 return gimple_fold_stmt_to_constant_1 (stmt
,
1289 valueize_op
, valueize_op_1
);
1296 /* Determine the minimum and maximum values, *MIN and *MAX respectively,
1297 represented by the mask pair VAL and MASK with signedness SGN and
1298 precision PRECISION. */
1301 value_mask_to_min_max (widest_int
*min
, widest_int
*max
,
1302 const widest_int
&val
, const widest_int
&mask
,
1303 signop sgn
, int precision
)
1305 *min
= wi::bit_and_not (val
, mask
);
1307 if (sgn
== SIGNED
&& wi::neg_p (mask
))
1309 widest_int sign_bit
= wi::lshift (1, precision
- 1);
1312 /* MAX is zero extended, and MIN is sign extended. */
1313 *min
= wi::ext (*min
, precision
, sgn
);
1314 *max
= wi::ext (*max
, precision
, sgn
);
1318 /* Apply the operation CODE in type TYPE to the value, mask pair
1319 RVAL and RMASK representing a value of type RTYPE and set
1320 the value, mask pair *VAL and *MASK to the result. */
1323 bit_value_unop (enum tree_code code
, signop type_sgn
, int type_precision
,
1324 widest_int
*val
, widest_int
*mask
,
1325 signop rtype_sgn
, int rtype_precision
,
1326 const widest_int
&rval
, const widest_int
&rmask
)
1337 widest_int temv
, temm
;
1338 /* Return ~rval + 1. */
1339 bit_value_unop (BIT_NOT_EXPR
, type_sgn
, type_precision
, &temv
, &temm
,
1340 type_sgn
, type_precision
, rval
, rmask
);
1341 bit_value_binop (PLUS_EXPR
, type_sgn
, type_precision
, val
, mask
,
1342 type_sgn
, type_precision
, temv
, temm
,
1343 type_sgn
, type_precision
, 1, 0);
1349 /* First extend mask and value according to the original type. */
1350 *mask
= wi::ext (rmask
, rtype_precision
, rtype_sgn
);
1351 *val
= wi::ext (rval
, rtype_precision
, rtype_sgn
);
1353 /* Then extend mask and value according to the target type. */
1354 *mask
= wi::ext (*mask
, type_precision
, type_sgn
);
1355 *val
= wi::ext (*val
, type_precision
, type_sgn
);
1361 if (wi::sext (rmask
, rtype_precision
) == -1)
1363 else if (wi::neg_p (rmask
))
1365 /* Result is either rval or -rval. */
1366 widest_int temv
, temm
;
1367 bit_value_unop (NEGATE_EXPR
, rtype_sgn
, rtype_precision
, &temv
,
1368 &temm
, type_sgn
, type_precision
, rval
, rmask
);
1369 temm
|= (rmask
| (rval
^ temv
));
1370 /* Extend the result. */
1371 *mask
= wi::ext (temm
, type_precision
, type_sgn
);
1372 *val
= wi::ext (temv
, type_precision
, type_sgn
);
1374 else if (wi::neg_p (rval
))
1376 bit_value_unop (NEGATE_EXPR
, type_sgn
, type_precision
, val
, mask
,
1377 type_sgn
, type_precision
, rval
, rmask
);
1392 /* Determine the mask pair *VAL and *MASK from multiplying the
1393 argument mask pair RVAL, RMASK by the unsigned constant C. */
1395 bit_value_mult_const (signop sgn
, int width
,
1396 widest_int
*val
, widest_int
*mask
,
1397 const widest_int
&rval
, const widest_int
&rmask
,
1400 widest_int sum_mask
= 0;
1402 /* Ensure rval_lo only contains known bits. */
1403 widest_int rval_lo
= wi::bit_and_not (rval
, rmask
);
1407 /* General case (some bits of multiplicand are known set). */
1408 widest_int sum_val
= 0;
1411 /* Determine the lowest bit set in the multiplier. */
1412 int bitpos
= wi::ctz (c
);
1413 widest_int term_mask
= rmask
<< bitpos
;
1414 widest_int term_val
= rval_lo
<< bitpos
;
1417 widest_int lo
= sum_val
+ term_val
;
1418 widest_int hi
= (sum_val
| sum_mask
) + (term_val
| term_mask
);
1419 sum_mask
|= term_mask
| (lo
^ hi
);
1422 /* Clear this bit in the multiplier. */
1423 c
^= wi::lshift (1, bitpos
);
1425 /* Correctly extend the result value. */
1426 *val
= wi::ext (sum_val
, width
, sgn
);
1430 /* Special case (no bits of multiplicand are known set). */
1433 /* Determine the lowest bit set in the multiplier. */
1434 int bitpos
= wi::ctz (c
);
1435 widest_int term_mask
= rmask
<< bitpos
;
1438 widest_int hi
= sum_mask
+ term_mask
;
1439 sum_mask
|= term_mask
| hi
;
1441 /* Clear this bit in the multiplier. */
1442 c
^= wi::lshift (1, bitpos
);
1447 /* Correctly extend the result mask. */
1448 *mask
= wi::ext (sum_mask
, width
, sgn
);
1451 /* Fill up to MAX values in the BITS array with values representing
1452 each of the non-zero bits in the value X. Returns the number of
1453 bits in X (capped at the maximum value MAX). For example, an X
1454 value 11, places 1, 2 and 8 in BITS and returns the value 3. */
1457 get_individual_bits (widest_int
*bits
, widest_int x
, unsigned int max
)
1459 unsigned int count
= 0;
1460 while (count
< max
&& x
!= 0)
1462 int bitpos
= wi::ctz (x
);
1463 bits
[count
] = wi::lshift (1, bitpos
);
1470 /* Array of 2^N - 1 values representing the bits flipped between
1471 consecutive Gray codes. This is used to efficiently enumerate
1472 all permutations on N bits using XOR. */
1473 static const unsigned char gray_code_bit_flips
[63] = {
1474 0, 1, 0, 2, 0, 1, 0, 3, 0, 1, 0, 2, 0, 1, 0, 4,
1475 0, 1, 0, 2, 0, 1, 0, 3, 0, 1, 0, 2, 0, 1, 0, 5,
1476 0, 1, 0, 2, 0, 1, 0, 3, 0, 1, 0, 2, 0, 1, 0, 4,
1477 0, 1, 0, 2, 0, 1, 0, 3, 0, 1, 0, 2, 0, 1, 0
1480 /* Apply the operation CODE in type TYPE to the value, mask pairs
1481 R1VAL, R1MASK and R2VAL, R2MASK representing a values of type R1TYPE
1482 and R2TYPE and set the value, mask pair *VAL and *MASK to the result. */
1485 bit_value_binop (enum tree_code code
, signop sgn
, int width
,
1486 widest_int
*val
, widest_int
*mask
,
1487 signop r1type_sgn
, int r1type_precision
,
1488 const widest_int
&r1val
, const widest_int
&r1mask
,
1489 signop r2type_sgn
, int r2type_precision ATTRIBUTE_UNUSED
,
1490 const widest_int
&r2val
, const widest_int
&r2mask
)
1492 bool swap_p
= false;
1494 /* Assume we'll get a constant result. Use an initial non varying
1495 value, we fall back to varying in the end if necessary. */
1497 /* Ensure that VAL is initialized (to any value). */
1503 /* The mask is constant where there is a known not
1504 set bit, (m1 | m2) & ((v1 | m1) & (v2 | m2)) */
1505 *mask
= (r1mask
| r2mask
) & (r1val
| r1mask
) & (r2val
| r2mask
);
1506 *val
= r1val
& r2val
;
1510 /* The mask is constant where there is a known
1511 set bit, (m1 | m2) & ~((v1 & ~m1) | (v2 & ~m2)). */
1512 *mask
= wi::bit_and_not (r1mask
| r2mask
,
1513 wi::bit_and_not (r1val
, r1mask
)
1514 | wi::bit_and_not (r2val
, r2mask
));
1515 *val
= r1val
| r2val
;
1520 *mask
= r1mask
| r2mask
;
1521 *val
= r1val
^ r2val
;
1528 widest_int shift
= r2val
;
1536 if (wi::neg_p (shift
, r2type_sgn
))
1539 if (code
== RROTATE_EXPR
)
1540 code
= LROTATE_EXPR
;
1542 code
= RROTATE_EXPR
;
1544 if (code
== RROTATE_EXPR
)
1546 *mask
= wi::rrotate (r1mask
, shift
, width
);
1547 *val
= wi::rrotate (r1val
, shift
, width
);
1551 *mask
= wi::lrotate (r1mask
, shift
, width
);
1552 *val
= wi::lrotate (r1val
, shift
, width
);
1556 else if (wi::ltu_p (r2val
| r2mask
, width
)
1557 && wi::popcount (r2mask
) <= 4)
1560 widest_int res_val
, res_mask
;
1561 widest_int tmp_val
, tmp_mask
;
1562 widest_int shift
= wi::bit_and_not (r2val
, r2mask
);
1563 unsigned int bit_count
= get_individual_bits (bits
, r2mask
, 4);
1564 unsigned int count
= (1 << bit_count
) - 1;
1566 /* Initialize result to rotate by smallest value of shift. */
1567 if (code
== RROTATE_EXPR
)
1569 res_mask
= wi::rrotate (r1mask
, shift
, width
);
1570 res_val
= wi::rrotate (r1val
, shift
, width
);
1574 res_mask
= wi::lrotate (r1mask
, shift
, width
);
1575 res_val
= wi::lrotate (r1val
, shift
, width
);
1578 /* Iterate through the remaining values of shift. */
1579 for (unsigned int i
=0; i
<count
; i
++)
1581 shift
^= bits
[gray_code_bit_flips
[i
]];
1582 if (code
== RROTATE_EXPR
)
1584 tmp_mask
= wi::rrotate (r1mask
, shift
, width
);
1585 tmp_val
= wi::rrotate (r1val
, shift
, width
);
1589 tmp_mask
= wi::lrotate (r1mask
, shift
, width
);
1590 tmp_val
= wi::lrotate (r1val
, shift
, width
);
1592 /* Accumulate the result. */
1593 res_mask
|= tmp_mask
| (res_val
^ tmp_val
);
1595 *val
= wi::bit_and_not (res_val
, res_mask
);
1602 /* ??? We can handle partially known shift counts if we know
1603 its sign. That way we can tell that (x << (y | 8)) & 255
1607 widest_int shift
= r2val
;
1615 if (wi::neg_p (shift
, r2type_sgn
))
1617 if (code
== RSHIFT_EXPR
)
1619 *mask
= wi::rshift (wi::ext (r1mask
, width
, sgn
), shift
, sgn
);
1620 *val
= wi::rshift (wi::ext (r1val
, width
, sgn
), shift
, sgn
);
1624 *mask
= wi::ext (r1mask
<< shift
, width
, sgn
);
1625 *val
= wi::ext (r1val
<< shift
, width
, sgn
);
1629 else if (wi::ltu_p (r2val
| r2mask
, width
))
1631 if (wi::popcount (r2mask
) <= 4)
1634 widest_int arg_val
, arg_mask
;
1635 widest_int res_val
, res_mask
;
1636 widest_int tmp_val
, tmp_mask
;
1637 widest_int shift
= wi::bit_and_not (r2val
, r2mask
);
1638 unsigned int bit_count
= get_individual_bits (bits
, r2mask
, 4);
1639 unsigned int count
= (1 << bit_count
) - 1;
1641 /* Initialize result to shift by smallest value of shift. */
1642 if (code
== RSHIFT_EXPR
)
1644 arg_mask
= wi::ext (r1mask
, width
, sgn
);
1645 arg_val
= wi::ext (r1val
, width
, sgn
);
1646 res_mask
= wi::rshift (arg_mask
, shift
, sgn
);
1647 res_val
= wi::rshift (arg_val
, shift
, sgn
);
1653 res_mask
= arg_mask
<< shift
;
1654 res_val
= arg_val
<< shift
;
1657 /* Iterate through the remaining values of shift. */
1658 for (unsigned int i
=0; i
<count
; i
++)
1660 shift
^= bits
[gray_code_bit_flips
[i
]];
1661 if (code
== RSHIFT_EXPR
)
1663 tmp_mask
= wi::rshift (arg_mask
, shift
, sgn
);
1664 tmp_val
= wi::rshift (arg_val
, shift
, sgn
);
1668 tmp_mask
= arg_mask
<< shift
;
1669 tmp_val
= arg_val
<< shift
;
1671 /* Accumulate the result. */
1672 res_mask
|= tmp_mask
| (res_val
^ tmp_val
);
1674 res_mask
= wi::ext (res_mask
, width
, sgn
);
1675 res_val
= wi::ext (res_val
, width
, sgn
);
1676 *val
= wi::bit_and_not (res_val
, res_mask
);
1679 else if ((r1val
| r1mask
) == 0)
1681 /* Handle shifts of zero to avoid undefined wi::ctz below. */
1685 else if (code
== LSHIFT_EXPR
)
1687 widest_int tmp
= wi::mask
<widest_int
> (width
, false);
1688 tmp
<<= wi::ctz (r1val
| r1mask
);
1689 tmp
<<= wi::bit_and_not (r2val
, r2mask
);
1690 *mask
= wi::ext (tmp
, width
, sgn
);
1693 else if (!wi::neg_p (r1val
| r1mask
, sgn
))
1695 /* Logical right shift, or zero sign bit. */
1696 widest_int arg
= r1val
| r1mask
;
1697 int lzcount
= wi::clz (arg
);
1699 lzcount
-= wi::get_precision (arg
) - width
;
1700 widest_int tmp
= wi::mask
<widest_int
> (width
, false);
1701 tmp
= wi::lrshift (tmp
, lzcount
);
1702 tmp
= wi::lrshift (tmp
, wi::bit_and_not (r2val
, r2mask
));
1703 *mask
= wi::ext (tmp
, width
, sgn
);
1706 else if (!wi::neg_p (r1mask
))
1708 /* Arithmetic right shift with set sign bit. */
1709 widest_int arg
= wi::bit_and_not (r1val
, r1mask
);
1710 int sbcount
= wi::clrsb (arg
);
1711 sbcount
-= wi::get_precision (arg
) - width
;
1712 widest_int tmp
= wi::mask
<widest_int
> (width
, false);
1713 tmp
= wi::lrshift (tmp
, sbcount
);
1714 tmp
= wi::lrshift (tmp
, wi::bit_and_not (r2val
, r2mask
));
1715 *mask
= wi::sext (tmp
, width
);
1716 tmp
= wi::bit_not (tmp
);
1717 *val
= wi::sext (tmp
, width
);
1723 case POINTER_PLUS_EXPR
:
1725 /* Do the addition with unknown bits set to zero, to give carry-ins of
1726 zero wherever possible. */
1727 widest_int lo
= (wi::bit_and_not (r1val
, r1mask
)
1728 + wi::bit_and_not (r2val
, r2mask
));
1729 lo
= wi::ext (lo
, width
, sgn
);
1730 /* Do the addition with unknown bits set to one, to give carry-ins of
1731 one wherever possible. */
1732 widest_int hi
= (r1val
| r1mask
) + (r2val
| r2mask
);
1733 hi
= wi::ext (hi
, width
, sgn
);
1734 /* Each bit in the result is known if (a) the corresponding bits in
1735 both inputs are known, and (b) the carry-in to that bit position
1736 is known. We can check condition (b) by seeing if we got the same
1737 result with minimised carries as with maximised carries. */
1738 *mask
= r1mask
| r2mask
| (lo
^ hi
);
1739 *mask
= wi::ext (*mask
, width
, sgn
);
1740 /* It shouldn't matter whether we choose lo or hi here. */
1746 case POINTER_DIFF_EXPR
:
1748 /* Subtraction is derived from the addition algorithm above. */
1749 widest_int lo
= wi::bit_and_not (r1val
, r1mask
) - (r2val
| r2mask
);
1750 lo
= wi::ext (lo
, width
, sgn
);
1751 widest_int hi
= (r1val
| r1mask
) - wi::bit_and_not (r2val
, r2mask
);
1752 hi
= wi::ext (hi
, width
, sgn
);
1753 *mask
= r1mask
| r2mask
| (lo
^ hi
);
1754 *mask
= wi::ext (*mask
, width
, sgn
);
1761 && !wi::neg_p (r2val
, sgn
)
1762 && (flag_expensive_optimizations
|| wi::popcount (r2val
) < 8))
1763 bit_value_mult_const (sgn
, width
, val
, mask
, r1val
, r1mask
, r2val
);
1764 else if (r1mask
== 0
1765 && !wi::neg_p (r1val
, sgn
)
1766 && (flag_expensive_optimizations
|| wi::popcount (r1val
) < 8))
1767 bit_value_mult_const (sgn
, width
, val
, mask
, r2val
, r2mask
, r1val
);
1770 /* Just track trailing zeros in both operands and transfer
1771 them to the other. */
1772 int r1tz
= wi::ctz (r1val
| r1mask
);
1773 int r2tz
= wi::ctz (r2val
| r2mask
);
1774 if (r1tz
+ r2tz
>= width
)
1779 else if (r1tz
+ r2tz
> 0)
1781 *mask
= wi::ext (wi::mask
<widest_int
> (r1tz
+ r2tz
, true),
1791 widest_int m
= r1mask
| r2mask
;
1792 if (wi::bit_and_not (r1val
, m
) != wi::bit_and_not (r2val
, m
))
1795 *val
= ((code
== EQ_EXPR
) ? 0 : 1);
1799 /* We know the result of a comparison is always one or zero. */
1809 code
= swap_tree_comparison (code
);
1814 widest_int min1
, max1
, min2
, max2
;
1817 const widest_int
&o1val
= swap_p
? r2val
: r1val
;
1818 const widest_int
&o1mask
= swap_p
? r2mask
: r1mask
;
1819 const widest_int
&o2val
= swap_p
? r1val
: r2val
;
1820 const widest_int
&o2mask
= swap_p
? r1mask
: r2mask
;
1822 value_mask_to_min_max (&min1
, &max1
, o1val
, o1mask
,
1823 r1type_sgn
, r1type_precision
);
1824 value_mask_to_min_max (&min2
, &max2
, o2val
, o2mask
,
1825 r1type_sgn
, r1type_precision
);
1827 /* For comparisons the signedness is in the comparison operands. */
1828 /* Do a cross comparison of the max/min pairs. */
1829 maxmin
= wi::cmp (max1
, min2
, r1type_sgn
);
1830 minmax
= wi::cmp (min1
, max2
, r1type_sgn
);
1831 if (maxmin
< (code
== LE_EXPR
? 1: 0)) /* o1 < or <= o2. */
1836 else if (minmax
> (code
== LT_EXPR
? -1 : 0)) /* o1 >= or > o2. */
1841 else if (maxmin
== minmax
) /* o1 and o2 are equal. */
1843 /* This probably should never happen as we'd have
1844 folded the thing during fully constant value folding. */
1846 *val
= (code
== LE_EXPR
? 1 : 0);
1850 /* We know the result of a comparison is always one or zero. */
1860 widest_int min1
, max1
, min2
, max2
;
1862 value_mask_to_min_max (&min1
, &max1
, r1val
, r1mask
, sgn
, width
);
1863 value_mask_to_min_max (&min2
, &max2
, r2val
, r2mask
, sgn
, width
);
1865 if (wi::cmp (max1
, min2
, sgn
) <= 0) /* r1 is less than r2. */
1867 if (code
== MIN_EXPR
)
1878 else if (wi::cmp (min1
, max2
, sgn
) >= 0) /* r2 is less than r1. */
1880 if (code
== MIN_EXPR
)
1893 /* The result is either r1 or r2. */
1894 *mask
= r1mask
| r2mask
| (r1val
^ r2val
);
1900 case TRUNC_MOD_EXPR
:
1902 widest_int r1max
= r1val
| r1mask
;
1903 widest_int r2max
= r2val
| r2mask
;
1905 || (!wi::neg_p (r1max
) && !wi::neg_p (r2max
)))
1907 /* Confirm R2 has some bits set, to avoid division by zero. */
1908 widest_int r2min
= wi::bit_and_not (r2val
, r2mask
);
1911 /* R1 % R2 is R1 if R1 is always less than R2. */
1912 if (wi::ltu_p (r1max
, r2min
))
1919 /* R1 % R2 is always less than the maximum of R2. */
1920 unsigned int lzcount
= wi::clz (r2max
);
1921 unsigned int bits
= wi::get_precision (r2max
) - lzcount
;
1922 if (r2max
== wi::lshift (1, bits
))
1924 *mask
= wi::mask
<widest_int
> (bits
, false);
1932 case TRUNC_DIV_EXPR
:
1934 widest_int r1max
= r1val
| r1mask
;
1935 widest_int r2max
= r2val
| r2mask
;
1937 || (!wi::neg_p (r1max
) && !wi::neg_p (r2max
)))
1939 /* Confirm R2 has some bits set, to avoid division by zero. */
1940 widest_int r2min
= wi::bit_and_not (r2val
, r2mask
);
1943 /* R1 / R2 is zero if R1 is always less than R2. */
1944 if (wi::ltu_p (r1max
, r2min
))
1951 widest_int upper
= wi::udiv_trunc (r1max
, r2min
);
1952 unsigned int lzcount
= wi::clz (upper
);
1953 unsigned int bits
= wi::get_precision (upper
) - lzcount
;
1954 *mask
= wi::mask
<widest_int
> (bits
, false);
1966 /* Return the propagation value when applying the operation CODE to
1967 the value RHS yielding type TYPE. */
1969 static ccp_prop_value_t
1970 bit_value_unop (enum tree_code code
, tree type
, tree rhs
)
1972 ccp_prop_value_t rval
= get_value_for_expr (rhs
, true);
1973 widest_int value
, mask
;
1974 ccp_prop_value_t val
;
1976 if (rval
.lattice_val
== UNDEFINED
)
1979 gcc_assert ((rval
.lattice_val
== CONSTANT
1980 && TREE_CODE (rval
.value
) == INTEGER_CST
)
1981 || wi::sext (rval
.mask
, TYPE_PRECISION (TREE_TYPE (rhs
))) == -1);
1982 bit_value_unop (code
, TYPE_SIGN (type
), TYPE_PRECISION (type
), &value
, &mask
,
1983 TYPE_SIGN (TREE_TYPE (rhs
)), TYPE_PRECISION (TREE_TYPE (rhs
)),
1984 value_to_wide_int (rval
), rval
.mask
);
1985 if (wi::sext (mask
, TYPE_PRECISION (type
)) != -1)
1987 val
.lattice_val
= CONSTANT
;
1989 /* ??? Delay building trees here. */
1990 val
.value
= wide_int_to_tree (type
, value
);
1994 val
.lattice_val
= VARYING
;
1995 val
.value
= NULL_TREE
;
2001 /* Return the propagation value when applying the operation CODE to
2002 the values RHS1 and RHS2 yielding type TYPE. */
2004 static ccp_prop_value_t
2005 bit_value_binop (enum tree_code code
, tree type
, tree rhs1
, tree rhs2
)
2007 ccp_prop_value_t r1val
= get_value_for_expr (rhs1
, true);
2008 ccp_prop_value_t r2val
= get_value_for_expr (rhs2
, true);
2009 widest_int value
, mask
;
2010 ccp_prop_value_t val
;
2012 if (r1val
.lattice_val
== UNDEFINED
2013 || r2val
.lattice_val
== UNDEFINED
)
2015 val
.lattice_val
= VARYING
;
2016 val
.value
= NULL_TREE
;
2021 gcc_assert ((r1val
.lattice_val
== CONSTANT
2022 && TREE_CODE (r1val
.value
) == INTEGER_CST
)
2023 || wi::sext (r1val
.mask
,
2024 TYPE_PRECISION (TREE_TYPE (rhs1
))) == -1);
2025 gcc_assert ((r2val
.lattice_val
== CONSTANT
2026 && TREE_CODE (r2val
.value
) == INTEGER_CST
)
2027 || wi::sext (r2val
.mask
,
2028 TYPE_PRECISION (TREE_TYPE (rhs2
))) == -1);
2029 bit_value_binop (code
, TYPE_SIGN (type
), TYPE_PRECISION (type
), &value
, &mask
,
2030 TYPE_SIGN (TREE_TYPE (rhs1
)), TYPE_PRECISION (TREE_TYPE (rhs1
)),
2031 value_to_wide_int (r1val
), r1val
.mask
,
2032 TYPE_SIGN (TREE_TYPE (rhs2
)), TYPE_PRECISION (TREE_TYPE (rhs2
)),
2033 value_to_wide_int (r2val
), r2val
.mask
);
2035 /* (x * x) & 2 == 0. */
2036 if (code
== MULT_EXPR
&& rhs1
== rhs2
&& TYPE_PRECISION (type
) > 1)
2039 if (wi::sext (mask
, TYPE_PRECISION (type
)) != -1)
2040 value
= wi::bit_and_not (value
, m
);
2043 mask
= wi::bit_and_not (mask
, m
);
2046 if (wi::sext (mask
, TYPE_PRECISION (type
)) != -1)
2048 val
.lattice_val
= CONSTANT
;
2050 /* ??? Delay building trees here. */
2051 val
.value
= wide_int_to_tree (type
, value
);
2055 val
.lattice_val
= VARYING
;
2056 val
.value
= NULL_TREE
;
2062 /* Return the propagation value for __builtin_assume_aligned
2063 and functions with assume_aligned or alloc_aligned attribute.
2064 For __builtin_assume_aligned, ATTR is NULL_TREE,
2065 for assume_aligned attribute ATTR is non-NULL and ALLOC_ALIGNED
2066 is false, for alloc_aligned attribute ATTR is non-NULL and
2067 ALLOC_ALIGNED is true. */
2069 static ccp_prop_value_t
2070 bit_value_assume_aligned (gimple
*stmt
, tree attr
, ccp_prop_value_t ptrval
,
2073 tree align
, misalign
= NULL_TREE
, type
;
2074 unsigned HOST_WIDE_INT aligni
, misaligni
= 0;
2075 ccp_prop_value_t alignval
;
2076 widest_int value
, mask
;
2077 ccp_prop_value_t val
;
2079 if (attr
== NULL_TREE
)
2081 tree ptr
= gimple_call_arg (stmt
, 0);
2082 type
= TREE_TYPE (ptr
);
2083 ptrval
= get_value_for_expr (ptr
, true);
2087 tree lhs
= gimple_call_lhs (stmt
);
2088 type
= TREE_TYPE (lhs
);
2091 if (ptrval
.lattice_val
== UNDEFINED
)
2093 gcc_assert ((ptrval
.lattice_val
== CONSTANT
2094 && TREE_CODE (ptrval
.value
) == INTEGER_CST
)
2095 || wi::sext (ptrval
.mask
, TYPE_PRECISION (type
)) == -1);
2096 if (attr
== NULL_TREE
)
2098 /* Get aligni and misaligni from __builtin_assume_aligned. */
2099 align
= gimple_call_arg (stmt
, 1);
2100 if (!tree_fits_uhwi_p (align
))
2102 aligni
= tree_to_uhwi (align
);
2103 if (gimple_call_num_args (stmt
) > 2)
2105 misalign
= gimple_call_arg (stmt
, 2);
2106 if (!tree_fits_uhwi_p (misalign
))
2108 misaligni
= tree_to_uhwi (misalign
);
2113 /* Get aligni and misaligni from assume_aligned or
2114 alloc_align attributes. */
2115 if (TREE_VALUE (attr
) == NULL_TREE
)
2117 attr
= TREE_VALUE (attr
);
2118 align
= TREE_VALUE (attr
);
2119 if (!tree_fits_uhwi_p (align
))
2121 aligni
= tree_to_uhwi (align
);
2124 if (aligni
== 0 || aligni
> gimple_call_num_args (stmt
))
2126 align
= gimple_call_arg (stmt
, aligni
- 1);
2127 if (!tree_fits_uhwi_p (align
))
2129 aligni
= tree_to_uhwi (align
);
2131 else if (TREE_CHAIN (attr
) && TREE_VALUE (TREE_CHAIN (attr
)))
2133 misalign
= TREE_VALUE (TREE_CHAIN (attr
));
2134 if (!tree_fits_uhwi_p (misalign
))
2136 misaligni
= tree_to_uhwi (misalign
);
2139 if (aligni
<= 1 || (aligni
& (aligni
- 1)) != 0 || misaligni
>= aligni
)
2142 align
= build_int_cst_type (type
, -aligni
);
2143 alignval
= get_value_for_expr (align
, true);
2144 bit_value_binop (BIT_AND_EXPR
, TYPE_SIGN (type
), TYPE_PRECISION (type
), &value
, &mask
,
2145 TYPE_SIGN (type
), TYPE_PRECISION (type
), value_to_wide_int (ptrval
), ptrval
.mask
,
2146 TYPE_SIGN (type
), TYPE_PRECISION (type
), value_to_wide_int (alignval
), alignval
.mask
);
2148 if (wi::sext (mask
, TYPE_PRECISION (type
)) != -1)
2150 val
.lattice_val
= CONSTANT
;
2152 gcc_assert ((mask
.to_uhwi () & (aligni
- 1)) == 0);
2153 gcc_assert ((value
.to_uhwi () & (aligni
- 1)) == 0);
2155 /* ??? Delay building trees here. */
2156 val
.value
= wide_int_to_tree (type
, value
);
2160 val
.lattice_val
= VARYING
;
2161 val
.value
= NULL_TREE
;
2167 /* Evaluate statement STMT.
2168 Valid only for assignments, calls, conditionals, and switches. */
2170 static ccp_prop_value_t
2171 evaluate_stmt (gimple
*stmt
)
2173 ccp_prop_value_t val
;
2174 tree simplified
= NULL_TREE
;
2175 ccp_lattice_t likelyvalue
= likely_value (stmt
);
2176 bool is_constant
= false;
2178 bool ignore_return_flags
= false;
2180 if (dump_file
&& (dump_flags
& TDF_DETAILS
))
2182 fprintf (dump_file
, "which is likely ");
2183 switch (likelyvalue
)
2186 fprintf (dump_file
, "CONSTANT");
2189 fprintf (dump_file
, "UNDEFINED");
2192 fprintf (dump_file
, "VARYING");
2196 fprintf (dump_file
, "\n");
2199 /* If the statement is likely to have a CONSTANT result, then try
2200 to fold the statement to determine the constant value. */
2201 /* FIXME. This is the only place that we call ccp_fold.
2202 Since likely_value never returns CONSTANT for calls, we will
2203 not attempt to fold them, including builtins that may profit. */
2204 if (likelyvalue
== CONSTANT
)
2206 fold_defer_overflow_warnings ();
2207 simplified
= ccp_fold (stmt
);
2209 && TREE_CODE (simplified
) == SSA_NAME
)
2211 /* We may not use values of something that may be simulated again,
2212 see valueize_op_1. */
2213 if (SSA_NAME_IS_DEFAULT_DEF (simplified
)
2214 || ! prop_simulate_again_p (SSA_NAME_DEF_STMT (simplified
)))
2216 ccp_prop_value_t
*val
= get_value (simplified
);
2217 if (val
&& val
->lattice_val
!= VARYING
)
2219 fold_undefer_overflow_warnings (true, stmt
, 0);
2224 /* We may also not place a non-valueized copy in the lattice
2225 as that might become stale if we never re-visit this stmt. */
2226 simplified
= NULL_TREE
;
2228 is_constant
= simplified
&& is_gimple_min_invariant (simplified
);
2229 fold_undefer_overflow_warnings (is_constant
, stmt
, 0);
2232 /* The statement produced a constant value. */
2233 val
.lattice_val
= CONSTANT
;
2234 val
.value
= simplified
;
2239 /* If the statement is likely to have a VARYING result, then do not
2240 bother folding the statement. */
2241 else if (likelyvalue
== VARYING
)
2243 enum gimple_code code
= gimple_code (stmt
);
2244 if (code
== GIMPLE_ASSIGN
)
2246 enum tree_code subcode
= gimple_assign_rhs_code (stmt
);
2248 /* Other cases cannot satisfy is_gimple_min_invariant
2250 if (get_gimple_rhs_class (subcode
) == GIMPLE_SINGLE_RHS
)
2251 simplified
= gimple_assign_rhs1 (stmt
);
2253 else if (code
== GIMPLE_SWITCH
)
2254 simplified
= gimple_switch_index (as_a
<gswitch
*> (stmt
));
2256 /* These cannot satisfy is_gimple_min_invariant without folding. */
2257 gcc_assert (code
== GIMPLE_CALL
|| code
== GIMPLE_COND
);
2258 is_constant
= simplified
&& is_gimple_min_invariant (simplified
);
2261 /* The statement produced a constant value. */
2262 val
.lattice_val
= CONSTANT
;
2263 val
.value
= simplified
;
2267 /* If the statement result is likely UNDEFINED, make it so. */
2268 else if (likelyvalue
== UNDEFINED
)
2270 val
.lattice_val
= UNDEFINED
;
2271 val
.value
= NULL_TREE
;
2276 /* Resort to simplification for bitwise tracking. */
2277 if (flag_tree_bit_ccp
2278 && (likelyvalue
== CONSTANT
|| is_gimple_call (stmt
)
2279 || (gimple_assign_single_p (stmt
)
2280 && gimple_assign_rhs_code (stmt
) == ADDR_EXPR
))
2283 enum gimple_code code
= gimple_code (stmt
);
2284 val
.lattice_val
= VARYING
;
2285 val
.value
= NULL_TREE
;
2287 if (code
== GIMPLE_ASSIGN
)
2289 enum tree_code subcode
= gimple_assign_rhs_code (stmt
);
2290 tree rhs1
= gimple_assign_rhs1 (stmt
);
2291 tree lhs
= gimple_assign_lhs (stmt
);
2292 if ((INTEGRAL_TYPE_P (TREE_TYPE (lhs
))
2293 || POINTER_TYPE_P (TREE_TYPE (lhs
)))
2294 && (INTEGRAL_TYPE_P (TREE_TYPE (rhs1
))
2295 || POINTER_TYPE_P (TREE_TYPE (rhs1
))))
2296 switch (get_gimple_rhs_class (subcode
))
2298 case GIMPLE_SINGLE_RHS
:
2299 val
= get_value_for_expr (rhs1
, true);
2302 case GIMPLE_UNARY_RHS
:
2303 val
= bit_value_unop (subcode
, TREE_TYPE (lhs
), rhs1
);
2306 case GIMPLE_BINARY_RHS
:
2307 val
= bit_value_binop (subcode
, TREE_TYPE (lhs
), rhs1
,
2308 gimple_assign_rhs2 (stmt
));
2314 else if (code
== GIMPLE_COND
)
2316 enum tree_code code
= gimple_cond_code (stmt
);
2317 tree rhs1
= gimple_cond_lhs (stmt
);
2318 tree rhs2
= gimple_cond_rhs (stmt
);
2319 if (INTEGRAL_TYPE_P (TREE_TYPE (rhs1
))
2320 || POINTER_TYPE_P (TREE_TYPE (rhs1
)))
2321 val
= bit_value_binop (code
, TREE_TYPE (rhs1
), rhs1
, rhs2
);
2323 else if (gimple_call_builtin_p (stmt
, BUILT_IN_NORMAL
))
2325 tree fndecl
= gimple_call_fndecl (stmt
);
2326 switch (DECL_FUNCTION_CODE (fndecl
))
2328 case BUILT_IN_MALLOC
:
2329 case BUILT_IN_REALLOC
:
2330 case BUILT_IN_CALLOC
:
2331 case BUILT_IN_STRDUP
:
2332 case BUILT_IN_STRNDUP
:
2333 val
.lattice_val
= CONSTANT
;
2334 val
.value
= build_int_cst (TREE_TYPE (gimple_get_lhs (stmt
)), 0);
2335 val
.mask
= ~((HOST_WIDE_INT
) MALLOC_ABI_ALIGNMENT
2336 / BITS_PER_UNIT
- 1);
2339 CASE_BUILT_IN_ALLOCA
:
2340 align
= (DECL_FUNCTION_CODE (fndecl
) == BUILT_IN_ALLOCA
2342 : TREE_INT_CST_LOW (gimple_call_arg (stmt
, 1)));
2343 val
.lattice_val
= CONSTANT
;
2344 val
.value
= build_int_cst (TREE_TYPE (gimple_get_lhs (stmt
)), 0);
2345 val
.mask
= ~((HOST_WIDE_INT
) align
/ BITS_PER_UNIT
- 1);
2348 case BUILT_IN_ASSUME_ALIGNED
:
2349 val
= bit_value_assume_aligned (stmt
, NULL_TREE
, val
, false);
2350 ignore_return_flags
= true;
2353 case BUILT_IN_ALIGNED_ALLOC
:
2354 case BUILT_IN_GOMP_ALLOC
:
2356 tree align
= get_constant_value (gimple_call_arg (stmt
, 0));
2358 && tree_fits_uhwi_p (align
))
2360 unsigned HOST_WIDE_INT aligni
= tree_to_uhwi (align
);
2362 /* align must be power-of-two */
2363 && (aligni
& (aligni
- 1)) == 0)
2365 val
.lattice_val
= CONSTANT
;
2366 val
.value
= build_int_cst (ptr_type_node
, 0);
2373 case BUILT_IN_BSWAP16
:
2374 case BUILT_IN_BSWAP32
:
2375 case BUILT_IN_BSWAP64
:
2376 case BUILT_IN_BSWAP128
:
2377 val
= get_value_for_expr (gimple_call_arg (stmt
, 0), true);
2378 if (val
.lattice_val
== UNDEFINED
)
2380 else if (val
.lattice_val
== CONSTANT
2382 && TREE_CODE (val
.value
) == INTEGER_CST
)
2384 tree type
= TREE_TYPE (gimple_call_lhs (stmt
));
2385 int prec
= TYPE_PRECISION (type
);
2386 wide_int wval
= wi::to_wide (val
.value
);
2388 = wide_int_to_tree (type
,
2389 wide_int::from (wval
, prec
,
2390 UNSIGNED
).bswap ());
2392 = widest_int::from (wide_int::from (val
.mask
, prec
,
2395 if (wi::sext (val
.mask
, prec
) != -1)
2398 val
.lattice_val
= VARYING
;
2399 val
.value
= NULL_TREE
;
2406 if (is_gimple_call (stmt
) && gimple_call_lhs (stmt
))
2408 tree fntype
= gimple_call_fntype (stmt
);
2411 tree attrs
= lookup_attribute ("assume_aligned",
2412 TYPE_ATTRIBUTES (fntype
));
2414 val
= bit_value_assume_aligned (stmt
, attrs
, val
, false);
2415 attrs
= lookup_attribute ("alloc_align",
2416 TYPE_ATTRIBUTES (fntype
));
2418 val
= bit_value_assume_aligned (stmt
, attrs
, val
, true);
2420 int flags
= ignore_return_flags
2421 ? 0 : gimple_call_return_flags (as_a
<gcall
*> (stmt
));
2422 if (flags
& ERF_RETURNS_ARG
2423 && (flags
& ERF_RETURN_ARG_MASK
) < gimple_call_num_args (stmt
))
2425 val
= get_value_for_expr
2426 (gimple_call_arg (stmt
,
2427 flags
& ERF_RETURN_ARG_MASK
), true);
2430 is_constant
= (val
.lattice_val
== CONSTANT
);
2433 if (flag_tree_bit_ccp
2434 && ((is_constant
&& TREE_CODE (val
.value
) == INTEGER_CST
)
2436 && gimple_get_lhs (stmt
)
2437 && TREE_CODE (gimple_get_lhs (stmt
)) == SSA_NAME
)
2439 tree lhs
= gimple_get_lhs (stmt
);
2440 wide_int nonzero_bits
= get_nonzero_bits (lhs
);
2441 if (nonzero_bits
!= -1)
2445 val
.lattice_val
= CONSTANT
;
2446 val
.value
= build_zero_cst (TREE_TYPE (lhs
));
2447 val
.mask
= extend_mask (nonzero_bits
, TYPE_SIGN (TREE_TYPE (lhs
)));
2452 if (wi::bit_and_not (wi::to_wide (val
.value
), nonzero_bits
) != 0)
2453 val
.value
= wide_int_to_tree (TREE_TYPE (lhs
),
2455 & wi::to_wide (val
.value
));
2456 if (nonzero_bits
== 0)
2459 val
.mask
= val
.mask
& extend_mask (nonzero_bits
,
2460 TYPE_SIGN (TREE_TYPE (lhs
)));
2465 /* The statement produced a nonconstant value. */
2468 /* The statement produced a copy. */
2469 if (simplified
&& TREE_CODE (simplified
) == SSA_NAME
2470 && !SSA_NAME_OCCURS_IN_ABNORMAL_PHI (simplified
))
2472 val
.lattice_val
= CONSTANT
;
2473 val
.value
= simplified
;
2476 /* The statement is VARYING. */
2479 val
.lattice_val
= VARYING
;
2480 val
.value
= NULL_TREE
;
2488 typedef hash_table
<nofree_ptr_hash
<gimple
> > gimple_htab
;
2490 /* Given a BUILT_IN_STACK_SAVE value SAVED_VAL, insert a clobber of VAR before
2491 each matching BUILT_IN_STACK_RESTORE. Mark visited phis in VISITED. */
2494 insert_clobber_before_stack_restore (tree saved_val
, tree var
,
2495 gimple_htab
**visited
)
2498 gassign
*clobber_stmt
;
2500 imm_use_iterator iter
;
2501 gimple_stmt_iterator i
;
2504 FOR_EACH_IMM_USE_STMT (stmt
, iter
, saved_val
)
2505 if (gimple_call_builtin_p (stmt
, BUILT_IN_STACK_RESTORE
))
2507 clobber
= build_clobber (TREE_TYPE (var
));
2508 clobber_stmt
= gimple_build_assign (var
, clobber
);
2510 i
= gsi_for_stmt (stmt
);
2511 gsi_insert_before (&i
, clobber_stmt
, GSI_SAME_STMT
);
2513 else if (gimple_code (stmt
) == GIMPLE_PHI
)
2516 *visited
= new gimple_htab (10);
2518 slot
= (*visited
)->find_slot (stmt
, INSERT
);
2523 insert_clobber_before_stack_restore (gimple_phi_result (stmt
), var
,
2526 else if (gimple_assign_ssa_name_copy_p (stmt
))
2527 insert_clobber_before_stack_restore (gimple_assign_lhs (stmt
), var
,
2531 /* Advance the iterator to the previous non-debug gimple statement in the same
2532 or dominating basic block. */
2535 gsi_prev_dom_bb_nondebug (gimple_stmt_iterator
*i
)
2539 gsi_prev_nondebug (i
);
2540 while (gsi_end_p (*i
))
2542 dom
= get_immediate_dominator (CDI_DOMINATORS
, gsi_bb (*i
));
2543 if (dom
== NULL
|| dom
== ENTRY_BLOCK_PTR_FOR_FN (cfun
))
2546 *i
= gsi_last_bb (dom
);
2550 /* Find a BUILT_IN_STACK_SAVE dominating gsi_stmt (I), and insert
2551 a clobber of VAR before each matching BUILT_IN_STACK_RESTORE.
2553 It is possible that BUILT_IN_STACK_SAVE cannot be found in a dominator when
2554 a previous pass (such as DOM) duplicated it along multiple paths to a BB.
2555 In that case the function gives up without inserting the clobbers. */
2558 insert_clobbers_for_var (gimple_stmt_iterator i
, tree var
)
2562 gimple_htab
*visited
= NULL
;
2564 for (; !gsi_end_p (i
); gsi_prev_dom_bb_nondebug (&i
))
2566 stmt
= gsi_stmt (i
);
2568 if (!gimple_call_builtin_p (stmt
, BUILT_IN_STACK_SAVE
))
2571 saved_val
= gimple_call_lhs (stmt
);
2572 if (saved_val
== NULL_TREE
)
2575 insert_clobber_before_stack_restore (saved_val
, var
, &visited
);
2582 /* Detects a __builtin_alloca_with_align with constant size argument. Declares
2583 fixed-size array and returns the address, if found, otherwise returns
2587 fold_builtin_alloca_with_align (gimple
*stmt
)
2589 unsigned HOST_WIDE_INT size
, threshold
, n_elem
;
2590 tree lhs
, arg
, block
, var
, elem_type
, array_type
;
2593 lhs
= gimple_call_lhs (stmt
);
2594 if (lhs
== NULL_TREE
)
2597 /* Detect constant argument. */
2598 arg
= get_constant_value (gimple_call_arg (stmt
, 0));
2599 if (arg
== NULL_TREE
2600 || TREE_CODE (arg
) != INTEGER_CST
2601 || !tree_fits_uhwi_p (arg
))
2604 size
= tree_to_uhwi (arg
);
2606 /* Heuristic: don't fold large allocas. */
2607 threshold
= (unsigned HOST_WIDE_INT
)param_large_stack_frame
;
2608 /* In case the alloca is located at function entry, it has the same lifetime
2609 as a declared array, so we allow a larger size. */
2610 block
= gimple_block (stmt
);
2611 if (!(cfun
->after_inlining
2613 && TREE_CODE (BLOCK_SUPERCONTEXT (block
)) == FUNCTION_DECL
))
2615 if (size
> threshold
)
2618 /* We have to be able to move points-to info. We used to assert
2619 that we can but IPA PTA might end up with two UIDs here
2620 as it might need to handle more than one instance being
2621 live at the same time. Instead of trying to detect this case
2622 (using the first UID would be OK) just give up for now. */
2623 struct ptr_info_def
*pi
= SSA_NAME_PTR_INFO (lhs
);
2627 && !pt_solution_singleton_or_null_p (&pi
->pt
, &uid
))
2630 /* Declare array. */
2631 elem_type
= build_nonstandard_integer_type (BITS_PER_UNIT
, 1);
2632 n_elem
= size
* 8 / BITS_PER_UNIT
;
2633 array_type
= build_array_type_nelts (elem_type
, n_elem
);
2635 if (tree ssa_name
= SSA_NAME_IDENTIFIER (lhs
))
2637 /* Give the temporary a name derived from the name of the VLA
2638 declaration so it can be referenced in diagnostics. */
2639 const char *name
= IDENTIFIER_POINTER (ssa_name
);
2640 var
= create_tmp_var (array_type
, name
);
2643 var
= create_tmp_var (array_type
);
2645 if (gimple
*lhsdef
= SSA_NAME_DEF_STMT (lhs
))
2647 /* Set the temporary's location to that of the VLA declaration
2648 so it can be pointed to in diagnostics. */
2649 location_t loc
= gimple_location (lhsdef
);
2650 DECL_SOURCE_LOCATION (var
) = loc
;
2653 SET_DECL_ALIGN (var
, TREE_INT_CST_LOW (gimple_call_arg (stmt
, 1)));
2655 SET_DECL_PT_UID (var
, uid
);
2657 /* Fold alloca to the address of the array. */
2658 return fold_convert (TREE_TYPE (lhs
), build_fold_addr_expr (var
));
2661 /* Fold the stmt at *GSI with CCP specific information that propagating
2662 and regular folding does not catch. */
2665 ccp_folder::fold_stmt (gimple_stmt_iterator
*gsi
)
2667 gimple
*stmt
= gsi_stmt (*gsi
);
2669 switch (gimple_code (stmt
))
2673 gcond
*cond_stmt
= as_a
<gcond
*> (stmt
);
2674 ccp_prop_value_t val
;
2675 /* Statement evaluation will handle type mismatches in constants
2676 more gracefully than the final propagation. This allows us to
2677 fold more conditionals here. */
2678 val
= evaluate_stmt (stmt
);
2679 if (val
.lattice_val
!= CONSTANT
2685 fprintf (dump_file
, "Folding predicate ");
2686 print_gimple_expr (dump_file
, stmt
, 0);
2687 fprintf (dump_file
, " to ");
2688 print_generic_expr (dump_file
, val
.value
);
2689 fprintf (dump_file
, "\n");
2692 if (integer_zerop (val
.value
))
2693 gimple_cond_make_false (cond_stmt
);
2695 gimple_cond_make_true (cond_stmt
);
2702 tree lhs
= gimple_call_lhs (stmt
);
2703 int flags
= gimple_call_flags (stmt
);
2706 bool changed
= false;
2709 /* If the call was folded into a constant make sure it goes
2710 away even if we cannot propagate into all uses because of
2713 && TREE_CODE (lhs
) == SSA_NAME
2714 && (val
= get_constant_value (lhs
))
2715 /* Don't optimize away calls that have side-effects. */
2716 && (flags
& (ECF_CONST
|ECF_PURE
)) != 0
2717 && (flags
& ECF_LOOPING_CONST_OR_PURE
) == 0)
2719 tree new_rhs
= unshare_expr (val
);
2720 if (!useless_type_conversion_p (TREE_TYPE (lhs
),
2721 TREE_TYPE (new_rhs
)))
2722 new_rhs
= fold_convert (TREE_TYPE (lhs
), new_rhs
);
2723 gimplify_and_update_call_from_tree (gsi
, new_rhs
);
2727 /* Internal calls provide no argument types, so the extra laxity
2728 for normal calls does not apply. */
2729 if (gimple_call_internal_p (stmt
))
2732 /* The heuristic of fold_builtin_alloca_with_align differs before and
2733 after inlining, so we don't require the arg to be changed into a
2734 constant for folding, but just to be constant. */
2735 if (gimple_call_builtin_p (stmt
, BUILT_IN_ALLOCA_WITH_ALIGN
)
2736 || gimple_call_builtin_p (stmt
, BUILT_IN_ALLOCA_WITH_ALIGN_AND_MAX
))
2738 tree new_rhs
= fold_builtin_alloca_with_align (stmt
);
2741 gimplify_and_update_call_from_tree (gsi
, new_rhs
);
2742 tree var
= TREE_OPERAND (TREE_OPERAND (new_rhs
, 0),0);
2743 insert_clobbers_for_var (*gsi
, var
);
2748 /* If there's no extra info from an assume_aligned call,
2749 drop it so it doesn't act as otherwise useless dataflow
2751 if (gimple_call_builtin_p (stmt
, BUILT_IN_ASSUME_ALIGNED
))
2753 tree ptr
= gimple_call_arg (stmt
, 0);
2754 ccp_prop_value_t ptrval
= get_value_for_expr (ptr
, true);
2755 if (ptrval
.lattice_val
== CONSTANT
2756 && TREE_CODE (ptrval
.value
) == INTEGER_CST
2757 && ptrval
.mask
!= 0)
2759 ccp_prop_value_t val
2760 = bit_value_assume_aligned (stmt
, NULL_TREE
, ptrval
, false);
2761 unsigned int ptralign
= least_bit_hwi (ptrval
.mask
.to_uhwi ());
2762 unsigned int align
= least_bit_hwi (val
.mask
.to_uhwi ());
2763 if (ptralign
== align
2764 && ((TREE_INT_CST_LOW (ptrval
.value
) & (align
- 1))
2765 == (TREE_INT_CST_LOW (val
.value
) & (align
- 1))))
2767 replace_call_with_value (gsi
, ptr
);
2773 /* Propagate into the call arguments. Compared to replace_uses_in
2774 this can use the argument slot types for type verification
2775 instead of the current argument type. We also can safely
2776 drop qualifiers here as we are dealing with constants anyway. */
2777 argt
= TYPE_ARG_TYPES (gimple_call_fntype (stmt
));
2778 for (i
= 0; i
< gimple_call_num_args (stmt
) && argt
;
2779 ++i
, argt
= TREE_CHAIN (argt
))
2781 tree arg
= gimple_call_arg (stmt
, i
);
2782 if (TREE_CODE (arg
) == SSA_NAME
2783 && (val
= get_constant_value (arg
))
2784 && useless_type_conversion_p
2785 (TYPE_MAIN_VARIANT (TREE_VALUE (argt
)),
2786 TYPE_MAIN_VARIANT (TREE_TYPE (val
))))
2788 gimple_call_set_arg (stmt
, i
, unshare_expr (val
));
2798 tree lhs
= gimple_assign_lhs (stmt
);
2801 /* If we have a load that turned out to be constant replace it
2802 as we cannot propagate into all uses in all cases. */
2803 if (gimple_assign_single_p (stmt
)
2804 && TREE_CODE (lhs
) == SSA_NAME
2805 && (val
= get_constant_value (lhs
)))
2807 tree rhs
= unshare_expr (val
);
2808 if (!useless_type_conversion_p (TREE_TYPE (lhs
), TREE_TYPE (rhs
)))
2809 rhs
= fold_build1 (VIEW_CONVERT_EXPR
, TREE_TYPE (lhs
), rhs
);
2810 gimple_assign_set_rhs_from_tree (gsi
, rhs
);
2822 /* Visit the assignment statement STMT. Set the value of its LHS to the
2823 value computed by the RHS and store LHS in *OUTPUT_P. If STMT
2824 creates virtual definitions, set the value of each new name to that
2825 of the RHS (if we can derive a constant out of the RHS).
2826 Value-returning call statements also perform an assignment, and
2827 are handled here. */
2829 static enum ssa_prop_result
2830 visit_assignment (gimple
*stmt
, tree
*output_p
)
2832 ccp_prop_value_t val
;
2833 enum ssa_prop_result retval
= SSA_PROP_NOT_INTERESTING
;
2835 tree lhs
= gimple_get_lhs (stmt
);
2836 if (TREE_CODE (lhs
) == SSA_NAME
)
2838 /* Evaluate the statement, which could be
2839 either a GIMPLE_ASSIGN or a GIMPLE_CALL. */
2840 val
= evaluate_stmt (stmt
);
2842 /* If STMT is an assignment to an SSA_NAME, we only have one
2844 if (set_lattice_value (lhs
, &val
))
2847 if (val
.lattice_val
== VARYING
)
2848 retval
= SSA_PROP_VARYING
;
2850 retval
= SSA_PROP_INTERESTING
;
2858 /* Visit the conditional statement STMT. Return SSA_PROP_INTERESTING
2859 if it can determine which edge will be taken. Otherwise, return
2860 SSA_PROP_VARYING. */
2862 static enum ssa_prop_result
2863 visit_cond_stmt (gimple
*stmt
, edge
*taken_edge_p
)
2865 ccp_prop_value_t val
;
2868 block
= gimple_bb (stmt
);
2869 val
= evaluate_stmt (stmt
);
2870 if (val
.lattice_val
!= CONSTANT
2872 return SSA_PROP_VARYING
;
2874 /* Find which edge out of the conditional block will be taken and add it
2875 to the worklist. If no single edge can be determined statically,
2876 return SSA_PROP_VARYING to feed all the outgoing edges to the
2877 propagation engine. */
2878 *taken_edge_p
= find_taken_edge (block
, val
.value
);
2880 return SSA_PROP_INTERESTING
;
2882 return SSA_PROP_VARYING
;
2886 /* Evaluate statement STMT. If the statement produces an output value and
2887 its evaluation changes the lattice value of its output, return
2888 SSA_PROP_INTERESTING and set *OUTPUT_P to the SSA_NAME holding the
2891 If STMT is a conditional branch and we can determine its truth
2892 value, set *TAKEN_EDGE_P accordingly. If STMT produces a varying
2893 value, return SSA_PROP_VARYING. */
2895 enum ssa_prop_result
2896 ccp_propagate::visit_stmt (gimple
*stmt
, edge
*taken_edge_p
, tree
*output_p
)
2901 if (dump_file
&& (dump_flags
& TDF_DETAILS
))
2903 fprintf (dump_file
, "\nVisiting statement:\n");
2904 print_gimple_stmt (dump_file
, stmt
, 0, dump_flags
);
2907 switch (gimple_code (stmt
))
2910 /* If the statement is an assignment that produces a single
2911 output value, evaluate its RHS to see if the lattice value of
2912 its output has changed. */
2913 return visit_assignment (stmt
, output_p
);
2916 /* A value-returning call also performs an assignment. */
2917 if (gimple_call_lhs (stmt
) != NULL_TREE
)
2918 return visit_assignment (stmt
, output_p
);
2923 /* If STMT is a conditional branch, see if we can determine
2924 which branch will be taken. */
2925 /* FIXME. It appears that we should be able to optimize
2926 computed GOTOs here as well. */
2927 return visit_cond_stmt (stmt
, taken_edge_p
);
2933 /* Any other kind of statement is not interesting for constant
2934 propagation and, therefore, not worth simulating. */
2935 if (dump_file
&& (dump_flags
& TDF_DETAILS
))
2936 fprintf (dump_file
, "No interesting values produced. Marked VARYING.\n");
2938 /* Definitions made by statements other than assignments to
2939 SSA_NAMEs represent unknown modifications to their outputs.
2940 Mark them VARYING. */
2941 FOR_EACH_SSA_TREE_OPERAND (def
, stmt
, iter
, SSA_OP_ALL_DEFS
)
2942 set_value_varying (def
);
2944 return SSA_PROP_VARYING
;
2948 /* Main entry point for SSA Conditional Constant Propagation. If NONZERO_P,
2949 record nonzero bits. */
2952 do_ssa_ccp (bool nonzero_p
)
2954 unsigned int todo
= 0;
2955 calculate_dominance_info (CDI_DOMINATORS
);
2958 class ccp_propagate ccp_propagate
;
2959 ccp_propagate
.ssa_propagate ();
2960 if (ccp_finalize (nonzero_p
|| flag_ipa_bit_cp
))
2962 todo
= (TODO_cleanup_cfg
| TODO_update_ssa
);
2964 /* ccp_finalize does not preserve loop-closed ssa. */
2965 loops_state_clear (LOOP_CLOSED_SSA
);
2968 free_dominance_info (CDI_DOMINATORS
);
2975 const pass_data pass_data_ccp
=
2977 GIMPLE_PASS
, /* type */
2979 OPTGROUP_NONE
, /* optinfo_flags */
2980 TV_TREE_CCP
, /* tv_id */
2981 ( PROP_cfg
| PROP_ssa
), /* properties_required */
2982 0, /* properties_provided */
2983 0, /* properties_destroyed */
2984 0, /* todo_flags_start */
2985 TODO_update_address_taken
, /* todo_flags_finish */
2988 class pass_ccp
: public gimple_opt_pass
2991 pass_ccp (gcc::context
*ctxt
)
2992 : gimple_opt_pass (pass_data_ccp
, ctxt
), nonzero_p (false)
2995 /* opt_pass methods: */
2996 opt_pass
* clone () { return new pass_ccp (m_ctxt
); }
2997 void set_pass_param (unsigned int n
, bool param
)
2999 gcc_assert (n
== 0);
3002 virtual bool gate (function
*) { return flag_tree_ccp
!= 0; }
3003 virtual unsigned int execute (function
*) { return do_ssa_ccp (nonzero_p
); }
3006 /* Determines whether the pass instance records nonzero bits. */
3008 }; // class pass_ccp
3013 make_pass_ccp (gcc::context
*ctxt
)
3015 return new pass_ccp (ctxt
);
3020 /* Try to optimize out __builtin_stack_restore. Optimize it out
3021 if there is another __builtin_stack_restore in the same basic
3022 block and no calls or ASM_EXPRs are in between, or if this block's
3023 only outgoing edge is to EXIT_BLOCK and there are no calls or
3024 ASM_EXPRs after this __builtin_stack_restore. */
3027 optimize_stack_restore (gimple_stmt_iterator i
)
3032 basic_block bb
= gsi_bb (i
);
3033 gimple
*call
= gsi_stmt (i
);
3035 if (gimple_code (call
) != GIMPLE_CALL
3036 || gimple_call_num_args (call
) != 1
3037 || TREE_CODE (gimple_call_arg (call
, 0)) != SSA_NAME
3038 || !POINTER_TYPE_P (TREE_TYPE (gimple_call_arg (call
, 0))))
3041 for (gsi_next (&i
); !gsi_end_p (i
); gsi_next (&i
))
3043 stmt
= gsi_stmt (i
);
3044 if (gimple_code (stmt
) == GIMPLE_ASM
)
3046 if (gimple_code (stmt
) != GIMPLE_CALL
)
3049 callee
= gimple_call_fndecl (stmt
);
3051 || !fndecl_built_in_p (callee
, BUILT_IN_NORMAL
)
3052 /* All regular builtins are ok, just obviously not alloca. */
3053 || ALLOCA_FUNCTION_CODE_P (DECL_FUNCTION_CODE (callee
)))
3056 if (fndecl_built_in_p (callee
, BUILT_IN_STACK_RESTORE
))
3057 goto second_stack_restore
;
3063 /* Allow one successor of the exit block, or zero successors. */
3064 switch (EDGE_COUNT (bb
->succs
))
3069 if (single_succ_edge (bb
)->dest
!= EXIT_BLOCK_PTR_FOR_FN (cfun
))
3075 second_stack_restore
:
3077 /* If there's exactly one use, then zap the call to __builtin_stack_save.
3078 If there are multiple uses, then the last one should remove the call.
3079 In any case, whether the call to __builtin_stack_save can be removed
3080 or not is irrelevant to removing the call to __builtin_stack_restore. */
3081 if (has_single_use (gimple_call_arg (call
, 0)))
3083 gimple
*stack_save
= SSA_NAME_DEF_STMT (gimple_call_arg (call
, 0));
3084 if (is_gimple_call (stack_save
))
3086 callee
= gimple_call_fndecl (stack_save
);
3087 if (callee
&& fndecl_built_in_p (callee
, BUILT_IN_STACK_SAVE
))
3089 gimple_stmt_iterator stack_save_gsi
;
3092 stack_save_gsi
= gsi_for_stmt (stack_save
);
3093 rhs
= build_int_cst (TREE_TYPE (gimple_call_arg (call
, 0)), 0);
3094 replace_call_with_value (&stack_save_gsi
, rhs
);
3099 /* No effect, so the statement will be deleted. */
3100 return integer_zero_node
;
3103 /* If va_list type is a simple pointer and nothing special is needed,
3104 optimize __builtin_va_start (&ap, 0) into ap = __builtin_next_arg (0),
3105 __builtin_va_end (&ap) out as NOP and __builtin_va_copy into a simple
3106 pointer assignment. */
3109 optimize_stdarg_builtin (gimple
*call
)
3111 tree callee
, lhs
, rhs
, cfun_va_list
;
3112 bool va_list_simple_ptr
;
3113 location_t loc
= gimple_location (call
);
3115 callee
= gimple_call_fndecl (call
);
3117 cfun_va_list
= targetm
.fn_abi_va_list (callee
);
3118 va_list_simple_ptr
= POINTER_TYPE_P (cfun_va_list
)
3119 && (TREE_TYPE (cfun_va_list
) == void_type_node
3120 || TREE_TYPE (cfun_va_list
) == char_type_node
);
3122 switch (DECL_FUNCTION_CODE (callee
))
3124 case BUILT_IN_VA_START
:
3125 if (!va_list_simple_ptr
3126 || targetm
.expand_builtin_va_start
!= NULL
3127 || !builtin_decl_explicit_p (BUILT_IN_NEXT_ARG
))
3130 if (gimple_call_num_args (call
) != 2)
3133 lhs
= gimple_call_arg (call
, 0);
3134 if (!POINTER_TYPE_P (TREE_TYPE (lhs
))
3135 || TYPE_MAIN_VARIANT (TREE_TYPE (TREE_TYPE (lhs
)))
3136 != TYPE_MAIN_VARIANT (cfun_va_list
))
3139 lhs
= build_fold_indirect_ref_loc (loc
, lhs
);
3140 rhs
= build_call_expr_loc (loc
, builtin_decl_explicit (BUILT_IN_NEXT_ARG
),
3141 1, integer_zero_node
);
3142 rhs
= fold_convert_loc (loc
, TREE_TYPE (lhs
), rhs
);
3143 return build2 (MODIFY_EXPR
, TREE_TYPE (lhs
), lhs
, rhs
);
3145 case BUILT_IN_VA_COPY
:
3146 if (!va_list_simple_ptr
)
3149 if (gimple_call_num_args (call
) != 2)
3152 lhs
= gimple_call_arg (call
, 0);
3153 if (!POINTER_TYPE_P (TREE_TYPE (lhs
))
3154 || TYPE_MAIN_VARIANT (TREE_TYPE (TREE_TYPE (lhs
)))
3155 != TYPE_MAIN_VARIANT (cfun_va_list
))
3158 lhs
= build_fold_indirect_ref_loc (loc
, lhs
);
3159 rhs
= gimple_call_arg (call
, 1);
3160 if (TYPE_MAIN_VARIANT (TREE_TYPE (rhs
))
3161 != TYPE_MAIN_VARIANT (cfun_va_list
))
3164 rhs
= fold_convert_loc (loc
, TREE_TYPE (lhs
), rhs
);
3165 return build2 (MODIFY_EXPR
, TREE_TYPE (lhs
), lhs
, rhs
);
3167 case BUILT_IN_VA_END
:
3168 /* No effect, so the statement will be deleted. */
3169 return integer_zero_node
;
3176 /* Attemp to make the block of __builtin_unreachable I unreachable by changing
3177 the incoming jumps. Return true if at least one jump was changed. */
3180 optimize_unreachable (gimple_stmt_iterator i
)
3182 basic_block bb
= gsi_bb (i
);
3183 gimple_stmt_iterator gsi
;
3189 if (flag_sanitize
& SANITIZE_UNREACHABLE
)
3192 for (gsi
= gsi_start_bb (bb
); !gsi_end_p (gsi
); gsi_next (&gsi
))
3194 stmt
= gsi_stmt (gsi
);
3196 if (is_gimple_debug (stmt
))
3199 if (glabel
*label_stmt
= dyn_cast
<glabel
*> (stmt
))
3201 /* Verify we do not need to preserve the label. */
3202 if (FORCED_LABEL (gimple_label_label (label_stmt
)))
3208 /* Only handle the case that __builtin_unreachable is the first statement
3209 in the block. We rely on DCE to remove stmts without side-effects
3210 before __builtin_unreachable. */
3211 if (gsi_stmt (gsi
) != gsi_stmt (i
))
3216 FOR_EACH_EDGE (e
, ei
, bb
->preds
)
3218 gsi
= gsi_last_bb (e
->src
);
3219 if (gsi_end_p (gsi
))
3222 stmt
= gsi_stmt (gsi
);
3223 if (gcond
*cond_stmt
= dyn_cast
<gcond
*> (stmt
))
3225 if (e
->flags
& EDGE_TRUE_VALUE
)
3226 gimple_cond_make_false (cond_stmt
);
3227 else if (e
->flags
& EDGE_FALSE_VALUE
)
3228 gimple_cond_make_true (cond_stmt
);
3231 update_stmt (cond_stmt
);
3235 /* Todo: handle other cases. Note that unreachable switch case
3236 statements have already been removed. */
3247 _1 = __atomic_fetch_or_* (ptr_6, 1, _3);
3251 _1 = __atomic_fetch_or_* (ptr_6, 1, _3);
3255 _1 = __atomic_fetch_and_* (ptr_6, ~1, _3);
3259 _1 = __atomic_fetch_and_* (ptr_6, ~1, _3);
3263 USE_STMT is the gimplt statement which uses the return value of
3264 __atomic_fetch_or_*. LHS is the return value of __atomic_fetch_or_*.
3265 MASK is the mask passed to __atomic_fetch_or_*.
3269 convert_atomic_bit_not (enum internal_fn fn
, gimple
*use_stmt
,
3270 tree lhs
, tree mask
)
3273 if (fn
== IFN_ATOMIC_BIT_TEST_AND_RESET
)
3275 /* MASK must be ~1. */
3276 if (!operand_equal_p (build_int_cst (TREE_TYPE (lhs
),
3277 ~HOST_WIDE_INT_1
), mask
, 0))
3279 and_mask
= build_int_cst (TREE_TYPE (lhs
), 1);
3283 /* MASK must be 1. */
3284 if (!operand_equal_p (build_int_cst (TREE_TYPE (lhs
), 1), mask
, 0))
3289 tree use_lhs
= gimple_assign_lhs (use_stmt
);
3291 use_operand_p use_p
;
3292 gimple
*use_not_stmt
;
3294 if (!single_imm_use (use_lhs
, &use_p
, &use_not_stmt
)
3295 || !is_gimple_assign (use_not_stmt
))
3298 if (!CONVERT_EXPR_CODE_P (gimple_assign_rhs_code (use_not_stmt
)))
3301 tree use_not_lhs
= gimple_assign_lhs (use_not_stmt
);
3302 if (TREE_CODE (TREE_TYPE (use_not_lhs
)) != BOOLEAN_TYPE
)
3305 gimple_stmt_iterator gsi
;
3306 gsi
= gsi_for_stmt (use_stmt
);
3307 gsi_remove (&gsi
, true);
3308 tree var
= make_ssa_name (TREE_TYPE (lhs
));
3309 use_stmt
= gimple_build_assign (var
, BIT_AND_EXPR
, lhs
, and_mask
);
3310 gsi
= gsi_for_stmt (use_not_stmt
);
3311 gsi_insert_before (&gsi
, use_stmt
, GSI_NEW_STMT
);
3312 lhs
= gimple_assign_lhs (use_not_stmt
);
3313 gimple
*g
= gimple_build_assign (lhs
, EQ_EXPR
, var
,
3314 build_zero_cst (TREE_TYPE (mask
)));
3315 gsi_insert_after (&gsi
, g
, GSI_NEW_STMT
);
3316 gsi
= gsi_for_stmt (use_not_stmt
);
3317 gsi_remove (&gsi
, true);
3321 /* match.pd function to match atomic_bit_test_and pattern which
3323 _1 = __atomic_fetch_or_4 (&v, 1, 0);
3327 extern bool gimple_nop_atomic_bit_test_and_p (tree
, tree
*,
3329 extern bool gimple_nop_convert (tree
, tree
*, tree (*) (tree
));
3332 mask_2 = 1 << cnt_1;
3333 _4 = __atomic_fetch_or_* (ptr_6, mask_2, _3);
3336 _4 = ATOMIC_BIT_TEST_AND_SET (ptr_6, cnt_1, 0, _3);
3338 If _5 is only used in _5 != 0 or _5 == 0 comparisons, 1
3339 is passed instead of 0, and the builtin just returns a zero
3340 or 1 value instead of the actual bit.
3341 Similarly for __sync_fetch_and_or_* (without the ", _3" part
3342 in there), and/or if mask_2 is a power of 2 constant.
3343 Similarly for xor instead of or, use ATOMIC_BIT_TEST_AND_COMPLEMENT
3344 in that case. And similarly for and instead of or, except that
3345 the second argument to the builtin needs to be one's complement
3346 of the mask instead of mask. */
3349 optimize_atomic_bit_test_and (gimple_stmt_iterator
*gsip
,
3350 enum internal_fn fn
, bool has_model_arg
,
3353 gimple
*call
= gsi_stmt (*gsip
);
3354 tree lhs
= gimple_call_lhs (call
);
3355 use_operand_p use_p
;
3360 if (!flag_inline_atomics
3362 || !gimple_call_builtin_p (call
, BUILT_IN_NORMAL
)
3364 || SSA_NAME_OCCURS_IN_ABNORMAL_PHI (lhs
)
3365 || !single_imm_use (lhs
, &use_p
, &use_stmt
)
3366 || !is_gimple_assign (use_stmt
)
3367 || !gimple_vdef (call
))
3372 case IFN_ATOMIC_BIT_TEST_AND_SET
:
3373 optab
= atomic_bit_test_and_set_optab
;
3375 case IFN_ATOMIC_BIT_TEST_AND_COMPLEMENT
:
3376 optab
= atomic_bit_test_and_complement_optab
;
3378 case IFN_ATOMIC_BIT_TEST_AND_RESET
:
3379 optab
= atomic_bit_test_and_reset_optab
;
3387 mask
= gimple_call_arg (call
, 1);
3388 tree_code rhs_code
= gimple_assign_rhs_code (use_stmt
);
3389 if (rhs_code
!= BIT_AND_EXPR
)
3391 if (rhs_code
!= NOP_EXPR
&& rhs_code
!= BIT_NOT_EXPR
)
3394 tree use_lhs
= gimple_assign_lhs (use_stmt
);
3395 if (TREE_CODE (use_lhs
) == SSA_NAME
3396 && SSA_NAME_OCCURS_IN_ABNORMAL_PHI (use_lhs
))
3399 tree use_rhs
= gimple_assign_rhs1 (use_stmt
);
3403 if (optab_handler (optab
, TYPE_MODE (TREE_TYPE (lhs
)))
3404 == CODE_FOR_nothing
)
3408 gimple_stmt_iterator gsi
;
3412 if (rhs_code
== BIT_NOT_EXPR
)
3414 g
= convert_atomic_bit_not (fn
, use_stmt
, lhs
, mask
);
3420 else if (TREE_CODE (TREE_TYPE (use_lhs
)) == BOOLEAN_TYPE
)
3423 if (fn
== IFN_ATOMIC_BIT_TEST_AND_RESET
)
3425 /* MASK must be ~1. */
3426 if (!operand_equal_p (build_int_cst (TREE_TYPE (lhs
),
3432 _1 = __atomic_fetch_and_* (ptr_6, ~1, _3);
3435 _1 = __atomic_fetch_and_* (ptr_6, ~1, _3);
3439 and_mask
= build_int_cst (TREE_TYPE (lhs
), 1);
3443 and_mask
= build_int_cst (TREE_TYPE (lhs
), 1);
3444 if (!operand_equal_p (and_mask
, mask
, 0))
3448 _1 = __atomic_fetch_or_* (ptr_6, 1, _3);
3451 _1 = __atomic_fetch_or_* (ptr_6, 1, _3);
3456 var
= make_ssa_name (TREE_TYPE (use_rhs
));
3457 replace_uses_by (use_rhs
, var
);
3458 g
= gimple_build_assign (var
, BIT_AND_EXPR
, use_rhs
,
3460 gsi
= gsi_for_stmt (use_stmt
);
3461 gsi_insert_before (&gsi
, g
, GSI_NEW_STMT
);
3465 else if (TYPE_PRECISION (TREE_TYPE (use_lhs
))
3466 <= TYPE_PRECISION (TREE_TYPE (use_rhs
)))
3468 gimple
*use_nop_stmt
;
3469 if (!single_imm_use (use_lhs
, &use_p
, &use_nop_stmt
)
3470 || !is_gimple_assign (use_nop_stmt
))
3472 tree use_nop_lhs
= gimple_assign_lhs (use_nop_stmt
);
3473 rhs_code
= gimple_assign_rhs_code (use_nop_stmt
);
3474 if (rhs_code
!= BIT_AND_EXPR
)
3476 if (TREE_CODE (use_nop_lhs
) == SSA_NAME
3477 && SSA_NAME_OCCURS_IN_ABNORMAL_PHI (use_nop_lhs
))
3479 if (rhs_code
== BIT_NOT_EXPR
)
3481 g
= convert_atomic_bit_not (fn
, use_nop_stmt
, lhs
,
3486 _1 = __atomic_fetch_or_4 (ptr_6, 1, _3);
3491 _1 = __atomic_fetch_or_4 (ptr_6, ~1, _3);
3495 _1 = __atomic_fetch_and_4 (ptr_6, ~1, _3);
3500 _1 = __atomic_fetch_and_4 (ptr_6, 1, _3);
3504 gsi
= gsi_for_stmt (use_stmt
);
3505 gsi_remove (&gsi
, true);
3511 if (TREE_CODE (TREE_TYPE (use_nop_lhs
)) != BOOLEAN_TYPE
)
3513 if (rhs_code
!= GE_EXPR
&& rhs_code
!= LT_EXPR
)
3515 tree cmp_rhs1
= gimple_assign_rhs1 (use_nop_stmt
);
3516 if (use_lhs
!= cmp_rhs1
)
3518 tree cmp_rhs2
= gimple_assign_rhs2 (use_nop_stmt
);
3519 if (!integer_zerop (cmp_rhs2
))
3524 unsigned HOST_WIDE_INT bytes
3525 = tree_to_uhwi (TYPE_SIZE_UNIT (TREE_TYPE (use_rhs
)));
3526 ibit
= bytes
* BITS_PER_UNIT
- 1;
3527 unsigned HOST_WIDE_INT highest
3528 = HOST_WIDE_INT_1U
<< ibit
;
3530 if (fn
== IFN_ATOMIC_BIT_TEST_AND_RESET
)
3532 /* Get the signed maximum of the USE_RHS type. */
3533 and_mask
= build_int_cst (TREE_TYPE (use_rhs
),
3535 if (!operand_equal_p (and_mask
, mask
, 0))
3539 _1 = __atomic_fetch_and_4 (ptr_6, 0x7fffffff, _3);
3540 _5 = (signed int) _1;
3541 _4 = _5 < 0 or _5 >= 0;
3543 _1 = __atomic_fetch_and_4 (ptr_6, 0x7fffffff, _3);
3544 _6 = _1 & 0x80000000;
3545 _4 = _6 != 0 or _6 == 0;
3547 and_mask
= build_int_cst (TREE_TYPE (use_rhs
),
3552 /* Get the signed minimum of the USE_RHS type. */
3553 and_mask
= build_int_cst (TREE_TYPE (use_rhs
),
3555 if (!operand_equal_p (and_mask
, mask
, 0))
3559 _1 = __atomic_fetch_or_4 (ptr_6, 0x80000000, _3);
3560 _5 = (signed int) _1;
3561 _4 = _5 < 0 or _5 >= 0;
3563 _1 = __atomic_fetch_or_4 (ptr_6, 0x80000000, _3);
3564 _6 = _1 & 0x80000000;
3565 _4 = _6 != 0 or _6 == 0;
3568 var
= make_ssa_name (TREE_TYPE (use_rhs
));
3569 gsi
= gsi_for_stmt (use_stmt
);
3570 gsi_remove (&gsi
, true);
3571 g
= gimple_build_assign (var
, BIT_AND_EXPR
, use_rhs
,
3573 gsi
= gsi_for_stmt (use_nop_stmt
);
3574 gsi_insert_before (&gsi
, g
, GSI_NEW_STMT
);
3576 g
= gimple_build_assign (use_nop_lhs
,
3577 (rhs_code
== GE_EXPR
3578 ? EQ_EXPR
: NE_EXPR
),
3580 build_zero_cst (TREE_TYPE (use_rhs
)));
3581 gsi_insert_after (&gsi
, g
, GSI_NEW_STMT
);
3582 gsi
= gsi_for_stmt (use_nop_stmt
);
3583 gsi_remove (&gsi
, true);
3590 if (!gimple_nop_atomic_bit_test_and_p (use_nop_lhs
,
3592 || SSA_NAME_OCCURS_IN_ABNORMAL_PHI (match_op
[2])
3593 || !single_imm_use (match_op
[2], &use_p
, &g
)
3594 || !is_gimple_assign (g
))
3597 if (TREE_CODE (match_op
[1]) == INTEGER_CST
)
3599 ibit
= tree_log2 (match_op
[1]);
3600 gcc_assert (ibit
>= 0);
3604 g
= SSA_NAME_DEF_STMT (match_op
[1]);
3605 gcc_assert (is_gimple_assign (g
));
3606 bit
= gimple_assign_rhs2 (g
);
3609 _1 = __atomic_fetch_or_4 (ptr_6, mask, _3);
3613 _1 = __atomic_fetch_or_4 (ptr_6, mask, _3);
3618 _2 = (unsigned int) _1;
3619 _3 = __atomic_fetch_and_4 (ptr_6, _2, 0);
3623 _1 = __atomic_fetch_and_* (ptr_6, ~mask_7, _3);
3628 _1 = __atomic_fetch_and_4 (ptr_6, ~mask, _3);
3629 _2 = (short int) _1;
3632 _1 = __atomic_fetch_and_4 (ptr_6, ~mask, _3);
3634 _5 = (short int) _8;
3636 gimple_seq stmts
= NULL
;
3637 match_op
[1] = gimple_convert (&stmts
,
3638 TREE_TYPE (use_rhs
),
3640 var
= gimple_build (&stmts
, BIT_AND_EXPR
,
3641 TREE_TYPE (use_rhs
), use_rhs
, match_op
[1]);
3642 gsi
= gsi_for_stmt (use_stmt
);
3643 gsi_remove (&gsi
, true);
3644 release_defs (use_stmt
);
3645 use_stmt
= gimple_seq_last_stmt (stmts
);
3646 gsi
= gsi_for_stmt (use_nop_stmt
);
3647 gsi_insert_seq_before (&gsi
, stmts
, GSI_SAME_STMT
);
3648 gimple_assign_set_rhs_with_ops (&gsi
, CONVERT_EXPR
, var
);
3649 update_stmt (use_nop_stmt
);
3659 bit
= build_int_cst (TREE_TYPE (lhs
), ibit
);
3662 else if (optab_handler (optab
, TYPE_MODE (TREE_TYPE (lhs
)))
3663 == CODE_FOR_nothing
)
3666 tree use_lhs
= gimple_assign_lhs (use_stmt
);
3672 if (TREE_CODE (mask
) == INTEGER_CST
)
3674 if (fn
== IFN_ATOMIC_BIT_TEST_AND_RESET
)
3675 mask
= const_unop (BIT_NOT_EXPR
, TREE_TYPE (mask
), mask
);
3676 mask
= fold_convert (TREE_TYPE (lhs
), mask
);
3677 int ibit
= tree_log2 (mask
);
3680 bit
= build_int_cst (TREE_TYPE (lhs
), ibit
);
3682 else if (TREE_CODE (mask
) == SSA_NAME
)
3684 gimple
*g
= SSA_NAME_DEF_STMT (mask
);
3686 if (gimple_nop_convert (mask
, &match_op
, NULL
))
3689 if (TREE_CODE (mask
) != SSA_NAME
)
3691 g
= SSA_NAME_DEF_STMT (mask
);
3693 if (!is_gimple_assign (g
))
3696 if (fn
== IFN_ATOMIC_BIT_TEST_AND_RESET
)
3698 if (gimple_assign_rhs_code (g
) != BIT_NOT_EXPR
)
3700 mask
= gimple_assign_rhs1 (g
);
3701 if (TREE_CODE (mask
) != SSA_NAME
)
3703 g
= SSA_NAME_DEF_STMT (mask
);
3706 rhs_code
= gimple_assign_rhs_code (g
);
3707 if (rhs_code
!= LSHIFT_EXPR
3708 || !integer_onep (gimple_assign_rhs1 (g
)))
3710 bit
= gimple_assign_rhs2 (g
);
3716 if (gimple_assign_rhs1 (use_stmt
) == lhs
)
3717 cmp_mask
= gimple_assign_rhs2 (use_stmt
);
3719 cmp_mask
= gimple_assign_rhs1 (use_stmt
);
3722 if (gimple_nop_convert (cmp_mask
, &match_op
, NULL
))
3723 cmp_mask
= match_op
;
3725 if (!operand_equal_p (cmp_mask
, mask
, 0))
3729 bool use_bool
= true;
3730 bool has_debug_uses
= false;
3731 imm_use_iterator iter
;
3734 if (SSA_NAME_OCCURS_IN_ABNORMAL_PHI (use_lhs
))
3736 FOR_EACH_IMM_USE_STMT (g
, iter
, use_lhs
)
3738 enum tree_code code
= ERROR_MARK
;
3739 tree op0
= NULL_TREE
, op1
= NULL_TREE
;
3740 if (is_gimple_debug (g
))
3742 has_debug_uses
= true;
3745 else if (is_gimple_assign (g
))
3746 switch (gimple_assign_rhs_code (g
))
3749 op1
= gimple_assign_rhs1 (g
);
3750 code
= TREE_CODE (op1
);
3751 op0
= TREE_OPERAND (op1
, 0);
3752 op1
= TREE_OPERAND (op1
, 1);
3756 code
= gimple_assign_rhs_code (g
);
3757 op0
= gimple_assign_rhs1 (g
);
3758 op1
= gimple_assign_rhs2 (g
);
3763 else if (gimple_code (g
) == GIMPLE_COND
)
3765 code
= gimple_cond_code (g
);
3766 op0
= gimple_cond_lhs (g
);
3767 op1
= gimple_cond_rhs (g
);
3770 if ((code
== EQ_EXPR
|| code
== NE_EXPR
)
3772 && integer_zerop (op1
))
3774 use_operand_p use_p
;
3776 FOR_EACH_IMM_USE_ON_STMT (use_p
, iter
)
3786 tree new_lhs
= make_ssa_name (TREE_TYPE (lhs
));
3787 tree flag
= build_int_cst (TREE_TYPE (lhs
), use_bool
);
3789 g
= gimple_build_call_internal (fn
, 4, gimple_call_arg (call
, 0),
3790 bit
, flag
, gimple_call_arg (call
, 2));
3792 g
= gimple_build_call_internal (fn
, 3, gimple_call_arg (call
, 0),
3794 gimple_call_set_lhs (g
, new_lhs
);
3795 gimple_set_location (g
, gimple_location (call
));
3796 gimple_move_vops (g
, call
);
3797 bool throws
= stmt_can_throw_internal (cfun
, call
);
3798 gimple_call_set_nothrow (as_a
<gcall
*> (g
),
3799 gimple_call_nothrow_p (as_a
<gcall
*> (call
)));
3800 gimple_stmt_iterator gsi
= *gsip
;
3801 gsi_insert_after (&gsi
, g
, GSI_NEW_STMT
);
3805 maybe_clean_or_replace_eh_stmt (call
, g
);
3806 if (after
|| (use_bool
&& has_debug_uses
))
3807 e
= find_fallthru_edge (gsi_bb (gsi
)->succs
);
3811 /* The internal function returns the value of the specified bit
3812 before the atomic operation. If we are interested in the value
3813 of the specified bit after the atomic operation (makes only sense
3814 for xor, otherwise the bit content is compile time known),
3815 we need to invert the bit. */
3816 tree mask_convert
= mask
;
3817 gimple_seq stmts
= NULL
;
3819 mask_convert
= gimple_convert (&stmts
, TREE_TYPE (lhs
), mask
);
3820 new_lhs
= gimple_build (&stmts
, BIT_XOR_EXPR
, TREE_TYPE (lhs
), new_lhs
,
3821 use_bool
? build_int_cst (TREE_TYPE (lhs
), 1)
3825 gsi_insert_seq_on_edge_immediate (e
, stmts
);
3826 gsi
= gsi_for_stmt (gimple_seq_last (stmts
));
3829 gsi_insert_seq_after (&gsi
, stmts
, GSI_NEW_STMT
);
3831 if (use_bool
&& has_debug_uses
)
3833 tree temp
= NULL_TREE
;
3834 if (!throws
|| after
|| single_pred_p (e
->dest
))
3836 temp
= build_debug_expr_decl (TREE_TYPE (lhs
));
3837 tree t
= build2 (LSHIFT_EXPR
, TREE_TYPE (lhs
), new_lhs
, bit
);
3838 g
= gimple_build_debug_bind (temp
, t
, g
);
3839 if (throws
&& !after
)
3841 gsi
= gsi_after_labels (e
->dest
);
3842 gsi_insert_before (&gsi
, g
, GSI_SAME_STMT
);
3845 gsi_insert_after (&gsi
, g
, GSI_NEW_STMT
);
3847 FOR_EACH_IMM_USE_STMT (g
, iter
, use_lhs
)
3848 if (is_gimple_debug (g
))
3850 use_operand_p use_p
;
3851 if (temp
== NULL_TREE
)
3852 gimple_debug_bind_reset_value (g
);
3854 FOR_EACH_IMM_USE_ON_STMT (use_p
, iter
)
3855 SET_USE (use_p
, temp
);
3859 SSA_NAME_OCCURS_IN_ABNORMAL_PHI (new_lhs
)
3860 = SSA_NAME_OCCURS_IN_ABNORMAL_PHI (use_lhs
);
3861 replace_uses_by (use_lhs
, new_lhs
);
3862 gsi
= gsi_for_stmt (use_stmt
);
3863 gsi_remove (&gsi
, true);
3864 release_defs (use_stmt
);
3865 gsi_remove (gsip
, true);
3866 release_ssa_name (lhs
);
3875 Similarly for memset (&a, ..., sizeof (a)); instead of a = {};
3876 and/or memcpy (&b, &a, sizeof (a)); instead of b = a; */
3879 optimize_memcpy (gimple_stmt_iterator
*gsip
, tree dest
, tree src
, tree len
)
3881 gimple
*stmt
= gsi_stmt (*gsip
);
3882 if (gimple_has_volatile_ops (stmt
))
3885 tree vuse
= gimple_vuse (stmt
);
3889 gimple
*defstmt
= SSA_NAME_DEF_STMT (vuse
);
3890 tree src2
= NULL_TREE
, len2
= NULL_TREE
;
3891 poly_int64 offset
, offset2
;
3892 tree val
= integer_zero_node
;
3893 if (gimple_store_p (defstmt
)
3894 && gimple_assign_single_p (defstmt
)
3895 && TREE_CODE (gimple_assign_rhs1 (defstmt
)) == CONSTRUCTOR
3896 && !gimple_clobber_p (defstmt
))
3897 src2
= gimple_assign_lhs (defstmt
);
3898 else if (gimple_call_builtin_p (defstmt
, BUILT_IN_MEMSET
)
3899 && TREE_CODE (gimple_call_arg (defstmt
, 0)) == ADDR_EXPR
3900 && TREE_CODE (gimple_call_arg (defstmt
, 1)) == INTEGER_CST
)
3902 src2
= TREE_OPERAND (gimple_call_arg (defstmt
, 0), 0);
3903 len2
= gimple_call_arg (defstmt
, 2);
3904 val
= gimple_call_arg (defstmt
, 1);
3905 /* For non-0 val, we'd have to transform stmt from assignment
3906 into memset (only if dest is addressable). */
3907 if (!integer_zerop (val
) && is_gimple_assign (stmt
))
3911 if (src2
== NULL_TREE
)
3914 if (len
== NULL_TREE
)
3915 len
= (TREE_CODE (src
) == COMPONENT_REF
3916 ? DECL_SIZE_UNIT (TREE_OPERAND (src
, 1))
3917 : TYPE_SIZE_UNIT (TREE_TYPE (src
)));
3918 if (len2
== NULL_TREE
)
3919 len2
= (TREE_CODE (src2
) == COMPONENT_REF
3920 ? DECL_SIZE_UNIT (TREE_OPERAND (src2
, 1))
3921 : TYPE_SIZE_UNIT (TREE_TYPE (src2
)));
3922 if (len
== NULL_TREE
3923 || !poly_int_tree_p (len
)
3924 || len2
== NULL_TREE
3925 || !poly_int_tree_p (len2
))
3928 src
= get_addr_base_and_unit_offset (src
, &offset
);
3929 src2
= get_addr_base_and_unit_offset (src2
, &offset2
);
3930 if (src
== NULL_TREE
3931 || src2
== NULL_TREE
3932 || maybe_lt (offset
, offset2
))
3935 if (!operand_equal_p (src
, src2
, 0))
3938 /* [ src + offset2, src + offset2 + len2 - 1 ] is set to val.
3940 [ src + offset, src + offset + len - 1 ] is a subset of that. */
3941 if (maybe_gt (wi::to_poly_offset (len
) + (offset
- offset2
),
3942 wi::to_poly_offset (len2
)))
3945 if (dump_file
&& (dump_flags
& TDF_DETAILS
))
3947 fprintf (dump_file
, "Simplified\n ");
3948 print_gimple_stmt (dump_file
, stmt
, 0, dump_flags
);
3949 fprintf (dump_file
, "after previous\n ");
3950 print_gimple_stmt (dump_file
, defstmt
, 0, dump_flags
);
3953 /* For simplicity, don't change the kind of the stmt,
3954 turn dest = src; into dest = {}; and memcpy (&dest, &src, len);
3955 into memset (&dest, val, len);
3956 In theory we could change dest = src into memset if dest
3957 is addressable (maybe beneficial if val is not 0), or
3958 memcpy (&dest, &src, len) into dest = {} if len is the size
3959 of dest, dest isn't volatile. */
3960 if (is_gimple_assign (stmt
))
3962 tree ctor
= build_constructor (TREE_TYPE (dest
), NULL
);
3963 gimple_assign_set_rhs_from_tree (gsip
, ctor
);
3966 else /* If stmt is memcpy, transform it into memset. */
3968 gcall
*call
= as_a
<gcall
*> (stmt
);
3969 tree fndecl
= builtin_decl_implicit (BUILT_IN_MEMSET
);
3970 gimple_call_set_fndecl (call
, fndecl
);
3971 gimple_call_set_fntype (call
, TREE_TYPE (fndecl
));
3972 gimple_call_set_arg (call
, 1, val
);
3976 if (dump_file
&& (dump_flags
& TDF_DETAILS
))
3978 fprintf (dump_file
, "into\n ");
3979 print_gimple_stmt (dump_file
, stmt
, 0, dump_flags
);
3983 /* A simple pass that attempts to fold all builtin functions. This pass
3984 is run after we've propagated as many constants as we can. */
3988 const pass_data pass_data_fold_builtins
=
3990 GIMPLE_PASS
, /* type */
3992 OPTGROUP_NONE
, /* optinfo_flags */
3993 TV_NONE
, /* tv_id */
3994 ( PROP_cfg
| PROP_ssa
), /* properties_required */
3995 0, /* properties_provided */
3996 0, /* properties_destroyed */
3997 0, /* todo_flags_start */
3998 TODO_update_ssa
, /* todo_flags_finish */
4001 class pass_fold_builtins
: public gimple_opt_pass
4004 pass_fold_builtins (gcc::context
*ctxt
)
4005 : gimple_opt_pass (pass_data_fold_builtins
, ctxt
)
4008 /* opt_pass methods: */
4009 opt_pass
* clone () { return new pass_fold_builtins (m_ctxt
); }
4010 virtual unsigned int execute (function
*);
4012 }; // class pass_fold_builtins
4015 pass_fold_builtins::execute (function
*fun
)
4017 bool cfg_changed
= false;
4019 unsigned int todoflags
= 0;
4021 FOR_EACH_BB_FN (bb
, fun
)
4023 gimple_stmt_iterator i
;
4024 for (i
= gsi_start_bb (bb
); !gsi_end_p (i
); )
4026 gimple
*stmt
, *old_stmt
;
4028 enum built_in_function fcode
;
4030 stmt
= gsi_stmt (i
);
4032 if (gimple_code (stmt
) != GIMPLE_CALL
)
4034 /* Remove all *ssaname_N ={v} {CLOBBER}; stmts,
4035 after the last GIMPLE DSE they aren't needed and might
4036 unnecessarily keep the SSA_NAMEs live. */
4037 if (gimple_clobber_p (stmt
))
4039 tree lhs
= gimple_assign_lhs (stmt
);
4040 if (TREE_CODE (lhs
) == MEM_REF
4041 && TREE_CODE (TREE_OPERAND (lhs
, 0)) == SSA_NAME
)
4043 unlink_stmt_vdef (stmt
);
4044 gsi_remove (&i
, true);
4045 release_defs (stmt
);
4049 else if (gimple_assign_load_p (stmt
) && gimple_store_p (stmt
))
4050 optimize_memcpy (&i
, gimple_assign_lhs (stmt
),
4051 gimple_assign_rhs1 (stmt
), NULL_TREE
);
4056 callee
= gimple_call_fndecl (stmt
);
4057 if (!callee
|| !fndecl_built_in_p (callee
, BUILT_IN_NORMAL
))
4063 fcode
= DECL_FUNCTION_CODE (callee
);
4068 tree result
= NULL_TREE
;
4069 switch (DECL_FUNCTION_CODE (callee
))
4071 case BUILT_IN_CONSTANT_P
:
4072 /* Resolve __builtin_constant_p. If it hasn't been
4073 folded to integer_one_node by now, it's fairly
4074 certain that the value simply isn't constant. */
4075 result
= integer_zero_node
;
4078 case BUILT_IN_ASSUME_ALIGNED
:
4079 /* Remove __builtin_assume_aligned. */
4080 result
= gimple_call_arg (stmt
, 0);
4083 case BUILT_IN_STACK_RESTORE
:
4084 result
= optimize_stack_restore (i
);
4090 case BUILT_IN_UNREACHABLE
:
4091 if (optimize_unreachable (i
))
4095 case BUILT_IN_ATOMIC_FETCH_OR_1
:
4096 case BUILT_IN_ATOMIC_FETCH_OR_2
:
4097 case BUILT_IN_ATOMIC_FETCH_OR_4
:
4098 case BUILT_IN_ATOMIC_FETCH_OR_8
:
4099 case BUILT_IN_ATOMIC_FETCH_OR_16
:
4100 optimize_atomic_bit_test_and (&i
,
4101 IFN_ATOMIC_BIT_TEST_AND_SET
,
4104 case BUILT_IN_SYNC_FETCH_AND_OR_1
:
4105 case BUILT_IN_SYNC_FETCH_AND_OR_2
:
4106 case BUILT_IN_SYNC_FETCH_AND_OR_4
:
4107 case BUILT_IN_SYNC_FETCH_AND_OR_8
:
4108 case BUILT_IN_SYNC_FETCH_AND_OR_16
:
4109 optimize_atomic_bit_test_and (&i
,
4110 IFN_ATOMIC_BIT_TEST_AND_SET
,
4114 case BUILT_IN_ATOMIC_FETCH_XOR_1
:
4115 case BUILT_IN_ATOMIC_FETCH_XOR_2
:
4116 case BUILT_IN_ATOMIC_FETCH_XOR_4
:
4117 case BUILT_IN_ATOMIC_FETCH_XOR_8
:
4118 case BUILT_IN_ATOMIC_FETCH_XOR_16
:
4119 optimize_atomic_bit_test_and
4120 (&i
, IFN_ATOMIC_BIT_TEST_AND_COMPLEMENT
, true, false);
4122 case BUILT_IN_SYNC_FETCH_AND_XOR_1
:
4123 case BUILT_IN_SYNC_FETCH_AND_XOR_2
:
4124 case BUILT_IN_SYNC_FETCH_AND_XOR_4
:
4125 case BUILT_IN_SYNC_FETCH_AND_XOR_8
:
4126 case BUILT_IN_SYNC_FETCH_AND_XOR_16
:
4127 optimize_atomic_bit_test_and
4128 (&i
, IFN_ATOMIC_BIT_TEST_AND_COMPLEMENT
, false, false);
4131 case BUILT_IN_ATOMIC_XOR_FETCH_1
:
4132 case BUILT_IN_ATOMIC_XOR_FETCH_2
:
4133 case BUILT_IN_ATOMIC_XOR_FETCH_4
:
4134 case BUILT_IN_ATOMIC_XOR_FETCH_8
:
4135 case BUILT_IN_ATOMIC_XOR_FETCH_16
:
4136 optimize_atomic_bit_test_and
4137 (&i
, IFN_ATOMIC_BIT_TEST_AND_COMPLEMENT
, true, true);
4139 case BUILT_IN_SYNC_XOR_AND_FETCH_1
:
4140 case BUILT_IN_SYNC_XOR_AND_FETCH_2
:
4141 case BUILT_IN_SYNC_XOR_AND_FETCH_4
:
4142 case BUILT_IN_SYNC_XOR_AND_FETCH_8
:
4143 case BUILT_IN_SYNC_XOR_AND_FETCH_16
:
4144 optimize_atomic_bit_test_and
4145 (&i
, IFN_ATOMIC_BIT_TEST_AND_COMPLEMENT
, false, true);
4148 case BUILT_IN_ATOMIC_FETCH_AND_1
:
4149 case BUILT_IN_ATOMIC_FETCH_AND_2
:
4150 case BUILT_IN_ATOMIC_FETCH_AND_4
:
4151 case BUILT_IN_ATOMIC_FETCH_AND_8
:
4152 case BUILT_IN_ATOMIC_FETCH_AND_16
:
4153 optimize_atomic_bit_test_and (&i
,
4154 IFN_ATOMIC_BIT_TEST_AND_RESET
,
4157 case BUILT_IN_SYNC_FETCH_AND_AND_1
:
4158 case BUILT_IN_SYNC_FETCH_AND_AND_2
:
4159 case BUILT_IN_SYNC_FETCH_AND_AND_4
:
4160 case BUILT_IN_SYNC_FETCH_AND_AND_8
:
4161 case BUILT_IN_SYNC_FETCH_AND_AND_16
:
4162 optimize_atomic_bit_test_and (&i
,
4163 IFN_ATOMIC_BIT_TEST_AND_RESET
,
4167 case BUILT_IN_MEMCPY
:
4168 if (gimple_call_builtin_p (stmt
, BUILT_IN_NORMAL
)
4169 && TREE_CODE (gimple_call_arg (stmt
, 0)) == ADDR_EXPR
4170 && TREE_CODE (gimple_call_arg (stmt
, 1)) == ADDR_EXPR
4171 && TREE_CODE (gimple_call_arg (stmt
, 2)) == INTEGER_CST
)
4173 tree dest
= TREE_OPERAND (gimple_call_arg (stmt
, 0), 0);
4174 tree src
= TREE_OPERAND (gimple_call_arg (stmt
, 1), 0);
4175 tree len
= gimple_call_arg (stmt
, 2);
4176 optimize_memcpy (&i
, dest
, src
, len
);
4180 case BUILT_IN_VA_START
:
4181 case BUILT_IN_VA_END
:
4182 case BUILT_IN_VA_COPY
:
4183 /* These shouldn't be folded before pass_stdarg. */
4184 result
= optimize_stdarg_builtin (stmt
);
4196 gimplify_and_update_call_from_tree (&i
, result
);
4199 todoflags
|= TODO_update_address_taken
;
4201 if (dump_file
&& (dump_flags
& TDF_DETAILS
))
4203 fprintf (dump_file
, "Simplified\n ");
4204 print_gimple_stmt (dump_file
, stmt
, 0, dump_flags
);
4208 stmt
= gsi_stmt (i
);
4211 if (maybe_clean_or_replace_eh_stmt (old_stmt
, stmt
)
4212 && gimple_purge_dead_eh_edges (bb
))
4215 if (dump_file
&& (dump_flags
& TDF_DETAILS
))
4217 fprintf (dump_file
, "to\n ");
4218 print_gimple_stmt (dump_file
, stmt
, 0, dump_flags
);
4219 fprintf (dump_file
, "\n");
4222 /* Retry the same statement if it changed into another
4223 builtin, there might be new opportunities now. */
4224 if (gimple_code (stmt
) != GIMPLE_CALL
)
4229 callee
= gimple_call_fndecl (stmt
);
4231 || !fndecl_built_in_p (callee
, fcode
))
4236 /* Delete unreachable blocks. */
4238 todoflags
|= TODO_cleanup_cfg
;
4246 make_pass_fold_builtins (gcc::context
*ctxt
)
4248 return new pass_fold_builtins (ctxt
);
4251 /* A simple pass that emits some warnings post IPA. */
4255 const pass_data pass_data_post_ipa_warn
=
4257 GIMPLE_PASS
, /* type */
4258 "post_ipa_warn", /* name */
4259 OPTGROUP_NONE
, /* optinfo_flags */
4260 TV_NONE
, /* tv_id */
4261 ( PROP_cfg
| PROP_ssa
), /* properties_required */
4262 0, /* properties_provided */
4263 0, /* properties_destroyed */
4264 0, /* todo_flags_start */
4265 0, /* todo_flags_finish */
4268 class pass_post_ipa_warn
: public gimple_opt_pass
4271 pass_post_ipa_warn (gcc::context
*ctxt
)
4272 : gimple_opt_pass (pass_data_post_ipa_warn
, ctxt
)
4275 /* opt_pass methods: */
4276 opt_pass
* clone () { return new pass_post_ipa_warn (m_ctxt
); }
4277 virtual bool gate (function
*) { return warn_nonnull
!= 0; }
4278 virtual unsigned int execute (function
*);
4280 }; // class pass_fold_builtins
4283 pass_post_ipa_warn::execute (function
*fun
)
4287 FOR_EACH_BB_FN (bb
, fun
)
4289 gimple_stmt_iterator gsi
;
4290 for (gsi
= gsi_start_bb (bb
); !gsi_end_p (gsi
); gsi_next (&gsi
))
4292 gimple
*stmt
= gsi_stmt (gsi
);
4293 if (!is_gimple_call (stmt
) || warning_suppressed_p (stmt
, OPT_Wnonnull
))
4296 tree fntype
= gimple_call_fntype (stmt
);
4297 bitmap nonnullargs
= get_nonnull_args (fntype
);
4301 tree fndecl
= gimple_call_fndecl (stmt
);
4302 const bool closure
= fndecl
&& DECL_LAMBDA_FUNCTION_P (fndecl
);
4304 for (unsigned i
= 0; i
< gimple_call_num_args (stmt
); i
++)
4306 tree arg
= gimple_call_arg (stmt
, i
);
4307 if (TREE_CODE (TREE_TYPE (arg
)) != POINTER_TYPE
)
4309 if (!integer_zerop (arg
))
4311 if (i
== 0 && closure
)
4312 /* Avoid warning for the first argument to lambda functions. */
4314 if (!bitmap_empty_p (nonnullargs
)
4315 && !bitmap_bit_p (nonnullargs
, i
))
4318 /* In C++ non-static member functions argument 0 refers
4319 to the implicit this pointer. Use the same one-based
4320 numbering for ordinary arguments. */
4321 unsigned argno
= TREE_CODE (fntype
) == METHOD_TYPE
? i
: i
+ 1;
4322 location_t loc
= (EXPR_HAS_LOCATION (arg
)
4323 ? EXPR_LOCATION (arg
)
4324 : gimple_location (stmt
));
4325 auto_diagnostic_group d
;
4328 if (warning_at (loc
, OPT_Wnonnull
,
4329 "%qs pointer is null", "this")
4331 inform (DECL_SOURCE_LOCATION (fndecl
),
4332 "in a call to non-static member function %qD",
4337 if (!warning_at (loc
, OPT_Wnonnull
,
4338 "argument %u null where non-null "
4342 tree fndecl
= gimple_call_fndecl (stmt
);
4343 if (fndecl
&& DECL_IS_UNDECLARED_BUILTIN (fndecl
))
4344 inform (loc
, "in a call to built-in function %qD",
4347 inform (DECL_SOURCE_LOCATION (fndecl
),
4348 "in a call to function %qD declared %qs",
4351 BITMAP_FREE (nonnullargs
);
4360 make_pass_post_ipa_warn (gcc::context
*ctxt
)
4362 return new pass_post_ipa_warn (ctxt
);