Updated for libbid move.
[official-gcc.git] / gcc / resource.c
blob6f9456f038306bf5a22f80eb6edf425f9b8ea804
1 /* Definitions for computing resource usage of specific insns.
2 Copyright (C) 1999, 2000, 2001, 2002, 2003, 2004, 2005, 2006, 2007
3 Free Software Foundation, Inc.
5 This file is part of GCC.
7 GCC is free software; you can redistribute it and/or modify it under
8 the terms of the GNU General Public License as published by the Free
9 Software Foundation; either version 2, or (at your option) any later
10 version.
12 GCC is distributed in the hope that it will be useful, but WITHOUT ANY
13 WARRANTY; without even the implied warranty of MERCHANTABILITY or
14 FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License
15 for more details.
17 You should have received a copy of the GNU General Public License
18 along with GCC; see the file COPYING. If not, write to the Free
19 Software Foundation, 51 Franklin Street, Fifth Floor, Boston, MA
20 02110-1301, USA. */
22 #include "config.h"
23 #include "system.h"
24 #include "coretypes.h"
25 #include "tm.h"
26 #include "toplev.h"
27 #include "rtl.h"
28 #include "tm_p.h"
29 #include "hard-reg-set.h"
30 #include "function.h"
31 #include "regs.h"
32 #include "flags.h"
33 #include "output.h"
34 #include "resource.h"
35 #include "except.h"
36 #include "insn-attr.h"
37 #include "params.h"
38 #include "df.h"
40 /* This structure is used to record liveness information at the targets or
41 fallthrough insns of branches. We will most likely need the information
42 at targets again, so save them in a hash table rather than recomputing them
43 each time. */
45 struct target_info
47 int uid; /* INSN_UID of target. */
48 struct target_info *next; /* Next info for same hash bucket. */
49 HARD_REG_SET live_regs; /* Registers live at target. */
50 int block; /* Basic block number containing target. */
51 int bb_tick; /* Generation count of basic block info. */
54 #define TARGET_HASH_PRIME 257
56 /* Indicates what resources are required at the beginning of the epilogue. */
57 static struct resources start_of_epilogue_needs;
59 /* Indicates what resources are required at function end. */
60 static struct resources end_of_function_needs;
62 /* Define the hash table itself. */
63 static struct target_info **target_hash_table = NULL;
65 /* For each basic block, we maintain a generation number of its basic
66 block info, which is updated each time we move an insn from the
67 target of a jump. This is the generation number indexed by block
68 number. */
70 static int *bb_ticks;
72 /* Marks registers possibly live at the current place being scanned by
73 mark_target_live_regs. Also used by update_live_status. */
75 static HARD_REG_SET current_live_regs;
77 /* Marks registers for which we have seen a REG_DEAD note but no assignment.
78 Also only used by the next two functions. */
80 static HARD_REG_SET pending_dead_regs;
82 static void update_live_status (rtx, rtx, void *);
83 static int find_basic_block (rtx, int);
84 static rtx next_insn_no_annul (rtx);
85 static rtx find_dead_or_set_registers (rtx, struct resources*,
86 rtx*, int, struct resources,
87 struct resources);
89 /* Utility function called from mark_target_live_regs via note_stores.
90 It deadens any CLOBBERed registers and livens any SET registers. */
92 static void
93 update_live_status (rtx dest, rtx x, void *data ATTRIBUTE_UNUSED)
95 int first_regno, last_regno;
96 int i;
98 if (!REG_P (dest)
99 && (GET_CODE (dest) != SUBREG || !REG_P (SUBREG_REG (dest))))
100 return;
102 if (GET_CODE (dest) == SUBREG)
104 first_regno = subreg_regno (dest);
105 last_regno = first_regno + subreg_nregs (dest);
108 else
110 first_regno = REGNO (dest);
111 last_regno = END_HARD_REGNO (dest);
114 if (GET_CODE (x) == CLOBBER)
115 for (i = first_regno; i < last_regno; i++)
116 CLEAR_HARD_REG_BIT (current_live_regs, i);
117 else
118 for (i = first_regno; i < last_regno; i++)
120 SET_HARD_REG_BIT (current_live_regs, i);
121 CLEAR_HARD_REG_BIT (pending_dead_regs, i);
125 /* Find the number of the basic block with correct live register
126 information that starts closest to INSN. Return -1 if we couldn't
127 find such a basic block or the beginning is more than
128 SEARCH_LIMIT instructions before INSN. Use SEARCH_LIMIT = -1 for
129 an unlimited search.
131 The delay slot filling code destroys the control-flow graph so,
132 instead of finding the basic block containing INSN, we search
133 backwards toward a BARRIER where the live register information is
134 correct. */
136 static int
137 find_basic_block (rtx insn, int search_limit)
139 basic_block bb;
141 /* Scan backwards to the previous BARRIER. Then see if we can find a
142 label that starts a basic block. Return the basic block number. */
143 for (insn = prev_nonnote_insn (insn);
144 insn && !BARRIER_P (insn) && search_limit != 0;
145 insn = prev_nonnote_insn (insn), --search_limit)
148 /* The closest BARRIER is too far away. */
149 if (search_limit == 0)
150 return -1;
152 /* The start of the function. */
153 else if (insn == 0)
154 return ENTRY_BLOCK_PTR->next_bb->index;
156 /* See if any of the upcoming CODE_LABELs start a basic block. If we reach
157 anything other than a CODE_LABEL or note, we can't find this code. */
158 for (insn = next_nonnote_insn (insn);
159 insn && LABEL_P (insn);
160 insn = next_nonnote_insn (insn))
162 FOR_EACH_BB (bb)
163 if (insn == BB_HEAD (bb))
164 return bb->index;
167 return -1;
170 /* Similar to next_insn, but ignores insns in the delay slots of
171 an annulled branch. */
173 static rtx
174 next_insn_no_annul (rtx insn)
176 if (insn)
178 /* If INSN is an annulled branch, skip any insns from the target
179 of the branch. */
180 if (INSN_P (insn)
181 && INSN_ANNULLED_BRANCH_P (insn)
182 && NEXT_INSN (PREV_INSN (insn)) != insn)
184 rtx next = NEXT_INSN (insn);
185 enum rtx_code code = GET_CODE (next);
187 while ((code == INSN || code == JUMP_INSN || code == CALL_INSN)
188 && INSN_FROM_TARGET_P (next))
190 insn = next;
191 next = NEXT_INSN (insn);
192 code = GET_CODE (next);
196 insn = NEXT_INSN (insn);
197 if (insn && NONJUMP_INSN_P (insn)
198 && GET_CODE (PATTERN (insn)) == SEQUENCE)
199 insn = XVECEXP (PATTERN (insn), 0, 0);
202 return insn;
205 /* Given X, some rtl, and RES, a pointer to a `struct resource', mark
206 which resources are referenced by the insn. If INCLUDE_DELAYED_EFFECTS
207 is TRUE, resources used by the called routine will be included for
208 CALL_INSNs. */
210 void
211 mark_referenced_resources (rtx x, struct resources *res,
212 int include_delayed_effects)
214 enum rtx_code code = GET_CODE (x);
215 int i, j;
216 unsigned int r;
217 const char *format_ptr;
219 /* Handle leaf items for which we set resource flags. Also, special-case
220 CALL, SET and CLOBBER operators. */
221 switch (code)
223 case CONST:
224 case CONST_INT:
225 case CONST_DOUBLE:
226 case CONST_VECTOR:
227 case PC:
228 case SYMBOL_REF:
229 case LABEL_REF:
230 return;
232 case SUBREG:
233 if (!REG_P (SUBREG_REG (x)))
234 mark_referenced_resources (SUBREG_REG (x), res, 0);
235 else
237 unsigned int regno = subreg_regno (x);
238 unsigned int last_regno = regno + subreg_nregs (x);
240 gcc_assert (last_regno <= FIRST_PSEUDO_REGISTER);
241 for (r = regno; r < last_regno; r++)
242 SET_HARD_REG_BIT (res->regs, r);
244 return;
246 case REG:
247 gcc_assert (HARD_REGISTER_P (x));
248 add_to_hard_reg_set (&res->regs, GET_MODE (x), REGNO (x));
249 return;
251 case MEM:
252 /* If this memory shouldn't change, it really isn't referencing
253 memory. */
254 if (MEM_READONLY_P (x))
255 res->unch_memory = 1;
256 else
257 res->memory = 1;
258 res->volatil |= MEM_VOLATILE_P (x);
260 /* Mark registers used to access memory. */
261 mark_referenced_resources (XEXP (x, 0), res, 0);
262 return;
264 case CC0:
265 res->cc = 1;
266 return;
268 case UNSPEC_VOLATILE:
269 case ASM_INPUT:
270 /* Traditional asm's are always volatile. */
271 res->volatil = 1;
272 return;
274 case TRAP_IF:
275 res->volatil = 1;
276 break;
278 case ASM_OPERANDS:
279 res->volatil |= MEM_VOLATILE_P (x);
281 /* For all ASM_OPERANDS, we must traverse the vector of input operands.
282 We can not just fall through here since then we would be confused
283 by the ASM_INPUT rtx inside ASM_OPERANDS, which do not indicate
284 traditional asms unlike their normal usage. */
286 for (i = 0; i < ASM_OPERANDS_INPUT_LENGTH (x); i++)
287 mark_referenced_resources (ASM_OPERANDS_INPUT (x, i), res, 0);
288 return;
290 case CALL:
291 /* The first operand will be a (MEM (xxx)) but doesn't really reference
292 memory. The second operand may be referenced, though. */
293 mark_referenced_resources (XEXP (XEXP (x, 0), 0), res, 0);
294 mark_referenced_resources (XEXP (x, 1), res, 0);
295 return;
297 case SET:
298 /* Usually, the first operand of SET is set, not referenced. But
299 registers used to access memory are referenced. SET_DEST is
300 also referenced if it is a ZERO_EXTRACT. */
302 mark_referenced_resources (SET_SRC (x), res, 0);
304 x = SET_DEST (x);
305 if (GET_CODE (x) == ZERO_EXTRACT
306 || GET_CODE (x) == STRICT_LOW_PART)
307 mark_referenced_resources (x, res, 0);
308 else if (GET_CODE (x) == SUBREG)
309 x = SUBREG_REG (x);
310 if (MEM_P (x))
311 mark_referenced_resources (XEXP (x, 0), res, 0);
312 return;
314 case CLOBBER:
315 return;
317 case CALL_INSN:
318 if (include_delayed_effects)
320 /* A CALL references memory, the frame pointer if it exists, the
321 stack pointer, any global registers and any registers given in
322 USE insns immediately in front of the CALL.
324 However, we may have moved some of the parameter loading insns
325 into the delay slot of this CALL. If so, the USE's for them
326 don't count and should be skipped. */
327 rtx insn = PREV_INSN (x);
328 rtx sequence = 0;
329 int seq_size = 0;
330 int i;
332 /* If we are part of a delay slot sequence, point at the SEQUENCE. */
333 if (NEXT_INSN (insn) != x)
335 sequence = PATTERN (NEXT_INSN (insn));
336 seq_size = XVECLEN (sequence, 0);
337 gcc_assert (GET_CODE (sequence) == SEQUENCE);
340 res->memory = 1;
341 SET_HARD_REG_BIT (res->regs, STACK_POINTER_REGNUM);
342 if (frame_pointer_needed)
344 SET_HARD_REG_BIT (res->regs, FRAME_POINTER_REGNUM);
345 #if FRAME_POINTER_REGNUM != HARD_FRAME_POINTER_REGNUM
346 SET_HARD_REG_BIT (res->regs, HARD_FRAME_POINTER_REGNUM);
347 #endif
350 for (i = 0; i < FIRST_PSEUDO_REGISTER; i++)
351 if (global_regs[i])
352 SET_HARD_REG_BIT (res->regs, i);
354 /* Check for a REG_SETJMP. If it exists, then we must
355 assume that this call can need any register.
357 This is done to be more conservative about how we handle setjmp.
358 We assume that they both use and set all registers. Using all
359 registers ensures that a register will not be considered dead
360 just because it crosses a setjmp call. A register should be
361 considered dead only if the setjmp call returns nonzero. */
362 if (find_reg_note (x, REG_SETJMP, NULL))
363 SET_HARD_REG_SET (res->regs);
366 rtx link;
368 for (link = CALL_INSN_FUNCTION_USAGE (x);
369 link;
370 link = XEXP (link, 1))
371 if (GET_CODE (XEXP (link, 0)) == USE)
373 for (i = 1; i < seq_size; i++)
375 rtx slot_pat = PATTERN (XVECEXP (sequence, 0, i));
376 if (GET_CODE (slot_pat) == SET
377 && rtx_equal_p (SET_DEST (slot_pat),
378 XEXP (XEXP (link, 0), 0)))
379 break;
381 if (i >= seq_size)
382 mark_referenced_resources (XEXP (XEXP (link, 0), 0),
383 res, 0);
388 /* ... fall through to other INSN processing ... */
390 case INSN:
391 case JUMP_INSN:
393 #ifdef INSN_REFERENCES_ARE_DELAYED
394 if (! include_delayed_effects
395 && INSN_REFERENCES_ARE_DELAYED (x))
396 return;
397 #endif
399 /* No special processing, just speed up. */
400 mark_referenced_resources (PATTERN (x), res, include_delayed_effects);
401 return;
403 default:
404 break;
407 /* Process each sub-expression and flag what it needs. */
408 format_ptr = GET_RTX_FORMAT (code);
409 for (i = 0; i < GET_RTX_LENGTH (code); i++)
410 switch (*format_ptr++)
412 case 'e':
413 mark_referenced_resources (XEXP (x, i), res, include_delayed_effects);
414 break;
416 case 'E':
417 for (j = 0; j < XVECLEN (x, i); j++)
418 mark_referenced_resources (XVECEXP (x, i, j), res,
419 include_delayed_effects);
420 break;
424 /* A subroutine of mark_target_live_regs. Search forward from TARGET
425 looking for registers that are set before they are used. These are dead.
426 Stop after passing a few conditional jumps, and/or a small
427 number of unconditional branches. */
429 static rtx
430 find_dead_or_set_registers (rtx target, struct resources *res,
431 rtx *jump_target, int jump_count,
432 struct resources set, struct resources needed)
434 HARD_REG_SET scratch;
435 rtx insn, next;
436 rtx jump_insn = 0;
437 int i;
439 for (insn = target; insn; insn = next)
441 rtx this_jump_insn = insn;
443 next = NEXT_INSN (insn);
445 /* If this instruction can throw an exception, then we don't
446 know where we might end up next. That means that we have to
447 assume that whatever we have already marked as live really is
448 live. */
449 if (can_throw_internal (insn))
450 break;
452 switch (GET_CODE (insn))
454 case CODE_LABEL:
455 /* After a label, any pending dead registers that weren't yet
456 used can be made dead. */
457 AND_COMPL_HARD_REG_SET (pending_dead_regs, needed.regs);
458 AND_COMPL_HARD_REG_SET (res->regs, pending_dead_regs);
459 CLEAR_HARD_REG_SET (pending_dead_regs);
461 continue;
463 case BARRIER:
464 case NOTE:
465 continue;
467 case INSN:
468 if (GET_CODE (PATTERN (insn)) == USE)
470 /* If INSN is a USE made by update_block, we care about the
471 underlying insn. Any registers set by the underlying insn
472 are live since the insn is being done somewhere else. */
473 if (INSN_P (XEXP (PATTERN (insn), 0)))
474 mark_set_resources (XEXP (PATTERN (insn), 0), res, 0,
475 MARK_SRC_DEST_CALL);
477 /* All other USE insns are to be ignored. */
478 continue;
480 else if (GET_CODE (PATTERN (insn)) == CLOBBER)
481 continue;
482 else if (GET_CODE (PATTERN (insn)) == SEQUENCE)
484 /* An unconditional jump can be used to fill the delay slot
485 of a call, so search for a JUMP_INSN in any position. */
486 for (i = 0; i < XVECLEN (PATTERN (insn), 0); i++)
488 this_jump_insn = XVECEXP (PATTERN (insn), 0, i);
489 if (JUMP_P (this_jump_insn))
490 break;
494 default:
495 break;
498 if (JUMP_P (this_jump_insn))
500 if (jump_count++ < 10)
502 if (any_uncondjump_p (this_jump_insn)
503 || GET_CODE (PATTERN (this_jump_insn)) == RETURN)
505 next = JUMP_LABEL (this_jump_insn);
506 if (jump_insn == 0)
508 jump_insn = insn;
509 if (jump_target)
510 *jump_target = JUMP_LABEL (this_jump_insn);
513 else if (any_condjump_p (this_jump_insn))
515 struct resources target_set, target_res;
516 struct resources fallthrough_res;
518 /* We can handle conditional branches here by following
519 both paths, and then IOR the results of the two paths
520 together, which will give us registers that are dead
521 on both paths. Since this is expensive, we give it
522 a much higher cost than unconditional branches. The
523 cost was chosen so that we will follow at most 1
524 conditional branch. */
526 jump_count += 4;
527 if (jump_count >= 10)
528 break;
530 mark_referenced_resources (insn, &needed, 1);
532 /* For an annulled branch, mark_set_resources ignores slots
533 filled by instructions from the target. This is correct
534 if the branch is not taken. Since we are following both
535 paths from the branch, we must also compute correct info
536 if the branch is taken. We do this by inverting all of
537 the INSN_FROM_TARGET_P bits, calling mark_set_resources,
538 and then inverting the INSN_FROM_TARGET_P bits again. */
540 if (GET_CODE (PATTERN (insn)) == SEQUENCE
541 && INSN_ANNULLED_BRANCH_P (this_jump_insn))
543 for (i = 1; i < XVECLEN (PATTERN (insn), 0); i++)
544 INSN_FROM_TARGET_P (XVECEXP (PATTERN (insn), 0, i))
545 = ! INSN_FROM_TARGET_P (XVECEXP (PATTERN (insn), 0, i));
547 target_set = set;
548 mark_set_resources (insn, &target_set, 0,
549 MARK_SRC_DEST_CALL);
551 for (i = 1; i < XVECLEN (PATTERN (insn), 0); i++)
552 INSN_FROM_TARGET_P (XVECEXP (PATTERN (insn), 0, i))
553 = ! INSN_FROM_TARGET_P (XVECEXP (PATTERN (insn), 0, i));
555 mark_set_resources (insn, &set, 0, MARK_SRC_DEST_CALL);
557 else
559 mark_set_resources (insn, &set, 0, MARK_SRC_DEST_CALL);
560 target_set = set;
563 target_res = *res;
564 COPY_HARD_REG_SET (scratch, target_set.regs);
565 AND_COMPL_HARD_REG_SET (scratch, needed.regs);
566 AND_COMPL_HARD_REG_SET (target_res.regs, scratch);
568 fallthrough_res = *res;
569 COPY_HARD_REG_SET (scratch, set.regs);
570 AND_COMPL_HARD_REG_SET (scratch, needed.regs);
571 AND_COMPL_HARD_REG_SET (fallthrough_res.regs, scratch);
573 find_dead_or_set_registers (JUMP_LABEL (this_jump_insn),
574 &target_res, 0, jump_count,
575 target_set, needed);
576 find_dead_or_set_registers (next,
577 &fallthrough_res, 0, jump_count,
578 set, needed);
579 IOR_HARD_REG_SET (fallthrough_res.regs, target_res.regs);
580 AND_HARD_REG_SET (res->regs, fallthrough_res.regs);
581 break;
583 else
584 break;
586 else
588 /* Don't try this optimization if we expired our jump count
589 above, since that would mean there may be an infinite loop
590 in the function being compiled. */
591 jump_insn = 0;
592 break;
596 mark_referenced_resources (insn, &needed, 1);
597 mark_set_resources (insn, &set, 0, MARK_SRC_DEST_CALL);
599 COPY_HARD_REG_SET (scratch, set.regs);
600 AND_COMPL_HARD_REG_SET (scratch, needed.regs);
601 AND_COMPL_HARD_REG_SET (res->regs, scratch);
604 return jump_insn;
607 /* Given X, a part of an insn, and a pointer to a `struct resource',
608 RES, indicate which resources are modified by the insn. If
609 MARK_TYPE is MARK_SRC_DEST_CALL, also mark resources potentially
610 set by the called routine.
612 If IN_DEST is nonzero, it means we are inside a SET. Otherwise,
613 objects are being referenced instead of set.
615 We never mark the insn as modifying the condition code unless it explicitly
616 SETs CC0 even though this is not totally correct. The reason for this is
617 that we require a SET of CC0 to immediately precede the reference to CC0.
618 So if some other insn sets CC0 as a side-effect, we know it cannot affect
619 our computation and thus may be placed in a delay slot. */
621 void
622 mark_set_resources (rtx x, struct resources *res, int in_dest,
623 enum mark_resource_type mark_type)
625 enum rtx_code code;
626 int i, j;
627 unsigned int r;
628 const char *format_ptr;
630 restart:
632 code = GET_CODE (x);
634 switch (code)
636 case NOTE:
637 case BARRIER:
638 case CODE_LABEL:
639 case USE:
640 case CONST_INT:
641 case CONST_DOUBLE:
642 case CONST_VECTOR:
643 case LABEL_REF:
644 case SYMBOL_REF:
645 case CONST:
646 case PC:
647 /* These don't set any resources. */
648 return;
650 case CC0:
651 if (in_dest)
652 res->cc = 1;
653 return;
655 case CALL_INSN:
656 /* Called routine modifies the condition code, memory, any registers
657 that aren't saved across calls, global registers and anything
658 explicitly CLOBBERed immediately after the CALL_INSN. */
660 if (mark_type == MARK_SRC_DEST_CALL)
662 rtx link;
664 res->cc = res->memory = 1;
665 for (r = 0; r < FIRST_PSEUDO_REGISTER; r++)
666 if (call_used_regs[r] || global_regs[r])
667 SET_HARD_REG_BIT (res->regs, r);
669 for (link = CALL_INSN_FUNCTION_USAGE (x);
670 link; link = XEXP (link, 1))
671 if (GET_CODE (XEXP (link, 0)) == CLOBBER)
672 mark_set_resources (SET_DEST (XEXP (link, 0)), res, 1,
673 MARK_SRC_DEST);
675 /* Check for a REG_SETJMP. If it exists, then we must
676 assume that this call can clobber any register. */
677 if (find_reg_note (x, REG_SETJMP, NULL))
678 SET_HARD_REG_SET (res->regs);
681 /* ... and also what its RTL says it modifies, if anything. */
683 case JUMP_INSN:
684 case INSN:
686 /* An insn consisting of just a CLOBBER (or USE) is just for flow
687 and doesn't actually do anything, so we ignore it. */
689 #ifdef INSN_SETS_ARE_DELAYED
690 if (mark_type != MARK_SRC_DEST_CALL
691 && INSN_SETS_ARE_DELAYED (x))
692 return;
693 #endif
695 x = PATTERN (x);
696 if (GET_CODE (x) != USE && GET_CODE (x) != CLOBBER)
697 goto restart;
698 return;
700 case SET:
701 /* If the source of a SET is a CALL, this is actually done by
702 the called routine. So only include it if we are to include the
703 effects of the calling routine. */
705 mark_set_resources (SET_DEST (x), res,
706 (mark_type == MARK_SRC_DEST_CALL
707 || GET_CODE (SET_SRC (x)) != CALL),
708 mark_type);
710 mark_set_resources (SET_SRC (x), res, 0, MARK_SRC_DEST);
711 return;
713 case CLOBBER:
714 mark_set_resources (XEXP (x, 0), res, 1, MARK_SRC_DEST);
715 return;
717 case SEQUENCE:
718 for (i = 0; i < XVECLEN (x, 0); i++)
719 if (! (INSN_ANNULLED_BRANCH_P (XVECEXP (x, 0, 0))
720 && INSN_FROM_TARGET_P (XVECEXP (x, 0, i))))
721 mark_set_resources (XVECEXP (x, 0, i), res, 0, mark_type);
722 return;
724 case POST_INC:
725 case PRE_INC:
726 case POST_DEC:
727 case PRE_DEC:
728 mark_set_resources (XEXP (x, 0), res, 1, MARK_SRC_DEST);
729 return;
731 case PRE_MODIFY:
732 case POST_MODIFY:
733 mark_set_resources (XEXP (x, 0), res, 1, MARK_SRC_DEST);
734 mark_set_resources (XEXP (XEXP (x, 1), 0), res, 0, MARK_SRC_DEST);
735 mark_set_resources (XEXP (XEXP (x, 1), 1), res, 0, MARK_SRC_DEST);
736 return;
738 case SIGN_EXTRACT:
739 case ZERO_EXTRACT:
740 mark_set_resources (XEXP (x, 0), res, in_dest, MARK_SRC_DEST);
741 mark_set_resources (XEXP (x, 1), res, 0, MARK_SRC_DEST);
742 mark_set_resources (XEXP (x, 2), res, 0, MARK_SRC_DEST);
743 return;
745 case MEM:
746 if (in_dest)
748 res->memory = 1;
749 res->unch_memory |= MEM_READONLY_P (x);
750 res->volatil |= MEM_VOLATILE_P (x);
753 mark_set_resources (XEXP (x, 0), res, 0, MARK_SRC_DEST);
754 return;
756 case SUBREG:
757 if (in_dest)
759 if (!REG_P (SUBREG_REG (x)))
760 mark_set_resources (SUBREG_REG (x), res, in_dest, mark_type);
761 else
763 unsigned int regno = subreg_regno (x);
764 unsigned int last_regno = regno + subreg_nregs (x);
766 gcc_assert (last_regno <= FIRST_PSEUDO_REGISTER);
767 for (r = regno; r < last_regno; r++)
768 SET_HARD_REG_BIT (res->regs, r);
771 return;
773 case REG:
774 if (in_dest)
776 gcc_assert (HARD_REGISTER_P (x));
777 add_to_hard_reg_set (&res->regs, GET_MODE (x), REGNO (x));
779 return;
781 case UNSPEC_VOLATILE:
782 case ASM_INPUT:
783 /* Traditional asm's are always volatile. */
784 res->volatil = 1;
785 return;
787 case TRAP_IF:
788 res->volatil = 1;
789 break;
791 case ASM_OPERANDS:
792 res->volatil |= MEM_VOLATILE_P (x);
794 /* For all ASM_OPERANDS, we must traverse the vector of input operands.
795 We can not just fall through here since then we would be confused
796 by the ASM_INPUT rtx inside ASM_OPERANDS, which do not indicate
797 traditional asms unlike their normal usage. */
799 for (i = 0; i < ASM_OPERANDS_INPUT_LENGTH (x); i++)
800 mark_set_resources (ASM_OPERANDS_INPUT (x, i), res, in_dest,
801 MARK_SRC_DEST);
802 return;
804 default:
805 break;
808 /* Process each sub-expression and flag what it needs. */
809 format_ptr = GET_RTX_FORMAT (code);
810 for (i = 0; i < GET_RTX_LENGTH (code); i++)
811 switch (*format_ptr++)
813 case 'e':
814 mark_set_resources (XEXP (x, i), res, in_dest, mark_type);
815 break;
817 case 'E':
818 for (j = 0; j < XVECLEN (x, i); j++)
819 mark_set_resources (XVECEXP (x, i, j), res, in_dest, mark_type);
820 break;
824 /* Return TRUE if INSN is a return, possibly with a filled delay slot. */
826 static bool
827 return_insn_p (rtx insn)
829 if (JUMP_P (insn) && GET_CODE (PATTERN (insn)) == RETURN)
830 return true;
832 if (NONJUMP_INSN_P (insn) && GET_CODE (PATTERN (insn)) == SEQUENCE)
833 return return_insn_p (XVECEXP (PATTERN (insn), 0, 0));
835 return false;
838 /* Set the resources that are live at TARGET.
840 If TARGET is zero, we refer to the end of the current function and can
841 return our precomputed value.
843 Otherwise, we try to find out what is live by consulting the basic block
844 information. This is tricky, because we must consider the actions of
845 reload and jump optimization, which occur after the basic block information
846 has been computed.
848 Accordingly, we proceed as follows::
850 We find the previous BARRIER and look at all immediately following labels
851 (with no intervening active insns) to see if any of them start a basic
852 block. If we hit the start of the function first, we use block 0.
854 Once we have found a basic block and a corresponding first insns, we can
855 accurately compute the live status from basic_block_live_regs and
856 reg_renumber. (By starting at a label following a BARRIER, we are immune
857 to actions taken by reload and jump.) Then we scan all insns between
858 that point and our target. For each CLOBBER (or for call-clobbered regs
859 when we pass a CALL_INSN), mark the appropriate registers are dead. For
860 a SET, mark them as live.
862 We have to be careful when using REG_DEAD notes because they are not
863 updated by such things as find_equiv_reg. So keep track of registers
864 marked as dead that haven't been assigned to, and mark them dead at the
865 next CODE_LABEL since reload and jump won't propagate values across labels.
867 If we cannot find the start of a basic block (should be a very rare
868 case, if it can happen at all), mark everything as potentially live.
870 Next, scan forward from TARGET looking for things set or clobbered
871 before they are used. These are not live.
873 Because we can be called many times on the same target, save our results
874 in a hash table indexed by INSN_UID. This is only done if the function
875 init_resource_info () was invoked before we are called. */
877 void
878 mark_target_live_regs (rtx insns, rtx target, struct resources *res)
880 int b = -1;
881 unsigned int i;
882 struct target_info *tinfo = NULL;
883 rtx insn;
884 rtx jump_insn = 0;
885 rtx jump_target;
886 HARD_REG_SET scratch;
887 struct resources set, needed;
889 /* Handle end of function. */
890 if (target == 0)
892 *res = end_of_function_needs;
893 return;
896 /* Handle return insn. */
897 else if (return_insn_p (target))
899 *res = end_of_function_needs;
900 mark_referenced_resources (target, res, 0);
901 return;
904 /* We have to assume memory is needed, but the CC isn't. */
905 res->memory = 1;
906 res->volatil = res->unch_memory = 0;
907 res->cc = 0;
909 /* See if we have computed this value already. */
910 if (target_hash_table != NULL)
912 for (tinfo = target_hash_table[INSN_UID (target) % TARGET_HASH_PRIME];
913 tinfo; tinfo = tinfo->next)
914 if (tinfo->uid == INSN_UID (target))
915 break;
917 /* Start by getting the basic block number. If we have saved
918 information, we can get it from there unless the insn at the
919 start of the basic block has been deleted. */
920 if (tinfo && tinfo->block != -1
921 && ! INSN_DELETED_P (BB_HEAD (BASIC_BLOCK (tinfo->block))))
922 b = tinfo->block;
925 if (b == -1)
926 b = find_basic_block (target, MAX_DELAY_SLOT_LIVE_SEARCH);
928 if (target_hash_table != NULL)
930 if (tinfo)
932 /* If the information is up-to-date, use it. Otherwise, we will
933 update it below. */
934 if (b == tinfo->block && b != -1 && tinfo->bb_tick == bb_ticks[b])
936 COPY_HARD_REG_SET (res->regs, tinfo->live_regs);
937 return;
940 else
942 /* Allocate a place to put our results and chain it into the
943 hash table. */
944 tinfo = XNEW (struct target_info);
945 tinfo->uid = INSN_UID (target);
946 tinfo->block = b;
947 tinfo->next
948 = target_hash_table[INSN_UID (target) % TARGET_HASH_PRIME];
949 target_hash_table[INSN_UID (target) % TARGET_HASH_PRIME] = tinfo;
953 CLEAR_HARD_REG_SET (pending_dead_regs);
955 /* If we found a basic block, get the live registers from it and update
956 them with anything set or killed between its start and the insn before
957 TARGET. Otherwise, we must assume everything is live. */
958 if (b != -1)
960 regset regs_live = df_get_live_in (BASIC_BLOCK (b));
961 rtx start_insn, stop_insn;
962 reg_set_iterator rsi;
964 /* Compute hard regs live at start of block -- this is the real hard regs
965 marked live, plus live pseudo regs that have been renumbered to
966 hard regs. */
968 REG_SET_TO_HARD_REG_SET (current_live_regs, regs_live);
970 EXECUTE_IF_SET_IN_REG_SET (regs_live, FIRST_PSEUDO_REGISTER, i, rsi)
972 if (reg_renumber[i] >= 0)
973 add_to_hard_reg_set (&current_live_regs, PSEUDO_REGNO_MODE (i),
974 reg_renumber[i]);
977 /* Get starting and ending insn, handling the case where each might
978 be a SEQUENCE. */
979 start_insn = (b == ENTRY_BLOCK_PTR->next_bb->index ?
980 insns : BB_HEAD (BASIC_BLOCK (b)));
981 stop_insn = target;
983 if (NONJUMP_INSN_P (start_insn)
984 && GET_CODE (PATTERN (start_insn)) == SEQUENCE)
985 start_insn = XVECEXP (PATTERN (start_insn), 0, 0);
987 if (NONJUMP_INSN_P (stop_insn)
988 && GET_CODE (PATTERN (stop_insn)) == SEQUENCE)
989 stop_insn = next_insn (PREV_INSN (stop_insn));
991 for (insn = start_insn; insn != stop_insn;
992 insn = next_insn_no_annul (insn))
994 rtx link;
995 rtx real_insn = insn;
996 enum rtx_code code = GET_CODE (insn);
998 /* If this insn is from the target of a branch, it isn't going to
999 be used in the sequel. If it is used in both cases, this
1000 test will not be true. */
1001 if ((code == INSN || code == JUMP_INSN || code == CALL_INSN)
1002 && INSN_FROM_TARGET_P (insn))
1003 continue;
1005 /* If this insn is a USE made by update_block, we care about the
1006 underlying insn. */
1007 if (code == INSN && GET_CODE (PATTERN (insn)) == USE
1008 && INSN_P (XEXP (PATTERN (insn), 0)))
1009 real_insn = XEXP (PATTERN (insn), 0);
1011 if (CALL_P (real_insn))
1013 /* CALL clobbers all call-used regs that aren't fixed except
1014 sp, ap, and fp. Do this before setting the result of the
1015 call live. */
1016 AND_COMPL_HARD_REG_SET (current_live_regs,
1017 regs_invalidated_by_call);
1019 /* A CALL_INSN sets any global register live, since it may
1020 have been modified by the call. */
1021 for (i = 0; i < FIRST_PSEUDO_REGISTER; i++)
1022 if (global_regs[i])
1023 SET_HARD_REG_BIT (current_live_regs, i);
1026 /* Mark anything killed in an insn to be deadened at the next
1027 label. Ignore USE insns; the only REG_DEAD notes will be for
1028 parameters. But they might be early. A CALL_INSN will usually
1029 clobber registers used for parameters. It isn't worth bothering
1030 with the unlikely case when it won't. */
1031 if ((NONJUMP_INSN_P (real_insn)
1032 && GET_CODE (PATTERN (real_insn)) != USE
1033 && GET_CODE (PATTERN (real_insn)) != CLOBBER)
1034 || JUMP_P (real_insn)
1035 || CALL_P (real_insn))
1037 for (link = REG_NOTES (real_insn); link; link = XEXP (link, 1))
1038 if (REG_NOTE_KIND (link) == REG_DEAD
1039 && REG_P (XEXP (link, 0))
1040 && REGNO (XEXP (link, 0)) < FIRST_PSEUDO_REGISTER)
1041 add_to_hard_reg_set (&pending_dead_regs,
1042 GET_MODE (XEXP (link, 0)),
1043 REGNO (XEXP (link, 0)));
1045 note_stores (PATTERN (real_insn), update_live_status, NULL);
1047 /* If any registers were unused after this insn, kill them.
1048 These notes will always be accurate. */
1049 for (link = REG_NOTES (real_insn); link; link = XEXP (link, 1))
1050 if (REG_NOTE_KIND (link) == REG_UNUSED
1051 && REG_P (XEXP (link, 0))
1052 && REGNO (XEXP (link, 0)) < FIRST_PSEUDO_REGISTER)
1053 remove_from_hard_reg_set (&current_live_regs,
1054 GET_MODE (XEXP (link, 0)),
1055 REGNO (XEXP (link, 0)));
1058 else if (LABEL_P (real_insn))
1060 /* A label clobbers the pending dead registers since neither
1061 reload nor jump will propagate a value across a label. */
1062 AND_COMPL_HARD_REG_SET (current_live_regs, pending_dead_regs);
1063 CLEAR_HARD_REG_SET (pending_dead_regs);
1066 /* The beginning of the epilogue corresponds to the end of the
1067 RTL chain when there are no epilogue insns. Certain resources
1068 are implicitly required at that point. */
1069 else if (NOTE_P (real_insn)
1070 && NOTE_KIND (real_insn) == NOTE_INSN_EPILOGUE_BEG)
1071 IOR_HARD_REG_SET (current_live_regs, start_of_epilogue_needs.regs);
1074 COPY_HARD_REG_SET (res->regs, current_live_regs);
1075 if (tinfo != NULL)
1077 tinfo->block = b;
1078 tinfo->bb_tick = bb_ticks[b];
1081 else
1082 /* We didn't find the start of a basic block. Assume everything
1083 in use. This should happen only extremely rarely. */
1084 SET_HARD_REG_SET (res->regs);
1086 CLEAR_RESOURCE (&set);
1087 CLEAR_RESOURCE (&needed);
1089 jump_insn = find_dead_or_set_registers (target, res, &jump_target, 0,
1090 set, needed);
1092 /* If we hit an unconditional branch, we have another way of finding out
1093 what is live: we can see what is live at the branch target and include
1094 anything used but not set before the branch. We add the live
1095 resources found using the test below to those found until now. */
1097 if (jump_insn)
1099 struct resources new_resources;
1100 rtx stop_insn = next_active_insn (jump_insn);
1102 mark_target_live_regs (insns, next_active_insn (jump_target),
1103 &new_resources);
1104 CLEAR_RESOURCE (&set);
1105 CLEAR_RESOURCE (&needed);
1107 /* Include JUMP_INSN in the needed registers. */
1108 for (insn = target; insn != stop_insn; insn = next_active_insn (insn))
1110 mark_referenced_resources (insn, &needed, 1);
1112 COPY_HARD_REG_SET (scratch, needed.regs);
1113 AND_COMPL_HARD_REG_SET (scratch, set.regs);
1114 IOR_HARD_REG_SET (new_resources.regs, scratch);
1116 mark_set_resources (insn, &set, 0, MARK_SRC_DEST_CALL);
1119 IOR_HARD_REG_SET (res->regs, new_resources.regs);
1122 if (tinfo != NULL)
1124 COPY_HARD_REG_SET (tinfo->live_regs, res->regs);
1128 /* Initialize the resources required by mark_target_live_regs ().
1129 This should be invoked before the first call to mark_target_live_regs. */
1131 void
1132 init_resource_info (rtx epilogue_insn)
1134 int i;
1136 /* Indicate what resources are required to be valid at the end of the current
1137 function. The condition code never is and memory always is. If the
1138 frame pointer is needed, it is and so is the stack pointer unless
1139 EXIT_IGNORE_STACK is nonzero. If the frame pointer is not needed, the
1140 stack pointer is. Registers used to return the function value are
1141 needed. Registers holding global variables are needed. */
1143 end_of_function_needs.cc = 0;
1144 end_of_function_needs.memory = 1;
1145 end_of_function_needs.unch_memory = 0;
1146 CLEAR_HARD_REG_SET (end_of_function_needs.regs);
1148 if (frame_pointer_needed)
1150 SET_HARD_REG_BIT (end_of_function_needs.regs, FRAME_POINTER_REGNUM);
1151 #if HARD_FRAME_POINTER_REGNUM != FRAME_POINTER_REGNUM
1152 SET_HARD_REG_BIT (end_of_function_needs.regs, HARD_FRAME_POINTER_REGNUM);
1153 #endif
1154 if (! EXIT_IGNORE_STACK
1155 || current_function_sp_is_unchanging)
1156 SET_HARD_REG_BIT (end_of_function_needs.regs, STACK_POINTER_REGNUM);
1158 else
1159 SET_HARD_REG_BIT (end_of_function_needs.regs, STACK_POINTER_REGNUM);
1161 if (current_function_return_rtx != 0)
1162 mark_referenced_resources (current_function_return_rtx,
1163 &end_of_function_needs, 1);
1165 for (i = 0; i < FIRST_PSEUDO_REGISTER; i++)
1166 if (global_regs[i]
1167 #ifdef EPILOGUE_USES
1168 || EPILOGUE_USES (i)
1169 #endif
1171 SET_HARD_REG_BIT (end_of_function_needs.regs, i);
1173 /* The registers required to be live at the end of the function are
1174 represented in the flow information as being dead just prior to
1175 reaching the end of the function. For example, the return of a value
1176 might be represented by a USE of the return register immediately
1177 followed by an unconditional jump to the return label where the
1178 return label is the end of the RTL chain. The end of the RTL chain
1179 is then taken to mean that the return register is live.
1181 This sequence is no longer maintained when epilogue instructions are
1182 added to the RTL chain. To reconstruct the original meaning, the
1183 start of the epilogue (NOTE_INSN_EPILOGUE_BEG) is regarded as the
1184 point where these registers become live (start_of_epilogue_needs).
1185 If epilogue instructions are present, the registers set by those
1186 instructions won't have been processed by flow. Thus, those
1187 registers are additionally required at the end of the RTL chain
1188 (end_of_function_needs). */
1190 start_of_epilogue_needs = end_of_function_needs;
1192 while ((epilogue_insn = next_nonnote_insn (epilogue_insn)))
1194 mark_set_resources (epilogue_insn, &end_of_function_needs, 0,
1195 MARK_SRC_DEST_CALL);
1196 if (return_insn_p (epilogue_insn))
1197 break;
1200 /* Allocate and initialize the tables used by mark_target_live_regs. */
1201 target_hash_table = XCNEWVEC (struct target_info *, TARGET_HASH_PRIME);
1202 bb_ticks = XCNEWVEC (int, last_basic_block);
1205 /* Free up the resources allocated to mark_target_live_regs (). This
1206 should be invoked after the last call to mark_target_live_regs (). */
1208 void
1209 free_resource_info (void)
1211 if (target_hash_table != NULL)
1213 int i;
1215 for (i = 0; i < TARGET_HASH_PRIME; ++i)
1217 struct target_info *ti = target_hash_table[i];
1219 while (ti)
1221 struct target_info *next = ti->next;
1222 free (ti);
1223 ti = next;
1227 free (target_hash_table);
1228 target_hash_table = NULL;
1231 if (bb_ticks != NULL)
1233 free (bb_ticks);
1234 bb_ticks = NULL;
1238 /* Clear any hashed information that we have stored for INSN. */
1240 void
1241 clear_hashed_info_for_insn (rtx insn)
1243 struct target_info *tinfo;
1245 if (target_hash_table != NULL)
1247 for (tinfo = target_hash_table[INSN_UID (insn) % TARGET_HASH_PRIME];
1248 tinfo; tinfo = tinfo->next)
1249 if (tinfo->uid == INSN_UID (insn))
1250 break;
1252 if (tinfo)
1253 tinfo->block = -1;
1257 /* Increment the tick count for the basic block that contains INSN. */
1259 void
1260 incr_ticks_for_insn (rtx insn)
1262 int b = find_basic_block (insn, MAX_DELAY_SLOT_LIVE_SEARCH);
1264 if (b != -1)
1265 bb_ticks[b]++;
1268 /* Add TRIAL to the set of resources used at the end of the current
1269 function. */
1270 void
1271 mark_end_of_function_resources (rtx trial, int include_delayed_effects)
1273 mark_referenced_resources (trial, &end_of_function_needs,
1274 include_delayed_effects);