1 /* Shrink-wrapping related optimizations.
2 Copyright (C) 1987-2018 Free Software Foundation, Inc.
4 This file is part of GCC.
6 GCC is free software; you can redistribute it and/or modify it under
7 the terms of the GNU General Public License as published by the Free
8 Software Foundation; either version 3, or (at your option) any later
11 GCC is distributed in the hope that it will be useful, but WITHOUT ANY
12 WARRANTY; without even the implied warranty of MERCHANTABILITY or
13 FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License
16 You should have received a copy of the GNU General Public License
17 along with GCC; see the file COPYING3. If not see
18 <http://www.gnu.org/licenses/>. */
20 /* This file handles shrink-wrapping related optimizations. */
24 #include "coretypes.h"
34 #include "insn-config.h"
37 #include "tree-pass.h"
41 #include "bb-reorder.h"
42 #include "shrink-wrap.h"
48 /* Return true if INSN requires the stack frame to be set up.
49 PROLOGUE_USED contains the hard registers used in the function
50 prologue. SET_UP_BY_PROLOGUE is the set of registers we expect the
51 prologue to set up for the function. */
53 requires_stack_frame_p (rtx_insn
*insn
, HARD_REG_SET prologue_used
,
54 HARD_REG_SET set_up_by_prologue
)
57 HARD_REG_SET hardregs
;
61 return !SIBLING_CALL_P (insn
);
63 /* We need a frame to get the unique CFA expected by the unwinder. */
64 if (cfun
->can_throw_non_call_exceptions
&& can_throw_internal (insn
))
67 CLEAR_HARD_REG_SET (hardregs
);
68 FOR_EACH_INSN_DEF (def
, insn
)
70 rtx dreg
= DF_REF_REG (def
);
75 add_to_hard_reg_set (&hardregs
, GET_MODE (dreg
), REGNO (dreg
));
77 if (hard_reg_set_intersect_p (hardregs
, prologue_used
))
79 AND_COMPL_HARD_REG_SET (hardregs
, call_used_reg_set
);
80 for (regno
= 0; regno
< FIRST_PSEUDO_REGISTER
; regno
++)
81 if (TEST_HARD_REG_BIT (hardregs
, regno
)
82 && df_regs_ever_live_p (regno
))
85 FOR_EACH_INSN_USE (use
, insn
)
87 rtx reg
= DF_REF_REG (use
);
92 add_to_hard_reg_set (&hardregs
, GET_MODE (reg
),
95 if (hard_reg_set_intersect_p (hardregs
, set_up_by_prologue
))
101 /* See whether there has a single live edge from BB, which dest uses
102 [REGNO, END_REGNO). Return the live edge if its dest bb has
103 one or two predecessors. Otherwise return NULL. */
106 live_edge_for_reg (basic_block bb
, int regno
, int end_regno
)
114 FOR_EACH_EDGE (e
, ei
, bb
->succs
)
116 live
= df_get_live_in (e
->dest
);
117 for (i
= regno
; i
< end_regno
; i
++)
118 if (REGNO_REG_SET_P (live
, i
))
120 if (live_edge
&& live_edge
!= e
)
126 /* We can sometimes encounter dead code. Don't try to move it
127 into the exit block. */
128 if (!live_edge
|| live_edge
->dest
== EXIT_BLOCK_PTR_FOR_FN (cfun
))
131 /* Reject targets of abnormal edges. This is needed for correctness
132 on ports like Alpha and MIPS, whose pic_offset_table_rtx can die on
133 exception edges even though it is generally treated as call-saved
134 for the majority of the compilation. Moving across abnormal edges
135 isn't going to be interesting for shrink-wrap usage anyway. */
136 if (live_edge
->flags
& EDGE_ABNORMAL
)
139 /* When live_edge->dest->preds == 2, we can create a new block on
140 the edge to make it meet the requirement. */
141 if (EDGE_COUNT (live_edge
->dest
->preds
) > 2)
147 /* Try to move INSN from BB to a successor. Return true on success.
148 USES and DEFS are the set of registers that are used and defined
149 after INSN in BB. SPLIT_P indicates whether a live edge from BB
150 is splitted or not. */
153 move_insn_for_shrink_wrap (basic_block bb
, rtx_insn
*insn
,
154 const HARD_REG_SET uses
,
155 const HARD_REG_SET defs
,
157 struct dead_debug_local
*debug
)
160 bitmap live_out
, live_in
, bb_uses
, bb_defs
;
161 unsigned int i
, dregno
, end_dregno
;
162 unsigned int sregno
= FIRST_PSEUDO_REGISTER
;
163 unsigned int end_sregno
= FIRST_PSEUDO_REGISTER
;
164 basic_block next_block
;
169 /* Look for a simple register assignment. We don't use single_set here
170 because we can't deal with any CLOBBERs, USEs, or REG_UNUSED secondary
174 set
= PATTERN (insn
);
175 if (GET_CODE (set
) != SET
)
178 dest
= SET_DEST (set
);
180 /* For the destination, we want only a register. Also disallow STACK
181 or FRAME related adjustments. They are likely part of the prologue,
182 so keep them in the entry block. */
184 || dest
== stack_pointer_rtx
185 || dest
== frame_pointer_rtx
186 || dest
== hard_frame_pointer_rtx
)
189 /* For the source, we want one of:
190 (1) A (non-overlapping) register
192 (3) An expression involving no more than one register.
194 That last point comes from the code following, which was originally
195 written to handle only register move operations, and still only handles
196 a single source register when checking for overlaps. Happily, the
197 same checks can be applied to expressions like (plus reg const). */
199 if (CONSTANT_P (src
))
201 else if (!REG_P (src
))
203 rtx src_inner
= NULL_RTX
;
205 if (can_throw_internal (insn
))
208 subrtx_var_iterator::array_type array
;
209 FOR_EACH_SUBRTX_VAR (iter
, array
, src
, ALL
)
212 switch (GET_RTX_CLASS (GET_CODE (x
)))
216 case RTX_COMM_COMPARE
:
221 /* Constant or expression. Continue. */
226 switch (GET_CODE (x
))
230 case STRICT_LOW_PART
:
237 /* Fail if we see a second inner register. */
238 if (src_inner
!= NULL
)
253 if (src_inner
!= NULL
)
257 /* Make sure that the source register isn't defined later in BB. */
260 sregno
= REGNO (src
);
261 end_sregno
= END_REGNO (src
);
262 if (overlaps_hard_reg_set_p (defs
, GET_MODE (src
), sregno
))
266 /* Make sure that the destination register isn't referenced later in BB. */
267 dregno
= REGNO (dest
);
268 end_dregno
= END_REGNO (dest
);
269 if (overlaps_hard_reg_set_p (uses
, GET_MODE (dest
), dregno
)
270 || overlaps_hard_reg_set_p (defs
, GET_MODE (dest
), dregno
))
273 /* See whether there is a successor block to which we could move INSN. */
274 live_edge
= live_edge_for_reg (bb
, dregno
, end_dregno
);
278 next_block
= live_edge
->dest
;
279 /* Create a new basic block on the edge. */
280 if (EDGE_COUNT (next_block
->preds
) == 2)
282 /* split_edge for a block with only one successor is meaningless. */
283 if (EDGE_COUNT (bb
->succs
) == 1)
286 /* If DF_LIVE doesn't exist, i.e. at -O1, just give up. */
290 basic_block old_dest
= live_edge
->dest
;
291 next_block
= split_edge (live_edge
);
293 /* We create a new basic block. Call df_grow_bb_info to make sure
294 all data structures are allocated. */
295 df_grow_bb_info (df_live
);
297 bitmap_and (df_get_live_in (next_block
), df_get_live_out (bb
),
298 df_get_live_in (old_dest
));
299 df_set_bb_dirty (next_block
);
301 /* We should not split more than once for a function. */
308 /* At this point we are committed to moving INSN, but let's try to
309 move it as far as we can. */
312 if (MAY_HAVE_DEBUG_BIND_INSNS
)
314 FOR_BB_INSNS_REVERSE (bb
, dinsn
)
315 if (DEBUG_BIND_INSN_P (dinsn
))
318 FOR_EACH_INSN_USE (use
, dinsn
)
319 if (refers_to_regno_p (dregno
, end_dregno
,
320 DF_REF_REG (use
), (rtx
*) NULL
))
321 dead_debug_add (debug
, use
, DF_REF_REGNO (use
));
323 else if (dinsn
== insn
)
326 live_out
= df_get_live_out (bb
);
327 live_in
= df_get_live_in (next_block
);
330 /* Check whether BB uses DEST or clobbers DEST. We need to add
331 INSN to BB if so. Either way, DEST is no longer live on entry,
332 except for any part that overlaps SRC (next loop). */
333 bb_uses
= &DF_LR_BB_INFO (bb
)->use
;
334 bb_defs
= &DF_LR_BB_INFO (bb
)->def
;
337 for (i
= dregno
; i
< end_dregno
; i
++)
340 || REGNO_REG_SET_P (bb_uses
, i
)
341 || REGNO_REG_SET_P (bb_defs
, i
)
342 || REGNO_REG_SET_P (&DF_LIVE_BB_INFO (bb
)->gen
, i
))
344 CLEAR_REGNO_REG_SET (live_out
, i
);
345 CLEAR_REGNO_REG_SET (live_in
, i
);
348 /* Check whether BB clobbers SRC. We need to add INSN to BB if so.
349 Either way, SRC is now live on entry. */
350 for (i
= sregno
; i
< end_sregno
; i
++)
353 || REGNO_REG_SET_P (bb_defs
, i
)
354 || REGNO_REG_SET_P (&DF_LIVE_BB_INFO (bb
)->gen
, i
))
356 SET_REGNO_REG_SET (live_out
, i
);
357 SET_REGNO_REG_SET (live_in
, i
);
362 /* DF_LR_BB_INFO (bb)->def does not comprise the DF_REF_PARTIAL and
363 DF_REF_CONDITIONAL defs. So if DF_LIVE doesn't exist, i.e.
364 at -O1, just give up searching NEXT_BLOCK. */
366 for (i
= dregno
; i
< end_dregno
; i
++)
368 CLEAR_REGNO_REG_SET (live_out
, i
);
369 CLEAR_REGNO_REG_SET (live_in
, i
);
372 for (i
= sregno
; i
< end_sregno
; i
++)
374 SET_REGNO_REG_SET (live_out
, i
);
375 SET_REGNO_REG_SET (live_in
, i
);
379 /* If we don't need to add the move to BB, look for a single
383 live_edge
= live_edge_for_reg (next_block
, dregno
, end_dregno
);
384 if (!live_edge
|| EDGE_COUNT (live_edge
->dest
->preds
) > 1)
386 next_block
= live_edge
->dest
;
391 /* For the new created basic block, there is no dataflow info at all.
392 So skip the following dataflow update and check. */
395 /* BB now defines DEST. It only uses the parts of DEST that overlap SRC
397 for (i
= dregno
; i
< end_dregno
; i
++)
399 CLEAR_REGNO_REG_SET (bb_uses
, i
);
400 SET_REGNO_REG_SET (bb_defs
, i
);
403 /* BB now uses SRC. */
404 for (i
= sregno
; i
< end_sregno
; i
++)
405 SET_REGNO_REG_SET (bb_uses
, i
);
408 /* Insert debug temps for dead REGs used in subsequent debug insns. */
409 if (debug
->used
&& !bitmap_empty_p (debug
->used
))
410 FOR_EACH_INSN_DEF (def
, insn
)
411 dead_debug_insert_temp (debug
, DF_REF_REGNO (def
), insn
,
412 DEBUG_TEMP_BEFORE_WITH_VALUE
);
414 emit_insn_after (PATTERN (insn
), bb_note (bb
));
419 /* Look for register copies in the first block of the function, and move
420 them down into successor blocks if the register is used only on one
421 path. This exposes more opportunities for shrink-wrapping. These
422 kinds of sets often occur when incoming argument registers are moved
423 to call-saved registers because their values are live across one or
424 more calls during the function. */
427 prepare_shrink_wrap (basic_block entry_block
)
429 rtx_insn
*insn
, *curr
;
431 HARD_REG_SET uses
, defs
;
433 bool split_p
= false;
435 struct dead_debug_local debug
;
437 if (JUMP_P (BB_END (entry_block
)))
439 /* To have more shrink-wrapping opportunities, prepare_shrink_wrap tries
440 to sink the copies from parameter to callee saved register out of
441 entry block. copyprop_hardreg_forward_bb_without_debug_insn is called
442 to release some dependences. */
443 copyprop_hardreg_forward_bb_without_debug_insn (entry_block
);
446 dead_debug_local_init (&debug
, NULL
, NULL
);
447 CLEAR_HARD_REG_SET (uses
);
448 CLEAR_HARD_REG_SET (defs
);
450 FOR_BB_INSNS_REVERSE_SAFE (entry_block
, insn
, curr
)
451 if (NONDEBUG_INSN_P (insn
)
452 && !move_insn_for_shrink_wrap (entry_block
, insn
, uses
, defs
,
455 /* Add all defined registers to DEFs. */
456 FOR_EACH_INSN_DEF (def
, insn
)
458 x
= DF_REF_REG (def
);
459 if (REG_P (x
) && HARD_REGISTER_P (x
))
460 for (i
= REGNO (x
); i
< END_REGNO (x
); i
++)
461 SET_HARD_REG_BIT (defs
, i
);
464 /* Add all used registers to USESs. */
465 FOR_EACH_INSN_USE (use
, insn
)
467 x
= DF_REF_REG (use
);
468 if (REG_P (x
) && HARD_REGISTER_P (x
))
469 for (i
= REGNO (x
); i
< END_REGNO (x
); i
++)
470 SET_HARD_REG_BIT (uses
, i
);
474 dead_debug_local_finish (&debug
, NULL
);
477 /* Return whether basic block PRO can get the prologue. It can not if it
478 has incoming complex edges that need a prologue inserted (we make a new
479 block for the prologue, so those edges would need to be redirected, which
480 does not work). It also can not if there exist registers live on entry
481 to PRO that are clobbered by the prologue. */
484 can_get_prologue (basic_block pro
, HARD_REG_SET prologue_clobbered
)
488 FOR_EACH_EDGE (e
, ei
, pro
->preds
)
489 if (e
->flags
& (EDGE_COMPLEX
| EDGE_CROSSING
)
490 && !dominated_by_p (CDI_DOMINATORS
, e
->src
, pro
))
494 REG_SET_TO_HARD_REG_SET (live
, df_get_live_in (pro
));
495 if (hard_reg_set_intersect_p (live
, prologue_clobbered
))
501 /* Return whether we can duplicate basic block BB for shrink wrapping. We
502 cannot if the block cannot be duplicated at all, or if any of its incoming
503 edges are complex and come from a block that does not require a prologue
504 (we cannot redirect such edges), or if the block is too big to copy.
505 PRO is the basic block before which we would put the prologue, MAX_SIZE is
506 the maximum size block we allow to be copied. */
509 can_dup_for_shrink_wrapping (basic_block bb
, basic_block pro
, unsigned max_size
)
511 if (!can_duplicate_block_p (bb
))
516 FOR_EACH_EDGE (e
, ei
, bb
->preds
)
517 if (e
->flags
& (EDGE_COMPLEX
| EDGE_CROSSING
)
518 && !dominated_by_p (CDI_DOMINATORS
, e
->src
, pro
))
524 FOR_BB_INSNS (bb
, insn
)
525 if (NONDEBUG_INSN_P (insn
))
527 size
+= get_attr_min_length (insn
);
535 /* Do whatever needs to be done for exits that run without prologue.
536 Sibcalls need nothing done. Normal exits get a simple_return inserted. */
539 handle_simple_exit (edge e
)
542 if (e
->flags
& EDGE_SIBCALL
)
544 /* Tell function.c to take no further action on this edge. */
545 e
->flags
|= EDGE_IGNORE
;
547 e
->flags
&= ~EDGE_FALLTHRU
;
548 emit_barrier_after_bb (e
->src
);
552 /* If the basic block the edge comes from has multiple successors,
554 if (EDGE_COUNT (e
->src
->succs
) > 1)
556 basic_block old_bb
= e
->src
;
557 rtx_insn
*end
= BB_END (old_bb
);
558 rtx_note
*note
= emit_note_after (NOTE_INSN_DELETED
, end
);
559 basic_block new_bb
= create_basic_block (note
, note
, old_bb
);
560 BB_COPY_PARTITION (new_bb
, old_bb
);
561 BB_END (old_bb
) = end
;
563 redirect_edge_succ (e
, new_bb
);
564 new_bb
->count
= e
->count ();
565 e
->flags
|= EDGE_FALLTHRU
;
567 e
= make_single_succ_edge (new_bb
, EXIT_BLOCK_PTR_FOR_FN (cfun
), 0);
570 e
->flags
&= ~EDGE_FALLTHRU
;
571 rtx_jump_insn
*ret
= emit_jump_insn_after (targetm
.gen_simple_return (),
573 JUMP_LABEL (ret
) = simple_return_rtx
;
574 emit_barrier_after_bb (e
->src
);
577 fprintf (dump_file
, "Made simple_return with UID %d in bb %d\n",
578 INSN_UID (ret
), e
->src
->index
);
581 /* Try to perform a kind of shrink-wrapping, making sure the
582 prologue/epilogue is emitted only around those parts of the
583 function that require it.
585 There will be exactly one prologue, and it will be executed either
586 zero or one time, on any path. Depending on where the prologue is
587 placed, some of the basic blocks can be reached via both paths with
588 and without a prologue. Such blocks will be duplicated here, and the
589 edges changed to match.
591 Paths that go to the exit without going through the prologue will use
592 a simple_return instead of the epilogue. We maximize the number of
593 those, making sure to only duplicate blocks that can be duplicated.
594 If the prologue can then still be placed in multiple locations, we
595 place it as early as possible.
597 An example, where we duplicate blocks with control flow (legend:
598 _B_egin, _R_eturn and _S_imple_return; edges without arrowhead should
599 be taken to point down or to the right, to simplify the diagram; here,
600 block 3 needs a prologue, the rest does not):
618 (bb 4 is duplicated to 7, and so on; the prologue is inserted on the
621 Another example, where part of a loop is duplicated (again, bb 3 is
622 the only block that needs a prologue):
627 | v | becomes | | v |
628 2---4--- 2---5-- 4---
633 (bb 4 is duplicated to 5; the prologue is inserted on the edge 5->3).
635 ENTRY_EDGE is the edge where the prologue will be placed, possibly
636 changed by this function. PROLOGUE_SEQ is the prologue we will insert. */
639 try_shrink_wrapping (edge
*entry_edge
, rtx_insn
*prologue_seq
)
641 /* If we cannot shrink-wrap, are told not to shrink-wrap, or it makes
642 no sense to shrink-wrap: then do not shrink-wrap! */
644 if (!SHRINK_WRAPPING_ENABLED
)
647 if (crtl
->profile
&& !targetm
.profile_before_prologue ())
650 if (crtl
->calls_eh_return
)
653 bool empty_prologue
= true;
654 for (rtx_insn
*insn
= prologue_seq
; insn
; insn
= NEXT_INSN (insn
))
655 if (!(NOTE_P (insn
) && NOTE_KIND (insn
) == NOTE_INSN_PROLOGUE_END
))
657 empty_prologue
= false;
663 /* Move some code down to expose more shrink-wrapping opportunities. */
665 basic_block entry
= (*entry_edge
)->dest
;
666 prepare_shrink_wrap (entry
);
669 fprintf (dump_file
, "Attempting shrink-wrapping optimization.\n");
671 /* Compute the registers set and used in the prologue. */
673 HARD_REG_SET prologue_clobbered
, prologue_used
;
674 CLEAR_HARD_REG_SET (prologue_clobbered
);
675 CLEAR_HARD_REG_SET (prologue_used
);
676 for (rtx_insn
*insn
= prologue_seq
; insn
; insn
= NEXT_INSN (insn
))
677 if (NONDEBUG_INSN_P (insn
))
679 HARD_REG_SET this_used
;
680 CLEAR_HARD_REG_SET (this_used
);
681 note_uses (&PATTERN (insn
), record_hard_reg_uses
, &this_used
);
682 AND_COMPL_HARD_REG_SET (this_used
, prologue_clobbered
);
683 IOR_HARD_REG_SET (prologue_used
, this_used
);
684 note_stores (PATTERN (insn
), record_hard_reg_sets
, &prologue_clobbered
);
686 CLEAR_HARD_REG_BIT (prologue_clobbered
, STACK_POINTER_REGNUM
);
687 if (frame_pointer_needed
)
688 CLEAR_HARD_REG_BIT (prologue_clobbered
, HARD_FRAME_POINTER_REGNUM
);
690 /* Find out what registers are set up by the prologue; any use of these
691 cannot happen before the prologue. */
693 struct hard_reg_set_container set_up_by_prologue
;
694 CLEAR_HARD_REG_SET (set_up_by_prologue
.set
);
695 add_to_hard_reg_set (&set_up_by_prologue
.set
, Pmode
, STACK_POINTER_REGNUM
);
696 add_to_hard_reg_set (&set_up_by_prologue
.set
, Pmode
, ARG_POINTER_REGNUM
);
697 if (frame_pointer_needed
)
698 add_to_hard_reg_set (&set_up_by_prologue
.set
, Pmode
,
699 HARD_FRAME_POINTER_REGNUM
);
700 if (pic_offset_table_rtx
701 && (unsigned) PIC_OFFSET_TABLE_REGNUM
!= INVALID_REGNUM
)
702 add_to_hard_reg_set (&set_up_by_prologue
.set
, Pmode
,
703 PIC_OFFSET_TABLE_REGNUM
);
705 add_to_hard_reg_set (&set_up_by_prologue
.set
,
706 GET_MODE (crtl
->drap_reg
),
707 REGNO (crtl
->drap_reg
));
708 if (targetm
.set_up_by_prologue
)
709 targetm
.set_up_by_prologue (&set_up_by_prologue
);
711 /* We will insert the prologue before the basic block PRO. PRO should
712 dominate all basic blocks that need the prologue to be executed
713 before them. First, make PRO the "tightest wrap" possible. */
715 calculate_dominance_info (CDI_DOMINATORS
);
722 FOR_EACH_BB_FN (bb
, cfun
)
725 FOR_BB_INSNS (bb
, insn
)
726 if (NONDEBUG_INSN_P (insn
)
727 && requires_stack_frame_p (insn
, prologue_used
,
728 set_up_by_prologue
.set
))
731 fprintf (dump_file
, "Block %d needs the prologue.\n", bb
->index
);
732 pro
= nearest_common_dominator (CDI_DOMINATORS
, pro
, bb
);
737 /* If nothing needs a prologue, just put it at the start. This really
738 shouldn't happen, but we cannot fix it here. */
743 fprintf(dump_file
, "Nothing needs a prologue, but it isn't empty; "
744 "putting it at the start.\n");
749 fprintf (dump_file
, "After wrapping required blocks, PRO is now %d\n",
752 /* Now see if we can put the prologue at the start of PRO. Putting it
753 there might require duplicating a block that cannot be duplicated,
754 or in some cases we cannot insert the prologue there at all. If PRO
755 wont't do, try again with the immediate dominator of PRO, and so on.
757 The blocks that need duplicating are those reachable from PRO but
758 not dominated by it. We keep in BB_WITH a bitmap of the blocks
759 reachable from PRO that we already found, and in VEC a stack of
760 those we still need to consider (to find successors). */
763 bitmap_set_bit (bb_with
, pro
->index
);
765 vec
<basic_block
> vec
;
766 vec
.create (n_basic_blocks_for_fn (cfun
));
767 vec
.quick_push (pro
);
769 unsigned max_grow_size
= get_uncond_jump_length ();
770 max_grow_size
*= PARAM_VALUE (PARAM_MAX_GROW_COPY_BB_INSNS
);
772 while (!vec
.is_empty () && pro
!= entry
)
774 while (pro
!= entry
&& !can_get_prologue (pro
, prologue_clobbered
))
776 pro
= get_immediate_dominator (CDI_DOMINATORS
, pro
);
778 if (bitmap_set_bit (bb_with
, pro
->index
))
779 vec
.quick_push (pro
);
782 basic_block bb
= vec
.pop ();
783 if (!can_dup_for_shrink_wrapping (bb
, pro
, max_grow_size
))
784 while (!dominated_by_p (CDI_DOMINATORS
, bb
, pro
))
786 gcc_assert (pro
!= entry
);
788 pro
= get_immediate_dominator (CDI_DOMINATORS
, pro
);
790 if (bitmap_set_bit (bb_with
, pro
->index
))
791 vec
.quick_push (pro
);
794 FOR_EACH_EDGE (e
, ei
, bb
->succs
)
795 if (e
->dest
!= EXIT_BLOCK_PTR_FOR_FN (cfun
)
796 && bitmap_set_bit (bb_with
, e
->dest
->index
))
797 vec
.quick_push (e
->dest
);
801 fprintf (dump_file
, "Avoiding non-duplicatable blocks, PRO is now %d\n",
804 /* If we can move PRO back without having to duplicate more blocks, do so.
805 We do this because putting the prologue earlier is better for scheduling.
807 We can move back to a block PRE if every path from PRE will eventually
808 need a prologue, that is, PRO is a post-dominator of PRE. PRE needs
809 to dominate every block reachable from itself. We keep in BB_TMP a
810 bitmap of the blocks reachable from PRE that we already found, and in
811 VEC a stack of those we still need to consider.
813 Any block reachable from PRE is also reachable from all predecessors
814 of PRE, so if we find we need to move PRE back further we can leave
815 everything not considered so far on the stack. Any block dominated
816 by PRE is also dominated by all other dominators of PRE, so anything
817 found good for some PRE does not need to be reconsidered later.
819 We don't need to update BB_WITH because none of the new blocks found
820 can jump to a block that does not need the prologue. */
824 calculate_dominance_info (CDI_POST_DOMINATORS
);
827 bitmap_copy (bb_tmp
, bb_with
);
828 basic_block last_ok
= pro
;
833 basic_block pre
= get_immediate_dominator (CDI_DOMINATORS
, pro
);
834 if (!dominated_by_p (CDI_POST_DOMINATORS
, pre
, pro
))
837 if (bitmap_set_bit (bb_tmp
, pre
->index
))
838 vec
.quick_push (pre
);
841 while (!vec
.is_empty ())
843 if (!dominated_by_p (CDI_DOMINATORS
, vec
.last (), pre
))
849 basic_block bb
= vec
.pop ();
850 FOR_EACH_EDGE (e
, ei
, bb
->succs
)
851 if (bitmap_set_bit (bb_tmp
, e
->dest
->index
))
852 vec
.quick_push (e
->dest
);
855 if (ok
&& can_get_prologue (pre
, prologue_clobbered
))
863 free_dominance_info (CDI_POST_DOMINATORS
);
869 fprintf (dump_file
, "Bumping back to anticipatable blocks, PRO is now %d\n",
874 free_dominance_info (CDI_DOMINATORS
);
878 /* Compute what fraction of the frequency and count of the blocks that run
879 both with and without prologue are for running with prologue. This gives
880 the correct answer for reducible flow graphs; for irreducible flow graphs
881 our profile is messed up beyond repair anyway. */
883 profile_count num
= profile_count::zero ();
884 profile_count den
= profile_count::zero ();
886 FOR_EACH_EDGE (e
, ei
, pro
->preds
)
887 if (!dominated_by_p (CDI_DOMINATORS
, e
->src
, pro
))
889 if (e
->count ().initialized_p ())
891 if (e
->src
->count
.initialized_p ())
892 den
+= e
->src
->count
;
895 /* All is okay, so do it. */
897 crtl
->shrink_wrapped
= true;
899 fprintf (dump_file
, "Performing shrink-wrapping.\n");
901 /* Copy the blocks that can run both with and without prologue. The
902 originals run with prologue, the copies without. Store a pointer to
903 the copy in the ->aux field of the original. */
905 FOR_EACH_BB_FN (bb
, cfun
)
906 if (bitmap_bit_p (bb_with
, bb
->index
)
907 && !dominated_by_p (CDI_DOMINATORS
, bb
, pro
))
909 basic_block dup
= duplicate_block (bb
, 0, 0);
913 if (JUMP_P (BB_END (dup
)) && !any_condjump_p (BB_END (dup
)))
914 emit_barrier_after_bb (dup
);
916 if (EDGE_COUNT (dup
->succs
) == 0)
917 emit_barrier_after_bb (dup
);
920 fprintf (dump_file
, "Duplicated %d to %d\n", bb
->index
, dup
->index
);
922 if (num
== profile_count::zero () || den
.nonzero_p ())
923 bb
->count
= bb
->count
.apply_scale (num
, den
);
924 dup
->count
-= bb
->count
;
927 /* Now change the edges to point to the copies, where appropriate. */
929 FOR_EACH_BB_FN (bb
, cfun
)
930 if (!dominated_by_p (CDI_DOMINATORS
, bb
, pro
))
932 basic_block src
= bb
;
933 if (bitmap_bit_p (bb_with
, bb
->index
))
934 src
= (basic_block
) bb
->aux
;
936 FOR_EACH_EDGE (e
, ei
, src
->succs
)
938 if (e
->dest
== EXIT_BLOCK_PTR_FOR_FN (cfun
))
941 if (bitmap_bit_p (bb_with
, e
->dest
->index
)
942 && !dominated_by_p (CDI_DOMINATORS
, e
->dest
, pro
))
945 fprintf (dump_file
, "Redirecting edge %d->%d to %d\n",
946 e
->src
->index
, e
->dest
->index
,
947 ((basic_block
) e
->dest
->aux
)->index
);
948 redirect_edge_and_branch_force (e
, (basic_block
) e
->dest
->aux
);
950 else if (e
->flags
& EDGE_FALLTHRU
951 && bitmap_bit_p (bb_with
, bb
->index
))
952 force_nonfallthru (e
);
956 /* Also redirect the function entry edge if necessary. */
958 FOR_EACH_EDGE (e
, ei
, ENTRY_BLOCK_PTR_FOR_FN (cfun
)->succs
)
959 if (bitmap_bit_p (bb_with
, e
->dest
->index
)
960 && !dominated_by_p (CDI_DOMINATORS
, e
->dest
, pro
))
962 basic_block split_bb
= split_edge (e
);
963 e
= single_succ_edge (split_bb
);
964 redirect_edge_and_branch_force (e
, (basic_block
) e
->dest
->aux
);
967 /* Make a simple_return for those exits that run without prologue. */
969 FOR_EACH_BB_REVERSE_FN (bb
, cfun
)
970 if (!bitmap_bit_p (bb_with
, bb
->index
))
971 FOR_EACH_EDGE (e
, ei
, bb
->succs
)
972 if (e
->dest
== EXIT_BLOCK_PTR_FOR_FN (cfun
))
973 handle_simple_exit (e
);
975 /* Finally, we want a single edge to put the prologue on. Make a new
976 block before the PRO block; the edge beteen them is the edge we want.
977 Then redirect those edges into PRO that come from blocks without the
978 prologue, to point to the new block instead. The new prologue block
979 is put at the end of the insn chain. */
981 basic_block new_bb
= create_empty_bb (EXIT_BLOCK_PTR_FOR_FN (cfun
)->prev_bb
);
982 BB_COPY_PARTITION (new_bb
, pro
);
983 new_bb
->count
= profile_count::zero ();
985 fprintf (dump_file
, "Made prologue block %d\n", new_bb
->index
);
987 for (ei
= ei_start (pro
->preds
); (e
= ei_safe_edge (ei
)); )
989 if (bitmap_bit_p (bb_with
, e
->src
->index
)
990 || dominated_by_p (CDI_DOMINATORS
, e
->src
, pro
))
996 new_bb
->count
+= e
->count ();
998 redirect_edge_and_branch_force (e
, new_bb
);
1000 fprintf (dump_file
, "Redirected edge from %d\n", e
->src
->index
);
1003 *entry_edge
= make_single_succ_edge (new_bb
, pro
, EDGE_FALLTHRU
);
1004 force_nonfallthru (*entry_edge
);
1006 free_dominance_info (CDI_DOMINATORS
);
1009 /* Separate shrink-wrapping
1011 Instead of putting all of the prologue and epilogue in one spot, we
1012 can put parts of it in places where those components are executed less
1013 frequently. The following code does this, for prologue and epilogue
1014 components that can be put in more than one location, and where those
1015 components can be executed more than once (the epilogue component will
1016 always be executed before the prologue component is executed a second
1019 What exactly is a component is target-dependent. The more usual
1020 components are simple saves/restores to/from the frame of callee-saved
1021 registers. This code treats components abstractly (as an sbitmap),
1022 letting the target handle all details.
1024 Prologue components are placed in such a way that for every component
1025 the prologue is executed as infrequently as possible. We do this by
1026 walking the dominator tree, comparing the cost of placing a prologue
1027 component before a block to the sum of costs determined for all subtrees
1030 From this placement, we then determine for each component all blocks
1031 where at least one of this block's dominators (including itself) will
1032 get a prologue inserted. That then is how the components are placed.
1033 We could place the epilogue components a bit smarter (we can save a
1034 bit of code size sometimes); this is a possible future improvement.
1036 Prologues and epilogues are preferably placed into a block, either at
1037 the beginning or end of it, if it is needed for all predecessor resp.
1038 successor edges; or placed on the edge otherwise.
1040 If the placement of any prologue/epilogue leads to a situation we cannot
1041 handle (for example, an abnormal edge would need to be split, or some
1042 targets want to use some specific registers that may not be available
1043 where we want to put them), separate shrink-wrapping for the components
1044 in that prologue/epilogue is aborted. */
1047 /* Print the sbitmap COMPONENTS to the DUMP_FILE if not empty, with the
1050 dump_components (const char *label
, sbitmap components
)
1052 if (bitmap_empty_p (components
))
1055 fprintf (dump_file
, " [%s", label
);
1057 for (unsigned int j
= 0; j
< components
->n_bits
; j
++)
1058 if (bitmap_bit_p (components
, j
))
1059 fprintf (dump_file
, " %u", j
);
1061 fprintf (dump_file
, "]");
1064 /* The data we collect for each bb. */
1066 /* What components does this BB need? */
1067 sbitmap needs_components
;
1069 /* What components does this BB have? This is the main decision this
1071 sbitmap has_components
;
1073 /* The components for which we placed code at the start of the BB (instead
1074 of on all incoming edges). */
1075 sbitmap head_components
;
1077 /* The components for which we placed code at the end of the BB (instead
1078 of on all outgoing edges). */
1079 sbitmap tail_components
;
1081 /* The frequency of executing the prologue for this BB, if a prologue is
1082 placed on this BB. This is a pessimistic estimate (no prologue is
1083 needed for edges from blocks that have the component under consideration
1087 /* The frequency of executing the prologue for this BB and all BBs
1089 gcov_type total_cost
;
1092 /* A helper function for accessing the pass-specific info. */
1093 static inline struct sw
*
1096 gcc_assert (bb
->aux
);
1097 return (struct sw
*) bb
->aux
;
1100 /* Create the pass-specific data structures for separately shrink-wrapping
1101 with components COMPONENTS. */
1103 init_separate_shrink_wrap (sbitmap components
)
1106 FOR_ALL_BB_FN (bb
, cfun
)
1108 bb
->aux
= xcalloc (1, sizeof (struct sw
));
1110 SW (bb
)->needs_components
= targetm
.shrink_wrap
.components_for_bb (bb
);
1112 /* Mark all basic blocks without successor as needing all components.
1113 This avoids problems in at least cfgcleanup, sel-sched, and
1114 regrename (largely to do with all paths to such a block still
1115 needing the same dwarf CFI info). */
1116 if (EDGE_COUNT (bb
->succs
) == 0)
1117 bitmap_copy (SW (bb
)->needs_components
, components
);
1121 fprintf (dump_file
, "bb %d components:", bb
->index
);
1122 dump_components ("has", SW (bb
)->needs_components
);
1123 fprintf (dump_file
, "\n");
1126 SW (bb
)->has_components
= sbitmap_alloc (SBITMAP_SIZE (components
));
1127 SW (bb
)->head_components
= sbitmap_alloc (SBITMAP_SIZE (components
));
1128 SW (bb
)->tail_components
= sbitmap_alloc (SBITMAP_SIZE (components
));
1129 bitmap_clear (SW (bb
)->has_components
);
1133 /* Destroy the pass-specific data. */
1135 fini_separate_shrink_wrap (void)
1138 FOR_ALL_BB_FN (bb
, cfun
)
1141 sbitmap_free (SW (bb
)->needs_components
);
1142 sbitmap_free (SW (bb
)->has_components
);
1143 sbitmap_free (SW (bb
)->head_components
);
1144 sbitmap_free (SW (bb
)->tail_components
);
1150 /* Place the prologue for component WHICH, in the basic blocks dominated
1151 by HEAD. Do a DFS over the dominator tree, and set bit WHICH in the
1152 HAS_COMPONENTS of a block if either the block has that bit set in
1153 NEEDS_COMPONENTS, or it is cheaper to place the prologue here than in all
1154 dominator subtrees separately. */
1156 place_prologue_for_one_component (unsigned int which
, basic_block head
)
1158 /* The block we are currently dealing with. */
1159 basic_block bb
= head
;
1160 /* Is this the first time we visit this block, i.e. have we just gone
1162 bool first_visit
= true;
1164 /* Walk the dominator tree, visit one block per iteration of this loop.
1165 Each basic block is visited twice: once before visiting any children
1166 of the block, and once after visiting all of them (leaf nodes are
1167 visited only once). As an optimization, we do not visit subtrees
1168 that can no longer influence the prologue placement. */
1171 /* First visit of a block: set the (children) cost accumulator to zero;
1172 if the block does not have the component itself, walk down. */
1175 /* Initialize the cost. The cost is the block execution frequency
1176 that does not come from backedges. Calculating this by simply
1177 adding the cost of all edges that aren't backedges does not
1178 work: this does not always add up to the block frequency at
1179 all, and even if it does, rounding error makes for bad
1181 SW (bb
)->own_cost
= bb
->count
.to_frequency (cfun
);
1185 FOR_EACH_EDGE (e
, ei
, bb
->preds
)
1186 if (dominated_by_p (CDI_DOMINATORS
, e
->src
, bb
))
1188 if (SW (bb
)->own_cost
> EDGE_FREQUENCY (e
))
1189 SW (bb
)->own_cost
-= EDGE_FREQUENCY (e
);
1191 SW (bb
)->own_cost
= 0;
1194 SW (bb
)->total_cost
= 0;
1196 if (!bitmap_bit_p (SW (bb
)->needs_components
, which
)
1197 && first_dom_son (CDI_DOMINATORS
, bb
))
1199 bb
= first_dom_son (CDI_DOMINATORS
, bb
);
1204 /* If this block does need the component itself, or it is cheaper to
1205 put the prologue here than in all the descendants that need it,
1206 mark it so. If this block's immediate post-dominator is dominated
1207 by this block, and that needs the prologue, we can put it on this
1208 block as well (earlier is better). */
1209 if (bitmap_bit_p (SW (bb
)->needs_components
, which
)
1210 || SW (bb
)->total_cost
> SW (bb
)->own_cost
)
1212 SW (bb
)->total_cost
= SW (bb
)->own_cost
;
1213 bitmap_set_bit (SW (bb
)->has_components
, which
);
1217 basic_block kid
= get_immediate_dominator (CDI_POST_DOMINATORS
, bb
);
1218 if (dominated_by_p (CDI_DOMINATORS
, kid
, bb
)
1219 && bitmap_bit_p (SW (kid
)->has_components
, which
))
1221 SW (bb
)->total_cost
= SW (bb
)->own_cost
;
1222 bitmap_set_bit (SW (bb
)->has_components
, which
);
1226 /* We are back where we started, so we are done now. */
1230 /* We now know the cost of the subtree rooted at the current block.
1231 Accumulate this cost in the parent. */
1232 basic_block parent
= get_immediate_dominator (CDI_DOMINATORS
, bb
);
1233 SW (parent
)->total_cost
+= SW (bb
)->total_cost
;
1235 /* Don't walk the tree down unless necessary. */
1236 if (next_dom_son (CDI_DOMINATORS
, bb
)
1237 && SW (parent
)->total_cost
<= SW (parent
)->own_cost
)
1239 bb
= next_dom_son (CDI_DOMINATORS
, bb
);
1245 first_visit
= false;
1250 /* Set HAS_COMPONENTS in every block to the maximum it can be set to without
1251 setting it on any path from entry to exit where it was not already set
1252 somewhere (or, for blocks that have no path to the exit, consider only
1253 paths from the entry to the block itself). */
1255 spread_components (sbitmap components
)
1257 basic_block entry_block
= ENTRY_BLOCK_PTR_FOR_FN (cfun
);
1258 basic_block exit_block
= EXIT_BLOCK_PTR_FOR_FN (cfun
);
1260 /* A stack of all blocks left to consider, and a bitmap of all blocks
1262 vec
<basic_block
> todo
;
1263 todo
.create (n_basic_blocks_for_fn (cfun
));
1266 auto_sbitmap
old (SBITMAP_SIZE (components
));
1268 /* Find for every block the components that are *not* needed on some path
1269 from the entry to that block. Do this with a flood fill from the entry
1270 block. Every block can be visited at most as often as the number of
1271 components (plus one), and usually much less often. */
1274 fprintf (dump_file
, "Spreading down...\n");
1277 FOR_ALL_BB_FN (bb
, cfun
)
1278 bitmap_clear (SW (bb
)->head_components
);
1280 bitmap_copy (SW (entry_block
)->head_components
, components
);
1285 todo
.quick_push (single_succ (entry_block
));
1286 bitmap_set_bit (seen
, single_succ (entry_block
)->index
);
1287 while (!todo
.is_empty ())
1291 bitmap_copy (old
, SW (bb
)->head_components
);
1293 FOR_EACH_EDGE (e
, ei
, bb
->preds
)
1294 bitmap_ior (SW (bb
)->head_components
, SW (bb
)->head_components
,
1295 SW (e
->src
)->head_components
);
1297 bitmap_and_compl (SW (bb
)->head_components
, SW (bb
)->head_components
,
1298 SW (bb
)->has_components
);
1300 if (!bitmap_equal_p (old
, SW (bb
)->head_components
))
1301 FOR_EACH_EDGE (e
, ei
, bb
->succs
)
1302 if (bitmap_set_bit (seen
, e
->dest
->index
))
1303 todo
.quick_push (e
->dest
);
1305 bitmap_clear_bit (seen
, bb
->index
);
1308 /* Find for every block the components that are *not* needed on some reverse
1309 path from the exit to that block. */
1312 fprintf (dump_file
, "Spreading up...\n");
1314 /* First, mark all blocks not reachable from the exit block as not needing
1315 any component on any path to the exit. Mark everything, and then clear
1316 again by a flood fill. */
1318 FOR_ALL_BB_FN (bb
, cfun
)
1319 bitmap_copy (SW (bb
)->tail_components
, components
);
1321 FOR_EACH_EDGE (e
, ei
, exit_block
->preds
)
1323 todo
.quick_push (e
->src
);
1324 bitmap_set_bit (seen
, e
->src
->index
);
1327 while (!todo
.is_empty ())
1331 if (!bitmap_empty_p (SW (bb
)->tail_components
))
1332 FOR_EACH_EDGE (e
, ei
, bb
->preds
)
1333 if (bitmap_set_bit (seen
, e
->src
->index
))
1334 todo
.quick_push (e
->src
);
1336 bitmap_clear (SW (bb
)->tail_components
);
1338 bitmap_clear_bit (seen
, bb
->index
);
1341 /* And then, flood fill backwards to find for every block the components
1342 not needed on some path to the exit. */
1344 bitmap_copy (SW (exit_block
)->tail_components
, components
);
1346 FOR_EACH_EDGE (e
, ei
, exit_block
->preds
)
1348 todo
.quick_push (e
->src
);
1349 bitmap_set_bit (seen
, e
->src
->index
);
1352 while (!todo
.is_empty ())
1356 bitmap_copy (old
, SW (bb
)->tail_components
);
1358 FOR_EACH_EDGE (e
, ei
, bb
->succs
)
1359 bitmap_ior (SW (bb
)->tail_components
, SW (bb
)->tail_components
,
1360 SW (e
->dest
)->tail_components
);
1362 bitmap_and_compl (SW (bb
)->tail_components
, SW (bb
)->tail_components
,
1363 SW (bb
)->has_components
);
1365 if (!bitmap_equal_p (old
, SW (bb
)->tail_components
))
1366 FOR_EACH_EDGE (e
, ei
, bb
->preds
)
1367 if (bitmap_set_bit (seen
, e
->src
->index
))
1368 todo
.quick_push (e
->src
);
1370 bitmap_clear_bit (seen
, bb
->index
);
1373 /* Finally, mark everything not not needed both forwards and backwards. */
1375 FOR_EACH_BB_FN (bb
, cfun
)
1377 bitmap_and (SW (bb
)->head_components
, SW (bb
)->head_components
,
1378 SW (bb
)->tail_components
);
1379 bitmap_and_compl (SW (bb
)->has_components
, components
,
1380 SW (bb
)->head_components
);
1383 FOR_ALL_BB_FN (bb
, cfun
)
1387 fprintf (dump_file
, "bb %d components:", bb
->index
);
1388 dump_components ("has", SW (bb
)->has_components
);
1389 fprintf (dump_file
, "\n");
1394 /* If we cannot handle placing some component's prologues or epilogues where
1395 we decided we should place them, unmark that component in COMPONENTS so
1396 that it is not wrapped separately. */
1398 disqualify_problematic_components (sbitmap components
)
1400 auto_sbitmap
pro (SBITMAP_SIZE (components
));
1401 auto_sbitmap
epi (SBITMAP_SIZE (components
));
1404 FOR_EACH_BB_FN (bb
, cfun
)
1408 FOR_EACH_EDGE (e
, ei
, bb
->succs
)
1410 /* Find which components we want pro/epilogues for here. */
1411 bitmap_and_compl (epi
, SW (e
->src
)->has_components
,
1412 SW (e
->dest
)->has_components
);
1413 bitmap_and_compl (pro
, SW (e
->dest
)->has_components
,
1414 SW (e
->src
)->has_components
);
1416 /* Ask the target what it thinks about things. */
1417 if (!bitmap_empty_p (epi
))
1418 targetm
.shrink_wrap
.disqualify_components (components
, e
, epi
,
1420 if (!bitmap_empty_p (pro
))
1421 targetm
.shrink_wrap
.disqualify_components (components
, e
, pro
,
1424 /* If this edge doesn't need splitting, we're fine. */
1425 if (single_pred_p (e
->dest
)
1426 && e
->dest
!= EXIT_BLOCK_PTR_FOR_FN (cfun
))
1429 /* If the edge can be split, that is fine too. */
1430 if ((e
->flags
& EDGE_ABNORMAL
) == 0)
1433 /* We also can handle sibcalls. */
1434 if (e
->dest
== EXIT_BLOCK_PTR_FOR_FN (cfun
))
1436 gcc_assert (e
->flags
& EDGE_SIBCALL
);
1440 /* Remove from consideration those components we would need
1441 pro/epilogues for on edges where we cannot insert them. */
1442 bitmap_and_compl (components
, components
, epi
);
1443 bitmap_and_compl (components
, components
, pro
);
1445 if (dump_file
&& !bitmap_subset_p (epi
, components
))
1447 fprintf (dump_file
, " BAD epi %d->%d", e
->src
->index
,
1449 if (e
->flags
& EDGE_EH
)
1450 fprintf (dump_file
, " for EH");
1451 dump_components ("epi", epi
);
1452 fprintf (dump_file
, "\n");
1455 if (dump_file
&& !bitmap_subset_p (pro
, components
))
1457 fprintf (dump_file
, " BAD pro %d->%d", e
->src
->index
,
1459 if (e
->flags
& EDGE_EH
)
1460 fprintf (dump_file
, " for EH");
1461 dump_components ("pro", pro
);
1462 fprintf (dump_file
, "\n");
1468 /* Place code for prologues and epilogues for COMPONENTS where we can put
1469 that code at the start of basic blocks. */
1471 emit_common_heads_for_components (sbitmap components
)
1473 auto_sbitmap
pro (SBITMAP_SIZE (components
));
1474 auto_sbitmap
epi (SBITMAP_SIZE (components
));
1475 auto_sbitmap
tmp (SBITMAP_SIZE (components
));
1478 FOR_ALL_BB_FN (bb
, cfun
)
1479 bitmap_clear (SW (bb
)->head_components
);
1481 FOR_EACH_BB_FN (bb
, cfun
)
1483 /* Find which prologue resp. epilogue components are needed for all
1484 predecessor edges to this block. */
1486 /* First, select all possible components. */
1487 bitmap_copy (epi
, components
);
1488 bitmap_copy (pro
, components
);
1492 FOR_EACH_EDGE (e
, ei
, bb
->preds
)
1494 if (e
->flags
& EDGE_ABNORMAL
)
1501 /* Deselect those epilogue components that should not be inserted
1503 bitmap_and_compl (tmp
, SW (e
->src
)->has_components
,
1504 SW (e
->dest
)->has_components
);
1505 bitmap_and (epi
, epi
, tmp
);
1507 /* Similar, for the prologue. */
1508 bitmap_and_compl (tmp
, SW (e
->dest
)->has_components
,
1509 SW (e
->src
)->has_components
);
1510 bitmap_and (pro
, pro
, tmp
);
1513 if (dump_file
&& !(bitmap_empty_p (epi
) && bitmap_empty_p (pro
)))
1514 fprintf (dump_file
, " bb %d", bb
->index
);
1516 if (dump_file
&& !bitmap_empty_p (epi
))
1517 dump_components ("epi", epi
);
1518 if (dump_file
&& !bitmap_empty_p (pro
))
1519 dump_components ("pro", pro
);
1521 if (dump_file
&& !(bitmap_empty_p (epi
) && bitmap_empty_p (pro
)))
1522 fprintf (dump_file
, "\n");
1524 /* Place code after the BB note. */
1525 if (!bitmap_empty_p (pro
))
1528 targetm
.shrink_wrap
.emit_prologue_components (pro
);
1529 rtx_insn
*seq
= get_insns ();
1531 record_prologue_seq (seq
);
1533 emit_insn_after (seq
, bb_note (bb
));
1535 bitmap_ior (SW (bb
)->head_components
, SW (bb
)->head_components
, pro
);
1538 if (!bitmap_empty_p (epi
))
1541 targetm
.shrink_wrap
.emit_epilogue_components (epi
);
1542 rtx_insn
*seq
= get_insns ();
1544 record_epilogue_seq (seq
);
1546 emit_insn_after (seq
, bb_note (bb
));
1548 bitmap_ior (SW (bb
)->head_components
, SW (bb
)->head_components
, epi
);
1553 /* Place code for prologues and epilogues for COMPONENTS where we can put
1554 that code at the end of basic blocks. */
1556 emit_common_tails_for_components (sbitmap components
)
1558 auto_sbitmap
pro (SBITMAP_SIZE (components
));
1559 auto_sbitmap
epi (SBITMAP_SIZE (components
));
1560 auto_sbitmap
tmp (SBITMAP_SIZE (components
));
1563 FOR_ALL_BB_FN (bb
, cfun
)
1564 bitmap_clear (SW (bb
)->tail_components
);
1566 FOR_EACH_BB_FN (bb
, cfun
)
1568 /* Find which prologue resp. epilogue components are needed for all
1569 successor edges from this block. */
1570 if (EDGE_COUNT (bb
->succs
) == 0)
1573 /* First, select all possible components. */
1574 bitmap_copy (epi
, components
);
1575 bitmap_copy (pro
, components
);
1579 FOR_EACH_EDGE (e
, ei
, bb
->succs
)
1581 if (e
->flags
& EDGE_ABNORMAL
)
1588 /* Deselect those epilogue components that should not be inserted
1589 for this edge, and also those that are already put at the head
1590 of the successor block. */
1591 bitmap_and_compl (tmp
, SW (e
->src
)->has_components
,
1592 SW (e
->dest
)->has_components
);
1593 bitmap_and_compl (tmp
, tmp
, SW (e
->dest
)->head_components
);
1594 bitmap_and (epi
, epi
, tmp
);
1596 /* Similarly, for the prologue. */
1597 bitmap_and_compl (tmp
, SW (e
->dest
)->has_components
,
1598 SW (e
->src
)->has_components
);
1599 bitmap_and_compl (tmp
, tmp
, SW (e
->dest
)->head_components
);
1600 bitmap_and (pro
, pro
, tmp
);
1603 /* If the last insn of this block is a control flow insn we cannot
1604 put anything after it. We can put our code before it instead,
1605 but only if that jump insn is a simple jump. */
1606 rtx_insn
*last_insn
= BB_END (bb
);
1607 if (control_flow_insn_p (last_insn
) && !simplejump_p (last_insn
))
1613 if (dump_file
&& !(bitmap_empty_p (epi
) && bitmap_empty_p (pro
)))
1614 fprintf (dump_file
, " bb %d", bb
->index
);
1616 if (dump_file
&& !bitmap_empty_p (epi
))
1617 dump_components ("epi", epi
);
1618 if (dump_file
&& !bitmap_empty_p (pro
))
1619 dump_components ("pro", pro
);
1621 if (dump_file
&& !(bitmap_empty_p (epi
) && bitmap_empty_p (pro
)))
1622 fprintf (dump_file
, "\n");
1624 /* Put the code at the end of the BB, but before any final jump. */
1625 if (!bitmap_empty_p (epi
))
1628 targetm
.shrink_wrap
.emit_epilogue_components (epi
);
1629 rtx_insn
*seq
= get_insns ();
1631 record_epilogue_seq (seq
);
1633 if (control_flow_insn_p (last_insn
))
1634 emit_insn_before (seq
, last_insn
);
1636 emit_insn_after (seq
, last_insn
);
1638 bitmap_ior (SW (bb
)->tail_components
, SW (bb
)->tail_components
, epi
);
1641 if (!bitmap_empty_p (pro
))
1644 targetm
.shrink_wrap
.emit_prologue_components (pro
);
1645 rtx_insn
*seq
= get_insns ();
1647 record_prologue_seq (seq
);
1649 if (control_flow_insn_p (last_insn
))
1650 emit_insn_before (seq
, last_insn
);
1652 emit_insn_after (seq
, last_insn
);
1654 bitmap_ior (SW (bb
)->tail_components
, SW (bb
)->tail_components
, pro
);
1659 /* Place prologues and epilogues for COMPONENTS on edges, if we haven't already
1660 placed them inside blocks directly. */
1662 insert_prologue_epilogue_for_components (sbitmap components
)
1664 auto_sbitmap
pro (SBITMAP_SIZE (components
));
1665 auto_sbitmap
epi (SBITMAP_SIZE (components
));
1668 FOR_EACH_BB_FN (bb
, cfun
)
1675 FOR_EACH_EDGE (e
, ei
, bb
->succs
)
1677 /* Find which pro/epilogue components are needed on this edge. */
1678 bitmap_and_compl (epi
, SW (e
->src
)->has_components
,
1679 SW (e
->dest
)->has_components
);
1680 bitmap_and_compl (pro
, SW (e
->dest
)->has_components
,
1681 SW (e
->src
)->has_components
);
1682 bitmap_and (epi
, epi
, components
);
1683 bitmap_and (pro
, pro
, components
);
1685 /* Deselect those we already have put at the head or tail of the
1686 edge's dest resp. src. */
1687 bitmap_and_compl (epi
, epi
, SW (e
->dest
)->head_components
);
1688 bitmap_and_compl (pro
, pro
, SW (e
->dest
)->head_components
);
1689 bitmap_and_compl (epi
, epi
, SW (e
->src
)->tail_components
);
1690 bitmap_and_compl (pro
, pro
, SW (e
->src
)->tail_components
);
1692 if (!bitmap_empty_p (epi
) || !bitmap_empty_p (pro
))
1696 fprintf (dump_file
, " %d->%d", e
->src
->index
,
1698 dump_components ("epi", epi
);
1699 dump_components ("pro", pro
);
1700 if (e
->flags
& EDGE_SIBCALL
)
1701 fprintf (dump_file
, " (SIBCALL)");
1702 else if (e
->flags
& EDGE_ABNORMAL
)
1703 fprintf (dump_file
, " (ABNORMAL)");
1704 fprintf (dump_file
, "\n");
1707 /* Put the epilogue components in place. */
1709 targetm
.shrink_wrap
.emit_epilogue_components (epi
);
1710 rtx_insn
*seq
= get_insns ();
1712 record_epilogue_seq (seq
);
1714 if (e
->flags
& EDGE_SIBCALL
)
1716 gcc_assert (e
->dest
== EXIT_BLOCK_PTR_FOR_FN (cfun
));
1718 rtx_insn
*insn
= BB_END (e
->src
);
1719 gcc_assert (CALL_P (insn
) && SIBLING_CALL_P (insn
));
1720 emit_insn_before (seq
, insn
);
1722 else if (e
->dest
== EXIT_BLOCK_PTR_FOR_FN (cfun
))
1724 gcc_assert (e
->flags
& EDGE_FALLTHRU
);
1725 basic_block new_bb
= split_edge (e
);
1726 emit_insn_after (seq
, BB_END (new_bb
));
1729 insert_insn_on_edge (seq
, e
);
1731 /* Put the prologue components in place. */
1733 targetm
.shrink_wrap
.emit_prologue_components (pro
);
1736 record_prologue_seq (seq
);
1738 insert_insn_on_edge (seq
, e
);
1743 commit_edge_insertions ();
1746 /* The main entry point to this subpass. FIRST_BB is where the prologue
1747 would be normally put. */
1749 try_shrink_wrapping_separate (basic_block first_bb
)
1754 if (!(SHRINK_WRAPPING_ENABLED
1755 && flag_shrink_wrap_separate
1756 && optimize_function_for_speed_p (cfun
)
1757 && targetm
.shrink_wrap
.get_separate_components
))
1760 /* We don't handle "strange" functions. */
1761 if (cfun
->calls_alloca
1762 || cfun
->calls_setjmp
1763 || cfun
->can_throw_non_call_exceptions
1764 || crtl
->calls_eh_return
1765 || crtl
->has_nonlocal_goto
1766 || crtl
->saves_all_registers
)
1769 /* Ask the target what components there are. If it returns NULL, don't
1771 sbitmap components
= targetm
.shrink_wrap
.get_separate_components ();
1775 /* We need LIVE info, not defining anything in the entry block and not
1776 using anything in the exit block. A block then needs a component if
1777 the register for that component is in the IN or GEN or KILL set for
1779 df_scan
->local_flags
|= DF_SCAN_EMPTY_ENTRY_EXIT
;
1780 df_update_entry_exit_and_calls ();
1781 df_live_add_problem ();
1782 df_live_set_all_dirty ();
1785 calculate_dominance_info (CDI_DOMINATORS
);
1786 calculate_dominance_info (CDI_POST_DOMINATORS
);
1788 init_separate_shrink_wrap (components
);
1790 sbitmap_iterator sbi
;
1792 EXECUTE_IF_SET_IN_BITMAP (components
, 0, j
, sbi
)
1793 place_prologue_for_one_component (j
, first_bb
);
1795 spread_components (components
);
1797 disqualify_problematic_components (components
);
1799 /* Don't separately shrink-wrap anything where the "main" prologue will
1800 go; the target code can often optimize things if it is presented with
1801 all components together (say, if it generates store-multiple insns). */
1802 bitmap_and_compl (components
, components
, SW (first_bb
)->has_components
);
1804 if (bitmap_empty_p (components
))
1807 fprintf (dump_file
, "Not wrapping anything separately.\n");
1813 fprintf (dump_file
, "The components we wrap separately are");
1814 dump_components ("sep", components
);
1815 fprintf (dump_file
, "\n");
1817 fprintf (dump_file
, "... Inserting common heads...\n");
1820 emit_common_heads_for_components (components
);
1823 fprintf (dump_file
, "... Inserting common tails...\n");
1825 emit_common_tails_for_components (components
);
1828 fprintf (dump_file
, "... Inserting the more difficult ones...\n");
1830 insert_prologue_epilogue_for_components (components
);
1833 fprintf (dump_file
, "... Done.\n");
1835 targetm
.shrink_wrap
.set_handled_components (components
);
1837 crtl
->shrink_wrapped_separate
= true;
1840 fini_separate_shrink_wrap ();
1842 sbitmap_free (components
);
1843 free_dominance_info (CDI_DOMINATORS
);
1844 free_dominance_info (CDI_POST_DOMINATORS
);
1847 df_scan
->local_flags
&= ~DF_SCAN_EMPTY_ENTRY_EXIT
;
1848 df_update_entry_exit_and_calls ();
1849 df_live_set_all_dirty ();