* config/avr/avr.c (avr_function_arg_advance): Undo r179037.
[official-gcc.git] / gcc / tree-cfg.c
blob20feff91f72755fe1bcd316bf71ba3250de7401f
1 /* Control flow functions for trees.
2 Copyright (C) 2001, 2002, 2003, 2004, 2005, 2006, 2007, 2008, 2009,
3 2010, 2011 Free Software Foundation, Inc.
4 Contributed by Diego Novillo <dnovillo@redhat.com>
6 This file is part of GCC.
8 GCC is free software; you can redistribute it and/or modify
9 it under the terms of the GNU General Public License as published by
10 the Free Software Foundation; either version 3, or (at your option)
11 any later version.
13 GCC is distributed in the hope that it will be useful,
14 but WITHOUT ANY WARRANTY; without even the implied warranty of
15 MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
16 GNU General Public License for more details.
18 You should have received a copy of the GNU General Public License
19 along with GCC; see the file COPYING3. If not see
20 <http://www.gnu.org/licenses/>. */
22 #include "config.h"
23 #include "system.h"
24 #include "coretypes.h"
25 #include "tm.h"
26 #include "tree.h"
27 #include "tm_p.h"
28 #include "basic-block.h"
29 #include "output.h"
30 #include "flags.h"
31 #include "function.h"
32 #include "ggc.h"
33 #include "langhooks.h"
34 #include "tree-pretty-print.h"
35 #include "gimple-pretty-print.h"
36 #include "tree-flow.h"
37 #include "timevar.h"
38 #include "tree-dump.h"
39 #include "tree-pass.h"
40 #include "diagnostic-core.h"
41 #include "except.h"
42 #include "cfgloop.h"
43 #include "cfglayout.h"
44 #include "tree-ssa-propagate.h"
45 #include "value-prof.h"
46 #include "pointer-set.h"
47 #include "tree-inline.h"
49 /* This file contains functions for building the Control Flow Graph (CFG)
50 for a function tree. */
52 /* Local declarations. */
54 /* Initial capacity for the basic block array. */
55 static const int initial_cfg_capacity = 20;
57 /* This hash table allows us to efficiently lookup all CASE_LABEL_EXPRs
58 which use a particular edge. The CASE_LABEL_EXPRs are chained together
59 via their TREE_CHAIN field, which we clear after we're done with the
60 hash table to prevent problems with duplication of GIMPLE_SWITCHes.
62 Access to this list of CASE_LABEL_EXPRs allows us to efficiently
63 update the case vector in response to edge redirections.
65 Right now this table is set up and torn down at key points in the
66 compilation process. It would be nice if we could make the table
67 more persistent. The key is getting notification of changes to
68 the CFG (particularly edge removal, creation and redirection). */
70 static struct pointer_map_t *edge_to_cases;
72 /* If we record edge_to_cases, this bitmap will hold indexes
73 of basic blocks that end in a GIMPLE_SWITCH which we touched
74 due to edge manipulations. */
76 static bitmap touched_switch_bbs;
78 /* CFG statistics. */
79 struct cfg_stats_d
81 long num_merged_labels;
84 static struct cfg_stats_d cfg_stats;
86 /* Nonzero if we found a computed goto while building basic blocks. */
87 static bool found_computed_goto;
89 /* Hash table to store last discriminator assigned for each locus. */
90 struct locus_discrim_map
92 location_t locus;
93 int discriminator;
95 static htab_t discriminator_per_locus;
97 /* Basic blocks and flowgraphs. */
98 static void make_blocks (gimple_seq);
99 static void factor_computed_gotos (void);
101 /* Edges. */
102 static void make_edges (void);
103 static void make_cond_expr_edges (basic_block);
104 static void make_gimple_switch_edges (basic_block);
105 static void make_goto_expr_edges (basic_block);
106 static void make_gimple_asm_edges (basic_block);
107 static unsigned int locus_map_hash (const void *);
108 static int locus_map_eq (const void *, const void *);
109 static void assign_discriminator (location_t, basic_block);
110 static edge gimple_redirect_edge_and_branch (edge, basic_block);
111 static edge gimple_try_redirect_by_replacing_jump (edge, basic_block);
112 static unsigned int split_critical_edges (void);
114 /* Various helpers. */
115 static inline bool stmt_starts_bb_p (gimple, gimple);
116 static int gimple_verify_flow_info (void);
117 static void gimple_make_forwarder_block (edge);
118 static void gimple_cfg2vcg (FILE *);
119 static gimple first_non_label_stmt (basic_block);
121 /* Flowgraph optimization and cleanup. */
122 static void gimple_merge_blocks (basic_block, basic_block);
123 static bool gimple_can_merge_blocks_p (basic_block, basic_block);
124 static void remove_bb (basic_block);
125 static edge find_taken_edge_computed_goto (basic_block, tree);
126 static edge find_taken_edge_cond_expr (basic_block, tree);
127 static edge find_taken_edge_switch_expr (basic_block, tree);
128 static tree find_case_label_for_value (gimple, tree);
129 static void group_case_labels_stmt (gimple);
131 void
132 init_empty_tree_cfg_for_function (struct function *fn)
134 /* Initialize the basic block array. */
135 init_flow (fn);
136 profile_status_for_function (fn) = PROFILE_ABSENT;
137 n_basic_blocks_for_function (fn) = NUM_FIXED_BLOCKS;
138 last_basic_block_for_function (fn) = NUM_FIXED_BLOCKS;
139 basic_block_info_for_function (fn)
140 = VEC_alloc (basic_block, gc, initial_cfg_capacity);
141 VEC_safe_grow_cleared (basic_block, gc,
142 basic_block_info_for_function (fn),
143 initial_cfg_capacity);
145 /* Build a mapping of labels to their associated blocks. */
146 label_to_block_map_for_function (fn)
147 = VEC_alloc (basic_block, gc, initial_cfg_capacity);
148 VEC_safe_grow_cleared (basic_block, gc,
149 label_to_block_map_for_function (fn),
150 initial_cfg_capacity);
152 SET_BASIC_BLOCK_FOR_FUNCTION (fn, ENTRY_BLOCK,
153 ENTRY_BLOCK_PTR_FOR_FUNCTION (fn));
154 SET_BASIC_BLOCK_FOR_FUNCTION (fn, EXIT_BLOCK,
155 EXIT_BLOCK_PTR_FOR_FUNCTION (fn));
157 ENTRY_BLOCK_PTR_FOR_FUNCTION (fn)->next_bb
158 = EXIT_BLOCK_PTR_FOR_FUNCTION (fn);
159 EXIT_BLOCK_PTR_FOR_FUNCTION (fn)->prev_bb
160 = ENTRY_BLOCK_PTR_FOR_FUNCTION (fn);
163 void
164 init_empty_tree_cfg (void)
166 init_empty_tree_cfg_for_function (cfun);
169 /*---------------------------------------------------------------------------
170 Create basic blocks
171 ---------------------------------------------------------------------------*/
173 /* Entry point to the CFG builder for trees. SEQ is the sequence of
174 statements to be added to the flowgraph. */
176 static void
177 build_gimple_cfg (gimple_seq seq)
179 /* Register specific gimple functions. */
180 gimple_register_cfg_hooks ();
182 memset ((void *) &cfg_stats, 0, sizeof (cfg_stats));
184 init_empty_tree_cfg ();
186 found_computed_goto = 0;
187 make_blocks (seq);
189 /* Computed gotos are hell to deal with, especially if there are
190 lots of them with a large number of destinations. So we factor
191 them to a common computed goto location before we build the
192 edge list. After we convert back to normal form, we will un-factor
193 the computed gotos since factoring introduces an unwanted jump. */
194 if (found_computed_goto)
195 factor_computed_gotos ();
197 /* Make sure there is always at least one block, even if it's empty. */
198 if (n_basic_blocks == NUM_FIXED_BLOCKS)
199 create_empty_bb (ENTRY_BLOCK_PTR);
201 /* Adjust the size of the array. */
202 if (VEC_length (basic_block, basic_block_info) < (size_t) n_basic_blocks)
203 VEC_safe_grow_cleared (basic_block, gc, basic_block_info, n_basic_blocks);
205 /* To speed up statement iterator walks, we first purge dead labels. */
206 cleanup_dead_labels ();
208 /* Group case nodes to reduce the number of edges.
209 We do this after cleaning up dead labels because otherwise we miss
210 a lot of obvious case merging opportunities. */
211 group_case_labels ();
213 /* Create the edges of the flowgraph. */
214 discriminator_per_locus = htab_create (13, locus_map_hash, locus_map_eq,
215 free);
216 make_edges ();
217 cleanup_dead_labels ();
218 htab_delete (discriminator_per_locus);
220 /* Debugging dumps. */
222 /* Write the flowgraph to a VCG file. */
224 int local_dump_flags;
225 FILE *vcg_file = dump_begin (TDI_vcg, &local_dump_flags);
226 if (vcg_file)
228 gimple_cfg2vcg (vcg_file);
229 dump_end (TDI_vcg, vcg_file);
234 static unsigned int
235 execute_build_cfg (void)
237 gimple_seq body = gimple_body (current_function_decl);
239 build_gimple_cfg (body);
240 gimple_set_body (current_function_decl, NULL);
241 if (dump_file && (dump_flags & TDF_DETAILS))
243 fprintf (dump_file, "Scope blocks:\n");
244 dump_scope_blocks (dump_file, dump_flags);
246 return 0;
249 struct gimple_opt_pass pass_build_cfg =
252 GIMPLE_PASS,
253 "cfg", /* name */
254 NULL, /* gate */
255 execute_build_cfg, /* execute */
256 NULL, /* sub */
257 NULL, /* next */
258 0, /* static_pass_number */
259 TV_TREE_CFG, /* tv_id */
260 PROP_gimple_leh, /* properties_required */
261 PROP_cfg, /* properties_provided */
262 0, /* properties_destroyed */
263 0, /* todo_flags_start */
264 TODO_verify_stmts | TODO_cleanup_cfg /* todo_flags_finish */
269 /* Return true if T is a computed goto. */
271 static bool
272 computed_goto_p (gimple t)
274 return (gimple_code (t) == GIMPLE_GOTO
275 && TREE_CODE (gimple_goto_dest (t)) != LABEL_DECL);
279 /* Search the CFG for any computed gotos. If found, factor them to a
280 common computed goto site. Also record the location of that site so
281 that we can un-factor the gotos after we have converted back to
282 normal form. */
284 static void
285 factor_computed_gotos (void)
287 basic_block bb;
288 tree factored_label_decl = NULL;
289 tree var = NULL;
290 gimple factored_computed_goto_label = NULL;
291 gimple factored_computed_goto = NULL;
293 /* We know there are one or more computed gotos in this function.
294 Examine the last statement in each basic block to see if the block
295 ends with a computed goto. */
297 FOR_EACH_BB (bb)
299 gimple_stmt_iterator gsi = gsi_last_bb (bb);
300 gimple last;
302 if (gsi_end_p (gsi))
303 continue;
305 last = gsi_stmt (gsi);
307 /* Ignore the computed goto we create when we factor the original
308 computed gotos. */
309 if (last == factored_computed_goto)
310 continue;
312 /* If the last statement is a computed goto, factor it. */
313 if (computed_goto_p (last))
315 gimple assignment;
317 /* The first time we find a computed goto we need to create
318 the factored goto block and the variable each original
319 computed goto will use for their goto destination. */
320 if (!factored_computed_goto)
322 basic_block new_bb = create_empty_bb (bb);
323 gimple_stmt_iterator new_gsi = gsi_start_bb (new_bb);
325 /* Create the destination of the factored goto. Each original
326 computed goto will put its desired destination into this
327 variable and jump to the label we create immediately
328 below. */
329 var = create_tmp_var (ptr_type_node, "gotovar");
331 /* Build a label for the new block which will contain the
332 factored computed goto. */
333 factored_label_decl = create_artificial_label (UNKNOWN_LOCATION);
334 factored_computed_goto_label
335 = gimple_build_label (factored_label_decl);
336 gsi_insert_after (&new_gsi, factored_computed_goto_label,
337 GSI_NEW_STMT);
339 /* Build our new computed goto. */
340 factored_computed_goto = gimple_build_goto (var);
341 gsi_insert_after (&new_gsi, factored_computed_goto, GSI_NEW_STMT);
344 /* Copy the original computed goto's destination into VAR. */
345 assignment = gimple_build_assign (var, gimple_goto_dest (last));
346 gsi_insert_before (&gsi, assignment, GSI_SAME_STMT);
348 /* And re-vector the computed goto to the new destination. */
349 gimple_goto_set_dest (last, factored_label_decl);
355 /* Build a flowgraph for the sequence of stmts SEQ. */
357 static void
358 make_blocks (gimple_seq seq)
360 gimple_stmt_iterator i = gsi_start (seq);
361 gimple stmt = NULL;
362 bool start_new_block = true;
363 bool first_stmt_of_seq = true;
364 basic_block bb = ENTRY_BLOCK_PTR;
366 while (!gsi_end_p (i))
368 gimple prev_stmt;
370 prev_stmt = stmt;
371 stmt = gsi_stmt (i);
373 /* If the statement starts a new basic block or if we have determined
374 in a previous pass that we need to create a new block for STMT, do
375 so now. */
376 if (start_new_block || stmt_starts_bb_p (stmt, prev_stmt))
378 if (!first_stmt_of_seq)
379 seq = gsi_split_seq_before (&i);
380 bb = create_basic_block (seq, NULL, bb);
381 start_new_block = false;
384 /* Now add STMT to BB and create the subgraphs for special statement
385 codes. */
386 gimple_set_bb (stmt, bb);
388 if (computed_goto_p (stmt))
389 found_computed_goto = true;
391 /* If STMT is a basic block terminator, set START_NEW_BLOCK for the
392 next iteration. */
393 if (stmt_ends_bb_p (stmt))
395 /* If the stmt can make abnormal goto use a new temporary
396 for the assignment to the LHS. This makes sure the old value
397 of the LHS is available on the abnormal edge. Otherwise
398 we will end up with overlapping life-ranges for abnormal
399 SSA names. */
400 if (gimple_has_lhs (stmt)
401 && stmt_can_make_abnormal_goto (stmt)
402 && is_gimple_reg_type (TREE_TYPE (gimple_get_lhs (stmt))))
404 tree lhs = gimple_get_lhs (stmt);
405 tree tmp = create_tmp_var (TREE_TYPE (lhs), NULL);
406 gimple s = gimple_build_assign (lhs, tmp);
407 gimple_set_location (s, gimple_location (stmt));
408 gimple_set_block (s, gimple_block (stmt));
409 gimple_set_lhs (stmt, tmp);
410 if (TREE_CODE (TREE_TYPE (tmp)) == COMPLEX_TYPE
411 || TREE_CODE (TREE_TYPE (tmp)) == VECTOR_TYPE)
412 DECL_GIMPLE_REG_P (tmp) = 1;
413 gsi_insert_after (&i, s, GSI_SAME_STMT);
415 start_new_block = true;
418 gsi_next (&i);
419 first_stmt_of_seq = false;
424 /* Create and return a new empty basic block after bb AFTER. */
426 static basic_block
427 create_bb (void *h, void *e, basic_block after)
429 basic_block bb;
431 gcc_assert (!e);
433 /* Create and initialize a new basic block. Since alloc_block uses
434 GC allocation that clears memory to allocate a basic block, we do
435 not have to clear the newly allocated basic block here. */
436 bb = alloc_block ();
438 bb->index = last_basic_block;
439 bb->flags = BB_NEW;
440 bb->il.gimple = ggc_alloc_cleared_gimple_bb_info ();
441 set_bb_seq (bb, h ? (gimple_seq) h : gimple_seq_alloc ());
443 /* Add the new block to the linked list of blocks. */
444 link_block (bb, after);
446 /* Grow the basic block array if needed. */
447 if ((size_t) last_basic_block == VEC_length (basic_block, basic_block_info))
449 size_t new_size = last_basic_block + (last_basic_block + 3) / 4;
450 VEC_safe_grow_cleared (basic_block, gc, basic_block_info, new_size);
453 /* Add the newly created block to the array. */
454 SET_BASIC_BLOCK (last_basic_block, bb);
456 n_basic_blocks++;
457 last_basic_block++;
459 return bb;
463 /*---------------------------------------------------------------------------
464 Edge creation
465 ---------------------------------------------------------------------------*/
467 /* Fold COND_EXPR_COND of each COND_EXPR. */
469 void
470 fold_cond_expr_cond (void)
472 basic_block bb;
474 FOR_EACH_BB (bb)
476 gimple stmt = last_stmt (bb);
478 if (stmt && gimple_code (stmt) == GIMPLE_COND)
480 location_t loc = gimple_location (stmt);
481 tree cond;
482 bool zerop, onep;
484 fold_defer_overflow_warnings ();
485 cond = fold_binary_loc (loc, gimple_cond_code (stmt), boolean_type_node,
486 gimple_cond_lhs (stmt), gimple_cond_rhs (stmt));
487 if (cond)
489 zerop = integer_zerop (cond);
490 onep = integer_onep (cond);
492 else
493 zerop = onep = false;
495 fold_undefer_overflow_warnings (zerop || onep,
496 stmt,
497 WARN_STRICT_OVERFLOW_CONDITIONAL);
498 if (zerop)
499 gimple_cond_make_false (stmt);
500 else if (onep)
501 gimple_cond_make_true (stmt);
506 /* Join all the blocks in the flowgraph. */
508 static void
509 make_edges (void)
511 basic_block bb;
512 struct omp_region *cur_region = NULL;
514 /* Create an edge from entry to the first block with executable
515 statements in it. */
516 make_edge (ENTRY_BLOCK_PTR, BASIC_BLOCK (NUM_FIXED_BLOCKS), EDGE_FALLTHRU);
518 /* Traverse the basic block array placing edges. */
519 FOR_EACH_BB (bb)
521 gimple last = last_stmt (bb);
522 bool fallthru;
524 if (last)
526 enum gimple_code code = gimple_code (last);
527 switch (code)
529 case GIMPLE_GOTO:
530 make_goto_expr_edges (bb);
531 fallthru = false;
532 break;
533 case GIMPLE_RETURN:
534 make_edge (bb, EXIT_BLOCK_PTR, 0);
535 fallthru = false;
536 break;
537 case GIMPLE_COND:
538 make_cond_expr_edges (bb);
539 fallthru = false;
540 break;
541 case GIMPLE_SWITCH:
542 make_gimple_switch_edges (bb);
543 fallthru = false;
544 break;
545 case GIMPLE_RESX:
546 make_eh_edges (last);
547 fallthru = false;
548 break;
549 case GIMPLE_EH_DISPATCH:
550 fallthru = make_eh_dispatch_edges (last);
551 break;
553 case GIMPLE_CALL:
554 /* If this function receives a nonlocal goto, then we need to
555 make edges from this call site to all the nonlocal goto
556 handlers. */
557 if (stmt_can_make_abnormal_goto (last))
558 make_abnormal_goto_edges (bb, true);
560 /* If this statement has reachable exception handlers, then
561 create abnormal edges to them. */
562 make_eh_edges (last);
564 /* BUILTIN_RETURN is really a return statement. */
565 if (gimple_call_builtin_p (last, BUILT_IN_RETURN))
566 make_edge (bb, EXIT_BLOCK_PTR, 0), fallthru = false;
567 /* Some calls are known not to return. */
568 else
569 fallthru = !(gimple_call_flags (last) & ECF_NORETURN);
570 break;
572 case GIMPLE_ASSIGN:
573 /* A GIMPLE_ASSIGN may throw internally and thus be considered
574 control-altering. */
575 if (is_ctrl_altering_stmt (last))
576 make_eh_edges (last);
577 fallthru = true;
578 break;
580 case GIMPLE_ASM:
581 make_gimple_asm_edges (bb);
582 fallthru = true;
583 break;
585 case GIMPLE_OMP_PARALLEL:
586 case GIMPLE_OMP_TASK:
587 case GIMPLE_OMP_FOR:
588 case GIMPLE_OMP_SINGLE:
589 case GIMPLE_OMP_MASTER:
590 case GIMPLE_OMP_ORDERED:
591 case GIMPLE_OMP_CRITICAL:
592 case GIMPLE_OMP_SECTION:
593 cur_region = new_omp_region (bb, code, cur_region);
594 fallthru = true;
595 break;
597 case GIMPLE_OMP_SECTIONS:
598 cur_region = new_omp_region (bb, code, cur_region);
599 fallthru = true;
600 break;
602 case GIMPLE_OMP_SECTIONS_SWITCH:
603 fallthru = false;
604 break;
606 case GIMPLE_OMP_ATOMIC_LOAD:
607 case GIMPLE_OMP_ATOMIC_STORE:
608 fallthru = true;
609 break;
611 case GIMPLE_OMP_RETURN:
612 /* In the case of a GIMPLE_OMP_SECTION, the edge will go
613 somewhere other than the next block. This will be
614 created later. */
615 cur_region->exit = bb;
616 fallthru = cur_region->type != GIMPLE_OMP_SECTION;
617 cur_region = cur_region->outer;
618 break;
620 case GIMPLE_OMP_CONTINUE:
621 cur_region->cont = bb;
622 switch (cur_region->type)
624 case GIMPLE_OMP_FOR:
625 /* Mark all GIMPLE_OMP_FOR and GIMPLE_OMP_CONTINUE
626 succs edges as abnormal to prevent splitting
627 them. */
628 single_succ_edge (cur_region->entry)->flags |= EDGE_ABNORMAL;
629 /* Make the loopback edge. */
630 make_edge (bb, single_succ (cur_region->entry),
631 EDGE_ABNORMAL);
633 /* Create an edge from GIMPLE_OMP_FOR to exit, which
634 corresponds to the case that the body of the loop
635 is not executed at all. */
636 make_edge (cur_region->entry, bb->next_bb, EDGE_ABNORMAL);
637 make_edge (bb, bb->next_bb, EDGE_FALLTHRU | EDGE_ABNORMAL);
638 fallthru = false;
639 break;
641 case GIMPLE_OMP_SECTIONS:
642 /* Wire up the edges into and out of the nested sections. */
644 basic_block switch_bb = single_succ (cur_region->entry);
646 struct omp_region *i;
647 for (i = cur_region->inner; i ; i = i->next)
649 gcc_assert (i->type == GIMPLE_OMP_SECTION);
650 make_edge (switch_bb, i->entry, 0);
651 make_edge (i->exit, bb, EDGE_FALLTHRU);
654 /* Make the loopback edge to the block with
655 GIMPLE_OMP_SECTIONS_SWITCH. */
656 make_edge (bb, switch_bb, 0);
658 /* Make the edge from the switch to exit. */
659 make_edge (switch_bb, bb->next_bb, 0);
660 fallthru = false;
662 break;
664 default:
665 gcc_unreachable ();
667 break;
669 default:
670 gcc_assert (!stmt_ends_bb_p (last));
671 fallthru = true;
674 else
675 fallthru = true;
677 if (fallthru)
679 make_edge (bb, bb->next_bb, EDGE_FALLTHRU);
680 if (last)
681 assign_discriminator (gimple_location (last), bb->next_bb);
685 if (root_omp_region)
686 free_omp_regions ();
688 /* Fold COND_EXPR_COND of each COND_EXPR. */
689 fold_cond_expr_cond ();
692 /* Trivial hash function for a location_t. ITEM is a pointer to
693 a hash table entry that maps a location_t to a discriminator. */
695 static unsigned int
696 locus_map_hash (const void *item)
698 return ((const struct locus_discrim_map *) item)->locus;
701 /* Equality function for the locus-to-discriminator map. VA and VB
702 point to the two hash table entries to compare. */
704 static int
705 locus_map_eq (const void *va, const void *vb)
707 const struct locus_discrim_map *a = (const struct locus_discrim_map *) va;
708 const struct locus_discrim_map *b = (const struct locus_discrim_map *) vb;
709 return a->locus == b->locus;
712 /* Find the next available discriminator value for LOCUS. The
713 discriminator distinguishes among several basic blocks that
714 share a common locus, allowing for more accurate sample-based
715 profiling. */
717 static int
718 next_discriminator_for_locus (location_t locus)
720 struct locus_discrim_map item;
721 struct locus_discrim_map **slot;
723 item.locus = locus;
724 item.discriminator = 0;
725 slot = (struct locus_discrim_map **)
726 htab_find_slot_with_hash (discriminator_per_locus, (void *) &item,
727 (hashval_t) locus, INSERT);
728 gcc_assert (slot);
729 if (*slot == HTAB_EMPTY_ENTRY)
731 *slot = XNEW (struct locus_discrim_map);
732 gcc_assert (*slot);
733 (*slot)->locus = locus;
734 (*slot)->discriminator = 0;
736 (*slot)->discriminator++;
737 return (*slot)->discriminator;
740 /* Return TRUE if LOCUS1 and LOCUS2 refer to the same source line. */
742 static bool
743 same_line_p (location_t locus1, location_t locus2)
745 expanded_location from, to;
747 if (locus1 == locus2)
748 return true;
750 from = expand_location (locus1);
751 to = expand_location (locus2);
753 if (from.line != to.line)
754 return false;
755 if (from.file == to.file)
756 return true;
757 return (from.file != NULL
758 && to.file != NULL
759 && filename_cmp (from.file, to.file) == 0);
762 /* Assign a unique discriminator value to block BB if it begins at the same
763 LOCUS as its predecessor block. */
765 static void
766 assign_discriminator (location_t locus, basic_block bb)
768 gimple first_in_to_bb, last_in_to_bb;
770 if (locus == 0 || bb->discriminator != 0)
771 return;
773 first_in_to_bb = first_non_label_stmt (bb);
774 last_in_to_bb = last_stmt (bb);
775 if ((first_in_to_bb && same_line_p (locus, gimple_location (first_in_to_bb)))
776 || (last_in_to_bb && same_line_p (locus, gimple_location (last_in_to_bb))))
777 bb->discriminator = next_discriminator_for_locus (locus);
780 /* Create the edges for a GIMPLE_COND starting at block BB. */
782 static void
783 make_cond_expr_edges (basic_block bb)
785 gimple entry = last_stmt (bb);
786 gimple then_stmt, else_stmt;
787 basic_block then_bb, else_bb;
788 tree then_label, else_label;
789 edge e;
790 location_t entry_locus;
792 gcc_assert (entry);
793 gcc_assert (gimple_code (entry) == GIMPLE_COND);
795 entry_locus = gimple_location (entry);
797 /* Entry basic blocks for each component. */
798 then_label = gimple_cond_true_label (entry);
799 else_label = gimple_cond_false_label (entry);
800 then_bb = label_to_block (then_label);
801 else_bb = label_to_block (else_label);
802 then_stmt = first_stmt (then_bb);
803 else_stmt = first_stmt (else_bb);
805 e = make_edge (bb, then_bb, EDGE_TRUE_VALUE);
806 assign_discriminator (entry_locus, then_bb);
807 e->goto_locus = gimple_location (then_stmt);
808 if (e->goto_locus)
809 e->goto_block = gimple_block (then_stmt);
810 e = make_edge (bb, else_bb, EDGE_FALSE_VALUE);
811 if (e)
813 assign_discriminator (entry_locus, else_bb);
814 e->goto_locus = gimple_location (else_stmt);
815 if (e->goto_locus)
816 e->goto_block = gimple_block (else_stmt);
819 /* We do not need the labels anymore. */
820 gimple_cond_set_true_label (entry, NULL_TREE);
821 gimple_cond_set_false_label (entry, NULL_TREE);
825 /* Called for each element in the hash table (P) as we delete the
826 edge to cases hash table.
828 Clear all the TREE_CHAINs to prevent problems with copying of
829 SWITCH_EXPRs and structure sharing rules, then free the hash table
830 element. */
832 static bool
833 edge_to_cases_cleanup (const void *key ATTRIBUTE_UNUSED, void **value,
834 void *data ATTRIBUTE_UNUSED)
836 tree t, next;
838 for (t = (tree) *value; t; t = next)
840 next = CASE_CHAIN (t);
841 CASE_CHAIN (t) = NULL;
844 *value = NULL;
845 return true;
848 /* Start recording information mapping edges to case labels. */
850 void
851 start_recording_case_labels (void)
853 gcc_assert (edge_to_cases == NULL);
854 edge_to_cases = pointer_map_create ();
855 touched_switch_bbs = BITMAP_ALLOC (NULL);
858 /* Return nonzero if we are recording information for case labels. */
860 static bool
861 recording_case_labels_p (void)
863 return (edge_to_cases != NULL);
866 /* Stop recording information mapping edges to case labels and
867 remove any information we have recorded. */
868 void
869 end_recording_case_labels (void)
871 bitmap_iterator bi;
872 unsigned i;
873 pointer_map_traverse (edge_to_cases, edge_to_cases_cleanup, NULL);
874 pointer_map_destroy (edge_to_cases);
875 edge_to_cases = NULL;
876 EXECUTE_IF_SET_IN_BITMAP (touched_switch_bbs, 0, i, bi)
878 basic_block bb = BASIC_BLOCK (i);
879 if (bb)
881 gimple stmt = last_stmt (bb);
882 if (stmt && gimple_code (stmt) == GIMPLE_SWITCH)
883 group_case_labels_stmt (stmt);
886 BITMAP_FREE (touched_switch_bbs);
889 /* If we are inside a {start,end}_recording_cases block, then return
890 a chain of CASE_LABEL_EXPRs from T which reference E.
892 Otherwise return NULL. */
894 static tree
895 get_cases_for_edge (edge e, gimple t)
897 void **slot;
898 size_t i, n;
900 /* If we are not recording cases, then we do not have CASE_LABEL_EXPR
901 chains available. Return NULL so the caller can detect this case. */
902 if (!recording_case_labels_p ())
903 return NULL;
905 slot = pointer_map_contains (edge_to_cases, e);
906 if (slot)
907 return (tree) *slot;
909 /* If we did not find E in the hash table, then this must be the first
910 time we have been queried for information about E & T. Add all the
911 elements from T to the hash table then perform the query again. */
913 n = gimple_switch_num_labels (t);
914 for (i = 0; i < n; i++)
916 tree elt = gimple_switch_label (t, i);
917 tree lab = CASE_LABEL (elt);
918 basic_block label_bb = label_to_block (lab);
919 edge this_edge = find_edge (e->src, label_bb);
921 /* Add it to the chain of CASE_LABEL_EXPRs referencing E, or create
922 a new chain. */
923 slot = pointer_map_insert (edge_to_cases, this_edge);
924 CASE_CHAIN (elt) = (tree) *slot;
925 *slot = elt;
928 return (tree) *pointer_map_contains (edge_to_cases, e);
931 /* Create the edges for a GIMPLE_SWITCH starting at block BB. */
933 static void
934 make_gimple_switch_edges (basic_block bb)
936 gimple entry = last_stmt (bb);
937 location_t entry_locus;
938 size_t i, n;
940 entry_locus = gimple_location (entry);
942 n = gimple_switch_num_labels (entry);
944 for (i = 0; i < n; ++i)
946 tree lab = CASE_LABEL (gimple_switch_label (entry, i));
947 basic_block label_bb = label_to_block (lab);
948 make_edge (bb, label_bb, 0);
949 assign_discriminator (entry_locus, label_bb);
954 /* Return the basic block holding label DEST. */
956 basic_block
957 label_to_block_fn (struct function *ifun, tree dest)
959 int uid = LABEL_DECL_UID (dest);
961 /* We would die hard when faced by an undefined label. Emit a label to
962 the very first basic block. This will hopefully make even the dataflow
963 and undefined variable warnings quite right. */
964 if (seen_error () && uid < 0)
966 gimple_stmt_iterator gsi = gsi_start_bb (BASIC_BLOCK (NUM_FIXED_BLOCKS));
967 gimple stmt;
969 stmt = gimple_build_label (dest);
970 gsi_insert_before (&gsi, stmt, GSI_NEW_STMT);
971 uid = LABEL_DECL_UID (dest);
973 if (VEC_length (basic_block, ifun->cfg->x_label_to_block_map)
974 <= (unsigned int) uid)
975 return NULL;
976 return VEC_index (basic_block, ifun->cfg->x_label_to_block_map, uid);
979 /* Create edges for an abnormal goto statement at block BB. If FOR_CALL
980 is true, the source statement is a CALL_EXPR instead of a GOTO_EXPR. */
982 void
983 make_abnormal_goto_edges (basic_block bb, bool for_call)
985 basic_block target_bb;
986 gimple_stmt_iterator gsi;
988 FOR_EACH_BB (target_bb)
989 for (gsi = gsi_start_bb (target_bb); !gsi_end_p (gsi); gsi_next (&gsi))
991 gimple label_stmt = gsi_stmt (gsi);
992 tree target;
994 if (gimple_code (label_stmt) != GIMPLE_LABEL)
995 break;
997 target = gimple_label_label (label_stmt);
999 /* Make an edge to every label block that has been marked as a
1000 potential target for a computed goto or a non-local goto. */
1001 if ((FORCED_LABEL (target) && !for_call)
1002 || (DECL_NONLOCAL (target) && for_call))
1004 make_edge (bb, target_bb, EDGE_ABNORMAL);
1005 break;
1010 /* Create edges for a goto statement at block BB. */
1012 static void
1013 make_goto_expr_edges (basic_block bb)
1015 gimple_stmt_iterator last = gsi_last_bb (bb);
1016 gimple goto_t = gsi_stmt (last);
1018 /* A simple GOTO creates normal edges. */
1019 if (simple_goto_p (goto_t))
1021 tree dest = gimple_goto_dest (goto_t);
1022 basic_block label_bb = label_to_block (dest);
1023 edge e = make_edge (bb, label_bb, EDGE_FALLTHRU);
1024 e->goto_locus = gimple_location (goto_t);
1025 assign_discriminator (e->goto_locus, label_bb);
1026 if (e->goto_locus)
1027 e->goto_block = gimple_block (goto_t);
1028 gsi_remove (&last, true);
1029 return;
1032 /* A computed GOTO creates abnormal edges. */
1033 make_abnormal_goto_edges (bb, false);
1036 /* Create edges for an asm statement with labels at block BB. */
1038 static void
1039 make_gimple_asm_edges (basic_block bb)
1041 gimple stmt = last_stmt (bb);
1042 location_t stmt_loc = gimple_location (stmt);
1043 int i, n = gimple_asm_nlabels (stmt);
1045 for (i = 0; i < n; ++i)
1047 tree label = TREE_VALUE (gimple_asm_label_op (stmt, i));
1048 basic_block label_bb = label_to_block (label);
1049 make_edge (bb, label_bb, 0);
1050 assign_discriminator (stmt_loc, label_bb);
1054 /*---------------------------------------------------------------------------
1055 Flowgraph analysis
1056 ---------------------------------------------------------------------------*/
1058 /* Cleanup useless labels in basic blocks. This is something we wish
1059 to do early because it allows us to group case labels before creating
1060 the edges for the CFG, and it speeds up block statement iterators in
1061 all passes later on.
1062 We rerun this pass after CFG is created, to get rid of the labels that
1063 are no longer referenced. After then we do not run it any more, since
1064 (almost) no new labels should be created. */
1066 /* A map from basic block index to the leading label of that block. */
1067 static struct label_record
1069 /* The label. */
1070 tree label;
1072 /* True if the label is referenced from somewhere. */
1073 bool used;
1074 } *label_for_bb;
1076 /* Given LABEL return the first label in the same basic block. */
1078 static tree
1079 main_block_label (tree label)
1081 basic_block bb = label_to_block (label);
1082 tree main_label = label_for_bb[bb->index].label;
1084 /* label_to_block possibly inserted undefined label into the chain. */
1085 if (!main_label)
1087 label_for_bb[bb->index].label = label;
1088 main_label = label;
1091 label_for_bb[bb->index].used = true;
1092 return main_label;
1095 /* Clean up redundant labels within the exception tree. */
1097 static void
1098 cleanup_dead_labels_eh (void)
1100 eh_landing_pad lp;
1101 eh_region r;
1102 tree lab;
1103 int i;
1105 if (cfun->eh == NULL)
1106 return;
1108 for (i = 1; VEC_iterate (eh_landing_pad, cfun->eh->lp_array, i, lp); ++i)
1109 if (lp && lp->post_landing_pad)
1111 lab = main_block_label (lp->post_landing_pad);
1112 if (lab != lp->post_landing_pad)
1114 EH_LANDING_PAD_NR (lp->post_landing_pad) = 0;
1115 EH_LANDING_PAD_NR (lab) = lp->index;
1119 FOR_ALL_EH_REGION (r)
1120 switch (r->type)
1122 case ERT_CLEANUP:
1123 case ERT_MUST_NOT_THROW:
1124 break;
1126 case ERT_TRY:
1128 eh_catch c;
1129 for (c = r->u.eh_try.first_catch; c ; c = c->next_catch)
1131 lab = c->label;
1132 if (lab)
1133 c->label = main_block_label (lab);
1136 break;
1138 case ERT_ALLOWED_EXCEPTIONS:
1139 lab = r->u.allowed.label;
1140 if (lab)
1141 r->u.allowed.label = main_block_label (lab);
1142 break;
1147 /* Cleanup redundant labels. This is a three-step process:
1148 1) Find the leading label for each block.
1149 2) Redirect all references to labels to the leading labels.
1150 3) Cleanup all useless labels. */
1152 void
1153 cleanup_dead_labels (void)
1155 basic_block bb;
1156 label_for_bb = XCNEWVEC (struct label_record, last_basic_block);
1158 /* Find a suitable label for each block. We use the first user-defined
1159 label if there is one, or otherwise just the first label we see. */
1160 FOR_EACH_BB (bb)
1162 gimple_stmt_iterator i;
1164 for (i = gsi_start_bb (bb); !gsi_end_p (i); gsi_next (&i))
1166 tree label;
1167 gimple stmt = gsi_stmt (i);
1169 if (gimple_code (stmt) != GIMPLE_LABEL)
1170 break;
1172 label = gimple_label_label (stmt);
1174 /* If we have not yet seen a label for the current block,
1175 remember this one and see if there are more labels. */
1176 if (!label_for_bb[bb->index].label)
1178 label_for_bb[bb->index].label = label;
1179 continue;
1182 /* If we did see a label for the current block already, but it
1183 is an artificially created label, replace it if the current
1184 label is a user defined label. */
1185 if (!DECL_ARTIFICIAL (label)
1186 && DECL_ARTIFICIAL (label_for_bb[bb->index].label))
1188 label_for_bb[bb->index].label = label;
1189 break;
1194 /* Now redirect all jumps/branches to the selected label.
1195 First do so for each block ending in a control statement. */
1196 FOR_EACH_BB (bb)
1198 gimple stmt = last_stmt (bb);
1199 if (!stmt)
1200 continue;
1202 switch (gimple_code (stmt))
1204 case GIMPLE_COND:
1206 tree true_label = gimple_cond_true_label (stmt);
1207 tree false_label = gimple_cond_false_label (stmt);
1209 if (true_label)
1210 gimple_cond_set_true_label (stmt, main_block_label (true_label));
1211 if (false_label)
1212 gimple_cond_set_false_label (stmt, main_block_label (false_label));
1213 break;
1216 case GIMPLE_SWITCH:
1218 size_t i, n = gimple_switch_num_labels (stmt);
1220 /* Replace all destination labels. */
1221 for (i = 0; i < n; ++i)
1223 tree case_label = gimple_switch_label (stmt, i);
1224 tree label = main_block_label (CASE_LABEL (case_label));
1225 CASE_LABEL (case_label) = label;
1227 break;
1230 case GIMPLE_ASM:
1232 int i, n = gimple_asm_nlabels (stmt);
1234 for (i = 0; i < n; ++i)
1236 tree cons = gimple_asm_label_op (stmt, i);
1237 tree label = main_block_label (TREE_VALUE (cons));
1238 TREE_VALUE (cons) = label;
1240 break;
1243 /* We have to handle gotos until they're removed, and we don't
1244 remove them until after we've created the CFG edges. */
1245 case GIMPLE_GOTO:
1246 if (!computed_goto_p (stmt))
1248 tree new_dest = main_block_label (gimple_goto_dest (stmt));
1249 gimple_goto_set_dest (stmt, new_dest);
1251 break;
1253 default:
1254 break;
1258 /* Do the same for the exception region tree labels. */
1259 cleanup_dead_labels_eh ();
1261 /* Finally, purge dead labels. All user-defined labels and labels that
1262 can be the target of non-local gotos and labels which have their
1263 address taken are preserved. */
1264 FOR_EACH_BB (bb)
1266 gimple_stmt_iterator i;
1267 tree label_for_this_bb = label_for_bb[bb->index].label;
1269 if (!label_for_this_bb)
1270 continue;
1272 /* If the main label of the block is unused, we may still remove it. */
1273 if (!label_for_bb[bb->index].used)
1274 label_for_this_bb = NULL;
1276 for (i = gsi_start_bb (bb); !gsi_end_p (i); )
1278 tree label;
1279 gimple stmt = gsi_stmt (i);
1281 if (gimple_code (stmt) != GIMPLE_LABEL)
1282 break;
1284 label = gimple_label_label (stmt);
1286 if (label == label_for_this_bb
1287 || !DECL_ARTIFICIAL (label)
1288 || DECL_NONLOCAL (label)
1289 || FORCED_LABEL (label))
1290 gsi_next (&i);
1291 else
1292 gsi_remove (&i, true);
1296 free (label_for_bb);
1299 /* Scan the sorted vector of cases in STMT (a GIMPLE_SWITCH) and combine
1300 the ones jumping to the same label.
1301 Eg. three separate entries 1: 2: 3: become one entry 1..3: */
1303 static void
1304 group_case_labels_stmt (gimple stmt)
1306 int old_size = gimple_switch_num_labels (stmt);
1307 int i, j, new_size = old_size;
1308 tree default_case = NULL_TREE;
1309 tree default_label = NULL_TREE;
1310 bool has_default;
1312 /* The default label is always the first case in a switch
1313 statement after gimplification if it was not optimized
1314 away */
1315 if (!CASE_LOW (gimple_switch_default_label (stmt))
1316 && !CASE_HIGH (gimple_switch_default_label (stmt)))
1318 default_case = gimple_switch_default_label (stmt);
1319 default_label = CASE_LABEL (default_case);
1320 has_default = true;
1322 else
1323 has_default = false;
1325 /* Look for possible opportunities to merge cases. */
1326 if (has_default)
1327 i = 1;
1328 else
1329 i = 0;
1330 while (i < old_size)
1332 tree base_case, base_label, base_high;
1333 base_case = gimple_switch_label (stmt, i);
1335 gcc_assert (base_case);
1336 base_label = CASE_LABEL (base_case);
1338 /* Discard cases that have the same destination as the
1339 default case. */
1340 if (base_label == default_label)
1342 gimple_switch_set_label (stmt, i, NULL_TREE);
1343 i++;
1344 new_size--;
1345 continue;
1348 base_high = CASE_HIGH (base_case)
1349 ? CASE_HIGH (base_case)
1350 : CASE_LOW (base_case);
1351 i++;
1353 /* Try to merge case labels. Break out when we reach the end
1354 of the label vector or when we cannot merge the next case
1355 label with the current one. */
1356 while (i < old_size)
1358 tree merge_case = gimple_switch_label (stmt, i);
1359 tree merge_label = CASE_LABEL (merge_case);
1360 double_int bhp1 = double_int_add (tree_to_double_int (base_high),
1361 double_int_one);
1363 /* Merge the cases if they jump to the same place,
1364 and their ranges are consecutive. */
1365 if (merge_label == base_label
1366 && double_int_equal_p (tree_to_double_int (CASE_LOW (merge_case)),
1367 bhp1))
1369 base_high = CASE_HIGH (merge_case) ?
1370 CASE_HIGH (merge_case) : CASE_LOW (merge_case);
1371 CASE_HIGH (base_case) = base_high;
1372 gimple_switch_set_label (stmt, i, NULL_TREE);
1373 new_size--;
1374 i++;
1376 else
1377 break;
1381 /* Compress the case labels in the label vector, and adjust the
1382 length of the vector. */
1383 for (i = 0, j = 0; i < new_size; i++)
1385 while (! gimple_switch_label (stmt, j))
1386 j++;
1387 gimple_switch_set_label (stmt, i,
1388 gimple_switch_label (stmt, j++));
1391 gcc_assert (new_size <= old_size);
1392 gimple_switch_set_num_labels (stmt, new_size);
1395 /* Look for blocks ending in a multiway branch (a GIMPLE_SWITCH),
1396 and scan the sorted vector of cases. Combine the ones jumping to the
1397 same label. */
1399 void
1400 group_case_labels (void)
1402 basic_block bb;
1404 FOR_EACH_BB (bb)
1406 gimple stmt = last_stmt (bb);
1407 if (stmt && gimple_code (stmt) == GIMPLE_SWITCH)
1408 group_case_labels_stmt (stmt);
1412 /* Checks whether we can merge block B into block A. */
1414 static bool
1415 gimple_can_merge_blocks_p (basic_block a, basic_block b)
1417 gimple stmt;
1418 gimple_stmt_iterator gsi;
1419 gimple_seq phis;
1421 if (!single_succ_p (a))
1422 return false;
1424 if (single_succ_edge (a)->flags & (EDGE_ABNORMAL | EDGE_EH | EDGE_PRESERVE))
1425 return false;
1427 if (single_succ (a) != b)
1428 return false;
1430 if (!single_pred_p (b))
1431 return false;
1433 if (b == EXIT_BLOCK_PTR)
1434 return false;
1436 /* If A ends by a statement causing exceptions or something similar, we
1437 cannot merge the blocks. */
1438 stmt = last_stmt (a);
1439 if (stmt && stmt_ends_bb_p (stmt))
1440 return false;
1442 /* Do not allow a block with only a non-local label to be merged. */
1443 if (stmt
1444 && gimple_code (stmt) == GIMPLE_LABEL
1445 && DECL_NONLOCAL (gimple_label_label (stmt)))
1446 return false;
1448 /* Examine the labels at the beginning of B. */
1449 for (gsi = gsi_start_bb (b); !gsi_end_p (gsi); gsi_next (&gsi))
1451 tree lab;
1452 stmt = gsi_stmt (gsi);
1453 if (gimple_code (stmt) != GIMPLE_LABEL)
1454 break;
1455 lab = gimple_label_label (stmt);
1457 /* Do not remove user labels. */
1458 if (!DECL_ARTIFICIAL (lab))
1459 return false;
1462 /* Protect the loop latches. */
1463 if (current_loops && b->loop_father->latch == b)
1464 return false;
1466 /* It must be possible to eliminate all phi nodes in B. If ssa form
1467 is not up-to-date and a name-mapping is registered, we cannot eliminate
1468 any phis. Symbols marked for renaming are never a problem though. */
1469 phis = phi_nodes (b);
1470 if (!gimple_seq_empty_p (phis)
1471 && name_mappings_registered_p ())
1472 return false;
1474 /* When not optimizing, don't merge if we'd lose goto_locus. */
1475 if (!optimize
1476 && single_succ_edge (a)->goto_locus != UNKNOWN_LOCATION)
1478 location_t goto_locus = single_succ_edge (a)->goto_locus;
1479 gimple_stmt_iterator prev, next;
1480 prev = gsi_last_nondebug_bb (a);
1481 next = gsi_after_labels (b);
1482 if (!gsi_end_p (next) && is_gimple_debug (gsi_stmt (next)))
1483 gsi_next_nondebug (&next);
1484 if ((gsi_end_p (prev)
1485 || gimple_location (gsi_stmt (prev)) != goto_locus)
1486 && (gsi_end_p (next)
1487 || gimple_location (gsi_stmt (next)) != goto_locus))
1488 return false;
1491 return true;
1494 /* Return true if the var whose chain of uses starts at PTR has no
1495 nondebug uses. */
1496 bool
1497 has_zero_uses_1 (const ssa_use_operand_t *head)
1499 const ssa_use_operand_t *ptr;
1501 for (ptr = head->next; ptr != head; ptr = ptr->next)
1502 if (!is_gimple_debug (USE_STMT (ptr)))
1503 return false;
1505 return true;
1508 /* Return true if the var whose chain of uses starts at PTR has a
1509 single nondebug use. Set USE_P and STMT to that single nondebug
1510 use, if so, or to NULL otherwise. */
1511 bool
1512 single_imm_use_1 (const ssa_use_operand_t *head,
1513 use_operand_p *use_p, gimple *stmt)
1515 ssa_use_operand_t *ptr, *single_use = 0;
1517 for (ptr = head->next; ptr != head; ptr = ptr->next)
1518 if (!is_gimple_debug (USE_STMT (ptr)))
1520 if (single_use)
1522 single_use = NULL;
1523 break;
1525 single_use = ptr;
1528 if (use_p)
1529 *use_p = single_use;
1531 if (stmt)
1532 *stmt = single_use ? single_use->loc.stmt : NULL;
1534 return !!single_use;
1537 /* Replaces all uses of NAME by VAL. */
1539 void
1540 replace_uses_by (tree name, tree val)
1542 imm_use_iterator imm_iter;
1543 use_operand_p use;
1544 gimple stmt;
1545 edge e;
1547 FOR_EACH_IMM_USE_STMT (stmt, imm_iter, name)
1549 FOR_EACH_IMM_USE_ON_STMT (use, imm_iter)
1551 replace_exp (use, val);
1553 if (gimple_code (stmt) == GIMPLE_PHI)
1555 e = gimple_phi_arg_edge (stmt, PHI_ARG_INDEX_FROM_USE (use));
1556 if (e->flags & EDGE_ABNORMAL)
1558 /* This can only occur for virtual operands, since
1559 for the real ones SSA_NAME_OCCURS_IN_ABNORMAL_PHI (name))
1560 would prevent replacement. */
1561 gcc_assert (!is_gimple_reg (name));
1562 SSA_NAME_OCCURS_IN_ABNORMAL_PHI (val) = 1;
1567 if (gimple_code (stmt) != GIMPLE_PHI)
1569 gimple_stmt_iterator gsi = gsi_for_stmt (stmt);
1570 size_t i;
1572 fold_stmt (&gsi);
1573 stmt = gsi_stmt (gsi);
1574 if (cfgcleanup_altered_bbs && !is_gimple_debug (stmt))
1575 bitmap_set_bit (cfgcleanup_altered_bbs, gimple_bb (stmt)->index);
1577 /* FIXME. This should go in update_stmt. */
1578 for (i = 0; i < gimple_num_ops (stmt); i++)
1580 tree op = gimple_op (stmt, i);
1581 /* Operands may be empty here. For example, the labels
1582 of a GIMPLE_COND are nulled out following the creation
1583 of the corresponding CFG edges. */
1584 if (op && TREE_CODE (op) == ADDR_EXPR)
1585 recompute_tree_invariant_for_addr_expr (op);
1588 maybe_clean_or_replace_eh_stmt (stmt, stmt);
1589 update_stmt (stmt);
1593 gcc_assert (has_zero_uses (name));
1595 /* Also update the trees stored in loop structures. */
1596 if (current_loops)
1598 struct loop *loop;
1599 loop_iterator li;
1601 FOR_EACH_LOOP (li, loop, 0)
1603 substitute_in_loop_info (loop, name, val);
1608 /* Merge block B into block A. */
1610 static void
1611 gimple_merge_blocks (basic_block a, basic_block b)
1613 gimple_stmt_iterator last, gsi, psi;
1614 gimple_seq phis = phi_nodes (b);
1616 if (dump_file)
1617 fprintf (dump_file, "Merging blocks %d and %d\n", a->index, b->index);
1619 /* Remove all single-valued PHI nodes from block B of the form
1620 V_i = PHI <V_j> by propagating V_j to all the uses of V_i. */
1621 gsi = gsi_last_bb (a);
1622 for (psi = gsi_start (phis); !gsi_end_p (psi); )
1624 gimple phi = gsi_stmt (psi);
1625 tree def = gimple_phi_result (phi), use = gimple_phi_arg_def (phi, 0);
1626 gimple copy;
1627 bool may_replace_uses = !is_gimple_reg (def)
1628 || may_propagate_copy (def, use);
1630 /* In case we maintain loop closed ssa form, do not propagate arguments
1631 of loop exit phi nodes. */
1632 if (current_loops
1633 && loops_state_satisfies_p (LOOP_CLOSED_SSA)
1634 && is_gimple_reg (def)
1635 && TREE_CODE (use) == SSA_NAME
1636 && a->loop_father != b->loop_father)
1637 may_replace_uses = false;
1639 if (!may_replace_uses)
1641 gcc_assert (is_gimple_reg (def));
1643 /* Note that just emitting the copies is fine -- there is no problem
1644 with ordering of phi nodes. This is because A is the single
1645 predecessor of B, therefore results of the phi nodes cannot
1646 appear as arguments of the phi nodes. */
1647 copy = gimple_build_assign (def, use);
1648 gsi_insert_after (&gsi, copy, GSI_NEW_STMT);
1649 remove_phi_node (&psi, false);
1651 else
1653 /* If we deal with a PHI for virtual operands, we can simply
1654 propagate these without fussing with folding or updating
1655 the stmt. */
1656 if (!is_gimple_reg (def))
1658 imm_use_iterator iter;
1659 use_operand_p use_p;
1660 gimple stmt;
1662 FOR_EACH_IMM_USE_STMT (stmt, iter, def)
1663 FOR_EACH_IMM_USE_ON_STMT (use_p, iter)
1664 SET_USE (use_p, use);
1666 if (SSA_NAME_OCCURS_IN_ABNORMAL_PHI (def))
1667 SSA_NAME_OCCURS_IN_ABNORMAL_PHI (use) = 1;
1669 else
1670 replace_uses_by (def, use);
1672 remove_phi_node (&psi, true);
1676 /* Ensure that B follows A. */
1677 move_block_after (b, a);
1679 gcc_assert (single_succ_edge (a)->flags & EDGE_FALLTHRU);
1680 gcc_assert (!last_stmt (a) || !stmt_ends_bb_p (last_stmt (a)));
1682 /* Remove labels from B and set gimple_bb to A for other statements. */
1683 for (gsi = gsi_start_bb (b); !gsi_end_p (gsi);)
1685 gimple stmt = gsi_stmt (gsi);
1686 if (gimple_code (stmt) == GIMPLE_LABEL)
1688 tree label = gimple_label_label (stmt);
1689 int lp_nr;
1691 gsi_remove (&gsi, false);
1693 /* Now that we can thread computed gotos, we might have
1694 a situation where we have a forced label in block B
1695 However, the label at the start of block B might still be
1696 used in other ways (think about the runtime checking for
1697 Fortran assigned gotos). So we can not just delete the
1698 label. Instead we move the label to the start of block A. */
1699 if (FORCED_LABEL (label))
1701 gimple_stmt_iterator dest_gsi = gsi_start_bb (a);
1702 gsi_insert_before (&dest_gsi, stmt, GSI_NEW_STMT);
1705 lp_nr = EH_LANDING_PAD_NR (label);
1706 if (lp_nr)
1708 eh_landing_pad lp = get_eh_landing_pad_from_number (lp_nr);
1709 lp->post_landing_pad = NULL;
1712 else
1714 gimple_set_bb (stmt, a);
1715 gsi_next (&gsi);
1719 /* Merge the sequences. */
1720 last = gsi_last_bb (a);
1721 gsi_insert_seq_after (&last, bb_seq (b), GSI_NEW_STMT);
1722 set_bb_seq (b, NULL);
1724 if (cfgcleanup_altered_bbs)
1725 bitmap_set_bit (cfgcleanup_altered_bbs, a->index);
1729 /* Return the one of two successors of BB that is not reachable by a
1730 complex edge, if there is one. Else, return BB. We use
1731 this in optimizations that use post-dominators for their heuristics,
1732 to catch the cases in C++ where function calls are involved. */
1734 basic_block
1735 single_noncomplex_succ (basic_block bb)
1737 edge e0, e1;
1738 if (EDGE_COUNT (bb->succs) != 2)
1739 return bb;
1741 e0 = EDGE_SUCC (bb, 0);
1742 e1 = EDGE_SUCC (bb, 1);
1743 if (e0->flags & EDGE_COMPLEX)
1744 return e1->dest;
1745 if (e1->flags & EDGE_COMPLEX)
1746 return e0->dest;
1748 return bb;
1751 /* T is CALL_EXPR. Set current_function_calls_* flags. */
1753 void
1754 notice_special_calls (gimple call)
1756 int flags = gimple_call_flags (call);
1758 if (flags & ECF_MAY_BE_ALLOCA)
1759 cfun->calls_alloca = true;
1760 if (flags & ECF_RETURNS_TWICE)
1761 cfun->calls_setjmp = true;
1765 /* Clear flags set by notice_special_calls. Used by dead code removal
1766 to update the flags. */
1768 void
1769 clear_special_calls (void)
1771 cfun->calls_alloca = false;
1772 cfun->calls_setjmp = false;
1775 /* Remove PHI nodes associated with basic block BB and all edges out of BB. */
1777 static void
1778 remove_phi_nodes_and_edges_for_unreachable_block (basic_block bb)
1780 /* Since this block is no longer reachable, we can just delete all
1781 of its PHI nodes. */
1782 remove_phi_nodes (bb);
1784 /* Remove edges to BB's successors. */
1785 while (EDGE_COUNT (bb->succs) > 0)
1786 remove_edge (EDGE_SUCC (bb, 0));
1790 /* Remove statements of basic block BB. */
1792 static void
1793 remove_bb (basic_block bb)
1795 gimple_stmt_iterator i;
1797 if (dump_file)
1799 fprintf (dump_file, "Removing basic block %d\n", bb->index);
1800 if (dump_flags & TDF_DETAILS)
1802 dump_bb (bb, dump_file, 0);
1803 fprintf (dump_file, "\n");
1807 if (current_loops)
1809 struct loop *loop = bb->loop_father;
1811 /* If a loop gets removed, clean up the information associated
1812 with it. */
1813 if (loop->latch == bb
1814 || loop->header == bb)
1815 free_numbers_of_iterations_estimates_loop (loop);
1818 /* Remove all the instructions in the block. */
1819 if (bb_seq (bb) != NULL)
1821 /* Walk backwards so as to get a chance to substitute all
1822 released DEFs into debug stmts. See
1823 eliminate_unnecessary_stmts() in tree-ssa-dce.c for more
1824 details. */
1825 for (i = gsi_last_bb (bb); !gsi_end_p (i);)
1827 gimple stmt = gsi_stmt (i);
1828 if (gimple_code (stmt) == GIMPLE_LABEL
1829 && (FORCED_LABEL (gimple_label_label (stmt))
1830 || DECL_NONLOCAL (gimple_label_label (stmt))))
1832 basic_block new_bb;
1833 gimple_stmt_iterator new_gsi;
1835 /* A non-reachable non-local label may still be referenced.
1836 But it no longer needs to carry the extra semantics of
1837 non-locality. */
1838 if (DECL_NONLOCAL (gimple_label_label (stmt)))
1840 DECL_NONLOCAL (gimple_label_label (stmt)) = 0;
1841 FORCED_LABEL (gimple_label_label (stmt)) = 1;
1844 new_bb = bb->prev_bb;
1845 new_gsi = gsi_start_bb (new_bb);
1846 gsi_remove (&i, false);
1847 gsi_insert_before (&new_gsi, stmt, GSI_NEW_STMT);
1849 else
1851 /* Release SSA definitions if we are in SSA. Note that we
1852 may be called when not in SSA. For example,
1853 final_cleanup calls this function via
1854 cleanup_tree_cfg. */
1855 if (gimple_in_ssa_p (cfun))
1856 release_defs (stmt);
1858 gsi_remove (&i, true);
1861 if (gsi_end_p (i))
1862 i = gsi_last_bb (bb);
1863 else
1864 gsi_prev (&i);
1868 remove_phi_nodes_and_edges_for_unreachable_block (bb);
1869 bb->il.gimple = NULL;
1873 /* Given a basic block BB ending with COND_EXPR or SWITCH_EXPR, and a
1874 predicate VAL, return the edge that will be taken out of the block.
1875 If VAL does not match a unique edge, NULL is returned. */
1877 edge
1878 find_taken_edge (basic_block bb, tree val)
1880 gimple stmt;
1882 stmt = last_stmt (bb);
1884 gcc_assert (stmt);
1885 gcc_assert (is_ctrl_stmt (stmt));
1887 if (val == NULL)
1888 return NULL;
1890 if (!is_gimple_min_invariant (val))
1891 return NULL;
1893 if (gimple_code (stmt) == GIMPLE_COND)
1894 return find_taken_edge_cond_expr (bb, val);
1896 if (gimple_code (stmt) == GIMPLE_SWITCH)
1897 return find_taken_edge_switch_expr (bb, val);
1899 if (computed_goto_p (stmt))
1901 /* Only optimize if the argument is a label, if the argument is
1902 not a label then we can not construct a proper CFG.
1904 It may be the case that we only need to allow the LABEL_REF to
1905 appear inside an ADDR_EXPR, but we also allow the LABEL_REF to
1906 appear inside a LABEL_EXPR just to be safe. */
1907 if ((TREE_CODE (val) == ADDR_EXPR || TREE_CODE (val) == LABEL_EXPR)
1908 && TREE_CODE (TREE_OPERAND (val, 0)) == LABEL_DECL)
1909 return find_taken_edge_computed_goto (bb, TREE_OPERAND (val, 0));
1910 return NULL;
1913 gcc_unreachable ();
1916 /* Given a constant value VAL and the entry block BB to a GOTO_EXPR
1917 statement, determine which of the outgoing edges will be taken out of the
1918 block. Return NULL if either edge may be taken. */
1920 static edge
1921 find_taken_edge_computed_goto (basic_block bb, tree val)
1923 basic_block dest;
1924 edge e = NULL;
1926 dest = label_to_block (val);
1927 if (dest)
1929 e = find_edge (bb, dest);
1930 gcc_assert (e != NULL);
1933 return e;
1936 /* Given a constant value VAL and the entry block BB to a COND_EXPR
1937 statement, determine which of the two edges will be taken out of the
1938 block. Return NULL if either edge may be taken. */
1940 static edge
1941 find_taken_edge_cond_expr (basic_block bb, tree val)
1943 edge true_edge, false_edge;
1945 extract_true_false_edges_from_block (bb, &true_edge, &false_edge);
1947 gcc_assert (TREE_CODE (val) == INTEGER_CST);
1948 return (integer_zerop (val) ? false_edge : true_edge);
1951 /* Given an INTEGER_CST VAL and the entry block BB to a SWITCH_EXPR
1952 statement, determine which edge will be taken out of the block. Return
1953 NULL if any edge may be taken. */
1955 static edge
1956 find_taken_edge_switch_expr (basic_block bb, tree val)
1958 basic_block dest_bb;
1959 edge e;
1960 gimple switch_stmt;
1961 tree taken_case;
1963 switch_stmt = last_stmt (bb);
1964 taken_case = find_case_label_for_value (switch_stmt, val);
1965 dest_bb = label_to_block (CASE_LABEL (taken_case));
1967 e = find_edge (bb, dest_bb);
1968 gcc_assert (e);
1969 return e;
1973 /* Return the CASE_LABEL_EXPR that SWITCH_STMT will take for VAL.
1974 We can make optimal use here of the fact that the case labels are
1975 sorted: We can do a binary search for a case matching VAL. */
1977 static tree
1978 find_case_label_for_value (gimple switch_stmt, tree val)
1980 size_t low, high, n = gimple_switch_num_labels (switch_stmt);
1981 tree default_case = gimple_switch_default_label (switch_stmt);
1983 for (low = 0, high = n; high - low > 1; )
1985 size_t i = (high + low) / 2;
1986 tree t = gimple_switch_label (switch_stmt, i);
1987 int cmp;
1989 /* Cache the result of comparing CASE_LOW and val. */
1990 cmp = tree_int_cst_compare (CASE_LOW (t), val);
1992 if (cmp > 0)
1993 high = i;
1994 else
1995 low = i;
1997 if (CASE_HIGH (t) == NULL)
1999 /* A singe-valued case label. */
2000 if (cmp == 0)
2001 return t;
2003 else
2005 /* A case range. We can only handle integer ranges. */
2006 if (cmp <= 0 && tree_int_cst_compare (CASE_HIGH (t), val) >= 0)
2007 return t;
2011 return default_case;
2015 /* Dump a basic block on stderr. */
2017 void
2018 gimple_debug_bb (basic_block bb)
2020 gimple_dump_bb (bb, stderr, 0, TDF_VOPS|TDF_MEMSYMS);
2024 /* Dump basic block with index N on stderr. */
2026 basic_block
2027 gimple_debug_bb_n (int n)
2029 gimple_debug_bb (BASIC_BLOCK (n));
2030 return BASIC_BLOCK (n);
2034 /* Dump the CFG on stderr.
2036 FLAGS are the same used by the tree dumping functions
2037 (see TDF_* in tree-pass.h). */
2039 void
2040 gimple_debug_cfg (int flags)
2042 gimple_dump_cfg (stderr, flags);
2046 /* Dump the program showing basic block boundaries on the given FILE.
2048 FLAGS are the same used by the tree dumping functions (see TDF_* in
2049 tree.h). */
2051 void
2052 gimple_dump_cfg (FILE *file, int flags)
2054 if (flags & TDF_DETAILS)
2056 dump_function_header (file, current_function_decl, flags);
2057 fprintf (file, ";; \n%d basic blocks, %d edges, last basic block %d.\n\n",
2058 n_basic_blocks, n_edges, last_basic_block);
2060 brief_dump_cfg (file);
2061 fprintf (file, "\n");
2064 if (flags & TDF_STATS)
2065 dump_cfg_stats (file);
2067 dump_function_to_file (current_function_decl, file, flags | TDF_BLOCKS);
2071 /* Dump CFG statistics on FILE. */
2073 void
2074 dump_cfg_stats (FILE *file)
2076 static long max_num_merged_labels = 0;
2077 unsigned long size, total = 0;
2078 long num_edges;
2079 basic_block bb;
2080 const char * const fmt_str = "%-30s%-13s%12s\n";
2081 const char * const fmt_str_1 = "%-30s%13d%11lu%c\n";
2082 const char * const fmt_str_2 = "%-30s%13ld%11lu%c\n";
2083 const char * const fmt_str_3 = "%-43s%11lu%c\n";
2084 const char *funcname
2085 = lang_hooks.decl_printable_name (current_function_decl, 2);
2088 fprintf (file, "\nCFG Statistics for %s\n\n", funcname);
2090 fprintf (file, "---------------------------------------------------------\n");
2091 fprintf (file, fmt_str, "", " Number of ", "Memory");
2092 fprintf (file, fmt_str, "", " instances ", "used ");
2093 fprintf (file, "---------------------------------------------------------\n");
2095 size = n_basic_blocks * sizeof (struct basic_block_def);
2096 total += size;
2097 fprintf (file, fmt_str_1, "Basic blocks", n_basic_blocks,
2098 SCALE (size), LABEL (size));
2100 num_edges = 0;
2101 FOR_EACH_BB (bb)
2102 num_edges += EDGE_COUNT (bb->succs);
2103 size = num_edges * sizeof (struct edge_def);
2104 total += size;
2105 fprintf (file, fmt_str_2, "Edges", num_edges, SCALE (size), LABEL (size));
2107 fprintf (file, "---------------------------------------------------------\n");
2108 fprintf (file, fmt_str_3, "Total memory used by CFG data", SCALE (total),
2109 LABEL (total));
2110 fprintf (file, "---------------------------------------------------------\n");
2111 fprintf (file, "\n");
2113 if (cfg_stats.num_merged_labels > max_num_merged_labels)
2114 max_num_merged_labels = cfg_stats.num_merged_labels;
2116 fprintf (file, "Coalesced label blocks: %ld (Max so far: %ld)\n",
2117 cfg_stats.num_merged_labels, max_num_merged_labels);
2119 fprintf (file, "\n");
2123 /* Dump CFG statistics on stderr. Keep extern so that it's always
2124 linked in the final executable. */
2126 DEBUG_FUNCTION void
2127 debug_cfg_stats (void)
2129 dump_cfg_stats (stderr);
2133 /* Dump the flowgraph to a .vcg FILE. */
2135 static void
2136 gimple_cfg2vcg (FILE *file)
2138 edge e;
2139 edge_iterator ei;
2140 basic_block bb;
2141 const char *funcname
2142 = lang_hooks.decl_printable_name (current_function_decl, 2);
2144 /* Write the file header. */
2145 fprintf (file, "graph: { title: \"%s\"\n", funcname);
2146 fprintf (file, "node: { title: \"ENTRY\" label: \"ENTRY\" }\n");
2147 fprintf (file, "node: { title: \"EXIT\" label: \"EXIT\" }\n");
2149 /* Write blocks and edges. */
2150 FOR_EACH_EDGE (e, ei, ENTRY_BLOCK_PTR->succs)
2152 fprintf (file, "edge: { sourcename: \"ENTRY\" targetname: \"%d\"",
2153 e->dest->index);
2155 if (e->flags & EDGE_FAKE)
2156 fprintf (file, " linestyle: dotted priority: 10");
2157 else
2158 fprintf (file, " linestyle: solid priority: 100");
2160 fprintf (file, " }\n");
2162 fputc ('\n', file);
2164 FOR_EACH_BB (bb)
2166 enum gimple_code head_code, end_code;
2167 const char *head_name, *end_name;
2168 int head_line = 0;
2169 int end_line = 0;
2170 gimple first = first_stmt (bb);
2171 gimple last = last_stmt (bb);
2173 if (first)
2175 head_code = gimple_code (first);
2176 head_name = gimple_code_name[head_code];
2177 head_line = get_lineno (first);
2179 else
2180 head_name = "no-statement";
2182 if (last)
2184 end_code = gimple_code (last);
2185 end_name = gimple_code_name[end_code];
2186 end_line = get_lineno (last);
2188 else
2189 end_name = "no-statement";
2191 fprintf (file, "node: { title: \"%d\" label: \"#%d\\n%s (%d)\\n%s (%d)\"}\n",
2192 bb->index, bb->index, head_name, head_line, end_name,
2193 end_line);
2195 FOR_EACH_EDGE (e, ei, bb->succs)
2197 if (e->dest == EXIT_BLOCK_PTR)
2198 fprintf (file, "edge: { sourcename: \"%d\" targetname: \"EXIT\"", bb->index);
2199 else
2200 fprintf (file, "edge: { sourcename: \"%d\" targetname: \"%d\"", bb->index, e->dest->index);
2202 if (e->flags & EDGE_FAKE)
2203 fprintf (file, " priority: 10 linestyle: dotted");
2204 else
2205 fprintf (file, " priority: 100 linestyle: solid");
2207 fprintf (file, " }\n");
2210 if (bb->next_bb != EXIT_BLOCK_PTR)
2211 fputc ('\n', file);
2214 fputs ("}\n\n", file);
2219 /*---------------------------------------------------------------------------
2220 Miscellaneous helpers
2221 ---------------------------------------------------------------------------*/
2223 /* Return true if T represents a stmt that always transfers control. */
2225 bool
2226 is_ctrl_stmt (gimple t)
2228 switch (gimple_code (t))
2230 case GIMPLE_COND:
2231 case GIMPLE_SWITCH:
2232 case GIMPLE_GOTO:
2233 case GIMPLE_RETURN:
2234 case GIMPLE_RESX:
2235 return true;
2236 default:
2237 return false;
2242 /* Return true if T is a statement that may alter the flow of control
2243 (e.g., a call to a non-returning function). */
2245 bool
2246 is_ctrl_altering_stmt (gimple t)
2248 gcc_assert (t);
2250 switch (gimple_code (t))
2252 case GIMPLE_CALL:
2254 int flags = gimple_call_flags (t);
2256 /* A non-pure/const call alters flow control if the current
2257 function has nonlocal labels. */
2258 if (!(flags & (ECF_CONST | ECF_PURE | ECF_LEAF))
2259 && cfun->has_nonlocal_label)
2260 return true;
2262 /* A call also alters control flow if it does not return. */
2263 if (flags & ECF_NORETURN)
2264 return true;
2266 /* BUILT_IN_RETURN call is same as return statement. */
2267 if (gimple_call_builtin_p (t, BUILT_IN_RETURN))
2268 return true;
2270 break;
2272 case GIMPLE_EH_DISPATCH:
2273 /* EH_DISPATCH branches to the individual catch handlers at
2274 this level of a try or allowed-exceptions region. It can
2275 fallthru to the next statement as well. */
2276 return true;
2278 case GIMPLE_ASM:
2279 if (gimple_asm_nlabels (t) > 0)
2280 return true;
2281 break;
2283 CASE_GIMPLE_OMP:
2284 /* OpenMP directives alter control flow. */
2285 return true;
2287 default:
2288 break;
2291 /* If a statement can throw, it alters control flow. */
2292 return stmt_can_throw_internal (t);
2296 /* Return true if T is a simple local goto. */
2298 bool
2299 simple_goto_p (gimple t)
2301 return (gimple_code (t) == GIMPLE_GOTO
2302 && TREE_CODE (gimple_goto_dest (t)) == LABEL_DECL);
2306 /* Return true if T can make an abnormal transfer of control flow.
2307 Transfers of control flow associated with EH are excluded. */
2309 bool
2310 stmt_can_make_abnormal_goto (gimple t)
2312 if (computed_goto_p (t))
2313 return true;
2314 if (is_gimple_call (t))
2315 return (gimple_has_side_effects (t) && cfun->has_nonlocal_label
2316 && !(gimple_call_flags (t) & ECF_LEAF));
2317 return false;
2321 /* Return true if STMT should start a new basic block. PREV_STMT is
2322 the statement preceding STMT. It is used when STMT is a label or a
2323 case label. Labels should only start a new basic block if their
2324 previous statement wasn't a label. Otherwise, sequence of labels
2325 would generate unnecessary basic blocks that only contain a single
2326 label. */
2328 static inline bool
2329 stmt_starts_bb_p (gimple stmt, gimple prev_stmt)
2331 if (stmt == NULL)
2332 return false;
2334 /* Labels start a new basic block only if the preceding statement
2335 wasn't a label of the same type. This prevents the creation of
2336 consecutive blocks that have nothing but a single label. */
2337 if (gimple_code (stmt) == GIMPLE_LABEL)
2339 /* Nonlocal and computed GOTO targets always start a new block. */
2340 if (DECL_NONLOCAL (gimple_label_label (stmt))
2341 || FORCED_LABEL (gimple_label_label (stmt)))
2342 return true;
2344 if (prev_stmt && gimple_code (prev_stmt) == GIMPLE_LABEL)
2346 if (DECL_NONLOCAL (gimple_label_label (prev_stmt)))
2347 return true;
2349 cfg_stats.num_merged_labels++;
2350 return false;
2352 else
2353 return true;
2356 return false;
2360 /* Return true if T should end a basic block. */
2362 bool
2363 stmt_ends_bb_p (gimple t)
2365 return is_ctrl_stmt (t) || is_ctrl_altering_stmt (t);
2368 /* Remove block annotations and other data structures. */
2370 void
2371 delete_tree_cfg_annotations (void)
2373 label_to_block_map = NULL;
2377 /* Return the first statement in basic block BB. */
2379 gimple
2380 first_stmt (basic_block bb)
2382 gimple_stmt_iterator i = gsi_start_bb (bb);
2383 gimple stmt = NULL;
2385 while (!gsi_end_p (i) && is_gimple_debug ((stmt = gsi_stmt (i))))
2387 gsi_next (&i);
2388 stmt = NULL;
2390 return stmt;
2393 /* Return the first non-label statement in basic block BB. */
2395 static gimple
2396 first_non_label_stmt (basic_block bb)
2398 gimple_stmt_iterator i = gsi_start_bb (bb);
2399 while (!gsi_end_p (i) && gimple_code (gsi_stmt (i)) == GIMPLE_LABEL)
2400 gsi_next (&i);
2401 return !gsi_end_p (i) ? gsi_stmt (i) : NULL;
2404 /* Return the last statement in basic block BB. */
2406 gimple
2407 last_stmt (basic_block bb)
2409 gimple_stmt_iterator i = gsi_last_bb (bb);
2410 gimple stmt = NULL;
2412 while (!gsi_end_p (i) && is_gimple_debug ((stmt = gsi_stmt (i))))
2414 gsi_prev (&i);
2415 stmt = NULL;
2417 return stmt;
2420 /* Return the last statement of an otherwise empty block. Return NULL
2421 if the block is totally empty, or if it contains more than one
2422 statement. */
2424 gimple
2425 last_and_only_stmt (basic_block bb)
2427 gimple_stmt_iterator i = gsi_last_nondebug_bb (bb);
2428 gimple last, prev;
2430 if (gsi_end_p (i))
2431 return NULL;
2433 last = gsi_stmt (i);
2434 gsi_prev_nondebug (&i);
2435 if (gsi_end_p (i))
2436 return last;
2438 /* Empty statements should no longer appear in the instruction stream.
2439 Everything that might have appeared before should be deleted by
2440 remove_useless_stmts, and the optimizers should just gsi_remove
2441 instead of smashing with build_empty_stmt.
2443 Thus the only thing that should appear here in a block containing
2444 one executable statement is a label. */
2445 prev = gsi_stmt (i);
2446 if (gimple_code (prev) == GIMPLE_LABEL)
2447 return last;
2448 else
2449 return NULL;
2452 /* Reinstall those PHI arguments queued in OLD_EDGE to NEW_EDGE. */
2454 static void
2455 reinstall_phi_args (edge new_edge, edge old_edge)
2457 edge_var_map_vector v;
2458 edge_var_map *vm;
2459 int i;
2460 gimple_stmt_iterator phis;
2462 v = redirect_edge_var_map_vector (old_edge);
2463 if (!v)
2464 return;
2466 for (i = 0, phis = gsi_start_phis (new_edge->dest);
2467 VEC_iterate (edge_var_map, v, i, vm) && !gsi_end_p (phis);
2468 i++, gsi_next (&phis))
2470 gimple phi = gsi_stmt (phis);
2471 tree result = redirect_edge_var_map_result (vm);
2472 tree arg = redirect_edge_var_map_def (vm);
2474 gcc_assert (result == gimple_phi_result (phi));
2476 add_phi_arg (phi, arg, new_edge, redirect_edge_var_map_location (vm));
2479 redirect_edge_var_map_clear (old_edge);
2482 /* Returns the basic block after which the new basic block created
2483 by splitting edge EDGE_IN should be placed. Tries to keep the new block
2484 near its "logical" location. This is of most help to humans looking
2485 at debugging dumps. */
2487 static basic_block
2488 split_edge_bb_loc (edge edge_in)
2490 basic_block dest = edge_in->dest;
2491 basic_block dest_prev = dest->prev_bb;
2493 if (dest_prev)
2495 edge e = find_edge (dest_prev, dest);
2496 if (e && !(e->flags & EDGE_COMPLEX))
2497 return edge_in->src;
2499 return dest_prev;
2502 /* Split a (typically critical) edge EDGE_IN. Return the new block.
2503 Abort on abnormal edges. */
2505 static basic_block
2506 gimple_split_edge (edge edge_in)
2508 basic_block new_bb, after_bb, dest;
2509 edge new_edge, e;
2511 /* Abnormal edges cannot be split. */
2512 gcc_assert (!(edge_in->flags & EDGE_ABNORMAL));
2514 dest = edge_in->dest;
2516 after_bb = split_edge_bb_loc (edge_in);
2518 new_bb = create_empty_bb (after_bb);
2519 new_bb->frequency = EDGE_FREQUENCY (edge_in);
2520 new_bb->count = edge_in->count;
2521 new_edge = make_edge (new_bb, dest, EDGE_FALLTHRU);
2522 new_edge->probability = REG_BR_PROB_BASE;
2523 new_edge->count = edge_in->count;
2525 e = redirect_edge_and_branch (edge_in, new_bb);
2526 gcc_assert (e == edge_in);
2527 reinstall_phi_args (new_edge, e);
2529 return new_bb;
2533 /* Verify properties of the address expression T with base object BASE. */
2535 static tree
2536 verify_address (tree t, tree base)
2538 bool old_constant;
2539 bool old_side_effects;
2540 bool new_constant;
2541 bool new_side_effects;
2543 old_constant = TREE_CONSTANT (t);
2544 old_side_effects = TREE_SIDE_EFFECTS (t);
2546 recompute_tree_invariant_for_addr_expr (t);
2547 new_side_effects = TREE_SIDE_EFFECTS (t);
2548 new_constant = TREE_CONSTANT (t);
2550 if (old_constant != new_constant)
2552 error ("constant not recomputed when ADDR_EXPR changed");
2553 return t;
2555 if (old_side_effects != new_side_effects)
2557 error ("side effects not recomputed when ADDR_EXPR changed");
2558 return t;
2561 if (!(TREE_CODE (base) == VAR_DECL
2562 || TREE_CODE (base) == PARM_DECL
2563 || TREE_CODE (base) == RESULT_DECL))
2564 return NULL_TREE;
2566 if (DECL_GIMPLE_REG_P (base))
2568 error ("DECL_GIMPLE_REG_P set on a variable with address taken");
2569 return base;
2572 return NULL_TREE;
2575 /* Callback for walk_tree, check that all elements with address taken are
2576 properly noticed as such. The DATA is an int* that is 1 if TP was seen
2577 inside a PHI node. */
2579 static tree
2580 verify_expr (tree *tp, int *walk_subtrees, void *data ATTRIBUTE_UNUSED)
2582 tree t = *tp, x;
2584 if (TYPE_P (t))
2585 *walk_subtrees = 0;
2587 /* Check operand N for being valid GIMPLE and give error MSG if not. */
2588 #define CHECK_OP(N, MSG) \
2589 do { if (!is_gimple_val (TREE_OPERAND (t, N))) \
2590 { error (MSG); return TREE_OPERAND (t, N); }} while (0)
2592 switch (TREE_CODE (t))
2594 case SSA_NAME:
2595 if (SSA_NAME_IN_FREE_LIST (t))
2597 error ("SSA name in freelist but still referenced");
2598 return *tp;
2600 break;
2602 case INDIRECT_REF:
2603 error ("INDIRECT_REF in gimple IL");
2604 return t;
2606 case MEM_REF:
2607 x = TREE_OPERAND (t, 0);
2608 if (!POINTER_TYPE_P (TREE_TYPE (x))
2609 || !is_gimple_mem_ref_addr (x))
2611 error ("invalid first operand of MEM_REF");
2612 return x;
2614 if (TREE_CODE (TREE_OPERAND (t, 1)) != INTEGER_CST
2615 || !POINTER_TYPE_P (TREE_TYPE (TREE_OPERAND (t, 1))))
2617 error ("invalid offset operand of MEM_REF");
2618 return TREE_OPERAND (t, 1);
2620 if (TREE_CODE (x) == ADDR_EXPR
2621 && (x = verify_address (x, TREE_OPERAND (x, 0))))
2622 return x;
2623 *walk_subtrees = 0;
2624 break;
2626 case ASSERT_EXPR:
2627 x = fold (ASSERT_EXPR_COND (t));
2628 if (x == boolean_false_node)
2630 error ("ASSERT_EXPR with an always-false condition");
2631 return *tp;
2633 break;
2635 case MODIFY_EXPR:
2636 error ("MODIFY_EXPR not expected while having tuples");
2637 return *tp;
2639 case ADDR_EXPR:
2641 tree tem;
2643 gcc_assert (is_gimple_address (t));
2645 /* Skip any references (they will be checked when we recurse down the
2646 tree) and ensure that any variable used as a prefix is marked
2647 addressable. */
2648 for (x = TREE_OPERAND (t, 0);
2649 handled_component_p (x);
2650 x = TREE_OPERAND (x, 0))
2653 if ((tem = verify_address (t, x)))
2654 return tem;
2656 if (!(TREE_CODE (x) == VAR_DECL
2657 || TREE_CODE (x) == PARM_DECL
2658 || TREE_CODE (x) == RESULT_DECL))
2659 return NULL;
2661 if (!TREE_ADDRESSABLE (x))
2663 error ("address taken, but ADDRESSABLE bit not set");
2664 return x;
2667 break;
2670 case COND_EXPR:
2671 x = COND_EXPR_COND (t);
2672 if (!INTEGRAL_TYPE_P (TREE_TYPE (x)))
2674 error ("non-integral used in condition");
2675 return x;
2677 if (!is_gimple_condexpr (x))
2679 error ("invalid conditional operand");
2680 return x;
2682 break;
2684 case NON_LVALUE_EXPR:
2685 case TRUTH_NOT_EXPR:
2686 gcc_unreachable ();
2688 CASE_CONVERT:
2689 case FIX_TRUNC_EXPR:
2690 case FLOAT_EXPR:
2691 case NEGATE_EXPR:
2692 case ABS_EXPR:
2693 case BIT_NOT_EXPR:
2694 CHECK_OP (0, "invalid operand to unary operator");
2695 break;
2697 case REALPART_EXPR:
2698 case IMAGPART_EXPR:
2699 case COMPONENT_REF:
2700 case ARRAY_REF:
2701 case ARRAY_RANGE_REF:
2702 case BIT_FIELD_REF:
2703 case VIEW_CONVERT_EXPR:
2704 /* We have a nest of references. Verify that each of the operands
2705 that determine where to reference is either a constant or a variable,
2706 verify that the base is valid, and then show we've already checked
2707 the subtrees. */
2708 while (handled_component_p (t))
2710 if (TREE_CODE (t) == COMPONENT_REF && TREE_OPERAND (t, 2))
2711 CHECK_OP (2, "invalid COMPONENT_REF offset operator");
2712 else if (TREE_CODE (t) == ARRAY_REF
2713 || TREE_CODE (t) == ARRAY_RANGE_REF)
2715 CHECK_OP (1, "invalid array index");
2716 if (TREE_OPERAND (t, 2))
2717 CHECK_OP (2, "invalid array lower bound");
2718 if (TREE_OPERAND (t, 3))
2719 CHECK_OP (3, "invalid array stride");
2721 else if (TREE_CODE (t) == BIT_FIELD_REF)
2723 if (!host_integerp (TREE_OPERAND (t, 1), 1)
2724 || !host_integerp (TREE_OPERAND (t, 2), 1))
2726 error ("invalid position or size operand to BIT_FIELD_REF");
2727 return t;
2729 else if (INTEGRAL_TYPE_P (TREE_TYPE (t))
2730 && (TYPE_PRECISION (TREE_TYPE (t))
2731 != TREE_INT_CST_LOW (TREE_OPERAND (t, 1))))
2733 error ("integral result type precision does not match "
2734 "field size of BIT_FIELD_REF");
2735 return t;
2737 if (!INTEGRAL_TYPE_P (TREE_TYPE (t))
2738 && (GET_MODE_PRECISION (TYPE_MODE (TREE_TYPE (t)))
2739 != TREE_INT_CST_LOW (TREE_OPERAND (t, 1))))
2741 error ("mode precision of non-integral result does not "
2742 "match field size of BIT_FIELD_REF");
2743 return t;
2747 t = TREE_OPERAND (t, 0);
2750 if (!is_gimple_min_invariant (t) && !is_gimple_lvalue (t))
2752 error ("invalid reference prefix");
2753 return t;
2755 *walk_subtrees = 0;
2756 break;
2757 case PLUS_EXPR:
2758 case MINUS_EXPR:
2759 /* PLUS_EXPR and MINUS_EXPR don't work on pointers, they should be done using
2760 POINTER_PLUS_EXPR. */
2761 if (POINTER_TYPE_P (TREE_TYPE (t)))
2763 error ("invalid operand to plus/minus, type is a pointer");
2764 return t;
2766 CHECK_OP (0, "invalid operand to binary operator");
2767 CHECK_OP (1, "invalid operand to binary operator");
2768 break;
2770 case POINTER_PLUS_EXPR:
2771 /* Check to make sure the first operand is a pointer or reference type. */
2772 if (!POINTER_TYPE_P (TREE_TYPE (TREE_OPERAND (t, 0))))
2774 error ("invalid operand to pointer plus, first operand is not a pointer");
2775 return t;
2777 /* Check to make sure the second operand is a ptrofftype. */
2778 if (!ptrofftype_p (TREE_TYPE (TREE_OPERAND (t, 1))))
2780 error ("invalid operand to pointer plus, second operand is not an "
2781 "integer type of appropriate width");
2782 return t;
2784 /* FALLTHROUGH */
2785 case LT_EXPR:
2786 case LE_EXPR:
2787 case GT_EXPR:
2788 case GE_EXPR:
2789 case EQ_EXPR:
2790 case NE_EXPR:
2791 case UNORDERED_EXPR:
2792 case ORDERED_EXPR:
2793 case UNLT_EXPR:
2794 case UNLE_EXPR:
2795 case UNGT_EXPR:
2796 case UNGE_EXPR:
2797 case UNEQ_EXPR:
2798 case LTGT_EXPR:
2799 case MULT_EXPR:
2800 case TRUNC_DIV_EXPR:
2801 case CEIL_DIV_EXPR:
2802 case FLOOR_DIV_EXPR:
2803 case ROUND_DIV_EXPR:
2804 case TRUNC_MOD_EXPR:
2805 case CEIL_MOD_EXPR:
2806 case FLOOR_MOD_EXPR:
2807 case ROUND_MOD_EXPR:
2808 case RDIV_EXPR:
2809 case EXACT_DIV_EXPR:
2810 case MIN_EXPR:
2811 case MAX_EXPR:
2812 case LSHIFT_EXPR:
2813 case RSHIFT_EXPR:
2814 case LROTATE_EXPR:
2815 case RROTATE_EXPR:
2816 case BIT_IOR_EXPR:
2817 case BIT_XOR_EXPR:
2818 case BIT_AND_EXPR:
2819 CHECK_OP (0, "invalid operand to binary operator");
2820 CHECK_OP (1, "invalid operand to binary operator");
2821 break;
2823 case CONSTRUCTOR:
2824 if (TREE_CONSTANT (t) && TREE_CODE (TREE_TYPE (t)) == VECTOR_TYPE)
2825 *walk_subtrees = 0;
2826 break;
2828 case CASE_LABEL_EXPR:
2829 if (CASE_CHAIN (t))
2831 error ("invalid CASE_CHAIN");
2832 return t;
2834 break;
2836 default:
2837 break;
2839 return NULL;
2841 #undef CHECK_OP
2845 /* Verify if EXPR is either a GIMPLE ID or a GIMPLE indirect reference.
2846 Returns true if there is an error, otherwise false. */
2848 static bool
2849 verify_types_in_gimple_min_lval (tree expr)
2851 tree op;
2853 if (is_gimple_id (expr))
2854 return false;
2856 if (TREE_CODE (expr) != TARGET_MEM_REF
2857 && TREE_CODE (expr) != MEM_REF)
2859 error ("invalid expression for min lvalue");
2860 return true;
2863 /* TARGET_MEM_REFs are strange beasts. */
2864 if (TREE_CODE (expr) == TARGET_MEM_REF)
2865 return false;
2867 op = TREE_OPERAND (expr, 0);
2868 if (!is_gimple_val (op))
2870 error ("invalid operand in indirect reference");
2871 debug_generic_stmt (op);
2872 return true;
2874 /* Memory references now generally can involve a value conversion. */
2876 return false;
2879 /* Verify if EXPR is a valid GIMPLE reference expression. If
2880 REQUIRE_LVALUE is true verifies it is an lvalue. Returns true
2881 if there is an error, otherwise false. */
2883 static bool
2884 verify_types_in_gimple_reference (tree expr, bool require_lvalue)
2886 while (handled_component_p (expr))
2888 tree op = TREE_OPERAND (expr, 0);
2890 if (TREE_CODE (expr) == ARRAY_REF
2891 || TREE_CODE (expr) == ARRAY_RANGE_REF)
2893 if (!is_gimple_val (TREE_OPERAND (expr, 1))
2894 || (TREE_OPERAND (expr, 2)
2895 && !is_gimple_val (TREE_OPERAND (expr, 2)))
2896 || (TREE_OPERAND (expr, 3)
2897 && !is_gimple_val (TREE_OPERAND (expr, 3))))
2899 error ("invalid operands to array reference");
2900 debug_generic_stmt (expr);
2901 return true;
2905 /* Verify if the reference array element types are compatible. */
2906 if (TREE_CODE (expr) == ARRAY_REF
2907 && !useless_type_conversion_p (TREE_TYPE (expr),
2908 TREE_TYPE (TREE_TYPE (op))))
2910 error ("type mismatch in array reference");
2911 debug_generic_stmt (TREE_TYPE (expr));
2912 debug_generic_stmt (TREE_TYPE (TREE_TYPE (op)));
2913 return true;
2915 if (TREE_CODE (expr) == ARRAY_RANGE_REF
2916 && !useless_type_conversion_p (TREE_TYPE (TREE_TYPE (expr)),
2917 TREE_TYPE (TREE_TYPE (op))))
2919 error ("type mismatch in array range reference");
2920 debug_generic_stmt (TREE_TYPE (TREE_TYPE (expr)));
2921 debug_generic_stmt (TREE_TYPE (TREE_TYPE (op)));
2922 return true;
2925 if ((TREE_CODE (expr) == REALPART_EXPR
2926 || TREE_CODE (expr) == IMAGPART_EXPR)
2927 && !useless_type_conversion_p (TREE_TYPE (expr),
2928 TREE_TYPE (TREE_TYPE (op))))
2930 error ("type mismatch in real/imagpart reference");
2931 debug_generic_stmt (TREE_TYPE (expr));
2932 debug_generic_stmt (TREE_TYPE (TREE_TYPE (op)));
2933 return true;
2936 if (TREE_CODE (expr) == COMPONENT_REF
2937 && !useless_type_conversion_p (TREE_TYPE (expr),
2938 TREE_TYPE (TREE_OPERAND (expr, 1))))
2940 error ("type mismatch in component reference");
2941 debug_generic_stmt (TREE_TYPE (expr));
2942 debug_generic_stmt (TREE_TYPE (TREE_OPERAND (expr, 1)));
2943 return true;
2946 if (TREE_CODE (expr) == VIEW_CONVERT_EXPR)
2948 /* For VIEW_CONVERT_EXPRs which are allowed here too, we only check
2949 that their operand is not an SSA name or an invariant when
2950 requiring an lvalue (this usually means there is a SRA or IPA-SRA
2951 bug). Otherwise there is nothing to verify, gross mismatches at
2952 most invoke undefined behavior. */
2953 if (require_lvalue
2954 && (TREE_CODE (op) == SSA_NAME
2955 || is_gimple_min_invariant (op)))
2957 error ("conversion of an SSA_NAME on the left hand side");
2958 debug_generic_stmt (expr);
2959 return true;
2961 else if (TREE_CODE (op) == SSA_NAME
2962 && TYPE_SIZE (TREE_TYPE (expr)) != TYPE_SIZE (TREE_TYPE (op)))
2964 error ("conversion of register to a different size");
2965 debug_generic_stmt (expr);
2966 return true;
2968 else if (!handled_component_p (op))
2969 return false;
2972 expr = op;
2975 if (TREE_CODE (expr) == MEM_REF)
2977 if (!is_gimple_mem_ref_addr (TREE_OPERAND (expr, 0)))
2979 error ("invalid address operand in MEM_REF");
2980 debug_generic_stmt (expr);
2981 return true;
2983 if (TREE_CODE (TREE_OPERAND (expr, 1)) != INTEGER_CST
2984 || !POINTER_TYPE_P (TREE_TYPE (TREE_OPERAND (expr, 1))))
2986 error ("invalid offset operand in MEM_REF");
2987 debug_generic_stmt (expr);
2988 return true;
2991 else if (TREE_CODE (expr) == TARGET_MEM_REF)
2993 if (!TMR_BASE (expr)
2994 || !is_gimple_mem_ref_addr (TMR_BASE (expr)))
2996 error ("invalid address operand in TARGET_MEM_REF");
2997 return true;
2999 if (!TMR_OFFSET (expr)
3000 || TREE_CODE (TMR_OFFSET (expr)) != INTEGER_CST
3001 || !POINTER_TYPE_P (TREE_TYPE (TMR_OFFSET (expr))))
3003 error ("invalid offset operand in TARGET_MEM_REF");
3004 debug_generic_stmt (expr);
3005 return true;
3009 return ((require_lvalue || !is_gimple_min_invariant (expr))
3010 && verify_types_in_gimple_min_lval (expr));
3013 /* Returns true if there is one pointer type in TYPE_POINTER_TO (SRC_OBJ)
3014 list of pointer-to types that is trivially convertible to DEST. */
3016 static bool
3017 one_pointer_to_useless_type_conversion_p (tree dest, tree src_obj)
3019 tree src;
3021 if (!TYPE_POINTER_TO (src_obj))
3022 return true;
3024 for (src = TYPE_POINTER_TO (src_obj); src; src = TYPE_NEXT_PTR_TO (src))
3025 if (useless_type_conversion_p (dest, src))
3026 return true;
3028 return false;
3031 /* Return true if TYPE1 is a fixed-point type and if conversions to and
3032 from TYPE2 can be handled by FIXED_CONVERT_EXPR. */
3034 static bool
3035 valid_fixed_convert_types_p (tree type1, tree type2)
3037 return (FIXED_POINT_TYPE_P (type1)
3038 && (INTEGRAL_TYPE_P (type2)
3039 || SCALAR_FLOAT_TYPE_P (type2)
3040 || FIXED_POINT_TYPE_P (type2)));
3043 /* Verify the contents of a GIMPLE_CALL STMT. Returns true when there
3044 is a problem, otherwise false. */
3046 static bool
3047 verify_gimple_call (gimple stmt)
3049 tree fn = gimple_call_fn (stmt);
3050 tree fntype, fndecl;
3051 unsigned i;
3053 if (gimple_call_internal_p (stmt))
3055 if (fn)
3057 error ("gimple call has two targets");
3058 debug_generic_stmt (fn);
3059 return true;
3062 else
3064 if (!fn)
3066 error ("gimple call has no target");
3067 return true;
3071 if (fn && !is_gimple_call_addr (fn))
3073 error ("invalid function in gimple call");
3074 debug_generic_stmt (fn);
3075 return true;
3078 if (fn
3079 && (!POINTER_TYPE_P (TREE_TYPE (fn))
3080 || (TREE_CODE (TREE_TYPE (TREE_TYPE (fn))) != FUNCTION_TYPE
3081 && TREE_CODE (TREE_TYPE (TREE_TYPE (fn))) != METHOD_TYPE)))
3083 error ("non-function in gimple call");
3084 return true;
3087 fndecl = gimple_call_fndecl (stmt);
3088 if (fndecl
3089 && TREE_CODE (fndecl) == FUNCTION_DECL
3090 && DECL_LOOPING_CONST_OR_PURE_P (fndecl)
3091 && !DECL_PURE_P (fndecl)
3092 && !TREE_READONLY (fndecl))
3094 error ("invalid pure const state for function");
3095 return true;
3098 if (gimple_call_lhs (stmt)
3099 && (!is_gimple_lvalue (gimple_call_lhs (stmt))
3100 || verify_types_in_gimple_reference (gimple_call_lhs (stmt), true)))
3102 error ("invalid LHS in gimple call");
3103 return true;
3106 if (gimple_call_lhs (stmt) && gimple_call_noreturn_p (stmt))
3108 error ("LHS in noreturn call");
3109 return true;
3112 fntype = gimple_call_fntype (stmt);
3113 if (fntype
3114 && gimple_call_lhs (stmt)
3115 && !useless_type_conversion_p (TREE_TYPE (gimple_call_lhs (stmt)),
3116 TREE_TYPE (fntype))
3117 /* ??? At least C++ misses conversions at assignments from
3118 void * call results.
3119 ??? Java is completely off. Especially with functions
3120 returning java.lang.Object.
3121 For now simply allow arbitrary pointer type conversions. */
3122 && !(POINTER_TYPE_P (TREE_TYPE (gimple_call_lhs (stmt)))
3123 && POINTER_TYPE_P (TREE_TYPE (fntype))))
3125 error ("invalid conversion in gimple call");
3126 debug_generic_stmt (TREE_TYPE (gimple_call_lhs (stmt)));
3127 debug_generic_stmt (TREE_TYPE (fntype));
3128 return true;
3131 if (gimple_call_chain (stmt)
3132 && !is_gimple_val (gimple_call_chain (stmt)))
3134 error ("invalid static chain in gimple call");
3135 debug_generic_stmt (gimple_call_chain (stmt));
3136 return true;
3139 /* If there is a static chain argument, this should not be an indirect
3140 call, and the decl should have DECL_STATIC_CHAIN set. */
3141 if (gimple_call_chain (stmt))
3143 if (!gimple_call_fndecl (stmt))
3145 error ("static chain in indirect gimple call");
3146 return true;
3148 fn = TREE_OPERAND (fn, 0);
3150 if (!DECL_STATIC_CHAIN (fn))
3152 error ("static chain with function that doesn%'t use one");
3153 return true;
3157 /* ??? The C frontend passes unpromoted arguments in case it
3158 didn't see a function declaration before the call. So for now
3159 leave the call arguments mostly unverified. Once we gimplify
3160 unit-at-a-time we have a chance to fix this. */
3162 for (i = 0; i < gimple_call_num_args (stmt); ++i)
3164 tree arg = gimple_call_arg (stmt, i);
3165 if ((is_gimple_reg_type (TREE_TYPE (arg))
3166 && !is_gimple_val (arg))
3167 || (!is_gimple_reg_type (TREE_TYPE (arg))
3168 && !is_gimple_lvalue (arg)))
3170 error ("invalid argument to gimple call");
3171 debug_generic_expr (arg);
3172 return true;
3176 return false;
3179 /* Verifies the gimple comparison with the result type TYPE and
3180 the operands OP0 and OP1. */
3182 static bool
3183 verify_gimple_comparison (tree type, tree op0, tree op1)
3185 tree op0_type = TREE_TYPE (op0);
3186 tree op1_type = TREE_TYPE (op1);
3188 if (!is_gimple_val (op0) || !is_gimple_val (op1))
3190 error ("invalid operands in gimple comparison");
3191 return true;
3194 /* For comparisons we do not have the operations type as the
3195 effective type the comparison is carried out in. Instead
3196 we require that either the first operand is trivially
3197 convertible into the second, or the other way around.
3198 Because we special-case pointers to void we allow
3199 comparisons of pointers with the same mode as well. */
3200 if (!useless_type_conversion_p (op0_type, op1_type)
3201 && !useless_type_conversion_p (op1_type, op0_type)
3202 && (!POINTER_TYPE_P (op0_type)
3203 || !POINTER_TYPE_P (op1_type)
3204 || TYPE_MODE (op0_type) != TYPE_MODE (op1_type)))
3206 error ("mismatching comparison operand types");
3207 debug_generic_expr (op0_type);
3208 debug_generic_expr (op1_type);
3209 return true;
3212 /* The resulting type of a comparison may be an effective boolean type. */
3213 if (INTEGRAL_TYPE_P (type)
3214 && (TREE_CODE (type) == BOOLEAN_TYPE
3215 || TYPE_PRECISION (type) == 1))
3217 /* Or an integer vector type with the same size and element count
3218 as the comparison operand types. */
3219 else if (TREE_CODE (type) == VECTOR_TYPE
3220 && TREE_CODE (TREE_TYPE (type)) == INTEGER_TYPE)
3222 if (TREE_CODE (op0_type) != VECTOR_TYPE
3223 || TREE_CODE (op1_type) != VECTOR_TYPE)
3225 error ("non-vector operands in vector comparison");
3226 debug_generic_expr (op0_type);
3227 debug_generic_expr (op1_type);
3228 return true;
3231 if (TYPE_VECTOR_SUBPARTS (type) != TYPE_VECTOR_SUBPARTS (op0_type)
3232 || (GET_MODE_SIZE (TYPE_MODE (type))
3233 != GET_MODE_SIZE (TYPE_MODE (op0_type))))
3235 error ("invalid vector comparison resulting type");
3236 debug_generic_expr (type);
3237 return true;
3240 else
3242 error ("bogus comparison result type");
3243 debug_generic_expr (type);
3244 return true;
3247 return false;
3250 /* Verify a gimple assignment statement STMT with an unary rhs.
3251 Returns true if anything is wrong. */
3253 static bool
3254 verify_gimple_assign_unary (gimple stmt)
3256 enum tree_code rhs_code = gimple_assign_rhs_code (stmt);
3257 tree lhs = gimple_assign_lhs (stmt);
3258 tree lhs_type = TREE_TYPE (lhs);
3259 tree rhs1 = gimple_assign_rhs1 (stmt);
3260 tree rhs1_type = TREE_TYPE (rhs1);
3262 if (!is_gimple_reg (lhs))
3264 error ("non-register as LHS of unary operation");
3265 return true;
3268 if (!is_gimple_val (rhs1))
3270 error ("invalid operand in unary operation");
3271 return true;
3274 /* First handle conversions. */
3275 switch (rhs_code)
3277 CASE_CONVERT:
3279 /* Allow conversions between integral types and pointers only if
3280 there is no sign or zero extension involved.
3281 For targets were the precision of ptrofftype doesn't match that
3282 of pointers we need to allow arbitrary conversions from and
3283 to ptrofftype. */
3284 if ((POINTER_TYPE_P (lhs_type)
3285 && INTEGRAL_TYPE_P (rhs1_type)
3286 && (TYPE_PRECISION (lhs_type) >= TYPE_PRECISION (rhs1_type)
3287 || ptrofftype_p (rhs1_type)))
3288 || (POINTER_TYPE_P (rhs1_type)
3289 && INTEGRAL_TYPE_P (lhs_type)
3290 && (TYPE_PRECISION (rhs1_type) >= TYPE_PRECISION (lhs_type)
3291 || ptrofftype_p (sizetype))))
3292 return false;
3294 /* Allow conversion from integer to offset type and vice versa. */
3295 if ((TREE_CODE (lhs_type) == OFFSET_TYPE
3296 && TREE_CODE (rhs1_type) == INTEGER_TYPE)
3297 || (TREE_CODE (lhs_type) == INTEGER_TYPE
3298 && TREE_CODE (rhs1_type) == OFFSET_TYPE))
3299 return false;
3301 /* Otherwise assert we are converting between types of the
3302 same kind. */
3303 if (INTEGRAL_TYPE_P (lhs_type) != INTEGRAL_TYPE_P (rhs1_type))
3305 error ("invalid types in nop conversion");
3306 debug_generic_expr (lhs_type);
3307 debug_generic_expr (rhs1_type);
3308 return true;
3311 return false;
3314 case ADDR_SPACE_CONVERT_EXPR:
3316 if (!POINTER_TYPE_P (rhs1_type) || !POINTER_TYPE_P (lhs_type)
3317 || (TYPE_ADDR_SPACE (TREE_TYPE (rhs1_type))
3318 == TYPE_ADDR_SPACE (TREE_TYPE (lhs_type))))
3320 error ("invalid types in address space conversion");
3321 debug_generic_expr (lhs_type);
3322 debug_generic_expr (rhs1_type);
3323 return true;
3326 return false;
3329 case FIXED_CONVERT_EXPR:
3331 if (!valid_fixed_convert_types_p (lhs_type, rhs1_type)
3332 && !valid_fixed_convert_types_p (rhs1_type, lhs_type))
3334 error ("invalid types in fixed-point conversion");
3335 debug_generic_expr (lhs_type);
3336 debug_generic_expr (rhs1_type);
3337 return true;
3340 return false;
3343 case FLOAT_EXPR:
3345 if (!INTEGRAL_TYPE_P (rhs1_type) || !SCALAR_FLOAT_TYPE_P (lhs_type))
3347 error ("invalid types in conversion to floating point");
3348 debug_generic_expr (lhs_type);
3349 debug_generic_expr (rhs1_type);
3350 return true;
3353 return false;
3356 case FIX_TRUNC_EXPR:
3358 if (!INTEGRAL_TYPE_P (lhs_type) || !SCALAR_FLOAT_TYPE_P (rhs1_type))
3360 error ("invalid types in conversion to integer");
3361 debug_generic_expr (lhs_type);
3362 debug_generic_expr (rhs1_type);
3363 return true;
3366 return false;
3369 case VEC_UNPACK_HI_EXPR:
3370 case VEC_UNPACK_LO_EXPR:
3371 case REDUC_MAX_EXPR:
3372 case REDUC_MIN_EXPR:
3373 case REDUC_PLUS_EXPR:
3374 case VEC_UNPACK_FLOAT_HI_EXPR:
3375 case VEC_UNPACK_FLOAT_LO_EXPR:
3376 /* FIXME. */
3377 return false;
3379 case NEGATE_EXPR:
3380 case ABS_EXPR:
3381 case BIT_NOT_EXPR:
3382 case PAREN_EXPR:
3383 case NON_LVALUE_EXPR:
3384 case CONJ_EXPR:
3385 break;
3387 default:
3388 gcc_unreachable ();
3391 /* For the remaining codes assert there is no conversion involved. */
3392 if (!useless_type_conversion_p (lhs_type, rhs1_type))
3394 error ("non-trivial conversion in unary operation");
3395 debug_generic_expr (lhs_type);
3396 debug_generic_expr (rhs1_type);
3397 return true;
3400 return false;
3403 /* Verify a gimple assignment statement STMT with a binary rhs.
3404 Returns true if anything is wrong. */
3406 static bool
3407 verify_gimple_assign_binary (gimple stmt)
3409 enum tree_code rhs_code = gimple_assign_rhs_code (stmt);
3410 tree lhs = gimple_assign_lhs (stmt);
3411 tree lhs_type = TREE_TYPE (lhs);
3412 tree rhs1 = gimple_assign_rhs1 (stmt);
3413 tree rhs1_type = TREE_TYPE (rhs1);
3414 tree rhs2 = gimple_assign_rhs2 (stmt);
3415 tree rhs2_type = TREE_TYPE (rhs2);
3417 if (!is_gimple_reg (lhs))
3419 error ("non-register as LHS of binary operation");
3420 return true;
3423 if (!is_gimple_val (rhs1)
3424 || !is_gimple_val (rhs2))
3426 error ("invalid operands in binary operation");
3427 return true;
3430 /* First handle operations that involve different types. */
3431 switch (rhs_code)
3433 case COMPLEX_EXPR:
3435 if (TREE_CODE (lhs_type) != COMPLEX_TYPE
3436 || !(INTEGRAL_TYPE_P (rhs1_type)
3437 || SCALAR_FLOAT_TYPE_P (rhs1_type))
3438 || !(INTEGRAL_TYPE_P (rhs2_type)
3439 || SCALAR_FLOAT_TYPE_P (rhs2_type)))
3441 error ("type mismatch in complex expression");
3442 debug_generic_expr (lhs_type);
3443 debug_generic_expr (rhs1_type);
3444 debug_generic_expr (rhs2_type);
3445 return true;
3448 return false;
3451 case LSHIFT_EXPR:
3452 case RSHIFT_EXPR:
3453 case LROTATE_EXPR:
3454 case RROTATE_EXPR:
3456 /* Shifts and rotates are ok on integral types, fixed point
3457 types and integer vector types. */
3458 if ((!INTEGRAL_TYPE_P (rhs1_type)
3459 && !FIXED_POINT_TYPE_P (rhs1_type)
3460 && !(TREE_CODE (rhs1_type) == VECTOR_TYPE
3461 && INTEGRAL_TYPE_P (TREE_TYPE (rhs1_type))))
3462 || (!INTEGRAL_TYPE_P (rhs2_type)
3463 /* Vector shifts of vectors are also ok. */
3464 && !(TREE_CODE (rhs1_type) == VECTOR_TYPE
3465 && INTEGRAL_TYPE_P (TREE_TYPE (rhs1_type))
3466 && TREE_CODE (rhs2_type) == VECTOR_TYPE
3467 && INTEGRAL_TYPE_P (TREE_TYPE (rhs2_type))))
3468 || !useless_type_conversion_p (lhs_type, rhs1_type))
3470 error ("type mismatch in shift expression");
3471 debug_generic_expr (lhs_type);
3472 debug_generic_expr (rhs1_type);
3473 debug_generic_expr (rhs2_type);
3474 return true;
3477 return false;
3480 case VEC_LSHIFT_EXPR:
3481 case VEC_RSHIFT_EXPR:
3483 if (TREE_CODE (rhs1_type) != VECTOR_TYPE
3484 || !(INTEGRAL_TYPE_P (TREE_TYPE (rhs1_type))
3485 || POINTER_TYPE_P (TREE_TYPE (rhs1_type))
3486 || FIXED_POINT_TYPE_P (TREE_TYPE (rhs1_type))
3487 || SCALAR_FLOAT_TYPE_P (TREE_TYPE (rhs1_type)))
3488 || (!INTEGRAL_TYPE_P (rhs2_type)
3489 && (TREE_CODE (rhs2_type) != VECTOR_TYPE
3490 || !INTEGRAL_TYPE_P (TREE_TYPE (rhs2_type))))
3491 || !useless_type_conversion_p (lhs_type, rhs1_type))
3493 error ("type mismatch in vector shift expression");
3494 debug_generic_expr (lhs_type);
3495 debug_generic_expr (rhs1_type);
3496 debug_generic_expr (rhs2_type);
3497 return true;
3499 /* For shifting a vector of non-integral components we
3500 only allow shifting by a constant multiple of the element size. */
3501 if (!INTEGRAL_TYPE_P (TREE_TYPE (rhs1_type))
3502 && (TREE_CODE (rhs2) != INTEGER_CST
3503 || !div_if_zero_remainder (EXACT_DIV_EXPR, rhs2,
3504 TYPE_SIZE (TREE_TYPE (rhs1_type)))))
3506 error ("non-element sized vector shift of floating point vector");
3507 return true;
3510 return false;
3513 case PLUS_EXPR:
3514 case MINUS_EXPR:
3516 /* We use regular PLUS_EXPR and MINUS_EXPR for vectors.
3517 ??? This just makes the checker happy and may not be what is
3518 intended. */
3519 if (TREE_CODE (lhs_type) == VECTOR_TYPE
3520 && POINTER_TYPE_P (TREE_TYPE (lhs_type)))
3522 if (TREE_CODE (rhs1_type) != VECTOR_TYPE
3523 || TREE_CODE (rhs2_type) != VECTOR_TYPE)
3525 error ("invalid non-vector operands to vector valued plus");
3526 return true;
3528 lhs_type = TREE_TYPE (lhs_type);
3529 rhs1_type = TREE_TYPE (rhs1_type);
3530 rhs2_type = TREE_TYPE (rhs2_type);
3531 /* PLUS_EXPR is commutative, so we might end up canonicalizing
3532 the pointer to 2nd place. */
3533 if (POINTER_TYPE_P (rhs2_type))
3535 tree tem = rhs1_type;
3536 rhs1_type = rhs2_type;
3537 rhs2_type = tem;
3539 goto do_pointer_plus_expr_check;
3541 if (POINTER_TYPE_P (lhs_type)
3542 || POINTER_TYPE_P (rhs1_type)
3543 || POINTER_TYPE_P (rhs2_type))
3545 error ("invalid (pointer) operands to plus/minus");
3546 return true;
3549 /* Continue with generic binary expression handling. */
3550 break;
3553 case POINTER_PLUS_EXPR:
3555 do_pointer_plus_expr_check:
3556 if (!POINTER_TYPE_P (rhs1_type)
3557 || !useless_type_conversion_p (lhs_type, rhs1_type)
3558 || !ptrofftype_p (rhs2_type))
3560 error ("type mismatch in pointer plus expression");
3561 debug_generic_stmt (lhs_type);
3562 debug_generic_stmt (rhs1_type);
3563 debug_generic_stmt (rhs2_type);
3564 return true;
3567 return false;
3570 case TRUTH_ANDIF_EXPR:
3571 case TRUTH_ORIF_EXPR:
3572 case TRUTH_AND_EXPR:
3573 case TRUTH_OR_EXPR:
3574 case TRUTH_XOR_EXPR:
3576 gcc_unreachable ();
3578 case LT_EXPR:
3579 case LE_EXPR:
3580 case GT_EXPR:
3581 case GE_EXPR:
3582 case EQ_EXPR:
3583 case NE_EXPR:
3584 case UNORDERED_EXPR:
3585 case ORDERED_EXPR:
3586 case UNLT_EXPR:
3587 case UNLE_EXPR:
3588 case UNGT_EXPR:
3589 case UNGE_EXPR:
3590 case UNEQ_EXPR:
3591 case LTGT_EXPR:
3592 /* Comparisons are also binary, but the result type is not
3593 connected to the operand types. */
3594 return verify_gimple_comparison (lhs_type, rhs1, rhs2);
3596 case WIDEN_MULT_EXPR:
3597 if (TREE_CODE (lhs_type) != INTEGER_TYPE)
3598 return true;
3599 return ((2 * TYPE_PRECISION (rhs1_type) > TYPE_PRECISION (lhs_type))
3600 || (TYPE_PRECISION (rhs1_type) != TYPE_PRECISION (rhs2_type)));
3602 case WIDEN_SUM_EXPR:
3603 case VEC_WIDEN_MULT_HI_EXPR:
3604 case VEC_WIDEN_MULT_LO_EXPR:
3605 case VEC_PACK_TRUNC_EXPR:
3606 case VEC_PACK_SAT_EXPR:
3607 case VEC_PACK_FIX_TRUNC_EXPR:
3608 case VEC_EXTRACT_EVEN_EXPR:
3609 case VEC_EXTRACT_ODD_EXPR:
3610 case VEC_INTERLEAVE_HIGH_EXPR:
3611 case VEC_INTERLEAVE_LOW_EXPR:
3612 /* FIXME. */
3613 return false;
3615 case MULT_EXPR:
3616 case TRUNC_DIV_EXPR:
3617 case CEIL_DIV_EXPR:
3618 case FLOOR_DIV_EXPR:
3619 case ROUND_DIV_EXPR:
3620 case TRUNC_MOD_EXPR:
3621 case CEIL_MOD_EXPR:
3622 case FLOOR_MOD_EXPR:
3623 case ROUND_MOD_EXPR:
3624 case RDIV_EXPR:
3625 case EXACT_DIV_EXPR:
3626 case MIN_EXPR:
3627 case MAX_EXPR:
3628 case BIT_IOR_EXPR:
3629 case BIT_XOR_EXPR:
3630 case BIT_AND_EXPR:
3631 /* Continue with generic binary expression handling. */
3632 break;
3634 default:
3635 gcc_unreachable ();
3638 if (!useless_type_conversion_p (lhs_type, rhs1_type)
3639 || !useless_type_conversion_p (lhs_type, rhs2_type))
3641 error ("type mismatch in binary expression");
3642 debug_generic_stmt (lhs_type);
3643 debug_generic_stmt (rhs1_type);
3644 debug_generic_stmt (rhs2_type);
3645 return true;
3648 return false;
3651 /* Verify a gimple assignment statement STMT with a ternary rhs.
3652 Returns true if anything is wrong. */
3654 static bool
3655 verify_gimple_assign_ternary (gimple stmt)
3657 enum tree_code rhs_code = gimple_assign_rhs_code (stmt);
3658 tree lhs = gimple_assign_lhs (stmt);
3659 tree lhs_type = TREE_TYPE (lhs);
3660 tree rhs1 = gimple_assign_rhs1 (stmt);
3661 tree rhs1_type = TREE_TYPE (rhs1);
3662 tree rhs2 = gimple_assign_rhs2 (stmt);
3663 tree rhs2_type = TREE_TYPE (rhs2);
3664 tree rhs3 = gimple_assign_rhs3 (stmt);
3665 tree rhs3_type = TREE_TYPE (rhs3);
3667 if (!is_gimple_reg (lhs))
3669 error ("non-register as LHS of ternary operation");
3670 return true;
3673 if (((rhs_code == VEC_COND_EXPR || rhs_code == COND_EXPR)
3674 ? !is_gimple_condexpr (rhs1) : !is_gimple_val (rhs1))
3675 || !is_gimple_val (rhs2)
3676 || !is_gimple_val (rhs3))
3678 error ("invalid operands in ternary operation");
3679 return true;
3682 /* First handle operations that involve different types. */
3683 switch (rhs_code)
3685 case WIDEN_MULT_PLUS_EXPR:
3686 case WIDEN_MULT_MINUS_EXPR:
3687 if ((!INTEGRAL_TYPE_P (rhs1_type)
3688 && !FIXED_POINT_TYPE_P (rhs1_type))
3689 || !useless_type_conversion_p (rhs1_type, rhs2_type)
3690 || !useless_type_conversion_p (lhs_type, rhs3_type)
3691 || 2 * TYPE_PRECISION (rhs1_type) > TYPE_PRECISION (lhs_type)
3692 || TYPE_PRECISION (rhs1_type) != TYPE_PRECISION (rhs2_type))
3694 error ("type mismatch in widening multiply-accumulate expression");
3695 debug_generic_expr (lhs_type);
3696 debug_generic_expr (rhs1_type);
3697 debug_generic_expr (rhs2_type);
3698 debug_generic_expr (rhs3_type);
3699 return true;
3701 break;
3703 case FMA_EXPR:
3704 if (!useless_type_conversion_p (lhs_type, rhs1_type)
3705 || !useless_type_conversion_p (lhs_type, rhs2_type)
3706 || !useless_type_conversion_p (lhs_type, rhs3_type))
3708 error ("type mismatch in fused multiply-add expression");
3709 debug_generic_expr (lhs_type);
3710 debug_generic_expr (rhs1_type);
3711 debug_generic_expr (rhs2_type);
3712 debug_generic_expr (rhs3_type);
3713 return true;
3715 break;
3717 case COND_EXPR:
3718 case VEC_COND_EXPR:
3719 if (!useless_type_conversion_p (lhs_type, rhs2_type)
3720 || !useless_type_conversion_p (lhs_type, rhs3_type))
3722 error ("type mismatch in conditional expression");
3723 debug_generic_expr (lhs_type);
3724 debug_generic_expr (rhs2_type);
3725 debug_generic_expr (rhs3_type);
3726 return true;
3728 break;
3730 case DOT_PROD_EXPR:
3731 case REALIGN_LOAD_EXPR:
3732 /* FIXME. */
3733 return false;
3735 default:
3736 gcc_unreachable ();
3738 return false;
3741 /* Verify a gimple assignment statement STMT with a single rhs.
3742 Returns true if anything is wrong. */
3744 static bool
3745 verify_gimple_assign_single (gimple stmt)
3747 enum tree_code rhs_code = gimple_assign_rhs_code (stmt);
3748 tree lhs = gimple_assign_lhs (stmt);
3749 tree lhs_type = TREE_TYPE (lhs);
3750 tree rhs1 = gimple_assign_rhs1 (stmt);
3751 tree rhs1_type = TREE_TYPE (rhs1);
3752 bool res = false;
3754 if (!useless_type_conversion_p (lhs_type, rhs1_type))
3756 error ("non-trivial conversion at assignment");
3757 debug_generic_expr (lhs_type);
3758 debug_generic_expr (rhs1_type);
3759 return true;
3762 if (handled_component_p (lhs))
3763 res |= verify_types_in_gimple_reference (lhs, true);
3765 /* Special codes we cannot handle via their class. */
3766 switch (rhs_code)
3768 case ADDR_EXPR:
3770 tree op = TREE_OPERAND (rhs1, 0);
3771 if (!is_gimple_addressable (op))
3773 error ("invalid operand in unary expression");
3774 return true;
3777 /* Technically there is no longer a need for matching types, but
3778 gimple hygiene asks for this check. In LTO we can end up
3779 combining incompatible units and thus end up with addresses
3780 of globals that change their type to a common one. */
3781 if (!in_lto_p
3782 && !types_compatible_p (TREE_TYPE (op),
3783 TREE_TYPE (TREE_TYPE (rhs1)))
3784 && !one_pointer_to_useless_type_conversion_p (TREE_TYPE (rhs1),
3785 TREE_TYPE (op)))
3787 error ("type mismatch in address expression");
3788 debug_generic_stmt (TREE_TYPE (rhs1));
3789 debug_generic_stmt (TREE_TYPE (op));
3790 return true;
3793 return verify_types_in_gimple_reference (op, true);
3796 /* tcc_reference */
3797 case INDIRECT_REF:
3798 error ("INDIRECT_REF in gimple IL");
3799 return true;
3801 case COMPONENT_REF:
3802 case BIT_FIELD_REF:
3803 case ARRAY_REF:
3804 case ARRAY_RANGE_REF:
3805 case VIEW_CONVERT_EXPR:
3806 case REALPART_EXPR:
3807 case IMAGPART_EXPR:
3808 case TARGET_MEM_REF:
3809 case MEM_REF:
3810 if (!is_gimple_reg (lhs)
3811 && is_gimple_reg_type (TREE_TYPE (lhs)))
3813 error ("invalid rhs for gimple memory store");
3814 debug_generic_stmt (lhs);
3815 debug_generic_stmt (rhs1);
3816 return true;
3818 return res || verify_types_in_gimple_reference (rhs1, false);
3820 /* tcc_constant */
3821 case SSA_NAME:
3822 case INTEGER_CST:
3823 case REAL_CST:
3824 case FIXED_CST:
3825 case COMPLEX_CST:
3826 case VECTOR_CST:
3827 case STRING_CST:
3828 return res;
3830 /* tcc_declaration */
3831 case CONST_DECL:
3832 return res;
3833 case VAR_DECL:
3834 case PARM_DECL:
3835 if (!is_gimple_reg (lhs)
3836 && !is_gimple_reg (rhs1)
3837 && is_gimple_reg_type (TREE_TYPE (lhs)))
3839 error ("invalid rhs for gimple memory store");
3840 debug_generic_stmt (lhs);
3841 debug_generic_stmt (rhs1);
3842 return true;
3844 return res;
3846 case CONSTRUCTOR:
3847 case OBJ_TYPE_REF:
3848 case ASSERT_EXPR:
3849 case WITH_SIZE_EXPR:
3850 /* FIXME. */
3851 return res;
3853 default:;
3856 return res;
3859 /* Verify the contents of a GIMPLE_ASSIGN STMT. Returns true when there
3860 is a problem, otherwise false. */
3862 static bool
3863 verify_gimple_assign (gimple stmt)
3865 switch (gimple_assign_rhs_class (stmt))
3867 case GIMPLE_SINGLE_RHS:
3868 return verify_gimple_assign_single (stmt);
3870 case GIMPLE_UNARY_RHS:
3871 return verify_gimple_assign_unary (stmt);
3873 case GIMPLE_BINARY_RHS:
3874 return verify_gimple_assign_binary (stmt);
3876 case GIMPLE_TERNARY_RHS:
3877 return verify_gimple_assign_ternary (stmt);
3879 default:
3880 gcc_unreachable ();
3884 /* Verify the contents of a GIMPLE_RETURN STMT. Returns true when there
3885 is a problem, otherwise false. */
3887 static bool
3888 verify_gimple_return (gimple stmt)
3890 tree op = gimple_return_retval (stmt);
3891 tree restype = TREE_TYPE (TREE_TYPE (cfun->decl));
3893 /* We cannot test for present return values as we do not fix up missing
3894 return values from the original source. */
3895 if (op == NULL)
3896 return false;
3898 if (!is_gimple_val (op)
3899 && TREE_CODE (op) != RESULT_DECL)
3901 error ("invalid operand in return statement");
3902 debug_generic_stmt (op);
3903 return true;
3906 if ((TREE_CODE (op) == RESULT_DECL
3907 && DECL_BY_REFERENCE (op))
3908 || (TREE_CODE (op) == SSA_NAME
3909 && TREE_CODE (SSA_NAME_VAR (op)) == RESULT_DECL
3910 && DECL_BY_REFERENCE (SSA_NAME_VAR (op))))
3911 op = TREE_TYPE (op);
3913 if (!useless_type_conversion_p (restype, TREE_TYPE (op)))
3915 error ("invalid conversion in return statement");
3916 debug_generic_stmt (restype);
3917 debug_generic_stmt (TREE_TYPE (op));
3918 return true;
3921 return false;
3925 /* Verify the contents of a GIMPLE_GOTO STMT. Returns true when there
3926 is a problem, otherwise false. */
3928 static bool
3929 verify_gimple_goto (gimple stmt)
3931 tree dest = gimple_goto_dest (stmt);
3933 /* ??? We have two canonical forms of direct goto destinations, a
3934 bare LABEL_DECL and an ADDR_EXPR of a LABEL_DECL. */
3935 if (TREE_CODE (dest) != LABEL_DECL
3936 && (!is_gimple_val (dest)
3937 || !POINTER_TYPE_P (TREE_TYPE (dest))))
3939 error ("goto destination is neither a label nor a pointer");
3940 return true;
3943 return false;
3946 /* Verify the contents of a GIMPLE_SWITCH STMT. Returns true when there
3947 is a problem, otherwise false. */
3949 static bool
3950 verify_gimple_switch (gimple stmt)
3952 if (!is_gimple_val (gimple_switch_index (stmt)))
3954 error ("invalid operand to switch statement");
3955 debug_generic_stmt (gimple_switch_index (stmt));
3956 return true;
3959 return false;
3963 /* Verify a gimple debug statement STMT.
3964 Returns true if anything is wrong. */
3966 static bool
3967 verify_gimple_debug (gimple stmt ATTRIBUTE_UNUSED)
3969 /* There isn't much that could be wrong in a gimple debug stmt. A
3970 gimple debug bind stmt, for example, maps a tree, that's usually
3971 a VAR_DECL or a PARM_DECL, but that could also be some scalarized
3972 component or member of an aggregate type, to another tree, that
3973 can be an arbitrary expression. These stmts expand into debug
3974 insns, and are converted to debug notes by var-tracking.c. */
3975 return false;
3978 /* Verify a gimple label statement STMT.
3979 Returns true if anything is wrong. */
3981 static bool
3982 verify_gimple_label (gimple stmt)
3984 tree decl = gimple_label_label (stmt);
3985 int uid;
3986 bool err = false;
3988 if (TREE_CODE (decl) != LABEL_DECL)
3989 return true;
3991 uid = LABEL_DECL_UID (decl);
3992 if (cfun->cfg
3993 && (uid == -1
3994 || VEC_index (basic_block,
3995 label_to_block_map, uid) != gimple_bb (stmt)))
3997 error ("incorrect entry in label_to_block_map");
3998 err |= true;
4001 uid = EH_LANDING_PAD_NR (decl);
4002 if (uid)
4004 eh_landing_pad lp = get_eh_landing_pad_from_number (uid);
4005 if (decl != lp->post_landing_pad)
4007 error ("incorrect setting of landing pad number");
4008 err |= true;
4012 return err;
4015 /* Verify the GIMPLE statement STMT. Returns true if there is an
4016 error, otherwise false. */
4018 static bool
4019 verify_gimple_stmt (gimple stmt)
4021 switch (gimple_code (stmt))
4023 case GIMPLE_ASSIGN:
4024 return verify_gimple_assign (stmt);
4026 case GIMPLE_LABEL:
4027 return verify_gimple_label (stmt);
4029 case GIMPLE_CALL:
4030 return verify_gimple_call (stmt);
4032 case GIMPLE_COND:
4033 if (TREE_CODE_CLASS (gimple_cond_code (stmt)) != tcc_comparison)
4035 error ("invalid comparison code in gimple cond");
4036 return true;
4038 if (!(!gimple_cond_true_label (stmt)
4039 || TREE_CODE (gimple_cond_true_label (stmt)) == LABEL_DECL)
4040 || !(!gimple_cond_false_label (stmt)
4041 || TREE_CODE (gimple_cond_false_label (stmt)) == LABEL_DECL))
4043 error ("invalid labels in gimple cond");
4044 return true;
4047 return verify_gimple_comparison (boolean_type_node,
4048 gimple_cond_lhs (stmt),
4049 gimple_cond_rhs (stmt));
4051 case GIMPLE_GOTO:
4052 return verify_gimple_goto (stmt);
4054 case GIMPLE_SWITCH:
4055 return verify_gimple_switch (stmt);
4057 case GIMPLE_RETURN:
4058 return verify_gimple_return (stmt);
4060 case GIMPLE_ASM:
4061 return false;
4063 /* Tuples that do not have tree operands. */
4064 case GIMPLE_NOP:
4065 case GIMPLE_PREDICT:
4066 case GIMPLE_RESX:
4067 case GIMPLE_EH_DISPATCH:
4068 case GIMPLE_EH_MUST_NOT_THROW:
4069 return false;
4071 CASE_GIMPLE_OMP:
4072 /* OpenMP directives are validated by the FE and never operated
4073 on by the optimizers. Furthermore, GIMPLE_OMP_FOR may contain
4074 non-gimple expressions when the main index variable has had
4075 its address taken. This does not affect the loop itself
4076 because the header of an GIMPLE_OMP_FOR is merely used to determine
4077 how to setup the parallel iteration. */
4078 return false;
4080 case GIMPLE_DEBUG:
4081 return verify_gimple_debug (stmt);
4083 default:
4084 gcc_unreachable ();
4088 /* Verify the contents of a GIMPLE_PHI. Returns true if there is a problem,
4089 and false otherwise. */
4091 static bool
4092 verify_gimple_phi (gimple phi)
4094 bool err = false;
4095 unsigned i;
4096 tree phi_result = gimple_phi_result (phi);
4097 bool virtual_p;
4099 if (!phi_result)
4101 error ("invalid PHI result");
4102 return true;
4105 virtual_p = !is_gimple_reg (phi_result);
4106 if (TREE_CODE (phi_result) != SSA_NAME
4107 || (virtual_p
4108 && SSA_NAME_VAR (phi_result) != gimple_vop (cfun)))
4110 error ("invalid PHI result");
4111 err = true;
4114 for (i = 0; i < gimple_phi_num_args (phi); i++)
4116 tree t = gimple_phi_arg_def (phi, i);
4118 if (!t)
4120 error ("missing PHI def");
4121 err |= true;
4122 continue;
4124 /* Addressable variables do have SSA_NAMEs but they
4125 are not considered gimple values. */
4126 else if ((TREE_CODE (t) == SSA_NAME
4127 && virtual_p != !is_gimple_reg (t))
4128 || (virtual_p
4129 && (TREE_CODE (t) != SSA_NAME
4130 || SSA_NAME_VAR (t) != gimple_vop (cfun)))
4131 || (!virtual_p
4132 && !is_gimple_val (t)))
4134 error ("invalid PHI argument");
4135 debug_generic_expr (t);
4136 err |= true;
4138 #ifdef ENABLE_TYPES_CHECKING
4139 if (!useless_type_conversion_p (TREE_TYPE (phi_result), TREE_TYPE (t)))
4141 error ("incompatible types in PHI argument %u", i);
4142 debug_generic_stmt (TREE_TYPE (phi_result));
4143 debug_generic_stmt (TREE_TYPE (t));
4144 err |= true;
4146 #endif
4149 return err;
4152 /* Verify the GIMPLE statements inside the sequence STMTS. */
4154 static bool
4155 verify_gimple_in_seq_2 (gimple_seq stmts)
4157 gimple_stmt_iterator ittr;
4158 bool err = false;
4160 for (ittr = gsi_start (stmts); !gsi_end_p (ittr); gsi_next (&ittr))
4162 gimple stmt = gsi_stmt (ittr);
4164 switch (gimple_code (stmt))
4166 case GIMPLE_BIND:
4167 err |= verify_gimple_in_seq_2 (gimple_bind_body (stmt));
4168 break;
4170 case GIMPLE_TRY:
4171 err |= verify_gimple_in_seq_2 (gimple_try_eval (stmt));
4172 err |= verify_gimple_in_seq_2 (gimple_try_cleanup (stmt));
4173 break;
4175 case GIMPLE_EH_FILTER:
4176 err |= verify_gimple_in_seq_2 (gimple_eh_filter_failure (stmt));
4177 break;
4179 case GIMPLE_CATCH:
4180 err |= verify_gimple_in_seq_2 (gimple_catch_handler (stmt));
4181 break;
4183 default:
4185 bool err2 = verify_gimple_stmt (stmt);
4186 if (err2)
4187 debug_gimple_stmt (stmt);
4188 err |= err2;
4193 return err;
4197 /* Verify the GIMPLE statements inside the statement list STMTS. */
4199 DEBUG_FUNCTION void
4200 verify_gimple_in_seq (gimple_seq stmts)
4202 timevar_push (TV_TREE_STMT_VERIFY);
4203 if (verify_gimple_in_seq_2 (stmts))
4204 internal_error ("verify_gimple failed");
4205 timevar_pop (TV_TREE_STMT_VERIFY);
4208 /* Return true when the T can be shared. */
4210 bool
4211 tree_node_can_be_shared (tree t)
4213 if (IS_TYPE_OR_DECL_P (t)
4214 || is_gimple_min_invariant (t)
4215 || TREE_CODE (t) == SSA_NAME
4216 || t == error_mark_node
4217 || TREE_CODE (t) == IDENTIFIER_NODE)
4218 return true;
4220 if (TREE_CODE (t) == CASE_LABEL_EXPR)
4221 return true;
4223 while (((TREE_CODE (t) == ARRAY_REF || TREE_CODE (t) == ARRAY_RANGE_REF)
4224 && is_gimple_min_invariant (TREE_OPERAND (t, 1)))
4225 || TREE_CODE (t) == COMPONENT_REF
4226 || TREE_CODE (t) == REALPART_EXPR
4227 || TREE_CODE (t) == IMAGPART_EXPR)
4228 t = TREE_OPERAND (t, 0);
4230 if (DECL_P (t))
4231 return true;
4233 return false;
4236 /* Called via walk_gimple_stmt. Verify tree sharing. */
4238 static tree
4239 verify_node_sharing (tree *tp, int *walk_subtrees, void *data)
4241 struct walk_stmt_info *wi = (struct walk_stmt_info *) data;
4242 struct pointer_set_t *visited = (struct pointer_set_t *) wi->info;
4244 if (tree_node_can_be_shared (*tp))
4246 *walk_subtrees = false;
4247 return NULL;
4250 if (pointer_set_insert (visited, *tp))
4251 return *tp;
4253 return NULL;
4256 static bool eh_error_found;
4257 static int
4258 verify_eh_throw_stmt_node (void **slot, void *data)
4260 struct throw_stmt_node *node = (struct throw_stmt_node *)*slot;
4261 struct pointer_set_t *visited = (struct pointer_set_t *) data;
4263 if (!pointer_set_contains (visited, node->stmt))
4265 error ("dead STMT in EH table");
4266 debug_gimple_stmt (node->stmt);
4267 eh_error_found = true;
4269 return 1;
4272 /* Verify the GIMPLE statements in the CFG of FN. */
4274 DEBUG_FUNCTION void
4275 verify_gimple_in_cfg (struct function *fn)
4277 basic_block bb;
4278 bool err = false;
4279 struct pointer_set_t *visited, *visited_stmts;
4281 timevar_push (TV_TREE_STMT_VERIFY);
4282 visited = pointer_set_create ();
4283 visited_stmts = pointer_set_create ();
4285 FOR_EACH_BB_FN (bb, fn)
4287 gimple_stmt_iterator gsi;
4289 for (gsi = gsi_start_phis (bb); !gsi_end_p (gsi); gsi_next (&gsi))
4291 gimple phi = gsi_stmt (gsi);
4292 bool err2 = false;
4293 unsigned i;
4295 pointer_set_insert (visited_stmts, phi);
4297 if (gimple_bb (phi) != bb)
4299 error ("gimple_bb (phi) is set to a wrong basic block");
4300 err2 = true;
4303 err2 |= verify_gimple_phi (phi);
4305 for (i = 0; i < gimple_phi_num_args (phi); i++)
4307 tree arg = gimple_phi_arg_def (phi, i);
4308 tree addr = walk_tree (&arg, verify_node_sharing, visited, NULL);
4309 if (addr)
4311 error ("incorrect sharing of tree nodes");
4312 debug_generic_expr (addr);
4313 err2 |= true;
4317 if (err2)
4318 debug_gimple_stmt (phi);
4319 err |= err2;
4322 for (gsi = gsi_start_bb (bb); !gsi_end_p (gsi); gsi_next (&gsi))
4324 gimple stmt = gsi_stmt (gsi);
4325 bool err2 = false;
4326 struct walk_stmt_info wi;
4327 tree addr;
4328 int lp_nr;
4330 pointer_set_insert (visited_stmts, stmt);
4332 if (gimple_bb (stmt) != bb)
4334 error ("gimple_bb (stmt) is set to a wrong basic block");
4335 err2 = true;
4338 err2 |= verify_gimple_stmt (stmt);
4340 memset (&wi, 0, sizeof (wi));
4341 wi.info = (void *) visited;
4342 addr = walk_gimple_op (stmt, verify_node_sharing, &wi);
4343 if (addr)
4345 error ("incorrect sharing of tree nodes");
4346 debug_generic_expr (addr);
4347 err2 |= true;
4350 /* ??? Instead of not checking these stmts at all the walker
4351 should know its context via wi. */
4352 if (!is_gimple_debug (stmt)
4353 && !is_gimple_omp (stmt))
4355 memset (&wi, 0, sizeof (wi));
4356 addr = walk_gimple_op (stmt, verify_expr, &wi);
4357 if (addr)
4359 debug_generic_expr (addr);
4360 inform (gimple_location (stmt), "in statement");
4361 err2 |= true;
4365 /* If the statement is marked as part of an EH region, then it is
4366 expected that the statement could throw. Verify that when we
4367 have optimizations that simplify statements such that we prove
4368 that they cannot throw, that we update other data structures
4369 to match. */
4370 lp_nr = lookup_stmt_eh_lp (stmt);
4371 if (lp_nr != 0)
4373 if (!stmt_could_throw_p (stmt))
4375 error ("statement marked for throw, but doesn%'t");
4376 err2 |= true;
4378 else if (lp_nr > 0
4379 && !gsi_one_before_end_p (gsi)
4380 && stmt_can_throw_internal (stmt))
4382 error ("statement marked for throw in middle of block");
4383 err2 |= true;
4387 if (err2)
4388 debug_gimple_stmt (stmt);
4389 err |= err2;
4393 eh_error_found = false;
4394 if (get_eh_throw_stmt_table (cfun))
4395 htab_traverse (get_eh_throw_stmt_table (cfun),
4396 verify_eh_throw_stmt_node,
4397 visited_stmts);
4399 if (err || eh_error_found)
4400 internal_error ("verify_gimple failed");
4402 pointer_set_destroy (visited);
4403 pointer_set_destroy (visited_stmts);
4404 verify_histograms ();
4405 timevar_pop (TV_TREE_STMT_VERIFY);
4409 /* Verifies that the flow information is OK. */
4411 static int
4412 gimple_verify_flow_info (void)
4414 int err = 0;
4415 basic_block bb;
4416 gimple_stmt_iterator gsi;
4417 gimple stmt;
4418 edge e;
4419 edge_iterator ei;
4421 if (ENTRY_BLOCK_PTR->il.gimple)
4423 error ("ENTRY_BLOCK has IL associated with it");
4424 err = 1;
4427 if (EXIT_BLOCK_PTR->il.gimple)
4429 error ("EXIT_BLOCK has IL associated with it");
4430 err = 1;
4433 FOR_EACH_EDGE (e, ei, EXIT_BLOCK_PTR->preds)
4434 if (e->flags & EDGE_FALLTHRU)
4436 error ("fallthru to exit from bb %d", e->src->index);
4437 err = 1;
4440 FOR_EACH_BB (bb)
4442 bool found_ctrl_stmt = false;
4444 stmt = NULL;
4446 /* Skip labels on the start of basic block. */
4447 for (gsi = gsi_start_bb (bb); !gsi_end_p (gsi); gsi_next (&gsi))
4449 tree label;
4450 gimple prev_stmt = stmt;
4452 stmt = gsi_stmt (gsi);
4454 if (gimple_code (stmt) != GIMPLE_LABEL)
4455 break;
4457 label = gimple_label_label (stmt);
4458 if (prev_stmt && DECL_NONLOCAL (label))
4460 error ("nonlocal label ");
4461 print_generic_expr (stderr, label, 0);
4462 fprintf (stderr, " is not first in a sequence of labels in bb %d",
4463 bb->index);
4464 err = 1;
4467 if (prev_stmt && EH_LANDING_PAD_NR (label) != 0)
4469 error ("EH landing pad label ");
4470 print_generic_expr (stderr, label, 0);
4471 fprintf (stderr, " is not first in a sequence of labels in bb %d",
4472 bb->index);
4473 err = 1;
4476 if (label_to_block (label) != bb)
4478 error ("label ");
4479 print_generic_expr (stderr, label, 0);
4480 fprintf (stderr, " to block does not match in bb %d",
4481 bb->index);
4482 err = 1;
4485 if (decl_function_context (label) != current_function_decl)
4487 error ("label ");
4488 print_generic_expr (stderr, label, 0);
4489 fprintf (stderr, " has incorrect context in bb %d",
4490 bb->index);
4491 err = 1;
4495 /* Verify that body of basic block BB is free of control flow. */
4496 for (; !gsi_end_p (gsi); gsi_next (&gsi))
4498 gimple stmt = gsi_stmt (gsi);
4500 if (found_ctrl_stmt)
4502 error ("control flow in the middle of basic block %d",
4503 bb->index);
4504 err = 1;
4507 if (stmt_ends_bb_p (stmt))
4508 found_ctrl_stmt = true;
4510 if (gimple_code (stmt) == GIMPLE_LABEL)
4512 error ("label ");
4513 print_generic_expr (stderr, gimple_label_label (stmt), 0);
4514 fprintf (stderr, " in the middle of basic block %d", bb->index);
4515 err = 1;
4519 gsi = gsi_last_bb (bb);
4520 if (gsi_end_p (gsi))
4521 continue;
4523 stmt = gsi_stmt (gsi);
4525 if (gimple_code (stmt) == GIMPLE_LABEL)
4526 continue;
4528 err |= verify_eh_edges (stmt);
4530 if (is_ctrl_stmt (stmt))
4532 FOR_EACH_EDGE (e, ei, bb->succs)
4533 if (e->flags & EDGE_FALLTHRU)
4535 error ("fallthru edge after a control statement in bb %d",
4536 bb->index);
4537 err = 1;
4541 if (gimple_code (stmt) != GIMPLE_COND)
4543 /* Verify that there are no edges with EDGE_TRUE/FALSE_FLAG set
4544 after anything else but if statement. */
4545 FOR_EACH_EDGE (e, ei, bb->succs)
4546 if (e->flags & (EDGE_TRUE_VALUE | EDGE_FALSE_VALUE))
4548 error ("true/false edge after a non-GIMPLE_COND in bb %d",
4549 bb->index);
4550 err = 1;
4554 switch (gimple_code (stmt))
4556 case GIMPLE_COND:
4558 edge true_edge;
4559 edge false_edge;
4561 extract_true_false_edges_from_block (bb, &true_edge, &false_edge);
4563 if (!true_edge
4564 || !false_edge
4565 || !(true_edge->flags & EDGE_TRUE_VALUE)
4566 || !(false_edge->flags & EDGE_FALSE_VALUE)
4567 || (true_edge->flags & (EDGE_FALLTHRU | EDGE_ABNORMAL))
4568 || (false_edge->flags & (EDGE_FALLTHRU | EDGE_ABNORMAL))
4569 || EDGE_COUNT (bb->succs) >= 3)
4571 error ("wrong outgoing edge flags at end of bb %d",
4572 bb->index);
4573 err = 1;
4576 break;
4578 case GIMPLE_GOTO:
4579 if (simple_goto_p (stmt))
4581 error ("explicit goto at end of bb %d", bb->index);
4582 err = 1;
4584 else
4586 /* FIXME. We should double check that the labels in the
4587 destination blocks have their address taken. */
4588 FOR_EACH_EDGE (e, ei, bb->succs)
4589 if ((e->flags & (EDGE_FALLTHRU | EDGE_TRUE_VALUE
4590 | EDGE_FALSE_VALUE))
4591 || !(e->flags & EDGE_ABNORMAL))
4593 error ("wrong outgoing edge flags at end of bb %d",
4594 bb->index);
4595 err = 1;
4598 break;
4600 case GIMPLE_CALL:
4601 if (!gimple_call_builtin_p (stmt, BUILT_IN_RETURN))
4602 break;
4603 /* ... fallthru ... */
4604 case GIMPLE_RETURN:
4605 if (!single_succ_p (bb)
4606 || (single_succ_edge (bb)->flags
4607 & (EDGE_FALLTHRU | EDGE_ABNORMAL
4608 | EDGE_TRUE_VALUE | EDGE_FALSE_VALUE)))
4610 error ("wrong outgoing edge flags at end of bb %d", bb->index);
4611 err = 1;
4613 if (single_succ (bb) != EXIT_BLOCK_PTR)
4615 error ("return edge does not point to exit in bb %d",
4616 bb->index);
4617 err = 1;
4619 break;
4621 case GIMPLE_SWITCH:
4623 tree prev;
4624 edge e;
4625 size_t i, n;
4627 n = gimple_switch_num_labels (stmt);
4629 /* Mark all the destination basic blocks. */
4630 for (i = 0; i < n; ++i)
4632 tree lab = CASE_LABEL (gimple_switch_label (stmt, i));
4633 basic_block label_bb = label_to_block (lab);
4634 gcc_assert (!label_bb->aux || label_bb->aux == (void *)1);
4635 label_bb->aux = (void *)1;
4638 /* Verify that the case labels are sorted. */
4639 prev = gimple_switch_label (stmt, 0);
4640 for (i = 1; i < n; ++i)
4642 tree c = gimple_switch_label (stmt, i);
4643 if (!CASE_LOW (c))
4645 error ("found default case not at the start of "
4646 "case vector");
4647 err = 1;
4648 continue;
4650 if (CASE_LOW (prev)
4651 && !tree_int_cst_lt (CASE_LOW (prev), CASE_LOW (c)))
4653 error ("case labels not sorted: ");
4654 print_generic_expr (stderr, prev, 0);
4655 fprintf (stderr," is greater than ");
4656 print_generic_expr (stderr, c, 0);
4657 fprintf (stderr," but comes before it.\n");
4658 err = 1;
4660 prev = c;
4662 /* VRP will remove the default case if it can prove it will
4663 never be executed. So do not verify there always exists
4664 a default case here. */
4666 FOR_EACH_EDGE (e, ei, bb->succs)
4668 if (!e->dest->aux)
4670 error ("extra outgoing edge %d->%d",
4671 bb->index, e->dest->index);
4672 err = 1;
4675 e->dest->aux = (void *)2;
4676 if ((e->flags & (EDGE_FALLTHRU | EDGE_ABNORMAL
4677 | EDGE_TRUE_VALUE | EDGE_FALSE_VALUE)))
4679 error ("wrong outgoing edge flags at end of bb %d",
4680 bb->index);
4681 err = 1;
4685 /* Check that we have all of them. */
4686 for (i = 0; i < n; ++i)
4688 tree lab = CASE_LABEL (gimple_switch_label (stmt, i));
4689 basic_block label_bb = label_to_block (lab);
4691 if (label_bb->aux != (void *)2)
4693 error ("missing edge %i->%i", bb->index, label_bb->index);
4694 err = 1;
4698 FOR_EACH_EDGE (e, ei, bb->succs)
4699 e->dest->aux = (void *)0;
4701 break;
4703 case GIMPLE_EH_DISPATCH:
4704 err |= verify_eh_dispatch_edge (stmt);
4705 break;
4707 default:
4708 break;
4712 if (dom_info_state (CDI_DOMINATORS) >= DOM_NO_FAST_QUERY)
4713 verify_dominators (CDI_DOMINATORS);
4715 return err;
4719 /* Updates phi nodes after creating a forwarder block joined
4720 by edge FALLTHRU. */
4722 static void
4723 gimple_make_forwarder_block (edge fallthru)
4725 edge e;
4726 edge_iterator ei;
4727 basic_block dummy, bb;
4728 tree var;
4729 gimple_stmt_iterator gsi;
4731 dummy = fallthru->src;
4732 bb = fallthru->dest;
4734 if (single_pred_p (bb))
4735 return;
4737 /* If we redirected a branch we must create new PHI nodes at the
4738 start of BB. */
4739 for (gsi = gsi_start_phis (dummy); !gsi_end_p (gsi); gsi_next (&gsi))
4741 gimple phi, new_phi;
4743 phi = gsi_stmt (gsi);
4744 var = gimple_phi_result (phi);
4745 new_phi = create_phi_node (var, bb);
4746 SSA_NAME_DEF_STMT (var) = new_phi;
4747 gimple_phi_set_result (phi, make_ssa_name (SSA_NAME_VAR (var), phi));
4748 add_phi_arg (new_phi, gimple_phi_result (phi), fallthru,
4749 UNKNOWN_LOCATION);
4752 /* Add the arguments we have stored on edges. */
4753 FOR_EACH_EDGE (e, ei, bb->preds)
4755 if (e == fallthru)
4756 continue;
4758 flush_pending_stmts (e);
4763 /* Return a non-special label in the head of basic block BLOCK.
4764 Create one if it doesn't exist. */
4766 tree
4767 gimple_block_label (basic_block bb)
4769 gimple_stmt_iterator i, s = gsi_start_bb (bb);
4770 bool first = true;
4771 tree label;
4772 gimple stmt;
4774 for (i = s; !gsi_end_p (i); first = false, gsi_next (&i))
4776 stmt = gsi_stmt (i);
4777 if (gimple_code (stmt) != GIMPLE_LABEL)
4778 break;
4779 label = gimple_label_label (stmt);
4780 if (!DECL_NONLOCAL (label))
4782 if (!first)
4783 gsi_move_before (&i, &s);
4784 return label;
4788 label = create_artificial_label (UNKNOWN_LOCATION);
4789 stmt = gimple_build_label (label);
4790 gsi_insert_before (&s, stmt, GSI_NEW_STMT);
4791 return label;
4795 /* Attempt to perform edge redirection by replacing a possibly complex
4796 jump instruction by a goto or by removing the jump completely.
4797 This can apply only if all edges now point to the same block. The
4798 parameters and return values are equivalent to
4799 redirect_edge_and_branch. */
4801 static edge
4802 gimple_try_redirect_by_replacing_jump (edge e, basic_block target)
4804 basic_block src = e->src;
4805 gimple_stmt_iterator i;
4806 gimple stmt;
4808 /* We can replace or remove a complex jump only when we have exactly
4809 two edges. */
4810 if (EDGE_COUNT (src->succs) != 2
4811 /* Verify that all targets will be TARGET. Specifically, the
4812 edge that is not E must also go to TARGET. */
4813 || EDGE_SUCC (src, EDGE_SUCC (src, 0) == e)->dest != target)
4814 return NULL;
4816 i = gsi_last_bb (src);
4817 if (gsi_end_p (i))
4818 return NULL;
4820 stmt = gsi_stmt (i);
4822 if (gimple_code (stmt) == GIMPLE_COND || gimple_code (stmt) == GIMPLE_SWITCH)
4824 gsi_remove (&i, true);
4825 e = ssa_redirect_edge (e, target);
4826 e->flags = EDGE_FALLTHRU;
4827 return e;
4830 return NULL;
4834 /* Redirect E to DEST. Return NULL on failure. Otherwise, return the
4835 edge representing the redirected branch. */
4837 static edge
4838 gimple_redirect_edge_and_branch (edge e, basic_block dest)
4840 basic_block bb = e->src;
4841 gimple_stmt_iterator gsi;
4842 edge ret;
4843 gimple stmt;
4845 if (e->flags & EDGE_ABNORMAL)
4846 return NULL;
4848 if (e->dest == dest)
4849 return NULL;
4851 if (e->flags & EDGE_EH)
4852 return redirect_eh_edge (e, dest);
4854 if (e->src != ENTRY_BLOCK_PTR)
4856 ret = gimple_try_redirect_by_replacing_jump (e, dest);
4857 if (ret)
4858 return ret;
4861 gsi = gsi_last_bb (bb);
4862 stmt = gsi_end_p (gsi) ? NULL : gsi_stmt (gsi);
4864 switch (stmt ? gimple_code (stmt) : GIMPLE_ERROR_MARK)
4866 case GIMPLE_COND:
4867 /* For COND_EXPR, we only need to redirect the edge. */
4868 break;
4870 case GIMPLE_GOTO:
4871 /* No non-abnormal edges should lead from a non-simple goto, and
4872 simple ones should be represented implicitly. */
4873 gcc_unreachable ();
4875 case GIMPLE_SWITCH:
4877 tree label = gimple_block_label (dest);
4878 tree cases = get_cases_for_edge (e, stmt);
4880 /* If we have a list of cases associated with E, then use it
4881 as it's a lot faster than walking the entire case vector. */
4882 if (cases)
4884 edge e2 = find_edge (e->src, dest);
4885 tree last, first;
4887 first = cases;
4888 while (cases)
4890 last = cases;
4891 CASE_LABEL (cases) = label;
4892 cases = CASE_CHAIN (cases);
4895 /* If there was already an edge in the CFG, then we need
4896 to move all the cases associated with E to E2. */
4897 if (e2)
4899 tree cases2 = get_cases_for_edge (e2, stmt);
4901 CASE_CHAIN (last) = CASE_CHAIN (cases2);
4902 CASE_CHAIN (cases2) = first;
4904 bitmap_set_bit (touched_switch_bbs, gimple_bb (stmt)->index);
4906 else
4908 size_t i, n = gimple_switch_num_labels (stmt);
4910 for (i = 0; i < n; i++)
4912 tree elt = gimple_switch_label (stmt, i);
4913 if (label_to_block (CASE_LABEL (elt)) == e->dest)
4914 CASE_LABEL (elt) = label;
4918 break;
4920 case GIMPLE_ASM:
4922 int i, n = gimple_asm_nlabels (stmt);
4923 tree label = NULL;
4925 for (i = 0; i < n; ++i)
4927 tree cons = gimple_asm_label_op (stmt, i);
4928 if (label_to_block (TREE_VALUE (cons)) == e->dest)
4930 if (!label)
4931 label = gimple_block_label (dest);
4932 TREE_VALUE (cons) = label;
4936 /* If we didn't find any label matching the former edge in the
4937 asm labels, we must be redirecting the fallthrough
4938 edge. */
4939 gcc_assert (label || (e->flags & EDGE_FALLTHRU));
4941 break;
4943 case GIMPLE_RETURN:
4944 gsi_remove (&gsi, true);
4945 e->flags |= EDGE_FALLTHRU;
4946 break;
4948 case GIMPLE_OMP_RETURN:
4949 case GIMPLE_OMP_CONTINUE:
4950 case GIMPLE_OMP_SECTIONS_SWITCH:
4951 case GIMPLE_OMP_FOR:
4952 /* The edges from OMP constructs can be simply redirected. */
4953 break;
4955 case GIMPLE_EH_DISPATCH:
4956 if (!(e->flags & EDGE_FALLTHRU))
4957 redirect_eh_dispatch_edge (stmt, e, dest);
4958 break;
4960 default:
4961 /* Otherwise it must be a fallthru edge, and we don't need to
4962 do anything besides redirecting it. */
4963 gcc_assert (e->flags & EDGE_FALLTHRU);
4964 break;
4967 /* Update/insert PHI nodes as necessary. */
4969 /* Now update the edges in the CFG. */
4970 e = ssa_redirect_edge (e, dest);
4972 return e;
4975 /* Returns true if it is possible to remove edge E by redirecting
4976 it to the destination of the other edge from E->src. */
4978 static bool
4979 gimple_can_remove_branch_p (const_edge e)
4981 if (e->flags & (EDGE_ABNORMAL | EDGE_EH))
4982 return false;
4984 return true;
4987 /* Simple wrapper, as we can always redirect fallthru edges. */
4989 static basic_block
4990 gimple_redirect_edge_and_branch_force (edge e, basic_block dest)
4992 e = gimple_redirect_edge_and_branch (e, dest);
4993 gcc_assert (e);
4995 return NULL;
4999 /* Splits basic block BB after statement STMT (but at least after the
5000 labels). If STMT is NULL, BB is split just after the labels. */
5002 static basic_block
5003 gimple_split_block (basic_block bb, void *stmt)
5005 gimple_stmt_iterator gsi;
5006 gimple_stmt_iterator gsi_tgt;
5007 gimple act;
5008 gimple_seq list;
5009 basic_block new_bb;
5010 edge e;
5011 edge_iterator ei;
5013 new_bb = create_empty_bb (bb);
5015 /* Redirect the outgoing edges. */
5016 new_bb->succs = bb->succs;
5017 bb->succs = NULL;
5018 FOR_EACH_EDGE (e, ei, new_bb->succs)
5019 e->src = new_bb;
5021 if (stmt && gimple_code ((gimple) stmt) == GIMPLE_LABEL)
5022 stmt = NULL;
5024 /* Move everything from GSI to the new basic block. */
5025 for (gsi = gsi_start_bb (bb); !gsi_end_p (gsi); gsi_next (&gsi))
5027 act = gsi_stmt (gsi);
5028 if (gimple_code (act) == GIMPLE_LABEL)
5029 continue;
5031 if (!stmt)
5032 break;
5034 if (stmt == act)
5036 gsi_next (&gsi);
5037 break;
5041 if (gsi_end_p (gsi))
5042 return new_bb;
5044 /* Split the statement list - avoid re-creating new containers as this
5045 brings ugly quadratic memory consumption in the inliner.
5046 (We are still quadratic since we need to update stmt BB pointers,
5047 sadly.) */
5048 list = gsi_split_seq_before (&gsi);
5049 set_bb_seq (new_bb, list);
5050 for (gsi_tgt = gsi_start (list);
5051 !gsi_end_p (gsi_tgt); gsi_next (&gsi_tgt))
5052 gimple_set_bb (gsi_stmt (gsi_tgt), new_bb);
5054 return new_bb;
5058 /* Moves basic block BB after block AFTER. */
5060 static bool
5061 gimple_move_block_after (basic_block bb, basic_block after)
5063 if (bb->prev_bb == after)
5064 return true;
5066 unlink_block (bb);
5067 link_block (bb, after);
5069 return true;
5073 /* Return true if basic_block can be duplicated. */
5075 static bool
5076 gimple_can_duplicate_bb_p (const_basic_block bb ATTRIBUTE_UNUSED)
5078 return true;
5081 /* Create a duplicate of the basic block BB. NOTE: This does not
5082 preserve SSA form. */
5084 static basic_block
5085 gimple_duplicate_bb (basic_block bb)
5087 basic_block new_bb;
5088 gimple_stmt_iterator gsi, gsi_tgt;
5089 gimple_seq phis = phi_nodes (bb);
5090 gimple phi, stmt, copy;
5092 new_bb = create_empty_bb (EXIT_BLOCK_PTR->prev_bb);
5094 /* Copy the PHI nodes. We ignore PHI node arguments here because
5095 the incoming edges have not been setup yet. */
5096 for (gsi = gsi_start (phis); !gsi_end_p (gsi); gsi_next (&gsi))
5098 phi = gsi_stmt (gsi);
5099 copy = create_phi_node (gimple_phi_result (phi), new_bb);
5100 create_new_def_for (gimple_phi_result (copy), copy,
5101 gimple_phi_result_ptr (copy));
5104 gsi_tgt = gsi_start_bb (new_bb);
5105 for (gsi = gsi_start_bb (bb); !gsi_end_p (gsi); gsi_next (&gsi))
5107 def_operand_p def_p;
5108 ssa_op_iter op_iter;
5109 tree lhs;
5111 stmt = gsi_stmt (gsi);
5112 if (gimple_code (stmt) == GIMPLE_LABEL)
5113 continue;
5115 /* Create a new copy of STMT and duplicate STMT's virtual
5116 operands. */
5117 copy = gimple_copy (stmt);
5118 gsi_insert_after (&gsi_tgt, copy, GSI_NEW_STMT);
5120 maybe_duplicate_eh_stmt (copy, stmt);
5121 gimple_duplicate_stmt_histograms (cfun, copy, cfun, stmt);
5123 /* When copying around a stmt writing into a local non-user
5124 aggregate, make sure it won't share stack slot with other
5125 vars. */
5126 lhs = gimple_get_lhs (stmt);
5127 if (lhs && TREE_CODE (lhs) != SSA_NAME)
5129 tree base = get_base_address (lhs);
5130 if (base
5131 && (TREE_CODE (base) == VAR_DECL
5132 || TREE_CODE (base) == RESULT_DECL)
5133 && DECL_IGNORED_P (base)
5134 && !TREE_STATIC (base)
5135 && !DECL_EXTERNAL (base)
5136 && (TREE_CODE (base) != VAR_DECL
5137 || !DECL_HAS_VALUE_EXPR_P (base)))
5138 DECL_NONSHAREABLE (base) = 1;
5141 /* Create new names for all the definitions created by COPY and
5142 add replacement mappings for each new name. */
5143 FOR_EACH_SSA_DEF_OPERAND (def_p, copy, op_iter, SSA_OP_ALL_DEFS)
5144 create_new_def_for (DEF_FROM_PTR (def_p), copy, def_p);
5147 return new_bb;
5150 /* Adds phi node arguments for edge E_COPY after basic block duplication. */
5152 static void
5153 add_phi_args_after_copy_edge (edge e_copy)
5155 basic_block bb, bb_copy = e_copy->src, dest;
5156 edge e;
5157 edge_iterator ei;
5158 gimple phi, phi_copy;
5159 tree def;
5160 gimple_stmt_iterator psi, psi_copy;
5162 if (gimple_seq_empty_p (phi_nodes (e_copy->dest)))
5163 return;
5165 bb = bb_copy->flags & BB_DUPLICATED ? get_bb_original (bb_copy) : bb_copy;
5167 if (e_copy->dest->flags & BB_DUPLICATED)
5168 dest = get_bb_original (e_copy->dest);
5169 else
5170 dest = e_copy->dest;
5172 e = find_edge (bb, dest);
5173 if (!e)
5175 /* During loop unrolling the target of the latch edge is copied.
5176 In this case we are not looking for edge to dest, but to
5177 duplicated block whose original was dest. */
5178 FOR_EACH_EDGE (e, ei, bb->succs)
5180 if ((e->dest->flags & BB_DUPLICATED)
5181 && get_bb_original (e->dest) == dest)
5182 break;
5185 gcc_assert (e != NULL);
5188 for (psi = gsi_start_phis (e->dest),
5189 psi_copy = gsi_start_phis (e_copy->dest);
5190 !gsi_end_p (psi);
5191 gsi_next (&psi), gsi_next (&psi_copy))
5193 phi = gsi_stmt (psi);
5194 phi_copy = gsi_stmt (psi_copy);
5195 def = PHI_ARG_DEF_FROM_EDGE (phi, e);
5196 add_phi_arg (phi_copy, def, e_copy,
5197 gimple_phi_arg_location_from_edge (phi, e));
5202 /* Basic block BB_COPY was created by code duplication. Add phi node
5203 arguments for edges going out of BB_COPY. The blocks that were
5204 duplicated have BB_DUPLICATED set. */
5206 void
5207 add_phi_args_after_copy_bb (basic_block bb_copy)
5209 edge e_copy;
5210 edge_iterator ei;
5212 FOR_EACH_EDGE (e_copy, ei, bb_copy->succs)
5214 add_phi_args_after_copy_edge (e_copy);
5218 /* Blocks in REGION_COPY array of length N_REGION were created by
5219 duplication of basic blocks. Add phi node arguments for edges
5220 going from these blocks. If E_COPY is not NULL, also add
5221 phi node arguments for its destination.*/
5223 void
5224 add_phi_args_after_copy (basic_block *region_copy, unsigned n_region,
5225 edge e_copy)
5227 unsigned i;
5229 for (i = 0; i < n_region; i++)
5230 region_copy[i]->flags |= BB_DUPLICATED;
5232 for (i = 0; i < n_region; i++)
5233 add_phi_args_after_copy_bb (region_copy[i]);
5234 if (e_copy)
5235 add_phi_args_after_copy_edge (e_copy);
5237 for (i = 0; i < n_region; i++)
5238 region_copy[i]->flags &= ~BB_DUPLICATED;
5241 /* Duplicates a REGION (set of N_REGION basic blocks) with just a single
5242 important exit edge EXIT. By important we mean that no SSA name defined
5243 inside region is live over the other exit edges of the region. All entry
5244 edges to the region must go to ENTRY->dest. The edge ENTRY is redirected
5245 to the duplicate of the region. SSA form, dominance and loop information
5246 is updated. The new basic blocks are stored to REGION_COPY in the same
5247 order as they had in REGION, provided that REGION_COPY is not NULL.
5248 The function returns false if it is unable to copy the region,
5249 true otherwise. */
5251 bool
5252 gimple_duplicate_sese_region (edge entry, edge exit,
5253 basic_block *region, unsigned n_region,
5254 basic_block *region_copy)
5256 unsigned i;
5257 bool free_region_copy = false, copying_header = false;
5258 struct loop *loop = entry->dest->loop_father;
5259 edge exit_copy;
5260 VEC (basic_block, heap) *doms;
5261 edge redirected;
5262 int total_freq = 0, entry_freq = 0;
5263 gcov_type total_count = 0, entry_count = 0;
5265 if (!can_copy_bbs_p (region, n_region))
5266 return false;
5268 /* Some sanity checking. Note that we do not check for all possible
5269 missuses of the functions. I.e. if you ask to copy something weird,
5270 it will work, but the state of structures probably will not be
5271 correct. */
5272 for (i = 0; i < n_region; i++)
5274 /* We do not handle subloops, i.e. all the blocks must belong to the
5275 same loop. */
5276 if (region[i]->loop_father != loop)
5277 return false;
5279 if (region[i] != entry->dest
5280 && region[i] == loop->header)
5281 return false;
5284 set_loop_copy (loop, loop);
5286 /* In case the function is used for loop header copying (which is the primary
5287 use), ensure that EXIT and its copy will be new latch and entry edges. */
5288 if (loop->header == entry->dest)
5290 copying_header = true;
5291 set_loop_copy (loop, loop_outer (loop));
5293 if (!dominated_by_p (CDI_DOMINATORS, loop->latch, exit->src))
5294 return false;
5296 for (i = 0; i < n_region; i++)
5297 if (region[i] != exit->src
5298 && dominated_by_p (CDI_DOMINATORS, region[i], exit->src))
5299 return false;
5302 if (!region_copy)
5304 region_copy = XNEWVEC (basic_block, n_region);
5305 free_region_copy = true;
5308 gcc_assert (!need_ssa_update_p (cfun));
5310 /* Record blocks outside the region that are dominated by something
5311 inside. */
5312 doms = NULL;
5313 initialize_original_copy_tables ();
5315 doms = get_dominated_by_region (CDI_DOMINATORS, region, n_region);
5317 if (entry->dest->count)
5319 total_count = entry->dest->count;
5320 entry_count = entry->count;
5321 /* Fix up corner cases, to avoid division by zero or creation of negative
5322 frequencies. */
5323 if (entry_count > total_count)
5324 entry_count = total_count;
5326 else
5328 total_freq = entry->dest->frequency;
5329 entry_freq = EDGE_FREQUENCY (entry);
5330 /* Fix up corner cases, to avoid division by zero or creation of negative
5331 frequencies. */
5332 if (total_freq == 0)
5333 total_freq = 1;
5334 else if (entry_freq > total_freq)
5335 entry_freq = total_freq;
5338 copy_bbs (region, n_region, region_copy, &exit, 1, &exit_copy, loop,
5339 split_edge_bb_loc (entry));
5340 if (total_count)
5342 scale_bbs_frequencies_gcov_type (region, n_region,
5343 total_count - entry_count,
5344 total_count);
5345 scale_bbs_frequencies_gcov_type (region_copy, n_region, entry_count,
5346 total_count);
5348 else
5350 scale_bbs_frequencies_int (region, n_region, total_freq - entry_freq,
5351 total_freq);
5352 scale_bbs_frequencies_int (region_copy, n_region, entry_freq, total_freq);
5355 if (copying_header)
5357 loop->header = exit->dest;
5358 loop->latch = exit->src;
5361 /* Redirect the entry and add the phi node arguments. */
5362 redirected = redirect_edge_and_branch (entry, get_bb_copy (entry->dest));
5363 gcc_assert (redirected != NULL);
5364 flush_pending_stmts (entry);
5366 /* Concerning updating of dominators: We must recount dominators
5367 for entry block and its copy. Anything that is outside of the
5368 region, but was dominated by something inside needs recounting as
5369 well. */
5370 set_immediate_dominator (CDI_DOMINATORS, entry->dest, entry->src);
5371 VEC_safe_push (basic_block, heap, doms, get_bb_original (entry->dest));
5372 iterate_fix_dominators (CDI_DOMINATORS, doms, false);
5373 VEC_free (basic_block, heap, doms);
5375 /* Add the other PHI node arguments. */
5376 add_phi_args_after_copy (region_copy, n_region, NULL);
5378 /* Update the SSA web. */
5379 update_ssa (TODO_update_ssa);
5381 if (free_region_copy)
5382 free (region_copy);
5384 free_original_copy_tables ();
5385 return true;
5388 /* Duplicates REGION consisting of N_REGION blocks. The new blocks
5389 are stored to REGION_COPY in the same order in that they appear
5390 in REGION, if REGION_COPY is not NULL. ENTRY is the entry to
5391 the region, EXIT an exit from it. The condition guarding EXIT
5392 is moved to ENTRY. Returns true if duplication succeeds, false
5393 otherwise.
5395 For example,
5397 some_code;
5398 if (cond)
5400 else
5403 is transformed to
5405 if (cond)
5407 some_code;
5410 else
5412 some_code;
5417 bool
5418 gimple_duplicate_sese_tail (edge entry ATTRIBUTE_UNUSED, edge exit ATTRIBUTE_UNUSED,
5419 basic_block *region ATTRIBUTE_UNUSED, unsigned n_region ATTRIBUTE_UNUSED,
5420 basic_block *region_copy ATTRIBUTE_UNUSED)
5422 unsigned i;
5423 bool free_region_copy = false;
5424 struct loop *loop = exit->dest->loop_father;
5425 struct loop *orig_loop = entry->dest->loop_father;
5426 basic_block switch_bb, entry_bb, nentry_bb;
5427 VEC (basic_block, heap) *doms;
5428 int total_freq = 0, exit_freq = 0;
5429 gcov_type total_count = 0, exit_count = 0;
5430 edge exits[2], nexits[2], e;
5431 gimple_stmt_iterator gsi;
5432 gimple cond_stmt;
5433 edge sorig, snew;
5434 basic_block exit_bb;
5435 gimple_stmt_iterator psi;
5436 gimple phi;
5437 tree def;
5439 gcc_assert (EDGE_COUNT (exit->src->succs) == 2);
5440 exits[0] = exit;
5441 exits[1] = EDGE_SUCC (exit->src, EDGE_SUCC (exit->src, 0) == exit);
5443 if (!can_copy_bbs_p (region, n_region))
5444 return false;
5446 initialize_original_copy_tables ();
5447 set_loop_copy (orig_loop, loop);
5448 duplicate_subloops (orig_loop, loop);
5450 if (!region_copy)
5452 region_copy = XNEWVEC (basic_block, n_region);
5453 free_region_copy = true;
5456 gcc_assert (!need_ssa_update_p (cfun));
5458 /* Record blocks outside the region that are dominated by something
5459 inside. */
5460 doms = get_dominated_by_region (CDI_DOMINATORS, region, n_region);
5462 if (exit->src->count)
5464 total_count = exit->src->count;
5465 exit_count = exit->count;
5466 /* Fix up corner cases, to avoid division by zero or creation of negative
5467 frequencies. */
5468 if (exit_count > total_count)
5469 exit_count = total_count;
5471 else
5473 total_freq = exit->src->frequency;
5474 exit_freq = EDGE_FREQUENCY (exit);
5475 /* Fix up corner cases, to avoid division by zero or creation of negative
5476 frequencies. */
5477 if (total_freq == 0)
5478 total_freq = 1;
5479 if (exit_freq > total_freq)
5480 exit_freq = total_freq;
5483 copy_bbs (region, n_region, region_copy, exits, 2, nexits, orig_loop,
5484 split_edge_bb_loc (exit));
5485 if (total_count)
5487 scale_bbs_frequencies_gcov_type (region, n_region,
5488 total_count - exit_count,
5489 total_count);
5490 scale_bbs_frequencies_gcov_type (region_copy, n_region, exit_count,
5491 total_count);
5493 else
5495 scale_bbs_frequencies_int (region, n_region, total_freq - exit_freq,
5496 total_freq);
5497 scale_bbs_frequencies_int (region_copy, n_region, exit_freq, total_freq);
5500 /* Create the switch block, and put the exit condition to it. */
5501 entry_bb = entry->dest;
5502 nentry_bb = get_bb_copy (entry_bb);
5503 if (!last_stmt (entry->src)
5504 || !stmt_ends_bb_p (last_stmt (entry->src)))
5505 switch_bb = entry->src;
5506 else
5507 switch_bb = split_edge (entry);
5508 set_immediate_dominator (CDI_DOMINATORS, nentry_bb, switch_bb);
5510 gsi = gsi_last_bb (switch_bb);
5511 cond_stmt = last_stmt (exit->src);
5512 gcc_assert (gimple_code (cond_stmt) == GIMPLE_COND);
5513 cond_stmt = gimple_copy (cond_stmt);
5515 gsi_insert_after (&gsi, cond_stmt, GSI_NEW_STMT);
5517 sorig = single_succ_edge (switch_bb);
5518 sorig->flags = exits[1]->flags;
5519 snew = make_edge (switch_bb, nentry_bb, exits[0]->flags);
5521 /* Register the new edge from SWITCH_BB in loop exit lists. */
5522 rescan_loop_exit (snew, true, false);
5524 /* Add the PHI node arguments. */
5525 add_phi_args_after_copy (region_copy, n_region, snew);
5527 /* Get rid of now superfluous conditions and associated edges (and phi node
5528 arguments). */
5529 exit_bb = exit->dest;
5531 e = redirect_edge_and_branch (exits[0], exits[1]->dest);
5532 PENDING_STMT (e) = NULL;
5534 /* The latch of ORIG_LOOP was copied, and so was the backedge
5535 to the original header. We redirect this backedge to EXIT_BB. */
5536 for (i = 0; i < n_region; i++)
5537 if (get_bb_original (region_copy[i]) == orig_loop->latch)
5539 gcc_assert (single_succ_edge (region_copy[i]));
5540 e = redirect_edge_and_branch (single_succ_edge (region_copy[i]), exit_bb);
5541 PENDING_STMT (e) = NULL;
5542 for (psi = gsi_start_phis (exit_bb);
5543 !gsi_end_p (psi);
5544 gsi_next (&psi))
5546 phi = gsi_stmt (psi);
5547 def = PHI_ARG_DEF (phi, nexits[0]->dest_idx);
5548 add_phi_arg (phi, def, e, gimple_phi_arg_location_from_edge (phi, e));
5551 e = redirect_edge_and_branch (nexits[0], nexits[1]->dest);
5552 PENDING_STMT (e) = NULL;
5554 /* Anything that is outside of the region, but was dominated by something
5555 inside needs to update dominance info. */
5556 iterate_fix_dominators (CDI_DOMINATORS, doms, false);
5557 VEC_free (basic_block, heap, doms);
5558 /* Update the SSA web. */
5559 update_ssa (TODO_update_ssa);
5561 if (free_region_copy)
5562 free (region_copy);
5564 free_original_copy_tables ();
5565 return true;
5568 /* Add all the blocks dominated by ENTRY to the array BBS_P. Stop
5569 adding blocks when the dominator traversal reaches EXIT. This
5570 function silently assumes that ENTRY strictly dominates EXIT. */
5572 void
5573 gather_blocks_in_sese_region (basic_block entry, basic_block exit,
5574 VEC(basic_block,heap) **bbs_p)
5576 basic_block son;
5578 for (son = first_dom_son (CDI_DOMINATORS, entry);
5579 son;
5580 son = next_dom_son (CDI_DOMINATORS, son))
5582 VEC_safe_push (basic_block, heap, *bbs_p, son);
5583 if (son != exit)
5584 gather_blocks_in_sese_region (son, exit, bbs_p);
5588 /* Replaces *TP with a duplicate (belonging to function TO_CONTEXT).
5589 The duplicates are recorded in VARS_MAP. */
5591 static void
5592 replace_by_duplicate_decl (tree *tp, struct pointer_map_t *vars_map,
5593 tree to_context)
5595 tree t = *tp, new_t;
5596 struct function *f = DECL_STRUCT_FUNCTION (to_context);
5597 void **loc;
5599 if (DECL_CONTEXT (t) == to_context)
5600 return;
5602 loc = pointer_map_contains (vars_map, t);
5604 if (!loc)
5606 loc = pointer_map_insert (vars_map, t);
5608 if (SSA_VAR_P (t))
5610 new_t = copy_var_decl (t, DECL_NAME (t), TREE_TYPE (t));
5611 add_local_decl (f, new_t);
5613 else
5615 gcc_assert (TREE_CODE (t) == CONST_DECL);
5616 new_t = copy_node (t);
5618 DECL_CONTEXT (new_t) = to_context;
5620 *loc = new_t;
5622 else
5623 new_t = (tree) *loc;
5625 *tp = new_t;
5629 /* Creates an ssa name in TO_CONTEXT equivalent to NAME.
5630 VARS_MAP maps old ssa names and var_decls to the new ones. */
5632 static tree
5633 replace_ssa_name (tree name, struct pointer_map_t *vars_map,
5634 tree to_context)
5636 void **loc;
5637 tree new_name, decl = SSA_NAME_VAR (name);
5639 gcc_assert (is_gimple_reg (name));
5641 loc = pointer_map_contains (vars_map, name);
5643 if (!loc)
5645 replace_by_duplicate_decl (&decl, vars_map, to_context);
5647 push_cfun (DECL_STRUCT_FUNCTION (to_context));
5648 if (gimple_in_ssa_p (cfun))
5649 add_referenced_var (decl);
5651 new_name = make_ssa_name (decl, SSA_NAME_DEF_STMT (name));
5652 if (SSA_NAME_IS_DEFAULT_DEF (name))
5653 set_default_def (decl, new_name);
5654 pop_cfun ();
5656 loc = pointer_map_insert (vars_map, name);
5657 *loc = new_name;
5659 else
5660 new_name = (tree) *loc;
5662 return new_name;
5665 struct move_stmt_d
5667 tree orig_block;
5668 tree new_block;
5669 tree from_context;
5670 tree to_context;
5671 struct pointer_map_t *vars_map;
5672 htab_t new_label_map;
5673 struct pointer_map_t *eh_map;
5674 bool remap_decls_p;
5677 /* Helper for move_block_to_fn. Set TREE_BLOCK in every expression
5678 contained in *TP if it has been ORIG_BLOCK previously and change the
5679 DECL_CONTEXT of every local variable referenced in *TP. */
5681 static tree
5682 move_stmt_op (tree *tp, int *walk_subtrees, void *data)
5684 struct walk_stmt_info *wi = (struct walk_stmt_info *) data;
5685 struct move_stmt_d *p = (struct move_stmt_d *) wi->info;
5686 tree t = *tp;
5688 if (EXPR_P (t))
5689 /* We should never have TREE_BLOCK set on non-statements. */
5690 gcc_assert (!TREE_BLOCK (t));
5692 else if (DECL_P (t) || TREE_CODE (t) == SSA_NAME)
5694 if (TREE_CODE (t) == SSA_NAME)
5695 *tp = replace_ssa_name (t, p->vars_map, p->to_context);
5696 else if (TREE_CODE (t) == LABEL_DECL)
5698 if (p->new_label_map)
5700 struct tree_map in, *out;
5701 in.base.from = t;
5702 out = (struct tree_map *)
5703 htab_find_with_hash (p->new_label_map, &in, DECL_UID (t));
5704 if (out)
5705 *tp = t = out->to;
5708 DECL_CONTEXT (t) = p->to_context;
5710 else if (p->remap_decls_p)
5712 /* Replace T with its duplicate. T should no longer appear in the
5713 parent function, so this looks wasteful; however, it may appear
5714 in referenced_vars, and more importantly, as virtual operands of
5715 statements, and in alias lists of other variables. It would be
5716 quite difficult to expunge it from all those places. ??? It might
5717 suffice to do this for addressable variables. */
5718 if ((TREE_CODE (t) == VAR_DECL
5719 && !is_global_var (t))
5720 || TREE_CODE (t) == CONST_DECL)
5721 replace_by_duplicate_decl (tp, p->vars_map, p->to_context);
5723 if (SSA_VAR_P (t)
5724 && gimple_in_ssa_p (cfun))
5726 push_cfun (DECL_STRUCT_FUNCTION (p->to_context));
5727 add_referenced_var (*tp);
5728 pop_cfun ();
5731 *walk_subtrees = 0;
5733 else if (TYPE_P (t))
5734 *walk_subtrees = 0;
5736 return NULL_TREE;
5739 /* Helper for move_stmt_r. Given an EH region number for the source
5740 function, map that to the duplicate EH regio number in the dest. */
5742 static int
5743 move_stmt_eh_region_nr (int old_nr, struct move_stmt_d *p)
5745 eh_region old_r, new_r;
5746 void **slot;
5748 old_r = get_eh_region_from_number (old_nr);
5749 slot = pointer_map_contains (p->eh_map, old_r);
5750 new_r = (eh_region) *slot;
5752 return new_r->index;
5755 /* Similar, but operate on INTEGER_CSTs. */
5757 static tree
5758 move_stmt_eh_region_tree_nr (tree old_t_nr, struct move_stmt_d *p)
5760 int old_nr, new_nr;
5762 old_nr = tree_low_cst (old_t_nr, 0);
5763 new_nr = move_stmt_eh_region_nr (old_nr, p);
5765 return build_int_cst (integer_type_node, new_nr);
5768 /* Like move_stmt_op, but for gimple statements.
5770 Helper for move_block_to_fn. Set GIMPLE_BLOCK in every expression
5771 contained in the current statement in *GSI_P and change the
5772 DECL_CONTEXT of every local variable referenced in the current
5773 statement. */
5775 static tree
5776 move_stmt_r (gimple_stmt_iterator *gsi_p, bool *handled_ops_p,
5777 struct walk_stmt_info *wi)
5779 struct move_stmt_d *p = (struct move_stmt_d *) wi->info;
5780 gimple stmt = gsi_stmt (*gsi_p);
5781 tree block = gimple_block (stmt);
5783 if (p->orig_block == NULL_TREE
5784 || block == p->orig_block
5785 || block == NULL_TREE)
5786 gimple_set_block (stmt, p->new_block);
5787 #ifdef ENABLE_CHECKING
5788 else if (block != p->new_block)
5790 while (block && block != p->orig_block)
5791 block = BLOCK_SUPERCONTEXT (block);
5792 gcc_assert (block);
5794 #endif
5796 switch (gimple_code (stmt))
5798 case GIMPLE_CALL:
5799 /* Remap the region numbers for __builtin_eh_{pointer,filter}. */
5801 tree r, fndecl = gimple_call_fndecl (stmt);
5802 if (fndecl && DECL_BUILT_IN_CLASS (fndecl) == BUILT_IN_NORMAL)
5803 switch (DECL_FUNCTION_CODE (fndecl))
5805 case BUILT_IN_EH_COPY_VALUES:
5806 r = gimple_call_arg (stmt, 1);
5807 r = move_stmt_eh_region_tree_nr (r, p);
5808 gimple_call_set_arg (stmt, 1, r);
5809 /* FALLTHRU */
5811 case BUILT_IN_EH_POINTER:
5812 case BUILT_IN_EH_FILTER:
5813 r = gimple_call_arg (stmt, 0);
5814 r = move_stmt_eh_region_tree_nr (r, p);
5815 gimple_call_set_arg (stmt, 0, r);
5816 break;
5818 default:
5819 break;
5822 break;
5824 case GIMPLE_RESX:
5826 int r = gimple_resx_region (stmt);
5827 r = move_stmt_eh_region_nr (r, p);
5828 gimple_resx_set_region (stmt, r);
5830 break;
5832 case GIMPLE_EH_DISPATCH:
5834 int r = gimple_eh_dispatch_region (stmt);
5835 r = move_stmt_eh_region_nr (r, p);
5836 gimple_eh_dispatch_set_region (stmt, r);
5838 break;
5840 case GIMPLE_OMP_RETURN:
5841 case GIMPLE_OMP_CONTINUE:
5842 break;
5843 default:
5844 if (is_gimple_omp (stmt))
5846 /* Do not remap variables inside OMP directives. Variables
5847 referenced in clauses and directive header belong to the
5848 parent function and should not be moved into the child
5849 function. */
5850 bool save_remap_decls_p = p->remap_decls_p;
5851 p->remap_decls_p = false;
5852 *handled_ops_p = true;
5854 walk_gimple_seq (gimple_omp_body (stmt), move_stmt_r,
5855 move_stmt_op, wi);
5857 p->remap_decls_p = save_remap_decls_p;
5859 break;
5862 return NULL_TREE;
5865 /* Move basic block BB from function CFUN to function DEST_FN. The
5866 block is moved out of the original linked list and placed after
5867 block AFTER in the new list. Also, the block is removed from the
5868 original array of blocks and placed in DEST_FN's array of blocks.
5869 If UPDATE_EDGE_COUNT_P is true, the edge counts on both CFGs is
5870 updated to reflect the moved edges.
5872 The local variables are remapped to new instances, VARS_MAP is used
5873 to record the mapping. */
5875 static void
5876 move_block_to_fn (struct function *dest_cfun, basic_block bb,
5877 basic_block after, bool update_edge_count_p,
5878 struct move_stmt_d *d)
5880 struct control_flow_graph *cfg;
5881 edge_iterator ei;
5882 edge e;
5883 gimple_stmt_iterator si;
5884 unsigned old_len, new_len;
5886 /* Remove BB from dominance structures. */
5887 delete_from_dominance_info (CDI_DOMINATORS, bb);
5888 if (current_loops)
5889 remove_bb_from_loops (bb);
5891 /* Link BB to the new linked list. */
5892 move_block_after (bb, after);
5894 /* Update the edge count in the corresponding flowgraphs. */
5895 if (update_edge_count_p)
5896 FOR_EACH_EDGE (e, ei, bb->succs)
5898 cfun->cfg->x_n_edges--;
5899 dest_cfun->cfg->x_n_edges++;
5902 /* Remove BB from the original basic block array. */
5903 VEC_replace (basic_block, cfun->cfg->x_basic_block_info, bb->index, NULL);
5904 cfun->cfg->x_n_basic_blocks--;
5906 /* Grow DEST_CFUN's basic block array if needed. */
5907 cfg = dest_cfun->cfg;
5908 cfg->x_n_basic_blocks++;
5909 if (bb->index >= cfg->x_last_basic_block)
5910 cfg->x_last_basic_block = bb->index + 1;
5912 old_len = VEC_length (basic_block, cfg->x_basic_block_info);
5913 if ((unsigned) cfg->x_last_basic_block >= old_len)
5915 new_len = cfg->x_last_basic_block + (cfg->x_last_basic_block + 3) / 4;
5916 VEC_safe_grow_cleared (basic_block, gc, cfg->x_basic_block_info,
5917 new_len);
5920 VEC_replace (basic_block, cfg->x_basic_block_info,
5921 bb->index, bb);
5923 /* Remap the variables in phi nodes. */
5924 for (si = gsi_start_phis (bb); !gsi_end_p (si); )
5926 gimple phi = gsi_stmt (si);
5927 use_operand_p use;
5928 tree op = PHI_RESULT (phi);
5929 ssa_op_iter oi;
5931 if (!is_gimple_reg (op))
5933 /* Remove the phi nodes for virtual operands (alias analysis will be
5934 run for the new function, anyway). */
5935 remove_phi_node (&si, true);
5936 continue;
5939 SET_PHI_RESULT (phi,
5940 replace_ssa_name (op, d->vars_map, dest_cfun->decl));
5941 FOR_EACH_PHI_ARG (use, phi, oi, SSA_OP_USE)
5943 op = USE_FROM_PTR (use);
5944 if (TREE_CODE (op) == SSA_NAME)
5945 SET_USE (use, replace_ssa_name (op, d->vars_map, dest_cfun->decl));
5948 gsi_next (&si);
5951 for (si = gsi_start_bb (bb); !gsi_end_p (si); gsi_next (&si))
5953 gimple stmt = gsi_stmt (si);
5954 struct walk_stmt_info wi;
5956 memset (&wi, 0, sizeof (wi));
5957 wi.info = d;
5958 walk_gimple_stmt (&si, move_stmt_r, move_stmt_op, &wi);
5960 if (gimple_code (stmt) == GIMPLE_LABEL)
5962 tree label = gimple_label_label (stmt);
5963 int uid = LABEL_DECL_UID (label);
5965 gcc_assert (uid > -1);
5967 old_len = VEC_length (basic_block, cfg->x_label_to_block_map);
5968 if (old_len <= (unsigned) uid)
5970 new_len = 3 * uid / 2 + 1;
5971 VEC_safe_grow_cleared (basic_block, gc,
5972 cfg->x_label_to_block_map, new_len);
5975 VEC_replace (basic_block, cfg->x_label_to_block_map, uid, bb);
5976 VEC_replace (basic_block, cfun->cfg->x_label_to_block_map, uid, NULL);
5978 gcc_assert (DECL_CONTEXT (label) == dest_cfun->decl);
5980 if (uid >= dest_cfun->cfg->last_label_uid)
5981 dest_cfun->cfg->last_label_uid = uid + 1;
5984 maybe_duplicate_eh_stmt_fn (dest_cfun, stmt, cfun, stmt, d->eh_map, 0);
5985 remove_stmt_from_eh_lp_fn (cfun, stmt);
5987 gimple_duplicate_stmt_histograms (dest_cfun, stmt, cfun, stmt);
5988 gimple_remove_stmt_histograms (cfun, stmt);
5990 /* We cannot leave any operands allocated from the operand caches of
5991 the current function. */
5992 free_stmt_operands (stmt);
5993 push_cfun (dest_cfun);
5994 update_stmt (stmt);
5995 pop_cfun ();
5998 FOR_EACH_EDGE (e, ei, bb->succs)
5999 if (e->goto_locus)
6001 tree block = e->goto_block;
6002 if (d->orig_block == NULL_TREE
6003 || block == d->orig_block)
6004 e->goto_block = d->new_block;
6005 #ifdef ENABLE_CHECKING
6006 else if (block != d->new_block)
6008 while (block && block != d->orig_block)
6009 block = BLOCK_SUPERCONTEXT (block);
6010 gcc_assert (block);
6012 #endif
6016 /* Examine the statements in BB (which is in SRC_CFUN); find and return
6017 the outermost EH region. Use REGION as the incoming base EH region. */
6019 static eh_region
6020 find_outermost_region_in_block (struct function *src_cfun,
6021 basic_block bb, eh_region region)
6023 gimple_stmt_iterator si;
6025 for (si = gsi_start_bb (bb); !gsi_end_p (si); gsi_next (&si))
6027 gimple stmt = gsi_stmt (si);
6028 eh_region stmt_region;
6029 int lp_nr;
6031 lp_nr = lookup_stmt_eh_lp_fn (src_cfun, stmt);
6032 stmt_region = get_eh_region_from_lp_number_fn (src_cfun, lp_nr);
6033 if (stmt_region)
6035 if (region == NULL)
6036 region = stmt_region;
6037 else if (stmt_region != region)
6039 region = eh_region_outermost (src_cfun, stmt_region, region);
6040 gcc_assert (region != NULL);
6045 return region;
6048 static tree
6049 new_label_mapper (tree decl, void *data)
6051 htab_t hash = (htab_t) data;
6052 struct tree_map *m;
6053 void **slot;
6055 gcc_assert (TREE_CODE (decl) == LABEL_DECL);
6057 m = XNEW (struct tree_map);
6058 m->hash = DECL_UID (decl);
6059 m->base.from = decl;
6060 m->to = create_artificial_label (UNKNOWN_LOCATION);
6061 LABEL_DECL_UID (m->to) = LABEL_DECL_UID (decl);
6062 if (LABEL_DECL_UID (m->to) >= cfun->cfg->last_label_uid)
6063 cfun->cfg->last_label_uid = LABEL_DECL_UID (m->to) + 1;
6065 slot = htab_find_slot_with_hash (hash, m, m->hash, INSERT);
6066 gcc_assert (*slot == NULL);
6068 *slot = m;
6070 return m->to;
6073 /* Change DECL_CONTEXT of all BLOCK_VARS in block, including
6074 subblocks. */
6076 static void
6077 replace_block_vars_by_duplicates (tree block, struct pointer_map_t *vars_map,
6078 tree to_context)
6080 tree *tp, t;
6082 for (tp = &BLOCK_VARS (block); *tp; tp = &DECL_CHAIN (*tp))
6084 t = *tp;
6085 if (TREE_CODE (t) != VAR_DECL && TREE_CODE (t) != CONST_DECL)
6086 continue;
6087 replace_by_duplicate_decl (&t, vars_map, to_context);
6088 if (t != *tp)
6090 if (TREE_CODE (*tp) == VAR_DECL && DECL_HAS_VALUE_EXPR_P (*tp))
6092 SET_DECL_VALUE_EXPR (t, DECL_VALUE_EXPR (*tp));
6093 DECL_HAS_VALUE_EXPR_P (t) = 1;
6095 DECL_CHAIN (t) = DECL_CHAIN (*tp);
6096 *tp = t;
6100 for (block = BLOCK_SUBBLOCKS (block); block; block = BLOCK_CHAIN (block))
6101 replace_block_vars_by_duplicates (block, vars_map, to_context);
6104 /* Move a single-entry, single-exit region delimited by ENTRY_BB and
6105 EXIT_BB to function DEST_CFUN. The whole region is replaced by a
6106 single basic block in the original CFG and the new basic block is
6107 returned. DEST_CFUN must not have a CFG yet.
6109 Note that the region need not be a pure SESE region. Blocks inside
6110 the region may contain calls to abort/exit. The only restriction
6111 is that ENTRY_BB should be the only entry point and it must
6112 dominate EXIT_BB.
6114 Change TREE_BLOCK of all statements in ORIG_BLOCK to the new
6115 functions outermost BLOCK, move all subblocks of ORIG_BLOCK
6116 to the new function.
6118 All local variables referenced in the region are assumed to be in
6119 the corresponding BLOCK_VARS and unexpanded variable lists
6120 associated with DEST_CFUN. */
6122 basic_block
6123 move_sese_region_to_fn (struct function *dest_cfun, basic_block entry_bb,
6124 basic_block exit_bb, tree orig_block)
6126 VEC(basic_block,heap) *bbs, *dom_bbs;
6127 basic_block dom_entry = get_immediate_dominator (CDI_DOMINATORS, entry_bb);
6128 basic_block after, bb, *entry_pred, *exit_succ, abb;
6129 struct function *saved_cfun = cfun;
6130 int *entry_flag, *exit_flag;
6131 unsigned *entry_prob, *exit_prob;
6132 unsigned i, num_entry_edges, num_exit_edges;
6133 edge e;
6134 edge_iterator ei;
6135 htab_t new_label_map;
6136 struct pointer_map_t *vars_map, *eh_map;
6137 struct loop *loop = entry_bb->loop_father;
6138 struct move_stmt_d d;
6140 /* If ENTRY does not strictly dominate EXIT, this cannot be an SESE
6141 region. */
6142 gcc_assert (entry_bb != exit_bb
6143 && (!exit_bb
6144 || dominated_by_p (CDI_DOMINATORS, exit_bb, entry_bb)));
6146 /* Collect all the blocks in the region. Manually add ENTRY_BB
6147 because it won't be added by dfs_enumerate_from. */
6148 bbs = NULL;
6149 VEC_safe_push (basic_block, heap, bbs, entry_bb);
6150 gather_blocks_in_sese_region (entry_bb, exit_bb, &bbs);
6152 /* The blocks that used to be dominated by something in BBS will now be
6153 dominated by the new block. */
6154 dom_bbs = get_dominated_by_region (CDI_DOMINATORS,
6155 VEC_address (basic_block, bbs),
6156 VEC_length (basic_block, bbs));
6158 /* Detach ENTRY_BB and EXIT_BB from CFUN->CFG. We need to remember
6159 the predecessor edges to ENTRY_BB and the successor edges to
6160 EXIT_BB so that we can re-attach them to the new basic block that
6161 will replace the region. */
6162 num_entry_edges = EDGE_COUNT (entry_bb->preds);
6163 entry_pred = (basic_block *) xcalloc (num_entry_edges, sizeof (basic_block));
6164 entry_flag = (int *) xcalloc (num_entry_edges, sizeof (int));
6165 entry_prob = XNEWVEC (unsigned, num_entry_edges);
6166 i = 0;
6167 for (ei = ei_start (entry_bb->preds); (e = ei_safe_edge (ei)) != NULL;)
6169 entry_prob[i] = e->probability;
6170 entry_flag[i] = e->flags;
6171 entry_pred[i++] = e->src;
6172 remove_edge (e);
6175 if (exit_bb)
6177 num_exit_edges = EDGE_COUNT (exit_bb->succs);
6178 exit_succ = (basic_block *) xcalloc (num_exit_edges,
6179 sizeof (basic_block));
6180 exit_flag = (int *) xcalloc (num_exit_edges, sizeof (int));
6181 exit_prob = XNEWVEC (unsigned, num_exit_edges);
6182 i = 0;
6183 for (ei = ei_start (exit_bb->succs); (e = ei_safe_edge (ei)) != NULL;)
6185 exit_prob[i] = e->probability;
6186 exit_flag[i] = e->flags;
6187 exit_succ[i++] = e->dest;
6188 remove_edge (e);
6191 else
6193 num_exit_edges = 0;
6194 exit_succ = NULL;
6195 exit_flag = NULL;
6196 exit_prob = NULL;
6199 /* Switch context to the child function to initialize DEST_FN's CFG. */
6200 gcc_assert (dest_cfun->cfg == NULL);
6201 push_cfun (dest_cfun);
6203 init_empty_tree_cfg ();
6205 /* Initialize EH information for the new function. */
6206 eh_map = NULL;
6207 new_label_map = NULL;
6208 if (saved_cfun->eh)
6210 eh_region region = NULL;
6212 FOR_EACH_VEC_ELT (basic_block, bbs, i, bb)
6213 region = find_outermost_region_in_block (saved_cfun, bb, region);
6215 init_eh_for_function ();
6216 if (region != NULL)
6218 new_label_map = htab_create (17, tree_map_hash, tree_map_eq, free);
6219 eh_map = duplicate_eh_regions (saved_cfun, region, 0,
6220 new_label_mapper, new_label_map);
6224 pop_cfun ();
6226 /* Move blocks from BBS into DEST_CFUN. */
6227 gcc_assert (VEC_length (basic_block, bbs) >= 2);
6228 after = dest_cfun->cfg->x_entry_block_ptr;
6229 vars_map = pointer_map_create ();
6231 memset (&d, 0, sizeof (d));
6232 d.orig_block = orig_block;
6233 d.new_block = DECL_INITIAL (dest_cfun->decl);
6234 d.from_context = cfun->decl;
6235 d.to_context = dest_cfun->decl;
6236 d.vars_map = vars_map;
6237 d.new_label_map = new_label_map;
6238 d.eh_map = eh_map;
6239 d.remap_decls_p = true;
6241 FOR_EACH_VEC_ELT (basic_block, bbs, i, bb)
6243 /* No need to update edge counts on the last block. It has
6244 already been updated earlier when we detached the region from
6245 the original CFG. */
6246 move_block_to_fn (dest_cfun, bb, after, bb != exit_bb, &d);
6247 after = bb;
6250 /* Rewire BLOCK_SUBBLOCKS of orig_block. */
6251 if (orig_block)
6253 tree block;
6254 gcc_assert (BLOCK_SUBBLOCKS (DECL_INITIAL (dest_cfun->decl))
6255 == NULL_TREE);
6256 BLOCK_SUBBLOCKS (DECL_INITIAL (dest_cfun->decl))
6257 = BLOCK_SUBBLOCKS (orig_block);
6258 for (block = BLOCK_SUBBLOCKS (orig_block);
6259 block; block = BLOCK_CHAIN (block))
6260 BLOCK_SUPERCONTEXT (block) = DECL_INITIAL (dest_cfun->decl);
6261 BLOCK_SUBBLOCKS (orig_block) = NULL_TREE;
6264 replace_block_vars_by_duplicates (DECL_INITIAL (dest_cfun->decl),
6265 vars_map, dest_cfun->decl);
6267 if (new_label_map)
6268 htab_delete (new_label_map);
6269 if (eh_map)
6270 pointer_map_destroy (eh_map);
6271 pointer_map_destroy (vars_map);
6273 /* Rewire the entry and exit blocks. The successor to the entry
6274 block turns into the successor of DEST_FN's ENTRY_BLOCK_PTR in
6275 the child function. Similarly, the predecessor of DEST_FN's
6276 EXIT_BLOCK_PTR turns into the predecessor of EXIT_BLOCK_PTR. We
6277 need to switch CFUN between DEST_CFUN and SAVED_CFUN so that the
6278 various CFG manipulation function get to the right CFG.
6280 FIXME, this is silly. The CFG ought to become a parameter to
6281 these helpers. */
6282 push_cfun (dest_cfun);
6283 make_edge (ENTRY_BLOCK_PTR, entry_bb, EDGE_FALLTHRU);
6284 if (exit_bb)
6285 make_edge (exit_bb, EXIT_BLOCK_PTR, 0);
6286 pop_cfun ();
6288 /* Back in the original function, the SESE region has disappeared,
6289 create a new basic block in its place. */
6290 bb = create_empty_bb (entry_pred[0]);
6291 if (current_loops)
6292 add_bb_to_loop (bb, loop);
6293 for (i = 0; i < num_entry_edges; i++)
6295 e = make_edge (entry_pred[i], bb, entry_flag[i]);
6296 e->probability = entry_prob[i];
6299 for (i = 0; i < num_exit_edges; i++)
6301 e = make_edge (bb, exit_succ[i], exit_flag[i]);
6302 e->probability = exit_prob[i];
6305 set_immediate_dominator (CDI_DOMINATORS, bb, dom_entry);
6306 FOR_EACH_VEC_ELT (basic_block, dom_bbs, i, abb)
6307 set_immediate_dominator (CDI_DOMINATORS, abb, bb);
6308 VEC_free (basic_block, heap, dom_bbs);
6310 if (exit_bb)
6312 free (exit_prob);
6313 free (exit_flag);
6314 free (exit_succ);
6316 free (entry_prob);
6317 free (entry_flag);
6318 free (entry_pred);
6319 VEC_free (basic_block, heap, bbs);
6321 return bb;
6325 /* Dump FUNCTION_DECL FN to file FILE using FLAGS (see TDF_* in tree-pass.h)
6328 void
6329 dump_function_to_file (tree fn, FILE *file, int flags)
6331 tree arg, var;
6332 struct function *dsf;
6333 bool ignore_topmost_bind = false, any_var = false;
6334 basic_block bb;
6335 tree chain;
6337 fprintf (file, "%s (", lang_hooks.decl_printable_name (fn, 2));
6339 arg = DECL_ARGUMENTS (fn);
6340 while (arg)
6342 print_generic_expr (file, TREE_TYPE (arg), dump_flags);
6343 fprintf (file, " ");
6344 print_generic_expr (file, arg, dump_flags);
6345 if (flags & TDF_VERBOSE)
6346 print_node (file, "", arg, 4);
6347 if (DECL_CHAIN (arg))
6348 fprintf (file, ", ");
6349 arg = DECL_CHAIN (arg);
6351 fprintf (file, ")\n");
6353 if (flags & TDF_VERBOSE)
6354 print_node (file, "", fn, 2);
6356 dsf = DECL_STRUCT_FUNCTION (fn);
6357 if (dsf && (flags & TDF_EH))
6358 dump_eh_tree (file, dsf);
6360 if (flags & TDF_RAW && !gimple_has_body_p (fn))
6362 dump_node (fn, TDF_SLIM | flags, file);
6363 return;
6366 /* Switch CFUN to point to FN. */
6367 push_cfun (DECL_STRUCT_FUNCTION (fn));
6369 /* When GIMPLE is lowered, the variables are no longer available in
6370 BIND_EXPRs, so display them separately. */
6371 if (cfun && cfun->decl == fn && !VEC_empty (tree, cfun->local_decls))
6373 unsigned ix;
6374 ignore_topmost_bind = true;
6376 fprintf (file, "{\n");
6377 FOR_EACH_LOCAL_DECL (cfun, ix, var)
6379 print_generic_decl (file, var, flags);
6380 if (flags & TDF_VERBOSE)
6381 print_node (file, "", var, 4);
6382 fprintf (file, "\n");
6384 any_var = true;
6388 if (cfun && cfun->decl == fn && cfun->cfg && basic_block_info)
6390 /* If the CFG has been built, emit a CFG-based dump. */
6391 check_bb_profile (ENTRY_BLOCK_PTR, file);
6392 if (!ignore_topmost_bind)
6393 fprintf (file, "{\n");
6395 if (any_var && n_basic_blocks)
6396 fprintf (file, "\n");
6398 FOR_EACH_BB (bb)
6399 gimple_dump_bb (bb, file, 2, flags);
6401 fprintf (file, "}\n");
6402 check_bb_profile (EXIT_BLOCK_PTR, file);
6404 else if (DECL_SAVED_TREE (fn) == NULL)
6406 /* The function is now in GIMPLE form but the CFG has not been
6407 built yet. Emit the single sequence of GIMPLE statements
6408 that make up its body. */
6409 gimple_seq body = gimple_body (fn);
6411 if (gimple_seq_first_stmt (body)
6412 && gimple_seq_first_stmt (body) == gimple_seq_last_stmt (body)
6413 && gimple_code (gimple_seq_first_stmt (body)) == GIMPLE_BIND)
6414 print_gimple_seq (file, body, 0, flags);
6415 else
6417 if (!ignore_topmost_bind)
6418 fprintf (file, "{\n");
6420 if (any_var)
6421 fprintf (file, "\n");
6423 print_gimple_seq (file, body, 2, flags);
6424 fprintf (file, "}\n");
6427 else
6429 int indent;
6431 /* Make a tree based dump. */
6432 chain = DECL_SAVED_TREE (fn);
6434 if (chain && TREE_CODE (chain) == BIND_EXPR)
6436 if (ignore_topmost_bind)
6438 chain = BIND_EXPR_BODY (chain);
6439 indent = 2;
6441 else
6442 indent = 0;
6444 else
6446 if (!ignore_topmost_bind)
6447 fprintf (file, "{\n");
6448 indent = 2;
6451 if (any_var)
6452 fprintf (file, "\n");
6454 print_generic_stmt_indented (file, chain, flags, indent);
6455 if (ignore_topmost_bind)
6456 fprintf (file, "}\n");
6459 if (flags & TDF_ENUMERATE_LOCALS)
6460 dump_enumerated_decls (file, flags);
6461 fprintf (file, "\n\n");
6463 /* Restore CFUN. */
6464 pop_cfun ();
6468 /* Dump FUNCTION_DECL FN to stderr using FLAGS (see TDF_* in tree.h) */
6470 DEBUG_FUNCTION void
6471 debug_function (tree fn, int flags)
6473 dump_function_to_file (fn, stderr, flags);
6477 /* Print on FILE the indexes for the predecessors of basic_block BB. */
6479 static void
6480 print_pred_bbs (FILE *file, basic_block bb)
6482 edge e;
6483 edge_iterator ei;
6485 FOR_EACH_EDGE (e, ei, bb->preds)
6486 fprintf (file, "bb_%d ", e->src->index);
6490 /* Print on FILE the indexes for the successors of basic_block BB. */
6492 static void
6493 print_succ_bbs (FILE *file, basic_block bb)
6495 edge e;
6496 edge_iterator ei;
6498 FOR_EACH_EDGE (e, ei, bb->succs)
6499 fprintf (file, "bb_%d ", e->dest->index);
6502 /* Print to FILE the basic block BB following the VERBOSITY level. */
6504 void
6505 print_loops_bb (FILE *file, basic_block bb, int indent, int verbosity)
6507 char *s_indent = (char *) alloca ((size_t) indent + 1);
6508 memset ((void *) s_indent, ' ', (size_t) indent);
6509 s_indent[indent] = '\0';
6511 /* Print basic_block's header. */
6512 if (verbosity >= 2)
6514 fprintf (file, "%s bb_%d (preds = {", s_indent, bb->index);
6515 print_pred_bbs (file, bb);
6516 fprintf (file, "}, succs = {");
6517 print_succ_bbs (file, bb);
6518 fprintf (file, "})\n");
6521 /* Print basic_block's body. */
6522 if (verbosity >= 3)
6524 fprintf (file, "%s {\n", s_indent);
6525 gimple_dump_bb (bb, file, indent + 4, TDF_VOPS|TDF_MEMSYMS);
6526 fprintf (file, "%s }\n", s_indent);
6530 static void print_loop_and_siblings (FILE *, struct loop *, int, int);
6532 /* Pretty print LOOP on FILE, indented INDENT spaces. Following
6533 VERBOSITY level this outputs the contents of the loop, or just its
6534 structure. */
6536 static void
6537 print_loop (FILE *file, struct loop *loop, int indent, int verbosity)
6539 char *s_indent;
6540 basic_block bb;
6542 if (loop == NULL)
6543 return;
6545 s_indent = (char *) alloca ((size_t) indent + 1);
6546 memset ((void *) s_indent, ' ', (size_t) indent);
6547 s_indent[indent] = '\0';
6549 /* Print loop's header. */
6550 fprintf (file, "%sloop_%d (header = %d, latch = %d", s_indent,
6551 loop->num, loop->header->index, loop->latch->index);
6552 fprintf (file, ", niter = ");
6553 print_generic_expr (file, loop->nb_iterations, 0);
6555 if (loop->any_upper_bound)
6557 fprintf (file, ", upper_bound = ");
6558 dump_double_int (file, loop->nb_iterations_upper_bound, true);
6561 if (loop->any_estimate)
6563 fprintf (file, ", estimate = ");
6564 dump_double_int (file, loop->nb_iterations_estimate, true);
6566 fprintf (file, ")\n");
6568 /* Print loop's body. */
6569 if (verbosity >= 1)
6571 fprintf (file, "%s{\n", s_indent);
6572 FOR_EACH_BB (bb)
6573 if (bb->loop_father == loop)
6574 print_loops_bb (file, bb, indent, verbosity);
6576 print_loop_and_siblings (file, loop->inner, indent + 2, verbosity);
6577 fprintf (file, "%s}\n", s_indent);
6581 /* Print the LOOP and its sibling loops on FILE, indented INDENT
6582 spaces. Following VERBOSITY level this outputs the contents of the
6583 loop, or just its structure. */
6585 static void
6586 print_loop_and_siblings (FILE *file, struct loop *loop, int indent, int verbosity)
6588 if (loop == NULL)
6589 return;
6591 print_loop (file, loop, indent, verbosity);
6592 print_loop_and_siblings (file, loop->next, indent, verbosity);
6595 /* Follow a CFG edge from the entry point of the program, and on entry
6596 of a loop, pretty print the loop structure on FILE. */
6598 void
6599 print_loops (FILE *file, int verbosity)
6601 basic_block bb;
6603 bb = ENTRY_BLOCK_PTR;
6604 if (bb && bb->loop_father)
6605 print_loop_and_siblings (file, bb->loop_father, 0, verbosity);
6609 /* Debugging loops structure at tree level, at some VERBOSITY level. */
6611 DEBUG_FUNCTION void
6612 debug_loops (int verbosity)
6614 print_loops (stderr, verbosity);
6617 /* Print on stderr the code of LOOP, at some VERBOSITY level. */
6619 DEBUG_FUNCTION void
6620 debug_loop (struct loop *loop, int verbosity)
6622 print_loop (stderr, loop, 0, verbosity);
6625 /* Print on stderr the code of loop number NUM, at some VERBOSITY
6626 level. */
6628 DEBUG_FUNCTION void
6629 debug_loop_num (unsigned num, int verbosity)
6631 debug_loop (get_loop (num), verbosity);
6634 /* Return true if BB ends with a call, possibly followed by some
6635 instructions that must stay with the call. Return false,
6636 otherwise. */
6638 static bool
6639 gimple_block_ends_with_call_p (basic_block bb)
6641 gimple_stmt_iterator gsi = gsi_last_nondebug_bb (bb);
6642 return !gsi_end_p (gsi) && is_gimple_call (gsi_stmt (gsi));
6646 /* Return true if BB ends with a conditional branch. Return false,
6647 otherwise. */
6649 static bool
6650 gimple_block_ends_with_condjump_p (const_basic_block bb)
6652 gimple stmt = last_stmt (CONST_CAST_BB (bb));
6653 return (stmt && gimple_code (stmt) == GIMPLE_COND);
6657 /* Return true if we need to add fake edge to exit at statement T.
6658 Helper function for gimple_flow_call_edges_add. */
6660 static bool
6661 need_fake_edge_p (gimple t)
6663 tree fndecl = NULL_TREE;
6664 int call_flags = 0;
6666 /* NORETURN and LONGJMP calls already have an edge to exit.
6667 CONST and PURE calls do not need one.
6668 We don't currently check for CONST and PURE here, although
6669 it would be a good idea, because those attributes are
6670 figured out from the RTL in mark_constant_function, and
6671 the counter incrementation code from -fprofile-arcs
6672 leads to different results from -fbranch-probabilities. */
6673 if (is_gimple_call (t))
6675 fndecl = gimple_call_fndecl (t);
6676 call_flags = gimple_call_flags (t);
6679 if (is_gimple_call (t)
6680 && fndecl
6681 && DECL_BUILT_IN (fndecl)
6682 && (call_flags & ECF_NOTHROW)
6683 && !(call_flags & ECF_RETURNS_TWICE)
6684 /* fork() doesn't really return twice, but the effect of
6685 wrapping it in __gcov_fork() which calls __gcov_flush()
6686 and clears the counters before forking has the same
6687 effect as returning twice. Force a fake edge. */
6688 && !(DECL_BUILT_IN_CLASS (fndecl) == BUILT_IN_NORMAL
6689 && DECL_FUNCTION_CODE (fndecl) == BUILT_IN_FORK))
6690 return false;
6692 if (is_gimple_call (t)
6693 && !(call_flags & ECF_NORETURN))
6694 return true;
6696 if (gimple_code (t) == GIMPLE_ASM
6697 && (gimple_asm_volatile_p (t) || gimple_asm_input_p (t)))
6698 return true;
6700 return false;
6704 /* Add fake edges to the function exit for any non constant and non
6705 noreturn calls, volatile inline assembly in the bitmap of blocks
6706 specified by BLOCKS or to the whole CFG if BLOCKS is zero. Return
6707 the number of blocks that were split.
6709 The goal is to expose cases in which entering a basic block does
6710 not imply that all subsequent instructions must be executed. */
6712 static int
6713 gimple_flow_call_edges_add (sbitmap blocks)
6715 int i;
6716 int blocks_split = 0;
6717 int last_bb = last_basic_block;
6718 bool check_last_block = false;
6720 if (n_basic_blocks == NUM_FIXED_BLOCKS)
6721 return 0;
6723 if (! blocks)
6724 check_last_block = true;
6725 else
6726 check_last_block = TEST_BIT (blocks, EXIT_BLOCK_PTR->prev_bb->index);
6728 /* In the last basic block, before epilogue generation, there will be
6729 a fallthru edge to EXIT. Special care is required if the last insn
6730 of the last basic block is a call because make_edge folds duplicate
6731 edges, which would result in the fallthru edge also being marked
6732 fake, which would result in the fallthru edge being removed by
6733 remove_fake_edges, which would result in an invalid CFG.
6735 Moreover, we can't elide the outgoing fake edge, since the block
6736 profiler needs to take this into account in order to solve the minimal
6737 spanning tree in the case that the call doesn't return.
6739 Handle this by adding a dummy instruction in a new last basic block. */
6740 if (check_last_block)
6742 basic_block bb = EXIT_BLOCK_PTR->prev_bb;
6743 gimple_stmt_iterator gsi = gsi_last_nondebug_bb (bb);
6744 gimple t = NULL;
6746 if (!gsi_end_p (gsi))
6747 t = gsi_stmt (gsi);
6749 if (t && need_fake_edge_p (t))
6751 edge e;
6753 e = find_edge (bb, EXIT_BLOCK_PTR);
6754 if (e)
6756 gsi_insert_on_edge (e, gimple_build_nop ());
6757 gsi_commit_edge_inserts ();
6762 /* Now add fake edges to the function exit for any non constant
6763 calls since there is no way that we can determine if they will
6764 return or not... */
6765 for (i = 0; i < last_bb; i++)
6767 basic_block bb = BASIC_BLOCK (i);
6768 gimple_stmt_iterator gsi;
6769 gimple stmt, last_stmt;
6771 if (!bb)
6772 continue;
6774 if (blocks && !TEST_BIT (blocks, i))
6775 continue;
6777 gsi = gsi_last_nondebug_bb (bb);
6778 if (!gsi_end_p (gsi))
6780 last_stmt = gsi_stmt (gsi);
6783 stmt = gsi_stmt (gsi);
6784 if (need_fake_edge_p (stmt))
6786 edge e;
6788 /* The handling above of the final block before the
6789 epilogue should be enough to verify that there is
6790 no edge to the exit block in CFG already.
6791 Calling make_edge in such case would cause us to
6792 mark that edge as fake and remove it later. */
6793 #ifdef ENABLE_CHECKING
6794 if (stmt == last_stmt)
6796 e = find_edge (bb, EXIT_BLOCK_PTR);
6797 gcc_assert (e == NULL);
6799 #endif
6801 /* Note that the following may create a new basic block
6802 and renumber the existing basic blocks. */
6803 if (stmt != last_stmt)
6805 e = split_block (bb, stmt);
6806 if (e)
6807 blocks_split++;
6809 make_edge (bb, EXIT_BLOCK_PTR, EDGE_FAKE);
6811 gsi_prev (&gsi);
6813 while (!gsi_end_p (gsi));
6817 if (blocks_split)
6818 verify_flow_info ();
6820 return blocks_split;
6823 /* Removes edge E and all the blocks dominated by it, and updates dominance
6824 information. The IL in E->src needs to be updated separately.
6825 If dominance info is not available, only the edge E is removed.*/
6827 void
6828 remove_edge_and_dominated_blocks (edge e)
6830 VEC (basic_block, heap) *bbs_to_remove = NULL;
6831 VEC (basic_block, heap) *bbs_to_fix_dom = NULL;
6832 bitmap df, df_idom;
6833 edge f;
6834 edge_iterator ei;
6835 bool none_removed = false;
6836 unsigned i;
6837 basic_block bb, dbb;
6838 bitmap_iterator bi;
6840 if (!dom_info_available_p (CDI_DOMINATORS))
6842 remove_edge (e);
6843 return;
6846 /* No updating is needed for edges to exit. */
6847 if (e->dest == EXIT_BLOCK_PTR)
6849 if (cfgcleanup_altered_bbs)
6850 bitmap_set_bit (cfgcleanup_altered_bbs, e->src->index);
6851 remove_edge (e);
6852 return;
6855 /* First, we find the basic blocks to remove. If E->dest has a predecessor
6856 that is not dominated by E->dest, then this set is empty. Otherwise,
6857 all the basic blocks dominated by E->dest are removed.
6859 Also, to DF_IDOM we store the immediate dominators of the blocks in
6860 the dominance frontier of E (i.e., of the successors of the
6861 removed blocks, if there are any, and of E->dest otherwise). */
6862 FOR_EACH_EDGE (f, ei, e->dest->preds)
6864 if (f == e)
6865 continue;
6867 if (!dominated_by_p (CDI_DOMINATORS, f->src, e->dest))
6869 none_removed = true;
6870 break;
6874 df = BITMAP_ALLOC (NULL);
6875 df_idom = BITMAP_ALLOC (NULL);
6877 if (none_removed)
6878 bitmap_set_bit (df_idom,
6879 get_immediate_dominator (CDI_DOMINATORS, e->dest)->index);
6880 else
6882 bbs_to_remove = get_all_dominated_blocks (CDI_DOMINATORS, e->dest);
6883 FOR_EACH_VEC_ELT (basic_block, bbs_to_remove, i, bb)
6885 FOR_EACH_EDGE (f, ei, bb->succs)
6887 if (f->dest != EXIT_BLOCK_PTR)
6888 bitmap_set_bit (df, f->dest->index);
6891 FOR_EACH_VEC_ELT (basic_block, bbs_to_remove, i, bb)
6892 bitmap_clear_bit (df, bb->index);
6894 EXECUTE_IF_SET_IN_BITMAP (df, 0, i, bi)
6896 bb = BASIC_BLOCK (i);
6897 bitmap_set_bit (df_idom,
6898 get_immediate_dominator (CDI_DOMINATORS, bb)->index);
6902 if (cfgcleanup_altered_bbs)
6904 /* Record the set of the altered basic blocks. */
6905 bitmap_set_bit (cfgcleanup_altered_bbs, e->src->index);
6906 bitmap_ior_into (cfgcleanup_altered_bbs, df);
6909 /* Remove E and the cancelled blocks. */
6910 if (none_removed)
6911 remove_edge (e);
6912 else
6914 /* Walk backwards so as to get a chance to substitute all
6915 released DEFs into debug stmts. See
6916 eliminate_unnecessary_stmts() in tree-ssa-dce.c for more
6917 details. */
6918 for (i = VEC_length (basic_block, bbs_to_remove); i-- > 0; )
6919 delete_basic_block (VEC_index (basic_block, bbs_to_remove, i));
6922 /* Update the dominance information. The immediate dominator may change only
6923 for blocks whose immediate dominator belongs to DF_IDOM:
6925 Suppose that idom(X) = Y before removal of E and idom(X) != Y after the
6926 removal. Let Z the arbitrary block such that idom(Z) = Y and
6927 Z dominates X after the removal. Before removal, there exists a path P
6928 from Y to X that avoids Z. Let F be the last edge on P that is
6929 removed, and let W = F->dest. Before removal, idom(W) = Y (since Y
6930 dominates W, and because of P, Z does not dominate W), and W belongs to
6931 the dominance frontier of E. Therefore, Y belongs to DF_IDOM. */
6932 EXECUTE_IF_SET_IN_BITMAP (df_idom, 0, i, bi)
6934 bb = BASIC_BLOCK (i);
6935 for (dbb = first_dom_son (CDI_DOMINATORS, bb);
6936 dbb;
6937 dbb = next_dom_son (CDI_DOMINATORS, dbb))
6938 VEC_safe_push (basic_block, heap, bbs_to_fix_dom, dbb);
6941 iterate_fix_dominators (CDI_DOMINATORS, bbs_to_fix_dom, true);
6943 BITMAP_FREE (df);
6944 BITMAP_FREE (df_idom);
6945 VEC_free (basic_block, heap, bbs_to_remove);
6946 VEC_free (basic_block, heap, bbs_to_fix_dom);
6949 /* Purge dead EH edges from basic block BB. */
6951 bool
6952 gimple_purge_dead_eh_edges (basic_block bb)
6954 bool changed = false;
6955 edge e;
6956 edge_iterator ei;
6957 gimple stmt = last_stmt (bb);
6959 if (stmt && stmt_can_throw_internal (stmt))
6960 return false;
6962 for (ei = ei_start (bb->succs); (e = ei_safe_edge (ei)); )
6964 if (e->flags & EDGE_EH)
6966 remove_edge_and_dominated_blocks (e);
6967 changed = true;
6969 else
6970 ei_next (&ei);
6973 return changed;
6976 /* Purge dead EH edges from basic block listed in BLOCKS. */
6978 bool
6979 gimple_purge_all_dead_eh_edges (const_bitmap blocks)
6981 bool changed = false;
6982 unsigned i;
6983 bitmap_iterator bi;
6985 EXECUTE_IF_SET_IN_BITMAP (blocks, 0, i, bi)
6987 basic_block bb = BASIC_BLOCK (i);
6989 /* Earlier gimple_purge_dead_eh_edges could have removed
6990 this basic block already. */
6991 gcc_assert (bb || changed);
6992 if (bb != NULL)
6993 changed |= gimple_purge_dead_eh_edges (bb);
6996 return changed;
6999 /* Purge dead abnormal call edges from basic block BB. */
7001 bool
7002 gimple_purge_dead_abnormal_call_edges (basic_block bb)
7004 bool changed = false;
7005 edge e;
7006 edge_iterator ei;
7007 gimple stmt = last_stmt (bb);
7009 if (!cfun->has_nonlocal_label)
7010 return false;
7012 if (stmt && stmt_can_make_abnormal_goto (stmt))
7013 return false;
7015 for (ei = ei_start (bb->succs); (e = ei_safe_edge (ei)); )
7017 if (e->flags & EDGE_ABNORMAL)
7019 remove_edge_and_dominated_blocks (e);
7020 changed = true;
7022 else
7023 ei_next (&ei);
7026 return changed;
7029 /* Purge dead abnormal call edges from basic block listed in BLOCKS. */
7031 bool
7032 gimple_purge_all_dead_abnormal_call_edges (const_bitmap blocks)
7034 bool changed = false;
7035 unsigned i;
7036 bitmap_iterator bi;
7038 EXECUTE_IF_SET_IN_BITMAP (blocks, 0, i, bi)
7040 basic_block bb = BASIC_BLOCK (i);
7042 /* Earlier gimple_purge_dead_abnormal_call_edges could have removed
7043 this basic block already. */
7044 gcc_assert (bb || changed);
7045 if (bb != NULL)
7046 changed |= gimple_purge_dead_abnormal_call_edges (bb);
7049 return changed;
7052 /* This function is called whenever a new edge is created or
7053 redirected. */
7055 static void
7056 gimple_execute_on_growing_pred (edge e)
7058 basic_block bb = e->dest;
7060 if (!gimple_seq_empty_p (phi_nodes (bb)))
7061 reserve_phi_args_for_new_edge (bb);
7064 /* This function is called immediately before edge E is removed from
7065 the edge vector E->dest->preds. */
7067 static void
7068 gimple_execute_on_shrinking_pred (edge e)
7070 if (!gimple_seq_empty_p (phi_nodes (e->dest)))
7071 remove_phi_args (e);
7074 /*---------------------------------------------------------------------------
7075 Helper functions for Loop versioning
7076 ---------------------------------------------------------------------------*/
7078 /* Adjust phi nodes for 'first' basic block. 'second' basic block is a copy
7079 of 'first'. Both of them are dominated by 'new_head' basic block. When
7080 'new_head' was created by 'second's incoming edge it received phi arguments
7081 on the edge by split_edge(). Later, additional edge 'e' was created to
7082 connect 'new_head' and 'first'. Now this routine adds phi args on this
7083 additional edge 'e' that new_head to second edge received as part of edge
7084 splitting. */
7086 static void
7087 gimple_lv_adjust_loop_header_phi (basic_block first, basic_block second,
7088 basic_block new_head, edge e)
7090 gimple phi1, phi2;
7091 gimple_stmt_iterator psi1, psi2;
7092 tree def;
7093 edge e2 = find_edge (new_head, second);
7095 /* Because NEW_HEAD has been created by splitting SECOND's incoming
7096 edge, we should always have an edge from NEW_HEAD to SECOND. */
7097 gcc_assert (e2 != NULL);
7099 /* Browse all 'second' basic block phi nodes and add phi args to
7100 edge 'e' for 'first' head. PHI args are always in correct order. */
7102 for (psi2 = gsi_start_phis (second),
7103 psi1 = gsi_start_phis (first);
7104 !gsi_end_p (psi2) && !gsi_end_p (psi1);
7105 gsi_next (&psi2), gsi_next (&psi1))
7107 phi1 = gsi_stmt (psi1);
7108 phi2 = gsi_stmt (psi2);
7109 def = PHI_ARG_DEF (phi2, e2->dest_idx);
7110 add_phi_arg (phi1, def, e, gimple_phi_arg_location_from_edge (phi2, e2));
7115 /* Adds a if else statement to COND_BB with condition COND_EXPR.
7116 SECOND_HEAD is the destination of the THEN and FIRST_HEAD is
7117 the destination of the ELSE part. */
7119 static void
7120 gimple_lv_add_condition_to_bb (basic_block first_head ATTRIBUTE_UNUSED,
7121 basic_block second_head ATTRIBUTE_UNUSED,
7122 basic_block cond_bb, void *cond_e)
7124 gimple_stmt_iterator gsi;
7125 gimple new_cond_expr;
7126 tree cond_expr = (tree) cond_e;
7127 edge e0;
7129 /* Build new conditional expr */
7130 new_cond_expr = gimple_build_cond_from_tree (cond_expr,
7131 NULL_TREE, NULL_TREE);
7133 /* Add new cond in cond_bb. */
7134 gsi = gsi_last_bb (cond_bb);
7135 gsi_insert_after (&gsi, new_cond_expr, GSI_NEW_STMT);
7137 /* Adjust edges appropriately to connect new head with first head
7138 as well as second head. */
7139 e0 = single_succ_edge (cond_bb);
7140 e0->flags &= ~EDGE_FALLTHRU;
7141 e0->flags |= EDGE_FALSE_VALUE;
7144 struct cfg_hooks gimple_cfg_hooks = {
7145 "gimple",
7146 gimple_verify_flow_info,
7147 gimple_dump_bb, /* dump_bb */
7148 create_bb, /* create_basic_block */
7149 gimple_redirect_edge_and_branch, /* redirect_edge_and_branch */
7150 gimple_redirect_edge_and_branch_force, /* redirect_edge_and_branch_force */
7151 gimple_can_remove_branch_p, /* can_remove_branch_p */
7152 remove_bb, /* delete_basic_block */
7153 gimple_split_block, /* split_block */
7154 gimple_move_block_after, /* move_block_after */
7155 gimple_can_merge_blocks_p, /* can_merge_blocks_p */
7156 gimple_merge_blocks, /* merge_blocks */
7157 gimple_predict_edge, /* predict_edge */
7158 gimple_predicted_by_p, /* predicted_by_p */
7159 gimple_can_duplicate_bb_p, /* can_duplicate_block_p */
7160 gimple_duplicate_bb, /* duplicate_block */
7161 gimple_split_edge, /* split_edge */
7162 gimple_make_forwarder_block, /* make_forward_block */
7163 NULL, /* tidy_fallthru_edge */
7164 NULL, /* force_nonfallthru */
7165 gimple_block_ends_with_call_p,/* block_ends_with_call_p */
7166 gimple_block_ends_with_condjump_p, /* block_ends_with_condjump_p */
7167 gimple_flow_call_edges_add, /* flow_call_edges_add */
7168 gimple_execute_on_growing_pred, /* execute_on_growing_pred */
7169 gimple_execute_on_shrinking_pred, /* execute_on_shrinking_pred */
7170 gimple_duplicate_loop_to_header_edge, /* duplicate loop for trees */
7171 gimple_lv_add_condition_to_bb, /* lv_add_condition_to_bb */
7172 gimple_lv_adjust_loop_header_phi, /* lv_adjust_loop_header_phi*/
7173 extract_true_false_edges_from_block, /* extract_cond_bb_edges */
7174 flush_pending_stmts /* flush_pending_stmts */
7178 /* Split all critical edges. */
7180 static unsigned int
7181 split_critical_edges (void)
7183 basic_block bb;
7184 edge e;
7185 edge_iterator ei;
7187 /* split_edge can redirect edges out of SWITCH_EXPRs, which can get
7188 expensive. So we want to enable recording of edge to CASE_LABEL_EXPR
7189 mappings around the calls to split_edge. */
7190 start_recording_case_labels ();
7191 FOR_ALL_BB (bb)
7193 FOR_EACH_EDGE (e, ei, bb->succs)
7195 if (EDGE_CRITICAL_P (e) && !(e->flags & EDGE_ABNORMAL))
7196 split_edge (e);
7197 /* PRE inserts statements to edges and expects that
7198 since split_critical_edges was done beforehand, committing edge
7199 insertions will not split more edges. In addition to critical
7200 edges we must split edges that have multiple successors and
7201 end by control flow statements, such as RESX.
7202 Go ahead and split them too. This matches the logic in
7203 gimple_find_edge_insert_loc. */
7204 else if ((!single_pred_p (e->dest)
7205 || !gimple_seq_empty_p (phi_nodes (e->dest))
7206 || e->dest == EXIT_BLOCK_PTR)
7207 && e->src != ENTRY_BLOCK_PTR
7208 && !(e->flags & EDGE_ABNORMAL))
7210 gimple_stmt_iterator gsi;
7212 gsi = gsi_last_bb (e->src);
7213 if (!gsi_end_p (gsi)
7214 && stmt_ends_bb_p (gsi_stmt (gsi))
7215 && (gimple_code (gsi_stmt (gsi)) != GIMPLE_RETURN
7216 && !gimple_call_builtin_p (gsi_stmt (gsi),
7217 BUILT_IN_RETURN)))
7218 split_edge (e);
7222 end_recording_case_labels ();
7223 return 0;
7226 struct gimple_opt_pass pass_split_crit_edges =
7229 GIMPLE_PASS,
7230 "crited", /* name */
7231 NULL, /* gate */
7232 split_critical_edges, /* execute */
7233 NULL, /* sub */
7234 NULL, /* next */
7235 0, /* static_pass_number */
7236 TV_TREE_SPLIT_EDGES, /* tv_id */
7237 PROP_cfg, /* properties required */
7238 PROP_no_crit_edges, /* properties_provided */
7239 0, /* properties_destroyed */
7240 0, /* todo_flags_start */
7241 TODO_verify_flow /* todo_flags_finish */
7246 /* Build a ternary operation and gimplify it. Emit code before GSI.
7247 Return the gimple_val holding the result. */
7249 tree
7250 gimplify_build3 (gimple_stmt_iterator *gsi, enum tree_code code,
7251 tree type, tree a, tree b, tree c)
7253 tree ret;
7254 location_t loc = gimple_location (gsi_stmt (*gsi));
7256 ret = fold_build3_loc (loc, code, type, a, b, c);
7257 STRIP_NOPS (ret);
7259 return force_gimple_operand_gsi (gsi, ret, true, NULL, true,
7260 GSI_SAME_STMT);
7263 /* Build a binary operation and gimplify it. Emit code before GSI.
7264 Return the gimple_val holding the result. */
7266 tree
7267 gimplify_build2 (gimple_stmt_iterator *gsi, enum tree_code code,
7268 tree type, tree a, tree b)
7270 tree ret;
7272 ret = fold_build2_loc (gimple_location (gsi_stmt (*gsi)), code, type, a, b);
7273 STRIP_NOPS (ret);
7275 return force_gimple_operand_gsi (gsi, ret, true, NULL, true,
7276 GSI_SAME_STMT);
7279 /* Build a unary operation and gimplify it. Emit code before GSI.
7280 Return the gimple_val holding the result. */
7282 tree
7283 gimplify_build1 (gimple_stmt_iterator *gsi, enum tree_code code, tree type,
7284 tree a)
7286 tree ret;
7288 ret = fold_build1_loc (gimple_location (gsi_stmt (*gsi)), code, type, a);
7289 STRIP_NOPS (ret);
7291 return force_gimple_operand_gsi (gsi, ret, true, NULL, true,
7292 GSI_SAME_STMT);
7297 /* Emit return warnings. */
7299 static unsigned int
7300 execute_warn_function_return (void)
7302 source_location location;
7303 gimple last;
7304 edge e;
7305 edge_iterator ei;
7307 /* If we have a path to EXIT, then we do return. */
7308 if (TREE_THIS_VOLATILE (cfun->decl)
7309 && EDGE_COUNT (EXIT_BLOCK_PTR->preds) > 0)
7311 location = UNKNOWN_LOCATION;
7312 FOR_EACH_EDGE (e, ei, EXIT_BLOCK_PTR->preds)
7314 last = last_stmt (e->src);
7315 if ((gimple_code (last) == GIMPLE_RETURN
7316 || gimple_call_builtin_p (last, BUILT_IN_RETURN))
7317 && (location = gimple_location (last)) != UNKNOWN_LOCATION)
7318 break;
7320 if (location == UNKNOWN_LOCATION)
7321 location = cfun->function_end_locus;
7322 warning_at (location, 0, "%<noreturn%> function does return");
7325 /* If we see "return;" in some basic block, then we do reach the end
7326 without returning a value. */
7327 else if (warn_return_type
7328 && !TREE_NO_WARNING (cfun->decl)
7329 && EDGE_COUNT (EXIT_BLOCK_PTR->preds) > 0
7330 && !VOID_TYPE_P (TREE_TYPE (TREE_TYPE (cfun->decl))))
7332 FOR_EACH_EDGE (e, ei, EXIT_BLOCK_PTR->preds)
7334 gimple last = last_stmt (e->src);
7335 if (gimple_code (last) == GIMPLE_RETURN
7336 && gimple_return_retval (last) == NULL
7337 && !gimple_no_warning_p (last))
7339 location = gimple_location (last);
7340 if (location == UNKNOWN_LOCATION)
7341 location = cfun->function_end_locus;
7342 warning_at (location, OPT_Wreturn_type, "control reaches end of non-void function");
7343 TREE_NO_WARNING (cfun->decl) = 1;
7344 break;
7348 return 0;
7352 /* Given a basic block B which ends with a conditional and has
7353 precisely two successors, determine which of the edges is taken if
7354 the conditional is true and which is taken if the conditional is
7355 false. Set TRUE_EDGE and FALSE_EDGE appropriately. */
7357 void
7358 extract_true_false_edges_from_block (basic_block b,
7359 edge *true_edge,
7360 edge *false_edge)
7362 edge e = EDGE_SUCC (b, 0);
7364 if (e->flags & EDGE_TRUE_VALUE)
7366 *true_edge = e;
7367 *false_edge = EDGE_SUCC (b, 1);
7369 else
7371 *false_edge = e;
7372 *true_edge = EDGE_SUCC (b, 1);
7376 struct gimple_opt_pass pass_warn_function_return =
7379 GIMPLE_PASS,
7380 "*warn_function_return", /* name */
7381 NULL, /* gate */
7382 execute_warn_function_return, /* execute */
7383 NULL, /* sub */
7384 NULL, /* next */
7385 0, /* static_pass_number */
7386 TV_NONE, /* tv_id */
7387 PROP_cfg, /* properties_required */
7388 0, /* properties_provided */
7389 0, /* properties_destroyed */
7390 0, /* todo_flags_start */
7391 0 /* todo_flags_finish */
7395 /* Emit noreturn warnings. */
7397 static unsigned int
7398 execute_warn_function_noreturn (void)
7400 if (!TREE_THIS_VOLATILE (current_function_decl)
7401 && EDGE_COUNT (EXIT_BLOCK_PTR->preds) == 0)
7402 warn_function_noreturn (current_function_decl);
7403 return 0;
7406 static bool
7407 gate_warn_function_noreturn (void)
7409 return warn_suggest_attribute_noreturn;
7412 struct gimple_opt_pass pass_warn_function_noreturn =
7415 GIMPLE_PASS,
7416 "*warn_function_noreturn", /* name */
7417 gate_warn_function_noreturn, /* gate */
7418 execute_warn_function_noreturn, /* execute */
7419 NULL, /* sub */
7420 NULL, /* next */
7421 0, /* static_pass_number */
7422 TV_NONE, /* tv_id */
7423 PROP_cfg, /* properties_required */
7424 0, /* properties_provided */
7425 0, /* properties_destroyed */
7426 0, /* todo_flags_start */
7427 0 /* todo_flags_finish */
7432 /* Walk a gimplified function and warn for functions whose return value is
7433 ignored and attribute((warn_unused_result)) is set. This is done before
7434 inlining, so we don't have to worry about that. */
7436 static void
7437 do_warn_unused_result (gimple_seq seq)
7439 tree fdecl, ftype;
7440 gimple_stmt_iterator i;
7442 for (i = gsi_start (seq); !gsi_end_p (i); gsi_next (&i))
7444 gimple g = gsi_stmt (i);
7446 switch (gimple_code (g))
7448 case GIMPLE_BIND:
7449 do_warn_unused_result (gimple_bind_body (g));
7450 break;
7451 case GIMPLE_TRY:
7452 do_warn_unused_result (gimple_try_eval (g));
7453 do_warn_unused_result (gimple_try_cleanup (g));
7454 break;
7455 case GIMPLE_CATCH:
7456 do_warn_unused_result (gimple_catch_handler (g));
7457 break;
7458 case GIMPLE_EH_FILTER:
7459 do_warn_unused_result (gimple_eh_filter_failure (g));
7460 break;
7462 case GIMPLE_CALL:
7463 if (gimple_call_lhs (g))
7464 break;
7465 if (gimple_call_internal_p (g))
7466 break;
7468 /* This is a naked call, as opposed to a GIMPLE_CALL with an
7469 LHS. All calls whose value is ignored should be
7470 represented like this. Look for the attribute. */
7471 fdecl = gimple_call_fndecl (g);
7472 ftype = gimple_call_fntype (g);
7474 if (lookup_attribute ("warn_unused_result", TYPE_ATTRIBUTES (ftype)))
7476 location_t loc = gimple_location (g);
7478 if (fdecl)
7479 warning_at (loc, OPT_Wunused_result,
7480 "ignoring return value of %qD, "
7481 "declared with attribute warn_unused_result",
7482 fdecl);
7483 else
7484 warning_at (loc, OPT_Wunused_result,
7485 "ignoring return value of function "
7486 "declared with attribute warn_unused_result");
7488 break;
7490 default:
7491 /* Not a container, not a call, or a call whose value is used. */
7492 break;
7497 static unsigned int
7498 run_warn_unused_result (void)
7500 do_warn_unused_result (gimple_body (current_function_decl));
7501 return 0;
7504 static bool
7505 gate_warn_unused_result (void)
7507 return flag_warn_unused_result;
7510 struct gimple_opt_pass pass_warn_unused_result =
7513 GIMPLE_PASS,
7514 "*warn_unused_result", /* name */
7515 gate_warn_unused_result, /* gate */
7516 run_warn_unused_result, /* execute */
7517 NULL, /* sub */
7518 NULL, /* next */
7519 0, /* static_pass_number */
7520 TV_NONE, /* tv_id */
7521 PROP_gimple_any, /* properties_required */
7522 0, /* properties_provided */
7523 0, /* properties_destroyed */
7524 0, /* todo_flags_start */
7525 0, /* todo_flags_finish */