1 ------------------------------------------------------------------------------
3 -- GNAT COMPILER COMPONENTS --
9 -- Copyright (C) 2014-2018, Free Software Foundation, Inc. --
11 -- GNAT is free software; you can redistribute it and/or modify it under --
12 -- terms of the GNU General Public License as published by the Free Soft- --
13 -- ware Foundation; either version 3, or (at your option) any later ver- --
14 -- sion. GNAT is distributed in the hope that it will be useful, but WITH- --
15 -- OUT ANY WARRANTY; without even the implied warranty of MERCHANTABILITY --
16 -- or FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License --
17 -- for more details. You should have received a copy of the GNU General --
18 -- Public License distributed with GNAT; see file COPYING3. If not, go to --
19 -- http://www.gnu.org/licenses for a complete copy of the license. --
21 -- GNAT was originally developed by the GNAT team at New York University. --
22 -- Extensive contributions were provided by Ada Core Technologies Inc. --
24 ------------------------------------------------------------------------------
26 with Atree
; use Atree
;
27 with Debug
; use Debug
;
28 with Einfo
; use Einfo
;
29 with Elists
; use Elists
;
31 with Namet
; use Namet
;
32 with Nlists
; use Nlists
;
33 with Nmake
; use Nmake
;
35 with Output
; use Output
;
36 with Rtsfind
; use Rtsfind
;
38 with Sem_Aux
; use Sem_Aux
;
39 with Sem_Ch8
; use Sem_Ch8
;
40 with Sem_Mech
; use Sem_Mech
;
41 with Sem_Res
; use Sem_Res
;
42 with Sem_Util
; use Sem_Util
;
43 with Sinfo
; use Sinfo
;
44 with Sinput
; use Sinput
;
45 with Snames
; use Snames
;
46 with Stand
; use Stand
;
47 with Tbuild
; use Tbuild
;
48 with Uintp
; use Uintp
;
50 package body Exp_Unst
is
52 -----------------------
53 -- Local Subprograms --
54 -----------------------
56 procedure Unnest_Subprogram
(Subp
: Entity_Id
; Subp_Body
: Node_Id
);
57 -- Subp is a library-level subprogram which has nested subprograms, and
58 -- Subp_Body is the corresponding N_Subprogram_Body node. This procedure
59 -- declares the AREC types and objects, adds assignments to the AREC record
60 -- as required, defines the xxxPTR types for uplevel referenced objects,
61 -- adds the ARECP parameter to all nested subprograms which need it, and
62 -- modifies all uplevel references appropriately.
68 -- Table to record calls within the nest being analyzed. These are the
69 -- calls which may need to have an AREC actual added. This table is built
70 -- new for each subprogram nest and cleared at the end of processing each
73 type Call_Entry
is record
78 -- Entity of the subprogram containing the call (can be at any level)
81 -- Entity of the subprogram called (always at level 2 or higher). Note
82 -- that in accordance with the basic rules of nesting, the level of To
83 -- is either less than or equal to the level of From, or one greater.
86 package Calls
is new Table
.Table
(
87 Table_Component_Type
=> Call_Entry
,
88 Table_Index_Type
=> Nat
,
91 Table_Increment
=> 200,
92 Table_Name
=> "Unnest_Calls");
93 -- Records each call within the outer subprogram and all nested subprograms
94 -- that are to other subprograms nested within the outer subprogram. These
95 -- are the calls that may need an additional parameter.
97 procedure Append_Unique_Call
(Call
: Call_Entry
);
98 -- Append a call entry to the Calls table. A check is made to see if the
99 -- table already contains this entry and if so it has no effect.
101 ----------------------------------
102 -- Subprograms For Fat Pointers --
103 ----------------------------------
105 function Build_Access_Type_Decl
107 Scop
: Entity_Id
) return Node_Id
;
108 -- For an uplevel reference that involves an unconstrained array type,
109 -- build an access type declaration for the corresponding activation
110 -- record component. The relevant attributes of the access type are
111 -- set here to avoid a full analysis that would require a scope stack.
113 function Needs_Fat_Pointer
(E
: Entity_Id
) return Boolean;
114 -- A formal parameter of an unconstrained array type that appears in an
115 -- uplevel reference requires the construction of an access type, to be
116 -- used in the corresponding component declaration.
122 -- Table to record explicit uplevel references to objects (variables,
123 -- constants, formal parameters). These are the references that will
124 -- need rewriting to use the activation table (AREC) pointers. Also
125 -- included are implicit and explicit uplevel references to types, but
126 -- these do not get rewritten by the front end. This table is built new
127 -- for each subprogram nest and cleared at the end of processing each
130 type Uref_Entry
is record
132 -- The reference itself. For objects this is always an entity reference
133 -- and the referenced entity will have its Is_Uplevel_Referenced_Entity
134 -- flag set and will appear in the Uplevel_Referenced_Entities list of
135 -- the subprogram declaring this entity.
138 -- The Entity_Id of the uplevel referenced object or type
141 -- The entity for the subprogram immediately containing this entity
144 -- The entity for the subprogram containing the referenced entity. Note
145 -- that the level of Callee must be less than the level of Caller, since
146 -- this is an uplevel reference.
149 package Urefs
is new Table
.Table
(
150 Table_Component_Type
=> Uref_Entry
,
151 Table_Index_Type
=> Nat
,
152 Table_Low_Bound
=> 1,
153 Table_Initial
=> 100,
154 Table_Increment
=> 200,
155 Table_Name
=> "Unnest_Urefs");
157 ------------------------
158 -- Append_Unique_Call --
159 ------------------------
161 procedure Append_Unique_Call
(Call
: Call_Entry
) is
163 for J
in Calls
.First
.. Calls
.Last
loop
164 if Calls
.Table
(J
) = Call
then
170 end Append_Unique_Call
;
172 -----------------------------
173 -- Build_Access_Type_Decl --
174 -----------------------------
176 function Build_Access_Type_Decl
178 Scop
: Entity_Id
) return Node_Id
180 Loc
: constant Source_Ptr
:= Sloc
(E
);
184 Typ
:= Make_Temporary
(Loc
, 'S');
185 Set_Ekind
(Typ
, E_General_Access_Type
);
186 Set_Etype
(Typ
, Typ
);
187 Set_Scope
(Typ
, Scop
);
188 Set_Directly_Designated_Type
(Typ
, Etype
(E
));
191 Make_Full_Type_Declaration
(Loc
,
192 Defining_Identifier
=> Typ
,
194 Make_Access_To_Object_Definition
(Loc
,
195 Subtype_Indication
=> New_Occurrence_Of
(Etype
(E
), Loc
)));
196 end Build_Access_Type_Decl
;
202 function Get_Level
(Subp
: Entity_Id
; Sub
: Entity_Id
) return Nat
is
214 S
:= Enclosing_Subprogram
(S
);
219 --------------------------
220 -- In_Synchronized_Unit --
221 --------------------------
223 function In_Synchronized_Unit
(Subp
: Entity_Id
) return Boolean is
224 S
: Entity_Id
:= Scope
(Subp
);
227 while Present
(S
) and then S
/= Standard_Standard
loop
228 if Is_Concurrent_Type
(S
) then
236 end In_Synchronized_Unit
;
238 -----------------------
239 -- Needs_Fat_Pointer --
240 -----------------------
242 function Needs_Fat_Pointer
(E
: Entity_Id
) return Boolean is
245 and then Is_Array_Type
(Etype
(E
))
246 and then not Is_Constrained
(Etype
(E
));
247 end Needs_Fat_Pointer
;
253 function Subp_Index
(Sub
: Entity_Id
) return SI_Type
is
254 E
: Entity_Id
:= Sub
;
257 pragma Assert
(Is_Subprogram
(E
));
259 if Subps_Index
(E
) = Uint_0
then
260 E
:= Ultimate_Alias
(E
);
262 -- The body of a protected operation has a different name and
263 -- has been scanned at this point, and thus has an entry in the
266 if E
= Sub
and then Convention
(E
) = Convention_Protected
then
267 E
:= Protected_Body_Subprogram
(E
);
270 if Ekind
(E
) = E_Function
271 and then Rewritten_For_C
(E
)
272 and then Present
(Corresponding_Procedure
(E
))
274 E
:= Corresponding_Procedure
(E
);
278 pragma Assert
(Subps_Index
(E
) /= Uint_0
);
279 return SI_Type
(UI_To_Int
(Subps_Index
(E
)));
282 -----------------------
283 -- Unnest_Subprogram --
284 -----------------------
286 procedure Unnest_Subprogram
(Subp
: Entity_Id
; Subp_Body
: Node_Id
) is
287 function AREC_Name
(J
: Pos
; S
: String) return Name_Id
;
288 -- Returns name for string ARECjS, where j is the decimal value of j
290 function Enclosing_Subp
(Subp
: SI_Type
) return SI_Type
;
291 -- Subp is the index of a subprogram which has a Lev greater than 1.
292 -- This function returns the index of the enclosing subprogram which
293 -- will have a Lev value one less than this.
295 function Img_Pos
(N
: Pos
) return String;
296 -- Return image of N without leading blank
301 Clist
: List_Id
) return Name_Id
;
302 -- This function returns the name to be used in the activation record to
303 -- reference the variable uplevel. Clist is the list of components that
304 -- have been created in the activation record so far. Normally the name
305 -- is just a copy of the Chars field of the entity. The exception is
306 -- when the name has already been used, in which case we suffix the name
307 -- with the index value Index to avoid duplication. This happens with
308 -- declare blocks and generic parameters at least.
314 function AREC_Name
(J
: Pos
; S
: String) return Name_Id
is
316 return Name_Find
("AREC" & Img_Pos
(J
) & S
);
323 function Enclosing_Subp
(Subp
: SI_Type
) return SI_Type
is
324 STJ
: Subp_Entry
renames Subps
.Table
(Subp
);
325 Ret
: constant SI_Type
:= Subp_Index
(Enclosing_Subprogram
(STJ
.Ent
));
327 pragma Assert
(STJ
.Lev
> 1);
328 pragma Assert
(Subps
.Table
(Ret
).Lev
= STJ
.Lev
- 1);
336 function Img_Pos
(N
: Pos
) return String is
337 Buf
: String (1 .. 20);
345 Buf
(Ptr
) := Character'Val (48 + NV
mod 10);
350 return Buf
(Ptr
+ 1 .. Buf
'Last);
360 Clist
: List_Id
) return Name_Id
369 elsif Chars
(Defining_Identifier
(C
)) = Chars
(Ent
) then
371 Name_Find
(Get_Name_String
(Chars
(Ent
)) & Img_Pos
(Index
));
378 -- Start of processing for Unnest_Subprogram
381 -- Nothing to do inside a generic (all processing is for instance)
383 if Inside_A_Generic
then
387 -- If the main unit is a package body then we need to examine the spec
388 -- to determine whether the main unit is generic (the scope stack is not
389 -- present when this is called on the main unit).
391 if Ekind
(Cunit_Entity
(Main_Unit
)) = E_Package_Body
392 and then Is_Generic_Unit
(Spec_Entity
(Cunit_Entity
(Main_Unit
)))
397 -- Only unnest when generating code for the main source unit
399 if not In_Extended_Main_Code_Unit
(Subp_Body
) then
403 -- This routine is called late, after the scope stack is gone. The
404 -- following creates a suitable dummy scope stack to be used for the
405 -- analyze/expand calls made from this routine.
409 -- First step, we must mark all nested subprograms that require a static
410 -- link (activation record) because either they contain explicit uplevel
411 -- references (as indicated by Is_Uplevel_Referenced_Entity being set at
412 -- this point), or they make calls to other subprograms in the same nest
413 -- that require a static link (in which case we set this flag).
415 -- This is a recursive definition, and to implement this, we have to
416 -- build a call graph for the set of nested subprograms, and then go
417 -- over this graph to implement recursively the invariant that if a
418 -- subprogram has a call to a subprogram requiring a static link, then
419 -- the calling subprogram requires a static link.
421 -- First populate the above tables
423 Subps_First
:= Subps
.Last
+ 1;
427 Build_Tables
: declare
428 Current_Subprogram
: Entity_Id
;
429 -- When we scan a subprogram body, we set Current_Subprogram to the
430 -- corresponding entity. This gets recursively saved and restored.
432 function Visit_Node
(N
: Node_Id
) return Traverse_Result
;
433 -- Visit a single node in Subp
439 procedure Visit
is new Traverse_Proc
(Visit_Node
);
440 -- Used to traverse the body of Subp, populating the tables
446 function Visit_Node
(N
: Node_Id
) return Traverse_Result
is
451 procedure Check_Static_Type
452 (T
: Entity_Id
; N
: Node_Id
; DT
: in out Boolean);
453 -- Given a type T, checks if it is a static type defined as a type
454 -- with no dynamic bounds in sight. If so, the only action is to
455 -- set Is_Static_Type True for T. If T is not a static type, then
456 -- all types with dynamic bounds associated with T are detected,
457 -- and their bounds are marked as uplevel referenced if not at the
458 -- library level, and DT is set True. If N is specified, it's the
459 -- node that will need to be replaced. If not specified, it means
460 -- we can't do a replacement because the bound is implicit.
462 procedure Note_Uplevel_Ref
467 -- Called when we detect an explicit or implicit uplevel reference
468 -- from within Caller to entity E declared in Callee. E can be a
469 -- an object or a type.
471 procedure Register_Subprogram
(E
: Entity_Id
; Bod
: Node_Id
);
472 -- Enter a subprogram whose body is visible or which is a
473 -- subprogram instance into the subprogram table.
475 -----------------------
476 -- Check_Static_Type --
477 -----------------------
479 procedure Check_Static_Type
480 (T
: Entity_Id
; N
: Node_Id
; DT
: in out Boolean)
482 procedure Note_Uplevel_Bound
(N
: Node_Id
; Ref
: Node_Id
);
483 -- N is the bound of a dynamic type. This procedure notes that
484 -- this bound is uplevel referenced, it can handle references
485 -- to entities (typically _FIRST and _LAST entities), and also
486 -- attribute references of the form T'name (name is typically
487 -- FIRST or LAST) where T is the uplevel referenced bound.
488 -- Ref, if Present, is the location of the reference to
491 ------------------------
492 -- Note_Uplevel_Bound --
493 ------------------------
495 procedure Note_Uplevel_Bound
(N
: Node_Id
; Ref
: Node_Id
) is
497 -- Entity name case. Make sure that the entity is declared
498 -- in a subprogram. This may not be the case for for a type
499 -- in a loop appearing in a precondition.
500 -- Exclude explicitly discriminants (that can appear
501 -- in bounds of discriminated components).
503 if Is_Entity_Name
(N
) then
504 if Present
(Entity
(N
))
505 and then not Is_Type
(Entity
(N
))
506 and then Present
(Enclosing_Subprogram
(Entity
(N
)))
507 and then Ekind
(Entity
(N
)) /= E_Discriminant
512 Caller
=> Current_Subprogram
,
513 Callee
=> Enclosing_Subprogram
(Entity
(N
)));
516 -- Attribute or indexed component case
518 elsif Nkind_In
(N
, N_Attribute_Reference
,
521 Note_Uplevel_Bound
(Prefix
(N
), Ref
);
523 -- The indices of the indexed components, or the
524 -- associated expressions of an attribute reference,
525 -- may also involve uplevel references.
531 Expr
:= First
(Expressions
(N
));
532 while Present
(Expr
) loop
533 Note_Uplevel_Bound
(Expr
, Ref
);
538 -- Binary operator cases. These can apply to arrays for
539 -- which we may need bounds.
541 elsif Nkind
(N
) in N_Binary_Op
then
542 Note_Uplevel_Bound
(Left_Opnd
(N
), Ref
);
543 Note_Uplevel_Bound
(Right_Opnd
(N
), Ref
);
545 -- Unary operator case
547 elsif Nkind
(N
) in N_Unary_Op
then
548 Note_Uplevel_Bound
(Right_Opnd
(N
), Ref
);
550 -- Explicit dereference and selected component case
552 elsif Nkind_In
(N
, N_Explicit_Dereference
,
553 N_Selected_Component
)
555 Note_Uplevel_Bound
(Prefix
(N
), Ref
);
559 elsif Nkind
(N
) = N_Type_Conversion
then
560 Note_Uplevel_Bound
(Expression
(N
), Ref
);
562 end Note_Uplevel_Bound
;
564 -- Start of processing for Check_Static_Type
567 -- If already marked static, immediate return
569 if Is_Static_Type
(T
) then
573 -- If the type is at library level, always consider it static,
574 -- since such uplevel references are irrelevant.
576 if Is_Library_Level_Entity
(T
) then
577 Set_Is_Static_Type
(T
);
581 -- Otherwise figure out what the story is with this type
583 -- For a scalar type, check bounds
585 if Is_Scalar_Type
(T
) then
587 -- If both bounds static, then this is a static type
590 LB
: constant Node_Id
:= Type_Low_Bound
(T
);
591 UB
: constant Node_Id
:= Type_High_Bound
(T
);
594 if not Is_Static_Expression
(LB
) then
595 Note_Uplevel_Bound
(LB
, N
);
599 if not Is_Static_Expression
(UB
) then
600 Note_Uplevel_Bound
(UB
, N
);
605 -- For record type, check all components and discriminant
606 -- constraints if present.
608 elsif Is_Record_Type
(T
) then
614 C
:= First_Component_Or_Discriminant
(T
);
615 while Present
(C
) loop
616 Check_Static_Type
(Etype
(C
), N
, DT
);
617 Next_Component_Or_Discriminant
(C
);
620 if Has_Discriminants
(T
)
621 and then Present
(Discriminant_Constraint
(T
))
623 D
:= First_Elmt
(Discriminant_Constraint
(T
));
624 while Present
(D
) loop
625 if not Is_Static_Expression
(Node
(D
)) then
626 Note_Uplevel_Bound
(Node
(D
), N
);
635 -- For array type, check index types and component type
637 elsif Is_Array_Type
(T
) then
641 Check_Static_Type
(Component_Type
(T
), N
, DT
);
643 IX
:= First_Index
(T
);
644 while Present
(IX
) loop
645 Check_Static_Type
(Etype
(IX
), N
, DT
);
650 -- For private type, examine whether full view is static
652 elsif Is_Private_Type
(T
) and then Present
(Full_View
(T
)) then
653 Check_Static_Type
(Full_View
(T
), N
, DT
);
655 if Is_Static_Type
(Full_View
(T
)) then
656 Set_Is_Static_Type
(T
);
659 -- For now, ignore other types
666 Set_Is_Static_Type
(T
);
668 end Check_Static_Type
;
670 ----------------------
671 -- Note_Uplevel_Ref --
672 ----------------------
674 procedure Note_Uplevel_Ref
680 Full_E
: Entity_Id
:= E
;
682 -- Nothing to do for static type
684 if Is_Static_Type
(E
) then
688 -- Nothing to do if Caller and Callee are the same
690 if Caller
= Callee
then
693 -- Callee may be a function that returns an array, and that has
694 -- been rewritten as a procedure. If caller is that procedure,
695 -- nothing to do either.
697 elsif Ekind
(Callee
) = E_Function
698 and then Rewritten_For_C
(Callee
)
699 and then Corresponding_Procedure
(Callee
) = Caller
704 -- We have a new uplevel referenced entity
706 if Ekind
(E
) = E_Constant
and then Present
(Full_View
(E
)) then
707 Full_E
:= Full_View
(E
);
710 -- All we do at this stage is to add the uplevel reference to
711 -- the table. It's too early to do anything else, since this
712 -- uplevel reference may come from an unreachable subprogram
713 -- in which case the entry will be deleted.
715 Urefs
.Append
((N
, Full_E
, Caller
, Callee
));
716 end Note_Uplevel_Ref
;
718 -------------------------
719 -- Register_Subprogram --
720 -------------------------
722 procedure Register_Subprogram
(E
: Entity_Id
; Bod
: Node_Id
) is
723 L
: constant Nat
:= Get_Level
(Subp
, E
);
726 -- Subprograms declared in tasks and protected types cannot
727 -- be eliminated because calls to them may be in other units,
728 -- so they must be treated as reachable.
734 Reachable
=> In_Synchronized_Unit
(E
),
736 -- Subprograms declared in tasks and protected types are
737 -- reachable and cannot be eliminated.
740 Declares_AREC
=> False,
750 Set_Subps_Index
(E
, UI_From_Int
(Subps
.Last
));
751 end Register_Subprogram
;
753 -- Start of processing for Visit_Node
758 -- Record a subprogram call
761 | N_Procedure_Call_Statement
763 -- We are only interested in direct calls, not indirect
764 -- calls (where Name (N) is an explicit dereference) at
767 if Nkind
(Name
(N
)) in N_Has_Entity
then
768 Ent
:= Entity
(Name
(N
));
770 -- We are only interested in calls to subprograms nested
771 -- within Subp. Calls to Subp itself or to subprograms
772 -- outside the nested structure do not affect us.
774 if Scope_Within
(Ent
, Subp
)
775 and then Is_Subprogram
(Ent
)
776 and then not Is_Imported
(Ent
)
778 Append_Unique_Call
((N
, Current_Subprogram
, Ent
));
782 -- For all calls where the formal is an unconstrained array
783 -- and the actual is constrained we need to check the bounds
784 -- for uplevel references.
788 DT
: Boolean := False;
793 if Nkind
(Name
(N
)) = N_Explicit_Dereference
then
794 Subp
:= Etype
(Name
(N
));
796 Subp
:= Entity
(Name
(N
));
799 Actual
:= First_Actual
(N
);
800 Formal
:= First_Formal_With_Extras
(Subp
);
801 while Present
(Actual
) loop
802 if Is_Array_Type
(Etype
(Formal
))
803 and then not Is_Constrained
(Etype
(Formal
))
804 and then Is_Constrained
(Etype
(Actual
))
806 Check_Static_Type
(Etype
(Actual
), Empty
, DT
);
809 Next_Actual
(Actual
);
810 Next_Formal_With_Extras
(Formal
);
814 -- An At_End_Proc in a statement sequence indicates that there
815 -- is a call from the enclosing construct or block to that
816 -- subprogram. As above, the called entity must be local and
819 when N_Handled_Sequence_Of_Statements
=>
820 if Present
(At_End_Proc
(N
))
821 and then Scope_Within
(Entity
(At_End_Proc
(N
)), Subp
)
822 and then not Is_Imported
(Entity
(At_End_Proc
(N
)))
825 ((N
, Current_Subprogram
, Entity
(At_End_Proc
(N
))));
828 -- Similarly, the following constructs include a semantic
829 -- attribute Procedure_To_Call that must be handled like
830 -- other calls. Likewise for attribute Storage_Pool.
833 | N_Extended_Return_Statement
835 | N_Simple_Return_Statement
838 Pool
: constant Entity_Id
:= Storage_Pool
(N
);
839 Proc
: constant Entity_Id
:= Procedure_To_Call
(N
);
843 and then Scope_Within
(Proc
, Subp
)
844 and then not Is_Imported
(Proc
)
846 Append_Unique_Call
((N
, Current_Subprogram
, Proc
));
850 and then not Is_Library_Level_Entity
(Pool
)
851 and then Scope_Within_Or_Same
(Scope
(Pool
), Subp
)
853 Caller
:= Current_Subprogram
;
854 Callee
:= Enclosing_Subprogram
(Pool
);
856 if Callee
/= Caller
then
857 Note_Uplevel_Ref
(Pool
, Empty
, Caller
, Callee
);
862 -- For an allocator with a qualified expression, check type
863 -- of expression being qualified. The explicit type name is
864 -- handled as an entity reference.
866 if Nkind
(N
) = N_Allocator
867 and then Nkind
(Expression
(N
)) = N_Qualified_Expression
870 DT
: Boolean := False;
873 (Etype
(Expression
(Expression
(N
))), Empty
, DT
);
876 -- For a Return or Free (all other nodes we handle here),
877 -- we usually need the size of the object, so we need to be
878 -- sure that any nonstatic bounds of the expression's type
879 -- that are uplevel are handled.
881 elsif Nkind
(N
) /= N_Allocator
882 and then Present
(Expression
(N
))
885 DT
: Boolean := False;
887 Check_Static_Type
(Etype
(Expression
(N
)), Empty
, DT
);
891 -- A 'Access reference is a (potential) call. So is 'Address,
892 -- in particular on imported subprograms. Other attributes
893 -- require special handling.
895 when N_Attribute_Reference
=>
897 Attr
: constant Attribute_Id
:=
898 Get_Attribute_Id
(Attribute_Name
(N
));
901 when Attribute_Access
902 | Attribute_Unchecked_Access
903 | Attribute_Unrestricted_Access
906 if Nkind
(Prefix
(N
)) in N_Has_Entity
then
907 Ent
:= Entity
(Prefix
(N
));
909 -- We only need to examine calls to subprograms
910 -- nested within current Subp.
912 if Scope_Within
(Ent
, Subp
) then
913 if Is_Imported
(Ent
) then
916 elsif Is_Subprogram
(Ent
) then
918 ((N
, Current_Subprogram
, Ent
));
923 -- References to bounds can be uplevel references if
924 -- the type isn't static.
930 -- Special-case attributes of objects whose bounds
931 -- may be uplevel references. More complex prefixes
932 -- handled during full traversal. Note that if the
933 -- nominal subtype of the prefix is unconstrained,
934 -- the bound must be obtained from the object, not
935 -- from the (possibly) uplevel reference.
937 if Is_Constrained
(Etype
(Prefix
(N
))) then
939 DT
: Boolean := False;
942 (Etype
(Prefix
(N
)), Empty
, DT
);
953 -- Component associations in aggregates are either static or
954 -- else the aggregate will be expanded into assignments, in
955 -- which case the expression is analyzed later and provides
956 -- no relevant code generation.
958 when N_Component_Association
=>
959 if No
(Expression
(N
))
960 or else No
(Etype
(Expression
(N
)))
965 -- Generic associations are not analyzed: the actuals are
966 -- transferred to renaming and subtype declarations that
967 -- are the ones that must be examined.
969 when N_Generic_Association
=>
972 -- Indexed references can be uplevel if the type isn't static
973 -- and if the lower bound (or an inner bound for a multi-
974 -- dimensional array) is uplevel.
976 when N_Indexed_Component
979 if Is_Constrained
(Etype
(Prefix
(N
))) then
981 DT
: Boolean := False;
983 Check_Static_Type
(Etype
(Prefix
(N
)), Empty
, DT
);
987 -- A selected component can have an implicit up-level
988 -- reference due to the bounds of previous fields in the
989 -- record. We simplify the processing here by examining
990 -- all components of the record.
992 -- Selected components appear as unit names and end labels
993 -- for child units. Prefixes of these nodes denote parent
994 -- units and carry no type information so they are skipped.
996 when N_Selected_Component
=>
997 if Present
(Etype
(Prefix
(N
))) then
999 DT
: Boolean := False;
1001 Check_Static_Type
(Etype
(Prefix
(N
)), Empty
, DT
);
1005 -- For EQ/NE comparisons, we need the type of the operands
1006 -- in order to do the comparison, which means we need the
1013 DT
: Boolean := False;
1015 Check_Static_Type
(Etype
(Left_Opnd
(N
)), Empty
, DT
);
1016 Check_Static_Type
(Etype
(Right_Opnd
(N
)), Empty
, DT
);
1019 -- Likewise we need the sizes to compute how much to move in
1022 when N_Assignment_Statement
=>
1024 DT
: Boolean := False;
1026 Check_Static_Type
(Etype
(Name
(N
)), Empty
, DT
);
1027 Check_Static_Type
(Etype
(Expression
(N
)), Empty
, DT
);
1030 -- Record a subprogram. We record a subprogram body that acts
1031 -- as a spec. Otherwise we record a subprogram declaration,
1032 -- providing that it has a corresponding body we can get hold
1033 -- of. The case of no corresponding body being available is
1036 when N_Subprogram_Body
=>
1037 Ent
:= Unique_Defining_Entity
(N
);
1039 -- Ignore generic subprogram
1041 if Is_Generic_Subprogram
(Ent
) then
1045 -- Make new entry in subprogram table if not already made
1047 Register_Subprogram
(Ent
, N
);
1049 -- We make a recursive call to scan the subprogram body, so
1050 -- that we can save and restore Current_Subprogram.
1053 Save_CS
: constant Entity_Id
:= Current_Subprogram
;
1057 Current_Subprogram
:= Ent
;
1059 -- Scan declarations
1061 Decl
:= First
(Declarations
(N
));
1062 while Present
(Decl
) loop
1069 Visit
(Handled_Statement_Sequence
(N
));
1071 -- Restore current subprogram setting
1073 Current_Subprogram
:= Save_CS
;
1076 -- Now at this level, return skipping the subprogram body
1077 -- descendants, since we already took care of them!
1081 -- If we have a body stub, visit the associated subunit, which
1082 -- is a semantic descendant of the stub.
1085 Visit
(Library_Unit
(N
));
1087 -- A declaration of a wrapper package indicates a subprogram
1088 -- instance for which there is no explicit body. Enter the
1089 -- subprogram instance in the table.
1091 when N_Package_Declaration
=>
1092 if Is_Wrapper_Package
(Defining_Entity
(N
)) then
1094 (Related_Instance
(Defining_Entity
(N
)), Empty
);
1097 -- Skip generic declarations
1099 when N_Generic_Declaration
=>
1102 -- Skip generic package body
1104 when N_Package_Body
=>
1105 if Present
(Corresponding_Spec
(N
))
1106 and then Ekind
(Corresponding_Spec
(N
)) = E_Generic_Package
1111 -- Pragmas and component declarations can be ignored
1113 when N_Component_Declaration
1118 -- Otherwise record an uplevel reference in a local identifier
1121 if Nkind
(N
) in N_Has_Entity
1122 and then Present
(Entity
(N
))
1126 -- Only interested in entities declared within our nest
1128 if not Is_Library_Level_Entity
(Ent
)
1129 and then Scope_Within_Or_Same
(Scope
(Ent
), Subp
)
1131 -- Skip entities defined in inlined subprograms
1134 Chars
(Enclosing_Subprogram
(Ent
)) /= Name_uParent
1136 -- Constants and variables are potentially uplevel
1137 -- references to global declarations.
1140 (Ekind_In
(Ent
, E_Constant
,
1144 -- Formals are interesting, but not if being used
1145 -- as mere names of parameters for name notation
1151 (Nkind
(Parent
(N
)) = N_Parameter_Association
1152 and then Selector_Name
(Parent
(N
)) = N
))
1154 -- Types other than known Is_Static types are
1155 -- potentially interesting.
1158 (Is_Type
(Ent
) and then not Is_Static_Type
(Ent
)))
1160 -- Here we have a potentially interesting uplevel
1161 -- reference to examine.
1163 if Is_Type
(Ent
) then
1165 DT
: Boolean := False;
1168 Check_Static_Type
(Ent
, N
, DT
);
1173 Caller
:= Current_Subprogram
;
1174 Callee
:= Enclosing_Subprogram
(Ent
);
1177 and then (not Is_Static_Type
(Ent
)
1178 or else Needs_Fat_Pointer
(Ent
))
1180 Note_Uplevel_Ref
(Ent
, N
, Caller
, Callee
);
1182 -- Check the type of a formal parameter of the current
1183 -- subprogram, whose formal type may be an uplevel
1186 elsif Is_Formal
(Ent
)
1187 and then Scope
(Ent
) = Current_Subprogram
1190 DT
: Boolean := False;
1193 Check_Static_Type
(Etype
(Ent
), Empty
, DT
);
1200 -- Fall through to continue scanning children of this node
1205 -- Start of processing for Build_Tables
1208 -- Traverse the body to get subprograms, calls and uplevel references
1213 -- Now do the first transitive closure which determines which
1214 -- subprograms in the nest are actually reachable.
1216 Reachable_Closure
: declare
1220 Subps
.Table
(Subps_First
).Reachable
:= True;
1222 -- We use a simple minded algorithm as follows (obviously this can
1223 -- be done more efficiently, using one of the standard algorithms
1224 -- for efficient transitive closure computation, but this is simple
1225 -- and most likely fast enough that its speed does not matter).
1227 -- Repeatedly scan the list of calls. Any time we find a call from
1228 -- A to B, where A is reachable, but B is not, then B is reachable,
1229 -- and note that we have made a change by setting Modified True. We
1230 -- repeat this until we make a pass with no modifications.
1234 Inner
: for J
in Calls
.First
.. Calls
.Last
loop
1236 CTJ
: Call_Entry
renames Calls
.Table
(J
);
1238 SINF
: constant SI_Type
:= Subp_Index
(CTJ
.Caller
);
1239 SINT
: constant SI_Type
:= Subp_Index
(CTJ
.Callee
);
1241 SUBF
: Subp_Entry
renames Subps
.Table
(SINF
);
1242 SUBT
: Subp_Entry
renames Subps
.Table
(SINT
);
1245 if SUBF
.Reachable
and then not SUBT
.Reachable
then
1246 SUBT
.Reachable
:= True;
1252 exit Outer
when not Modified
;
1254 end Reachable_Closure
;
1256 -- Remove calls from unreachable subprograms
1263 for J
in Calls
.First
.. Calls
.Last
loop
1265 CTJ
: Call_Entry
renames Calls
.Table
(J
);
1267 SINF
: constant SI_Type
:= Subp_Index
(CTJ
.Caller
);
1268 SINT
: constant SI_Type
:= Subp_Index
(CTJ
.Callee
);
1270 SUBF
: Subp_Entry
renames Subps
.Table
(SINF
);
1271 SUBT
: Subp_Entry
renames Subps
.Table
(SINT
);
1274 if SUBF
.Reachable
then
1275 pragma Assert
(SUBT
.Reachable
);
1276 New_Index
:= New_Index
+ 1;
1277 Calls
.Table
(New_Index
) := Calls
.Table
(J
);
1282 Calls
.Set_Last
(New_Index
);
1285 -- Remove uplevel references from unreachable subprograms
1292 for J
in Urefs
.First
.. Urefs
.Last
loop
1294 URJ
: Uref_Entry
renames Urefs
.Table
(J
);
1296 SINF
: constant SI_Type
:= Subp_Index
(URJ
.Caller
);
1297 SINT
: constant SI_Type
:= Subp_Index
(URJ
.Callee
);
1299 SUBF
: Subp_Entry
renames Subps
.Table
(SINF
);
1300 SUBT
: Subp_Entry
renames Subps
.Table
(SINT
);
1305 -- Keep reachable reference
1307 if SUBF
.Reachable
then
1308 New_Index
:= New_Index
+ 1;
1309 Urefs
.Table
(New_Index
) := Urefs
.Table
(J
);
1311 -- And since we know we are keeping this one, this is a good
1312 -- place to fill in information for a good reference.
1314 -- Mark all enclosing subprograms need to declare AREC
1318 S
:= Enclosing_Subprogram
(S
);
1320 -- If we are at the top level, as can happen with
1321 -- references to formals in aspects of nested subprogram
1322 -- declarations, there are no further subprograms to mark
1323 -- as requiring activation records.
1328 SUBI
: Subp_Entry
renames Subps
.Table
(Subp_Index
(S
));
1330 SUBI
.Declares_AREC
:= True;
1332 -- If this entity was marked reachable because it is
1333 -- in a task or protected type, there may not appear
1334 -- to be any calls to it, which would normally adjust
1335 -- the levels of the parent subprograms. So we need to
1336 -- be sure that the uplevel reference of that entity
1337 -- takes into account possible calls.
1339 if In_Synchronized_Unit
(SUBF
.Ent
)
1340 and then SUBT
.Lev
< SUBI
.Uplevel_Ref
1342 SUBI
.Uplevel_Ref
:= SUBT
.Lev
;
1346 exit when S
= URJ
.Callee
;
1349 -- Add to list of uplevel referenced entities for Callee.
1350 -- We do not add types to this list, only actual references
1351 -- to objects that will be referenced uplevel, and we use
1352 -- the flag Is_Uplevel_Referenced_Entity to avoid making
1353 -- duplicate entries in the list.
1354 -- Discriminants are also excluded, only the enclosing
1355 -- object can appear in the list.
1357 if not Is_Uplevel_Referenced_Entity
(URJ
.Ent
)
1358 and then Ekind
(URJ
.Ent
) /= E_Discriminant
1360 Set_Is_Uplevel_Referenced_Entity
(URJ
.Ent
);
1361 Append_New_Elmt
(URJ
.Ent
, SUBT
.Uents
);
1364 -- And set uplevel indication for caller
1366 if SUBT
.Lev
< SUBF
.Uplevel_Ref
then
1367 SUBF
.Uplevel_Ref
:= SUBT
.Lev
;
1373 Urefs
.Set_Last
(New_Index
);
1376 -- Remove unreachable subprograms from Subps table. Note that we do
1377 -- this after eliminating entries from the other two tables, since
1378 -- those elimination steps depend on referencing the Subps table.
1384 New_SI
:= Subps_First
- 1;
1385 for J
in Subps_First
.. Subps
.Last
loop
1387 STJ
: Subp_Entry
renames Subps
.Table
(J
);
1392 -- Subprogram is reachable, copy and reset index
1394 if STJ
.Reachable
then
1395 New_SI
:= New_SI
+ 1;
1396 Subps
.Table
(New_SI
) := STJ
;
1397 Set_Subps_Index
(STJ
.Ent
, UI_From_Int
(New_SI
));
1399 -- Subprogram is not reachable
1402 -- Clear index, since no longer active
1404 Set_Subps_Index
(Subps
.Table
(J
).Ent
, Uint_0
);
1406 -- Output debug information if -gnatd.3 set
1408 if Debug_Flag_Dot_3
then
1409 Write_Str
("Eliminate ");
1410 Write_Name
(Chars
(Subps
.Table
(J
).Ent
));
1412 Write_Location
(Sloc
(Subps
.Table
(J
).Ent
));
1413 Write_Str
(" (not referenced)");
1417 -- Rewrite declaration, body, and corresponding freeze node
1418 -- to null statements.
1420 -- A subprogram instantiation does not have an explicit
1421 -- body. If unused, we could remove the corresponding
1422 -- wrapper package and its body (TBD).
1424 if Present
(STJ
.Bod
) then
1425 Spec
:= Corresponding_Spec
(STJ
.Bod
);
1427 if Present
(Spec
) then
1428 Decl
:= Parent
(Declaration_Node
(Spec
));
1429 Rewrite
(Decl
, Make_Null_Statement
(Sloc
(Decl
)));
1431 if Present
(Freeze_Node
(Spec
)) then
1432 Rewrite
(Freeze_Node
(Spec
),
1433 Make_Null_Statement
(Sloc
(Decl
)));
1437 Rewrite
(STJ
.Bod
, Make_Null_Statement
(Sloc
(STJ
.Bod
)));
1443 Subps
.Set_Last
(New_SI
);
1446 -- Now it is time for the second transitive closure, which follows calls
1447 -- and makes sure that A calls B, and B has uplevel references, then A
1448 -- is also marked as having uplevel references.
1450 Closure_Uplevel
: declare
1454 -- We use a simple minded algorithm as follows (obviously this can
1455 -- be done more efficiently, using one of the standard algorithms
1456 -- for efficient transitive closure computation, but this is simple
1457 -- and most likely fast enough that its speed does not matter).
1459 -- Repeatedly scan the list of calls. Any time we find a call from
1460 -- A to B, where B has uplevel references, make sure that A is marked
1461 -- as having at least the same level of uplevel referencing.
1465 Inner2
: for J
in Calls
.First
.. Calls
.Last
loop
1467 CTJ
: Call_Entry
renames Calls
.Table
(J
);
1468 SINF
: constant SI_Type
:= Subp_Index
(CTJ
.Caller
);
1469 SINT
: constant SI_Type
:= Subp_Index
(CTJ
.Callee
);
1470 SUBF
: Subp_Entry
renames Subps
.Table
(SINF
);
1471 SUBT
: Subp_Entry
renames Subps
.Table
(SINT
);
1473 if SUBT
.Lev
> SUBT
.Uplevel_Ref
1474 and then SUBF
.Uplevel_Ref
> SUBT
.Uplevel_Ref
1476 SUBF
.Uplevel_Ref
:= SUBT
.Uplevel_Ref
;
1482 exit Outer2
when not Modified
;
1484 end Closure_Uplevel
;
1486 -- We have one more step before the tables are complete. An uplevel
1487 -- call from subprogram A to subprogram B where subprogram B has uplevel
1488 -- references is in effect an uplevel reference, and must arrange for
1489 -- the proper activation link to be passed.
1491 for J
in Calls
.First
.. Calls
.Last
loop
1493 CTJ
: Call_Entry
renames Calls
.Table
(J
);
1495 SINF
: constant SI_Type
:= Subp_Index
(CTJ
.Caller
);
1496 SINT
: constant SI_Type
:= Subp_Index
(CTJ
.Callee
);
1498 SUBF
: Subp_Entry
renames Subps
.Table
(SINF
);
1499 SUBT
: Subp_Entry
renames Subps
.Table
(SINT
);
1504 -- If callee has uplevel references
1506 if SUBT
.Uplevel_Ref
< SUBT
.Lev
1508 -- And this is an uplevel call
1510 and then SUBT
.Lev
< SUBF
.Lev
1512 -- We need to arrange for finding the uplink
1516 A
:= Enclosing_Subprogram
(A
);
1517 Subps
.Table
(Subp_Index
(A
)).Declares_AREC
:= True;
1518 exit when A
= CTJ
.Callee
;
1520 -- In any case exit when we get to the outer level. This
1521 -- happens in some odd cases with generics (in particular
1522 -- sem_ch3.adb does not compile without this kludge ???).
1530 -- The tables are now complete, so we can record the last index in the
1531 -- Subps table for later reference in Cprint.
1533 Subps
.Table
(Subps_First
).Last
:= Subps
.Last
;
1535 -- Next step, create the entities for code we will insert. We do this
1536 -- at the start so that all the entities are defined, regardless of the
1537 -- order in which we do the code insertions.
1539 Create_Entities
: for J
in Subps_First
.. Subps
.Last
loop
1541 STJ
: Subp_Entry
renames Subps
.Table
(J
);
1542 Loc
: constant Source_Ptr
:= Sloc
(STJ
.Bod
);
1545 -- First we create the ARECnF entity for the additional formal for
1546 -- all subprograms which need an activation record passed.
1548 if STJ
.Uplevel_Ref
< STJ
.Lev
then
1550 Make_Defining_Identifier
(Loc
, Chars
=> AREC_Name
(J
, "F"));
1553 -- Define the AREC entities for the activation record if needed
1555 if STJ
.Declares_AREC
then
1557 Make_Defining_Identifier
(Loc
, AREC_Name
(J
, ""));
1559 Make_Defining_Identifier
(Loc
, AREC_Name
(J
, "T"));
1561 Make_Defining_Identifier
(Loc
, AREC_Name
(J
, "PT"));
1563 Make_Defining_Identifier
(Loc
, AREC_Name
(J
, "P"));
1565 -- Define uplink component entity if inner nesting case
1567 if Present
(STJ
.ARECnF
) then
1569 Make_Defining_Identifier
(Loc
, AREC_Name
(J
, "U"));
1573 end loop Create_Entities
;
1575 -- Loop through subprograms
1578 Addr
: constant Entity_Id
:= RTE
(RE_Address
);
1581 for J
in Subps_First
.. Subps
.Last
loop
1583 STJ
: Subp_Entry
renames Subps
.Table
(J
);
1586 -- First add the extra formal if needed. This applies to all
1587 -- nested subprograms that require an activation record to be
1588 -- passed, as indicated by ARECnF being defined.
1590 if Present
(STJ
.ARECnF
) then
1592 -- Here we need the extra formal. We do the expansion and
1593 -- analysis of this manually, since it is fairly simple,
1594 -- and it is not obvious how we can get what we want if we
1595 -- try to use the normal Analyze circuit.
1597 Add_Extra_Formal
: declare
1598 Encl
: constant SI_Type
:= Enclosing_Subp
(J
);
1599 STJE
: Subp_Entry
renames Subps
.Table
(Encl
);
1600 -- Index and Subp_Entry for enclosing routine
1602 Form
: constant Entity_Id
:= STJ
.ARECnF
;
1603 -- The formal to be added. Note that n here is one less
1604 -- than the level of the subprogram itself (STJ.Ent).
1606 procedure Add_Form_To_Spec
(F
: Entity_Id
; S
: Node_Id
);
1607 -- S is an N_Function/Procedure_Specification node, and F
1608 -- is the new entity to add to this subprogramn spec as
1609 -- the last Extra_Formal.
1611 ----------------------
1612 -- Add_Form_To_Spec --
1613 ----------------------
1615 procedure Add_Form_To_Spec
(F
: Entity_Id
; S
: Node_Id
) is
1616 Sub
: constant Entity_Id
:= Defining_Entity
(S
);
1620 -- Case of at least one Extra_Formal is present, set
1621 -- ARECnF as the new last entry in the list.
1623 if Present
(Extra_Formals
(Sub
)) then
1624 Ent
:= Extra_Formals
(Sub
);
1625 while Present
(Extra_Formal
(Ent
)) loop
1626 Ent
:= Extra_Formal
(Ent
);
1629 Set_Extra_Formal
(Ent
, F
);
1631 -- No Extra formals present
1634 Set_Extra_Formals
(Sub
, F
);
1635 Ent
:= Last_Formal
(Sub
);
1637 if Present
(Ent
) then
1638 Set_Extra_Formal
(Ent
, F
);
1641 end Add_Form_To_Spec
;
1643 -- Start of processing for Add_Extra_Formal
1646 -- Decorate the new formal entity
1648 Set_Scope
(Form
, STJ
.Ent
);
1649 Set_Ekind
(Form
, E_In_Parameter
);
1650 Set_Etype
(Form
, STJE
.ARECnPT
);
1651 Set_Mechanism
(Form
, By_Copy
);
1652 Set_Never_Set_In_Source
(Form
, True);
1653 Set_Analyzed
(Form
, True);
1654 Set_Comes_From_Source
(Form
, False);
1655 Set_Is_Activation_Record
(Form
, True);
1657 -- Case of only body present
1659 if Acts_As_Spec
(STJ
.Bod
) then
1660 Add_Form_To_Spec
(Form
, Specification
(STJ
.Bod
));
1662 -- Case of separate spec
1665 Add_Form_To_Spec
(Form
, Parent
(STJ
.Ent
));
1667 end Add_Extra_Formal
;
1670 -- Processing for subprograms that declare an activation record
1672 if Present
(STJ
.ARECn
) then
1674 -- Local declarations for one such subprogram
1677 Loc
: constant Source_Ptr
:= Sloc
(STJ
.Bod
);
1679 Decls
: constant List_Id
:= New_List
;
1680 -- List of new declarations we create
1685 Decl_Assign
: Node_Id
;
1686 -- Assigment to set uplink, Empty if none
1688 Decl_ARECnT
: Node_Id
;
1689 Decl_ARECnPT
: Node_Id
;
1690 Decl_ARECn
: Node_Id
;
1691 Decl_ARECnP
: Node_Id
;
1692 -- Declaration nodes for the AREC entities we build
1695 -- Build list of component declarations for ARECnT
1697 Clist
:= Empty_List
;
1699 -- If we are in a subprogram that has a static link that
1700 -- is passed in (as indicated by ARECnF being defined),
1701 -- then include ARECnU : ARECmPT where ARECmPT comes from
1702 -- the level one higher than the current level, and the
1703 -- entity ARECnPT comes from the enclosing subprogram.
1705 if Present
(STJ
.ARECnF
) then
1708 renames Subps
.Table
(Enclosing_Subp
(J
));
1711 Make_Component_Declaration
(Loc
,
1712 Defining_Identifier
=> STJ
.ARECnU
,
1713 Component_Definition
=>
1714 Make_Component_Definition
(Loc
,
1715 Subtype_Indication
=>
1716 New_Occurrence_Of
(STJE
.ARECnPT
, Loc
))));
1720 -- Add components for uplevel referenced entities
1722 if Present
(STJ
.Uents
) then
1729 -- 1's origin of index in list of elements. This is
1730 -- used to uniquify names if needed in Upref_Name.
1733 Elmt
:= First_Elmt
(STJ
.Uents
);
1735 while Present
(Elmt
) loop
1736 Uent
:= Node
(Elmt
);
1740 Make_Defining_Identifier
(Loc
,
1741 Chars
=> Upref_Name
(Uent
, Indx
, Clist
));
1743 Set_Activation_Record_Component
1746 if Needs_Fat_Pointer
(Uent
) then
1748 -- Build corresponding access type
1751 Build_Access_Type_Decl
1752 (Etype
(Uent
), STJ
.Ent
);
1753 Append_To
(Decls
, Ptr_Decl
);
1755 -- And use its type in the corresponding
1759 Make_Component_Declaration
(Loc
,
1760 Defining_Identifier
=> Comp
,
1761 Component_Definition
=>
1762 Make_Component_Definition
(Loc
,
1763 Subtype_Indication
=>
1765 (Defining_Identifier
(Ptr_Decl
),
1769 Make_Component_Declaration
(Loc
,
1770 Defining_Identifier
=> Comp
,
1771 Component_Definition
=>
1772 Make_Component_Definition
(Loc
,
1773 Subtype_Indication
=>
1774 New_Occurrence_Of
(Addr
, Loc
))));
1781 -- Now we can insert the AREC declarations into the body
1782 -- type ARECnT is record .. end record;
1783 -- pragma Suppress_Initialization (ARECnT);
1785 -- Note that we need to set the Suppress_Initialization
1786 -- flag after Decl_ARECnT has been analyzed.
1789 Make_Full_Type_Declaration
(Loc
,
1790 Defining_Identifier
=> STJ
.ARECnT
,
1792 Make_Record_Definition
(Loc
,
1794 Make_Component_List
(Loc
,
1795 Component_Items
=> Clist
)));
1796 Append_To
(Decls
, Decl_ARECnT
);
1798 -- type ARECnPT is access all ARECnT;
1801 Make_Full_Type_Declaration
(Loc
,
1802 Defining_Identifier
=> STJ
.ARECnPT
,
1804 Make_Access_To_Object_Definition
(Loc
,
1805 All_Present
=> True,
1806 Subtype_Indication
=>
1807 New_Occurrence_Of
(STJ
.ARECnT
, Loc
)));
1808 Append_To
(Decls
, Decl_ARECnPT
);
1810 -- ARECn : aliased ARECnT;
1813 Make_Object_Declaration
(Loc
,
1814 Defining_Identifier
=> STJ
.ARECn
,
1815 Aliased_Present
=> True,
1816 Object_Definition
=>
1817 New_Occurrence_Of
(STJ
.ARECnT
, Loc
));
1818 Append_To
(Decls
, Decl_ARECn
);
1820 -- ARECnP : constant ARECnPT := ARECn'Access;
1823 Make_Object_Declaration
(Loc
,
1824 Defining_Identifier
=> STJ
.ARECnP
,
1825 Constant_Present
=> True,
1826 Object_Definition
=>
1827 New_Occurrence_Of
(STJ
.ARECnPT
, Loc
),
1829 Make_Attribute_Reference
(Loc
,
1831 New_Occurrence_Of
(STJ
.ARECn
, Loc
),
1832 Attribute_Name
=> Name_Access
));
1833 Append_To
(Decls
, Decl_ARECnP
);
1835 -- If we are in a subprogram that has a static link that
1836 -- is passed in (as indicated by ARECnF being defined),
1837 -- then generate ARECn.ARECmU := ARECmF where m is
1838 -- one less than the current level to set the uplink.
1840 if Present
(STJ
.ARECnF
) then
1842 Make_Assignment_Statement
(Loc
,
1844 Make_Selected_Component
(Loc
,
1846 New_Occurrence_Of
(STJ
.ARECn
, Loc
),
1848 New_Occurrence_Of
(STJ
.ARECnU
, Loc
)),
1850 New_Occurrence_Of
(STJ
.ARECnF
, Loc
));
1851 Append_To
(Decls
, Decl_Assign
);
1854 Decl_Assign
:= Empty
;
1857 if No
(Declarations
(STJ
.Bod
)) then
1858 Set_Declarations
(STJ
.Bod
, Decls
);
1860 Prepend_List_To
(Declarations
(STJ
.Bod
), Decls
);
1863 -- Analyze the newly inserted declarations. Note that we
1864 -- do not need to establish the whole scope stack, since
1865 -- we have already set all entity fields (so there will
1866 -- be no searching of upper scopes to resolve names). But
1867 -- we do set the scope of the current subprogram, so that
1868 -- newly created entities go in the right entity chain.
1870 -- We analyze with all checks suppressed (since we do
1871 -- not expect any exceptions).
1873 Push_Scope
(STJ
.Ent
);
1874 Analyze
(Decl_ARECnT
, Suppress
=> All_Checks
);
1876 -- Note that we need to call Set_Suppress_Initialization
1877 -- after Decl_ARECnT has been analyzed, but before
1878 -- analyzing Decl_ARECnP so that the flag is properly
1879 -- taking into account.
1881 Set_Suppress_Initialization
(STJ
.ARECnT
);
1883 Analyze
(Decl_ARECnPT
, Suppress
=> All_Checks
);
1884 Analyze
(Decl_ARECn
, Suppress
=> All_Checks
);
1885 Analyze
(Decl_ARECnP
, Suppress
=> All_Checks
);
1887 if Present
(Decl_Assign
) then
1888 Analyze
(Decl_Assign
, Suppress
=> All_Checks
);
1893 -- Next step, for each uplevel referenced entity, add
1894 -- assignment operations to set the component in the
1895 -- activation record.
1897 if Present
(STJ
.Uents
) then
1902 Elmt
:= First_Elmt
(STJ
.Uents
);
1903 while Present
(Elmt
) loop
1905 Ent
: constant Entity_Id
:= Node
(Elmt
);
1906 Loc
: constant Source_Ptr
:= Sloc
(Ent
);
1907 Dec
: constant Node_Id
:=
1908 Declaration_Node
(Ent
);
1915 -- For parameters, we insert the assignment
1916 -- right after the declaration of ARECnP.
1917 -- For all other entities, we insert the
1918 -- assignment immediately after the
1919 -- declaration of the entity or after the
1920 -- freeze node if present.
1922 -- Note: we don't need to mark the entity
1923 -- as being aliased, because the address
1924 -- attribute will mark it as Address_Taken,
1925 -- and that is good enough.
1927 if Is_Formal
(Ent
) then
1930 elsif Has_Delayed_Freeze
(Ent
) then
1931 Ins
:= Freeze_Node
(Ent
);
1937 -- Build and insert the assignment:
1938 -- ARECn.nam := nam'Address
1939 -- or else 'Access for unconstrained array
1941 if Needs_Fat_Pointer
(Ent
) then
1942 Attr
:= Name_Access
;
1944 Attr
:= Name_Address
;
1948 Make_Assignment_Statement
(Loc
,
1950 Make_Selected_Component
(Loc
,
1952 New_Occurrence_Of
(STJ
.ARECn
, Loc
),
1955 (Activation_Record_Component
1960 Make_Attribute_Reference
(Loc
,
1962 New_Occurrence_Of
(Ent
, Loc
),
1963 Attribute_Name
=> Attr
));
1965 -- If we have a loop parameter, we have
1966 -- to insert before the first statement
1967 -- of the loop. Ins points to the
1968 -- N_Loop_Parameter_Specification.
1970 if Ekind
(Ent
) = E_Loop_Parameter
then
1973 (Statements
(Parent
(Parent
(Ins
))));
1974 Insert_Before
(Ins
, Asn
);
1977 Insert_After
(Ins
, Asn
);
1980 -- Analyze the assignment statement. We do
1981 -- not need to establish the relevant scope
1982 -- stack entries here, because we have
1983 -- already set the correct entity references,
1984 -- so no name resolution is required, and no
1985 -- new entities are created, so we don't even
1986 -- need to set the current scope.
1988 -- We analyze with all checks suppressed
1989 -- (since we do not expect any exceptions).
1991 Analyze
(Asn
, Suppress
=> All_Checks
);
2004 -- Next step, process uplevel references. This has to be done in a
2005 -- separate pass, after completing the processing in Sub_Loop because we
2006 -- need all the AREC declarations generated, inserted, and analyzed so
2007 -- that the uplevel references can be successfully analyzed.
2009 Uplev_Refs
: for J
in Urefs
.First
.. Urefs
.Last
loop
2011 UPJ
: Uref_Entry
renames Urefs
.Table
(J
);
2014 -- Ignore type references, these are implicit references that do
2015 -- not need rewriting (e.g. the appearence in a conversion).
2016 -- Also ignore if no reference was specified or if the rewriting
2017 -- has already been done (this can happen if the N_Identifier
2018 -- occurs more than one time in the tree).
2021 or else not Is_Entity_Name
(UPJ
.Ref
)
2022 or else not Present
(Entity
(UPJ
.Ref
))
2027 -- Rewrite one reference
2029 Rewrite_One_Ref
: declare
2030 Loc
: constant Source_Ptr
:= Sloc
(UPJ
.Ref
);
2031 -- Source location for the reference
2033 Typ
: constant Entity_Id
:= Etype
(UPJ
.Ent
);
2034 -- The type of the referenced entity
2037 -- The actual subtype of the reference
2039 RS_Caller
: constant SI_Type
:= Subp_Index
(UPJ
.Caller
);
2040 -- Subp_Index for caller containing reference
2042 STJR
: Subp_Entry
renames Subps
.Table
(RS_Caller
);
2043 -- Subp_Entry for subprogram containing reference
2045 RS_Callee
: constant SI_Type
:= Subp_Index
(UPJ
.Callee
);
2046 -- Subp_Index for subprogram containing referenced entity
2048 STJE
: Subp_Entry
renames Subps
.Table
(RS_Callee
);
2049 -- Subp_Entry for subprogram containing referenced entity
2056 Atyp
:= Etype
(UPJ
.Ref
);
2058 if Ekind
(Atyp
) /= E_Record_Subtype
then
2059 Atyp
:= Get_Actual_Subtype
(UPJ
.Ref
);
2062 -- Ignore if no ARECnF entity for enclosing subprogram which
2063 -- probably happens as a result of not properly treating
2064 -- instance bodies. To be examined ???
2066 -- If this test is omitted, then the compilation of freeze.adb
2067 -- and inline.adb fail in unnesting mode.
2069 if No
(STJR
.ARECnF
) then
2073 -- Push the current scope, so that the pointer type Tnn, and
2074 -- any subsidiary entities resulting from the analysis of the
2075 -- rewritten reference, go in the right entity chain.
2077 Push_Scope
(STJR
.Ent
);
2079 -- Now we need to rewrite the reference. We have a reference
2080 -- from level STJR.Lev to level STJE.Lev. The general form of
2081 -- the rewritten reference for entity X is:
2083 -- Typ'Deref (ARECaF.ARECbU.ARECcU.ARECdU....ARECmU.X)
2085 -- where a,b,c,d .. m =
2086 -- STJR.Lev - 1, STJR.Lev - 2, .. STJE.Lev
2088 pragma Assert
(STJR
.Lev
> STJE
.Lev
);
2090 -- Compute the prefix of X. Here are examples to make things
2091 -- clear (with parens to show groupings, the prefix is
2092 -- everything except the .X at the end).
2094 -- level 2 to level 1
2098 -- level 3 to level 1
2100 -- (AREC2F.AREC1U).X
2102 -- level 4 to level 1
2104 -- ((AREC3F.AREC2U).AREC1U).X
2106 -- level 6 to level 2
2108 -- (((AREC5F.AREC4U).AREC3U).AREC2U).X
2110 -- In the above, ARECnF and ARECnU are pointers, so there are
2111 -- explicit dereferences required for these occurrences.
2114 Make_Explicit_Dereference
(Loc
,
2115 Prefix
=> New_Occurrence_Of
(STJR
.ARECnF
, Loc
));
2117 for L
in STJE
.Lev
.. STJR
.Lev
- 2 loop
2118 SI
:= Enclosing_Subp
(SI
);
2120 Make_Explicit_Dereference
(Loc
,
2122 Make_Selected_Component
(Loc
,
2125 New_Occurrence_Of
(Subps
.Table
(SI
).ARECnU
, Loc
)));
2128 -- Get activation record component (must exist)
2130 Comp
:= Activation_Record_Component
(UPJ
.Ent
);
2131 pragma Assert
(Present
(Comp
));
2133 -- Do the replacement. If the component type is an access type,
2134 -- this is an uplevel reference for an entity that requires a
2135 -- fat pointer, so dereference the component.
2137 if Is_Access_Type
(Etype
(Comp
)) then
2139 Make_Explicit_Dereference
(Loc
,
2141 Make_Selected_Component
(Loc
,
2144 New_Occurrence_Of
(Comp
, Loc
))));
2148 Make_Attribute_Reference
(Loc
,
2149 Prefix
=> New_Occurrence_Of
(Atyp
, Loc
),
2150 Attribute_Name
=> Name_Deref
,
2151 Expressions
=> New_List
(
2152 Make_Selected_Component
(Loc
,
2155 New_Occurrence_Of
(Comp
, Loc
)))));
2158 -- Analyze and resolve the new expression. We do not need to
2159 -- establish the relevant scope stack entries here, because we
2160 -- have already set all the correct entity references, so no
2161 -- name resolution is needed. We have already set the current
2162 -- scope, so that any new entities created will be in the right
2165 -- We analyze with all checks suppressed (since we do not
2166 -- expect any exceptions)
2168 Analyze_And_Resolve
(UPJ
.Ref
, Typ
, Suppress
=> All_Checks
);
2170 end Rewrite_One_Ref
;
2175 end loop Uplev_Refs
;
2177 -- Finally, loop through all calls adding extra actual for the
2178 -- activation record where it is required.
2180 Adjust_Calls
: for J
in Calls
.First
.. Calls
.Last
loop
2182 -- Process a single call, we are only interested in a call to a
2183 -- subprogram that actually needs a pointer to an activation record,
2184 -- as indicated by the ARECnF entity being set. This excludes the
2185 -- top level subprogram, and any subprogram not having uplevel refs.
2187 Adjust_One_Call
: declare
2188 CTJ
: Call_Entry
renames Calls
.Table
(J
);
2189 STF
: Subp_Entry
renames Subps
.Table
(Subp_Index
(CTJ
.Caller
));
2190 STT
: Subp_Entry
renames Subps
.Table
(Subp_Index
(CTJ
.Callee
));
2192 Loc
: constant Source_Ptr
:= Sloc
(CTJ
.N
);
2200 if Present
(STT
.ARECnF
)
2201 and then Nkind
(CTJ
.N
) in N_Subprogram_Call
2203 -- CTJ.N is a call to a subprogram which may require a pointer
2204 -- to an activation record. The subprogram containing the call
2205 -- is CTJ.From and the subprogram being called is CTJ.To, so we
2206 -- have a call from level STF.Lev to level STT.Lev.
2208 -- There are three possibilities:
2210 -- For a call to the same level, we just pass the activation
2211 -- record passed to the calling subprogram.
2213 if STF
.Lev
= STT
.Lev
then
2214 Extra
:= New_Occurrence_Of
(STF
.ARECnF
, Loc
);
2216 -- For a call that goes down a level, we pass a pointer to the
2217 -- activation record constructed within the caller (which may
2218 -- be the outer-level subprogram, but also may be a more deeply
2221 elsif STT
.Lev
= STF
.Lev
+ 1 then
2222 Extra
:= New_Occurrence_Of
(STF
.ARECnP
, Loc
);
2224 -- Otherwise we must have an upcall (STT.Lev < STF.LEV),
2225 -- since it is not possible to do a downcall of more than
2228 -- For a call from level STF.Lev to level STT.Lev, we
2229 -- have to find the activation record needed by the
2230 -- callee. This is as follows:
2232 -- ARECaF.ARECbU.ARECcU....ARECmU
2234 -- where a,b,c .. m =
2235 -- STF.Lev - 1, STF.Lev - 2, STF.Lev - 3 .. STT.Lev
2238 pragma Assert
(STT
.Lev
< STF
.Lev
);
2240 Extra
:= New_Occurrence_Of
(STF
.ARECnF
, Loc
);
2241 SubX
:= Subp_Index
(CTJ
.Caller
);
2242 for K
in reverse STT
.Lev
.. STF
.Lev
- 1 loop
2243 SubX
:= Enclosing_Subp
(SubX
);
2245 Make_Selected_Component
(Loc
,
2249 (Subps
.Table
(SubX
).ARECnU
, Loc
));
2253 -- Extra is the additional parameter to be added. Build a
2254 -- parameter association that we can append to the actuals.
2257 Make_Parameter_Association
(Loc
,
2259 New_Occurrence_Of
(STT
.ARECnF
, Loc
),
2260 Explicit_Actual_Parameter
=> Extra
);
2262 if No
(Parameter_Associations
(CTJ
.N
)) then
2263 Set_Parameter_Associations
(CTJ
.N
, Empty_List
);
2266 Append
(ExtraP
, Parameter_Associations
(CTJ
.N
));
2268 -- We need to deal with the actual parameter chain as well. The
2269 -- newly added parameter is always the last actual.
2271 Act
:= First_Named_Actual
(CTJ
.N
);
2274 Set_First_Named_Actual
(CTJ
.N
, Extra
);
2276 -- If call has been relocated (as with an expression in
2277 -- an aggregate), set First_Named pointer in original node
2278 -- as well, because that's the parent of the parameter list.
2280 Set_First_Named_Actual
2281 (Parent
(List_Containing
(ExtraP
)), Extra
);
2283 -- Here we must follow the chain and append the new entry
2292 PAN
:= Parent
(Act
);
2293 pragma Assert
(Nkind
(PAN
) = N_Parameter_Association
);
2294 NNA
:= Next_Named_Actual
(PAN
);
2297 Set_Next_Named_Actual
(PAN
, Extra
);
2306 -- Analyze and resolve the new actual. We do not need to
2307 -- establish the relevant scope stack entries here, because
2308 -- we have already set all the correct entity references, so
2309 -- no name resolution is needed.
2311 -- We analyze with all checks suppressed (since we do not
2312 -- expect any exceptions, and also we temporarily turn off
2313 -- Unested_Subprogram_Mode to avoid trying to mark uplevel
2314 -- references (not needed at this stage, and in fact causes
2315 -- a bit of recursive chaos).
2317 Opt
.Unnest_Subprogram_Mode
:= False;
2319 (Extra
, Etype
(STT
.ARECnF
), Suppress
=> All_Checks
);
2320 Opt
.Unnest_Subprogram_Mode
:= True;
2322 end Adjust_One_Call
;
2323 end loop Adjust_Calls
;
2326 end Unnest_Subprogram
;
2328 ------------------------
2329 -- Unnest_Subprograms --
2330 ------------------------
2332 procedure Unnest_Subprograms
(N
: Node_Id
) is
2333 function Search_Subprograms
(N
: Node_Id
) return Traverse_Result
;
2334 -- Tree visitor that search for outer level procedures with nested
2335 -- subprograms and invokes Unnest_Subprogram()
2341 procedure Do_Search
is new Traverse_Proc
(Search_Subprograms
);
2342 -- Subtree visitor instantiation
2344 ------------------------
2345 -- Search_Subprograms --
2346 ------------------------
2348 function Search_Subprograms
(N
: Node_Id
) return Traverse_Result
is
2350 if Nkind_In
(N
, N_Subprogram_Body
, N_Subprogram_Body_Stub
) then
2352 Spec_Id
: constant Entity_Id
:= Unique_Defining_Entity
(N
);
2355 -- We are only interested in subprograms (not generic
2356 -- subprograms), that have nested subprograms.
2358 if Is_Subprogram
(Spec_Id
)
2359 and then Has_Nested_Subprogram
(Spec_Id
)
2360 and then Is_Library_Level_Entity
(Spec_Id
)
2362 Unnest_Subprogram
(Spec_Id
, N
);
2366 -- The proper body of a stub may contain nested subprograms, and
2367 -- therefore must be visited explicitly. Nested stubs are examined
2368 -- recursively in Visit_Node.
2370 elsif Nkind
(N
) in N_Body_Stub
then
2371 Do_Search
(Library_Unit
(N
));
2375 end Search_Subprograms
;
2377 -- Start of processing for Unnest_Subprograms
2380 if not Opt
.Unnest_Subprogram_Mode
or not Opt
.Expander_Active
then
2384 -- A specification will contain bodies if it contains instantiations so
2385 -- examine package or subprogram declaration of the main unit, when it
2388 if Nkind
(Unit
(N
)) = N_Package_Body
2389 or else (Nkind
(Unit
(N
)) = N_Subprogram_Body
2390 and then not Acts_As_Spec
(N
))
2392 Do_Search
(Library_Unit
(N
));
2396 end Unnest_Subprograms
;