1 /* Inline functions for tree-flow.h
2 Copyright (C) 2001, 2003, 2005, 2006, 2007 Free Software Foundation, Inc.
3 Contributed by Diego Novillo <dnovillo@redhat.com>
5 This file is part of GCC.
7 GCC is free software; you can redistribute it and/or modify
8 it under the terms of the GNU General Public License as published by
9 the Free Software Foundation; either version 3, or (at your option)
12 GCC is distributed in the hope that it will be useful,
13 but WITHOUT ANY WARRANTY; without even the implied warranty of
14 MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
15 GNU General Public License for more details.
17 You should have received a copy of the GNU General Public License
18 along with GCC; see the file COPYING3. If not see
19 <http://www.gnu.org/licenses/>. */
21 #ifndef _TREE_FLOW_INLINE_H
22 #define _TREE_FLOW_INLINE_H 1
24 /* Inline functions for manipulating various data structures defined in
25 tree-flow.h. See tree-flow.h for documentation. */
27 /* Return true when gimple SSA form was built.
28 gimple_in_ssa_p is queried by gimplifier in various early stages before SSA
29 infrastructure is initialized. Check for presence of the datastructures
32 gimple_in_ssa_p (const struct function
*fun
)
34 return fun
&& fun
->gimple_df
&& fun
->gimple_df
->in_ssa_p
;
37 /* 'true' after aliases have been computed (see compute_may_aliases). */
39 gimple_aliases_computed_p (const struct function
*fun
)
41 gcc_assert (fun
&& fun
->gimple_df
);
42 return fun
->gimple_df
->aliases_computed_p
;
45 /* Addressable variables in the function. If bit I is set, then
46 REFERENCED_VARS (I) has had its address taken. Note that
47 CALL_CLOBBERED_VARS and ADDRESSABLE_VARS are not related. An
48 addressable variable is not necessarily call-clobbered (e.g., a
49 local addressable whose address does not escape) and not all
50 call-clobbered variables are addressable (e.g., a local static
53 gimple_addressable_vars (const struct function
*fun
)
55 gcc_assert (fun
&& fun
->gimple_df
);
56 return fun
->gimple_df
->addressable_vars
;
59 /* Call clobbered variables in the function. If bit I is set, then
60 REFERENCED_VARS (I) is call-clobbered. */
62 gimple_call_clobbered_vars (const struct function
*fun
)
64 gcc_assert (fun
&& fun
->gimple_df
);
65 return fun
->gimple_df
->call_clobbered_vars
;
68 /* Array of all variables referenced in the function. */
70 gimple_referenced_vars (const struct function
*fun
)
74 return fun
->gimple_df
->referenced_vars
;
77 /* Artificial variable used to model the effects of function calls. */
79 gimple_global_var (const struct function
*fun
)
81 gcc_assert (fun
&& fun
->gimple_df
);
82 return fun
->gimple_df
->global_var
;
85 /* Artificial variable used to model the effects of nonlocal
88 gimple_nonlocal_all (const struct function
*fun
)
90 gcc_assert (fun
&& fun
->gimple_df
);
91 return fun
->gimple_df
->nonlocal_all
;
94 /* Hashtable of variables annotations. Used for static variables only;
95 local variables have direct pointer in the tree node. */
97 gimple_var_anns (const struct function
*fun
)
99 return fun
->gimple_df
->var_anns
;
102 /* Initialize the hashtable iterator HTI to point to hashtable TABLE */
105 first_htab_element (htab_iterator
*hti
, htab_t table
)
108 hti
->slot
= table
->entries
;
109 hti
->limit
= hti
->slot
+ htab_size (table
);
112 PTR x
= *(hti
->slot
);
113 if (x
!= HTAB_EMPTY_ENTRY
&& x
!= HTAB_DELETED_ENTRY
)
115 } while (++(hti
->slot
) < hti
->limit
);
117 if (hti
->slot
< hti
->limit
)
122 /* Return current non-empty/deleted slot of the hashtable pointed to by HTI,
123 or NULL if we have reached the end. */
126 end_htab_p (const htab_iterator
*hti
)
128 if (hti
->slot
>= hti
->limit
)
133 /* Advance the hashtable iterator pointed to by HTI to the next element of the
137 next_htab_element (htab_iterator
*hti
)
139 while (++(hti
->slot
) < hti
->limit
)
141 PTR x
= *(hti
->slot
);
142 if (x
!= HTAB_EMPTY_ENTRY
&& x
!= HTAB_DELETED_ENTRY
)
148 /* Initialize ITER to point to the first referenced variable in the
149 referenced_vars hashtable, and return that variable. */
152 first_referenced_var (referenced_var_iterator
*iter
)
154 return (tree
) first_htab_element (&iter
->hti
,
155 gimple_referenced_vars (cfun
));
158 /* Return true if we have hit the end of the referenced variables ITER is
159 iterating through. */
162 end_referenced_vars_p (const referenced_var_iterator
*iter
)
164 return end_htab_p (&iter
->hti
);
167 /* Make ITER point to the next referenced_var in the referenced_var hashtable,
168 and return that variable. */
171 next_referenced_var (referenced_var_iterator
*iter
)
173 return (tree
) next_htab_element (&iter
->hti
);
176 /* Fill up VEC with the variables in the referenced vars hashtable. */
179 fill_referenced_var_vec (VEC (tree
, heap
) **vec
)
181 referenced_var_iterator rvi
;
184 FOR_EACH_REFERENCED_VAR (var
, rvi
)
185 VEC_safe_push (tree
, heap
, *vec
, var
);
188 /* Return the variable annotation for T, which must be a _DECL node.
189 Return NULL if the variable annotation doesn't already exist. */
190 static inline var_ann_t
191 var_ann (const_tree t
)
194 gcc_assert (DECL_P (t
));
195 gcc_assert (TREE_CODE (t
) != FUNCTION_DECL
);
196 if (!MTAG_P (t
) && (TREE_STATIC (t
) || DECL_EXTERNAL (t
)))
198 struct static_var_ann_d
*sann
199 = ((struct static_var_ann_d
*)
200 htab_find_with_hash (gimple_var_anns (cfun
), t
, DECL_UID (t
)));
203 gcc_assert (sann
->ann
.common
.type
== VAR_ANN
);
206 gcc_assert (!t
->base
.ann
207 || t
->base
.ann
->common
.type
== VAR_ANN
);
209 return (var_ann_t
) t
->base
.ann
;
212 /* Return the variable annotation for T, which must be a _DECL node.
213 Create the variable annotation if it doesn't exist. */
214 static inline var_ann_t
215 get_var_ann (tree var
)
217 var_ann_t ann
= var_ann (var
);
218 return (ann
) ? ann
: create_var_ann (var
);
221 /* Return the function annotation for T, which must be a FUNCTION_DECL node.
222 Return NULL if the function annotation doesn't already exist. */
223 static inline function_ann_t
224 function_ann (const_tree t
)
227 gcc_assert (TREE_CODE (t
) == FUNCTION_DECL
);
228 gcc_assert (!t
->base
.ann
229 || t
->base
.ann
->common
.type
== FUNCTION_ANN
);
231 return (function_ann_t
) t
->base
.ann
;
234 /* Return the function annotation for T, which must be a FUNCTION_DECL node.
235 Create the function annotation if it doesn't exist. */
236 static inline function_ann_t
237 get_function_ann (tree var
)
239 function_ann_t ann
= function_ann (var
);
240 gcc_assert (!var
->base
.ann
|| var
->base
.ann
->common
.type
== FUNCTION_ANN
);
241 return (ann
) ? ann
: create_function_ann (var
);
244 /* Return true if T has a statement annotation attached to it. */
247 has_stmt_ann (tree t
)
249 #ifdef ENABLE_CHECKING
250 gcc_assert (is_gimple_stmt (t
));
252 return t
->base
.ann
&& t
->base
.ann
->common
.type
== STMT_ANN
;
255 /* Return the statement annotation for T, which must be a statement
256 node. Return NULL if the statement annotation doesn't exist. */
257 static inline stmt_ann_t
260 #ifdef ENABLE_CHECKING
261 gcc_assert (is_gimple_stmt (t
));
263 gcc_assert (!t
->base
.ann
|| t
->base
.ann
->common
.type
== STMT_ANN
);
264 return (stmt_ann_t
) t
->base
.ann
;
267 /* Return the statement annotation for T, which must be a statement
268 node. Create the statement annotation if it doesn't exist. */
269 static inline stmt_ann_t
270 get_stmt_ann (tree stmt
)
272 stmt_ann_t ann
= stmt_ann (stmt
);
273 return (ann
) ? ann
: create_stmt_ann (stmt
);
276 /* Return the annotation type for annotation ANN. */
277 static inline enum tree_ann_type
278 ann_type (tree_ann_t ann
)
280 return ann
->common
.type
;
283 /* Return the basic block for statement T. */
284 static inline basic_block
289 if (TREE_CODE (t
) == PHI_NODE
)
293 return ann
? ann
->bb
: NULL
;
296 /* Return the may_aliases bitmap for variable VAR, or NULL if it has
299 may_aliases (const_tree var
)
301 return MTAG_ALIASES (var
);
304 /* Return the line number for EXPR, or return -1 if we have no line
305 number information for it. */
307 get_lineno (const_tree expr
)
309 if (expr
== NULL_TREE
)
312 if (TREE_CODE (expr
) == COMPOUND_EXPR
)
313 expr
= TREE_OPERAND (expr
, 0);
315 if (! EXPR_HAS_LOCATION (expr
))
318 return EXPR_LINENO (expr
);
321 /* Return true if T is a noreturn call. */
323 noreturn_call_p (tree t
)
325 tree call
= get_call_expr_in (t
);
326 return call
!= 0 && (call_expr_flags (call
) & ECF_NORETURN
) != 0;
329 /* Mark statement T as modified. */
331 mark_stmt_modified (tree t
)
334 if (TREE_CODE (t
) == PHI_NODE
)
339 ann
= create_stmt_ann (t
);
340 else if (noreturn_call_p (t
) && cfun
->gimple_df
)
341 VEC_safe_push (tree
, gc
, MODIFIED_NORETURN_CALLS (cfun
), t
);
345 /* Mark statement T as modified, and update it. */
349 if (TREE_CODE (t
) == PHI_NODE
)
351 mark_stmt_modified (t
);
352 update_stmt_operands (t
);
356 update_stmt_if_modified (tree t
)
358 if (stmt_modified_p (t
))
359 update_stmt_operands (t
);
362 /* Return true if T is marked as modified, false otherwise. */
364 stmt_modified_p (tree t
)
366 stmt_ann_t ann
= stmt_ann (t
);
368 /* Note that if the statement doesn't yet have an annotation, we consider it
369 modified. This will force the next call to update_stmt_operands to scan
371 return ann
? ann
->modified
: true;
374 /* Delink an immediate_uses node from its chain. */
376 delink_imm_use (ssa_use_operand_t
*linknode
)
378 /* Return if this node is not in a list. */
379 if (linknode
->prev
== NULL
)
382 linknode
->prev
->next
= linknode
->next
;
383 linknode
->next
->prev
= linknode
->prev
;
384 linknode
->prev
= NULL
;
385 linknode
->next
= NULL
;
388 /* Link ssa_imm_use node LINKNODE into the chain for LIST. */
390 link_imm_use_to_list (ssa_use_operand_t
*linknode
, ssa_use_operand_t
*list
)
392 /* Link the new node at the head of the list. If we are in the process of
393 traversing the list, we won't visit any new nodes added to it. */
394 linknode
->prev
= list
;
395 linknode
->next
= list
->next
;
396 list
->next
->prev
= linknode
;
397 list
->next
= linknode
;
400 /* Link ssa_imm_use node LINKNODE into the chain for DEF. */
402 link_imm_use (ssa_use_operand_t
*linknode
, tree def
)
404 ssa_use_operand_t
*root
;
406 if (!def
|| TREE_CODE (def
) != SSA_NAME
)
407 linknode
->prev
= NULL
;
410 root
= &(SSA_NAME_IMM_USE_NODE (def
));
411 #ifdef ENABLE_CHECKING
413 gcc_assert (*(linknode
->use
) == def
);
415 link_imm_use_to_list (linknode
, root
);
419 /* Set the value of a use pointed to by USE to VAL. */
421 set_ssa_use_from_ptr (use_operand_p use
, tree val
)
423 delink_imm_use (use
);
425 link_imm_use (use
, val
);
428 /* Link ssa_imm_use node LINKNODE into the chain for DEF, with use occurring
431 link_imm_use_stmt (ssa_use_operand_t
*linknode
, tree def
, tree stmt
)
434 link_imm_use (linknode
, def
);
436 link_imm_use (linknode
, NULL
);
437 linknode
->stmt
= stmt
;
440 /* Relink a new node in place of an old node in the list. */
442 relink_imm_use (ssa_use_operand_t
*node
, ssa_use_operand_t
*old
)
444 /* The node one had better be in the same list. */
445 gcc_assert (*(old
->use
) == *(node
->use
));
446 node
->prev
= old
->prev
;
447 node
->next
= old
->next
;
450 old
->prev
->next
= node
;
451 old
->next
->prev
= node
;
452 /* Remove the old node from the list. */
457 /* Relink ssa_imm_use node LINKNODE into the chain for OLD, with use occurring
460 relink_imm_use_stmt (ssa_use_operand_t
*linknode
, ssa_use_operand_t
*old
, tree stmt
)
463 relink_imm_use (linknode
, old
);
465 link_imm_use (linknode
, NULL
);
466 linknode
->stmt
= stmt
;
470 /* Return true is IMM has reached the end of the immediate use list. */
472 end_readonly_imm_use_p (const imm_use_iterator
*imm
)
474 return (imm
->imm_use
== imm
->end_p
);
477 /* Initialize iterator IMM to process the list for VAR. */
478 static inline use_operand_p
479 first_readonly_imm_use (imm_use_iterator
*imm
, tree var
)
481 gcc_assert (TREE_CODE (var
) == SSA_NAME
);
483 imm
->end_p
= &(SSA_NAME_IMM_USE_NODE (var
));
484 imm
->imm_use
= imm
->end_p
->next
;
485 #ifdef ENABLE_CHECKING
486 imm
->iter_node
.next
= imm
->imm_use
->next
;
488 if (end_readonly_imm_use_p (imm
))
489 return NULL_USE_OPERAND_P
;
493 /* Bump IMM to the next use in the list. */
494 static inline use_operand_p
495 next_readonly_imm_use (imm_use_iterator
*imm
)
497 use_operand_p old
= imm
->imm_use
;
499 #ifdef ENABLE_CHECKING
500 /* If this assertion fails, it indicates the 'next' pointer has changed
501 since the last bump. This indicates that the list is being modified
502 via stmt changes, or SET_USE, or somesuch thing, and you need to be
503 using the SAFE version of the iterator. */
504 gcc_assert (imm
->iter_node
.next
== old
->next
);
505 imm
->iter_node
.next
= old
->next
->next
;
508 imm
->imm_use
= old
->next
;
509 if (end_readonly_imm_use_p (imm
))
514 /* Return true if VAR has no uses. */
516 has_zero_uses (const_tree var
)
518 const ssa_use_operand_t
*const ptr
= &(SSA_NAME_IMM_USE_NODE (var
));
519 /* A single use means there is no items in the list. */
520 return (ptr
== ptr
->next
);
523 /* Return true if VAR has a single use. */
525 has_single_use (const_tree var
)
527 const ssa_use_operand_t
*const ptr
= &(SSA_NAME_IMM_USE_NODE (var
));
528 /* A single use means there is one item in the list. */
529 return (ptr
!= ptr
->next
&& ptr
== ptr
->next
->next
);
533 /* If VAR has only a single immediate use, return true, and set USE_P and STMT
534 to the use pointer and stmt of occurrence. */
536 single_imm_use (const_tree var
, use_operand_p
*use_p
, tree
*stmt
)
538 const ssa_use_operand_t
*const ptr
= &(SSA_NAME_IMM_USE_NODE (var
));
539 if (ptr
!= ptr
->next
&& ptr
== ptr
->next
->next
)
542 *stmt
= ptr
->next
->stmt
;
545 *use_p
= NULL_USE_OPERAND_P
;
550 /* Return the number of immediate uses of VAR. */
551 static inline unsigned int
552 num_imm_uses (const_tree var
)
554 const ssa_use_operand_t
*const start
= &(SSA_NAME_IMM_USE_NODE (var
));
555 const ssa_use_operand_t
*ptr
;
556 unsigned int num
= 0;
558 for (ptr
= start
->next
; ptr
!= start
; ptr
= ptr
->next
)
564 /* Return the tree pointer to by USE. */
566 get_use_from_ptr (use_operand_p use
)
571 /* Return the tree pointer to by DEF. */
573 get_def_from_ptr (def_operand_p def
)
578 /* Return a def_operand_p pointer for the result of PHI. */
579 static inline def_operand_p
580 get_phi_result_ptr (tree phi
)
582 return &(PHI_RESULT_TREE (phi
));
585 /* Return a use_operand_p pointer for argument I of phinode PHI. */
586 static inline use_operand_p
587 get_phi_arg_def_ptr (tree phi
, int i
)
589 return &(PHI_ARG_IMM_USE_NODE (phi
,i
));
593 /* Return the bitmap of addresses taken by STMT, or NULL if it takes
596 addresses_taken (tree stmt
)
598 stmt_ann_t ann
= stmt_ann (stmt
);
599 return ann
? ann
->addresses_taken
: NULL
;
602 /* Return the PHI nodes for basic block BB, or NULL if there are no
605 phi_nodes (const_basic_block bb
)
607 gcc_assert (!(bb
->flags
& BB_RTL
));
610 return bb
->il
.tree
->phi_nodes
;
613 /* Return pointer to the list of PHI nodes for basic block BB. */
616 phi_nodes_ptr (basic_block bb
)
618 gcc_assert (!(bb
->flags
& BB_RTL
));
619 return &bb
->il
.tree
->phi_nodes
;
622 /* Set list of phi nodes of a basic block BB to L. */
625 set_phi_nodes (basic_block bb
, tree l
)
629 gcc_assert (!(bb
->flags
& BB_RTL
));
630 bb
->il
.tree
->phi_nodes
= l
;
631 for (phi
= l
; phi
; phi
= PHI_CHAIN (phi
))
632 set_bb_for_stmt (phi
, bb
);
635 /* Return the phi argument which contains the specified use. */
638 phi_arg_index_from_use (use_operand_p use
)
640 struct phi_arg_d
*element
, *root
;
644 /* Since the use is the first thing in a PHI argument element, we can
645 calculate its index based on casting it to an argument, and performing
646 pointer arithmetic. */
648 phi
= USE_STMT (use
);
649 gcc_assert (TREE_CODE (phi
) == PHI_NODE
);
651 element
= (struct phi_arg_d
*)use
;
652 root
= &(PHI_ARG_ELT (phi
, 0));
653 index
= element
- root
;
655 #ifdef ENABLE_CHECKING
656 /* Make sure the calculation doesn't have any leftover bytes. If it does,
657 then imm_use is likely not the first element in phi_arg_d. */
659 (((char *)element
- (char *)root
) % sizeof (struct phi_arg_d
)) == 0);
660 gcc_assert (index
>= 0 && index
< PHI_ARG_CAPACITY (phi
));
666 /* Mark VAR as used, so that it'll be preserved during rtl expansion. */
669 set_is_used (tree var
)
671 var_ann_t ann
= get_var_ann (var
);
676 /* Return true if T (assumed to be a DECL) is a global variable. */
679 is_global_var (const_tree t
)
682 return (TREE_STATIC (t
) || MTAG_GLOBAL (t
));
684 return (TREE_STATIC (t
) || DECL_EXTERNAL (t
));
687 /* PHI nodes should contain only ssa_names and invariants. A test
688 for ssa_name is definitely simpler; don't let invalid contents
689 slip in in the meantime. */
692 phi_ssa_name_p (const_tree t
)
694 if (TREE_CODE (t
) == SSA_NAME
)
696 #ifdef ENABLE_CHECKING
697 gcc_assert (is_gimple_min_invariant (t
));
702 /* ----------------------------------------------------------------------- */
704 /* Returns the list of statements in BB. */
707 bb_stmt_list (const_basic_block bb
)
709 gcc_assert (!(bb
->flags
& BB_RTL
));
710 return bb
->il
.tree
->stmt_list
;
713 /* Sets the list of statements in BB to LIST. */
716 set_bb_stmt_list (basic_block bb
, tree list
)
718 gcc_assert (!(bb
->flags
& BB_RTL
));
719 bb
->il
.tree
->stmt_list
= list
;
722 /* Return a block_stmt_iterator that points to beginning of basic
724 static inline block_stmt_iterator
725 bsi_start (basic_block bb
)
727 block_stmt_iterator bsi
;
728 if (bb
->index
< NUM_FIXED_BLOCKS
)
731 bsi
.tsi
.container
= NULL
;
734 bsi
.tsi
= tsi_start (bb_stmt_list (bb
));
739 /* Return a block statement iterator that points to the first non-label
740 statement in block BB. */
742 static inline block_stmt_iterator
743 bsi_after_labels (basic_block bb
)
745 block_stmt_iterator bsi
= bsi_start (bb
);
747 while (!bsi_end_p (bsi
) && TREE_CODE (bsi_stmt (bsi
)) == LABEL_EXPR
)
753 /* Return a block statement iterator that points to the end of basic
755 static inline block_stmt_iterator
756 bsi_last (basic_block bb
)
758 block_stmt_iterator bsi
;
760 if (bb
->index
< NUM_FIXED_BLOCKS
)
763 bsi
.tsi
.container
= NULL
;
766 bsi
.tsi
= tsi_last (bb_stmt_list (bb
));
771 /* Return true if block statement iterator I has reached the end of
774 bsi_end_p (block_stmt_iterator i
)
776 return tsi_end_p (i
.tsi
);
779 /* Modify block statement iterator I so that it is at the next
780 statement in the basic block. */
782 bsi_next (block_stmt_iterator
*i
)
787 /* Modify block statement iterator I so that it is at the previous
788 statement in the basic block. */
790 bsi_prev (block_stmt_iterator
*i
)
795 /* Return the statement that block statement iterator I is currently
798 bsi_stmt (block_stmt_iterator i
)
800 return tsi_stmt (i
.tsi
);
803 /* Return a pointer to the statement that block statement iterator I
806 bsi_stmt_ptr (block_stmt_iterator i
)
808 return tsi_stmt_ptr (i
.tsi
);
811 /* Returns the loop of the statement STMT. */
813 static inline struct loop
*
814 loop_containing_stmt (tree stmt
)
816 basic_block bb
= bb_for_stmt (stmt
);
820 return bb
->loop_father
;
824 /* Return the memory partition tag associated with symbol SYM. */
827 memory_partition (tree sym
)
831 /* MPTs belong to their own partition. */
832 if (TREE_CODE (sym
) == MEMORY_PARTITION_TAG
)
835 gcc_assert (!is_gimple_reg (sym
));
836 tag
= get_var_ann (sym
)->mpt
;
838 #if defined ENABLE_CHECKING
840 gcc_assert (TREE_CODE (tag
) == MEMORY_PARTITION_TAG
);
846 /* Return true if NAME is a memory factoring SSA name (i.e., an SSA
847 name for a memory partition. */
850 factoring_name_p (const_tree name
)
852 return TREE_CODE (SSA_NAME_VAR (name
)) == MEMORY_PARTITION_TAG
;
855 /* Return true if VAR is a clobbered by function calls. */
857 is_call_clobbered (const_tree var
)
860 return var_ann (var
)->call_clobbered
;
862 return bitmap_bit_p (gimple_call_clobbered_vars (cfun
), DECL_UID (var
));
865 /* Mark variable VAR as being clobbered by function calls. */
867 mark_call_clobbered (tree var
, unsigned int escape_type
)
869 var_ann (var
)->escape_mask
|= escape_type
;
871 var_ann (var
)->call_clobbered
= true;
872 bitmap_set_bit (gimple_call_clobbered_vars (cfun
), DECL_UID (var
));
875 /* Clear the call-clobbered attribute from variable VAR. */
877 clear_call_clobbered (tree var
)
879 var_ann_t ann
= var_ann (var
);
880 ann
->escape_mask
= 0;
881 if (MTAG_P (var
) && TREE_CODE (var
) != STRUCT_FIELD_TAG
)
882 MTAG_GLOBAL (var
) = 0;
884 var_ann (var
)->call_clobbered
= false;
885 bitmap_clear_bit (gimple_call_clobbered_vars (cfun
), DECL_UID (var
));
888 /* Return the common annotation for T. Return NULL if the annotation
889 doesn't already exist. */
890 static inline tree_ann_common_t
891 tree_common_ann (const_tree t
)
893 /* Watch out static variables with unshared annotations. */
894 if (DECL_P (t
) && TREE_CODE (t
) == VAR_DECL
)
895 return &var_ann (t
)->common
;
896 return &t
->base
.ann
->common
;
899 /* Return a common annotation for T. Create the constant annotation if it
901 static inline tree_ann_common_t
902 get_tree_common_ann (tree t
)
904 tree_ann_common_t ann
= tree_common_ann (t
);
905 return (ann
) ? ann
: create_tree_common_ann (t
);
908 /* ----------------------------------------------------------------------- */
910 /* The following set of routines are used to iterator over various type of
913 /* Return true if PTR is finished iterating. */
915 op_iter_done (const ssa_op_iter
*ptr
)
920 /* Get the next iterator use value for PTR. */
921 static inline use_operand_p
922 op_iter_next_use (ssa_op_iter
*ptr
)
925 #ifdef ENABLE_CHECKING
926 gcc_assert (ptr
->iter_type
== ssa_op_iter_use
);
930 use_p
= USE_OP_PTR (ptr
->uses
);
931 ptr
->uses
= ptr
->uses
->next
;
936 use_p
= VUSE_OP_PTR (ptr
->vuses
, ptr
->vuse_index
);
937 if (++(ptr
->vuse_index
) >= VUSE_NUM (ptr
->vuses
))
940 ptr
->vuses
= ptr
->vuses
->next
;
946 use_p
= VDEF_OP_PTR (ptr
->mayuses
, ptr
->mayuse_index
);
947 if (++(ptr
->mayuse_index
) >= VDEF_NUM (ptr
->mayuses
))
949 ptr
->mayuse_index
= 0;
950 ptr
->mayuses
= ptr
->mayuses
->next
;
954 if (ptr
->phi_i
< ptr
->num_phi
)
956 return PHI_ARG_DEF_PTR (ptr
->phi_stmt
, (ptr
->phi_i
)++);
959 return NULL_USE_OPERAND_P
;
962 /* Get the next iterator def value for PTR. */
963 static inline def_operand_p
964 op_iter_next_def (ssa_op_iter
*ptr
)
967 #ifdef ENABLE_CHECKING
968 gcc_assert (ptr
->iter_type
== ssa_op_iter_def
);
972 def_p
= DEF_OP_PTR (ptr
->defs
);
973 ptr
->defs
= ptr
->defs
->next
;
978 def_p
= VDEF_RESULT_PTR (ptr
->vdefs
);
979 ptr
->vdefs
= ptr
->vdefs
->next
;
983 return NULL_DEF_OPERAND_P
;
986 /* Get the next iterator tree value for PTR. */
988 op_iter_next_tree (ssa_op_iter
*ptr
)
991 #ifdef ENABLE_CHECKING
992 gcc_assert (ptr
->iter_type
== ssa_op_iter_tree
);
996 val
= USE_OP (ptr
->uses
);
997 ptr
->uses
= ptr
->uses
->next
;
1002 val
= VUSE_OP (ptr
->vuses
, ptr
->vuse_index
);
1003 if (++(ptr
->vuse_index
) >= VUSE_NUM (ptr
->vuses
))
1005 ptr
->vuse_index
= 0;
1006 ptr
->vuses
= ptr
->vuses
->next
;
1012 val
= VDEF_OP (ptr
->mayuses
, ptr
->mayuse_index
);
1013 if (++(ptr
->mayuse_index
) >= VDEF_NUM (ptr
->mayuses
))
1015 ptr
->mayuse_index
= 0;
1016 ptr
->mayuses
= ptr
->mayuses
->next
;
1022 val
= DEF_OP (ptr
->defs
);
1023 ptr
->defs
= ptr
->defs
->next
;
1028 val
= VDEF_RESULT (ptr
->vdefs
);
1029 ptr
->vdefs
= ptr
->vdefs
->next
;
1039 /* This functions clears the iterator PTR, and marks it done. This is normally
1040 used to prevent warnings in the compile about might be uninitialized
1044 clear_and_done_ssa_iter (ssa_op_iter
*ptr
)
1050 ptr
->mayuses
= NULL
;
1051 ptr
->iter_type
= ssa_op_iter_none
;
1054 ptr
->phi_stmt
= NULL_TREE
;
1056 ptr
->vuse_index
= 0;
1057 ptr
->mayuse_index
= 0;
1060 /* Initialize the iterator PTR to the virtual defs in STMT. */
1062 op_iter_init (ssa_op_iter
*ptr
, tree stmt
, int flags
)
1064 #ifdef ENABLE_CHECKING
1065 gcc_assert (stmt_ann (stmt
));
1068 ptr
->defs
= (flags
& SSA_OP_DEF
) ? DEF_OPS (stmt
) : NULL
;
1069 ptr
->uses
= (flags
& SSA_OP_USE
) ? USE_OPS (stmt
) : NULL
;
1070 ptr
->vuses
= (flags
& SSA_OP_VUSE
) ? VUSE_OPS (stmt
) : NULL
;
1071 ptr
->vdefs
= (flags
& SSA_OP_VDEF
) ? VDEF_OPS (stmt
) : NULL
;
1072 ptr
->mayuses
= (flags
& SSA_OP_VMAYUSE
) ? VDEF_OPS (stmt
) : NULL
;
1077 ptr
->phi_stmt
= NULL_TREE
;
1078 ptr
->vuse_index
= 0;
1079 ptr
->mayuse_index
= 0;
1082 /* Initialize iterator PTR to the use operands in STMT based on FLAGS. Return
1084 static inline use_operand_p
1085 op_iter_init_use (ssa_op_iter
*ptr
, tree stmt
, int flags
)
1087 gcc_assert ((flags
& SSA_OP_ALL_DEFS
) == 0);
1088 op_iter_init (ptr
, stmt
, flags
);
1089 ptr
->iter_type
= ssa_op_iter_use
;
1090 return op_iter_next_use (ptr
);
1093 /* Initialize iterator PTR to the def operands in STMT based on FLAGS. Return
1095 static inline def_operand_p
1096 op_iter_init_def (ssa_op_iter
*ptr
, tree stmt
, int flags
)
1098 gcc_assert ((flags
& SSA_OP_ALL_USES
) == 0);
1099 op_iter_init (ptr
, stmt
, flags
);
1100 ptr
->iter_type
= ssa_op_iter_def
;
1101 return op_iter_next_def (ptr
);
1104 /* Initialize iterator PTR to the operands in STMT based on FLAGS. Return
1105 the first operand as a tree. */
1107 op_iter_init_tree (ssa_op_iter
*ptr
, tree stmt
, int flags
)
1109 op_iter_init (ptr
, stmt
, flags
);
1110 ptr
->iter_type
= ssa_op_iter_tree
;
1111 return op_iter_next_tree (ptr
);
1114 /* Get the next iterator mustdef value for PTR, returning the mustdef values in
1117 op_iter_next_vdef (vuse_vec_p
*use
, def_operand_p
*def
,
1120 #ifdef ENABLE_CHECKING
1121 gcc_assert (ptr
->iter_type
== ssa_op_iter_vdef
);
1125 *def
= VDEF_RESULT_PTR (ptr
->mayuses
);
1126 *use
= VDEF_VECT (ptr
->mayuses
);
1127 ptr
->mayuses
= ptr
->mayuses
->next
;
1131 *def
= NULL_DEF_OPERAND_P
;
1139 op_iter_next_mustdef (use_operand_p
*use
, def_operand_p
*def
,
1143 op_iter_next_vdef (&vp
, def
, ptr
);
1146 gcc_assert (VUSE_VECT_NUM_ELEM (*vp
) == 1);
1147 *use
= VUSE_ELEMENT_PTR (*vp
, 0);
1150 *use
= NULL_USE_OPERAND_P
;
1153 /* Initialize iterator PTR to the operands in STMT. Return the first operands
1156 op_iter_init_vdef (ssa_op_iter
*ptr
, tree stmt
, vuse_vec_p
*use
,
1159 gcc_assert (TREE_CODE (stmt
) != PHI_NODE
);
1161 op_iter_init (ptr
, stmt
, SSA_OP_VMAYUSE
);
1162 ptr
->iter_type
= ssa_op_iter_vdef
;
1163 op_iter_next_vdef (use
, def
, ptr
);
1167 /* If there is a single operand in STMT matching FLAGS, return it. Otherwise
1170 single_ssa_tree_operand (tree stmt
, int flags
)
1175 var
= op_iter_init_tree (&iter
, stmt
, flags
);
1176 if (op_iter_done (&iter
))
1178 op_iter_next_tree (&iter
);
1179 if (op_iter_done (&iter
))
1185 /* If there is a single operand in STMT matching FLAGS, return it. Otherwise
1187 static inline use_operand_p
1188 single_ssa_use_operand (tree stmt
, int flags
)
1193 var
= op_iter_init_use (&iter
, stmt
, flags
);
1194 if (op_iter_done (&iter
))
1195 return NULL_USE_OPERAND_P
;
1196 op_iter_next_use (&iter
);
1197 if (op_iter_done (&iter
))
1199 return NULL_USE_OPERAND_P
;
1204 /* If there is a single operand in STMT matching FLAGS, return it. Otherwise
1206 static inline def_operand_p
1207 single_ssa_def_operand (tree stmt
, int flags
)
1212 var
= op_iter_init_def (&iter
, stmt
, flags
);
1213 if (op_iter_done (&iter
))
1214 return NULL_DEF_OPERAND_P
;
1215 op_iter_next_def (&iter
);
1216 if (op_iter_done (&iter
))
1218 return NULL_DEF_OPERAND_P
;
1222 /* Return true if there are zero operands in STMT matching the type
1225 zero_ssa_operands (tree stmt
, int flags
)
1229 op_iter_init_tree (&iter
, stmt
, flags
);
1230 return op_iter_done (&iter
);
1234 /* Return the number of operands matching FLAGS in STMT. */
1236 num_ssa_operands (tree stmt
, int flags
)
1242 FOR_EACH_SSA_TREE_OPERAND (t
, stmt
, iter
, flags
)
1248 /* Delink all immediate_use information for STMT. */
1250 delink_stmt_imm_use (tree stmt
)
1253 use_operand_p use_p
;
1255 if (ssa_operands_active ())
1256 FOR_EACH_SSA_USE_OPERAND (use_p
, stmt
, iter
, SSA_OP_ALL_USES
)
1257 delink_imm_use (use_p
);
1261 /* This routine will compare all the operands matching FLAGS in STMT1 to those
1262 in STMT2. TRUE is returned if they are the same. STMTs can be NULL. */
1264 compare_ssa_operands_equal (tree stmt1
, tree stmt2
, int flags
)
1266 ssa_op_iter iter1
, iter2
;
1267 tree op1
= NULL_TREE
;
1268 tree op2
= NULL_TREE
;
1274 look1
= stmt1
&& stmt_ann (stmt1
);
1275 look2
= stmt2
&& stmt_ann (stmt2
);
1279 op1
= op_iter_init_tree (&iter1
, stmt1
, flags
);
1281 return op_iter_done (&iter1
);
1284 clear_and_done_ssa_iter (&iter1
);
1288 op2
= op_iter_init_tree (&iter2
, stmt2
, flags
);
1290 return op_iter_done (&iter2
);
1293 clear_and_done_ssa_iter (&iter2
);
1295 while (!op_iter_done (&iter1
) && !op_iter_done (&iter2
))
1299 op1
= op_iter_next_tree (&iter1
);
1300 op2
= op_iter_next_tree (&iter2
);
1303 return (op_iter_done (&iter1
) && op_iter_done (&iter2
));
1307 /* If there is a single DEF in the PHI node which matches FLAG, return it.
1308 Otherwise return NULL_DEF_OPERAND_P. */
1310 single_phi_def (tree stmt
, int flags
)
1312 tree def
= PHI_RESULT (stmt
);
1313 if ((flags
& SSA_OP_DEF
) && is_gimple_reg (def
))
1315 if ((flags
& SSA_OP_VIRTUAL_DEFS
) && !is_gimple_reg (def
))
1320 /* Initialize the iterator PTR for uses matching FLAGS in PHI. FLAGS should
1321 be either SSA_OP_USES or SSA_OP_VIRTUAL_USES. */
1322 static inline use_operand_p
1323 op_iter_init_phiuse (ssa_op_iter
*ptr
, tree phi
, int flags
)
1325 tree phi_def
= PHI_RESULT (phi
);
1328 clear_and_done_ssa_iter (ptr
);
1331 gcc_assert ((flags
& (SSA_OP_USE
| SSA_OP_VIRTUAL_USES
)) != 0);
1333 comp
= (is_gimple_reg (phi_def
) ? SSA_OP_USE
: SSA_OP_VIRTUAL_USES
);
1335 /* If the PHI node doesn't the operand type we care about, we're done. */
1336 if ((flags
& comp
) == 0)
1339 return NULL_USE_OPERAND_P
;
1342 ptr
->phi_stmt
= phi
;
1343 ptr
->num_phi
= PHI_NUM_ARGS (phi
);
1344 ptr
->iter_type
= ssa_op_iter_use
;
1345 return op_iter_next_use (ptr
);
1349 /* Start an iterator for a PHI definition. */
1351 static inline def_operand_p
1352 op_iter_init_phidef (ssa_op_iter
*ptr
, tree phi
, int flags
)
1354 tree phi_def
= PHI_RESULT (phi
);
1357 clear_and_done_ssa_iter (ptr
);
1360 gcc_assert ((flags
& (SSA_OP_DEF
| SSA_OP_VIRTUAL_DEFS
)) != 0);
1362 comp
= (is_gimple_reg (phi_def
) ? SSA_OP_DEF
: SSA_OP_VIRTUAL_DEFS
);
1364 /* If the PHI node doesn't the operand type we care about, we're done. */
1365 if ((flags
& comp
) == 0)
1368 return NULL_USE_OPERAND_P
;
1371 ptr
->iter_type
= ssa_op_iter_def
;
1372 /* The first call to op_iter_next_def will terminate the iterator since
1373 all the fields are NULL. Simply return the result here as the first and
1374 therefore only result. */
1375 return PHI_RESULT_PTR (phi
);
1378 /* Return true is IMM has reached the end of the immediate use stmt list. */
1381 end_imm_use_stmt_p (const imm_use_iterator
*imm
)
1383 return (imm
->imm_use
== imm
->end_p
);
1386 /* Finished the traverse of an immediate use stmt list IMM by removing the
1387 placeholder node from the list. */
1390 end_imm_use_stmt_traverse (imm_use_iterator
*imm
)
1392 delink_imm_use (&(imm
->iter_node
));
1395 /* Immediate use traversal of uses within a stmt require that all the
1396 uses on a stmt be sequentially listed. This routine is used to build up
1397 this sequential list by adding USE_P to the end of the current list
1398 currently delimited by HEAD and LAST_P. The new LAST_P value is
1401 static inline use_operand_p
1402 move_use_after_head (use_operand_p use_p
, use_operand_p head
,
1403 use_operand_p last_p
)
1405 gcc_assert (USE_FROM_PTR (use_p
) == USE_FROM_PTR (head
));
1406 /* Skip head when we find it. */
1409 /* If use_p is already linked in after last_p, continue. */
1410 if (last_p
->next
== use_p
)
1414 /* Delink from current location, and link in at last_p. */
1415 delink_imm_use (use_p
);
1416 link_imm_use_to_list (use_p
, last_p
);
1424 /* This routine will relink all uses with the same stmt as HEAD into the list
1425 immediately following HEAD for iterator IMM. */
1428 link_use_stmts_after (use_operand_p head
, imm_use_iterator
*imm
)
1430 use_operand_p use_p
;
1431 use_operand_p last_p
= head
;
1432 tree head_stmt
= USE_STMT (head
);
1433 tree use
= USE_FROM_PTR (head
);
1434 ssa_op_iter op_iter
;
1437 /* Only look at virtual or real uses, depending on the type of HEAD. */
1438 flag
= (is_gimple_reg (use
) ? SSA_OP_USE
: SSA_OP_VIRTUAL_USES
);
1440 if (TREE_CODE (head_stmt
) == PHI_NODE
)
1442 FOR_EACH_PHI_ARG (use_p
, head_stmt
, op_iter
, flag
)
1443 if (USE_FROM_PTR (use_p
) == use
)
1444 last_p
= move_use_after_head (use_p
, head
, last_p
);
1448 FOR_EACH_SSA_USE_OPERAND (use_p
, head_stmt
, op_iter
, flag
)
1449 if (USE_FROM_PTR (use_p
) == use
)
1450 last_p
= move_use_after_head (use_p
, head
, last_p
);
1452 /* LInk iter node in after last_p. */
1453 if (imm
->iter_node
.prev
!= NULL
)
1454 delink_imm_use (&imm
->iter_node
);
1455 link_imm_use_to_list (&(imm
->iter_node
), last_p
);
1458 /* Initialize IMM to traverse over uses of VAR. Return the first statement. */
1460 first_imm_use_stmt (imm_use_iterator
*imm
, tree var
)
1462 gcc_assert (TREE_CODE (var
) == SSA_NAME
);
1464 imm
->end_p
= &(SSA_NAME_IMM_USE_NODE (var
));
1465 imm
->imm_use
= imm
->end_p
->next
;
1466 imm
->next_imm_name
= NULL_USE_OPERAND_P
;
1468 /* iter_node is used as a marker within the immediate use list to indicate
1469 where the end of the current stmt's uses are. Initialize it to NULL
1470 stmt and use, which indicates a marker node. */
1471 imm
->iter_node
.prev
= NULL_USE_OPERAND_P
;
1472 imm
->iter_node
.next
= NULL_USE_OPERAND_P
;
1473 imm
->iter_node
.stmt
= NULL_TREE
;
1474 imm
->iter_node
.use
= NULL_USE_OPERAND_P
;
1476 if (end_imm_use_stmt_p (imm
))
1479 link_use_stmts_after (imm
->imm_use
, imm
);
1481 return USE_STMT (imm
->imm_use
);
1484 /* Bump IMM to the next stmt which has a use of var. */
1487 next_imm_use_stmt (imm_use_iterator
*imm
)
1489 imm
->imm_use
= imm
->iter_node
.next
;
1490 if (end_imm_use_stmt_p (imm
))
1492 if (imm
->iter_node
.prev
!= NULL
)
1493 delink_imm_use (&imm
->iter_node
);
1497 link_use_stmts_after (imm
->imm_use
, imm
);
1498 return USE_STMT (imm
->imm_use
);
1501 /* This routine will return the first use on the stmt IMM currently refers
1504 static inline use_operand_p
1505 first_imm_use_on_stmt (imm_use_iterator
*imm
)
1507 imm
->next_imm_name
= imm
->imm_use
->next
;
1508 return imm
->imm_use
;
1511 /* Return TRUE if the last use on the stmt IMM refers to has been visited. */
1514 end_imm_use_on_stmt_p (const imm_use_iterator
*imm
)
1516 return (imm
->imm_use
== &(imm
->iter_node
));
1519 /* Bump to the next use on the stmt IMM refers to, return NULL if done. */
1521 static inline use_operand_p
1522 next_imm_use_on_stmt (imm_use_iterator
*imm
)
1524 imm
->imm_use
= imm
->next_imm_name
;
1525 if (end_imm_use_on_stmt_p (imm
))
1526 return NULL_USE_OPERAND_P
;
1529 imm
->next_imm_name
= imm
->imm_use
->next
;
1530 return imm
->imm_use
;
1534 /* Return true if VAR cannot be modified by the program. */
1537 unmodifiable_var_p (const_tree var
)
1539 if (TREE_CODE (var
) == SSA_NAME
)
1540 var
= SSA_NAME_VAR (var
);
1543 return TREE_READONLY (var
) && (TREE_STATIC (var
) || MTAG_GLOBAL (var
));
1545 return TREE_READONLY (var
) && (TREE_STATIC (var
) || DECL_EXTERNAL (var
));
1548 /* Return true if REF, an ARRAY_REF, has an INDIRECT_REF somewhere in it. */
1551 array_ref_contains_indirect_ref (const_tree ref
)
1553 gcc_assert (TREE_CODE (ref
) == ARRAY_REF
);
1556 ref
= TREE_OPERAND (ref
, 0);
1557 } while (handled_component_p (ref
));
1559 return TREE_CODE (ref
) == INDIRECT_REF
;
1562 /* Return true if REF, a handled component reference, has an ARRAY_REF
1566 ref_contains_array_ref (const_tree ref
)
1568 gcc_assert (handled_component_p (ref
));
1571 if (TREE_CODE (ref
) == ARRAY_REF
)
1573 ref
= TREE_OPERAND (ref
, 0);
1574 } while (handled_component_p (ref
));
1579 /* Given a variable VAR, lookup and return a pointer to the list of
1580 subvariables for it. */
1582 static inline subvar_t
*
1583 lookup_subvars_for_var (const_tree var
)
1585 var_ann_t ann
= var_ann (var
);
1587 return &ann
->subvars
;
1590 /* Given a variable VAR, return a linked list of subvariables for VAR, or
1591 NULL, if there are no subvariables. */
1593 static inline subvar_t
1594 get_subvars_for_var (tree var
)
1598 gcc_assert (SSA_VAR_P (var
));
1600 if (TREE_CODE (var
) == SSA_NAME
)
1601 subvars
= *(lookup_subvars_for_var (SSA_NAME_VAR (var
)));
1603 subvars
= *(lookup_subvars_for_var (var
));
1607 /* Return the subvariable of VAR at offset OFFSET. */
1610 get_subvar_at (tree var
, unsigned HOST_WIDE_INT offset
)
1612 subvar_t sv
= get_subvars_for_var (var
);
1616 high
= VEC_length (tree
, sv
) - 1;
1619 int mid
= (low
+ high
) / 2;
1620 tree subvar
= VEC_index (tree
, sv
, mid
);
1621 if (SFT_OFFSET (subvar
) == offset
)
1623 else if (SFT_OFFSET (subvar
) < offset
)
1633 /* Return the first subvariable in SV that overlaps [offset, offset + size[.
1634 NULL_TREE is returned, if there is no overlapping subvariable, else *I
1635 is set to the index in the SV vector of the first overlap. */
1638 get_first_overlapping_subvar (subvar_t sv
, unsigned HOST_WIDE_INT offset
,
1639 unsigned HOST_WIDE_INT size
, unsigned int *i
)
1642 int high
= VEC_length (tree
, sv
) - 1;
1649 /* Binary search for offset. */
1652 mid
= (low
+ high
) / 2;
1653 subvar
= VEC_index (tree
, sv
, mid
);
1654 if (SFT_OFFSET (subvar
) == offset
)
1659 else if (SFT_OFFSET (subvar
) < offset
)
1664 while (low
<= high
);
1666 /* As we didn't find a subvar with offset, adjust to return the
1667 first overlapping one. */
1668 if (SFT_OFFSET (subvar
) < offset
1669 && SFT_OFFSET (subvar
) + SFT_SIZE (subvar
) <= offset
)
1672 if ((unsigned)mid
>= VEC_length (tree
, sv
))
1674 subvar
= VEC_index (tree
, sv
, mid
);
1676 else if (SFT_OFFSET (subvar
) > offset
1677 && size
<= SFT_OFFSET (subvar
) - offset
)
1682 subvar
= VEC_index (tree
, sv
, mid
);
1685 if (overlap_subvar (offset
, size
, subvar
, NULL
))
1695 /* Return true if V is a tree that we can have subvars for.
1696 Normally, this is any aggregate type. Also complex
1697 types which are not gimple registers can have subvars. */
1700 var_can_have_subvars (const_tree v
)
1702 /* Volatile variables should never have subvars. */
1703 if (TREE_THIS_VOLATILE (v
))
1706 /* Non decls or memory tags can never have subvars. */
1707 if (!DECL_P (v
) || MTAG_P (v
))
1710 /* Aggregates can have subvars. */
1711 if (AGGREGATE_TYPE_P (TREE_TYPE (v
)))
1714 /* Complex types variables which are not also a gimple register can
1716 if (TREE_CODE (TREE_TYPE (v
)) == COMPLEX_TYPE
1717 && !DECL_GIMPLE_REG_P (v
))
1724 /* Return true if OFFSET and SIZE define a range that overlaps with some
1725 portion of the range of SV, a subvar. If there was an exact overlap,
1726 *EXACT will be set to true upon return. */
1729 overlap_subvar (unsigned HOST_WIDE_INT offset
, unsigned HOST_WIDE_INT size
,
1730 const_tree sv
, bool *exact
)
1732 /* There are three possible cases of overlap.
1733 1. We can have an exact overlap, like so:
1734 |offset, offset + size |
1735 |sv->offset, sv->offset + sv->size |
1737 2. We can have offset starting after sv->offset, like so:
1739 |offset, offset + size |
1740 |sv->offset, sv->offset + sv->size |
1742 3. We can have offset starting before sv->offset, like so:
1744 |offset, offset + size |
1745 |sv->offset, sv->offset + sv->size|
1750 if (offset
== SFT_OFFSET (sv
) && size
== SFT_SIZE (sv
))
1756 else if (offset
>= SFT_OFFSET (sv
)
1757 && offset
< (SFT_OFFSET (sv
) + SFT_SIZE (sv
)))
1761 else if (offset
< SFT_OFFSET (sv
)
1762 && (size
> SFT_OFFSET (sv
) - offset
))
1770 /* Return the memory tag associated with symbol SYM. */
1773 symbol_mem_tag (tree sym
)
1775 tree tag
= get_var_ann (sym
)->symbol_mem_tag
;
1777 #if defined ENABLE_CHECKING
1779 gcc_assert (TREE_CODE (tag
) == SYMBOL_MEMORY_TAG
);
1786 /* Set the memory tag associated with symbol SYM. */
1789 set_symbol_mem_tag (tree sym
, tree tag
)
1791 #if defined ENABLE_CHECKING
1793 gcc_assert (TREE_CODE (tag
) == SYMBOL_MEMORY_TAG
);
1796 get_var_ann (sym
)->symbol_mem_tag
= tag
;
1799 /* Get the value handle of EXPR. This is the only correct way to get
1800 the value handle for a "thing". If EXPR does not have a value
1801 handle associated, it returns NULL_TREE.
1802 NB: If EXPR is min_invariant, this function is *required* to return
1806 get_value_handle (tree expr
)
1808 if (TREE_CODE (expr
) == SSA_NAME
)
1809 return SSA_NAME_VALUE (expr
);
1810 else if (DECL_P (expr
) || TREE_CODE (expr
) == TREE_LIST
1811 || TREE_CODE (expr
) == CONSTRUCTOR
)
1813 tree_ann_common_t ann
= tree_common_ann (expr
);
1814 return ((ann
) ? ann
->value_handle
: NULL_TREE
);
1816 else if (is_gimple_min_invariant (expr
))
1818 else if (EXPR_P (expr
))
1820 tree_ann_common_t ann
= tree_common_ann (expr
);
1821 return ((ann
) ? ann
->value_handle
: NULL_TREE
);
1827 /* Accessor to tree-ssa-operands.c caches. */
1828 static inline struct ssa_operands
*
1829 gimple_ssa_operands (const struct function
*fun
)
1831 return &fun
->gimple_df
->ssa_operands
;
1834 /* Map describing reference statistics for function FN. */
1835 static inline struct mem_ref_stats_d
*
1836 gimple_mem_ref_stats (const struct function
*fn
)
1838 return &fn
->gimple_df
->mem_ref_stats
;
1840 #endif /* _TREE_FLOW_INLINE_H */