Updated for libbid move.
[official-gcc.git] / gcc / regclass.c
blob0c86dbfc8c20584cf3cee6a00727a944d0b3746b
1 /* Compute register class preferences for pseudo-registers.
2 Copyright (C) 1987, 1988, 1991, 1992, 1993, 1994, 1995, 1996
3 1997, 1998, 1999, 2000, 2001, 2002, 2003, 2004, 2005, 2006, 2007
4 Free Software Foundation, Inc.
6 This file is part of GCC.
8 GCC is free software; you can redistribute it and/or modify it under
9 the terms of the GNU General Public License as published by the Free
10 Software Foundation; either version 2, or (at your option) any later
11 version.
13 GCC is distributed in the hope that it will be useful, but WITHOUT ANY
14 WARRANTY; without even the implied warranty of MERCHANTABILITY or
15 FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License
16 for more details.
18 You should have received a copy of the GNU General Public License
19 along with GCC; see the file COPYING. If not, write to the Free
20 Software Foundation, 51 Franklin Street, Fifth Floor, Boston, MA
21 02110-1301, USA. */
24 /* This file contains two passes of the compiler: reg_scan and reg_class.
25 It also defines some tables of information about the hardware registers
26 and a function init_reg_sets to initialize the tables. */
28 #include "config.h"
29 #include "system.h"
30 #include "coretypes.h"
31 #include "tm.h"
32 #include "hard-reg-set.h"
33 #include "rtl.h"
34 #include "expr.h"
35 #include "tm_p.h"
36 #include "flags.h"
37 #include "basic-block.h"
38 #include "regs.h"
39 #include "addresses.h"
40 #include "function.h"
41 #include "insn-config.h"
42 #include "recog.h"
43 #include "reload.h"
44 #include "real.h"
45 #include "toplev.h"
46 #include "output.h"
47 #include "ggc.h"
48 #include "timevar.h"
49 #include "hashtab.h"
50 #include "target.h"
51 #include "tree-pass.h"
52 #include "df.h"
54 /* Maximum register number used in this function, plus one. */
56 int max_regno;
58 static void init_reg_sets_1 (void);
59 static void init_reg_autoinc (void);
61 /* If we have auto-increment or auto-decrement and we can have secondary
62 reloads, we are not allowed to use classes requiring secondary
63 reloads for pseudos auto-incremented since reload can't handle it. */
64 /* We leave it to target hooks to decide if we have secondary reloads, so
65 assume that we might have them. */
66 #if defined(AUTO_INC_DEC) /* */
67 #define FORBIDDEN_INC_DEC_CLASSES
68 #endif
70 /* Register tables used by many passes. */
72 /* Indexed by hard register number, contains 1 for registers
73 that are fixed use (stack pointer, pc, frame pointer, etc.).
74 These are the registers that cannot be used to allocate
75 a pseudo reg for general use. */
77 char fixed_regs[FIRST_PSEUDO_REGISTER];
79 /* Same info as a HARD_REG_SET. */
81 HARD_REG_SET fixed_reg_set;
83 /* Data for initializing the above. */
85 static const char initial_fixed_regs[] = FIXED_REGISTERS;
87 /* Indexed by hard register number, contains 1 for registers
88 that are fixed use or are clobbered by function calls.
89 These are the registers that cannot be used to allocate
90 a pseudo reg whose life crosses calls unless we are able
91 to save/restore them across the calls. */
93 char call_used_regs[FIRST_PSEUDO_REGISTER];
95 /* Same info as a HARD_REG_SET. */
97 HARD_REG_SET call_used_reg_set;
99 /* HARD_REG_SET of registers we want to avoid caller saving. */
100 HARD_REG_SET losing_caller_save_reg_set;
102 /* Data for initializing the above. */
104 static const char initial_call_used_regs[] = CALL_USED_REGISTERS;
106 /* This is much like call_used_regs, except it doesn't have to
107 be a superset of FIXED_REGISTERS. This vector indicates
108 what is really call clobbered, and is used when defining
109 regs_invalidated_by_call. */
111 #ifdef CALL_REALLY_USED_REGISTERS
112 char call_really_used_regs[] = CALL_REALLY_USED_REGISTERS;
113 #endif
115 #ifdef CALL_REALLY_USED_REGISTERS
116 #define CALL_REALLY_USED_REGNO_P(X) call_really_used_regs[X]
117 #else
118 #define CALL_REALLY_USED_REGNO_P(X) call_used_regs[X]
119 #endif
122 /* Indexed by hard register number, contains 1 for registers that are
123 fixed use or call used registers that cannot hold quantities across
124 calls even if we are willing to save and restore them. call fixed
125 registers are a subset of call used registers. */
127 char call_fixed_regs[FIRST_PSEUDO_REGISTER];
129 /* The same info as a HARD_REG_SET. */
131 HARD_REG_SET call_fixed_reg_set;
133 /* Indexed by hard register number, contains 1 for registers
134 that are being used for global register decls.
135 These must be exempt from ordinary flow analysis
136 and are also considered fixed. */
138 char global_regs[FIRST_PSEUDO_REGISTER];
140 /* Contains 1 for registers that are set or clobbered by calls. */
141 /* ??? Ideally, this would be just call_used_regs plus global_regs, but
142 for someone's bright idea to have call_used_regs strictly include
143 fixed_regs. Which leaves us guessing as to the set of fixed_regs
144 that are actually preserved. We know for sure that those associated
145 with the local stack frame are safe, but scant others. */
147 HARD_REG_SET regs_invalidated_by_call;
149 /* Table of register numbers in the order in which to try to use them. */
150 #ifdef REG_ALLOC_ORDER
151 int reg_alloc_order[FIRST_PSEUDO_REGISTER] = REG_ALLOC_ORDER;
153 /* The inverse of reg_alloc_order. */
154 int inv_reg_alloc_order[FIRST_PSEUDO_REGISTER];
155 #endif
157 /* For each reg class, a HARD_REG_SET saying which registers are in it. */
159 HARD_REG_SET reg_class_contents[N_REG_CLASSES];
161 /* The same information, but as an array of unsigned ints. We copy from
162 these unsigned ints to the table above. We do this so the tm.h files
163 do not have to be aware of the wordsize for machines with <= 64 regs.
164 Note that we hard-code 32 here, not HOST_BITS_PER_INT. */
166 #define N_REG_INTS \
167 ((FIRST_PSEUDO_REGISTER + (32 - 1)) / 32)
169 static const unsigned int_reg_class_contents[N_REG_CLASSES][N_REG_INTS]
170 = REG_CLASS_CONTENTS;
172 /* For each reg class, number of regs it contains. */
174 unsigned int reg_class_size[N_REG_CLASSES];
176 /* For each reg class, table listing all the containing classes. */
178 static enum reg_class reg_class_superclasses[N_REG_CLASSES][N_REG_CLASSES];
180 /* For each reg class, table listing all the classes contained in it. */
182 static enum reg_class reg_class_subclasses[N_REG_CLASSES][N_REG_CLASSES];
184 /* For each pair of reg classes,
185 a largest reg class contained in their union. */
187 enum reg_class reg_class_subunion[N_REG_CLASSES][N_REG_CLASSES];
189 /* For each pair of reg classes,
190 the smallest reg class containing their union. */
192 enum reg_class reg_class_superunion[N_REG_CLASSES][N_REG_CLASSES];
194 /* Array containing all of the register names. */
196 const char * reg_names[] = REGISTER_NAMES;
198 /* Array containing all of the register class names. */
200 const char * reg_class_names[] = REG_CLASS_NAMES;
202 /* For each hard register, the widest mode object that it can contain.
203 This will be a MODE_INT mode if the register can hold integers. Otherwise
204 it will be a MODE_FLOAT or a MODE_CC mode, whichever is valid for the
205 register. */
207 enum machine_mode reg_raw_mode[FIRST_PSEUDO_REGISTER];
209 /* 1 if there is a register of given mode. */
211 bool have_regs_of_mode [MAX_MACHINE_MODE];
213 /* 1 if class does contain register of given mode. */
215 static char contains_reg_of_mode [N_REG_CLASSES] [MAX_MACHINE_MODE];
217 /* Maximum cost of moving from a register in one class to a register in
218 another class. Based on REGISTER_MOVE_COST. */
220 static int move_cost[MAX_MACHINE_MODE][N_REG_CLASSES][N_REG_CLASSES];
222 /* Similar, but here we don't have to move if the first index is a subset
223 of the second so in that case the cost is zero. */
225 static int may_move_in_cost[MAX_MACHINE_MODE][N_REG_CLASSES][N_REG_CLASSES];
227 /* Similar, but here we don't have to move if the first index is a superset
228 of the second so in that case the cost is zero. */
230 static int may_move_out_cost[MAX_MACHINE_MODE][N_REG_CLASSES][N_REG_CLASSES];
232 #ifdef FORBIDDEN_INC_DEC_CLASSES
234 /* These are the classes that regs which are auto-incremented or decremented
235 cannot be put in. */
237 static int forbidden_inc_dec_class[N_REG_CLASSES];
239 /* Indexed by n, is nonzero if (REG n) is used in an auto-inc or auto-dec
240 context. */
242 static char *in_inc_dec;
244 #endif /* FORBIDDEN_INC_DEC_CLASSES */
246 /* Sample MEM values for use by memory_move_secondary_cost. */
248 static GTY(()) rtx top_of_stack[MAX_MACHINE_MODE];
250 /* No more global register variables may be declared; true once
251 regclass has been initialized. */
253 static int no_global_reg_vars = 0;
255 /* Specify number of hard registers given machine mode occupy. */
256 unsigned char hard_regno_nregs[FIRST_PSEUDO_REGISTER][MAX_MACHINE_MODE];
258 /* Given a register bitmap, turn on the bits in a HARD_REG_SET that
259 correspond to the hard registers, if any, set in that map. This
260 could be done far more efficiently by having all sorts of special-cases
261 with moving single words, but probably isn't worth the trouble. */
263 void
264 reg_set_to_hard_reg_set (HARD_REG_SET *to, bitmap from)
266 unsigned i;
267 bitmap_iterator bi;
269 EXECUTE_IF_SET_IN_BITMAP (from, 0, i, bi)
271 if (i >= FIRST_PSEUDO_REGISTER)
272 return;
273 SET_HARD_REG_BIT (*to, i);
278 /* Function called only once to initialize the above data on reg usage.
279 Once this is done, various switches may override. */
281 void
282 init_reg_sets (void)
284 int i, j;
286 /* First copy the register information from the initial int form into
287 the regsets. */
289 for (i = 0; i < N_REG_CLASSES; i++)
291 CLEAR_HARD_REG_SET (reg_class_contents[i]);
293 /* Note that we hard-code 32 here, not HOST_BITS_PER_INT. */
294 for (j = 0; j < FIRST_PSEUDO_REGISTER; j++)
295 if (int_reg_class_contents[i][j / 32]
296 & ((unsigned) 1 << (j % 32)))
297 SET_HARD_REG_BIT (reg_class_contents[i], j);
300 /* Sanity check: make sure the target macros FIXED_REGISTERS and
301 CALL_USED_REGISTERS had the right number of initializers. */
302 gcc_assert (sizeof fixed_regs == sizeof initial_fixed_regs);
303 gcc_assert (sizeof call_used_regs == sizeof initial_call_used_regs);
305 memcpy (fixed_regs, initial_fixed_regs, sizeof fixed_regs);
306 memcpy (call_used_regs, initial_call_used_regs, sizeof call_used_regs);
307 memset (global_regs, 0, sizeof global_regs);
309 #ifdef REG_ALLOC_ORDER
310 for (i = 0; i < FIRST_PSEUDO_REGISTER; i++)
311 inv_reg_alloc_order[reg_alloc_order[i]] = i;
312 #endif
315 /* After switches have been processed, which perhaps alter
316 `fixed_regs' and `call_used_regs', convert them to HARD_REG_SETs. */
318 static void
319 init_reg_sets_1 (void)
321 unsigned int i, j;
322 unsigned int /* enum machine_mode */ m;
324 /* This macro allows the fixed or call-used registers
325 and the register classes to depend on target flags. */
327 #ifdef CONDITIONAL_REGISTER_USAGE
328 CONDITIONAL_REGISTER_USAGE;
329 #endif
331 /* Compute number of hard regs in each class. */
333 memset (reg_class_size, 0, sizeof reg_class_size);
334 for (i = 0; i < N_REG_CLASSES; i++)
335 for (j = 0; j < FIRST_PSEUDO_REGISTER; j++)
336 if (TEST_HARD_REG_BIT (reg_class_contents[i], j))
337 reg_class_size[i]++;
339 /* Initialize the table of subunions.
340 reg_class_subunion[I][J] gets the largest-numbered reg-class
341 that is contained in the union of classes I and J. */
343 for (i = 0; i < N_REG_CLASSES; i++)
345 for (j = 0; j < N_REG_CLASSES; j++)
347 HARD_REG_SET c;
348 int k;
350 COPY_HARD_REG_SET (c, reg_class_contents[i]);
351 IOR_HARD_REG_SET (c, reg_class_contents[j]);
352 for (k = 0; k < N_REG_CLASSES; k++)
353 if (hard_reg_set_subset_p (reg_class_contents[k], c)
354 && !hard_reg_set_subset_p (reg_class_contents[k],
355 reg_class_contents
356 [(int) reg_class_subunion[i][j]]))
357 reg_class_subunion[i][j] = (enum reg_class) k;
361 /* Initialize the table of superunions.
362 reg_class_superunion[I][J] gets the smallest-numbered reg-class
363 containing the union of classes I and J. */
365 for (i = 0; i < N_REG_CLASSES; i++)
367 for (j = 0; j < N_REG_CLASSES; j++)
369 HARD_REG_SET c;
370 int k;
372 COPY_HARD_REG_SET (c, reg_class_contents[i]);
373 IOR_HARD_REG_SET (c, reg_class_contents[j]);
374 for (k = 0; k < N_REG_CLASSES; k++)
375 if (hard_reg_set_subset_p (c, reg_class_contents[k]))
376 break;
378 reg_class_superunion[i][j] = (enum reg_class) k;
382 /* Initialize the tables of subclasses and superclasses of each reg class.
383 First clear the whole table, then add the elements as they are found. */
385 for (i = 0; i < N_REG_CLASSES; i++)
387 for (j = 0; j < N_REG_CLASSES; j++)
389 reg_class_superclasses[i][j] = LIM_REG_CLASSES;
390 reg_class_subclasses[i][j] = LIM_REG_CLASSES;
394 for (i = 0; i < N_REG_CLASSES; i++)
396 if (i == (int) NO_REGS)
397 continue;
399 for (j = i + 1; j < N_REG_CLASSES; j++)
400 if (hard_reg_set_subset_p (reg_class_contents[i],
401 reg_class_contents[j]))
403 /* Reg class I is a subclass of J.
404 Add J to the table of superclasses of I. */
405 enum reg_class *p;
407 p = &reg_class_superclasses[i][0];
408 while (*p != LIM_REG_CLASSES) p++;
409 *p = (enum reg_class) j;
410 /* Add I to the table of superclasses of J. */
411 p = &reg_class_subclasses[j][0];
412 while (*p != LIM_REG_CLASSES) p++;
413 *p = (enum reg_class) i;
417 /* Initialize "constant" tables. */
419 CLEAR_HARD_REG_SET (fixed_reg_set);
420 CLEAR_HARD_REG_SET (call_used_reg_set);
421 CLEAR_HARD_REG_SET (call_fixed_reg_set);
422 CLEAR_HARD_REG_SET (regs_invalidated_by_call);
424 memcpy (call_fixed_regs, fixed_regs, sizeof call_fixed_regs);
426 for (i = 0; i < FIRST_PSEUDO_REGISTER; i++)
428 /* call_used_regs must include fixed_regs. */
429 gcc_assert (!fixed_regs[i] || call_used_regs[i]);
430 #ifdef CALL_REALLY_USED_REGISTERS
431 /* call_used_regs must include call_really_used_regs. */
432 gcc_assert (!call_really_used_regs[i] || call_used_regs[i]);
433 #endif
435 if (fixed_regs[i])
436 SET_HARD_REG_BIT (fixed_reg_set, i);
438 if (call_used_regs[i])
439 SET_HARD_REG_BIT (call_used_reg_set, i);
440 if (call_fixed_regs[i])
441 SET_HARD_REG_BIT (call_fixed_reg_set, i);
442 if (CLASS_LIKELY_SPILLED_P (REGNO_REG_CLASS (i)))
443 SET_HARD_REG_BIT (losing_caller_save_reg_set, i);
445 /* There are a couple of fixed registers that we know are safe to
446 exclude from being clobbered by calls:
448 The frame pointer is always preserved across calls. The arg pointer
449 is if it is fixed. The stack pointer usually is, unless
450 RETURN_POPS_ARGS, in which case an explicit CLOBBER will be present.
451 If we are generating PIC code, the PIC offset table register is
452 preserved across calls, though the target can override that. */
454 if (i == STACK_POINTER_REGNUM)
456 else if (global_regs[i])
457 SET_HARD_REG_BIT (regs_invalidated_by_call, i);
458 else if (i == FRAME_POINTER_REGNUM)
460 #if HARD_FRAME_POINTER_REGNUM != FRAME_POINTER_REGNUM
461 else if (i == HARD_FRAME_POINTER_REGNUM)
463 #endif
464 #if ARG_POINTER_REGNUM != FRAME_POINTER_REGNUM
465 else if (i == ARG_POINTER_REGNUM && fixed_regs[i])
467 #endif
468 #ifndef PIC_OFFSET_TABLE_REG_CALL_CLOBBERED
469 else if (i == (unsigned) PIC_OFFSET_TABLE_REGNUM && fixed_regs[i])
471 #endif
472 else if (CALL_REALLY_USED_REGNO_P (i))
473 SET_HARD_REG_BIT (regs_invalidated_by_call, i);
476 memset (have_regs_of_mode, 0, sizeof (have_regs_of_mode));
477 memset (contains_reg_of_mode, 0, sizeof (contains_reg_of_mode));
478 for (m = 0; m < (unsigned int) MAX_MACHINE_MODE; m++)
479 for (i = 0; i < N_REG_CLASSES; i++)
480 if ((unsigned) CLASS_MAX_NREGS (i, m) <= reg_class_size[i])
481 for (j = 0; j < FIRST_PSEUDO_REGISTER; j++)
482 if (!fixed_regs [j] && TEST_HARD_REG_BIT (reg_class_contents[i], j)
483 && HARD_REGNO_MODE_OK (j, m))
485 contains_reg_of_mode [i][m] = 1;
486 have_regs_of_mode [m] = 1;
487 break;
490 /* Initialize the move cost table. Find every subset of each class
491 and take the maximum cost of moving any subset to any other. */
493 for (m = 0; m < (unsigned int) MAX_MACHINE_MODE; m++)
494 if (have_regs_of_mode [m])
496 for (i = 0; i < N_REG_CLASSES; i++)
497 if (contains_reg_of_mode [i][m])
498 for (j = 0; j < N_REG_CLASSES; j++)
500 int cost;
501 enum reg_class *p1, *p2;
503 if (!contains_reg_of_mode [j][m])
505 move_cost[m][i][j] = 65536;
506 may_move_in_cost[m][i][j] = 65536;
507 may_move_out_cost[m][i][j] = 65536;
509 else
511 cost = REGISTER_MOVE_COST (m, i, j);
513 for (p2 = &reg_class_subclasses[j][0];
514 *p2 != LIM_REG_CLASSES;
515 p2++)
516 if (*p2 != i && contains_reg_of_mode [*p2][m])
517 cost = MAX (cost, move_cost [m][i][*p2]);
519 for (p1 = &reg_class_subclasses[i][0];
520 *p1 != LIM_REG_CLASSES;
521 p1++)
522 if (*p1 != j && contains_reg_of_mode [*p1][m])
523 cost = MAX (cost, move_cost [m][*p1][j]);
525 move_cost[m][i][j] = cost;
527 if (reg_class_subset_p (i, j))
528 may_move_in_cost[m][i][j] = 0;
529 else
530 may_move_in_cost[m][i][j] = cost;
532 if (reg_class_subset_p (j, i))
533 may_move_out_cost[m][i][j] = 0;
534 else
535 may_move_out_cost[m][i][j] = cost;
538 else
539 for (j = 0; j < N_REG_CLASSES; j++)
541 move_cost[m][i][j] = 65536;
542 may_move_in_cost[m][i][j] = 65536;
543 may_move_out_cost[m][i][j] = 65536;
548 /* Compute the table of register modes.
549 These values are used to record death information for individual registers
550 (as opposed to a multi-register mode). */
552 void
553 init_reg_modes_once (void)
555 int i, j;
557 for (i = 0; i < FIRST_PSEUDO_REGISTER; i++)
558 for (j = 0; j < MAX_MACHINE_MODE; j++)
559 hard_regno_nregs[i][j] = HARD_REGNO_NREGS(i, (enum machine_mode)j);
561 for (i = 0; i < FIRST_PSEUDO_REGISTER; i++)
563 reg_raw_mode[i] = choose_hard_reg_mode (i, 1, false);
565 /* If we couldn't find a valid mode, just use the previous mode.
566 ??? One situation in which we need to do this is on the mips where
567 HARD_REGNO_NREGS (fpreg, [SD]Fmode) returns 2. Ideally we'd like
568 to use DF mode for the even registers and VOIDmode for the odd
569 (for the cpu models where the odd ones are inaccessible). */
570 if (reg_raw_mode[i] == VOIDmode)
571 reg_raw_mode[i] = i == 0 ? word_mode : reg_raw_mode[i-1];
575 /* Finish initializing the register sets and
576 initialize the register modes. */
578 void
579 init_regs (void)
581 /* This finishes what was started by init_reg_sets, but couldn't be done
582 until after register usage was specified. */
583 init_reg_sets_1 ();
585 init_reg_autoinc ();
588 /* Initialize some fake stack-frame MEM references for use in
589 memory_move_secondary_cost. */
591 void
592 init_fake_stack_mems (void)
595 int i;
597 for (i = 0; i < MAX_MACHINE_MODE; i++)
598 top_of_stack[i] = gen_rtx_MEM (i, stack_pointer_rtx);
603 /* Compute extra cost of moving registers to/from memory due to reloads.
604 Only needed if secondary reloads are required for memory moves. */
607 memory_move_secondary_cost (enum machine_mode mode, enum reg_class class, int in)
609 enum reg_class altclass;
610 int partial_cost = 0;
611 /* We need a memory reference to feed to SECONDARY... macros. */
612 /* mem may be unused even if the SECONDARY_ macros are defined. */
613 rtx mem ATTRIBUTE_UNUSED = top_of_stack[(int) mode];
616 altclass = secondary_reload_class (in ? 1 : 0, class, mode, mem);
618 if (altclass == NO_REGS)
619 return 0;
621 if (in)
622 partial_cost = REGISTER_MOVE_COST (mode, altclass, class);
623 else
624 partial_cost = REGISTER_MOVE_COST (mode, class, altclass);
626 if (class == altclass)
627 /* This isn't simply a copy-to-temporary situation. Can't guess
628 what it is, so MEMORY_MOVE_COST really ought not to be calling
629 here in that case.
631 I'm tempted to put in an assert here, but returning this will
632 probably only give poor estimates, which is what we would've
633 had before this code anyways. */
634 return partial_cost;
636 /* Check if the secondary reload register will also need a
637 secondary reload. */
638 return memory_move_secondary_cost (mode, altclass, in) + partial_cost;
641 /* Return a machine mode that is legitimate for hard reg REGNO and large
642 enough to save nregs. If we can't find one, return VOIDmode.
643 If CALL_SAVED is true, only consider modes that are call saved. */
645 enum machine_mode
646 choose_hard_reg_mode (unsigned int regno ATTRIBUTE_UNUSED,
647 unsigned int nregs, bool call_saved)
649 unsigned int /* enum machine_mode */ m;
650 enum machine_mode found_mode = VOIDmode, mode;
652 /* We first look for the largest integer mode that can be validly
653 held in REGNO. If none, we look for the largest floating-point mode.
654 If we still didn't find a valid mode, try CCmode. */
656 for (mode = GET_CLASS_NARROWEST_MODE (MODE_INT);
657 mode != VOIDmode;
658 mode = GET_MODE_WIDER_MODE (mode))
659 if ((unsigned) hard_regno_nregs[regno][mode] == nregs
660 && HARD_REGNO_MODE_OK (regno, mode)
661 && (! call_saved || ! HARD_REGNO_CALL_PART_CLOBBERED (regno, mode)))
662 found_mode = mode;
664 if (found_mode != VOIDmode)
665 return found_mode;
667 for (mode = GET_CLASS_NARROWEST_MODE (MODE_FLOAT);
668 mode != VOIDmode;
669 mode = GET_MODE_WIDER_MODE (mode))
670 if ((unsigned) hard_regno_nregs[regno][mode] == nregs
671 && HARD_REGNO_MODE_OK (regno, mode)
672 && (! call_saved || ! HARD_REGNO_CALL_PART_CLOBBERED (regno, mode)))
673 found_mode = mode;
675 if (found_mode != VOIDmode)
676 return found_mode;
678 for (mode = GET_CLASS_NARROWEST_MODE (MODE_VECTOR_FLOAT);
679 mode != VOIDmode;
680 mode = GET_MODE_WIDER_MODE (mode))
681 if ((unsigned) hard_regno_nregs[regno][mode] == nregs
682 && HARD_REGNO_MODE_OK (regno, mode)
683 && (! call_saved || ! HARD_REGNO_CALL_PART_CLOBBERED (regno, mode)))
684 found_mode = mode;
686 if (found_mode != VOIDmode)
687 return found_mode;
689 for (mode = GET_CLASS_NARROWEST_MODE (MODE_VECTOR_INT);
690 mode != VOIDmode;
691 mode = GET_MODE_WIDER_MODE (mode))
692 if ((unsigned) hard_regno_nregs[regno][mode] == nregs
693 && HARD_REGNO_MODE_OK (regno, mode)
694 && (! call_saved || ! HARD_REGNO_CALL_PART_CLOBBERED (regno, mode)))
695 found_mode = mode;
697 if (found_mode != VOIDmode)
698 return found_mode;
700 /* Iterate over all of the CCmodes. */
701 for (m = (unsigned int) CCmode; m < (unsigned int) NUM_MACHINE_MODES; ++m)
703 mode = (enum machine_mode) m;
704 if ((unsigned) hard_regno_nregs[regno][mode] == nregs
705 && HARD_REGNO_MODE_OK (regno, mode)
706 && (! call_saved || ! HARD_REGNO_CALL_PART_CLOBBERED (regno, mode)))
707 return mode;
710 /* We can't find a mode valid for this register. */
711 return VOIDmode;
714 /* Specify the usage characteristics of the register named NAME.
715 It should be a fixed register if FIXED and a
716 call-used register if CALL_USED. */
718 void
719 fix_register (const char *name, int fixed, int call_used)
721 int i;
723 /* Decode the name and update the primary form of
724 the register info. */
726 if ((i = decode_reg_name (name)) >= 0)
728 if ((i == STACK_POINTER_REGNUM
729 #ifdef HARD_FRAME_POINTER_REGNUM
730 || i == HARD_FRAME_POINTER_REGNUM
731 #else
732 || i == FRAME_POINTER_REGNUM
733 #endif
735 && (fixed == 0 || call_used == 0))
737 static const char * const what_option[2][2] = {
738 { "call-saved", "call-used" },
739 { "no-such-option", "fixed" }};
741 error ("can't use '%s' as a %s register", name,
742 what_option[fixed][call_used]);
744 else
746 fixed_regs[i] = fixed;
747 call_used_regs[i] = call_used;
748 #ifdef CALL_REALLY_USED_REGISTERS
749 if (fixed == 0)
750 call_really_used_regs[i] = call_used;
751 #endif
754 else
756 warning (0, "unknown register name: %s", name);
760 /* Mark register number I as global. */
762 void
763 globalize_reg (int i)
765 if (fixed_regs[i] == 0 && no_global_reg_vars)
766 error ("global register variable follows a function definition");
768 if (global_regs[i])
770 warning (0, "register used for two global register variables");
771 return;
774 if (call_used_regs[i] && ! fixed_regs[i])
775 warning (0, "call-clobbered register used for global register variable");
777 global_regs[i] = 1;
779 /* If we're globalizing the frame pointer, we need to set the
780 appropriate regs_invalidated_by_call bit, even if it's already
781 set in fixed_regs. */
782 if (i != STACK_POINTER_REGNUM)
783 SET_HARD_REG_BIT (regs_invalidated_by_call, i);
785 /* If already fixed, nothing else to do. */
786 if (fixed_regs[i])
787 return;
789 fixed_regs[i] = call_used_regs[i] = call_fixed_regs[i] = 1;
790 #ifdef CALL_REALLY_USED_REGISTERS
791 call_really_used_regs[i] = 1;
792 #endif
794 SET_HARD_REG_BIT (fixed_reg_set, i);
795 SET_HARD_REG_BIT (call_used_reg_set, i);
796 SET_HARD_REG_BIT (call_fixed_reg_set, i);
799 /* Now the data and code for the `regclass' pass, which happens
800 just before local-alloc. */
802 /* The `costs' struct records the cost of using a hard register of each class
803 and of using memory for each pseudo. We use this data to set up
804 register class preferences. */
806 struct costs
808 int cost[N_REG_CLASSES];
809 int mem_cost;
812 /* Structure used to record preferences of given pseudo. */
813 struct reg_pref
815 /* (enum reg_class) prefclass is the preferred class. May be
816 NO_REGS if no class is better than memory. */
817 char prefclass;
819 /* altclass is a register class that we should use for allocating
820 pseudo if no register in the preferred class is available.
821 If no register in this class is available, memory is preferred.
823 It might appear to be more general to have a bitmask of classes here,
824 but since it is recommended that there be a class corresponding to the
825 union of most major pair of classes, that generality is not required. */
826 char altclass;
829 /* Record the cost of each class for each pseudo. */
831 static struct costs *costs;
833 /* Initialized once, and used to initialize cost values for each insn. */
835 static struct costs init_cost;
837 /* Record preferences of each pseudo.
838 This is available after `regclass' is run. */
840 static struct reg_pref *reg_pref;
842 /* Frequency of executions of current insn. */
844 static int frequency;
846 static rtx scan_one_insn (rtx, int);
847 static void record_operand_costs (rtx, struct costs *, struct reg_pref *);
848 static void dump_regclass (FILE *);
849 static void record_reg_classes (int, int, rtx *, enum machine_mode *,
850 const char **, rtx, struct costs *,
851 struct reg_pref *);
852 static int copy_cost (rtx, enum machine_mode, enum reg_class, int,
853 secondary_reload_info *);
854 static void record_address_regs (enum machine_mode, rtx, int, enum rtx_code,
855 enum rtx_code, int);
856 #ifdef FORBIDDEN_INC_DEC_CLASSES
857 static int auto_inc_dec_reg_p (rtx, enum machine_mode);
858 #endif
859 static void reg_scan_mark_refs (rtx, rtx);
861 /* Wrapper around REGNO_OK_FOR_INDEX_P, to allow pseudo registers. */
863 static inline bool
864 ok_for_index_p_nonstrict (rtx reg)
866 unsigned regno = REGNO (reg);
867 return regno >= FIRST_PSEUDO_REGISTER || REGNO_OK_FOR_INDEX_P (regno);
870 /* A version of regno_ok_for_base_p for use during regclass, when all pseudos
871 should count as OK. Arguments as for regno_ok_for_base_p. */
873 static inline bool
874 ok_for_base_p_nonstrict (rtx reg, enum machine_mode mode,
875 enum rtx_code outer_code, enum rtx_code index_code)
877 unsigned regno = REGNO (reg);
878 if (regno >= FIRST_PSEUDO_REGISTER)
879 return true;
881 return ok_for_base_p_1 (regno, mode, outer_code, index_code);
884 /* Return the reg_class in which pseudo reg number REGNO is best allocated.
885 This function is sometimes called before the info has been computed.
886 When that happens, just return GENERAL_REGS, which is innocuous. */
888 enum reg_class
889 reg_preferred_class (int regno)
891 if (reg_pref == 0)
892 return GENERAL_REGS;
893 return (enum reg_class) reg_pref[regno].prefclass;
896 enum reg_class
897 reg_alternate_class (int regno)
899 if (reg_pref == 0)
900 return ALL_REGS;
902 return (enum reg_class) reg_pref[regno].altclass;
905 /* Initialize some global data for this pass. */
907 static unsigned int
908 regclass_init (void)
910 int i;
912 if (df)
913 df_compute_regs_ever_live (true);
915 init_cost.mem_cost = 10000;
916 for (i = 0; i < N_REG_CLASSES; i++)
917 init_cost.cost[i] = 10000;
919 /* This prevents dump_flow_info from losing if called
920 before regclass is run. */
921 reg_pref = NULL;
923 /* No more global register variables may be declared. */
924 no_global_reg_vars = 1;
925 return 1;
928 struct tree_opt_pass pass_regclass_init =
930 "regclass", /* name */
931 NULL, /* gate */
932 regclass_init, /* execute */
933 NULL, /* sub */
934 NULL, /* next */
935 0, /* static_pass_number */
936 0, /* tv_id */
937 0, /* properties_required */
938 0, /* properties_provided */
939 0, /* properties_destroyed */
940 0, /* todo_flags_start */
941 0, /* todo_flags_finish */
942 'k' /* letter */
947 /* Dump register costs. */
948 static void
949 dump_regclass (FILE *dump)
951 int i;
952 for (i = FIRST_PSEUDO_REGISTER; i < max_regno; i++)
954 int /* enum reg_class */ class;
955 if (REG_N_REFS (i))
957 fprintf (dump, " Register %i costs:", i);
958 for (class = 0; class < (int) N_REG_CLASSES; class++)
959 if (contains_reg_of_mode [(enum reg_class) class][PSEUDO_REGNO_MODE (i)]
960 #ifdef FORBIDDEN_INC_DEC_CLASSES
961 && (!in_inc_dec[i]
962 || !forbidden_inc_dec_class[(enum reg_class) class])
963 #endif
964 #ifdef CANNOT_CHANGE_MODE_CLASS
965 && ! invalid_mode_change_p (i, (enum reg_class) class,
966 PSEUDO_REGNO_MODE (i))
967 #endif
969 fprintf (dump, " %s:%i", reg_class_names[class],
970 costs[i].cost[(enum reg_class) class]);
971 fprintf (dump, " MEM:%i\n", costs[i].mem_cost);
977 /* Calculate the costs of insn operands. */
979 static void
980 record_operand_costs (rtx insn, struct costs *op_costs,
981 struct reg_pref *reg_pref)
983 const char *constraints[MAX_RECOG_OPERANDS];
984 enum machine_mode modes[MAX_RECOG_OPERANDS];
985 int i;
987 for (i = 0; i < recog_data.n_operands; i++)
989 constraints[i] = recog_data.constraints[i];
990 modes[i] = recog_data.operand_mode[i];
993 /* If we get here, we are set up to record the costs of all the
994 operands for this insn. Start by initializing the costs.
995 Then handle any address registers. Finally record the desired
996 classes for any pseudos, doing it twice if some pair of
997 operands are commutative. */
999 for (i = 0; i < recog_data.n_operands; i++)
1001 op_costs[i] = init_cost;
1003 if (GET_CODE (recog_data.operand[i]) == SUBREG)
1004 recog_data.operand[i] = SUBREG_REG (recog_data.operand[i]);
1006 if (MEM_P (recog_data.operand[i]))
1007 record_address_regs (GET_MODE (recog_data.operand[i]),
1008 XEXP (recog_data.operand[i], 0),
1009 0, MEM, SCRATCH, frequency * 2);
1010 else if (constraints[i][0] == 'p'
1011 || EXTRA_ADDRESS_CONSTRAINT (constraints[i][0], constraints[i]))
1012 record_address_regs (VOIDmode, recog_data.operand[i], 0, ADDRESS,
1013 SCRATCH, frequency * 2);
1016 /* Check for commutative in a separate loop so everything will
1017 have been initialized. We must do this even if one operand
1018 is a constant--see addsi3 in m68k.md. */
1020 for (i = 0; i < (int) recog_data.n_operands - 1; i++)
1021 if (constraints[i][0] == '%')
1023 const char *xconstraints[MAX_RECOG_OPERANDS];
1024 int j;
1026 /* Handle commutative operands by swapping the constraints.
1027 We assume the modes are the same. */
1029 for (j = 0; j < recog_data.n_operands; j++)
1030 xconstraints[j] = constraints[j];
1032 xconstraints[i] = constraints[i+1];
1033 xconstraints[i+1] = constraints[i];
1034 record_reg_classes (recog_data.n_alternatives, recog_data.n_operands,
1035 recog_data.operand, modes,
1036 xconstraints, insn, op_costs, reg_pref);
1039 record_reg_classes (recog_data.n_alternatives, recog_data.n_operands,
1040 recog_data.operand, modes,
1041 constraints, insn, op_costs, reg_pref);
1044 /* Subroutine of regclass, processes one insn INSN. Scan it and record each
1045 time it would save code to put a certain register in a certain class.
1046 PASS, when nonzero, inhibits some optimizations which need only be done
1047 once.
1048 Return the last insn processed, so that the scan can be continued from
1049 there. */
1051 static rtx
1052 scan_one_insn (rtx insn, int pass ATTRIBUTE_UNUSED)
1054 enum rtx_code pat_code;
1055 rtx set, note;
1056 int i, j;
1057 struct costs op_costs[MAX_RECOG_OPERANDS];
1059 if (!INSN_P (insn))
1060 return insn;
1062 pat_code = GET_CODE (PATTERN (insn));
1063 if (pat_code == USE
1064 || pat_code == CLOBBER
1065 || pat_code == ASM_INPUT
1066 || pat_code == ADDR_VEC
1067 || pat_code == ADDR_DIFF_VEC)
1068 return insn;
1070 set = single_set (insn);
1071 extract_insn (insn);
1073 /* If this insn loads a parameter from its stack slot, then
1074 it represents a savings, rather than a cost, if the
1075 parameter is stored in memory. Record this fact. */
1077 if (set != 0 && REG_P (SET_DEST (set))
1078 && MEM_P (SET_SRC (set))
1079 && (note = find_reg_note (insn, REG_EQUIV,
1080 NULL_RTX)) != 0
1081 && MEM_P (XEXP (note, 0)))
1083 costs[REGNO (SET_DEST (set))].mem_cost
1084 -= (MEMORY_MOVE_COST (GET_MODE (SET_DEST (set)),
1085 GENERAL_REGS, 1)
1086 * frequency);
1087 record_address_regs (GET_MODE (SET_SRC (set)), XEXP (SET_SRC (set), 0),
1088 0, MEM, SCRATCH, frequency * 2);
1089 return insn;
1092 record_operand_costs (insn, op_costs, reg_pref);
1094 /* Now add the cost for each operand to the total costs for
1095 its register. */
1097 for (i = 0; i < recog_data.n_operands; i++)
1098 if (REG_P (recog_data.operand[i])
1099 && REGNO (recog_data.operand[i]) >= FIRST_PSEUDO_REGISTER)
1101 int regno = REGNO (recog_data.operand[i]);
1102 struct costs *p = &costs[regno], *q = &op_costs[i];
1104 p->mem_cost += q->mem_cost * frequency;
1105 for (j = 0; j < N_REG_CLASSES; j++)
1106 p->cost[j] += q->cost[j] * frequency;
1109 return insn;
1112 /* Initialize information about which register classes can be used for
1113 pseudos that are auto-incremented or auto-decremented. */
1115 static void
1116 init_reg_autoinc (void)
1118 #ifdef FORBIDDEN_INC_DEC_CLASSES
1119 int i;
1121 for (i = 0; i < N_REG_CLASSES; i++)
1123 rtx r = gen_rtx_raw_REG (VOIDmode, 0);
1124 enum machine_mode m;
1125 int j;
1127 for (j = 0; j < FIRST_PSEUDO_REGISTER; j++)
1128 if (TEST_HARD_REG_BIT (reg_class_contents[i], j))
1130 SET_REGNO (r, j);
1132 for (m = VOIDmode; (int) m < (int) MAX_MACHINE_MODE;
1133 m = (enum machine_mode) ((int) m + 1))
1134 if (HARD_REGNO_MODE_OK (j, m))
1136 /* ??? There are two assumptions here; that the base class does not
1137 depend on the exact outer code (POST_INC vs. PRE_INC etc.), and
1138 that it does not depend on the machine mode of the memory
1139 reference. */
1140 enum reg_class base_class
1141 = base_reg_class (VOIDmode, POST_INC, SCRATCH);
1143 PUT_MODE (r, m);
1145 /* If a register is not directly suitable for an
1146 auto-increment or decrement addressing mode and
1147 requires secondary reloads, disallow its class from
1148 being used in such addresses. */
1150 if ((secondary_reload_class (1, base_class, m, r)
1151 || secondary_reload_class (1, base_class, m, r))
1152 && ! auto_inc_dec_reg_p (r, m))
1153 forbidden_inc_dec_class[i] = 1;
1157 #endif /* FORBIDDEN_INC_DEC_CLASSES */
1160 /* This is a pass of the compiler that scans all instructions
1161 and calculates the preferred class for each pseudo-register.
1162 This information can be accessed later by calling `reg_preferred_class'.
1163 This pass comes just before local register allocation. */
1165 void
1166 regclass (rtx f, int nregs)
1168 rtx insn;
1169 int i;
1170 int pass;
1171 max_regno = max_reg_num ();
1173 init_recog ();
1175 reg_renumber = xmalloc (max_regno * sizeof (short));
1176 reg_pref = XCNEWVEC (struct reg_pref, max_regno);
1177 memset (reg_renumber, -1, max_regno * sizeof (short));
1179 costs = XNEWVEC (struct costs, nregs);
1181 #ifdef FORBIDDEN_INC_DEC_CLASSES
1183 in_inc_dec = XNEWVEC (char, nregs);
1185 #endif /* FORBIDDEN_INC_DEC_CLASSES */
1187 /* Normally we scan the insns once and determine the best class to use for
1188 each register. However, if -fexpensive_optimizations are on, we do so
1189 twice, the second time using the tentative best classes to guide the
1190 selection. */
1192 for (pass = 0; pass <= flag_expensive_optimizations; pass++)
1194 basic_block bb;
1196 if (dump_file)
1197 fprintf (dump_file, "\n\nPass %i\n\n",pass);
1198 /* Zero out our accumulation of the cost of each class for each reg. */
1200 memset (costs, 0, nregs * sizeof (struct costs));
1202 #ifdef FORBIDDEN_INC_DEC_CLASSES
1203 memset (in_inc_dec, 0, nregs);
1204 #endif
1206 /* Scan the instructions and record each time it would
1207 save code to put a certain register in a certain class. */
1209 if (!optimize)
1211 frequency = REG_FREQ_MAX;
1212 for (insn = f; insn; insn = NEXT_INSN (insn))
1213 insn = scan_one_insn (insn, pass);
1215 else
1216 FOR_EACH_BB (bb)
1218 /* Show that an insn inside a loop is likely to be executed three
1219 times more than insns outside a loop. This is much more
1220 aggressive than the assumptions made elsewhere and is being
1221 tried as an experiment. */
1222 frequency = REG_FREQ_FROM_BB (bb);
1223 for (insn = BB_HEAD (bb); ; insn = NEXT_INSN (insn))
1225 insn = scan_one_insn (insn, pass);
1226 if (insn == BB_END (bb))
1227 break;
1231 /* Now for each register look at how desirable each class is
1232 and find which class is preferred. Store that in
1233 `prefclass'. Record in `altclass' the largest register
1234 class any of whose registers is better than memory. */
1236 if (dump_file)
1238 dump_regclass (dump_file);
1239 fprintf (dump_file,"\n");
1241 for (i = FIRST_PSEUDO_REGISTER; i < nregs; i++)
1243 int best_cost = (1 << (HOST_BITS_PER_INT - 2)) - 1;
1244 enum reg_class best = ALL_REGS, alt = NO_REGS;
1245 /* This is an enum reg_class, but we call it an int
1246 to save lots of casts. */
1247 int class;
1248 struct costs *p = &costs[i];
1250 if (regno_reg_rtx[i] == NULL)
1251 continue;
1253 /* In non-optimizing compilation REG_N_REFS is not initialized
1254 yet. */
1255 if (optimize && !REG_N_REFS (i) && !REG_N_SETS (i))
1256 continue;
1258 for (class = (int) ALL_REGS - 1; class > 0; class--)
1260 /* Ignore classes that are too small for this operand or
1261 invalid for an operand that was auto-incremented. */
1262 if (!contains_reg_of_mode [class][PSEUDO_REGNO_MODE (i)]
1263 #ifdef FORBIDDEN_INC_DEC_CLASSES
1264 || (in_inc_dec[i] && forbidden_inc_dec_class[class])
1265 #endif
1266 #ifdef CANNOT_CHANGE_MODE_CLASS
1267 || invalid_mode_change_p (i, (enum reg_class) class,
1268 PSEUDO_REGNO_MODE (i))
1269 #endif
1272 else if (p->cost[class] < best_cost)
1274 best_cost = p->cost[class];
1275 best = (enum reg_class) class;
1277 else if (p->cost[class] == best_cost)
1278 best = reg_class_subunion[(int) best][class];
1281 /* If no register class is better than memory, use memory. */
1282 if (p->mem_cost < best_cost)
1283 best = NO_REGS;
1285 /* Record the alternate register class; i.e., a class for which
1286 every register in it is better than using memory. If adding a
1287 class would make a smaller class (i.e., no union of just those
1288 classes exists), skip that class. The major unions of classes
1289 should be provided as a register class. Don't do this if we
1290 will be doing it again later. */
1292 if ((pass == 1 || dump_file) || ! flag_expensive_optimizations)
1293 for (class = 0; class < N_REG_CLASSES; class++)
1294 if (p->cost[class] < p->mem_cost
1295 && (reg_class_size[(int) reg_class_subunion[(int) alt][class]]
1296 > reg_class_size[(int) alt])
1297 #ifdef FORBIDDEN_INC_DEC_CLASSES
1298 && ! (in_inc_dec[i] && forbidden_inc_dec_class[class])
1299 #endif
1300 #ifdef CANNOT_CHANGE_MODE_CLASS
1301 && ! invalid_mode_change_p (i, (enum reg_class) class,
1302 PSEUDO_REGNO_MODE (i))
1303 #endif
1305 alt = reg_class_subunion[(int) alt][class];
1307 /* If we don't add any classes, nothing to try. */
1308 if (alt == best)
1309 alt = NO_REGS;
1311 if (dump_file
1312 && (reg_pref[i].prefclass != (int) best
1313 || reg_pref[i].altclass != (int) alt))
1315 fprintf (dump_file, " Register %i", i);
1316 if (alt == ALL_REGS || best == ALL_REGS)
1317 fprintf (dump_file, " pref %s\n", reg_class_names[(int) best]);
1318 else if (alt == NO_REGS)
1319 fprintf (dump_file, " pref %s or none\n", reg_class_names[(int) best]);
1320 else
1321 fprintf (dump_file, " pref %s, else %s\n",
1322 reg_class_names[(int) best],
1323 reg_class_names[(int) alt]);
1326 /* We cast to (int) because (char) hits bugs in some compilers. */
1327 reg_pref[i].prefclass = (int) best;
1328 reg_pref[i].altclass = (int) alt;
1332 #ifdef FORBIDDEN_INC_DEC_CLASSES
1333 free (in_inc_dec);
1334 #endif
1335 free (costs);
1338 /* Record the cost of using memory or registers of various classes for
1339 the operands in INSN.
1341 N_ALTS is the number of alternatives.
1343 N_OPS is the number of operands.
1345 OPS is an array of the operands.
1347 MODES are the modes of the operands, in case any are VOIDmode.
1349 CONSTRAINTS are the constraints to use for the operands. This array
1350 is modified by this procedure.
1352 This procedure works alternative by alternative. For each alternative
1353 we assume that we will be able to allocate all pseudos to their ideal
1354 register class and calculate the cost of using that alternative. Then
1355 we compute for each operand that is a pseudo-register, the cost of
1356 having the pseudo allocated to each register class and using it in that
1357 alternative. To this cost is added the cost of the alternative.
1359 The cost of each class for this insn is its lowest cost among all the
1360 alternatives. */
1362 static void
1363 record_reg_classes (int n_alts, int n_ops, rtx *ops,
1364 enum machine_mode *modes, const char **constraints,
1365 rtx insn, struct costs *op_costs,
1366 struct reg_pref *reg_pref)
1368 int alt;
1369 int i, j;
1370 rtx set;
1372 /* Process each alternative, each time minimizing an operand's cost with
1373 the cost for each operand in that alternative. */
1375 for (alt = 0; alt < n_alts; alt++)
1377 struct costs this_op_costs[MAX_RECOG_OPERANDS];
1378 int alt_fail = 0;
1379 int alt_cost = 0;
1380 enum reg_class classes[MAX_RECOG_OPERANDS];
1381 int allows_mem[MAX_RECOG_OPERANDS];
1382 int class;
1384 for (i = 0; i < n_ops; i++)
1386 const char *p = constraints[i];
1387 rtx op = ops[i];
1388 enum machine_mode mode = modes[i];
1389 int allows_addr = 0;
1390 int win = 0;
1391 unsigned char c;
1393 /* Initially show we know nothing about the register class. */
1394 classes[i] = NO_REGS;
1395 allows_mem[i] = 0;
1397 /* If this operand has no constraints at all, we can conclude
1398 nothing about it since anything is valid. */
1400 if (*p == 0)
1402 if (REG_P (op) && REGNO (op) >= FIRST_PSEUDO_REGISTER)
1403 memset (&this_op_costs[i], 0, sizeof this_op_costs[i]);
1405 continue;
1408 /* If this alternative is only relevant when this operand
1409 matches a previous operand, we do different things depending
1410 on whether this operand is a pseudo-reg or not. We must process
1411 any modifiers for the operand before we can make this test. */
1413 while (*p == '%' || *p == '=' || *p == '+' || *p == '&')
1414 p++;
1416 if (p[0] >= '0' && p[0] <= '0' + i && (p[1] == ',' || p[1] == 0))
1418 /* Copy class and whether memory is allowed from the matching
1419 alternative. Then perform any needed cost computations
1420 and/or adjustments. */
1421 j = p[0] - '0';
1422 classes[i] = classes[j];
1423 allows_mem[i] = allows_mem[j];
1425 if (!REG_P (op) || REGNO (op) < FIRST_PSEUDO_REGISTER)
1427 /* If this matches the other operand, we have no added
1428 cost and we win. */
1429 if (rtx_equal_p (ops[j], op))
1430 win = 1;
1432 /* If we can put the other operand into a register, add to
1433 the cost of this alternative the cost to copy this
1434 operand to the register used for the other operand. */
1436 else if (classes[j] != NO_REGS)
1438 alt_cost += copy_cost (op, mode, classes[j], 1, NULL);
1439 win = 1;
1442 else if (!REG_P (ops[j])
1443 || REGNO (ops[j]) < FIRST_PSEUDO_REGISTER)
1445 /* This op is a pseudo but the one it matches is not. */
1447 /* If we can't put the other operand into a register, this
1448 alternative can't be used. */
1450 if (classes[j] == NO_REGS)
1451 alt_fail = 1;
1453 /* Otherwise, add to the cost of this alternative the cost
1454 to copy the other operand to the register used for this
1455 operand. */
1457 else
1458 alt_cost += copy_cost (ops[j], mode, classes[j], 1, NULL);
1460 else
1462 /* The costs of this operand are not the same as the other
1463 operand since move costs are not symmetric. Moreover,
1464 if we cannot tie them, this alternative needs to do a
1465 copy, which is one instruction. */
1467 struct costs *pp = &this_op_costs[i];
1469 for (class = 0; class < N_REG_CLASSES; class++)
1470 pp->cost[class]
1471 = ((recog_data.operand_type[i] != OP_OUT
1472 ? may_move_in_cost[mode][class][(int) classes[i]]
1473 : 0)
1474 + (recog_data.operand_type[i] != OP_IN
1475 ? may_move_out_cost[mode][(int) classes[i]][class]
1476 : 0));
1478 /* If the alternative actually allows memory, make things
1479 a bit cheaper since we won't need an extra insn to
1480 load it. */
1482 pp->mem_cost
1483 = ((recog_data.operand_type[i] != OP_IN
1484 ? MEMORY_MOVE_COST (mode, classes[i], 0)
1485 : 0)
1486 + (recog_data.operand_type[i] != OP_OUT
1487 ? MEMORY_MOVE_COST (mode, classes[i], 1)
1488 : 0) - allows_mem[i]);
1490 /* If we have assigned a class to this register in our
1491 first pass, add a cost to this alternative corresponding
1492 to what we would add if this register were not in the
1493 appropriate class. */
1495 if (reg_pref && reg_pref[REGNO (op)].prefclass != NO_REGS)
1496 alt_cost
1497 += (may_move_in_cost[mode]
1498 [(unsigned char) reg_pref[REGNO (op)].prefclass]
1499 [(int) classes[i]]);
1501 if (REGNO (ops[i]) != REGNO (ops[j])
1502 && ! find_reg_note (insn, REG_DEAD, op))
1503 alt_cost += 2;
1505 /* This is in place of ordinary cost computation
1506 for this operand, so skip to the end of the
1507 alternative (should be just one character). */
1508 while (*p && *p++ != ',')
1511 constraints[i] = p;
1512 continue;
1516 /* Scan all the constraint letters. See if the operand matches
1517 any of the constraints. Collect the valid register classes
1518 and see if this operand accepts memory. */
1520 while ((c = *p))
1522 switch (c)
1524 case ',':
1525 break;
1526 case '*':
1527 /* Ignore the next letter for this pass. */
1528 c = *++p;
1529 break;
1531 case '?':
1532 alt_cost += 2;
1533 case '!': case '#': case '&':
1534 case '0': case '1': case '2': case '3': case '4':
1535 case '5': case '6': case '7': case '8': case '9':
1536 break;
1538 case 'p':
1539 allows_addr = 1;
1540 win = address_operand (op, GET_MODE (op));
1541 /* We know this operand is an address, so we want it to be
1542 allocated to a register that can be the base of an
1543 address, i.e. BASE_REG_CLASS. */
1544 classes[i]
1545 = reg_class_subunion[(int) classes[i]]
1546 [(int) base_reg_class (VOIDmode, ADDRESS, SCRATCH)];
1547 break;
1549 case 'm': case 'o': case 'V':
1550 /* It doesn't seem worth distinguishing between offsettable
1551 and non-offsettable addresses here. */
1552 allows_mem[i] = 1;
1553 if (MEM_P (op))
1554 win = 1;
1555 break;
1557 case '<':
1558 if (MEM_P (op)
1559 && (GET_CODE (XEXP (op, 0)) == PRE_DEC
1560 || GET_CODE (XEXP (op, 0)) == POST_DEC))
1561 win = 1;
1562 break;
1564 case '>':
1565 if (MEM_P (op)
1566 && (GET_CODE (XEXP (op, 0)) == PRE_INC
1567 || GET_CODE (XEXP (op, 0)) == POST_INC))
1568 win = 1;
1569 break;
1571 case 'E':
1572 case 'F':
1573 if (GET_CODE (op) == CONST_DOUBLE
1574 || (GET_CODE (op) == CONST_VECTOR
1575 && (GET_MODE_CLASS (GET_MODE (op))
1576 == MODE_VECTOR_FLOAT)))
1577 win = 1;
1578 break;
1580 case 'G':
1581 case 'H':
1582 if (GET_CODE (op) == CONST_DOUBLE
1583 && CONST_DOUBLE_OK_FOR_CONSTRAINT_P (op, c, p))
1584 win = 1;
1585 break;
1587 case 's':
1588 if (GET_CODE (op) == CONST_INT
1589 || (GET_CODE (op) == CONST_DOUBLE
1590 && GET_MODE (op) == VOIDmode))
1591 break;
1592 case 'i':
1593 if (CONSTANT_P (op)
1594 && (! flag_pic || LEGITIMATE_PIC_OPERAND_P (op)))
1595 win = 1;
1596 break;
1598 case 'n':
1599 if (GET_CODE (op) == CONST_INT
1600 || (GET_CODE (op) == CONST_DOUBLE
1601 && GET_MODE (op) == VOIDmode))
1602 win = 1;
1603 break;
1605 case 'I':
1606 case 'J':
1607 case 'K':
1608 case 'L':
1609 case 'M':
1610 case 'N':
1611 case 'O':
1612 case 'P':
1613 if (GET_CODE (op) == CONST_INT
1614 && CONST_OK_FOR_CONSTRAINT_P (INTVAL (op), c, p))
1615 win = 1;
1616 break;
1618 case 'X':
1619 win = 1;
1620 break;
1622 case 'g':
1623 if (MEM_P (op)
1624 || (CONSTANT_P (op)
1625 && (! flag_pic || LEGITIMATE_PIC_OPERAND_P (op))))
1626 win = 1;
1627 allows_mem[i] = 1;
1628 case 'r':
1629 classes[i]
1630 = reg_class_subunion[(int) classes[i]][(int) GENERAL_REGS];
1631 break;
1633 default:
1634 if (REG_CLASS_FROM_CONSTRAINT (c, p) != NO_REGS)
1635 classes[i]
1636 = reg_class_subunion[(int) classes[i]]
1637 [(int) REG_CLASS_FROM_CONSTRAINT (c, p)];
1638 #ifdef EXTRA_CONSTRAINT_STR
1639 else if (EXTRA_CONSTRAINT_STR (op, c, p))
1640 win = 1;
1642 if (EXTRA_MEMORY_CONSTRAINT (c, p))
1644 /* Every MEM can be reloaded to fit. */
1645 allows_mem[i] = 1;
1646 if (MEM_P (op))
1647 win = 1;
1649 if (EXTRA_ADDRESS_CONSTRAINT (c, p))
1651 /* Every address can be reloaded to fit. */
1652 allows_addr = 1;
1653 if (address_operand (op, GET_MODE (op)))
1654 win = 1;
1655 /* We know this operand is an address, so we want it to
1656 be allocated to a register that can be the base of an
1657 address, i.e. BASE_REG_CLASS. */
1658 classes[i]
1659 = reg_class_subunion[(int) classes[i]]
1660 [(int) base_reg_class (VOIDmode, ADDRESS, SCRATCH)];
1662 #endif
1663 break;
1665 p += CONSTRAINT_LEN (c, p);
1666 if (c == ',')
1667 break;
1670 constraints[i] = p;
1672 /* How we account for this operand now depends on whether it is a
1673 pseudo register or not. If it is, we first check if any
1674 register classes are valid. If not, we ignore this alternative,
1675 since we want to assume that all pseudos get allocated for
1676 register preferencing. If some register class is valid, compute
1677 the costs of moving the pseudo into that class. */
1679 if (REG_P (op) && REGNO (op) >= FIRST_PSEUDO_REGISTER)
1681 if (classes[i] == NO_REGS)
1683 /* We must always fail if the operand is a REG, but
1684 we did not find a suitable class.
1686 Otherwise we may perform an uninitialized read
1687 from this_op_costs after the `continue' statement
1688 below. */
1689 alt_fail = 1;
1691 else
1693 struct costs *pp = &this_op_costs[i];
1695 for (class = 0; class < N_REG_CLASSES; class++)
1696 pp->cost[class]
1697 = ((recog_data.operand_type[i] != OP_OUT
1698 ? may_move_in_cost[mode][class][(int) classes[i]]
1699 : 0)
1700 + (recog_data.operand_type[i] != OP_IN
1701 ? may_move_out_cost[mode][(int) classes[i]][class]
1702 : 0));
1704 /* If the alternative actually allows memory, make things
1705 a bit cheaper since we won't need an extra insn to
1706 load it. */
1708 pp->mem_cost
1709 = ((recog_data.operand_type[i] != OP_IN
1710 ? MEMORY_MOVE_COST (mode, classes[i], 0)
1711 : 0)
1712 + (recog_data.operand_type[i] != OP_OUT
1713 ? MEMORY_MOVE_COST (mode, classes[i], 1)
1714 : 0) - allows_mem[i]);
1716 /* If we have assigned a class to this register in our
1717 first pass, add a cost to this alternative corresponding
1718 to what we would add if this register were not in the
1719 appropriate class. */
1721 if (reg_pref && reg_pref[REGNO (op)].prefclass != NO_REGS)
1722 alt_cost
1723 += (may_move_in_cost[mode]
1724 [(unsigned char) reg_pref[REGNO (op)].prefclass]
1725 [(int) classes[i]]);
1729 /* Otherwise, if this alternative wins, either because we
1730 have already determined that or if we have a hard register of
1731 the proper class, there is no cost for this alternative. */
1733 else if (win
1734 || (REG_P (op)
1735 && reg_fits_class_p (op, classes[i], 0, GET_MODE (op))))
1738 /* If registers are valid, the cost of this alternative includes
1739 copying the object to and/or from a register. */
1741 else if (classes[i] != NO_REGS)
1743 if (recog_data.operand_type[i] != OP_OUT)
1744 alt_cost += copy_cost (op, mode, classes[i], 1, NULL);
1746 if (recog_data.operand_type[i] != OP_IN)
1747 alt_cost += copy_cost (op, mode, classes[i], 0, NULL);
1750 /* The only other way this alternative can be used is if this is a
1751 constant that could be placed into memory. */
1753 else if (CONSTANT_P (op) && (allows_addr || allows_mem[i]))
1754 alt_cost += MEMORY_MOVE_COST (mode, classes[i], 1);
1755 else
1756 alt_fail = 1;
1759 if (alt_fail)
1760 continue;
1762 /* Finally, update the costs with the information we've calculated
1763 about this alternative. */
1765 for (i = 0; i < n_ops; i++)
1766 if (REG_P (ops[i])
1767 && REGNO (ops[i]) >= FIRST_PSEUDO_REGISTER)
1769 struct costs *pp = &op_costs[i], *qq = &this_op_costs[i];
1770 int scale = 1 + (recog_data.operand_type[i] == OP_INOUT);
1772 pp->mem_cost = MIN (pp->mem_cost,
1773 (qq->mem_cost + alt_cost) * scale);
1775 for (class = 0; class < N_REG_CLASSES; class++)
1776 pp->cost[class] = MIN (pp->cost[class],
1777 (qq->cost[class] + alt_cost) * scale);
1781 /* If this insn is a single set copying operand 1 to operand 0
1782 and one operand is a pseudo with the other a hard reg or a pseudo
1783 that prefers a register that is in its own register class then
1784 we may want to adjust the cost of that register class to -1.
1786 Avoid the adjustment if the source does not die to avoid stressing of
1787 register allocator by preferrencing two colliding registers into single
1788 class.
1790 Also avoid the adjustment if a copy between registers of the class
1791 is expensive (ten times the cost of a default copy is considered
1792 arbitrarily expensive). This avoids losing when the preferred class
1793 is very expensive as the source of a copy instruction. */
1795 if ((set = single_set (insn)) != 0
1796 && ops[0] == SET_DEST (set) && ops[1] == SET_SRC (set)
1797 && REG_P (ops[0]) && REG_P (ops[1])
1798 && find_regno_note (insn, REG_DEAD, REGNO (ops[1])))
1799 for (i = 0; i <= 1; i++)
1800 if (REGNO (ops[i]) >= FIRST_PSEUDO_REGISTER)
1802 unsigned int regno = REGNO (ops[!i]);
1803 enum machine_mode mode = GET_MODE (ops[!i]);
1804 int class;
1806 if (regno >= FIRST_PSEUDO_REGISTER && reg_pref != 0
1807 && reg_pref[regno].prefclass != NO_REGS)
1809 enum reg_class pref = reg_pref[regno].prefclass;
1811 if ((reg_class_size[(unsigned char) pref]
1812 == (unsigned) CLASS_MAX_NREGS (pref, mode))
1813 && REGISTER_MOVE_COST (mode, pref, pref) < 10 * 2)
1814 op_costs[i].cost[(unsigned char) pref] = -1;
1816 else if (regno < FIRST_PSEUDO_REGISTER)
1817 for (class = 0; class < N_REG_CLASSES; class++)
1818 if (TEST_HARD_REG_BIT (reg_class_contents[class], regno)
1819 && reg_class_size[class] == (unsigned) CLASS_MAX_NREGS (class, mode))
1821 if (reg_class_size[class] == 1)
1822 op_costs[i].cost[class] = -1;
1823 else if (in_hard_reg_set_p (reg_class_contents[class],
1824 mode, regno))
1825 op_costs[i].cost[class] = -1;
1830 /* Compute the cost of loading X into (if TO_P is nonzero) or from (if
1831 TO_P is zero) a register of class CLASS in mode MODE.
1833 X must not be a pseudo. */
1835 static int
1836 copy_cost (rtx x, enum machine_mode mode, enum reg_class class, int to_p,
1837 secondary_reload_info *prev_sri)
1839 enum reg_class secondary_class = NO_REGS;
1840 secondary_reload_info sri;
1842 /* If X is a SCRATCH, there is actually nothing to move since we are
1843 assuming optimal allocation. */
1845 if (GET_CODE (x) == SCRATCH)
1846 return 0;
1848 /* Get the class we will actually use for a reload. */
1849 class = PREFERRED_RELOAD_CLASS (x, class);
1851 /* If we need a secondary reload for an intermediate, the
1852 cost is that to load the input into the intermediate register, then
1853 to copy it. */
1855 sri.prev_sri = prev_sri;
1856 sri.extra_cost = 0;
1857 secondary_class = targetm.secondary_reload (to_p, x, class, mode, &sri);
1859 if (secondary_class != NO_REGS)
1860 return (move_cost[mode][(int) secondary_class][(int) class]
1861 + sri.extra_cost
1862 + copy_cost (x, mode, secondary_class, to_p, &sri));
1864 /* For memory, use the memory move cost, for (hard) registers, use the
1865 cost to move between the register classes, and use 2 for everything
1866 else (constants). */
1868 if (MEM_P (x) || class == NO_REGS)
1869 return sri.extra_cost + MEMORY_MOVE_COST (mode, class, to_p);
1871 else if (REG_P (x))
1872 return (sri.extra_cost
1873 + move_cost[mode][(int) REGNO_REG_CLASS (REGNO (x))][(int) class]);
1875 else
1876 /* If this is a constant, we may eventually want to call rtx_cost here. */
1877 return sri.extra_cost + COSTS_N_INSNS (1);
1880 /* Record the pseudo registers we must reload into hard registers
1881 in a subexpression of a memory address, X.
1883 If CONTEXT is 0, we are looking at the base part of an address, otherwise we
1884 are looking at the index part.
1886 MODE is the mode of the memory reference; OUTER_CODE and INDEX_CODE
1887 give the context that the rtx appears in. These three arguments are
1888 passed down to base_reg_class.
1890 SCALE is twice the amount to multiply the cost by (it is twice so we
1891 can represent half-cost adjustments). */
1893 static void
1894 record_address_regs (enum machine_mode mode, rtx x, int context,
1895 enum rtx_code outer_code, enum rtx_code index_code,
1896 int scale)
1898 enum rtx_code code = GET_CODE (x);
1899 enum reg_class class;
1901 if (context == 1)
1902 class = INDEX_REG_CLASS;
1903 else
1904 class = base_reg_class (mode, outer_code, index_code);
1906 switch (code)
1908 case CONST_INT:
1909 case CONST:
1910 case CC0:
1911 case PC:
1912 case SYMBOL_REF:
1913 case LABEL_REF:
1914 return;
1916 case PLUS:
1917 /* When we have an address that is a sum,
1918 we must determine whether registers are "base" or "index" regs.
1919 If there is a sum of two registers, we must choose one to be
1920 the "base". Luckily, we can use the REG_POINTER to make a good
1921 choice most of the time. We only need to do this on machines
1922 that can have two registers in an address and where the base
1923 and index register classes are different.
1925 ??? This code used to set REGNO_POINTER_FLAG in some cases, but
1926 that seems bogus since it should only be set when we are sure
1927 the register is being used as a pointer. */
1930 rtx arg0 = XEXP (x, 0);
1931 rtx arg1 = XEXP (x, 1);
1932 enum rtx_code code0 = GET_CODE (arg0);
1933 enum rtx_code code1 = GET_CODE (arg1);
1935 /* Look inside subregs. */
1936 if (code0 == SUBREG)
1937 arg0 = SUBREG_REG (arg0), code0 = GET_CODE (arg0);
1938 if (code1 == SUBREG)
1939 arg1 = SUBREG_REG (arg1), code1 = GET_CODE (arg1);
1941 /* If this machine only allows one register per address, it must
1942 be in the first operand. */
1944 if (MAX_REGS_PER_ADDRESS == 1)
1945 record_address_regs (mode, arg0, 0, PLUS, code1, scale);
1947 /* If index and base registers are the same on this machine, just
1948 record registers in any non-constant operands. We assume here,
1949 as well as in the tests below, that all addresses are in
1950 canonical form. */
1952 else if (INDEX_REG_CLASS == base_reg_class (VOIDmode, PLUS, SCRATCH))
1954 record_address_regs (mode, arg0, context, PLUS, code1, scale);
1955 if (! CONSTANT_P (arg1))
1956 record_address_regs (mode, arg1, context, PLUS, code0, scale);
1959 /* If the second operand is a constant integer, it doesn't change
1960 what class the first operand must be. */
1962 else if (code1 == CONST_INT || code1 == CONST_DOUBLE)
1963 record_address_regs (mode, arg0, context, PLUS, code1, scale);
1965 /* If the second operand is a symbolic constant, the first operand
1966 must be an index register. */
1968 else if (code1 == SYMBOL_REF || code1 == CONST || code1 == LABEL_REF)
1969 record_address_regs (mode, arg0, 1, PLUS, code1, scale);
1971 /* If both operands are registers but one is already a hard register
1972 of index or reg-base class, give the other the class that the
1973 hard register is not. */
1975 else if (code0 == REG && code1 == REG
1976 && REGNO (arg0) < FIRST_PSEUDO_REGISTER
1977 && (ok_for_base_p_nonstrict (arg0, mode, PLUS, REG)
1978 || ok_for_index_p_nonstrict (arg0)))
1979 record_address_regs (mode, arg1,
1980 ok_for_base_p_nonstrict (arg0, mode, PLUS, REG)
1981 ? 1 : 0,
1982 PLUS, REG, scale);
1983 else if (code0 == REG && code1 == REG
1984 && REGNO (arg1) < FIRST_PSEUDO_REGISTER
1985 && (ok_for_base_p_nonstrict (arg1, mode, PLUS, REG)
1986 || ok_for_index_p_nonstrict (arg1)))
1987 record_address_regs (mode, arg0,
1988 ok_for_base_p_nonstrict (arg1, mode, PLUS, REG)
1989 ? 1 : 0,
1990 PLUS, REG, scale);
1992 /* If one operand is known to be a pointer, it must be the base
1993 with the other operand the index. Likewise if the other operand
1994 is a MULT. */
1996 else if ((code0 == REG && REG_POINTER (arg0))
1997 || code1 == MULT)
1999 record_address_regs (mode, arg0, 0, PLUS, code1, scale);
2000 record_address_regs (mode, arg1, 1, PLUS, code0, scale);
2002 else if ((code1 == REG && REG_POINTER (arg1))
2003 || code0 == MULT)
2005 record_address_regs (mode, arg0, 1, PLUS, code1, scale);
2006 record_address_regs (mode, arg1, 0, PLUS, code0, scale);
2009 /* Otherwise, count equal chances that each might be a base
2010 or index register. This case should be rare. */
2012 else
2014 record_address_regs (mode, arg0, 0, PLUS, code1, scale / 2);
2015 record_address_regs (mode, arg0, 1, PLUS, code1, scale / 2);
2016 record_address_regs (mode, arg1, 0, PLUS, code0, scale / 2);
2017 record_address_regs (mode, arg1, 1, PLUS, code0, scale / 2);
2020 break;
2022 /* Double the importance of a pseudo register that is incremented
2023 or decremented, since it would take two extra insns
2024 if it ends up in the wrong place. */
2025 case POST_MODIFY:
2026 case PRE_MODIFY:
2027 record_address_regs (mode, XEXP (x, 0), 0, code,
2028 GET_CODE (XEXP (XEXP (x, 1), 1)), 2 * scale);
2029 if (REG_P (XEXP (XEXP (x, 1), 1)))
2030 record_address_regs (mode, XEXP (XEXP (x, 1), 1), 1, code, REG,
2031 2 * scale);
2032 break;
2034 case POST_INC:
2035 case PRE_INC:
2036 case POST_DEC:
2037 case PRE_DEC:
2038 /* Double the importance of a pseudo register that is incremented
2039 or decremented, since it would take two extra insns
2040 if it ends up in the wrong place. If the operand is a pseudo,
2041 show it is being used in an INC_DEC context. */
2043 #ifdef FORBIDDEN_INC_DEC_CLASSES
2044 if (REG_P (XEXP (x, 0))
2045 && REGNO (XEXP (x, 0)) >= FIRST_PSEUDO_REGISTER)
2046 in_inc_dec[REGNO (XEXP (x, 0))] = 1;
2047 #endif
2049 record_address_regs (mode, XEXP (x, 0), 0, code, SCRATCH, 2 * scale);
2050 break;
2052 case REG:
2054 struct costs *pp = &costs[REGNO (x)];
2055 int i;
2057 pp->mem_cost += (MEMORY_MOVE_COST (Pmode, class, 1) * scale) / 2;
2059 for (i = 0; i < N_REG_CLASSES; i++)
2060 pp->cost[i] += (may_move_in_cost[Pmode][i][(int) class] * scale) / 2;
2062 break;
2064 default:
2066 const char *fmt = GET_RTX_FORMAT (code);
2067 int i;
2068 for (i = GET_RTX_LENGTH (code) - 1; i >= 0; i--)
2069 if (fmt[i] == 'e')
2070 record_address_regs (mode, XEXP (x, i), context, code, SCRATCH,
2071 scale);
2076 #ifdef FORBIDDEN_INC_DEC_CLASSES
2078 /* Return 1 if REG is valid as an auto-increment memory reference
2079 to an object of MODE. */
2081 static int
2082 auto_inc_dec_reg_p (rtx reg, enum machine_mode mode)
2084 if (HAVE_POST_INCREMENT
2085 && memory_address_p (mode, gen_rtx_POST_INC (Pmode, reg)))
2086 return 1;
2088 if (HAVE_POST_DECREMENT
2089 && memory_address_p (mode, gen_rtx_POST_DEC (Pmode, reg)))
2090 return 1;
2092 if (HAVE_PRE_INCREMENT
2093 && memory_address_p (mode, gen_rtx_PRE_INC (Pmode, reg)))
2094 return 1;
2096 if (HAVE_PRE_DECREMENT
2097 && memory_address_p (mode, gen_rtx_PRE_DEC (Pmode, reg)))
2098 return 1;
2100 return 0;
2102 #endif
2104 /* Free up the space allocated by allocate_reg_info. */
2105 void
2106 free_reg_info (void)
2108 if (reg_pref)
2110 free (reg_pref);
2111 reg_pref = NULL;
2114 if (reg_renumber)
2116 free (reg_renumber);
2117 reg_renumber = NULL;
2122 /* This is the `regscan' pass of the compiler, run just before cse and
2123 again just before loop. It finds the first and last use of each
2124 pseudo-register. */
2126 void
2127 reg_scan (rtx f, unsigned int nregs ATTRIBUTE_UNUSED)
2129 rtx insn;
2131 timevar_push (TV_REG_SCAN);
2133 for (insn = f; insn; insn = NEXT_INSN (insn))
2134 if (INSN_P (insn))
2136 reg_scan_mark_refs (PATTERN (insn), insn);
2137 if (REG_NOTES (insn))
2138 reg_scan_mark_refs (REG_NOTES (insn), insn);
2141 timevar_pop (TV_REG_SCAN);
2145 /* X is the expression to scan. INSN is the insn it appears in.
2146 NOTE_FLAG is nonzero if X is from INSN's notes rather than its body.
2147 We should only record information for REGs with numbers
2148 greater than or equal to MIN_REGNO. */
2150 extern struct tree_opt_pass *current_pass;
2152 static void
2153 reg_scan_mark_refs (rtx x, rtx insn)
2155 enum rtx_code code;
2156 rtx dest;
2157 rtx note;
2159 if (!x)
2160 return;
2161 code = GET_CODE (x);
2162 switch (code)
2164 case CONST:
2165 case CONST_INT:
2166 case CONST_DOUBLE:
2167 case CONST_VECTOR:
2168 case CC0:
2169 case PC:
2170 case SYMBOL_REF:
2171 case LABEL_REF:
2172 case ADDR_VEC:
2173 case ADDR_DIFF_VEC:
2174 case REG:
2175 return;
2177 case EXPR_LIST:
2178 if (XEXP (x, 0))
2179 reg_scan_mark_refs (XEXP (x, 0), insn);
2180 if (XEXP (x, 1))
2181 reg_scan_mark_refs (XEXP (x, 1), insn);
2182 break;
2184 case INSN_LIST:
2185 if (XEXP (x, 1))
2186 reg_scan_mark_refs (XEXP (x, 1), insn);
2187 break;
2189 case CLOBBER:
2190 if (MEM_P (XEXP (x, 0)))
2191 reg_scan_mark_refs (XEXP (XEXP (x, 0), 0), insn);
2192 break;
2194 case SET:
2195 /* Count a set of the destination if it is a register. */
2196 for (dest = SET_DEST (x);
2197 GET_CODE (dest) == SUBREG || GET_CODE (dest) == STRICT_LOW_PART
2198 || GET_CODE (dest) == ZERO_EXTEND;
2199 dest = XEXP (dest, 0))
2202 /* If this is setting a pseudo from another pseudo or the sum of a
2203 pseudo and a constant integer and the other pseudo is known to be
2204 a pointer, set the destination to be a pointer as well.
2206 Likewise if it is setting the destination from an address or from a
2207 value equivalent to an address or to the sum of an address and
2208 something else.
2210 But don't do any of this if the pseudo corresponds to a user
2211 variable since it should have already been set as a pointer based
2212 on the type. */
2214 if (REG_P (SET_DEST (x))
2215 && REGNO (SET_DEST (x)) >= FIRST_PSEUDO_REGISTER
2216 /* If the destination pseudo is set more than once, then other
2217 sets might not be to a pointer value (consider access to a
2218 union in two threads of control in the presence of global
2219 optimizations). So only set REG_POINTER on the destination
2220 pseudo if this is the only set of that pseudo. */
2221 && DF_REG_DEF_COUNT (REGNO (SET_DEST (x))) == 1
2222 && ! REG_USERVAR_P (SET_DEST (x))
2223 && ! REG_POINTER (SET_DEST (x))
2224 && ((REG_P (SET_SRC (x))
2225 && REG_POINTER (SET_SRC (x)))
2226 || ((GET_CODE (SET_SRC (x)) == PLUS
2227 || GET_CODE (SET_SRC (x)) == LO_SUM)
2228 && GET_CODE (XEXP (SET_SRC (x), 1)) == CONST_INT
2229 && REG_P (XEXP (SET_SRC (x), 0))
2230 && REG_POINTER (XEXP (SET_SRC (x), 0)))
2231 || GET_CODE (SET_SRC (x)) == CONST
2232 || GET_CODE (SET_SRC (x)) == SYMBOL_REF
2233 || GET_CODE (SET_SRC (x)) == LABEL_REF
2234 || (GET_CODE (SET_SRC (x)) == HIGH
2235 && (GET_CODE (XEXP (SET_SRC (x), 0)) == CONST
2236 || GET_CODE (XEXP (SET_SRC (x), 0)) == SYMBOL_REF
2237 || GET_CODE (XEXP (SET_SRC (x), 0)) == LABEL_REF))
2238 || ((GET_CODE (SET_SRC (x)) == PLUS
2239 || GET_CODE (SET_SRC (x)) == LO_SUM)
2240 && (GET_CODE (XEXP (SET_SRC (x), 1)) == CONST
2241 || GET_CODE (XEXP (SET_SRC (x), 1)) == SYMBOL_REF
2242 || GET_CODE (XEXP (SET_SRC (x), 1)) == LABEL_REF))
2243 || ((note = find_reg_note (insn, REG_EQUAL, 0)) != 0
2244 && (GET_CODE (XEXP (note, 0)) == CONST
2245 || GET_CODE (XEXP (note, 0)) == SYMBOL_REF
2246 || GET_CODE (XEXP (note, 0)) == LABEL_REF))))
2247 REG_POINTER (SET_DEST (x)) = 1;
2249 /* If this is setting a register from a register or from a simple
2250 conversion of a register, propagate REG_EXPR. */
2251 if (REG_P (dest) && !REG_ATTRS (dest))
2253 rtx src = SET_SRC (x);
2255 while (GET_CODE (src) == SIGN_EXTEND
2256 || GET_CODE (src) == ZERO_EXTEND
2257 || GET_CODE (src) == TRUNCATE
2258 || (GET_CODE (src) == SUBREG && subreg_lowpart_p (src)))
2259 src = XEXP (src, 0);
2261 if (REG_P (src))
2262 REG_ATTRS (dest) = REG_ATTRS (src);
2263 if (MEM_P (src))
2264 set_reg_attrs_from_mem (dest, src);
2267 /* ... fall through ... */
2269 default:
2271 const char *fmt = GET_RTX_FORMAT (code);
2272 int i;
2273 for (i = GET_RTX_LENGTH (code) - 1; i >= 0; i--)
2275 if (fmt[i] == 'e')
2276 reg_scan_mark_refs (XEXP (x, i), insn);
2277 else if (fmt[i] == 'E' && XVEC (x, i) != 0)
2279 int j;
2280 for (j = XVECLEN (x, i) - 1; j >= 0; j--)
2281 reg_scan_mark_refs (XVECEXP (x, i, j), insn);
2288 /* Return nonzero if C1 is a subset of C2, i.e., if every register in C1
2289 is also in C2. */
2292 reg_class_subset_p (enum reg_class c1, enum reg_class c2)
2294 return (c1 == c2
2295 || c2 == ALL_REGS
2296 || hard_reg_set_subset_p (reg_class_contents[(int) c1],
2297 reg_class_contents[(int) c2]));
2300 /* Return nonzero if there is a register that is in both C1 and C2. */
2303 reg_classes_intersect_p (enum reg_class c1, enum reg_class c2)
2305 return (c1 == c2
2306 || c1 == ALL_REGS
2307 || c2 == ALL_REGS
2308 || hard_reg_set_intersect_p (reg_class_contents[(int) c1],
2309 reg_class_contents[(int) c2]));
2312 #ifdef CANNOT_CHANGE_MODE_CLASS
2314 struct subregs_of_mode_node
2316 unsigned int block;
2317 unsigned char modes[MAX_MACHINE_MODE];
2320 static htab_t subregs_of_mode;
2322 static hashval_t
2323 som_hash (const void *x)
2325 const struct subregs_of_mode_node *a = x;
2326 return a->block;
2329 static int
2330 som_eq (const void *x, const void *y)
2332 const struct subregs_of_mode_node *a = x;
2333 const struct subregs_of_mode_node *b = y;
2334 return a->block == b->block;
2338 static void
2339 record_subregs_of_mode (rtx subreg)
2341 struct subregs_of_mode_node dummy, *node;
2342 enum machine_mode mode;
2343 unsigned int regno;
2344 void **slot;
2346 if (!REG_P (SUBREG_REG (subreg)))
2347 return;
2349 regno = REGNO (SUBREG_REG (subreg));
2350 mode = GET_MODE (subreg);
2352 if (regno < FIRST_PSEUDO_REGISTER)
2353 return;
2355 dummy.block = regno & -8;
2356 slot = htab_find_slot_with_hash (subregs_of_mode, &dummy,
2357 dummy.block, INSERT);
2358 node = *slot;
2359 if (node == NULL)
2361 node = XCNEW (struct subregs_of_mode_node);
2362 node->block = regno & -8;
2363 *slot = node;
2366 node->modes[mode] |= 1 << (regno & 7);
2370 /* Call record_subregs_of_mode for all the subregs in X. */
2372 static void
2373 find_subregs_of_mode (rtx x)
2375 enum rtx_code code = GET_CODE (x);
2376 const char * const fmt = GET_RTX_FORMAT (code);
2377 int i;
2379 if (code == SUBREG)
2380 record_subregs_of_mode (x);
2382 /* Time for some deep diving. */
2383 for (i = GET_RTX_LENGTH (code) - 1; i >= 0; i--)
2385 if (fmt[i] == 'e')
2386 find_subregs_of_mode (XEXP (x, i));
2387 else if (fmt[i] == 'E')
2389 int j;
2390 for (j = XVECLEN (x, i) - 1; j >= 0; j--)
2391 find_subregs_of_mode (XVECEXP (x, i, j));
2396 static unsigned int
2397 init_subregs_of_mode (void)
2399 basic_block bb;
2400 rtx insn;
2402 if (subregs_of_mode)
2403 htab_empty (subregs_of_mode);
2404 else
2405 subregs_of_mode = htab_create (100, som_hash, som_eq, free);
2407 FOR_EACH_BB (bb)
2408 FOR_BB_INSNS (bb, insn)
2409 if (INSN_P (insn))
2410 find_subregs_of_mode (PATTERN (insn));
2412 return 0;
2416 /* Set bits in *USED which correspond to registers which can't change
2417 their mode from FROM to any mode in which REGNO was encountered. */
2419 void
2420 cannot_change_mode_set_regs (HARD_REG_SET *used, enum machine_mode from,
2421 unsigned int regno)
2423 struct subregs_of_mode_node dummy, *node;
2424 enum machine_mode to;
2425 unsigned char mask;
2426 unsigned int i;
2428 gcc_assert (subregs_of_mode);
2429 dummy.block = regno & -8;
2430 node = htab_find_with_hash (subregs_of_mode, &dummy, dummy.block);
2431 if (node == NULL)
2432 return;
2434 mask = 1 << (regno & 7);
2435 for (to = VOIDmode; to < NUM_MACHINE_MODES; to++)
2436 if (node->modes[to] & mask)
2437 for (i = 0; i < FIRST_PSEUDO_REGISTER; i++)
2438 if (!TEST_HARD_REG_BIT (*used, i)
2439 && REG_CANNOT_CHANGE_MODE_P (i, from, to))
2440 SET_HARD_REG_BIT (*used, i);
2443 /* Return 1 if REGNO has had an invalid mode change in CLASS from FROM
2444 mode. */
2446 bool
2447 invalid_mode_change_p (unsigned int regno, enum reg_class class,
2448 enum machine_mode from)
2450 struct subregs_of_mode_node dummy, *node;
2451 enum machine_mode to;
2452 unsigned char mask;
2454 gcc_assert (subregs_of_mode);
2455 dummy.block = regno & -8;
2456 node = htab_find_with_hash (subregs_of_mode, &dummy, dummy.block);
2457 if (node == NULL)
2458 return false;
2460 mask = 1 << (regno & 7);
2461 for (to = VOIDmode; to < NUM_MACHINE_MODES; to++)
2462 if (node->modes[to] & mask)
2463 if (CANNOT_CHANGE_MODE_CLASS (from, to, class))
2464 return true;
2466 return false;
2469 static unsigned int
2470 finish_subregs_of_mode (void)
2472 htab_delete (subregs_of_mode);
2473 subregs_of_mode = 0;
2474 return 0;
2476 #else
2477 static unsigned int
2478 init_subregs_of_mode (void)
2480 return 0;
2482 static unsigned int
2483 finish_subregs_of_mode (void)
2485 return 0;
2488 #endif /* CANNOT_CHANGE_MODE_CLASS */
2490 static bool
2491 gate_subregs_of_mode_init (void)
2493 #ifdef CANNOT_CHANGE_MODE_CLASS
2494 return true;
2495 #else
2496 return false;
2497 #endif
2500 struct tree_opt_pass pass_subregs_of_mode_init =
2502 "subregs_of_mode_init", /* name */
2503 gate_subregs_of_mode_init, /* gate */
2504 init_subregs_of_mode, /* execute */
2505 NULL, /* sub */
2506 NULL, /* next */
2507 0, /* static_pass_number */
2508 0, /* tv_id */
2509 0, /* properties_required */
2510 0, /* properties_provided */
2511 0, /* properties_destroyed */
2512 0, /* todo_flags_start */
2513 0, /* todo_flags_finish */
2514 0 /* letter */
2517 struct tree_opt_pass pass_subregs_of_mode_finish =
2519 "subregs_of_mode_finish", /* name */
2520 gate_subregs_of_mode_init, /* gate */
2521 finish_subregs_of_mode, /* execute */
2522 NULL, /* sub */
2523 NULL, /* next */
2524 0, /* static_pass_number */
2525 0, /* tv_id */
2526 0, /* properties_required */
2527 0, /* properties_provided */
2528 0, /* properties_destroyed */
2529 0, /* todo_flags_start */
2530 0, /* todo_flags_finish */
2531 0 /* letter */
2536 #include "gt-regclass.h"