Updated for libbid move.
[official-gcc.git] / gcc / ddg.c
blob882cc818a322f54405f6d0433cfa6653b6e0ed1d
1 /* DDG - Data Dependence Graph implementation.
2 Copyright (C) 2004, 2005, 2006, 2007
3 Free Software Foundation, Inc.
4 Contributed by Ayal Zaks and Mustafa Hagog <zaks,mustafa@il.ibm.com>
6 This file is part of GCC.
8 GCC is free software; you can redistribute it and/or modify it under
9 the terms of the GNU General Public License as published by the Free
10 Software Foundation; either version 2, or (at your option) any later
11 version.
13 GCC is distributed in the hope that it will be useful, but WITHOUT ANY
14 WARRANTY; without even the implied warranty of MERCHANTABILITY or
15 FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License
16 for more details.
18 You should have received a copy of the GNU General Public License
19 along with GCC; see the file COPYING. If not, write to the Free
20 Software Foundation, 51 Franklin Street, Fifth Floor, Boston, MA
21 02110-1301, USA. */
24 #include "config.h"
25 #include "system.h"
26 #include "coretypes.h"
27 #include "tm.h"
28 #include "toplev.h"
29 #include "rtl.h"
30 #include "tm_p.h"
31 #include "hard-reg-set.h"
32 #include "regs.h"
33 #include "function.h"
34 #include "flags.h"
35 #include "insn-config.h"
36 #include "insn-attr.h"
37 #include "except.h"
38 #include "recog.h"
39 #include "sched-int.h"
40 #include "target.h"
41 #include "cfglayout.h"
42 #include "cfgloop.h"
43 #include "sbitmap.h"
44 #include "expr.h"
45 #include "bitmap.h"
46 #include "ddg.h"
48 /* A flag indicating that a ddg edge belongs to an SCC or not. */
49 enum edge_flag {NOT_IN_SCC = 0, IN_SCC};
51 /* Forward declarations. */
52 static void add_backarc_to_ddg (ddg_ptr, ddg_edge_ptr);
53 static void add_backarc_to_scc (ddg_scc_ptr, ddg_edge_ptr);
54 static void add_scc_to_ddg (ddg_all_sccs_ptr, ddg_scc_ptr);
55 static void create_ddg_dependence (ddg_ptr, ddg_node_ptr, ddg_node_ptr, dep_t);
56 static void create_ddg_dep_no_link (ddg_ptr, ddg_node_ptr, ddg_node_ptr,
57 dep_type, dep_data_type, int);
58 static ddg_edge_ptr create_ddg_edge (ddg_node_ptr, ddg_node_ptr, dep_type,
59 dep_data_type, int, int);
60 static void add_edge_to_ddg (ddg_ptr g, ddg_edge_ptr);
62 /* Auxiliary variable for mem_read_insn_p/mem_write_insn_p. */
63 static bool mem_ref_p;
65 /* Auxiliary function for mem_read_insn_p. */
66 static int
67 mark_mem_use (rtx *x, void *data ATTRIBUTE_UNUSED)
69 if (MEM_P (*x))
70 mem_ref_p = true;
71 return 0;
74 /* Auxiliary function for mem_read_insn_p. */
75 static void
76 mark_mem_use_1 (rtx *x, void *data)
78 for_each_rtx (x, mark_mem_use, data);
81 /* Returns nonzero if INSN reads from memory. */
82 static bool
83 mem_read_insn_p (rtx insn)
85 mem_ref_p = false;
86 note_uses (&PATTERN (insn), mark_mem_use_1, NULL);
87 return mem_ref_p;
90 static void
91 mark_mem_store (rtx loc, rtx setter ATTRIBUTE_UNUSED, void *data ATTRIBUTE_UNUSED)
93 if (MEM_P (loc))
94 mem_ref_p = true;
97 /* Returns nonzero if INSN writes to memory. */
98 static bool
99 mem_write_insn_p (rtx insn)
101 mem_ref_p = false;
102 note_stores (PATTERN (insn), mark_mem_store, NULL);
103 return mem_ref_p;
106 /* Returns nonzero if X has access to memory. */
107 static bool
108 rtx_mem_access_p (rtx x)
110 int i, j;
111 const char *fmt;
112 enum rtx_code code;
114 if (x == 0)
115 return false;
117 if (MEM_P (x))
118 return true;
120 code = GET_CODE (x);
121 fmt = GET_RTX_FORMAT (code);
122 for (i = GET_RTX_LENGTH (code) - 1; i >= 0; i--)
124 if (fmt[i] == 'e')
126 if (rtx_mem_access_p (XEXP (x, i)))
127 return true;
129 else if (fmt[i] == 'E')
130 for (j = 0; j < XVECLEN (x, i); j++)
132 if (rtx_mem_access_p (XVECEXP (x, i, j)))
133 return true;
136 return false;
139 /* Returns nonzero if INSN reads to or writes from memory. */
140 static bool
141 mem_access_insn_p (rtx insn)
143 return rtx_mem_access_p (PATTERN (insn));
146 /* Computes the dependence parameters (latency, distance etc.), creates
147 a ddg_edge and adds it to the given DDG. */
148 static void
149 create_ddg_dependence (ddg_ptr g, ddg_node_ptr src_node,
150 ddg_node_ptr dest_node, dep_t link)
152 ddg_edge_ptr e;
153 int latency, distance = 0;
154 int interloop = (src_node->cuid >= dest_node->cuid);
155 dep_type t = TRUE_DEP;
156 dep_data_type dt = (mem_access_insn_p (src_node->insn)
157 && mem_access_insn_p (dest_node->insn) ? MEM_DEP
158 : REG_DEP);
160 /* For now we don't have an exact calculation of the distance,
161 so assume 1 conservatively. */
162 if (interloop)
163 distance = 1;
165 gcc_assert (link);
167 /* Note: REG_DEP_ANTI applies to MEM ANTI_DEP as well!! */
168 if (DEP_KIND (link) == REG_DEP_ANTI)
169 t = ANTI_DEP;
170 else if (DEP_KIND (link) == REG_DEP_OUTPUT)
171 t = OUTPUT_DEP;
172 latency = dep_cost (link);
174 e = create_ddg_edge (src_node, dest_node, t, dt, latency, distance);
176 if (interloop)
178 /* Some interloop dependencies are relaxed:
179 1. Every insn is output dependent on itself; ignore such deps.
180 2. Every true/flow dependence is an anti dependence in the
181 opposite direction with distance 1; such register deps
182 will be removed by renaming if broken --- ignore them. */
183 if (!(t == OUTPUT_DEP && src_node == dest_node)
184 && !(t == ANTI_DEP && dt == REG_DEP))
185 add_backarc_to_ddg (g, e);
186 else
187 free (e);
189 else if (t == ANTI_DEP && dt == REG_DEP)
190 free (e); /* We can fix broken anti register deps using reg-moves. */
191 else
192 add_edge_to_ddg (g, e);
195 /* The same as the above function, but it doesn't require a link parameter. */
196 static void
197 create_ddg_dep_no_link (ddg_ptr g, ddg_node_ptr from, ddg_node_ptr to,
198 dep_type d_t, dep_data_type d_dt, int distance)
200 ddg_edge_ptr e;
201 int l;
202 enum reg_note dep_kind;
203 struct _dep _dep, *dep = &_dep;
205 if (d_t == ANTI_DEP)
206 dep_kind = REG_DEP_ANTI;
207 else if (d_t == OUTPUT_DEP)
208 dep_kind = REG_DEP_OUTPUT;
209 else
211 gcc_assert (d_t == TRUE_DEP);
213 dep_kind = REG_DEP_TRUE;
216 init_dep (dep, from->insn, to->insn, dep_kind);
218 l = dep_cost (dep);
220 e = create_ddg_edge (from, to, d_t, d_dt, l, distance);
221 if (distance > 0)
222 add_backarc_to_ddg (g, e);
223 else
224 add_edge_to_ddg (g, e);
228 /* Given a downwards exposed register def RD, add inter-loop true dependences
229 for all its uses in the next iteration, and an output dependence to the
230 first def of the next iteration. */
231 static void
232 add_deps_for_def (ddg_ptr g, struct df_ref *rd)
234 int regno = DF_REF_REGNO (rd);
235 struct df_ru_bb_info *bb_info = DF_RU_BB_INFO (g->bb);
236 struct df_link *r_use;
237 int use_before_def = false;
238 rtx def_insn = DF_REF_INSN (rd);
239 ddg_node_ptr src_node = get_node_of_insn (g, def_insn);
241 /* Create and inter-loop true dependence between RD and each of its uses
242 that is upwards exposed in RD's block. */
243 for (r_use = DF_REF_CHAIN (rd); r_use != NULL; r_use = r_use->next)
245 if (bitmap_bit_p (bb_info->gen, r_use->ref->id))
247 rtx use_insn = DF_REF_INSN (r_use->ref);
248 ddg_node_ptr dest_node = get_node_of_insn (g, use_insn);
250 gcc_assert (src_node && dest_node);
252 /* Any such upwards exposed use appears before the rd def. */
253 use_before_def = true;
254 create_ddg_dep_no_link (g, src_node, dest_node, TRUE_DEP,
255 REG_DEP, 1);
259 /* Create an inter-loop output dependence between RD (which is the
260 last def in its block, being downwards exposed) and the first def
261 in its block. Avoid creating a self output dependence. Avoid creating
262 an output dependence if there is a dependence path between the two defs
263 starting with a true dependence followed by an anti dependence (i.e. if
264 there is a use between the two defs. */
265 if (! use_before_def)
267 struct df_ref *def = df_bb_regno_first_def_find (g->bb, regno);
268 int i;
269 ddg_node_ptr dest_node;
271 if (!def || rd->id == def->id)
272 return;
274 /* Check if there are uses after RD. */
275 for (i = src_node->cuid + 1; i < g->num_nodes; i++)
276 if (df_find_use (g->nodes[i].insn, DF_REF_REG (rd)))
277 return;
279 dest_node = get_node_of_insn (g, def->insn);
280 create_ddg_dep_no_link (g, src_node, dest_node, OUTPUT_DEP, REG_DEP, 1);
284 /* Given a register USE, add an inter-loop anti dependence to the first
285 (nearest BLOCK_BEGIN) def of the next iteration, unless USE is followed
286 by a def in the block. */
287 static void
288 add_deps_for_use (ddg_ptr g, struct df_ref *use)
290 int i;
291 int regno = DF_REF_REGNO (use);
292 struct df_ref *first_def = df_bb_regno_first_def_find (g->bb, regno);
293 ddg_node_ptr use_node;
294 ddg_node_ptr def_node;
295 struct df_rd_bb_info *bb_info;
297 bb_info = DF_RD_BB_INFO (g->bb);
299 if (!first_def)
300 return;
302 use_node = get_node_of_insn (g, use->insn);
303 def_node = get_node_of_insn (g, first_def->insn);
305 gcc_assert (use_node && def_node);
307 /* Make sure there are no defs after USE. */
308 for (i = use_node->cuid + 1; i < g->num_nodes; i++)
309 if (df_find_def (g->nodes[i].insn, DF_REF_REG (use)))
310 return;
311 /* We must not add ANTI dep when there is an intra-loop TRUE dep in
312 the opposite direction. If the first_def reaches the USE then there is
313 such a dep. */
314 if (! bitmap_bit_p (bb_info->gen, first_def->id))
315 create_ddg_dep_no_link (g, use_node, def_node, ANTI_DEP, REG_DEP, 1);
318 /* Build inter-loop dependencies, by looking at DF analysis backwards. */
319 static void
320 build_inter_loop_deps (ddg_ptr g)
322 unsigned rd_num, u_num;
323 struct df_rd_bb_info *rd_bb_info;
324 struct df_ru_bb_info *ru_bb_info;
325 bitmap_iterator bi;
327 rd_bb_info = DF_RD_BB_INFO (g->bb);
329 /* Find inter-loop output and true deps by connecting downward exposed defs
330 to the first def of the BB and to upwards exposed uses. */
331 EXECUTE_IF_SET_IN_BITMAP (rd_bb_info->gen, 0, rd_num, bi)
333 struct df_ref *rd = DF_DEFS_GET (rd_num);
335 add_deps_for_def (g, rd);
338 ru_bb_info = DF_RU_BB_INFO (g->bb);
340 /* Find inter-loop anti deps. We are interested in uses of the block that
341 appear below all defs; this implies that these uses are killed. */
342 EXECUTE_IF_SET_IN_BITMAP (ru_bb_info->kill, 0, u_num, bi)
344 struct df_ref *use = DF_USES_GET (u_num);
345 if (!(DF_REF_FLAGS (use) & DF_REF_IN_NOTE))
346 /* We are interested in uses of this BB. */
347 if (BLOCK_FOR_INSN (use->insn) == g->bb)
348 add_deps_for_use (g, use);
352 /* Given two nodes, analyze their RTL insns and add inter-loop mem deps
353 to ddg G. */
354 static void
355 add_inter_loop_mem_dep (ddg_ptr g, ddg_node_ptr from, ddg_node_ptr to)
357 if (mem_write_insn_p (from->insn))
359 if (mem_read_insn_p (to->insn))
360 create_ddg_dep_no_link (g, from, to, TRUE_DEP, MEM_DEP, 1);
361 else if (from->cuid != to->cuid)
362 create_ddg_dep_no_link (g, from, to, OUTPUT_DEP, MEM_DEP, 1);
364 else
366 if (mem_read_insn_p (to->insn))
367 return;
368 else if (from->cuid != to->cuid)
370 create_ddg_dep_no_link (g, from, to, ANTI_DEP, MEM_DEP, 1);
371 create_ddg_dep_no_link (g, to, from, TRUE_DEP, MEM_DEP, 1);
377 /* Perform intra-block Data Dependency analysis and connect the nodes in
378 the DDG. We assume the loop has a single basic block. */
379 static void
380 build_intra_loop_deps (ddg_ptr g)
382 int i;
383 /* Hold the dependency analysis state during dependency calculations. */
384 struct deps tmp_deps;
385 rtx head, tail;
386 dep_link_t link;
388 /* Build the dependence information, using the sched_analyze function. */
389 init_deps_global ();
390 init_deps (&tmp_deps);
392 /* Do the intra-block data dependence analysis for the given block. */
393 get_ebb_head_tail (g->bb, g->bb, &head, &tail);
394 sched_analyze (&tmp_deps, head, tail);
396 /* Build intra-loop data dependencies using the scheduler dependency
397 analysis. */
398 for (i = 0; i < g->num_nodes; i++)
400 ddg_node_ptr dest_node = &g->nodes[i];
402 if (! INSN_P (dest_node->insn))
403 continue;
405 FOR_EACH_DEP_LINK (link, INSN_BACK_DEPS (dest_node->insn))
407 dep_t dep = DEP_LINK_DEP (link);
408 ddg_node_ptr src_node = get_node_of_insn (g, DEP_PRO (dep));
410 if (!src_node)
411 continue;
413 add_forw_dep (link);
414 create_ddg_dependence (g, src_node, dest_node, dep);
417 /* If this insn modifies memory, add an edge to all insns that access
418 memory. */
419 if (mem_access_insn_p (dest_node->insn))
421 int j;
423 for (j = 0; j <= i; j++)
425 ddg_node_ptr j_node = &g->nodes[j];
426 if (mem_access_insn_p (j_node->insn))
427 /* Don't bother calculating inter-loop dep if an intra-loop dep
428 already exists. */
429 if (! TEST_BIT (dest_node->successors, j))
430 add_inter_loop_mem_dep (g, dest_node, j_node);
435 /* Free the INSN_LISTs. */
436 finish_deps_global ();
437 free_deps (&tmp_deps);
441 /* Given a basic block, create its DDG and return a pointer to a variable
442 of ddg type that represents it.
443 Initialize the ddg structure fields to the appropriate values. */
444 ddg_ptr
445 create_ddg (basic_block bb, int closing_branch_deps)
447 ddg_ptr g;
448 rtx insn, first_note;
449 int i;
450 int num_nodes = 0;
452 g = (ddg_ptr) xcalloc (1, sizeof (struct ddg));
454 g->bb = bb;
455 g->closing_branch_deps = closing_branch_deps;
457 /* Count the number of insns in the BB. */
458 for (insn = BB_HEAD (bb); insn != NEXT_INSN (BB_END (bb));
459 insn = NEXT_INSN (insn))
461 if (! INSN_P (insn) || GET_CODE (PATTERN (insn)) == USE)
462 continue;
464 if (mem_read_insn_p (insn))
465 g->num_loads++;
466 if (mem_write_insn_p (insn))
467 g->num_stores++;
468 num_nodes++;
471 /* There is nothing to do for this BB. */
472 if (num_nodes <= 1)
474 free (g);
475 return NULL;
478 /* Allocate the nodes array, and initialize the nodes. */
479 g->num_nodes = num_nodes;
480 g->nodes = (ddg_node_ptr) xcalloc (num_nodes, sizeof (struct ddg_node));
481 g->closing_branch = NULL;
482 i = 0;
483 first_note = NULL_RTX;
484 for (insn = BB_HEAD (bb); insn != NEXT_INSN (BB_END (bb));
485 insn = NEXT_INSN (insn))
487 if (! INSN_P (insn))
489 if (! first_note && NOTE_P (insn)
490 && NOTE_KIND (insn) != NOTE_INSN_BASIC_BLOCK)
491 first_note = insn;
492 continue;
494 if (JUMP_P (insn))
496 gcc_assert (!g->closing_branch);
497 g->closing_branch = &g->nodes[i];
499 else if (GET_CODE (PATTERN (insn)) == USE)
501 if (! first_note)
502 first_note = insn;
503 continue;
506 g->nodes[i].cuid = i;
507 g->nodes[i].successors = sbitmap_alloc (num_nodes);
508 sbitmap_zero (g->nodes[i].successors);
509 g->nodes[i].predecessors = sbitmap_alloc (num_nodes);
510 sbitmap_zero (g->nodes[i].predecessors);
511 g->nodes[i].first_note = (first_note ? first_note : insn);
512 g->nodes[i++].insn = insn;
513 first_note = NULL_RTX;
516 /* We must have found a branch in DDG. */
517 gcc_assert (g->closing_branch);
520 /* Build the data dependency graph. */
521 build_intra_loop_deps (g);
522 build_inter_loop_deps (g);
523 return g;
526 /* Free all the memory allocated for the DDG. */
527 void
528 free_ddg (ddg_ptr g)
530 int i;
532 if (!g)
533 return;
535 for (i = 0; i < g->num_nodes; i++)
537 ddg_edge_ptr e = g->nodes[i].out;
539 while (e)
541 ddg_edge_ptr next = e->next_out;
543 free (e);
544 e = next;
546 sbitmap_free (g->nodes[i].successors);
547 sbitmap_free (g->nodes[i].predecessors);
549 if (g->num_backarcs > 0)
550 free (g->backarcs);
551 free (g->nodes);
552 free (g);
555 void
556 print_ddg_edge (FILE *file, ddg_edge_ptr e)
558 char dep_c;
560 switch (e->type)
562 case OUTPUT_DEP :
563 dep_c = 'O';
564 break;
565 case ANTI_DEP :
566 dep_c = 'A';
567 break;
568 default:
569 dep_c = 'T';
572 fprintf (file, " [%d -(%c,%d,%d)-> %d] ", INSN_UID (e->src->insn),
573 dep_c, e->latency, e->distance, INSN_UID (e->dest->insn));
576 /* Print the DDG nodes with there in/out edges to the dump file. */
577 void
578 print_ddg (FILE *file, ddg_ptr g)
580 int i;
582 for (i = 0; i < g->num_nodes; i++)
584 ddg_edge_ptr e;
586 print_rtl_single (file, g->nodes[i].insn);
587 fprintf (file, "OUT ARCS: ");
588 for (e = g->nodes[i].out; e; e = e->next_out)
589 print_ddg_edge (file, e);
591 fprintf (file, "\nIN ARCS: ");
592 for (e = g->nodes[i].in; e; e = e->next_in)
593 print_ddg_edge (file, e);
595 fprintf (file, "\n");
599 /* Print the given DDG in VCG format. */
600 void
601 vcg_print_ddg (FILE *file, ddg_ptr g)
603 int src_cuid;
605 fprintf (file, "graph: {\n");
606 for (src_cuid = 0; src_cuid < g->num_nodes; src_cuid++)
608 ddg_edge_ptr e;
609 int src_uid = INSN_UID (g->nodes[src_cuid].insn);
611 fprintf (file, "node: {title: \"%d_%d\" info1: \"", src_cuid, src_uid);
612 print_rtl_single (file, g->nodes[src_cuid].insn);
613 fprintf (file, "\"}\n");
614 for (e = g->nodes[src_cuid].out; e; e = e->next_out)
616 int dst_uid = INSN_UID (e->dest->insn);
617 int dst_cuid = e->dest->cuid;
619 /* Give the backarcs a different color. */
620 if (e->distance > 0)
621 fprintf (file, "backedge: {color: red ");
622 else
623 fprintf (file, "edge: { ");
625 fprintf (file, "sourcename: \"%d_%d\" ", src_cuid, src_uid);
626 fprintf (file, "targetname: \"%d_%d\" ", dst_cuid, dst_uid);
627 fprintf (file, "label: \"%d_%d\"}\n", e->latency, e->distance);
630 fprintf (file, "}\n");
633 /* Create an edge and initialize it with given values. */
634 static ddg_edge_ptr
635 create_ddg_edge (ddg_node_ptr src, ddg_node_ptr dest,
636 dep_type t, dep_data_type dt, int l, int d)
638 ddg_edge_ptr e = (ddg_edge_ptr) xmalloc (sizeof (struct ddg_edge));
640 e->src = src;
641 e->dest = dest;
642 e->type = t;
643 e->data_type = dt;
644 e->latency = l;
645 e->distance = d;
646 e->next_in = e->next_out = NULL;
647 e->aux.info = 0;
648 return e;
651 /* Add the given edge to the in/out linked lists of the DDG nodes. */
652 static void
653 add_edge_to_ddg (ddg_ptr g ATTRIBUTE_UNUSED, ddg_edge_ptr e)
655 ddg_node_ptr src = e->src;
656 ddg_node_ptr dest = e->dest;
658 /* Should have allocated the sbitmaps. */
659 gcc_assert (src->successors && dest->predecessors);
661 SET_BIT (src->successors, dest->cuid);
662 SET_BIT (dest->predecessors, src->cuid);
663 e->next_in = dest->in;
664 dest->in = e;
665 e->next_out = src->out;
666 src->out = e;
671 /* Algorithm for computing the recurrence_length of an scc. We assume at
672 for now that cycles in the data dependence graph contain a single backarc.
673 This simplifies the algorithm, and can be generalized later. */
674 static void
675 set_recurrence_length (ddg_scc_ptr scc, ddg_ptr g)
677 int j;
678 int result = -1;
680 for (j = 0; j < scc->num_backarcs; j++)
682 ddg_edge_ptr backarc = scc->backarcs[j];
683 int length;
684 int distance = backarc->distance;
685 ddg_node_ptr src = backarc->dest;
686 ddg_node_ptr dest = backarc->src;
688 length = longest_simple_path (g, src->cuid, dest->cuid, scc->nodes);
689 if (length < 0 )
691 /* fprintf (stderr, "Backarc not on simple cycle in SCC.\n"); */
692 continue;
694 length += backarc->latency;
695 result = MAX (result, (length / distance));
697 scc->recurrence_length = result;
700 /* Create a new SCC given the set of its nodes. Compute its recurrence_length
701 and mark edges that belong to this scc as IN_SCC. */
702 static ddg_scc_ptr
703 create_scc (ddg_ptr g, sbitmap nodes)
705 ddg_scc_ptr scc;
706 unsigned int u = 0;
707 sbitmap_iterator sbi;
709 scc = (ddg_scc_ptr) xmalloc (sizeof (struct ddg_scc));
710 scc->backarcs = NULL;
711 scc->num_backarcs = 0;
712 scc->nodes = sbitmap_alloc (g->num_nodes);
713 sbitmap_copy (scc->nodes, nodes);
715 /* Mark the backarcs that belong to this SCC. */
716 EXECUTE_IF_SET_IN_SBITMAP (nodes, 0, u, sbi)
718 ddg_edge_ptr e;
719 ddg_node_ptr n = &g->nodes[u];
721 for (e = n->out; e; e = e->next_out)
722 if (TEST_BIT (nodes, e->dest->cuid))
724 e->aux.count = IN_SCC;
725 if (e->distance > 0)
726 add_backarc_to_scc (scc, e);
730 set_recurrence_length (scc, g);
731 return scc;
734 /* Cleans the memory allocation of a given SCC. */
735 static void
736 free_scc (ddg_scc_ptr scc)
738 if (!scc)
739 return;
741 sbitmap_free (scc->nodes);
742 if (scc->num_backarcs > 0)
743 free (scc->backarcs);
744 free (scc);
748 /* Add a given edge known to be a backarc to the given DDG. */
749 static void
750 add_backarc_to_ddg (ddg_ptr g, ddg_edge_ptr e)
752 int size = (g->num_backarcs + 1) * sizeof (ddg_edge_ptr);
754 add_edge_to_ddg (g, e);
755 g->backarcs = (ddg_edge_ptr *) xrealloc (g->backarcs, size);
756 g->backarcs[g->num_backarcs++] = e;
759 /* Add backarc to an SCC. */
760 static void
761 add_backarc_to_scc (ddg_scc_ptr scc, ddg_edge_ptr e)
763 int size = (scc->num_backarcs + 1) * sizeof (ddg_edge_ptr);
765 scc->backarcs = (ddg_edge_ptr *) xrealloc (scc->backarcs, size);
766 scc->backarcs[scc->num_backarcs++] = e;
769 /* Add the given SCC to the DDG. */
770 static void
771 add_scc_to_ddg (ddg_all_sccs_ptr g, ddg_scc_ptr scc)
773 int size = (g->num_sccs + 1) * sizeof (ddg_scc_ptr);
775 g->sccs = (ddg_scc_ptr *) xrealloc (g->sccs, size);
776 g->sccs[g->num_sccs++] = scc;
779 /* Given the instruction INSN return the node that represents it. */
780 ddg_node_ptr
781 get_node_of_insn (ddg_ptr g, rtx insn)
783 int i;
785 for (i = 0; i < g->num_nodes; i++)
786 if (insn == g->nodes[i].insn)
787 return &g->nodes[i];
788 return NULL;
791 /* Given a set OPS of nodes in the DDG, find the set of their successors
792 which are not in OPS, and set their bits in SUCC. Bits corresponding to
793 OPS are cleared from SUCC. Leaves the other bits in SUCC unchanged. */
794 void
795 find_successors (sbitmap succ, ddg_ptr g, sbitmap ops)
797 unsigned int i = 0;
798 sbitmap_iterator sbi;
800 EXECUTE_IF_SET_IN_SBITMAP (ops, 0, i, sbi)
802 const sbitmap node_succ = NODE_SUCCESSORS (&g->nodes[i]);
803 sbitmap_a_or_b (succ, succ, node_succ);
806 /* We want those that are not in ops. */
807 sbitmap_difference (succ, succ, ops);
810 /* Given a set OPS of nodes in the DDG, find the set of their predecessors
811 which are not in OPS, and set their bits in PREDS. Bits corresponding to
812 OPS are cleared from PREDS. Leaves the other bits in PREDS unchanged. */
813 void
814 find_predecessors (sbitmap preds, ddg_ptr g, sbitmap ops)
816 unsigned int i = 0;
817 sbitmap_iterator sbi;
819 EXECUTE_IF_SET_IN_SBITMAP (ops, 0, i, sbi)
821 const sbitmap node_preds = NODE_PREDECESSORS (&g->nodes[i]);
822 sbitmap_a_or_b (preds, preds, node_preds);
825 /* We want those that are not in ops. */
826 sbitmap_difference (preds, preds, ops);
830 /* Compare function to be passed to qsort to order the backarcs in descending
831 recMII order. */
832 static int
833 compare_sccs (const void *s1, const void *s2)
835 int rec_l1 = (*(ddg_scc_ptr *)s1)->recurrence_length;
836 int rec_l2 = (*(ddg_scc_ptr *)s2)->recurrence_length;
837 return ((rec_l2 > rec_l1) - (rec_l2 < rec_l1));
841 /* Order the backarcs in descending recMII order using compare_sccs. */
842 static void
843 order_sccs (ddg_all_sccs_ptr g)
845 qsort (g->sccs, g->num_sccs, sizeof (ddg_scc_ptr),
846 (int (*) (const void *, const void *)) compare_sccs);
849 /* Perform the Strongly Connected Components decomposing algorithm on the
850 DDG and return DDG_ALL_SCCS structure that contains them. */
851 ddg_all_sccs_ptr
852 create_ddg_all_sccs (ddg_ptr g)
854 int i;
855 int num_nodes = g->num_nodes;
856 sbitmap from = sbitmap_alloc (num_nodes);
857 sbitmap to = sbitmap_alloc (num_nodes);
858 sbitmap scc_nodes = sbitmap_alloc (num_nodes);
859 ddg_all_sccs_ptr sccs = (ddg_all_sccs_ptr)
860 xmalloc (sizeof (struct ddg_all_sccs));
862 sccs->ddg = g;
863 sccs->sccs = NULL;
864 sccs->num_sccs = 0;
866 for (i = 0; i < g->num_backarcs; i++)
868 ddg_scc_ptr scc;
869 ddg_edge_ptr backarc = g->backarcs[i];
870 ddg_node_ptr src = backarc->src;
871 ddg_node_ptr dest = backarc->dest;
873 /* If the backarc already belongs to an SCC, continue. */
874 if (backarc->aux.count == IN_SCC)
875 continue;
877 sbitmap_zero (scc_nodes);
878 sbitmap_zero (from);
879 sbitmap_zero (to);
880 SET_BIT (from, dest->cuid);
881 SET_BIT (to, src->cuid);
883 if (find_nodes_on_paths (scc_nodes, g, from, to))
885 scc = create_scc (g, scc_nodes);
886 add_scc_to_ddg (sccs, scc);
889 order_sccs (sccs);
890 sbitmap_free (from);
891 sbitmap_free (to);
892 sbitmap_free (scc_nodes);
893 return sccs;
896 /* Frees the memory allocated for all SCCs of the DDG, but keeps the DDG. */
897 void
898 free_ddg_all_sccs (ddg_all_sccs_ptr all_sccs)
900 int i;
902 if (!all_sccs)
903 return;
905 for (i = 0; i < all_sccs->num_sccs; i++)
906 free_scc (all_sccs->sccs[i]);
908 free (all_sccs);
912 /* Given FROM - a bitmap of source nodes - and TO - a bitmap of destination
913 nodes - find all nodes that lie on paths from FROM to TO (not excluding
914 nodes from FROM and TO). Return nonzero if nodes exist. */
916 find_nodes_on_paths (sbitmap result, ddg_ptr g, sbitmap from, sbitmap to)
918 int answer;
919 int change;
920 unsigned int u = 0;
921 int num_nodes = g->num_nodes;
922 sbitmap_iterator sbi;
924 sbitmap workset = sbitmap_alloc (num_nodes);
925 sbitmap reachable_from = sbitmap_alloc (num_nodes);
926 sbitmap reach_to = sbitmap_alloc (num_nodes);
927 sbitmap tmp = sbitmap_alloc (num_nodes);
929 sbitmap_copy (reachable_from, from);
930 sbitmap_copy (tmp, from);
932 change = 1;
933 while (change)
935 change = 0;
936 sbitmap_copy (workset, tmp);
937 sbitmap_zero (tmp);
938 EXECUTE_IF_SET_IN_SBITMAP (workset, 0, u, sbi)
940 ddg_edge_ptr e;
941 ddg_node_ptr u_node = &g->nodes[u];
943 for (e = u_node->out; e != (ddg_edge_ptr) 0; e = e->next_out)
945 ddg_node_ptr v_node = e->dest;
946 int v = v_node->cuid;
948 if (!TEST_BIT (reachable_from, v))
950 SET_BIT (reachable_from, v);
951 SET_BIT (tmp, v);
952 change = 1;
958 sbitmap_copy (reach_to, to);
959 sbitmap_copy (tmp, to);
961 change = 1;
962 while (change)
964 change = 0;
965 sbitmap_copy (workset, tmp);
966 sbitmap_zero (tmp);
967 EXECUTE_IF_SET_IN_SBITMAP (workset, 0, u, sbi)
969 ddg_edge_ptr e;
970 ddg_node_ptr u_node = &g->nodes[u];
972 for (e = u_node->in; e != (ddg_edge_ptr) 0; e = e->next_in)
974 ddg_node_ptr v_node = e->src;
975 int v = v_node->cuid;
977 if (!TEST_BIT (reach_to, v))
979 SET_BIT (reach_to, v);
980 SET_BIT (tmp, v);
981 change = 1;
987 answer = sbitmap_a_and_b_cg (result, reachable_from, reach_to);
988 sbitmap_free (workset);
989 sbitmap_free (reachable_from);
990 sbitmap_free (reach_to);
991 sbitmap_free (tmp);
992 return answer;
996 /* Updates the counts of U_NODE's successors (that belong to NODES) to be
997 at-least as large as the count of U_NODE plus the latency between them.
998 Sets a bit in TMP for each successor whose count was changed (increased).
999 Returns nonzero if any count was changed. */
1000 static int
1001 update_dist_to_successors (ddg_node_ptr u_node, sbitmap nodes, sbitmap tmp)
1003 ddg_edge_ptr e;
1004 int result = 0;
1006 for (e = u_node->out; e; e = e->next_out)
1008 ddg_node_ptr v_node = e->dest;
1009 int v = v_node->cuid;
1011 if (TEST_BIT (nodes, v)
1012 && (e->distance == 0)
1013 && (v_node->aux.count < u_node->aux.count + e->latency))
1015 v_node->aux.count = u_node->aux.count + e->latency;
1016 SET_BIT (tmp, v);
1017 result = 1;
1020 return result;
1024 /* Find the length of a longest path from SRC to DEST in G,
1025 going only through NODES, and disregarding backarcs. */
1027 longest_simple_path (struct ddg * g, int src, int dest, sbitmap nodes)
1029 int i;
1030 unsigned int u = 0;
1031 int change = 1;
1032 int result;
1033 int num_nodes = g->num_nodes;
1034 sbitmap workset = sbitmap_alloc (num_nodes);
1035 sbitmap tmp = sbitmap_alloc (num_nodes);
1038 /* Data will hold the distance of the longest path found so far from
1039 src to each node. Initialize to -1 = less than minimum. */
1040 for (i = 0; i < g->num_nodes; i++)
1041 g->nodes[i].aux.count = -1;
1042 g->nodes[src].aux.count = 0;
1044 sbitmap_zero (tmp);
1045 SET_BIT (tmp, src);
1047 while (change)
1049 sbitmap_iterator sbi;
1051 change = 0;
1052 sbitmap_copy (workset, tmp);
1053 sbitmap_zero (tmp);
1054 EXECUTE_IF_SET_IN_SBITMAP (workset, 0, u, sbi)
1056 ddg_node_ptr u_node = &g->nodes[u];
1058 change |= update_dist_to_successors (u_node, nodes, tmp);
1061 result = g->nodes[dest].aux.count;
1062 sbitmap_free (workset);
1063 sbitmap_free (tmp);
1064 return result;