1 /* Functions to determine/estimate number of iterations of a loop.
2 Copyright (C) 2004, 2005 Free Software Foundation, Inc.
4 This file is part of GCC.
6 GCC is free software; you can redistribute it and/or modify it
7 under the terms of the GNU General Public License as published by the
8 Free Software Foundation; either version 2, or (at your option) any
11 GCC is distributed in the hope that it will be useful, but WITHOUT
12 ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
13 FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License
16 You should have received a copy of the GNU General Public License
17 along with GCC; see the file COPYING. If not, write to the Free
18 Software Foundation, 59 Temple Place - Suite 330, Boston, MA
23 #include "coretypes.h"
28 #include "hard-reg-set.h"
29 #include "basic-block.h"
31 #include "diagnostic.h"
32 #include "tree-flow.h"
33 #include "tree-dump.h"
35 #include "tree-pass.h"
37 #include "tree-chrec.h"
38 #include "tree-scalar-evolution.h"
39 #include "tree-data-ref.h"
42 #include "tree-inline.h"
44 #define SWAP(X, Y) do { void *tmp = (X); (X) = (Y); (Y) = tmp; } while (0)
49 Analysis of number of iterations of an affine exit test.
53 /* Returns true if ARG is either NULL_TREE or constant zero. Unlike
54 integer_zerop, it does not care about overflow flags. */
62 if (TREE_CODE (arg
) != INTEGER_CST
)
65 return (TREE_INT_CST_LOW (arg
) == 0 && TREE_INT_CST_HIGH (arg
) == 0);
68 /* Returns true if ARG a nonzero constant. Unlike integer_nonzerop, it does
69 not care about overflow flags. */
77 if (TREE_CODE (arg
) != INTEGER_CST
)
80 return (TREE_INT_CST_LOW (arg
) != 0 || TREE_INT_CST_HIGH (arg
) != 0);
83 /* Returns inverse of X modulo 2^s, where MASK = 2^s-1. */
86 inverse (tree x
, tree mask
)
88 tree type
= TREE_TYPE (x
);
90 unsigned ctr
= tree_floor_log2 (mask
);
92 if (TYPE_PRECISION (type
) <= HOST_BITS_PER_WIDE_INT
)
94 unsigned HOST_WIDE_INT ix
;
95 unsigned HOST_WIDE_INT imask
;
96 unsigned HOST_WIDE_INT irslt
= 1;
98 gcc_assert (cst_and_fits_in_hwi (x
));
99 gcc_assert (cst_and_fits_in_hwi (mask
));
101 ix
= int_cst_value (x
);
102 imask
= int_cst_value (mask
);
111 rslt
= build_int_cst_type (type
, irslt
);
115 rslt
= build_int_cst_type (type
, 1);
118 rslt
= fold_binary_to_constant (MULT_EXPR
, type
, rslt
, x
);
119 x
= fold_binary_to_constant (MULT_EXPR
, type
, x
, x
);
121 rslt
= fold_binary_to_constant (BIT_AND_EXPR
, type
, rslt
, mask
);
127 /* Determine the number of iterations according to condition (for staying
128 inside loop) which compares two induction variables using comparison
129 operator CODE. The induction variable on left side of the comparison
130 has base BASE0 and step STEP0. the right-hand side one has base
131 BASE1 and step STEP1. Both induction variables must have type TYPE,
132 which must be an integer or pointer type. STEP0 and STEP1 must be
133 constants (or NULL_TREE, which is interpreted as constant zero).
135 The results (number of iterations and assumptions as described in
136 comments at struct tree_niter_desc in tree-flow.h) are stored to NITER.
137 In case we are unable to determine number of iterations, contents of
138 this structure is unchanged. */
141 number_of_iterations_cond (tree type
, tree base0
, tree step0
,
142 enum tree_code code
, tree base1
, tree step1
,
143 struct tree_niter_desc
*niter
)
145 tree step
, delta
, mmin
, mmax
;
146 tree may_xform
, bound
, s
, d
, tmp
;
147 bool was_sharp
= false;
149 tree assumptions
= boolean_true_node
;
150 tree noloop_assumptions
= boolean_false_node
;
151 tree niter_type
, signed_niter_type
;
154 /* The meaning of these assumptions is this:
156 then the rest of information does not have to be valid
157 if noloop_assumptions then the loop does not have to roll
158 (but it is only conservative approximation, i.e. it only says that
159 if !noloop_assumptions, then the loop does not end before the computed
160 number of iterations) */
162 /* Make < comparison from > ones. */
168 code
= swap_tree_comparison (code
);
171 /* We can handle the case when neither of the sides of the comparison is
172 invariant, provided that the test is NE_EXPR. This rarely occurs in
173 practice, but it is simple enough to manage. */
174 if (!zero_p (step0
) && !zero_p (step1
))
179 step0
= fold_binary_to_constant (MINUS_EXPR
, type
, step0
, step1
);
183 /* If the result is a constant, the loop is weird. More precise handling
184 would be possible, but the situation is not common enough to waste time
186 if (zero_p (step0
) && zero_p (step1
))
189 /* Ignore loops of while (i-- < 10) type. */
192 if (step0
&& !tree_expr_nonnegative_p (step0
))
195 if (!zero_p (step1
) && tree_expr_nonnegative_p (step1
))
199 if (POINTER_TYPE_P (type
))
201 /* We assume pointer arithmetic never overflows. */
202 mmin
= mmax
= NULL_TREE
;
206 mmin
= TYPE_MIN_VALUE (type
);
207 mmax
= TYPE_MAX_VALUE (type
);
210 /* Some more condition normalization. We must record some assumptions
215 /* We want to take care only of <=; this is easy,
216 as in cases the overflow would make the transformation unsafe the loop
217 does not roll. Seemingly it would make more sense to want to take
218 care of <, as NE is more similar to it, but the problem is that here
219 the transformation would be more difficult due to possibly infinite
224 assumption
= fold_build2 (EQ_EXPR
, boolean_type_node
, base0
, mmax
);
226 assumption
= boolean_false_node
;
227 if (nonzero_p (assumption
))
229 base0
= fold_build2 (PLUS_EXPR
, type
, base0
,
230 build_int_cst_type (type
, 1));
235 assumption
= fold_build2 (EQ_EXPR
, boolean_type_node
, base1
, mmin
);
237 assumption
= boolean_false_node
;
238 if (nonzero_p (assumption
))
240 base1
= fold_build2 (MINUS_EXPR
, type
, base1
,
241 build_int_cst_type (type
, 1));
243 noloop_assumptions
= assumption
;
246 /* It will be useful to be able to tell the difference once more in
247 <= -> != reduction. */
251 /* Take care of trivially infinite loops. */
256 && operand_equal_p (base0
, mmin
, 0))
260 && operand_equal_p (base1
, mmax
, 0))
264 /* If we can we want to take care of NE conditions instead of size
265 comparisons, as they are much more friendly (most importantly
266 this takes care of special handling of loops with step 1). We can
267 do it if we first check that upper bound is greater or equal to
268 lower bound, their difference is constant c modulo step and that
269 there is not an overflow. */
273 step
= fold_unary_to_constant (NEGATE_EXPR
, type
, step1
);
276 delta
= build2 (MINUS_EXPR
, type
, base1
, base0
);
277 delta
= fold_build2 (FLOOR_MOD_EXPR
, type
, delta
, step
);
278 may_xform
= boolean_false_node
;
280 if (TREE_CODE (delta
) == INTEGER_CST
)
282 tmp
= fold_binary_to_constant (MINUS_EXPR
, type
, step
,
283 build_int_cst_type (type
, 1));
285 && operand_equal_p (delta
, tmp
, 0))
287 /* A special case. We have transformed condition of type
288 for (i = 0; i < 4; i += 4)
290 for (i = 0; i <= 3; i += 4)
291 obviously if the test for overflow during that transformation
292 passed, we cannot overflow here. Most importantly any
293 loop with sharp end condition and step 1 falls into this
294 category, so handling this case specially is definitely
295 worth the troubles. */
296 may_xform
= boolean_true_node
;
298 else if (zero_p (step0
))
301 may_xform
= boolean_true_node
;
304 bound
= fold_binary_to_constant (PLUS_EXPR
, type
,
306 bound
= fold_binary_to_constant (MINUS_EXPR
, type
,
308 may_xform
= fold_build2 (LE_EXPR
, boolean_type_node
,
315 may_xform
= boolean_true_node
;
318 bound
= fold_binary_to_constant (MINUS_EXPR
, type
,
320 bound
= fold_binary_to_constant (PLUS_EXPR
, type
,
322 may_xform
= fold_build2 (LE_EXPR
, boolean_type_node
,
328 if (!zero_p (may_xform
))
330 /* We perform the transformation always provided that it is not
331 completely senseless. This is OK, as we would need this assumption
332 to determine the number of iterations anyway. */
333 if (!nonzero_p (may_xform
))
334 assumptions
= may_xform
;
338 base0
= fold_build2 (PLUS_EXPR
, type
, base0
, delta
);
339 base0
= fold_build2 (MINUS_EXPR
, type
, base0
, step
);
343 base1
= fold_build2 (MINUS_EXPR
, type
, base1
, delta
);
344 base1
= fold_build2 (PLUS_EXPR
, type
, base1
, step
);
347 assumption
= fold_build2 (GT_EXPR
, boolean_type_node
, base0
, base1
);
348 noloop_assumptions
= fold_build2 (TRUTH_OR_EXPR
, boolean_type_node
,
349 noloop_assumptions
, assumption
);
354 /* Count the number of iterations. */
355 niter_type
= unsigned_type_for (type
);
356 signed_niter_type
= signed_type_for (type
);
360 /* Everything we do here is just arithmetics modulo size of mode. This
361 makes us able to do more involved computations of number of iterations
362 than in other cases. First transform the condition into shape
363 s * i <> c, with s positive. */
364 base1
= fold_build2 (MINUS_EXPR
, type
, base1
, base0
);
367 step0
= fold_unary_to_constant (NEGATE_EXPR
, type
, step1
);
369 if (!tree_expr_nonnegative_p (fold_convert (signed_niter_type
, step0
)))
371 step0
= fold_unary_to_constant (NEGATE_EXPR
, type
, step0
);
372 base1
= fold_build1 (NEGATE_EXPR
, type
, base1
);
375 base1
= fold_convert (niter_type
, base1
);
376 step0
= fold_convert (niter_type
, step0
);
378 /* Let nsd (step, size of mode) = d. If d does not divide c, the loop
379 is infinite. Otherwise, the number of iterations is
380 (inverse(s/d) * (c/d)) mod (size of mode/d). */
381 bits
= num_ending_zeros (step0
);
382 d
= fold_binary_to_constant (LSHIFT_EXPR
, niter_type
,
383 build_int_cst_type (niter_type
, 1), bits
);
384 s
= fold_binary_to_constant (RSHIFT_EXPR
, niter_type
, step0
, bits
);
386 bound
= build_low_bits_mask (niter_type
,
387 (TYPE_PRECISION (niter_type
)
388 - tree_low_cst (bits
, 1)));
390 assumption
= fold_build2 (FLOOR_MOD_EXPR
, niter_type
, base1
, d
);
391 assumption
= fold_build2 (EQ_EXPR
, boolean_type_node
,
393 build_int_cst (niter_type
, 0));
394 assumptions
= fold_build2 (TRUTH_AND_EXPR
, boolean_type_node
,
395 assumptions
, assumption
);
397 tmp
= fold_build2 (EXACT_DIV_EXPR
, niter_type
, base1
, d
);
398 tmp
= fold_build2 (MULT_EXPR
, niter_type
, tmp
, inverse (s
, bound
));
399 niter
->niter
= fold_build2 (BIT_AND_EXPR
, niter_type
, tmp
, bound
);
404 /* Condition in shape a + s * i <= b
405 We must know that b + s does not overflow and a <= b + s and then we
406 can compute number of iterations as (b + s - a) / s. (It might
407 seem that we in fact could be more clever about testing the b + s
408 overflow condition using some information about b - a mod s,
409 but it was already taken into account during LE -> NE transform). */
413 bound
= fold_binary_to_constant (MINUS_EXPR
, type
, mmax
, step0
);
414 assumption
= fold_build2 (LE_EXPR
, boolean_type_node
,
416 assumptions
= fold_build2 (TRUTH_AND_EXPR
, boolean_type_node
,
417 assumptions
, assumption
);
421 tmp
= fold_build2 (PLUS_EXPR
, type
, base1
, step0
);
422 assumption
= fold_build2 (GT_EXPR
, boolean_type_node
, base0
, tmp
);
423 delta
= fold_build2 (PLUS_EXPR
, type
, base1
, step
);
424 delta
= fold_build2 (MINUS_EXPR
, type
, delta
, base0
);
425 delta
= fold_convert (niter_type
, delta
);
429 /* Condition in shape a <= b - s * i
430 We must know that a - s does not overflow and a - s <= b and then
431 we can again compute number of iterations as (b - (a - s)) / s. */
434 bound
= fold_binary_to_constant (MINUS_EXPR
, type
, mmin
, step1
);
435 assumption
= fold_build2 (LE_EXPR
, boolean_type_node
,
437 assumptions
= fold_build2 (TRUTH_AND_EXPR
, boolean_type_node
,
438 assumptions
, assumption
);
440 step
= fold_build1 (NEGATE_EXPR
, type
, step1
);
441 tmp
= fold_build2 (PLUS_EXPR
, type
, base0
, step1
);
442 assumption
= fold_build2 (GT_EXPR
, boolean_type_node
, tmp
, base1
);
443 delta
= fold_build2 (MINUS_EXPR
, type
, base0
, step
);
444 delta
= fold_build2 (MINUS_EXPR
, type
, base1
, delta
);
445 delta
= fold_convert (niter_type
, delta
);
447 noloop_assumptions
= fold_build2 (TRUTH_OR_EXPR
, boolean_type_node
,
448 noloop_assumptions
, assumption
);
449 delta
= fold_build2 (FLOOR_DIV_EXPR
, niter_type
, delta
,
450 fold_convert (niter_type
, step
));
451 niter
->niter
= delta
;
454 niter
->assumptions
= assumptions
;
455 niter
->may_be_zero
= noloop_assumptions
;
459 niter
->assumptions
= boolean_true_node
;
460 niter
->may_be_zero
= boolean_true_node
;
461 niter
->niter
= build_int_cst_type (type
, 0);
466 /* Similar to number_of_iterations_cond, but only handles the special
467 case of loops with step 1 or -1. The meaning of the arguments
468 is the same as in number_of_iterations_cond. The function
469 returns true if the special case was recognized, false otherwise. */
472 number_of_iterations_special (tree type
, tree base0
, tree step0
,
473 enum tree_code code
, tree base1
, tree step1
,
474 struct tree_niter_desc
*niter
)
476 tree niter_type
= unsigned_type_for (type
), mmax
, mmin
;
478 /* Make < comparison from > ones. */
484 code
= swap_tree_comparison (code
);
497 else if (!zero_p (step1
))
500 if (integer_onep (step0
))
502 /* for (i = base0; i != base1; i++) */
503 niter
->assumptions
= boolean_true_node
;
504 niter
->may_be_zero
= boolean_false_node
;
505 niter
->niter
= fold_build2 (MINUS_EXPR
, type
, base1
, base0
);
506 niter
->additional_info
= boolean_true_node
;
508 else if (integer_all_onesp (step0
))
510 /* for (i = base0; i != base1; i--) */
511 niter
->assumptions
= boolean_true_node
;
512 niter
->may_be_zero
= boolean_false_node
;
513 niter
->niter
= fold_build2 (MINUS_EXPR
, type
, base0
, base1
);
521 if ((step0
&& integer_onep (step0
) && zero_p (step1
))
522 || (step1
&& integer_all_onesp (step1
) && zero_p (step0
)))
524 /* for (i = base0; i < base1; i++)
528 for (i = base1; i > base0; i--).
530 In both cases # of iterations is base1 - base0. */
532 niter
->assumptions
= boolean_true_node
;
533 niter
->may_be_zero
= fold_build2 (GT_EXPR
, boolean_type_node
,
535 niter
->niter
= fold_build2 (MINUS_EXPR
, type
, base1
, base0
);
542 if (POINTER_TYPE_P (type
))
544 /* We assume pointer arithmetic never overflows. */
545 mmin
= mmax
= NULL_TREE
;
549 mmin
= TYPE_MIN_VALUE (type
);
550 mmax
= TYPE_MAX_VALUE (type
);
553 if (step0
&& integer_onep (step0
) && zero_p (step1
))
555 /* for (i = base0; i <= base1; i++) */
557 niter
->assumptions
= fold_build2 (NE_EXPR
, boolean_type_node
,
560 niter
->assumptions
= boolean_true_node
;
561 base1
= fold_build2 (PLUS_EXPR
, type
, base1
,
562 build_int_cst_type (type
, 1));
564 else if (step1
&& integer_all_onesp (step1
) && zero_p (step0
))
566 /* for (i = base1; i >= base0; i--) */
568 niter
->assumptions
= fold_build2 (NE_EXPR
, boolean_type_node
,
571 niter
->assumptions
= boolean_true_node
;
572 base0
= fold_build2 (MINUS_EXPR
, type
, base0
,
573 build_int_cst_type (type
, 1));
578 niter
->may_be_zero
= fold_build2 (GT_EXPR
, boolean_type_node
,
580 niter
->niter
= fold_build2 (MINUS_EXPR
, type
, base1
, base0
);
587 niter
->niter
= fold_convert (niter_type
, niter
->niter
);
588 niter
->additional_info
= boolean_true_node
;
592 /* Substitute NEW for OLD in EXPR and fold the result. */
595 simplify_replace_tree (tree expr
, tree old
, tree
new)
598 tree ret
= NULL_TREE
, e
, se
;
604 || operand_equal_p (expr
, old
, 0))
605 return unshare_expr (new);
610 n
= TREE_CODE_LENGTH (TREE_CODE (expr
));
611 for (i
= 0; i
< n
; i
++)
613 e
= TREE_OPERAND (expr
, i
);
614 se
= simplify_replace_tree (e
, old
, new);
619 ret
= copy_node (expr
);
621 TREE_OPERAND (ret
, i
) = se
;
624 return (ret
? fold (ret
) : expr
);
627 /* Tries to simplify EXPR using the condition COND. Returns the simplified
628 expression (or EXPR unchanged, if no simplification was possible).*/
631 tree_simplify_using_condition (tree cond
, tree expr
)
634 tree e
, e0
, e1
, e2
, notcond
;
635 enum tree_code code
= TREE_CODE (expr
);
637 if (code
== INTEGER_CST
)
640 if (code
== TRUTH_OR_EXPR
641 || code
== TRUTH_AND_EXPR
642 || code
== COND_EXPR
)
646 e0
= tree_simplify_using_condition (cond
, TREE_OPERAND (expr
, 0));
647 if (TREE_OPERAND (expr
, 0) != e0
)
650 e1
= tree_simplify_using_condition (cond
, TREE_OPERAND (expr
, 1));
651 if (TREE_OPERAND (expr
, 1) != e1
)
654 if (code
== COND_EXPR
)
656 e2
= tree_simplify_using_condition (cond
, TREE_OPERAND (expr
, 2));
657 if (TREE_OPERAND (expr
, 2) != e2
)
665 if (code
== COND_EXPR
)
666 expr
= fold_build3 (code
, boolean_type_node
, e0
, e1
, e2
);
668 expr
= fold_build2 (code
, boolean_type_node
, e0
, e1
);
674 /* In case COND is equality, we may be able to simplify EXPR by copy/constant
675 propagation, and vice versa. Fold does not handle this, since it is
676 considered too expensive. */
677 if (TREE_CODE (cond
) == EQ_EXPR
)
679 e0
= TREE_OPERAND (cond
, 0);
680 e1
= TREE_OPERAND (cond
, 1);
682 /* We know that e0 == e1. Check whether we cannot simplify expr
684 e
= simplify_replace_tree (expr
, e0
, e1
);
685 if (zero_p (e
) || nonzero_p (e
))
688 e
= simplify_replace_tree (expr
, e1
, e0
);
689 if (zero_p (e
) || nonzero_p (e
))
692 if (TREE_CODE (expr
) == EQ_EXPR
)
694 e0
= TREE_OPERAND (expr
, 0);
695 e1
= TREE_OPERAND (expr
, 1);
697 /* If e0 == e1 (EXPR) implies !COND, then EXPR cannot be true. */
698 e
= simplify_replace_tree (cond
, e0
, e1
);
701 e
= simplify_replace_tree (cond
, e1
, e0
);
705 if (TREE_CODE (expr
) == NE_EXPR
)
707 e0
= TREE_OPERAND (expr
, 0);
708 e1
= TREE_OPERAND (expr
, 1);
710 /* If e0 == e1 (!EXPR) implies !COND, then EXPR must be true. */
711 e
= simplify_replace_tree (cond
, e0
, e1
);
713 return boolean_true_node
;
714 e
= simplify_replace_tree (cond
, e1
, e0
);
716 return boolean_true_node
;
719 /* Check whether COND ==> EXPR. */
720 notcond
= invert_truthvalue (cond
);
721 e
= fold_build2 (TRUTH_OR_EXPR
, boolean_type_node
,
726 /* Check whether COND ==> not EXPR. */
727 e
= fold_build2 (TRUTH_AND_EXPR
, boolean_type_node
,
735 /* Tries to simplify EXPR using the conditions on entry to LOOP.
736 Record the conditions used for simplification to CONDS_USED.
737 Returns the simplified expression (or EXPR unchanged, if no
738 simplification was possible).*/
741 simplify_using_initial_conditions (struct loop
*loop
, tree expr
,
748 if (TREE_CODE (expr
) == INTEGER_CST
)
751 for (bb
= loop
->header
;
752 bb
!= ENTRY_BLOCK_PTR
;
753 bb
= get_immediate_dominator (CDI_DOMINATORS
, bb
))
755 if (!single_pred_p (bb
))
757 e
= single_pred_edge (bb
);
759 if (!(e
->flags
& (EDGE_TRUE_VALUE
| EDGE_FALSE_VALUE
)))
762 cond
= COND_EXPR_COND (last_stmt (e
->src
));
763 if (e
->flags
& EDGE_FALSE_VALUE
)
764 cond
= invert_truthvalue (cond
);
765 exp
= tree_simplify_using_condition (cond
, expr
);
768 *conds_used
= fold_build2 (TRUTH_AND_EXPR
,
779 /* Tries to simplify EXPR using the evolutions of the loop invariants
780 in the superloops of LOOP. Returns the simplified expression
781 (or EXPR unchanged, if no simplification was possible). */
784 simplify_using_outer_evolutions (struct loop
*loop
, tree expr
)
786 enum tree_code code
= TREE_CODE (expr
);
790 if (is_gimple_min_invariant (expr
))
793 if (code
== TRUTH_OR_EXPR
794 || code
== TRUTH_AND_EXPR
795 || code
== COND_EXPR
)
799 e0
= simplify_using_outer_evolutions (loop
, TREE_OPERAND (expr
, 0));
800 if (TREE_OPERAND (expr
, 0) != e0
)
803 e1
= simplify_using_outer_evolutions (loop
, TREE_OPERAND (expr
, 1));
804 if (TREE_OPERAND (expr
, 1) != e1
)
807 if (code
== COND_EXPR
)
809 e2
= simplify_using_outer_evolutions (loop
, TREE_OPERAND (expr
, 2));
810 if (TREE_OPERAND (expr
, 2) != e2
)
818 if (code
== COND_EXPR
)
819 expr
= fold_build3 (code
, boolean_type_node
, e0
, e1
, e2
);
821 expr
= fold_build2 (code
, boolean_type_node
, e0
, e1
);
827 e
= instantiate_parameters (loop
, expr
);
828 if (is_gimple_min_invariant (e
))
834 /* Stores description of number of iterations of LOOP derived from
835 EXIT (an exit edge of the LOOP) in NITER. Returns true if some
836 useful information could be derived (and fields of NITER has
837 meaning described in comments at struct tree_niter_desc
838 declaration), false otherwise. */
841 number_of_iterations_exit (struct loop
*loop
, edge exit
,
842 struct tree_niter_desc
*niter
)
844 tree stmt
, cond
, type
;
845 tree op0
, base0
, step0
;
846 tree op1
, base1
, step1
;
849 if (!dominated_by_p (CDI_DOMINATORS
, loop
->latch
, exit
->src
))
852 niter
->assumptions
= boolean_false_node
;
853 stmt
= last_stmt (exit
->src
);
854 if (!stmt
|| TREE_CODE (stmt
) != COND_EXPR
)
857 /* We want the condition for staying inside loop. */
858 cond
= COND_EXPR_COND (stmt
);
859 if (exit
->flags
& EDGE_TRUE_VALUE
)
860 cond
= invert_truthvalue (cond
);
862 code
= TREE_CODE (cond
);
876 op0
= TREE_OPERAND (cond
, 0);
877 op1
= TREE_OPERAND (cond
, 1);
878 type
= TREE_TYPE (op0
);
880 if (TREE_CODE (type
) != INTEGER_TYPE
881 && !POINTER_TYPE_P (type
))
884 if (!simple_iv (loop
, stmt
, op0
, &base0
, &step0
))
886 if (!simple_iv (loop
, stmt
, op1
, &base1
, &step1
))
889 niter
->niter
= NULL_TREE
;
891 /* Handle common special cases first, so that we do not need to use
892 generic (and slow) analysis very often. */
893 if (!number_of_iterations_special (type
, base0
, step0
, code
, base1
, step1
,
897 number_of_iterations_cond (type
, base0
, step0
, code
, base1
, step1
,
906 niter
->assumptions
= simplify_using_outer_evolutions (loop
,
908 niter
->may_be_zero
= simplify_using_outer_evolutions (loop
,
910 niter
->niter
= simplify_using_outer_evolutions (loop
, niter
->niter
);
913 niter
->additional_info
= boolean_true_node
;
915 = simplify_using_initial_conditions (loop
,
917 &niter
->additional_info
);
919 = simplify_using_initial_conditions (loop
,
921 &niter
->additional_info
);
922 return integer_onep (niter
->assumptions
);
925 /* Try to determine the number of iterations of LOOP. If we succeed,
926 expression giving number of iterations is returned and *EXIT is
927 set to the edge from that the information is obtained. Otherwise
928 chrec_dont_know is returned. */
931 find_loop_niter (struct loop
*loop
, edge
*exit
)
934 edge
*exits
= get_loop_exit_edges (loop
, &n_exits
);
936 tree niter
= NULL_TREE
, aniter
;
937 struct tree_niter_desc desc
;
940 for (i
= 0; i
< n_exits
; i
++)
943 if (!just_once_each_iteration_p (loop
, ex
->src
))
946 if (!number_of_iterations_exit (loop
, ex
, &desc
))
949 if (nonzero_p (desc
.may_be_zero
))
951 /* We exit in the first iteration through this exit.
952 We won't find anything better. */
953 niter
= build_int_cst_type (unsigned_type_node
, 0);
958 if (!zero_p (desc
.may_be_zero
))
965 /* Nothing recorded yet. */
971 /* Prefer constants, the lower the better. */
972 if (TREE_CODE (aniter
) != INTEGER_CST
)
975 if (TREE_CODE (niter
) != INTEGER_CST
)
982 if (tree_int_cst_lt (aniter
, niter
))
991 return niter
? niter
: chrec_dont_know
;
996 Analysis of a number of iterations of a loop by a brute-force evaluation.
1000 /* Bound on the number of iterations we try to evaluate. */
1002 #define MAX_ITERATIONS_TO_TRACK \
1003 ((unsigned) PARAM_VALUE (PARAM_MAX_ITERATIONS_TO_TRACK))
1005 /* Returns the loop phi node of LOOP such that ssa name X is derived from its
1006 result by a chain of operations such that all but exactly one of their
1007 operands are constants. */
1010 chain_of_csts_start (struct loop
*loop
, tree x
)
1012 tree stmt
= SSA_NAME_DEF_STMT (x
);
1013 basic_block bb
= bb_for_stmt (stmt
);
1017 || !flow_bb_inside_loop_p (loop
, bb
))
1020 if (TREE_CODE (stmt
) == PHI_NODE
)
1022 if (bb
== loop
->header
)
1028 if (TREE_CODE (stmt
) != MODIFY_EXPR
)
1031 if (NUM_VUSES (STMT_VUSE_OPS (stmt
)) > 0)
1033 if (NUM_V_MAY_DEFS (STMT_V_MAY_DEF_OPS (stmt
)) > 0)
1035 if (NUM_V_MUST_DEFS (STMT_V_MUST_DEF_OPS (stmt
)) > 0)
1037 if (NUM_DEFS (STMT_DEF_OPS (stmt
)) > 1)
1039 uses
= STMT_USE_OPS (stmt
);
1040 if (NUM_USES (uses
) != 1)
1043 return chain_of_csts_start (loop
, USE_OP (uses
, 0));
1046 /* Determines whether the expression X is derived from a result of a phi node
1047 in header of LOOP such that
1049 * the derivation of X consists only from operations with constants
1050 * the initial value of the phi node is constant
1051 * the value of the phi node in the next iteration can be derived from the
1052 value in the current iteration by a chain of operations with constants.
1054 If such phi node exists, it is returned. If X is a constant, X is returned
1055 unchanged. Otherwise NULL_TREE is returned. */
1058 get_base_for (struct loop
*loop
, tree x
)
1060 tree phi
, init
, next
;
1062 if (is_gimple_min_invariant (x
))
1065 phi
= chain_of_csts_start (loop
, x
);
1069 init
= PHI_ARG_DEF_FROM_EDGE (phi
, loop_preheader_edge (loop
));
1070 next
= PHI_ARG_DEF_FROM_EDGE (phi
, loop_latch_edge (loop
));
1072 if (TREE_CODE (next
) != SSA_NAME
)
1075 if (!is_gimple_min_invariant (init
))
1078 if (chain_of_csts_start (loop
, next
) != phi
)
1084 /* Given an expression X, then
1086 * if BASE is NULL_TREE, X must be a constant and we return X.
1087 * otherwise X is a SSA name, whose value in the considered loop is derived
1088 by a chain of operations with constant from a result of a phi node in
1089 the header of the loop. Then we return value of X when the value of the
1090 result of this phi node is given by the constant BASE. */
1093 get_val_for (tree x
, tree base
)
1102 stmt
= SSA_NAME_DEF_STMT (x
);
1103 if (TREE_CODE (stmt
) == PHI_NODE
)
1106 uses
= STMT_USE_OPS (stmt
);
1107 op
= USE_OP_PTR (uses
, 0);
1109 nx
= USE_FROM_PTR (op
);
1110 val
= get_val_for (nx
, base
);
1112 val
= fold (TREE_OPERAND (stmt
, 1));
1118 /* Tries to count the number of iterations of LOOP till it exits by EXIT
1119 by brute force -- i.e. by determining the value of the operands of the
1120 condition at EXIT in first few iterations of the loop (assuming that
1121 these values are constant) and determining the first one in that the
1122 condition is not satisfied. Returns the constant giving the number
1123 of the iterations of LOOP if successful, chrec_dont_know otherwise. */
1126 loop_niter_by_eval (struct loop
*loop
, edge exit
)
1128 tree cond
, cnd
, acnd
;
1129 tree op
[2], val
[2], next
[2], aval
[2], phi
[2];
1133 cond
= last_stmt (exit
->src
);
1134 if (!cond
|| TREE_CODE (cond
) != COND_EXPR
)
1135 return chrec_dont_know
;
1137 cnd
= COND_EXPR_COND (cond
);
1138 if (exit
->flags
& EDGE_TRUE_VALUE
)
1139 cnd
= invert_truthvalue (cnd
);
1141 cmp
= TREE_CODE (cnd
);
1150 for (j
= 0; j
< 2; j
++)
1151 op
[j
] = TREE_OPERAND (cnd
, j
);
1155 return chrec_dont_know
;
1158 for (j
= 0; j
< 2; j
++)
1160 phi
[j
] = get_base_for (loop
, op
[j
]);
1162 return chrec_dont_know
;
1165 for (j
= 0; j
< 2; j
++)
1167 if (TREE_CODE (phi
[j
]) == PHI_NODE
)
1169 val
[j
] = PHI_ARG_DEF_FROM_EDGE (phi
[j
], loop_preheader_edge (loop
));
1170 next
[j
] = PHI_ARG_DEF_FROM_EDGE (phi
[j
], loop_latch_edge (loop
));
1175 next
[j
] = NULL_TREE
;
1180 for (i
= 0; i
< MAX_ITERATIONS_TO_TRACK
; i
++)
1182 for (j
= 0; j
< 2; j
++)
1183 aval
[j
] = get_val_for (op
[j
], val
[j
]);
1185 acnd
= fold_build2 (cmp
, boolean_type_node
, aval
[0], aval
[1]);
1188 if (dump_file
&& (dump_flags
& TDF_DETAILS
))
1190 "Proved that loop %d iterates %d times using brute force.\n",
1192 return build_int_cst (unsigned_type_node
, i
);
1195 for (j
= 0; j
< 2; j
++)
1196 val
[j
] = get_val_for (next
[j
], val
[j
]);
1199 return chrec_dont_know
;
1202 /* Finds the exit of the LOOP by that the loop exits after a constant
1203 number of iterations and stores the exit edge to *EXIT. The constant
1204 giving the number of iterations of LOOP is returned. The number of
1205 iterations is determined using loop_niter_by_eval (i.e. by brute force
1206 evaluation). If we are unable to find the exit for that loop_niter_by_eval
1207 determines the number of iterations, chrec_dont_know is returned. */
1210 find_loop_niter_by_eval (struct loop
*loop
, edge
*exit
)
1212 unsigned n_exits
, i
;
1213 edge
*exits
= get_loop_exit_edges (loop
, &n_exits
);
1215 tree niter
= NULL_TREE
, aniter
;
1218 for (i
= 0; i
< n_exits
; i
++)
1221 if (!just_once_each_iteration_p (loop
, ex
->src
))
1224 aniter
= loop_niter_by_eval (loop
, ex
);
1225 if (chrec_contains_undetermined (aniter
))
1229 && !tree_int_cst_lt (aniter
, niter
))
1237 return niter
? niter
: chrec_dont_know
;
1242 Analysis of upper bounds on number of iterations of a loop.
1246 /* Records that AT_STMT is executed at most BOUND times in LOOP. The
1247 additional condition ADDITIONAL is recorded with the bound. */
1250 record_estimate (struct loop
*loop
, tree bound
, tree additional
, tree at_stmt
)
1252 struct nb_iter_bound
*elt
= xmalloc (sizeof (struct nb_iter_bound
));
1254 if (dump_file
&& (dump_flags
& TDF_DETAILS
))
1256 fprintf (dump_file
, "Statements after ");
1257 print_generic_expr (dump_file
, at_stmt
, TDF_SLIM
);
1258 fprintf (dump_file
, " are executed at most ");
1259 print_generic_expr (dump_file
, bound
, TDF_SLIM
);
1260 fprintf (dump_file
, " times in loop %d.\n", loop
->num
);
1264 elt
->at_stmt
= at_stmt
;
1265 elt
->additional
= additional
;
1266 elt
->next
= loop
->bounds
;
1270 /* Records estimates on numbers of iterations of LOOP. */
1273 estimate_numbers_of_iterations_loop (struct loop
*loop
)
1277 unsigned i
, n_exits
;
1278 struct tree_niter_desc niter_desc
;
1280 exits
= get_loop_exit_edges (loop
, &n_exits
);
1281 for (i
= 0; i
< n_exits
; i
++)
1283 if (!number_of_iterations_exit (loop
, exits
[i
], &niter_desc
))
1286 niter
= niter_desc
.niter
;
1287 type
= TREE_TYPE (niter
);
1288 if (!zero_p (niter_desc
.may_be_zero
)
1289 && !nonzero_p (niter_desc
.may_be_zero
))
1290 niter
= build3 (COND_EXPR
, type
, niter_desc
.may_be_zero
,
1291 build_int_cst_type (type
, 0),
1293 record_estimate (loop
, niter
,
1294 niter_desc
.additional_info
,
1295 last_stmt (exits
[i
]->src
));
1299 /* Analyzes the bounds of arrays accessed in the loop. */
1300 if (loop
->estimated_nb_iterations
== NULL_TREE
)
1302 varray_type datarefs
;
1303 VARRAY_GENERIC_PTR_INIT (datarefs
, 3, "datarefs");
1304 find_data_references_in_loop (loop
, &datarefs
);
1305 free_data_refs (datarefs
);
1309 /* Records estimates on numbers of iterations of LOOPS. */
1312 estimate_numbers_of_iterations (struct loops
*loops
)
1317 for (i
= 1; i
< loops
->num
; i
++)
1319 loop
= loops
->parray
[i
];
1321 estimate_numbers_of_iterations_loop (loop
);
1325 /* If A > B, returns -1. If A == B, returns 0. If A < B, returns 1.
1326 If neither of these relations can be proved, returns 2. */
1329 compare_trees (tree a
, tree b
)
1331 tree typea
= TREE_TYPE (a
), typeb
= TREE_TYPE (b
);
1334 if (TYPE_PRECISION (typea
) > TYPE_PRECISION (typeb
))
1339 a
= fold_convert (type
, a
);
1340 b
= fold_convert (type
, b
);
1342 if (nonzero_p (fold_build2 (EQ_EXPR
, boolean_type_node
, a
, b
)))
1344 if (nonzero_p (fold_build2 (LT_EXPR
, boolean_type_node
, a
, b
)))
1346 if (nonzero_p (fold_build2 (GT_EXPR
, boolean_type_node
, a
, b
)))
1352 /* Returns true if statement S1 dominates statement S2. */
1355 stmt_dominates_stmt_p (tree s1
, tree s2
)
1357 basic_block bb1
= bb_for_stmt (s1
), bb2
= bb_for_stmt (s2
);
1365 block_stmt_iterator bsi
;
1367 for (bsi
= bsi_start (bb1
); bsi_stmt (bsi
) != s2
; bsi_next (&bsi
))
1368 if (bsi_stmt (bsi
) == s1
)
1374 return dominated_by_p (CDI_DOMINATORS
, bb2
, bb1
);
1377 /* Checks whether it is correct to count the induction variable BASE + STEP * I
1378 at AT_STMT in wider TYPE, using the fact that statement OF is executed at
1379 most BOUND times in the loop. If it is possible, return the value of step
1380 of the induction variable in the TYPE, otherwise return NULL_TREE.
1382 ADDITIONAL is the additional condition recorded for operands of the bound.
1383 This is useful in the following case, created by loop header copying:
1392 If the n > 0 condition is taken into account, the number of iterations of the
1393 loop can be expressed as n - 1. If the type of n is signed, the ADDITIONAL
1394 assumption "n > 0" says us that the value of the number of iterations is at
1395 most MAX_TYPE - 1 (without this assumption, it might overflow). */
1398 can_count_iv_in_wider_type_bound (tree type
, tree base
, tree step
,
1404 tree inner_type
= TREE_TYPE (base
), b
, bplusstep
, new_step
, new_step_abs
;
1405 tree valid_niter
, extreme
, unsigned_type
, delta
, bound_type
;
1408 b
= fold_convert (type
, base
);
1409 bplusstep
= fold_convert (type
,
1410 fold_build2 (PLUS_EXPR
, inner_type
, base
, step
));
1411 new_step
= fold_build2 (MINUS_EXPR
, type
, bplusstep
, b
);
1412 if (TREE_CODE (new_step
) != INTEGER_CST
)
1415 switch (compare_trees (bplusstep
, b
))
1418 extreme
= upper_bound_in_type (type
, inner_type
);
1419 delta
= fold_build2 (MINUS_EXPR
, type
, extreme
, b
);
1420 new_step_abs
= new_step
;
1424 extreme
= lower_bound_in_type (type
, inner_type
);
1425 new_step_abs
= fold_build1 (NEGATE_EXPR
, type
, new_step
);
1426 delta
= fold_build2 (MINUS_EXPR
, type
, b
, extreme
);
1436 unsigned_type
= unsigned_type_for (type
);
1437 delta
= fold_convert (unsigned_type
, delta
);
1438 new_step_abs
= fold_convert (unsigned_type
, new_step_abs
);
1439 valid_niter
= fold_build2 (FLOOR_DIV_EXPR
, unsigned_type
,
1440 delta
, new_step_abs
);
1442 bound_type
= TREE_TYPE (bound
);
1443 if (TYPE_PRECISION (type
) > TYPE_PRECISION (bound_type
))
1444 bound
= fold_convert (unsigned_type
, bound
);
1446 valid_niter
= fold_convert (bound_type
, valid_niter
);
1448 if (at_stmt
&& stmt_dominates_stmt_p (of
, at_stmt
))
1450 /* After the statement OF we know that anything is executed at most
1452 cond
= fold_build2 (GE_EXPR
, boolean_type_node
, valid_niter
, bound
);
1456 /* Before the statement OF we know that anything is executed at most
1458 cond
= fold_build2 (GT_EXPR
, boolean_type_node
, valid_niter
, bound
);
1461 if (nonzero_p (cond
))
1464 /* Try taking additional conditions into account. */
1465 cond
= fold_build2 (TRUTH_OR_EXPR
, boolean_type_node
,
1466 invert_truthvalue (additional
),
1468 if (nonzero_p (cond
))
1474 /* Checks whether it is correct to count the induction variable BASE + STEP * I
1475 at AT_STMT in wider TYPE, using the bounds on numbers of iterations of a
1476 LOOP. If it is possible, return the value of step of the induction variable
1477 in the TYPE, otherwise return NULL_TREE. */
1480 can_count_iv_in_wider_type (struct loop
*loop
, tree type
, tree base
, tree step
,
1483 struct nb_iter_bound
*bound
;
1486 for (bound
= loop
->bounds
; bound
; bound
= bound
->next
)
1488 new_step
= can_count_iv_in_wider_type_bound (type
, base
, step
,
1501 /* Frees the information on upper bounds on numbers of iterations of LOOP. */
1504 free_numbers_of_iterations_estimates_loop (struct loop
*loop
)
1506 struct nb_iter_bound
*bound
, *next
;
1508 for (bound
= loop
->bounds
; bound
; bound
= next
)
1514 loop
->bounds
= NULL
;
1517 /* Frees the information on upper bounds on numbers of iterations of LOOPS. */
1520 free_numbers_of_iterations_estimates (struct loops
*loops
)
1525 for (i
= 1; i
< loops
->num
; i
++)
1527 loop
= loops
->parray
[i
];
1529 free_numbers_of_iterations_estimates_loop (loop
);