Add qdf24xx base tuning support.
[official-gcc.git] / gcc / reg-stack.c
blobc931349f0f4287f6c3f3eb1a68a41dc8ffd5cbb3
1 /* Register to Stack convert for GNU compiler.
2 Copyright (C) 1992-2016 Free Software Foundation, Inc.
4 This file is part of GCC.
6 GCC is free software; you can redistribute it and/or modify it
7 under the terms of the GNU General Public License as published by
8 the Free Software Foundation; either version 3, or (at your option)
9 any later version.
11 GCC is distributed in the hope that it will be useful, but WITHOUT
12 ANY WARRANTY; without even the implied warranty of MERCHANTABILITY
13 or FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public
14 License for more details.
16 You should have received a copy of the GNU General Public License
17 along with GCC; see the file COPYING3. If not see
18 <http://www.gnu.org/licenses/>. */
20 /* This pass converts stack-like registers from the "flat register
21 file" model that gcc uses, to a stack convention that the 387 uses.
23 * The form of the input:
25 On input, the function consists of insn that have had their
26 registers fully allocated to a set of "virtual" registers. Note that
27 the word "virtual" is used differently here than elsewhere in gcc: for
28 each virtual stack reg, there is a hard reg, but the mapping between
29 them is not known until this pass is run. On output, hard register
30 numbers have been substituted, and various pop and exchange insns have
31 been emitted. The hard register numbers and the virtual register
32 numbers completely overlap - before this pass, all stack register
33 numbers are virtual, and afterward they are all hard.
35 The virtual registers can be manipulated normally by gcc, and their
36 semantics are the same as for normal registers. After the hard
37 register numbers are substituted, the semantics of an insn containing
38 stack-like regs are not the same as for an insn with normal regs: for
39 instance, it is not safe to delete an insn that appears to be a no-op
40 move. In general, no insn containing hard regs should be changed
41 after this pass is done.
43 * The form of the output:
45 After this pass, hard register numbers represent the distance from
46 the current top of stack to the desired register. A reference to
47 FIRST_STACK_REG references the top of stack, FIRST_STACK_REG + 1,
48 represents the register just below that, and so forth. Also, REG_DEAD
49 notes indicate whether or not a stack register should be popped.
51 A "swap" insn looks like a parallel of two patterns, where each
52 pattern is a SET: one sets A to B, the other B to A.
54 A "push" or "load" insn is a SET whose SET_DEST is FIRST_STACK_REG
55 and whose SET_DEST is REG or MEM. Any other SET_DEST, such as PLUS,
56 will replace the existing stack top, not push a new value.
58 A store insn is a SET whose SET_DEST is FIRST_STACK_REG, and whose
59 SET_SRC is REG or MEM.
61 The case where the SET_SRC and SET_DEST are both FIRST_STACK_REG
62 appears ambiguous. As a special case, the presence of a REG_DEAD note
63 for FIRST_STACK_REG differentiates between a load insn and a pop.
65 If a REG_DEAD is present, the insn represents a "pop" that discards
66 the top of the register stack. If there is no REG_DEAD note, then the
67 insn represents a "dup" or a push of the current top of stack onto the
68 stack.
70 * Methodology:
72 Existing REG_DEAD and REG_UNUSED notes for stack registers are
73 deleted and recreated from scratch. REG_DEAD is never created for a
74 SET_DEST, only REG_UNUSED.
76 * asm_operands:
78 There are several rules on the usage of stack-like regs in
79 asm_operands insns. These rules apply only to the operands that are
80 stack-like regs:
82 1. Given a set of input regs that die in an asm_operands, it is
83 necessary to know which are implicitly popped by the asm, and
84 which must be explicitly popped by gcc.
86 An input reg that is implicitly popped by the asm must be
87 explicitly clobbered, unless it is constrained to match an
88 output operand.
90 2. For any input reg that is implicitly popped by an asm, it is
91 necessary to know how to adjust the stack to compensate for the pop.
92 If any non-popped input is closer to the top of the reg-stack than
93 the implicitly popped reg, it would not be possible to know what the
94 stack looked like - it's not clear how the rest of the stack "slides
95 up".
97 All implicitly popped input regs must be closer to the top of
98 the reg-stack than any input that is not implicitly popped.
100 All explicitly referenced input operands may not "skip" a reg.
101 Otherwise we can have holes in the stack.
103 3. It is possible that if an input dies in an insn, reload might
104 use the input reg for an output reload. Consider this example:
106 asm ("foo" : "=t" (a) : "f" (b));
108 This asm says that input B is not popped by the asm, and that
109 the asm pushes a result onto the reg-stack, i.e., the stack is one
110 deeper after the asm than it was before. But, it is possible that
111 reload will think that it can use the same reg for both the input and
112 the output, if input B dies in this insn.
114 If any input operand uses the "f" constraint, all output reg
115 constraints must use the "&" earlyclobber.
117 The asm above would be written as
119 asm ("foo" : "=&t" (a) : "f" (b));
121 4. Some operands need to be in particular places on the stack. All
122 output operands fall in this category - there is no other way to
123 know which regs the outputs appear in unless the user indicates
124 this in the constraints.
126 Output operands must specifically indicate which reg an output
127 appears in after an asm. "=f" is not allowed: the operand
128 constraints must select a class with a single reg.
130 5. Output operands may not be "inserted" between existing stack regs.
131 Since no 387 opcode uses a read/write operand, all output operands
132 are dead before the asm_operands, and are pushed by the asm_operands.
133 It makes no sense to push anywhere but the top of the reg-stack.
135 Output operands must start at the top of the reg-stack: output
136 operands may not "skip" a reg.
138 6. Some asm statements may need extra stack space for internal
139 calculations. This can be guaranteed by clobbering stack registers
140 unrelated to the inputs and outputs.
142 Here are a couple of reasonable asms to want to write. This asm
143 takes one input, which is internally popped, and produces two outputs.
145 asm ("fsincos" : "=t" (cos), "=u" (sin) : "0" (inp));
147 This asm takes two inputs, which are popped by the fyl2xp1 opcode,
148 and replaces them with one output. The user must code the "st(1)"
149 clobber for reg-stack.c to know that fyl2xp1 pops both inputs.
151 asm ("fyl2xp1" : "=t" (result) : "0" (x), "u" (y) : "st(1)");
155 #include "config.h"
156 #include "system.h"
157 #include "coretypes.h"
158 #include "backend.h"
159 #include "target.h"
160 #include "rtl.h"
161 #include "tree.h"
162 #include "df.h"
163 #include "insn-config.h"
164 #include "emit-rtl.h" /* FIXME: Can go away once crtl is moved to rtl.h. */
165 #include "recog.h"
166 #include "varasm.h"
167 #include "rtl-error.h"
168 #include "cfgrtl.h"
169 #include "cfganal.h"
170 #include "cfgbuild.h"
171 #include "cfgcleanup.h"
172 #include "reload.h"
173 #include "tree-pass.h"
174 #include "rtl-iter.h"
176 #ifdef STACK_REGS
178 /* We use this array to cache info about insns, because otherwise we
179 spend too much time in stack_regs_mentioned_p.
181 Indexed by insn UIDs. A value of zero is uninitialized, one indicates
182 the insn uses stack registers, two indicates the insn does not use
183 stack registers. */
184 static vec<char> stack_regs_mentioned_data;
186 #define REG_STACK_SIZE (LAST_STACK_REG - FIRST_STACK_REG + 1)
188 int regstack_completed = 0;
190 /* This is the basic stack record. TOP is an index into REG[] such
191 that REG[TOP] is the top of stack. If TOP is -1 the stack is empty.
193 If TOP is -2, REG[] is not yet initialized. Stack initialization
194 consists of placing each live reg in array `reg' and setting `top'
195 appropriately.
197 REG_SET indicates which registers are live. */
199 typedef struct stack_def
201 int top; /* index to top stack element */
202 HARD_REG_SET reg_set; /* set of live registers */
203 unsigned char reg[REG_STACK_SIZE];/* register - stack mapping */
204 } *stack_ptr;
206 /* This is used to carry information about basic blocks. It is
207 attached to the AUX field of the standard CFG block. */
209 typedef struct block_info_def
211 struct stack_def stack_in; /* Input stack configuration. */
212 struct stack_def stack_out; /* Output stack configuration. */
213 HARD_REG_SET out_reg_set; /* Stack regs live on output. */
214 int done; /* True if block already converted. */
215 int predecessors; /* Number of predecessors that need
216 to be visited. */
217 } *block_info;
219 #define BLOCK_INFO(B) ((block_info) (B)->aux)
221 /* Passed to change_stack to indicate where to emit insns. */
222 enum emit_where
224 EMIT_AFTER,
225 EMIT_BEFORE
228 /* The block we're currently working on. */
229 static basic_block current_block;
231 /* In the current_block, whether we're processing the first register
232 stack or call instruction, i.e. the regstack is currently the
233 same as BLOCK_INFO(current_block)->stack_in. */
234 static bool starting_stack_p;
236 /* This is the register file for all register after conversion. */
237 static rtx
238 FP_mode_reg[LAST_STACK_REG+1-FIRST_STACK_REG][(int) MAX_MACHINE_MODE];
240 #define FP_MODE_REG(regno,mode) \
241 (FP_mode_reg[(regno)-FIRST_STACK_REG][(int) (mode)])
243 /* Used to initialize uninitialized registers. */
244 static rtx not_a_num;
246 /* Forward declarations */
248 static int stack_regs_mentioned_p (const_rtx pat);
249 static void pop_stack (stack_ptr, int);
250 static rtx *get_true_reg (rtx *);
252 static int check_asm_stack_operands (rtx_insn *);
253 static void get_asm_operands_in_out (rtx, int *, int *);
254 static rtx stack_result (tree);
255 static void replace_reg (rtx *, int);
256 static void remove_regno_note (rtx_insn *, enum reg_note, unsigned int);
257 static int get_hard_regnum (stack_ptr, rtx);
258 static rtx_insn *emit_pop_insn (rtx_insn *, stack_ptr, rtx, enum emit_where);
259 static void swap_to_top (rtx_insn *, stack_ptr, rtx, rtx);
260 static bool move_for_stack_reg (rtx_insn *, stack_ptr, rtx);
261 static bool move_nan_for_stack_reg (rtx_insn *, stack_ptr, rtx);
262 static int swap_rtx_condition_1 (rtx);
263 static int swap_rtx_condition (rtx_insn *);
264 static void compare_for_stack_reg (rtx_insn *, stack_ptr, rtx);
265 static bool subst_stack_regs_pat (rtx_insn *, stack_ptr, rtx);
266 static void subst_asm_stack_regs (rtx_insn *, stack_ptr);
267 static bool subst_stack_regs (rtx_insn *, stack_ptr);
268 static void change_stack (rtx_insn *, stack_ptr, stack_ptr, enum emit_where);
269 static void print_stack (FILE *, stack_ptr);
270 static rtx_insn *next_flags_user (rtx_insn *);
272 /* Return nonzero if any stack register is mentioned somewhere within PAT. */
274 static int
275 stack_regs_mentioned_p (const_rtx pat)
277 const char *fmt;
278 int i;
280 if (STACK_REG_P (pat))
281 return 1;
283 fmt = GET_RTX_FORMAT (GET_CODE (pat));
284 for (i = GET_RTX_LENGTH (GET_CODE (pat)) - 1; i >= 0; i--)
286 if (fmt[i] == 'E')
288 int j;
290 for (j = XVECLEN (pat, i) - 1; j >= 0; j--)
291 if (stack_regs_mentioned_p (XVECEXP (pat, i, j)))
292 return 1;
294 else if (fmt[i] == 'e' && stack_regs_mentioned_p (XEXP (pat, i)))
295 return 1;
298 return 0;
301 /* Return nonzero if INSN mentions stacked registers, else return zero. */
304 stack_regs_mentioned (const_rtx insn)
306 unsigned int uid, max;
307 int test;
309 if (! INSN_P (insn) || !stack_regs_mentioned_data.exists ())
310 return 0;
312 uid = INSN_UID (insn);
313 max = stack_regs_mentioned_data.length ();
314 if (uid >= max)
316 /* Allocate some extra size to avoid too many reallocs, but
317 do not grow too quickly. */
318 max = uid + uid / 20 + 1;
319 stack_regs_mentioned_data.safe_grow_cleared (max);
322 test = stack_regs_mentioned_data[uid];
323 if (test == 0)
325 /* This insn has yet to be examined. Do so now. */
326 test = stack_regs_mentioned_p (PATTERN (insn)) ? 1 : 2;
327 stack_regs_mentioned_data[uid] = test;
330 return test == 1;
333 static rtx ix86_flags_rtx;
335 static rtx_insn *
336 next_flags_user (rtx_insn *insn)
338 /* Search forward looking for the first use of this value.
339 Stop at block boundaries. */
341 while (insn != BB_END (current_block))
343 insn = NEXT_INSN (insn);
345 if (INSN_P (insn) && reg_mentioned_p (ix86_flags_rtx, PATTERN (insn)))
346 return insn;
348 if (CALL_P (insn))
349 return NULL;
351 return NULL;
354 /* Reorganize the stack into ascending numbers, before this insn. */
356 static void
357 straighten_stack (rtx_insn *insn, stack_ptr regstack)
359 struct stack_def temp_stack;
360 int top;
362 /* If there is only a single register on the stack, then the stack is
363 already in increasing order and no reorganization is needed.
365 Similarly if the stack is empty. */
366 if (regstack->top <= 0)
367 return;
369 COPY_HARD_REG_SET (temp_stack.reg_set, regstack->reg_set);
371 for (top = temp_stack.top = regstack->top; top >= 0; top--)
372 temp_stack.reg[top] = FIRST_STACK_REG + temp_stack.top - top;
374 change_stack (insn, regstack, &temp_stack, EMIT_BEFORE);
377 /* Pop a register from the stack. */
379 static void
380 pop_stack (stack_ptr regstack, int regno)
382 int top = regstack->top;
384 CLEAR_HARD_REG_BIT (regstack->reg_set, regno);
385 regstack->top--;
386 /* If regno was not at the top of stack then adjust stack. */
387 if (regstack->reg [top] != regno)
389 int i;
390 for (i = regstack->top; i >= 0; i--)
391 if (regstack->reg [i] == regno)
393 int j;
394 for (j = i; j < top; j++)
395 regstack->reg [j] = regstack->reg [j + 1];
396 break;
401 /* Return a pointer to the REG expression within PAT. If PAT is not a
402 REG, possible enclosed by a conversion rtx, return the inner part of
403 PAT that stopped the search. */
405 static rtx *
406 get_true_reg (rtx *pat)
408 for (;;)
409 switch (GET_CODE (*pat))
411 case SUBREG:
412 /* Eliminate FP subregister accesses in favor of the
413 actual FP register in use. */
415 rtx subreg;
416 if (STACK_REG_P (subreg = SUBREG_REG (*pat)))
418 int regno_off = subreg_regno_offset (REGNO (subreg),
419 GET_MODE (subreg),
420 SUBREG_BYTE (*pat),
421 GET_MODE (*pat));
422 *pat = FP_MODE_REG (REGNO (subreg) + regno_off,
423 GET_MODE (subreg));
424 return pat;
427 case FLOAT:
428 case FIX:
429 case FLOAT_EXTEND:
430 pat = & XEXP (*pat, 0);
431 break;
433 case UNSPEC:
434 if (XINT (*pat, 1) == UNSPEC_TRUNC_NOOP
435 || XINT (*pat, 1) == UNSPEC_FILD_ATOMIC)
436 pat = & XVECEXP (*pat, 0, 0);
437 return pat;
439 case FLOAT_TRUNCATE:
440 if (!flag_unsafe_math_optimizations)
441 return pat;
442 pat = & XEXP (*pat, 0);
443 break;
445 default:
446 return pat;
450 /* Set if we find any malformed asms in a block. */
451 static bool any_malformed_asm;
453 /* There are many rules that an asm statement for stack-like regs must
454 follow. Those rules are explained at the top of this file: the rule
455 numbers below refer to that explanation. */
457 static int
458 check_asm_stack_operands (rtx_insn *insn)
460 int i;
461 int n_clobbers;
462 int malformed_asm = 0;
463 rtx body = PATTERN (insn);
465 char reg_used_as_output[FIRST_PSEUDO_REGISTER];
466 char implicitly_dies[FIRST_PSEUDO_REGISTER];
467 char explicitly_used[FIRST_PSEUDO_REGISTER];
469 rtx *clobber_reg = 0;
470 int n_inputs, n_outputs;
472 /* Find out what the constraints require. If no constraint
473 alternative matches, this asm is malformed. */
474 extract_constrain_insn (insn);
476 preprocess_constraints (insn);
478 get_asm_operands_in_out (body, &n_outputs, &n_inputs);
480 if (which_alternative < 0)
482 malformed_asm = 1;
483 /* Avoid further trouble with this insn. */
484 PATTERN (insn) = gen_rtx_USE (VOIDmode, const0_rtx);
485 return 0;
487 const operand_alternative *op_alt = which_op_alt ();
489 /* Strip SUBREGs here to make the following code simpler. */
490 for (i = 0; i < recog_data.n_operands; i++)
491 if (GET_CODE (recog_data.operand[i]) == SUBREG
492 && REG_P (SUBREG_REG (recog_data.operand[i])))
493 recog_data.operand[i] = SUBREG_REG (recog_data.operand[i]);
495 /* Set up CLOBBER_REG. */
497 n_clobbers = 0;
499 if (GET_CODE (body) == PARALLEL)
501 clobber_reg = XALLOCAVEC (rtx, XVECLEN (body, 0));
503 for (i = 0; i < XVECLEN (body, 0); i++)
504 if (GET_CODE (XVECEXP (body, 0, i)) == CLOBBER)
506 rtx clobber = XVECEXP (body, 0, i);
507 rtx reg = XEXP (clobber, 0);
509 if (GET_CODE (reg) == SUBREG && REG_P (SUBREG_REG (reg)))
510 reg = SUBREG_REG (reg);
512 if (STACK_REG_P (reg))
514 clobber_reg[n_clobbers] = reg;
515 n_clobbers++;
520 /* Enforce rule #4: Output operands must specifically indicate which
521 reg an output appears in after an asm. "=f" is not allowed: the
522 operand constraints must select a class with a single reg.
524 Also enforce rule #5: Output operands must start at the top of
525 the reg-stack: output operands may not "skip" a reg. */
527 memset (reg_used_as_output, 0, sizeof (reg_used_as_output));
528 for (i = 0; i < n_outputs; i++)
529 if (STACK_REG_P (recog_data.operand[i]))
531 if (reg_class_size[(int) op_alt[i].cl] != 1)
533 error_for_asm (insn, "output constraint %d must specify a single register", i);
534 malformed_asm = 1;
536 else
538 int j;
540 for (j = 0; j < n_clobbers; j++)
541 if (REGNO (recog_data.operand[i]) == REGNO (clobber_reg[j]))
543 error_for_asm (insn, "output constraint %d cannot be specified together with \"%s\" clobber",
544 i, reg_names [REGNO (clobber_reg[j])]);
545 malformed_asm = 1;
546 break;
548 if (j == n_clobbers)
549 reg_used_as_output[REGNO (recog_data.operand[i])] = 1;
554 /* Search for first non-popped reg. */
555 for (i = FIRST_STACK_REG; i < LAST_STACK_REG + 1; i++)
556 if (! reg_used_as_output[i])
557 break;
559 /* If there are any other popped regs, that's an error. */
560 for (; i < LAST_STACK_REG + 1; i++)
561 if (reg_used_as_output[i])
562 break;
564 if (i != LAST_STACK_REG + 1)
566 error_for_asm (insn, "output regs must be grouped at top of stack");
567 malformed_asm = 1;
570 /* Enforce rule #2: All implicitly popped input regs must be closer
571 to the top of the reg-stack than any input that is not implicitly
572 popped. */
574 memset (implicitly_dies, 0, sizeof (implicitly_dies));
575 memset (explicitly_used, 0, sizeof (explicitly_used));
576 for (i = n_outputs; i < n_outputs + n_inputs; i++)
577 if (STACK_REG_P (recog_data.operand[i]))
579 /* An input reg is implicitly popped if it is tied to an
580 output, or if there is a CLOBBER for it. */
581 int j;
583 for (j = 0; j < n_clobbers; j++)
584 if (operands_match_p (clobber_reg[j], recog_data.operand[i]))
585 break;
587 if (j < n_clobbers || op_alt[i].matches >= 0)
588 implicitly_dies[REGNO (recog_data.operand[i])] = 1;
589 else if (reg_class_size[(int) op_alt[i].cl] == 1)
590 explicitly_used[REGNO (recog_data.operand[i])] = 1;
593 /* Search for first non-popped reg. */
594 for (i = FIRST_STACK_REG; i < LAST_STACK_REG + 1; i++)
595 if (! implicitly_dies[i])
596 break;
598 /* If there are any other popped regs, that's an error. */
599 for (; i < LAST_STACK_REG + 1; i++)
600 if (implicitly_dies[i])
601 break;
603 if (i != LAST_STACK_REG + 1)
605 error_for_asm (insn,
606 "implicitly popped regs must be grouped at top of stack");
607 malformed_asm = 1;
610 /* Search for first not-explicitly used reg. */
611 for (i = FIRST_STACK_REG; i < LAST_STACK_REG + 1; i++)
612 if (! implicitly_dies[i] && ! explicitly_used[i])
613 break;
615 /* If there are any other explicitly used regs, that's an error. */
616 for (; i < LAST_STACK_REG + 1; i++)
617 if (explicitly_used[i])
618 break;
620 if (i != LAST_STACK_REG + 1)
622 error_for_asm (insn,
623 "explicitly used regs must be grouped at top of stack");
624 malformed_asm = 1;
627 /* Enforce rule #3: If any input operand uses the "f" constraint, all
628 output constraints must use the "&" earlyclobber.
630 ??? Detect this more deterministically by having constrain_asm_operands
631 record any earlyclobber. */
633 for (i = n_outputs; i < n_outputs + n_inputs; i++)
634 if (STACK_REG_P (recog_data.operand[i]) && op_alt[i].matches == -1)
636 int j;
638 for (j = 0; j < n_outputs; j++)
639 if (operands_match_p (recog_data.operand[j], recog_data.operand[i]))
641 error_for_asm (insn,
642 "output operand %d must use %<&%> constraint", j);
643 malformed_asm = 1;
647 if (malformed_asm)
649 /* Avoid further trouble with this insn. */
650 PATTERN (insn) = gen_rtx_USE (VOIDmode, const0_rtx);
651 any_malformed_asm = true;
652 return 0;
655 return 1;
658 /* Calculate the number of inputs and outputs in BODY, an
659 asm_operands. N_OPERANDS is the total number of operands, and
660 N_INPUTS and N_OUTPUTS are pointers to ints into which the results are
661 placed. */
663 static void
664 get_asm_operands_in_out (rtx body, int *pout, int *pin)
666 rtx asmop = extract_asm_operands (body);
668 *pin = ASM_OPERANDS_INPUT_LENGTH (asmop);
669 *pout = (recog_data.n_operands
670 - ASM_OPERANDS_INPUT_LENGTH (asmop)
671 - ASM_OPERANDS_LABEL_LENGTH (asmop));
674 /* If current function returns its result in an fp stack register,
675 return the REG. Otherwise, return 0. */
677 static rtx
678 stack_result (tree decl)
680 rtx result;
682 /* If the value is supposed to be returned in memory, then clearly
683 it is not returned in a stack register. */
684 if (aggregate_value_p (DECL_RESULT (decl), decl))
685 return 0;
687 result = DECL_RTL_IF_SET (DECL_RESULT (decl));
688 if (result != 0)
689 result = targetm.calls.function_value (TREE_TYPE (DECL_RESULT (decl)),
690 decl, true);
692 return result != 0 && STACK_REG_P (result) ? result : 0;
697 * This section deals with stack register substitution, and forms the second
698 * pass over the RTL.
701 /* Replace REG, which is a pointer to a stack reg RTX, with an RTX for
702 the desired hard REGNO. */
704 static void
705 replace_reg (rtx *reg, int regno)
707 gcc_assert (IN_RANGE (regno, FIRST_STACK_REG, LAST_STACK_REG));
708 gcc_assert (STACK_REG_P (*reg));
710 gcc_assert (SCALAR_FLOAT_MODE_P (GET_MODE (*reg))
711 || GET_MODE_CLASS (GET_MODE (*reg)) == MODE_COMPLEX_FLOAT);
713 *reg = FP_MODE_REG (regno, GET_MODE (*reg));
716 /* Remove a note of type NOTE, which must be found, for register
717 number REGNO from INSN. Remove only one such note. */
719 static void
720 remove_regno_note (rtx_insn *insn, enum reg_note note, unsigned int regno)
722 rtx *note_link, this_rtx;
724 note_link = &REG_NOTES (insn);
725 for (this_rtx = *note_link; this_rtx; this_rtx = XEXP (this_rtx, 1))
726 if (REG_NOTE_KIND (this_rtx) == note
727 && REG_P (XEXP (this_rtx, 0)) && REGNO (XEXP (this_rtx, 0)) == regno)
729 *note_link = XEXP (this_rtx, 1);
730 return;
732 else
733 note_link = &XEXP (this_rtx, 1);
735 gcc_unreachable ();
738 /* Find the hard register number of virtual register REG in REGSTACK.
739 The hard register number is relative to the top of the stack. -1 is
740 returned if the register is not found. */
742 static int
743 get_hard_regnum (stack_ptr regstack, rtx reg)
745 int i;
747 gcc_assert (STACK_REG_P (reg));
749 for (i = regstack->top; i >= 0; i--)
750 if (regstack->reg[i] == REGNO (reg))
751 break;
753 return i >= 0 ? (FIRST_STACK_REG + regstack->top - i) : -1;
756 /* Emit an insn to pop virtual register REG before or after INSN.
757 REGSTACK is the stack state after INSN and is updated to reflect this
758 pop. WHEN is either emit_insn_before or emit_insn_after. A pop insn
759 is represented as a SET whose destination is the register to be popped
760 and source is the top of stack. A death note for the top of stack
761 cases the movdf pattern to pop. */
763 static rtx_insn *
764 emit_pop_insn (rtx_insn *insn, stack_ptr regstack, rtx reg, enum emit_where where)
766 rtx_insn *pop_insn;
767 rtx pop_rtx;
768 int hard_regno;
770 /* For complex types take care to pop both halves. These may survive in
771 CLOBBER and USE expressions. */
772 if (COMPLEX_MODE_P (GET_MODE (reg)))
774 rtx reg1 = FP_MODE_REG (REGNO (reg), DFmode);
775 rtx reg2 = FP_MODE_REG (REGNO (reg) + 1, DFmode);
777 pop_insn = NULL;
778 if (get_hard_regnum (regstack, reg1) >= 0)
779 pop_insn = emit_pop_insn (insn, regstack, reg1, where);
780 if (get_hard_regnum (regstack, reg2) >= 0)
781 pop_insn = emit_pop_insn (insn, regstack, reg2, where);
782 gcc_assert (pop_insn);
783 return pop_insn;
786 hard_regno = get_hard_regnum (regstack, reg);
788 gcc_assert (hard_regno >= FIRST_STACK_REG);
790 pop_rtx = gen_rtx_SET (FP_MODE_REG (hard_regno, DFmode),
791 FP_MODE_REG (FIRST_STACK_REG, DFmode));
793 if (where == EMIT_AFTER)
794 pop_insn = emit_insn_after (pop_rtx, insn);
795 else
796 pop_insn = emit_insn_before (pop_rtx, insn);
798 add_reg_note (pop_insn, REG_DEAD, FP_MODE_REG (FIRST_STACK_REG, DFmode));
800 regstack->reg[regstack->top - (hard_regno - FIRST_STACK_REG)]
801 = regstack->reg[regstack->top];
802 regstack->top -= 1;
803 CLEAR_HARD_REG_BIT (regstack->reg_set, REGNO (reg));
805 return pop_insn;
808 /* Emit an insn before or after INSN to swap virtual register REG with
809 the top of stack. REGSTACK is the stack state before the swap, and
810 is updated to reflect the swap. A swap insn is represented as a
811 PARALLEL of two patterns: each pattern moves one reg to the other.
813 If REG is already at the top of the stack, no insn is emitted. */
815 static void
816 emit_swap_insn (rtx_insn *insn, stack_ptr regstack, rtx reg)
818 int hard_regno;
819 rtx swap_rtx;
820 int other_reg; /* swap regno temps */
821 rtx_insn *i1; /* the stack-reg insn prior to INSN */
822 rtx i1set = NULL_RTX; /* the SET rtx within I1 */
824 hard_regno = get_hard_regnum (regstack, reg);
826 if (hard_regno == FIRST_STACK_REG)
827 return;
828 if (hard_regno == -1)
830 /* Something failed if the register wasn't on the stack. If we had
831 malformed asms, we zapped the instruction itself, but that didn't
832 produce the same pattern of register sets as before. To prevent
833 further failure, adjust REGSTACK to include REG at TOP. */
834 gcc_assert (any_malformed_asm);
835 regstack->reg[++regstack->top] = REGNO (reg);
836 return;
838 gcc_assert (hard_regno >= FIRST_STACK_REG);
840 other_reg = regstack->top - (hard_regno - FIRST_STACK_REG);
841 std::swap (regstack->reg[regstack->top], regstack->reg[other_reg]);
843 /* Find the previous insn involving stack regs, but don't pass a
844 block boundary. */
845 i1 = NULL;
846 if (current_block && insn != BB_HEAD (current_block))
848 rtx_insn *tmp = PREV_INSN (insn);
849 rtx_insn *limit = PREV_INSN (BB_HEAD (current_block));
850 while (tmp != limit)
852 if (LABEL_P (tmp)
853 || CALL_P (tmp)
854 || NOTE_INSN_BASIC_BLOCK_P (tmp)
855 || (NONJUMP_INSN_P (tmp)
856 && stack_regs_mentioned (tmp)))
858 i1 = tmp;
859 break;
861 tmp = PREV_INSN (tmp);
865 if (i1 != NULL_RTX
866 && (i1set = single_set (i1)) != NULL_RTX)
868 rtx i1src = *get_true_reg (&SET_SRC (i1set));
869 rtx i1dest = *get_true_reg (&SET_DEST (i1set));
871 /* If the previous register stack push was from the reg we are to
872 swap with, omit the swap. */
874 if (REG_P (i1dest) && REGNO (i1dest) == FIRST_STACK_REG
875 && REG_P (i1src)
876 && REGNO (i1src) == (unsigned) hard_regno - 1
877 && find_regno_note (i1, REG_DEAD, FIRST_STACK_REG) == NULL_RTX)
878 return;
880 /* If the previous insn wrote to the reg we are to swap with,
881 omit the swap. */
883 if (REG_P (i1dest) && REGNO (i1dest) == (unsigned) hard_regno
884 && REG_P (i1src) && REGNO (i1src) == FIRST_STACK_REG
885 && find_regno_note (i1, REG_DEAD, FIRST_STACK_REG) == NULL_RTX)
886 return;
889 /* Avoid emitting the swap if this is the first register stack insn
890 of the current_block. Instead update the current_block's stack_in
891 and let compensate edges take care of this for us. */
892 if (current_block && starting_stack_p)
894 BLOCK_INFO (current_block)->stack_in = *regstack;
895 starting_stack_p = false;
896 return;
899 swap_rtx = gen_swapxf (FP_MODE_REG (hard_regno, XFmode),
900 FP_MODE_REG (FIRST_STACK_REG, XFmode));
902 if (i1)
903 emit_insn_after (swap_rtx, i1);
904 else if (current_block)
905 emit_insn_before (swap_rtx, BB_HEAD (current_block));
906 else
907 emit_insn_before (swap_rtx, insn);
910 /* Emit an insns before INSN to swap virtual register SRC1 with
911 the top of stack and virtual register SRC2 with second stack
912 slot. REGSTACK is the stack state before the swaps, and
913 is updated to reflect the swaps. A swap insn is represented as a
914 PARALLEL of two patterns: each pattern moves one reg to the other.
916 If SRC1 and/or SRC2 are already at the right place, no swap insn
917 is emitted. */
919 static void
920 swap_to_top (rtx_insn *insn, stack_ptr regstack, rtx src1, rtx src2)
922 struct stack_def temp_stack;
923 int regno, j, k;
925 temp_stack = *regstack;
927 /* Place operand 1 at the top of stack. */
928 regno = get_hard_regnum (&temp_stack, src1);
929 gcc_assert (regno >= 0);
930 if (regno != FIRST_STACK_REG)
932 k = temp_stack.top - (regno - FIRST_STACK_REG);
933 j = temp_stack.top;
935 std::swap (temp_stack.reg[j], temp_stack.reg[k]);
938 /* Place operand 2 next on the stack. */
939 regno = get_hard_regnum (&temp_stack, src2);
940 gcc_assert (regno >= 0);
941 if (regno != FIRST_STACK_REG + 1)
943 k = temp_stack.top - (regno - FIRST_STACK_REG);
944 j = temp_stack.top - 1;
946 std::swap (temp_stack.reg[j], temp_stack.reg[k]);
949 change_stack (insn, regstack, &temp_stack, EMIT_BEFORE);
952 /* Handle a move to or from a stack register in PAT, which is in INSN.
953 REGSTACK is the current stack. Return whether a control flow insn
954 was deleted in the process. */
956 static bool
957 move_for_stack_reg (rtx_insn *insn, stack_ptr regstack, rtx pat)
959 rtx *psrc = get_true_reg (&SET_SRC (pat));
960 rtx *pdest = get_true_reg (&SET_DEST (pat));
961 rtx src, dest;
962 rtx note;
963 bool control_flow_insn_deleted = false;
965 src = *psrc; dest = *pdest;
967 if (STACK_REG_P (src) && STACK_REG_P (dest))
969 /* Write from one stack reg to another. If SRC dies here, then
970 just change the register mapping and delete the insn. */
972 note = find_regno_note (insn, REG_DEAD, REGNO (src));
973 if (note)
975 int i;
977 /* If this is a no-op move, there must not be a REG_DEAD note. */
978 gcc_assert (REGNO (src) != REGNO (dest));
980 for (i = regstack->top; i >= 0; i--)
981 if (regstack->reg[i] == REGNO (src))
982 break;
984 /* The destination must be dead, or life analysis is borked. */
985 gcc_assert (get_hard_regnum (regstack, dest) < FIRST_STACK_REG);
987 /* If the source is not live, this is yet another case of
988 uninitialized variables. Load up a NaN instead. */
989 if (i < 0)
990 return move_nan_for_stack_reg (insn, regstack, dest);
992 /* It is possible that the dest is unused after this insn.
993 If so, just pop the src. */
995 if (find_regno_note (insn, REG_UNUSED, REGNO (dest)))
996 emit_pop_insn (insn, regstack, src, EMIT_AFTER);
997 else
999 regstack->reg[i] = REGNO (dest);
1000 SET_HARD_REG_BIT (regstack->reg_set, REGNO (dest));
1001 CLEAR_HARD_REG_BIT (regstack->reg_set, REGNO (src));
1004 control_flow_insn_deleted |= control_flow_insn_p (insn);
1005 delete_insn (insn);
1006 return control_flow_insn_deleted;
1009 /* The source reg does not die. */
1011 /* If this appears to be a no-op move, delete it, or else it
1012 will confuse the machine description output patterns. But if
1013 it is REG_UNUSED, we must pop the reg now, as per-insn processing
1014 for REG_UNUSED will not work for deleted insns. */
1016 if (REGNO (src) == REGNO (dest))
1018 if (find_regno_note (insn, REG_UNUSED, REGNO (dest)))
1019 emit_pop_insn (insn, regstack, dest, EMIT_AFTER);
1021 control_flow_insn_deleted |= control_flow_insn_p (insn);
1022 delete_insn (insn);
1023 return control_flow_insn_deleted;
1026 /* The destination ought to be dead. */
1027 gcc_assert (get_hard_regnum (regstack, dest) < FIRST_STACK_REG);
1029 replace_reg (psrc, get_hard_regnum (regstack, src));
1031 regstack->reg[++regstack->top] = REGNO (dest);
1032 SET_HARD_REG_BIT (regstack->reg_set, REGNO (dest));
1033 replace_reg (pdest, FIRST_STACK_REG);
1035 else if (STACK_REG_P (src))
1037 /* Save from a stack reg to MEM, or possibly integer reg. Since
1038 only top of stack may be saved, emit an exchange first if
1039 needs be. */
1041 emit_swap_insn (insn, regstack, src);
1043 note = find_regno_note (insn, REG_DEAD, REGNO (src));
1044 if (note)
1046 replace_reg (&XEXP (note, 0), FIRST_STACK_REG);
1047 regstack->top--;
1048 CLEAR_HARD_REG_BIT (regstack->reg_set, REGNO (src));
1050 else if ((GET_MODE (src) == XFmode)
1051 && regstack->top < REG_STACK_SIZE - 1)
1053 /* A 387 cannot write an XFmode value to a MEM without
1054 clobbering the source reg. The output code can handle
1055 this by reading back the value from the MEM.
1056 But it is more efficient to use a temp register if one is
1057 available. Push the source value here if the register
1058 stack is not full, and then write the value to memory via
1059 a pop. */
1060 rtx push_rtx;
1061 rtx top_stack_reg = FP_MODE_REG (FIRST_STACK_REG, GET_MODE (src));
1063 push_rtx = gen_movxf (top_stack_reg, top_stack_reg);
1064 emit_insn_before (push_rtx, insn);
1065 add_reg_note (insn, REG_DEAD, top_stack_reg);
1068 replace_reg (psrc, FIRST_STACK_REG);
1070 else
1072 rtx pat = PATTERN (insn);
1074 gcc_assert (STACK_REG_P (dest));
1076 /* Load from MEM, or possibly integer REG or constant, into the
1077 stack regs. The actual target is always the top of the
1078 stack. The stack mapping is changed to reflect that DEST is
1079 now at top of stack. */
1081 /* The destination ought to be dead. However, there is a
1082 special case with i387 UNSPEC_TAN, where destination is live
1083 (an argument to fptan) but inherent load of 1.0 is modelled
1084 as a load from a constant. */
1085 if (GET_CODE (pat) == PARALLEL
1086 && XVECLEN (pat, 0) == 2
1087 && GET_CODE (XVECEXP (pat, 0, 1)) == SET
1088 && GET_CODE (SET_SRC (XVECEXP (pat, 0, 1))) == UNSPEC
1089 && XINT (SET_SRC (XVECEXP (pat, 0, 1)), 1) == UNSPEC_TAN)
1090 emit_swap_insn (insn, regstack, dest);
1091 else
1092 gcc_assert (get_hard_regnum (regstack, dest) < FIRST_STACK_REG);
1094 gcc_assert (regstack->top < REG_STACK_SIZE);
1096 regstack->reg[++regstack->top] = REGNO (dest);
1097 SET_HARD_REG_BIT (regstack->reg_set, REGNO (dest));
1098 replace_reg (pdest, FIRST_STACK_REG);
1101 return control_flow_insn_deleted;
1104 /* A helper function which replaces INSN with a pattern that loads up
1105 a NaN into DEST, then invokes move_for_stack_reg. */
1107 static bool
1108 move_nan_for_stack_reg (rtx_insn *insn, stack_ptr regstack, rtx dest)
1110 rtx pat;
1112 dest = FP_MODE_REG (REGNO (dest), SFmode);
1113 pat = gen_rtx_SET (dest, not_a_num);
1114 PATTERN (insn) = pat;
1115 INSN_CODE (insn) = -1;
1117 return move_for_stack_reg (insn, regstack, pat);
1120 /* Swap the condition on a branch, if there is one. Return true if we
1121 found a condition to swap. False if the condition was not used as
1122 such. */
1124 static int
1125 swap_rtx_condition_1 (rtx pat)
1127 const char *fmt;
1128 int i, r = 0;
1130 if (COMPARISON_P (pat))
1132 PUT_CODE (pat, swap_condition (GET_CODE (pat)));
1133 r = 1;
1135 else
1137 fmt = GET_RTX_FORMAT (GET_CODE (pat));
1138 for (i = GET_RTX_LENGTH (GET_CODE (pat)) - 1; i >= 0; i--)
1140 if (fmt[i] == 'E')
1142 int j;
1144 for (j = XVECLEN (pat, i) - 1; j >= 0; j--)
1145 r |= swap_rtx_condition_1 (XVECEXP (pat, i, j));
1147 else if (fmt[i] == 'e')
1148 r |= swap_rtx_condition_1 (XEXP (pat, i));
1152 return r;
1155 static int
1156 swap_rtx_condition (rtx_insn *insn)
1158 rtx pat = PATTERN (insn);
1160 /* We're looking for a single set to cc0 or an HImode temporary. */
1162 if (GET_CODE (pat) == SET
1163 && REG_P (SET_DEST (pat))
1164 && REGNO (SET_DEST (pat)) == FLAGS_REG)
1166 insn = next_flags_user (insn);
1167 if (insn == NULL_RTX)
1168 return 0;
1169 pat = PATTERN (insn);
1172 /* See if this is, or ends in, a fnstsw. If so, we're not doing anything
1173 with the cc value right now. We may be able to search for one
1174 though. */
1176 if (GET_CODE (pat) == SET
1177 && GET_CODE (SET_SRC (pat)) == UNSPEC
1178 && XINT (SET_SRC (pat), 1) == UNSPEC_FNSTSW)
1180 rtx dest = SET_DEST (pat);
1182 /* Search forward looking for the first use of this value.
1183 Stop at block boundaries. */
1184 while (insn != BB_END (current_block))
1186 insn = NEXT_INSN (insn);
1187 if (INSN_P (insn) && reg_mentioned_p (dest, insn))
1188 break;
1189 if (CALL_P (insn))
1190 return 0;
1193 /* We haven't found it. */
1194 if (insn == BB_END (current_block))
1195 return 0;
1197 /* So we've found the insn using this value. If it is anything
1198 other than sahf or the value does not die (meaning we'd have
1199 to search further), then we must give up. */
1200 pat = PATTERN (insn);
1201 if (GET_CODE (pat) != SET
1202 || GET_CODE (SET_SRC (pat)) != UNSPEC
1203 || XINT (SET_SRC (pat), 1) != UNSPEC_SAHF
1204 || ! dead_or_set_p (insn, dest))
1205 return 0;
1207 /* Now we are prepared to handle this as a normal cc0 setter. */
1208 insn = next_flags_user (insn);
1209 if (insn == NULL_RTX)
1210 return 0;
1211 pat = PATTERN (insn);
1214 if (swap_rtx_condition_1 (pat))
1216 int fail = 0;
1217 INSN_CODE (insn) = -1;
1218 if (recog_memoized (insn) == -1)
1219 fail = 1;
1220 /* In case the flags don't die here, recurse to try fix
1221 following user too. */
1222 else if (! dead_or_set_p (insn, ix86_flags_rtx))
1224 insn = next_flags_user (insn);
1225 if (!insn || !swap_rtx_condition (insn))
1226 fail = 1;
1228 if (fail)
1230 swap_rtx_condition_1 (pat);
1231 return 0;
1233 return 1;
1235 return 0;
1238 /* Handle a comparison. Special care needs to be taken to avoid
1239 causing comparisons that a 387 cannot do correctly, such as EQ.
1241 Also, a pop insn may need to be emitted. The 387 does have an
1242 `fcompp' insn that can pop two regs, but it is sometimes too expensive
1243 to do this - a `fcomp' followed by a `fstpl %st(0)' may be easier to
1244 set up. */
1246 static void
1247 compare_for_stack_reg (rtx_insn *insn, stack_ptr regstack, rtx pat_src)
1249 rtx *src1, *src2;
1250 rtx src1_note, src2_note;
1252 src1 = get_true_reg (&XEXP (pat_src, 0));
1253 src2 = get_true_reg (&XEXP (pat_src, 1));
1255 /* ??? If fxch turns out to be cheaper than fstp, give priority to
1256 registers that die in this insn - move those to stack top first. */
1257 if ((! STACK_REG_P (*src1)
1258 || (STACK_REG_P (*src2)
1259 && get_hard_regnum (regstack, *src2) == FIRST_STACK_REG))
1260 && swap_rtx_condition (insn))
1262 std::swap (XEXP (pat_src, 0), XEXP (pat_src, 1));
1264 src1 = get_true_reg (&XEXP (pat_src, 0));
1265 src2 = get_true_reg (&XEXP (pat_src, 1));
1267 INSN_CODE (insn) = -1;
1270 /* We will fix any death note later. */
1272 src1_note = find_regno_note (insn, REG_DEAD, REGNO (*src1));
1274 if (STACK_REG_P (*src2))
1275 src2_note = find_regno_note (insn, REG_DEAD, REGNO (*src2));
1276 else
1277 src2_note = NULL_RTX;
1279 emit_swap_insn (insn, regstack, *src1);
1281 replace_reg (src1, FIRST_STACK_REG);
1283 if (STACK_REG_P (*src2))
1284 replace_reg (src2, get_hard_regnum (regstack, *src2));
1286 if (src1_note)
1288 pop_stack (regstack, REGNO (XEXP (src1_note, 0)));
1289 replace_reg (&XEXP (src1_note, 0), FIRST_STACK_REG);
1292 /* If the second operand dies, handle that. But if the operands are
1293 the same stack register, don't bother, because only one death is
1294 needed, and it was just handled. */
1296 if (src2_note
1297 && ! (STACK_REG_P (*src1) && STACK_REG_P (*src2)
1298 && REGNO (*src1) == REGNO (*src2)))
1300 /* As a special case, two regs may die in this insn if src2 is
1301 next to top of stack and the top of stack also dies. Since
1302 we have already popped src1, "next to top of stack" is really
1303 at top (FIRST_STACK_REG) now. */
1305 if (get_hard_regnum (regstack, XEXP (src2_note, 0)) == FIRST_STACK_REG
1306 && src1_note)
1308 pop_stack (regstack, REGNO (XEXP (src2_note, 0)));
1309 replace_reg (&XEXP (src2_note, 0), FIRST_STACK_REG + 1);
1311 else
1313 /* The 386 can only represent death of the first operand in
1314 the case handled above. In all other cases, emit a separate
1315 pop and remove the death note from here. */
1316 remove_regno_note (insn, REG_DEAD, REGNO (XEXP (src2_note, 0)));
1317 emit_pop_insn (insn, regstack, XEXP (src2_note, 0),
1318 EMIT_AFTER);
1323 /* Substitute hardware stack regs in debug insn INSN, using stack
1324 layout REGSTACK. If we can't find a hardware stack reg for any of
1325 the REGs in it, reset the debug insn. */
1327 static void
1328 subst_all_stack_regs_in_debug_insn (rtx_insn *insn, struct stack_def *regstack)
1330 subrtx_ptr_iterator::array_type array;
1331 FOR_EACH_SUBRTX_PTR (iter, array, &INSN_VAR_LOCATION_LOC (insn), NONCONST)
1333 rtx *loc = *iter;
1334 rtx x = *loc;
1335 if (STACK_REG_P (x))
1337 int hard_regno = get_hard_regnum (regstack, x);
1339 /* If we can't find an active register, reset this debug insn. */
1340 if (hard_regno == -1)
1342 INSN_VAR_LOCATION_LOC (insn) = gen_rtx_UNKNOWN_VAR_LOC ();
1343 return;
1346 gcc_assert (hard_regno >= FIRST_STACK_REG);
1347 replace_reg (loc, hard_regno);
1348 iter.skip_subrtxes ();
1353 /* Substitute new registers in PAT, which is part of INSN. REGSTACK
1354 is the current register layout. Return whether a control flow insn
1355 was deleted in the process. */
1357 static bool
1358 subst_stack_regs_pat (rtx_insn *insn, stack_ptr regstack, rtx pat)
1360 rtx *dest, *src;
1361 bool control_flow_insn_deleted = false;
1363 switch (GET_CODE (pat))
1365 case USE:
1366 /* Deaths in USE insns can happen in non optimizing compilation.
1367 Handle them by popping the dying register. */
1368 src = get_true_reg (&XEXP (pat, 0));
1369 if (STACK_REG_P (*src)
1370 && find_regno_note (insn, REG_DEAD, REGNO (*src)))
1372 /* USEs are ignored for liveness information so USEs of dead
1373 register might happen. */
1374 if (TEST_HARD_REG_BIT (regstack->reg_set, REGNO (*src)))
1375 emit_pop_insn (insn, regstack, *src, EMIT_AFTER);
1376 return control_flow_insn_deleted;
1378 /* Uninitialized USE might happen for functions returning uninitialized
1379 value. We will properly initialize the USE on the edge to EXIT_BLOCK,
1380 so it is safe to ignore the use here. This is consistent with behavior
1381 of dataflow analyzer that ignores USE too. (This also imply that
1382 forcibly initializing the register to NaN here would lead to ICE later,
1383 since the REG_DEAD notes are not issued.) */
1384 break;
1386 case VAR_LOCATION:
1387 gcc_unreachable ();
1389 case CLOBBER:
1391 rtx note;
1393 dest = get_true_reg (&XEXP (pat, 0));
1394 if (STACK_REG_P (*dest))
1396 note = find_reg_note (insn, REG_DEAD, *dest);
1398 if (pat != PATTERN (insn))
1400 /* The fix_truncdi_1 pattern wants to be able to
1401 allocate its own scratch register. It does this by
1402 clobbering an fp reg so that it is assured of an
1403 empty reg-stack register. If the register is live,
1404 kill it now. Remove the DEAD/UNUSED note so we
1405 don't try to kill it later too.
1407 In reality the UNUSED note can be absent in some
1408 complicated cases when the register is reused for
1409 partially set variable. */
1411 if (note)
1412 emit_pop_insn (insn, regstack, *dest, EMIT_BEFORE);
1413 else
1414 note = find_reg_note (insn, REG_UNUSED, *dest);
1415 if (note)
1416 remove_note (insn, note);
1417 replace_reg (dest, FIRST_STACK_REG + 1);
1419 else
1421 /* A top-level clobber with no REG_DEAD, and no hard-regnum
1422 indicates an uninitialized value. Because reload removed
1423 all other clobbers, this must be due to a function
1424 returning without a value. Load up a NaN. */
1426 if (!note)
1428 rtx t = *dest;
1429 if (COMPLEX_MODE_P (GET_MODE (t)))
1431 rtx u = FP_MODE_REG (REGNO (t) + 1, SFmode);
1432 if (get_hard_regnum (regstack, u) == -1)
1434 rtx pat2 = gen_rtx_CLOBBER (VOIDmode, u);
1435 rtx_insn *insn2 = emit_insn_before (pat2, insn);
1436 control_flow_insn_deleted
1437 |= move_nan_for_stack_reg (insn2, regstack, u);
1440 if (get_hard_regnum (regstack, t) == -1)
1441 control_flow_insn_deleted
1442 |= move_nan_for_stack_reg (insn, regstack, t);
1446 break;
1449 case SET:
1451 rtx *src1 = (rtx *) 0, *src2;
1452 rtx src1_note, src2_note;
1453 rtx pat_src;
1455 dest = get_true_reg (&SET_DEST (pat));
1456 src = get_true_reg (&SET_SRC (pat));
1457 pat_src = SET_SRC (pat);
1459 /* See if this is a `movM' pattern, and handle elsewhere if so. */
1460 if (STACK_REG_P (*src)
1461 || (STACK_REG_P (*dest)
1462 && (REG_P (*src) || MEM_P (*src)
1463 || CONST_DOUBLE_P (*src))))
1465 control_flow_insn_deleted |= move_for_stack_reg (insn, regstack, pat);
1466 break;
1469 switch (GET_CODE (pat_src))
1471 case COMPARE:
1472 compare_for_stack_reg (insn, regstack, pat_src);
1473 break;
1475 case CALL:
1477 int count;
1478 for (count = REG_NREGS (*dest); --count >= 0;)
1480 regstack->reg[++regstack->top] = REGNO (*dest) + count;
1481 SET_HARD_REG_BIT (regstack->reg_set, REGNO (*dest) + count);
1484 replace_reg (dest, FIRST_STACK_REG);
1485 break;
1487 case REG:
1488 /* This is a `tstM2' case. */
1489 gcc_assert (*dest == cc0_rtx);
1490 src1 = src;
1492 /* Fall through. */
1494 case FLOAT_TRUNCATE:
1495 case SQRT:
1496 case ABS:
1497 case NEG:
1498 /* These insns only operate on the top of the stack. DEST might
1499 be cc0_rtx if we're processing a tstM pattern. Also, it's
1500 possible that the tstM case results in a REG_DEAD note on the
1501 source. */
1503 if (src1 == 0)
1504 src1 = get_true_reg (&XEXP (pat_src, 0));
1506 emit_swap_insn (insn, regstack, *src1);
1508 src1_note = find_regno_note (insn, REG_DEAD, REGNO (*src1));
1510 if (STACK_REG_P (*dest))
1511 replace_reg (dest, FIRST_STACK_REG);
1513 if (src1_note)
1515 replace_reg (&XEXP (src1_note, 0), FIRST_STACK_REG);
1516 regstack->top--;
1517 CLEAR_HARD_REG_BIT (regstack->reg_set, REGNO (*src1));
1520 replace_reg (src1, FIRST_STACK_REG);
1521 break;
1523 case MINUS:
1524 case DIV:
1525 /* On i386, reversed forms of subM3 and divM3 exist for
1526 MODE_FLOAT, so the same code that works for addM3 and mulM3
1527 can be used. */
1528 case MULT:
1529 case PLUS:
1530 /* These insns can accept the top of stack as a destination
1531 from a stack reg or mem, or can use the top of stack as a
1532 source and some other stack register (possibly top of stack)
1533 as a destination. */
1535 src1 = get_true_reg (&XEXP (pat_src, 0));
1536 src2 = get_true_reg (&XEXP (pat_src, 1));
1538 /* We will fix any death note later. */
1540 if (STACK_REG_P (*src1))
1541 src1_note = find_regno_note (insn, REG_DEAD, REGNO (*src1));
1542 else
1543 src1_note = NULL_RTX;
1544 if (STACK_REG_P (*src2))
1545 src2_note = find_regno_note (insn, REG_DEAD, REGNO (*src2));
1546 else
1547 src2_note = NULL_RTX;
1549 /* If either operand is not a stack register, then the dest
1550 must be top of stack. */
1552 if (! STACK_REG_P (*src1) || ! STACK_REG_P (*src2))
1553 emit_swap_insn (insn, regstack, *dest);
1554 else
1556 /* Both operands are REG. If neither operand is already
1557 at the top of stack, choose to make the one that is the
1558 dest the new top of stack. */
1560 int src1_hard_regnum, src2_hard_regnum;
1562 src1_hard_regnum = get_hard_regnum (regstack, *src1);
1563 src2_hard_regnum = get_hard_regnum (regstack, *src2);
1565 /* If the source is not live, this is yet another case of
1566 uninitialized variables. Load up a NaN instead. */
1567 if (src1_hard_regnum == -1)
1569 rtx pat2 = gen_rtx_CLOBBER (VOIDmode, *src1);
1570 rtx_insn *insn2 = emit_insn_before (pat2, insn);
1571 control_flow_insn_deleted
1572 |= move_nan_for_stack_reg (insn2, regstack, *src1);
1574 if (src2_hard_regnum == -1)
1576 rtx pat2 = gen_rtx_CLOBBER (VOIDmode, *src2);
1577 rtx_insn *insn2 = emit_insn_before (pat2, insn);
1578 control_flow_insn_deleted
1579 |= move_nan_for_stack_reg (insn2, regstack, *src2);
1582 if (src1_hard_regnum != FIRST_STACK_REG
1583 && src2_hard_regnum != FIRST_STACK_REG)
1584 emit_swap_insn (insn, regstack, *dest);
1587 if (STACK_REG_P (*src1))
1588 replace_reg (src1, get_hard_regnum (regstack, *src1));
1589 if (STACK_REG_P (*src2))
1590 replace_reg (src2, get_hard_regnum (regstack, *src2));
1592 if (src1_note)
1594 rtx src1_reg = XEXP (src1_note, 0);
1596 /* If the register that dies is at the top of stack, then
1597 the destination is somewhere else - merely substitute it.
1598 But if the reg that dies is not at top of stack, then
1599 move the top of stack to the dead reg, as though we had
1600 done the insn and then a store-with-pop. */
1602 if (REGNO (src1_reg) == regstack->reg[regstack->top])
1604 SET_HARD_REG_BIT (regstack->reg_set, REGNO (*dest));
1605 replace_reg (dest, get_hard_regnum (regstack, *dest));
1607 else
1609 int regno = get_hard_regnum (regstack, src1_reg);
1611 SET_HARD_REG_BIT (regstack->reg_set, REGNO (*dest));
1612 replace_reg (dest, regno);
1614 regstack->reg[regstack->top - (regno - FIRST_STACK_REG)]
1615 = regstack->reg[regstack->top];
1618 CLEAR_HARD_REG_BIT (regstack->reg_set,
1619 REGNO (XEXP (src1_note, 0)));
1620 replace_reg (&XEXP (src1_note, 0), FIRST_STACK_REG);
1621 regstack->top--;
1623 else if (src2_note)
1625 rtx src2_reg = XEXP (src2_note, 0);
1626 if (REGNO (src2_reg) == regstack->reg[regstack->top])
1628 SET_HARD_REG_BIT (regstack->reg_set, REGNO (*dest));
1629 replace_reg (dest, get_hard_regnum (regstack, *dest));
1631 else
1633 int regno = get_hard_regnum (regstack, src2_reg);
1635 SET_HARD_REG_BIT (regstack->reg_set, REGNO (*dest));
1636 replace_reg (dest, regno);
1638 regstack->reg[regstack->top - (regno - FIRST_STACK_REG)]
1639 = regstack->reg[regstack->top];
1642 CLEAR_HARD_REG_BIT (regstack->reg_set,
1643 REGNO (XEXP (src2_note, 0)));
1644 replace_reg (&XEXP (src2_note, 0), FIRST_STACK_REG);
1645 regstack->top--;
1647 else
1649 SET_HARD_REG_BIT (regstack->reg_set, REGNO (*dest));
1650 replace_reg (dest, get_hard_regnum (regstack, *dest));
1653 /* Keep operand 1 matching with destination. */
1654 if (COMMUTATIVE_ARITH_P (pat_src)
1655 && REG_P (*src1) && REG_P (*src2)
1656 && REGNO (*src1) != REGNO (*dest))
1658 int tmp = REGNO (*src1);
1659 replace_reg (src1, REGNO (*src2));
1660 replace_reg (src2, tmp);
1662 break;
1664 case UNSPEC:
1665 switch (XINT (pat_src, 1))
1667 case UNSPEC_FIST:
1668 case UNSPEC_FIST_ATOMIC:
1670 case UNSPEC_FIST_FLOOR:
1671 case UNSPEC_FIST_CEIL:
1673 /* These insns only operate on the top of the stack. */
1675 src1 = get_true_reg (&XVECEXP (pat_src, 0, 0));
1676 emit_swap_insn (insn, regstack, *src1);
1678 src1_note = find_regno_note (insn, REG_DEAD, REGNO (*src1));
1680 if (STACK_REG_P (*dest))
1681 replace_reg (dest, FIRST_STACK_REG);
1683 if (src1_note)
1685 replace_reg (&XEXP (src1_note, 0), FIRST_STACK_REG);
1686 regstack->top--;
1687 CLEAR_HARD_REG_BIT (regstack->reg_set, REGNO (*src1));
1690 replace_reg (src1, FIRST_STACK_REG);
1691 break;
1693 case UNSPEC_FXAM:
1695 /* This insn only operate on the top of the stack. */
1697 src1 = get_true_reg (&XVECEXP (pat_src, 0, 0));
1698 emit_swap_insn (insn, regstack, *src1);
1700 src1_note = find_regno_note (insn, REG_DEAD, REGNO (*src1));
1702 replace_reg (src1, FIRST_STACK_REG);
1704 if (src1_note)
1706 remove_regno_note (insn, REG_DEAD,
1707 REGNO (XEXP (src1_note, 0)));
1708 emit_pop_insn (insn, regstack, XEXP (src1_note, 0),
1709 EMIT_AFTER);
1712 break;
1714 case UNSPEC_SIN:
1715 case UNSPEC_COS:
1716 case UNSPEC_FRNDINT:
1717 case UNSPEC_F2XM1:
1719 case UNSPEC_FRNDINT_FLOOR:
1720 case UNSPEC_FRNDINT_CEIL:
1721 case UNSPEC_FRNDINT_TRUNC:
1722 case UNSPEC_FRNDINT_MASK_PM:
1724 /* Above insns operate on the top of the stack. */
1726 case UNSPEC_SINCOS_COS:
1727 case UNSPEC_XTRACT_FRACT:
1729 /* Above insns operate on the top two stack slots,
1730 first part of one input, double output insn. */
1732 src1 = get_true_reg (&XVECEXP (pat_src, 0, 0));
1734 emit_swap_insn (insn, regstack, *src1);
1736 /* Input should never die, it is replaced with output. */
1737 src1_note = find_regno_note (insn, REG_DEAD, REGNO (*src1));
1738 gcc_assert (!src1_note);
1740 if (STACK_REG_P (*dest))
1741 replace_reg (dest, FIRST_STACK_REG);
1743 replace_reg (src1, FIRST_STACK_REG);
1744 break;
1746 case UNSPEC_SINCOS_SIN:
1747 case UNSPEC_XTRACT_EXP:
1749 /* These insns operate on the top two stack slots,
1750 second part of one input, double output insn. */
1752 regstack->top++;
1753 /* FALLTHRU */
1755 case UNSPEC_TAN:
1757 /* For UNSPEC_TAN, regstack->top is already increased
1758 by inherent load of constant 1.0. */
1760 /* Output value is generated in the second stack slot.
1761 Move current value from second slot to the top. */
1762 regstack->reg[regstack->top]
1763 = regstack->reg[regstack->top - 1];
1765 gcc_assert (STACK_REG_P (*dest));
1767 regstack->reg[regstack->top - 1] = REGNO (*dest);
1768 SET_HARD_REG_BIT (regstack->reg_set, REGNO (*dest));
1769 replace_reg (dest, FIRST_STACK_REG + 1);
1771 src1 = get_true_reg (&XVECEXP (pat_src, 0, 0));
1773 replace_reg (src1, FIRST_STACK_REG);
1774 break;
1776 case UNSPEC_FPATAN:
1777 case UNSPEC_FYL2X:
1778 case UNSPEC_FYL2XP1:
1779 /* These insns operate on the top two stack slots. */
1781 src1 = get_true_reg (&XVECEXP (pat_src, 0, 0));
1782 src2 = get_true_reg (&XVECEXP (pat_src, 0, 1));
1784 src1_note = find_regno_note (insn, REG_DEAD, REGNO (*src1));
1785 src2_note = find_regno_note (insn, REG_DEAD, REGNO (*src2));
1787 swap_to_top (insn, regstack, *src1, *src2);
1789 replace_reg (src1, FIRST_STACK_REG);
1790 replace_reg (src2, FIRST_STACK_REG + 1);
1792 if (src1_note)
1793 replace_reg (&XEXP (src1_note, 0), FIRST_STACK_REG);
1794 if (src2_note)
1795 replace_reg (&XEXP (src2_note, 0), FIRST_STACK_REG + 1);
1797 /* Pop both input operands from the stack. */
1798 CLEAR_HARD_REG_BIT (regstack->reg_set,
1799 regstack->reg[regstack->top]);
1800 CLEAR_HARD_REG_BIT (regstack->reg_set,
1801 regstack->reg[regstack->top - 1]);
1802 regstack->top -= 2;
1804 /* Push the result back onto the stack. */
1805 regstack->reg[++regstack->top] = REGNO (*dest);
1806 SET_HARD_REG_BIT (regstack->reg_set, REGNO (*dest));
1807 replace_reg (dest, FIRST_STACK_REG);
1808 break;
1810 case UNSPEC_FSCALE_FRACT:
1811 case UNSPEC_FPREM_F:
1812 case UNSPEC_FPREM1_F:
1813 /* These insns operate on the top two stack slots,
1814 first part of double input, double output insn. */
1816 src1 = get_true_reg (&XVECEXP (pat_src, 0, 0));
1817 src2 = get_true_reg (&XVECEXP (pat_src, 0, 1));
1819 src1_note = find_regno_note (insn, REG_DEAD, REGNO (*src1));
1820 src2_note = find_regno_note (insn, REG_DEAD, REGNO (*src2));
1822 /* Inputs should never die, they are
1823 replaced with outputs. */
1824 gcc_assert (!src1_note);
1825 gcc_assert (!src2_note);
1827 swap_to_top (insn, regstack, *src1, *src2);
1829 /* Push the result back onto stack. Empty stack slot
1830 will be filled in second part of insn. */
1831 if (STACK_REG_P (*dest))
1833 regstack->reg[regstack->top] = REGNO (*dest);
1834 SET_HARD_REG_BIT (regstack->reg_set, REGNO (*dest));
1835 replace_reg (dest, FIRST_STACK_REG);
1838 replace_reg (src1, FIRST_STACK_REG);
1839 replace_reg (src2, FIRST_STACK_REG + 1);
1840 break;
1842 case UNSPEC_FSCALE_EXP:
1843 case UNSPEC_FPREM_U:
1844 case UNSPEC_FPREM1_U:
1845 /* These insns operate on the top two stack slots,
1846 second part of double input, double output insn. */
1848 src1 = get_true_reg (&XVECEXP (pat_src, 0, 0));
1849 src2 = get_true_reg (&XVECEXP (pat_src, 0, 1));
1851 /* Push the result back onto stack. Fill empty slot from
1852 first part of insn and fix top of stack pointer. */
1853 if (STACK_REG_P (*dest))
1855 regstack->reg[regstack->top - 1] = REGNO (*dest);
1856 SET_HARD_REG_BIT (regstack->reg_set, REGNO (*dest));
1857 replace_reg (dest, FIRST_STACK_REG + 1);
1860 replace_reg (src1, FIRST_STACK_REG);
1861 replace_reg (src2, FIRST_STACK_REG + 1);
1862 break;
1864 case UNSPEC_C2_FLAG:
1865 /* This insn operates on the top two stack slots,
1866 third part of C2 setting double input insn. */
1868 src1 = get_true_reg (&XVECEXP (pat_src, 0, 0));
1869 src2 = get_true_reg (&XVECEXP (pat_src, 0, 1));
1871 replace_reg (src1, FIRST_STACK_REG);
1872 replace_reg (src2, FIRST_STACK_REG + 1);
1873 break;
1875 case UNSPEC_SAHF:
1876 /* (unspec [(unspec [(compare)] UNSPEC_FNSTSW)] UNSPEC_SAHF)
1877 The combination matches the PPRO fcomi instruction. */
1879 pat_src = XVECEXP (pat_src, 0, 0);
1880 gcc_assert (GET_CODE (pat_src) == UNSPEC);
1881 gcc_assert (XINT (pat_src, 1) == UNSPEC_FNSTSW);
1882 /* Fall through. */
1884 case UNSPEC_FNSTSW:
1885 /* Combined fcomp+fnstsw generated for doing well with
1886 CSE. When optimizing this would have been broken
1887 up before now. */
1889 pat_src = XVECEXP (pat_src, 0, 0);
1890 gcc_assert (GET_CODE (pat_src) == COMPARE);
1892 compare_for_stack_reg (insn, regstack, pat_src);
1893 break;
1895 default:
1896 gcc_unreachable ();
1898 break;
1900 case IF_THEN_ELSE:
1901 /* This insn requires the top of stack to be the destination. */
1903 src1 = get_true_reg (&XEXP (pat_src, 1));
1904 src2 = get_true_reg (&XEXP (pat_src, 2));
1906 src1_note = find_regno_note (insn, REG_DEAD, REGNO (*src1));
1907 src2_note = find_regno_note (insn, REG_DEAD, REGNO (*src2));
1909 /* If the comparison operator is an FP comparison operator,
1910 it is handled correctly by compare_for_stack_reg () who
1911 will move the destination to the top of stack. But if the
1912 comparison operator is not an FP comparison operator, we
1913 have to handle it here. */
1914 if (get_hard_regnum (regstack, *dest) >= FIRST_STACK_REG
1915 && REGNO (*dest) != regstack->reg[regstack->top])
1917 /* In case one of operands is the top of stack and the operands
1918 dies, it is safe to make it the destination operand by
1919 reversing the direction of cmove and avoid fxch. */
1920 if ((REGNO (*src1) == regstack->reg[regstack->top]
1921 && src1_note)
1922 || (REGNO (*src2) == regstack->reg[regstack->top]
1923 && src2_note))
1925 int idx1 = (get_hard_regnum (regstack, *src1)
1926 - FIRST_STACK_REG);
1927 int idx2 = (get_hard_regnum (regstack, *src2)
1928 - FIRST_STACK_REG);
1930 /* Make reg-stack believe that the operands are already
1931 swapped on the stack */
1932 regstack->reg[regstack->top - idx1] = REGNO (*src2);
1933 regstack->reg[regstack->top - idx2] = REGNO (*src1);
1935 /* Reverse condition to compensate the operand swap.
1936 i386 do have comparison always reversible. */
1937 PUT_CODE (XEXP (pat_src, 0),
1938 reversed_comparison_code (XEXP (pat_src, 0), insn));
1940 else
1941 emit_swap_insn (insn, regstack, *dest);
1945 rtx src_note [3];
1946 int i;
1948 src_note[0] = 0;
1949 src_note[1] = src1_note;
1950 src_note[2] = src2_note;
1952 if (STACK_REG_P (*src1))
1953 replace_reg (src1, get_hard_regnum (regstack, *src1));
1954 if (STACK_REG_P (*src2))
1955 replace_reg (src2, get_hard_regnum (regstack, *src2));
1957 for (i = 1; i <= 2; i++)
1958 if (src_note [i])
1960 int regno = REGNO (XEXP (src_note[i], 0));
1962 /* If the register that dies is not at the top of
1963 stack, then move the top of stack to the dead reg.
1964 Top of stack should never die, as it is the
1965 destination. */
1966 gcc_assert (regno != regstack->reg[regstack->top]);
1967 remove_regno_note (insn, REG_DEAD, regno);
1968 emit_pop_insn (insn, regstack, XEXP (src_note[i], 0),
1969 EMIT_AFTER);
1973 /* Make dest the top of stack. Add dest to regstack if
1974 not present. */
1975 if (get_hard_regnum (regstack, *dest) < FIRST_STACK_REG)
1976 regstack->reg[++regstack->top] = REGNO (*dest);
1977 SET_HARD_REG_BIT (regstack->reg_set, REGNO (*dest));
1978 replace_reg (dest, FIRST_STACK_REG);
1979 break;
1981 default:
1982 gcc_unreachable ();
1984 break;
1987 default:
1988 break;
1991 return control_flow_insn_deleted;
1994 /* Substitute hard regnums for any stack regs in INSN, which has
1995 N_INPUTS inputs and N_OUTPUTS outputs. REGSTACK is the stack info
1996 before the insn, and is updated with changes made here.
1998 There are several requirements and assumptions about the use of
1999 stack-like regs in asm statements. These rules are enforced by
2000 record_asm_stack_regs; see comments there for details. Any
2001 asm_operands left in the RTL at this point may be assume to meet the
2002 requirements, since record_asm_stack_regs removes any problem asm. */
2004 static void
2005 subst_asm_stack_regs (rtx_insn *insn, stack_ptr regstack)
2007 rtx body = PATTERN (insn);
2009 rtx *note_reg; /* Array of note contents */
2010 rtx **note_loc; /* Address of REG field of each note */
2011 enum reg_note *note_kind; /* The type of each note */
2013 rtx *clobber_reg = 0;
2014 rtx **clobber_loc = 0;
2016 struct stack_def temp_stack;
2017 int n_notes;
2018 int n_clobbers;
2019 rtx note;
2020 int i;
2021 int n_inputs, n_outputs;
2023 if (! check_asm_stack_operands (insn))
2024 return;
2026 /* Find out what the constraints required. If no constraint
2027 alternative matches, that is a compiler bug: we should have caught
2028 such an insn in check_asm_stack_operands. */
2029 extract_constrain_insn (insn);
2031 preprocess_constraints (insn);
2032 const operand_alternative *op_alt = which_op_alt ();
2034 get_asm_operands_in_out (body, &n_outputs, &n_inputs);
2036 /* Strip SUBREGs here to make the following code simpler. */
2037 for (i = 0; i < recog_data.n_operands; i++)
2038 if (GET_CODE (recog_data.operand[i]) == SUBREG
2039 && REG_P (SUBREG_REG (recog_data.operand[i])))
2041 recog_data.operand_loc[i] = & SUBREG_REG (recog_data.operand[i]);
2042 recog_data.operand[i] = SUBREG_REG (recog_data.operand[i]);
2045 /* Set up NOTE_REG, NOTE_LOC and NOTE_KIND. */
2047 for (i = 0, note = REG_NOTES (insn); note; note = XEXP (note, 1))
2048 i++;
2050 note_reg = XALLOCAVEC (rtx, i);
2051 note_loc = XALLOCAVEC (rtx *, i);
2052 note_kind = XALLOCAVEC (enum reg_note, i);
2054 n_notes = 0;
2055 for (note = REG_NOTES (insn); note; note = XEXP (note, 1))
2057 if (GET_CODE (note) != EXPR_LIST)
2058 continue;
2059 rtx reg = XEXP (note, 0);
2060 rtx *loc = & XEXP (note, 0);
2062 if (GET_CODE (reg) == SUBREG && REG_P (SUBREG_REG (reg)))
2064 loc = & SUBREG_REG (reg);
2065 reg = SUBREG_REG (reg);
2068 if (STACK_REG_P (reg)
2069 && (REG_NOTE_KIND (note) == REG_DEAD
2070 || REG_NOTE_KIND (note) == REG_UNUSED))
2072 note_reg[n_notes] = reg;
2073 note_loc[n_notes] = loc;
2074 note_kind[n_notes] = REG_NOTE_KIND (note);
2075 n_notes++;
2079 /* Set up CLOBBER_REG and CLOBBER_LOC. */
2081 n_clobbers = 0;
2083 if (GET_CODE (body) == PARALLEL)
2085 clobber_reg = XALLOCAVEC (rtx, XVECLEN (body, 0));
2086 clobber_loc = XALLOCAVEC (rtx *, XVECLEN (body, 0));
2088 for (i = 0; i < XVECLEN (body, 0); i++)
2089 if (GET_CODE (XVECEXP (body, 0, i)) == CLOBBER)
2091 rtx clobber = XVECEXP (body, 0, i);
2092 rtx reg = XEXP (clobber, 0);
2093 rtx *loc = & XEXP (clobber, 0);
2095 if (GET_CODE (reg) == SUBREG && REG_P (SUBREG_REG (reg)))
2097 loc = & SUBREG_REG (reg);
2098 reg = SUBREG_REG (reg);
2101 if (STACK_REG_P (reg))
2103 clobber_reg[n_clobbers] = reg;
2104 clobber_loc[n_clobbers] = loc;
2105 n_clobbers++;
2110 temp_stack = *regstack;
2112 /* Put the input regs into the desired place in TEMP_STACK. */
2114 for (i = n_outputs; i < n_outputs + n_inputs; i++)
2115 if (STACK_REG_P (recog_data.operand[i])
2116 && reg_class_subset_p (op_alt[i].cl, FLOAT_REGS)
2117 && op_alt[i].cl != FLOAT_REGS)
2119 /* If an operand needs to be in a particular reg in
2120 FLOAT_REGS, the constraint was either 't' or 'u'. Since
2121 these constraints are for single register classes, and
2122 reload guaranteed that operand[i] is already in that class,
2123 we can just use REGNO (recog_data.operand[i]) to know which
2124 actual reg this operand needs to be in. */
2126 int regno = get_hard_regnum (&temp_stack, recog_data.operand[i]);
2128 gcc_assert (regno >= 0);
2130 if ((unsigned int) regno != REGNO (recog_data.operand[i]))
2132 /* recog_data.operand[i] is not in the right place. Find
2133 it and swap it with whatever is already in I's place.
2134 K is where recog_data.operand[i] is now. J is where it
2135 should be. */
2136 int j, k;
2138 k = temp_stack.top - (regno - FIRST_STACK_REG);
2139 j = (temp_stack.top
2140 - (REGNO (recog_data.operand[i]) - FIRST_STACK_REG));
2142 std::swap (temp_stack.reg[j], temp_stack.reg[k]);
2146 /* Emit insns before INSN to make sure the reg-stack is in the right
2147 order. */
2149 change_stack (insn, regstack, &temp_stack, EMIT_BEFORE);
2151 /* Make the needed input register substitutions. Do death notes and
2152 clobbers too, because these are for inputs, not outputs. */
2154 for (i = n_outputs; i < n_outputs + n_inputs; i++)
2155 if (STACK_REG_P (recog_data.operand[i]))
2157 int regnum = get_hard_regnum (regstack, recog_data.operand[i]);
2159 gcc_assert (regnum >= 0);
2161 replace_reg (recog_data.operand_loc[i], regnum);
2164 for (i = 0; i < n_notes; i++)
2165 if (note_kind[i] == REG_DEAD)
2167 int regnum = get_hard_regnum (regstack, note_reg[i]);
2169 gcc_assert (regnum >= 0);
2171 replace_reg (note_loc[i], regnum);
2174 for (i = 0; i < n_clobbers; i++)
2176 /* It's OK for a CLOBBER to reference a reg that is not live.
2177 Don't try to replace it in that case. */
2178 int regnum = get_hard_regnum (regstack, clobber_reg[i]);
2180 if (regnum >= 0)
2182 /* Sigh - clobbers always have QImode. But replace_reg knows
2183 that these regs can't be MODE_INT and will assert. Just put
2184 the right reg there without calling replace_reg. */
2186 *clobber_loc[i] = FP_MODE_REG (regnum, DFmode);
2190 /* Now remove from REGSTACK any inputs that the asm implicitly popped. */
2192 for (i = n_outputs; i < n_outputs + n_inputs; i++)
2193 if (STACK_REG_P (recog_data.operand[i]))
2195 /* An input reg is implicitly popped if it is tied to an
2196 output, or if there is a CLOBBER for it. */
2197 int j;
2199 for (j = 0; j < n_clobbers; j++)
2200 if (operands_match_p (clobber_reg[j], recog_data.operand[i]))
2201 break;
2203 if (j < n_clobbers || op_alt[i].matches >= 0)
2205 /* recog_data.operand[i] might not be at the top of stack.
2206 But that's OK, because all we need to do is pop the
2207 right number of regs off of the top of the reg-stack.
2208 record_asm_stack_regs guaranteed that all implicitly
2209 popped regs were grouped at the top of the reg-stack. */
2211 CLEAR_HARD_REG_BIT (regstack->reg_set,
2212 regstack->reg[regstack->top]);
2213 regstack->top--;
2217 /* Now add to REGSTACK any outputs that the asm implicitly pushed.
2218 Note that there isn't any need to substitute register numbers.
2219 ??? Explain why this is true. */
2221 for (i = LAST_STACK_REG; i >= FIRST_STACK_REG; i--)
2223 /* See if there is an output for this hard reg. */
2224 int j;
2226 for (j = 0; j < n_outputs; j++)
2227 if (STACK_REG_P (recog_data.operand[j])
2228 && REGNO (recog_data.operand[j]) == (unsigned) i)
2230 regstack->reg[++regstack->top] = i;
2231 SET_HARD_REG_BIT (regstack->reg_set, i);
2232 break;
2236 /* Now emit a pop insn for any REG_UNUSED output, or any REG_DEAD
2237 input that the asm didn't implicitly pop. If the asm didn't
2238 implicitly pop an input reg, that reg will still be live.
2240 Note that we can't use find_regno_note here: the register numbers
2241 in the death notes have already been substituted. */
2243 for (i = 0; i < n_outputs; i++)
2244 if (STACK_REG_P (recog_data.operand[i]))
2246 int j;
2248 for (j = 0; j < n_notes; j++)
2249 if (REGNO (recog_data.operand[i]) == REGNO (note_reg[j])
2250 && note_kind[j] == REG_UNUSED)
2252 insn = emit_pop_insn (insn, regstack, recog_data.operand[i],
2253 EMIT_AFTER);
2254 break;
2258 for (i = n_outputs; i < n_outputs + n_inputs; i++)
2259 if (STACK_REG_P (recog_data.operand[i]))
2261 int j;
2263 for (j = 0; j < n_notes; j++)
2264 if (REGNO (recog_data.operand[i]) == REGNO (note_reg[j])
2265 && note_kind[j] == REG_DEAD
2266 && TEST_HARD_REG_BIT (regstack->reg_set,
2267 REGNO (recog_data.operand[i])))
2269 insn = emit_pop_insn (insn, regstack, recog_data.operand[i],
2270 EMIT_AFTER);
2271 break;
2276 /* Substitute stack hard reg numbers for stack virtual registers in
2277 INSN. Non-stack register numbers are not changed. REGSTACK is the
2278 current stack content. Insns may be emitted as needed to arrange the
2279 stack for the 387 based on the contents of the insn. Return whether
2280 a control flow insn was deleted in the process. */
2282 static bool
2283 subst_stack_regs (rtx_insn *insn, stack_ptr regstack)
2285 rtx *note_link, note;
2286 bool control_flow_insn_deleted = false;
2287 int i;
2289 if (CALL_P (insn))
2291 int top = regstack->top;
2293 /* If there are any floating point parameters to be passed in
2294 registers for this call, make sure they are in the right
2295 order. */
2297 if (top >= 0)
2299 straighten_stack (insn, regstack);
2301 /* Now mark the arguments as dead after the call. */
2303 while (regstack->top >= 0)
2305 CLEAR_HARD_REG_BIT (regstack->reg_set, FIRST_STACK_REG + regstack->top);
2306 regstack->top--;
2311 /* Do the actual substitution if any stack regs are mentioned.
2312 Since we only record whether entire insn mentions stack regs, and
2313 subst_stack_regs_pat only works for patterns that contain stack regs,
2314 we must check each pattern in a parallel here. A call_value_pop could
2315 fail otherwise. */
2317 if (stack_regs_mentioned (insn))
2319 int n_operands = asm_noperands (PATTERN (insn));
2320 if (n_operands >= 0)
2322 /* This insn is an `asm' with operands. Decode the operands,
2323 decide how many are inputs, and do register substitution.
2324 Any REG_UNUSED notes will be handled by subst_asm_stack_regs. */
2326 subst_asm_stack_regs (insn, regstack);
2327 return control_flow_insn_deleted;
2330 if (GET_CODE (PATTERN (insn)) == PARALLEL)
2331 for (i = 0; i < XVECLEN (PATTERN (insn), 0); i++)
2333 if (stack_regs_mentioned_p (XVECEXP (PATTERN (insn), 0, i)))
2335 if (GET_CODE (XVECEXP (PATTERN (insn), 0, i)) == CLOBBER)
2336 XVECEXP (PATTERN (insn), 0, i)
2337 = shallow_copy_rtx (XVECEXP (PATTERN (insn), 0, i));
2338 control_flow_insn_deleted
2339 |= subst_stack_regs_pat (insn, regstack,
2340 XVECEXP (PATTERN (insn), 0, i));
2343 else
2344 control_flow_insn_deleted
2345 |= subst_stack_regs_pat (insn, regstack, PATTERN (insn));
2348 /* subst_stack_regs_pat may have deleted a no-op insn. If so, any
2349 REG_UNUSED will already have been dealt with, so just return. */
2351 if (NOTE_P (insn) || insn->deleted ())
2352 return control_flow_insn_deleted;
2354 /* If this a noreturn call, we can't insert pop insns after it.
2355 Instead, reset the stack state to empty. */
2356 if (CALL_P (insn)
2357 && find_reg_note (insn, REG_NORETURN, NULL))
2359 regstack->top = -1;
2360 CLEAR_HARD_REG_SET (regstack->reg_set);
2361 return control_flow_insn_deleted;
2364 /* If there is a REG_UNUSED note on a stack register on this insn,
2365 the indicated reg must be popped. The REG_UNUSED note is removed,
2366 since the form of the newly emitted pop insn references the reg,
2367 making it no longer `unset'. */
2369 note_link = &REG_NOTES (insn);
2370 for (note = *note_link; note; note = XEXP (note, 1))
2371 if (REG_NOTE_KIND (note) == REG_UNUSED && STACK_REG_P (XEXP (note, 0)))
2373 *note_link = XEXP (note, 1);
2374 insn = emit_pop_insn (insn, regstack, XEXP (note, 0), EMIT_AFTER);
2376 else
2377 note_link = &XEXP (note, 1);
2379 return control_flow_insn_deleted;
2382 /* Change the organization of the stack so that it fits a new basic
2383 block. Some registers might have to be popped, but there can never be
2384 a register live in the new block that is not now live.
2386 Insert any needed insns before or after INSN, as indicated by
2387 WHERE. OLD is the original stack layout, and NEW is the desired
2388 form. OLD is updated to reflect the code emitted, i.e., it will be
2389 the same as NEW upon return.
2391 This function will not preserve block_end[]. But that information
2392 is no longer needed once this has executed. */
2394 static void
2395 change_stack (rtx_insn *insn, stack_ptr old, stack_ptr new_stack,
2396 enum emit_where where)
2398 int reg;
2399 int update_end = 0;
2400 int i;
2402 /* Stack adjustments for the first insn in a block update the
2403 current_block's stack_in instead of inserting insns directly.
2404 compensate_edges will add the necessary code later. */
2405 if (current_block
2406 && starting_stack_p
2407 && where == EMIT_BEFORE)
2409 BLOCK_INFO (current_block)->stack_in = *new_stack;
2410 starting_stack_p = false;
2411 *old = *new_stack;
2412 return;
2415 /* We will be inserting new insns "backwards". If we are to insert
2416 after INSN, find the next insn, and insert before it. */
2418 if (where == EMIT_AFTER)
2420 if (current_block && BB_END (current_block) == insn)
2421 update_end = 1;
2422 insn = NEXT_INSN (insn);
2425 /* Initialize partially dead variables. */
2426 for (i = FIRST_STACK_REG; i < LAST_STACK_REG + 1; i++)
2427 if (TEST_HARD_REG_BIT (new_stack->reg_set, i)
2428 && !TEST_HARD_REG_BIT (old->reg_set, i))
2430 old->reg[++old->top] = i;
2431 SET_HARD_REG_BIT (old->reg_set, i);
2432 emit_insn_before (gen_rtx_SET (FP_MODE_REG (i, SFmode), not_a_num),
2433 insn);
2436 /* Pop any registers that are not needed in the new block. */
2438 /* If the destination block's stack already has a specified layout
2439 and contains two or more registers, use a more intelligent algorithm
2440 to pop registers that minimizes the number of fxchs below. */
2441 if (new_stack->top > 0)
2443 bool slots[REG_STACK_SIZE];
2444 int pops[REG_STACK_SIZE];
2445 int next, dest, topsrc;
2447 /* First pass to determine the free slots. */
2448 for (reg = 0; reg <= new_stack->top; reg++)
2449 slots[reg] = TEST_HARD_REG_BIT (new_stack->reg_set, old->reg[reg]);
2451 /* Second pass to allocate preferred slots. */
2452 topsrc = -1;
2453 for (reg = old->top; reg > new_stack->top; reg--)
2454 if (TEST_HARD_REG_BIT (new_stack->reg_set, old->reg[reg]))
2456 dest = -1;
2457 for (next = 0; next <= new_stack->top; next++)
2458 if (!slots[next] && new_stack->reg[next] == old->reg[reg])
2460 /* If this is a preference for the new top of stack, record
2461 the fact by remembering it's old->reg in topsrc. */
2462 if (next == new_stack->top)
2463 topsrc = reg;
2464 slots[next] = true;
2465 dest = next;
2466 break;
2468 pops[reg] = dest;
2470 else
2471 pops[reg] = reg;
2473 /* Intentionally, avoid placing the top of stack in it's correct
2474 location, if we still need to permute the stack below and we
2475 can usefully place it somewhere else. This is the case if any
2476 slot is still unallocated, in which case we should place the
2477 top of stack there. */
2478 if (topsrc != -1)
2479 for (reg = 0; reg < new_stack->top; reg++)
2480 if (!slots[reg])
2482 pops[topsrc] = reg;
2483 slots[new_stack->top] = false;
2484 slots[reg] = true;
2485 break;
2488 /* Third pass allocates remaining slots and emits pop insns. */
2489 next = new_stack->top;
2490 for (reg = old->top; reg > new_stack->top; reg--)
2492 dest = pops[reg];
2493 if (dest == -1)
2495 /* Find next free slot. */
2496 while (slots[next])
2497 next--;
2498 dest = next--;
2500 emit_pop_insn (insn, old, FP_MODE_REG (old->reg[dest], DFmode),
2501 EMIT_BEFORE);
2504 else
2506 /* The following loop attempts to maximize the number of times we
2507 pop the top of the stack, as this permits the use of the faster
2508 ffreep instruction on platforms that support it. */
2509 int live, next;
2511 live = 0;
2512 for (reg = 0; reg <= old->top; reg++)
2513 if (TEST_HARD_REG_BIT (new_stack->reg_set, old->reg[reg]))
2514 live++;
2516 next = live;
2517 while (old->top >= live)
2518 if (TEST_HARD_REG_BIT (new_stack->reg_set, old->reg[old->top]))
2520 while (TEST_HARD_REG_BIT (new_stack->reg_set, old->reg[next]))
2521 next--;
2522 emit_pop_insn (insn, old, FP_MODE_REG (old->reg[next], DFmode),
2523 EMIT_BEFORE);
2525 else
2526 emit_pop_insn (insn, old, FP_MODE_REG (old->reg[old->top], DFmode),
2527 EMIT_BEFORE);
2530 if (new_stack->top == -2)
2532 /* If the new block has never been processed, then it can inherit
2533 the old stack order. */
2535 new_stack->top = old->top;
2536 memcpy (new_stack->reg, old->reg, sizeof (new_stack->reg));
2538 else
2540 /* This block has been entered before, and we must match the
2541 previously selected stack order. */
2543 /* By now, the only difference should be the order of the stack,
2544 not their depth or liveliness. */
2546 gcc_assert (hard_reg_set_equal_p (old->reg_set, new_stack->reg_set));
2547 gcc_assert (old->top == new_stack->top);
2549 /* If the stack is not empty (new_stack->top != -1), loop here emitting
2550 swaps until the stack is correct.
2552 The worst case number of swaps emitted is N + 2, where N is the
2553 depth of the stack. In some cases, the reg at the top of
2554 stack may be correct, but swapped anyway in order to fix
2555 other regs. But since we never swap any other reg away from
2556 its correct slot, this algorithm will converge. */
2558 if (new_stack->top != -1)
2561 /* Swap the reg at top of stack into the position it is
2562 supposed to be in, until the correct top of stack appears. */
2564 while (old->reg[old->top] != new_stack->reg[new_stack->top])
2566 for (reg = new_stack->top; reg >= 0; reg--)
2567 if (new_stack->reg[reg] == old->reg[old->top])
2568 break;
2570 gcc_assert (reg != -1);
2572 emit_swap_insn (insn, old,
2573 FP_MODE_REG (old->reg[reg], DFmode));
2576 /* See if any regs remain incorrect. If so, bring an
2577 incorrect reg to the top of stack, and let the while loop
2578 above fix it. */
2580 for (reg = new_stack->top; reg >= 0; reg--)
2581 if (new_stack->reg[reg] != old->reg[reg])
2583 emit_swap_insn (insn, old,
2584 FP_MODE_REG (old->reg[reg], DFmode));
2585 break;
2587 } while (reg >= 0);
2589 /* At this point there must be no differences. */
2591 for (reg = old->top; reg >= 0; reg--)
2592 gcc_assert (old->reg[reg] == new_stack->reg[reg]);
2595 if (update_end)
2596 BB_END (current_block) = PREV_INSN (insn);
2599 /* Print stack configuration. */
2601 static void
2602 print_stack (FILE *file, stack_ptr s)
2604 if (! file)
2605 return;
2607 if (s->top == -2)
2608 fprintf (file, "uninitialized\n");
2609 else if (s->top == -1)
2610 fprintf (file, "empty\n");
2611 else
2613 int i;
2614 fputs ("[ ", file);
2615 for (i = 0; i <= s->top; ++i)
2616 fprintf (file, "%d ", s->reg[i]);
2617 fputs ("]\n", file);
2621 /* This function was doing life analysis. We now let the regular live
2622 code do it's job, so we only need to check some extra invariants
2623 that reg-stack expects. Primary among these being that all registers
2624 are initialized before use.
2626 The function returns true when code was emitted to CFG edges and
2627 commit_edge_insertions needs to be called. */
2629 static int
2630 convert_regs_entry (void)
2632 int inserted = 0;
2633 edge e;
2634 edge_iterator ei;
2636 /* Load something into each stack register live at function entry.
2637 Such live registers can be caused by uninitialized variables or
2638 functions not returning values on all paths. In order to keep
2639 the push/pop code happy, and to not scrog the register stack, we
2640 must put something in these registers. Use a QNaN.
2642 Note that we are inserting converted code here. This code is
2643 never seen by the convert_regs pass. */
2645 FOR_EACH_EDGE (e, ei, ENTRY_BLOCK_PTR_FOR_FN (cfun)->succs)
2647 basic_block block = e->dest;
2648 block_info bi = BLOCK_INFO (block);
2649 int reg, top = -1;
2651 for (reg = LAST_STACK_REG; reg >= FIRST_STACK_REG; --reg)
2652 if (TEST_HARD_REG_BIT (bi->stack_in.reg_set, reg))
2654 rtx init;
2656 bi->stack_in.reg[++top] = reg;
2658 init = gen_rtx_SET (FP_MODE_REG (FIRST_STACK_REG, SFmode),
2659 not_a_num);
2660 insert_insn_on_edge (init, e);
2661 inserted = 1;
2664 bi->stack_in.top = top;
2667 return inserted;
2670 /* Construct the desired stack for function exit. This will either
2671 be `empty', or the function return value at top-of-stack. */
2673 static void
2674 convert_regs_exit (void)
2676 int value_reg_low, value_reg_high;
2677 stack_ptr output_stack;
2678 rtx retvalue;
2680 retvalue = stack_result (current_function_decl);
2681 value_reg_low = value_reg_high = -1;
2682 if (retvalue)
2684 value_reg_low = REGNO (retvalue);
2685 value_reg_high = END_REGNO (retvalue) - 1;
2688 output_stack = &BLOCK_INFO (EXIT_BLOCK_PTR_FOR_FN (cfun))->stack_in;
2689 if (value_reg_low == -1)
2690 output_stack->top = -1;
2691 else
2693 int reg;
2695 output_stack->top = value_reg_high - value_reg_low;
2696 for (reg = value_reg_low; reg <= value_reg_high; ++reg)
2698 output_stack->reg[value_reg_high - reg] = reg;
2699 SET_HARD_REG_BIT (output_stack->reg_set, reg);
2704 /* Copy the stack info from the end of edge E's source block to the
2705 start of E's destination block. */
2707 static void
2708 propagate_stack (edge e)
2710 stack_ptr src_stack = &BLOCK_INFO (e->src)->stack_out;
2711 stack_ptr dest_stack = &BLOCK_INFO (e->dest)->stack_in;
2712 int reg;
2714 /* Preserve the order of the original stack, but check whether
2715 any pops are needed. */
2716 dest_stack->top = -1;
2717 for (reg = 0; reg <= src_stack->top; ++reg)
2718 if (TEST_HARD_REG_BIT (dest_stack->reg_set, src_stack->reg[reg]))
2719 dest_stack->reg[++dest_stack->top] = src_stack->reg[reg];
2721 /* Push in any partially dead values. */
2722 for (reg = FIRST_STACK_REG; reg < LAST_STACK_REG + 1; reg++)
2723 if (TEST_HARD_REG_BIT (dest_stack->reg_set, reg)
2724 && !TEST_HARD_REG_BIT (src_stack->reg_set, reg))
2725 dest_stack->reg[++dest_stack->top] = reg;
2729 /* Adjust the stack of edge E's source block on exit to match the stack
2730 of it's target block upon input. The stack layouts of both blocks
2731 should have been defined by now. */
2733 static bool
2734 compensate_edge (edge e)
2736 basic_block source = e->src, target = e->dest;
2737 stack_ptr target_stack = &BLOCK_INFO (target)->stack_in;
2738 stack_ptr source_stack = &BLOCK_INFO (source)->stack_out;
2739 struct stack_def regstack;
2740 int reg;
2742 if (dump_file)
2743 fprintf (dump_file, "Edge %d->%d: ", source->index, target->index);
2745 gcc_assert (target_stack->top != -2);
2747 /* Check whether stacks are identical. */
2748 if (target_stack->top == source_stack->top)
2750 for (reg = target_stack->top; reg >= 0; --reg)
2751 if (target_stack->reg[reg] != source_stack->reg[reg])
2752 break;
2754 if (reg == -1)
2756 if (dump_file)
2757 fprintf (dump_file, "no changes needed\n");
2758 return false;
2762 if (dump_file)
2764 fprintf (dump_file, "correcting stack to ");
2765 print_stack (dump_file, target_stack);
2768 /* Abnormal calls may appear to have values live in st(0), but the
2769 abnormal return path will not have actually loaded the values. */
2770 if (e->flags & EDGE_ABNORMAL_CALL)
2772 /* Assert that the lifetimes are as we expect -- one value
2773 live at st(0) on the end of the source block, and no
2774 values live at the beginning of the destination block.
2775 For complex return values, we may have st(1) live as well. */
2776 gcc_assert (source_stack->top == 0 || source_stack->top == 1);
2777 gcc_assert (target_stack->top == -1);
2778 return false;
2781 /* Handle non-call EH edges specially. The normal return path have
2782 values in registers. These will be popped en masse by the unwind
2783 library. */
2784 if (e->flags & EDGE_EH)
2786 gcc_assert (target_stack->top == -1);
2787 return false;
2790 /* We don't support abnormal edges. Global takes care to
2791 avoid any live register across them, so we should never
2792 have to insert instructions on such edges. */
2793 gcc_assert (! (e->flags & EDGE_ABNORMAL));
2795 /* Make a copy of source_stack as change_stack is destructive. */
2796 regstack = *source_stack;
2798 /* It is better to output directly to the end of the block
2799 instead of to the edge, because emit_swap can do minimal
2800 insn scheduling. We can do this when there is only one
2801 edge out, and it is not abnormal. */
2802 if (EDGE_COUNT (source->succs) == 1)
2804 current_block = source;
2805 change_stack (BB_END (source), &regstack, target_stack,
2806 (JUMP_P (BB_END (source)) ? EMIT_BEFORE : EMIT_AFTER));
2808 else
2810 rtx_insn *seq;
2811 rtx_note *after;
2813 current_block = NULL;
2814 start_sequence ();
2816 /* ??? change_stack needs some point to emit insns after. */
2817 after = emit_note (NOTE_INSN_DELETED);
2819 change_stack (after, &regstack, target_stack, EMIT_BEFORE);
2821 seq = get_insns ();
2822 end_sequence ();
2824 insert_insn_on_edge (seq, e);
2825 return true;
2827 return false;
2830 /* Traverse all non-entry edges in the CFG, and emit the necessary
2831 edge compensation code to change the stack from stack_out of the
2832 source block to the stack_in of the destination block. */
2834 static bool
2835 compensate_edges (void)
2837 bool inserted = false;
2838 basic_block bb;
2840 starting_stack_p = false;
2842 FOR_EACH_BB_FN (bb, cfun)
2843 if (bb != ENTRY_BLOCK_PTR_FOR_FN (cfun))
2845 edge e;
2846 edge_iterator ei;
2848 FOR_EACH_EDGE (e, ei, bb->succs)
2849 inserted |= compensate_edge (e);
2851 return inserted;
2854 /* Select the better of two edges E1 and E2 to use to determine the
2855 stack layout for their shared destination basic block. This is
2856 typically the more frequently executed. The edge E1 may be NULL
2857 (in which case E2 is returned), but E2 is always non-NULL. */
2859 static edge
2860 better_edge (edge e1, edge e2)
2862 if (!e1)
2863 return e2;
2865 if (EDGE_FREQUENCY (e1) > EDGE_FREQUENCY (e2))
2866 return e1;
2867 if (EDGE_FREQUENCY (e1) < EDGE_FREQUENCY (e2))
2868 return e2;
2870 if (e1->count > e2->count)
2871 return e1;
2872 if (e1->count < e2->count)
2873 return e2;
2875 /* Prefer critical edges to minimize inserting compensation code on
2876 critical edges. */
2878 if (EDGE_CRITICAL_P (e1) != EDGE_CRITICAL_P (e2))
2879 return EDGE_CRITICAL_P (e1) ? e1 : e2;
2881 /* Avoid non-deterministic behavior. */
2882 return (e1->src->index < e2->src->index) ? e1 : e2;
2885 /* Convert stack register references in one block. Return true if the CFG
2886 has been modified in the process. */
2888 static bool
2889 convert_regs_1 (basic_block block)
2891 struct stack_def regstack;
2892 block_info bi = BLOCK_INFO (block);
2893 int reg;
2894 rtx_insn *insn, *next;
2895 bool control_flow_insn_deleted = false;
2896 bool cfg_altered = false;
2897 int debug_insns_with_starting_stack = 0;
2899 any_malformed_asm = false;
2901 /* Choose an initial stack layout, if one hasn't already been chosen. */
2902 if (bi->stack_in.top == -2)
2904 edge e, beste = NULL;
2905 edge_iterator ei;
2907 /* Select the best incoming edge (typically the most frequent) to
2908 use as a template for this basic block. */
2909 FOR_EACH_EDGE (e, ei, block->preds)
2910 if (BLOCK_INFO (e->src)->done)
2911 beste = better_edge (beste, e);
2913 if (beste)
2914 propagate_stack (beste);
2915 else
2917 /* No predecessors. Create an arbitrary input stack. */
2918 bi->stack_in.top = -1;
2919 for (reg = LAST_STACK_REG; reg >= FIRST_STACK_REG; --reg)
2920 if (TEST_HARD_REG_BIT (bi->stack_in.reg_set, reg))
2921 bi->stack_in.reg[++bi->stack_in.top] = reg;
2925 if (dump_file)
2927 fprintf (dump_file, "\nBasic block %d\nInput stack: ", block->index);
2928 print_stack (dump_file, &bi->stack_in);
2931 /* Process all insns in this block. Keep track of NEXT so that we
2932 don't process insns emitted while substituting in INSN. */
2933 current_block = block;
2934 next = BB_HEAD (block);
2935 regstack = bi->stack_in;
2936 starting_stack_p = true;
2940 insn = next;
2941 next = NEXT_INSN (insn);
2943 /* Ensure we have not missed a block boundary. */
2944 gcc_assert (next);
2945 if (insn == BB_END (block))
2946 next = NULL;
2948 /* Don't bother processing unless there is a stack reg
2949 mentioned or if it's a CALL_INSN. */
2950 if (DEBUG_INSN_P (insn))
2952 if (starting_stack_p)
2953 debug_insns_with_starting_stack++;
2954 else
2956 subst_all_stack_regs_in_debug_insn (insn, &regstack);
2958 /* Nothing must ever die at a debug insn. If something
2959 is referenced in it that becomes dead, it should have
2960 died before and the reference in the debug insn
2961 should have been removed so as to avoid changing code
2962 generation. */
2963 gcc_assert (!find_reg_note (insn, REG_DEAD, NULL));
2966 else if (stack_regs_mentioned (insn)
2967 || CALL_P (insn))
2969 if (dump_file)
2971 fprintf (dump_file, " insn %d input stack: ",
2972 INSN_UID (insn));
2973 print_stack (dump_file, &regstack);
2975 control_flow_insn_deleted |= subst_stack_regs (insn, &regstack);
2976 starting_stack_p = false;
2979 while (next);
2981 if (debug_insns_with_starting_stack)
2983 /* Since it's the first non-debug instruction that determines
2984 the stack requirements of the current basic block, we refrain
2985 from updating debug insns before it in the loop above, and
2986 fix them up here. */
2987 for (insn = BB_HEAD (block); debug_insns_with_starting_stack;
2988 insn = NEXT_INSN (insn))
2990 if (!DEBUG_INSN_P (insn))
2991 continue;
2993 debug_insns_with_starting_stack--;
2994 subst_all_stack_regs_in_debug_insn (insn, &bi->stack_in);
2998 if (dump_file)
3000 fprintf (dump_file, "Expected live registers [");
3001 for (reg = FIRST_STACK_REG; reg <= LAST_STACK_REG; ++reg)
3002 if (TEST_HARD_REG_BIT (bi->out_reg_set, reg))
3003 fprintf (dump_file, " %d", reg);
3004 fprintf (dump_file, " ]\nOutput stack: ");
3005 print_stack (dump_file, &regstack);
3008 insn = BB_END (block);
3009 if (JUMP_P (insn))
3010 insn = PREV_INSN (insn);
3012 /* If the function is declared to return a value, but it returns one
3013 in only some cases, some registers might come live here. Emit
3014 necessary moves for them. */
3016 for (reg = FIRST_STACK_REG; reg <= LAST_STACK_REG; ++reg)
3018 if (TEST_HARD_REG_BIT (bi->out_reg_set, reg)
3019 && ! TEST_HARD_REG_BIT (regstack.reg_set, reg))
3021 rtx set;
3023 if (dump_file)
3024 fprintf (dump_file, "Emitting insn initializing reg %d\n", reg);
3026 set = gen_rtx_SET (FP_MODE_REG (reg, SFmode), not_a_num);
3027 insn = emit_insn_after (set, insn);
3028 control_flow_insn_deleted |= subst_stack_regs (insn, &regstack);
3032 /* Amongst the insns possibly deleted during the substitution process above,
3033 might have been the only trapping insn in the block. We purge the now
3034 possibly dead EH edges here to avoid an ICE from fixup_abnormal_edges,
3035 called at the end of convert_regs. The order in which we process the
3036 blocks ensures that we never delete an already processed edge.
3038 Note that, at this point, the CFG may have been damaged by the emission
3039 of instructions after an abnormal call, which moves the basic block end
3040 (and is the reason why we call fixup_abnormal_edges later). So we must
3041 be sure that the trapping insn has been deleted before trying to purge
3042 dead edges, otherwise we risk purging valid edges.
3044 ??? We are normally supposed not to delete trapping insns, so we pretend
3045 that the insns deleted above don't actually trap. It would have been
3046 better to detect this earlier and avoid creating the EH edge in the first
3047 place, still, but we don't have enough information at that time. */
3049 if (control_flow_insn_deleted)
3050 cfg_altered |= purge_dead_edges (block);
3052 /* Something failed if the stack lives don't match. If we had malformed
3053 asms, we zapped the instruction itself, but that didn't produce the
3054 same pattern of register kills as before. */
3056 gcc_assert (hard_reg_set_equal_p (regstack.reg_set, bi->out_reg_set)
3057 || any_malformed_asm);
3058 bi->stack_out = regstack;
3059 bi->done = true;
3061 return cfg_altered;
3064 /* Convert registers in all blocks reachable from BLOCK. Return true if the
3065 CFG has been modified in the process. */
3067 static bool
3068 convert_regs_2 (basic_block block)
3070 basic_block *stack, *sp;
3071 bool cfg_altered = false;
3073 /* We process the blocks in a top-down manner, in a way such that one block
3074 is only processed after all its predecessors. The number of predecessors
3075 of every block has already been computed. */
3077 stack = XNEWVEC (basic_block, n_basic_blocks_for_fn (cfun));
3078 sp = stack;
3080 *sp++ = block;
3084 edge e;
3085 edge_iterator ei;
3087 block = *--sp;
3089 /* Processing BLOCK is achieved by convert_regs_1, which may purge
3090 some dead EH outgoing edge after the deletion of the trapping
3091 insn inside the block. Since the number of predecessors of
3092 BLOCK's successors was computed based on the initial edge set,
3093 we check the necessity to process some of these successors
3094 before such an edge deletion may happen. However, there is
3095 a pitfall: if BLOCK is the only predecessor of a successor and
3096 the edge between them happens to be deleted, the successor
3097 becomes unreachable and should not be processed. The problem
3098 is that there is no way to preventively detect this case so we
3099 stack the successor in all cases and hand over the task of
3100 fixing up the discrepancy to convert_regs_1. */
3102 FOR_EACH_EDGE (e, ei, block->succs)
3103 if (! (e->flags & EDGE_DFS_BACK))
3105 BLOCK_INFO (e->dest)->predecessors--;
3106 if (!BLOCK_INFO (e->dest)->predecessors)
3107 *sp++ = e->dest;
3110 cfg_altered |= convert_regs_1 (block);
3112 while (sp != stack);
3114 free (stack);
3116 return cfg_altered;
3119 /* Traverse all basic blocks in a function, converting the register
3120 references in each insn from the "flat" register file that gcc uses,
3121 to the stack-like registers the 387 uses. */
3123 static void
3124 convert_regs (void)
3126 bool cfg_altered = false;
3127 int inserted;
3128 basic_block b;
3129 edge e;
3130 edge_iterator ei;
3132 /* Initialize uninitialized registers on function entry. */
3133 inserted = convert_regs_entry ();
3135 /* Construct the desired stack for function exit. */
3136 convert_regs_exit ();
3137 BLOCK_INFO (EXIT_BLOCK_PTR_FOR_FN (cfun))->done = 1;
3139 /* ??? Future: process inner loops first, and give them arbitrary
3140 initial stacks which emit_swap_insn can modify. This ought to
3141 prevent double fxch that often appears at the head of a loop. */
3143 /* Process all blocks reachable from all entry points. */
3144 FOR_EACH_EDGE (e, ei, ENTRY_BLOCK_PTR_FOR_FN (cfun)->succs)
3145 cfg_altered |= convert_regs_2 (e->dest);
3147 /* ??? Process all unreachable blocks. Though there's no excuse
3148 for keeping these even when not optimizing. */
3149 FOR_EACH_BB_FN (b, cfun)
3151 block_info bi = BLOCK_INFO (b);
3153 if (! bi->done)
3154 cfg_altered |= convert_regs_2 (b);
3157 /* We must fix up abnormal edges before inserting compensation code
3158 because both mechanisms insert insns on edges. */
3159 inserted |= fixup_abnormal_edges ();
3161 inserted |= compensate_edges ();
3163 clear_aux_for_blocks ();
3165 if (inserted)
3166 commit_edge_insertions ();
3168 if (cfg_altered)
3169 cleanup_cfg (0);
3171 if (dump_file)
3172 fputc ('\n', dump_file);
3175 /* Convert register usage from "flat" register file usage to a "stack
3176 register file. FILE is the dump file, if used.
3178 Construct a CFG and run life analysis. Then convert each insn one
3179 by one. Run a last cleanup_cfg pass, if optimizing, to eliminate
3180 code duplication created when the converter inserts pop insns on
3181 the edges. */
3183 static bool
3184 reg_to_stack (void)
3186 basic_block bb;
3187 int i;
3188 int max_uid;
3190 /* Clean up previous run. */
3191 stack_regs_mentioned_data.release ();
3193 /* See if there is something to do. Flow analysis is quite
3194 expensive so we might save some compilation time. */
3195 for (i = FIRST_STACK_REG; i <= LAST_STACK_REG; i++)
3196 if (df_regs_ever_live_p (i))
3197 break;
3198 if (i > LAST_STACK_REG)
3199 return false;
3201 df_note_add_problem ();
3202 df_analyze ();
3204 mark_dfs_back_edges ();
3206 /* Set up block info for each basic block. */
3207 alloc_aux_for_blocks (sizeof (struct block_info_def));
3208 FOR_EACH_BB_FN (bb, cfun)
3210 block_info bi = BLOCK_INFO (bb);
3211 edge_iterator ei;
3212 edge e;
3213 int reg;
3215 FOR_EACH_EDGE (e, ei, bb->preds)
3216 if (!(e->flags & EDGE_DFS_BACK)
3217 && e->src != ENTRY_BLOCK_PTR_FOR_FN (cfun))
3218 bi->predecessors++;
3220 /* Set current register status at last instruction `uninitialized'. */
3221 bi->stack_in.top = -2;
3223 /* Copy live_at_end and live_at_start into temporaries. */
3224 for (reg = FIRST_STACK_REG; reg <= LAST_STACK_REG; reg++)
3226 if (REGNO_REG_SET_P (DF_LR_OUT (bb), reg))
3227 SET_HARD_REG_BIT (bi->out_reg_set, reg);
3228 if (REGNO_REG_SET_P (DF_LR_IN (bb), reg))
3229 SET_HARD_REG_BIT (bi->stack_in.reg_set, reg);
3233 /* Create the replacement registers up front. */
3234 for (i = FIRST_STACK_REG; i <= LAST_STACK_REG; i++)
3236 machine_mode mode;
3237 for (mode = GET_CLASS_NARROWEST_MODE (MODE_FLOAT);
3238 mode != VOIDmode;
3239 mode = GET_MODE_WIDER_MODE (mode))
3240 FP_MODE_REG (i, mode) = gen_rtx_REG (mode, i);
3241 for (mode = GET_CLASS_NARROWEST_MODE (MODE_COMPLEX_FLOAT);
3242 mode != VOIDmode;
3243 mode = GET_MODE_WIDER_MODE (mode))
3244 FP_MODE_REG (i, mode) = gen_rtx_REG (mode, i);
3247 ix86_flags_rtx = gen_rtx_REG (CCmode, FLAGS_REG);
3249 /* A QNaN for initializing uninitialized variables.
3251 ??? We can't load from constant memory in PIC mode, because
3252 we're inserting these instructions before the prologue and
3253 the PIC register hasn't been set up. In that case, fall back
3254 on zero, which we can get from `fldz'. */
3256 if ((flag_pic && !TARGET_64BIT)
3257 || ix86_cmodel == CM_LARGE || ix86_cmodel == CM_LARGE_PIC)
3258 not_a_num = CONST0_RTX (SFmode);
3259 else
3261 REAL_VALUE_TYPE r;
3263 real_nan (&r, "", 1, SFmode);
3264 not_a_num = const_double_from_real_value (r, SFmode);
3265 not_a_num = force_const_mem (SFmode, not_a_num);
3268 /* Allocate a cache for stack_regs_mentioned. */
3269 max_uid = get_max_uid ();
3270 stack_regs_mentioned_data.create (max_uid + 1);
3271 memset (stack_regs_mentioned_data.address (),
3272 0, sizeof (char) * (max_uid + 1));
3274 convert_regs ();
3276 free_aux_for_blocks ();
3277 return true;
3279 #endif /* STACK_REGS */
3281 namespace {
3283 const pass_data pass_data_stack_regs =
3285 RTL_PASS, /* type */
3286 "*stack_regs", /* name */
3287 OPTGROUP_NONE, /* optinfo_flags */
3288 TV_REG_STACK, /* tv_id */
3289 0, /* properties_required */
3290 0, /* properties_provided */
3291 0, /* properties_destroyed */
3292 0, /* todo_flags_start */
3293 0, /* todo_flags_finish */
3296 class pass_stack_regs : public rtl_opt_pass
3298 public:
3299 pass_stack_regs (gcc::context *ctxt)
3300 : rtl_opt_pass (pass_data_stack_regs, ctxt)
3303 /* opt_pass methods: */
3304 virtual bool gate (function *)
3306 #ifdef STACK_REGS
3307 return true;
3308 #else
3309 return false;
3310 #endif
3313 }; // class pass_stack_regs
3315 } // anon namespace
3317 rtl_opt_pass *
3318 make_pass_stack_regs (gcc::context *ctxt)
3320 return new pass_stack_regs (ctxt);
3323 /* Convert register usage from flat register file usage to a stack
3324 register file. */
3325 static unsigned int
3326 rest_of_handle_stack_regs (void)
3328 #ifdef STACK_REGS
3329 reg_to_stack ();
3330 regstack_completed = 1;
3331 #endif
3332 return 0;
3335 namespace {
3337 const pass_data pass_data_stack_regs_run =
3339 RTL_PASS, /* type */
3340 "stack", /* name */
3341 OPTGROUP_NONE, /* optinfo_flags */
3342 TV_REG_STACK, /* tv_id */
3343 0, /* properties_required */
3344 0, /* properties_provided */
3345 0, /* properties_destroyed */
3346 0, /* todo_flags_start */
3347 TODO_df_finish, /* todo_flags_finish */
3350 class pass_stack_regs_run : public rtl_opt_pass
3352 public:
3353 pass_stack_regs_run (gcc::context *ctxt)
3354 : rtl_opt_pass (pass_data_stack_regs_run, ctxt)
3357 /* opt_pass methods: */
3358 virtual unsigned int execute (function *)
3360 return rest_of_handle_stack_regs ();
3363 }; // class pass_stack_regs_run
3365 } // anon namespace
3367 rtl_opt_pass *
3368 make_pass_stack_regs_run (gcc::context *ctxt)
3370 return new pass_stack_regs_run (ctxt);