Daily bump.
[official-gcc.git] / gcc / local-alloc.c
blob9569a36e707170f2a15b71f5e01dc64cb17c44e5
1 /* Allocate registers within a basic block, for GNU compiler.
2 Copyright (C) 1987, 1988, 1991, 1993, 1994, 1995, 1996, 1997, 1998,
3 1999, 2000, 2001, 2002, 2003, 2004, 2005, 2006, 2007
4 Free Software Foundation, Inc.
6 This file is part of GCC.
8 GCC is free software; you can redistribute it and/or modify it under
9 the terms of the GNU General Public License as published by the Free
10 Software Foundation; either version 3, or (at your option) any later
11 version.
13 GCC is distributed in the hope that it will be useful, but WITHOUT ANY
14 WARRANTY; without even the implied warranty of MERCHANTABILITY or
15 FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License
16 for more details.
18 You should have received a copy of the GNU General Public License
19 along with GCC; see the file COPYING3. If not see
20 <http://www.gnu.org/licenses/>. */
22 /* Allocation of hard register numbers to pseudo registers is done in
23 two passes. In this pass we consider only regs that are born and
24 die once within one basic block. We do this one basic block at a
25 time. Then the next pass allocates the registers that remain.
26 Two passes are used because this pass uses methods that work only
27 on linear code, but that do a better job than the general methods
28 used in global_alloc, and more quickly too.
30 The assignments made are recorded in the vector reg_renumber
31 whose space is allocated here. The rtl code itself is not altered.
33 We assign each instruction in the basic block a number
34 which is its order from the beginning of the block.
35 Then we can represent the lifetime of a pseudo register with
36 a pair of numbers, and check for conflicts easily.
37 We can record the availability of hard registers with a
38 HARD_REG_SET for each instruction. The HARD_REG_SET
39 contains 0 or 1 for each hard reg.
41 To avoid register shuffling, we tie registers together when one
42 dies by being copied into another, or dies in an instruction that
43 does arithmetic to produce another. The tied registers are
44 allocated as one. Registers with different reg class preferences
45 can never be tied unless the class preferred by one is a subclass
46 of the one preferred by the other.
48 Tying is represented with "quantity numbers".
49 A non-tied register is given a new quantity number.
50 Tied registers have the same quantity number.
52 We have provision to exempt registers, even when they are contained
53 within the block, that can be tied to others that are not contained in it.
54 This is so that global_alloc could process them both and tie them then.
55 But this is currently disabled since tying in global_alloc is not
56 yet implemented. */
58 /* Pseudos allocated here can be reallocated by global.c if the hard register
59 is used as a spill register. Currently we don't allocate such pseudos
60 here if their preferred class is likely to be used by spills. */
62 #include "config.h"
63 #include "system.h"
64 #include "coretypes.h"
65 #include "tm.h"
66 #include "hard-reg-set.h"
67 #include "rtl.h"
68 #include "tm_p.h"
69 #include "flags.h"
70 #include "regs.h"
71 #include "function.h"
72 #include "insn-config.h"
73 #include "insn-attr.h"
74 #include "recog.h"
75 #include "output.h"
76 #include "toplev.h"
77 #include "except.h"
78 #include "integrate.h"
79 #include "reload.h"
80 #include "ggc.h"
81 #include "timevar.h"
82 #include "tree-pass.h"
83 #include "df.h"
84 #include "dbgcnt.h"
87 /* Next quantity number available for allocation. */
89 static int next_qty;
91 /* Information we maintain about each quantity. */
92 struct qty
94 /* The number of refs to quantity Q. */
96 int n_refs;
98 /* The frequency of uses of quantity Q. */
100 int freq;
102 /* Insn number (counting from head of basic block)
103 where quantity Q was born. -1 if birth has not been recorded. */
105 int birth;
107 /* Insn number (counting from head of basic block)
108 where given quantity died. Due to the way tying is done,
109 and the fact that we consider in this pass only regs that die but once,
110 a quantity can die only once. Each quantity's life span
111 is a set of consecutive insns. -1 if death has not been recorded. */
113 int death;
115 /* Number of words needed to hold the data in given quantity.
116 This depends on its machine mode. It is used for these purposes:
117 1. It is used in computing the relative importance of qtys,
118 which determines the order in which we look for regs for them.
119 2. It is used in rules that prevent tying several registers of
120 different sizes in a way that is geometrically impossible
121 (see combine_regs). */
123 int size;
125 /* Number of times a reg tied to given qty lives across a CALL_INSN. */
127 int n_calls_crossed;
129 /* Number of times a reg tied to given qty lives across a CALL_INSN. */
131 int freq_calls_crossed;
133 /* Number of times a reg tied to given qty lives across a CALL_INSN
134 that might throw. */
136 int n_throwing_calls_crossed;
138 /* The register number of one pseudo register whose reg_qty value is Q.
139 This register should be the head of the chain
140 maintained in reg_next_in_qty. */
142 int first_reg;
144 /* Reg class contained in (smaller than) the preferred classes of all
145 the pseudo regs that are tied in given quantity.
146 This is the preferred class for allocating that quantity. */
148 enum reg_class min_class;
150 /* Register class within which we allocate given qty if we can't get
151 its preferred class. */
153 enum reg_class alternate_class;
155 /* This holds the mode of the registers that are tied to given qty,
156 or VOIDmode if registers with differing modes are tied together. */
158 enum machine_mode mode;
160 /* the hard reg number chosen for given quantity,
161 or -1 if none was found. */
163 short phys_reg;
166 static struct qty *qty;
168 /* These fields are kept separately to speedup their clearing. */
170 /* We maintain two hard register sets that indicate suggested hard registers
171 for each quantity. The first, phys_copy_sugg, contains hard registers
172 that are tied to the quantity by a simple copy. The second contains all
173 hard registers that are tied to the quantity via an arithmetic operation.
175 The former register set is given priority for allocation. This tends to
176 eliminate copy insns. */
178 /* Element Q is a set of hard registers that are suggested for quantity Q by
179 copy insns. */
181 static HARD_REG_SET *qty_phys_copy_sugg;
183 /* Element Q is a set of hard registers that are suggested for quantity Q by
184 arithmetic insns. */
186 static HARD_REG_SET *qty_phys_sugg;
188 /* Element Q is the number of suggested registers in qty_phys_copy_sugg. */
190 static short *qty_phys_num_copy_sugg;
192 /* Element Q is the number of suggested registers in qty_phys_sugg. */
194 static short *qty_phys_num_sugg;
196 /* If (REG N) has been assigned a quantity number, is a register number
197 of another register assigned the same quantity number, or -1 for the
198 end of the chain. qty->first_reg point to the head of this chain. */
200 static int *reg_next_in_qty;
202 /* reg_qty[N] (where N is a pseudo reg number) is the qty number of that reg
203 if it is >= 0,
204 of -1 if this register cannot be allocated by local-alloc,
205 or -2 if not known yet.
207 Note that if we see a use or death of pseudo register N with
208 reg_qty[N] == -2, register N must be local to the current block. If
209 it were used in more than one block, we would have reg_qty[N] == -1.
210 This relies on the fact that if reg_basic_block[N] is >= 0, register N
211 will not appear in any other block. We save a considerable number of
212 tests by exploiting this.
214 If N is < FIRST_PSEUDO_REGISTER, reg_qty[N] is undefined and should not
215 be referenced. */
217 static int *reg_qty;
219 /* The offset (in words) of register N within its quantity.
220 This can be nonzero if register N is SImode, and has been tied
221 to a subreg of a DImode register. */
223 static char *reg_offset;
225 /* Vector of substitutions of register numbers,
226 used to map pseudo regs into hardware regs.
227 This is set up as a result of register allocation.
228 Element N is the hard reg assigned to pseudo reg N,
229 or is -1 if no hard reg was assigned.
230 If N is a hard reg number, element N is N. */
232 short *reg_renumber;
234 /* Set of hard registers live at the current point in the scan
235 of the instructions in a basic block. */
237 static HARD_REG_SET regs_live;
239 /* Each set of hard registers indicates registers live at a particular
240 point in the basic block. For N even, regs_live_at[N] says which
241 hard registers are needed *after* insn N/2 (i.e., they may not
242 conflict with the outputs of insn N/2 or the inputs of insn N/2 + 1.
244 If an object is to conflict with the inputs of insn J but not the
245 outputs of insn J + 1, we say it is born at index J*2 - 1. Similarly,
246 if it is to conflict with the outputs of insn J but not the inputs of
247 insn J + 1, it is said to die at index J*2 + 1. */
249 static HARD_REG_SET *regs_live_at;
251 /* Communicate local vars `insn_number' and `insn'
252 from `block_alloc' to `reg_is_set', `wipe_dead_reg', and `alloc_qty'. */
253 static int this_insn_number;
254 static rtx this_insn;
256 struct equivalence
258 /* Set when an attempt should be made to replace a register
259 with the associated src_p entry. */
261 char replace;
263 /* Set when a REG_EQUIV note is found or created. Use to
264 keep track of what memory accesses might be created later,
265 e.g. by reload. */
267 rtx replacement;
269 rtx *src_p;
271 /* Loop depth is used to recognize equivalences which appear
272 to be present within the same loop (or in an inner loop). */
274 int loop_depth;
276 /* The list of each instruction which initializes this register. */
278 rtx init_insns;
280 /* Nonzero if this had a preexisting REG_EQUIV note. */
282 int is_arg_equivalence;
285 /* reg_equiv[N] (where N is a pseudo reg number) is the equivalence
286 structure for that register. */
288 static struct equivalence *reg_equiv;
290 /* Nonzero if we recorded an equivalence for a LABEL_REF. */
291 static int recorded_label_ref;
293 static void alloc_qty (int, enum machine_mode, int, int);
294 static void validate_equiv_mem_from_store (rtx, const_rtx, void *);
295 static int validate_equiv_mem (rtx, rtx, rtx);
296 static int equiv_init_varies_p (rtx);
297 static int equiv_init_movable_p (rtx, int);
298 static int contains_replace_regs (rtx);
299 static int memref_referenced_p (rtx, rtx);
300 static int memref_used_between_p (rtx, rtx, rtx);
301 static void update_equiv_regs (void);
302 static void no_equiv (rtx, const_rtx, void *);
303 static void block_alloc (int);
304 static int qty_sugg_compare (int, int);
305 static int qty_sugg_compare_1 (const void *, const void *);
306 static int qty_compare (int, int);
307 static int qty_compare_1 (const void *, const void *);
308 static int combine_regs (rtx, rtx, int, int, rtx, int);
309 static int reg_meets_class_p (int, enum reg_class);
310 static void update_qty_class (int, int);
311 static void reg_is_set (rtx, const_rtx, void *);
312 static void reg_is_born (rtx, int);
313 static void wipe_dead_reg (rtx, int);
314 static int find_free_reg (enum reg_class, enum machine_mode, int, int, int,
315 int, int);
316 static void mark_life (int, enum machine_mode, int);
317 static void post_mark_life (int, enum machine_mode, int, int, int);
318 static int no_conflict_p (rtx, rtx, rtx);
319 static int requires_inout (const char *);
321 /* Allocate a new quantity (new within current basic block)
322 for register number REGNO which is born at index BIRTH
323 within the block. MODE and SIZE are info on reg REGNO. */
325 static void
326 alloc_qty (int regno, enum machine_mode mode, int size, int birth)
328 int qtyno = next_qty++;
330 reg_qty[regno] = qtyno;
331 reg_offset[regno] = 0;
332 reg_next_in_qty[regno] = -1;
334 qty[qtyno].first_reg = regno;
335 qty[qtyno].size = size;
336 qty[qtyno].mode = mode;
337 qty[qtyno].birth = birth;
338 qty[qtyno].n_calls_crossed = REG_N_CALLS_CROSSED (regno);
339 qty[qtyno].freq_calls_crossed = REG_FREQ_CALLS_CROSSED (regno);
340 qty[qtyno].n_throwing_calls_crossed = REG_N_THROWING_CALLS_CROSSED (regno);
341 qty[qtyno].min_class = reg_preferred_class (regno);
342 qty[qtyno].alternate_class = reg_alternate_class (regno);
343 qty[qtyno].n_refs = REG_N_REFS (regno);
344 qty[qtyno].freq = REG_FREQ (regno);
347 /* Main entry point of this file. */
349 static int
350 local_alloc (void)
352 int i;
353 int max_qty;
354 basic_block b;
356 /* We need to keep track of whether or not we recorded a LABEL_REF so
357 that we know if the jump optimizer needs to be rerun. */
358 recorded_label_ref = 0;
360 /* Leaf functions and non-leaf functions have different needs.
361 If defined, let the machine say what kind of ordering we
362 should use. */
363 #ifdef ORDER_REGS_FOR_LOCAL_ALLOC
364 ORDER_REGS_FOR_LOCAL_ALLOC;
365 #endif
367 /* Promote REG_EQUAL notes to REG_EQUIV notes and adjust status of affected
368 registers. */
369 update_equiv_regs ();
371 /* This sets the maximum number of quantities we can have. Quantity
372 numbers start at zero and we can have one for each pseudo. */
373 max_qty = (max_regno - FIRST_PSEUDO_REGISTER);
375 /* Allocate vectors of temporary data.
376 See the declarations of these variables, above,
377 for what they mean. */
379 qty = XNEWVEC (struct qty, max_qty);
380 qty_phys_copy_sugg = XNEWVEC (HARD_REG_SET, max_qty);
381 qty_phys_num_copy_sugg = XNEWVEC (short, max_qty);
382 qty_phys_sugg = XNEWVEC (HARD_REG_SET, max_qty);
383 qty_phys_num_sugg = XNEWVEC (short, max_qty);
385 reg_qty = XNEWVEC (int, max_regno);
386 reg_offset = XNEWVEC (char, max_regno);
387 reg_next_in_qty = XNEWVEC (int, max_regno);
389 /* Determine which pseudo-registers can be allocated by local-alloc.
390 In general, these are the registers used only in a single block and
391 which only die once.
393 We need not be concerned with which block actually uses the register
394 since we will never see it outside that block. */
396 for (i = FIRST_PSEUDO_REGISTER; i < max_regno; i++)
398 if (REG_BASIC_BLOCK (i) >= NUM_FIXED_BLOCKS && REG_N_DEATHS (i) == 1)
399 reg_qty[i] = -2;
400 else
401 reg_qty[i] = -1;
404 /* Force loop below to initialize entire quantity array. */
405 next_qty = max_qty;
407 /* Allocate each block's local registers, block by block. */
409 FOR_EACH_BB (b)
411 /* NEXT_QTY indicates which elements of the `qty_...'
412 vectors might need to be initialized because they were used
413 for the previous block; it is set to the entire array before
414 block 0. Initialize those, with explicit loop if there are few,
415 else with bzero and bcopy. Do not initialize vectors that are
416 explicit set by `alloc_qty'. */
418 if (next_qty < 6)
420 for (i = 0; i < next_qty; i++)
422 CLEAR_HARD_REG_SET (qty_phys_copy_sugg[i]);
423 qty_phys_num_copy_sugg[i] = 0;
424 CLEAR_HARD_REG_SET (qty_phys_sugg[i]);
425 qty_phys_num_sugg[i] = 0;
428 else
430 #define CLEAR(vector) \
431 memset ((vector), 0, (sizeof (*(vector))) * next_qty);
433 CLEAR (qty_phys_copy_sugg);
434 CLEAR (qty_phys_num_copy_sugg);
435 CLEAR (qty_phys_sugg);
436 CLEAR (qty_phys_num_sugg);
439 next_qty = 0;
441 block_alloc (b->index);
444 free (qty);
445 free (qty_phys_copy_sugg);
446 free (qty_phys_num_copy_sugg);
447 free (qty_phys_sugg);
448 free (qty_phys_num_sugg);
450 free (reg_qty);
451 free (reg_offset);
452 free (reg_next_in_qty);
454 return recorded_label_ref;
457 /* Used for communication between the following two functions: contains
458 a MEM that we wish to ensure remains unchanged. */
459 static rtx equiv_mem;
461 /* Set nonzero if EQUIV_MEM is modified. */
462 static int equiv_mem_modified;
464 /* If EQUIV_MEM is modified by modifying DEST, indicate that it is modified.
465 Called via note_stores. */
467 static void
468 validate_equiv_mem_from_store (rtx dest, const_rtx set ATTRIBUTE_UNUSED,
469 void *data ATTRIBUTE_UNUSED)
471 if ((REG_P (dest)
472 && reg_overlap_mentioned_p (dest, equiv_mem))
473 || (MEM_P (dest)
474 && true_dependence (dest, VOIDmode, equiv_mem, rtx_varies_p)))
475 equiv_mem_modified = 1;
478 /* Verify that no store between START and the death of REG invalidates
479 MEMREF. MEMREF is invalidated by modifying a register used in MEMREF,
480 by storing into an overlapping memory location, or with a non-const
481 CALL_INSN.
483 Return 1 if MEMREF remains valid. */
485 static int
486 validate_equiv_mem (rtx start, rtx reg, rtx memref)
488 rtx insn;
489 rtx note;
491 equiv_mem = memref;
492 equiv_mem_modified = 0;
494 /* If the memory reference has side effects or is volatile, it isn't a
495 valid equivalence. */
496 if (side_effects_p (memref))
497 return 0;
499 for (insn = start; insn && ! equiv_mem_modified; insn = NEXT_INSN (insn))
501 if (! INSN_P (insn))
502 continue;
504 if (find_reg_note (insn, REG_DEAD, reg))
505 return 1;
507 if (CALL_P (insn) && ! MEM_READONLY_P (memref)
508 && ! CONST_OR_PURE_CALL_P (insn))
509 return 0;
511 note_stores (PATTERN (insn), validate_equiv_mem_from_store, NULL);
513 /* If a register mentioned in MEMREF is modified via an
514 auto-increment, we lose the equivalence. Do the same if one
515 dies; although we could extend the life, it doesn't seem worth
516 the trouble. */
518 for (note = REG_NOTES (insn); note; note = XEXP (note, 1))
519 if ((REG_NOTE_KIND (note) == REG_INC
520 || REG_NOTE_KIND (note) == REG_DEAD)
521 && REG_P (XEXP (note, 0))
522 && reg_overlap_mentioned_p (XEXP (note, 0), memref))
523 return 0;
526 return 0;
529 /* Returns zero if X is known to be invariant. */
531 static int
532 equiv_init_varies_p (rtx x)
534 RTX_CODE code = GET_CODE (x);
535 int i;
536 const char *fmt;
538 switch (code)
540 case MEM:
541 return !MEM_READONLY_P (x) || equiv_init_varies_p (XEXP (x, 0));
543 case CONST:
544 case CONST_INT:
545 case CONST_DOUBLE:
546 case CONST_FIXED:
547 case CONST_VECTOR:
548 case SYMBOL_REF:
549 case LABEL_REF:
550 return 0;
552 case REG:
553 return reg_equiv[REGNO (x)].replace == 0 && rtx_varies_p (x, 0);
555 case ASM_OPERANDS:
556 if (MEM_VOLATILE_P (x))
557 return 1;
559 /* Fall through. */
561 default:
562 break;
565 fmt = GET_RTX_FORMAT (code);
566 for (i = GET_RTX_LENGTH (code) - 1; i >= 0; i--)
567 if (fmt[i] == 'e')
569 if (equiv_init_varies_p (XEXP (x, i)))
570 return 1;
572 else if (fmt[i] == 'E')
574 int j;
575 for (j = 0; j < XVECLEN (x, i); j++)
576 if (equiv_init_varies_p (XVECEXP (x, i, j)))
577 return 1;
580 return 0;
583 /* Returns nonzero if X (used to initialize register REGNO) is movable.
584 X is only movable if the registers it uses have equivalent initializations
585 which appear to be within the same loop (or in an inner loop) and movable
586 or if they are not candidates for local_alloc and don't vary. */
588 static int
589 equiv_init_movable_p (rtx x, int regno)
591 int i, j;
592 const char *fmt;
593 enum rtx_code code = GET_CODE (x);
595 switch (code)
597 case SET:
598 return equiv_init_movable_p (SET_SRC (x), regno);
600 case CC0:
601 case CLOBBER:
602 return 0;
604 case PRE_INC:
605 case PRE_DEC:
606 case POST_INC:
607 case POST_DEC:
608 case PRE_MODIFY:
609 case POST_MODIFY:
610 return 0;
612 case REG:
613 return (reg_equiv[REGNO (x)].loop_depth >= reg_equiv[regno].loop_depth
614 && reg_equiv[REGNO (x)].replace)
615 || (REG_BASIC_BLOCK (REGNO (x)) < NUM_FIXED_BLOCKS && ! rtx_varies_p (x, 0));
617 case UNSPEC_VOLATILE:
618 return 0;
620 case ASM_OPERANDS:
621 if (MEM_VOLATILE_P (x))
622 return 0;
624 /* Fall through. */
626 default:
627 break;
630 fmt = GET_RTX_FORMAT (code);
631 for (i = GET_RTX_LENGTH (code) - 1; i >= 0; i--)
632 switch (fmt[i])
634 case 'e':
635 if (! equiv_init_movable_p (XEXP (x, i), regno))
636 return 0;
637 break;
638 case 'E':
639 for (j = XVECLEN (x, i) - 1; j >= 0; j--)
640 if (! equiv_init_movable_p (XVECEXP (x, i, j), regno))
641 return 0;
642 break;
645 return 1;
648 /* TRUE if X uses any registers for which reg_equiv[REGNO].replace is true. */
650 static int
651 contains_replace_regs (rtx x)
653 int i, j;
654 const char *fmt;
655 enum rtx_code code = GET_CODE (x);
657 switch (code)
659 case CONST_INT:
660 case CONST:
661 case LABEL_REF:
662 case SYMBOL_REF:
663 case CONST_DOUBLE:
664 case CONST_FIXED:
665 case CONST_VECTOR:
666 case PC:
667 case CC0:
668 case HIGH:
669 return 0;
671 case REG:
672 return reg_equiv[REGNO (x)].replace;
674 default:
675 break;
678 fmt = GET_RTX_FORMAT (code);
679 for (i = GET_RTX_LENGTH (code) - 1; i >= 0; i--)
680 switch (fmt[i])
682 case 'e':
683 if (contains_replace_regs (XEXP (x, i)))
684 return 1;
685 break;
686 case 'E':
687 for (j = XVECLEN (x, i) - 1; j >= 0; j--)
688 if (contains_replace_regs (XVECEXP (x, i, j)))
689 return 1;
690 break;
693 return 0;
696 /* TRUE if X references a memory location that would be affected by a store
697 to MEMREF. */
699 static int
700 memref_referenced_p (rtx memref, rtx x)
702 int i, j;
703 const char *fmt;
704 enum rtx_code code = GET_CODE (x);
706 switch (code)
708 case CONST_INT:
709 case CONST:
710 case LABEL_REF:
711 case SYMBOL_REF:
712 case CONST_DOUBLE:
713 case CONST_FIXED:
714 case CONST_VECTOR:
715 case PC:
716 case CC0:
717 case HIGH:
718 case LO_SUM:
719 return 0;
721 case REG:
722 return (reg_equiv[REGNO (x)].replacement
723 && memref_referenced_p (memref,
724 reg_equiv[REGNO (x)].replacement));
726 case MEM:
727 if (true_dependence (memref, VOIDmode, x, rtx_varies_p))
728 return 1;
729 break;
731 case SET:
732 /* If we are setting a MEM, it doesn't count (its address does), but any
733 other SET_DEST that has a MEM in it is referencing the MEM. */
734 if (MEM_P (SET_DEST (x)))
736 if (memref_referenced_p (memref, XEXP (SET_DEST (x), 0)))
737 return 1;
739 else if (memref_referenced_p (memref, SET_DEST (x)))
740 return 1;
742 return memref_referenced_p (memref, SET_SRC (x));
744 default:
745 break;
748 fmt = GET_RTX_FORMAT (code);
749 for (i = GET_RTX_LENGTH (code) - 1; i >= 0; i--)
750 switch (fmt[i])
752 case 'e':
753 if (memref_referenced_p (memref, XEXP (x, i)))
754 return 1;
755 break;
756 case 'E':
757 for (j = XVECLEN (x, i) - 1; j >= 0; j--)
758 if (memref_referenced_p (memref, XVECEXP (x, i, j)))
759 return 1;
760 break;
763 return 0;
766 /* TRUE if some insn in the range (START, END] references a memory location
767 that would be affected by a store to MEMREF. */
769 static int
770 memref_used_between_p (rtx memref, rtx start, rtx end)
772 rtx insn;
774 for (insn = NEXT_INSN (start); insn != NEXT_INSN (end);
775 insn = NEXT_INSN (insn))
777 if (!INSN_P (insn))
778 continue;
780 if (memref_referenced_p (memref, PATTERN (insn)))
781 return 1;
783 /* Nonconst functions may access memory. */
784 if (CALL_P (insn)
785 && (! CONST_OR_PURE_CALL_P (insn)
786 || pure_call_p (insn)))
787 return 1;
790 return 0;
793 /* Find registers that are equivalent to a single value throughout the
794 compilation (either because they can be referenced in memory or are set once
795 from a single constant). Lower their priority for a register.
797 If such a register is only referenced once, try substituting its value
798 into the using insn. If it succeeds, we can eliminate the register
799 completely.
801 Initialize the REG_EQUIV_INIT array of initializing insns. */
803 static void
804 update_equiv_regs (void)
806 rtx insn;
807 basic_block bb;
808 int loop_depth;
809 bitmap cleared_regs;
811 reg_equiv = XCNEWVEC (struct equivalence, max_regno);
812 reg_equiv_init = ggc_alloc_cleared (max_regno * sizeof (rtx));
813 reg_equiv_init_size = max_regno;
815 init_alias_analysis ();
817 /* Scan the insns and find which registers have equivalences. Do this
818 in a separate scan of the insns because (due to -fcse-follow-jumps)
819 a register can be set below its use. */
820 FOR_EACH_BB (bb)
822 loop_depth = bb->loop_depth;
824 for (insn = BB_HEAD (bb);
825 insn != NEXT_INSN (BB_END (bb));
826 insn = NEXT_INSN (insn))
828 rtx note;
829 rtx set;
830 rtx dest, src;
831 int regno;
833 if (! INSN_P (insn))
834 continue;
836 for (note = REG_NOTES (insn); note; note = XEXP (note, 1))
837 if (REG_NOTE_KIND (note) == REG_INC)
838 no_equiv (XEXP (note, 0), note, NULL);
840 set = single_set (insn);
842 /* If this insn contains more (or less) than a single SET,
843 only mark all destinations as having no known equivalence. */
844 if (set == 0)
846 note_stores (PATTERN (insn), no_equiv, NULL);
847 continue;
849 else if (GET_CODE (PATTERN (insn)) == PARALLEL)
851 int i;
853 for (i = XVECLEN (PATTERN (insn), 0) - 1; i >= 0; i--)
855 rtx part = XVECEXP (PATTERN (insn), 0, i);
856 if (part != set)
857 note_stores (part, no_equiv, NULL);
861 dest = SET_DEST (set);
862 src = SET_SRC (set);
864 /* See if this is setting up the equivalence between an argument
865 register and its stack slot. */
866 note = find_reg_note (insn, REG_EQUIV, NULL_RTX);
867 if (note)
869 gcc_assert (REG_P (dest));
870 regno = REGNO (dest);
872 /* Note that we don't want to clear reg_equiv_init even if there
873 are multiple sets of this register. */
874 reg_equiv[regno].is_arg_equivalence = 1;
876 /* Record for reload that this is an equivalencing insn. */
877 if (rtx_equal_p (src, XEXP (note, 0)))
878 reg_equiv_init[regno]
879 = gen_rtx_INSN_LIST (VOIDmode, insn, reg_equiv_init[regno]);
881 /* Continue normally in case this is a candidate for
882 replacements. */
885 if (!optimize)
886 continue;
888 /* We only handle the case of a pseudo register being set
889 once, or always to the same value. */
890 /* ??? The mn10200 port breaks if we add equivalences for
891 values that need an ADDRESS_REGS register and set them equivalent
892 to a MEM of a pseudo. The actual problem is in the over-conservative
893 handling of INPADDR_ADDRESS / INPUT_ADDRESS / INPUT triples in
894 calculate_needs, but we traditionally work around this problem
895 here by rejecting equivalences when the destination is in a register
896 that's likely spilled. This is fragile, of course, since the
897 preferred class of a pseudo depends on all instructions that set
898 or use it. */
900 if (!REG_P (dest)
901 || (regno = REGNO (dest)) < FIRST_PSEUDO_REGISTER
902 || reg_equiv[regno].init_insns == const0_rtx
903 || (CLASS_LIKELY_SPILLED_P (reg_preferred_class (regno))
904 && MEM_P (src) && ! reg_equiv[regno].is_arg_equivalence))
906 /* This might be setting a SUBREG of a pseudo, a pseudo that is
907 also set somewhere else to a constant. */
908 note_stores (set, no_equiv, NULL);
909 continue;
912 note = find_reg_note (insn, REG_EQUAL, NULL_RTX);
914 /* cse sometimes generates function invariants, but doesn't put a
915 REG_EQUAL note on the insn. Since this note would be redundant,
916 there's no point creating it earlier than here. */
917 if (! note && ! rtx_varies_p (src, 0))
918 note = set_unique_reg_note (insn, REG_EQUAL, copy_rtx (src));
920 /* Don't bother considering a REG_EQUAL note containing an EXPR_LIST
921 since it represents a function call */
922 if (note && GET_CODE (XEXP (note, 0)) == EXPR_LIST)
923 note = NULL_RTX;
925 if (DF_REG_DEF_COUNT (regno) != 1
926 && (! note
927 || rtx_varies_p (XEXP (note, 0), 0)
928 || (reg_equiv[regno].replacement
929 && ! rtx_equal_p (XEXP (note, 0),
930 reg_equiv[regno].replacement))))
932 no_equiv (dest, set, NULL);
933 continue;
935 /* Record this insn as initializing this register. */
936 reg_equiv[regno].init_insns
937 = gen_rtx_INSN_LIST (VOIDmode, insn, reg_equiv[regno].init_insns);
939 /* If this register is known to be equal to a constant, record that
940 it is always equivalent to the constant. */
941 if (DF_REG_DEF_COUNT (regno) == 1
942 && note && ! rtx_varies_p (XEXP (note, 0), 0))
944 rtx note_value = XEXP (note, 0);
945 remove_note (insn, note);
946 set_unique_reg_note (insn, REG_EQUIV, note_value);
949 /* If this insn introduces a "constant" register, decrease the priority
950 of that register. Record this insn if the register is only used once
951 more and the equivalence value is the same as our source.
953 The latter condition is checked for two reasons: First, it is an
954 indication that it may be more efficient to actually emit the insn
955 as written (if no registers are available, reload will substitute
956 the equivalence). Secondly, it avoids problems with any registers
957 dying in this insn whose death notes would be missed.
959 If we don't have a REG_EQUIV note, see if this insn is loading
960 a register used only in one basic block from a MEM. If so, and the
961 MEM remains unchanged for the life of the register, add a REG_EQUIV
962 note. */
964 note = find_reg_note (insn, REG_EQUIV, NULL_RTX);
966 if (note == 0 && REG_BASIC_BLOCK (regno) >= NUM_FIXED_BLOCKS
967 && MEM_P (SET_SRC (set))
968 && validate_equiv_mem (insn, dest, SET_SRC (set)))
969 note = set_unique_reg_note (insn, REG_EQUIV, copy_rtx (SET_SRC (set)));
971 if (note)
973 int regno = REGNO (dest);
974 rtx x = XEXP (note, 0);
976 /* If we haven't done so, record for reload that this is an
977 equivalencing insn. */
978 if (!reg_equiv[regno].is_arg_equivalence)
979 reg_equiv_init[regno]
980 = gen_rtx_INSN_LIST (VOIDmode, insn, reg_equiv_init[regno]);
982 /* Record whether or not we created a REG_EQUIV note for a LABEL_REF.
983 We might end up substituting the LABEL_REF for uses of the
984 pseudo here or later. That kind of transformation may turn an
985 indirect jump into a direct jump, in which case we must rerun the
986 jump optimizer to ensure that the JUMP_LABEL fields are valid. */
987 if (GET_CODE (x) == LABEL_REF
988 || (GET_CODE (x) == CONST
989 && GET_CODE (XEXP (x, 0)) == PLUS
990 && (GET_CODE (XEXP (XEXP (x, 0), 0)) == LABEL_REF)))
991 recorded_label_ref = 1;
993 reg_equiv[regno].replacement = x;
994 reg_equiv[regno].src_p = &SET_SRC (set);
995 reg_equiv[regno].loop_depth = loop_depth;
997 /* Don't mess with things live during setjmp. */
998 if (REG_LIVE_LENGTH (regno) >= 0 && optimize)
1000 /* Note that the statement below does not affect the priority
1001 in local-alloc! */
1002 REG_LIVE_LENGTH (regno) *= 2;
1004 /* If the register is referenced exactly twice, meaning it is
1005 set once and used once, indicate that the reference may be
1006 replaced by the equivalence we computed above. Do this
1007 even if the register is only used in one block so that
1008 dependencies can be handled where the last register is
1009 used in a different block (i.e. HIGH / LO_SUM sequences)
1010 and to reduce the number of registers alive across
1011 calls. */
1013 if (REG_N_REFS (regno) == 2
1014 && (rtx_equal_p (x, src)
1015 || ! equiv_init_varies_p (src))
1016 && NONJUMP_INSN_P (insn)
1017 && equiv_init_movable_p (PATTERN (insn), regno))
1018 reg_equiv[regno].replace = 1;
1024 if (!optimize)
1025 goto out;
1027 /* A second pass, to gather additional equivalences with memory. This needs
1028 to be done after we know which registers we are going to replace. */
1030 for (insn = get_insns (); insn; insn = NEXT_INSN (insn))
1032 rtx set, src, dest;
1033 unsigned regno;
1035 if (! INSN_P (insn))
1036 continue;
1038 set = single_set (insn);
1039 if (! set)
1040 continue;
1042 dest = SET_DEST (set);
1043 src = SET_SRC (set);
1045 /* If this sets a MEM to the contents of a REG that is only used
1046 in a single basic block, see if the register is always equivalent
1047 to that memory location and if moving the store from INSN to the
1048 insn that set REG is safe. If so, put a REG_EQUIV note on the
1049 initializing insn.
1051 Don't add a REG_EQUIV note if the insn already has one. The existing
1052 REG_EQUIV is likely more useful than the one we are adding.
1054 If one of the regs in the address has reg_equiv[REGNO].replace set,
1055 then we can't add this REG_EQUIV note. The reg_equiv[REGNO].replace
1056 optimization may move the set of this register immediately before
1057 insn, which puts it after reg_equiv[REGNO].init_insns, and hence
1058 the mention in the REG_EQUIV note would be to an uninitialized
1059 pseudo. */
1061 if (MEM_P (dest) && REG_P (src)
1062 && (regno = REGNO (src)) >= FIRST_PSEUDO_REGISTER
1063 && REG_BASIC_BLOCK (regno) >= NUM_FIXED_BLOCKS
1064 && DF_REG_DEF_COUNT (regno) == 1
1065 && reg_equiv[regno].init_insns != 0
1066 && reg_equiv[regno].init_insns != const0_rtx
1067 && ! find_reg_note (XEXP (reg_equiv[regno].init_insns, 0),
1068 REG_EQUIV, NULL_RTX)
1069 && ! contains_replace_regs (XEXP (dest, 0)))
1071 rtx init_insn = XEXP (reg_equiv[regno].init_insns, 0);
1072 if (validate_equiv_mem (init_insn, src, dest)
1073 && ! memref_used_between_p (dest, init_insn, insn)
1074 /* Attaching a REG_EQUIV note will fail if INIT_INSN has
1075 multiple sets. */
1076 && set_unique_reg_note (init_insn, REG_EQUIV, copy_rtx (dest)))
1078 /* This insn makes the equivalence, not the one initializing
1079 the register. */
1080 reg_equiv_init[regno]
1081 = gen_rtx_INSN_LIST (VOIDmode, insn, NULL_RTX);
1082 df_notes_rescan (init_insn);
1087 cleared_regs = BITMAP_ALLOC (NULL);
1088 /* Now scan all regs killed in an insn to see if any of them are
1089 registers only used that once. If so, see if we can replace the
1090 reference with the equivalent form. If we can, delete the
1091 initializing reference and this register will go away. If we
1092 can't replace the reference, and the initializing reference is
1093 within the same loop (or in an inner loop), then move the register
1094 initialization just before the use, so that they are in the same
1095 basic block. */
1096 FOR_EACH_BB_REVERSE (bb)
1098 loop_depth = bb->loop_depth;
1099 for (insn = BB_END (bb);
1100 insn != PREV_INSN (BB_HEAD (bb));
1101 insn = PREV_INSN (insn))
1103 rtx link;
1105 if (! INSN_P (insn))
1106 continue;
1108 /* Don't substitute into a non-local goto, this confuses CFG. */
1109 if (JUMP_P (insn)
1110 && find_reg_note (insn, REG_NON_LOCAL_GOTO, NULL_RTX))
1111 continue;
1113 for (link = REG_NOTES (insn); link; link = XEXP (link, 1))
1115 if (REG_NOTE_KIND (link) == REG_DEAD
1116 /* Make sure this insn still refers to the register. */
1117 && reg_mentioned_p (XEXP (link, 0), PATTERN (insn)))
1119 int regno = REGNO (XEXP (link, 0));
1120 rtx equiv_insn;
1122 if (! reg_equiv[regno].replace
1123 || reg_equiv[regno].loop_depth < loop_depth)
1124 continue;
1126 /* reg_equiv[REGNO].replace gets set only when
1127 REG_N_REFS[REGNO] is 2, i.e. the register is set
1128 once and used once. (If it were only set, but not used,
1129 flow would have deleted the setting insns.) Hence
1130 there can only be one insn in reg_equiv[REGNO].init_insns. */
1131 gcc_assert (reg_equiv[regno].init_insns
1132 && !XEXP (reg_equiv[regno].init_insns, 1));
1133 equiv_insn = XEXP (reg_equiv[regno].init_insns, 0);
1135 /* We may not move instructions that can throw, since
1136 that changes basic block boundaries and we are not
1137 prepared to adjust the CFG to match. */
1138 if (can_throw_internal (equiv_insn))
1139 continue;
1141 if (asm_noperands (PATTERN (equiv_insn)) < 0
1142 && validate_replace_rtx (regno_reg_rtx[regno],
1143 *(reg_equiv[regno].src_p), insn))
1145 rtx equiv_link;
1146 rtx last_link;
1147 rtx note;
1149 /* Find the last note. */
1150 for (last_link = link; XEXP (last_link, 1);
1151 last_link = XEXP (last_link, 1))
1154 /* Append the REG_DEAD notes from equiv_insn. */
1155 equiv_link = REG_NOTES (equiv_insn);
1156 while (equiv_link)
1158 note = equiv_link;
1159 equiv_link = XEXP (equiv_link, 1);
1160 if (REG_NOTE_KIND (note) == REG_DEAD)
1162 remove_note (equiv_insn, note);
1163 XEXP (last_link, 1) = note;
1164 XEXP (note, 1) = NULL_RTX;
1165 last_link = note;
1169 remove_death (regno, insn);
1170 SET_REG_N_REFS (regno, 0);
1171 REG_FREQ (regno) = 0;
1172 delete_insn (equiv_insn);
1174 reg_equiv[regno].init_insns
1175 = XEXP (reg_equiv[regno].init_insns, 1);
1177 reg_equiv_init[regno] = NULL_RTX;
1178 bitmap_set_bit (cleared_regs, regno);
1180 /* Move the initialization of the register to just before
1181 INSN. Update the flow information. */
1182 else if (PREV_INSN (insn) != equiv_insn)
1184 rtx new_insn;
1186 new_insn = emit_insn_before (PATTERN (equiv_insn), insn);
1187 REG_NOTES (new_insn) = REG_NOTES (equiv_insn);
1188 REG_NOTES (equiv_insn) = 0;
1190 /* Make sure this insn is recognized before
1191 reload begins, otherwise
1192 eliminate_regs_in_insn will die. */
1193 INSN_CODE (new_insn) = INSN_CODE (equiv_insn);
1195 delete_insn (equiv_insn);
1197 XEXP (reg_equiv[regno].init_insns, 0) = new_insn;
1199 REG_BASIC_BLOCK (regno) = bb->index;
1200 REG_N_CALLS_CROSSED (regno) = 0;
1201 REG_FREQ_CALLS_CROSSED (regno) = 0;
1202 REG_N_THROWING_CALLS_CROSSED (regno) = 0;
1203 REG_LIVE_LENGTH (regno) = 2;
1205 if (insn == BB_HEAD (bb))
1206 BB_HEAD (bb) = PREV_INSN (insn);
1208 reg_equiv_init[regno]
1209 = gen_rtx_INSN_LIST (VOIDmode, new_insn, NULL_RTX);
1210 bitmap_set_bit (cleared_regs, regno);
1217 if (!bitmap_empty_p (cleared_regs))
1218 FOR_EACH_BB (bb)
1220 bitmap_and_compl_into (DF_LIVE_IN (bb), cleared_regs);
1221 bitmap_and_compl_into (DF_LIVE_OUT (bb), cleared_regs);
1222 bitmap_and_compl_into (DF_LR_IN (bb), cleared_regs);
1223 bitmap_and_compl_into (DF_LR_OUT (bb), cleared_regs);
1226 BITMAP_FREE (cleared_regs);
1228 out:
1229 /* Clean up. */
1231 end_alias_analysis ();
1232 free (reg_equiv);
1235 /* Mark REG as having no known equivalence.
1236 Some instructions might have been processed before and furnished
1237 with REG_EQUIV notes for this register; these notes will have to be
1238 removed.
1239 STORE is the piece of RTL that does the non-constant / conflicting
1240 assignment - a SET, CLOBBER or REG_INC note. It is currently not used,
1241 but needs to be there because this function is called from note_stores. */
1242 static void
1243 no_equiv (rtx reg, const_rtx store ATTRIBUTE_UNUSED, void *data ATTRIBUTE_UNUSED)
1245 int regno;
1246 rtx list;
1248 if (!REG_P (reg))
1249 return;
1250 regno = REGNO (reg);
1251 list = reg_equiv[regno].init_insns;
1252 if (list == const0_rtx)
1253 return;
1254 reg_equiv[regno].init_insns = const0_rtx;
1255 reg_equiv[regno].replacement = NULL_RTX;
1256 /* This doesn't matter for equivalences made for argument registers, we
1257 should keep their initialization insns. */
1258 if (reg_equiv[regno].is_arg_equivalence)
1259 return;
1260 reg_equiv_init[regno] = NULL_RTX;
1261 for (; list; list = XEXP (list, 1))
1263 rtx insn = XEXP (list, 0);
1264 remove_note (insn, find_reg_note (insn, REG_EQUIV, NULL_RTX));
1268 /* Allocate hard regs to the pseudo regs used only within block number B.
1269 Only the pseudos that die but once can be handled. */
1271 static void
1272 block_alloc (int b)
1274 int i, q;
1275 rtx insn;
1276 rtx note, hard_reg;
1277 int insn_number = 0;
1278 int insn_count = 0;
1279 int max_uid = get_max_uid ();
1280 int *qty_order;
1281 int no_conflict_combined_regno = -1;
1282 struct df_ref ** def_rec;
1284 /* Count the instructions in the basic block. */
1286 insn = BB_END (BASIC_BLOCK (b));
1287 while (1)
1289 if (!NOTE_P (insn))
1291 ++insn_count;
1292 gcc_assert (insn_count <= max_uid);
1294 if (insn == BB_HEAD (BASIC_BLOCK (b)))
1295 break;
1296 insn = PREV_INSN (insn);
1299 /* +2 to leave room for a post_mark_life at the last insn and for
1300 the birth of a CLOBBER in the first insn. */
1301 regs_live_at = XCNEWVEC (HARD_REG_SET, 2 * insn_count + 2);
1303 /* Initialize table of hardware registers currently live. */
1305 REG_SET_TO_HARD_REG_SET (regs_live, DF_LR_IN (BASIC_BLOCK (b)));
1307 /* This is conservative, as this would include registers that are
1308 artificial-def'ed-but-not-used. However, artificial-defs are
1309 rare, and such uninitialized use is rarer still, and the chance
1310 of this having any performance impact is even less, while the
1311 benefit is not having to compute and keep the TOP set around. */
1312 for (def_rec = df_get_artificial_defs (b); *def_rec; def_rec++)
1314 int regno = DF_REF_REGNO (*def_rec);
1315 if (regno < FIRST_PSEUDO_REGISTER)
1316 SET_HARD_REG_BIT (regs_live, regno);
1319 /* This loop scans the instructions of the basic block
1320 and assigns quantities to registers.
1321 It computes which registers to tie. */
1323 insn = BB_HEAD (BASIC_BLOCK (b));
1324 while (1)
1326 if (!NOTE_P (insn))
1327 insn_number++;
1329 if (INSN_P (insn))
1331 rtx link, set;
1332 int win = 0;
1333 rtx r0, r1 = NULL_RTX;
1334 int combined_regno = -1;
1335 int i;
1337 this_insn_number = insn_number;
1338 this_insn = insn;
1340 extract_insn (insn);
1341 which_alternative = -1;
1343 /* Is this insn suitable for tying two registers?
1344 If so, try doing that.
1345 Suitable insns are those with at least two operands and where
1346 operand 0 is an output that is a register that is not
1347 earlyclobber.
1349 We can tie operand 0 with some operand that dies in this insn.
1350 First look for operands that are required to be in the same
1351 register as operand 0. If we find such, only try tying that
1352 operand or one that can be put into that operand if the
1353 operation is commutative. If we don't find an operand
1354 that is required to be in the same register as operand 0,
1355 we can tie with any operand.
1357 Subregs in place of regs are also ok.
1359 If tying is done, WIN is set nonzero. */
1361 if (optimize
1362 && recog_data.n_operands > 1
1363 && recog_data.constraints[0][0] == '='
1364 && recog_data.constraints[0][1] != '&')
1366 /* If non-negative, is an operand that must match operand 0. */
1367 int must_match_0 = -1;
1368 /* Counts number of alternatives that require a match with
1369 operand 0. */
1370 int n_matching_alts = 0;
1372 for (i = 1; i < recog_data.n_operands; i++)
1374 const char *p = recog_data.constraints[i];
1375 int this_match = requires_inout (p);
1377 n_matching_alts += this_match;
1378 if (this_match == recog_data.n_alternatives)
1379 must_match_0 = i;
1382 r0 = recog_data.operand[0];
1383 for (i = 1; i < recog_data.n_operands; i++)
1385 /* Skip this operand if we found an operand that
1386 must match operand 0 and this operand isn't it
1387 and can't be made to be it by commutativity. */
1389 if (must_match_0 >= 0 && i != must_match_0
1390 && ! (i == must_match_0 + 1
1391 && recog_data.constraints[i-1][0] == '%')
1392 && ! (i == must_match_0 - 1
1393 && recog_data.constraints[i][0] == '%'))
1394 continue;
1396 /* Likewise if each alternative has some operand that
1397 must match operand zero. In that case, skip any
1398 operand that doesn't list operand 0 since we know that
1399 the operand always conflicts with operand 0. We
1400 ignore commutativity in this case to keep things simple. */
1401 if (n_matching_alts == recog_data.n_alternatives
1402 && 0 == requires_inout (recog_data.constraints[i]))
1403 continue;
1405 r1 = recog_data.operand[i];
1407 /* If the operand is an address, find a register in it.
1408 There may be more than one register, but we only try one
1409 of them. */
1410 if (recog_data.constraints[i][0] == 'p'
1411 || EXTRA_ADDRESS_CONSTRAINT (recog_data.constraints[i][0],
1412 recog_data.constraints[i]))
1413 while (GET_CODE (r1) == PLUS || GET_CODE (r1) == MULT)
1414 r1 = XEXP (r1, 0);
1416 /* Avoid making a call-saved register unnecessarily
1417 clobbered. */
1418 hard_reg = get_hard_reg_initial_reg (cfun, r1);
1419 if (hard_reg != NULL_RTX)
1421 if (REG_P (hard_reg)
1422 && REGNO (hard_reg) < FIRST_PSEUDO_REGISTER
1423 && !call_used_regs[REGNO (hard_reg)])
1424 continue;
1427 if (REG_P (r0) || GET_CODE (r0) == SUBREG)
1429 /* We have two priorities for hard register preferences.
1430 If we have a move insn or an insn whose first input
1431 can only be in the same register as the output, give
1432 priority to an equivalence found from that insn. */
1433 int may_save_copy
1434 = (r1 == recog_data.operand[i] && must_match_0 >= 0);
1436 if (REG_P (r1) || GET_CODE (r1) == SUBREG)
1437 win = combine_regs (r1, r0, may_save_copy,
1438 insn_number, insn, 0);
1440 if (win)
1441 break;
1445 /* Recognize an insn sequence with an ultimate result
1446 which can safely overlap one of the inputs.
1447 The sequence begins with a CLOBBER of its result,
1448 and ends with an insn that copies the result to itself
1449 and has a REG_EQUAL note for an equivalent formula.
1450 That note indicates what the inputs are.
1451 The result and the input can overlap if each insn in
1452 the sequence either doesn't mention the input
1453 or has a REG_NO_CONFLICT note to inhibit the conflict.
1455 We do the combining test at the CLOBBER so that the
1456 destination register won't have had a quantity number
1457 assigned, since that would prevent combining. */
1459 if (optimize
1460 && GET_CODE (PATTERN (insn)) == CLOBBER
1461 && (r0 = XEXP (PATTERN (insn), 0),
1462 REG_P (r0))
1463 && (link = find_reg_note (insn, REG_LIBCALL, NULL_RTX)) != 0
1464 && XEXP (link, 0) != 0
1465 && NONJUMP_INSN_P (XEXP (link, 0))
1466 && (set = single_set (XEXP (link, 0))) != 0
1467 && SET_DEST (set) == r0 && SET_SRC (set) == r0
1468 && (note = find_reg_note (XEXP (link, 0), REG_EQUAL,
1469 NULL_RTX)) != 0)
1471 if (r1 = XEXP (note, 0), REG_P (r1)
1472 /* Check that we have such a sequence. */
1473 && no_conflict_p (insn, r0, r1))
1474 win = combine_regs (r1, r0, 1, insn_number, insn, 1);
1475 else if (GET_RTX_FORMAT (GET_CODE (XEXP (note, 0)))[0] == 'e'
1476 && (r1 = XEXP (XEXP (note, 0), 0),
1477 REG_P (r1) || GET_CODE (r1) == SUBREG)
1478 && no_conflict_p (insn, r0, r1))
1479 win = combine_regs (r1, r0, 0, insn_number, insn, 1);
1481 /* Here we care if the operation to be computed is
1482 commutative. */
1483 else if (COMMUTATIVE_P (XEXP (note, 0))
1484 && (r1 = XEXP (XEXP (note, 0), 1),
1485 (REG_P (r1) || GET_CODE (r1) == SUBREG))
1486 && no_conflict_p (insn, r0, r1))
1487 win = combine_regs (r1, r0, 0, insn_number, insn, 1);
1489 /* If we did combine something, show the register number
1490 in question so that we know to ignore its death. */
1491 if (win)
1492 no_conflict_combined_regno = REGNO (r1);
1495 /* If registers were just tied, set COMBINED_REGNO
1496 to the number of the register used in this insn
1497 that was tied to the register set in this insn.
1498 This register's qty should not be "killed". */
1500 if (win)
1502 while (GET_CODE (r1) == SUBREG)
1503 r1 = SUBREG_REG (r1);
1504 combined_regno = REGNO (r1);
1507 /* Mark the death of everything that dies in this instruction,
1508 except for anything that was just combined. */
1510 for (link = REG_NOTES (insn); link; link = XEXP (link, 1))
1511 if (REG_NOTE_KIND (link) == REG_DEAD
1512 && REG_P (XEXP (link, 0))
1513 && combined_regno != (int) REGNO (XEXP (link, 0))
1514 && (no_conflict_combined_regno != (int) REGNO (XEXP (link, 0))
1515 || ! find_reg_note (insn, REG_NO_CONFLICT,
1516 XEXP (link, 0))))
1517 wipe_dead_reg (XEXP (link, 0), 0);
1519 /* Allocate qty numbers for all registers local to this block
1520 that are born (set) in this instruction.
1521 A pseudo that already has a qty is not changed. */
1523 note_stores (PATTERN (insn), reg_is_set, NULL);
1525 /* If anything is set in this insn and then unused, mark it as dying
1526 after this insn, so it will conflict with our outputs. This
1527 can't match with something that combined, and it doesn't matter
1528 if it did. Do this after the calls to reg_is_set since these
1529 die after, not during, the current insn. */
1531 for (link = REG_NOTES (insn); link; link = XEXP (link, 1))
1532 if (REG_NOTE_KIND (link) == REG_UNUSED
1533 && REG_P (XEXP (link, 0)))
1534 wipe_dead_reg (XEXP (link, 0), 1);
1536 /* If this is an insn that has a REG_RETVAL note pointing at a
1537 CLOBBER insn, we have reached the end of a REG_NO_CONFLICT
1538 block, so clear any register number that combined within it. */
1539 if ((note = find_reg_note (insn, REG_RETVAL, NULL_RTX)) != 0
1540 && NONJUMP_INSN_P (XEXP (note, 0))
1541 && GET_CODE (PATTERN (XEXP (note, 0))) == CLOBBER)
1542 no_conflict_combined_regno = -1;
1545 /* Set the registers live after INSN_NUMBER. Note that we never
1546 record the registers live before the block's first insn, since no
1547 pseudos we care about are live before that insn. */
1549 IOR_HARD_REG_SET (regs_live_at[2 * insn_number], regs_live);
1550 IOR_HARD_REG_SET (regs_live_at[2 * insn_number + 1], regs_live);
1552 if (insn == BB_END (BASIC_BLOCK (b)))
1553 break;
1555 insn = NEXT_INSN (insn);
1558 /* Now every register that is local to this basic block
1559 should have been given a quantity, or else -1 meaning ignore it.
1560 Every quantity should have a known birth and death.
1562 Order the qtys so we assign them registers in order of the
1563 number of suggested registers they need so we allocate those with
1564 the most restrictive needs first. */
1566 qty_order = XNEWVEC (int, next_qty);
1567 for (i = 0; i < next_qty; i++)
1568 qty_order[i] = i;
1570 #define EXCHANGE(I1, I2) \
1571 { i = qty_order[I1]; qty_order[I1] = qty_order[I2]; qty_order[I2] = i; }
1573 switch (next_qty)
1575 case 3:
1576 /* Make qty_order[2] be the one to allocate last. */
1577 if (qty_sugg_compare (0, 1) > 0)
1578 EXCHANGE (0, 1);
1579 if (qty_sugg_compare (1, 2) > 0)
1580 EXCHANGE (2, 1);
1582 /* ... Fall through ... */
1583 case 2:
1584 /* Put the best one to allocate in qty_order[0]. */
1585 if (qty_sugg_compare (0, 1) > 0)
1586 EXCHANGE (0, 1);
1588 /* ... Fall through ... */
1590 case 1:
1591 case 0:
1592 /* Nothing to do here. */
1593 break;
1595 default:
1596 qsort (qty_order, next_qty, sizeof (int), qty_sugg_compare_1);
1599 /* Try to put each quantity in a suggested physical register, if it has one.
1600 This may cause registers to be allocated that otherwise wouldn't be, but
1601 this seems acceptable in local allocation (unlike global allocation). */
1602 for (i = 0; i < next_qty; i++)
1604 q = qty_order[i];
1605 if (qty_phys_num_sugg[q] != 0 || qty_phys_num_copy_sugg[q] != 0)
1606 qty[q].phys_reg = find_free_reg (qty[q].min_class, qty[q].mode, q,
1607 0, 1, qty[q].birth, qty[q].death);
1608 else
1609 qty[q].phys_reg = -1;
1612 /* Order the qtys so we assign them registers in order of
1613 decreasing length of life. Normally call qsort, but if we
1614 have only a very small number of quantities, sort them ourselves. */
1616 for (i = 0; i < next_qty; i++)
1617 qty_order[i] = i;
1619 #define EXCHANGE(I1, I2) \
1620 { i = qty_order[I1]; qty_order[I1] = qty_order[I2]; qty_order[I2] = i; }
1622 switch (next_qty)
1624 case 3:
1625 /* Make qty_order[2] be the one to allocate last. */
1626 if (qty_compare (0, 1) > 0)
1627 EXCHANGE (0, 1);
1628 if (qty_compare (1, 2) > 0)
1629 EXCHANGE (2, 1);
1631 /* ... Fall through ... */
1632 case 2:
1633 /* Put the best one to allocate in qty_order[0]. */
1634 if (qty_compare (0, 1) > 0)
1635 EXCHANGE (0, 1);
1637 /* ... Fall through ... */
1639 case 1:
1640 case 0:
1641 /* Nothing to do here. */
1642 break;
1644 default:
1645 qsort (qty_order, next_qty, sizeof (int), qty_compare_1);
1648 /* Now for each qty that is not a hardware register,
1649 look for a hardware register to put it in.
1650 First try the register class that is cheapest for this qty,
1651 if there is more than one class. */
1653 for (i = 0; i < next_qty; i++)
1655 q = qty_order[i];
1656 if (qty[q].phys_reg < 0)
1658 #ifdef INSN_SCHEDULING
1659 /* These values represent the adjusted lifetime of a qty so
1660 that it conflicts with qtys which appear near the start/end
1661 of this qty's lifetime.
1663 The purpose behind extending the lifetime of this qty is to
1664 discourage the register allocator from creating false
1665 dependencies.
1667 The adjustment value is chosen to indicate that this qty
1668 conflicts with all the qtys in the instructions immediately
1669 before and after the lifetime of this qty.
1671 Experiments have shown that higher values tend to hurt
1672 overall code performance.
1674 If allocation using the extended lifetime fails we will try
1675 again with the qty's unadjusted lifetime. */
1676 int fake_birth = MAX (0, qty[q].birth - 2 + qty[q].birth % 2);
1677 int fake_death = MIN (insn_number * 2 + 1,
1678 qty[q].death + 2 - qty[q].death % 2);
1679 #endif
1681 if (N_REG_CLASSES > 1)
1683 #ifdef INSN_SCHEDULING
1684 /* We try to avoid using hard registers allocated to qtys which
1685 are born immediately after this qty or die immediately before
1686 this qty.
1688 This optimization is only appropriate when we will run
1689 a scheduling pass after reload and we are not optimizing
1690 for code size. */
1691 if (flag_schedule_insns_after_reload && dbg_cnt (local_alloc_for_sched)
1692 && !optimize_size
1693 && !SMALL_REGISTER_CLASSES)
1695 qty[q].phys_reg = find_free_reg (qty[q].min_class,
1696 qty[q].mode, q, 0, 0,
1697 fake_birth, fake_death);
1698 if (qty[q].phys_reg >= 0)
1699 continue;
1701 #endif
1702 qty[q].phys_reg = find_free_reg (qty[q].min_class,
1703 qty[q].mode, q, 0, 0,
1704 qty[q].birth, qty[q].death);
1705 if (qty[q].phys_reg >= 0)
1706 continue;
1709 #ifdef INSN_SCHEDULING
1710 /* Similarly, avoid false dependencies. */
1711 if (flag_schedule_insns_after_reload && dbg_cnt (local_alloc_for_sched)
1712 && !optimize_size
1713 && !SMALL_REGISTER_CLASSES
1714 && qty[q].alternate_class != NO_REGS)
1715 qty[q].phys_reg = find_free_reg (qty[q].alternate_class,
1716 qty[q].mode, q, 0, 0,
1717 fake_birth, fake_death);
1718 #endif
1719 if (qty[q].alternate_class != NO_REGS)
1720 qty[q].phys_reg = find_free_reg (qty[q].alternate_class,
1721 qty[q].mode, q, 0, 0,
1722 qty[q].birth, qty[q].death);
1726 /* Now propagate the register assignments
1727 to the pseudo regs belonging to the qtys. */
1729 for (q = 0; q < next_qty; q++)
1730 if (qty[q].phys_reg >= 0)
1732 for (i = qty[q].first_reg; i >= 0; i = reg_next_in_qty[i])
1733 reg_renumber[i] = qty[q].phys_reg + reg_offset[i];
1736 /* Clean up. */
1737 free (regs_live_at);
1738 free (qty_order);
1741 /* Compare two quantities' priority for getting real registers.
1742 We give shorter-lived quantities higher priority.
1743 Quantities with more references are also preferred, as are quantities that
1744 require multiple registers. This is the identical prioritization as
1745 done by global-alloc.
1747 We used to give preference to registers with *longer* lives, but using
1748 the same algorithm in both local- and global-alloc can speed up execution
1749 of some programs by as much as a factor of three! */
1751 /* Note that the quotient will never be bigger than
1752 the value of floor_log2 times the maximum number of
1753 times a register can occur in one insn (surely less than 100)
1754 weighted by frequency (max REG_FREQ_MAX).
1755 Multiplying this by 10000/REG_FREQ_MAX can't overflow.
1756 QTY_CMP_PRI is also used by qty_sugg_compare. */
1758 #define QTY_CMP_PRI(q) \
1759 ((int) (((double) (floor_log2 (qty[q].n_refs) * qty[q].freq * qty[q].size) \
1760 / (qty[q].death - qty[q].birth)) * (10000 / REG_FREQ_MAX)))
1762 static int
1763 qty_compare (int q1, int q2)
1765 return QTY_CMP_PRI (q2) - QTY_CMP_PRI (q1);
1768 static int
1769 qty_compare_1 (const void *q1p, const void *q2p)
1771 int q1 = *(const int *) q1p, q2 = *(const int *) q2p;
1772 int tem = QTY_CMP_PRI (q2) - QTY_CMP_PRI (q1);
1774 if (tem != 0)
1775 return tem;
1777 /* If qtys are equally good, sort by qty number,
1778 so that the results of qsort leave nothing to chance. */
1779 return q1 - q2;
1782 /* Compare two quantities' priority for getting real registers. This version
1783 is called for quantities that have suggested hard registers. First priority
1784 goes to quantities that have copy preferences, then to those that have
1785 normal preferences. Within those groups, quantities with the lower
1786 number of preferences have the highest priority. Of those, we use the same
1787 algorithm as above. */
1789 #define QTY_CMP_SUGG(q) \
1790 (qty_phys_num_copy_sugg[q] \
1791 ? qty_phys_num_copy_sugg[q] \
1792 : qty_phys_num_sugg[q] * FIRST_PSEUDO_REGISTER)
1794 static int
1795 qty_sugg_compare (int q1, int q2)
1797 int tem = QTY_CMP_SUGG (q1) - QTY_CMP_SUGG (q2);
1799 if (tem != 0)
1800 return tem;
1802 return QTY_CMP_PRI (q2) - QTY_CMP_PRI (q1);
1805 static int
1806 qty_sugg_compare_1 (const void *q1p, const void *q2p)
1808 int q1 = *(const int *) q1p, q2 = *(const int *) q2p;
1809 int tem = QTY_CMP_SUGG (q1) - QTY_CMP_SUGG (q2);
1811 if (tem != 0)
1812 return tem;
1814 tem = QTY_CMP_PRI (q2) - QTY_CMP_PRI (q1);
1815 if (tem != 0)
1816 return tem;
1818 /* If qtys are equally good, sort by qty number,
1819 so that the results of qsort leave nothing to chance. */
1820 return q1 - q2;
1823 #undef QTY_CMP_SUGG
1824 #undef QTY_CMP_PRI
1826 /* Attempt to combine the two registers (rtx's) USEDREG and SETREG.
1827 Returns 1 if have done so, or 0 if cannot.
1829 Combining registers means marking them as having the same quantity
1830 and adjusting the offsets within the quantity if either of
1831 them is a SUBREG.
1833 We don't actually combine a hard reg with a pseudo; instead
1834 we just record the hard reg as the suggestion for the pseudo's quantity.
1835 If we really combined them, we could lose if the pseudo lives
1836 across an insn that clobbers the hard reg (eg, movmem).
1838 ALREADY_DEAD is nonzero if USEDREG is known to be dead even though
1839 there is no REG_DEAD note on INSN. This occurs during the processing
1840 of REG_NO_CONFLICT blocks.
1842 MAY_SAVE_COPY is nonzero if this insn is simply copying USEDREG to
1843 SETREG or if the input and output must share a register.
1844 In that case, we record a hard reg suggestion in QTY_PHYS_COPY_SUGG.
1846 There are elaborate checks for the validity of combining. */
1848 static int
1849 combine_regs (rtx usedreg, rtx setreg, int may_save_copy, int insn_number,
1850 rtx insn, int already_dead)
1852 int ureg, sreg;
1853 int offset = 0;
1854 int usize, ssize;
1855 int sqty;
1857 /* Determine the numbers and sizes of registers being used. If a subreg
1858 is present that does not change the entire register, don't consider
1859 this a copy insn. */
1861 while (GET_CODE (usedreg) == SUBREG)
1863 rtx subreg = SUBREG_REG (usedreg);
1865 if (REG_P (subreg))
1867 if (GET_MODE_SIZE (GET_MODE (subreg)) > UNITS_PER_WORD)
1868 may_save_copy = 0;
1870 if (REGNO (subreg) < FIRST_PSEUDO_REGISTER)
1871 offset += subreg_regno_offset (REGNO (subreg),
1872 GET_MODE (subreg),
1873 SUBREG_BYTE (usedreg),
1874 GET_MODE (usedreg));
1875 else
1876 offset += (SUBREG_BYTE (usedreg)
1877 / REGMODE_NATURAL_SIZE (GET_MODE (usedreg)));
1880 usedreg = subreg;
1883 if (!REG_P (usedreg))
1884 return 0;
1886 ureg = REGNO (usedreg);
1887 if (ureg < FIRST_PSEUDO_REGISTER)
1888 usize = hard_regno_nregs[ureg][GET_MODE (usedreg)];
1889 else
1890 usize = ((GET_MODE_SIZE (GET_MODE (usedreg))
1891 + (REGMODE_NATURAL_SIZE (GET_MODE (usedreg)) - 1))
1892 / REGMODE_NATURAL_SIZE (GET_MODE (usedreg)));
1894 while (GET_CODE (setreg) == SUBREG)
1896 rtx subreg = SUBREG_REG (setreg);
1898 if (REG_P (subreg))
1900 if (GET_MODE_SIZE (GET_MODE (subreg)) > UNITS_PER_WORD)
1901 may_save_copy = 0;
1903 if (REGNO (subreg) < FIRST_PSEUDO_REGISTER)
1904 offset -= subreg_regno_offset (REGNO (subreg),
1905 GET_MODE (subreg),
1906 SUBREG_BYTE (setreg),
1907 GET_MODE (setreg));
1908 else
1909 offset -= (SUBREG_BYTE (setreg)
1910 / REGMODE_NATURAL_SIZE (GET_MODE (setreg)));
1913 setreg = subreg;
1916 if (!REG_P (setreg))
1917 return 0;
1919 sreg = REGNO (setreg);
1920 if (sreg < FIRST_PSEUDO_REGISTER)
1921 ssize = hard_regno_nregs[sreg][GET_MODE (setreg)];
1922 else
1923 ssize = ((GET_MODE_SIZE (GET_MODE (setreg))
1924 + (REGMODE_NATURAL_SIZE (GET_MODE (setreg)) - 1))
1925 / REGMODE_NATURAL_SIZE (GET_MODE (setreg)));
1927 /* If UREG is a pseudo-register that hasn't already been assigned a
1928 quantity number, it means that it is not local to this block or dies
1929 more than once. In either event, we can't do anything with it. */
1930 if ((ureg >= FIRST_PSEUDO_REGISTER && reg_qty[ureg] < 0)
1931 /* Do not combine registers unless one fits within the other. */
1932 || (offset > 0 && usize + offset > ssize)
1933 || (offset < 0 && usize + offset < ssize)
1934 /* Do not combine with a smaller already-assigned object
1935 if that smaller object is already combined with something bigger. */
1936 || (ssize > usize && ureg >= FIRST_PSEUDO_REGISTER
1937 && usize < qty[reg_qty[ureg]].size)
1938 /* Can't combine if SREG is not a register we can allocate. */
1939 || (sreg >= FIRST_PSEUDO_REGISTER && reg_qty[sreg] == -1)
1940 /* Don't combine with a pseudo mentioned in a REG_NO_CONFLICT note.
1941 These have already been taken care of. This probably wouldn't
1942 combine anyway, but don't take any chances. */
1943 || (ureg >= FIRST_PSEUDO_REGISTER
1944 && find_reg_note (insn, REG_NO_CONFLICT, usedreg))
1945 /* Don't tie something to itself. In most cases it would make no
1946 difference, but it would screw up if the reg being tied to itself
1947 also dies in this insn. */
1948 || ureg == sreg
1949 /* Don't try to connect two different hardware registers. */
1950 || (ureg < FIRST_PSEUDO_REGISTER && sreg < FIRST_PSEUDO_REGISTER)
1951 /* Don't connect two different machine modes if they have different
1952 implications as to which registers may be used. */
1953 || !MODES_TIEABLE_P (GET_MODE (usedreg), GET_MODE (setreg)))
1954 return 0;
1956 /* Now, if UREG is a hard reg and SREG is a pseudo, record the hard reg in
1957 qty_phys_sugg for the pseudo instead of tying them.
1959 Return "failure" so that the lifespan of UREG is terminated here;
1960 that way the two lifespans will be disjoint and nothing will prevent
1961 the pseudo reg from being given this hard reg. */
1963 if (ureg < FIRST_PSEUDO_REGISTER)
1965 /* Allocate a quantity number so we have a place to put our
1966 suggestions. */
1967 if (reg_qty[sreg] == -2)
1968 reg_is_born (setreg, 2 * insn_number);
1970 if (reg_qty[sreg] >= 0)
1972 if (may_save_copy
1973 && ! TEST_HARD_REG_BIT (qty_phys_copy_sugg[reg_qty[sreg]], ureg))
1975 SET_HARD_REG_BIT (qty_phys_copy_sugg[reg_qty[sreg]], ureg);
1976 qty_phys_num_copy_sugg[reg_qty[sreg]]++;
1978 else if (! TEST_HARD_REG_BIT (qty_phys_sugg[reg_qty[sreg]], ureg))
1980 SET_HARD_REG_BIT (qty_phys_sugg[reg_qty[sreg]], ureg);
1981 qty_phys_num_sugg[reg_qty[sreg]]++;
1984 return 0;
1987 /* Similarly for SREG a hard register and UREG a pseudo register. */
1989 if (sreg < FIRST_PSEUDO_REGISTER)
1991 if (may_save_copy
1992 && ! TEST_HARD_REG_BIT (qty_phys_copy_sugg[reg_qty[ureg]], sreg))
1994 SET_HARD_REG_BIT (qty_phys_copy_sugg[reg_qty[ureg]], sreg);
1995 qty_phys_num_copy_sugg[reg_qty[ureg]]++;
1997 else if (! TEST_HARD_REG_BIT (qty_phys_sugg[reg_qty[ureg]], sreg))
1999 SET_HARD_REG_BIT (qty_phys_sugg[reg_qty[ureg]], sreg);
2000 qty_phys_num_sugg[reg_qty[ureg]]++;
2002 return 0;
2005 /* At this point we know that SREG and UREG are both pseudos.
2006 Do nothing if SREG already has a quantity or is a register that we
2007 don't allocate. */
2008 if (reg_qty[sreg] >= -1
2009 /* If we are not going to let any regs live across calls,
2010 don't tie a call-crossing reg to a non-call-crossing reg. */
2011 || (current_function_has_nonlocal_label
2012 && ((REG_N_CALLS_CROSSED (ureg) > 0)
2013 != (REG_N_CALLS_CROSSED (sreg) > 0))))
2014 return 0;
2016 /* We don't already know about SREG, so tie it to UREG
2017 if this is the last use of UREG, provided the classes they want
2018 are compatible. */
2020 if ((already_dead || find_regno_note (insn, REG_DEAD, ureg))
2021 && reg_meets_class_p (sreg, qty[reg_qty[ureg]].min_class))
2023 /* Add SREG to UREG's quantity. */
2024 sqty = reg_qty[ureg];
2025 reg_qty[sreg] = sqty;
2026 reg_offset[sreg] = reg_offset[ureg] + offset;
2027 reg_next_in_qty[sreg] = qty[sqty].first_reg;
2028 qty[sqty].first_reg = sreg;
2030 /* If SREG's reg class is smaller, set qty[SQTY].min_class. */
2031 update_qty_class (sqty, sreg);
2033 /* Update info about quantity SQTY. */
2034 qty[sqty].n_calls_crossed += REG_N_CALLS_CROSSED (sreg);
2035 qty[sqty].freq_calls_crossed += REG_FREQ_CALLS_CROSSED (sreg);
2036 qty[sqty].n_throwing_calls_crossed
2037 += REG_N_THROWING_CALLS_CROSSED (sreg);
2038 qty[sqty].n_refs += REG_N_REFS (sreg);
2039 qty[sqty].freq += REG_FREQ (sreg);
2040 if (usize < ssize)
2042 int i;
2044 for (i = qty[sqty].first_reg; i >= 0; i = reg_next_in_qty[i])
2045 reg_offset[i] -= offset;
2047 qty[sqty].size = ssize;
2048 qty[sqty].mode = GET_MODE (setreg);
2051 else
2052 return 0;
2054 return 1;
2057 /* Return 1 if the preferred class of REG allows it to be tied
2058 to a quantity or register whose class is CLASS.
2059 True if REG's reg class either contains or is contained in CLASS. */
2061 static int
2062 reg_meets_class_p (int reg, enum reg_class class)
2064 enum reg_class rclass = reg_preferred_class (reg);
2065 return (reg_class_subset_p (rclass, class)
2066 || reg_class_subset_p (class, rclass));
2069 /* Update the class of QTYNO assuming that REG is being tied to it. */
2071 static void
2072 update_qty_class (int qtyno, int reg)
2074 enum reg_class rclass = reg_preferred_class (reg);
2075 if (reg_class_subset_p (rclass, qty[qtyno].min_class))
2076 qty[qtyno].min_class = rclass;
2078 rclass = reg_alternate_class (reg);
2079 if (reg_class_subset_p (rclass, qty[qtyno].alternate_class))
2080 qty[qtyno].alternate_class = rclass;
2083 /* Handle something which alters the value of an rtx REG.
2085 REG is whatever is set or clobbered. SETTER is the rtx that
2086 is modifying the register.
2088 If it is not really a register, we do nothing.
2089 The file-global variables `this_insn' and `this_insn_number'
2090 carry info from `block_alloc'. */
2092 static void
2093 reg_is_set (rtx reg, const_rtx setter, void *data ATTRIBUTE_UNUSED)
2095 /* Note that note_stores will only pass us a SUBREG if it is a SUBREG of
2096 a hard register. These may actually not exist any more. */
2098 if (GET_CODE (reg) != SUBREG
2099 && !REG_P (reg))
2100 return;
2102 /* Mark this register as being born. If it is used in a CLOBBER, mark
2103 it as being born halfway between the previous insn and this insn so that
2104 it conflicts with our inputs but not the outputs of the previous insn. */
2106 reg_is_born (reg, 2 * this_insn_number - (GET_CODE (setter) == CLOBBER));
2109 /* Handle beginning of the life of register REG.
2110 BIRTH is the index at which this is happening. */
2112 static void
2113 reg_is_born (rtx reg, int birth)
2115 int regno;
2117 if (GET_CODE (reg) == SUBREG)
2119 regno = REGNO (SUBREG_REG (reg));
2120 if (regno < FIRST_PSEUDO_REGISTER)
2121 regno = subreg_regno (reg);
2123 else
2124 regno = REGNO (reg);
2126 if (regno < FIRST_PSEUDO_REGISTER)
2128 mark_life (regno, GET_MODE (reg), 1);
2130 /* If the register was to have been born earlier that the present
2131 insn, mark it as live where it is actually born. */
2132 if (birth < 2 * this_insn_number)
2133 post_mark_life (regno, GET_MODE (reg), 1, birth, 2 * this_insn_number);
2135 else
2137 if (reg_qty[regno] == -2)
2138 alloc_qty (regno, GET_MODE (reg), PSEUDO_REGNO_SIZE (regno), birth);
2140 /* If this register has a quantity number, show that it isn't dead. */
2141 if (reg_qty[regno] >= 0)
2142 qty[reg_qty[regno]].death = -1;
2146 /* Record the death of REG in the current insn. If OUTPUT_P is nonzero,
2147 REG is an output that is dying (i.e., it is never used), otherwise it
2148 is an input (the normal case).
2149 If OUTPUT_P is 1, then we extend the life past the end of this insn. */
2151 static void
2152 wipe_dead_reg (rtx reg, int output_p)
2154 int regno = REGNO (reg);
2156 /* If this insn has multiple results,
2157 and the dead reg is used in one of the results,
2158 extend its life to after this insn,
2159 so it won't get allocated together with any other result of this insn.
2161 It is unsafe to use !single_set here since it will ignore an unused
2162 output. Just because an output is unused does not mean the compiler
2163 can assume the side effect will not occur. Consider if REG appears
2164 in the address of an output and we reload the output. If we allocate
2165 REG to the same hard register as an unused output we could set the hard
2166 register before the output reload insn. */
2167 if (GET_CODE (PATTERN (this_insn)) == PARALLEL
2168 && multiple_sets (this_insn))
2170 int i;
2171 for (i = XVECLEN (PATTERN (this_insn), 0) - 1; i >= 0; i--)
2173 rtx set = XVECEXP (PATTERN (this_insn), 0, i);
2174 if (GET_CODE (set) == SET
2175 && !REG_P (SET_DEST (set))
2176 && !rtx_equal_p (reg, SET_DEST (set))
2177 && reg_overlap_mentioned_p (reg, SET_DEST (set)))
2178 output_p = 1;
2182 /* If this register is used in an auto-increment address, then extend its
2183 life to after this insn, so that it won't get allocated together with
2184 the result of this insn. */
2185 if (! output_p && find_regno_note (this_insn, REG_INC, regno))
2186 output_p = 1;
2188 if (regno < FIRST_PSEUDO_REGISTER)
2190 mark_life (regno, GET_MODE (reg), 0);
2192 /* If a hard register is dying as an output, mark it as in use at
2193 the beginning of this insn (the above statement would cause this
2194 not to happen). */
2195 if (output_p)
2196 post_mark_life (regno, GET_MODE (reg), 1,
2197 2 * this_insn_number, 2 * this_insn_number + 1);
2200 else if (reg_qty[regno] >= 0)
2201 qty[reg_qty[regno]].death = 2 * this_insn_number + output_p;
2204 /* Find a block of SIZE words of hard regs in reg_class CLASS
2205 that can hold something of machine-mode MODE
2206 (but actually we test only the first of the block for holding MODE)
2207 and still free between insn BORN_INDEX and insn DEAD_INDEX,
2208 and return the number of the first of them.
2209 Return -1 if such a block cannot be found.
2210 If QTYNO crosses calls, insist on a register preserved by calls,
2211 unless ACCEPT_CALL_CLOBBERED is nonzero.
2213 If JUST_TRY_SUGGESTED is nonzero, only try to see if the suggested
2214 register is available. If not, return -1. */
2216 static int
2217 find_free_reg (enum reg_class class, enum machine_mode mode, int qtyno,
2218 int accept_call_clobbered, int just_try_suggested,
2219 int born_index, int dead_index)
2221 int i, ins;
2222 HARD_REG_SET first_used, used;
2223 #ifdef ELIMINABLE_REGS
2224 static const struct {const int from, to; } eliminables[] = ELIMINABLE_REGS;
2225 #endif
2227 /* Validate our parameters. */
2228 gcc_assert (born_index >= 0 && born_index <= dead_index);
2230 /* Don't let a pseudo live in a reg across a function call
2231 if we might get a nonlocal goto. */
2232 if (current_function_has_nonlocal_label
2233 && qty[qtyno].n_calls_crossed > 0)
2234 return -1;
2236 if (accept_call_clobbered)
2237 COPY_HARD_REG_SET (used, call_fixed_reg_set);
2238 else if (qty[qtyno].n_calls_crossed == 0)
2239 COPY_HARD_REG_SET (used, fixed_reg_set);
2240 else
2241 COPY_HARD_REG_SET (used, call_used_reg_set);
2243 if (accept_call_clobbered)
2244 IOR_HARD_REG_SET (used, losing_caller_save_reg_set);
2246 for (ins = born_index; ins < dead_index; ins++)
2247 IOR_HARD_REG_SET (used, regs_live_at[ins]);
2249 IOR_COMPL_HARD_REG_SET (used, reg_class_contents[(int) class]);
2251 /* Don't use the frame pointer reg in local-alloc even if
2252 we may omit the frame pointer, because if we do that and then we
2253 need a frame pointer, reload won't know how to move the pseudo
2254 to another hard reg. It can move only regs made by global-alloc.
2256 This is true of any register that can be eliminated. */
2257 #ifdef ELIMINABLE_REGS
2258 for (i = 0; i < (int) ARRAY_SIZE (eliminables); i++)
2259 SET_HARD_REG_BIT (used, eliminables[i].from);
2260 #if FRAME_POINTER_REGNUM != HARD_FRAME_POINTER_REGNUM
2261 /* If FRAME_POINTER_REGNUM is not a real register, then protect the one
2262 that it might be eliminated into. */
2263 SET_HARD_REG_BIT (used, HARD_FRAME_POINTER_REGNUM);
2264 #endif
2265 #else
2266 SET_HARD_REG_BIT (used, FRAME_POINTER_REGNUM);
2267 #endif
2269 #ifdef CANNOT_CHANGE_MODE_CLASS
2270 cannot_change_mode_set_regs (&used, mode, qty[qtyno].first_reg);
2271 #endif
2273 /* Normally, the registers that can be used for the first register in
2274 a multi-register quantity are the same as those that can be used for
2275 subsequent registers. However, if just trying suggested registers,
2276 restrict our consideration to them. If there are copy-suggested
2277 register, try them. Otherwise, try the arithmetic-suggested
2278 registers. */
2279 COPY_HARD_REG_SET (first_used, used);
2281 if (just_try_suggested)
2283 if (qty_phys_num_copy_sugg[qtyno] != 0)
2284 IOR_COMPL_HARD_REG_SET (first_used, qty_phys_copy_sugg[qtyno]);
2285 else
2286 IOR_COMPL_HARD_REG_SET (first_used, qty_phys_sugg[qtyno]);
2289 /* If at least one would be suitable, test each hard reg. */
2290 if (!hard_reg_set_subset_p (reg_class_contents[(int) ALL_REGS], first_used))
2291 for (i = 0; i < FIRST_PSEUDO_REGISTER; i++)
2293 #ifdef REG_ALLOC_ORDER
2294 int regno = reg_alloc_order[i];
2295 #else
2296 int regno = i;
2297 #endif
2298 if (!TEST_HARD_REG_BIT (first_used, regno)
2299 && HARD_REGNO_MODE_OK (regno, mode)
2300 && (qty[qtyno].n_calls_crossed == 0
2301 || accept_call_clobbered
2302 || !HARD_REGNO_CALL_PART_CLOBBERED (regno, mode)))
2304 int j;
2305 int size1 = hard_regno_nregs[regno][mode];
2306 j = 1;
2307 while (j < size1 && !TEST_HARD_REG_BIT (used, regno + j))
2308 j++;
2309 if (j == size1)
2311 /* Mark that this register is in use between its birth
2312 and death insns. */
2313 post_mark_life (regno, mode, 1, born_index, dead_index);
2314 return regno;
2316 #ifndef REG_ALLOC_ORDER
2317 /* Skip starting points we know will lose. */
2318 i += j;
2319 #endif
2323 /* If we are just trying suggested register, we have just tried copy-
2324 suggested registers, and there are arithmetic-suggested registers,
2325 try them. */
2327 /* If it would be profitable to allocate a call-clobbered register
2328 and save and restore it around calls, do that. */
2329 if (just_try_suggested && qty_phys_num_copy_sugg[qtyno] != 0
2330 && qty_phys_num_sugg[qtyno] != 0)
2332 /* Don't try the copy-suggested regs again. */
2333 qty_phys_num_copy_sugg[qtyno] = 0;
2334 return find_free_reg (class, mode, qtyno, accept_call_clobbered, 1,
2335 born_index, dead_index);
2338 /* We need not check to see if the current function has nonlocal
2339 labels because we don't put any pseudos that are live over calls in
2340 registers in that case. Avoid putting pseudos crossing calls that
2341 might throw into call used registers. */
2343 if (! accept_call_clobbered
2344 && flag_caller_saves
2345 && ! just_try_suggested
2346 && qty[qtyno].n_calls_crossed != 0
2347 && qty[qtyno].n_throwing_calls_crossed == 0
2348 && CALLER_SAVE_PROFITABLE (optimize_size ? qty[qtyno].n_refs : qty[qtyno].freq,
2349 optimize_size ? qty[qtyno].n_calls_crossed
2350 : qty[qtyno].freq_calls_crossed))
2352 i = find_free_reg (class, mode, qtyno, 1, 0, born_index, dead_index);
2353 if (i >= 0)
2354 caller_save_needed = 1;
2355 return i;
2357 return -1;
2360 /* Mark that REGNO with machine-mode MODE is live starting from the current
2361 insn (if LIFE is nonzero) or dead starting at the current insn (if LIFE
2362 is zero). */
2364 static void
2365 mark_life (int regno, enum machine_mode mode, int life)
2367 if (life)
2368 add_to_hard_reg_set (&regs_live, mode, regno);
2369 else
2370 remove_from_hard_reg_set (&regs_live, mode, regno);
2373 /* Mark register number REGNO (with machine-mode MODE) as live (if LIFE
2374 is nonzero) or dead (if LIFE is zero) from insn number BIRTH (inclusive)
2375 to insn number DEATH (exclusive). */
2377 static void
2378 post_mark_life (int regno, enum machine_mode mode, int life, int birth,
2379 int death)
2381 HARD_REG_SET this_reg;
2383 CLEAR_HARD_REG_SET (this_reg);
2384 add_to_hard_reg_set (&this_reg, mode, regno);
2386 if (life)
2387 while (birth < death)
2389 IOR_HARD_REG_SET (regs_live_at[birth], this_reg);
2390 birth++;
2392 else
2393 while (birth < death)
2395 AND_COMPL_HARD_REG_SET (regs_live_at[birth], this_reg);
2396 birth++;
2400 /* INSN is the CLOBBER insn that starts a REG_NO_NOCONFLICT block, R0
2401 is the register being clobbered, and R1 is a register being used in
2402 the equivalent expression.
2404 If R1 dies in the block and has a REG_NO_CONFLICT note on every insn
2405 in which it is used, return 1.
2407 Otherwise, return 0. */
2409 static int
2410 no_conflict_p (rtx insn, rtx r0 ATTRIBUTE_UNUSED, rtx r1)
2412 int ok = 0;
2413 rtx note = find_reg_note (insn, REG_LIBCALL, NULL_RTX);
2414 rtx p, last;
2416 /* If R1 is a hard register, return 0 since we handle this case
2417 when we scan the insns that actually use it. */
2419 if (note == 0
2420 || (REG_P (r1) && REGNO (r1) < FIRST_PSEUDO_REGISTER)
2421 || (GET_CODE (r1) == SUBREG && REG_P (SUBREG_REG (r1))
2422 && REGNO (SUBREG_REG (r1)) < FIRST_PSEUDO_REGISTER))
2423 return 0;
2425 last = XEXP (note, 0);
2427 for (p = NEXT_INSN (insn); p && p != last; p = NEXT_INSN (p))
2428 if (INSN_P (p))
2430 if (find_reg_note (p, REG_DEAD, r1))
2431 ok = 1;
2433 /* There must be a REG_NO_CONFLICT note on every insn, otherwise
2434 some earlier optimization pass has inserted instructions into
2435 the sequence, and it is not safe to perform this optimization.
2436 Note that emit_no_conflict_block always ensures that this is
2437 true when these sequences are created. */
2438 if (! find_reg_note (p, REG_NO_CONFLICT, r1))
2439 return 0;
2442 return ok;
2445 /* Return the number of alternatives for which the constraint string P
2446 indicates that the operand must be equal to operand 0 and that no register
2447 is acceptable. */
2449 static int
2450 requires_inout (const char *p)
2452 char c;
2453 int found_zero = 0;
2454 int reg_allowed = 0;
2455 int num_matching_alts = 0;
2456 int len;
2458 for ( ; (c = *p); p += len)
2460 len = CONSTRAINT_LEN (c, p);
2461 switch (c)
2463 case '=': case '+': case '?':
2464 case '#': case '&': case '!':
2465 case '*': case '%':
2466 case 'm': case '<': case '>': case 'V': case 'o':
2467 case 'E': case 'F': case 'G': case 'H':
2468 case 's': case 'i': case 'n':
2469 case 'I': case 'J': case 'K': case 'L':
2470 case 'M': case 'N': case 'O': case 'P':
2471 case 'X':
2472 /* These don't say anything we care about. */
2473 break;
2475 case ',':
2476 if (found_zero && ! reg_allowed)
2477 num_matching_alts++;
2479 found_zero = reg_allowed = 0;
2480 break;
2482 case '0':
2483 found_zero = 1;
2484 break;
2486 case '1': case '2': case '3': case '4': case '5':
2487 case '6': case '7': case '8': case '9':
2488 /* Skip the balance of the matching constraint. */
2490 p++;
2491 while (ISDIGIT (*p));
2492 len = 0;
2493 break;
2495 default:
2496 if (REG_CLASS_FROM_CONSTRAINT (c, p) == NO_REGS
2497 && !EXTRA_ADDRESS_CONSTRAINT (c, p))
2498 break;
2499 /* Fall through. */
2500 case 'p':
2501 case 'g': case 'r':
2502 reg_allowed = 1;
2503 break;
2507 if (found_zero && ! reg_allowed)
2508 num_matching_alts++;
2510 return num_matching_alts;
2513 void
2514 dump_local_alloc (FILE *file)
2516 int i;
2517 for (i = FIRST_PSEUDO_REGISTER; i < max_regno; i++)
2518 if (reg_renumber[i] != -1)
2519 fprintf (file, ";; Register %d in %d.\n", i, reg_renumber[i]);
2522 #ifdef STACK_REGS
2523 static void
2524 find_stack_regs (void)
2526 bitmap stack_regs = BITMAP_ALLOC (NULL);
2527 int i;
2528 HARD_REG_SET stack_hard_regs, used;
2529 basic_block bb;
2531 /* Any register that MAY be allocated to a register stack (like the
2532 387) is treated poorly. Each such register is marked as being
2533 live everywhere. This keeps the register allocator and the
2534 subsequent passes from doing anything useful with these values.
2536 FIXME: This seems like an incredibly poor idea. */
2538 CLEAR_HARD_REG_SET (stack_hard_regs);
2539 for (i = FIRST_STACK_REG; i <= LAST_STACK_REG; i++)
2540 SET_HARD_REG_BIT (stack_hard_regs, i);
2542 for (i = FIRST_PSEUDO_REGISTER; i < max_regno; i++)
2544 COPY_HARD_REG_SET (used, reg_class_contents[reg_preferred_class (i)]);
2545 IOR_HARD_REG_SET (used, reg_class_contents[reg_alternate_class (i)]);
2546 AND_HARD_REG_SET (used, stack_hard_regs);
2547 if (!hard_reg_set_empty_p (used))
2548 bitmap_set_bit (stack_regs, i);
2551 if (dump_file)
2552 bitmap_print (dump_file, stack_regs, "stack regs:", "\n");
2554 FOR_EACH_BB (bb)
2556 bitmap_ior_into (DF_LIVE_IN (bb), stack_regs);
2557 bitmap_and_into (DF_LIVE_IN (bb), DF_LR_IN (bb));
2558 bitmap_ior_into (DF_LIVE_OUT (bb), stack_regs);
2559 bitmap_and_into (DF_LIVE_OUT (bb), DF_LR_OUT (bb));
2561 BITMAP_FREE (stack_regs);
2563 #endif
2565 /* Run old register allocator. Return TRUE if we must exit
2566 rest_of_compilation upon return. */
2567 static unsigned int
2568 rest_of_handle_local_alloc (void)
2570 int rebuild_notes;
2571 int max_regno = max_reg_num ();
2573 df_note_add_problem ();
2575 if (optimize == 1)
2577 df_live_add_problem ();
2578 df_live_set_all_dirty ();
2580 #ifdef ENABLE_CHECKING
2581 df->changeable_flags |= DF_VERIFY_SCHEDULED;
2582 #endif
2583 df_analyze ();
2584 #ifdef STACK_REGS
2585 if (optimize)
2586 find_stack_regs ();
2587 #endif
2588 regstat_init_n_sets_and_refs ();
2589 regstat_compute_ri ();
2591 /* If we are not optimizing, then this is the only place before
2592 register allocation where dataflow is done. And that is needed
2593 to generate these warnings. */
2594 if (warn_clobbered)
2595 generate_setjmp_warnings ();
2597 /* Determine if the current function is a leaf before running reload
2598 since this can impact optimizations done by the prologue and
2599 epilogue thus changing register elimination offsets. */
2600 current_function_is_leaf = leaf_function_p ();
2602 /* And the reg_equiv_memory_loc array. */
2603 VEC_safe_grow (rtx, gc, reg_equiv_memory_loc_vec, max_regno);
2604 memset (VEC_address (rtx, reg_equiv_memory_loc_vec), 0,
2605 sizeof (rtx) * max_regno);
2606 reg_equiv_memory_loc = VEC_address (rtx, reg_equiv_memory_loc_vec);
2608 allocate_initial_values (reg_equiv_memory_loc);
2610 regclass (get_insns (), max_regno);
2611 rebuild_notes = local_alloc ();
2613 /* Local allocation may have turned an indirect jump into a direct
2614 jump. If so, we must rebuild the JUMP_LABEL fields of jumping
2615 instructions. */
2616 if (rebuild_notes)
2618 timevar_push (TV_JUMP);
2620 rebuild_jump_labels (get_insns ());
2621 purge_all_dead_edges ();
2622 timevar_pop (TV_JUMP);
2625 if (dump_file && (dump_flags & TDF_DETAILS))
2627 timevar_push (TV_DUMP);
2628 dump_flow_info (dump_file, dump_flags);
2629 dump_local_alloc (dump_file);
2630 timevar_pop (TV_DUMP);
2632 return 0;
2635 struct tree_opt_pass pass_local_alloc =
2637 "lreg", /* name */
2638 NULL, /* gate */
2639 rest_of_handle_local_alloc, /* execute */
2640 NULL, /* sub */
2641 NULL, /* next */
2642 0, /* static_pass_number */
2643 TV_LOCAL_ALLOC, /* tv_id */
2644 0, /* properties_required */
2645 0, /* properties_provided */
2646 0, /* properties_destroyed */
2647 0, /* todo_flags_start */
2648 TODO_dump_func |
2649 TODO_ggc_collect, /* todo_flags_finish */
2650 'l' /* letter */