Updated for libbid move.
[official-gcc.git] / gcc / tree-vrp.c
blob06931f1f74d8cec0f7a42c9629f6aae97e89198b
1 /* Support routines for Value Range Propagation (VRP).
2 Copyright (C) 2005, 2006, 2007 Free Software Foundation, Inc.
3 Contributed by Diego Novillo <dnovillo@redhat.com>.
5 This file is part of GCC.
7 GCC is free software; you can redistribute it and/or modify
8 it under the terms of the GNU General Public License as published by
9 the Free Software Foundation; either version 2, or (at your option)
10 any later version.
12 GCC is distributed in the hope that it will be useful,
13 but WITHOUT ANY WARRANTY; without even the implied warranty of
14 MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
15 GNU General Public License for more details.
17 You should have received a copy of the GNU General Public License
18 along with GCC; see the file COPYING. If not, write to
19 the Free Software Foundation, 51 Franklin Street, Fifth Floor,
20 Boston, MA 02110-1301, USA. */
22 #include "config.h"
23 #include "system.h"
24 #include "coretypes.h"
25 #include "tm.h"
26 #include "ggc.h"
27 #include "flags.h"
28 #include "tree.h"
29 #include "basic-block.h"
30 #include "tree-flow.h"
31 #include "tree-pass.h"
32 #include "tree-dump.h"
33 #include "timevar.h"
34 #include "diagnostic.h"
35 #include "toplev.h"
36 #include "intl.h"
37 #include "cfgloop.h"
38 #include "tree-scalar-evolution.h"
39 #include "tree-ssa-propagate.h"
40 #include "tree-chrec.h"
42 /* Set of SSA names found during the dominator traversal of a
43 sub-graph in find_assert_locations. */
44 static sbitmap found_in_subgraph;
46 /* Local functions. */
47 static int compare_values (tree val1, tree val2);
48 static int compare_values_warnv (tree val1, tree val2, bool *);
49 static void vrp_meet (value_range_t *, value_range_t *);
50 static tree vrp_evaluate_conditional_warnv (tree, bool, bool *);
52 /* Location information for ASSERT_EXPRs. Each instance of this
53 structure describes an ASSERT_EXPR for an SSA name. Since a single
54 SSA name may have more than one assertion associated with it, these
55 locations are kept in a linked list attached to the corresponding
56 SSA name. */
57 struct assert_locus_d
59 /* Basic block where the assertion would be inserted. */
60 basic_block bb;
62 /* Some assertions need to be inserted on an edge (e.g., assertions
63 generated by COND_EXPRs). In those cases, BB will be NULL. */
64 edge e;
66 /* Pointer to the statement that generated this assertion. */
67 block_stmt_iterator si;
69 /* Predicate code for the ASSERT_EXPR. Must be COMPARISON_CLASS_P. */
70 enum tree_code comp_code;
72 /* Value being compared against. */
73 tree val;
75 /* Next node in the linked list. */
76 struct assert_locus_d *next;
79 typedef struct assert_locus_d *assert_locus_t;
81 /* If bit I is present, it means that SSA name N_i has a list of
82 assertions that should be inserted in the IL. */
83 static bitmap need_assert_for;
85 /* Array of locations lists where to insert assertions. ASSERTS_FOR[I]
86 holds a list of ASSERT_LOCUS_T nodes that describe where
87 ASSERT_EXPRs for SSA name N_I should be inserted. */
88 static assert_locus_t *asserts_for;
90 /* Set of blocks visited in find_assert_locations. Used to avoid
91 visiting the same block more than once. */
92 static sbitmap blocks_visited;
94 /* Value range array. After propagation, VR_VALUE[I] holds the range
95 of values that SSA name N_I may take. */
96 static value_range_t **vr_value;
98 /* For a PHI node which sets SSA name N_I, VR_COUNTS[I] holds the
99 number of executable edges we saw the last time we visited the
100 node. */
101 static int *vr_phi_edge_counts;
104 /* Return whether TYPE should use an overflow infinity distinct from
105 TYPE_{MIN,MAX}_VALUE. We use an overflow infinity value to
106 represent a signed overflow during VRP computations. An infinity
107 is distinct from a half-range, which will go from some number to
108 TYPE_{MIN,MAX}_VALUE. */
110 static inline bool
111 needs_overflow_infinity (tree type)
113 return INTEGRAL_TYPE_P (type) && !TYPE_OVERFLOW_WRAPS (type);
116 /* Return whether TYPE can support our overflow infinity
117 representation: we use the TREE_OVERFLOW flag, which only exists
118 for constants. If TYPE doesn't support this, we don't optimize
119 cases which would require signed overflow--we drop them to
120 VARYING. */
122 static inline bool
123 supports_overflow_infinity (tree type)
125 #ifdef ENABLE_CHECKING
126 gcc_assert (needs_overflow_infinity (type));
127 #endif
128 return (TYPE_MIN_VALUE (type) != NULL_TREE
129 && CONSTANT_CLASS_P (TYPE_MIN_VALUE (type))
130 && TYPE_MAX_VALUE (type) != NULL_TREE
131 && CONSTANT_CLASS_P (TYPE_MAX_VALUE (type)));
134 /* VAL is the maximum or minimum value of a type. Return a
135 corresponding overflow infinity. */
137 static inline tree
138 make_overflow_infinity (tree val)
140 #ifdef ENABLE_CHECKING
141 gcc_assert (val != NULL_TREE && CONSTANT_CLASS_P (val));
142 #endif
143 val = copy_node (val);
144 TREE_OVERFLOW (val) = 1;
145 return val;
148 /* Return a negative overflow infinity for TYPE. */
150 static inline tree
151 negative_overflow_infinity (tree type)
153 #ifdef ENABLE_CHECKING
154 gcc_assert (supports_overflow_infinity (type));
155 #endif
156 return make_overflow_infinity (TYPE_MIN_VALUE (type));
159 /* Return a positive overflow infinity for TYPE. */
161 static inline tree
162 positive_overflow_infinity (tree type)
164 #ifdef ENABLE_CHECKING
165 gcc_assert (supports_overflow_infinity (type));
166 #endif
167 return make_overflow_infinity (TYPE_MAX_VALUE (type));
170 /* Return whether VAL is a negative overflow infinity. */
172 static inline bool
173 is_negative_overflow_infinity (tree val)
175 return (needs_overflow_infinity (TREE_TYPE (val))
176 && CONSTANT_CLASS_P (val)
177 && TREE_OVERFLOW (val)
178 && operand_equal_p (val, TYPE_MIN_VALUE (TREE_TYPE (val)), 0));
181 /* Return whether VAL is a positive overflow infinity. */
183 static inline bool
184 is_positive_overflow_infinity (tree val)
186 return (needs_overflow_infinity (TREE_TYPE (val))
187 && CONSTANT_CLASS_P (val)
188 && TREE_OVERFLOW (val)
189 && operand_equal_p (val, TYPE_MAX_VALUE (TREE_TYPE (val)), 0));
192 /* Return whether VAL is a positive or negative overflow infinity. */
194 static inline bool
195 is_overflow_infinity (tree val)
197 return (needs_overflow_infinity (TREE_TYPE (val))
198 && CONSTANT_CLASS_P (val)
199 && TREE_OVERFLOW (val)
200 && (operand_equal_p (val, TYPE_MAX_VALUE (TREE_TYPE (val)), 0)
201 || operand_equal_p (val, TYPE_MIN_VALUE (TREE_TYPE (val)), 0)));
204 /* If VAL is now an overflow infinity, return VAL. Otherwise, return
205 the same value with TREE_OVERFLOW clear. This can be used to avoid
206 confusing a regular value with an overflow value. */
208 static inline tree
209 avoid_overflow_infinity (tree val)
211 if (!is_overflow_infinity (val))
212 return val;
214 if (operand_equal_p (val, TYPE_MAX_VALUE (TREE_TYPE (val)), 0))
215 return TYPE_MAX_VALUE (TREE_TYPE (val));
216 else
218 #ifdef ENABLE_CHECKING
219 gcc_assert (operand_equal_p (val, TYPE_MIN_VALUE (TREE_TYPE (val)), 0));
220 #endif
221 return TYPE_MIN_VALUE (TREE_TYPE (val));
226 /* Return whether VAL is equal to the maximum value of its type. This
227 will be true for a positive overflow infinity. We can't do a
228 simple equality comparison with TYPE_MAX_VALUE because C typedefs
229 and Ada subtypes can produce types whose TYPE_MAX_VALUE is not ==
230 to the integer constant with the same value in the type. */
232 static inline bool
233 vrp_val_is_max (tree val)
235 tree type_max = TYPE_MAX_VALUE (TREE_TYPE (val));
237 return (val == type_max
238 || (type_max != NULL_TREE
239 && operand_equal_p (val, type_max, 0)));
242 /* Return whether VAL is equal to the minimum value of its type. This
243 will be true for a negative overflow infinity. */
245 static inline bool
246 vrp_val_is_min (tree val)
248 tree type_min = TYPE_MIN_VALUE (TREE_TYPE (val));
250 return (val == type_min
251 || (type_min != NULL_TREE
252 && operand_equal_p (val, type_min, 0)));
256 /* Return true if ARG is marked with the nonnull attribute in the
257 current function signature. */
259 static bool
260 nonnull_arg_p (tree arg)
262 tree t, attrs, fntype;
263 unsigned HOST_WIDE_INT arg_num;
265 gcc_assert (TREE_CODE (arg) == PARM_DECL && POINTER_TYPE_P (TREE_TYPE (arg)));
267 /* The static chain decl is always non null. */
268 if (arg == cfun->static_chain_decl)
269 return true;
271 fntype = TREE_TYPE (current_function_decl);
272 attrs = lookup_attribute ("nonnull", TYPE_ATTRIBUTES (fntype));
274 /* If "nonnull" wasn't specified, we know nothing about the argument. */
275 if (attrs == NULL_TREE)
276 return false;
278 /* If "nonnull" applies to all the arguments, then ARG is non-null. */
279 if (TREE_VALUE (attrs) == NULL_TREE)
280 return true;
282 /* Get the position number for ARG in the function signature. */
283 for (arg_num = 1, t = DECL_ARGUMENTS (current_function_decl);
285 t = TREE_CHAIN (t), arg_num++)
287 if (t == arg)
288 break;
291 gcc_assert (t == arg);
293 /* Now see if ARG_NUM is mentioned in the nonnull list. */
294 for (t = TREE_VALUE (attrs); t; t = TREE_CHAIN (t))
296 if (compare_tree_int (TREE_VALUE (t), arg_num) == 0)
297 return true;
300 return false;
304 /* Set value range VR to {T, MIN, MAX, EQUIV}. */
306 static void
307 set_value_range (value_range_t *vr, enum value_range_type t, tree min,
308 tree max, bitmap equiv)
310 #if defined ENABLE_CHECKING
311 /* Check the validity of the range. */
312 if (t == VR_RANGE || t == VR_ANTI_RANGE)
314 int cmp;
316 gcc_assert (min && max);
318 if (INTEGRAL_TYPE_P (TREE_TYPE (min)) && t == VR_ANTI_RANGE)
319 gcc_assert (!vrp_val_is_min (min) || !vrp_val_is_max (max));
321 cmp = compare_values (min, max);
322 gcc_assert (cmp == 0 || cmp == -1 || cmp == -2);
324 if (needs_overflow_infinity (TREE_TYPE (min)))
325 gcc_assert (!is_overflow_infinity (min)
326 || !is_overflow_infinity (max));
329 if (t == VR_UNDEFINED || t == VR_VARYING)
330 gcc_assert (min == NULL_TREE && max == NULL_TREE);
332 if (t == VR_UNDEFINED || t == VR_VARYING)
333 gcc_assert (equiv == NULL || bitmap_empty_p (equiv));
334 #endif
336 vr->type = t;
337 vr->min = min;
338 vr->max = max;
340 /* Since updating the equivalence set involves deep copying the
341 bitmaps, only do it if absolutely necessary. */
342 if (vr->equiv == NULL
343 && equiv != NULL)
344 vr->equiv = BITMAP_ALLOC (NULL);
346 if (equiv != vr->equiv)
348 if (equiv && !bitmap_empty_p (equiv))
349 bitmap_copy (vr->equiv, equiv);
350 else
351 bitmap_clear (vr->equiv);
356 /* Copy value range FROM into value range TO. */
358 static inline void
359 copy_value_range (value_range_t *to, value_range_t *from)
361 set_value_range (to, from->type, from->min, from->max, from->equiv);
365 /* Set value range VR to VR_VARYING. */
367 static inline void
368 set_value_range_to_varying (value_range_t *vr)
370 vr->type = VR_VARYING;
371 vr->min = vr->max = NULL_TREE;
372 if (vr->equiv)
373 bitmap_clear (vr->equiv);
376 /* Set value range VR to a single value. This function is only called
377 with values we get from statements, and exists to clear the
378 TREE_OVERFLOW flag so that we don't think we have an overflow
379 infinity when we shouldn't. */
381 static inline void
382 set_value_range_to_value (value_range_t *vr, tree val, bitmap equiv)
384 gcc_assert (is_gimple_min_invariant (val));
385 val = avoid_overflow_infinity (val);
386 set_value_range (vr, VR_RANGE, val, val, equiv);
389 /* Set value range VR to a non-negative range of type TYPE.
390 OVERFLOW_INFINITY indicates whether to use an overflow infinity
391 rather than TYPE_MAX_VALUE; this should be true if we determine
392 that the range is nonnegative based on the assumption that signed
393 overflow does not occur. */
395 static inline void
396 set_value_range_to_nonnegative (value_range_t *vr, tree type,
397 bool overflow_infinity)
399 tree zero;
401 if (overflow_infinity && !supports_overflow_infinity (type))
403 set_value_range_to_varying (vr);
404 return;
407 zero = build_int_cst (type, 0);
408 set_value_range (vr, VR_RANGE, zero,
409 (overflow_infinity
410 ? positive_overflow_infinity (type)
411 : TYPE_MAX_VALUE (type)),
412 vr->equiv);
415 /* Set value range VR to a non-NULL range of type TYPE. */
417 static inline void
418 set_value_range_to_nonnull (value_range_t *vr, tree type)
420 tree zero = build_int_cst (type, 0);
421 set_value_range (vr, VR_ANTI_RANGE, zero, zero, vr->equiv);
425 /* Set value range VR to a NULL range of type TYPE. */
427 static inline void
428 set_value_range_to_null (value_range_t *vr, tree type)
430 set_value_range_to_value (vr, build_int_cst (type, 0), vr->equiv);
434 /* Set value range VR to a range of a truthvalue of type TYPE. */
436 static inline void
437 set_value_range_to_truthvalue (value_range_t *vr, tree type)
439 if (TYPE_PRECISION (type) == 1)
440 set_value_range_to_varying (vr);
441 else
442 set_value_range (vr, VR_RANGE,
443 build_int_cst (type, 0), build_int_cst (type, 1),
444 vr->equiv);
448 /* Set value range VR to VR_UNDEFINED. */
450 static inline void
451 set_value_range_to_undefined (value_range_t *vr)
453 vr->type = VR_UNDEFINED;
454 vr->min = vr->max = NULL_TREE;
455 if (vr->equiv)
456 bitmap_clear (vr->equiv);
460 /* Return value range information for VAR.
462 If we have no values ranges recorded (ie, VRP is not running), then
463 return NULL. Otherwise create an empty range if none existed for VAR. */
465 static value_range_t *
466 get_value_range (tree var)
468 value_range_t *vr;
469 tree sym;
470 unsigned ver = SSA_NAME_VERSION (var);
472 /* If we have no recorded ranges, then return NULL. */
473 if (! vr_value)
474 return NULL;
476 vr = vr_value[ver];
477 if (vr)
478 return vr;
480 /* Create a default value range. */
481 vr_value[ver] = vr = XCNEW (value_range_t);
483 /* Defer allocating the equivalence set. */
484 vr->equiv = NULL;
486 /* If VAR is a default definition, the variable can take any value
487 in VAR's type. */
488 sym = SSA_NAME_VAR (var);
489 if (SSA_NAME_IS_DEFAULT_DEF (var))
491 /* Try to use the "nonnull" attribute to create ~[0, 0]
492 anti-ranges for pointers. Note that this is only valid with
493 default definitions of PARM_DECLs. */
494 if (TREE_CODE (sym) == PARM_DECL
495 && POINTER_TYPE_P (TREE_TYPE (sym))
496 && nonnull_arg_p (sym))
497 set_value_range_to_nonnull (vr, TREE_TYPE (sym));
498 else
499 set_value_range_to_varying (vr);
502 return vr;
505 /* Return true, if VAL1 and VAL2 are equal values for VRP purposes. */
507 static inline bool
508 vrp_operand_equal_p (tree val1, tree val2)
510 if (val1 == val2)
511 return true;
512 if (!val1 || !val2 || !operand_equal_p (val1, val2, 0))
513 return false;
514 if (is_overflow_infinity (val1))
515 return is_overflow_infinity (val2);
516 return true;
519 /* Return true, if the bitmaps B1 and B2 are equal. */
521 static inline bool
522 vrp_bitmap_equal_p (bitmap b1, bitmap b2)
524 return (b1 == b2
525 || (b1 && b2
526 && bitmap_equal_p (b1, b2)));
529 /* Update the value range and equivalence set for variable VAR to
530 NEW_VR. Return true if NEW_VR is different from VAR's previous
531 value.
533 NOTE: This function assumes that NEW_VR is a temporary value range
534 object created for the sole purpose of updating VAR's range. The
535 storage used by the equivalence set from NEW_VR will be freed by
536 this function. Do not call update_value_range when NEW_VR
537 is the range object associated with another SSA name. */
539 static inline bool
540 update_value_range (tree var, value_range_t *new_vr)
542 value_range_t *old_vr;
543 bool is_new;
545 /* Update the value range, if necessary. */
546 old_vr = get_value_range (var);
547 is_new = old_vr->type != new_vr->type
548 || !vrp_operand_equal_p (old_vr->min, new_vr->min)
549 || !vrp_operand_equal_p (old_vr->max, new_vr->max)
550 || !vrp_bitmap_equal_p (old_vr->equiv, new_vr->equiv);
552 if (is_new)
553 set_value_range (old_vr, new_vr->type, new_vr->min, new_vr->max,
554 new_vr->equiv);
556 BITMAP_FREE (new_vr->equiv);
558 return is_new;
562 /* Add VAR and VAR's equivalence set to EQUIV. This is the central
563 point where equivalence processing can be turned on/off. */
565 static void
566 add_equivalence (bitmap *equiv, tree var)
568 unsigned ver = SSA_NAME_VERSION (var);
569 value_range_t *vr = vr_value[ver];
571 if (*equiv == NULL)
572 *equiv = BITMAP_ALLOC (NULL);
573 bitmap_set_bit (*equiv, ver);
574 if (vr && vr->equiv)
575 bitmap_ior_into (*equiv, vr->equiv);
579 /* Return true if VR is ~[0, 0]. */
581 static inline bool
582 range_is_nonnull (value_range_t *vr)
584 return vr->type == VR_ANTI_RANGE
585 && integer_zerop (vr->min)
586 && integer_zerop (vr->max);
590 /* Return true if VR is [0, 0]. */
592 static inline bool
593 range_is_null (value_range_t *vr)
595 return vr->type == VR_RANGE
596 && integer_zerop (vr->min)
597 && integer_zerop (vr->max);
601 /* Return true if value range VR involves at least one symbol. */
603 static inline bool
604 symbolic_range_p (value_range_t *vr)
606 return (!is_gimple_min_invariant (vr->min)
607 || !is_gimple_min_invariant (vr->max));
610 /* Return true if value range VR uses an overflow infinity. */
612 static inline bool
613 overflow_infinity_range_p (value_range_t *vr)
615 return (vr->type == VR_RANGE
616 && (is_overflow_infinity (vr->min)
617 || is_overflow_infinity (vr->max)));
620 /* Return false if we can not make a valid comparison based on VR;
621 this will be the case if it uses an overflow infinity and overflow
622 is not undefined (i.e., -fno-strict-overflow is in effect).
623 Otherwise return true, and set *STRICT_OVERFLOW_P to true if VR
624 uses an overflow infinity. */
626 static bool
627 usable_range_p (value_range_t *vr, bool *strict_overflow_p)
629 gcc_assert (vr->type == VR_RANGE);
630 if (is_overflow_infinity (vr->min))
632 *strict_overflow_p = true;
633 if (!TYPE_OVERFLOW_UNDEFINED (TREE_TYPE (vr->min)))
634 return false;
636 if (is_overflow_infinity (vr->max))
638 *strict_overflow_p = true;
639 if (!TYPE_OVERFLOW_UNDEFINED (TREE_TYPE (vr->max)))
640 return false;
642 return true;
646 /* Like tree_expr_nonnegative_warnv_p, but this function uses value
647 ranges obtained so far. */
649 static bool
650 vrp_expr_computes_nonnegative (tree expr, bool *strict_overflow_p)
652 return tree_expr_nonnegative_warnv_p (expr, strict_overflow_p);
655 /* Like tree_expr_nonzero_warnv_p, but this function uses value ranges
656 obtained so far. */
658 static bool
659 vrp_expr_computes_nonzero (tree expr, bool *strict_overflow_p)
661 if (tree_expr_nonzero_warnv_p (expr, strict_overflow_p))
662 return true;
664 /* If we have an expression of the form &X->a, then the expression
665 is nonnull if X is nonnull. */
666 if (TREE_CODE (expr) == ADDR_EXPR)
668 tree base = get_base_address (TREE_OPERAND (expr, 0));
670 if (base != NULL_TREE
671 && TREE_CODE (base) == INDIRECT_REF
672 && TREE_CODE (TREE_OPERAND (base, 0)) == SSA_NAME)
674 value_range_t *vr = get_value_range (TREE_OPERAND (base, 0));
675 if (range_is_nonnull (vr))
676 return true;
680 return false;
683 /* Returns true if EXPR is a valid value (as expected by compare_values) --
684 a gimple invariant, or SSA_NAME +- CST. */
686 static bool
687 valid_value_p (tree expr)
689 if (TREE_CODE (expr) == SSA_NAME)
690 return true;
692 if (TREE_CODE (expr) == PLUS_EXPR
693 || TREE_CODE (expr) == MINUS_EXPR)
694 return (TREE_CODE (TREE_OPERAND (expr, 0)) == SSA_NAME
695 && TREE_CODE (TREE_OPERAND (expr, 1)) == INTEGER_CST);
697 return is_gimple_min_invariant (expr);
700 /* Return
701 1 if VAL < VAL2
702 0 if !(VAL < VAL2)
703 -2 if those are incomparable. */
704 static inline int
705 operand_less_p (tree val, tree val2)
707 /* LT is folded faster than GE and others. Inline the common case. */
708 if (TREE_CODE (val) == INTEGER_CST && TREE_CODE (val2) == INTEGER_CST)
710 if (TYPE_UNSIGNED (TREE_TYPE (val)))
711 return INT_CST_LT_UNSIGNED (val, val2);
712 else
714 if (INT_CST_LT (val, val2))
715 return 1;
718 else
720 tree tcmp;
722 fold_defer_overflow_warnings ();
724 tcmp = fold_binary_to_constant (LT_EXPR, boolean_type_node, val, val2);
726 fold_undefer_and_ignore_overflow_warnings ();
728 if (!tcmp)
729 return -2;
731 if (!integer_zerop (tcmp))
732 return 1;
735 /* val >= val2, not considering overflow infinity. */
736 if (is_negative_overflow_infinity (val))
737 return is_negative_overflow_infinity (val2) ? 0 : 1;
738 else if (is_positive_overflow_infinity (val2))
739 return is_positive_overflow_infinity (val) ? 0 : 1;
741 return 0;
744 /* Compare two values VAL1 and VAL2. Return
746 -2 if VAL1 and VAL2 cannot be compared at compile-time,
747 -1 if VAL1 < VAL2,
748 0 if VAL1 == VAL2,
749 +1 if VAL1 > VAL2, and
750 +2 if VAL1 != VAL2
752 This is similar to tree_int_cst_compare but supports pointer values
753 and values that cannot be compared at compile time.
755 If STRICT_OVERFLOW_P is not NULL, then set *STRICT_OVERFLOW_P to
756 true if the return value is only valid if we assume that signed
757 overflow is undefined. */
759 static int
760 compare_values_warnv (tree val1, tree val2, bool *strict_overflow_p)
762 if (val1 == val2)
763 return 0;
765 /* Below we rely on the fact that VAL1 and VAL2 are both pointers or
766 both integers. */
767 gcc_assert (POINTER_TYPE_P (TREE_TYPE (val1))
768 == POINTER_TYPE_P (TREE_TYPE (val2)));
769 /* Convert the two values into the same type. This is needed because
770 sizetype causes sign extension even for unsigned types. */
771 val2 = fold_convert (TREE_TYPE (val1), val2);
772 STRIP_USELESS_TYPE_CONVERSION (val2);
774 if ((TREE_CODE (val1) == SSA_NAME
775 || TREE_CODE (val1) == PLUS_EXPR
776 || TREE_CODE (val1) == MINUS_EXPR)
777 && (TREE_CODE (val2) == SSA_NAME
778 || TREE_CODE (val2) == PLUS_EXPR
779 || TREE_CODE (val2) == MINUS_EXPR))
781 tree n1, c1, n2, c2;
782 enum tree_code code1, code2;
784 /* If VAL1 and VAL2 are of the form 'NAME [+-] CST' or 'NAME',
785 return -1 or +1 accordingly. If VAL1 and VAL2 don't use the
786 same name, return -2. */
787 if (TREE_CODE (val1) == SSA_NAME)
789 code1 = SSA_NAME;
790 n1 = val1;
791 c1 = NULL_TREE;
793 else
795 code1 = TREE_CODE (val1);
796 n1 = TREE_OPERAND (val1, 0);
797 c1 = TREE_OPERAND (val1, 1);
798 if (tree_int_cst_sgn (c1) == -1)
800 if (is_negative_overflow_infinity (c1))
801 return -2;
802 c1 = fold_unary_to_constant (NEGATE_EXPR, TREE_TYPE (c1), c1);
803 if (!c1)
804 return -2;
805 code1 = code1 == MINUS_EXPR ? PLUS_EXPR : MINUS_EXPR;
809 if (TREE_CODE (val2) == SSA_NAME)
811 code2 = SSA_NAME;
812 n2 = val2;
813 c2 = NULL_TREE;
815 else
817 code2 = TREE_CODE (val2);
818 n2 = TREE_OPERAND (val2, 0);
819 c2 = TREE_OPERAND (val2, 1);
820 if (tree_int_cst_sgn (c2) == -1)
822 if (is_negative_overflow_infinity (c2))
823 return -2;
824 c2 = fold_unary_to_constant (NEGATE_EXPR, TREE_TYPE (c2), c2);
825 if (!c2)
826 return -2;
827 code2 = code2 == MINUS_EXPR ? PLUS_EXPR : MINUS_EXPR;
831 /* Both values must use the same name. */
832 if (n1 != n2)
833 return -2;
835 if (code1 == SSA_NAME
836 && code2 == SSA_NAME)
837 /* NAME == NAME */
838 return 0;
840 /* If overflow is defined we cannot simplify more. */
841 if (!TYPE_OVERFLOW_UNDEFINED (TREE_TYPE (val1)))
842 return -2;
844 if (strict_overflow_p != NULL
845 && (code1 == SSA_NAME || !TREE_NO_WARNING (val1))
846 && (code2 == SSA_NAME || !TREE_NO_WARNING (val2)))
847 *strict_overflow_p = true;
849 if (code1 == SSA_NAME)
851 if (code2 == PLUS_EXPR)
852 /* NAME < NAME + CST */
853 return -1;
854 else if (code2 == MINUS_EXPR)
855 /* NAME > NAME - CST */
856 return 1;
858 else if (code1 == PLUS_EXPR)
860 if (code2 == SSA_NAME)
861 /* NAME + CST > NAME */
862 return 1;
863 else if (code2 == PLUS_EXPR)
864 /* NAME + CST1 > NAME + CST2, if CST1 > CST2 */
865 return compare_values_warnv (c1, c2, strict_overflow_p);
866 else if (code2 == MINUS_EXPR)
867 /* NAME + CST1 > NAME - CST2 */
868 return 1;
870 else if (code1 == MINUS_EXPR)
872 if (code2 == SSA_NAME)
873 /* NAME - CST < NAME */
874 return -1;
875 else if (code2 == PLUS_EXPR)
876 /* NAME - CST1 < NAME + CST2 */
877 return -1;
878 else if (code2 == MINUS_EXPR)
879 /* NAME - CST1 > NAME - CST2, if CST1 < CST2. Notice that
880 C1 and C2 are swapped in the call to compare_values. */
881 return compare_values_warnv (c2, c1, strict_overflow_p);
884 gcc_unreachable ();
887 /* We cannot compare non-constants. */
888 if (!is_gimple_min_invariant (val1) || !is_gimple_min_invariant (val2))
889 return -2;
891 if (!POINTER_TYPE_P (TREE_TYPE (val1)))
893 /* We cannot compare overflowed values, except for overflow
894 infinities. */
895 if (TREE_OVERFLOW (val1) || TREE_OVERFLOW (val2))
897 if (strict_overflow_p != NULL)
898 *strict_overflow_p = true;
899 if (is_negative_overflow_infinity (val1))
900 return is_negative_overflow_infinity (val2) ? 0 : -1;
901 else if (is_negative_overflow_infinity (val2))
902 return 1;
903 else if (is_positive_overflow_infinity (val1))
904 return is_positive_overflow_infinity (val2) ? 0 : 1;
905 else if (is_positive_overflow_infinity (val2))
906 return -1;
907 return -2;
910 return tree_int_cst_compare (val1, val2);
912 else
914 tree t;
916 /* First see if VAL1 and VAL2 are not the same. */
917 if (val1 == val2 || operand_equal_p (val1, val2, 0))
918 return 0;
920 /* If VAL1 is a lower address than VAL2, return -1. */
921 if (operand_less_p (val1, val2) == 1)
922 return -1;
924 /* If VAL1 is a higher address than VAL2, return +1. */
925 if (operand_less_p (val2, val1) == 1)
926 return 1;
928 /* If VAL1 is different than VAL2, return +2.
929 For integer constants we either have already returned -1 or 1
930 or they are equivalent. We still might succeed in proving
931 something about non-trivial operands. */
932 if (TREE_CODE (val1) != INTEGER_CST
933 || TREE_CODE (val2) != INTEGER_CST)
935 t = fold_binary_to_constant (NE_EXPR, boolean_type_node, val1, val2);
936 if (t && tree_expr_nonzero_p (t))
937 return 2;
940 return -2;
944 /* Compare values like compare_values_warnv, but treat comparisons of
945 nonconstants which rely on undefined overflow as incomparable. */
947 static int
948 compare_values (tree val1, tree val2)
950 bool sop;
951 int ret;
953 sop = false;
954 ret = compare_values_warnv (val1, val2, &sop);
955 if (sop
956 && (!is_gimple_min_invariant (val1) || !is_gimple_min_invariant (val2)))
957 ret = -2;
958 return ret;
962 /* Return 1 if VAL is inside value range VR (VR->MIN <= VAL <= VR->MAX),
963 0 if VAL is not inside VR,
964 -2 if we cannot tell either way.
966 FIXME, the current semantics of this functions are a bit quirky
967 when taken in the context of VRP. In here we do not care
968 about VR's type. If VR is the anti-range ~[3, 5] the call
969 value_inside_range (4, VR) will return 1.
971 This is counter-intuitive in a strict sense, but the callers
972 currently expect this. They are calling the function
973 merely to determine whether VR->MIN <= VAL <= VR->MAX. The
974 callers are applying the VR_RANGE/VR_ANTI_RANGE semantics
975 themselves.
977 This also applies to value_ranges_intersect_p and
978 range_includes_zero_p. The semantics of VR_RANGE and
979 VR_ANTI_RANGE should be encoded here, but that also means
980 adapting the users of these functions to the new semantics.
982 Benchmark compile/20001226-1.c compilation time after changing this
983 function. */
985 static inline int
986 value_inside_range (tree val, value_range_t * vr)
988 int cmp1, cmp2;
990 cmp1 = operand_less_p (val, vr->min);
991 if (cmp1 == -2)
992 return -2;
993 if (cmp1 == 1)
994 return 0;
996 cmp2 = operand_less_p (vr->max, val);
997 if (cmp2 == -2)
998 return -2;
1000 return !cmp2;
1004 /* Return true if value ranges VR0 and VR1 have a non-empty
1005 intersection.
1007 Benchmark compile/20001226-1.c compilation time after changing this
1008 function.
1011 static inline bool
1012 value_ranges_intersect_p (value_range_t *vr0, value_range_t *vr1)
1014 /* The value ranges do not intersect if the maximum of the first range is
1015 less than the minimum of the second range or vice versa.
1016 When those relations are unknown, we can't do any better. */
1017 if (operand_less_p (vr0->max, vr1->min) != 0)
1018 return false;
1019 if (operand_less_p (vr1->max, vr0->min) != 0)
1020 return false;
1021 return true;
1025 /* Return true if VR includes the value zero, false otherwise. FIXME,
1026 currently this will return false for an anti-range like ~[-4, 3].
1027 This will be wrong when the semantics of value_inside_range are
1028 modified (currently the users of this function expect these
1029 semantics). */
1031 static inline bool
1032 range_includes_zero_p (value_range_t *vr)
1034 tree zero;
1036 gcc_assert (vr->type != VR_UNDEFINED
1037 && vr->type != VR_VARYING
1038 && !symbolic_range_p (vr));
1040 zero = build_int_cst (TREE_TYPE (vr->min), 0);
1041 return (value_inside_range (zero, vr) == 1);
1044 /* Return true if T, an SSA_NAME, is known to be nonnegative. Return
1045 false otherwise or if no value range information is available. */
1047 bool
1048 ssa_name_nonnegative_p (tree t)
1050 value_range_t *vr = get_value_range (t);
1052 if (!vr)
1053 return false;
1055 /* Testing for VR_ANTI_RANGE is not useful here as any anti-range
1056 which would return a useful value should be encoded as a VR_RANGE. */
1057 if (vr->type == VR_RANGE)
1059 int result = compare_values (vr->min, integer_zero_node);
1061 return (result == 0 || result == 1);
1063 return false;
1066 /* Return true if T, an SSA_NAME, is known to be nonzero. Return
1067 false otherwise or if no value range information is available. */
1069 bool
1070 ssa_name_nonzero_p (tree t)
1072 value_range_t *vr = get_value_range (t);
1074 if (!vr)
1075 return false;
1077 /* A VR_RANGE which does not include zero is a nonzero value. */
1078 if (vr->type == VR_RANGE && !symbolic_range_p (vr))
1079 return ! range_includes_zero_p (vr);
1081 /* A VR_ANTI_RANGE which does include zero is a nonzero value. */
1082 if (vr->type == VR_ANTI_RANGE && !symbolic_range_p (vr))
1083 return range_includes_zero_p (vr);
1085 return false;
1089 /* Extract value range information from an ASSERT_EXPR EXPR and store
1090 it in *VR_P. */
1092 static void
1093 extract_range_from_assert (value_range_t *vr_p, tree expr)
1095 tree var, cond, limit, min, max, type;
1096 value_range_t *var_vr, *limit_vr;
1097 enum tree_code cond_code;
1099 var = ASSERT_EXPR_VAR (expr);
1100 cond = ASSERT_EXPR_COND (expr);
1102 gcc_assert (COMPARISON_CLASS_P (cond));
1104 /* Find VAR in the ASSERT_EXPR conditional. */
1105 if (var == TREE_OPERAND (cond, 0))
1107 /* If the predicate is of the form VAR COMP LIMIT, then we just
1108 take LIMIT from the RHS and use the same comparison code. */
1109 limit = TREE_OPERAND (cond, 1);
1110 cond_code = TREE_CODE (cond);
1112 else
1114 /* If the predicate is of the form LIMIT COMP VAR, then we need
1115 to flip around the comparison code to create the proper range
1116 for VAR. */
1117 limit = TREE_OPERAND (cond, 0);
1118 cond_code = swap_tree_comparison (TREE_CODE (cond));
1121 limit = avoid_overflow_infinity (limit);
1123 type = TREE_TYPE (limit);
1124 gcc_assert (limit != var);
1126 /* For pointer arithmetic, we only keep track of pointer equality
1127 and inequality. */
1128 if (POINTER_TYPE_P (type) && cond_code != NE_EXPR && cond_code != EQ_EXPR)
1130 set_value_range_to_varying (vr_p);
1131 return;
1134 /* If LIMIT is another SSA name and LIMIT has a range of its own,
1135 try to use LIMIT's range to avoid creating symbolic ranges
1136 unnecessarily. */
1137 limit_vr = (TREE_CODE (limit) == SSA_NAME) ? get_value_range (limit) : NULL;
1139 /* LIMIT's range is only interesting if it has any useful information. */
1140 if (limit_vr
1141 && (limit_vr->type == VR_UNDEFINED
1142 || limit_vr->type == VR_VARYING
1143 || symbolic_range_p (limit_vr)))
1144 limit_vr = NULL;
1146 /* Initially, the new range has the same set of equivalences of
1147 VAR's range. This will be revised before returning the final
1148 value. Since assertions may be chained via mutually exclusive
1149 predicates, we will need to trim the set of equivalences before
1150 we are done. */
1151 gcc_assert (vr_p->equiv == NULL);
1152 add_equivalence (&vr_p->equiv, var);
1154 /* Extract a new range based on the asserted comparison for VAR and
1155 LIMIT's value range. Notice that if LIMIT has an anti-range, we
1156 will only use it for equality comparisons (EQ_EXPR). For any
1157 other kind of assertion, we cannot derive a range from LIMIT's
1158 anti-range that can be used to describe the new range. For
1159 instance, ASSERT_EXPR <x_2, x_2 <= b_4>. If b_4 is ~[2, 10],
1160 then b_4 takes on the ranges [-INF, 1] and [11, +INF]. There is
1161 no single range for x_2 that could describe LE_EXPR, so we might
1162 as well build the range [b_4, +INF] for it. */
1163 if (cond_code == EQ_EXPR)
1165 enum value_range_type range_type;
1167 if (limit_vr)
1169 range_type = limit_vr->type;
1170 min = limit_vr->min;
1171 max = limit_vr->max;
1173 else
1175 range_type = VR_RANGE;
1176 min = limit;
1177 max = limit;
1180 set_value_range (vr_p, range_type, min, max, vr_p->equiv);
1182 /* When asserting the equality VAR == LIMIT and LIMIT is another
1183 SSA name, the new range will also inherit the equivalence set
1184 from LIMIT. */
1185 if (TREE_CODE (limit) == SSA_NAME)
1186 add_equivalence (&vr_p->equiv, limit);
1188 else if (cond_code == NE_EXPR)
1190 /* As described above, when LIMIT's range is an anti-range and
1191 this assertion is an inequality (NE_EXPR), then we cannot
1192 derive anything from the anti-range. For instance, if
1193 LIMIT's range was ~[0, 0], the assertion 'VAR != LIMIT' does
1194 not imply that VAR's range is [0, 0]. So, in the case of
1195 anti-ranges, we just assert the inequality using LIMIT and
1196 not its anti-range.
1198 If LIMIT_VR is a range, we can only use it to build a new
1199 anti-range if LIMIT_VR is a single-valued range. For
1200 instance, if LIMIT_VR is [0, 1], the predicate
1201 VAR != [0, 1] does not mean that VAR's range is ~[0, 1].
1202 Rather, it means that for value 0 VAR should be ~[0, 0]
1203 and for value 1, VAR should be ~[1, 1]. We cannot
1204 represent these ranges.
1206 The only situation in which we can build a valid
1207 anti-range is when LIMIT_VR is a single-valued range
1208 (i.e., LIMIT_VR->MIN == LIMIT_VR->MAX). In that case,
1209 build the anti-range ~[LIMIT_VR->MIN, LIMIT_VR->MAX]. */
1210 if (limit_vr
1211 && limit_vr->type == VR_RANGE
1212 && compare_values (limit_vr->min, limit_vr->max) == 0)
1214 min = limit_vr->min;
1215 max = limit_vr->max;
1217 else
1219 /* In any other case, we cannot use LIMIT's range to build a
1220 valid anti-range. */
1221 min = max = limit;
1224 /* If MIN and MAX cover the whole range for their type, then
1225 just use the original LIMIT. */
1226 if (INTEGRAL_TYPE_P (type)
1227 && vrp_val_is_min (min)
1228 && vrp_val_is_max (max))
1229 min = max = limit;
1231 set_value_range (vr_p, VR_ANTI_RANGE, min, max, vr_p->equiv);
1233 else if (cond_code == LE_EXPR || cond_code == LT_EXPR)
1235 min = TYPE_MIN_VALUE (type);
1237 if (limit_vr == NULL || limit_vr->type == VR_ANTI_RANGE)
1238 max = limit;
1239 else
1241 /* If LIMIT_VR is of the form [N1, N2], we need to build the
1242 range [MIN, N2] for LE_EXPR and [MIN, N2 - 1] for
1243 LT_EXPR. */
1244 max = limit_vr->max;
1247 /* If the maximum value forces us to be out of bounds, simply punt.
1248 It would be pointless to try and do anything more since this
1249 all should be optimized away above us. */
1250 if ((cond_code == LT_EXPR
1251 && compare_values (max, min) == 0)
1252 || is_overflow_infinity (max))
1253 set_value_range_to_varying (vr_p);
1254 else
1256 /* For LT_EXPR, we create the range [MIN, MAX - 1]. */
1257 if (cond_code == LT_EXPR)
1259 tree one = build_int_cst (type, 1);
1260 max = fold_build2 (MINUS_EXPR, type, max, one);
1261 if (EXPR_P (max))
1262 TREE_NO_WARNING (max) = 1;
1265 set_value_range (vr_p, VR_RANGE, min, max, vr_p->equiv);
1268 else if (cond_code == GE_EXPR || cond_code == GT_EXPR)
1270 max = TYPE_MAX_VALUE (type);
1272 if (limit_vr == NULL || limit_vr->type == VR_ANTI_RANGE)
1273 min = limit;
1274 else
1276 /* If LIMIT_VR is of the form [N1, N2], we need to build the
1277 range [N1, MAX] for GE_EXPR and [N1 + 1, MAX] for
1278 GT_EXPR. */
1279 min = limit_vr->min;
1282 /* If the minimum value forces us to be out of bounds, simply punt.
1283 It would be pointless to try and do anything more since this
1284 all should be optimized away above us. */
1285 if ((cond_code == GT_EXPR
1286 && compare_values (min, max) == 0)
1287 || is_overflow_infinity (min))
1288 set_value_range_to_varying (vr_p);
1289 else
1291 /* For GT_EXPR, we create the range [MIN + 1, MAX]. */
1292 if (cond_code == GT_EXPR)
1294 tree one = build_int_cst (type, 1);
1295 min = fold_build2 (PLUS_EXPR, type, min, one);
1296 if (EXPR_P (min))
1297 TREE_NO_WARNING (min) = 1;
1300 set_value_range (vr_p, VR_RANGE, min, max, vr_p->equiv);
1303 else
1304 gcc_unreachable ();
1306 /* If VAR already had a known range, it may happen that the new
1307 range we have computed and VAR's range are not compatible. For
1308 instance,
1310 if (p_5 == NULL)
1311 p_6 = ASSERT_EXPR <p_5, p_5 == NULL>;
1312 x_7 = p_6->fld;
1313 p_8 = ASSERT_EXPR <p_6, p_6 != NULL>;
1315 While the above comes from a faulty program, it will cause an ICE
1316 later because p_8 and p_6 will have incompatible ranges and at
1317 the same time will be considered equivalent. A similar situation
1318 would arise from
1320 if (i_5 > 10)
1321 i_6 = ASSERT_EXPR <i_5, i_5 > 10>;
1322 if (i_5 < 5)
1323 i_7 = ASSERT_EXPR <i_6, i_6 < 5>;
1325 Again i_6 and i_7 will have incompatible ranges. It would be
1326 pointless to try and do anything with i_7's range because
1327 anything dominated by 'if (i_5 < 5)' will be optimized away.
1328 Note, due to the wa in which simulation proceeds, the statement
1329 i_7 = ASSERT_EXPR <...> we would never be visited because the
1330 conditional 'if (i_5 < 5)' always evaluates to false. However,
1331 this extra check does not hurt and may protect against future
1332 changes to VRP that may get into a situation similar to the
1333 NULL pointer dereference example.
1335 Note that these compatibility tests are only needed when dealing
1336 with ranges or a mix of range and anti-range. If VAR_VR and VR_P
1337 are both anti-ranges, they will always be compatible, because two
1338 anti-ranges will always have a non-empty intersection. */
1340 var_vr = get_value_range (var);
1342 /* We may need to make adjustments when VR_P and VAR_VR are numeric
1343 ranges or anti-ranges. */
1344 if (vr_p->type == VR_VARYING
1345 || vr_p->type == VR_UNDEFINED
1346 || var_vr->type == VR_VARYING
1347 || var_vr->type == VR_UNDEFINED
1348 || symbolic_range_p (vr_p)
1349 || symbolic_range_p (var_vr))
1350 return;
1352 if (var_vr->type == VR_RANGE && vr_p->type == VR_RANGE)
1354 /* If the two ranges have a non-empty intersection, we can
1355 refine the resulting range. Since the assert expression
1356 creates an equivalency and at the same time it asserts a
1357 predicate, we can take the intersection of the two ranges to
1358 get better precision. */
1359 if (value_ranges_intersect_p (var_vr, vr_p))
1361 /* Use the larger of the two minimums. */
1362 if (compare_values (vr_p->min, var_vr->min) == -1)
1363 min = var_vr->min;
1364 else
1365 min = vr_p->min;
1367 /* Use the smaller of the two maximums. */
1368 if (compare_values (vr_p->max, var_vr->max) == 1)
1369 max = var_vr->max;
1370 else
1371 max = vr_p->max;
1373 set_value_range (vr_p, vr_p->type, min, max, vr_p->equiv);
1375 else
1377 /* The two ranges do not intersect, set the new range to
1378 VARYING, because we will not be able to do anything
1379 meaningful with it. */
1380 set_value_range_to_varying (vr_p);
1383 else if ((var_vr->type == VR_RANGE && vr_p->type == VR_ANTI_RANGE)
1384 || (var_vr->type == VR_ANTI_RANGE && vr_p->type == VR_RANGE))
1386 /* A range and an anti-range will cancel each other only if
1387 their ends are the same. For instance, in the example above,
1388 p_8's range ~[0, 0] and p_6's range [0, 0] are incompatible,
1389 so VR_P should be set to VR_VARYING. */
1390 if (compare_values (var_vr->min, vr_p->min) == 0
1391 && compare_values (var_vr->max, vr_p->max) == 0)
1392 set_value_range_to_varying (vr_p);
1393 else
1395 tree min, max, anti_min, anti_max, real_min, real_max;
1396 int cmp;
1398 /* We want to compute the logical AND of the two ranges;
1399 there are three cases to consider.
1402 1. The VR_ANTI_RANGE range is completely within the
1403 VR_RANGE and the endpoints of the ranges are
1404 different. In that case the resulting range
1405 should be whichever range is more precise.
1406 Typically that will be the VR_RANGE.
1408 2. The VR_ANTI_RANGE is completely disjoint from
1409 the VR_RANGE. In this case the resulting range
1410 should be the VR_RANGE.
1412 3. There is some overlap between the VR_ANTI_RANGE
1413 and the VR_RANGE.
1415 3a. If the high limit of the VR_ANTI_RANGE resides
1416 within the VR_RANGE, then the result is a new
1417 VR_RANGE starting at the high limit of the
1418 the VR_ANTI_RANGE + 1 and extending to the
1419 high limit of the original VR_RANGE.
1421 3b. If the low limit of the VR_ANTI_RANGE resides
1422 within the VR_RANGE, then the result is a new
1423 VR_RANGE starting at the low limit of the original
1424 VR_RANGE and extending to the low limit of the
1425 VR_ANTI_RANGE - 1. */
1426 if (vr_p->type == VR_ANTI_RANGE)
1428 anti_min = vr_p->min;
1429 anti_max = vr_p->max;
1430 real_min = var_vr->min;
1431 real_max = var_vr->max;
1433 else
1435 anti_min = var_vr->min;
1436 anti_max = var_vr->max;
1437 real_min = vr_p->min;
1438 real_max = vr_p->max;
1442 /* Case 1, VR_ANTI_RANGE completely within VR_RANGE,
1443 not including any endpoints. */
1444 if (compare_values (anti_max, real_max) == -1
1445 && compare_values (anti_min, real_min) == 1)
1447 set_value_range (vr_p, VR_RANGE, real_min,
1448 real_max, vr_p->equiv);
1450 /* Case 2, VR_ANTI_RANGE completely disjoint from
1451 VR_RANGE. */
1452 else if (compare_values (anti_min, real_max) == 1
1453 || compare_values (anti_max, real_min) == -1)
1455 set_value_range (vr_p, VR_RANGE, real_min,
1456 real_max, vr_p->equiv);
1458 /* Case 3a, the anti-range extends into the low
1459 part of the real range. Thus creating a new
1460 low for the real range. */
1461 else if (((cmp = compare_values (anti_max, real_min)) == 1
1462 || cmp == 0)
1463 && compare_values (anti_max, real_max) == -1)
1465 gcc_assert (!is_positive_overflow_infinity (anti_max));
1466 if (needs_overflow_infinity (TREE_TYPE (anti_max))
1467 && vrp_val_is_max (anti_max))
1469 if (!supports_overflow_infinity (TREE_TYPE (var_vr->min)))
1471 set_value_range_to_varying (vr_p);
1472 return;
1474 min = positive_overflow_infinity (TREE_TYPE (var_vr->min));
1476 else if (!POINTER_TYPE_P (TREE_TYPE (var_vr->min)))
1477 min = fold_build2 (PLUS_EXPR, TREE_TYPE (var_vr->min),
1478 anti_max,
1479 build_int_cst (TREE_TYPE (var_vr->min), 1));
1480 else
1481 min = fold_build2 (POINTER_PLUS_EXPR, TREE_TYPE (var_vr->min),
1482 anti_max, size_int (1));
1483 max = real_max;
1484 set_value_range (vr_p, VR_RANGE, min, max, vr_p->equiv);
1486 /* Case 3b, the anti-range extends into the high
1487 part of the real range. Thus creating a new
1488 higher for the real range. */
1489 else if (compare_values (anti_min, real_min) == 1
1490 && ((cmp = compare_values (anti_min, real_max)) == -1
1491 || cmp == 0))
1493 gcc_assert (!is_negative_overflow_infinity (anti_min));
1494 if (needs_overflow_infinity (TREE_TYPE (anti_min))
1495 && vrp_val_is_min (anti_min))
1497 if (!supports_overflow_infinity (TREE_TYPE (var_vr->min)))
1499 set_value_range_to_varying (vr_p);
1500 return;
1502 max = negative_overflow_infinity (TREE_TYPE (var_vr->min));
1504 else if (!POINTER_TYPE_P (TREE_TYPE (var_vr->min)))
1505 max = fold_build2 (MINUS_EXPR, TREE_TYPE (var_vr->min),
1506 anti_min,
1507 build_int_cst (TREE_TYPE (var_vr->min), 1));
1508 else
1509 max = fold_build2 (POINTER_PLUS_EXPR, TREE_TYPE (var_vr->min),
1510 anti_min,
1511 size_int (-1));
1512 min = real_min;
1513 set_value_range (vr_p, VR_RANGE, min, max, vr_p->equiv);
1520 /* Extract range information from SSA name VAR and store it in VR. If
1521 VAR has an interesting range, use it. Otherwise, create the
1522 range [VAR, VAR] and return it. This is useful in situations where
1523 we may have conditionals testing values of VARYING names. For
1524 instance,
1526 x_3 = y_5;
1527 if (x_3 > y_5)
1530 Even if y_5 is deemed VARYING, we can determine that x_3 > y_5 is
1531 always false. */
1533 static void
1534 extract_range_from_ssa_name (value_range_t *vr, tree var)
1536 value_range_t *var_vr = get_value_range (var);
1538 if (var_vr->type != VR_UNDEFINED && var_vr->type != VR_VARYING)
1539 copy_value_range (vr, var_vr);
1540 else
1541 set_value_range (vr, VR_RANGE, var, var, NULL);
1543 add_equivalence (&vr->equiv, var);
1547 /* Wrapper around int_const_binop. If the operation overflows and we
1548 are not using wrapping arithmetic, then adjust the result to be
1549 -INF or +INF depending on CODE, VAL1 and VAL2. This can return
1550 NULL_TREE if we need to use an overflow infinity representation but
1551 the type does not support it. */
1553 static tree
1554 vrp_int_const_binop (enum tree_code code, tree val1, tree val2)
1556 tree res;
1558 res = int_const_binop (code, val1, val2, 0);
1560 /* If we are not using wrapping arithmetic, operate symbolically
1561 on -INF and +INF. */
1562 if (TYPE_OVERFLOW_WRAPS (TREE_TYPE (val1)))
1564 int checkz = compare_values (res, val1);
1565 bool overflow = false;
1567 /* Ensure that res = val1 [+*] val2 >= val1
1568 or that res = val1 - val2 <= val1. */
1569 if ((code == PLUS_EXPR
1570 && !(checkz == 1 || checkz == 0))
1571 || (code == MINUS_EXPR
1572 && !(checkz == 0 || checkz == -1)))
1574 overflow = true;
1576 /* Checking for multiplication overflow is done by dividing the
1577 output of the multiplication by the first input of the
1578 multiplication. If the result of that division operation is
1579 not equal to the second input of the multiplication, then the
1580 multiplication overflowed. */
1581 else if (code == MULT_EXPR && !integer_zerop (val1))
1583 tree tmp = int_const_binop (TRUNC_DIV_EXPR,
1584 res,
1585 val1, 0);
1586 int check = compare_values (tmp, val2);
1588 if (check != 0)
1589 overflow = true;
1592 if (overflow)
1594 res = copy_node (res);
1595 TREE_OVERFLOW (res) = 1;
1599 else if ((TREE_OVERFLOW (res)
1600 && !TREE_OVERFLOW (val1)
1601 && !TREE_OVERFLOW (val2))
1602 || is_overflow_infinity (val1)
1603 || is_overflow_infinity (val2))
1605 /* If the operation overflowed but neither VAL1 nor VAL2 are
1606 overflown, return -INF or +INF depending on the operation
1607 and the combination of signs of the operands. */
1608 int sgn1 = tree_int_cst_sgn (val1);
1609 int sgn2 = tree_int_cst_sgn (val2);
1611 if (needs_overflow_infinity (TREE_TYPE (res))
1612 && !supports_overflow_infinity (TREE_TYPE (res)))
1613 return NULL_TREE;
1615 /* We have to punt on adding infinities of different signs,
1616 since we can't tell what the sign of the result should be.
1617 Likewise for subtracting infinities of the same sign. */
1618 if (((code == PLUS_EXPR && sgn1 != sgn2)
1619 || (code == MINUS_EXPR && sgn1 == sgn2))
1620 && is_overflow_infinity (val1)
1621 && is_overflow_infinity (val2))
1622 return NULL_TREE;
1624 /* Don't try to handle division or shifting of infinities. */
1625 if ((code == TRUNC_DIV_EXPR
1626 || code == FLOOR_DIV_EXPR
1627 || code == CEIL_DIV_EXPR
1628 || code == EXACT_DIV_EXPR
1629 || code == ROUND_DIV_EXPR
1630 || code == RSHIFT_EXPR)
1631 && (is_overflow_infinity (val1)
1632 || is_overflow_infinity (val2)))
1633 return NULL_TREE;
1635 /* Notice that we only need to handle the restricted set of
1636 operations handled by extract_range_from_binary_expr.
1637 Among them, only multiplication, addition and subtraction
1638 can yield overflow without overflown operands because we
1639 are working with integral types only... except in the
1640 case VAL1 = -INF and VAL2 = -1 which overflows to +INF
1641 for division too. */
1643 /* For multiplication, the sign of the overflow is given
1644 by the comparison of the signs of the operands. */
1645 if ((code == MULT_EXPR && sgn1 == sgn2)
1646 /* For addition, the operands must be of the same sign
1647 to yield an overflow. Its sign is therefore that
1648 of one of the operands, for example the first. For
1649 infinite operands X + -INF is negative, not positive. */
1650 || (code == PLUS_EXPR
1651 && (sgn1 >= 0
1652 ? !is_negative_overflow_infinity (val2)
1653 : is_positive_overflow_infinity (val2)))
1654 /* For subtraction, non-infinite operands must be of
1655 different signs to yield an overflow. Its sign is
1656 therefore that of the first operand or the opposite of
1657 that of the second operand. A first operand of 0 counts
1658 as positive here, for the corner case 0 - (-INF), which
1659 overflows, but must yield +INF. For infinite operands 0
1660 - INF is negative, not positive. */
1661 || (code == MINUS_EXPR
1662 && (sgn1 >= 0
1663 ? !is_positive_overflow_infinity (val2)
1664 : is_negative_overflow_infinity (val2)))
1665 /* We only get in here with positive shift count, so the
1666 overflow direction is the same as the sign of val1.
1667 Actually rshift does not overflow at all, but we only
1668 handle the case of shifting overflowed -INF and +INF. */
1669 || (code == RSHIFT_EXPR
1670 && sgn1 >= 0)
1671 /* For division, the only case is -INF / -1 = +INF. */
1672 || code == TRUNC_DIV_EXPR
1673 || code == FLOOR_DIV_EXPR
1674 || code == CEIL_DIV_EXPR
1675 || code == EXACT_DIV_EXPR
1676 || code == ROUND_DIV_EXPR)
1677 return (needs_overflow_infinity (TREE_TYPE (res))
1678 ? positive_overflow_infinity (TREE_TYPE (res))
1679 : TYPE_MAX_VALUE (TREE_TYPE (res)));
1680 else
1681 return (needs_overflow_infinity (TREE_TYPE (res))
1682 ? negative_overflow_infinity (TREE_TYPE (res))
1683 : TYPE_MIN_VALUE (TREE_TYPE (res)));
1686 return res;
1690 /* Extract range information from a binary expression EXPR based on
1691 the ranges of each of its operands and the expression code. */
1693 static void
1694 extract_range_from_binary_expr (value_range_t *vr, tree expr)
1696 enum tree_code code = TREE_CODE (expr);
1697 enum value_range_type type;
1698 tree op0, op1, min, max;
1699 int cmp;
1700 value_range_t vr0 = { VR_UNDEFINED, NULL_TREE, NULL_TREE, NULL };
1701 value_range_t vr1 = { VR_UNDEFINED, NULL_TREE, NULL_TREE, NULL };
1703 /* Not all binary expressions can be applied to ranges in a
1704 meaningful way. Handle only arithmetic operations. */
1705 if (code != PLUS_EXPR
1706 && code != MINUS_EXPR
1707 && code != POINTER_PLUS_EXPR
1708 && code != MULT_EXPR
1709 && code != TRUNC_DIV_EXPR
1710 && code != FLOOR_DIV_EXPR
1711 && code != CEIL_DIV_EXPR
1712 && code != EXACT_DIV_EXPR
1713 && code != ROUND_DIV_EXPR
1714 && code != RSHIFT_EXPR
1715 && code != MIN_EXPR
1716 && code != MAX_EXPR
1717 && code != BIT_AND_EXPR
1718 && code != TRUTH_ANDIF_EXPR
1719 && code != TRUTH_ORIF_EXPR
1720 && code != TRUTH_AND_EXPR
1721 && code != TRUTH_OR_EXPR)
1723 set_value_range_to_varying (vr);
1724 return;
1727 /* Get value ranges for each operand. For constant operands, create
1728 a new value range with the operand to simplify processing. */
1729 op0 = TREE_OPERAND (expr, 0);
1730 if (TREE_CODE (op0) == SSA_NAME)
1731 vr0 = *(get_value_range (op0));
1732 else if (is_gimple_min_invariant (op0))
1733 set_value_range_to_value (&vr0, op0, NULL);
1734 else
1735 set_value_range_to_varying (&vr0);
1737 op1 = TREE_OPERAND (expr, 1);
1738 if (TREE_CODE (op1) == SSA_NAME)
1739 vr1 = *(get_value_range (op1));
1740 else if (is_gimple_min_invariant (op1))
1741 set_value_range_to_value (&vr1, op1, NULL);
1742 else
1743 set_value_range_to_varying (&vr1);
1745 /* If either range is UNDEFINED, so is the result. */
1746 if (vr0.type == VR_UNDEFINED || vr1.type == VR_UNDEFINED)
1748 set_value_range_to_undefined (vr);
1749 return;
1752 /* The type of the resulting value range defaults to VR0.TYPE. */
1753 type = vr0.type;
1755 /* Refuse to operate on VARYING ranges, ranges of different kinds
1756 and symbolic ranges. As an exception, we allow BIT_AND_EXPR
1757 because we may be able to derive a useful range even if one of
1758 the operands is VR_VARYING or symbolic range. TODO, we may be
1759 able to derive anti-ranges in some cases. */
1760 if (code != BIT_AND_EXPR
1761 && code != TRUTH_AND_EXPR
1762 && code != TRUTH_OR_EXPR
1763 && (vr0.type == VR_VARYING
1764 || vr1.type == VR_VARYING
1765 || vr0.type != vr1.type
1766 || symbolic_range_p (&vr0)
1767 || symbolic_range_p (&vr1)))
1769 set_value_range_to_varying (vr);
1770 return;
1773 /* Now evaluate the expression to determine the new range. */
1774 if (POINTER_TYPE_P (TREE_TYPE (expr))
1775 || POINTER_TYPE_P (TREE_TYPE (op0))
1776 || POINTER_TYPE_P (TREE_TYPE (op1)))
1778 if (code == MIN_EXPR || code == MAX_EXPR)
1780 /* For MIN/MAX expressions with pointers, we only care about
1781 nullness, if both are non null, then the result is nonnull.
1782 If both are null, then the result is null. Otherwise they
1783 are varying. */
1784 if (range_is_nonnull (&vr0) && range_is_nonnull (&vr1))
1785 set_value_range_to_nonnull (vr, TREE_TYPE (expr));
1786 else if (range_is_null (&vr0) && range_is_null (&vr1))
1787 set_value_range_to_null (vr, TREE_TYPE (expr));
1788 else
1789 set_value_range_to_varying (vr);
1791 return;
1793 gcc_assert (code == POINTER_PLUS_EXPR);
1794 /* For pointer types, we are really only interested in asserting
1795 whether the expression evaluates to non-NULL. */
1796 if (range_is_nonnull (&vr0) || range_is_nonnull (&vr1))
1797 set_value_range_to_nonnull (vr, TREE_TYPE (expr));
1798 else if (range_is_null (&vr0) && range_is_null (&vr1))
1799 set_value_range_to_null (vr, TREE_TYPE (expr));
1800 else
1801 set_value_range_to_varying (vr);
1803 return;
1806 /* For integer ranges, apply the operation to each end of the
1807 range and see what we end up with. */
1808 if (code == TRUTH_ANDIF_EXPR
1809 || code == TRUTH_ORIF_EXPR
1810 || code == TRUTH_AND_EXPR
1811 || code == TRUTH_OR_EXPR)
1813 /* If one of the operands is zero, we know that the whole
1814 expression evaluates zero. */
1815 if (code == TRUTH_AND_EXPR
1816 && ((vr0.type == VR_RANGE
1817 && integer_zerop (vr0.min)
1818 && integer_zerop (vr0.max))
1819 || (vr1.type == VR_RANGE
1820 && integer_zerop (vr1.min)
1821 && integer_zerop (vr1.max))))
1823 type = VR_RANGE;
1824 min = max = build_int_cst (TREE_TYPE (expr), 0);
1826 /* If one of the operands is one, we know that the whole
1827 expression evaluates one. */
1828 else if (code == TRUTH_OR_EXPR
1829 && ((vr0.type == VR_RANGE
1830 && integer_onep (vr0.min)
1831 && integer_onep (vr0.max))
1832 || (vr1.type == VR_RANGE
1833 && integer_onep (vr1.min)
1834 && integer_onep (vr1.max))))
1836 type = VR_RANGE;
1837 min = max = build_int_cst (TREE_TYPE (expr), 1);
1839 else if (vr0.type != VR_VARYING
1840 && vr1.type != VR_VARYING
1841 && vr0.type == vr1.type
1842 && !symbolic_range_p (&vr0)
1843 && !overflow_infinity_range_p (&vr0)
1844 && !symbolic_range_p (&vr1)
1845 && !overflow_infinity_range_p (&vr1))
1847 /* Boolean expressions cannot be folded with int_const_binop. */
1848 min = fold_binary (code, TREE_TYPE (expr), vr0.min, vr1.min);
1849 max = fold_binary (code, TREE_TYPE (expr), vr0.max, vr1.max);
1851 else
1853 /* The result of a TRUTH_*_EXPR is always true or false. */
1854 set_value_range_to_truthvalue (vr, TREE_TYPE (expr));
1855 return;
1858 else if (code == PLUS_EXPR
1859 || code == MIN_EXPR
1860 || code == MAX_EXPR)
1862 /* If we have a PLUS_EXPR with two VR_ANTI_RANGEs, drop to
1863 VR_VARYING. It would take more effort to compute a precise
1864 range for such a case. For example, if we have op0 == 1 and
1865 op1 == -1 with their ranges both being ~[0,0], we would have
1866 op0 + op1 == 0, so we cannot claim that the sum is in ~[0,0].
1867 Note that we are guaranteed to have vr0.type == vr1.type at
1868 this point. */
1869 if (code == PLUS_EXPR && vr0.type == VR_ANTI_RANGE)
1871 set_value_range_to_varying (vr);
1872 return;
1875 /* For operations that make the resulting range directly
1876 proportional to the original ranges, apply the operation to
1877 the same end of each range. */
1878 min = vrp_int_const_binop (code, vr0.min, vr1.min);
1879 max = vrp_int_const_binop (code, vr0.max, vr1.max);
1881 else if (code == MULT_EXPR
1882 || code == TRUNC_DIV_EXPR
1883 || code == FLOOR_DIV_EXPR
1884 || code == CEIL_DIV_EXPR
1885 || code == EXACT_DIV_EXPR
1886 || code == ROUND_DIV_EXPR
1887 || code == RSHIFT_EXPR)
1889 tree val[4];
1890 size_t i;
1891 bool sop;
1893 /* If we have an unsigned MULT_EXPR with two VR_ANTI_RANGEs,
1894 drop to VR_VARYING. It would take more effort to compute a
1895 precise range for such a case. For example, if we have
1896 op0 == 65536 and op1 == 65536 with their ranges both being
1897 ~[0,0] on a 32-bit machine, we would have op0 * op1 == 0, so
1898 we cannot claim that the product is in ~[0,0]. Note that we
1899 are guaranteed to have vr0.type == vr1.type at this
1900 point. */
1901 if (code == MULT_EXPR
1902 && vr0.type == VR_ANTI_RANGE
1903 && !TYPE_OVERFLOW_UNDEFINED (TREE_TYPE (op0)))
1905 set_value_range_to_varying (vr);
1906 return;
1909 /* If we have a RSHIFT_EXPR with any shift values outside [0..prec-1],
1910 then drop to VR_VARYING. Outside of this range we get undefined
1911 behavior from the shift operation. We cannot even trust
1912 SHIFT_COUNT_TRUNCATED at this stage, because that applies to rtl
1913 shifts, and the operation at the tree level may be widened. */
1914 if (code == RSHIFT_EXPR)
1916 if (vr1.type == VR_ANTI_RANGE
1917 || !vrp_expr_computes_nonnegative (op1, &sop)
1918 || (operand_less_p
1919 (build_int_cst (TREE_TYPE (vr1.max),
1920 TYPE_PRECISION (TREE_TYPE (expr)) - 1),
1921 vr1.max) != 0))
1923 set_value_range_to_varying (vr);
1924 return;
1928 /* Multiplications and divisions are a bit tricky to handle,
1929 depending on the mix of signs we have in the two ranges, we
1930 need to operate on different values to get the minimum and
1931 maximum values for the new range. One approach is to figure
1932 out all the variations of range combinations and do the
1933 operations.
1935 However, this involves several calls to compare_values and it
1936 is pretty convoluted. It's simpler to do the 4 operations
1937 (MIN0 OP MIN1, MIN0 OP MAX1, MAX0 OP MIN1 and MAX0 OP MAX0 OP
1938 MAX1) and then figure the smallest and largest values to form
1939 the new range. */
1941 /* Divisions by zero result in a VARYING value. */
1942 else if (code != MULT_EXPR
1943 && (vr0.type == VR_ANTI_RANGE || range_includes_zero_p (&vr1)))
1945 set_value_range_to_varying (vr);
1946 return;
1949 /* Compute the 4 cross operations. */
1950 sop = false;
1951 val[0] = vrp_int_const_binop (code, vr0.min, vr1.min);
1952 if (val[0] == NULL_TREE)
1953 sop = true;
1955 if (vr1.max == vr1.min)
1956 val[1] = NULL_TREE;
1957 else
1959 val[1] = vrp_int_const_binop (code, vr0.min, vr1.max);
1960 if (val[1] == NULL_TREE)
1961 sop = true;
1964 if (vr0.max == vr0.min)
1965 val[2] = NULL_TREE;
1966 else
1968 val[2] = vrp_int_const_binop (code, vr0.max, vr1.min);
1969 if (val[2] == NULL_TREE)
1970 sop = true;
1973 if (vr0.min == vr0.max || vr1.min == vr1.max)
1974 val[3] = NULL_TREE;
1975 else
1977 val[3] = vrp_int_const_binop (code, vr0.max, vr1.max);
1978 if (val[3] == NULL_TREE)
1979 sop = true;
1982 if (sop)
1984 set_value_range_to_varying (vr);
1985 return;
1988 /* Set MIN to the minimum of VAL[i] and MAX to the maximum
1989 of VAL[i]. */
1990 min = val[0];
1991 max = val[0];
1992 for (i = 1; i < 4; i++)
1994 if (!is_gimple_min_invariant (min)
1995 || (TREE_OVERFLOW (min) && !is_overflow_infinity (min))
1996 || !is_gimple_min_invariant (max)
1997 || (TREE_OVERFLOW (max) && !is_overflow_infinity (max)))
1998 break;
2000 if (val[i])
2002 if (!is_gimple_min_invariant (val[i])
2003 || (TREE_OVERFLOW (val[i])
2004 && !is_overflow_infinity (val[i])))
2006 /* If we found an overflowed value, set MIN and MAX
2007 to it so that we set the resulting range to
2008 VARYING. */
2009 min = max = val[i];
2010 break;
2013 if (compare_values (val[i], min) == -1)
2014 min = val[i];
2016 if (compare_values (val[i], max) == 1)
2017 max = val[i];
2021 else if (code == MINUS_EXPR)
2023 /* If we have a MINUS_EXPR with two VR_ANTI_RANGEs, drop to
2024 VR_VARYING. It would take more effort to compute a precise
2025 range for such a case. For example, if we have op0 == 1 and
2026 op1 == 1 with their ranges both being ~[0,0], we would have
2027 op0 - op1 == 0, so we cannot claim that the difference is in
2028 ~[0,0]. Note that we are guaranteed to have
2029 vr0.type == vr1.type at this point. */
2030 if (vr0.type == VR_ANTI_RANGE)
2032 set_value_range_to_varying (vr);
2033 return;
2036 /* For MINUS_EXPR, apply the operation to the opposite ends of
2037 each range. */
2038 min = vrp_int_const_binop (code, vr0.min, vr1.max);
2039 max = vrp_int_const_binop (code, vr0.max, vr1.min);
2041 else if (code == BIT_AND_EXPR)
2043 if (vr0.type == VR_RANGE
2044 && vr0.min == vr0.max
2045 && TREE_CODE (vr0.max) == INTEGER_CST
2046 && !TREE_OVERFLOW (vr0.max)
2047 && tree_int_cst_sgn (vr0.max) >= 0)
2049 min = build_int_cst (TREE_TYPE (expr), 0);
2050 max = vr0.max;
2052 else if (vr1.type == VR_RANGE
2053 && vr1.min == vr1.max
2054 && TREE_CODE (vr1.max) == INTEGER_CST
2055 && !TREE_OVERFLOW (vr1.max)
2056 && tree_int_cst_sgn (vr1.max) >= 0)
2058 type = VR_RANGE;
2059 min = build_int_cst (TREE_TYPE (expr), 0);
2060 max = vr1.max;
2062 else
2064 set_value_range_to_varying (vr);
2065 return;
2068 else
2069 gcc_unreachable ();
2071 /* If either MIN or MAX overflowed, then set the resulting range to
2072 VARYING. But we do accept an overflow infinity
2073 representation. */
2074 if (min == NULL_TREE
2075 || !is_gimple_min_invariant (min)
2076 || (TREE_OVERFLOW (min) && !is_overflow_infinity (min))
2077 || max == NULL_TREE
2078 || !is_gimple_min_invariant (max)
2079 || (TREE_OVERFLOW (max) && !is_overflow_infinity (max)))
2081 set_value_range_to_varying (vr);
2082 return;
2085 /* We punt if:
2086 1) [-INF, +INF]
2087 2) [-INF, +-INF(OVF)]
2088 3) [+-INF(OVF), +INF]
2089 4) [+-INF(OVF), +-INF(OVF)]
2090 We learn nothing when we have INF and INF(OVF) on both sides.
2091 Note that we do accept [-INF, -INF] and [+INF, +INF] without
2092 overflow. */
2093 if ((vrp_val_is_min (min) || is_overflow_infinity (min))
2094 && (vrp_val_is_max (max) || is_overflow_infinity (max)))
2096 set_value_range_to_varying (vr);
2097 return;
2100 cmp = compare_values (min, max);
2101 if (cmp == -2 || cmp == 1)
2103 /* If the new range has its limits swapped around (MIN > MAX),
2104 then the operation caused one of them to wrap around, mark
2105 the new range VARYING. */
2106 set_value_range_to_varying (vr);
2108 else
2109 set_value_range (vr, type, min, max, NULL);
2113 /* Extract range information from a unary expression EXPR based on
2114 the range of its operand and the expression code. */
2116 static void
2117 extract_range_from_unary_expr (value_range_t *vr, tree expr)
2119 enum tree_code code = TREE_CODE (expr);
2120 tree min, max, op0;
2121 int cmp;
2122 value_range_t vr0 = { VR_UNDEFINED, NULL_TREE, NULL_TREE, NULL };
2124 /* Refuse to operate on certain unary expressions for which we
2125 cannot easily determine a resulting range. */
2126 if (code == FIX_TRUNC_EXPR
2127 || code == FLOAT_EXPR
2128 || code == BIT_NOT_EXPR
2129 || code == NON_LVALUE_EXPR
2130 || code == CONJ_EXPR)
2132 set_value_range_to_varying (vr);
2133 return;
2136 /* Get value ranges for the operand. For constant operands, create
2137 a new value range with the operand to simplify processing. */
2138 op0 = TREE_OPERAND (expr, 0);
2139 if (TREE_CODE (op0) == SSA_NAME)
2140 vr0 = *(get_value_range (op0));
2141 else if (is_gimple_min_invariant (op0))
2142 set_value_range_to_value (&vr0, op0, NULL);
2143 else
2144 set_value_range_to_varying (&vr0);
2146 /* If VR0 is UNDEFINED, so is the result. */
2147 if (vr0.type == VR_UNDEFINED)
2149 set_value_range_to_undefined (vr);
2150 return;
2153 /* Refuse to operate on symbolic ranges, or if neither operand is
2154 a pointer or integral type. */
2155 if ((!INTEGRAL_TYPE_P (TREE_TYPE (op0))
2156 && !POINTER_TYPE_P (TREE_TYPE (op0)))
2157 || (vr0.type != VR_VARYING
2158 && symbolic_range_p (&vr0)))
2160 set_value_range_to_varying (vr);
2161 return;
2164 /* If the expression involves pointers, we are only interested in
2165 determining if it evaluates to NULL [0, 0] or non-NULL (~[0, 0]). */
2166 if (POINTER_TYPE_P (TREE_TYPE (expr)) || POINTER_TYPE_P (TREE_TYPE (op0)))
2168 bool sop;
2170 sop = false;
2171 if (range_is_nonnull (&vr0)
2172 || (tree_expr_nonzero_warnv_p (expr, &sop)
2173 && !sop))
2174 set_value_range_to_nonnull (vr, TREE_TYPE (expr));
2175 else if (range_is_null (&vr0))
2176 set_value_range_to_null (vr, TREE_TYPE (expr));
2177 else
2178 set_value_range_to_varying (vr);
2180 return;
2183 /* Handle unary expressions on integer ranges. */
2184 if (code == NOP_EXPR || code == CONVERT_EXPR)
2186 tree inner_type = TREE_TYPE (op0);
2187 tree outer_type = TREE_TYPE (expr);
2189 /* If VR0 represents a simple range, then try to convert
2190 the min and max values for the range to the same type
2191 as OUTER_TYPE. If the results compare equal to VR0's
2192 min and max values and the new min is still less than
2193 or equal to the new max, then we can safely use the newly
2194 computed range for EXPR. This allows us to compute
2195 accurate ranges through many casts. */
2196 if ((vr0.type == VR_RANGE
2197 && !overflow_infinity_range_p (&vr0))
2198 || (vr0.type == VR_VARYING
2199 && TYPE_PRECISION (outer_type) > TYPE_PRECISION (inner_type)))
2201 tree new_min, new_max, orig_min, orig_max;
2203 /* Convert the input operand min/max to OUTER_TYPE. If
2204 the input has no range information, then use the min/max
2205 for the input's type. */
2206 if (vr0.type == VR_RANGE)
2208 orig_min = vr0.min;
2209 orig_max = vr0.max;
2211 else
2213 orig_min = TYPE_MIN_VALUE (inner_type);
2214 orig_max = TYPE_MAX_VALUE (inner_type);
2217 new_min = fold_convert (outer_type, orig_min);
2218 new_max = fold_convert (outer_type, orig_max);
2220 /* Verify the new min/max values are gimple values and
2221 that they compare equal to the original input's
2222 min/max values. */
2223 if (is_gimple_val (new_min)
2224 && is_gimple_val (new_max)
2225 && tree_int_cst_equal (new_min, orig_min)
2226 && tree_int_cst_equal (new_max, orig_max)
2227 && (!is_overflow_infinity (new_min)
2228 || !is_overflow_infinity (new_max))
2229 && (cmp = compare_values (new_min, new_max)) <= 0
2230 && cmp >= -1)
2232 set_value_range (vr, VR_RANGE, new_min, new_max, vr->equiv);
2233 return;
2237 /* When converting types of different sizes, set the result to
2238 VARYING. Things like sign extensions and precision loss may
2239 change the range. For instance, if x_3 is of type 'long long
2240 int' and 'y_5 = (unsigned short) x_3', if x_3 is ~[0, 0], it
2241 is impossible to know at compile time whether y_5 will be
2242 ~[0, 0]. */
2243 if (TYPE_SIZE (inner_type) != TYPE_SIZE (outer_type)
2244 || TYPE_PRECISION (inner_type) != TYPE_PRECISION (outer_type))
2246 set_value_range_to_varying (vr);
2247 return;
2251 /* Conversion of a VR_VARYING value to a wider type can result
2252 in a usable range. So wait until after we've handled conversions
2253 before dropping the result to VR_VARYING if we had a source
2254 operand that is VR_VARYING. */
2255 if (vr0.type == VR_VARYING)
2257 set_value_range_to_varying (vr);
2258 return;
2261 /* Apply the operation to each end of the range and see what we end
2262 up with. */
2263 if (code == NEGATE_EXPR
2264 && !TYPE_UNSIGNED (TREE_TYPE (expr)))
2266 /* NEGATE_EXPR flips the range around. We need to treat
2267 TYPE_MIN_VALUE specially. */
2268 if (is_positive_overflow_infinity (vr0.max))
2269 min = negative_overflow_infinity (TREE_TYPE (expr));
2270 else if (is_negative_overflow_infinity (vr0.max))
2271 min = positive_overflow_infinity (TREE_TYPE (expr));
2272 else if (!vrp_val_is_min (vr0.max))
2273 min = fold_unary_to_constant (code, TREE_TYPE (expr), vr0.max);
2274 else if (needs_overflow_infinity (TREE_TYPE (expr)))
2276 if (supports_overflow_infinity (TREE_TYPE (expr))
2277 && !is_overflow_infinity (vr0.min)
2278 && !vrp_val_is_min (vr0.min))
2279 min = positive_overflow_infinity (TREE_TYPE (expr));
2280 else
2282 set_value_range_to_varying (vr);
2283 return;
2286 else
2287 min = TYPE_MIN_VALUE (TREE_TYPE (expr));
2289 if (is_positive_overflow_infinity (vr0.min))
2290 max = negative_overflow_infinity (TREE_TYPE (expr));
2291 else if (is_negative_overflow_infinity (vr0.min))
2292 max = positive_overflow_infinity (TREE_TYPE (expr));
2293 else if (!vrp_val_is_min (vr0.min))
2294 max = fold_unary_to_constant (code, TREE_TYPE (expr), vr0.min);
2295 else if (needs_overflow_infinity (TREE_TYPE (expr)))
2297 if (supports_overflow_infinity (TREE_TYPE (expr)))
2298 max = positive_overflow_infinity (TREE_TYPE (expr));
2299 else
2301 set_value_range_to_varying (vr);
2302 return;
2305 else
2306 max = TYPE_MIN_VALUE (TREE_TYPE (expr));
2308 else if (code == NEGATE_EXPR
2309 && TYPE_UNSIGNED (TREE_TYPE (expr)))
2311 if (!range_includes_zero_p (&vr0))
2313 max = fold_unary_to_constant (code, TREE_TYPE (expr), vr0.min);
2314 min = fold_unary_to_constant (code, TREE_TYPE (expr), vr0.max);
2316 else
2318 if (range_is_null (&vr0))
2319 set_value_range_to_null (vr, TREE_TYPE (expr));
2320 else
2321 set_value_range_to_varying (vr);
2322 return;
2325 else if (code == ABS_EXPR
2326 && !TYPE_UNSIGNED (TREE_TYPE (expr)))
2328 /* -TYPE_MIN_VALUE = TYPE_MIN_VALUE with flag_wrapv so we can't get a
2329 useful range. */
2330 if (!TYPE_OVERFLOW_UNDEFINED (TREE_TYPE (expr))
2331 && ((vr0.type == VR_RANGE
2332 && vrp_val_is_min (vr0.min))
2333 || (vr0.type == VR_ANTI_RANGE
2334 && !vrp_val_is_min (vr0.min)
2335 && !range_includes_zero_p (&vr0))))
2337 set_value_range_to_varying (vr);
2338 return;
2341 /* ABS_EXPR may flip the range around, if the original range
2342 included negative values. */
2343 if (is_overflow_infinity (vr0.min))
2344 min = positive_overflow_infinity (TREE_TYPE (expr));
2345 else if (!vrp_val_is_min (vr0.min))
2346 min = fold_unary_to_constant (code, TREE_TYPE (expr), vr0.min);
2347 else if (!needs_overflow_infinity (TREE_TYPE (expr)))
2348 min = TYPE_MAX_VALUE (TREE_TYPE (expr));
2349 else if (supports_overflow_infinity (TREE_TYPE (expr)))
2350 min = positive_overflow_infinity (TREE_TYPE (expr));
2351 else
2353 set_value_range_to_varying (vr);
2354 return;
2357 if (is_overflow_infinity (vr0.max))
2358 max = positive_overflow_infinity (TREE_TYPE (expr));
2359 else if (!vrp_val_is_min (vr0.max))
2360 max = fold_unary_to_constant (code, TREE_TYPE (expr), vr0.max);
2361 else if (!needs_overflow_infinity (TREE_TYPE (expr)))
2362 max = TYPE_MAX_VALUE (TREE_TYPE (expr));
2363 else if (supports_overflow_infinity (TREE_TYPE (expr)))
2364 max = positive_overflow_infinity (TREE_TYPE (expr));
2365 else
2367 set_value_range_to_varying (vr);
2368 return;
2371 cmp = compare_values (min, max);
2373 /* If a VR_ANTI_RANGEs contains zero, then we have
2374 ~[-INF, min(MIN, MAX)]. */
2375 if (vr0.type == VR_ANTI_RANGE)
2377 if (range_includes_zero_p (&vr0))
2379 /* Take the lower of the two values. */
2380 if (cmp != 1)
2381 max = min;
2383 /* Create ~[-INF, min (abs(MIN), abs(MAX))]
2384 or ~[-INF + 1, min (abs(MIN), abs(MAX))] when
2385 flag_wrapv is set and the original anti-range doesn't include
2386 TYPE_MIN_VALUE, remember -TYPE_MIN_VALUE = TYPE_MIN_VALUE. */
2387 if (TYPE_OVERFLOW_WRAPS (TREE_TYPE (expr)))
2389 tree type_min_value = TYPE_MIN_VALUE (TREE_TYPE (expr));
2391 min = (vr0.min != type_min_value
2392 ? int_const_binop (PLUS_EXPR, type_min_value,
2393 integer_one_node, 0)
2394 : type_min_value);
2396 else
2398 if (overflow_infinity_range_p (&vr0))
2399 min = negative_overflow_infinity (TREE_TYPE (expr));
2400 else
2401 min = TYPE_MIN_VALUE (TREE_TYPE (expr));
2404 else
2406 /* All else has failed, so create the range [0, INF], even for
2407 flag_wrapv since TYPE_MIN_VALUE is in the original
2408 anti-range. */
2409 vr0.type = VR_RANGE;
2410 min = build_int_cst (TREE_TYPE (expr), 0);
2411 if (needs_overflow_infinity (TREE_TYPE (expr)))
2413 if (supports_overflow_infinity (TREE_TYPE (expr)))
2414 max = positive_overflow_infinity (TREE_TYPE (expr));
2415 else
2417 set_value_range_to_varying (vr);
2418 return;
2421 else
2422 max = TYPE_MAX_VALUE (TREE_TYPE (expr));
2426 /* If the range contains zero then we know that the minimum value in the
2427 range will be zero. */
2428 else if (range_includes_zero_p (&vr0))
2430 if (cmp == 1)
2431 max = min;
2432 min = build_int_cst (TREE_TYPE (expr), 0);
2434 else
2436 /* If the range was reversed, swap MIN and MAX. */
2437 if (cmp == 1)
2439 tree t = min;
2440 min = max;
2441 max = t;
2445 else
2447 /* Otherwise, operate on each end of the range. */
2448 min = fold_unary_to_constant (code, TREE_TYPE (expr), vr0.min);
2449 max = fold_unary_to_constant (code, TREE_TYPE (expr), vr0.max);
2451 if (needs_overflow_infinity (TREE_TYPE (expr)))
2453 gcc_assert (code != NEGATE_EXPR && code != ABS_EXPR);
2455 /* If both sides have overflowed, we don't know
2456 anything. */
2457 if ((is_overflow_infinity (vr0.min)
2458 || TREE_OVERFLOW (min))
2459 && (is_overflow_infinity (vr0.max)
2460 || TREE_OVERFLOW (max)))
2462 set_value_range_to_varying (vr);
2463 return;
2466 if (is_overflow_infinity (vr0.min))
2467 min = vr0.min;
2468 else if (TREE_OVERFLOW (min))
2470 if (supports_overflow_infinity (TREE_TYPE (expr)))
2471 min = (tree_int_cst_sgn (min) >= 0
2472 ? positive_overflow_infinity (TREE_TYPE (min))
2473 : negative_overflow_infinity (TREE_TYPE (min)));
2474 else
2476 set_value_range_to_varying (vr);
2477 return;
2481 if (is_overflow_infinity (vr0.max))
2482 max = vr0.max;
2483 else if (TREE_OVERFLOW (max))
2485 if (supports_overflow_infinity (TREE_TYPE (expr)))
2486 max = (tree_int_cst_sgn (max) >= 0
2487 ? positive_overflow_infinity (TREE_TYPE (max))
2488 : negative_overflow_infinity (TREE_TYPE (max)));
2489 else
2491 set_value_range_to_varying (vr);
2492 return;
2498 cmp = compare_values (min, max);
2499 if (cmp == -2 || cmp == 1)
2501 /* If the new range has its limits swapped around (MIN > MAX),
2502 then the operation caused one of them to wrap around, mark
2503 the new range VARYING. */
2504 set_value_range_to_varying (vr);
2506 else
2507 set_value_range (vr, vr0.type, min, max, NULL);
2511 /* Extract range information from a conditional expression EXPR based on
2512 the ranges of each of its operands and the expression code. */
2514 static void
2515 extract_range_from_cond_expr (value_range_t *vr, tree expr)
2517 tree op0, op1;
2518 value_range_t vr0 = { VR_UNDEFINED, NULL_TREE, NULL_TREE, NULL };
2519 value_range_t vr1 = { VR_UNDEFINED, NULL_TREE, NULL_TREE, NULL };
2521 /* Get value ranges for each operand. For constant operands, create
2522 a new value range with the operand to simplify processing. */
2523 op0 = COND_EXPR_THEN (expr);
2524 if (TREE_CODE (op0) == SSA_NAME)
2525 vr0 = *(get_value_range (op0));
2526 else if (is_gimple_min_invariant (op0))
2527 set_value_range_to_value (&vr0, op0, NULL);
2528 else
2529 set_value_range_to_varying (&vr0);
2531 op1 = COND_EXPR_ELSE (expr);
2532 if (TREE_CODE (op1) == SSA_NAME)
2533 vr1 = *(get_value_range (op1));
2534 else if (is_gimple_min_invariant (op1))
2535 set_value_range_to_value (&vr1, op1, NULL);
2536 else
2537 set_value_range_to_varying (&vr1);
2539 /* The resulting value range is the union of the operand ranges */
2540 vrp_meet (&vr0, &vr1);
2541 copy_value_range (vr, &vr0);
2545 /* Extract range information from a comparison expression EXPR based
2546 on the range of its operand and the expression code. */
2548 static void
2549 extract_range_from_comparison (value_range_t *vr, tree expr)
2551 bool sop = false;
2552 tree val = vrp_evaluate_conditional_warnv (expr, false, &sop);
2554 /* A disadvantage of using a special infinity as an overflow
2555 representation is that we lose the ability to record overflow
2556 when we don't have an infinity. So we have to ignore a result
2557 which relies on overflow. */
2559 if (val && !is_overflow_infinity (val) && !sop)
2561 /* Since this expression was found on the RHS of an assignment,
2562 its type may be different from _Bool. Convert VAL to EXPR's
2563 type. */
2564 val = fold_convert (TREE_TYPE (expr), val);
2565 if (is_gimple_min_invariant (val))
2566 set_value_range_to_value (vr, val, vr->equiv);
2567 else
2568 set_value_range (vr, VR_RANGE, val, val, vr->equiv);
2570 else
2571 /* The result of a comparison is always true or false. */
2572 set_value_range_to_truthvalue (vr, TREE_TYPE (expr));
2576 /* Try to compute a useful range out of expression EXPR and store it
2577 in *VR. */
2579 static void
2580 extract_range_from_expr (value_range_t *vr, tree expr)
2582 enum tree_code code = TREE_CODE (expr);
2584 if (code == ASSERT_EXPR)
2585 extract_range_from_assert (vr, expr);
2586 else if (code == SSA_NAME)
2587 extract_range_from_ssa_name (vr, expr);
2588 else if (TREE_CODE_CLASS (code) == tcc_binary
2589 || code == TRUTH_ANDIF_EXPR
2590 || code == TRUTH_ORIF_EXPR
2591 || code == TRUTH_AND_EXPR
2592 || code == TRUTH_OR_EXPR
2593 || code == TRUTH_XOR_EXPR)
2594 extract_range_from_binary_expr (vr, expr);
2595 else if (TREE_CODE_CLASS (code) == tcc_unary)
2596 extract_range_from_unary_expr (vr, expr);
2597 else if (code == COND_EXPR)
2598 extract_range_from_cond_expr (vr, expr);
2599 else if (TREE_CODE_CLASS (code) == tcc_comparison)
2600 extract_range_from_comparison (vr, expr);
2601 else if (is_gimple_min_invariant (expr))
2602 set_value_range_to_value (vr, expr, NULL);
2603 else
2604 set_value_range_to_varying (vr);
2606 /* If we got a varying range from the tests above, try a final
2607 time to derive a nonnegative or nonzero range. This time
2608 relying primarily on generic routines in fold in conjunction
2609 with range data. */
2610 if (vr->type == VR_VARYING)
2612 bool sop = false;
2614 if (INTEGRAL_TYPE_P (TREE_TYPE (expr))
2615 && vrp_expr_computes_nonnegative (expr, &sop))
2616 set_value_range_to_nonnegative (vr, TREE_TYPE (expr),
2617 sop || is_overflow_infinity (expr));
2618 else if (vrp_expr_computes_nonzero (expr, &sop)
2619 && !sop)
2620 set_value_range_to_nonnull (vr, TREE_TYPE (expr));
2624 /* Given a range VR, a LOOP and a variable VAR, determine whether it
2625 would be profitable to adjust VR using scalar evolution information
2626 for VAR. If so, update VR with the new limits. */
2628 static void
2629 adjust_range_with_scev (value_range_t *vr, struct loop *loop, tree stmt,
2630 tree var)
2632 tree init, step, chrec, tmin, tmax, min, max, type;
2633 enum ev_direction dir;
2635 /* TODO. Don't adjust anti-ranges. An anti-range may provide
2636 better opportunities than a regular range, but I'm not sure. */
2637 if (vr->type == VR_ANTI_RANGE)
2638 return;
2640 chrec = instantiate_parameters (loop, analyze_scalar_evolution (loop, var));
2642 /* Like in PR19590, scev can return a constant function. */
2643 if (is_gimple_min_invariant (chrec))
2645 set_value_range (vr, VR_RANGE, chrec, chrec, vr->equiv);
2646 return;
2649 if (TREE_CODE (chrec) != POLYNOMIAL_CHREC)
2650 return;
2652 init = initial_condition_in_loop_num (chrec, loop->num);
2653 step = evolution_part_in_loop_num (chrec, loop->num);
2655 /* If STEP is symbolic, we can't know whether INIT will be the
2656 minimum or maximum value in the range. Also, unless INIT is
2657 a simple expression, compare_values and possibly other functions
2658 in tree-vrp won't be able to handle it. */
2659 if (step == NULL_TREE
2660 || !is_gimple_min_invariant (step)
2661 || !valid_value_p (init))
2662 return;
2664 dir = scev_direction (chrec);
2665 if (/* Do not adjust ranges if we do not know whether the iv increases
2666 or decreases, ... */
2667 dir == EV_DIR_UNKNOWN
2668 /* ... or if it may wrap. */
2669 || scev_probably_wraps_p (init, step, stmt, get_chrec_loop (chrec),
2670 true))
2671 return;
2673 /* We use TYPE_MIN_VALUE and TYPE_MAX_VALUE here instead of
2674 negative_overflow_infinity and positive_overflow_infinity,
2675 because we have concluded that the loop probably does not
2676 wrap. */
2678 type = TREE_TYPE (var);
2679 if (POINTER_TYPE_P (type) || !TYPE_MIN_VALUE (type))
2680 tmin = lower_bound_in_type (type, type);
2681 else
2682 tmin = TYPE_MIN_VALUE (type);
2683 if (POINTER_TYPE_P (type) || !TYPE_MAX_VALUE (type))
2684 tmax = upper_bound_in_type (type, type);
2685 else
2686 tmax = TYPE_MAX_VALUE (type);
2688 if (vr->type == VR_VARYING || vr->type == VR_UNDEFINED)
2690 min = tmin;
2691 max = tmax;
2693 /* For VARYING or UNDEFINED ranges, just about anything we get
2694 from scalar evolutions should be better. */
2696 if (dir == EV_DIR_DECREASES)
2697 max = init;
2698 else
2699 min = init;
2701 /* If we would create an invalid range, then just assume we
2702 know absolutely nothing. This may be over-conservative,
2703 but it's clearly safe, and should happen only in unreachable
2704 parts of code, or for invalid programs. */
2705 if (compare_values (min, max) == 1)
2706 return;
2708 set_value_range (vr, VR_RANGE, min, max, vr->equiv);
2710 else if (vr->type == VR_RANGE)
2712 min = vr->min;
2713 max = vr->max;
2715 if (dir == EV_DIR_DECREASES)
2717 /* INIT is the maximum value. If INIT is lower than VR->MAX
2718 but no smaller than VR->MIN, set VR->MAX to INIT. */
2719 if (compare_values (init, max) == -1)
2721 max = init;
2723 /* If we just created an invalid range with the minimum
2724 greater than the maximum, we fail conservatively.
2725 This should happen only in unreachable
2726 parts of code, or for invalid programs. */
2727 if (compare_values (min, max) == 1)
2728 return;
2731 /* According to the loop information, the variable does not
2732 overflow. If we think it does, probably because of an
2733 overflow due to arithmetic on a different INF value,
2734 reset now. */
2735 if (is_negative_overflow_infinity (min))
2736 min = tmin;
2738 else
2740 /* If INIT is bigger than VR->MIN, set VR->MIN to INIT. */
2741 if (compare_values (init, min) == 1)
2743 min = init;
2745 /* Again, avoid creating invalid range by failing. */
2746 if (compare_values (min, max) == 1)
2747 return;
2750 if (is_positive_overflow_infinity (max))
2751 max = tmax;
2754 set_value_range (vr, VR_RANGE, min, max, vr->equiv);
2758 /* Return true if VAR may overflow at STMT. This checks any available
2759 loop information to see if we can determine that VAR does not
2760 overflow. */
2762 static bool
2763 vrp_var_may_overflow (tree var, tree stmt)
2765 struct loop *l;
2766 tree chrec, init, step;
2768 if (current_loops == NULL)
2769 return true;
2771 l = loop_containing_stmt (stmt);
2772 if (l == NULL)
2773 return true;
2775 chrec = instantiate_parameters (l, analyze_scalar_evolution (l, var));
2776 if (TREE_CODE (chrec) != POLYNOMIAL_CHREC)
2777 return true;
2779 init = initial_condition_in_loop_num (chrec, l->num);
2780 step = evolution_part_in_loop_num (chrec, l->num);
2782 if (step == NULL_TREE
2783 || !is_gimple_min_invariant (step)
2784 || !valid_value_p (init))
2785 return true;
2787 /* If we get here, we know something useful about VAR based on the
2788 loop information. If it wraps, it may overflow. */
2790 if (scev_probably_wraps_p (init, step, stmt, get_chrec_loop (chrec),
2791 true))
2792 return true;
2794 if (dump_file && (dump_flags & TDF_DETAILS) != 0)
2796 print_generic_expr (dump_file, var, 0);
2797 fprintf (dump_file, ": loop information indicates does not overflow\n");
2800 return false;
2804 /* Given two numeric value ranges VR0, VR1 and a comparison code COMP:
2806 - Return BOOLEAN_TRUE_NODE if VR0 COMP VR1 always returns true for
2807 all the values in the ranges.
2809 - Return BOOLEAN_FALSE_NODE if the comparison always returns false.
2811 - Return NULL_TREE if it is not always possible to determine the
2812 value of the comparison.
2814 Also set *STRICT_OVERFLOW_P to indicate whether a range with an
2815 overflow infinity was used in the test. */
2818 static tree
2819 compare_ranges (enum tree_code comp, value_range_t *vr0, value_range_t *vr1,
2820 bool *strict_overflow_p)
2822 /* VARYING or UNDEFINED ranges cannot be compared. */
2823 if (vr0->type == VR_VARYING
2824 || vr0->type == VR_UNDEFINED
2825 || vr1->type == VR_VARYING
2826 || vr1->type == VR_UNDEFINED)
2827 return NULL_TREE;
2829 /* Anti-ranges need to be handled separately. */
2830 if (vr0->type == VR_ANTI_RANGE || vr1->type == VR_ANTI_RANGE)
2832 /* If both are anti-ranges, then we cannot compute any
2833 comparison. */
2834 if (vr0->type == VR_ANTI_RANGE && vr1->type == VR_ANTI_RANGE)
2835 return NULL_TREE;
2837 /* These comparisons are never statically computable. */
2838 if (comp == GT_EXPR
2839 || comp == GE_EXPR
2840 || comp == LT_EXPR
2841 || comp == LE_EXPR)
2842 return NULL_TREE;
2844 /* Equality can be computed only between a range and an
2845 anti-range. ~[VAL1, VAL2] == [VAL1, VAL2] is always false. */
2846 if (vr0->type == VR_RANGE)
2848 /* To simplify processing, make VR0 the anti-range. */
2849 value_range_t *tmp = vr0;
2850 vr0 = vr1;
2851 vr1 = tmp;
2854 gcc_assert (comp == NE_EXPR || comp == EQ_EXPR);
2856 if (compare_values_warnv (vr0->min, vr1->min, strict_overflow_p) == 0
2857 && compare_values_warnv (vr0->max, vr1->max, strict_overflow_p) == 0)
2858 return (comp == NE_EXPR) ? boolean_true_node : boolean_false_node;
2860 return NULL_TREE;
2863 if (!usable_range_p (vr0, strict_overflow_p)
2864 || !usable_range_p (vr1, strict_overflow_p))
2865 return NULL_TREE;
2867 /* Simplify processing. If COMP is GT_EXPR or GE_EXPR, switch the
2868 operands around and change the comparison code. */
2869 if (comp == GT_EXPR || comp == GE_EXPR)
2871 value_range_t *tmp;
2872 comp = (comp == GT_EXPR) ? LT_EXPR : LE_EXPR;
2873 tmp = vr0;
2874 vr0 = vr1;
2875 vr1 = tmp;
2878 if (comp == EQ_EXPR)
2880 /* Equality may only be computed if both ranges represent
2881 exactly one value. */
2882 if (compare_values_warnv (vr0->min, vr0->max, strict_overflow_p) == 0
2883 && compare_values_warnv (vr1->min, vr1->max, strict_overflow_p) == 0)
2885 int cmp_min = compare_values_warnv (vr0->min, vr1->min,
2886 strict_overflow_p);
2887 int cmp_max = compare_values_warnv (vr0->max, vr1->max,
2888 strict_overflow_p);
2889 if (cmp_min == 0 && cmp_max == 0)
2890 return boolean_true_node;
2891 else if (cmp_min != -2 && cmp_max != -2)
2892 return boolean_false_node;
2894 /* If [V0_MIN, V1_MAX] < [V1_MIN, V1_MAX] then V0 != V1. */
2895 else if (compare_values_warnv (vr0->min, vr1->max,
2896 strict_overflow_p) == 1
2897 || compare_values_warnv (vr1->min, vr0->max,
2898 strict_overflow_p) == 1)
2899 return boolean_false_node;
2901 return NULL_TREE;
2903 else if (comp == NE_EXPR)
2905 int cmp1, cmp2;
2907 /* If VR0 is completely to the left or completely to the right
2908 of VR1, they are always different. Notice that we need to
2909 make sure that both comparisons yield similar results to
2910 avoid comparing values that cannot be compared at
2911 compile-time. */
2912 cmp1 = compare_values_warnv (vr0->max, vr1->min, strict_overflow_p);
2913 cmp2 = compare_values_warnv (vr0->min, vr1->max, strict_overflow_p);
2914 if ((cmp1 == -1 && cmp2 == -1) || (cmp1 == 1 && cmp2 == 1))
2915 return boolean_true_node;
2917 /* If VR0 and VR1 represent a single value and are identical,
2918 return false. */
2919 else if (compare_values_warnv (vr0->min, vr0->max,
2920 strict_overflow_p) == 0
2921 && compare_values_warnv (vr1->min, vr1->max,
2922 strict_overflow_p) == 0
2923 && compare_values_warnv (vr0->min, vr1->min,
2924 strict_overflow_p) == 0
2925 && compare_values_warnv (vr0->max, vr1->max,
2926 strict_overflow_p) == 0)
2927 return boolean_false_node;
2929 /* Otherwise, they may or may not be different. */
2930 else
2931 return NULL_TREE;
2933 else if (comp == LT_EXPR || comp == LE_EXPR)
2935 int tst;
2937 /* If VR0 is to the left of VR1, return true. */
2938 tst = compare_values_warnv (vr0->max, vr1->min, strict_overflow_p);
2939 if ((comp == LT_EXPR && tst == -1)
2940 || (comp == LE_EXPR && (tst == -1 || tst == 0)))
2942 if (overflow_infinity_range_p (vr0)
2943 || overflow_infinity_range_p (vr1))
2944 *strict_overflow_p = true;
2945 return boolean_true_node;
2948 /* If VR0 is to the right of VR1, return false. */
2949 tst = compare_values_warnv (vr0->min, vr1->max, strict_overflow_p);
2950 if ((comp == LT_EXPR && (tst == 0 || tst == 1))
2951 || (comp == LE_EXPR && tst == 1))
2953 if (overflow_infinity_range_p (vr0)
2954 || overflow_infinity_range_p (vr1))
2955 *strict_overflow_p = true;
2956 return boolean_false_node;
2959 /* Otherwise, we don't know. */
2960 return NULL_TREE;
2963 gcc_unreachable ();
2967 /* Given a value range VR, a value VAL and a comparison code COMP, return
2968 BOOLEAN_TRUE_NODE if VR COMP VAL always returns true for all the
2969 values in VR. Return BOOLEAN_FALSE_NODE if the comparison
2970 always returns false. Return NULL_TREE if it is not always
2971 possible to determine the value of the comparison. Also set
2972 *STRICT_OVERFLOW_P to indicate whether a range with an overflow
2973 infinity was used in the test. */
2975 static tree
2976 compare_range_with_value (enum tree_code comp, value_range_t *vr, tree val,
2977 bool *strict_overflow_p)
2979 if (vr->type == VR_VARYING || vr->type == VR_UNDEFINED)
2980 return NULL_TREE;
2982 /* Anti-ranges need to be handled separately. */
2983 if (vr->type == VR_ANTI_RANGE)
2985 /* For anti-ranges, the only predicates that we can compute at
2986 compile time are equality and inequality. */
2987 if (comp == GT_EXPR
2988 || comp == GE_EXPR
2989 || comp == LT_EXPR
2990 || comp == LE_EXPR)
2991 return NULL_TREE;
2993 /* ~[VAL_1, VAL_2] OP VAL is known if VAL_1 <= VAL <= VAL_2. */
2994 if (value_inside_range (val, vr) == 1)
2995 return (comp == NE_EXPR) ? boolean_true_node : boolean_false_node;
2997 return NULL_TREE;
3000 if (!usable_range_p (vr, strict_overflow_p))
3001 return NULL_TREE;
3003 if (comp == EQ_EXPR)
3005 /* EQ_EXPR may only be computed if VR represents exactly
3006 one value. */
3007 if (compare_values_warnv (vr->min, vr->max, strict_overflow_p) == 0)
3009 int cmp = compare_values_warnv (vr->min, val, strict_overflow_p);
3010 if (cmp == 0)
3011 return boolean_true_node;
3012 else if (cmp == -1 || cmp == 1 || cmp == 2)
3013 return boolean_false_node;
3015 else if (compare_values_warnv (val, vr->min, strict_overflow_p) == -1
3016 || compare_values_warnv (vr->max, val, strict_overflow_p) == -1)
3017 return boolean_false_node;
3019 return NULL_TREE;
3021 else if (comp == NE_EXPR)
3023 /* If VAL is not inside VR, then they are always different. */
3024 if (compare_values_warnv (vr->max, val, strict_overflow_p) == -1
3025 || compare_values_warnv (vr->min, val, strict_overflow_p) == 1)
3026 return boolean_true_node;
3028 /* If VR represents exactly one value equal to VAL, then return
3029 false. */
3030 if (compare_values_warnv (vr->min, vr->max, strict_overflow_p) == 0
3031 && compare_values_warnv (vr->min, val, strict_overflow_p) == 0)
3032 return boolean_false_node;
3034 /* Otherwise, they may or may not be different. */
3035 return NULL_TREE;
3037 else if (comp == LT_EXPR || comp == LE_EXPR)
3039 int tst;
3041 /* If VR is to the left of VAL, return true. */
3042 tst = compare_values_warnv (vr->max, val, strict_overflow_p);
3043 if ((comp == LT_EXPR && tst == -1)
3044 || (comp == LE_EXPR && (tst == -1 || tst == 0)))
3046 if (overflow_infinity_range_p (vr))
3047 *strict_overflow_p = true;
3048 return boolean_true_node;
3051 /* If VR is to the right of VAL, return false. */
3052 tst = compare_values_warnv (vr->min, val, strict_overflow_p);
3053 if ((comp == LT_EXPR && (tst == 0 || tst == 1))
3054 || (comp == LE_EXPR && tst == 1))
3056 if (overflow_infinity_range_p (vr))
3057 *strict_overflow_p = true;
3058 return boolean_false_node;
3061 /* Otherwise, we don't know. */
3062 return NULL_TREE;
3064 else if (comp == GT_EXPR || comp == GE_EXPR)
3066 int tst;
3068 /* If VR is to the right of VAL, return true. */
3069 tst = compare_values_warnv (vr->min, val, strict_overflow_p);
3070 if ((comp == GT_EXPR && tst == 1)
3071 || (comp == GE_EXPR && (tst == 0 || tst == 1)))
3073 if (overflow_infinity_range_p (vr))
3074 *strict_overflow_p = true;
3075 return boolean_true_node;
3078 /* If VR is to the left of VAL, return false. */
3079 tst = compare_values_warnv (vr->max, val, strict_overflow_p);
3080 if ((comp == GT_EXPR && (tst == -1 || tst == 0))
3081 || (comp == GE_EXPR && tst == -1))
3083 if (overflow_infinity_range_p (vr))
3084 *strict_overflow_p = true;
3085 return boolean_false_node;
3088 /* Otherwise, we don't know. */
3089 return NULL_TREE;
3092 gcc_unreachable ();
3096 /* Debugging dumps. */
3098 void dump_value_range (FILE *, value_range_t *);
3099 void debug_value_range (value_range_t *);
3100 void dump_all_value_ranges (FILE *);
3101 void debug_all_value_ranges (void);
3102 void dump_vr_equiv (FILE *, bitmap);
3103 void debug_vr_equiv (bitmap);
3106 /* Dump value range VR to FILE. */
3108 void
3109 dump_value_range (FILE *file, value_range_t *vr)
3111 if (vr == NULL)
3112 fprintf (file, "[]");
3113 else if (vr->type == VR_UNDEFINED)
3114 fprintf (file, "UNDEFINED");
3115 else if (vr->type == VR_RANGE || vr->type == VR_ANTI_RANGE)
3117 tree type = TREE_TYPE (vr->min);
3119 fprintf (file, "%s[", (vr->type == VR_ANTI_RANGE) ? "~" : "");
3121 if (is_negative_overflow_infinity (vr->min))
3122 fprintf (file, "-INF(OVF)");
3123 else if (INTEGRAL_TYPE_P (type)
3124 && !TYPE_UNSIGNED (type)
3125 && vrp_val_is_min (vr->min))
3126 fprintf (file, "-INF");
3127 else
3128 print_generic_expr (file, vr->min, 0);
3130 fprintf (file, ", ");
3132 if (is_positive_overflow_infinity (vr->max))
3133 fprintf (file, "+INF(OVF)");
3134 else if (INTEGRAL_TYPE_P (type)
3135 && vrp_val_is_max (vr->max))
3136 fprintf (file, "+INF");
3137 else
3138 print_generic_expr (file, vr->max, 0);
3140 fprintf (file, "]");
3142 if (vr->equiv)
3144 bitmap_iterator bi;
3145 unsigned i, c = 0;
3147 fprintf (file, " EQUIVALENCES: { ");
3149 EXECUTE_IF_SET_IN_BITMAP (vr->equiv, 0, i, bi)
3151 print_generic_expr (file, ssa_name (i), 0);
3152 fprintf (file, " ");
3153 c++;
3156 fprintf (file, "} (%u elements)", c);
3159 else if (vr->type == VR_VARYING)
3160 fprintf (file, "VARYING");
3161 else
3162 fprintf (file, "INVALID RANGE");
3166 /* Dump value range VR to stderr. */
3168 void
3169 debug_value_range (value_range_t *vr)
3171 dump_value_range (stderr, vr);
3172 fprintf (stderr, "\n");
3176 /* Dump value ranges of all SSA_NAMEs to FILE. */
3178 void
3179 dump_all_value_ranges (FILE *file)
3181 size_t i;
3183 for (i = 0; i < num_ssa_names; i++)
3185 if (vr_value[i])
3187 print_generic_expr (file, ssa_name (i), 0);
3188 fprintf (file, ": ");
3189 dump_value_range (file, vr_value[i]);
3190 fprintf (file, "\n");
3194 fprintf (file, "\n");
3198 /* Dump all value ranges to stderr. */
3200 void
3201 debug_all_value_ranges (void)
3203 dump_all_value_ranges (stderr);
3207 /* Given a COND_EXPR COND of the form 'V OP W', and an SSA name V,
3208 create a new SSA name N and return the assertion assignment
3209 'V = ASSERT_EXPR <V, V OP W>'. */
3211 static tree
3212 build_assert_expr_for (tree cond, tree v)
3214 tree n, assertion;
3216 gcc_assert (TREE_CODE (v) == SSA_NAME);
3217 n = duplicate_ssa_name (v, NULL_TREE);
3219 if (COMPARISON_CLASS_P (cond))
3221 tree a = build2 (ASSERT_EXPR, TREE_TYPE (v), v, cond);
3222 assertion = build_gimple_modify_stmt (n, a);
3224 else if (TREE_CODE (cond) == TRUTH_NOT_EXPR)
3226 /* Given !V, build the assignment N = false. */
3227 tree op0 = TREE_OPERAND (cond, 0);
3228 gcc_assert (op0 == v);
3229 assertion = build_gimple_modify_stmt (n, boolean_false_node);
3231 else if (TREE_CODE (cond) == SSA_NAME)
3233 /* Given V, build the assignment N = true. */
3234 gcc_assert (v == cond);
3235 assertion = build_gimple_modify_stmt (n, boolean_true_node);
3237 else
3238 gcc_unreachable ();
3240 SSA_NAME_DEF_STMT (n) = assertion;
3242 /* The new ASSERT_EXPR, creates a new SSA name that replaces the
3243 operand of the ASSERT_EXPR. Register the new name and the old one
3244 in the replacement table so that we can fix the SSA web after
3245 adding all the ASSERT_EXPRs. */
3246 register_new_name_mapping (n, v);
3248 return assertion;
3252 /* Return false if EXPR is a predicate expression involving floating
3253 point values. */
3255 static inline bool
3256 fp_predicate (tree expr)
3258 return (COMPARISON_CLASS_P (expr)
3259 && FLOAT_TYPE_P (TREE_TYPE (TREE_OPERAND (expr, 0))));
3263 /* If the range of values taken by OP can be inferred after STMT executes,
3264 return the comparison code (COMP_CODE_P) and value (VAL_P) that
3265 describes the inferred range. Return true if a range could be
3266 inferred. */
3268 static bool
3269 infer_value_range (tree stmt, tree op, enum tree_code *comp_code_p, tree *val_p)
3271 *val_p = NULL_TREE;
3272 *comp_code_p = ERROR_MARK;
3274 /* Do not attempt to infer anything in names that flow through
3275 abnormal edges. */
3276 if (SSA_NAME_OCCURS_IN_ABNORMAL_PHI (op))
3277 return false;
3279 /* Similarly, don't infer anything from statements that may throw
3280 exceptions. */
3281 if (tree_could_throw_p (stmt))
3282 return false;
3284 /* If STMT is the last statement of a basic block with no
3285 successors, there is no point inferring anything about any of its
3286 operands. We would not be able to find a proper insertion point
3287 for the assertion, anyway. */
3288 if (stmt_ends_bb_p (stmt) && EDGE_COUNT (bb_for_stmt (stmt)->succs) == 0)
3289 return false;
3291 /* We can only assume that a pointer dereference will yield
3292 non-NULL if -fdelete-null-pointer-checks is enabled. */
3293 if (flag_delete_null_pointer_checks && POINTER_TYPE_P (TREE_TYPE (op)))
3295 unsigned num_uses, num_loads, num_stores;
3297 count_uses_and_derefs (op, stmt, &num_uses, &num_loads, &num_stores);
3298 if (num_loads + num_stores > 0)
3300 *val_p = build_int_cst (TREE_TYPE (op), 0);
3301 *comp_code_p = NE_EXPR;
3302 return true;
3306 return false;
3310 void dump_asserts_for (FILE *, tree);
3311 void debug_asserts_for (tree);
3312 void dump_all_asserts (FILE *);
3313 void debug_all_asserts (void);
3315 /* Dump all the registered assertions for NAME to FILE. */
3317 void
3318 dump_asserts_for (FILE *file, tree name)
3320 assert_locus_t loc;
3322 fprintf (file, "Assertions to be inserted for ");
3323 print_generic_expr (file, name, 0);
3324 fprintf (file, "\n");
3326 loc = asserts_for[SSA_NAME_VERSION (name)];
3327 while (loc)
3329 fprintf (file, "\t");
3330 print_generic_expr (file, bsi_stmt (loc->si), 0);
3331 fprintf (file, "\n\tBB #%d", loc->bb->index);
3332 if (loc->e)
3334 fprintf (file, "\n\tEDGE %d->%d", loc->e->src->index,
3335 loc->e->dest->index);
3336 dump_edge_info (file, loc->e, 0);
3338 fprintf (file, "\n\tPREDICATE: ");
3339 print_generic_expr (file, name, 0);
3340 fprintf (file, " %s ", tree_code_name[(int)loc->comp_code]);
3341 print_generic_expr (file, loc->val, 0);
3342 fprintf (file, "\n\n");
3343 loc = loc->next;
3346 fprintf (file, "\n");
3350 /* Dump all the registered assertions for NAME to stderr. */
3352 void
3353 debug_asserts_for (tree name)
3355 dump_asserts_for (stderr, name);
3359 /* Dump all the registered assertions for all the names to FILE. */
3361 void
3362 dump_all_asserts (FILE *file)
3364 unsigned i;
3365 bitmap_iterator bi;
3367 fprintf (file, "\nASSERT_EXPRs to be inserted\n\n");
3368 EXECUTE_IF_SET_IN_BITMAP (need_assert_for, 0, i, bi)
3369 dump_asserts_for (file, ssa_name (i));
3370 fprintf (file, "\n");
3374 /* Dump all the registered assertions for all the names to stderr. */
3376 void
3377 debug_all_asserts (void)
3379 dump_all_asserts (stderr);
3383 /* If NAME doesn't have an ASSERT_EXPR registered for asserting
3384 'NAME COMP_CODE VAL' at a location that dominates block BB or
3385 E->DEST, then register this location as a possible insertion point
3386 for ASSERT_EXPR <NAME, NAME COMP_CODE VAL>.
3388 BB, E and SI provide the exact insertion point for the new
3389 ASSERT_EXPR. If BB is NULL, then the ASSERT_EXPR is to be inserted
3390 on edge E. Otherwise, if E is NULL, the ASSERT_EXPR is inserted on
3391 BB. If SI points to a COND_EXPR or a SWITCH_EXPR statement, then E
3392 must not be NULL. */
3394 static void
3395 register_new_assert_for (tree name,
3396 enum tree_code comp_code,
3397 tree val,
3398 basic_block bb,
3399 edge e,
3400 block_stmt_iterator si)
3402 assert_locus_t n, loc, last_loc;
3403 bool found;
3404 basic_block dest_bb;
3406 #if defined ENABLE_CHECKING
3407 gcc_assert (bb == NULL || e == NULL);
3409 if (e == NULL)
3410 gcc_assert (TREE_CODE (bsi_stmt (si)) != COND_EXPR
3411 && TREE_CODE (bsi_stmt (si)) != SWITCH_EXPR);
3412 #endif
3414 /* The new assertion A will be inserted at BB or E. We need to
3415 determine if the new location is dominated by a previously
3416 registered location for A. If we are doing an edge insertion,
3417 assume that A will be inserted at E->DEST. Note that this is not
3418 necessarily true.
3420 If E is a critical edge, it will be split. But even if E is
3421 split, the new block will dominate the same set of blocks that
3422 E->DEST dominates.
3424 The reverse, however, is not true, blocks dominated by E->DEST
3425 will not be dominated by the new block created to split E. So,
3426 if the insertion location is on a critical edge, we will not use
3427 the new location to move another assertion previously registered
3428 at a block dominated by E->DEST. */
3429 dest_bb = (bb) ? bb : e->dest;
3431 /* If NAME already has an ASSERT_EXPR registered for COMP_CODE and
3432 VAL at a block dominating DEST_BB, then we don't need to insert a new
3433 one. Similarly, if the same assertion already exists at a block
3434 dominated by DEST_BB and the new location is not on a critical
3435 edge, then update the existing location for the assertion (i.e.,
3436 move the assertion up in the dominance tree).
3438 Note, this is implemented as a simple linked list because there
3439 should not be more than a handful of assertions registered per
3440 name. If this becomes a performance problem, a table hashed by
3441 COMP_CODE and VAL could be implemented. */
3442 loc = asserts_for[SSA_NAME_VERSION (name)];
3443 last_loc = loc;
3444 found = false;
3445 while (loc)
3447 if (loc->comp_code == comp_code
3448 && (loc->val == val
3449 || operand_equal_p (loc->val, val, 0)))
3451 /* If the assertion NAME COMP_CODE VAL has already been
3452 registered at a basic block that dominates DEST_BB, then
3453 we don't need to insert the same assertion again. Note
3454 that we don't check strict dominance here to avoid
3455 replicating the same assertion inside the same basic
3456 block more than once (e.g., when a pointer is
3457 dereferenced several times inside a block).
3459 An exception to this rule are edge insertions. If the
3460 new assertion is to be inserted on edge E, then it will
3461 dominate all the other insertions that we may want to
3462 insert in DEST_BB. So, if we are doing an edge
3463 insertion, don't do this dominance check. */
3464 if (e == NULL
3465 && dominated_by_p (CDI_DOMINATORS, dest_bb, loc->bb))
3466 return;
3468 /* Otherwise, if E is not a critical edge and DEST_BB
3469 dominates the existing location for the assertion, move
3470 the assertion up in the dominance tree by updating its
3471 location information. */
3472 if ((e == NULL || !EDGE_CRITICAL_P (e))
3473 && dominated_by_p (CDI_DOMINATORS, loc->bb, dest_bb))
3475 loc->bb = dest_bb;
3476 loc->e = e;
3477 loc->si = si;
3478 return;
3482 /* Update the last node of the list and move to the next one. */
3483 last_loc = loc;
3484 loc = loc->next;
3487 /* If we didn't find an assertion already registered for
3488 NAME COMP_CODE VAL, add a new one at the end of the list of
3489 assertions associated with NAME. */
3490 n = XNEW (struct assert_locus_d);
3491 n->bb = dest_bb;
3492 n->e = e;
3493 n->si = si;
3494 n->comp_code = comp_code;
3495 n->val = val;
3496 n->next = NULL;
3498 if (last_loc)
3499 last_loc->next = n;
3500 else
3501 asserts_for[SSA_NAME_VERSION (name)] = n;
3503 bitmap_set_bit (need_assert_for, SSA_NAME_VERSION (name));
3506 /* COND is a predicate which uses NAME. Extract a suitable test code
3507 and value and store them into *CODE_P and *VAL_P so the predicate
3508 is normalized to NAME *CODE_P *VAL_P.
3510 If no extraction was possible, return FALSE, otherwise return TRUE.
3512 If INVERT is true, then we invert the result stored into *CODE_P. */
3514 static bool
3515 extract_code_and_val_from_cond (tree name, tree cond, bool invert,
3516 enum tree_code *code_p, tree *val_p)
3518 enum tree_code comp_code;
3519 tree val;
3521 /* Predicates may be a single SSA name or NAME OP VAL. */
3522 if (cond == name)
3524 /* If the predicate is a name, it must be NAME, in which
3525 case we create the predicate NAME == true or
3526 NAME == false accordingly. */
3527 comp_code = EQ_EXPR;
3528 val = invert ? boolean_false_node : boolean_true_node;
3530 else
3532 /* Otherwise, we have a comparison of the form NAME COMP VAL
3533 or VAL COMP NAME. */
3534 if (name == TREE_OPERAND (cond, 1))
3536 /* If the predicate is of the form VAL COMP NAME, flip
3537 COMP around because we need to register NAME as the
3538 first operand in the predicate. */
3539 comp_code = swap_tree_comparison (TREE_CODE (cond));
3540 val = TREE_OPERAND (cond, 0);
3542 else
3544 /* The comparison is of the form NAME COMP VAL, so the
3545 comparison code remains unchanged. */
3546 comp_code = TREE_CODE (cond);
3547 val = TREE_OPERAND (cond, 1);
3550 /* Invert the comparison code as necessary. */
3551 if (invert)
3552 comp_code = invert_tree_comparison (comp_code, 0);
3554 /* VRP does not handle float types. */
3555 if (SCALAR_FLOAT_TYPE_P (TREE_TYPE (val)))
3556 return false;
3558 /* Do not register always-false predicates.
3559 FIXME: this works around a limitation in fold() when dealing with
3560 enumerations. Given 'enum { N1, N2 } x;', fold will not
3561 fold 'if (x > N2)' to 'if (0)'. */
3562 if ((comp_code == GT_EXPR || comp_code == LT_EXPR)
3563 && INTEGRAL_TYPE_P (TREE_TYPE (val)))
3565 tree min = TYPE_MIN_VALUE (TREE_TYPE (val));
3566 tree max = TYPE_MAX_VALUE (TREE_TYPE (val));
3568 if (comp_code == GT_EXPR
3569 && (!max
3570 || compare_values (val, max) == 0))
3571 return false;
3573 if (comp_code == LT_EXPR
3574 && (!min
3575 || compare_values (val, min) == 0))
3576 return false;
3579 *code_p = comp_code;
3580 *val_p = val;
3581 return true;
3584 /* OP is an operand of a truth value expression which is known to have
3585 a particular value. Register any asserts for OP and for any
3586 operands in OP's defining statement.
3588 If CODE is EQ_EXPR, then we want to register OP is zero (false),
3589 if CODE is NE_EXPR, then we want to register OP is nonzero (true). */
3591 static bool
3592 register_edge_assert_for_1 (tree op, enum tree_code code,
3593 edge e, block_stmt_iterator bsi)
3595 bool retval = false;
3596 tree op_def, rhs, val;
3598 /* We only care about SSA_NAMEs. */
3599 if (TREE_CODE (op) != SSA_NAME)
3600 return false;
3602 /* We know that OP will have a zero or nonzero value. If OP is used
3603 more than once go ahead and register an assert for OP.
3605 The FOUND_IN_SUBGRAPH support is not helpful in this situation as
3606 it will always be set for OP (because OP is used in a COND_EXPR in
3607 the subgraph). */
3608 if (!has_single_use (op))
3610 val = build_int_cst (TREE_TYPE (op), 0);
3611 register_new_assert_for (op, code, val, NULL, e, bsi);
3612 retval = true;
3615 /* Now look at how OP is set. If it's set from a comparison,
3616 a truth operation or some bit operations, then we may be able
3617 to register information about the operands of that assignment. */
3618 op_def = SSA_NAME_DEF_STMT (op);
3619 if (TREE_CODE (op_def) != GIMPLE_MODIFY_STMT)
3620 return retval;
3622 rhs = GIMPLE_STMT_OPERAND (op_def, 1);
3624 if (COMPARISON_CLASS_P (rhs))
3626 bool invert = (code == EQ_EXPR ? true : false);
3627 tree op0 = TREE_OPERAND (rhs, 0);
3628 tree op1 = TREE_OPERAND (rhs, 1);
3630 /* Conditionally register an assert for each SSA_NAME in the
3631 comparison. */
3632 if (TREE_CODE (op0) == SSA_NAME
3633 && !has_single_use (op0)
3634 && extract_code_and_val_from_cond (op0, rhs,
3635 invert, &code, &val))
3637 register_new_assert_for (op0, code, val, NULL, e, bsi);
3638 retval = true;
3641 /* Similarly for the second operand of the comparison. */
3642 if (TREE_CODE (op1) == SSA_NAME
3643 && !has_single_use (op1)
3644 && extract_code_and_val_from_cond (op1, rhs,
3645 invert, &code, &val))
3647 register_new_assert_for (op1, code, val, NULL, e, bsi);
3648 retval = true;
3651 else if ((code == NE_EXPR
3652 && (TREE_CODE (rhs) == TRUTH_AND_EXPR
3653 || TREE_CODE (rhs) == BIT_AND_EXPR))
3654 || (code == EQ_EXPR
3655 && (TREE_CODE (rhs) == TRUTH_OR_EXPR
3656 || TREE_CODE (rhs) == BIT_IOR_EXPR)))
3658 /* Recurse on each operand. */
3659 retval |= register_edge_assert_for_1 (TREE_OPERAND (rhs, 0),
3660 code, e, bsi);
3661 retval |= register_edge_assert_for_1 (TREE_OPERAND (rhs, 1),
3662 code, e, bsi);
3664 else if (TREE_CODE (rhs) == TRUTH_NOT_EXPR)
3666 /* Recurse, flipping CODE. */
3667 code = invert_tree_comparison (code, false);
3668 retval |= register_edge_assert_for_1 (TREE_OPERAND (rhs, 0),
3669 code, e, bsi);
3671 else if (TREE_CODE (rhs) == SSA_NAME)
3673 /* Recurse through the copy. */
3674 retval |= register_edge_assert_for_1 (rhs, code, e, bsi);
3676 else if (TREE_CODE (rhs) == NOP_EXPR
3677 || TREE_CODE (rhs) == CONVERT_EXPR
3678 || TREE_CODE (rhs) == NON_LVALUE_EXPR)
3680 /* Recurse through the type conversion. */
3681 retval |= register_edge_assert_for_1 (TREE_OPERAND (rhs, 0),
3682 code, e, bsi);
3685 return retval;
3688 /* Try to register an edge assertion for SSA name NAME on edge E for
3689 the condition COND contributing to the conditional jump pointed to by SI.
3690 Return true if an assertion for NAME could be registered. */
3692 static bool
3693 register_edge_assert_for (tree name, edge e, block_stmt_iterator si, tree cond)
3695 tree val;
3696 enum tree_code comp_code;
3697 bool retval = false;
3698 bool is_else_edge = (e->flags & EDGE_FALSE_VALUE) != 0;
3700 /* Do not attempt to infer anything in names that flow through
3701 abnormal edges. */
3702 if (SSA_NAME_OCCURS_IN_ABNORMAL_PHI (name))
3703 return false;
3705 if (!extract_code_and_val_from_cond (name, cond, is_else_edge,
3706 &comp_code, &val))
3707 return false;
3709 /* Only register an ASSERT_EXPR if NAME was found in the sub-graph
3710 reachable from E. */
3711 if (TEST_BIT (found_in_subgraph, SSA_NAME_VERSION (name)))
3713 register_new_assert_for (name, comp_code, val, NULL, e, si);
3714 retval = true;
3717 /* If COND is effectively an equality test of an SSA_NAME against
3718 the value zero or one, then we may be able to assert values
3719 for SSA_NAMEs which flow into COND. */
3721 /* In the case of NAME == 1 or NAME != 0, for TRUTH_AND_EXPR defining
3722 statement of NAME we can assert both operands of the TRUTH_AND_EXPR
3723 have nonzero value. */
3724 if (((comp_code == EQ_EXPR && integer_onep (val))
3725 || (comp_code == NE_EXPR && integer_zerop (val))))
3727 tree def_stmt = SSA_NAME_DEF_STMT (name);
3729 if (TREE_CODE (def_stmt) == GIMPLE_MODIFY_STMT
3730 && (TREE_CODE (GIMPLE_STMT_OPERAND (def_stmt, 1)) == TRUTH_AND_EXPR
3731 || TREE_CODE (GIMPLE_STMT_OPERAND (def_stmt, 1)) == BIT_AND_EXPR))
3733 tree op0 = TREE_OPERAND (GIMPLE_STMT_OPERAND (def_stmt, 1), 0);
3734 tree op1 = TREE_OPERAND (GIMPLE_STMT_OPERAND (def_stmt, 1), 1);
3735 retval |= register_edge_assert_for_1 (op0, NE_EXPR, e, si);
3736 retval |= register_edge_assert_for_1 (op1, NE_EXPR, e, si);
3740 /* In the case of NAME == 0 or NAME != 1, for TRUTH_OR_EXPR defining
3741 statement of NAME we can assert both operands of the TRUTH_OR_EXPR
3742 have zero value. */
3743 if (((comp_code == EQ_EXPR && integer_zerop (val))
3744 || (comp_code == NE_EXPR && integer_onep (val))))
3746 tree def_stmt = SSA_NAME_DEF_STMT (name);
3748 if (TREE_CODE (def_stmt) == GIMPLE_MODIFY_STMT
3749 && (TREE_CODE (GIMPLE_STMT_OPERAND (def_stmt, 1)) == TRUTH_OR_EXPR
3750 || TREE_CODE (GIMPLE_STMT_OPERAND (def_stmt, 1)) == BIT_IOR_EXPR))
3752 tree op0 = TREE_OPERAND (GIMPLE_STMT_OPERAND (def_stmt, 1), 0);
3753 tree op1 = TREE_OPERAND (GIMPLE_STMT_OPERAND (def_stmt, 1), 1);
3754 retval |= register_edge_assert_for_1 (op0, EQ_EXPR, e, si);
3755 retval |= register_edge_assert_for_1 (op1, EQ_EXPR, e, si);
3759 return retval;
3763 static bool find_assert_locations (basic_block bb);
3765 /* Determine whether the outgoing edges of BB should receive an
3766 ASSERT_EXPR for each of the operands of BB's LAST statement.
3767 The last statement of BB must be a COND_EXPR.
3769 If any of the sub-graphs rooted at BB have an interesting use of
3770 the predicate operands, an assert location node is added to the
3771 list of assertions for the corresponding operands. */
3773 static bool
3774 find_conditional_asserts (basic_block bb, tree last)
3776 bool need_assert;
3777 block_stmt_iterator bsi;
3778 tree op;
3779 edge_iterator ei;
3780 edge e;
3781 ssa_op_iter iter;
3783 need_assert = false;
3784 bsi = bsi_for_stmt (last);
3786 /* Look for uses of the operands in each of the sub-graphs
3787 rooted at BB. We need to check each of the outgoing edges
3788 separately, so that we know what kind of ASSERT_EXPR to
3789 insert. */
3790 FOR_EACH_EDGE (e, ei, bb->succs)
3792 if (e->dest == bb)
3793 continue;
3795 /* Remove the COND_EXPR operands from the FOUND_IN_SUBGRAPH bitmap.
3796 Otherwise, when we finish traversing each of the sub-graphs, we
3797 won't know whether the variables were found in the sub-graphs or
3798 if they had been found in a block upstream from BB.
3800 This is actually a bad idea is some cases, particularly jump
3801 threading. Consider a CFG like the following:
3811 Assume that one or more operands in the conditional at the
3812 end of block 0 are used in a conditional in block 2, but not
3813 anywhere in block 1. In this case we will not insert any
3814 assert statements in block 1, which may cause us to miss
3815 opportunities to optimize, particularly for jump threading. */
3816 FOR_EACH_SSA_TREE_OPERAND (op, last, iter, SSA_OP_USE)
3817 RESET_BIT (found_in_subgraph, SSA_NAME_VERSION (op));
3819 /* Traverse the strictly dominated sub-graph rooted at E->DEST
3820 to determine if any of the operands in the conditional
3821 predicate are used. */
3822 if (e->dest != bb)
3823 need_assert |= find_assert_locations (e->dest);
3825 /* Register the necessary assertions for each operand in the
3826 conditional predicate. */
3827 FOR_EACH_SSA_TREE_OPERAND (op, last, iter, SSA_OP_USE)
3828 need_assert |= register_edge_assert_for (op, e, bsi,
3829 COND_EXPR_COND (last));
3832 /* Finally, indicate that we have found the operands in the
3833 conditional. */
3834 FOR_EACH_SSA_TREE_OPERAND (op, last, iter, SSA_OP_USE)
3835 SET_BIT (found_in_subgraph, SSA_NAME_VERSION (op));
3837 return need_assert;
3840 /* Compare two case labels sorting first by the destination label uid
3841 and then by the case value. */
3843 static int
3844 compare_case_labels (const void *p1, const void *p2)
3846 tree case1 = *(tree *)p1;
3847 tree case2 = *(tree *)p2;
3848 unsigned int uid1 = DECL_UID (CASE_LABEL (case1));
3849 unsigned int uid2 = DECL_UID (CASE_LABEL (case2));
3851 if (uid1 < uid2)
3852 return -1;
3853 else if (uid1 == uid2)
3855 /* Make sure the default label is first in a group. */
3856 if (!CASE_LOW (case1))
3857 return -1;
3858 else if (!CASE_LOW (case2))
3859 return 1;
3860 else
3861 return tree_int_cst_compare (CASE_LOW (case1), CASE_LOW (case2));
3863 else
3864 return 1;
3867 /* Determine whether the outgoing edges of BB should receive an
3868 ASSERT_EXPR for each of the operands of BB's LAST statement.
3869 The last statement of BB must be a SWITCH_EXPR.
3871 If any of the sub-graphs rooted at BB have an interesting use of
3872 the predicate operands, an assert location node is added to the
3873 list of assertions for the corresponding operands. */
3875 static bool
3876 find_switch_asserts (basic_block bb, tree last)
3878 bool need_assert;
3879 block_stmt_iterator bsi;
3880 tree op, cond;
3881 edge e;
3882 tree vec = SWITCH_LABELS (last), vec2;
3883 size_t n = TREE_VEC_LENGTH (vec);
3884 unsigned int idx;
3886 need_assert = false;
3887 bsi = bsi_for_stmt (last);
3888 op = TREE_OPERAND (last, 0);
3889 if (TREE_CODE (op) != SSA_NAME)
3890 return false;
3892 /* Build a vector of case labels sorted by destination label. */
3893 vec2 = make_tree_vec (n);
3894 for (idx = 0; idx < n; ++idx)
3895 TREE_VEC_ELT (vec2, idx) = TREE_VEC_ELT (vec, idx);
3896 qsort (&TREE_VEC_ELT (vec2, 0), n, sizeof (tree), compare_case_labels);
3898 for (idx = 0; idx < n; ++idx)
3900 tree min, max;
3901 tree cl = TREE_VEC_ELT (vec2, idx);
3903 min = CASE_LOW (cl);
3904 max = CASE_HIGH (cl);
3906 /* If there are multiple case labels with the same destination
3907 we need to combine them to a single value range for the edge. */
3908 if (idx + 1 < n
3909 && CASE_LABEL (cl) == CASE_LABEL (TREE_VEC_ELT (vec2, idx + 1)))
3911 /* Skip labels until the last of the group. */
3912 do {
3913 ++idx;
3914 } while (idx < n
3915 && CASE_LABEL (cl) == CASE_LABEL (TREE_VEC_ELT (vec2, idx)));
3916 --idx;
3918 /* Pick up the maximum of the case label range. */
3919 if (CASE_HIGH (TREE_VEC_ELT (vec2, idx)))
3920 max = CASE_HIGH (TREE_VEC_ELT (vec2, idx));
3921 else
3922 max = CASE_LOW (TREE_VEC_ELT (vec2, idx));
3925 /* Nothing to do if the range includes the default label until we
3926 can register anti-ranges. */
3927 if (min == NULL_TREE)
3928 continue;
3930 /* Find the edge to register the assert expr on. */
3931 e = find_edge (bb, label_to_block (CASE_LABEL (cl)));
3933 /* Remove the SWITCH_EXPR operand from the FOUND_IN_SUBGRAPH bitmap.
3934 Otherwise, when we finish traversing each of the sub-graphs, we
3935 won't know whether the variables were found in the sub-graphs or
3936 if they had been found in a block upstream from BB. */
3937 RESET_BIT (found_in_subgraph, SSA_NAME_VERSION (op));
3939 /* Traverse the strictly dominated sub-graph rooted at E->DEST
3940 to determine if any of the operands in the conditional
3941 predicate are used. */
3942 if (e->dest != bb)
3943 need_assert |= find_assert_locations (e->dest);
3945 /* Register the necessary assertions for the operand in the
3946 SWITCH_EXPR. */
3947 cond = build2 (max ? GE_EXPR : EQ_EXPR, boolean_type_node,
3948 op, fold_convert (TREE_TYPE (op), min));
3949 need_assert |= register_edge_assert_for (op, e, bsi, cond);
3950 if (max)
3952 cond = build2 (LE_EXPR, boolean_type_node,
3953 op, fold_convert (TREE_TYPE (op), max));
3954 need_assert |= register_edge_assert_for (op, e, bsi, cond);
3958 /* Finally, indicate that we have found the operand in the
3959 SWITCH_EXPR. */
3960 SET_BIT (found_in_subgraph, SSA_NAME_VERSION (op));
3962 return need_assert;
3966 /* Traverse all the statements in block BB looking for statements that
3967 may generate useful assertions for the SSA names in their operand.
3968 If a statement produces a useful assertion A for name N_i, then the
3969 list of assertions already generated for N_i is scanned to
3970 determine if A is actually needed.
3972 If N_i already had the assertion A at a location dominating the
3973 current location, then nothing needs to be done. Otherwise, the
3974 new location for A is recorded instead.
3976 1- For every statement S in BB, all the variables used by S are
3977 added to bitmap FOUND_IN_SUBGRAPH.
3979 2- If statement S uses an operand N in a way that exposes a known
3980 value range for N, then if N was not already generated by an
3981 ASSERT_EXPR, create a new assert location for N. For instance,
3982 if N is a pointer and the statement dereferences it, we can
3983 assume that N is not NULL.
3985 3- COND_EXPRs are a special case of #2. We can derive range
3986 information from the predicate but need to insert different
3987 ASSERT_EXPRs for each of the sub-graphs rooted at the
3988 conditional block. If the last statement of BB is a conditional
3989 expression of the form 'X op Y', then
3991 a) Remove X and Y from the set FOUND_IN_SUBGRAPH.
3993 b) If the conditional is the only entry point to the sub-graph
3994 corresponding to the THEN_CLAUSE, recurse into it. On
3995 return, if X and/or Y are marked in FOUND_IN_SUBGRAPH, then
3996 an ASSERT_EXPR is added for the corresponding variable.
3998 c) Repeat step (b) on the ELSE_CLAUSE.
4000 d) Mark X and Y in FOUND_IN_SUBGRAPH.
4002 For instance,
4004 if (a == 9)
4005 b = a;
4006 else
4007 b = c + 1;
4009 In this case, an assertion on the THEN clause is useful to
4010 determine that 'a' is always 9 on that edge. However, an assertion
4011 on the ELSE clause would be unnecessary.
4013 4- If BB does not end in a conditional expression, then we recurse
4014 into BB's dominator children.
4016 At the end of the recursive traversal, every SSA name will have a
4017 list of locations where ASSERT_EXPRs should be added. When a new
4018 location for name N is found, it is registered by calling
4019 register_new_assert_for. That function keeps track of all the
4020 registered assertions to prevent adding unnecessary assertions.
4021 For instance, if a pointer P_4 is dereferenced more than once in a
4022 dominator tree, only the location dominating all the dereference of
4023 P_4 will receive an ASSERT_EXPR.
4025 If this function returns true, then it means that there are names
4026 for which we need to generate ASSERT_EXPRs. Those assertions are
4027 inserted by process_assert_insertions. */
4029 static bool
4030 find_assert_locations (basic_block bb)
4032 block_stmt_iterator si;
4033 tree last, phi;
4034 bool need_assert;
4035 basic_block son;
4037 if (TEST_BIT (blocks_visited, bb->index))
4038 return false;
4040 SET_BIT (blocks_visited, bb->index);
4042 need_assert = false;
4044 /* Traverse all PHI nodes in BB marking used operands. */
4045 for (phi = phi_nodes (bb); phi; phi = PHI_CHAIN (phi))
4047 use_operand_p arg_p;
4048 ssa_op_iter i;
4050 FOR_EACH_PHI_ARG (arg_p, phi, i, SSA_OP_USE)
4052 tree arg = USE_FROM_PTR (arg_p);
4053 if (TREE_CODE (arg) == SSA_NAME)
4055 gcc_assert (is_gimple_reg (PHI_RESULT (phi)));
4056 SET_BIT (found_in_subgraph, SSA_NAME_VERSION (arg));
4061 /* Traverse all the statements in BB marking used names and looking
4062 for statements that may infer assertions for their used operands. */
4063 last = NULL_TREE;
4064 for (si = bsi_start (bb); !bsi_end_p (si); bsi_next (&si))
4066 tree stmt, op;
4067 ssa_op_iter i;
4069 stmt = bsi_stmt (si);
4071 /* See if we can derive an assertion for any of STMT's operands. */
4072 FOR_EACH_SSA_TREE_OPERAND (op, stmt, i, SSA_OP_USE)
4074 tree value;
4075 enum tree_code comp_code;
4077 /* Mark OP in bitmap FOUND_IN_SUBGRAPH. If STMT is inside
4078 the sub-graph of a conditional block, when we return from
4079 this recursive walk, our parent will use the
4080 FOUND_IN_SUBGRAPH bitset to determine if one of the
4081 operands it was looking for was present in the sub-graph. */
4082 SET_BIT (found_in_subgraph, SSA_NAME_VERSION (op));
4084 /* If OP is used in such a way that we can infer a value
4085 range for it, and we don't find a previous assertion for
4086 it, create a new assertion location node for OP. */
4087 if (infer_value_range (stmt, op, &comp_code, &value))
4089 /* If we are able to infer a nonzero value range for OP,
4090 then walk backwards through the use-def chain to see if OP
4091 was set via a typecast.
4093 If so, then we can also infer a nonzero value range
4094 for the operand of the NOP_EXPR. */
4095 if (comp_code == NE_EXPR && integer_zerop (value))
4097 tree t = op;
4098 tree def_stmt = SSA_NAME_DEF_STMT (t);
4100 while (TREE_CODE (def_stmt) == GIMPLE_MODIFY_STMT
4101 && TREE_CODE
4102 (GIMPLE_STMT_OPERAND (def_stmt, 1)) == NOP_EXPR
4103 && TREE_CODE
4104 (TREE_OPERAND (GIMPLE_STMT_OPERAND (def_stmt, 1),
4105 0)) == SSA_NAME
4106 && POINTER_TYPE_P
4107 (TREE_TYPE (TREE_OPERAND
4108 (GIMPLE_STMT_OPERAND (def_stmt,
4109 1), 0))))
4111 t = TREE_OPERAND (GIMPLE_STMT_OPERAND (def_stmt, 1), 0);
4112 def_stmt = SSA_NAME_DEF_STMT (t);
4114 /* Note we want to register the assert for the
4115 operand of the NOP_EXPR after SI, not after the
4116 conversion. */
4117 if (! has_single_use (t))
4119 register_new_assert_for (t, comp_code, value,
4120 bb, NULL, si);
4121 need_assert = true;
4126 /* If OP is used only once, namely in this STMT, don't
4127 bother creating an ASSERT_EXPR for it. Such an
4128 ASSERT_EXPR would do nothing but increase compile time. */
4129 if (!has_single_use (op))
4131 register_new_assert_for (op, comp_code, value, bb, NULL, si);
4132 need_assert = true;
4137 /* Remember the last statement of the block. */
4138 last = stmt;
4141 /* If BB's last statement is a conditional expression
4142 involving integer operands, recurse into each of the sub-graphs
4143 rooted at BB to determine if we need to add ASSERT_EXPRs. */
4144 if (last
4145 && TREE_CODE (last) == COND_EXPR
4146 && !fp_predicate (COND_EXPR_COND (last))
4147 && !ZERO_SSA_OPERANDS (last, SSA_OP_USE))
4148 need_assert |= find_conditional_asserts (bb, last);
4150 if (last
4151 && TREE_CODE (last) == SWITCH_EXPR
4152 && !ZERO_SSA_OPERANDS (last, SSA_OP_USE))
4153 need_assert |= find_switch_asserts (bb, last);
4155 /* Recurse into the dominator children of BB. */
4156 for (son = first_dom_son (CDI_DOMINATORS, bb);
4157 son;
4158 son = next_dom_son (CDI_DOMINATORS, son))
4159 need_assert |= find_assert_locations (son);
4161 return need_assert;
4165 /* Create an ASSERT_EXPR for NAME and insert it in the location
4166 indicated by LOC. Return true if we made any edge insertions. */
4168 static bool
4169 process_assert_insertions_for (tree name, assert_locus_t loc)
4171 /* Build the comparison expression NAME_i COMP_CODE VAL. */
4172 tree stmt, cond, assert_expr;
4173 edge_iterator ei;
4174 edge e;
4176 cond = build2 (loc->comp_code, boolean_type_node, name, loc->val);
4177 assert_expr = build_assert_expr_for (cond, name);
4179 if (loc->e)
4181 /* We have been asked to insert the assertion on an edge. This
4182 is used only by COND_EXPR and SWITCH_EXPR assertions. */
4183 #if defined ENABLE_CHECKING
4184 gcc_assert (TREE_CODE (bsi_stmt (loc->si)) == COND_EXPR
4185 || TREE_CODE (bsi_stmt (loc->si)) == SWITCH_EXPR);
4186 #endif
4188 bsi_insert_on_edge (loc->e, assert_expr);
4189 return true;
4192 /* Otherwise, we can insert right after LOC->SI iff the
4193 statement must not be the last statement in the block. */
4194 stmt = bsi_stmt (loc->si);
4195 if (!stmt_ends_bb_p (stmt))
4197 bsi_insert_after (&loc->si, assert_expr, BSI_SAME_STMT);
4198 return false;
4201 /* If STMT must be the last statement in BB, we can only insert new
4202 assertions on the non-abnormal edge out of BB. Note that since
4203 STMT is not control flow, there may only be one non-abnormal edge
4204 out of BB. */
4205 FOR_EACH_EDGE (e, ei, loc->bb->succs)
4206 if (!(e->flags & EDGE_ABNORMAL))
4208 bsi_insert_on_edge (e, assert_expr);
4209 return true;
4212 gcc_unreachable ();
4216 /* Process all the insertions registered for every name N_i registered
4217 in NEED_ASSERT_FOR. The list of assertions to be inserted are
4218 found in ASSERTS_FOR[i]. */
4220 static void
4221 process_assert_insertions (void)
4223 unsigned i;
4224 bitmap_iterator bi;
4225 bool update_edges_p = false;
4226 int num_asserts = 0;
4228 if (dump_file && (dump_flags & TDF_DETAILS))
4229 dump_all_asserts (dump_file);
4231 EXECUTE_IF_SET_IN_BITMAP (need_assert_for, 0, i, bi)
4233 assert_locus_t loc = asserts_for[i];
4234 gcc_assert (loc);
4236 while (loc)
4238 assert_locus_t next = loc->next;
4239 update_edges_p |= process_assert_insertions_for (ssa_name (i), loc);
4240 free (loc);
4241 loc = next;
4242 num_asserts++;
4246 if (update_edges_p)
4247 bsi_commit_edge_inserts ();
4249 if (dump_file && (dump_flags & TDF_STATS))
4250 fprintf (dump_file, "\nNumber of ASSERT_EXPR expressions inserted: %d\n\n",
4251 num_asserts);
4255 /* Traverse the flowgraph looking for conditional jumps to insert range
4256 expressions. These range expressions are meant to provide information
4257 to optimizations that need to reason in terms of value ranges. They
4258 will not be expanded into RTL. For instance, given:
4260 x = ...
4261 y = ...
4262 if (x < y)
4263 y = x - 2;
4264 else
4265 x = y + 3;
4267 this pass will transform the code into:
4269 x = ...
4270 y = ...
4271 if (x < y)
4273 x = ASSERT_EXPR <x, x < y>
4274 y = x - 2
4276 else
4278 y = ASSERT_EXPR <y, x <= y>
4279 x = y + 3
4282 The idea is that once copy and constant propagation have run, other
4283 optimizations will be able to determine what ranges of values can 'x'
4284 take in different paths of the code, simply by checking the reaching
4285 definition of 'x'. */
4287 static void
4288 insert_range_assertions (void)
4290 edge e;
4291 edge_iterator ei;
4292 bool update_ssa_p;
4294 found_in_subgraph = sbitmap_alloc (num_ssa_names);
4295 sbitmap_zero (found_in_subgraph);
4297 blocks_visited = sbitmap_alloc (last_basic_block);
4298 sbitmap_zero (blocks_visited);
4300 need_assert_for = BITMAP_ALLOC (NULL);
4301 asserts_for = XCNEWVEC (assert_locus_t, num_ssa_names);
4303 calculate_dominance_info (CDI_DOMINATORS);
4305 update_ssa_p = false;
4306 FOR_EACH_EDGE (e, ei, ENTRY_BLOCK_PTR->succs)
4307 if (find_assert_locations (e->dest))
4308 update_ssa_p = true;
4310 if (update_ssa_p)
4312 process_assert_insertions ();
4313 update_ssa (TODO_update_ssa_no_phi);
4316 if (dump_file && (dump_flags & TDF_DETAILS))
4318 fprintf (dump_file, "\nSSA form after inserting ASSERT_EXPRs\n");
4319 dump_function_to_file (current_function_decl, dump_file, dump_flags);
4322 sbitmap_free (found_in_subgraph);
4323 free (asserts_for);
4324 BITMAP_FREE (need_assert_for);
4327 /* Checks one ARRAY_REF in REF, located at LOCUS. Ignores flexible arrays
4328 and "struct" hacks. If VRP can determine that the
4329 array subscript is a constant, check if it is outside valid
4330 range. If the array subscript is a RANGE, warn if it is
4331 non-overlapping with valid range.
4332 IGNORE_OFF_BY_ONE is true if the ARRAY_REF is inside a ADDR_EXPR. */
4334 static void
4335 check_array_ref (tree ref, location_t* locus, bool ignore_off_by_one)
4337 value_range_t* vr = NULL;
4338 tree low_sub, up_sub;
4339 tree low_bound, up_bound = array_ref_up_bound (ref);
4341 low_sub = up_sub = TREE_OPERAND (ref, 1);
4343 if (!up_bound || !locus || TREE_NO_WARNING (ref)
4344 || TREE_CODE (up_bound) != INTEGER_CST
4345 /* Can not check flexible arrays. */
4346 || (TYPE_SIZE (TREE_TYPE (ref)) == NULL_TREE
4347 && TYPE_DOMAIN (TREE_TYPE (ref)) != NULL_TREE
4348 && TYPE_MAX_VALUE (TYPE_DOMAIN (TREE_TYPE (ref))) == NULL_TREE)
4349 /* Accesses after the end of arrays of size 0 (gcc
4350 extension) and 1 are likely intentional ("struct
4351 hack"). */
4352 || compare_tree_int (up_bound, 1) <= 0)
4353 return;
4355 low_bound = array_ref_low_bound (ref);
4357 if (TREE_CODE (low_sub) == SSA_NAME)
4359 vr = get_value_range (low_sub);
4360 if (vr->type == VR_RANGE || vr->type == VR_ANTI_RANGE)
4362 low_sub = vr->type == VR_RANGE ? vr->max : vr->min;
4363 up_sub = vr->type == VR_RANGE ? vr->min : vr->max;
4367 if (vr && vr->type == VR_ANTI_RANGE)
4369 if (TREE_CODE (up_sub) == INTEGER_CST
4370 && tree_int_cst_lt (up_bound, up_sub)
4371 && TREE_CODE (low_sub) == INTEGER_CST
4372 && tree_int_cst_lt (low_sub, low_bound))
4374 warning (OPT_Warray_bounds,
4375 "%Harray subscript is outside array bounds", locus);
4376 TREE_NO_WARNING (ref) = 1;
4379 else if (TREE_CODE (up_sub) == INTEGER_CST
4380 && tree_int_cst_lt (up_bound, up_sub)
4381 && !tree_int_cst_equal (up_bound, up_sub)
4382 && (!ignore_off_by_one
4383 || !tree_int_cst_equal (int_const_binop (PLUS_EXPR,
4384 up_bound,
4385 integer_one_node,
4387 up_sub)))
4389 warning (OPT_Warray_bounds, "%Harray subscript is above array bounds",
4390 locus);
4391 TREE_NO_WARNING (ref) = 1;
4393 else if (TREE_CODE (low_sub) == INTEGER_CST
4394 && tree_int_cst_lt (low_sub, low_bound))
4396 warning (OPT_Warray_bounds, "%Harray subscript is below array bounds",
4397 locus);
4398 TREE_NO_WARNING (ref) = 1;
4402 /* Searches if the expr T, located at LOCATION computes
4403 address of an ARRAY_REF, and call check_array_ref on it. */
4405 static void
4406 search_for_addr_array(tree t, location_t* location)
4408 while (TREE_CODE (t) == SSA_NAME)
4410 t = SSA_NAME_DEF_STMT (t);
4411 if (TREE_CODE (t) != GIMPLE_MODIFY_STMT)
4412 return;
4413 t = GIMPLE_STMT_OPERAND (t, 1);
4417 /* We are only interested in addresses of ARRAY_REF's. */
4418 if (TREE_CODE (t) != ADDR_EXPR)
4419 return;
4421 /* Check each ARRAY_REFs in the reference chain. */
4424 if (TREE_CODE (t) == ARRAY_REF)
4425 check_array_ref (t, location, true /*ignore_off_by_one*/);
4427 t = TREE_OPERAND(t,0);
4429 while (handled_component_p (t));
4432 /* walk_tree() callback that checks if *TP is
4433 an ARRAY_REF inside an ADDR_EXPR (in which an array
4434 subscript one outside the valid range is allowed). Call
4435 check_array_ref for each ARRAY_REF found. The location is
4436 passed in DATA. */
4438 static tree
4439 check_array_bounds (tree *tp, int *walk_subtree, void *data)
4441 tree t = *tp;
4442 tree stmt = (tree)data;
4443 location_t *location = EXPR_LOCUS (stmt);
4445 *walk_subtree = TRUE;
4447 if (TREE_CODE (t) == ARRAY_REF)
4448 check_array_ref (t, location, false /*ignore_off_by_one*/);
4450 if (TREE_CODE (t) == INDIRECT_REF
4451 || (TREE_CODE (t) == RETURN_EXPR && TREE_OPERAND (t, 0)))
4452 search_for_addr_array (TREE_OPERAND (t, 0), location);
4453 else if (TREE_CODE (t) == CALL_EXPR)
4455 tree arg;
4456 call_expr_arg_iterator iter;
4458 FOR_EACH_CALL_EXPR_ARG (arg, iter, t)
4459 search_for_addr_array (arg, location);
4462 if (TREE_CODE (t) == ADDR_EXPR)
4463 *walk_subtree = FALSE;
4465 return NULL_TREE;
4468 /* Walk over all statements of all reachable BBs and call check_array_bounds
4469 on them. */
4471 static void
4472 check_all_array_refs (void)
4474 basic_block bb;
4475 block_stmt_iterator si;
4477 FOR_EACH_BB (bb)
4479 /* Skip bb's that are clearly unreachable. */
4480 if (single_pred_p (bb))
4482 basic_block pred_bb = EDGE_PRED (bb, 0)->src;
4483 tree ls = NULL_TREE;
4485 if (!bsi_end_p (bsi_last (pred_bb)))
4486 ls = bsi_stmt (bsi_last (pred_bb));
4488 if (ls && TREE_CODE (ls) == COND_EXPR
4489 && ((COND_EXPR_COND (ls) == boolean_false_node
4490 && (EDGE_PRED (bb, 0)->flags & EDGE_TRUE_VALUE))
4491 || (COND_EXPR_COND (ls) == boolean_true_node
4492 && (EDGE_PRED (bb, 0)->flags & EDGE_FALSE_VALUE))))
4493 continue;
4495 for (si = bsi_start (bb); !bsi_end_p (si); bsi_next (&si))
4496 walk_tree (bsi_stmt_ptr (si), check_array_bounds,
4497 bsi_stmt (si), NULL);
4501 /* Convert range assertion expressions into the implied copies and
4502 copy propagate away the copies. Doing the trivial copy propagation
4503 here avoids the need to run the full copy propagation pass after
4504 VRP.
4506 FIXME, this will eventually lead to copy propagation removing the
4507 names that had useful range information attached to them. For
4508 instance, if we had the assertion N_i = ASSERT_EXPR <N_j, N_j > 3>,
4509 then N_i will have the range [3, +INF].
4511 However, by converting the assertion into the implied copy
4512 operation N_i = N_j, we will then copy-propagate N_j into the uses
4513 of N_i and lose the range information. We may want to hold on to
4514 ASSERT_EXPRs a little while longer as the ranges could be used in
4515 things like jump threading.
4517 The problem with keeping ASSERT_EXPRs around is that passes after
4518 VRP need to handle them appropriately.
4520 Another approach would be to make the range information a first
4521 class property of the SSA_NAME so that it can be queried from
4522 any pass. This is made somewhat more complex by the need for
4523 multiple ranges to be associated with one SSA_NAME. */
4525 static void
4526 remove_range_assertions (void)
4528 basic_block bb;
4529 block_stmt_iterator si;
4531 /* Note that the BSI iterator bump happens at the bottom of the
4532 loop and no bump is necessary if we're removing the statement
4533 referenced by the current BSI. */
4534 FOR_EACH_BB (bb)
4535 for (si = bsi_start (bb); !bsi_end_p (si);)
4537 tree stmt = bsi_stmt (si);
4538 tree use_stmt;
4540 if (TREE_CODE (stmt) == GIMPLE_MODIFY_STMT
4541 && TREE_CODE (GIMPLE_STMT_OPERAND (stmt, 1)) == ASSERT_EXPR)
4543 tree rhs = GIMPLE_STMT_OPERAND (stmt, 1), var;
4544 tree cond = fold (ASSERT_EXPR_COND (rhs));
4545 use_operand_p use_p;
4546 imm_use_iterator iter;
4548 gcc_assert (cond != boolean_false_node);
4550 /* Propagate the RHS into every use of the LHS. */
4551 var = ASSERT_EXPR_VAR (rhs);
4552 FOR_EACH_IMM_USE_STMT (use_stmt, iter,
4553 GIMPLE_STMT_OPERAND (stmt, 0))
4554 FOR_EACH_IMM_USE_ON_STMT (use_p, iter)
4556 SET_USE (use_p, var);
4557 gcc_assert (TREE_CODE (var) == SSA_NAME);
4560 /* And finally, remove the copy, it is not needed. */
4561 bsi_remove (&si, true);
4562 release_defs (stmt);
4564 else
4565 bsi_next (&si);
4568 sbitmap_free (blocks_visited);
4572 /* Return true if STMT is interesting for VRP. */
4574 static bool
4575 stmt_interesting_for_vrp (tree stmt)
4577 if (TREE_CODE (stmt) == PHI_NODE
4578 && is_gimple_reg (PHI_RESULT (stmt))
4579 && (INTEGRAL_TYPE_P (TREE_TYPE (PHI_RESULT (stmt)))
4580 || POINTER_TYPE_P (TREE_TYPE (PHI_RESULT (stmt)))))
4581 return true;
4582 else if (TREE_CODE (stmt) == GIMPLE_MODIFY_STMT)
4584 tree lhs = GIMPLE_STMT_OPERAND (stmt, 0);
4585 tree rhs = GIMPLE_STMT_OPERAND (stmt, 1);
4587 /* In general, assignments with virtual operands are not useful
4588 for deriving ranges, with the obvious exception of calls to
4589 builtin functions. */
4590 if (TREE_CODE (lhs) == SSA_NAME
4591 && (INTEGRAL_TYPE_P (TREE_TYPE (lhs))
4592 || POINTER_TYPE_P (TREE_TYPE (lhs)))
4593 && ((TREE_CODE (rhs) == CALL_EXPR
4594 && TREE_CODE (CALL_EXPR_FN (rhs)) == ADDR_EXPR
4595 && DECL_P (TREE_OPERAND (CALL_EXPR_FN (rhs), 0))
4596 && DECL_IS_BUILTIN (TREE_OPERAND (CALL_EXPR_FN (rhs), 0)))
4597 || ZERO_SSA_OPERANDS (stmt, SSA_OP_ALL_VIRTUALS)))
4598 return true;
4600 else if (TREE_CODE (stmt) == COND_EXPR || TREE_CODE (stmt) == SWITCH_EXPR)
4601 return true;
4603 return false;
4607 /* Initialize local data structures for VRP. */
4609 static void
4610 vrp_initialize (void)
4612 basic_block bb;
4614 vr_value = XCNEWVEC (value_range_t *, num_ssa_names);
4615 vr_phi_edge_counts = XCNEWVEC (int, num_ssa_names);
4617 FOR_EACH_BB (bb)
4619 block_stmt_iterator si;
4620 tree phi;
4622 for (phi = phi_nodes (bb); phi; phi = PHI_CHAIN (phi))
4624 if (!stmt_interesting_for_vrp (phi))
4626 tree lhs = PHI_RESULT (phi);
4627 set_value_range_to_varying (get_value_range (lhs));
4628 DONT_SIMULATE_AGAIN (phi) = true;
4630 else
4631 DONT_SIMULATE_AGAIN (phi) = false;
4634 for (si = bsi_start (bb); !bsi_end_p (si); bsi_next (&si))
4636 tree stmt = bsi_stmt (si);
4638 if (!stmt_interesting_for_vrp (stmt))
4640 ssa_op_iter i;
4641 tree def;
4642 FOR_EACH_SSA_TREE_OPERAND (def, stmt, i, SSA_OP_DEF)
4643 set_value_range_to_varying (get_value_range (def));
4644 DONT_SIMULATE_AGAIN (stmt) = true;
4646 else
4648 DONT_SIMULATE_AGAIN (stmt) = false;
4655 /* Visit assignment STMT. If it produces an interesting range, record
4656 the SSA name in *OUTPUT_P. */
4658 static enum ssa_prop_result
4659 vrp_visit_assignment (tree stmt, tree *output_p)
4661 tree lhs, rhs, def;
4662 ssa_op_iter iter;
4664 lhs = GIMPLE_STMT_OPERAND (stmt, 0);
4665 rhs = GIMPLE_STMT_OPERAND (stmt, 1);
4667 /* We only keep track of ranges in integral and pointer types. */
4668 if (TREE_CODE (lhs) == SSA_NAME
4669 && ((INTEGRAL_TYPE_P (TREE_TYPE (lhs))
4670 /* It is valid to have NULL MIN/MAX values on a type. See
4671 build_range_type. */
4672 && TYPE_MIN_VALUE (TREE_TYPE (lhs))
4673 && TYPE_MAX_VALUE (TREE_TYPE (lhs)))
4674 || POINTER_TYPE_P (TREE_TYPE (lhs))))
4676 struct loop *l;
4677 value_range_t new_vr = { VR_UNDEFINED, NULL_TREE, NULL_TREE, NULL };
4679 extract_range_from_expr (&new_vr, rhs);
4681 /* If STMT is inside a loop, we may be able to know something
4682 else about the range of LHS by examining scalar evolution
4683 information. */
4684 if (current_loops && (l = loop_containing_stmt (stmt)))
4685 adjust_range_with_scev (&new_vr, l, stmt, lhs);
4687 if (update_value_range (lhs, &new_vr))
4689 *output_p = lhs;
4691 if (dump_file && (dump_flags & TDF_DETAILS))
4693 fprintf (dump_file, "Found new range for ");
4694 print_generic_expr (dump_file, lhs, 0);
4695 fprintf (dump_file, ": ");
4696 dump_value_range (dump_file, &new_vr);
4697 fprintf (dump_file, "\n\n");
4700 if (new_vr.type == VR_VARYING)
4701 return SSA_PROP_VARYING;
4703 return SSA_PROP_INTERESTING;
4706 return SSA_PROP_NOT_INTERESTING;
4709 /* Every other statement produces no useful ranges. */
4710 FOR_EACH_SSA_TREE_OPERAND (def, stmt, iter, SSA_OP_DEF)
4711 set_value_range_to_varying (get_value_range (def));
4713 return SSA_PROP_VARYING;
4716 /* Helper that gets the value range of the SSA_NAME with version I
4717 or a symbolic range containing the SSA_NAME only if the value range
4718 is varying or undefined. */
4720 static inline value_range_t
4721 get_vr_for_comparison (int i)
4723 value_range_t vr = *(vr_value[i]);
4725 /* If name N_i does not have a valid range, use N_i as its own
4726 range. This allows us to compare against names that may
4727 have N_i in their ranges. */
4728 if (vr.type == VR_VARYING || vr.type == VR_UNDEFINED)
4730 vr.type = VR_RANGE;
4731 vr.min = ssa_name (i);
4732 vr.max = ssa_name (i);
4735 return vr;
4738 /* Compare all the value ranges for names equivalent to VAR with VAL
4739 using comparison code COMP. Return the same value returned by
4740 compare_range_with_value, including the setting of
4741 *STRICT_OVERFLOW_P. */
4743 static tree
4744 compare_name_with_value (enum tree_code comp, tree var, tree val,
4745 bool *strict_overflow_p)
4747 bitmap_iterator bi;
4748 unsigned i;
4749 bitmap e;
4750 tree retval, t;
4751 int used_strict_overflow;
4752 bool sop;
4753 value_range_t equiv_vr;
4755 /* Get the set of equivalences for VAR. */
4756 e = get_value_range (var)->equiv;
4758 /* Start at -1. Set it to 0 if we do a comparison without relying
4759 on overflow, or 1 if all comparisons rely on overflow. */
4760 used_strict_overflow = -1;
4762 /* Compare vars' value range with val. */
4763 equiv_vr = get_vr_for_comparison (SSA_NAME_VERSION (var));
4764 sop = false;
4765 retval = compare_range_with_value (comp, &equiv_vr, val, &sop);
4766 if (retval)
4767 used_strict_overflow = sop ? 1 : 0;
4769 /* If the equiv set is empty we have done all work we need to do. */
4770 if (e == NULL)
4772 if (retval
4773 && used_strict_overflow > 0)
4774 *strict_overflow_p = true;
4775 return retval;
4778 EXECUTE_IF_SET_IN_BITMAP (e, 0, i, bi)
4780 equiv_vr = get_vr_for_comparison (i);
4781 sop = false;
4782 t = compare_range_with_value (comp, &equiv_vr, val, &sop);
4783 if (t)
4785 /* If we get different answers from different members
4786 of the equivalence set this check must be in a dead
4787 code region. Folding it to a trap representation
4788 would be correct here. For now just return don't-know. */
4789 if (retval != NULL
4790 && t != retval)
4792 retval = NULL_TREE;
4793 break;
4795 retval = t;
4797 if (!sop)
4798 used_strict_overflow = 0;
4799 else if (used_strict_overflow < 0)
4800 used_strict_overflow = 1;
4804 if (retval
4805 && used_strict_overflow > 0)
4806 *strict_overflow_p = true;
4808 return retval;
4812 /* Given a comparison code COMP and names N1 and N2, compare all the
4813 ranges equivalent to N1 against all the ranges equivalent to N2
4814 to determine the value of N1 COMP N2. Return the same value
4815 returned by compare_ranges. Set *STRICT_OVERFLOW_P to indicate
4816 whether we relied on an overflow infinity in the comparison. */
4819 static tree
4820 compare_names (enum tree_code comp, tree n1, tree n2,
4821 bool *strict_overflow_p)
4823 tree t, retval;
4824 bitmap e1, e2;
4825 bitmap_iterator bi1, bi2;
4826 unsigned i1, i2;
4827 int used_strict_overflow;
4828 static bitmap_obstack *s_obstack = NULL;
4829 static bitmap s_e1 = NULL, s_e2 = NULL;
4831 /* Compare the ranges of every name equivalent to N1 against the
4832 ranges of every name equivalent to N2. */
4833 e1 = get_value_range (n1)->equiv;
4834 e2 = get_value_range (n2)->equiv;
4836 /* Use the fake bitmaps if e1 or e2 are not available. */
4837 if (s_obstack == NULL)
4839 s_obstack = XNEW (bitmap_obstack);
4840 bitmap_obstack_initialize (s_obstack);
4841 s_e1 = BITMAP_ALLOC (s_obstack);
4842 s_e2 = BITMAP_ALLOC (s_obstack);
4844 if (e1 == NULL)
4845 e1 = s_e1;
4846 if (e2 == NULL)
4847 e2 = s_e2;
4849 /* Add N1 and N2 to their own set of equivalences to avoid
4850 duplicating the body of the loop just to check N1 and N2
4851 ranges. */
4852 bitmap_set_bit (e1, SSA_NAME_VERSION (n1));
4853 bitmap_set_bit (e2, SSA_NAME_VERSION (n2));
4855 /* If the equivalence sets have a common intersection, then the two
4856 names can be compared without checking their ranges. */
4857 if (bitmap_intersect_p (e1, e2))
4859 bitmap_clear_bit (e1, SSA_NAME_VERSION (n1));
4860 bitmap_clear_bit (e2, SSA_NAME_VERSION (n2));
4862 return (comp == EQ_EXPR || comp == GE_EXPR || comp == LE_EXPR)
4863 ? boolean_true_node
4864 : boolean_false_node;
4867 /* Start at -1. Set it to 0 if we do a comparison without relying
4868 on overflow, or 1 if all comparisons rely on overflow. */
4869 used_strict_overflow = -1;
4871 /* Otherwise, compare all the equivalent ranges. First, add N1 and
4872 N2 to their own set of equivalences to avoid duplicating the body
4873 of the loop just to check N1 and N2 ranges. */
4874 EXECUTE_IF_SET_IN_BITMAP (e1, 0, i1, bi1)
4876 value_range_t vr1 = get_vr_for_comparison (i1);
4878 t = retval = NULL_TREE;
4879 EXECUTE_IF_SET_IN_BITMAP (e2, 0, i2, bi2)
4881 bool sop = false;
4883 value_range_t vr2 = get_vr_for_comparison (i2);
4885 t = compare_ranges (comp, &vr1, &vr2, &sop);
4886 if (t)
4888 /* If we get different answers from different members
4889 of the equivalence set this check must be in a dead
4890 code region. Folding it to a trap representation
4891 would be correct here. For now just return don't-know. */
4892 if (retval != NULL
4893 && t != retval)
4895 bitmap_clear_bit (e1, SSA_NAME_VERSION (n1));
4896 bitmap_clear_bit (e2, SSA_NAME_VERSION (n2));
4897 return NULL_TREE;
4899 retval = t;
4901 if (!sop)
4902 used_strict_overflow = 0;
4903 else if (used_strict_overflow < 0)
4904 used_strict_overflow = 1;
4908 if (retval)
4910 bitmap_clear_bit (e1, SSA_NAME_VERSION (n1));
4911 bitmap_clear_bit (e2, SSA_NAME_VERSION (n2));
4912 if (used_strict_overflow > 0)
4913 *strict_overflow_p = true;
4914 return retval;
4918 /* None of the equivalent ranges are useful in computing this
4919 comparison. */
4920 bitmap_clear_bit (e1, SSA_NAME_VERSION (n1));
4921 bitmap_clear_bit (e2, SSA_NAME_VERSION (n2));
4922 return NULL_TREE;
4926 /* Given a conditional predicate COND, try to determine if COND yields
4927 true or false based on the value ranges of its operands. Return
4928 BOOLEAN_TRUE_NODE if the conditional always evaluates to true,
4929 BOOLEAN_FALSE_NODE if the conditional always evaluates to false, and,
4930 NULL if the conditional cannot be evaluated at compile time.
4932 If USE_EQUIV_P is true, the ranges of all the names equivalent with
4933 the operands in COND are used when trying to compute its value.
4934 This is only used during final substitution. During propagation,
4935 we only check the range of each variable and not its equivalents.
4937 Set *STRICT_OVERFLOW_P to indicate whether we relied on an overflow
4938 infinity to produce the result. */
4940 static tree
4941 vrp_evaluate_conditional_warnv (tree cond, bool use_equiv_p,
4942 bool *strict_overflow_p)
4944 gcc_assert (TREE_CODE (cond) == SSA_NAME
4945 || TREE_CODE_CLASS (TREE_CODE (cond)) == tcc_comparison);
4947 if (TREE_CODE (cond) == SSA_NAME)
4949 value_range_t *vr;
4950 tree retval;
4952 if (use_equiv_p)
4953 retval = compare_name_with_value (NE_EXPR, cond, boolean_false_node,
4954 strict_overflow_p);
4955 else
4957 value_range_t *vr = get_value_range (cond);
4958 retval = compare_range_with_value (NE_EXPR, vr, boolean_false_node,
4959 strict_overflow_p);
4962 /* If COND has a known boolean range, return it. */
4963 if (retval)
4964 return retval;
4966 /* Otherwise, if COND has a symbolic range of exactly one value,
4967 return it. */
4968 vr = get_value_range (cond);
4969 if (vr->type == VR_RANGE && vr->min == vr->max)
4970 return vr->min;
4972 else
4974 tree op0 = TREE_OPERAND (cond, 0);
4975 tree op1 = TREE_OPERAND (cond, 1);
4977 /* We only deal with integral and pointer types. */
4978 if (!INTEGRAL_TYPE_P (TREE_TYPE (op0))
4979 && !POINTER_TYPE_P (TREE_TYPE (op0)))
4980 return NULL_TREE;
4982 if (use_equiv_p)
4984 if (TREE_CODE (op0) == SSA_NAME && TREE_CODE (op1) == SSA_NAME)
4985 return compare_names (TREE_CODE (cond), op0, op1,
4986 strict_overflow_p);
4987 else if (TREE_CODE (op0) == SSA_NAME)
4988 return compare_name_with_value (TREE_CODE (cond), op0, op1,
4989 strict_overflow_p);
4990 else if (TREE_CODE (op1) == SSA_NAME)
4991 return (compare_name_with_value
4992 (swap_tree_comparison (TREE_CODE (cond)), op1, op0,
4993 strict_overflow_p));
4995 else
4997 value_range_t *vr0, *vr1;
4999 vr0 = (TREE_CODE (op0) == SSA_NAME) ? get_value_range (op0) : NULL;
5000 vr1 = (TREE_CODE (op1) == SSA_NAME) ? get_value_range (op1) : NULL;
5002 if (vr0 && vr1)
5003 return compare_ranges (TREE_CODE (cond), vr0, vr1,
5004 strict_overflow_p);
5005 else if (vr0 && vr1 == NULL)
5006 return compare_range_with_value (TREE_CODE (cond), vr0, op1,
5007 strict_overflow_p);
5008 else if (vr0 == NULL && vr1)
5009 return (compare_range_with_value
5010 (swap_tree_comparison (TREE_CODE (cond)), vr1, op0,
5011 strict_overflow_p));
5015 /* Anything else cannot be computed statically. */
5016 return NULL_TREE;
5019 /* Given COND within STMT, try to simplify it based on value range
5020 information. Return NULL if the conditional can not be evaluated.
5021 The ranges of all the names equivalent with the operands in COND
5022 will be used when trying to compute the value. If the result is
5023 based on undefined signed overflow, issue a warning if
5024 appropriate. */
5026 tree
5027 vrp_evaluate_conditional (tree cond, tree stmt)
5029 bool sop;
5030 tree ret;
5032 sop = false;
5033 ret = vrp_evaluate_conditional_warnv (cond, true, &sop);
5035 if (ret && sop)
5037 enum warn_strict_overflow_code wc;
5038 const char* warnmsg;
5040 if (is_gimple_min_invariant (ret))
5042 wc = WARN_STRICT_OVERFLOW_CONDITIONAL;
5043 warnmsg = G_("assuming signed overflow does not occur when "
5044 "simplifying conditional to constant");
5046 else
5048 wc = WARN_STRICT_OVERFLOW_COMPARISON;
5049 warnmsg = G_("assuming signed overflow does not occur when "
5050 "simplifying conditional");
5053 if (issue_strict_overflow_warning (wc))
5055 location_t locus;
5057 if (!EXPR_HAS_LOCATION (stmt))
5058 locus = input_location;
5059 else
5060 locus = EXPR_LOCATION (stmt);
5061 warning (OPT_Wstrict_overflow, "%H%s", &locus, warnmsg);
5065 return ret;
5069 /* Visit conditional statement STMT. If we can determine which edge
5070 will be taken out of STMT's basic block, record it in
5071 *TAKEN_EDGE_P and return SSA_PROP_INTERESTING. Otherwise, return
5072 SSA_PROP_VARYING. */
5074 static enum ssa_prop_result
5075 vrp_visit_cond_stmt (tree stmt, edge *taken_edge_p)
5077 tree cond, val;
5078 bool sop;
5080 *taken_edge_p = NULL;
5082 /* FIXME. Handle SWITCH_EXPRs. */
5083 if (TREE_CODE (stmt) == SWITCH_EXPR)
5084 return SSA_PROP_VARYING;
5086 cond = COND_EXPR_COND (stmt);
5088 if (dump_file && (dump_flags & TDF_DETAILS))
5090 tree use;
5091 ssa_op_iter i;
5093 fprintf (dump_file, "\nVisiting conditional with predicate: ");
5094 print_generic_expr (dump_file, cond, 0);
5095 fprintf (dump_file, "\nWith known ranges\n");
5097 FOR_EACH_SSA_TREE_OPERAND (use, stmt, i, SSA_OP_USE)
5099 fprintf (dump_file, "\t");
5100 print_generic_expr (dump_file, use, 0);
5101 fprintf (dump_file, ": ");
5102 dump_value_range (dump_file, vr_value[SSA_NAME_VERSION (use)]);
5105 fprintf (dump_file, "\n");
5108 /* Compute the value of the predicate COND by checking the known
5109 ranges of each of its operands.
5111 Note that we cannot evaluate all the equivalent ranges here
5112 because those ranges may not yet be final and with the current
5113 propagation strategy, we cannot determine when the value ranges
5114 of the names in the equivalence set have changed.
5116 For instance, given the following code fragment
5118 i_5 = PHI <8, i_13>
5120 i_14 = ASSERT_EXPR <i_5, i_5 != 0>
5121 if (i_14 == 1)
5124 Assume that on the first visit to i_14, i_5 has the temporary
5125 range [8, 8] because the second argument to the PHI function is
5126 not yet executable. We derive the range ~[0, 0] for i_14 and the
5127 equivalence set { i_5 }. So, when we visit 'if (i_14 == 1)' for
5128 the first time, since i_14 is equivalent to the range [8, 8], we
5129 determine that the predicate is always false.
5131 On the next round of propagation, i_13 is determined to be
5132 VARYING, which causes i_5 to drop down to VARYING. So, another
5133 visit to i_14 is scheduled. In this second visit, we compute the
5134 exact same range and equivalence set for i_14, namely ~[0, 0] and
5135 { i_5 }. But we did not have the previous range for i_5
5136 registered, so vrp_visit_assignment thinks that the range for
5137 i_14 has not changed. Therefore, the predicate 'if (i_14 == 1)'
5138 is not visited again, which stops propagation from visiting
5139 statements in the THEN clause of that if().
5141 To properly fix this we would need to keep the previous range
5142 value for the names in the equivalence set. This way we would've
5143 discovered that from one visit to the other i_5 changed from
5144 range [8, 8] to VR_VARYING.
5146 However, fixing this apparent limitation may not be worth the
5147 additional checking. Testing on several code bases (GCC, DLV,
5148 MICO, TRAMP3D and SPEC2000) showed that doing this results in
5149 4 more predicates folded in SPEC. */
5150 sop = false;
5151 val = vrp_evaluate_conditional_warnv (cond, false, &sop);
5152 if (val)
5154 if (!sop)
5155 *taken_edge_p = find_taken_edge (bb_for_stmt (stmt), val);
5156 else
5158 if (dump_file && (dump_flags & TDF_DETAILS))
5159 fprintf (dump_file,
5160 "\nIgnoring predicate evaluation because "
5161 "it assumes that signed overflow is undefined");
5162 val = NULL_TREE;
5166 if (dump_file && (dump_flags & TDF_DETAILS))
5168 fprintf (dump_file, "\nPredicate evaluates to: ");
5169 if (val == NULL_TREE)
5170 fprintf (dump_file, "DON'T KNOW\n");
5171 else
5172 print_generic_stmt (dump_file, val, 0);
5175 return (*taken_edge_p) ? SSA_PROP_INTERESTING : SSA_PROP_VARYING;
5179 /* Evaluate statement STMT. If the statement produces a useful range,
5180 return SSA_PROP_INTERESTING and record the SSA name with the
5181 interesting range into *OUTPUT_P.
5183 If STMT is a conditional branch and we can determine its truth
5184 value, the taken edge is recorded in *TAKEN_EDGE_P.
5186 If STMT produces a varying value, return SSA_PROP_VARYING. */
5188 static enum ssa_prop_result
5189 vrp_visit_stmt (tree stmt, edge *taken_edge_p, tree *output_p)
5191 tree def;
5192 ssa_op_iter iter;
5193 stmt_ann_t ann;
5195 if (dump_file && (dump_flags & TDF_DETAILS))
5197 fprintf (dump_file, "\nVisiting statement:\n");
5198 print_generic_stmt (dump_file, stmt, dump_flags);
5199 fprintf (dump_file, "\n");
5202 ann = stmt_ann (stmt);
5203 if (TREE_CODE (stmt) == GIMPLE_MODIFY_STMT)
5205 tree rhs = GIMPLE_STMT_OPERAND (stmt, 1);
5207 /* In general, assignments with virtual operands are not useful
5208 for deriving ranges, with the obvious exception of calls to
5209 builtin functions. */
5210 if ((TREE_CODE (rhs) == CALL_EXPR
5211 && TREE_CODE (CALL_EXPR_FN (rhs)) == ADDR_EXPR
5212 && DECL_P (TREE_OPERAND (CALL_EXPR_FN (rhs), 0))
5213 && DECL_IS_BUILTIN (TREE_OPERAND (CALL_EXPR_FN (rhs), 0)))
5214 || ZERO_SSA_OPERANDS (stmt, SSA_OP_ALL_VIRTUALS))
5215 return vrp_visit_assignment (stmt, output_p);
5217 else if (TREE_CODE (stmt) == COND_EXPR || TREE_CODE (stmt) == SWITCH_EXPR)
5218 return vrp_visit_cond_stmt (stmt, taken_edge_p);
5220 /* All other statements produce nothing of interest for VRP, so mark
5221 their outputs varying and prevent further simulation. */
5222 FOR_EACH_SSA_TREE_OPERAND (def, stmt, iter, SSA_OP_DEF)
5223 set_value_range_to_varying (get_value_range (def));
5225 return SSA_PROP_VARYING;
5229 /* Meet operation for value ranges. Given two value ranges VR0 and
5230 VR1, store in VR0 a range that contains both VR0 and VR1. This
5231 may not be the smallest possible such range. */
5233 static void
5234 vrp_meet (value_range_t *vr0, value_range_t *vr1)
5236 if (vr0->type == VR_UNDEFINED)
5238 copy_value_range (vr0, vr1);
5239 return;
5242 if (vr1->type == VR_UNDEFINED)
5244 /* Nothing to do. VR0 already has the resulting range. */
5245 return;
5248 if (vr0->type == VR_VARYING)
5250 /* Nothing to do. VR0 already has the resulting range. */
5251 return;
5254 if (vr1->type == VR_VARYING)
5256 set_value_range_to_varying (vr0);
5257 return;
5260 if (vr0->type == VR_RANGE && vr1->type == VR_RANGE)
5262 int cmp;
5263 tree min, max;
5265 /* Compute the convex hull of the ranges. The lower limit of
5266 the new range is the minimum of the two ranges. If they
5267 cannot be compared, then give up. */
5268 cmp = compare_values (vr0->min, vr1->min);
5269 if (cmp == 0 || cmp == 1)
5270 min = vr1->min;
5271 else if (cmp == -1)
5272 min = vr0->min;
5273 else
5274 goto give_up;
5276 /* Similarly, the upper limit of the new range is the maximum
5277 of the two ranges. If they cannot be compared, then
5278 give up. */
5279 cmp = compare_values (vr0->max, vr1->max);
5280 if (cmp == 0 || cmp == -1)
5281 max = vr1->max;
5282 else if (cmp == 1)
5283 max = vr0->max;
5284 else
5285 goto give_up;
5287 /* Check for useless ranges. */
5288 if (INTEGRAL_TYPE_P (TREE_TYPE (min))
5289 && ((vrp_val_is_min (min) || is_overflow_infinity (min))
5290 && (vrp_val_is_max (max) || is_overflow_infinity (max))))
5291 goto give_up;
5293 /* The resulting set of equivalences is the intersection of
5294 the two sets. */
5295 if (vr0->equiv && vr1->equiv && vr0->equiv != vr1->equiv)
5296 bitmap_and_into (vr0->equiv, vr1->equiv);
5297 else if (vr0->equiv && !vr1->equiv)
5298 bitmap_clear (vr0->equiv);
5300 set_value_range (vr0, vr0->type, min, max, vr0->equiv);
5302 else if (vr0->type == VR_ANTI_RANGE && vr1->type == VR_ANTI_RANGE)
5304 /* Two anti-ranges meet only if their complements intersect.
5305 Only handle the case of identical ranges. */
5306 if (compare_values (vr0->min, vr1->min) == 0
5307 && compare_values (vr0->max, vr1->max) == 0
5308 && compare_values (vr0->min, vr0->max) == 0)
5310 /* The resulting set of equivalences is the intersection of
5311 the two sets. */
5312 if (vr0->equiv && vr1->equiv && vr0->equiv != vr1->equiv)
5313 bitmap_and_into (vr0->equiv, vr1->equiv);
5314 else if (vr0->equiv && !vr1->equiv)
5315 bitmap_clear (vr0->equiv);
5317 else
5318 goto give_up;
5320 else if (vr0->type == VR_ANTI_RANGE || vr1->type == VR_ANTI_RANGE)
5322 /* For a numeric range [VAL1, VAL2] and an anti-range ~[VAL3, VAL4],
5323 only handle the case where the ranges have an empty intersection.
5324 The result of the meet operation is the anti-range. */
5325 if (!symbolic_range_p (vr0)
5326 && !symbolic_range_p (vr1)
5327 && !value_ranges_intersect_p (vr0, vr1))
5329 /* Copy most of VR1 into VR0. Don't copy VR1's equivalence
5330 set. We need to compute the intersection of the two
5331 equivalence sets. */
5332 if (vr1->type == VR_ANTI_RANGE)
5333 set_value_range (vr0, vr1->type, vr1->min, vr1->max, vr0->equiv);
5335 /* The resulting set of equivalences is the intersection of
5336 the two sets. */
5337 if (vr0->equiv && vr1->equiv && vr0->equiv != vr1->equiv)
5338 bitmap_and_into (vr0->equiv, vr1->equiv);
5339 else if (vr0->equiv && !vr1->equiv)
5340 bitmap_clear (vr0->equiv);
5342 else
5343 goto give_up;
5345 else
5346 gcc_unreachable ();
5348 return;
5350 give_up:
5351 /* Failed to find an efficient meet. Before giving up and setting
5352 the result to VARYING, see if we can at least derive a useful
5353 anti-range. FIXME, all this nonsense about distinguishing
5354 anti-ranges from ranges is necessary because of the odd
5355 semantics of range_includes_zero_p and friends. */
5356 if (!symbolic_range_p (vr0)
5357 && ((vr0->type == VR_RANGE && !range_includes_zero_p (vr0))
5358 || (vr0->type == VR_ANTI_RANGE && range_includes_zero_p (vr0)))
5359 && !symbolic_range_p (vr1)
5360 && ((vr1->type == VR_RANGE && !range_includes_zero_p (vr1))
5361 || (vr1->type == VR_ANTI_RANGE && range_includes_zero_p (vr1))))
5363 set_value_range_to_nonnull (vr0, TREE_TYPE (vr0->min));
5365 /* Since this meet operation did not result from the meeting of
5366 two equivalent names, VR0 cannot have any equivalences. */
5367 if (vr0->equiv)
5368 bitmap_clear (vr0->equiv);
5370 else
5371 set_value_range_to_varying (vr0);
5375 /* Visit all arguments for PHI node PHI that flow through executable
5376 edges. If a valid value range can be derived from all the incoming
5377 value ranges, set a new range for the LHS of PHI. */
5379 static enum ssa_prop_result
5380 vrp_visit_phi_node (tree phi)
5382 int i;
5383 tree lhs = PHI_RESULT (phi);
5384 value_range_t *lhs_vr = get_value_range (lhs);
5385 value_range_t vr_result = { VR_UNDEFINED, NULL_TREE, NULL_TREE, NULL };
5386 int edges, old_edges;
5388 copy_value_range (&vr_result, lhs_vr);
5390 if (dump_file && (dump_flags & TDF_DETAILS))
5392 fprintf (dump_file, "\nVisiting PHI node: ");
5393 print_generic_expr (dump_file, phi, dump_flags);
5396 edges = 0;
5397 for (i = 0; i < PHI_NUM_ARGS (phi); i++)
5399 edge e = PHI_ARG_EDGE (phi, i);
5401 if (dump_file && (dump_flags & TDF_DETAILS))
5403 fprintf (dump_file,
5404 "\n Argument #%d (%d -> %d %sexecutable)\n",
5405 i, e->src->index, e->dest->index,
5406 (e->flags & EDGE_EXECUTABLE) ? "" : "not ");
5409 if (e->flags & EDGE_EXECUTABLE)
5411 tree arg = PHI_ARG_DEF (phi, i);
5412 value_range_t vr_arg;
5414 ++edges;
5416 if (TREE_CODE (arg) == SSA_NAME)
5418 vr_arg = *(get_value_range (arg));
5420 else
5422 if (is_overflow_infinity (arg))
5424 arg = copy_node (arg);
5425 TREE_OVERFLOW (arg) = 0;
5428 vr_arg.type = VR_RANGE;
5429 vr_arg.min = arg;
5430 vr_arg.max = arg;
5431 vr_arg.equiv = NULL;
5434 if (dump_file && (dump_flags & TDF_DETAILS))
5436 fprintf (dump_file, "\t");
5437 print_generic_expr (dump_file, arg, dump_flags);
5438 fprintf (dump_file, "\n\tValue: ");
5439 dump_value_range (dump_file, &vr_arg);
5440 fprintf (dump_file, "\n");
5443 vrp_meet (&vr_result, &vr_arg);
5445 if (vr_result.type == VR_VARYING)
5446 break;
5450 if (vr_result.type == VR_VARYING)
5451 goto varying;
5453 old_edges = vr_phi_edge_counts[SSA_NAME_VERSION (lhs)];
5454 vr_phi_edge_counts[SSA_NAME_VERSION (lhs)] = edges;
5456 /* To prevent infinite iterations in the algorithm, derive ranges
5457 when the new value is slightly bigger or smaller than the
5458 previous one. We don't do this if we have seen a new executable
5459 edge; this helps us avoid an overflow infinity for conditionals
5460 which are not in a loop. */
5461 if (lhs_vr->type == VR_RANGE && vr_result.type == VR_RANGE
5462 && edges <= old_edges)
5464 if (!POINTER_TYPE_P (TREE_TYPE (lhs)))
5466 int cmp_min = compare_values (lhs_vr->min, vr_result.min);
5467 int cmp_max = compare_values (lhs_vr->max, vr_result.max);
5469 /* If the new minimum is smaller or larger than the previous
5470 one, go all the way to -INF. In the first case, to avoid
5471 iterating millions of times to reach -INF, and in the
5472 other case to avoid infinite bouncing between different
5473 minimums. */
5474 if (cmp_min > 0 || cmp_min < 0)
5476 /* If we will end up with a (-INF, +INF) range, set it
5477 to VARYING. */
5478 if (vrp_val_is_max (vr_result.max))
5479 goto varying;
5481 if (!needs_overflow_infinity (TREE_TYPE (vr_result.min))
5482 || !vrp_var_may_overflow (lhs, phi))
5483 vr_result.min = TYPE_MIN_VALUE (TREE_TYPE (vr_result.min));
5484 else if (supports_overflow_infinity (TREE_TYPE (vr_result.min)))
5485 vr_result.min =
5486 negative_overflow_infinity (TREE_TYPE (vr_result.min));
5487 else
5488 goto varying;
5491 /* Similarly, if the new maximum is smaller or larger than
5492 the previous one, go all the way to +INF. */
5493 if (cmp_max < 0 || cmp_max > 0)
5495 /* If we will end up with a (-INF, +INF) range, set it
5496 to VARYING. */
5497 if (vrp_val_is_min (vr_result.min))
5498 goto varying;
5500 if (!needs_overflow_infinity (TREE_TYPE (vr_result.max))
5501 || !vrp_var_may_overflow (lhs, phi))
5502 vr_result.max = TYPE_MAX_VALUE (TREE_TYPE (vr_result.max));
5503 else if (supports_overflow_infinity (TREE_TYPE (vr_result.max)))
5504 vr_result.max =
5505 positive_overflow_infinity (TREE_TYPE (vr_result.max));
5506 else
5507 goto varying;
5512 /* If the new range is different than the previous value, keep
5513 iterating. */
5514 if (update_value_range (lhs, &vr_result))
5515 return SSA_PROP_INTERESTING;
5517 /* Nothing changed, don't add outgoing edges. */
5518 return SSA_PROP_NOT_INTERESTING;
5520 /* No match found. Set the LHS to VARYING. */
5521 varying:
5522 set_value_range_to_varying (lhs_vr);
5523 return SSA_PROP_VARYING;
5526 /* Simplify a division or modulo operator to a right shift or
5527 bitwise and if the first operand is unsigned or is greater
5528 than zero and the second operand is an exact power of two. */
5530 static void
5531 simplify_div_or_mod_using_ranges (tree stmt, tree rhs, enum tree_code rhs_code)
5533 tree val = NULL;
5534 tree op = TREE_OPERAND (rhs, 0);
5535 value_range_t *vr = get_value_range (TREE_OPERAND (rhs, 0));
5537 if (TYPE_UNSIGNED (TREE_TYPE (op)))
5539 val = integer_one_node;
5541 else
5543 bool sop = false;
5545 val = compare_range_with_value (GT_EXPR, vr, integer_zero_node, &sop);
5547 if (val
5548 && sop
5549 && integer_onep (val)
5550 && issue_strict_overflow_warning (WARN_STRICT_OVERFLOW_MISC))
5552 location_t locus;
5554 if (!EXPR_HAS_LOCATION (stmt))
5555 locus = input_location;
5556 else
5557 locus = EXPR_LOCATION (stmt);
5558 warning (OPT_Wstrict_overflow,
5559 ("%Hassuming signed overflow does not occur when "
5560 "simplifying / or %% to >> or &"),
5561 &locus);
5565 if (val && integer_onep (val))
5567 tree t;
5568 tree op0 = TREE_OPERAND (rhs, 0);
5569 tree op1 = TREE_OPERAND (rhs, 1);
5571 if (rhs_code == TRUNC_DIV_EXPR)
5573 t = build_int_cst (NULL_TREE, tree_log2 (op1));
5574 t = build2 (RSHIFT_EXPR, TREE_TYPE (op0), op0, t);
5576 else
5578 t = build_int_cst (TREE_TYPE (op1), 1);
5579 t = int_const_binop (MINUS_EXPR, op1, t, 0);
5580 t = fold_convert (TREE_TYPE (op0), t);
5581 t = build2 (BIT_AND_EXPR, TREE_TYPE (op0), op0, t);
5584 GIMPLE_STMT_OPERAND (stmt, 1) = t;
5585 update_stmt (stmt);
5589 /* If the operand to an ABS_EXPR is >= 0, then eliminate the
5590 ABS_EXPR. If the operand is <= 0, then simplify the
5591 ABS_EXPR into a NEGATE_EXPR. */
5593 static void
5594 simplify_abs_using_ranges (tree stmt, tree rhs)
5596 tree val = NULL;
5597 tree op = TREE_OPERAND (rhs, 0);
5598 tree type = TREE_TYPE (op);
5599 value_range_t *vr = get_value_range (TREE_OPERAND (rhs, 0));
5601 if (TYPE_UNSIGNED (type))
5603 val = integer_zero_node;
5605 else if (vr)
5607 bool sop = false;
5609 val = compare_range_with_value (LE_EXPR, vr, integer_zero_node, &sop);
5610 if (!val)
5612 sop = false;
5613 val = compare_range_with_value (GE_EXPR, vr, integer_zero_node,
5614 &sop);
5616 if (val)
5618 if (integer_zerop (val))
5619 val = integer_one_node;
5620 else if (integer_onep (val))
5621 val = integer_zero_node;
5625 if (val
5626 && (integer_onep (val) || integer_zerop (val)))
5628 tree t;
5630 if (sop && issue_strict_overflow_warning (WARN_STRICT_OVERFLOW_MISC))
5632 location_t locus;
5634 if (!EXPR_HAS_LOCATION (stmt))
5635 locus = input_location;
5636 else
5637 locus = EXPR_LOCATION (stmt);
5638 warning (OPT_Wstrict_overflow,
5639 ("%Hassuming signed overflow does not occur when "
5640 "simplifying abs (X) to X or -X"),
5641 &locus);
5644 if (integer_onep (val))
5645 t = build1 (NEGATE_EXPR, TREE_TYPE (op), op);
5646 else
5647 t = op;
5649 GIMPLE_STMT_OPERAND (stmt, 1) = t;
5650 update_stmt (stmt);
5655 /* We are comparing trees OP0 and OP1 using COND_CODE. OP0 has
5656 a known value range VR.
5658 If there is one and only one value which will satisfy the
5659 conditional, then return that value. Else return NULL. */
5661 static tree
5662 test_for_singularity (enum tree_code cond_code, tree op0,
5663 tree op1, value_range_t *vr)
5665 tree min = NULL;
5666 tree max = NULL;
5668 /* Extract minimum/maximum values which satisfy the
5669 the conditional as it was written. */
5670 if (cond_code == LE_EXPR || cond_code == LT_EXPR)
5672 /* This should not be negative infinity; there is no overflow
5673 here. */
5674 min = TYPE_MIN_VALUE (TREE_TYPE (op0));
5676 max = op1;
5677 if (cond_code == LT_EXPR && !is_overflow_infinity (max))
5679 tree one = build_int_cst (TREE_TYPE (op0), 1);
5680 max = fold_build2 (MINUS_EXPR, TREE_TYPE (op0), max, one);
5681 if (EXPR_P (max))
5682 TREE_NO_WARNING (max) = 1;
5685 else if (cond_code == GE_EXPR || cond_code == GT_EXPR)
5687 /* This should not be positive infinity; there is no overflow
5688 here. */
5689 max = TYPE_MAX_VALUE (TREE_TYPE (op0));
5691 min = op1;
5692 if (cond_code == GT_EXPR && !is_overflow_infinity (min))
5694 tree one = build_int_cst (TREE_TYPE (op0), 1);
5695 min = fold_build2 (PLUS_EXPR, TREE_TYPE (op0), min, one);
5696 if (EXPR_P (min))
5697 TREE_NO_WARNING (min) = 1;
5701 /* Now refine the minimum and maximum values using any
5702 value range information we have for op0. */
5703 if (min && max)
5705 if (compare_values (vr->min, min) == -1)
5706 min = min;
5707 else
5708 min = vr->min;
5709 if (compare_values (vr->max, max) == 1)
5710 max = max;
5711 else
5712 max = vr->max;
5714 /* If the new min/max values have converged to a single value,
5715 then there is only one value which can satisfy the condition,
5716 return that value. */
5717 if (operand_equal_p (min, max, 0) && is_gimple_min_invariant (min))
5718 return min;
5720 return NULL;
5723 /* Simplify a conditional using a relational operator to an equality
5724 test if the range information indicates only one value can satisfy
5725 the original conditional. */
5727 static void
5728 simplify_cond_using_ranges (tree stmt)
5730 tree cond = COND_EXPR_COND (stmt);
5731 tree op0 = TREE_OPERAND (cond, 0);
5732 tree op1 = TREE_OPERAND (cond, 1);
5733 enum tree_code cond_code = TREE_CODE (cond);
5735 if (cond_code != NE_EXPR
5736 && cond_code != EQ_EXPR
5737 && TREE_CODE (op0) == SSA_NAME
5738 && INTEGRAL_TYPE_P (TREE_TYPE (op0))
5739 && is_gimple_min_invariant (op1))
5741 value_range_t *vr = get_value_range (op0);
5743 /* If we have range information for OP0, then we might be
5744 able to simplify this conditional. */
5745 if (vr->type == VR_RANGE)
5747 tree new = test_for_singularity (cond_code, op0, op1, vr);
5749 if (new)
5751 if (dump_file)
5753 fprintf (dump_file, "Simplified relational ");
5754 print_generic_expr (dump_file, cond, 0);
5755 fprintf (dump_file, " into ");
5758 COND_EXPR_COND (stmt)
5759 = build2 (EQ_EXPR, boolean_type_node, op0, new);
5760 update_stmt (stmt);
5762 if (dump_file)
5764 print_generic_expr (dump_file, COND_EXPR_COND (stmt), 0);
5765 fprintf (dump_file, "\n");
5767 return;
5771 /* Try again after inverting the condition. We only deal
5772 with integral types here, so no need to worry about
5773 issues with inverting FP comparisons. */
5774 cond_code = invert_tree_comparison (cond_code, false);
5775 new = test_for_singularity (cond_code, op0, op1, vr);
5777 if (new)
5779 if (dump_file)
5781 fprintf (dump_file, "Simplified relational ");
5782 print_generic_expr (dump_file, cond, 0);
5783 fprintf (dump_file, " into ");
5786 COND_EXPR_COND (stmt)
5787 = build2 (NE_EXPR, boolean_type_node, op0, new);
5788 update_stmt (stmt);
5790 if (dump_file)
5792 print_generic_expr (dump_file, COND_EXPR_COND (stmt), 0);
5793 fprintf (dump_file, "\n");
5795 return;
5802 /* Simplify STMT using ranges if possible. */
5804 void
5805 simplify_stmt_using_ranges (tree stmt)
5807 if (TREE_CODE (stmt) == GIMPLE_MODIFY_STMT)
5809 tree rhs = GIMPLE_STMT_OPERAND (stmt, 1);
5810 enum tree_code rhs_code = TREE_CODE (rhs);
5812 /* Transform TRUNC_DIV_EXPR and TRUNC_MOD_EXPR into RSHIFT_EXPR
5813 and BIT_AND_EXPR respectively if the first operand is greater
5814 than zero and the second operand is an exact power of two. */
5815 if ((rhs_code == TRUNC_DIV_EXPR || rhs_code == TRUNC_MOD_EXPR)
5816 && INTEGRAL_TYPE_P (TREE_TYPE (TREE_OPERAND (rhs, 0)))
5817 && integer_pow2p (TREE_OPERAND (rhs, 1)))
5818 simplify_div_or_mod_using_ranges (stmt, rhs, rhs_code);
5820 /* Transform ABS (X) into X or -X as appropriate. */
5821 if (rhs_code == ABS_EXPR
5822 && TREE_CODE (TREE_OPERAND (rhs, 0)) == SSA_NAME
5823 && INTEGRAL_TYPE_P (TREE_TYPE (TREE_OPERAND (rhs, 0))))
5824 simplify_abs_using_ranges (stmt, rhs);
5826 else if (TREE_CODE (stmt) == COND_EXPR
5827 && COMPARISON_CLASS_P (COND_EXPR_COND (stmt)))
5829 simplify_cond_using_ranges (stmt);
5833 /* Stack of dest,src equivalency pairs that need to be restored after
5834 each attempt to thread a block's incoming edge to an outgoing edge.
5836 A NULL entry is used to mark the end of pairs which need to be
5837 restored. */
5838 static VEC(tree,heap) *stack;
5840 /* A trivial wrapper so that we can present the generic jump threading
5841 code with a simple API for simplifying statements. STMT is the
5842 statement we want to simplify, WITHIN_STMT provides the location
5843 for any overflow warnings. */
5845 static tree
5846 simplify_stmt_for_jump_threading (tree stmt, tree within_stmt)
5848 /* We only use VRP information to simplify conditionals. This is
5849 overly conservative, but it's unclear if doing more would be
5850 worth the compile time cost. */
5851 if (TREE_CODE (stmt) != COND_EXPR)
5852 return NULL;
5854 return vrp_evaluate_conditional (COND_EXPR_COND (stmt), within_stmt);
5857 /* Blocks which have more than one predecessor and more than
5858 one successor present jump threading opportunities. ie,
5859 when the block is reached from a specific predecessor, we
5860 may be able to determine which of the outgoing edges will
5861 be traversed. When this optimization applies, we are able
5862 to avoid conditionals at runtime and we may expose secondary
5863 optimization opportunities.
5865 This routine is effectively a driver for the generic jump
5866 threading code. It basically just presents the generic code
5867 with edges that may be suitable for jump threading.
5869 Unlike DOM, we do not iterate VRP if jump threading was successful.
5870 While iterating may expose new opportunities for VRP, it is expected
5871 those opportunities would be very limited and the compile time cost
5872 to expose those opportunities would be significant.
5874 As jump threading opportunities are discovered, they are registered
5875 for later realization. */
5877 static void
5878 identify_jump_threads (void)
5880 basic_block bb;
5881 tree dummy;
5883 /* Ugh. When substituting values earlier in this pass we can
5884 wipe the dominance information. So rebuild the dominator
5885 information as we need it within the jump threading code. */
5886 calculate_dominance_info (CDI_DOMINATORS);
5888 /* We do not allow VRP information to be used for jump threading
5889 across a back edge in the CFG. Otherwise it becomes too
5890 difficult to avoid eliminating loop exit tests. Of course
5891 EDGE_DFS_BACK is not accurate at this time so we have to
5892 recompute it. */
5893 mark_dfs_back_edges ();
5895 /* Allocate our unwinder stack to unwind any temporary equivalences
5896 that might be recorded. */
5897 stack = VEC_alloc (tree, heap, 20);
5899 /* To avoid lots of silly node creation, we create a single
5900 conditional and just modify it in-place when attempting to
5901 thread jumps. */
5902 dummy = build2 (EQ_EXPR, boolean_type_node, NULL, NULL);
5903 dummy = build3 (COND_EXPR, void_type_node, dummy, NULL, NULL);
5905 /* Walk through all the blocks finding those which present a
5906 potential jump threading opportunity. We could set this up
5907 as a dominator walker and record data during the walk, but
5908 I doubt it's worth the effort for the classes of jump
5909 threading opportunities we are trying to identify at this
5910 point in compilation. */
5911 FOR_EACH_BB (bb)
5913 tree last, cond;
5915 /* If the generic jump threading code does not find this block
5916 interesting, then there is nothing to do. */
5917 if (! potentially_threadable_block (bb))
5918 continue;
5920 /* We only care about blocks ending in a COND_EXPR. While there
5921 may be some value in handling SWITCH_EXPR here, I doubt it's
5922 terribly important. */
5923 last = bsi_stmt (bsi_last (bb));
5924 if (TREE_CODE (last) != COND_EXPR)
5925 continue;
5927 /* We're basically looking for any kind of conditional with
5928 integral type arguments. */
5929 cond = COND_EXPR_COND (last);
5930 if ((TREE_CODE (cond) == SSA_NAME
5931 && INTEGRAL_TYPE_P (TREE_TYPE (cond)))
5932 || (COMPARISON_CLASS_P (cond)
5933 && TREE_CODE (TREE_OPERAND (cond, 0)) == SSA_NAME
5934 && INTEGRAL_TYPE_P (TREE_TYPE (TREE_OPERAND (cond, 0)))
5935 && (TREE_CODE (TREE_OPERAND (cond, 1)) == SSA_NAME
5936 || is_gimple_min_invariant (TREE_OPERAND (cond, 1)))
5937 && INTEGRAL_TYPE_P (TREE_TYPE (TREE_OPERAND (cond, 1)))))
5939 edge_iterator ei;
5940 edge e;
5942 /* We've got a block with multiple predecessors and multiple
5943 successors which also ends in a suitable conditional. For
5944 each predecessor, see if we can thread it to a specific
5945 successor. */
5946 FOR_EACH_EDGE (e, ei, bb->preds)
5948 /* Do not thread across back edges or abnormal edges
5949 in the CFG. */
5950 if (e->flags & (EDGE_DFS_BACK | EDGE_COMPLEX))
5951 continue;
5953 thread_across_edge (dummy, e, true,
5954 &stack,
5955 simplify_stmt_for_jump_threading);
5960 /* We do not actually update the CFG or SSA graphs at this point as
5961 ASSERT_EXPRs are still in the IL and cfg cleanup code does not yet
5962 handle ASSERT_EXPRs gracefully. */
5965 /* We identified all the jump threading opportunities earlier, but could
5966 not transform the CFG at that time. This routine transforms the
5967 CFG and arranges for the dominator tree to be rebuilt if necessary.
5969 Note the SSA graph update will occur during the normal TODO
5970 processing by the pass manager. */
5971 static void
5972 finalize_jump_threads (void)
5974 thread_through_all_blocks (false);
5975 VEC_free (tree, heap, stack);
5979 /* Traverse all the blocks folding conditionals with known ranges. */
5981 static void
5982 vrp_finalize (void)
5984 size_t i;
5985 prop_value_t *single_val_range;
5986 bool do_value_subst_p;
5988 if (dump_file)
5990 fprintf (dump_file, "\nValue ranges after VRP:\n\n");
5991 dump_all_value_ranges (dump_file);
5992 fprintf (dump_file, "\n");
5995 /* We may have ended with ranges that have exactly one value. Those
5996 values can be substituted as any other copy/const propagated
5997 value using substitute_and_fold. */
5998 single_val_range = XCNEWVEC (prop_value_t, num_ssa_names);
6000 do_value_subst_p = false;
6001 for (i = 0; i < num_ssa_names; i++)
6002 if (vr_value[i]
6003 && vr_value[i]->type == VR_RANGE
6004 && vr_value[i]->min == vr_value[i]->max)
6006 single_val_range[i].value = vr_value[i]->min;
6007 do_value_subst_p = true;
6010 if (!do_value_subst_p)
6012 /* We found no single-valued ranges, don't waste time trying to
6013 do single value substitution in substitute_and_fold. */
6014 free (single_val_range);
6015 single_val_range = NULL;
6018 substitute_and_fold (single_val_range, true);
6020 if (warn_array_bounds)
6021 check_all_array_refs ();
6023 /* We must identify jump threading opportunities before we release
6024 the datastructures built by VRP. */
6025 identify_jump_threads ();
6027 /* Free allocated memory. */
6028 for (i = 0; i < num_ssa_names; i++)
6029 if (vr_value[i])
6031 BITMAP_FREE (vr_value[i]->equiv);
6032 free (vr_value[i]);
6035 free (single_val_range);
6036 free (vr_value);
6037 free (vr_phi_edge_counts);
6039 /* So that we can distinguish between VRP data being available
6040 and not available. */
6041 vr_value = NULL;
6042 vr_phi_edge_counts = NULL;
6046 /* Main entry point to VRP (Value Range Propagation). This pass is
6047 loosely based on J. R. C. Patterson, ``Accurate Static Branch
6048 Prediction by Value Range Propagation,'' in SIGPLAN Conference on
6049 Programming Language Design and Implementation, pp. 67-78, 1995.
6050 Also available at http://citeseer.ist.psu.edu/patterson95accurate.html
6052 This is essentially an SSA-CCP pass modified to deal with ranges
6053 instead of constants.
6055 While propagating ranges, we may find that two or more SSA name
6056 have equivalent, though distinct ranges. For instance,
6058 1 x_9 = p_3->a;
6059 2 p_4 = ASSERT_EXPR <p_3, p_3 != 0>
6060 3 if (p_4 == q_2)
6061 4 p_5 = ASSERT_EXPR <p_4, p_4 == q_2>;
6062 5 endif
6063 6 if (q_2)
6065 In the code above, pointer p_5 has range [q_2, q_2], but from the
6066 code we can also determine that p_5 cannot be NULL and, if q_2 had
6067 a non-varying range, p_5's range should also be compatible with it.
6069 These equivalences are created by two expressions: ASSERT_EXPR and
6070 copy operations. Since p_5 is an assertion on p_4, and p_4 was the
6071 result of another assertion, then we can use the fact that p_5 and
6072 p_4 are equivalent when evaluating p_5's range.
6074 Together with value ranges, we also propagate these equivalences
6075 between names so that we can take advantage of information from
6076 multiple ranges when doing final replacement. Note that this
6077 equivalency relation is transitive but not symmetric.
6079 In the example above, p_5 is equivalent to p_4, q_2 and p_3, but we
6080 cannot assert that q_2 is equivalent to p_5 because q_2 may be used
6081 in contexts where that assertion does not hold (e.g., in line 6).
6083 TODO, the main difference between this pass and Patterson's is that
6084 we do not propagate edge probabilities. We only compute whether
6085 edges can be taken or not. That is, instead of having a spectrum
6086 of jump probabilities between 0 and 1, we only deal with 0, 1 and
6087 DON'T KNOW. In the future, it may be worthwhile to propagate
6088 probabilities to aid branch prediction. */
6090 static unsigned int
6091 execute_vrp (void)
6093 loop_optimizer_init (LOOPS_NORMAL | LOOPS_HAVE_RECORDED_EXITS);
6094 rewrite_into_loop_closed_ssa (NULL, TODO_update_ssa);
6095 scev_initialize ();
6097 insert_range_assertions ();
6099 vrp_initialize ();
6100 ssa_propagate (vrp_visit_stmt, vrp_visit_phi_node);
6101 vrp_finalize ();
6103 /* ASSERT_EXPRs must be removed before finalizing jump threads
6104 as finalizing jump threads calls the CFG cleanup code which
6105 does not properly handle ASSERT_EXPRs. */
6106 remove_range_assertions ();
6108 /* If we exposed any new variables, go ahead and put them into
6109 SSA form now, before we handle jump threading. This simplifies
6110 interactions between rewriting of _DECL nodes into SSA form
6111 and rewriting SSA_NAME nodes into SSA form after block
6112 duplication and CFG manipulation. */
6113 update_ssa (TODO_update_ssa);
6115 finalize_jump_threads ();
6116 scev_finalize ();
6117 loop_optimizer_finalize ();
6119 return 0;
6122 static bool
6123 gate_vrp (void)
6125 return flag_tree_vrp != 0;
6128 struct tree_opt_pass pass_vrp =
6130 "vrp", /* name */
6131 gate_vrp, /* gate */
6132 execute_vrp, /* execute */
6133 NULL, /* sub */
6134 NULL, /* next */
6135 0, /* static_pass_number */
6136 TV_TREE_VRP, /* tv_id */
6137 PROP_ssa | PROP_alias, /* properties_required */
6138 0, /* properties_provided */
6139 0, /* properties_destroyed */
6140 0, /* todo_flags_start */
6141 TODO_cleanup_cfg
6142 | TODO_ggc_collect
6143 | TODO_verify_ssa
6144 | TODO_dump_func
6145 | TODO_update_ssa, /* todo_flags_finish */
6146 0 /* letter */