Daily bump.
[official-gcc.git] / gcc / fwprop.c
blob1e0327230bbf631c720f4f4afa91466b9ab69c91
1 /* RTL-based forward propagation pass for GNU compiler.
2 Copyright (C) 2005, 2006, 2007 Free Software Foundation, Inc.
3 Contributed by Paolo Bonzini and Steven Bosscher.
5 This file is part of GCC.
7 GCC is free software; you can redistribute it and/or modify it under
8 the terms of the GNU General Public License as published by the Free
9 Software Foundation; either version 3, or (at your option) any later
10 version.
12 GCC is distributed in the hope that it will be useful, but WITHOUT ANY
13 WARRANTY; without even the implied warranty of MERCHANTABILITY or
14 FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License
15 for more details.
17 You should have received a copy of the GNU General Public License
18 along with GCC; see the file COPYING3. If not see
19 <http://www.gnu.org/licenses/>. */
21 #include "config.h"
22 #include "system.h"
23 #include "coretypes.h"
24 #include "tm.h"
25 #include "toplev.h"
27 #include "timevar.h"
28 #include "rtl.h"
29 #include "tm_p.h"
30 #include "emit-rtl.h"
31 #include "insn-config.h"
32 #include "recog.h"
33 #include "flags.h"
34 #include "obstack.h"
35 #include "basic-block.h"
36 #include "output.h"
37 #include "df.h"
38 #include "target.h"
39 #include "cfgloop.h"
40 #include "tree-pass.h"
43 /* This pass does simple forward propagation and simplification when an
44 operand of an insn can only come from a single def. This pass uses
45 df.c, so it is global. However, we only do limited analysis of
46 available expressions.
48 1) The pass tries to propagate the source of the def into the use,
49 and checks if the result is independent of the substituted value.
50 For example, the high word of a (zero_extend:DI (reg:SI M)) is always
51 zero, independent of the source register.
53 In particular, we propagate constants into the use site. Sometimes
54 RTL expansion did not put the constant in the same insn on purpose,
55 to satisfy a predicate, and the result will fail to be recognized;
56 but this happens rarely and in this case we can still create a
57 REG_EQUAL note. For multi-word operations, this
59 (set (subreg:SI (reg:DI 120) 0) (const_int 0))
60 (set (subreg:SI (reg:DI 120) 4) (const_int -1))
61 (set (subreg:SI (reg:DI 122) 0)
62 (ior:SI (subreg:SI (reg:DI 119) 0) (subreg:SI (reg:DI 120) 0)))
63 (set (subreg:SI (reg:DI 122) 4)
64 (ior:SI (subreg:SI (reg:DI 119) 4) (subreg:SI (reg:DI 120) 4)))
66 can be simplified to the much simpler
68 (set (subreg:SI (reg:DI 122) 0) (subreg:SI (reg:DI 119)))
69 (set (subreg:SI (reg:DI 122) 4) (const_int -1))
71 This particular propagation is also effective at putting together
72 complex addressing modes. We are more aggressive inside MEMs, in
73 that all definitions are propagated if the use is in a MEM; if the
74 result is a valid memory address we check address_cost to decide
75 whether the substitution is worthwhile.
77 2) The pass propagates register copies. This is not as effective as
78 the copy propagation done by CSE's canon_reg, which works by walking
79 the instruction chain, it can help the other transformations.
81 We should consider removing this optimization, and instead reorder the
82 RTL passes, because GCSE does this transformation too. With some luck,
83 the CSE pass at the end of rest_of_handle_gcse could also go away.
85 3) The pass looks for paradoxical subregs that are actually unnecessary.
86 Things like this:
88 (set (reg:QI 120) (subreg:QI (reg:SI 118) 0))
89 (set (reg:QI 121) (subreg:QI (reg:SI 119) 0))
90 (set (reg:SI 122) (plus:SI (subreg:SI (reg:QI 120) 0)
91 (subreg:SI (reg:QI 121) 0)))
93 are very common on machines that can only do word-sized operations.
94 For each use of a paradoxical subreg (subreg:WIDER (reg:NARROW N) 0),
95 if it has a single def and it is (subreg:NARROW (reg:WIDE M) 0),
96 we can replace the paradoxical subreg with simply (reg:WIDE M). The
97 above will simplify this to
99 (set (reg:QI 120) (subreg:QI (reg:SI 118) 0))
100 (set (reg:QI 121) (subreg:QI (reg:SI 119) 0))
101 (set (reg:SI 122) (plus:SI (reg:SI 118) (reg:SI 119)))
103 where the first two insns are now dead. */
106 static int num_changes;
109 /* Do not try to replace constant addresses or addresses of local and
110 argument slots. These MEM expressions are made only once and inserted
111 in many instructions, as well as being used to control symbol table
112 output. It is not safe to clobber them.
114 There are some uncommon cases where the address is already in a register
115 for some reason, but we cannot take advantage of that because we have
116 no easy way to unshare the MEM. In addition, looking up all stack
117 addresses is costly. */
119 static bool
120 can_simplify_addr (rtx addr)
122 rtx reg;
124 if (CONSTANT_ADDRESS_P (addr))
125 return false;
127 if (GET_CODE (addr) == PLUS)
128 reg = XEXP (addr, 0);
129 else
130 reg = addr;
132 return (!REG_P (reg)
133 || (REGNO (reg) != FRAME_POINTER_REGNUM
134 && REGNO (reg) != HARD_FRAME_POINTER_REGNUM
135 && REGNO (reg) != ARG_POINTER_REGNUM));
138 /* Returns a canonical version of X for the address, from the point of view,
139 that all multiplications are represented as MULT instead of the multiply
140 by a power of 2 being represented as ASHIFT.
142 Every ASHIFT we find has been made by simplify_gen_binary and was not
143 there before, so it is not shared. So we can do this in place. */
145 static void
146 canonicalize_address (rtx x)
148 for (;;)
149 switch (GET_CODE (x))
151 case ASHIFT:
152 if (GET_CODE (XEXP (x, 1)) == CONST_INT
153 && INTVAL (XEXP (x, 1)) < GET_MODE_BITSIZE (GET_MODE (x))
154 && INTVAL (XEXP (x, 1)) >= 0)
156 HOST_WIDE_INT shift = INTVAL (XEXP (x, 1));
157 PUT_CODE (x, MULT);
158 XEXP (x, 1) = gen_int_mode ((HOST_WIDE_INT) 1 << shift,
159 GET_MODE (x));
162 x = XEXP (x, 0);
163 break;
165 case PLUS:
166 if (GET_CODE (XEXP (x, 0)) == PLUS
167 || GET_CODE (XEXP (x, 0)) == ASHIFT
168 || GET_CODE (XEXP (x, 0)) == CONST)
169 canonicalize_address (XEXP (x, 0));
171 x = XEXP (x, 1);
172 break;
174 case CONST:
175 x = XEXP (x, 0);
176 break;
178 default:
179 return;
183 /* OLD is a memory address. Return whether it is good to use NEW instead,
184 for a memory access in the given MODE. */
186 static bool
187 should_replace_address (rtx old, rtx new, enum machine_mode mode)
189 int gain;
191 if (rtx_equal_p (old, new) || !memory_address_p (mode, new))
192 return false;
194 /* Copy propagation is always ok. */
195 if (REG_P (old) && REG_P (new))
196 return true;
198 /* Prefer the new address if it is less expensive. */
199 gain = address_cost (old, mode) - address_cost (new, mode);
201 /* If the addresses have equivalent cost, prefer the new address
202 if it has the highest `rtx_cost'. That has the potential of
203 eliminating the most insns without additional costs, and it
204 is the same that cse.c used to do. */
205 if (gain == 0)
206 gain = rtx_cost (new, SET) - rtx_cost (old, SET);
208 return (gain > 0);
211 /* Replace all occurrences of OLD in *PX with NEW and try to simplify the
212 resulting expression. Replace *PX with a new RTL expression if an
213 occurrence of OLD was found.
215 If CAN_APPEAR is true, we always return true; if it is false, we
216 can return false if, for at least one occurrence OLD, we failed to
217 collapse the result to a constant. For example, (mult:M (reg:M A)
218 (minus:M (reg:M B) (reg:M A))) may collapse to zero if replacing
219 (reg:M B) with (reg:M A).
221 CAN_APPEAR is disregarded inside MEMs: in that case, we always return
222 true if the simplification is a cheaper and valid memory address.
224 This is only a wrapper around simplify-rtx.c: do not add any pattern
225 matching code here. (The sole exception is the handling of LO_SUM, but
226 that is because there is no simplify_gen_* function for LO_SUM). */
228 static bool
229 propagate_rtx_1 (rtx *px, rtx old, rtx new, bool can_appear)
231 rtx x = *px, tem = NULL_RTX, op0, op1, op2;
232 enum rtx_code code = GET_CODE (x);
233 enum machine_mode mode = GET_MODE (x);
234 enum machine_mode op_mode;
235 bool valid_ops = true;
237 /* If X is OLD_RTX, return NEW_RTX. Otherwise, if this is an expression,
238 try to build a new expression from recursive substitution. */
240 if (x == old)
242 *px = new;
243 return can_appear;
246 switch (GET_RTX_CLASS (code))
248 case RTX_UNARY:
249 op0 = XEXP (x, 0);
250 op_mode = GET_MODE (op0);
251 valid_ops &= propagate_rtx_1 (&op0, old, new, can_appear);
252 if (op0 == XEXP (x, 0))
253 return true;
254 tem = simplify_gen_unary (code, mode, op0, op_mode);
255 break;
257 case RTX_BIN_ARITH:
258 case RTX_COMM_ARITH:
259 op0 = XEXP (x, 0);
260 op1 = XEXP (x, 1);
261 valid_ops &= propagate_rtx_1 (&op0, old, new, can_appear);
262 valid_ops &= propagate_rtx_1 (&op1, old, new, can_appear);
263 if (op0 == XEXP (x, 0) && op1 == XEXP (x, 1))
264 return true;
265 tem = simplify_gen_binary (code, mode, op0, op1);
266 break;
268 case RTX_COMPARE:
269 case RTX_COMM_COMPARE:
270 op0 = XEXP (x, 0);
271 op1 = XEXP (x, 1);
272 op_mode = GET_MODE (op0) != VOIDmode ? GET_MODE (op0) : GET_MODE (op1);
273 valid_ops &= propagate_rtx_1 (&op0, old, new, can_appear);
274 valid_ops &= propagate_rtx_1 (&op1, old, new, can_appear);
275 if (op0 == XEXP (x, 0) && op1 == XEXP (x, 1))
276 return true;
277 tem = simplify_gen_relational (code, mode, op_mode, op0, op1);
278 break;
280 case RTX_TERNARY:
281 case RTX_BITFIELD_OPS:
282 op0 = XEXP (x, 0);
283 op1 = XEXP (x, 1);
284 op2 = XEXP (x, 2);
285 op_mode = GET_MODE (op0);
286 valid_ops &= propagate_rtx_1 (&op0, old, new, can_appear);
287 valid_ops &= propagate_rtx_1 (&op1, old, new, can_appear);
288 valid_ops &= propagate_rtx_1 (&op2, old, new, can_appear);
289 if (op0 == XEXP (x, 0) && op1 == XEXP (x, 1) && op2 == XEXP (x, 2))
290 return true;
291 if (op_mode == VOIDmode)
292 op_mode = GET_MODE (op0);
293 tem = simplify_gen_ternary (code, mode, op_mode, op0, op1, op2);
294 break;
296 case RTX_EXTRA:
297 /* The only case we try to handle is a SUBREG. */
298 if (code == SUBREG)
300 op0 = XEXP (x, 0);
301 valid_ops &= propagate_rtx_1 (&op0, old, new, can_appear);
302 if (op0 == XEXP (x, 0))
303 return true;
304 tem = simplify_gen_subreg (mode, op0, GET_MODE (SUBREG_REG (x)),
305 SUBREG_BYTE (x));
307 break;
309 case RTX_OBJ:
310 if (code == MEM && x != new)
312 rtx new_op0;
313 op0 = XEXP (x, 0);
315 /* There are some addresses that we cannot work on. */
316 if (!can_simplify_addr (op0))
317 return true;
319 op0 = new_op0 = targetm.delegitimize_address (op0);
320 valid_ops &= propagate_rtx_1 (&new_op0, old, new, true);
322 /* Dismiss transformation that we do not want to carry on. */
323 if (!valid_ops
324 || new_op0 == op0
325 || !(GET_MODE (new_op0) == GET_MODE (op0)
326 || GET_MODE (new_op0) == VOIDmode))
327 return true;
329 canonicalize_address (new_op0);
331 /* Copy propagations are always ok. Otherwise check the costs. */
332 if (!(REG_P (old) && REG_P (new))
333 && !should_replace_address (op0, new_op0, GET_MODE (x)))
334 return true;
336 tem = replace_equiv_address_nv (x, new_op0);
339 else if (code == LO_SUM)
341 op0 = XEXP (x, 0);
342 op1 = XEXP (x, 1);
344 /* The only simplification we do attempts to remove references to op0
345 or make it constant -- in both cases, op0's invalidity will not
346 make the result invalid. */
347 propagate_rtx_1 (&op0, old, new, true);
348 valid_ops &= propagate_rtx_1 (&op1, old, new, can_appear);
349 if (op0 == XEXP (x, 0) && op1 == XEXP (x, 1))
350 return true;
352 /* (lo_sum (high x) x) -> x */
353 if (GET_CODE (op0) == HIGH && rtx_equal_p (XEXP (op0, 0), op1))
354 tem = op1;
355 else
356 tem = gen_rtx_LO_SUM (mode, op0, op1);
358 /* OP1 is likely not a legitimate address, otherwise there would have
359 been no LO_SUM. We want it to disappear if it is invalid, return
360 false in that case. */
361 return memory_address_p (mode, tem);
364 else if (code == REG)
366 if (rtx_equal_p (x, old))
368 *px = new;
369 return can_appear;
372 break;
374 default:
375 break;
378 /* No change, no trouble. */
379 if (tem == NULL_RTX)
380 return true;
382 *px = tem;
384 /* The replacement we made so far is valid, if all of the recursive
385 replacements were valid, or we could simplify everything to
386 a constant. */
387 return valid_ops || can_appear || CONSTANT_P (tem);
390 /* Replace all occurrences of OLD in X with NEW and try to simplify the
391 resulting expression (in mode MODE). Return a new expression if it is
392 a constant, otherwise X.
394 Simplifications where occurrences of NEW collapse to a constant are always
395 accepted. All simplifications are accepted if NEW is a pseudo too.
396 Otherwise, we accept simplifications that have a lower or equal cost. */
398 static rtx
399 propagate_rtx (rtx x, enum machine_mode mode, rtx old, rtx new)
401 rtx tem;
402 bool collapsed;
404 if (REG_P (new) && REGNO (new) < FIRST_PSEUDO_REGISTER)
405 return NULL_RTX;
407 new = copy_rtx (new);
409 tem = x;
410 collapsed = propagate_rtx_1 (&tem, old, new, REG_P (new) || CONSTANT_P (new));
411 if (tem == x || !collapsed)
412 return NULL_RTX;
414 /* gen_lowpart_common will not be able to process VOIDmode entities other
415 than CONST_INTs. */
416 if (GET_MODE (tem) == VOIDmode && GET_CODE (tem) != CONST_INT)
417 return NULL_RTX;
419 if (GET_MODE (tem) == VOIDmode)
420 tem = rtl_hooks.gen_lowpart_no_emit (mode, tem);
421 else
422 gcc_assert (GET_MODE (tem) == mode);
424 return tem;
430 /* Return true if the register from reference REF is killed
431 between FROM to (but not including) TO. */
433 static bool
434 local_ref_killed_between_p (struct df_ref * ref, rtx from, rtx to)
436 rtx insn;
438 for (insn = from; insn != to; insn = NEXT_INSN (insn))
440 struct df_ref **def_rec;
441 if (!INSN_P (insn))
442 continue;
444 for (def_rec = DF_INSN_DEFS (insn); *def_rec; def_rec++)
446 struct df_ref *def = *def_rec;
447 if (DF_REF_REGNO (ref) == DF_REF_REGNO (def))
448 return true;
451 return false;
455 /* Check if the given DEF is available in INSN. This would require full
456 computation of available expressions; we check only restricted conditions:
457 - if DEF is the sole definition of its register, go ahead;
458 - in the same basic block, we check for no definitions killing the
459 definition of DEF_INSN;
460 - if USE's basic block has DEF's basic block as the sole predecessor,
461 we check if the definition is killed after DEF_INSN or before
462 TARGET_INSN insn, in their respective basic blocks. */
463 static bool
464 use_killed_between (struct df_ref *use, rtx def_insn, rtx target_insn)
466 basic_block def_bb = BLOCK_FOR_INSN (def_insn);
467 basic_block target_bb = BLOCK_FOR_INSN (target_insn);
468 int regno;
469 struct df_ref * def;
471 /* In some obscure situations we can have a def reaching a use
472 that is _before_ the def. In other words the def does not
473 dominate the use even though the use and def are in the same
474 basic block. This can happen when a register may be used
475 uninitialized in a loop. In such cases, we must assume that
476 DEF is not available. */
477 if (def_bb == target_bb
478 ? DF_INSN_LUID (def_insn) >= DF_INSN_LUID (target_insn)
479 : !dominated_by_p (CDI_DOMINATORS, target_bb, def_bb))
480 return true;
482 /* Check if the reg in USE has only one definition. We already
483 know that this definition reaches use, or we wouldn't be here. */
484 regno = DF_REF_REGNO (use);
485 def = DF_REG_DEF_CHAIN (regno);
486 if (def && (def->next_reg == NULL))
487 return false;
489 /* Check locally if we are in the same basic block. */
490 if (def_bb == target_bb)
491 return local_ref_killed_between_p (use, def_insn, target_insn);
493 /* Finally, if DEF_BB is the sole predecessor of TARGET_BB. */
494 if (single_pred_p (target_bb)
495 && single_pred (target_bb) == def_bb)
497 struct df_ref *x;
499 /* See if USE is killed between DEF_INSN and the last insn in the
500 basic block containing DEF_INSN. */
501 x = df_bb_regno_last_def_find (def_bb, regno);
502 if (x && DF_INSN_LUID (x->insn) >= DF_INSN_LUID (def_insn))
503 return true;
505 /* See if USE is killed between TARGET_INSN and the first insn in the
506 basic block containing TARGET_INSN. */
507 x = df_bb_regno_first_def_find (target_bb, regno);
508 if (x && DF_INSN_LUID (x->insn) < DF_INSN_LUID (target_insn))
509 return true;
511 return false;
514 /* Otherwise assume the worst case. */
515 return true;
519 /* for_each_rtx traversal function that returns 1 if BODY points to
520 a non-constant mem. */
522 static int
523 varying_mem_p (rtx *body, void *data ATTRIBUTE_UNUSED)
525 rtx x = *body;
526 return MEM_P (x) && !MEM_READONLY_P (x);
529 /* Check if all uses in DEF_INSN can be used in TARGET_INSN. This
530 would require full computation of available expressions;
531 we check only restricted conditions, see use_killed_between. */
532 static bool
533 all_uses_available_at (rtx def_insn, rtx target_insn)
535 struct df_ref **use_rec;
536 rtx def_set = single_set (def_insn);
538 gcc_assert (def_set);
540 /* If target_insn comes right after def_insn, which is very common
541 for addresses, we can use a quicker test. */
542 if (NEXT_INSN (def_insn) == target_insn
543 && REG_P (SET_DEST (def_set)))
545 rtx def_reg = SET_DEST (def_set);
547 /* If the insn uses the reg that it defines, the substitution is
548 invalid. */
549 for (use_rec = DF_INSN_USES (def_insn); *use_rec; use_rec++)
551 struct df_ref *use = *use_rec;
552 if (rtx_equal_p (DF_REF_REG (use), def_reg))
553 return false;
555 for (use_rec = DF_INSN_EQ_USES (def_insn); *use_rec; use_rec++)
557 struct df_ref *use = *use_rec;
558 if (rtx_equal_p (use->reg, def_reg))
559 return false;
562 else
564 /* Look at all the uses of DEF_INSN, and see if they are not
565 killed between DEF_INSN and TARGET_INSN. */
566 for (use_rec = DF_INSN_USES (def_insn); *use_rec; use_rec++)
568 struct df_ref *use = *use_rec;
569 if (use_killed_between (use, def_insn, target_insn))
570 return false;
572 for (use_rec = DF_INSN_EQ_USES (def_insn); *use_rec; use_rec++)
574 struct df_ref *use = *use_rec;
575 if (use_killed_between (use, def_insn, target_insn))
576 return false;
580 /* We don't do any analysis of memories or aliasing. Reject any
581 instruction that involves references to non-constant memory. */
582 return !for_each_rtx (&SET_SRC (def_set), varying_mem_p, NULL);
586 struct find_occurrence_data
588 rtx find;
589 rtx *retval;
592 /* Callback for for_each_rtx, used in find_occurrence.
593 See if PX is the rtx we have to find. Return 1 to stop for_each_rtx
594 if successful, or 0 to continue traversing otherwise. */
596 static int
597 find_occurrence_callback (rtx *px, void *data)
599 struct find_occurrence_data *fod = (struct find_occurrence_data *) data;
600 rtx x = *px;
601 rtx find = fod->find;
603 if (x == find)
605 fod->retval = px;
606 return 1;
609 return 0;
612 /* Return a pointer to one of the occurrences of register FIND in *PX. */
614 static rtx *
615 find_occurrence (rtx *px, rtx find)
617 struct find_occurrence_data data;
619 gcc_assert (REG_P (find)
620 || (GET_CODE (find) == SUBREG
621 && REG_P (SUBREG_REG (find))));
623 data.find = find;
624 data.retval = NULL;
625 for_each_rtx (px, find_occurrence_callback, &data);
626 return data.retval;
630 /* Inside INSN, the expression rooted at *LOC has been changed, moving some
631 uses from USE_VEC. Find those that are present, and create new items
632 in the data flow object of the pass. Mark any new uses as having the
633 given TYPE. */
634 static void
635 update_df (rtx insn, rtx *loc, struct df_ref **use_rec, enum df_ref_type type,
636 int new_flags)
638 bool changed = false;
640 /* Add a use for the registers that were propagated. */
641 while (*use_rec)
643 struct df_ref *use = *use_rec;
644 struct df_ref *orig_use = use, *new_use;
645 rtx *new_loc = find_occurrence (loc, DF_REF_REG (orig_use));
646 use_rec++;
648 if (!new_loc)
649 continue;
651 /* Add a new insn use. Use the original type, because it says if the
652 use was within a MEM. */
653 new_use = df_ref_create (DF_REF_REG (orig_use), new_loc,
654 insn, BLOCK_FOR_INSN (insn),
655 type, DF_REF_FLAGS (orig_use) | new_flags);
657 /* Set up the use-def chain. */
658 df_chain_copy (new_use, DF_REF_CHAIN (orig_use));
659 changed = true;
661 if (changed)
662 df_insn_rescan (insn);
666 /* Try substituting NEW into LOC, which originated from forward propagation
667 of USE's value from DEF_INSN. SET_REG_EQUAL says whether we are
668 substituting the whole SET_SRC, so we can set a REG_EQUAL note if the
669 new insn is not recognized. Return whether the substitution was
670 performed. */
672 static bool
673 try_fwprop_subst (struct df_ref *use, rtx *loc, rtx new, rtx def_insn, bool set_reg_equal)
675 rtx insn = DF_REF_INSN (use);
676 enum df_ref_type type = DF_REF_TYPE (use);
677 int flags = DF_REF_FLAGS (use);
678 rtx set = single_set (insn);
679 int old_cost = rtx_cost (SET_SRC (set), SET);
680 bool ok;
682 if (dump_file)
684 fprintf (dump_file, "\nIn insn %d, replacing\n ", INSN_UID (insn));
685 print_inline_rtx (dump_file, *loc, 2);
686 fprintf (dump_file, "\n with ");
687 print_inline_rtx (dump_file, new, 2);
688 fprintf (dump_file, "\n");
691 validate_unshare_change (insn, loc, new, true);
692 if (!verify_changes (0))
694 if (dump_file)
695 fprintf (dump_file, "Changes to insn %d not recognized\n",
696 INSN_UID (insn));
697 ok = false;
700 else if (DF_REF_TYPE (use) == DF_REF_REG_USE
701 && rtx_cost (SET_SRC (set), SET) > old_cost)
703 if (dump_file)
704 fprintf (dump_file, "Changes to insn %d not profitable\n",
705 INSN_UID (insn));
706 ok = false;
709 else
711 if (dump_file)
712 fprintf (dump_file, "Changed insn %d\n", INSN_UID (insn));
713 ok = true;
716 if (ok)
718 confirm_change_group ();
719 num_changes++;
721 df_ref_remove (use);
722 if (!CONSTANT_P (new))
724 update_df (insn, loc, DF_INSN_USES (def_insn), type, flags);
725 update_df (insn, loc, DF_INSN_EQ_USES (def_insn), type, flags);
728 else
730 cancel_changes (0);
732 /* Can also record a simplified value in a REG_EQUAL note,
733 making a new one if one does not already exist.
734 Don't do this if the insn has a REG_RETVAL note, because the
735 combined presence means that the REG_EQUAL note refers to the
736 (full) contents of the libcall value. */
737 if (set_reg_equal && !find_reg_note (insn, REG_RETVAL, NULL_RTX))
739 if (dump_file)
740 fprintf (dump_file, " Setting REG_EQUAL note\n");
742 set_unique_reg_note (insn, REG_EQUAL, copy_rtx (new));
744 /* ??? Is this still necessary if we add the note through
745 set_unique_reg_note? */
746 if (!CONSTANT_P (new))
748 update_df (insn, loc, DF_INSN_USES (def_insn),
749 type, DF_REF_IN_NOTE);
750 update_df (insn, loc, DF_INSN_EQ_USES (def_insn),
751 type, DF_REF_IN_NOTE);
756 return ok;
760 /* If USE is a paradoxical subreg, see if it can be replaced by a pseudo. */
762 static bool
763 forward_propagate_subreg (struct df_ref *use, rtx def_insn, rtx def_set)
765 rtx use_reg = DF_REF_REG (use);
766 rtx use_insn, src;
768 /* Only consider paradoxical subregs... */
769 enum machine_mode use_mode = GET_MODE (use_reg);
770 if (GET_CODE (use_reg) != SUBREG
771 || !REG_P (SET_DEST (def_set))
772 || GET_MODE_SIZE (use_mode)
773 <= GET_MODE_SIZE (GET_MODE (SUBREG_REG (use_reg))))
774 return false;
776 /* If this is a paradoxical SUBREG, we have no idea what value the
777 extra bits would have. However, if the operand is equivalent to
778 a SUBREG whose operand is the same as our mode, and all the modes
779 are within a word, we can just use the inner operand because
780 these SUBREGs just say how to treat the register. */
781 use_insn = DF_REF_INSN (use);
782 src = SET_SRC (def_set);
783 if (GET_CODE (src) == SUBREG
784 && REG_P (SUBREG_REG (src))
785 && GET_MODE (SUBREG_REG (src)) == use_mode
786 && subreg_lowpart_p (src)
787 && all_uses_available_at (def_insn, use_insn))
788 return try_fwprop_subst (use, DF_REF_LOC (use), SUBREG_REG (src),
789 def_insn, false);
790 else
791 return false;
794 /* Try to replace USE with SRC (defined in DEF_INSN) and simplify the
795 result. */
797 static bool
798 forward_propagate_and_simplify (struct df_ref *use, rtx def_insn, rtx def_set)
800 rtx use_insn = DF_REF_INSN (use);
801 rtx use_set = single_set (use_insn);
802 rtx src, reg, new, *loc;
803 bool set_reg_equal;
804 enum machine_mode mode;
806 if (!use_set)
807 return false;
809 /* Do not propagate into PC, CC0, etc. */
810 if (GET_MODE (SET_DEST (use_set)) == VOIDmode)
811 return false;
813 /* If def and use are subreg, check if they match. */
814 reg = DF_REF_REG (use);
815 if (GET_CODE (reg) == SUBREG
816 && GET_CODE (SET_DEST (def_set)) == SUBREG
817 && (SUBREG_BYTE (SET_DEST (def_set)) != SUBREG_BYTE (reg)
818 || GET_MODE (SET_DEST (def_set)) != GET_MODE (reg)))
819 return false;
821 /* Check if the def had a subreg, but the use has the whole reg. */
822 if (REG_P (reg) && GET_CODE (SET_DEST (def_set)) == SUBREG)
823 return false;
825 /* Check if the use has a subreg, but the def had the whole reg. Unlike the
826 previous case, the optimization is possible and often useful indeed. */
827 if (GET_CODE (reg) == SUBREG && REG_P (SET_DEST (def_set)))
828 reg = SUBREG_REG (reg);
830 /* Check if the substitution is valid (last, because it's the most
831 expensive check!). */
832 src = SET_SRC (def_set);
833 if (!CONSTANT_P (src) && !all_uses_available_at (def_insn, use_insn))
834 return false;
836 /* Check if the def is loading something from the constant pool; in this
837 case we would undo optimization such as compress_float_constant.
838 Still, we can set a REG_EQUAL note. */
839 if (MEM_P (src) && MEM_READONLY_P (src))
841 rtx x = avoid_constant_pool_reference (src);
842 if (x != src)
844 rtx note = find_reg_note (use_insn, REG_EQUAL, NULL_RTX);
845 rtx old = note ? XEXP (note, 0) : SET_SRC (use_set);
846 rtx new = simplify_replace_rtx (old, src, x);
847 if (old != new)
848 set_unique_reg_note (use_insn, REG_EQUAL, copy_rtx (new));
850 return false;
853 /* Else try simplifying. */
855 if (DF_REF_TYPE (use) == DF_REF_REG_MEM_STORE)
857 loc = &SET_DEST (use_set);
858 set_reg_equal = false;
860 else
862 rtx note = find_reg_note (use_insn, REG_EQUAL, NULL_RTX);
863 if (DF_REF_FLAGS (use) & DF_REF_IN_NOTE)
864 loc = &XEXP (note, 0);
865 else
866 loc = &SET_SRC (use_set);
868 /* Do not replace an existing REG_EQUAL note if the insn is not
869 recognized. Either we're already replacing in the note, or
870 we'll separately try plugging the definition in the note and
871 simplifying. */
872 set_reg_equal = (note == NULL_RTX);
875 if (GET_MODE (*loc) == VOIDmode)
876 mode = GET_MODE (SET_DEST (use_set));
877 else
878 mode = GET_MODE (*loc);
880 new = propagate_rtx (*loc, mode, reg, src);
882 if (!new)
883 return false;
885 return try_fwprop_subst (use, loc, new, def_insn, set_reg_equal);
889 /* Given a use USE of an insn, if it has a single reaching
890 definition, try to forward propagate it into that insn. */
892 static void
893 forward_propagate_into (struct df_ref *use)
895 struct df_link *defs;
896 struct df_ref *def;
897 rtx def_insn, def_set, use_insn;
898 rtx parent;
900 if (DF_REF_FLAGS (use) & DF_REF_READ_WRITE)
901 return;
902 if (DF_REF_IS_ARTIFICIAL (use))
903 return;
905 /* Only consider uses that have a single definition. */
906 defs = DF_REF_CHAIN (use);
907 if (!defs || defs->next)
908 return;
910 def = defs->ref;
911 if (DF_REF_FLAGS (def) & DF_REF_READ_WRITE)
912 return;
913 if (DF_REF_IS_ARTIFICIAL (def))
914 return;
916 /* Do not propagate loop invariant definitions inside the loop. */
917 if (DF_REF_BB (def)->loop_father != DF_REF_BB (use)->loop_father)
918 return;
920 /* Check if the use is still present in the insn! */
921 use_insn = DF_REF_INSN (use);
922 if (DF_REF_FLAGS (use) & DF_REF_IN_NOTE)
923 parent = find_reg_note (use_insn, REG_EQUAL, NULL_RTX);
924 else
925 parent = PATTERN (use_insn);
927 if (!loc_mentioned_in_p (DF_REF_LOC (use), parent))
928 return;
930 def_insn = DF_REF_INSN (def);
931 if (multiple_sets (def_insn))
932 return;
933 def_set = single_set (def_insn);
934 if (!def_set)
935 return;
937 /* Only try one kind of propagation. If two are possible, we'll
938 do it on the following iterations. */
939 if (!forward_propagate_and_simplify (use, def_insn, def_set))
940 forward_propagate_subreg (use, def_insn, def_set);
944 static void
945 fwprop_init (void)
947 num_changes = 0;
948 calculate_dominance_info (CDI_DOMINATORS);
950 /* We do not always want to propagate into loops, so we have to find
951 loops and be careful about them. But we have to call flow_loops_find
952 before df_analyze, because flow_loops_find may introduce new jump
953 insns (sadly) if we are not working in cfglayout mode. */
954 loop_optimizer_init (0);
956 /* Now set up the dataflow problem (we only want use-def chains) and
957 put the dataflow solver to work. */
958 df_set_flags (DF_EQ_NOTES);
959 df_chain_add_problem (DF_UD_CHAIN);
960 df_analyze ();
961 df_maybe_reorganize_use_refs (DF_REF_ORDER_BY_INSN_WITH_NOTES);
962 df_set_flags (DF_DEFER_INSN_RESCAN);
965 static void
966 fwprop_done (void)
968 loop_optimizer_finalize ();
970 free_dominance_info (CDI_DOMINATORS);
971 cleanup_cfg (0);
972 delete_trivially_dead_insns (get_insns (), max_reg_num ());
974 if (dump_file)
975 fprintf (dump_file,
976 "\nNumber of successful forward propagations: %d\n\n",
977 num_changes);
982 /* Main entry point. */
984 static bool
985 gate_fwprop (void)
987 return optimize > 0 && flag_forward_propagate;
990 static unsigned int
991 fwprop (void)
993 unsigned i;
995 fwprop_init ();
997 /* Go through all the uses. update_df will create new ones at the
998 end, and we'll go through them as well.
1000 Do not forward propagate addresses into loops until after unrolling.
1001 CSE did so because it was able to fix its own mess, but we are not. */
1003 for (i = 0; i < DF_USES_TABLE_SIZE (); i++)
1005 struct df_ref *use = DF_USES_GET (i);
1006 if (use)
1007 if (DF_REF_TYPE (use) == DF_REF_REG_USE
1008 || DF_REF_BB (use)->loop_father == NULL)
1009 forward_propagate_into (use);
1012 fwprop_done ();
1013 return 0;
1016 struct tree_opt_pass pass_rtl_fwprop =
1018 "fwprop1", /* name */
1019 gate_fwprop, /* gate */
1020 fwprop, /* execute */
1021 NULL, /* sub */
1022 NULL, /* next */
1023 0, /* static_pass_number */
1024 TV_FWPROP, /* tv_id */
1025 0, /* properties_required */
1026 0, /* properties_provided */
1027 0, /* properties_destroyed */
1028 0, /* todo_flags_start */
1029 TODO_df_finish | TODO_verify_rtl_sharing |
1030 TODO_dump_func, /* todo_flags_finish */
1031 0 /* letter */
1034 static unsigned int
1035 fwprop_addr (void)
1037 unsigned i;
1038 fwprop_init ();
1040 /* Go through all the uses. update_df will create new ones at the
1041 end, and we'll go through them as well. */
1042 df_set_flags (DF_DEFER_INSN_RESCAN);
1044 for (i = 0; i < DF_USES_TABLE_SIZE (); i++)
1046 struct df_ref *use = DF_USES_GET (i);
1047 if (use)
1048 if (DF_REF_TYPE (use) != DF_REF_REG_USE
1049 && DF_REF_BB (use)->loop_father != NULL)
1050 forward_propagate_into (use);
1053 fwprop_done ();
1055 return 0;
1058 struct tree_opt_pass pass_rtl_fwprop_addr =
1060 "fwprop2", /* name */
1061 gate_fwprop, /* gate */
1062 fwprop_addr, /* execute */
1063 NULL, /* sub */
1064 NULL, /* next */
1065 0, /* static_pass_number */
1066 TV_FWPROP, /* tv_id */
1067 0, /* properties_required */
1068 0, /* properties_provided */
1069 0, /* properties_destroyed */
1070 0, /* todo_flags_start */
1071 TODO_df_finish | TODO_verify_rtl_sharing |
1072 TODO_dump_func, /* todo_flags_finish */
1073 0 /* letter */