1 /* Emit RTL for the GCC expander.
2 Copyright (C) 1987, 1988, 1992, 1993, 1994, 1995, 1996, 1997, 1998,
3 1999, 2000, 2001, 2002, 2003, 2004, 2005, 2006, 2007, 2008
4 Free Software Foundation, Inc.
6 This file is part of GCC.
8 GCC is free software; you can redistribute it and/or modify it under
9 the terms of the GNU General Public License as published by the Free
10 Software Foundation; either version 3, or (at your option) any later
13 GCC is distributed in the hope that it will be useful, but WITHOUT ANY
14 WARRANTY; without even the implied warranty of MERCHANTABILITY or
15 FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License
18 You should have received a copy of the GNU General Public License
19 along with GCC; see the file COPYING3. If not see
20 <http://www.gnu.org/licenses/>. */
23 /* Middle-to-low level generation of rtx code and insns.
25 This file contains support functions for creating rtl expressions
26 and manipulating them in the doubly-linked chain of insns.
28 The patterns of the insns are created by machine-dependent
29 routines in insn-emit.c, which is generated automatically from
30 the machine description. These routines make the individual rtx's
31 of the pattern with `gen_rtx_fmt_ee' and others in genrtl.[ch],
32 which are automatically generated from rtl.def; what is machine
33 dependent is the kind of rtx's they make and what arguments they
38 #include "coretypes.h"
48 #include "hard-reg-set.h"
50 #include "insn-config.h"
53 #include "fixed-value.h"
55 #include "basic-block.h"
58 #include "langhooks.h"
59 #include "tree-pass.h"
62 /* Commonly used modes. */
64 enum machine_mode byte_mode
; /* Mode whose width is BITS_PER_UNIT. */
65 enum machine_mode word_mode
; /* Mode whose width is BITS_PER_WORD. */
66 enum machine_mode double_mode
; /* Mode whose width is DOUBLE_TYPE_SIZE. */
67 enum machine_mode ptr_mode
; /* Mode whose width is POINTER_SIZE. */
69 /* Datastructures maintained for currently processed function in RTL form. */
71 struct rtl_data x_rtl
;
73 /* Indexed by pseudo register number, gives the rtx for that pseudo.
74 Allocated in parallel with regno_pointer_align.
75 FIXME: We could put it into emit_status struct, but gengtype is not able to deal
76 with length attribute nested in top level structures. */
80 /* This is *not* reset after each function. It gives each CODE_LABEL
81 in the entire compilation a unique label number. */
83 static GTY(()) int label_num
= 1;
85 /* Nonzero means do not generate NOTEs for source line numbers. */
87 static int no_line_numbers
;
89 /* Commonly used rtx's, so that we only need space for one copy.
90 These are initialized once for the entire compilation.
91 All of these are unique; no other rtx-object will be equal to any
94 rtx global_rtl
[GR_MAX
];
96 /* Commonly used RTL for hard registers. These objects are not necessarily
97 unique, so we allocate them separately from global_rtl. They are
98 initialized once per compilation unit, then copied into regno_reg_rtx
99 at the beginning of each function. */
100 static GTY(()) rtx static_regno_reg_rtx
[FIRST_PSEUDO_REGISTER
];
102 /* We record floating-point CONST_DOUBLEs in each floating-point mode for
103 the values of 0, 1, and 2. For the integer entries and VOIDmode, we
104 record a copy of const[012]_rtx. */
106 rtx const_tiny_rtx
[3][(int) MAX_MACHINE_MODE
];
110 REAL_VALUE_TYPE dconst0
;
111 REAL_VALUE_TYPE dconst1
;
112 REAL_VALUE_TYPE dconst2
;
113 REAL_VALUE_TYPE dconstm1
;
114 REAL_VALUE_TYPE dconsthalf
;
116 /* Record fixed-point constant 0 and 1. */
117 FIXED_VALUE_TYPE fconst0
[MAX_FCONST0
];
118 FIXED_VALUE_TYPE fconst1
[MAX_FCONST1
];
120 /* All references to the following fixed hard registers go through
121 these unique rtl objects. On machines where the frame-pointer and
122 arg-pointer are the same register, they use the same unique object.
124 After register allocation, other rtl objects which used to be pseudo-regs
125 may be clobbered to refer to the frame-pointer register.
126 But references that were originally to the frame-pointer can be
127 distinguished from the others because they contain frame_pointer_rtx.
129 When to use frame_pointer_rtx and hard_frame_pointer_rtx is a little
130 tricky: until register elimination has taken place hard_frame_pointer_rtx
131 should be used if it is being set, and frame_pointer_rtx otherwise. After
132 register elimination hard_frame_pointer_rtx should always be used.
133 On machines where the two registers are same (most) then these are the
136 In an inline procedure, the stack and frame pointer rtxs may not be
137 used for anything else. */
138 rtx static_chain_rtx
; /* (REG:Pmode STATIC_CHAIN_REGNUM) */
139 rtx static_chain_incoming_rtx
; /* (REG:Pmode STATIC_CHAIN_INCOMING_REGNUM) */
140 rtx pic_offset_table_rtx
; /* (REG:Pmode PIC_OFFSET_TABLE_REGNUM) */
142 /* This is used to implement __builtin_return_address for some machines.
143 See for instance the MIPS port. */
144 rtx return_address_pointer_rtx
; /* (REG:Pmode RETURN_ADDRESS_POINTER_REGNUM) */
146 /* We make one copy of (const_int C) where C is in
147 [- MAX_SAVED_CONST_INT, MAX_SAVED_CONST_INT]
148 to save space during the compilation and simplify comparisons of
151 rtx const_int_rtx
[MAX_SAVED_CONST_INT
* 2 + 1];
153 /* A hash table storing CONST_INTs whose absolute value is greater
154 than MAX_SAVED_CONST_INT. */
156 static GTY ((if_marked ("ggc_marked_p"), param_is (struct rtx_def
)))
157 htab_t const_int_htab
;
159 /* A hash table storing memory attribute structures. */
160 static GTY ((if_marked ("ggc_marked_p"), param_is (struct mem_attrs
)))
161 htab_t mem_attrs_htab
;
163 /* A hash table storing register attribute structures. */
164 static GTY ((if_marked ("ggc_marked_p"), param_is (struct reg_attrs
)))
165 htab_t reg_attrs_htab
;
167 /* A hash table storing all CONST_DOUBLEs. */
168 static GTY ((if_marked ("ggc_marked_p"), param_is (struct rtx_def
)))
169 htab_t const_double_htab
;
171 /* A hash table storing all CONST_FIXEDs. */
172 static GTY ((if_marked ("ggc_marked_p"), param_is (struct rtx_def
)))
173 htab_t const_fixed_htab
;
175 #define first_insn (crtl->emit.x_first_insn)
176 #define last_insn (crtl->emit.x_last_insn)
177 #define cur_insn_uid (crtl->emit.x_cur_insn_uid)
178 #define last_location (crtl->emit.x_last_location)
179 #define first_label_num (crtl->emit.x_first_label_num)
181 static rtx
make_call_insn_raw (rtx
);
182 static rtx
change_address_1 (rtx
, enum machine_mode
, rtx
, int);
183 static void set_used_decls (tree
);
184 static void mark_label_nuses (rtx
);
185 static hashval_t
const_int_htab_hash (const void *);
186 static int const_int_htab_eq (const void *, const void *);
187 static hashval_t
const_double_htab_hash (const void *);
188 static int const_double_htab_eq (const void *, const void *);
189 static rtx
lookup_const_double (rtx
);
190 static hashval_t
const_fixed_htab_hash (const void *);
191 static int const_fixed_htab_eq (const void *, const void *);
192 static rtx
lookup_const_fixed (rtx
);
193 static hashval_t
mem_attrs_htab_hash (const void *);
194 static int mem_attrs_htab_eq (const void *, const void *);
195 static mem_attrs
*get_mem_attrs (alias_set_type
, tree
, rtx
, rtx
, unsigned int,
197 static hashval_t
reg_attrs_htab_hash (const void *);
198 static int reg_attrs_htab_eq (const void *, const void *);
199 static reg_attrs
*get_reg_attrs (tree
, int);
200 static tree
component_ref_for_mem_expr (tree
);
201 static rtx
gen_const_vector (enum machine_mode
, int);
202 static void copy_rtx_if_shared_1 (rtx
*orig
);
204 /* Probability of the conditional branch currently proceeded by try_split.
205 Set to -1 otherwise. */
206 int split_branch_probability
= -1;
208 /* Returns a hash code for X (which is a really a CONST_INT). */
211 const_int_htab_hash (const void *x
)
213 return (hashval_t
) INTVAL ((const_rtx
) x
);
216 /* Returns nonzero if the value represented by X (which is really a
217 CONST_INT) is the same as that given by Y (which is really a
221 const_int_htab_eq (const void *x
, const void *y
)
223 return (INTVAL ((const_rtx
) x
) == *((const HOST_WIDE_INT
*) y
));
226 /* Returns a hash code for X (which is really a CONST_DOUBLE). */
228 const_double_htab_hash (const void *x
)
230 const_rtx
const value
= (const_rtx
) x
;
233 if (GET_MODE (value
) == VOIDmode
)
234 h
= CONST_DOUBLE_LOW (value
) ^ CONST_DOUBLE_HIGH (value
);
237 h
= real_hash (CONST_DOUBLE_REAL_VALUE (value
));
238 /* MODE is used in the comparison, so it should be in the hash. */
239 h
^= GET_MODE (value
);
244 /* Returns nonzero if the value represented by X (really a ...)
245 is the same as that represented by Y (really a ...) */
247 const_double_htab_eq (const void *x
, const void *y
)
249 const_rtx
const a
= (const_rtx
)x
, b
= (const_rtx
)y
;
251 if (GET_MODE (a
) != GET_MODE (b
))
253 if (GET_MODE (a
) == VOIDmode
)
254 return (CONST_DOUBLE_LOW (a
) == CONST_DOUBLE_LOW (b
)
255 && CONST_DOUBLE_HIGH (a
) == CONST_DOUBLE_HIGH (b
));
257 return real_identical (CONST_DOUBLE_REAL_VALUE (a
),
258 CONST_DOUBLE_REAL_VALUE (b
));
261 /* Returns a hash code for X (which is really a CONST_FIXED). */
264 const_fixed_htab_hash (const void *x
)
266 const_rtx
const value
= (const_rtx
) x
;
269 h
= fixed_hash (CONST_FIXED_VALUE (value
));
270 /* MODE is used in the comparison, so it should be in the hash. */
271 h
^= GET_MODE (value
);
275 /* Returns nonzero if the value represented by X (really a ...)
276 is the same as that represented by Y (really a ...). */
279 const_fixed_htab_eq (const void *x
, const void *y
)
281 const_rtx
const a
= (const_rtx
) x
, b
= (const_rtx
) y
;
283 if (GET_MODE (a
) != GET_MODE (b
))
285 return fixed_identical (CONST_FIXED_VALUE (a
), CONST_FIXED_VALUE (b
));
288 /* Returns a hash code for X (which is a really a mem_attrs *). */
291 mem_attrs_htab_hash (const void *x
)
293 const mem_attrs
*const p
= (const mem_attrs
*) x
;
295 return (p
->alias
^ (p
->align
* 1000)
296 ^ ((p
->offset
? INTVAL (p
->offset
) : 0) * 50000)
297 ^ ((p
->size
? INTVAL (p
->size
) : 0) * 2500000)
298 ^ (size_t) iterative_hash_expr (p
->expr
, 0));
301 /* Returns nonzero if the value represented by X (which is really a
302 mem_attrs *) is the same as that given by Y (which is also really a
306 mem_attrs_htab_eq (const void *x
, const void *y
)
308 const mem_attrs
*const p
= (const mem_attrs
*) x
;
309 const mem_attrs
*const q
= (const mem_attrs
*) y
;
311 return (p
->alias
== q
->alias
&& p
->offset
== q
->offset
312 && p
->size
== q
->size
&& p
->align
== q
->align
313 && (p
->expr
== q
->expr
314 || (p
->expr
!= NULL_TREE
&& q
->expr
!= NULL_TREE
315 && operand_equal_p (p
->expr
, q
->expr
, 0))));
318 /* Allocate a new mem_attrs structure and insert it into the hash table if
319 one identical to it is not already in the table. We are doing this for
323 get_mem_attrs (alias_set_type alias
, tree expr
, rtx offset
, rtx size
,
324 unsigned int align
, enum machine_mode mode
)
329 /* If everything is the default, we can just return zero.
330 This must match what the corresponding MEM_* macros return when the
331 field is not present. */
332 if (alias
== 0 && expr
== 0 && offset
== 0
334 || (mode
!= BLKmode
&& GET_MODE_SIZE (mode
) == INTVAL (size
)))
335 && (STRICT_ALIGNMENT
&& mode
!= BLKmode
336 ? align
== GET_MODE_ALIGNMENT (mode
) : align
== BITS_PER_UNIT
))
341 attrs
.offset
= offset
;
345 slot
= htab_find_slot (mem_attrs_htab
, &attrs
, INSERT
);
348 *slot
= ggc_alloc (sizeof (mem_attrs
));
349 memcpy (*slot
, &attrs
, sizeof (mem_attrs
));
352 return (mem_attrs
*) *slot
;
355 /* Returns a hash code for X (which is a really a reg_attrs *). */
358 reg_attrs_htab_hash (const void *x
)
360 const reg_attrs
*const p
= (const reg_attrs
*) x
;
362 return ((p
->offset
* 1000) ^ (long) p
->decl
);
365 /* Returns nonzero if the value represented by X (which is really a
366 reg_attrs *) is the same as that given by Y (which is also really a
370 reg_attrs_htab_eq (const void *x
, const void *y
)
372 const reg_attrs
*const p
= (const reg_attrs
*) x
;
373 const reg_attrs
*const q
= (const reg_attrs
*) y
;
375 return (p
->decl
== q
->decl
&& p
->offset
== q
->offset
);
377 /* Allocate a new reg_attrs structure and insert it into the hash table if
378 one identical to it is not already in the table. We are doing this for
382 get_reg_attrs (tree decl
, int offset
)
387 /* If everything is the default, we can just return zero. */
388 if (decl
== 0 && offset
== 0)
392 attrs
.offset
= offset
;
394 slot
= htab_find_slot (reg_attrs_htab
, &attrs
, INSERT
);
397 *slot
= ggc_alloc (sizeof (reg_attrs
));
398 memcpy (*slot
, &attrs
, sizeof (reg_attrs
));
401 return (reg_attrs
*) *slot
;
406 /* Generate an empty ASM_INPUT, which is used to block attempts to schedule
412 rtx x
= gen_rtx_ASM_INPUT (VOIDmode
, "");
413 MEM_VOLATILE_P (x
) = true;
419 /* Generate a new REG rtx. Make sure ORIGINAL_REGNO is set properly, and
420 don't attempt to share with the various global pieces of rtl (such as
421 frame_pointer_rtx). */
424 gen_raw_REG (enum machine_mode mode
, int regno
)
426 rtx x
= gen_rtx_raw_REG (mode
, regno
);
427 ORIGINAL_REGNO (x
) = regno
;
431 /* There are some RTL codes that require special attention; the generation
432 functions do the raw handling. If you add to this list, modify
433 special_rtx in gengenrtl.c as well. */
436 gen_rtx_CONST_INT (enum machine_mode mode ATTRIBUTE_UNUSED
, HOST_WIDE_INT arg
)
440 if (arg
>= - MAX_SAVED_CONST_INT
&& arg
<= MAX_SAVED_CONST_INT
)
441 return const_int_rtx
[arg
+ MAX_SAVED_CONST_INT
];
443 #if STORE_FLAG_VALUE != 1 && STORE_FLAG_VALUE != -1
444 if (const_true_rtx
&& arg
== STORE_FLAG_VALUE
)
445 return const_true_rtx
;
448 /* Look up the CONST_INT in the hash table. */
449 slot
= htab_find_slot_with_hash (const_int_htab
, &arg
,
450 (hashval_t
) arg
, INSERT
);
452 *slot
= gen_rtx_raw_CONST_INT (VOIDmode
, arg
);
458 gen_int_mode (HOST_WIDE_INT c
, enum machine_mode mode
)
460 return GEN_INT (trunc_int_for_mode (c
, mode
));
463 /* CONST_DOUBLEs might be created from pairs of integers, or from
464 REAL_VALUE_TYPEs. Also, their length is known only at run time,
465 so we cannot use gen_rtx_raw_CONST_DOUBLE. */
467 /* Determine whether REAL, a CONST_DOUBLE, already exists in the
468 hash table. If so, return its counterpart; otherwise add it
469 to the hash table and return it. */
471 lookup_const_double (rtx real
)
473 void **slot
= htab_find_slot (const_double_htab
, real
, INSERT
);
480 /* Return a CONST_DOUBLE rtx for a floating-point value specified by
481 VALUE in mode MODE. */
483 const_double_from_real_value (REAL_VALUE_TYPE value
, enum machine_mode mode
)
485 rtx real
= rtx_alloc (CONST_DOUBLE
);
486 PUT_MODE (real
, mode
);
490 return lookup_const_double (real
);
493 /* Determine whether FIXED, a CONST_FIXED, already exists in the
494 hash table. If so, return its counterpart; otherwise add it
495 to the hash table and return it. */
498 lookup_const_fixed (rtx fixed
)
500 void **slot
= htab_find_slot (const_fixed_htab
, fixed
, INSERT
);
507 /* Return a CONST_FIXED rtx for a fixed-point value specified by
508 VALUE in mode MODE. */
511 const_fixed_from_fixed_value (FIXED_VALUE_TYPE value
, enum machine_mode mode
)
513 rtx fixed
= rtx_alloc (CONST_FIXED
);
514 PUT_MODE (fixed
, mode
);
518 return lookup_const_fixed (fixed
);
521 /* Return a CONST_DOUBLE or CONST_INT for a value specified as a pair
522 of ints: I0 is the low-order word and I1 is the high-order word.
523 Do not use this routine for non-integer modes; convert to
524 REAL_VALUE_TYPE and use CONST_DOUBLE_FROM_REAL_VALUE. */
527 immed_double_const (HOST_WIDE_INT i0
, HOST_WIDE_INT i1
, enum machine_mode mode
)
532 /* There are the following cases (note that there are no modes with
533 HOST_BITS_PER_WIDE_INT < GET_MODE_BITSIZE (mode) < 2 * HOST_BITS_PER_WIDE_INT):
535 1) If GET_MODE_BITSIZE (mode) <= HOST_BITS_PER_WIDE_INT, then we use
537 2) GET_MODE_BITSIZE (mode) == 2 * HOST_BITS_PER_WIDE_INT, but the value of
538 the integer fits into HOST_WIDE_INT anyway (i.e., i1 consists only
539 from copies of the sign bit, and sign of i0 and i1 are the same), then
540 we return a CONST_INT for i0.
541 3) Otherwise, we create a CONST_DOUBLE for i0 and i1. */
542 if (mode
!= VOIDmode
)
544 gcc_assert (GET_MODE_CLASS (mode
) == MODE_INT
545 || GET_MODE_CLASS (mode
) == MODE_PARTIAL_INT
546 /* We can get a 0 for an error mark. */
547 || GET_MODE_CLASS (mode
) == MODE_VECTOR_INT
548 || GET_MODE_CLASS (mode
) == MODE_VECTOR_FLOAT
);
550 if (GET_MODE_BITSIZE (mode
) <= HOST_BITS_PER_WIDE_INT
)
551 return gen_int_mode (i0
, mode
);
553 gcc_assert (GET_MODE_BITSIZE (mode
) == 2 * HOST_BITS_PER_WIDE_INT
);
556 /* If this integer fits in one word, return a CONST_INT. */
557 if ((i1
== 0 && i0
>= 0) || (i1
== ~0 && i0
< 0))
560 /* We use VOIDmode for integers. */
561 value
= rtx_alloc (CONST_DOUBLE
);
562 PUT_MODE (value
, VOIDmode
);
564 CONST_DOUBLE_LOW (value
) = i0
;
565 CONST_DOUBLE_HIGH (value
) = i1
;
567 for (i
= 2; i
< (sizeof CONST_DOUBLE_FORMAT
- 1); i
++)
568 XWINT (value
, i
) = 0;
570 return lookup_const_double (value
);
574 gen_rtx_REG (enum machine_mode mode
, unsigned int regno
)
576 /* In case the MD file explicitly references the frame pointer, have
577 all such references point to the same frame pointer. This is
578 used during frame pointer elimination to distinguish the explicit
579 references to these registers from pseudos that happened to be
582 If we have eliminated the frame pointer or arg pointer, we will
583 be using it as a normal register, for example as a spill
584 register. In such cases, we might be accessing it in a mode that
585 is not Pmode and therefore cannot use the pre-allocated rtx.
587 Also don't do this when we are making new REGs in reload, since
588 we don't want to get confused with the real pointers. */
590 if (mode
== Pmode
&& !reload_in_progress
)
592 if (regno
== FRAME_POINTER_REGNUM
593 && (!reload_completed
|| frame_pointer_needed
))
594 return frame_pointer_rtx
;
595 #if FRAME_POINTER_REGNUM != HARD_FRAME_POINTER_REGNUM
596 if (regno
== HARD_FRAME_POINTER_REGNUM
597 && (!reload_completed
|| frame_pointer_needed
))
598 return hard_frame_pointer_rtx
;
600 #if FRAME_POINTER_REGNUM != ARG_POINTER_REGNUM && HARD_FRAME_POINTER_REGNUM != ARG_POINTER_REGNUM
601 if (regno
== ARG_POINTER_REGNUM
)
602 return arg_pointer_rtx
;
604 #ifdef RETURN_ADDRESS_POINTER_REGNUM
605 if (regno
== RETURN_ADDRESS_POINTER_REGNUM
)
606 return return_address_pointer_rtx
;
608 if (regno
== (unsigned) PIC_OFFSET_TABLE_REGNUM
609 && fixed_regs
[PIC_OFFSET_TABLE_REGNUM
])
610 return pic_offset_table_rtx
;
611 if (regno
== STACK_POINTER_REGNUM
)
612 return stack_pointer_rtx
;
616 /* If the per-function register table has been set up, try to re-use
617 an existing entry in that table to avoid useless generation of RTL.
619 This code is disabled for now until we can fix the various backends
620 which depend on having non-shared hard registers in some cases. Long
621 term we want to re-enable this code as it can significantly cut down
622 on the amount of useless RTL that gets generated.
624 We'll also need to fix some code that runs after reload that wants to
625 set ORIGINAL_REGNO. */
630 && regno
< FIRST_PSEUDO_REGISTER
631 && reg_raw_mode
[regno
] == mode
)
632 return regno_reg_rtx
[regno
];
635 return gen_raw_REG (mode
, regno
);
639 gen_rtx_MEM (enum machine_mode mode
, rtx addr
)
641 rtx rt
= gen_rtx_raw_MEM (mode
, addr
);
643 /* This field is not cleared by the mere allocation of the rtx, so
650 /* Generate a memory referring to non-trapping constant memory. */
653 gen_const_mem (enum machine_mode mode
, rtx addr
)
655 rtx mem
= gen_rtx_MEM (mode
, addr
);
656 MEM_READONLY_P (mem
) = 1;
657 MEM_NOTRAP_P (mem
) = 1;
661 /* Generate a MEM referring to fixed portions of the frame, e.g., register
665 gen_frame_mem (enum machine_mode mode
, rtx addr
)
667 rtx mem
= gen_rtx_MEM (mode
, addr
);
668 MEM_NOTRAP_P (mem
) = 1;
669 set_mem_alias_set (mem
, get_frame_alias_set ());
673 /* Generate a MEM referring to a temporary use of the stack, not part
674 of the fixed stack frame. For example, something which is pushed
675 by a target splitter. */
677 gen_tmp_stack_mem (enum machine_mode mode
, rtx addr
)
679 rtx mem
= gen_rtx_MEM (mode
, addr
);
680 MEM_NOTRAP_P (mem
) = 1;
681 if (!cfun
->calls_alloca
)
682 set_mem_alias_set (mem
, get_frame_alias_set ());
686 /* We want to create (subreg:OMODE (obj:IMODE) OFFSET). Return true if
687 this construct would be valid, and false otherwise. */
690 validate_subreg (enum machine_mode omode
, enum machine_mode imode
,
691 const_rtx reg
, unsigned int offset
)
693 unsigned int isize
= GET_MODE_SIZE (imode
);
694 unsigned int osize
= GET_MODE_SIZE (omode
);
696 /* All subregs must be aligned. */
697 if (offset
% osize
!= 0)
700 /* The subreg offset cannot be outside the inner object. */
704 /* ??? This should not be here. Temporarily continue to allow word_mode
705 subregs of anything. The most common offender is (subreg:SI (reg:DF)).
706 Generally, backends are doing something sketchy but it'll take time to
708 if (omode
== word_mode
)
710 /* ??? Similarly, e.g. with (subreg:DF (reg:TI)). Though store_bit_field
711 is the culprit here, and not the backends. */
712 else if (osize
>= UNITS_PER_WORD
&& isize
>= osize
)
714 /* Allow component subregs of complex and vector. Though given the below
715 extraction rules, it's not always clear what that means. */
716 else if ((COMPLEX_MODE_P (imode
) || VECTOR_MODE_P (imode
))
717 && GET_MODE_INNER (imode
) == omode
)
719 /* ??? x86 sse code makes heavy use of *paradoxical* vector subregs,
720 i.e. (subreg:V4SF (reg:SF) 0). This surely isn't the cleanest way to
721 represent this. It's questionable if this ought to be represented at
722 all -- why can't this all be hidden in post-reload splitters that make
723 arbitrarily mode changes to the registers themselves. */
724 else if (VECTOR_MODE_P (omode
) && GET_MODE_INNER (omode
) == imode
)
726 /* Subregs involving floating point modes are not allowed to
727 change size. Therefore (subreg:DI (reg:DF) 0) is fine, but
728 (subreg:SI (reg:DF) 0) isn't. */
729 else if (FLOAT_MODE_P (imode
) || FLOAT_MODE_P (omode
))
735 /* Paradoxical subregs must have offset zero. */
739 /* This is a normal subreg. Verify that the offset is representable. */
741 /* For hard registers, we already have most of these rules collected in
742 subreg_offset_representable_p. */
743 if (reg
&& REG_P (reg
) && HARD_REGISTER_P (reg
))
745 unsigned int regno
= REGNO (reg
);
747 #ifdef CANNOT_CHANGE_MODE_CLASS
748 if ((COMPLEX_MODE_P (imode
) || VECTOR_MODE_P (imode
))
749 && GET_MODE_INNER (imode
) == omode
)
751 else if (REG_CANNOT_CHANGE_MODE_P (regno
, imode
, omode
))
755 return subreg_offset_representable_p (regno
, imode
, offset
, omode
);
758 /* For pseudo registers, we want most of the same checks. Namely:
759 If the register no larger than a word, the subreg must be lowpart.
760 If the register is larger than a word, the subreg must be the lowpart
761 of a subword. A subreg does *not* perform arbitrary bit extraction.
762 Given that we've already checked mode/offset alignment, we only have
763 to check subword subregs here. */
764 if (osize
< UNITS_PER_WORD
)
766 enum machine_mode wmode
= isize
> UNITS_PER_WORD
? word_mode
: imode
;
767 unsigned int low_off
= subreg_lowpart_offset (omode
, wmode
);
768 if (offset
% UNITS_PER_WORD
!= low_off
)
775 gen_rtx_SUBREG (enum machine_mode mode
, rtx reg
, int offset
)
777 gcc_assert (validate_subreg (mode
, GET_MODE (reg
), reg
, offset
));
778 return gen_rtx_raw_SUBREG (mode
, reg
, offset
);
781 /* Generate a SUBREG representing the least-significant part of REG if MODE
782 is smaller than mode of REG, otherwise paradoxical SUBREG. */
785 gen_lowpart_SUBREG (enum machine_mode mode
, rtx reg
)
787 enum machine_mode inmode
;
789 inmode
= GET_MODE (reg
);
790 if (inmode
== VOIDmode
)
792 return gen_rtx_SUBREG (mode
, reg
,
793 subreg_lowpart_offset (mode
, inmode
));
797 /* Create an rtvec and stores within it the RTXen passed in the arguments. */
800 gen_rtvec (int n
, ...)
808 /* Don't allocate an empty rtvec... */
812 rt_val
= rtvec_alloc (n
);
814 for (i
= 0; i
< n
; i
++)
815 rt_val
->elem
[i
] = va_arg (p
, rtx
);
822 gen_rtvec_v (int n
, rtx
*argp
)
827 /* Don't allocate an empty rtvec... */
831 rt_val
= rtvec_alloc (n
);
833 for (i
= 0; i
< n
; i
++)
834 rt_val
->elem
[i
] = *argp
++;
839 /* Return the number of bytes between the start of an OUTER_MODE
840 in-memory value and the start of an INNER_MODE in-memory value,
841 given that the former is a lowpart of the latter. It may be a
842 paradoxical lowpart, in which case the offset will be negative
843 on big-endian targets. */
846 byte_lowpart_offset (enum machine_mode outer_mode
,
847 enum machine_mode inner_mode
)
849 if (GET_MODE_SIZE (outer_mode
) < GET_MODE_SIZE (inner_mode
))
850 return subreg_lowpart_offset (outer_mode
, inner_mode
);
852 return -subreg_lowpart_offset (inner_mode
, outer_mode
);
855 /* Generate a REG rtx for a new pseudo register of mode MODE.
856 This pseudo is assigned the next sequential register number. */
859 gen_reg_rtx (enum machine_mode mode
)
862 unsigned int align
= GET_MODE_ALIGNMENT (mode
);
864 gcc_assert (can_create_pseudo_p ());
866 /* If a virtual register with bigger mode alignment is generated,
867 increase stack alignment estimation because it might be spilled
869 if (SUPPORTS_STACK_ALIGNMENT
870 && crtl
->stack_alignment_estimated
< align
871 && !crtl
->stack_realign_processed
)
872 crtl
->stack_alignment_estimated
= align
;
874 if (generating_concat_p
875 && (GET_MODE_CLASS (mode
) == MODE_COMPLEX_FLOAT
876 || GET_MODE_CLASS (mode
) == MODE_COMPLEX_INT
))
878 /* For complex modes, don't make a single pseudo.
879 Instead, make a CONCAT of two pseudos.
880 This allows noncontiguous allocation of the real and imaginary parts,
881 which makes much better code. Besides, allocating DCmode
882 pseudos overstrains reload on some machines like the 386. */
883 rtx realpart
, imagpart
;
884 enum machine_mode partmode
= GET_MODE_INNER (mode
);
886 realpart
= gen_reg_rtx (partmode
);
887 imagpart
= gen_reg_rtx (partmode
);
888 return gen_rtx_CONCAT (mode
, realpart
, imagpart
);
891 /* Make sure regno_pointer_align, and regno_reg_rtx are large
892 enough to have an element for this pseudo reg number. */
894 if (reg_rtx_no
== crtl
->emit
.regno_pointer_align_length
)
896 int old_size
= crtl
->emit
.regno_pointer_align_length
;
900 tmp
= XRESIZEVEC (char, crtl
->emit
.regno_pointer_align
, old_size
* 2);
901 memset (tmp
+ old_size
, 0, old_size
);
902 crtl
->emit
.regno_pointer_align
= (unsigned char *) tmp
;
904 new1
= GGC_RESIZEVEC (rtx
, regno_reg_rtx
, old_size
* 2);
905 memset (new1
+ old_size
, 0, old_size
* sizeof (rtx
));
906 regno_reg_rtx
= new1
;
908 crtl
->emit
.regno_pointer_align_length
= old_size
* 2;
911 val
= gen_raw_REG (mode
, reg_rtx_no
);
912 regno_reg_rtx
[reg_rtx_no
++] = val
;
916 /* Update NEW with the same attributes as REG, but with OFFSET added
917 to the REG_OFFSET. */
920 update_reg_offset (rtx new_rtx
, rtx reg
, int offset
)
922 REG_ATTRS (new_rtx
) = get_reg_attrs (REG_EXPR (reg
),
923 REG_OFFSET (reg
) + offset
);
926 /* Generate a register with same attributes as REG, but with OFFSET
927 added to the REG_OFFSET. */
930 gen_rtx_REG_offset (rtx reg
, enum machine_mode mode
, unsigned int regno
,
933 rtx new_rtx
= gen_rtx_REG (mode
, regno
);
935 update_reg_offset (new_rtx
, reg
, offset
);
939 /* Generate a new pseudo-register with the same attributes as REG, but
940 with OFFSET added to the REG_OFFSET. */
943 gen_reg_rtx_offset (rtx reg
, enum machine_mode mode
, int offset
)
945 rtx new_rtx
= gen_reg_rtx (mode
);
947 update_reg_offset (new_rtx
, reg
, offset
);
951 /* Adjust REG in-place so that it has mode MODE. It is assumed that the
952 new register is a (possibly paradoxical) lowpart of the old one. */
955 adjust_reg_mode (rtx reg
, enum machine_mode mode
)
957 update_reg_offset (reg
, reg
, byte_lowpart_offset (mode
, GET_MODE (reg
)));
958 PUT_MODE (reg
, mode
);
961 /* Copy REG's attributes from X, if X has any attributes. If REG and X
962 have different modes, REG is a (possibly paradoxical) lowpart of X. */
965 set_reg_attrs_from_value (rtx reg
, rtx x
)
969 /* Hard registers can be reused for multiple purposes within the same
970 function, so setting REG_ATTRS, REG_POINTER and REG_POINTER_ALIGN
972 if (HARD_REGISTER_P (reg
))
975 offset
= byte_lowpart_offset (GET_MODE (reg
), GET_MODE (x
));
978 if (MEM_OFFSET (x
) && GET_CODE (MEM_OFFSET (x
)) == CONST_INT
)
980 = get_reg_attrs (MEM_EXPR (x
), INTVAL (MEM_OFFSET (x
)) + offset
);
982 mark_reg_pointer (reg
, 0);
987 update_reg_offset (reg
, x
, offset
);
989 mark_reg_pointer (reg
, REGNO_POINTER_ALIGN (REGNO (x
)));
993 /* Generate a REG rtx for a new pseudo register, copying the mode
994 and attributes from X. */
997 gen_reg_rtx_and_attrs (rtx x
)
999 rtx reg
= gen_reg_rtx (GET_MODE (x
));
1000 set_reg_attrs_from_value (reg
, x
);
1004 /* Set the register attributes for registers contained in PARM_RTX.
1005 Use needed values from memory attributes of MEM. */
1008 set_reg_attrs_for_parm (rtx parm_rtx
, rtx mem
)
1010 if (REG_P (parm_rtx
))
1011 set_reg_attrs_from_value (parm_rtx
, mem
);
1012 else if (GET_CODE (parm_rtx
) == PARALLEL
)
1014 /* Check for a NULL entry in the first slot, used to indicate that the
1015 parameter goes both on the stack and in registers. */
1016 int i
= XEXP (XVECEXP (parm_rtx
, 0, 0), 0) ? 0 : 1;
1017 for (; i
< XVECLEN (parm_rtx
, 0); i
++)
1019 rtx x
= XVECEXP (parm_rtx
, 0, i
);
1020 if (REG_P (XEXP (x
, 0)))
1021 REG_ATTRS (XEXP (x
, 0))
1022 = get_reg_attrs (MEM_EXPR (mem
),
1023 INTVAL (XEXP (x
, 1)));
1028 /* Set the REG_ATTRS for registers in value X, given that X represents
1032 set_reg_attrs_for_decl_rtl (tree t
, rtx x
)
1034 if (GET_CODE (x
) == SUBREG
)
1036 gcc_assert (subreg_lowpart_p (x
));
1041 = get_reg_attrs (t
, byte_lowpart_offset (GET_MODE (x
),
1043 if (GET_CODE (x
) == CONCAT
)
1045 if (REG_P (XEXP (x
, 0)))
1046 REG_ATTRS (XEXP (x
, 0)) = get_reg_attrs (t
, 0);
1047 if (REG_P (XEXP (x
, 1)))
1048 REG_ATTRS (XEXP (x
, 1))
1049 = get_reg_attrs (t
, GET_MODE_UNIT_SIZE (GET_MODE (XEXP (x
, 0))));
1051 if (GET_CODE (x
) == PARALLEL
)
1055 /* Check for a NULL entry, used to indicate that the parameter goes
1056 both on the stack and in registers. */
1057 if (XEXP (XVECEXP (x
, 0, 0), 0))
1062 for (i
= start
; i
< XVECLEN (x
, 0); i
++)
1064 rtx y
= XVECEXP (x
, 0, i
);
1065 if (REG_P (XEXP (y
, 0)))
1066 REG_ATTRS (XEXP (y
, 0)) = get_reg_attrs (t
, INTVAL (XEXP (y
, 1)));
1071 /* Assign the RTX X to declaration T. */
1074 set_decl_rtl (tree t
, rtx x
)
1076 DECL_WRTL_CHECK (t
)->decl_with_rtl
.rtl
= x
;
1078 set_reg_attrs_for_decl_rtl (t
, x
);
1081 /* Assign the RTX X to parameter declaration T. BY_REFERENCE_P is true
1082 if the ABI requires the parameter to be passed by reference. */
1085 set_decl_incoming_rtl (tree t
, rtx x
, bool by_reference_p
)
1087 DECL_INCOMING_RTL (t
) = x
;
1088 if (x
&& !by_reference_p
)
1089 set_reg_attrs_for_decl_rtl (t
, x
);
1092 /* Identify REG (which may be a CONCAT) as a user register. */
1095 mark_user_reg (rtx reg
)
1097 if (GET_CODE (reg
) == CONCAT
)
1099 REG_USERVAR_P (XEXP (reg
, 0)) = 1;
1100 REG_USERVAR_P (XEXP (reg
, 1)) = 1;
1104 gcc_assert (REG_P (reg
));
1105 REG_USERVAR_P (reg
) = 1;
1109 /* Identify REG as a probable pointer register and show its alignment
1110 as ALIGN, if nonzero. */
1113 mark_reg_pointer (rtx reg
, int align
)
1115 if (! REG_POINTER (reg
))
1117 REG_POINTER (reg
) = 1;
1120 REGNO_POINTER_ALIGN (REGNO (reg
)) = align
;
1122 else if (align
&& align
< REGNO_POINTER_ALIGN (REGNO (reg
)))
1123 /* We can no-longer be sure just how aligned this pointer is. */
1124 REGNO_POINTER_ALIGN (REGNO (reg
)) = align
;
1127 /* Return 1 plus largest pseudo reg number used in the current function. */
1135 /* Return 1 + the largest label number used so far in the current function. */
1138 max_label_num (void)
1143 /* Return first label number used in this function (if any were used). */
1146 get_first_label_num (void)
1148 return first_label_num
;
1151 /* If the rtx for label was created during the expansion of a nested
1152 function, then first_label_num won't include this label number.
1153 Fix this now so that array indices work later. */
1156 maybe_set_first_label_num (rtx x
)
1158 if (CODE_LABEL_NUMBER (x
) < first_label_num
)
1159 first_label_num
= CODE_LABEL_NUMBER (x
);
1162 /* Return a value representing some low-order bits of X, where the number
1163 of low-order bits is given by MODE. Note that no conversion is done
1164 between floating-point and fixed-point values, rather, the bit
1165 representation is returned.
1167 This function handles the cases in common between gen_lowpart, below,
1168 and two variants in cse.c and combine.c. These are the cases that can
1169 be safely handled at all points in the compilation.
1171 If this is not a case we can handle, return 0. */
1174 gen_lowpart_common (enum machine_mode mode
, rtx x
)
1176 int msize
= GET_MODE_SIZE (mode
);
1179 enum machine_mode innermode
;
1181 /* Unfortunately, this routine doesn't take a parameter for the mode of X,
1182 so we have to make one up. Yuk. */
1183 innermode
= GET_MODE (x
);
1184 if (GET_CODE (x
) == CONST_INT
1185 && msize
* BITS_PER_UNIT
<= HOST_BITS_PER_WIDE_INT
)
1186 innermode
= mode_for_size (HOST_BITS_PER_WIDE_INT
, MODE_INT
, 0);
1187 else if (innermode
== VOIDmode
)
1188 innermode
= mode_for_size (HOST_BITS_PER_WIDE_INT
* 2, MODE_INT
, 0);
1190 xsize
= GET_MODE_SIZE (innermode
);
1192 gcc_assert (innermode
!= VOIDmode
&& innermode
!= BLKmode
);
1194 if (innermode
== mode
)
1197 /* MODE must occupy no more words than the mode of X. */
1198 if ((msize
+ (UNITS_PER_WORD
- 1)) / UNITS_PER_WORD
1199 > ((xsize
+ (UNITS_PER_WORD
- 1)) / UNITS_PER_WORD
))
1202 /* Don't allow generating paradoxical FLOAT_MODE subregs. */
1203 if (SCALAR_FLOAT_MODE_P (mode
) && msize
> xsize
)
1206 offset
= subreg_lowpart_offset (mode
, innermode
);
1208 if ((GET_CODE (x
) == ZERO_EXTEND
|| GET_CODE (x
) == SIGN_EXTEND
)
1209 && (GET_MODE_CLASS (mode
) == MODE_INT
1210 || GET_MODE_CLASS (mode
) == MODE_PARTIAL_INT
))
1212 /* If we are getting the low-order part of something that has been
1213 sign- or zero-extended, we can either just use the object being
1214 extended or make a narrower extension. If we want an even smaller
1215 piece than the size of the object being extended, call ourselves
1218 This case is used mostly by combine and cse. */
1220 if (GET_MODE (XEXP (x
, 0)) == mode
)
1222 else if (msize
< GET_MODE_SIZE (GET_MODE (XEXP (x
, 0))))
1223 return gen_lowpart_common (mode
, XEXP (x
, 0));
1224 else if (msize
< xsize
)
1225 return gen_rtx_fmt_e (GET_CODE (x
), mode
, XEXP (x
, 0));
1227 else if (GET_CODE (x
) == SUBREG
|| REG_P (x
)
1228 || GET_CODE (x
) == CONCAT
|| GET_CODE (x
) == CONST_VECTOR
1229 || GET_CODE (x
) == CONST_DOUBLE
|| GET_CODE (x
) == CONST_INT
)
1230 return simplify_gen_subreg (mode
, x
, innermode
, offset
);
1232 /* Otherwise, we can't do this. */
1237 gen_highpart (enum machine_mode mode
, rtx x
)
1239 unsigned int msize
= GET_MODE_SIZE (mode
);
1242 /* This case loses if X is a subreg. To catch bugs early,
1243 complain if an invalid MODE is used even in other cases. */
1244 gcc_assert (msize
<= UNITS_PER_WORD
1245 || msize
== (unsigned int) GET_MODE_UNIT_SIZE (GET_MODE (x
)));
1247 result
= simplify_gen_subreg (mode
, x
, GET_MODE (x
),
1248 subreg_highpart_offset (mode
, GET_MODE (x
)));
1249 gcc_assert (result
);
1251 /* simplify_gen_subreg is not guaranteed to return a valid operand for
1252 the target if we have a MEM. gen_highpart must return a valid operand,
1253 emitting code if necessary to do so. */
1256 result
= validize_mem (result
);
1257 gcc_assert (result
);
1263 /* Like gen_highpart, but accept mode of EXP operand in case EXP can
1264 be VOIDmode constant. */
1266 gen_highpart_mode (enum machine_mode outermode
, enum machine_mode innermode
, rtx exp
)
1268 if (GET_MODE (exp
) != VOIDmode
)
1270 gcc_assert (GET_MODE (exp
) == innermode
);
1271 return gen_highpart (outermode
, exp
);
1273 return simplify_gen_subreg (outermode
, exp
, innermode
,
1274 subreg_highpart_offset (outermode
, innermode
));
1277 /* Return the SUBREG_BYTE for an OUTERMODE lowpart of an INNERMODE value. */
1280 subreg_lowpart_offset (enum machine_mode outermode
, enum machine_mode innermode
)
1282 unsigned int offset
= 0;
1283 int difference
= (GET_MODE_SIZE (innermode
) - GET_MODE_SIZE (outermode
));
1287 if (WORDS_BIG_ENDIAN
)
1288 offset
+= (difference
/ UNITS_PER_WORD
) * UNITS_PER_WORD
;
1289 if (BYTES_BIG_ENDIAN
)
1290 offset
+= difference
% UNITS_PER_WORD
;
1296 /* Return offset in bytes to get OUTERMODE high part
1297 of the value in mode INNERMODE stored in memory in target format. */
1299 subreg_highpart_offset (enum machine_mode outermode
, enum machine_mode innermode
)
1301 unsigned int offset
= 0;
1302 int difference
= (GET_MODE_SIZE (innermode
) - GET_MODE_SIZE (outermode
));
1304 gcc_assert (GET_MODE_SIZE (innermode
) >= GET_MODE_SIZE (outermode
));
1308 if (! WORDS_BIG_ENDIAN
)
1309 offset
+= (difference
/ UNITS_PER_WORD
) * UNITS_PER_WORD
;
1310 if (! BYTES_BIG_ENDIAN
)
1311 offset
+= difference
% UNITS_PER_WORD
;
1317 /* Return 1 iff X, assumed to be a SUBREG,
1318 refers to the least significant part of its containing reg.
1319 If X is not a SUBREG, always return 1 (it is its own low part!). */
1322 subreg_lowpart_p (const_rtx x
)
1324 if (GET_CODE (x
) != SUBREG
)
1326 else if (GET_MODE (SUBREG_REG (x
)) == VOIDmode
)
1329 return (subreg_lowpart_offset (GET_MODE (x
), GET_MODE (SUBREG_REG (x
)))
1330 == SUBREG_BYTE (x
));
1333 /* Return subword OFFSET of operand OP.
1334 The word number, OFFSET, is interpreted as the word number starting
1335 at the low-order address. OFFSET 0 is the low-order word if not
1336 WORDS_BIG_ENDIAN, otherwise it is the high-order word.
1338 If we cannot extract the required word, we return zero. Otherwise,
1339 an rtx corresponding to the requested word will be returned.
1341 VALIDATE_ADDRESS is nonzero if the address should be validated. Before
1342 reload has completed, a valid address will always be returned. After
1343 reload, if a valid address cannot be returned, we return zero.
1345 If VALIDATE_ADDRESS is zero, we simply form the required address; validating
1346 it is the responsibility of the caller.
1348 MODE is the mode of OP in case it is a CONST_INT.
1350 ??? This is still rather broken for some cases. The problem for the
1351 moment is that all callers of this thing provide no 'goal mode' to
1352 tell us to work with. This exists because all callers were written
1353 in a word based SUBREG world.
1354 Now use of this function can be deprecated by simplify_subreg in most
1359 operand_subword (rtx op
, unsigned int offset
, int validate_address
, enum machine_mode mode
)
1361 if (mode
== VOIDmode
)
1362 mode
= GET_MODE (op
);
1364 gcc_assert (mode
!= VOIDmode
);
1366 /* If OP is narrower than a word, fail. */
1368 && (GET_MODE_SIZE (mode
) < UNITS_PER_WORD
))
1371 /* If we want a word outside OP, return zero. */
1373 && (offset
+ 1) * UNITS_PER_WORD
> GET_MODE_SIZE (mode
))
1376 /* Form a new MEM at the requested address. */
1379 rtx new_rtx
= adjust_address_nv (op
, word_mode
, offset
* UNITS_PER_WORD
);
1381 if (! validate_address
)
1384 else if (reload_completed
)
1386 if (! strict_memory_address_p (word_mode
, XEXP (new_rtx
, 0)))
1390 return replace_equiv_address (new_rtx
, XEXP (new_rtx
, 0));
1393 /* Rest can be handled by simplify_subreg. */
1394 return simplify_gen_subreg (word_mode
, op
, mode
, (offset
* UNITS_PER_WORD
));
1397 /* Similar to `operand_subword', but never return 0. If we can't
1398 extract the required subword, put OP into a register and try again.
1399 The second attempt must succeed. We always validate the address in
1402 MODE is the mode of OP, in case it is CONST_INT. */
1405 operand_subword_force (rtx op
, unsigned int offset
, enum machine_mode mode
)
1407 rtx result
= operand_subword (op
, offset
, 1, mode
);
1412 if (mode
!= BLKmode
&& mode
!= VOIDmode
)
1414 /* If this is a register which can not be accessed by words, copy it
1415 to a pseudo register. */
1417 op
= copy_to_reg (op
);
1419 op
= force_reg (mode
, op
);
1422 result
= operand_subword (op
, offset
, 1, mode
);
1423 gcc_assert (result
);
1428 /* Within a MEM_EXPR, we care about either (1) a component ref of a decl,
1429 or (2) a component ref of something variable. Represent the later with
1430 a NULL expression. */
1433 component_ref_for_mem_expr (tree ref
)
1435 tree inner
= TREE_OPERAND (ref
, 0);
1437 if (TREE_CODE (inner
) == COMPONENT_REF
)
1438 inner
= component_ref_for_mem_expr (inner
);
1441 /* Now remove any conversions: they don't change what the underlying
1442 object is. Likewise for SAVE_EXPR. */
1443 while (CONVERT_EXPR_P (inner
)
1444 || TREE_CODE (inner
) == VIEW_CONVERT_EXPR
1445 || TREE_CODE (inner
) == SAVE_EXPR
)
1446 inner
= TREE_OPERAND (inner
, 0);
1448 if (! DECL_P (inner
))
1452 if (inner
== TREE_OPERAND (ref
, 0))
1455 return build3 (COMPONENT_REF
, TREE_TYPE (ref
), inner
,
1456 TREE_OPERAND (ref
, 1), NULL_TREE
);
1459 /* Returns 1 if both MEM_EXPR can be considered equal
1463 mem_expr_equal_p (const_tree expr1
, const_tree expr2
)
1468 if (! expr1
|| ! expr2
)
1471 if (TREE_CODE (expr1
) != TREE_CODE (expr2
))
1474 if (TREE_CODE (expr1
) == COMPONENT_REF
)
1476 mem_expr_equal_p (TREE_OPERAND (expr1
, 0),
1477 TREE_OPERAND (expr2
, 0))
1478 && mem_expr_equal_p (TREE_OPERAND (expr1
, 1), /* field decl */
1479 TREE_OPERAND (expr2
, 1));
1481 if (INDIRECT_REF_P (expr1
))
1482 return mem_expr_equal_p (TREE_OPERAND (expr1
, 0),
1483 TREE_OPERAND (expr2
, 0));
1485 /* ARRAY_REFs, ARRAY_RANGE_REFs and BIT_FIELD_REFs should already
1486 have been resolved here. */
1487 gcc_assert (DECL_P (expr1
));
1489 /* Decls with different pointers can't be equal. */
1493 /* Given REF (a MEM) and T, either the type of X or the expression
1494 corresponding to REF, set the memory attributes. OBJECTP is nonzero
1495 if we are making a new object of this type. BITPOS is nonzero if
1496 there is an offset outstanding on T that will be applied later. */
1499 set_mem_attributes_minus_bitpos (rtx ref
, tree t
, int objectp
,
1500 HOST_WIDE_INT bitpos
)
1502 alias_set_type alias
= MEM_ALIAS_SET (ref
);
1503 tree expr
= MEM_EXPR (ref
);
1504 rtx offset
= MEM_OFFSET (ref
);
1505 rtx size
= MEM_SIZE (ref
);
1506 unsigned int align
= MEM_ALIGN (ref
);
1507 HOST_WIDE_INT apply_bitpos
= 0;
1510 /* It can happen that type_for_mode was given a mode for which there
1511 is no language-level type. In which case it returns NULL, which
1516 type
= TYPE_P (t
) ? t
: TREE_TYPE (t
);
1517 if (type
== error_mark_node
)
1520 /* If we have already set DECL_RTL = ref, get_alias_set will get the
1521 wrong answer, as it assumes that DECL_RTL already has the right alias
1522 info. Callers should not set DECL_RTL until after the call to
1523 set_mem_attributes. */
1524 gcc_assert (!DECL_P (t
) || ref
!= DECL_RTL_IF_SET (t
));
1526 /* Get the alias set from the expression or type (perhaps using a
1527 front-end routine) and use it. */
1528 alias
= get_alias_set (t
);
1530 MEM_VOLATILE_P (ref
) |= TYPE_VOLATILE (type
);
1531 MEM_IN_STRUCT_P (ref
)
1532 = AGGREGATE_TYPE_P (type
) || TREE_CODE (type
) == COMPLEX_TYPE
;
1533 MEM_POINTER (ref
) = POINTER_TYPE_P (type
);
1535 /* If we are making an object of this type, or if this is a DECL, we know
1536 that it is a scalar if the type is not an aggregate. */
1537 if ((objectp
|| DECL_P (t
))
1538 && ! AGGREGATE_TYPE_P (type
)
1539 && TREE_CODE (type
) != COMPLEX_TYPE
)
1540 MEM_SCALAR_P (ref
) = 1;
1542 /* We can set the alignment from the type if we are making an object,
1543 this is an INDIRECT_REF, or if TYPE_ALIGN_OK. */
1544 if (objectp
|| TREE_CODE (t
) == INDIRECT_REF
1545 || TREE_CODE (t
) == ALIGN_INDIRECT_REF
1546 || TYPE_ALIGN_OK (type
))
1547 align
= MAX (align
, TYPE_ALIGN (type
));
1549 if (TREE_CODE (t
) == MISALIGNED_INDIRECT_REF
)
1551 if (integer_zerop (TREE_OPERAND (t
, 1)))
1552 /* We don't know anything about the alignment. */
1553 align
= BITS_PER_UNIT
;
1555 align
= tree_low_cst (TREE_OPERAND (t
, 1), 1);
1558 /* If the size is known, we can set that. */
1559 if (TYPE_SIZE_UNIT (type
) && host_integerp (TYPE_SIZE_UNIT (type
), 1))
1560 size
= GEN_INT (tree_low_cst (TYPE_SIZE_UNIT (type
), 1));
1562 /* If T is not a type, we may be able to deduce some more information about
1568 if (TREE_THIS_VOLATILE (t
))
1569 MEM_VOLATILE_P (ref
) = 1;
1571 /* Now remove any conversions: they don't change what the underlying
1572 object is. Likewise for SAVE_EXPR. */
1573 while (CONVERT_EXPR_P (t
)
1574 || TREE_CODE (t
) == VIEW_CONVERT_EXPR
1575 || TREE_CODE (t
) == SAVE_EXPR
)
1576 t
= TREE_OPERAND (t
, 0);
1578 /* We may look through structure-like accesses for the purposes of
1579 examining TREE_THIS_NOTRAP, but not array-like accesses. */
1581 while (TREE_CODE (base
) == COMPONENT_REF
1582 || TREE_CODE (base
) == REALPART_EXPR
1583 || TREE_CODE (base
) == IMAGPART_EXPR
1584 || TREE_CODE (base
) == BIT_FIELD_REF
)
1585 base
= TREE_OPERAND (base
, 0);
1589 if (CODE_CONTAINS_STRUCT (TREE_CODE (base
), TS_DECL_WITH_VIS
))
1590 MEM_NOTRAP_P (ref
) = !DECL_WEAK (base
);
1592 MEM_NOTRAP_P (ref
) = 1;
1595 MEM_NOTRAP_P (ref
) = TREE_THIS_NOTRAP (base
);
1597 base
= get_base_address (base
);
1598 if (base
&& DECL_P (base
)
1599 && TREE_READONLY (base
)
1600 && (TREE_STATIC (base
) || DECL_EXTERNAL (base
)))
1602 tree base_type
= TREE_TYPE (base
);
1603 gcc_assert (!(base_type
&& TYPE_NEEDS_CONSTRUCTING (base_type
))
1604 || DECL_ARTIFICIAL (base
));
1605 MEM_READONLY_P (ref
) = 1;
1608 /* If this expression uses it's parent's alias set, mark it such
1609 that we won't change it. */
1610 if (component_uses_parent_alias_set (t
))
1611 MEM_KEEP_ALIAS_SET_P (ref
) = 1;
1613 /* If this is a decl, set the attributes of the MEM from it. */
1617 offset
= const0_rtx
;
1618 apply_bitpos
= bitpos
;
1619 size
= (DECL_SIZE_UNIT (t
)
1620 && host_integerp (DECL_SIZE_UNIT (t
), 1)
1621 ? GEN_INT (tree_low_cst (DECL_SIZE_UNIT (t
), 1)) : 0);
1622 align
= DECL_ALIGN (t
);
1625 /* If this is a constant, we know the alignment. */
1626 else if (CONSTANT_CLASS_P (t
))
1628 align
= TYPE_ALIGN (type
);
1629 #ifdef CONSTANT_ALIGNMENT
1630 align
= CONSTANT_ALIGNMENT (t
, align
);
1634 /* If this is a field reference and not a bit-field, record it. */
1635 /* ??? There is some information that can be gleaned from bit-fields,
1636 such as the word offset in the structure that might be modified.
1637 But skip it for now. */
1638 else if (TREE_CODE (t
) == COMPONENT_REF
1639 && ! DECL_BIT_FIELD (TREE_OPERAND (t
, 1)))
1641 expr
= component_ref_for_mem_expr (t
);
1642 offset
= const0_rtx
;
1643 apply_bitpos
= bitpos
;
1644 /* ??? Any reason the field size would be different than
1645 the size we got from the type? */
1648 /* If this is an array reference, look for an outer field reference. */
1649 else if (TREE_CODE (t
) == ARRAY_REF
)
1651 tree off_tree
= size_zero_node
;
1652 /* We can't modify t, because we use it at the end of the
1658 tree index
= TREE_OPERAND (t2
, 1);
1659 tree low_bound
= array_ref_low_bound (t2
);
1660 tree unit_size
= array_ref_element_size (t2
);
1662 /* We assume all arrays have sizes that are a multiple of a byte.
1663 First subtract the lower bound, if any, in the type of the
1664 index, then convert to sizetype and multiply by the size of
1665 the array element. */
1666 if (! integer_zerop (low_bound
))
1667 index
= fold_build2 (MINUS_EXPR
, TREE_TYPE (index
),
1670 off_tree
= size_binop (PLUS_EXPR
,
1671 size_binop (MULT_EXPR
,
1672 fold_convert (sizetype
,
1676 t2
= TREE_OPERAND (t2
, 0);
1678 while (TREE_CODE (t2
) == ARRAY_REF
);
1684 if (host_integerp (off_tree
, 1))
1686 HOST_WIDE_INT ioff
= tree_low_cst (off_tree
, 1);
1687 HOST_WIDE_INT aoff
= (ioff
& -ioff
) * BITS_PER_UNIT
;
1688 align
= DECL_ALIGN (t2
);
1689 if (aoff
&& (unsigned HOST_WIDE_INT
) aoff
< align
)
1691 offset
= GEN_INT (ioff
);
1692 apply_bitpos
= bitpos
;
1695 else if (TREE_CODE (t2
) == COMPONENT_REF
)
1697 expr
= component_ref_for_mem_expr (t2
);
1698 if (host_integerp (off_tree
, 1))
1700 offset
= GEN_INT (tree_low_cst (off_tree
, 1));
1701 apply_bitpos
= bitpos
;
1703 /* ??? Any reason the field size would be different than
1704 the size we got from the type? */
1706 else if (flag_argument_noalias
> 1
1707 && (INDIRECT_REF_P (t2
))
1708 && TREE_CODE (TREE_OPERAND (t2
, 0)) == PARM_DECL
)
1715 /* If this is a Fortran indirect argument reference, record the
1717 else if (flag_argument_noalias
> 1
1718 && (INDIRECT_REF_P (t
))
1719 && TREE_CODE (TREE_OPERAND (t
, 0)) == PARM_DECL
)
1726 /* If we modified OFFSET based on T, then subtract the outstanding
1727 bit position offset. Similarly, increase the size of the accessed
1728 object to contain the negative offset. */
1731 offset
= plus_constant (offset
, -(apply_bitpos
/ BITS_PER_UNIT
));
1733 size
= plus_constant (size
, apply_bitpos
/ BITS_PER_UNIT
);
1736 if (TREE_CODE (t
) == ALIGN_INDIRECT_REF
)
1738 /* Force EXPR and OFFSET to NULL, since we don't know exactly what
1739 we're overlapping. */
1744 /* Now set the attributes we computed above. */
1746 = get_mem_attrs (alias
, expr
, offset
, size
, align
, GET_MODE (ref
));
1748 /* If this is already known to be a scalar or aggregate, we are done. */
1749 if (MEM_IN_STRUCT_P (ref
) || MEM_SCALAR_P (ref
))
1752 /* If it is a reference into an aggregate, this is part of an aggregate.
1753 Otherwise we don't know. */
1754 else if (TREE_CODE (t
) == COMPONENT_REF
|| TREE_CODE (t
) == ARRAY_REF
1755 || TREE_CODE (t
) == ARRAY_RANGE_REF
1756 || TREE_CODE (t
) == BIT_FIELD_REF
)
1757 MEM_IN_STRUCT_P (ref
) = 1;
1761 set_mem_attributes (rtx ref
, tree t
, int objectp
)
1763 set_mem_attributes_minus_bitpos (ref
, t
, objectp
, 0);
1766 /* Set MEM to the decl that REG refers to. */
1769 set_mem_attrs_from_reg (rtx mem
, rtx reg
)
1772 = get_mem_attrs (MEM_ALIAS_SET (mem
), REG_EXPR (reg
),
1773 GEN_INT (REG_OFFSET (reg
)),
1774 MEM_SIZE (mem
), MEM_ALIGN (mem
), GET_MODE (mem
));
1777 /* Set the alias set of MEM to SET. */
1780 set_mem_alias_set (rtx mem
, alias_set_type set
)
1782 #ifdef ENABLE_CHECKING
1783 /* If the new and old alias sets don't conflict, something is wrong. */
1784 gcc_assert (alias_sets_conflict_p (set
, MEM_ALIAS_SET (mem
)));
1787 MEM_ATTRS (mem
) = get_mem_attrs (set
, MEM_EXPR (mem
), MEM_OFFSET (mem
),
1788 MEM_SIZE (mem
), MEM_ALIGN (mem
),
1792 /* Set the alignment of MEM to ALIGN bits. */
1795 set_mem_align (rtx mem
, unsigned int align
)
1797 MEM_ATTRS (mem
) = get_mem_attrs (MEM_ALIAS_SET (mem
), MEM_EXPR (mem
),
1798 MEM_OFFSET (mem
), MEM_SIZE (mem
), align
,
1802 /* Set the expr for MEM to EXPR. */
1805 set_mem_expr (rtx mem
, tree expr
)
1808 = get_mem_attrs (MEM_ALIAS_SET (mem
), expr
, MEM_OFFSET (mem
),
1809 MEM_SIZE (mem
), MEM_ALIGN (mem
), GET_MODE (mem
));
1812 /* Set the offset of MEM to OFFSET. */
1815 set_mem_offset (rtx mem
, rtx offset
)
1817 MEM_ATTRS (mem
) = get_mem_attrs (MEM_ALIAS_SET (mem
), MEM_EXPR (mem
),
1818 offset
, MEM_SIZE (mem
), MEM_ALIGN (mem
),
1822 /* Set the size of MEM to SIZE. */
1825 set_mem_size (rtx mem
, rtx size
)
1827 MEM_ATTRS (mem
) = get_mem_attrs (MEM_ALIAS_SET (mem
), MEM_EXPR (mem
),
1828 MEM_OFFSET (mem
), size
, MEM_ALIGN (mem
),
1832 /* Return a memory reference like MEMREF, but with its mode changed to MODE
1833 and its address changed to ADDR. (VOIDmode means don't change the mode.
1834 NULL for ADDR means don't change the address.) VALIDATE is nonzero if the
1835 returned memory location is required to be valid. The memory
1836 attributes are not changed. */
1839 change_address_1 (rtx memref
, enum machine_mode mode
, rtx addr
, int validate
)
1843 gcc_assert (MEM_P (memref
));
1844 if (mode
== VOIDmode
)
1845 mode
= GET_MODE (memref
);
1847 addr
= XEXP (memref
, 0);
1848 if (mode
== GET_MODE (memref
) && addr
== XEXP (memref
, 0)
1849 && (!validate
|| memory_address_p (mode
, addr
)))
1854 if (reload_in_progress
|| reload_completed
)
1855 gcc_assert (memory_address_p (mode
, addr
));
1857 addr
= memory_address (mode
, addr
);
1860 if (rtx_equal_p (addr
, XEXP (memref
, 0)) && mode
== GET_MODE (memref
))
1863 new_rtx
= gen_rtx_MEM (mode
, addr
);
1864 MEM_COPY_ATTRIBUTES (new_rtx
, memref
);
1868 /* Like change_address_1 with VALIDATE nonzero, but we are not saying in what
1869 way we are changing MEMREF, so we only preserve the alias set. */
1872 change_address (rtx memref
, enum machine_mode mode
, rtx addr
)
1874 rtx new_rtx
= change_address_1 (memref
, mode
, addr
, 1), size
;
1875 enum machine_mode mmode
= GET_MODE (new_rtx
);
1878 size
= mmode
== BLKmode
? 0 : GEN_INT (GET_MODE_SIZE (mmode
));
1879 align
= mmode
== BLKmode
? BITS_PER_UNIT
: GET_MODE_ALIGNMENT (mmode
);
1881 /* If there are no changes, just return the original memory reference. */
1882 if (new_rtx
== memref
)
1884 if (MEM_ATTRS (memref
) == 0
1885 || (MEM_EXPR (memref
) == NULL
1886 && MEM_OFFSET (memref
) == NULL
1887 && MEM_SIZE (memref
) == size
1888 && MEM_ALIGN (memref
) == align
))
1891 new_rtx
= gen_rtx_MEM (mmode
, XEXP (memref
, 0));
1892 MEM_COPY_ATTRIBUTES (new_rtx
, memref
);
1896 = get_mem_attrs (MEM_ALIAS_SET (memref
), 0, 0, size
, align
, mmode
);
1901 /* Return a memory reference like MEMREF, but with its mode changed
1902 to MODE and its address offset by OFFSET bytes. If VALIDATE is
1903 nonzero, the memory address is forced to be valid.
1904 If ADJUST is zero, OFFSET is only used to update MEM_ATTRS
1905 and caller is responsible for adjusting MEMREF base register. */
1908 adjust_address_1 (rtx memref
, enum machine_mode mode
, HOST_WIDE_INT offset
,
1909 int validate
, int adjust
)
1911 rtx addr
= XEXP (memref
, 0);
1913 rtx memoffset
= MEM_OFFSET (memref
);
1915 unsigned int memalign
= MEM_ALIGN (memref
);
1917 /* If there are no changes, just return the original memory reference. */
1918 if (mode
== GET_MODE (memref
) && !offset
1919 && (!validate
|| memory_address_p (mode
, addr
)))
1922 /* ??? Prefer to create garbage instead of creating shared rtl.
1923 This may happen even if offset is nonzero -- consider
1924 (plus (plus reg reg) const_int) -- so do this always. */
1925 addr
= copy_rtx (addr
);
1929 /* If MEMREF is a LO_SUM and the offset is within the alignment of the
1930 object, we can merge it into the LO_SUM. */
1931 if (GET_MODE (memref
) != BLKmode
&& GET_CODE (addr
) == LO_SUM
1933 && (unsigned HOST_WIDE_INT
) offset
1934 < GET_MODE_ALIGNMENT (GET_MODE (memref
)) / BITS_PER_UNIT
)
1935 addr
= gen_rtx_LO_SUM (Pmode
, XEXP (addr
, 0),
1936 plus_constant (XEXP (addr
, 1), offset
));
1938 addr
= plus_constant (addr
, offset
);
1941 new_rtx
= change_address_1 (memref
, mode
, addr
, validate
);
1943 /* Compute the new values of the memory attributes due to this adjustment.
1944 We add the offsets and update the alignment. */
1946 memoffset
= GEN_INT (offset
+ INTVAL (memoffset
));
1948 /* Compute the new alignment by taking the MIN of the alignment and the
1949 lowest-order set bit in OFFSET, but don't change the alignment if OFFSET
1954 (unsigned HOST_WIDE_INT
) (offset
& -offset
) * BITS_PER_UNIT
);
1956 /* We can compute the size in a number of ways. */
1957 if (GET_MODE (new_rtx
) != BLKmode
)
1958 size
= GEN_INT (GET_MODE_SIZE (GET_MODE (new_rtx
)));
1959 else if (MEM_SIZE (memref
))
1960 size
= plus_constant (MEM_SIZE (memref
), -offset
);
1962 MEM_ATTRS (new_rtx
) = get_mem_attrs (MEM_ALIAS_SET (memref
), MEM_EXPR (memref
),
1963 memoffset
, size
, memalign
, GET_MODE (new_rtx
));
1965 /* At some point, we should validate that this offset is within the object,
1966 if all the appropriate values are known. */
1970 /* Return a memory reference like MEMREF, but with its mode changed
1971 to MODE and its address changed to ADDR, which is assumed to be
1972 MEMREF offset by OFFSET bytes. If VALIDATE is
1973 nonzero, the memory address is forced to be valid. */
1976 adjust_automodify_address_1 (rtx memref
, enum machine_mode mode
, rtx addr
,
1977 HOST_WIDE_INT offset
, int validate
)
1979 memref
= change_address_1 (memref
, VOIDmode
, addr
, validate
);
1980 return adjust_address_1 (memref
, mode
, offset
, validate
, 0);
1983 /* Return a memory reference like MEMREF, but whose address is changed by
1984 adding OFFSET, an RTX, to it. POW2 is the highest power of two factor
1985 known to be in OFFSET (possibly 1). */
1988 offset_address (rtx memref
, rtx offset
, unsigned HOST_WIDE_INT pow2
)
1990 rtx new_rtx
, addr
= XEXP (memref
, 0);
1992 new_rtx
= simplify_gen_binary (PLUS
, Pmode
, addr
, offset
);
1994 /* At this point we don't know _why_ the address is invalid. It
1995 could have secondary memory references, multiplies or anything.
1997 However, if we did go and rearrange things, we can wind up not
1998 being able to recognize the magic around pic_offset_table_rtx.
1999 This stuff is fragile, and is yet another example of why it is
2000 bad to expose PIC machinery too early. */
2001 if (! memory_address_p (GET_MODE (memref
), new_rtx
)
2002 && GET_CODE (addr
) == PLUS
2003 && XEXP (addr
, 0) == pic_offset_table_rtx
)
2005 addr
= force_reg (GET_MODE (addr
), addr
);
2006 new_rtx
= simplify_gen_binary (PLUS
, Pmode
, addr
, offset
);
2009 update_temp_slot_address (XEXP (memref
, 0), new_rtx
);
2010 new_rtx
= change_address_1 (memref
, VOIDmode
, new_rtx
, 1);
2012 /* If there are no changes, just return the original memory reference. */
2013 if (new_rtx
== memref
)
2016 /* Update the alignment to reflect the offset. Reset the offset, which
2019 = get_mem_attrs (MEM_ALIAS_SET (memref
), MEM_EXPR (memref
), 0, 0,
2020 MIN (MEM_ALIGN (memref
), pow2
* BITS_PER_UNIT
),
2021 GET_MODE (new_rtx
));
2025 /* Return a memory reference like MEMREF, but with its address changed to
2026 ADDR. The caller is asserting that the actual piece of memory pointed
2027 to is the same, just the form of the address is being changed, such as
2028 by putting something into a register. */
2031 replace_equiv_address (rtx memref
, rtx addr
)
2033 /* change_address_1 copies the memory attribute structure without change
2034 and that's exactly what we want here. */
2035 update_temp_slot_address (XEXP (memref
, 0), addr
);
2036 return change_address_1 (memref
, VOIDmode
, addr
, 1);
2039 /* Likewise, but the reference is not required to be valid. */
2042 replace_equiv_address_nv (rtx memref
, rtx addr
)
2044 return change_address_1 (memref
, VOIDmode
, addr
, 0);
2047 /* Return a memory reference like MEMREF, but with its mode widened to
2048 MODE and offset by OFFSET. This would be used by targets that e.g.
2049 cannot issue QImode memory operations and have to use SImode memory
2050 operations plus masking logic. */
2053 widen_memory_access (rtx memref
, enum machine_mode mode
, HOST_WIDE_INT offset
)
2055 rtx new_rtx
= adjust_address_1 (memref
, mode
, offset
, 1, 1);
2056 tree expr
= MEM_EXPR (new_rtx
);
2057 rtx memoffset
= MEM_OFFSET (new_rtx
);
2058 unsigned int size
= GET_MODE_SIZE (mode
);
2060 /* If there are no changes, just return the original memory reference. */
2061 if (new_rtx
== memref
)
2064 /* If we don't know what offset we were at within the expression, then
2065 we can't know if we've overstepped the bounds. */
2071 if (TREE_CODE (expr
) == COMPONENT_REF
)
2073 tree field
= TREE_OPERAND (expr
, 1);
2074 tree offset
= component_ref_field_offset (expr
);
2076 if (! DECL_SIZE_UNIT (field
))
2082 /* Is the field at least as large as the access? If so, ok,
2083 otherwise strip back to the containing structure. */
2084 if (TREE_CODE (DECL_SIZE_UNIT (field
)) == INTEGER_CST
2085 && compare_tree_int (DECL_SIZE_UNIT (field
), size
) >= 0
2086 && INTVAL (memoffset
) >= 0)
2089 if (! host_integerp (offset
, 1))
2095 expr
= TREE_OPERAND (expr
, 0);
2097 = (GEN_INT (INTVAL (memoffset
)
2098 + tree_low_cst (offset
, 1)
2099 + (tree_low_cst (DECL_FIELD_BIT_OFFSET (field
), 1)
2102 /* Similarly for the decl. */
2103 else if (DECL_P (expr
)
2104 && DECL_SIZE_UNIT (expr
)
2105 && TREE_CODE (DECL_SIZE_UNIT (expr
)) == INTEGER_CST
2106 && compare_tree_int (DECL_SIZE_UNIT (expr
), size
) >= 0
2107 && (! memoffset
|| INTVAL (memoffset
) >= 0))
2111 /* The widened memory access overflows the expression, which means
2112 that it could alias another expression. Zap it. */
2119 memoffset
= NULL_RTX
;
2121 /* The widened memory may alias other stuff, so zap the alias set. */
2122 /* ??? Maybe use get_alias_set on any remaining expression. */
2124 MEM_ATTRS (new_rtx
) = get_mem_attrs (0, expr
, memoffset
, GEN_INT (size
),
2125 MEM_ALIGN (new_rtx
), mode
);
2130 /* Return a newly created CODE_LABEL rtx with a unique label number. */
2133 gen_label_rtx (void)
2135 return gen_rtx_CODE_LABEL (VOIDmode
, 0, NULL_RTX
, NULL_RTX
,
2136 NULL
, label_num
++, NULL
);
2139 /* For procedure integration. */
2141 /* Install new pointers to the first and last insns in the chain.
2142 Also, set cur_insn_uid to one higher than the last in use.
2143 Used for an inline-procedure after copying the insn chain. */
2146 set_new_first_and_last_insn (rtx first
, rtx last
)
2154 for (insn
= first
; insn
; insn
= NEXT_INSN (insn
))
2155 cur_insn_uid
= MAX (cur_insn_uid
, INSN_UID (insn
));
2160 /* Go through all the RTL insn bodies and copy any invalid shared
2161 structure. This routine should only be called once. */
2164 unshare_all_rtl_1 (rtx insn
)
2166 /* Unshare just about everything else. */
2167 unshare_all_rtl_in_chain (insn
);
2169 /* Make sure the addresses of stack slots found outside the insn chain
2170 (such as, in DECL_RTL of a variable) are not shared
2171 with the insn chain.
2173 This special care is necessary when the stack slot MEM does not
2174 actually appear in the insn chain. If it does appear, its address
2175 is unshared from all else at that point. */
2176 stack_slot_list
= copy_rtx_if_shared (stack_slot_list
);
2179 /* Go through all the RTL insn bodies and copy any invalid shared
2180 structure, again. This is a fairly expensive thing to do so it
2181 should be done sparingly. */
2184 unshare_all_rtl_again (rtx insn
)
2189 for (p
= insn
; p
; p
= NEXT_INSN (p
))
2192 reset_used_flags (PATTERN (p
));
2193 reset_used_flags (REG_NOTES (p
));
2196 /* Make sure that virtual stack slots are not shared. */
2197 set_used_decls (DECL_INITIAL (cfun
->decl
));
2199 /* Make sure that virtual parameters are not shared. */
2200 for (decl
= DECL_ARGUMENTS (cfun
->decl
); decl
; decl
= TREE_CHAIN (decl
))
2201 set_used_flags (DECL_RTL (decl
));
2203 reset_used_flags (stack_slot_list
);
2205 unshare_all_rtl_1 (insn
);
2209 unshare_all_rtl (void)
2211 unshare_all_rtl_1 (get_insns ());
2215 struct rtl_opt_pass pass_unshare_all_rtl
=
2219 "unshare", /* name */
2221 unshare_all_rtl
, /* execute */
2224 0, /* static_pass_number */
2226 0, /* properties_required */
2227 0, /* properties_provided */
2228 0, /* properties_destroyed */
2229 0, /* todo_flags_start */
2230 TODO_dump_func
| TODO_verify_rtl_sharing
/* todo_flags_finish */
2235 /* Check that ORIG is not marked when it should not be and mark ORIG as in use,
2236 Recursively does the same for subexpressions. */
2239 verify_rtx_sharing (rtx orig
, rtx insn
)
2244 const char *format_ptr
;
2249 code
= GET_CODE (x
);
2251 /* These types may be freely shared. */
2267 /* SCRATCH must be shared because they represent distinct values. */
2269 if (REG_P (XEXP (x
, 0)) && REGNO (XEXP (x
, 0)) < FIRST_PSEUDO_REGISTER
)
2274 if (shared_const_p (orig
))
2279 /* A MEM is allowed to be shared if its address is constant. */
2280 if (CONSTANT_ADDRESS_P (XEXP (x
, 0))
2281 || reload_completed
|| reload_in_progress
)
2290 /* This rtx may not be shared. If it has already been seen,
2291 replace it with a copy of itself. */
2292 #ifdef ENABLE_CHECKING
2293 if (RTX_FLAG (x
, used
))
2295 error ("invalid rtl sharing found in the insn");
2297 error ("shared rtx");
2299 internal_error ("internal consistency failure");
2302 gcc_assert (!RTX_FLAG (x
, used
));
2304 RTX_FLAG (x
, used
) = 1;
2306 /* Now scan the subexpressions recursively. */
2308 format_ptr
= GET_RTX_FORMAT (code
);
2310 for (i
= 0; i
< GET_RTX_LENGTH (code
); i
++)
2312 switch (*format_ptr
++)
2315 verify_rtx_sharing (XEXP (x
, i
), insn
);
2319 if (XVEC (x
, i
) != NULL
)
2322 int len
= XVECLEN (x
, i
);
2324 for (j
= 0; j
< len
; j
++)
2326 /* We allow sharing of ASM_OPERANDS inside single
2328 if (j
&& GET_CODE (XVECEXP (x
, i
, j
)) == SET
2329 && (GET_CODE (SET_SRC (XVECEXP (x
, i
, j
)))
2331 verify_rtx_sharing (SET_DEST (XVECEXP (x
, i
, j
)), insn
);
2333 verify_rtx_sharing (XVECEXP (x
, i
, j
), insn
);
2342 /* Go through all the RTL insn bodies and check that there is no unexpected
2343 sharing in between the subexpressions. */
2346 verify_rtl_sharing (void)
2350 for (p
= get_insns (); p
; p
= NEXT_INSN (p
))
2353 reset_used_flags (PATTERN (p
));
2354 reset_used_flags (REG_NOTES (p
));
2355 if (GET_CODE (PATTERN (p
)) == SEQUENCE
)
2358 rtx q
, sequence
= PATTERN (p
);
2360 for (i
= 0; i
< XVECLEN (sequence
, 0); i
++)
2362 q
= XVECEXP (sequence
, 0, i
);
2363 gcc_assert (INSN_P (q
));
2364 reset_used_flags (PATTERN (q
));
2365 reset_used_flags (REG_NOTES (q
));
2370 for (p
= get_insns (); p
; p
= NEXT_INSN (p
))
2373 verify_rtx_sharing (PATTERN (p
), p
);
2374 verify_rtx_sharing (REG_NOTES (p
), p
);
2378 /* Go through all the RTL insn bodies and copy any invalid shared structure.
2379 Assumes the mark bits are cleared at entry. */
2382 unshare_all_rtl_in_chain (rtx insn
)
2384 for (; insn
; insn
= NEXT_INSN (insn
))
2387 PATTERN (insn
) = copy_rtx_if_shared (PATTERN (insn
));
2388 REG_NOTES (insn
) = copy_rtx_if_shared (REG_NOTES (insn
));
2392 /* Go through all virtual stack slots of a function and mark them as
2393 shared. We never replace the DECL_RTLs themselves with a copy,
2394 but expressions mentioned into a DECL_RTL cannot be shared with
2395 expressions in the instruction stream.
2397 Note that reload may convert pseudo registers into memories in-place.
2398 Pseudo registers are always shared, but MEMs never are. Thus if we
2399 reset the used flags on MEMs in the instruction stream, we must set
2400 them again on MEMs that appear in DECL_RTLs. */
2403 set_used_decls (tree blk
)
2408 for (t
= BLOCK_VARS (blk
); t
; t
= TREE_CHAIN (t
))
2409 if (DECL_RTL_SET_P (t
))
2410 set_used_flags (DECL_RTL (t
));
2412 /* Now process sub-blocks. */
2413 for (t
= BLOCK_SUBBLOCKS (blk
); t
; t
= BLOCK_CHAIN (t
))
2417 /* Mark ORIG as in use, and return a copy of it if it was already in use.
2418 Recursively does the same for subexpressions. Uses
2419 copy_rtx_if_shared_1 to reduce stack space. */
2422 copy_rtx_if_shared (rtx orig
)
2424 copy_rtx_if_shared_1 (&orig
);
2428 /* Mark *ORIG1 as in use, and set it to a copy of it if it was already in
2429 use. Recursively does the same for subexpressions. */
2432 copy_rtx_if_shared_1 (rtx
*orig1
)
2438 const char *format_ptr
;
2442 /* Repeat is used to turn tail-recursion into iteration. */
2449 code
= GET_CODE (x
);
2451 /* These types may be freely shared. */
2466 /* SCRATCH must be shared because they represent distinct values. */
2469 if (REG_P (XEXP (x
, 0)) && REGNO (XEXP (x
, 0)) < FIRST_PSEUDO_REGISTER
)
2474 if (shared_const_p (x
))
2483 /* The chain of insns is not being copied. */
2490 /* This rtx may not be shared. If it has already been seen,
2491 replace it with a copy of itself. */
2493 if (RTX_FLAG (x
, used
))
2495 x
= shallow_copy_rtx (x
);
2498 RTX_FLAG (x
, used
) = 1;
2500 /* Now scan the subexpressions recursively.
2501 We can store any replaced subexpressions directly into X
2502 since we know X is not shared! Any vectors in X
2503 must be copied if X was copied. */
2505 format_ptr
= GET_RTX_FORMAT (code
);
2506 length
= GET_RTX_LENGTH (code
);
2509 for (i
= 0; i
< length
; i
++)
2511 switch (*format_ptr
++)
2515 copy_rtx_if_shared_1 (last_ptr
);
2516 last_ptr
= &XEXP (x
, i
);
2520 if (XVEC (x
, i
) != NULL
)
2523 int len
= XVECLEN (x
, i
);
2525 /* Copy the vector iff I copied the rtx and the length
2527 if (copied
&& len
> 0)
2528 XVEC (x
, i
) = gen_rtvec_v (len
, XVEC (x
, i
)->elem
);
2530 /* Call recursively on all inside the vector. */
2531 for (j
= 0; j
< len
; j
++)
2534 copy_rtx_if_shared_1 (last_ptr
);
2535 last_ptr
= &XVECEXP (x
, i
, j
);
2550 /* Clear all the USED bits in X to allow copy_rtx_if_shared to be used
2551 to look for shared sub-parts. */
2554 reset_used_flags (rtx x
)
2558 const char *format_ptr
;
2561 /* Repeat is used to turn tail-recursion into iteration. */
2566 code
= GET_CODE (x
);
2568 /* These types may be freely shared so we needn't do any resetting
2590 /* The chain of insns is not being copied. */
2597 RTX_FLAG (x
, used
) = 0;
2599 format_ptr
= GET_RTX_FORMAT (code
);
2600 length
= GET_RTX_LENGTH (code
);
2602 for (i
= 0; i
< length
; i
++)
2604 switch (*format_ptr
++)
2612 reset_used_flags (XEXP (x
, i
));
2616 for (j
= 0; j
< XVECLEN (x
, i
); j
++)
2617 reset_used_flags (XVECEXP (x
, i
, j
));
2623 /* Set all the USED bits in X to allow copy_rtx_if_shared to be used
2624 to look for shared sub-parts. */
2627 set_used_flags (rtx x
)
2631 const char *format_ptr
;
2636 code
= GET_CODE (x
);
2638 /* These types may be freely shared so we needn't do any resetting
2660 /* The chain of insns is not being copied. */
2667 RTX_FLAG (x
, used
) = 1;
2669 format_ptr
= GET_RTX_FORMAT (code
);
2670 for (i
= 0; i
< GET_RTX_LENGTH (code
); i
++)
2672 switch (*format_ptr
++)
2675 set_used_flags (XEXP (x
, i
));
2679 for (j
= 0; j
< XVECLEN (x
, i
); j
++)
2680 set_used_flags (XVECEXP (x
, i
, j
));
2686 /* Copy X if necessary so that it won't be altered by changes in OTHER.
2687 Return X or the rtx for the pseudo reg the value of X was copied into.
2688 OTHER must be valid as a SET_DEST. */
2691 make_safe_from (rtx x
, rtx other
)
2694 switch (GET_CODE (other
))
2697 other
= SUBREG_REG (other
);
2699 case STRICT_LOW_PART
:
2702 other
= XEXP (other
, 0);
2711 && GET_CODE (x
) != SUBREG
)
2713 && (REGNO (other
) < FIRST_PSEUDO_REGISTER
2714 || reg_mentioned_p (other
, x
))))
2716 rtx temp
= gen_reg_rtx (GET_MODE (x
));
2717 emit_move_insn (temp
, x
);
2723 /* Emission of insns (adding them to the doubly-linked list). */
2725 /* Return the first insn of the current sequence or current function. */
2733 /* Specify a new insn as the first in the chain. */
2736 set_first_insn (rtx insn
)
2738 gcc_assert (!PREV_INSN (insn
));
2742 /* Return the last insn emitted in current sequence or current function. */
2745 get_last_insn (void)
2750 /* Specify a new insn as the last in the chain. */
2753 set_last_insn (rtx insn
)
2755 gcc_assert (!NEXT_INSN (insn
));
2759 /* Return the last insn emitted, even if it is in a sequence now pushed. */
2762 get_last_insn_anywhere (void)
2764 struct sequence_stack
*stack
;
2767 for (stack
= seq_stack
; stack
; stack
= stack
->next
)
2768 if (stack
->last
!= 0)
2773 /* Return the first nonnote insn emitted in current sequence or current
2774 function. This routine looks inside SEQUENCEs. */
2777 get_first_nonnote_insn (void)
2779 rtx insn
= first_insn
;
2784 for (insn
= next_insn (insn
);
2785 insn
&& NOTE_P (insn
);
2786 insn
= next_insn (insn
))
2790 if (NONJUMP_INSN_P (insn
)
2791 && GET_CODE (PATTERN (insn
)) == SEQUENCE
)
2792 insn
= XVECEXP (PATTERN (insn
), 0, 0);
2799 /* Return the last nonnote insn emitted in current sequence or current
2800 function. This routine looks inside SEQUENCEs. */
2803 get_last_nonnote_insn (void)
2805 rtx insn
= last_insn
;
2810 for (insn
= previous_insn (insn
);
2811 insn
&& NOTE_P (insn
);
2812 insn
= previous_insn (insn
))
2816 if (NONJUMP_INSN_P (insn
)
2817 && GET_CODE (PATTERN (insn
)) == SEQUENCE
)
2818 insn
= XVECEXP (PATTERN (insn
), 0,
2819 XVECLEN (PATTERN (insn
), 0) - 1);
2826 /* Return a number larger than any instruction's uid in this function. */
2831 return cur_insn_uid
;
2834 /* Return the next insn. If it is a SEQUENCE, return the first insn
2838 next_insn (rtx insn
)
2842 insn
= NEXT_INSN (insn
);
2843 if (insn
&& NONJUMP_INSN_P (insn
)
2844 && GET_CODE (PATTERN (insn
)) == SEQUENCE
)
2845 insn
= XVECEXP (PATTERN (insn
), 0, 0);
2851 /* Return the previous insn. If it is a SEQUENCE, return the last insn
2855 previous_insn (rtx insn
)
2859 insn
= PREV_INSN (insn
);
2860 if (insn
&& NONJUMP_INSN_P (insn
)
2861 && GET_CODE (PATTERN (insn
)) == SEQUENCE
)
2862 insn
= XVECEXP (PATTERN (insn
), 0, XVECLEN (PATTERN (insn
), 0) - 1);
2868 /* Return the next insn after INSN that is not a NOTE. This routine does not
2869 look inside SEQUENCEs. */
2872 next_nonnote_insn (rtx insn
)
2876 insn
= NEXT_INSN (insn
);
2877 if (insn
== 0 || !NOTE_P (insn
))
2884 /* Return the previous insn before INSN that is not a NOTE. This routine does
2885 not look inside SEQUENCEs. */
2888 prev_nonnote_insn (rtx insn
)
2892 insn
= PREV_INSN (insn
);
2893 if (insn
== 0 || !NOTE_P (insn
))
2900 /* Return the next INSN, CALL_INSN or JUMP_INSN after INSN;
2901 or 0, if there is none. This routine does not look inside
2905 next_real_insn (rtx insn
)
2909 insn
= NEXT_INSN (insn
);
2910 if (insn
== 0 || INSN_P (insn
))
2917 /* Return the last INSN, CALL_INSN or JUMP_INSN before INSN;
2918 or 0, if there is none. This routine does not look inside
2922 prev_real_insn (rtx insn
)
2926 insn
= PREV_INSN (insn
);
2927 if (insn
== 0 || INSN_P (insn
))
2934 /* Return the last CALL_INSN in the current list, or 0 if there is none.
2935 This routine does not look inside SEQUENCEs. */
2938 last_call_insn (void)
2942 for (insn
= get_last_insn ();
2943 insn
&& !CALL_P (insn
);
2944 insn
= PREV_INSN (insn
))
2950 /* Find the next insn after INSN that really does something. This routine
2951 does not look inside SEQUENCEs. Until reload has completed, this is the
2952 same as next_real_insn. */
2955 active_insn_p (const_rtx insn
)
2957 return (CALL_P (insn
) || JUMP_P (insn
)
2958 || (NONJUMP_INSN_P (insn
)
2959 && (! reload_completed
2960 || (GET_CODE (PATTERN (insn
)) != USE
2961 && GET_CODE (PATTERN (insn
)) != CLOBBER
))));
2965 next_active_insn (rtx insn
)
2969 insn
= NEXT_INSN (insn
);
2970 if (insn
== 0 || active_insn_p (insn
))
2977 /* Find the last insn before INSN that really does something. This routine
2978 does not look inside SEQUENCEs. Until reload has completed, this is the
2979 same as prev_real_insn. */
2982 prev_active_insn (rtx insn
)
2986 insn
= PREV_INSN (insn
);
2987 if (insn
== 0 || active_insn_p (insn
))
2994 /* Return the next CODE_LABEL after the insn INSN, or 0 if there is none. */
2997 next_label (rtx insn
)
3001 insn
= NEXT_INSN (insn
);
3002 if (insn
== 0 || LABEL_P (insn
))
3009 /* Return the last CODE_LABEL before the insn INSN, or 0 if there is none. */
3012 prev_label (rtx insn
)
3016 insn
= PREV_INSN (insn
);
3017 if (insn
== 0 || LABEL_P (insn
))
3024 /* Return the last label to mark the same position as LABEL. Return null
3025 if LABEL itself is null. */
3028 skip_consecutive_labels (rtx label
)
3032 for (insn
= label
; insn
!= 0 && !INSN_P (insn
); insn
= NEXT_INSN (insn
))
3040 /* INSN uses CC0 and is being moved into a delay slot. Set up REG_CC_SETTER
3041 and REG_CC_USER notes so we can find it. */
3044 link_cc0_insns (rtx insn
)
3046 rtx user
= next_nonnote_insn (insn
);
3048 if (NONJUMP_INSN_P (user
) && GET_CODE (PATTERN (user
)) == SEQUENCE
)
3049 user
= XVECEXP (PATTERN (user
), 0, 0);
3051 add_reg_note (user
, REG_CC_SETTER
, insn
);
3052 add_reg_note (insn
, REG_CC_USER
, user
);
3055 /* Return the next insn that uses CC0 after INSN, which is assumed to
3056 set it. This is the inverse of prev_cc0_setter (i.e., prev_cc0_setter
3057 applied to the result of this function should yield INSN).
3059 Normally, this is simply the next insn. However, if a REG_CC_USER note
3060 is present, it contains the insn that uses CC0.
3062 Return 0 if we can't find the insn. */
3065 next_cc0_user (rtx insn
)
3067 rtx note
= find_reg_note (insn
, REG_CC_USER
, NULL_RTX
);
3070 return XEXP (note
, 0);
3072 insn
= next_nonnote_insn (insn
);
3073 if (insn
&& NONJUMP_INSN_P (insn
) && GET_CODE (PATTERN (insn
)) == SEQUENCE
)
3074 insn
= XVECEXP (PATTERN (insn
), 0, 0);
3076 if (insn
&& INSN_P (insn
) && reg_mentioned_p (cc0_rtx
, PATTERN (insn
)))
3082 /* Find the insn that set CC0 for INSN. Unless INSN has a REG_CC_SETTER
3083 note, it is the previous insn. */
3086 prev_cc0_setter (rtx insn
)
3088 rtx note
= find_reg_note (insn
, REG_CC_SETTER
, NULL_RTX
);
3091 return XEXP (note
, 0);
3093 insn
= prev_nonnote_insn (insn
);
3094 gcc_assert (sets_cc0_p (PATTERN (insn
)));
3101 /* Find a RTX_AUTOINC class rtx which matches DATA. */
3104 find_auto_inc (rtx
*xp
, void *data
)
3107 rtx reg
= (rtx
) data
;
3109 if (GET_RTX_CLASS (GET_CODE (x
)) != RTX_AUTOINC
)
3112 switch (GET_CODE (x
))
3120 if (rtx_equal_p (reg
, XEXP (x
, 0)))
3131 /* Increment the label uses for all labels present in rtx. */
3134 mark_label_nuses (rtx x
)
3140 code
= GET_CODE (x
);
3141 if (code
== LABEL_REF
&& LABEL_P (XEXP (x
, 0)))
3142 LABEL_NUSES (XEXP (x
, 0))++;
3144 fmt
= GET_RTX_FORMAT (code
);
3145 for (i
= GET_RTX_LENGTH (code
) - 1; i
>= 0; i
--)
3148 mark_label_nuses (XEXP (x
, i
));
3149 else if (fmt
[i
] == 'E')
3150 for (j
= XVECLEN (x
, i
) - 1; j
>= 0; j
--)
3151 mark_label_nuses (XVECEXP (x
, i
, j
));
3156 /* Try splitting insns that can be split for better scheduling.
3157 PAT is the pattern which might split.
3158 TRIAL is the insn providing PAT.
3159 LAST is nonzero if we should return the last insn of the sequence produced.
3161 If this routine succeeds in splitting, it returns the first or last
3162 replacement insn depending on the value of LAST. Otherwise, it
3163 returns TRIAL. If the insn to be returned can be split, it will be. */
3166 try_split (rtx pat
, rtx trial
, int last
)
3168 rtx before
= PREV_INSN (trial
);
3169 rtx after
= NEXT_INSN (trial
);
3170 int has_barrier
= 0;
3173 rtx insn_last
, insn
;
3176 if (any_condjump_p (trial
)
3177 && (note
= find_reg_note (trial
, REG_BR_PROB
, 0)))
3178 split_branch_probability
= INTVAL (XEXP (note
, 0));
3179 probability
= split_branch_probability
;
3181 seq
= split_insns (pat
, trial
);
3183 split_branch_probability
= -1;
3185 /* If we are splitting a JUMP_INSN, it might be followed by a BARRIER.
3186 We may need to handle this specially. */
3187 if (after
&& BARRIER_P (after
))
3190 after
= NEXT_INSN (after
);
3196 /* Avoid infinite loop if any insn of the result matches
3197 the original pattern. */
3201 if (INSN_P (insn_last
)
3202 && rtx_equal_p (PATTERN (insn_last
), pat
))
3204 if (!NEXT_INSN (insn_last
))
3206 insn_last
= NEXT_INSN (insn_last
);
3209 /* We will be adding the new sequence to the function. The splitters
3210 may have introduced invalid RTL sharing, so unshare the sequence now. */
3211 unshare_all_rtl_in_chain (seq
);
3214 for (insn
= insn_last
; insn
; insn
= PREV_INSN (insn
))
3218 mark_jump_label (PATTERN (insn
), insn
, 0);
3220 if (probability
!= -1
3221 && any_condjump_p (insn
)
3222 && !find_reg_note (insn
, REG_BR_PROB
, 0))
3224 /* We can preserve the REG_BR_PROB notes only if exactly
3225 one jump is created, otherwise the machine description
3226 is responsible for this step using
3227 split_branch_probability variable. */
3228 gcc_assert (njumps
== 1);
3229 add_reg_note (insn
, REG_BR_PROB
, GEN_INT (probability
));
3234 /* If we are splitting a CALL_INSN, look for the CALL_INSN
3235 in SEQ and copy our CALL_INSN_FUNCTION_USAGE to it. */
3238 for (insn
= insn_last
; insn
; insn
= PREV_INSN (insn
))
3241 rtx
*p
= &CALL_INSN_FUNCTION_USAGE (insn
);
3244 *p
= CALL_INSN_FUNCTION_USAGE (trial
);
3245 SIBLING_CALL_P (insn
) = SIBLING_CALL_P (trial
);
3249 /* Copy notes, particularly those related to the CFG. */
3250 for (note
= REG_NOTES (trial
); note
; note
= XEXP (note
, 1))
3252 switch (REG_NOTE_KIND (note
))
3255 for (insn
= insn_last
; insn
!= NULL_RTX
; insn
= PREV_INSN (insn
))
3258 || (flag_non_call_exceptions
&& INSN_P (insn
)
3259 && may_trap_p (PATTERN (insn
))))
3260 add_reg_note (insn
, REG_EH_REGION
, XEXP (note
, 0));
3266 for (insn
= insn_last
; insn
!= NULL_RTX
; insn
= PREV_INSN (insn
))
3269 add_reg_note (insn
, REG_NOTE_KIND (note
), XEXP (note
, 0));
3273 case REG_NON_LOCAL_GOTO
:
3274 for (insn
= insn_last
; insn
!= NULL_RTX
; insn
= PREV_INSN (insn
))
3277 add_reg_note (insn
, REG_NOTE_KIND (note
), XEXP (note
, 0));
3283 for (insn
= insn_last
; insn
!= NULL_RTX
; insn
= PREV_INSN (insn
))
3285 rtx reg
= XEXP (note
, 0);
3286 if (!FIND_REG_INC_NOTE (insn
, reg
)
3287 && for_each_rtx (&PATTERN (insn
), find_auto_inc
, reg
) > 0)
3288 add_reg_note (insn
, REG_INC
, reg
);
3298 /* If there are LABELS inside the split insns increment the
3299 usage count so we don't delete the label. */
3303 while (insn
!= NULL_RTX
)
3305 /* JUMP_P insns have already been "marked" above. */
3306 if (NONJUMP_INSN_P (insn
))
3307 mark_label_nuses (PATTERN (insn
));
3309 insn
= PREV_INSN (insn
);
3313 tem
= emit_insn_after_setloc (seq
, trial
, INSN_LOCATOR (trial
));
3315 delete_insn (trial
);
3317 emit_barrier_after (tem
);
3319 /* Recursively call try_split for each new insn created; by the
3320 time control returns here that insn will be fully split, so
3321 set LAST and continue from the insn after the one returned.
3322 We can't use next_active_insn here since AFTER may be a note.
3323 Ignore deleted insns, which can be occur if not optimizing. */
3324 for (tem
= NEXT_INSN (before
); tem
!= after
; tem
= NEXT_INSN (tem
))
3325 if (! INSN_DELETED_P (tem
) && INSN_P (tem
))
3326 tem
= try_split (PATTERN (tem
), tem
, 1);
3328 /* Return either the first or the last insn, depending on which was
3331 ? (after
? PREV_INSN (after
) : last_insn
)
3332 : NEXT_INSN (before
);
3335 /* Make and return an INSN rtx, initializing all its slots.
3336 Store PATTERN in the pattern slots. */
3339 make_insn_raw (rtx pattern
)
3343 insn
= rtx_alloc (INSN
);
3345 INSN_UID (insn
) = cur_insn_uid
++;
3346 PATTERN (insn
) = pattern
;
3347 INSN_CODE (insn
) = -1;
3348 REG_NOTES (insn
) = NULL
;
3349 INSN_LOCATOR (insn
) = curr_insn_locator ();
3350 BLOCK_FOR_INSN (insn
) = NULL
;
3352 #ifdef ENABLE_RTL_CHECKING
3355 && (returnjump_p (insn
)
3356 || (GET_CODE (insn
) == SET
3357 && SET_DEST (insn
) == pc_rtx
)))
3359 warning (0, "ICE: emit_insn used where emit_jump_insn needed:\n");
3367 /* Like `make_insn_raw' but make a JUMP_INSN instead of an insn. */
3370 make_jump_insn_raw (rtx pattern
)
3374 insn
= rtx_alloc (JUMP_INSN
);
3375 INSN_UID (insn
) = cur_insn_uid
++;
3377 PATTERN (insn
) = pattern
;
3378 INSN_CODE (insn
) = -1;
3379 REG_NOTES (insn
) = NULL
;
3380 JUMP_LABEL (insn
) = NULL
;
3381 INSN_LOCATOR (insn
) = curr_insn_locator ();
3382 BLOCK_FOR_INSN (insn
) = NULL
;
3387 /* Like `make_insn_raw' but make a CALL_INSN instead of an insn. */
3390 make_call_insn_raw (rtx pattern
)
3394 insn
= rtx_alloc (CALL_INSN
);
3395 INSN_UID (insn
) = cur_insn_uid
++;
3397 PATTERN (insn
) = pattern
;
3398 INSN_CODE (insn
) = -1;
3399 REG_NOTES (insn
) = NULL
;
3400 CALL_INSN_FUNCTION_USAGE (insn
) = NULL
;
3401 INSN_LOCATOR (insn
) = curr_insn_locator ();
3402 BLOCK_FOR_INSN (insn
) = NULL
;
3407 /* Add INSN to the end of the doubly-linked list.
3408 INSN may be an INSN, JUMP_INSN, CALL_INSN, CODE_LABEL, BARRIER or NOTE. */
3413 PREV_INSN (insn
) = last_insn
;
3414 NEXT_INSN (insn
) = 0;
3416 if (NULL
!= last_insn
)
3417 NEXT_INSN (last_insn
) = insn
;
3419 if (NULL
== first_insn
)
3425 /* Add INSN into the doubly-linked list after insn AFTER. This and
3426 the next should be the only functions called to insert an insn once
3427 delay slots have been filled since only they know how to update a
3431 add_insn_after (rtx insn
, rtx after
, basic_block bb
)
3433 rtx next
= NEXT_INSN (after
);
3435 gcc_assert (!optimize
|| !INSN_DELETED_P (after
));
3437 NEXT_INSN (insn
) = next
;
3438 PREV_INSN (insn
) = after
;
3442 PREV_INSN (next
) = insn
;
3443 if (NONJUMP_INSN_P (next
) && GET_CODE (PATTERN (next
)) == SEQUENCE
)
3444 PREV_INSN (XVECEXP (PATTERN (next
), 0, 0)) = insn
;
3446 else if (last_insn
== after
)
3450 struct sequence_stack
*stack
= seq_stack
;
3451 /* Scan all pending sequences too. */
3452 for (; stack
; stack
= stack
->next
)
3453 if (after
== stack
->last
)
3462 if (!BARRIER_P (after
)
3463 && !BARRIER_P (insn
)
3464 && (bb
= BLOCK_FOR_INSN (after
)))
3466 set_block_for_insn (insn
, bb
);
3468 df_insn_rescan (insn
);
3469 /* Should not happen as first in the BB is always
3470 either NOTE or LABEL. */
3471 if (BB_END (bb
) == after
3472 /* Avoid clobbering of structure when creating new BB. */
3473 && !BARRIER_P (insn
)
3474 && !NOTE_INSN_BASIC_BLOCK_P (insn
))
3478 NEXT_INSN (after
) = insn
;
3479 if (NONJUMP_INSN_P (after
) && GET_CODE (PATTERN (after
)) == SEQUENCE
)
3481 rtx sequence
= PATTERN (after
);
3482 NEXT_INSN (XVECEXP (sequence
, 0, XVECLEN (sequence
, 0) - 1)) = insn
;
3486 /* Add INSN into the doubly-linked list before insn BEFORE. This and
3487 the previous should be the only functions called to insert an insn
3488 once delay slots have been filled since only they know how to
3489 update a SEQUENCE. If BB is NULL, an attempt is made to infer the
3493 add_insn_before (rtx insn
, rtx before
, basic_block bb
)
3495 rtx prev
= PREV_INSN (before
);
3497 gcc_assert (!optimize
|| !INSN_DELETED_P (before
));
3499 PREV_INSN (insn
) = prev
;
3500 NEXT_INSN (insn
) = before
;
3504 NEXT_INSN (prev
) = insn
;
3505 if (NONJUMP_INSN_P (prev
) && GET_CODE (PATTERN (prev
)) == SEQUENCE
)
3507 rtx sequence
= PATTERN (prev
);
3508 NEXT_INSN (XVECEXP (sequence
, 0, XVECLEN (sequence
, 0) - 1)) = insn
;
3511 else if (first_insn
== before
)
3515 struct sequence_stack
*stack
= seq_stack
;
3516 /* Scan all pending sequences too. */
3517 for (; stack
; stack
= stack
->next
)
3518 if (before
== stack
->first
)
3520 stack
->first
= insn
;
3528 && !BARRIER_P (before
)
3529 && !BARRIER_P (insn
))
3530 bb
= BLOCK_FOR_INSN (before
);
3534 set_block_for_insn (insn
, bb
);
3536 df_insn_rescan (insn
);
3537 /* Should not happen as first in the BB is always either NOTE or
3539 gcc_assert (BB_HEAD (bb
) != insn
3540 /* Avoid clobbering of structure when creating new BB. */
3542 || NOTE_INSN_BASIC_BLOCK_P (insn
));
3545 PREV_INSN (before
) = insn
;
3546 if (NONJUMP_INSN_P (before
) && GET_CODE (PATTERN (before
)) == SEQUENCE
)
3547 PREV_INSN (XVECEXP (PATTERN (before
), 0, 0)) = insn
;
3551 /* Replace insn with an deleted instruction note. */
3553 void set_insn_deleted (rtx insn
)
3555 df_insn_delete (BLOCK_FOR_INSN (insn
), INSN_UID (insn
));
3556 PUT_CODE (insn
, NOTE
);
3557 NOTE_KIND (insn
) = NOTE_INSN_DELETED
;
3561 /* Remove an insn from its doubly-linked list. This function knows how
3562 to handle sequences. */
3564 remove_insn (rtx insn
)
3566 rtx next
= NEXT_INSN (insn
);
3567 rtx prev
= PREV_INSN (insn
);
3570 /* Later in the code, the block will be marked dirty. */
3571 df_insn_delete (NULL
, INSN_UID (insn
));
3575 NEXT_INSN (prev
) = next
;
3576 if (NONJUMP_INSN_P (prev
) && GET_CODE (PATTERN (prev
)) == SEQUENCE
)
3578 rtx sequence
= PATTERN (prev
);
3579 NEXT_INSN (XVECEXP (sequence
, 0, XVECLEN (sequence
, 0) - 1)) = next
;
3582 else if (first_insn
== insn
)
3586 struct sequence_stack
*stack
= seq_stack
;
3587 /* Scan all pending sequences too. */
3588 for (; stack
; stack
= stack
->next
)
3589 if (insn
== stack
->first
)
3591 stack
->first
= next
;
3600 PREV_INSN (next
) = prev
;
3601 if (NONJUMP_INSN_P (next
) && GET_CODE (PATTERN (next
)) == SEQUENCE
)
3602 PREV_INSN (XVECEXP (PATTERN (next
), 0, 0)) = prev
;
3604 else if (last_insn
== insn
)
3608 struct sequence_stack
*stack
= seq_stack
;
3609 /* Scan all pending sequences too. */
3610 for (; stack
; stack
= stack
->next
)
3611 if (insn
== stack
->last
)
3619 if (!BARRIER_P (insn
)
3620 && (bb
= BLOCK_FOR_INSN (insn
)))
3623 df_set_bb_dirty (bb
);
3624 if (BB_HEAD (bb
) == insn
)
3626 /* Never ever delete the basic block note without deleting whole
3628 gcc_assert (!NOTE_P (insn
));
3629 BB_HEAD (bb
) = next
;
3631 if (BB_END (bb
) == insn
)
3636 /* Append CALL_FUSAGE to the CALL_INSN_FUNCTION_USAGE for CALL_INSN. */
3639 add_function_usage_to (rtx call_insn
, rtx call_fusage
)
3641 gcc_assert (call_insn
&& CALL_P (call_insn
));
3643 /* Put the register usage information on the CALL. If there is already
3644 some usage information, put ours at the end. */
3645 if (CALL_INSN_FUNCTION_USAGE (call_insn
))
3649 for (link
= CALL_INSN_FUNCTION_USAGE (call_insn
); XEXP (link
, 1) != 0;
3650 link
= XEXP (link
, 1))
3653 XEXP (link
, 1) = call_fusage
;
3656 CALL_INSN_FUNCTION_USAGE (call_insn
) = call_fusage
;
3659 /* Delete all insns made since FROM.
3660 FROM becomes the new last instruction. */
3663 delete_insns_since (rtx from
)
3668 NEXT_INSN (from
) = 0;
3672 /* This function is deprecated, please use sequences instead.
3674 Move a consecutive bunch of insns to a different place in the chain.
3675 The insns to be moved are those between FROM and TO.
3676 They are moved to a new position after the insn AFTER.
3677 AFTER must not be FROM or TO or any insn in between.
3679 This function does not know about SEQUENCEs and hence should not be
3680 called after delay-slot filling has been done. */
3683 reorder_insns_nobb (rtx from
, rtx to
, rtx after
)
3685 /* Splice this bunch out of where it is now. */
3686 if (PREV_INSN (from
))
3687 NEXT_INSN (PREV_INSN (from
)) = NEXT_INSN (to
);
3689 PREV_INSN (NEXT_INSN (to
)) = PREV_INSN (from
);
3690 if (last_insn
== to
)
3691 last_insn
= PREV_INSN (from
);
3692 if (first_insn
== from
)
3693 first_insn
= NEXT_INSN (to
);
3695 /* Make the new neighbors point to it and it to them. */
3696 if (NEXT_INSN (after
))
3697 PREV_INSN (NEXT_INSN (after
)) = to
;
3699 NEXT_INSN (to
) = NEXT_INSN (after
);
3700 PREV_INSN (from
) = after
;
3701 NEXT_INSN (after
) = from
;
3702 if (after
== last_insn
)
3706 /* Same as function above, but take care to update BB boundaries. */
3708 reorder_insns (rtx from
, rtx to
, rtx after
)
3710 rtx prev
= PREV_INSN (from
);
3711 basic_block bb
, bb2
;
3713 reorder_insns_nobb (from
, to
, after
);
3715 if (!BARRIER_P (after
)
3716 && (bb
= BLOCK_FOR_INSN (after
)))
3719 df_set_bb_dirty (bb
);
3721 if (!BARRIER_P (from
)
3722 && (bb2
= BLOCK_FOR_INSN (from
)))
3724 if (BB_END (bb2
) == to
)
3725 BB_END (bb2
) = prev
;
3726 df_set_bb_dirty (bb2
);
3729 if (BB_END (bb
) == after
)
3732 for (x
= from
; x
!= NEXT_INSN (to
); x
= NEXT_INSN (x
))
3734 df_insn_change_bb (x
, bb
);
3739 /* Emit insn(s) of given code and pattern
3740 at a specified place within the doubly-linked list.
3742 All of the emit_foo global entry points accept an object
3743 X which is either an insn list or a PATTERN of a single
3746 There are thus a few canonical ways to generate code and
3747 emit it at a specific place in the instruction stream. For
3748 example, consider the instruction named SPOT and the fact that
3749 we would like to emit some instructions before SPOT. We might
3753 ... emit the new instructions ...
3754 insns_head = get_insns ();
3757 emit_insn_before (insns_head, SPOT);
3759 It used to be common to generate SEQUENCE rtl instead, but that
3760 is a relic of the past which no longer occurs. The reason is that
3761 SEQUENCE rtl results in much fragmented RTL memory since the SEQUENCE
3762 generated would almost certainly die right after it was created. */
3764 /* Make X be output before the instruction BEFORE. */
3767 emit_insn_before_noloc (rtx x
, rtx before
, basic_block bb
)
3772 gcc_assert (before
);
3777 switch (GET_CODE (x
))
3788 rtx next
= NEXT_INSN (insn
);
3789 add_insn_before (insn
, before
, bb
);
3795 #ifdef ENABLE_RTL_CHECKING
3802 last
= make_insn_raw (x
);
3803 add_insn_before (last
, before
, bb
);
3810 /* Make an instruction with body X and code JUMP_INSN
3811 and output it before the instruction BEFORE. */
3814 emit_jump_insn_before_noloc (rtx x
, rtx before
)
3816 rtx insn
, last
= NULL_RTX
;
3818 gcc_assert (before
);
3820 switch (GET_CODE (x
))
3831 rtx next
= NEXT_INSN (insn
);
3832 add_insn_before (insn
, before
, NULL
);
3838 #ifdef ENABLE_RTL_CHECKING
3845 last
= make_jump_insn_raw (x
);
3846 add_insn_before (last
, before
, NULL
);
3853 /* Make an instruction with body X and code CALL_INSN
3854 and output it before the instruction BEFORE. */
3857 emit_call_insn_before_noloc (rtx x
, rtx before
)
3859 rtx last
= NULL_RTX
, insn
;
3861 gcc_assert (before
);
3863 switch (GET_CODE (x
))
3874 rtx next
= NEXT_INSN (insn
);
3875 add_insn_before (insn
, before
, NULL
);
3881 #ifdef ENABLE_RTL_CHECKING
3888 last
= make_call_insn_raw (x
);
3889 add_insn_before (last
, before
, NULL
);
3896 /* Make an insn of code BARRIER
3897 and output it before the insn BEFORE. */
3900 emit_barrier_before (rtx before
)
3902 rtx insn
= rtx_alloc (BARRIER
);
3904 INSN_UID (insn
) = cur_insn_uid
++;
3906 add_insn_before (insn
, before
, NULL
);
3910 /* Emit the label LABEL before the insn BEFORE. */
3913 emit_label_before (rtx label
, rtx before
)
3915 /* This can be called twice for the same label as a result of the
3916 confusion that follows a syntax error! So make it harmless. */
3917 if (INSN_UID (label
) == 0)
3919 INSN_UID (label
) = cur_insn_uid
++;
3920 add_insn_before (label
, before
, NULL
);
3926 /* Emit a note of subtype SUBTYPE before the insn BEFORE. */
3929 emit_note_before (enum insn_note subtype
, rtx before
)
3931 rtx note
= rtx_alloc (NOTE
);
3932 INSN_UID (note
) = cur_insn_uid
++;
3933 NOTE_KIND (note
) = subtype
;
3934 BLOCK_FOR_INSN (note
) = NULL
;
3935 memset (&NOTE_DATA (note
), 0, sizeof (NOTE_DATA (note
)));
3937 add_insn_before (note
, before
, NULL
);
3941 /* Helper for emit_insn_after, handles lists of instructions
3945 emit_insn_after_1 (rtx first
, rtx after
, basic_block bb
)
3949 if (!bb
&& !BARRIER_P (after
))
3950 bb
= BLOCK_FOR_INSN (after
);
3954 df_set_bb_dirty (bb
);
3955 for (last
= first
; NEXT_INSN (last
); last
= NEXT_INSN (last
))
3956 if (!BARRIER_P (last
))
3958 set_block_for_insn (last
, bb
);
3959 df_insn_rescan (last
);
3961 if (!BARRIER_P (last
))
3963 set_block_for_insn (last
, bb
);
3964 df_insn_rescan (last
);
3966 if (BB_END (bb
) == after
)
3970 for (last
= first
; NEXT_INSN (last
); last
= NEXT_INSN (last
))
3973 after_after
= NEXT_INSN (after
);
3975 NEXT_INSN (after
) = first
;
3976 PREV_INSN (first
) = after
;
3977 NEXT_INSN (last
) = after_after
;
3979 PREV_INSN (after_after
) = last
;
3981 if (after
== last_insn
)
3987 /* Make X be output after the insn AFTER and set the BB of insn. If
3988 BB is NULL, an attempt is made to infer the BB from AFTER. */
3991 emit_insn_after_noloc (rtx x
, rtx after
, basic_block bb
)
4000 switch (GET_CODE (x
))
4008 last
= emit_insn_after_1 (x
, after
, bb
);
4011 #ifdef ENABLE_RTL_CHECKING
4018 last
= make_insn_raw (x
);
4019 add_insn_after (last
, after
, bb
);
4027 /* Make an insn of code JUMP_INSN with body X
4028 and output it after the insn AFTER. */
4031 emit_jump_insn_after_noloc (rtx x
, rtx after
)
4037 switch (GET_CODE (x
))
4045 last
= emit_insn_after_1 (x
, after
, NULL
);
4048 #ifdef ENABLE_RTL_CHECKING
4055 last
= make_jump_insn_raw (x
);
4056 add_insn_after (last
, after
, NULL
);
4063 /* Make an instruction with body X and code CALL_INSN
4064 and output it after the instruction AFTER. */
4067 emit_call_insn_after_noloc (rtx x
, rtx after
)
4073 switch (GET_CODE (x
))
4081 last
= emit_insn_after_1 (x
, after
, NULL
);
4084 #ifdef ENABLE_RTL_CHECKING
4091 last
= make_call_insn_raw (x
);
4092 add_insn_after (last
, after
, NULL
);
4099 /* Make an insn of code BARRIER
4100 and output it after the insn AFTER. */
4103 emit_barrier_after (rtx after
)
4105 rtx insn
= rtx_alloc (BARRIER
);
4107 INSN_UID (insn
) = cur_insn_uid
++;
4109 add_insn_after (insn
, after
, NULL
);
4113 /* Emit the label LABEL after the insn AFTER. */
4116 emit_label_after (rtx label
, rtx after
)
4118 /* This can be called twice for the same label
4119 as a result of the confusion that follows a syntax error!
4120 So make it harmless. */
4121 if (INSN_UID (label
) == 0)
4123 INSN_UID (label
) = cur_insn_uid
++;
4124 add_insn_after (label
, after
, NULL
);
4130 /* Emit a note of subtype SUBTYPE after the insn AFTER. */
4133 emit_note_after (enum insn_note subtype
, rtx after
)
4135 rtx note
= rtx_alloc (NOTE
);
4136 INSN_UID (note
) = cur_insn_uid
++;
4137 NOTE_KIND (note
) = subtype
;
4138 BLOCK_FOR_INSN (note
) = NULL
;
4139 memset (&NOTE_DATA (note
), 0, sizeof (NOTE_DATA (note
)));
4140 add_insn_after (note
, after
, NULL
);
4144 /* Like emit_insn_after_noloc, but set INSN_LOCATOR according to SCOPE. */
4146 emit_insn_after_setloc (rtx pattern
, rtx after
, int loc
)
4148 rtx last
= emit_insn_after_noloc (pattern
, after
, NULL
);
4150 if (pattern
== NULL_RTX
|| !loc
)
4153 after
= NEXT_INSN (after
);
4156 if (active_insn_p (after
) && !INSN_LOCATOR (after
))
4157 INSN_LOCATOR (after
) = loc
;
4160 after
= NEXT_INSN (after
);
4165 /* Like emit_insn_after_noloc, but set INSN_LOCATOR according to AFTER. */
4167 emit_insn_after (rtx pattern
, rtx after
)
4170 return emit_insn_after_setloc (pattern
, after
, INSN_LOCATOR (after
));
4172 return emit_insn_after_noloc (pattern
, after
, NULL
);
4175 /* Like emit_jump_insn_after_noloc, but set INSN_LOCATOR according to SCOPE. */
4177 emit_jump_insn_after_setloc (rtx pattern
, rtx after
, int loc
)
4179 rtx last
= emit_jump_insn_after_noloc (pattern
, after
);
4181 if (pattern
== NULL_RTX
|| !loc
)
4184 after
= NEXT_INSN (after
);
4187 if (active_insn_p (after
) && !INSN_LOCATOR (after
))
4188 INSN_LOCATOR (after
) = loc
;
4191 after
= NEXT_INSN (after
);
4196 /* Like emit_jump_insn_after_noloc, but set INSN_LOCATOR according to AFTER. */
4198 emit_jump_insn_after (rtx pattern
, rtx after
)
4201 return emit_jump_insn_after_setloc (pattern
, after
, INSN_LOCATOR (after
));
4203 return emit_jump_insn_after_noloc (pattern
, after
);
4206 /* Like emit_call_insn_after_noloc, but set INSN_LOCATOR according to SCOPE. */
4208 emit_call_insn_after_setloc (rtx pattern
, rtx after
, int loc
)
4210 rtx last
= emit_call_insn_after_noloc (pattern
, after
);
4212 if (pattern
== NULL_RTX
|| !loc
)
4215 after
= NEXT_INSN (after
);
4218 if (active_insn_p (after
) && !INSN_LOCATOR (after
))
4219 INSN_LOCATOR (after
) = loc
;
4222 after
= NEXT_INSN (after
);
4227 /* Like emit_call_insn_after_noloc, but set INSN_LOCATOR according to AFTER. */
4229 emit_call_insn_after (rtx pattern
, rtx after
)
4232 return emit_call_insn_after_setloc (pattern
, after
, INSN_LOCATOR (after
));
4234 return emit_call_insn_after_noloc (pattern
, after
);
4237 /* Like emit_insn_before_noloc, but set INSN_LOCATOR according to SCOPE. */
4239 emit_insn_before_setloc (rtx pattern
, rtx before
, int loc
)
4241 rtx first
= PREV_INSN (before
);
4242 rtx last
= emit_insn_before_noloc (pattern
, before
, NULL
);
4244 if (pattern
== NULL_RTX
|| !loc
)
4248 first
= get_insns ();
4250 first
= NEXT_INSN (first
);
4253 if (active_insn_p (first
) && !INSN_LOCATOR (first
))
4254 INSN_LOCATOR (first
) = loc
;
4257 first
= NEXT_INSN (first
);
4262 /* Like emit_insn_before_noloc, but set INSN_LOCATOR according to BEFORE. */
4264 emit_insn_before (rtx pattern
, rtx before
)
4266 if (INSN_P (before
))
4267 return emit_insn_before_setloc (pattern
, before
, INSN_LOCATOR (before
));
4269 return emit_insn_before_noloc (pattern
, before
, NULL
);
4272 /* like emit_insn_before_noloc, but set insn_locator according to scope. */
4274 emit_jump_insn_before_setloc (rtx pattern
, rtx before
, int loc
)
4276 rtx first
= PREV_INSN (before
);
4277 rtx last
= emit_jump_insn_before_noloc (pattern
, before
);
4279 if (pattern
== NULL_RTX
)
4282 first
= NEXT_INSN (first
);
4285 if (active_insn_p (first
) && !INSN_LOCATOR (first
))
4286 INSN_LOCATOR (first
) = loc
;
4289 first
= NEXT_INSN (first
);
4294 /* Like emit_jump_insn_before_noloc, but set INSN_LOCATOR according to BEFORE. */
4296 emit_jump_insn_before (rtx pattern
, rtx before
)
4298 if (INSN_P (before
))
4299 return emit_jump_insn_before_setloc (pattern
, before
, INSN_LOCATOR (before
));
4301 return emit_jump_insn_before_noloc (pattern
, before
);
4304 /* like emit_insn_before_noloc, but set insn_locator according to scope. */
4306 emit_call_insn_before_setloc (rtx pattern
, rtx before
, int loc
)
4308 rtx first
= PREV_INSN (before
);
4309 rtx last
= emit_call_insn_before_noloc (pattern
, before
);
4311 if (pattern
== NULL_RTX
)
4314 first
= NEXT_INSN (first
);
4317 if (active_insn_p (first
) && !INSN_LOCATOR (first
))
4318 INSN_LOCATOR (first
) = loc
;
4321 first
= NEXT_INSN (first
);
4326 /* like emit_call_insn_before_noloc,
4327 but set insn_locator according to before. */
4329 emit_call_insn_before (rtx pattern
, rtx before
)
4331 if (INSN_P (before
))
4332 return emit_call_insn_before_setloc (pattern
, before
, INSN_LOCATOR (before
));
4334 return emit_call_insn_before_noloc (pattern
, before
);
4337 /* Take X and emit it at the end of the doubly-linked
4340 Returns the last insn emitted. */
4345 rtx last
= last_insn
;
4351 switch (GET_CODE (x
))
4362 rtx next
= NEXT_INSN (insn
);
4369 #ifdef ENABLE_RTL_CHECKING
4376 last
= make_insn_raw (x
);
4384 /* Make an insn of code JUMP_INSN with pattern X
4385 and add it to the end of the doubly-linked list. */
4388 emit_jump_insn (rtx x
)
4390 rtx last
= NULL_RTX
, insn
;
4392 switch (GET_CODE (x
))
4403 rtx next
= NEXT_INSN (insn
);
4410 #ifdef ENABLE_RTL_CHECKING
4417 last
= make_jump_insn_raw (x
);
4425 /* Make an insn of code CALL_INSN with pattern X
4426 and add it to the end of the doubly-linked list. */
4429 emit_call_insn (rtx x
)
4433 switch (GET_CODE (x
))
4441 insn
= emit_insn (x
);
4444 #ifdef ENABLE_RTL_CHECKING
4451 insn
= make_call_insn_raw (x
);
4459 /* Add the label LABEL to the end of the doubly-linked list. */
4462 emit_label (rtx label
)
4464 /* This can be called twice for the same label
4465 as a result of the confusion that follows a syntax error!
4466 So make it harmless. */
4467 if (INSN_UID (label
) == 0)
4469 INSN_UID (label
) = cur_insn_uid
++;
4475 /* Make an insn of code BARRIER
4476 and add it to the end of the doubly-linked list. */
4481 rtx barrier
= rtx_alloc (BARRIER
);
4482 INSN_UID (barrier
) = cur_insn_uid
++;
4487 /* Emit a copy of note ORIG. */
4490 emit_note_copy (rtx orig
)
4494 note
= rtx_alloc (NOTE
);
4496 INSN_UID (note
) = cur_insn_uid
++;
4497 NOTE_DATA (note
) = NOTE_DATA (orig
);
4498 NOTE_KIND (note
) = NOTE_KIND (orig
);
4499 BLOCK_FOR_INSN (note
) = NULL
;
4505 /* Make an insn of code NOTE or type NOTE_NO
4506 and add it to the end of the doubly-linked list. */
4509 emit_note (enum insn_note kind
)
4513 note
= rtx_alloc (NOTE
);
4514 INSN_UID (note
) = cur_insn_uid
++;
4515 NOTE_KIND (note
) = kind
;
4516 memset (&NOTE_DATA (note
), 0, sizeof (NOTE_DATA (note
)));
4517 BLOCK_FOR_INSN (note
) = NULL
;
4522 /* Emit a clobber of lvalue X. */
4525 emit_clobber (rtx x
)
4527 /* CONCATs should not appear in the insn stream. */
4528 if (GET_CODE (x
) == CONCAT
)
4530 emit_clobber (XEXP (x
, 0));
4531 return emit_clobber (XEXP (x
, 1));
4533 return emit_insn (gen_rtx_CLOBBER (VOIDmode
, x
));
4536 /* Return a sequence of insns to clobber lvalue X. */
4550 /* Emit a use of rvalue X. */
4555 /* CONCATs should not appear in the insn stream. */
4556 if (GET_CODE (x
) == CONCAT
)
4558 emit_use (XEXP (x
, 0));
4559 return emit_use (XEXP (x
, 1));
4561 return emit_insn (gen_rtx_USE (VOIDmode
, x
));
4564 /* Return a sequence of insns to use rvalue X. */
4578 /* Cause next statement to emit a line note even if the line number
4582 force_next_line_note (void)
4587 /* Place a note of KIND on insn INSN with DATUM as the datum. If a
4588 note of this type already exists, remove it first. */
4591 set_unique_reg_note (rtx insn
, enum reg_note kind
, rtx datum
)
4593 rtx note
= find_reg_note (insn
, kind
, NULL_RTX
);
4599 /* Don't add REG_EQUAL/REG_EQUIV notes if the insn
4600 has multiple sets (some callers assume single_set
4601 means the insn only has one set, when in fact it
4602 means the insn only has one * useful * set). */
4603 if (GET_CODE (PATTERN (insn
)) == PARALLEL
&& multiple_sets (insn
))
4609 /* Don't add ASM_OPERAND REG_EQUAL/REG_EQUIV notes.
4610 It serves no useful purpose and breaks eliminate_regs. */
4611 if (GET_CODE (datum
) == ASM_OPERANDS
)
4616 XEXP (note
, 0) = datum
;
4617 df_notes_rescan (insn
);
4625 XEXP (note
, 0) = datum
;
4631 add_reg_note (insn
, kind
, datum
);
4637 df_notes_rescan (insn
);
4643 return REG_NOTES (insn
);
4646 /* Return an indication of which type of insn should have X as a body.
4647 The value is CODE_LABEL, INSN, CALL_INSN or JUMP_INSN. */
4649 static enum rtx_code
4650 classify_insn (rtx x
)
4654 if (GET_CODE (x
) == CALL
)
4656 if (GET_CODE (x
) == RETURN
)
4658 if (GET_CODE (x
) == SET
)
4660 if (SET_DEST (x
) == pc_rtx
)
4662 else if (GET_CODE (SET_SRC (x
)) == CALL
)
4667 if (GET_CODE (x
) == PARALLEL
)
4670 for (j
= XVECLEN (x
, 0) - 1; j
>= 0; j
--)
4671 if (GET_CODE (XVECEXP (x
, 0, j
)) == CALL
)
4673 else if (GET_CODE (XVECEXP (x
, 0, j
)) == SET
4674 && SET_DEST (XVECEXP (x
, 0, j
)) == pc_rtx
)
4676 else if (GET_CODE (XVECEXP (x
, 0, j
)) == SET
4677 && GET_CODE (SET_SRC (XVECEXP (x
, 0, j
))) == CALL
)
4683 /* Emit the rtl pattern X as an appropriate kind of insn.
4684 If X is a label, it is simply added into the insn chain. */
4689 enum rtx_code code
= classify_insn (x
);
4694 return emit_label (x
);
4696 return emit_insn (x
);
4699 rtx insn
= emit_jump_insn (x
);
4700 if (any_uncondjump_p (insn
) || GET_CODE (x
) == RETURN
)
4701 return emit_barrier ();
4705 return emit_call_insn (x
);
4711 /* Space for free sequence stack entries. */
4712 static GTY ((deletable
)) struct sequence_stack
*free_sequence_stack
;
4714 /* Begin emitting insns to a sequence. If this sequence will contain
4715 something that might cause the compiler to pop arguments to function
4716 calls (because those pops have previously been deferred; see
4717 INHIBIT_DEFER_POP for more details), use do_pending_stack_adjust
4718 before calling this function. That will ensure that the deferred
4719 pops are not accidentally emitted in the middle of this sequence. */
4722 start_sequence (void)
4724 struct sequence_stack
*tem
;
4726 if (free_sequence_stack
!= NULL
)
4728 tem
= free_sequence_stack
;
4729 free_sequence_stack
= tem
->next
;
4732 tem
= GGC_NEW (struct sequence_stack
);
4734 tem
->next
= seq_stack
;
4735 tem
->first
= first_insn
;
4736 tem
->last
= last_insn
;
4744 /* Set up the insn chain starting with FIRST as the current sequence,
4745 saving the previously current one. See the documentation for
4746 start_sequence for more information about how to use this function. */
4749 push_to_sequence (rtx first
)
4755 for (last
= first
; last
&& NEXT_INSN (last
); last
= NEXT_INSN (last
));
4761 /* Like push_to_sequence, but take the last insn as an argument to avoid
4762 looping through the list. */
4765 push_to_sequence2 (rtx first
, rtx last
)
4773 /* Set up the outer-level insn chain
4774 as the current sequence, saving the previously current one. */
4777 push_topmost_sequence (void)
4779 struct sequence_stack
*stack
, *top
= NULL
;
4783 for (stack
= seq_stack
; stack
; stack
= stack
->next
)
4786 first_insn
= top
->first
;
4787 last_insn
= top
->last
;
4790 /* After emitting to the outer-level insn chain, update the outer-level
4791 insn chain, and restore the previous saved state. */
4794 pop_topmost_sequence (void)
4796 struct sequence_stack
*stack
, *top
= NULL
;
4798 for (stack
= seq_stack
; stack
; stack
= stack
->next
)
4801 top
->first
= first_insn
;
4802 top
->last
= last_insn
;
4807 /* After emitting to a sequence, restore previous saved state.
4809 To get the contents of the sequence just made, you must call
4810 `get_insns' *before* calling here.
4812 If the compiler might have deferred popping arguments while
4813 generating this sequence, and this sequence will not be immediately
4814 inserted into the instruction stream, use do_pending_stack_adjust
4815 before calling get_insns. That will ensure that the deferred
4816 pops are inserted into this sequence, and not into some random
4817 location in the instruction stream. See INHIBIT_DEFER_POP for more
4818 information about deferred popping of arguments. */
4823 struct sequence_stack
*tem
= seq_stack
;
4825 first_insn
= tem
->first
;
4826 last_insn
= tem
->last
;
4827 seq_stack
= tem
->next
;
4829 memset (tem
, 0, sizeof (*tem
));
4830 tem
->next
= free_sequence_stack
;
4831 free_sequence_stack
= tem
;
4834 /* Return 1 if currently emitting into a sequence. */
4837 in_sequence_p (void)
4839 return seq_stack
!= 0;
4842 /* Put the various virtual registers into REGNO_REG_RTX. */
4845 init_virtual_regs (void)
4847 regno_reg_rtx
[VIRTUAL_INCOMING_ARGS_REGNUM
] = virtual_incoming_args_rtx
;
4848 regno_reg_rtx
[VIRTUAL_STACK_VARS_REGNUM
] = virtual_stack_vars_rtx
;
4849 regno_reg_rtx
[VIRTUAL_STACK_DYNAMIC_REGNUM
] = virtual_stack_dynamic_rtx
;
4850 regno_reg_rtx
[VIRTUAL_OUTGOING_ARGS_REGNUM
] = virtual_outgoing_args_rtx
;
4851 regno_reg_rtx
[VIRTUAL_CFA_REGNUM
] = virtual_cfa_rtx
;
4855 /* Used by copy_insn_1 to avoid copying SCRATCHes more than once. */
4856 static rtx copy_insn_scratch_in
[MAX_RECOG_OPERANDS
];
4857 static rtx copy_insn_scratch_out
[MAX_RECOG_OPERANDS
];
4858 static int copy_insn_n_scratches
;
4860 /* When an insn is being copied by copy_insn_1, this is nonzero if we have
4861 copied an ASM_OPERANDS.
4862 In that case, it is the original input-operand vector. */
4863 static rtvec orig_asm_operands_vector
;
4865 /* When an insn is being copied by copy_insn_1, this is nonzero if we have
4866 copied an ASM_OPERANDS.
4867 In that case, it is the copied input-operand vector. */
4868 static rtvec copy_asm_operands_vector
;
4870 /* Likewise for the constraints vector. */
4871 static rtvec orig_asm_constraints_vector
;
4872 static rtvec copy_asm_constraints_vector
;
4874 /* Recursively create a new copy of an rtx for copy_insn.
4875 This function differs from copy_rtx in that it handles SCRATCHes and
4876 ASM_OPERANDs properly.
4877 Normally, this function is not used directly; use copy_insn as front end.
4878 However, you could first copy an insn pattern with copy_insn and then use
4879 this function afterwards to properly copy any REG_NOTEs containing
4883 copy_insn_1 (rtx orig
)
4888 const char *format_ptr
;
4890 code
= GET_CODE (orig
);
4905 if (REG_P (XEXP (orig
, 0)) && REGNO (XEXP (orig
, 0)) < FIRST_PSEUDO_REGISTER
)
4910 for (i
= 0; i
< copy_insn_n_scratches
; i
++)
4911 if (copy_insn_scratch_in
[i
] == orig
)
4912 return copy_insn_scratch_out
[i
];
4916 if (shared_const_p (orig
))
4920 /* A MEM with a constant address is not sharable. The problem is that
4921 the constant address may need to be reloaded. If the mem is shared,
4922 then reloading one copy of this mem will cause all copies to appear
4923 to have been reloaded. */
4929 /* Copy the various flags, fields, and other information. We assume
4930 that all fields need copying, and then clear the fields that should
4931 not be copied. That is the sensible default behavior, and forces
4932 us to explicitly document why we are *not* copying a flag. */
4933 copy
= shallow_copy_rtx (orig
);
4935 /* We do not copy the USED flag, which is used as a mark bit during
4936 walks over the RTL. */
4937 RTX_FLAG (copy
, used
) = 0;
4939 /* We do not copy JUMP, CALL, or FRAME_RELATED for INSNs. */
4942 RTX_FLAG (copy
, jump
) = 0;
4943 RTX_FLAG (copy
, call
) = 0;
4944 RTX_FLAG (copy
, frame_related
) = 0;
4947 format_ptr
= GET_RTX_FORMAT (GET_CODE (copy
));
4949 for (i
= 0; i
< GET_RTX_LENGTH (GET_CODE (copy
)); i
++)
4950 switch (*format_ptr
++)
4953 if (XEXP (orig
, i
) != NULL
)
4954 XEXP (copy
, i
) = copy_insn_1 (XEXP (orig
, i
));
4959 if (XVEC (orig
, i
) == orig_asm_constraints_vector
)
4960 XVEC (copy
, i
) = copy_asm_constraints_vector
;
4961 else if (XVEC (orig
, i
) == orig_asm_operands_vector
)
4962 XVEC (copy
, i
) = copy_asm_operands_vector
;
4963 else if (XVEC (orig
, i
) != NULL
)
4965 XVEC (copy
, i
) = rtvec_alloc (XVECLEN (orig
, i
));
4966 for (j
= 0; j
< XVECLEN (copy
, i
); j
++)
4967 XVECEXP (copy
, i
, j
) = copy_insn_1 (XVECEXP (orig
, i
, j
));
4978 /* These are left unchanged. */
4985 if (code
== SCRATCH
)
4987 i
= copy_insn_n_scratches
++;
4988 gcc_assert (i
< MAX_RECOG_OPERANDS
);
4989 copy_insn_scratch_in
[i
] = orig
;
4990 copy_insn_scratch_out
[i
] = copy
;
4992 else if (code
== ASM_OPERANDS
)
4994 orig_asm_operands_vector
= ASM_OPERANDS_INPUT_VEC (orig
);
4995 copy_asm_operands_vector
= ASM_OPERANDS_INPUT_VEC (copy
);
4996 orig_asm_constraints_vector
= ASM_OPERANDS_INPUT_CONSTRAINT_VEC (orig
);
4997 copy_asm_constraints_vector
= ASM_OPERANDS_INPUT_CONSTRAINT_VEC (copy
);
5003 /* Create a new copy of an rtx.
5004 This function differs from copy_rtx in that it handles SCRATCHes and
5005 ASM_OPERANDs properly.
5006 INSN doesn't really have to be a full INSN; it could be just the
5009 copy_insn (rtx insn
)
5011 copy_insn_n_scratches
= 0;
5012 orig_asm_operands_vector
= 0;
5013 orig_asm_constraints_vector
= 0;
5014 copy_asm_operands_vector
= 0;
5015 copy_asm_constraints_vector
= 0;
5016 return copy_insn_1 (insn
);
5019 /* Initialize data structures and variables in this file
5020 before generating rtl for each function. */
5028 reg_rtx_no
= LAST_VIRTUAL_REGISTER
+ 1;
5029 last_location
= UNKNOWN_LOCATION
;
5030 first_label_num
= label_num
;
5033 /* Init the tables that describe all the pseudo regs. */
5035 crtl
->emit
.regno_pointer_align_length
= LAST_VIRTUAL_REGISTER
+ 101;
5037 crtl
->emit
.regno_pointer_align
5038 = XCNEWVEC (unsigned char, crtl
->emit
.regno_pointer_align_length
);
5041 = GGC_NEWVEC (rtx
, crtl
->emit
.regno_pointer_align_length
);
5043 /* Put copies of all the hard registers into regno_reg_rtx. */
5044 memcpy (regno_reg_rtx
,
5045 static_regno_reg_rtx
,
5046 FIRST_PSEUDO_REGISTER
* sizeof (rtx
));
5048 /* Put copies of all the virtual register rtx into regno_reg_rtx. */
5049 init_virtual_regs ();
5051 /* Indicate that the virtual registers and stack locations are
5053 REG_POINTER (stack_pointer_rtx
) = 1;
5054 REG_POINTER (frame_pointer_rtx
) = 1;
5055 REG_POINTER (hard_frame_pointer_rtx
) = 1;
5056 REG_POINTER (arg_pointer_rtx
) = 1;
5058 REG_POINTER (virtual_incoming_args_rtx
) = 1;
5059 REG_POINTER (virtual_stack_vars_rtx
) = 1;
5060 REG_POINTER (virtual_stack_dynamic_rtx
) = 1;
5061 REG_POINTER (virtual_outgoing_args_rtx
) = 1;
5062 REG_POINTER (virtual_cfa_rtx
) = 1;
5064 #ifdef STACK_BOUNDARY
5065 REGNO_POINTER_ALIGN (STACK_POINTER_REGNUM
) = STACK_BOUNDARY
;
5066 REGNO_POINTER_ALIGN (FRAME_POINTER_REGNUM
) = STACK_BOUNDARY
;
5067 REGNO_POINTER_ALIGN (HARD_FRAME_POINTER_REGNUM
) = STACK_BOUNDARY
;
5068 REGNO_POINTER_ALIGN (ARG_POINTER_REGNUM
) = STACK_BOUNDARY
;
5070 REGNO_POINTER_ALIGN (VIRTUAL_INCOMING_ARGS_REGNUM
) = STACK_BOUNDARY
;
5071 REGNO_POINTER_ALIGN (VIRTUAL_STACK_VARS_REGNUM
) = STACK_BOUNDARY
;
5072 REGNO_POINTER_ALIGN (VIRTUAL_STACK_DYNAMIC_REGNUM
) = STACK_BOUNDARY
;
5073 REGNO_POINTER_ALIGN (VIRTUAL_OUTGOING_ARGS_REGNUM
) = STACK_BOUNDARY
;
5074 REGNO_POINTER_ALIGN (VIRTUAL_CFA_REGNUM
) = BITS_PER_WORD
;
5077 #ifdef INIT_EXPANDERS
5082 /* Generate a vector constant for mode MODE and constant value CONSTANT. */
5085 gen_const_vector (enum machine_mode mode
, int constant
)
5090 enum machine_mode inner
;
5092 units
= GET_MODE_NUNITS (mode
);
5093 inner
= GET_MODE_INNER (mode
);
5095 gcc_assert (!DECIMAL_FLOAT_MODE_P (inner
));
5097 v
= rtvec_alloc (units
);
5099 /* We need to call this function after we set the scalar const_tiny_rtx
5101 gcc_assert (const_tiny_rtx
[constant
][(int) inner
]);
5103 for (i
= 0; i
< units
; ++i
)
5104 RTVEC_ELT (v
, i
) = const_tiny_rtx
[constant
][(int) inner
];
5106 tem
= gen_rtx_raw_CONST_VECTOR (mode
, v
);
5110 /* Generate a vector like gen_rtx_raw_CONST_VEC, but use the zero vector when
5111 all elements are zero, and the one vector when all elements are one. */
5113 gen_rtx_CONST_VECTOR (enum machine_mode mode
, rtvec v
)
5115 enum machine_mode inner
= GET_MODE_INNER (mode
);
5116 int nunits
= GET_MODE_NUNITS (mode
);
5120 /* Check to see if all of the elements have the same value. */
5121 x
= RTVEC_ELT (v
, nunits
- 1);
5122 for (i
= nunits
- 2; i
>= 0; i
--)
5123 if (RTVEC_ELT (v
, i
) != x
)
5126 /* If the values are all the same, check to see if we can use one of the
5127 standard constant vectors. */
5130 if (x
== CONST0_RTX (inner
))
5131 return CONST0_RTX (mode
);
5132 else if (x
== CONST1_RTX (inner
))
5133 return CONST1_RTX (mode
);
5136 return gen_rtx_raw_CONST_VECTOR (mode
, v
);
5139 /* Initialise global register information required by all functions. */
5142 init_emit_regs (void)
5146 /* Reset register attributes */
5147 htab_empty (reg_attrs_htab
);
5149 /* We need reg_raw_mode, so initialize the modes now. */
5150 init_reg_modes_target ();
5152 /* Assign register numbers to the globally defined register rtx. */
5153 pc_rtx
= gen_rtx_PC (VOIDmode
);
5154 cc0_rtx
= gen_rtx_CC0 (VOIDmode
);
5155 stack_pointer_rtx
= gen_raw_REG (Pmode
, STACK_POINTER_REGNUM
);
5156 frame_pointer_rtx
= gen_raw_REG (Pmode
, FRAME_POINTER_REGNUM
);
5157 hard_frame_pointer_rtx
= gen_raw_REG (Pmode
, HARD_FRAME_POINTER_REGNUM
);
5158 arg_pointer_rtx
= gen_raw_REG (Pmode
, ARG_POINTER_REGNUM
);
5159 virtual_incoming_args_rtx
=
5160 gen_raw_REG (Pmode
, VIRTUAL_INCOMING_ARGS_REGNUM
);
5161 virtual_stack_vars_rtx
=
5162 gen_raw_REG (Pmode
, VIRTUAL_STACK_VARS_REGNUM
);
5163 virtual_stack_dynamic_rtx
=
5164 gen_raw_REG (Pmode
, VIRTUAL_STACK_DYNAMIC_REGNUM
);
5165 virtual_outgoing_args_rtx
=
5166 gen_raw_REG (Pmode
, VIRTUAL_OUTGOING_ARGS_REGNUM
);
5167 virtual_cfa_rtx
= gen_raw_REG (Pmode
, VIRTUAL_CFA_REGNUM
);
5169 /* Initialize RTL for commonly used hard registers. These are
5170 copied into regno_reg_rtx as we begin to compile each function. */
5171 for (i
= 0; i
< FIRST_PSEUDO_REGISTER
; i
++)
5172 static_regno_reg_rtx
[i
] = gen_raw_REG (reg_raw_mode
[i
], i
);
5174 #ifdef RETURN_ADDRESS_POINTER_REGNUM
5175 return_address_pointer_rtx
5176 = gen_raw_REG (Pmode
, RETURN_ADDRESS_POINTER_REGNUM
);
5179 #ifdef STATIC_CHAIN_REGNUM
5180 static_chain_rtx
= gen_rtx_REG (Pmode
, STATIC_CHAIN_REGNUM
);
5182 #ifdef STATIC_CHAIN_INCOMING_REGNUM
5183 if (STATIC_CHAIN_INCOMING_REGNUM
!= STATIC_CHAIN_REGNUM
)
5184 static_chain_incoming_rtx
5185 = gen_rtx_REG (Pmode
, STATIC_CHAIN_INCOMING_REGNUM
);
5188 static_chain_incoming_rtx
= static_chain_rtx
;
5192 static_chain_rtx
= STATIC_CHAIN
;
5194 #ifdef STATIC_CHAIN_INCOMING
5195 static_chain_incoming_rtx
= STATIC_CHAIN_INCOMING
;
5197 static_chain_incoming_rtx
= static_chain_rtx
;
5201 if ((unsigned) PIC_OFFSET_TABLE_REGNUM
!= INVALID_REGNUM
)
5202 pic_offset_table_rtx
= gen_raw_REG (Pmode
, PIC_OFFSET_TABLE_REGNUM
);
5204 pic_offset_table_rtx
= NULL_RTX
;
5207 /* Create some permanent unique rtl objects shared between all functions.
5208 LINE_NUMBERS is nonzero if line numbers are to be generated. */
5211 init_emit_once (int line_numbers
)
5214 enum machine_mode mode
;
5215 enum machine_mode double_mode
;
5217 /* Initialize the CONST_INT, CONST_DOUBLE, CONST_FIXED, and memory attribute
5219 const_int_htab
= htab_create_ggc (37, const_int_htab_hash
,
5220 const_int_htab_eq
, NULL
);
5222 const_double_htab
= htab_create_ggc (37, const_double_htab_hash
,
5223 const_double_htab_eq
, NULL
);
5225 const_fixed_htab
= htab_create_ggc (37, const_fixed_htab_hash
,
5226 const_fixed_htab_eq
, NULL
);
5228 mem_attrs_htab
= htab_create_ggc (37, mem_attrs_htab_hash
,
5229 mem_attrs_htab_eq
, NULL
);
5230 reg_attrs_htab
= htab_create_ggc (37, reg_attrs_htab_hash
,
5231 reg_attrs_htab_eq
, NULL
);
5233 no_line_numbers
= ! line_numbers
;
5235 /* Compute the word and byte modes. */
5237 byte_mode
= VOIDmode
;
5238 word_mode
= VOIDmode
;
5239 double_mode
= VOIDmode
;
5241 for (mode
= GET_CLASS_NARROWEST_MODE (MODE_INT
);
5243 mode
= GET_MODE_WIDER_MODE (mode
))
5245 if (GET_MODE_BITSIZE (mode
) == BITS_PER_UNIT
5246 && byte_mode
== VOIDmode
)
5249 if (GET_MODE_BITSIZE (mode
) == BITS_PER_WORD
5250 && word_mode
== VOIDmode
)
5254 for (mode
= GET_CLASS_NARROWEST_MODE (MODE_FLOAT
);
5256 mode
= GET_MODE_WIDER_MODE (mode
))
5258 if (GET_MODE_BITSIZE (mode
) == DOUBLE_TYPE_SIZE
5259 && double_mode
== VOIDmode
)
5263 ptr_mode
= mode_for_size (POINTER_SIZE
, GET_MODE_CLASS (Pmode
), 0);
5265 #ifdef INIT_EXPANDERS
5266 /* This is to initialize {init|mark|free}_machine_status before the first
5267 call to push_function_context_to. This is needed by the Chill front
5268 end which calls push_function_context_to before the first call to
5269 init_function_start. */
5273 /* Create the unique rtx's for certain rtx codes and operand values. */
5275 /* Don't use gen_rtx_CONST_INT here since gen_rtx_CONST_INT in this case
5276 tries to use these variables. */
5277 for (i
= - MAX_SAVED_CONST_INT
; i
<= MAX_SAVED_CONST_INT
; i
++)
5278 const_int_rtx
[i
+ MAX_SAVED_CONST_INT
] =
5279 gen_rtx_raw_CONST_INT (VOIDmode
, (HOST_WIDE_INT
) i
);
5281 if (STORE_FLAG_VALUE
>= - MAX_SAVED_CONST_INT
5282 && STORE_FLAG_VALUE
<= MAX_SAVED_CONST_INT
)
5283 const_true_rtx
= const_int_rtx
[STORE_FLAG_VALUE
+ MAX_SAVED_CONST_INT
];
5285 const_true_rtx
= gen_rtx_CONST_INT (VOIDmode
, STORE_FLAG_VALUE
);
5287 REAL_VALUE_FROM_INT (dconst0
, 0, 0, double_mode
);
5288 REAL_VALUE_FROM_INT (dconst1
, 1, 0, double_mode
);
5289 REAL_VALUE_FROM_INT (dconst2
, 2, 0, double_mode
);
5294 dconsthalf
= dconst1
;
5295 SET_REAL_EXP (&dconsthalf
, REAL_EXP (&dconsthalf
) - 1);
5297 for (i
= 0; i
< (int) ARRAY_SIZE (const_tiny_rtx
); i
++)
5299 const REAL_VALUE_TYPE
*const r
=
5300 (i
== 0 ? &dconst0
: i
== 1 ? &dconst1
: &dconst2
);
5302 for (mode
= GET_CLASS_NARROWEST_MODE (MODE_FLOAT
);
5304 mode
= GET_MODE_WIDER_MODE (mode
))
5305 const_tiny_rtx
[i
][(int) mode
] =
5306 CONST_DOUBLE_FROM_REAL_VALUE (*r
, mode
);
5308 for (mode
= GET_CLASS_NARROWEST_MODE (MODE_DECIMAL_FLOAT
);
5310 mode
= GET_MODE_WIDER_MODE (mode
))
5311 const_tiny_rtx
[i
][(int) mode
] =
5312 CONST_DOUBLE_FROM_REAL_VALUE (*r
, mode
);
5314 const_tiny_rtx
[i
][(int) VOIDmode
] = GEN_INT (i
);
5316 for (mode
= GET_CLASS_NARROWEST_MODE (MODE_INT
);
5318 mode
= GET_MODE_WIDER_MODE (mode
))
5319 const_tiny_rtx
[i
][(int) mode
] = GEN_INT (i
);
5321 for (mode
= GET_CLASS_NARROWEST_MODE (MODE_PARTIAL_INT
);
5323 mode
= GET_MODE_WIDER_MODE (mode
))
5324 const_tiny_rtx
[i
][(int) mode
] = GEN_INT (i
);
5327 for (mode
= GET_CLASS_NARROWEST_MODE (MODE_COMPLEX_INT
);
5329 mode
= GET_MODE_WIDER_MODE (mode
))
5331 rtx inner
= const_tiny_rtx
[0][(int)GET_MODE_INNER (mode
)];
5332 const_tiny_rtx
[0][(int) mode
] = gen_rtx_CONCAT (mode
, inner
, inner
);
5335 for (mode
= GET_CLASS_NARROWEST_MODE (MODE_COMPLEX_FLOAT
);
5337 mode
= GET_MODE_WIDER_MODE (mode
))
5339 rtx inner
= const_tiny_rtx
[0][(int)GET_MODE_INNER (mode
)];
5340 const_tiny_rtx
[0][(int) mode
] = gen_rtx_CONCAT (mode
, inner
, inner
);
5343 for (mode
= GET_CLASS_NARROWEST_MODE (MODE_VECTOR_INT
);
5345 mode
= GET_MODE_WIDER_MODE (mode
))
5347 const_tiny_rtx
[0][(int) mode
] = gen_const_vector (mode
, 0);
5348 const_tiny_rtx
[1][(int) mode
] = gen_const_vector (mode
, 1);
5351 for (mode
= GET_CLASS_NARROWEST_MODE (MODE_VECTOR_FLOAT
);
5353 mode
= GET_MODE_WIDER_MODE (mode
))
5355 const_tiny_rtx
[0][(int) mode
] = gen_const_vector (mode
, 0);
5356 const_tiny_rtx
[1][(int) mode
] = gen_const_vector (mode
, 1);
5359 for (mode
= GET_CLASS_NARROWEST_MODE (MODE_FRACT
);
5361 mode
= GET_MODE_WIDER_MODE (mode
))
5363 FCONST0(mode
).data
.high
= 0;
5364 FCONST0(mode
).data
.low
= 0;
5365 FCONST0(mode
).mode
= mode
;
5366 const_tiny_rtx
[0][(int) mode
] = CONST_FIXED_FROM_FIXED_VALUE (
5367 FCONST0 (mode
), mode
);
5370 for (mode
= GET_CLASS_NARROWEST_MODE (MODE_UFRACT
);
5372 mode
= GET_MODE_WIDER_MODE (mode
))
5374 FCONST0(mode
).data
.high
= 0;
5375 FCONST0(mode
).data
.low
= 0;
5376 FCONST0(mode
).mode
= mode
;
5377 const_tiny_rtx
[0][(int) mode
] = CONST_FIXED_FROM_FIXED_VALUE (
5378 FCONST0 (mode
), mode
);
5381 for (mode
= GET_CLASS_NARROWEST_MODE (MODE_ACCUM
);
5383 mode
= GET_MODE_WIDER_MODE (mode
))
5385 FCONST0(mode
).data
.high
= 0;
5386 FCONST0(mode
).data
.low
= 0;
5387 FCONST0(mode
).mode
= mode
;
5388 const_tiny_rtx
[0][(int) mode
] = CONST_FIXED_FROM_FIXED_VALUE (
5389 FCONST0 (mode
), mode
);
5391 /* We store the value 1. */
5392 FCONST1(mode
).data
.high
= 0;
5393 FCONST1(mode
).data
.low
= 0;
5394 FCONST1(mode
).mode
= mode
;
5395 lshift_double (1, 0, GET_MODE_FBIT (mode
),
5396 2 * HOST_BITS_PER_WIDE_INT
,
5397 &FCONST1(mode
).data
.low
,
5398 &FCONST1(mode
).data
.high
,
5399 SIGNED_FIXED_POINT_MODE_P (mode
));
5400 const_tiny_rtx
[1][(int) mode
] = CONST_FIXED_FROM_FIXED_VALUE (
5401 FCONST1 (mode
), mode
);
5404 for (mode
= GET_CLASS_NARROWEST_MODE (MODE_UACCUM
);
5406 mode
= GET_MODE_WIDER_MODE (mode
))
5408 FCONST0(mode
).data
.high
= 0;
5409 FCONST0(mode
).data
.low
= 0;
5410 FCONST0(mode
).mode
= mode
;
5411 const_tiny_rtx
[0][(int) mode
] = CONST_FIXED_FROM_FIXED_VALUE (
5412 FCONST0 (mode
), mode
);
5414 /* We store the value 1. */
5415 FCONST1(mode
).data
.high
= 0;
5416 FCONST1(mode
).data
.low
= 0;
5417 FCONST1(mode
).mode
= mode
;
5418 lshift_double (1, 0, GET_MODE_FBIT (mode
),
5419 2 * HOST_BITS_PER_WIDE_INT
,
5420 &FCONST1(mode
).data
.low
,
5421 &FCONST1(mode
).data
.high
,
5422 SIGNED_FIXED_POINT_MODE_P (mode
));
5423 const_tiny_rtx
[1][(int) mode
] = CONST_FIXED_FROM_FIXED_VALUE (
5424 FCONST1 (mode
), mode
);
5427 for (mode
= GET_CLASS_NARROWEST_MODE (MODE_VECTOR_FRACT
);
5429 mode
= GET_MODE_WIDER_MODE (mode
))
5431 const_tiny_rtx
[0][(int) mode
] = gen_const_vector (mode
, 0);
5434 for (mode
= GET_CLASS_NARROWEST_MODE (MODE_VECTOR_UFRACT
);
5436 mode
= GET_MODE_WIDER_MODE (mode
))
5438 const_tiny_rtx
[0][(int) mode
] = gen_const_vector (mode
, 0);
5441 for (mode
= GET_CLASS_NARROWEST_MODE (MODE_VECTOR_ACCUM
);
5443 mode
= GET_MODE_WIDER_MODE (mode
))
5445 const_tiny_rtx
[0][(int) mode
] = gen_const_vector (mode
, 0);
5446 const_tiny_rtx
[1][(int) mode
] = gen_const_vector (mode
, 1);
5449 for (mode
= GET_CLASS_NARROWEST_MODE (MODE_VECTOR_UACCUM
);
5451 mode
= GET_MODE_WIDER_MODE (mode
))
5453 const_tiny_rtx
[0][(int) mode
] = gen_const_vector (mode
, 0);
5454 const_tiny_rtx
[1][(int) mode
] = gen_const_vector (mode
, 1);
5457 for (i
= (int) CCmode
; i
< (int) MAX_MACHINE_MODE
; ++i
)
5458 if (GET_MODE_CLASS ((enum machine_mode
) i
) == MODE_CC
)
5459 const_tiny_rtx
[0][i
] = const0_rtx
;
5461 const_tiny_rtx
[0][(int) BImode
] = const0_rtx
;
5462 if (STORE_FLAG_VALUE
== 1)
5463 const_tiny_rtx
[1][(int) BImode
] = const1_rtx
;
5466 /* Produce exact duplicate of insn INSN after AFTER.
5467 Care updating of libcall regions if present. */
5470 emit_copy_of_insn_after (rtx insn
, rtx after
)
5474 switch (GET_CODE (insn
))
5477 new_rtx
= emit_insn_after (copy_insn (PATTERN (insn
)), after
);
5481 new_rtx
= emit_jump_insn_after (copy_insn (PATTERN (insn
)), after
);
5485 new_rtx
= emit_call_insn_after (copy_insn (PATTERN (insn
)), after
);
5486 if (CALL_INSN_FUNCTION_USAGE (insn
))
5487 CALL_INSN_FUNCTION_USAGE (new_rtx
)
5488 = copy_insn (CALL_INSN_FUNCTION_USAGE (insn
));
5489 SIBLING_CALL_P (new_rtx
) = SIBLING_CALL_P (insn
);
5490 RTL_CONST_CALL_P (new_rtx
) = RTL_CONST_CALL_P (insn
);
5491 RTL_PURE_CALL_P (new_rtx
) = RTL_PURE_CALL_P (insn
);
5492 RTL_LOOPING_CONST_OR_PURE_CALL_P (new_rtx
)
5493 = RTL_LOOPING_CONST_OR_PURE_CALL_P (insn
);
5500 /* Update LABEL_NUSES. */
5501 mark_jump_label (PATTERN (new_rtx
), new_rtx
, 0);
5503 INSN_LOCATOR (new_rtx
) = INSN_LOCATOR (insn
);
5505 /* If the old insn is frame related, then so is the new one. This is
5506 primarily needed for IA-64 unwind info which marks epilogue insns,
5507 which may be duplicated by the basic block reordering code. */
5508 RTX_FRAME_RELATED_P (new_rtx
) = RTX_FRAME_RELATED_P (insn
);
5510 /* Copy all REG_NOTES except REG_LABEL_OPERAND since mark_jump_label
5511 will make them. REG_LABEL_TARGETs are created there too, but are
5512 supposed to be sticky, so we copy them. */
5513 for (link
= REG_NOTES (insn
); link
; link
= XEXP (link
, 1))
5514 if (REG_NOTE_KIND (link
) != REG_LABEL_OPERAND
)
5516 if (GET_CODE (link
) == EXPR_LIST
)
5517 add_reg_note (new_rtx
, REG_NOTE_KIND (link
),
5518 copy_insn_1 (XEXP (link
, 0)));
5520 add_reg_note (new_rtx
, REG_NOTE_KIND (link
), XEXP (link
, 0));
5523 INSN_CODE (new_rtx
) = INSN_CODE (insn
);
5527 static GTY((deletable
)) rtx hard_reg_clobbers
[NUM_MACHINE_MODES
][FIRST_PSEUDO_REGISTER
];
5529 gen_hard_reg_clobber (enum machine_mode mode
, unsigned int regno
)
5531 if (hard_reg_clobbers
[mode
][regno
])
5532 return hard_reg_clobbers
[mode
][regno
];
5534 return (hard_reg_clobbers
[mode
][regno
] =
5535 gen_rtx_CLOBBER (VOIDmode
, gen_rtx_REG (mode
, regno
)));
5538 #include "gt-emit-rtl.h"