1 /* Analyze RTL for GNU compiler.
2 Copyright (C) 1987, 1988, 1992, 1993, 1994, 1995, 1996, 1997, 1998,
3 1999, 2000, 2001, 2002, 2003, 2004, 2005, 2006, 2007 Free Software
6 This file is part of GCC.
8 GCC is free software; you can redistribute it and/or modify it under
9 the terms of the GNU General Public License as published by the Free
10 Software Foundation; either version 3, or (at your option) any later
13 GCC is distributed in the hope that it will be useful, but WITHOUT ANY
14 WARRANTY; without even the implied warranty of MERCHANTABILITY or
15 FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License
18 You should have received a copy of the GNU General Public License
19 along with GCC; see the file COPYING3. If not see
20 <http://www.gnu.org/licenses/>. */
25 #include "coretypes.h"
29 #include "hard-reg-set.h"
30 #include "insn-config.h"
42 /* Information about a subreg of a hard register. */
45 /* Offset of first hard register involved in the subreg. */
47 /* Number of hard registers involved in the subreg. */
49 /* Whether this subreg can be represented as a hard reg with the new
54 /* Forward declarations */
55 static void set_of_1 (rtx
, const_rtx
, void *);
56 static bool covers_regno_p (const_rtx
, unsigned int);
57 static bool covers_regno_no_parallel_p (const_rtx
, unsigned int);
58 static int rtx_referenced_p_1 (rtx
*, void *);
59 static int computed_jump_p_1 (const_rtx
);
60 static void parms_set (rtx
, const_rtx
, void *);
61 static void subreg_get_info (unsigned int, enum machine_mode
,
62 unsigned int, enum machine_mode
,
63 struct subreg_info
*);
65 static unsigned HOST_WIDE_INT
cached_nonzero_bits (const_rtx
, enum machine_mode
,
66 const_rtx
, enum machine_mode
,
67 unsigned HOST_WIDE_INT
);
68 static unsigned HOST_WIDE_INT
nonzero_bits1 (const_rtx
, enum machine_mode
,
69 const_rtx
, enum machine_mode
,
70 unsigned HOST_WIDE_INT
);
71 static unsigned int cached_num_sign_bit_copies (const_rtx
, enum machine_mode
, const_rtx
,
74 static unsigned int num_sign_bit_copies1 (const_rtx
, enum machine_mode
, const_rtx
,
75 enum machine_mode
, unsigned int);
77 /* Offset of the first 'e', 'E' or 'V' operand for each rtx code, or
78 -1 if a code has no such operand. */
79 static int non_rtx_starting_operands
[NUM_RTX_CODE
];
81 /* Bit flags that specify the machine subtype we are compiling for.
82 Bits are tested using macros TARGET_... defined in the tm.h file
83 and set by `-m...' switches. Must be defined in rtlanal.c. */
87 /* Truncation narrows the mode from SOURCE mode to DESTINATION mode.
88 If TARGET_MODE_REP_EXTENDED (DESTINATION, DESTINATION_REP) is
89 SIGN_EXTEND then while narrowing we also have to enforce the
90 representation and sign-extend the value to mode DESTINATION_REP.
92 If the value is already sign-extended to DESTINATION_REP mode we
93 can just switch to DESTINATION mode on it. For each pair of
94 integral modes SOURCE and DESTINATION, when truncating from SOURCE
95 to DESTINATION, NUM_SIGN_BIT_COPIES_IN_REP[SOURCE][DESTINATION]
96 contains the number of high-order bits in SOURCE that have to be
97 copies of the sign-bit so that we can do this mode-switch to
101 num_sign_bit_copies_in_rep
[MAX_MODE_INT
+ 1][MAX_MODE_INT
+ 1];
103 /* Return 1 if the value of X is unstable
104 (would be different at a different point in the program).
105 The frame pointer, arg pointer, etc. are considered stable
106 (within one function) and so is anything marked `unchanging'. */
109 rtx_unstable_p (const_rtx x
)
111 const RTX_CODE code
= GET_CODE (x
);
118 return !MEM_READONLY_P (x
) || rtx_unstable_p (XEXP (x
, 0));
130 /* As in rtx_varies_p, we have to use the actual rtx, not reg number. */
131 if (x
== frame_pointer_rtx
|| x
== hard_frame_pointer_rtx
132 /* The arg pointer varies if it is not a fixed register. */
133 || (x
== arg_pointer_rtx
&& fixed_regs
[ARG_POINTER_REGNUM
]))
135 #ifndef PIC_OFFSET_TABLE_REG_CALL_CLOBBERED
136 /* ??? When call-clobbered, the value is stable modulo the restore
137 that must happen after a call. This currently screws up local-alloc
138 into believing that the restore is not needed. */
139 if (x
== pic_offset_table_rtx
)
145 if (MEM_VOLATILE_P (x
))
154 fmt
= GET_RTX_FORMAT (code
);
155 for (i
= GET_RTX_LENGTH (code
) - 1; i
>= 0; i
--)
158 if (rtx_unstable_p (XEXP (x
, i
)))
161 else if (fmt
[i
] == 'E')
164 for (j
= 0; j
< XVECLEN (x
, i
); j
++)
165 if (rtx_unstable_p (XVECEXP (x
, i
, j
)))
172 /* Return 1 if X has a value that can vary even between two
173 executions of the program. 0 means X can be compared reliably
174 against certain constants or near-constants.
175 FOR_ALIAS is nonzero if we are called from alias analysis; if it is
176 zero, we are slightly more conservative.
177 The frame pointer and the arg pointer are considered constant. */
180 rtx_varies_p (const_rtx x
, bool for_alias
)
193 return !MEM_READONLY_P (x
) || rtx_varies_p (XEXP (x
, 0), for_alias
);
205 /* Note that we have to test for the actual rtx used for the frame
206 and arg pointers and not just the register number in case we have
207 eliminated the frame and/or arg pointer and are using it
209 if (x
== frame_pointer_rtx
|| x
== hard_frame_pointer_rtx
210 /* The arg pointer varies if it is not a fixed register. */
211 || (x
== arg_pointer_rtx
&& fixed_regs
[ARG_POINTER_REGNUM
]))
213 if (x
== pic_offset_table_rtx
214 #ifdef PIC_OFFSET_TABLE_REG_CALL_CLOBBERED
215 /* ??? When call-clobbered, the value is stable modulo the restore
216 that must happen after a call. This currently screws up
217 local-alloc into believing that the restore is not needed, so we
218 must return 0 only if we are called from alias analysis. */
226 /* The operand 0 of a LO_SUM is considered constant
227 (in fact it is related specifically to operand 1)
228 during alias analysis. */
229 return (! for_alias
&& rtx_varies_p (XEXP (x
, 0), for_alias
))
230 || rtx_varies_p (XEXP (x
, 1), for_alias
);
233 if (MEM_VOLATILE_P (x
))
242 fmt
= GET_RTX_FORMAT (code
);
243 for (i
= GET_RTX_LENGTH (code
) - 1; i
>= 0; i
--)
246 if (rtx_varies_p (XEXP (x
, i
), for_alias
))
249 else if (fmt
[i
] == 'E')
252 for (j
= 0; j
< XVECLEN (x
, i
); j
++)
253 if (rtx_varies_p (XVECEXP (x
, i
, j
), for_alias
))
260 /* Return nonzero if the use of X as an address in a MEM can cause a trap.
261 MODE is the mode of the MEM (not that of X) and UNALIGNED_MEMS controls
262 whether nonzero is returned for unaligned memory accesses on strict
263 alignment machines. */
266 rtx_addr_can_trap_p_1 (const_rtx x
, enum machine_mode mode
, bool unaligned_mems
)
268 enum rtx_code code
= GET_CODE (x
);
273 return SYMBOL_REF_WEAK (x
);
279 /* As in rtx_varies_p, we have to use the actual rtx, not reg number. */
280 if (x
== frame_pointer_rtx
|| x
== hard_frame_pointer_rtx
281 || x
== stack_pointer_rtx
282 /* The arg pointer varies if it is not a fixed register. */
283 || (x
== arg_pointer_rtx
&& fixed_regs
[ARG_POINTER_REGNUM
]))
285 /* All of the virtual frame registers are stack references. */
286 if (REGNO (x
) >= FIRST_VIRTUAL_REGISTER
287 && REGNO (x
) <= LAST_VIRTUAL_REGISTER
)
292 return rtx_addr_can_trap_p_1 (XEXP (x
, 0), mode
, unaligned_mems
);
295 /* An address is assumed not to trap if:
296 - it is an address that can't trap plus a constant integer,
297 with the proper remainder modulo the mode size if we are
298 considering unaligned memory references. */
299 if (!rtx_addr_can_trap_p_1 (XEXP (x
, 0), mode
, unaligned_mems
)
300 && GET_CODE (XEXP (x
, 1)) == CONST_INT
)
302 HOST_WIDE_INT offset
;
304 if (!STRICT_ALIGNMENT
306 || GET_MODE_SIZE (mode
) == 0)
309 offset
= INTVAL (XEXP (x
, 1));
311 #ifdef SPARC_STACK_BOUNDARY_HACK
312 /* ??? The SPARC port may claim a STACK_BOUNDARY higher than
313 the real alignment of %sp. However, when it does this, the
314 alignment of %sp+STACK_POINTER_OFFSET is STACK_BOUNDARY. */
315 if (SPARC_STACK_BOUNDARY_HACK
316 && (XEXP (x
, 0) == stack_pointer_rtx
317 || XEXP (x
, 0) == hard_frame_pointer_rtx
))
318 offset
-= STACK_POINTER_OFFSET
;
321 return offset
% GET_MODE_SIZE (mode
) != 0;
324 /* - or it is the pic register plus a constant. */
325 if (XEXP (x
, 0) == pic_offset_table_rtx
&& CONSTANT_P (XEXP (x
, 1)))
332 return rtx_addr_can_trap_p_1 (XEXP (x
, 1), mode
, unaligned_mems
);
339 return rtx_addr_can_trap_p_1 (XEXP (x
, 0), mode
, unaligned_mems
);
345 /* If it isn't one of the case above, it can cause a trap. */
349 /* Return nonzero if the use of X as an address in a MEM can cause a trap. */
352 rtx_addr_can_trap_p (const_rtx x
)
354 return rtx_addr_can_trap_p_1 (x
, VOIDmode
, false);
357 /* Return true if X is an address that is known to not be zero. */
360 nonzero_address_p (const_rtx x
)
362 const enum rtx_code code
= GET_CODE (x
);
367 return !SYMBOL_REF_WEAK (x
);
373 /* As in rtx_varies_p, we have to use the actual rtx, not reg number. */
374 if (x
== frame_pointer_rtx
|| x
== hard_frame_pointer_rtx
375 || x
== stack_pointer_rtx
376 || (x
== arg_pointer_rtx
&& fixed_regs
[ARG_POINTER_REGNUM
]))
378 /* All of the virtual frame registers are stack references. */
379 if (REGNO (x
) >= FIRST_VIRTUAL_REGISTER
380 && REGNO (x
) <= LAST_VIRTUAL_REGISTER
)
385 return nonzero_address_p (XEXP (x
, 0));
388 if (GET_CODE (XEXP (x
, 1)) == CONST_INT
)
389 return nonzero_address_p (XEXP (x
, 0));
390 /* Handle PIC references. */
391 else if (XEXP (x
, 0) == pic_offset_table_rtx
392 && CONSTANT_P (XEXP (x
, 1)))
397 /* Similar to the above; allow positive offsets. Further, since
398 auto-inc is only allowed in memories, the register must be a
400 if (GET_CODE (XEXP (x
, 1)) == CONST_INT
401 && INTVAL (XEXP (x
, 1)) > 0)
403 return nonzero_address_p (XEXP (x
, 0));
406 /* Similarly. Further, the offset is always positive. */
413 return nonzero_address_p (XEXP (x
, 0));
416 return nonzero_address_p (XEXP (x
, 1));
422 /* If it isn't one of the case above, might be zero. */
426 /* Return 1 if X refers to a memory location whose address
427 cannot be compared reliably with constant addresses,
428 or if X refers to a BLKmode memory object.
429 FOR_ALIAS is nonzero if we are called from alias analysis; if it is
430 zero, we are slightly more conservative. */
433 rtx_addr_varies_p (const_rtx x
, bool for_alias
)
444 return GET_MODE (x
) == BLKmode
|| rtx_varies_p (XEXP (x
, 0), for_alias
);
446 fmt
= GET_RTX_FORMAT (code
);
447 for (i
= GET_RTX_LENGTH (code
) - 1; i
>= 0; i
--)
450 if (rtx_addr_varies_p (XEXP (x
, i
), for_alias
))
453 else if (fmt
[i
] == 'E')
456 for (j
= 0; j
< XVECLEN (x
, i
); j
++)
457 if (rtx_addr_varies_p (XVECEXP (x
, i
, j
), for_alias
))
463 /* Return the value of the integer term in X, if one is apparent;
465 Only obvious integer terms are detected.
466 This is used in cse.c with the `related_value' field. */
469 get_integer_term (const_rtx x
)
471 if (GET_CODE (x
) == CONST
)
474 if (GET_CODE (x
) == MINUS
475 && GET_CODE (XEXP (x
, 1)) == CONST_INT
)
476 return - INTVAL (XEXP (x
, 1));
477 if (GET_CODE (x
) == PLUS
478 && GET_CODE (XEXP (x
, 1)) == CONST_INT
)
479 return INTVAL (XEXP (x
, 1));
483 /* If X is a constant, return the value sans apparent integer term;
485 Only obvious integer terms are detected. */
488 get_related_value (const_rtx x
)
490 if (GET_CODE (x
) != CONST
)
493 if (GET_CODE (x
) == PLUS
494 && GET_CODE (XEXP (x
, 1)) == CONST_INT
)
496 else if (GET_CODE (x
) == MINUS
497 && GET_CODE (XEXP (x
, 1)) == CONST_INT
)
502 /* Return true if SYMBOL is a SYMBOL_REF and OFFSET + SYMBOL points
503 to somewhere in the same object or object_block as SYMBOL. */
506 offset_within_block_p (const_rtx symbol
, HOST_WIDE_INT offset
)
510 if (GET_CODE (symbol
) != SYMBOL_REF
)
518 if (CONSTANT_POOL_ADDRESS_P (symbol
)
519 && offset
< (int) GET_MODE_SIZE (get_pool_mode (symbol
)))
522 decl
= SYMBOL_REF_DECL (symbol
);
523 if (decl
&& offset
< int_size_in_bytes (TREE_TYPE (decl
)))
527 if (SYMBOL_REF_HAS_BLOCK_INFO_P (symbol
)
528 && SYMBOL_REF_BLOCK (symbol
)
529 && SYMBOL_REF_BLOCK_OFFSET (symbol
) >= 0
530 && ((unsigned HOST_WIDE_INT
) offset
+ SYMBOL_REF_BLOCK_OFFSET (symbol
)
531 < (unsigned HOST_WIDE_INT
) SYMBOL_REF_BLOCK (symbol
)->size
))
537 /* Split X into a base and a constant offset, storing them in *BASE_OUT
538 and *OFFSET_OUT respectively. */
541 split_const (rtx x
, rtx
*base_out
, rtx
*offset_out
)
543 if (GET_CODE (x
) == CONST
)
546 if (GET_CODE (x
) == PLUS
&& GET_CODE (XEXP (x
, 1)) == CONST_INT
)
548 *base_out
= XEXP (x
, 0);
549 *offset_out
= XEXP (x
, 1);
554 *offset_out
= const0_rtx
;
557 /* Return the number of places FIND appears within X. If COUNT_DEST is
558 zero, we do not count occurrences inside the destination of a SET. */
561 count_occurrences (const_rtx x
, const_rtx find
, int count_dest
)
565 const char *format_ptr
;
587 count
= count_occurrences (XEXP (x
, 0), find
, count_dest
);
589 count
+= count_occurrences (XEXP (x
, 1), find
, count_dest
);
593 if (MEM_P (find
) && rtx_equal_p (x
, find
))
598 if (SET_DEST (x
) == find
&& ! count_dest
)
599 return count_occurrences (SET_SRC (x
), find
, count_dest
);
606 format_ptr
= GET_RTX_FORMAT (code
);
609 for (i
= 0; i
< GET_RTX_LENGTH (code
); i
++)
611 switch (*format_ptr
++)
614 count
+= count_occurrences (XEXP (x
, i
), find
, count_dest
);
618 for (j
= 0; j
< XVECLEN (x
, i
); j
++)
619 count
+= count_occurrences (XVECEXP (x
, i
, j
), find
, count_dest
);
627 /* Nonzero if register REG appears somewhere within IN.
628 Also works if REG is not a register; in this case it checks
629 for a subexpression of IN that is Lisp "equal" to REG. */
632 reg_mentioned_p (const_rtx reg
, const_rtx in
)
644 if (GET_CODE (in
) == LABEL_REF
)
645 return reg
== XEXP (in
, 0);
647 code
= GET_CODE (in
);
651 /* Compare registers by number. */
653 return REG_P (reg
) && REGNO (in
) == REGNO (reg
);
655 /* These codes have no constituent expressions
666 /* These are kept unique for a given value. */
673 if (GET_CODE (reg
) == code
&& rtx_equal_p (reg
, in
))
676 fmt
= GET_RTX_FORMAT (code
);
678 for (i
= GET_RTX_LENGTH (code
) - 1; i
>= 0; i
--)
683 for (j
= XVECLEN (in
, i
) - 1; j
>= 0; j
--)
684 if (reg_mentioned_p (reg
, XVECEXP (in
, i
, j
)))
687 else if (fmt
[i
] == 'e'
688 && reg_mentioned_p (reg
, XEXP (in
, i
)))
694 /* Return 1 if in between BEG and END, exclusive of BEG and END, there is
695 no CODE_LABEL insn. */
698 no_labels_between_p (const_rtx beg
, const_rtx end
)
703 for (p
= NEXT_INSN (beg
); p
!= end
; p
= NEXT_INSN (p
))
709 /* Nonzero if register REG is used in an insn between
710 FROM_INSN and TO_INSN (exclusive of those two). */
713 reg_used_between_p (const_rtx reg
, const_rtx from_insn
, const_rtx to_insn
)
717 if (from_insn
== to_insn
)
720 for (insn
= NEXT_INSN (from_insn
); insn
!= to_insn
; insn
= NEXT_INSN (insn
))
722 && (reg_overlap_mentioned_p (reg
, PATTERN (insn
))
723 || (CALL_P (insn
) && find_reg_fusage (insn
, USE
, reg
))))
728 /* Nonzero if the old value of X, a register, is referenced in BODY. If X
729 is entirely replaced by a new value and the only use is as a SET_DEST,
730 we do not consider it a reference. */
733 reg_referenced_p (const_rtx x
, const_rtx body
)
737 switch (GET_CODE (body
))
740 if (reg_overlap_mentioned_p (x
, SET_SRC (body
)))
743 /* If the destination is anything other than CC0, PC, a REG or a SUBREG
744 of a REG that occupies all of the REG, the insn references X if
745 it is mentioned in the destination. */
746 if (GET_CODE (SET_DEST (body
)) != CC0
747 && GET_CODE (SET_DEST (body
)) != PC
748 && !REG_P (SET_DEST (body
))
749 && ! (GET_CODE (SET_DEST (body
)) == SUBREG
750 && REG_P (SUBREG_REG (SET_DEST (body
)))
751 && (((GET_MODE_SIZE (GET_MODE (SUBREG_REG (SET_DEST (body
))))
752 + (UNITS_PER_WORD
- 1)) / UNITS_PER_WORD
)
753 == ((GET_MODE_SIZE (GET_MODE (SET_DEST (body
)))
754 + (UNITS_PER_WORD
- 1)) / UNITS_PER_WORD
)))
755 && reg_overlap_mentioned_p (x
, SET_DEST (body
)))
760 for (i
= ASM_OPERANDS_INPUT_LENGTH (body
) - 1; i
>= 0; i
--)
761 if (reg_overlap_mentioned_p (x
, ASM_OPERANDS_INPUT (body
, i
)))
768 return reg_overlap_mentioned_p (x
, body
);
771 return reg_overlap_mentioned_p (x
, TRAP_CONDITION (body
));
774 return reg_overlap_mentioned_p (x
, XEXP (body
, 0));
777 case UNSPEC_VOLATILE
:
778 for (i
= XVECLEN (body
, 0) - 1; i
>= 0; i
--)
779 if (reg_overlap_mentioned_p (x
, XVECEXP (body
, 0, i
)))
784 for (i
= XVECLEN (body
, 0) - 1; i
>= 0; i
--)
785 if (reg_referenced_p (x
, XVECEXP (body
, 0, i
)))
790 if (MEM_P (XEXP (body
, 0)))
791 if (reg_overlap_mentioned_p (x
, XEXP (XEXP (body
, 0), 0)))
796 if (reg_overlap_mentioned_p (x
, COND_EXEC_TEST (body
)))
798 return reg_referenced_p (x
, COND_EXEC_CODE (body
));
805 /* Nonzero if register REG is set or clobbered in an insn between
806 FROM_INSN and TO_INSN (exclusive of those two). */
809 reg_set_between_p (const_rtx reg
, const_rtx from_insn
, const_rtx to_insn
)
813 if (from_insn
== to_insn
)
816 for (insn
= NEXT_INSN (from_insn
); insn
!= to_insn
; insn
= NEXT_INSN (insn
))
817 if (INSN_P (insn
) && reg_set_p (reg
, insn
))
822 /* Internals of reg_set_between_p. */
824 reg_set_p (const_rtx reg
, const_rtx insn
)
826 /* We can be passed an insn or part of one. If we are passed an insn,
827 check if a side-effect of the insn clobbers REG. */
829 && (FIND_REG_INC_NOTE (insn
, reg
)
832 && REGNO (reg
) < FIRST_PSEUDO_REGISTER
833 && overlaps_hard_reg_set_p (regs_invalidated_by_call
,
834 GET_MODE (reg
), REGNO (reg
)))
836 || find_reg_fusage (insn
, CLOBBER
, reg
)))))
839 return set_of (reg
, insn
) != NULL_RTX
;
842 /* Similar to reg_set_between_p, but check all registers in X. Return 0
843 only if none of them are modified between START and END. Return 1 if
844 X contains a MEM; this routine does usememory aliasing. */
847 modified_between_p (const_rtx x
, const_rtx start
, const_rtx end
)
849 const enum rtx_code code
= GET_CODE (x
);
873 if (modified_between_p (XEXP (x
, 0), start
, end
))
875 if (MEM_READONLY_P (x
))
877 for (insn
= NEXT_INSN (start
); insn
!= end
; insn
= NEXT_INSN (insn
))
878 if (memory_modified_in_insn_p (x
, insn
))
884 return reg_set_between_p (x
, start
, end
);
890 fmt
= GET_RTX_FORMAT (code
);
891 for (i
= GET_RTX_LENGTH (code
) - 1; i
>= 0; i
--)
893 if (fmt
[i
] == 'e' && modified_between_p (XEXP (x
, i
), start
, end
))
896 else if (fmt
[i
] == 'E')
897 for (j
= XVECLEN (x
, i
) - 1; j
>= 0; j
--)
898 if (modified_between_p (XVECEXP (x
, i
, j
), start
, end
))
905 /* Similar to reg_set_p, but check all registers in X. Return 0 only if none
906 of them are modified in INSN. Return 1 if X contains a MEM; this routine
907 does use memory aliasing. */
910 modified_in_p (const_rtx x
, const_rtx insn
)
912 const enum rtx_code code
= GET_CODE (x
);
932 if (modified_in_p (XEXP (x
, 0), insn
))
934 if (MEM_READONLY_P (x
))
936 if (memory_modified_in_insn_p (x
, insn
))
942 return reg_set_p (x
, insn
);
948 fmt
= GET_RTX_FORMAT (code
);
949 for (i
= GET_RTX_LENGTH (code
) - 1; i
>= 0; i
--)
951 if (fmt
[i
] == 'e' && modified_in_p (XEXP (x
, i
), insn
))
954 else if (fmt
[i
] == 'E')
955 for (j
= XVECLEN (x
, i
) - 1; j
>= 0; j
--)
956 if (modified_in_p (XVECEXP (x
, i
, j
), insn
))
963 /* Helper function for set_of. */
971 set_of_1 (rtx x
, const_rtx pat
, void *data1
)
973 struct set_of_data
*const data
= (struct set_of_data
*) (data1
);
974 if (rtx_equal_p (x
, data
->pat
)
975 || (!MEM_P (x
) && reg_overlap_mentioned_p (data
->pat
, x
)))
979 /* Give an INSN, return a SET or CLOBBER expression that does modify PAT
980 (either directly or via STRICT_LOW_PART and similar modifiers). */
982 set_of (const_rtx pat
, const_rtx insn
)
984 struct set_of_data data
;
985 data
.found
= NULL_RTX
;
987 note_stores (INSN_P (insn
) ? PATTERN (insn
) : insn
, set_of_1
, &data
);
991 /* Given an INSN, return a SET expression if this insn has only a single SET.
992 It may also have CLOBBERs, USEs, or SET whose output
993 will not be used, which we ignore. */
996 single_set_2 (const_rtx insn
, const_rtx pat
)
999 int set_verified
= 1;
1002 if (GET_CODE (pat
) == PARALLEL
)
1004 for (i
= 0; i
< XVECLEN (pat
, 0); i
++)
1006 rtx sub
= XVECEXP (pat
, 0, i
);
1007 switch (GET_CODE (sub
))
1014 /* We can consider insns having multiple sets, where all
1015 but one are dead as single set insns. In common case
1016 only single set is present in the pattern so we want
1017 to avoid checking for REG_UNUSED notes unless necessary.
1019 When we reach set first time, we just expect this is
1020 the single set we are looking for and only when more
1021 sets are found in the insn, we check them. */
1024 if (find_reg_note (insn
, REG_UNUSED
, SET_DEST (set
))
1025 && !side_effects_p (set
))
1031 set
= sub
, set_verified
= 0;
1032 else if (!find_reg_note (insn
, REG_UNUSED
, SET_DEST (sub
))
1033 || side_effects_p (sub
))
1045 /* Given an INSN, return nonzero if it has more than one SET, else return
1049 multiple_sets (const_rtx insn
)
1054 /* INSN must be an insn. */
1055 if (! INSN_P (insn
))
1058 /* Only a PARALLEL can have multiple SETs. */
1059 if (GET_CODE (PATTERN (insn
)) == PARALLEL
)
1061 for (i
= 0, found
= 0; i
< XVECLEN (PATTERN (insn
), 0); i
++)
1062 if (GET_CODE (XVECEXP (PATTERN (insn
), 0, i
)) == SET
)
1064 /* If we have already found a SET, then return now. */
1072 /* Either zero or one SET. */
1076 /* Return nonzero if the destination of SET equals the source
1077 and there are no side effects. */
1080 set_noop_p (const_rtx set
)
1082 rtx src
= SET_SRC (set
);
1083 rtx dst
= SET_DEST (set
);
1085 if (dst
== pc_rtx
&& src
== pc_rtx
)
1088 if (MEM_P (dst
) && MEM_P (src
))
1089 return rtx_equal_p (dst
, src
) && !side_effects_p (dst
);
1091 if (GET_CODE (dst
) == ZERO_EXTRACT
)
1092 return rtx_equal_p (XEXP (dst
, 0), src
)
1093 && ! BYTES_BIG_ENDIAN
&& XEXP (dst
, 2) == const0_rtx
1094 && !side_effects_p (src
);
1096 if (GET_CODE (dst
) == STRICT_LOW_PART
)
1097 dst
= XEXP (dst
, 0);
1099 if (GET_CODE (src
) == SUBREG
&& GET_CODE (dst
) == SUBREG
)
1101 if (SUBREG_BYTE (src
) != SUBREG_BYTE (dst
))
1103 src
= SUBREG_REG (src
);
1104 dst
= SUBREG_REG (dst
);
1107 return (REG_P (src
) && REG_P (dst
)
1108 && REGNO (src
) == REGNO (dst
));
1111 /* Return nonzero if an insn consists only of SETs, each of which only sets a
1115 noop_move_p (const_rtx insn
)
1117 rtx pat
= PATTERN (insn
);
1119 if (INSN_CODE (insn
) == NOOP_MOVE_INSN_CODE
)
1122 /* Insns carrying these notes are useful later on. */
1123 if (find_reg_note (insn
, REG_EQUAL
, NULL_RTX
))
1126 /* For now treat an insn with a REG_RETVAL note as a
1127 a special insn which should not be considered a no-op. */
1128 if (find_reg_note (insn
, REG_RETVAL
, NULL_RTX
))
1131 if (GET_CODE (pat
) == SET
&& set_noop_p (pat
))
1134 if (GET_CODE (pat
) == PARALLEL
)
1137 /* If nothing but SETs of registers to themselves,
1138 this insn can also be deleted. */
1139 for (i
= 0; i
< XVECLEN (pat
, 0); i
++)
1141 rtx tem
= XVECEXP (pat
, 0, i
);
1143 if (GET_CODE (tem
) == USE
1144 || GET_CODE (tem
) == CLOBBER
)
1147 if (GET_CODE (tem
) != SET
|| ! set_noop_p (tem
))
1157 /* Return the last thing that X was assigned from before *PINSN. If VALID_TO
1158 is not NULL_RTX then verify that the object is not modified up to VALID_TO.
1159 If the object was modified, if we hit a partial assignment to X, or hit a
1160 CODE_LABEL first, return X. If we found an assignment, update *PINSN to
1161 point to it. ALLOW_HWREG is set to 1 if hardware registers are allowed to
1165 find_last_value (rtx x
, rtx
*pinsn
, rtx valid_to
, int allow_hwreg
)
1169 for (p
= PREV_INSN (*pinsn
); p
&& !LABEL_P (p
);
1173 rtx set
= single_set (p
);
1174 rtx note
= find_reg_note (p
, REG_EQUAL
, NULL_RTX
);
1176 if (set
&& rtx_equal_p (x
, SET_DEST (set
)))
1178 rtx src
= SET_SRC (set
);
1180 if (note
&& GET_CODE (XEXP (note
, 0)) != EXPR_LIST
)
1181 src
= XEXP (note
, 0);
1183 if ((valid_to
== NULL_RTX
1184 || ! modified_between_p (src
, PREV_INSN (p
), valid_to
))
1185 /* Reject hard registers because we don't usually want
1186 to use them; we'd rather use a pseudo. */
1188 && REGNO (src
) < FIRST_PSEUDO_REGISTER
) || allow_hwreg
))
1195 /* If set in non-simple way, we don't have a value. */
1196 if (reg_set_p (x
, p
))
1203 /* Return nonzero if register in range [REGNO, ENDREGNO)
1204 appears either explicitly or implicitly in X
1205 other than being stored into.
1207 References contained within the substructure at LOC do not count.
1208 LOC may be zero, meaning don't ignore anything. */
1211 refers_to_regno_p (unsigned int regno
, unsigned int endregno
, const_rtx x
,
1215 unsigned int x_regno
;
1220 /* The contents of a REG_NONNEG note is always zero, so we must come here
1221 upon repeat in case the last REG_NOTE is a REG_NONNEG note. */
1225 code
= GET_CODE (x
);
1230 x_regno
= REGNO (x
);
1232 /* If we modifying the stack, frame, or argument pointer, it will
1233 clobber a virtual register. In fact, we could be more precise,
1234 but it isn't worth it. */
1235 if ((x_regno
== STACK_POINTER_REGNUM
1236 #if FRAME_POINTER_REGNUM != ARG_POINTER_REGNUM
1237 || x_regno
== ARG_POINTER_REGNUM
1239 || x_regno
== FRAME_POINTER_REGNUM
)
1240 && regno
>= FIRST_VIRTUAL_REGISTER
&& regno
<= LAST_VIRTUAL_REGISTER
)
1243 return endregno
> x_regno
&& regno
< END_REGNO (x
);
1246 /* If this is a SUBREG of a hard reg, we can see exactly which
1247 registers are being modified. Otherwise, handle normally. */
1248 if (REG_P (SUBREG_REG (x
))
1249 && REGNO (SUBREG_REG (x
)) < FIRST_PSEUDO_REGISTER
)
1251 unsigned int inner_regno
= subreg_regno (x
);
1252 unsigned int inner_endregno
1253 = inner_regno
+ (inner_regno
< FIRST_PSEUDO_REGISTER
1254 ? subreg_nregs (x
) : 1);
1256 return endregno
> inner_regno
&& regno
< inner_endregno
;
1262 if (&SET_DEST (x
) != loc
1263 /* Note setting a SUBREG counts as referring to the REG it is in for
1264 a pseudo but not for hard registers since we can
1265 treat each word individually. */
1266 && ((GET_CODE (SET_DEST (x
)) == SUBREG
1267 && loc
!= &SUBREG_REG (SET_DEST (x
))
1268 && REG_P (SUBREG_REG (SET_DEST (x
)))
1269 && REGNO (SUBREG_REG (SET_DEST (x
))) >= FIRST_PSEUDO_REGISTER
1270 && refers_to_regno_p (regno
, endregno
,
1271 SUBREG_REG (SET_DEST (x
)), loc
))
1272 || (!REG_P (SET_DEST (x
))
1273 && refers_to_regno_p (regno
, endregno
, SET_DEST (x
), loc
))))
1276 if (code
== CLOBBER
|| loc
== &SET_SRC (x
))
1285 /* X does not match, so try its subexpressions. */
1287 fmt
= GET_RTX_FORMAT (code
);
1288 for (i
= GET_RTX_LENGTH (code
) - 1; i
>= 0; i
--)
1290 if (fmt
[i
] == 'e' && loc
!= &XEXP (x
, i
))
1298 if (refers_to_regno_p (regno
, endregno
, XEXP (x
, i
), loc
))
1301 else if (fmt
[i
] == 'E')
1304 for (j
= XVECLEN (x
, i
) - 1; j
>= 0; j
--)
1305 if (loc
!= &XVECEXP (x
, i
, j
)
1306 && refers_to_regno_p (regno
, endregno
, XVECEXP (x
, i
, j
), loc
))
1313 /* Nonzero if modifying X will affect IN. If X is a register or a SUBREG,
1314 we check if any register number in X conflicts with the relevant register
1315 numbers. If X is a constant, return 0. If X is a MEM, return 1 iff IN
1316 contains a MEM (we don't bother checking for memory addresses that can't
1317 conflict because we expect this to be a rare case. */
1320 reg_overlap_mentioned_p (const_rtx x
, const_rtx in
)
1322 unsigned int regno
, endregno
;
1324 /* If either argument is a constant, then modifying X can not
1325 affect IN. Here we look at IN, we can profitably combine
1326 CONSTANT_P (x) with the switch statement below. */
1327 if (CONSTANT_P (in
))
1331 switch (GET_CODE (x
))
1333 case STRICT_LOW_PART
:
1336 /* Overly conservative. */
1341 regno
= REGNO (SUBREG_REG (x
));
1342 if (regno
< FIRST_PSEUDO_REGISTER
)
1343 regno
= subreg_regno (x
);
1344 endregno
= regno
+ (regno
< FIRST_PSEUDO_REGISTER
1345 ? subreg_nregs (x
) : 1);
1350 endregno
= END_REGNO (x
);
1352 return refers_to_regno_p (regno
, endregno
, in
, (rtx
*) 0);
1362 fmt
= GET_RTX_FORMAT (GET_CODE (in
));
1363 for (i
= GET_RTX_LENGTH (GET_CODE (in
)) - 1; i
>= 0; i
--)
1366 if (reg_overlap_mentioned_p (x
, XEXP (in
, i
)))
1369 else if (fmt
[i
] == 'E')
1372 for (j
= XVECLEN (in
, i
) - 1; j
>= 0; --j
)
1373 if (reg_overlap_mentioned_p (x
, XVECEXP (in
, i
, j
)))
1383 return reg_mentioned_p (x
, in
);
1389 /* If any register in here refers to it we return true. */
1390 for (i
= XVECLEN (x
, 0) - 1; i
>= 0; i
--)
1391 if (XEXP (XVECEXP (x
, 0, i
), 0) != 0
1392 && reg_overlap_mentioned_p (XEXP (XVECEXP (x
, 0, i
), 0), in
))
1398 gcc_assert (CONSTANT_P (x
));
1403 /* Call FUN on each register or MEM that is stored into or clobbered by X.
1404 (X would be the pattern of an insn). DATA is an arbitrary pointer,
1405 ignored by note_stores, but passed to FUN.
1407 FUN receives three arguments:
1408 1. the REG, MEM, CC0 or PC being stored in or clobbered,
1409 2. the SET or CLOBBER rtx that does the store,
1410 3. the pointer DATA provided to note_stores.
1412 If the item being stored in or clobbered is a SUBREG of a hard register,
1413 the SUBREG will be passed. */
1416 note_stores (const_rtx x
, void (*fun
) (rtx
, const_rtx
, void *), void *data
)
1420 if (GET_CODE (x
) == COND_EXEC
)
1421 x
= COND_EXEC_CODE (x
);
1423 if (GET_CODE (x
) == SET
|| GET_CODE (x
) == CLOBBER
)
1425 rtx dest
= SET_DEST (x
);
1427 while ((GET_CODE (dest
) == SUBREG
1428 && (!REG_P (SUBREG_REG (dest
))
1429 || REGNO (SUBREG_REG (dest
)) >= FIRST_PSEUDO_REGISTER
))
1430 || GET_CODE (dest
) == ZERO_EXTRACT
1431 || GET_CODE (dest
) == STRICT_LOW_PART
)
1432 dest
= XEXP (dest
, 0);
1434 /* If we have a PARALLEL, SET_DEST is a list of EXPR_LIST expressions,
1435 each of whose first operand is a register. */
1436 if (GET_CODE (dest
) == PARALLEL
)
1438 for (i
= XVECLEN (dest
, 0) - 1; i
>= 0; i
--)
1439 if (XEXP (XVECEXP (dest
, 0, i
), 0) != 0)
1440 (*fun
) (XEXP (XVECEXP (dest
, 0, i
), 0), x
, data
);
1443 (*fun
) (dest
, x
, data
);
1446 else if (GET_CODE (x
) == PARALLEL
)
1447 for (i
= XVECLEN (x
, 0) - 1; i
>= 0; i
--)
1448 note_stores (XVECEXP (x
, 0, i
), fun
, data
);
1451 /* Like notes_stores, but call FUN for each expression that is being
1452 referenced in PBODY, a pointer to the PATTERN of an insn. We only call
1453 FUN for each expression, not any interior subexpressions. FUN receives a
1454 pointer to the expression and the DATA passed to this function.
1456 Note that this is not quite the same test as that done in reg_referenced_p
1457 since that considers something as being referenced if it is being
1458 partially set, while we do not. */
1461 note_uses (rtx
*pbody
, void (*fun
) (rtx
*, void *), void *data
)
1466 switch (GET_CODE (body
))
1469 (*fun
) (&COND_EXEC_TEST (body
), data
);
1470 note_uses (&COND_EXEC_CODE (body
), fun
, data
);
1474 for (i
= XVECLEN (body
, 0) - 1; i
>= 0; i
--)
1475 note_uses (&XVECEXP (body
, 0, i
), fun
, data
);
1479 for (i
= XVECLEN (body
, 0) - 1; i
>= 0; i
--)
1480 note_uses (&PATTERN (XVECEXP (body
, 0, i
)), fun
, data
);
1484 (*fun
) (&XEXP (body
, 0), data
);
1488 for (i
= ASM_OPERANDS_INPUT_LENGTH (body
) - 1; i
>= 0; i
--)
1489 (*fun
) (&ASM_OPERANDS_INPUT (body
, i
), data
);
1493 (*fun
) (&TRAP_CONDITION (body
), data
);
1497 (*fun
) (&XEXP (body
, 0), data
);
1501 case UNSPEC_VOLATILE
:
1502 for (i
= XVECLEN (body
, 0) - 1; i
>= 0; i
--)
1503 (*fun
) (&XVECEXP (body
, 0, i
), data
);
1507 if (MEM_P (XEXP (body
, 0)))
1508 (*fun
) (&XEXP (XEXP (body
, 0), 0), data
);
1513 rtx dest
= SET_DEST (body
);
1515 /* For sets we replace everything in source plus registers in memory
1516 expression in store and operands of a ZERO_EXTRACT. */
1517 (*fun
) (&SET_SRC (body
), data
);
1519 if (GET_CODE (dest
) == ZERO_EXTRACT
)
1521 (*fun
) (&XEXP (dest
, 1), data
);
1522 (*fun
) (&XEXP (dest
, 2), data
);
1525 while (GET_CODE (dest
) == SUBREG
|| GET_CODE (dest
) == STRICT_LOW_PART
)
1526 dest
= XEXP (dest
, 0);
1529 (*fun
) (&XEXP (dest
, 0), data
);
1534 /* All the other possibilities never store. */
1535 (*fun
) (pbody
, data
);
1540 /* Return nonzero if X's old contents don't survive after INSN.
1541 This will be true if X is (cc0) or if X is a register and
1542 X dies in INSN or because INSN entirely sets X.
1544 "Entirely set" means set directly and not through a SUBREG, or
1545 ZERO_EXTRACT, so no trace of the old contents remains.
1546 Likewise, REG_INC does not count.
1548 REG may be a hard or pseudo reg. Renumbering is not taken into account,
1549 but for this use that makes no difference, since regs don't overlap
1550 during their lifetimes. Therefore, this function may be used
1551 at any time after deaths have been computed.
1553 If REG is a hard reg that occupies multiple machine registers, this
1554 function will only return 1 if each of those registers will be replaced
1558 dead_or_set_p (const_rtx insn
, const_rtx x
)
1560 unsigned int regno
, end_regno
;
1563 /* Can't use cc0_rtx below since this file is used by genattrtab.c. */
1564 if (GET_CODE (x
) == CC0
)
1567 gcc_assert (REG_P (x
));
1570 end_regno
= END_REGNO (x
);
1571 for (i
= regno
; i
< end_regno
; i
++)
1572 if (! dead_or_set_regno_p (insn
, i
))
1578 /* Return TRUE iff DEST is a register or subreg of a register and
1579 doesn't change the number of words of the inner register, and any
1580 part of the register is TEST_REGNO. */
1583 covers_regno_no_parallel_p (const_rtx dest
, unsigned int test_regno
)
1585 unsigned int regno
, endregno
;
1587 if (GET_CODE (dest
) == SUBREG
1588 && (((GET_MODE_SIZE (GET_MODE (dest
))
1589 + UNITS_PER_WORD
- 1) / UNITS_PER_WORD
)
1590 == ((GET_MODE_SIZE (GET_MODE (SUBREG_REG (dest
)))
1591 + UNITS_PER_WORD
- 1) / UNITS_PER_WORD
)))
1592 dest
= SUBREG_REG (dest
);
1597 regno
= REGNO (dest
);
1598 endregno
= END_REGNO (dest
);
1599 return (test_regno
>= regno
&& test_regno
< endregno
);
1602 /* Like covers_regno_no_parallel_p, but also handles PARALLELs where
1603 any member matches the covers_regno_no_parallel_p criteria. */
1606 covers_regno_p (const_rtx dest
, unsigned int test_regno
)
1608 if (GET_CODE (dest
) == PARALLEL
)
1610 /* Some targets place small structures in registers for return
1611 values of functions, and those registers are wrapped in
1612 PARALLELs that we may see as the destination of a SET. */
1615 for (i
= XVECLEN (dest
, 0) - 1; i
>= 0; i
--)
1617 rtx inner
= XEXP (XVECEXP (dest
, 0, i
), 0);
1618 if (inner
!= NULL_RTX
1619 && covers_regno_no_parallel_p (inner
, test_regno
))
1626 return covers_regno_no_parallel_p (dest
, test_regno
);
1629 /* Utility function for dead_or_set_p to check an individual register. */
1632 dead_or_set_regno_p (const_rtx insn
, unsigned int test_regno
)
1636 /* See if there is a death note for something that includes TEST_REGNO. */
1637 if (find_regno_note (insn
, REG_DEAD
, test_regno
))
1641 && find_regno_fusage (insn
, CLOBBER
, test_regno
))
1644 pattern
= PATTERN (insn
);
1646 if (GET_CODE (pattern
) == COND_EXEC
)
1647 pattern
= COND_EXEC_CODE (pattern
);
1649 if (GET_CODE (pattern
) == SET
)
1650 return covers_regno_p (SET_DEST (pattern
), test_regno
);
1651 else if (GET_CODE (pattern
) == PARALLEL
)
1655 for (i
= XVECLEN (pattern
, 0) - 1; i
>= 0; i
--)
1657 rtx body
= XVECEXP (pattern
, 0, i
);
1659 if (GET_CODE (body
) == COND_EXEC
)
1660 body
= COND_EXEC_CODE (body
);
1662 if ((GET_CODE (body
) == SET
|| GET_CODE (body
) == CLOBBER
)
1663 && covers_regno_p (SET_DEST (body
), test_regno
))
1671 /* Return the reg-note of kind KIND in insn INSN, if there is one.
1672 If DATUM is nonzero, look for one whose datum is DATUM. */
1675 find_reg_note (const_rtx insn
, enum reg_note kind
, const_rtx datum
)
1681 /* Ignore anything that is not an INSN, JUMP_INSN or CALL_INSN. */
1682 if (! INSN_P (insn
))
1686 for (link
= REG_NOTES (insn
); link
; link
= XEXP (link
, 1))
1687 if (REG_NOTE_KIND (link
) == kind
)
1692 for (link
= REG_NOTES (insn
); link
; link
= XEXP (link
, 1))
1693 if (REG_NOTE_KIND (link
) == kind
&& datum
== XEXP (link
, 0))
1698 /* Return the reg-note of kind KIND in insn INSN which applies to register
1699 number REGNO, if any. Return 0 if there is no such reg-note. Note that
1700 the REGNO of this NOTE need not be REGNO if REGNO is a hard register;
1701 it might be the case that the note overlaps REGNO. */
1704 find_regno_note (const_rtx insn
, enum reg_note kind
, unsigned int regno
)
1708 /* Ignore anything that is not an INSN, JUMP_INSN or CALL_INSN. */
1709 if (! INSN_P (insn
))
1712 for (link
= REG_NOTES (insn
); link
; link
= XEXP (link
, 1))
1713 if (REG_NOTE_KIND (link
) == kind
1714 /* Verify that it is a register, so that scratch and MEM won't cause a
1716 && REG_P (XEXP (link
, 0))
1717 && REGNO (XEXP (link
, 0)) <= regno
1718 && END_REGNO (XEXP (link
, 0)) > regno
)
1723 /* Return a REG_EQUIV or REG_EQUAL note if insn has only a single set and
1727 find_reg_equal_equiv_note (const_rtx insn
)
1734 for (link
= REG_NOTES (insn
); link
; link
= XEXP (link
, 1))
1735 if (REG_NOTE_KIND (link
) == REG_EQUAL
1736 || REG_NOTE_KIND (link
) == REG_EQUIV
)
1738 /* FIXME: We should never have REG_EQUAL/REG_EQUIV notes on
1739 insns that have multiple sets. Checking single_set to
1740 make sure of this is not the proper check, as explained
1741 in the comment in set_unique_reg_note.
1743 This should be changed into an assert. */
1744 if (GET_CODE (PATTERN (insn
)) == PARALLEL
&& multiple_sets (insn
))
1751 /* Check whether INSN is a single_set whose source is known to be
1752 equivalent to a constant. Return that constant if so, otherwise
1756 find_constant_src (const_rtx insn
)
1760 set
= single_set (insn
);
1763 x
= avoid_constant_pool_reference (SET_SRC (set
));
1768 note
= find_reg_equal_equiv_note (insn
);
1769 if (note
&& CONSTANT_P (XEXP (note
, 0)))
1770 return XEXP (note
, 0);
1775 /* Return true if DATUM, or any overlap of DATUM, of kind CODE is found
1776 in the CALL_INSN_FUNCTION_USAGE information of INSN. */
1779 find_reg_fusage (const_rtx insn
, enum rtx_code code
, const_rtx datum
)
1781 /* If it's not a CALL_INSN, it can't possibly have a
1782 CALL_INSN_FUNCTION_USAGE field, so don't bother checking. */
1792 for (link
= CALL_INSN_FUNCTION_USAGE (insn
);
1794 link
= XEXP (link
, 1))
1795 if (GET_CODE (XEXP (link
, 0)) == code
1796 && rtx_equal_p (datum
, XEXP (XEXP (link
, 0), 0)))
1801 unsigned int regno
= REGNO (datum
);
1803 /* CALL_INSN_FUNCTION_USAGE information cannot contain references
1804 to pseudo registers, so don't bother checking. */
1806 if (regno
< FIRST_PSEUDO_REGISTER
)
1808 unsigned int end_regno
= END_HARD_REGNO (datum
);
1811 for (i
= regno
; i
< end_regno
; i
++)
1812 if (find_regno_fusage (insn
, code
, i
))
1820 /* Return true if REGNO, or any overlap of REGNO, of kind CODE is found
1821 in the CALL_INSN_FUNCTION_USAGE information of INSN. */
1824 find_regno_fusage (const_rtx insn
, enum rtx_code code
, unsigned int regno
)
1828 /* CALL_INSN_FUNCTION_USAGE information cannot contain references
1829 to pseudo registers, so don't bother checking. */
1831 if (regno
>= FIRST_PSEUDO_REGISTER
1835 for (link
= CALL_INSN_FUNCTION_USAGE (insn
); link
; link
= XEXP (link
, 1))
1839 if (GET_CODE (op
= XEXP (link
, 0)) == code
1840 && REG_P (reg
= XEXP (op
, 0))
1841 && REGNO (reg
) <= regno
1842 && END_HARD_REGNO (reg
) > regno
)
1849 /* Return true if INSN is a call to a pure function. */
1852 pure_call_p (const_rtx insn
)
1856 if (!CALL_P (insn
) || ! CONST_OR_PURE_CALL_P (insn
))
1859 /* Look for the note that differentiates const and pure functions. */
1860 for (link
= CALL_INSN_FUNCTION_USAGE (insn
); link
; link
= XEXP (link
, 1))
1864 if (GET_CODE (u
= XEXP (link
, 0)) == USE
1865 && MEM_P (m
= XEXP (u
, 0)) && GET_MODE (m
) == BLKmode
1866 && GET_CODE (XEXP (m
, 0)) == SCRATCH
)
1873 /* Remove register note NOTE from the REG_NOTES of INSN. */
1876 remove_note (rtx insn
, const_rtx note
)
1880 if (note
== NULL_RTX
)
1883 if (REG_NOTES (insn
) == note
)
1884 REG_NOTES (insn
) = XEXP (note
, 1);
1886 for (link
= REG_NOTES (insn
); link
; link
= XEXP (link
, 1))
1887 if (XEXP (link
, 1) == note
)
1889 XEXP (link
, 1) = XEXP (note
, 1);
1893 switch (REG_NOTE_KIND (note
))
1897 df_notes_rescan (insn
);
1904 /* Remove REG_EQUAL and/or REG_EQUIV notes if INSN has such notes. */
1907 remove_reg_equal_equiv_notes (rtx insn
)
1911 loc
= ®_NOTES (insn
);
1914 enum reg_note kind
= REG_NOTE_KIND (*loc
);
1915 if (kind
== REG_EQUAL
|| kind
== REG_EQUIV
)
1916 *loc
= XEXP (*loc
, 1);
1918 loc
= &XEXP (*loc
, 1);
1922 /* Search LISTP (an EXPR_LIST) for an entry whose first operand is NODE and
1923 return 1 if it is found. A simple equality test is used to determine if
1927 in_expr_list_p (const_rtx listp
, const_rtx node
)
1931 for (x
= listp
; x
; x
= XEXP (x
, 1))
1932 if (node
== XEXP (x
, 0))
1938 /* Search LISTP (an EXPR_LIST) for an entry whose first operand is NODE and
1939 remove that entry from the list if it is found.
1941 A simple equality test is used to determine if NODE matches. */
1944 remove_node_from_expr_list (const_rtx node
, rtx
*listp
)
1947 rtx prev
= NULL_RTX
;
1951 if (node
== XEXP (temp
, 0))
1953 /* Splice the node out of the list. */
1955 XEXP (prev
, 1) = XEXP (temp
, 1);
1957 *listp
= XEXP (temp
, 1);
1963 temp
= XEXP (temp
, 1);
1967 /* Nonzero if X contains any volatile instructions. These are instructions
1968 which may cause unpredictable machine state instructions, and thus no
1969 instructions should be moved or combined across them. This includes
1970 only volatile asms and UNSPEC_VOLATILE instructions. */
1973 volatile_insn_p (const_rtx x
)
1975 const RTX_CODE code
= GET_CODE (x
);
1996 case UNSPEC_VOLATILE
:
1997 /* case TRAP_IF: This isn't clear yet. */
2002 if (MEM_VOLATILE_P (x
))
2009 /* Recursively scan the operands of this expression. */
2012 const char *const fmt
= GET_RTX_FORMAT (code
);
2015 for (i
= GET_RTX_LENGTH (code
) - 1; i
>= 0; i
--)
2019 if (volatile_insn_p (XEXP (x
, i
)))
2022 else if (fmt
[i
] == 'E')
2025 for (j
= 0; j
< XVECLEN (x
, i
); j
++)
2026 if (volatile_insn_p (XVECEXP (x
, i
, j
)))
2034 /* Nonzero if X contains any volatile memory references
2035 UNSPEC_VOLATILE operations or volatile ASM_OPERANDS expressions. */
2038 volatile_refs_p (const_rtx x
)
2040 const RTX_CODE code
= GET_CODE (x
);
2059 case UNSPEC_VOLATILE
:
2065 if (MEM_VOLATILE_P (x
))
2072 /* Recursively scan the operands of this expression. */
2075 const char *const fmt
= GET_RTX_FORMAT (code
);
2078 for (i
= GET_RTX_LENGTH (code
) - 1; i
>= 0; i
--)
2082 if (volatile_refs_p (XEXP (x
, i
)))
2085 else if (fmt
[i
] == 'E')
2088 for (j
= 0; j
< XVECLEN (x
, i
); j
++)
2089 if (volatile_refs_p (XVECEXP (x
, i
, j
)))
2097 /* Similar to above, except that it also rejects register pre- and post-
2101 side_effects_p (const_rtx x
)
2103 const RTX_CODE code
= GET_CODE (x
);
2122 /* Reject CLOBBER with a non-VOID mode. These are made by combine.c
2123 when some combination can't be done. If we see one, don't think
2124 that we can simplify the expression. */
2125 return (GET_MODE (x
) != VOIDmode
);
2134 case UNSPEC_VOLATILE
:
2135 /* case TRAP_IF: This isn't clear yet. */
2141 if (MEM_VOLATILE_P (x
))
2148 /* Recursively scan the operands of this expression. */
2151 const char *fmt
= GET_RTX_FORMAT (code
);
2154 for (i
= GET_RTX_LENGTH (code
) - 1; i
>= 0; i
--)
2158 if (side_effects_p (XEXP (x
, i
)))
2161 else if (fmt
[i
] == 'E')
2164 for (j
= 0; j
< XVECLEN (x
, i
); j
++)
2165 if (side_effects_p (XVECEXP (x
, i
, j
)))
2173 enum may_trap_p_flags
2175 MTP_UNALIGNED_MEMS
= 1,
2178 /* Return nonzero if evaluating rtx X might cause a trap.
2179 (FLAGS & MTP_UNALIGNED_MEMS) controls whether nonzero is returned for
2180 unaligned memory accesses on strict alignment machines. If
2181 (FLAGS & AFTER_MOVE) is true, returns nonzero even in case the expression
2182 cannot trap at its current location, but it might become trapping if moved
2186 may_trap_p_1 (const_rtx x
, unsigned flags
)
2191 bool unaligned_mems
= (flags
& MTP_UNALIGNED_MEMS
) != 0;
2195 code
= GET_CODE (x
);
2198 /* Handle these cases quickly. */
2213 case UNSPEC_VOLATILE
:
2214 return targetm
.unspec_may_trap_p (x
, flags
);
2221 return MEM_VOLATILE_P (x
);
2223 /* Memory ref can trap unless it's a static var or a stack slot. */
2225 if (/* MEM_NOTRAP_P only relates to the actual position of the memory
2226 reference; moving it out of condition might cause its address
2228 !(flags
& MTP_AFTER_MOVE
)
2230 && (!STRICT_ALIGNMENT
|| !unaligned_mems
))
2233 rtx_addr_can_trap_p_1 (XEXP (x
, 0), GET_MODE (x
), unaligned_mems
);
2235 /* Division by a non-constant might trap. */
2240 if (HONOR_SNANS (GET_MODE (x
)))
2242 if (SCALAR_FLOAT_MODE_P (GET_MODE (x
)))
2243 return flag_trapping_math
;
2244 if (!CONSTANT_P (XEXP (x
, 1)) || (XEXP (x
, 1) == const0_rtx
))
2249 /* An EXPR_LIST is used to represent a function call. This
2250 certainly may trap. */
2259 /* Some floating point comparisons may trap. */
2260 if (!flag_trapping_math
)
2262 /* ??? There is no machine independent way to check for tests that trap
2263 when COMPARE is used, though many targets do make this distinction.
2264 For instance, sparc uses CCFPE for compares which generate exceptions
2265 and CCFP for compares which do not generate exceptions. */
2266 if (HONOR_NANS (GET_MODE (x
)))
2268 /* But often the compare has some CC mode, so check operand
2270 if (HONOR_NANS (GET_MODE (XEXP (x
, 0)))
2271 || HONOR_NANS (GET_MODE (XEXP (x
, 1))))
2277 if (HONOR_SNANS (GET_MODE (x
)))
2279 /* Often comparison is CC mode, so check operand modes. */
2280 if (HONOR_SNANS (GET_MODE (XEXP (x
, 0)))
2281 || HONOR_SNANS (GET_MODE (XEXP (x
, 1))))
2286 /* Conversion of floating point might trap. */
2287 if (flag_trapping_math
&& HONOR_NANS (GET_MODE (XEXP (x
, 0))))
2294 /* These operations don't trap even with floating point. */
2298 /* Any floating arithmetic may trap. */
2299 if (SCALAR_FLOAT_MODE_P (GET_MODE (x
))
2300 && flag_trapping_math
)
2304 fmt
= GET_RTX_FORMAT (code
);
2305 for (i
= GET_RTX_LENGTH (code
) - 1; i
>= 0; i
--)
2309 if (may_trap_p_1 (XEXP (x
, i
), flags
))
2312 else if (fmt
[i
] == 'E')
2315 for (j
= 0; j
< XVECLEN (x
, i
); j
++)
2316 if (may_trap_p_1 (XVECEXP (x
, i
, j
), flags
))
2323 /* Return nonzero if evaluating rtx X might cause a trap. */
2326 may_trap_p (const_rtx x
)
2328 return may_trap_p_1 (x
, 0);
2331 /* Return nonzero if evaluating rtx X might cause a trap, when the expression
2332 is moved from its current location by some optimization. */
2335 may_trap_after_code_motion_p (const_rtx x
)
2337 return may_trap_p_1 (x
, MTP_AFTER_MOVE
);
2340 /* Same as above, but additionally return nonzero if evaluating rtx X might
2341 cause a fault. We define a fault for the purpose of this function as a
2342 erroneous execution condition that cannot be encountered during the normal
2343 execution of a valid program; the typical example is an unaligned memory
2344 access on a strict alignment machine. The compiler guarantees that it
2345 doesn't generate code that will fault from a valid program, but this
2346 guarantee doesn't mean anything for individual instructions. Consider
2347 the following example:
2349 struct S { int d; union { char *cp; int *ip; }; };
2351 int foo(struct S *s)
2359 on a strict alignment machine. In a valid program, foo will never be
2360 invoked on a structure for which d is equal to 1 and the underlying
2361 unique field of the union not aligned on a 4-byte boundary, but the
2362 expression *s->ip might cause a fault if considered individually.
2364 At the RTL level, potentially problematic expressions will almost always
2365 verify may_trap_p; for example, the above dereference can be emitted as
2366 (mem:SI (reg:P)) and this expression is may_trap_p for a generic register.
2367 However, suppose that foo is inlined in a caller that causes s->cp to
2368 point to a local character variable and guarantees that s->d is not set
2369 to 1; foo may have been effectively translated into pseudo-RTL as:
2372 (set (reg:SI) (mem:SI (%fp - 7)))
2374 (set (reg:QI) (mem:QI (%fp - 7)))
2376 Now (mem:SI (%fp - 7)) is considered as not may_trap_p since it is a
2377 memory reference to a stack slot, but it will certainly cause a fault
2378 on a strict alignment machine. */
2381 may_trap_or_fault_p (const_rtx x
)
2383 return may_trap_p_1 (x
, MTP_UNALIGNED_MEMS
);
2386 /* Return nonzero if X contains a comparison that is not either EQ or NE,
2387 i.e., an inequality. */
2390 inequality_comparisons_p (const_rtx x
)
2394 const enum rtx_code code
= GET_CODE (x
);
2425 len
= GET_RTX_LENGTH (code
);
2426 fmt
= GET_RTX_FORMAT (code
);
2428 for (i
= 0; i
< len
; i
++)
2432 if (inequality_comparisons_p (XEXP (x
, i
)))
2435 else if (fmt
[i
] == 'E')
2438 for (j
= XVECLEN (x
, i
) - 1; j
>= 0; j
--)
2439 if (inequality_comparisons_p (XVECEXP (x
, i
, j
)))
2447 /* Replace any occurrence of FROM in X with TO. The function does
2448 not enter into CONST_DOUBLE for the replace.
2450 Note that copying is not done so X must not be shared unless all copies
2451 are to be modified. */
2454 replace_rtx (rtx x
, rtx from
, rtx to
)
2459 /* The following prevents loops occurrence when we change MEM in
2460 CONST_DOUBLE onto the same CONST_DOUBLE. */
2461 if (x
!= 0 && GET_CODE (x
) == CONST_DOUBLE
)
2467 /* Allow this function to make replacements in EXPR_LISTs. */
2471 if (GET_CODE (x
) == SUBREG
)
2473 rtx
new = replace_rtx (SUBREG_REG (x
), from
, to
);
2475 if (GET_CODE (new) == CONST_INT
)
2477 x
= simplify_subreg (GET_MODE (x
), new,
2478 GET_MODE (SUBREG_REG (x
)),
2483 SUBREG_REG (x
) = new;
2487 else if (GET_CODE (x
) == ZERO_EXTEND
)
2489 rtx
new = replace_rtx (XEXP (x
, 0), from
, to
);
2491 if (GET_CODE (new) == CONST_INT
)
2493 x
= simplify_unary_operation (ZERO_EXTEND
, GET_MODE (x
),
2494 new, GET_MODE (XEXP (x
, 0)));
2503 fmt
= GET_RTX_FORMAT (GET_CODE (x
));
2504 for (i
= GET_RTX_LENGTH (GET_CODE (x
)) - 1; i
>= 0; i
--)
2507 XEXP (x
, i
) = replace_rtx (XEXP (x
, i
), from
, to
);
2508 else if (fmt
[i
] == 'E')
2509 for (j
= XVECLEN (x
, i
) - 1; j
>= 0; j
--)
2510 XVECEXP (x
, i
, j
) = replace_rtx (XVECEXP (x
, i
, j
), from
, to
);
2516 /* Replace occurrences of the old label in *X with the new one.
2517 DATA is a REPLACE_LABEL_DATA containing the old and new labels. */
2520 replace_label (rtx
*x
, void *data
)
2523 rtx old_label
= ((replace_label_data
*) data
)->r1
;
2524 rtx new_label
= ((replace_label_data
*) data
)->r2
;
2525 bool update_label_nuses
= ((replace_label_data
*) data
)->update_label_nuses
;
2530 if (GET_CODE (l
) == SYMBOL_REF
2531 && CONSTANT_POOL_ADDRESS_P (l
))
2533 rtx c
= get_pool_constant (l
);
2534 if (rtx_referenced_p (old_label
, c
))
2537 replace_label_data
*d
= (replace_label_data
*) data
;
2539 /* Create a copy of constant C; replace the label inside
2540 but do not update LABEL_NUSES because uses in constant pool
2542 new_c
= copy_rtx (c
);
2543 d
->update_label_nuses
= false;
2544 for_each_rtx (&new_c
, replace_label
, data
);
2545 d
->update_label_nuses
= update_label_nuses
;
2547 /* Add the new constant NEW_C to constant pool and replace
2548 the old reference to constant by new reference. */
2549 new_l
= XEXP (force_const_mem (get_pool_mode (l
), new_c
), 0);
2550 *x
= replace_rtx (l
, l
, new_l
);
2555 /* If this is a JUMP_INSN, then we also need to fix the JUMP_LABEL
2556 field. This is not handled by for_each_rtx because it doesn't
2557 handle unprinted ('0') fields. */
2558 if (JUMP_P (l
) && JUMP_LABEL (l
) == old_label
)
2559 JUMP_LABEL (l
) = new_label
;
2561 if ((GET_CODE (l
) == LABEL_REF
2562 || GET_CODE (l
) == INSN_LIST
)
2563 && XEXP (l
, 0) == old_label
)
2565 XEXP (l
, 0) = new_label
;
2566 if (update_label_nuses
)
2568 ++LABEL_NUSES (new_label
);
2569 --LABEL_NUSES (old_label
);
2577 /* When *BODY is equal to X or X is directly referenced by *BODY
2578 return nonzero, thus FOR_EACH_RTX stops traversing and returns nonzero
2579 too, otherwise FOR_EACH_RTX continues traversing *BODY. */
2582 rtx_referenced_p_1 (rtx
*body
, void *x
)
2586 if (*body
== NULL_RTX
)
2587 return y
== NULL_RTX
;
2589 /* Return true if a label_ref *BODY refers to label Y. */
2590 if (GET_CODE (*body
) == LABEL_REF
&& LABEL_P (y
))
2591 return XEXP (*body
, 0) == y
;
2593 /* If *BODY is a reference to pool constant traverse the constant. */
2594 if (GET_CODE (*body
) == SYMBOL_REF
2595 && CONSTANT_POOL_ADDRESS_P (*body
))
2596 return rtx_referenced_p (y
, get_pool_constant (*body
));
2598 /* By default, compare the RTL expressions. */
2599 return rtx_equal_p (*body
, y
);
2602 /* Return true if X is referenced in BODY. */
2605 rtx_referenced_p (rtx x
, rtx body
)
2607 return for_each_rtx (&body
, rtx_referenced_p_1
, x
);
2610 /* If INSN is a tablejump return true and store the label (before jump table) to
2611 *LABELP and the jump table to *TABLEP. LABELP and TABLEP may be NULL. */
2614 tablejump_p (const_rtx insn
, rtx
*labelp
, rtx
*tablep
)
2619 && (label
= JUMP_LABEL (insn
)) != NULL_RTX
2620 && (table
= next_active_insn (label
)) != NULL_RTX
2622 && (GET_CODE (PATTERN (table
)) == ADDR_VEC
2623 || GET_CODE (PATTERN (table
)) == ADDR_DIFF_VEC
))
2634 /* A subroutine of computed_jump_p, return 1 if X contains a REG or MEM or
2635 constant that is not in the constant pool and not in the condition
2636 of an IF_THEN_ELSE. */
2639 computed_jump_p_1 (const_rtx x
)
2641 const enum rtx_code code
= GET_CODE (x
);
2661 return ! (GET_CODE (XEXP (x
, 0)) == SYMBOL_REF
2662 && CONSTANT_POOL_ADDRESS_P (XEXP (x
, 0)));
2665 return (computed_jump_p_1 (XEXP (x
, 1))
2666 || computed_jump_p_1 (XEXP (x
, 2)));
2672 fmt
= GET_RTX_FORMAT (code
);
2673 for (i
= GET_RTX_LENGTH (code
) - 1; i
>= 0; i
--)
2676 && computed_jump_p_1 (XEXP (x
, i
)))
2679 else if (fmt
[i
] == 'E')
2680 for (j
= 0; j
< XVECLEN (x
, i
); j
++)
2681 if (computed_jump_p_1 (XVECEXP (x
, i
, j
)))
2688 /* Return nonzero if INSN is an indirect jump (aka computed jump).
2690 Tablejumps and casesi insns are not considered indirect jumps;
2691 we can recognize them by a (use (label_ref)). */
2694 computed_jump_p (const_rtx insn
)
2699 rtx pat
= PATTERN (insn
);
2701 /* If we have a JUMP_LABEL set, we're not a computed jump. */
2702 if (JUMP_LABEL (insn
) != NULL
)
2705 if (GET_CODE (pat
) == PARALLEL
)
2707 int len
= XVECLEN (pat
, 0);
2708 int has_use_labelref
= 0;
2710 for (i
= len
- 1; i
>= 0; i
--)
2711 if (GET_CODE (XVECEXP (pat
, 0, i
)) == USE
2712 && (GET_CODE (XEXP (XVECEXP (pat
, 0, i
), 0))
2714 has_use_labelref
= 1;
2716 if (! has_use_labelref
)
2717 for (i
= len
- 1; i
>= 0; i
--)
2718 if (GET_CODE (XVECEXP (pat
, 0, i
)) == SET
2719 && SET_DEST (XVECEXP (pat
, 0, i
)) == pc_rtx
2720 && computed_jump_p_1 (SET_SRC (XVECEXP (pat
, 0, i
))))
2723 else if (GET_CODE (pat
) == SET
2724 && SET_DEST (pat
) == pc_rtx
2725 && computed_jump_p_1 (SET_SRC (pat
)))
2731 /* Optimized loop of for_each_rtx, trying to avoid useless recursive
2732 calls. Processes the subexpressions of EXP and passes them to F. */
2734 for_each_rtx_1 (rtx exp
, int n
, rtx_function f
, void *data
)
2737 const char *format
= GET_RTX_FORMAT (GET_CODE (exp
));
2740 for (; format
[n
] != '\0'; n
++)
2747 result
= (*f
) (x
, data
);
2749 /* Do not traverse sub-expressions. */
2751 else if (result
!= 0)
2752 /* Stop the traversal. */
2756 /* There are no sub-expressions. */
2759 i
= non_rtx_starting_operands
[GET_CODE (*x
)];
2762 result
= for_each_rtx_1 (*x
, i
, f
, data
);
2770 if (XVEC (exp
, n
) == 0)
2772 for (j
= 0; j
< XVECLEN (exp
, n
); ++j
)
2775 x
= &XVECEXP (exp
, n
, j
);
2776 result
= (*f
) (x
, data
);
2778 /* Do not traverse sub-expressions. */
2780 else if (result
!= 0)
2781 /* Stop the traversal. */
2785 /* There are no sub-expressions. */
2788 i
= non_rtx_starting_operands
[GET_CODE (*x
)];
2791 result
= for_each_rtx_1 (*x
, i
, f
, data
);
2799 /* Nothing to do. */
2807 /* Traverse X via depth-first search, calling F for each
2808 sub-expression (including X itself). F is also passed the DATA.
2809 If F returns -1, do not traverse sub-expressions, but continue
2810 traversing the rest of the tree. If F ever returns any other
2811 nonzero value, stop the traversal, and return the value returned
2812 by F. Otherwise, return 0. This function does not traverse inside
2813 tree structure that contains RTX_EXPRs, or into sub-expressions
2814 whose format code is `0' since it is not known whether or not those
2815 codes are actually RTL.
2817 This routine is very general, and could (should?) be used to
2818 implement many of the other routines in this file. */
2821 for_each_rtx (rtx
*x
, rtx_function f
, void *data
)
2827 result
= (*f
) (x
, data
);
2829 /* Do not traverse sub-expressions. */
2831 else if (result
!= 0)
2832 /* Stop the traversal. */
2836 /* There are no sub-expressions. */
2839 i
= non_rtx_starting_operands
[GET_CODE (*x
)];
2843 return for_each_rtx_1 (*x
, i
, f
, data
);
2847 /* Searches X for any reference to REGNO, returning the rtx of the
2848 reference found if any. Otherwise, returns NULL_RTX. */
2851 regno_use_in (unsigned int regno
, rtx x
)
2857 if (REG_P (x
) && REGNO (x
) == regno
)
2860 fmt
= GET_RTX_FORMAT (GET_CODE (x
));
2861 for (i
= GET_RTX_LENGTH (GET_CODE (x
)) - 1; i
>= 0; i
--)
2865 if ((tem
= regno_use_in (regno
, XEXP (x
, i
))))
2868 else if (fmt
[i
] == 'E')
2869 for (j
= XVECLEN (x
, i
) - 1; j
>= 0; j
--)
2870 if ((tem
= regno_use_in (regno
, XVECEXP (x
, i
, j
))))
2877 /* Return a value indicating whether OP, an operand of a commutative
2878 operation, is preferred as the first or second operand. The higher
2879 the value, the stronger the preference for being the first operand.
2880 We use negative values to indicate a preference for the first operand
2881 and positive values for the second operand. */
2884 commutative_operand_precedence (rtx op
)
2886 enum rtx_code code
= GET_CODE (op
);
2888 /* Constants always come the second operand. Prefer "nice" constants. */
2889 if (code
== CONST_INT
)
2891 if (code
== CONST_DOUBLE
)
2893 if (code
== CONST_FIXED
)
2895 op
= avoid_constant_pool_reference (op
);
2896 code
= GET_CODE (op
);
2898 switch (GET_RTX_CLASS (code
))
2901 if (code
== CONST_INT
)
2903 if (code
== CONST_DOUBLE
)
2905 if (code
== CONST_FIXED
)
2910 /* SUBREGs of objects should come second. */
2911 if (code
== SUBREG
&& OBJECT_P (SUBREG_REG (op
)))
2916 /* Complex expressions should be the first, so decrease priority
2917 of objects. Prefer pointer objects over non pointer objects. */
2918 if ((REG_P (op
) && REG_POINTER (op
))
2919 || (MEM_P (op
) && MEM_POINTER (op
)))
2923 case RTX_COMM_ARITH
:
2924 /* Prefer operands that are themselves commutative to be first.
2925 This helps to make things linear. In particular,
2926 (and (and (reg) (reg)) (not (reg))) is canonical. */
2930 /* If only one operand is a binary expression, it will be the first
2931 operand. In particular, (plus (minus (reg) (reg)) (neg (reg)))
2932 is canonical, although it will usually be further simplified. */
2936 /* Then prefer NEG and NOT. */
2937 if (code
== NEG
|| code
== NOT
)
2945 /* Return 1 iff it is necessary to swap operands of commutative operation
2946 in order to canonicalize expression. */
2949 swap_commutative_operands_p (rtx x
, rtx y
)
2951 return (commutative_operand_precedence (x
)
2952 < commutative_operand_precedence (y
));
2955 /* Return 1 if X is an autoincrement side effect and the register is
2956 not the stack pointer. */
2958 auto_inc_p (const_rtx x
)
2960 switch (GET_CODE (x
))
2968 /* There are no REG_INC notes for SP. */
2969 if (XEXP (x
, 0) != stack_pointer_rtx
)
2977 /* Return nonzero if IN contains a piece of rtl that has the address LOC. */
2979 loc_mentioned_in_p (rtx
*loc
, const_rtx in
)
2988 code
= GET_CODE (in
);
2989 fmt
= GET_RTX_FORMAT (code
);
2990 for (i
= GET_RTX_LENGTH (code
) - 1; i
>= 0; i
--)
2992 if (loc
== &in
->u
.fld
[i
].rt_rtx
)
2996 if (loc_mentioned_in_p (loc
, XEXP (in
, i
)))
2999 else if (fmt
[i
] == 'E')
3000 for (j
= XVECLEN (in
, i
) - 1; j
>= 0; j
--)
3001 if (loc_mentioned_in_p (loc
, XVECEXP (in
, i
, j
)))
3007 /* Helper function for subreg_lsb. Given a subreg's OUTER_MODE, INNER_MODE,
3008 and SUBREG_BYTE, return the bit offset where the subreg begins
3009 (counting from the least significant bit of the operand). */
3012 subreg_lsb_1 (enum machine_mode outer_mode
,
3013 enum machine_mode inner_mode
,
3014 unsigned int subreg_byte
)
3016 unsigned int bitpos
;
3020 /* A paradoxical subreg begins at bit position 0. */
3021 if (GET_MODE_BITSIZE (outer_mode
) > GET_MODE_BITSIZE (inner_mode
))
3024 if (WORDS_BIG_ENDIAN
!= BYTES_BIG_ENDIAN
)
3025 /* If the subreg crosses a word boundary ensure that
3026 it also begins and ends on a word boundary. */
3027 gcc_assert (!((subreg_byte
% UNITS_PER_WORD
3028 + GET_MODE_SIZE (outer_mode
)) > UNITS_PER_WORD
3029 && (subreg_byte
% UNITS_PER_WORD
3030 || GET_MODE_SIZE (outer_mode
) % UNITS_PER_WORD
)));
3032 if (WORDS_BIG_ENDIAN
)
3033 word
= (GET_MODE_SIZE (inner_mode
)
3034 - (subreg_byte
+ GET_MODE_SIZE (outer_mode
))) / UNITS_PER_WORD
;
3036 word
= subreg_byte
/ UNITS_PER_WORD
;
3037 bitpos
= word
* BITS_PER_WORD
;
3039 if (BYTES_BIG_ENDIAN
)
3040 byte
= (GET_MODE_SIZE (inner_mode
)
3041 - (subreg_byte
+ GET_MODE_SIZE (outer_mode
))) % UNITS_PER_WORD
;
3043 byte
= subreg_byte
% UNITS_PER_WORD
;
3044 bitpos
+= byte
* BITS_PER_UNIT
;
3049 /* Given a subreg X, return the bit offset where the subreg begins
3050 (counting from the least significant bit of the reg). */
3053 subreg_lsb (const_rtx x
)
3055 return subreg_lsb_1 (GET_MODE (x
), GET_MODE (SUBREG_REG (x
)),
3059 /* Fill in information about a subreg of a hard register.
3060 xregno - A regno of an inner hard subreg_reg (or what will become one).
3061 xmode - The mode of xregno.
3062 offset - The byte offset.
3063 ymode - The mode of a top level SUBREG (or what may become one).
3064 info - Pointer to structure to fill in. */
3066 subreg_get_info (unsigned int xregno
, enum machine_mode xmode
,
3067 unsigned int offset
, enum machine_mode ymode
,
3068 struct subreg_info
*info
)
3070 int nregs_xmode
, nregs_ymode
;
3071 int mode_multiple
, nregs_multiple
;
3072 int offset_adj
, y_offset
, y_offset_adj
;
3073 int regsize_xmode
, regsize_ymode
;
3076 gcc_assert (xregno
< FIRST_PSEUDO_REGISTER
);
3080 /* If there are holes in a non-scalar mode in registers, we expect
3081 that it is made up of its units concatenated together. */
3082 if (HARD_REGNO_NREGS_HAS_PADDING (xregno
, xmode
))
3084 enum machine_mode xmode_unit
;
3086 nregs_xmode
= HARD_REGNO_NREGS_WITH_PADDING (xregno
, xmode
);
3087 if (GET_MODE_INNER (xmode
) == VOIDmode
)
3090 xmode_unit
= GET_MODE_INNER (xmode
);
3091 gcc_assert (HARD_REGNO_NREGS_HAS_PADDING (xregno
, xmode_unit
));
3092 gcc_assert (nregs_xmode
3093 == (GET_MODE_NUNITS (xmode
)
3094 * HARD_REGNO_NREGS_WITH_PADDING (xregno
, xmode_unit
)));
3095 gcc_assert (hard_regno_nregs
[xregno
][xmode
]
3096 == (hard_regno_nregs
[xregno
][xmode_unit
]
3097 * GET_MODE_NUNITS (xmode
)));
3099 /* You can only ask for a SUBREG of a value with holes in the middle
3100 if you don't cross the holes. (Such a SUBREG should be done by
3101 picking a different register class, or doing it in memory if
3102 necessary.) An example of a value with holes is XCmode on 32-bit
3103 x86 with -m128bit-long-double; it's represented in 6 32-bit registers,
3104 3 for each part, but in memory it's two 128-bit parts.
3105 Padding is assumed to be at the end (not necessarily the 'high part')
3107 if ((offset
/ GET_MODE_SIZE (xmode_unit
) + 1
3108 < GET_MODE_NUNITS (xmode
))
3109 && (offset
/ GET_MODE_SIZE (xmode_unit
)
3110 != ((offset
+ GET_MODE_SIZE (ymode
) - 1)
3111 / GET_MODE_SIZE (xmode_unit
))))
3113 info
->representable_p
= false;
3118 nregs_xmode
= hard_regno_nregs
[xregno
][xmode
];
3120 nregs_ymode
= hard_regno_nregs
[xregno
][ymode
];
3122 /* Paradoxical subregs are otherwise valid. */
3125 && GET_MODE_SIZE (ymode
) > GET_MODE_SIZE (xmode
))
3127 info
->representable_p
= true;
3128 /* If this is a big endian paradoxical subreg, which uses more
3129 actual hard registers than the original register, we must
3130 return a negative offset so that we find the proper highpart
3132 if (GET_MODE_SIZE (ymode
) > UNITS_PER_WORD
3133 ? WORDS_BIG_ENDIAN
: BYTES_BIG_ENDIAN
)
3134 info
->offset
= nregs_xmode
- nregs_ymode
;
3137 info
->nregs
= nregs_ymode
;
3141 /* If registers store different numbers of bits in the different
3142 modes, we cannot generally form this subreg. */
3143 if (!HARD_REGNO_NREGS_HAS_PADDING (xregno
, xmode
)
3144 && !HARD_REGNO_NREGS_HAS_PADDING (xregno
, ymode
)
3145 && (GET_MODE_SIZE (xmode
) % nregs_xmode
) == 0
3146 && (GET_MODE_SIZE (ymode
) % nregs_ymode
) == 0)
3148 regsize_xmode
= GET_MODE_SIZE (xmode
) / nregs_xmode
;
3149 regsize_ymode
= GET_MODE_SIZE (ymode
) / nregs_ymode
;
3150 if (!rknown
&& regsize_xmode
> regsize_ymode
&& nregs_ymode
> 1)
3152 info
->representable_p
= false;
3154 = (GET_MODE_SIZE (ymode
) + regsize_xmode
- 1) / regsize_xmode
;
3155 info
->offset
= offset
/ regsize_xmode
;
3158 if (!rknown
&& regsize_ymode
> regsize_xmode
&& nregs_xmode
> 1)
3160 info
->representable_p
= false;
3162 = (GET_MODE_SIZE (ymode
) + regsize_xmode
- 1) / regsize_xmode
;
3163 info
->offset
= offset
/ regsize_xmode
;
3168 /* Lowpart subregs are otherwise valid. */
3169 if (!rknown
&& offset
== subreg_lowpart_offset (ymode
, xmode
))
3171 info
->representable_p
= true;
3174 if (offset
== 0 || nregs_xmode
== nregs_ymode
)
3177 info
->nregs
= nregs_ymode
;
3182 /* This should always pass, otherwise we don't know how to verify
3183 the constraint. These conditions may be relaxed but
3184 subreg_regno_offset would need to be redesigned. */
3185 gcc_assert ((GET_MODE_SIZE (xmode
) % GET_MODE_SIZE (ymode
)) == 0);
3186 gcc_assert ((nregs_xmode
% nregs_ymode
) == 0);
3188 /* The XMODE value can be seen as a vector of NREGS_XMODE
3189 values. The subreg must represent a lowpart of given field.
3190 Compute what field it is. */
3191 offset_adj
= offset
;
3192 offset_adj
-= subreg_lowpart_offset (ymode
,
3193 mode_for_size (GET_MODE_BITSIZE (xmode
)
3197 /* Size of ymode must not be greater than the size of xmode. */
3198 mode_multiple
= GET_MODE_SIZE (xmode
) / GET_MODE_SIZE (ymode
);
3199 gcc_assert (mode_multiple
!= 0);
3201 y_offset
= offset
/ GET_MODE_SIZE (ymode
);
3202 y_offset_adj
= offset_adj
/ GET_MODE_SIZE (ymode
);
3203 nregs_multiple
= nregs_xmode
/ nregs_ymode
;
3205 gcc_assert ((offset_adj
% GET_MODE_SIZE (ymode
)) == 0);
3206 gcc_assert ((mode_multiple
% nregs_multiple
) == 0);
3210 info
->representable_p
= (!(y_offset_adj
% (mode_multiple
/ nregs_multiple
)));
3213 info
->offset
= (y_offset
/ (mode_multiple
/ nregs_multiple
)) * nregs_ymode
;
3214 info
->nregs
= nregs_ymode
;
3217 /* This function returns the regno offset of a subreg expression.
3218 xregno - A regno of an inner hard subreg_reg (or what will become one).
3219 xmode - The mode of xregno.
3220 offset - The byte offset.
3221 ymode - The mode of a top level SUBREG (or what may become one).
3222 RETURN - The regno offset which would be used. */
3224 subreg_regno_offset (unsigned int xregno
, enum machine_mode xmode
,
3225 unsigned int offset
, enum machine_mode ymode
)
3227 struct subreg_info info
;
3228 subreg_get_info (xregno
, xmode
, offset
, ymode
, &info
);
3232 /* This function returns true when the offset is representable via
3233 subreg_offset in the given regno.
3234 xregno - A regno of an inner hard subreg_reg (or what will become one).
3235 xmode - The mode of xregno.
3236 offset - The byte offset.
3237 ymode - The mode of a top level SUBREG (or what may become one).
3238 RETURN - Whether the offset is representable. */
3240 subreg_offset_representable_p (unsigned int xregno
, enum machine_mode xmode
,
3241 unsigned int offset
, enum machine_mode ymode
)
3243 struct subreg_info info
;
3244 subreg_get_info (xregno
, xmode
, offset
, ymode
, &info
);
3245 return info
.representable_p
;
3248 /* Return the final regno that a subreg expression refers to. */
3250 subreg_regno (const_rtx x
)
3253 rtx subreg
= SUBREG_REG (x
);
3254 int regno
= REGNO (subreg
);
3256 ret
= regno
+ subreg_regno_offset (regno
,
3264 /* Return the number of registers that a subreg expression refers
3267 subreg_nregs (const_rtx x
)
3269 return subreg_nregs_with_regno (REGNO (SUBREG_REG (x
)), x
);
3272 /* Return the number of registers that a subreg REG with REGNO
3273 expression refers to. This is a copy of the rtlanal.c:subreg_nregs
3274 changed so that the regno can be passed in. */
3277 subreg_nregs_with_regno (unsigned int regno
, const_rtx x
)
3279 struct subreg_info info
;
3280 rtx subreg
= SUBREG_REG (x
);
3282 subreg_get_info (regno
, GET_MODE (subreg
), SUBREG_BYTE (x
), GET_MODE (x
),
3288 struct parms_set_data
3294 /* Helper function for noticing stores to parameter registers. */
3296 parms_set (rtx x
, const_rtx pat ATTRIBUTE_UNUSED
, void *data
)
3298 struct parms_set_data
*d
= data
;
3299 if (REG_P (x
) && REGNO (x
) < FIRST_PSEUDO_REGISTER
3300 && TEST_HARD_REG_BIT (d
->regs
, REGNO (x
)))
3302 CLEAR_HARD_REG_BIT (d
->regs
, REGNO (x
));
3307 /* Look backward for first parameter to be loaded.
3308 Note that loads of all parameters will not necessarily be
3309 found if CSE has eliminated some of them (e.g., an argument
3310 to the outer function is passed down as a parameter).
3311 Do not skip BOUNDARY. */
3313 find_first_parameter_load (rtx call_insn
, rtx boundary
)
3315 struct parms_set_data parm
;
3316 rtx p
, before
, first_set
;
3318 /* Since different machines initialize their parameter registers
3319 in different orders, assume nothing. Collect the set of all
3320 parameter registers. */
3321 CLEAR_HARD_REG_SET (parm
.regs
);
3323 for (p
= CALL_INSN_FUNCTION_USAGE (call_insn
); p
; p
= XEXP (p
, 1))
3324 if (GET_CODE (XEXP (p
, 0)) == USE
3325 && REG_P (XEXP (XEXP (p
, 0), 0)))
3327 gcc_assert (REGNO (XEXP (XEXP (p
, 0), 0)) < FIRST_PSEUDO_REGISTER
);
3329 /* We only care about registers which can hold function
3331 if (!FUNCTION_ARG_REGNO_P (REGNO (XEXP (XEXP (p
, 0), 0))))
3334 SET_HARD_REG_BIT (parm
.regs
, REGNO (XEXP (XEXP (p
, 0), 0)));
3338 first_set
= call_insn
;
3340 /* Search backward for the first set of a register in this set. */
3341 while (parm
.nregs
&& before
!= boundary
)
3343 before
= PREV_INSN (before
);
3345 /* It is possible that some loads got CSEed from one call to
3346 another. Stop in that case. */
3347 if (CALL_P (before
))
3350 /* Our caller needs either ensure that we will find all sets
3351 (in case code has not been optimized yet), or take care
3352 for possible labels in a way by setting boundary to preceding
3354 if (LABEL_P (before
))
3356 gcc_assert (before
== boundary
);
3360 if (INSN_P (before
))
3362 int nregs_old
= parm
.nregs
;
3363 note_stores (PATTERN (before
), parms_set
, &parm
);
3364 /* If we found something that did not set a parameter reg,
3365 we're done. Do not keep going, as that might result
3366 in hoisting an insn before the setting of a pseudo
3367 that is used by the hoisted insn. */
3368 if (nregs_old
!= parm
.nregs
)
3377 /* Return true if we should avoid inserting code between INSN and preceding
3378 call instruction. */
3381 keep_with_call_p (const_rtx insn
)
3385 if (INSN_P (insn
) && (set
= single_set (insn
)) != NULL
)
3387 if (REG_P (SET_DEST (set
))
3388 && REGNO (SET_DEST (set
)) < FIRST_PSEUDO_REGISTER
3389 && fixed_regs
[REGNO (SET_DEST (set
))]
3390 && general_operand (SET_SRC (set
), VOIDmode
))
3392 if (REG_P (SET_SRC (set
))
3393 && FUNCTION_VALUE_REGNO_P (REGNO (SET_SRC (set
)))
3394 && REG_P (SET_DEST (set
))
3395 && REGNO (SET_DEST (set
)) >= FIRST_PSEUDO_REGISTER
)
3397 /* There may be a stack pop just after the call and before the store
3398 of the return register. Search for the actual store when deciding
3399 if we can break or not. */
3400 if (SET_DEST (set
) == stack_pointer_rtx
)
3402 /* This CONST_CAST is okay because next_nonnote_insn just
3403 returns it's argument and we assign it to a const_rtx
3405 const_rtx i2
= next_nonnote_insn (CONST_CAST_RTX(insn
));
3406 if (i2
&& keep_with_call_p (i2
))
3413 /* Return true if LABEL is a target of JUMP_INSN. This applies only
3414 to non-complex jumps. That is, direct unconditional, conditional,
3415 and tablejumps, but not computed jumps or returns. It also does
3416 not apply to the fallthru case of a conditional jump. */
3419 label_is_jump_target_p (const_rtx label
, const_rtx jump_insn
)
3421 rtx tmp
= JUMP_LABEL (jump_insn
);
3426 if (tablejump_p (jump_insn
, NULL
, &tmp
))
3428 rtvec vec
= XVEC (PATTERN (tmp
),
3429 GET_CODE (PATTERN (tmp
)) == ADDR_DIFF_VEC
);
3430 int i
, veclen
= GET_NUM_ELEM (vec
);
3432 for (i
= 0; i
< veclen
; ++i
)
3433 if (XEXP (RTVEC_ELT (vec
, i
), 0) == label
)
3437 if (find_reg_note (jump_insn
, REG_LABEL_TARGET
, label
))
3444 /* Return an estimate of the cost of computing rtx X.
3445 One use is in cse, to decide which expression to keep in the hash table.
3446 Another is in rtl generation, to pick the cheapest way to multiply.
3447 Other uses like the latter are expected in the future. */
3450 rtx_cost (rtx x
, enum rtx_code outer_code ATTRIBUTE_UNUSED
)
3460 /* Compute the default costs of certain things.
3461 Note that targetm.rtx_costs can override the defaults. */
3463 code
= GET_CODE (x
);
3467 total
= COSTS_N_INSNS (5);
3473 total
= COSTS_N_INSNS (7);
3476 /* Used in combine.c as a marker. */
3480 total
= COSTS_N_INSNS (1);
3490 /* If we can't tie these modes, make this expensive. The larger
3491 the mode, the more expensive it is. */
3492 if (! MODES_TIEABLE_P (GET_MODE (x
), GET_MODE (SUBREG_REG (x
))))
3493 return COSTS_N_INSNS (2
3494 + GET_MODE_SIZE (GET_MODE (x
)) / UNITS_PER_WORD
);
3498 if (targetm
.rtx_costs (x
, code
, outer_code
, &total
))
3503 /* Sum the costs of the sub-rtx's, plus cost of this operation,
3504 which is already in total. */
3506 fmt
= GET_RTX_FORMAT (code
);
3507 for (i
= GET_RTX_LENGTH (code
) - 1; i
>= 0; i
--)
3509 total
+= rtx_cost (XEXP (x
, i
), code
);
3510 else if (fmt
[i
] == 'E')
3511 for (j
= 0; j
< XVECLEN (x
, i
); j
++)
3512 total
+= rtx_cost (XVECEXP (x
, i
, j
), code
);
3517 /* Return cost of address expression X.
3518 Expect that X is properly formed address reference. */
3521 address_cost (rtx x
, enum machine_mode mode
)
3523 /* We may be asked for cost of various unusual addresses, such as operands
3524 of push instruction. It is not worthwhile to complicate writing
3525 of the target hook by such cases. */
3527 if (!memory_address_p (mode
, x
))
3530 return targetm
.address_cost (x
);
3533 /* If the target doesn't override, compute the cost as with arithmetic. */
3536 default_address_cost (rtx x
)
3538 return rtx_cost (x
, MEM
);
3542 unsigned HOST_WIDE_INT
3543 nonzero_bits (const_rtx x
, enum machine_mode mode
)
3545 return cached_nonzero_bits (x
, mode
, NULL_RTX
, VOIDmode
, 0);
3549 num_sign_bit_copies (const_rtx x
, enum machine_mode mode
)
3551 return cached_num_sign_bit_copies (x
, mode
, NULL_RTX
, VOIDmode
, 0);
3554 /* The function cached_nonzero_bits is a wrapper around nonzero_bits1.
3555 It avoids exponential behavior in nonzero_bits1 when X has
3556 identical subexpressions on the first or the second level. */
3558 static unsigned HOST_WIDE_INT
3559 cached_nonzero_bits (const_rtx x
, enum machine_mode mode
, const_rtx known_x
,
3560 enum machine_mode known_mode
,
3561 unsigned HOST_WIDE_INT known_ret
)
3563 if (x
== known_x
&& mode
== known_mode
)
3566 /* Try to find identical subexpressions. If found call
3567 nonzero_bits1 on X with the subexpressions as KNOWN_X and the
3568 precomputed value for the subexpression as KNOWN_RET. */
3570 if (ARITHMETIC_P (x
))
3572 rtx x0
= XEXP (x
, 0);
3573 rtx x1
= XEXP (x
, 1);
3575 /* Check the first level. */
3577 return nonzero_bits1 (x
, mode
, x0
, mode
,
3578 cached_nonzero_bits (x0
, mode
, known_x
,
3579 known_mode
, known_ret
));
3581 /* Check the second level. */
3582 if (ARITHMETIC_P (x0
)
3583 && (x1
== XEXP (x0
, 0) || x1
== XEXP (x0
, 1)))
3584 return nonzero_bits1 (x
, mode
, x1
, mode
,
3585 cached_nonzero_bits (x1
, mode
, known_x
,
3586 known_mode
, known_ret
));
3588 if (ARITHMETIC_P (x1
)
3589 && (x0
== XEXP (x1
, 0) || x0
== XEXP (x1
, 1)))
3590 return nonzero_bits1 (x
, mode
, x0
, mode
,
3591 cached_nonzero_bits (x0
, mode
, known_x
,
3592 known_mode
, known_ret
));
3595 return nonzero_bits1 (x
, mode
, known_x
, known_mode
, known_ret
);
3598 /* We let num_sign_bit_copies recur into nonzero_bits as that is useful.
3599 We don't let nonzero_bits recur into num_sign_bit_copies, because that
3600 is less useful. We can't allow both, because that results in exponential
3601 run time recursion. There is a nullstone testcase that triggered
3602 this. This macro avoids accidental uses of num_sign_bit_copies. */
3603 #define cached_num_sign_bit_copies sorry_i_am_preventing_exponential_behavior
3605 /* Given an expression, X, compute which bits in X can be nonzero.
3606 We don't care about bits outside of those defined in MODE.
3608 For most X this is simply GET_MODE_MASK (GET_MODE (MODE)), but if X is
3609 an arithmetic operation, we can do better. */
3611 static unsigned HOST_WIDE_INT
3612 nonzero_bits1 (const_rtx x
, enum machine_mode mode
, const_rtx known_x
,
3613 enum machine_mode known_mode
,
3614 unsigned HOST_WIDE_INT known_ret
)
3616 unsigned HOST_WIDE_INT nonzero
= GET_MODE_MASK (mode
);
3617 unsigned HOST_WIDE_INT inner_nz
;
3619 unsigned int mode_width
= GET_MODE_BITSIZE (mode
);
3621 /* For floating-point values, assume all bits are needed. */
3622 if (FLOAT_MODE_P (GET_MODE (x
)) || FLOAT_MODE_P (mode
))
3625 /* If X is wider than MODE, use its mode instead. */
3626 if (GET_MODE_BITSIZE (GET_MODE (x
)) > mode_width
)
3628 mode
= GET_MODE (x
);
3629 nonzero
= GET_MODE_MASK (mode
);
3630 mode_width
= GET_MODE_BITSIZE (mode
);
3633 if (mode_width
> HOST_BITS_PER_WIDE_INT
)
3634 /* Our only callers in this case look for single bit values. So
3635 just return the mode mask. Those tests will then be false. */
3638 #ifndef WORD_REGISTER_OPERATIONS
3639 /* If MODE is wider than X, but both are a single word for both the host
3640 and target machines, we can compute this from which bits of the
3641 object might be nonzero in its own mode, taking into account the fact
3642 that on many CISC machines, accessing an object in a wider mode
3643 causes the high-order bits to become undefined. So they are
3644 not known to be zero. */
3646 if (GET_MODE (x
) != VOIDmode
&& GET_MODE (x
) != mode
3647 && GET_MODE_BITSIZE (GET_MODE (x
)) <= BITS_PER_WORD
3648 && GET_MODE_BITSIZE (GET_MODE (x
)) <= HOST_BITS_PER_WIDE_INT
3649 && GET_MODE_BITSIZE (mode
) > GET_MODE_BITSIZE (GET_MODE (x
)))
3651 nonzero
&= cached_nonzero_bits (x
, GET_MODE (x
),
3652 known_x
, known_mode
, known_ret
);
3653 nonzero
|= GET_MODE_MASK (mode
) & ~GET_MODE_MASK (GET_MODE (x
));
3658 code
= GET_CODE (x
);
3662 #if defined(POINTERS_EXTEND_UNSIGNED) && !defined(HAVE_ptr_extend)
3663 /* If pointers extend unsigned and this is a pointer in Pmode, say that
3664 all the bits above ptr_mode are known to be zero. */
3665 if (POINTERS_EXTEND_UNSIGNED
&& GET_MODE (x
) == Pmode
3667 nonzero
&= GET_MODE_MASK (ptr_mode
);
3670 /* Include declared information about alignment of pointers. */
3671 /* ??? We don't properly preserve REG_POINTER changes across
3672 pointer-to-integer casts, so we can't trust it except for
3673 things that we know must be pointers. See execute/960116-1.c. */
3674 if ((x
== stack_pointer_rtx
3675 || x
== frame_pointer_rtx
3676 || x
== arg_pointer_rtx
)
3677 && REGNO_POINTER_ALIGN (REGNO (x
)))
3679 unsigned HOST_WIDE_INT alignment
3680 = REGNO_POINTER_ALIGN (REGNO (x
)) / BITS_PER_UNIT
;
3682 #ifdef PUSH_ROUNDING
3683 /* If PUSH_ROUNDING is defined, it is possible for the
3684 stack to be momentarily aligned only to that amount,
3685 so we pick the least alignment. */
3686 if (x
== stack_pointer_rtx
&& PUSH_ARGS
)
3687 alignment
= MIN ((unsigned HOST_WIDE_INT
) PUSH_ROUNDING (1),
3691 nonzero
&= ~(alignment
- 1);
3695 unsigned HOST_WIDE_INT nonzero_for_hook
= nonzero
;
3696 rtx
new = rtl_hooks
.reg_nonzero_bits (x
, mode
, known_x
,
3697 known_mode
, known_ret
,
3701 nonzero_for_hook
&= cached_nonzero_bits (new, mode
, known_x
,
3702 known_mode
, known_ret
);
3704 return nonzero_for_hook
;
3708 #ifdef SHORT_IMMEDIATES_SIGN_EXTEND
3709 /* If X is negative in MODE, sign-extend the value. */
3710 if (INTVAL (x
) > 0 && mode_width
< BITS_PER_WORD
3711 && 0 != (INTVAL (x
) & ((HOST_WIDE_INT
) 1 << (mode_width
- 1))))
3712 return (INTVAL (x
) | ((HOST_WIDE_INT
) (-1) << mode_width
));
3718 #ifdef LOAD_EXTEND_OP
3719 /* In many, if not most, RISC machines, reading a byte from memory
3720 zeros the rest of the register. Noticing that fact saves a lot
3721 of extra zero-extends. */
3722 if (LOAD_EXTEND_OP (GET_MODE (x
)) == ZERO_EXTEND
)
3723 nonzero
&= GET_MODE_MASK (GET_MODE (x
));
3728 case UNEQ
: case LTGT
:
3729 case GT
: case GTU
: case UNGT
:
3730 case LT
: case LTU
: case UNLT
:
3731 case GE
: case GEU
: case UNGE
:
3732 case LE
: case LEU
: case UNLE
:
3733 case UNORDERED
: case ORDERED
:
3734 /* If this produces an integer result, we know which bits are set.
3735 Code here used to clear bits outside the mode of X, but that is
3737 /* Mind that MODE is the mode the caller wants to look at this
3738 operation in, and not the actual operation mode. We can wind
3739 up with (subreg:DI (gt:V4HI x y)), and we don't have anything
3740 that describes the results of a vector compare. */
3741 if (GET_MODE_CLASS (GET_MODE (x
)) == MODE_INT
3742 && mode_width
<= HOST_BITS_PER_WIDE_INT
)
3743 nonzero
= STORE_FLAG_VALUE
;
3748 /* Disabled to avoid exponential mutual recursion between nonzero_bits
3749 and num_sign_bit_copies. */
3750 if (num_sign_bit_copies (XEXP (x
, 0), GET_MODE (x
))
3751 == GET_MODE_BITSIZE (GET_MODE (x
)))
3755 if (GET_MODE_SIZE (GET_MODE (x
)) < mode_width
)
3756 nonzero
|= (GET_MODE_MASK (mode
) & ~GET_MODE_MASK (GET_MODE (x
)));
3761 /* Disabled to avoid exponential mutual recursion between nonzero_bits
3762 and num_sign_bit_copies. */
3763 if (num_sign_bit_copies (XEXP (x
, 0), GET_MODE (x
))
3764 == GET_MODE_BITSIZE (GET_MODE (x
)))
3770 nonzero
&= (cached_nonzero_bits (XEXP (x
, 0), mode
,
3771 known_x
, known_mode
, known_ret
)
3772 & GET_MODE_MASK (mode
));
3776 nonzero
&= cached_nonzero_bits (XEXP (x
, 0), mode
,
3777 known_x
, known_mode
, known_ret
);
3778 if (GET_MODE (XEXP (x
, 0)) != VOIDmode
)
3779 nonzero
&= GET_MODE_MASK (GET_MODE (XEXP (x
, 0)));
3783 /* If the sign bit is known clear, this is the same as ZERO_EXTEND.
3784 Otherwise, show all the bits in the outer mode but not the inner
3786 inner_nz
= cached_nonzero_bits (XEXP (x
, 0), mode
,
3787 known_x
, known_mode
, known_ret
);
3788 if (GET_MODE (XEXP (x
, 0)) != VOIDmode
)
3790 inner_nz
&= GET_MODE_MASK (GET_MODE (XEXP (x
, 0)));
3792 & (((HOST_WIDE_INT
) 1
3793 << (GET_MODE_BITSIZE (GET_MODE (XEXP (x
, 0))) - 1))))
3794 inner_nz
|= (GET_MODE_MASK (mode
)
3795 & ~GET_MODE_MASK (GET_MODE (XEXP (x
, 0))));
3798 nonzero
&= inner_nz
;
3802 nonzero
&= cached_nonzero_bits (XEXP (x
, 0), mode
,
3803 known_x
, known_mode
, known_ret
)
3804 & cached_nonzero_bits (XEXP (x
, 1), mode
,
3805 known_x
, known_mode
, known_ret
);
3809 case UMIN
: case UMAX
: case SMIN
: case SMAX
:
3811 unsigned HOST_WIDE_INT nonzero0
=
3812 cached_nonzero_bits (XEXP (x
, 0), mode
,
3813 known_x
, known_mode
, known_ret
);
3815 /* Don't call nonzero_bits for the second time if it cannot change
3817 if ((nonzero
& nonzero0
) != nonzero
)
3819 | cached_nonzero_bits (XEXP (x
, 1), mode
,
3820 known_x
, known_mode
, known_ret
);
3824 case PLUS
: case MINUS
:
3826 case DIV
: case UDIV
:
3827 case MOD
: case UMOD
:
3828 /* We can apply the rules of arithmetic to compute the number of
3829 high- and low-order zero bits of these operations. We start by
3830 computing the width (position of the highest-order nonzero bit)
3831 and the number of low-order zero bits for each value. */
3833 unsigned HOST_WIDE_INT nz0
=
3834 cached_nonzero_bits (XEXP (x
, 0), mode
,
3835 known_x
, known_mode
, known_ret
);
3836 unsigned HOST_WIDE_INT nz1
=
3837 cached_nonzero_bits (XEXP (x
, 1), mode
,
3838 known_x
, known_mode
, known_ret
);
3839 int sign_index
= GET_MODE_BITSIZE (GET_MODE (x
)) - 1;
3840 int width0
= floor_log2 (nz0
) + 1;
3841 int width1
= floor_log2 (nz1
) + 1;
3842 int low0
= floor_log2 (nz0
& -nz0
);
3843 int low1
= floor_log2 (nz1
& -nz1
);
3844 HOST_WIDE_INT op0_maybe_minusp
3845 = (nz0
& ((HOST_WIDE_INT
) 1 << sign_index
));
3846 HOST_WIDE_INT op1_maybe_minusp
3847 = (nz1
& ((HOST_WIDE_INT
) 1 << sign_index
));
3848 unsigned int result_width
= mode_width
;
3854 result_width
= MAX (width0
, width1
) + 1;
3855 result_low
= MIN (low0
, low1
);
3858 result_low
= MIN (low0
, low1
);
3861 result_width
= width0
+ width1
;
3862 result_low
= low0
+ low1
;
3867 if (! op0_maybe_minusp
&& ! op1_maybe_minusp
)
3868 result_width
= width0
;
3873 result_width
= width0
;
3878 if (! op0_maybe_minusp
&& ! op1_maybe_minusp
)
3879 result_width
= MIN (width0
, width1
);
3880 result_low
= MIN (low0
, low1
);
3885 result_width
= MIN (width0
, width1
);
3886 result_low
= MIN (low0
, low1
);
3892 if (result_width
< mode_width
)
3893 nonzero
&= ((HOST_WIDE_INT
) 1 << result_width
) - 1;
3896 nonzero
&= ~(((HOST_WIDE_INT
) 1 << result_low
) - 1);
3898 #ifdef POINTERS_EXTEND_UNSIGNED
3899 /* If pointers extend unsigned and this is an addition or subtraction
3900 to a pointer in Pmode, all the bits above ptr_mode are known to be
3902 if (POINTERS_EXTEND_UNSIGNED
> 0 && GET_MODE (x
) == Pmode
3903 && (code
== PLUS
|| code
== MINUS
)
3904 && REG_P (XEXP (x
, 0)) && REG_POINTER (XEXP (x
, 0)))
3905 nonzero
&= GET_MODE_MASK (ptr_mode
);
3911 if (GET_CODE (XEXP (x
, 1)) == CONST_INT
3912 && INTVAL (XEXP (x
, 1)) < HOST_BITS_PER_WIDE_INT
)
3913 nonzero
&= ((HOST_WIDE_INT
) 1 << INTVAL (XEXP (x
, 1))) - 1;
3917 /* If this is a SUBREG formed for a promoted variable that has
3918 been zero-extended, we know that at least the high-order bits
3919 are zero, though others might be too. */
3921 if (SUBREG_PROMOTED_VAR_P (x
) && SUBREG_PROMOTED_UNSIGNED_P (x
) > 0)
3922 nonzero
= GET_MODE_MASK (GET_MODE (x
))
3923 & cached_nonzero_bits (SUBREG_REG (x
), GET_MODE (x
),
3924 known_x
, known_mode
, known_ret
);
3926 /* If the inner mode is a single word for both the host and target
3927 machines, we can compute this from which bits of the inner
3928 object might be nonzero. */
3929 if (GET_MODE_BITSIZE (GET_MODE (SUBREG_REG (x
))) <= BITS_PER_WORD
3930 && (GET_MODE_BITSIZE (GET_MODE (SUBREG_REG (x
)))
3931 <= HOST_BITS_PER_WIDE_INT
))
3933 nonzero
&= cached_nonzero_bits (SUBREG_REG (x
), mode
,
3934 known_x
, known_mode
, known_ret
);
3936 #if defined (WORD_REGISTER_OPERATIONS) && defined (LOAD_EXTEND_OP)
3937 /* If this is a typical RISC machine, we only have to worry
3938 about the way loads are extended. */
3939 if ((LOAD_EXTEND_OP (GET_MODE (SUBREG_REG (x
))) == SIGN_EXTEND
3941 & (((unsigned HOST_WIDE_INT
) 1
3942 << (GET_MODE_BITSIZE (GET_MODE (SUBREG_REG (x
))) - 1))))
3944 : LOAD_EXTEND_OP (GET_MODE (SUBREG_REG (x
))) != ZERO_EXTEND
)
3945 || !MEM_P (SUBREG_REG (x
)))
3948 /* On many CISC machines, accessing an object in a wider mode
3949 causes the high-order bits to become undefined. So they are
3950 not known to be zero. */
3951 if (GET_MODE_SIZE (GET_MODE (x
))
3952 > GET_MODE_SIZE (GET_MODE (SUBREG_REG (x
))))
3953 nonzero
|= (GET_MODE_MASK (GET_MODE (x
))
3954 & ~GET_MODE_MASK (GET_MODE (SUBREG_REG (x
))));
3963 /* The nonzero bits are in two classes: any bits within MODE
3964 that aren't in GET_MODE (x) are always significant. The rest of the
3965 nonzero bits are those that are significant in the operand of
3966 the shift when shifted the appropriate number of bits. This
3967 shows that high-order bits are cleared by the right shift and
3968 low-order bits by left shifts. */
3969 if (GET_CODE (XEXP (x
, 1)) == CONST_INT
3970 && INTVAL (XEXP (x
, 1)) >= 0
3971 && INTVAL (XEXP (x
, 1)) < HOST_BITS_PER_WIDE_INT
)
3973 enum machine_mode inner_mode
= GET_MODE (x
);
3974 unsigned int width
= GET_MODE_BITSIZE (inner_mode
);
3975 int count
= INTVAL (XEXP (x
, 1));
3976 unsigned HOST_WIDE_INT mode_mask
= GET_MODE_MASK (inner_mode
);
3977 unsigned HOST_WIDE_INT op_nonzero
=
3978 cached_nonzero_bits (XEXP (x
, 0), mode
,
3979 known_x
, known_mode
, known_ret
);
3980 unsigned HOST_WIDE_INT inner
= op_nonzero
& mode_mask
;
3981 unsigned HOST_WIDE_INT outer
= 0;
3983 if (mode_width
> width
)
3984 outer
= (op_nonzero
& nonzero
& ~mode_mask
);
3986 if (code
== LSHIFTRT
)
3988 else if (code
== ASHIFTRT
)
3992 /* If the sign bit may have been nonzero before the shift, we
3993 need to mark all the places it could have been copied to
3994 by the shift as possibly nonzero. */
3995 if (inner
& ((HOST_WIDE_INT
) 1 << (width
- 1 - count
)))
3996 inner
|= (((HOST_WIDE_INT
) 1 << count
) - 1) << (width
- count
);
3998 else if (code
== ASHIFT
)
4001 inner
= ((inner
<< (count
% width
)
4002 | (inner
>> (width
- (count
% width
)))) & mode_mask
);
4004 nonzero
&= (outer
| inner
);
4010 /* This is at most the number of bits in the mode. */
4011 nonzero
= ((HOST_WIDE_INT
) 2 << (floor_log2 (mode_width
))) - 1;
4015 /* If CLZ has a known value at zero, then the nonzero bits are
4016 that value, plus the number of bits in the mode minus one. */
4017 if (CLZ_DEFINED_VALUE_AT_ZERO (mode
, nonzero
))
4018 nonzero
|= ((HOST_WIDE_INT
) 1 << (floor_log2 (mode_width
))) - 1;
4024 /* If CTZ has a known value at zero, then the nonzero bits are
4025 that value, plus the number of bits in the mode minus one. */
4026 if (CTZ_DEFINED_VALUE_AT_ZERO (mode
, nonzero
))
4027 nonzero
|= ((HOST_WIDE_INT
) 1 << (floor_log2 (mode_width
))) - 1;
4038 unsigned HOST_WIDE_INT nonzero_true
=
4039 cached_nonzero_bits (XEXP (x
, 1), mode
,
4040 known_x
, known_mode
, known_ret
);
4042 /* Don't call nonzero_bits for the second time if it cannot change
4044 if ((nonzero
& nonzero_true
) != nonzero
)
4045 nonzero
&= nonzero_true
4046 | cached_nonzero_bits (XEXP (x
, 2), mode
,
4047 known_x
, known_mode
, known_ret
);
4058 /* See the macro definition above. */
4059 #undef cached_num_sign_bit_copies
4062 /* The function cached_num_sign_bit_copies is a wrapper around
4063 num_sign_bit_copies1. It avoids exponential behavior in
4064 num_sign_bit_copies1 when X has identical subexpressions on the
4065 first or the second level. */
4068 cached_num_sign_bit_copies (const_rtx x
, enum machine_mode mode
, const_rtx known_x
,
4069 enum machine_mode known_mode
,
4070 unsigned int known_ret
)
4072 if (x
== known_x
&& mode
== known_mode
)
4075 /* Try to find identical subexpressions. If found call
4076 num_sign_bit_copies1 on X with the subexpressions as KNOWN_X and
4077 the precomputed value for the subexpression as KNOWN_RET. */
4079 if (ARITHMETIC_P (x
))
4081 rtx x0
= XEXP (x
, 0);
4082 rtx x1
= XEXP (x
, 1);
4084 /* Check the first level. */
4087 num_sign_bit_copies1 (x
, mode
, x0
, mode
,
4088 cached_num_sign_bit_copies (x0
, mode
, known_x
,
4092 /* Check the second level. */
4093 if (ARITHMETIC_P (x0
)
4094 && (x1
== XEXP (x0
, 0) || x1
== XEXP (x0
, 1)))
4096 num_sign_bit_copies1 (x
, mode
, x1
, mode
,
4097 cached_num_sign_bit_copies (x1
, mode
, known_x
,
4101 if (ARITHMETIC_P (x1
)
4102 && (x0
== XEXP (x1
, 0) || x0
== XEXP (x1
, 1)))
4104 num_sign_bit_copies1 (x
, mode
, x0
, mode
,
4105 cached_num_sign_bit_copies (x0
, mode
, known_x
,
4110 return num_sign_bit_copies1 (x
, mode
, known_x
, known_mode
, known_ret
);
4113 /* Return the number of bits at the high-order end of X that are known to
4114 be equal to the sign bit. X will be used in mode MODE; if MODE is
4115 VOIDmode, X will be used in its own mode. The returned value will always
4116 be between 1 and the number of bits in MODE. */
4119 num_sign_bit_copies1 (const_rtx x
, enum machine_mode mode
, const_rtx known_x
,
4120 enum machine_mode known_mode
,
4121 unsigned int known_ret
)
4123 enum rtx_code code
= GET_CODE (x
);
4124 unsigned int bitwidth
= GET_MODE_BITSIZE (mode
);
4125 int num0
, num1
, result
;
4126 unsigned HOST_WIDE_INT nonzero
;
4128 /* If we weren't given a mode, use the mode of X. If the mode is still
4129 VOIDmode, we don't know anything. Likewise if one of the modes is
4132 if (mode
== VOIDmode
)
4133 mode
= GET_MODE (x
);
4135 if (mode
== VOIDmode
|| FLOAT_MODE_P (mode
) || FLOAT_MODE_P (GET_MODE (x
)))
4138 /* For a smaller object, just ignore the high bits. */
4139 if (bitwidth
< GET_MODE_BITSIZE (GET_MODE (x
)))
4141 num0
= cached_num_sign_bit_copies (x
, GET_MODE (x
),
4142 known_x
, known_mode
, known_ret
);
4144 num0
- (int) (GET_MODE_BITSIZE (GET_MODE (x
)) - bitwidth
));
4147 if (GET_MODE (x
) != VOIDmode
&& bitwidth
> GET_MODE_BITSIZE (GET_MODE (x
)))
4149 #ifndef WORD_REGISTER_OPERATIONS
4150 /* If this machine does not do all register operations on the entire
4151 register and MODE is wider than the mode of X, we can say nothing
4152 at all about the high-order bits. */
4155 /* Likewise on machines that do, if the mode of the object is smaller
4156 than a word and loads of that size don't sign extend, we can say
4157 nothing about the high order bits. */
4158 if (GET_MODE_BITSIZE (GET_MODE (x
)) < BITS_PER_WORD
4159 #ifdef LOAD_EXTEND_OP
4160 && LOAD_EXTEND_OP (GET_MODE (x
)) != SIGN_EXTEND
4171 #if defined(POINTERS_EXTEND_UNSIGNED) && !defined(HAVE_ptr_extend)
4172 /* If pointers extend signed and this is a pointer in Pmode, say that
4173 all the bits above ptr_mode are known to be sign bit copies. */
4174 if (! POINTERS_EXTEND_UNSIGNED
&& GET_MODE (x
) == Pmode
&& mode
== Pmode
4176 return GET_MODE_BITSIZE (Pmode
) - GET_MODE_BITSIZE (ptr_mode
) + 1;
4180 unsigned int copies_for_hook
= 1, copies
= 1;
4181 rtx
new = rtl_hooks
.reg_num_sign_bit_copies (x
, mode
, known_x
,
4182 known_mode
, known_ret
,
4186 copies
= cached_num_sign_bit_copies (new, mode
, known_x
,
4187 known_mode
, known_ret
);
4189 if (copies
> 1 || copies_for_hook
> 1)
4190 return MAX (copies
, copies_for_hook
);
4192 /* Else, use nonzero_bits to guess num_sign_bit_copies (see below). */
4197 #ifdef LOAD_EXTEND_OP
4198 /* Some RISC machines sign-extend all loads of smaller than a word. */
4199 if (LOAD_EXTEND_OP (GET_MODE (x
)) == SIGN_EXTEND
)
4200 return MAX (1, ((int) bitwidth
4201 - (int) GET_MODE_BITSIZE (GET_MODE (x
)) + 1));
4206 /* If the constant is negative, take its 1's complement and remask.
4207 Then see how many zero bits we have. */
4208 nonzero
= INTVAL (x
) & GET_MODE_MASK (mode
);
4209 if (bitwidth
<= HOST_BITS_PER_WIDE_INT
4210 && (nonzero
& ((HOST_WIDE_INT
) 1 << (bitwidth
- 1))) != 0)
4211 nonzero
= (~nonzero
) & GET_MODE_MASK (mode
);
4213 return (nonzero
== 0 ? bitwidth
: bitwidth
- floor_log2 (nonzero
) - 1);
4216 /* If this is a SUBREG for a promoted object that is sign-extended
4217 and we are looking at it in a wider mode, we know that at least the
4218 high-order bits are known to be sign bit copies. */
4220 if (SUBREG_PROMOTED_VAR_P (x
) && ! SUBREG_PROMOTED_UNSIGNED_P (x
))
4222 num0
= cached_num_sign_bit_copies (SUBREG_REG (x
), mode
,
4223 known_x
, known_mode
, known_ret
);
4224 return MAX ((int) bitwidth
4225 - (int) GET_MODE_BITSIZE (GET_MODE (x
)) + 1,
4229 /* For a smaller object, just ignore the high bits. */
4230 if (bitwidth
<= GET_MODE_BITSIZE (GET_MODE (SUBREG_REG (x
))))
4232 num0
= cached_num_sign_bit_copies (SUBREG_REG (x
), VOIDmode
,
4233 known_x
, known_mode
, known_ret
);
4234 return MAX (1, (num0
4235 - (int) (GET_MODE_BITSIZE (GET_MODE (SUBREG_REG (x
)))
4239 #ifdef WORD_REGISTER_OPERATIONS
4240 #ifdef LOAD_EXTEND_OP
4241 /* For paradoxical SUBREGs on machines where all register operations
4242 affect the entire register, just look inside. Note that we are
4243 passing MODE to the recursive call, so the number of sign bit copies
4244 will remain relative to that mode, not the inner mode. */
4246 /* This works only if loads sign extend. Otherwise, if we get a
4247 reload for the inner part, it may be loaded from the stack, and
4248 then we lose all sign bit copies that existed before the store
4251 if ((GET_MODE_SIZE (GET_MODE (x
))
4252 > GET_MODE_SIZE (GET_MODE (SUBREG_REG (x
))))
4253 && LOAD_EXTEND_OP (GET_MODE (SUBREG_REG (x
))) == SIGN_EXTEND
4254 && MEM_P (SUBREG_REG (x
)))
4255 return cached_num_sign_bit_copies (SUBREG_REG (x
), mode
,
4256 known_x
, known_mode
, known_ret
);
4262 if (GET_CODE (XEXP (x
, 1)) == CONST_INT
)
4263 return MAX (1, (int) bitwidth
- INTVAL (XEXP (x
, 1)));
4267 return (bitwidth
- GET_MODE_BITSIZE (GET_MODE (XEXP (x
, 0)))
4268 + cached_num_sign_bit_copies (XEXP (x
, 0), VOIDmode
,
4269 known_x
, known_mode
, known_ret
));
4272 /* For a smaller object, just ignore the high bits. */
4273 num0
= cached_num_sign_bit_copies (XEXP (x
, 0), VOIDmode
,
4274 known_x
, known_mode
, known_ret
);
4275 return MAX (1, (num0
- (int) (GET_MODE_BITSIZE (GET_MODE (XEXP (x
, 0)))
4279 return cached_num_sign_bit_copies (XEXP (x
, 0), mode
,
4280 known_x
, known_mode
, known_ret
);
4282 case ROTATE
: case ROTATERT
:
4283 /* If we are rotating left by a number of bits less than the number
4284 of sign bit copies, we can just subtract that amount from the
4286 if (GET_CODE (XEXP (x
, 1)) == CONST_INT
4287 && INTVAL (XEXP (x
, 1)) >= 0
4288 && INTVAL (XEXP (x
, 1)) < (int) bitwidth
)
4290 num0
= cached_num_sign_bit_copies (XEXP (x
, 0), mode
,
4291 known_x
, known_mode
, known_ret
);
4292 return MAX (1, num0
- (code
== ROTATE
? INTVAL (XEXP (x
, 1))
4293 : (int) bitwidth
- INTVAL (XEXP (x
, 1))));
4298 /* In general, this subtracts one sign bit copy. But if the value
4299 is known to be positive, the number of sign bit copies is the
4300 same as that of the input. Finally, if the input has just one bit
4301 that might be nonzero, all the bits are copies of the sign bit. */
4302 num0
= cached_num_sign_bit_copies (XEXP (x
, 0), mode
,
4303 known_x
, known_mode
, known_ret
);
4304 if (bitwidth
> HOST_BITS_PER_WIDE_INT
)
4305 return num0
> 1 ? num0
- 1 : 1;
4307 nonzero
= nonzero_bits (XEXP (x
, 0), mode
);
4312 && (((HOST_WIDE_INT
) 1 << (bitwidth
- 1)) & nonzero
))
4317 case IOR
: case AND
: case XOR
:
4318 case SMIN
: case SMAX
: case UMIN
: case UMAX
:
4319 /* Logical operations will preserve the number of sign-bit copies.
4320 MIN and MAX operations always return one of the operands. */
4321 num0
= cached_num_sign_bit_copies (XEXP (x
, 0), mode
,
4322 known_x
, known_mode
, known_ret
);
4323 num1
= cached_num_sign_bit_copies (XEXP (x
, 1), mode
,
4324 known_x
, known_mode
, known_ret
);
4326 /* If num1 is clearing some of the top bits then regardless of
4327 the other term, we are guaranteed to have at least that many
4328 high-order zero bits. */
4331 && bitwidth
<= HOST_BITS_PER_WIDE_INT
4332 && GET_CODE (XEXP (x
, 1)) == CONST_INT
4333 && !(INTVAL (XEXP (x
, 1)) & ((HOST_WIDE_INT
) 1 << (bitwidth
- 1))))
4336 /* Similarly for IOR when setting high-order bits. */
4339 && bitwidth
<= HOST_BITS_PER_WIDE_INT
4340 && GET_CODE (XEXP (x
, 1)) == CONST_INT
4341 && (INTVAL (XEXP (x
, 1)) & ((HOST_WIDE_INT
) 1 << (bitwidth
- 1))))
4344 return MIN (num0
, num1
);
4346 case PLUS
: case MINUS
:
4347 /* For addition and subtraction, we can have a 1-bit carry. However,
4348 if we are subtracting 1 from a positive number, there will not
4349 be such a carry. Furthermore, if the positive number is known to
4350 be 0 or 1, we know the result is either -1 or 0. */
4352 if (code
== PLUS
&& XEXP (x
, 1) == constm1_rtx
4353 && bitwidth
<= HOST_BITS_PER_WIDE_INT
)
4355 nonzero
= nonzero_bits (XEXP (x
, 0), mode
);
4356 if ((((HOST_WIDE_INT
) 1 << (bitwidth
- 1)) & nonzero
) == 0)
4357 return (nonzero
== 1 || nonzero
== 0 ? bitwidth
4358 : bitwidth
- floor_log2 (nonzero
) - 1);
4361 num0
= cached_num_sign_bit_copies (XEXP (x
, 0), mode
,
4362 known_x
, known_mode
, known_ret
);
4363 num1
= cached_num_sign_bit_copies (XEXP (x
, 1), mode
,
4364 known_x
, known_mode
, known_ret
);
4365 result
= MAX (1, MIN (num0
, num1
) - 1);
4367 #ifdef POINTERS_EXTEND_UNSIGNED
4368 /* If pointers extend signed and this is an addition or subtraction
4369 to a pointer in Pmode, all the bits above ptr_mode are known to be
4371 if (! POINTERS_EXTEND_UNSIGNED
&& GET_MODE (x
) == Pmode
4372 && (code
== PLUS
|| code
== MINUS
)
4373 && REG_P (XEXP (x
, 0)) && REG_POINTER (XEXP (x
, 0)))
4374 result
= MAX ((int) (GET_MODE_BITSIZE (Pmode
)
4375 - GET_MODE_BITSIZE (ptr_mode
) + 1),
4381 /* The number of bits of the product is the sum of the number of
4382 bits of both terms. However, unless one of the terms if known
4383 to be positive, we must allow for an additional bit since negating
4384 a negative number can remove one sign bit copy. */
4386 num0
= cached_num_sign_bit_copies (XEXP (x
, 0), mode
,
4387 known_x
, known_mode
, known_ret
);
4388 num1
= cached_num_sign_bit_copies (XEXP (x
, 1), mode
,
4389 known_x
, known_mode
, known_ret
);
4391 result
= bitwidth
- (bitwidth
- num0
) - (bitwidth
- num1
);
4393 && (bitwidth
> HOST_BITS_PER_WIDE_INT
4394 || (((nonzero_bits (XEXP (x
, 0), mode
)
4395 & ((HOST_WIDE_INT
) 1 << (bitwidth
- 1))) != 0)
4396 && ((nonzero_bits (XEXP (x
, 1), mode
)
4397 & ((HOST_WIDE_INT
) 1 << (bitwidth
- 1))) != 0))))
4400 return MAX (1, result
);
4403 /* The result must be <= the first operand. If the first operand
4404 has the high bit set, we know nothing about the number of sign
4406 if (bitwidth
> HOST_BITS_PER_WIDE_INT
)
4408 else if ((nonzero_bits (XEXP (x
, 0), mode
)
4409 & ((HOST_WIDE_INT
) 1 << (bitwidth
- 1))) != 0)
4412 return cached_num_sign_bit_copies (XEXP (x
, 0), mode
,
4413 known_x
, known_mode
, known_ret
);
4416 /* The result must be <= the second operand. */
4417 return cached_num_sign_bit_copies (XEXP (x
, 1), mode
,
4418 known_x
, known_mode
, known_ret
);
4421 /* Similar to unsigned division, except that we have to worry about
4422 the case where the divisor is negative, in which case we have
4424 result
= cached_num_sign_bit_copies (XEXP (x
, 0), mode
,
4425 known_x
, known_mode
, known_ret
);
4427 && (bitwidth
> HOST_BITS_PER_WIDE_INT
4428 || (nonzero_bits (XEXP (x
, 1), mode
)
4429 & ((HOST_WIDE_INT
) 1 << (bitwidth
- 1))) != 0))
4435 result
= cached_num_sign_bit_copies (XEXP (x
, 1), mode
,
4436 known_x
, known_mode
, known_ret
);
4438 && (bitwidth
> HOST_BITS_PER_WIDE_INT
4439 || (nonzero_bits (XEXP (x
, 1), mode
)
4440 & ((HOST_WIDE_INT
) 1 << (bitwidth
- 1))) != 0))
4446 /* Shifts by a constant add to the number of bits equal to the
4448 num0
= cached_num_sign_bit_copies (XEXP (x
, 0), mode
,
4449 known_x
, known_mode
, known_ret
);
4450 if (GET_CODE (XEXP (x
, 1)) == CONST_INT
4451 && INTVAL (XEXP (x
, 1)) > 0)
4452 num0
= MIN ((int) bitwidth
, num0
+ INTVAL (XEXP (x
, 1)));
4457 /* Left shifts destroy copies. */
4458 if (GET_CODE (XEXP (x
, 1)) != CONST_INT
4459 || INTVAL (XEXP (x
, 1)) < 0
4460 || INTVAL (XEXP (x
, 1)) >= (int) bitwidth
)
4463 num0
= cached_num_sign_bit_copies (XEXP (x
, 0), mode
,
4464 known_x
, known_mode
, known_ret
);
4465 return MAX (1, num0
- INTVAL (XEXP (x
, 1)));
4468 num0
= cached_num_sign_bit_copies (XEXP (x
, 1), mode
,
4469 known_x
, known_mode
, known_ret
);
4470 num1
= cached_num_sign_bit_copies (XEXP (x
, 2), mode
,
4471 known_x
, known_mode
, known_ret
);
4472 return MIN (num0
, num1
);
4474 case EQ
: case NE
: case GE
: case GT
: case LE
: case LT
:
4475 case UNEQ
: case LTGT
: case UNGE
: case UNGT
: case UNLE
: case UNLT
:
4476 case GEU
: case GTU
: case LEU
: case LTU
:
4477 case UNORDERED
: case ORDERED
:
4478 /* If the constant is negative, take its 1's complement and remask.
4479 Then see how many zero bits we have. */
4480 nonzero
= STORE_FLAG_VALUE
;
4481 if (bitwidth
<= HOST_BITS_PER_WIDE_INT
4482 && (nonzero
& ((HOST_WIDE_INT
) 1 << (bitwidth
- 1))) != 0)
4483 nonzero
= (~nonzero
) & GET_MODE_MASK (mode
);
4485 return (nonzero
== 0 ? bitwidth
: bitwidth
- floor_log2 (nonzero
) - 1);
4491 /* If we haven't been able to figure it out by one of the above rules,
4492 see if some of the high-order bits are known to be zero. If so,
4493 count those bits and return one less than that amount. If we can't
4494 safely compute the mask for this mode, always return BITWIDTH. */
4496 bitwidth
= GET_MODE_BITSIZE (mode
);
4497 if (bitwidth
> HOST_BITS_PER_WIDE_INT
)
4500 nonzero
= nonzero_bits (x
, mode
);
4501 return nonzero
& ((HOST_WIDE_INT
) 1 << (bitwidth
- 1))
4502 ? 1 : bitwidth
- floor_log2 (nonzero
) - 1;
4505 /* Calculate the rtx_cost of a single instruction. A return value of
4506 zero indicates an instruction pattern without a known cost. */
4509 insn_rtx_cost (rtx pat
)
4514 /* Extract the single set rtx from the instruction pattern.
4515 We can't use single_set since we only have the pattern. */
4516 if (GET_CODE (pat
) == SET
)
4518 else if (GET_CODE (pat
) == PARALLEL
)
4521 for (i
= 0; i
< XVECLEN (pat
, 0); i
++)
4523 rtx x
= XVECEXP (pat
, 0, i
);
4524 if (GET_CODE (x
) == SET
)
4537 cost
= rtx_cost (SET_SRC (set
), SET
);
4538 return cost
> 0 ? cost
: COSTS_N_INSNS (1);
4541 /* Given an insn INSN and condition COND, return the condition in a
4542 canonical form to simplify testing by callers. Specifically:
4544 (1) The code will always be a comparison operation (EQ, NE, GT, etc.).
4545 (2) Both operands will be machine operands; (cc0) will have been replaced.
4546 (3) If an operand is a constant, it will be the second operand.
4547 (4) (LE x const) will be replaced with (LT x <const+1>) and similarly
4548 for GE, GEU, and LEU.
4550 If the condition cannot be understood, or is an inequality floating-point
4551 comparison which needs to be reversed, 0 will be returned.
4553 If REVERSE is nonzero, then reverse the condition prior to canonizing it.
4555 If EARLIEST is nonzero, it is a pointer to a place where the earliest
4556 insn used in locating the condition was found. If a replacement test
4557 of the condition is desired, it should be placed in front of that
4558 insn and we will be sure that the inputs are still valid.
4560 If WANT_REG is nonzero, we wish the condition to be relative to that
4561 register, if possible. Therefore, do not canonicalize the condition
4562 further. If ALLOW_CC_MODE is nonzero, allow the condition returned
4563 to be a compare to a CC mode register.
4565 If VALID_AT_INSN_P, the condition must be valid at both *EARLIEST
4569 canonicalize_condition (rtx insn
, rtx cond
, int reverse
, rtx
*earliest
,
4570 rtx want_reg
, int allow_cc_mode
, int valid_at_insn_p
)
4577 int reverse_code
= 0;
4578 enum machine_mode mode
;
4579 basic_block bb
= BLOCK_FOR_INSN (insn
);
4581 code
= GET_CODE (cond
);
4582 mode
= GET_MODE (cond
);
4583 op0
= XEXP (cond
, 0);
4584 op1
= XEXP (cond
, 1);
4587 code
= reversed_comparison_code (cond
, insn
);
4588 if (code
== UNKNOWN
)
4594 /* If we are comparing a register with zero, see if the register is set
4595 in the previous insn to a COMPARE or a comparison operation. Perform
4596 the same tests as a function of STORE_FLAG_VALUE as find_comparison_args
4599 while ((GET_RTX_CLASS (code
) == RTX_COMPARE
4600 || GET_RTX_CLASS (code
) == RTX_COMM_COMPARE
)
4601 && op1
== CONST0_RTX (GET_MODE (op0
))
4604 /* Set nonzero when we find something of interest. */
4608 /* If comparison with cc0, import actual comparison from compare
4612 if ((prev
= prev_nonnote_insn (prev
)) == 0
4613 || !NONJUMP_INSN_P (prev
)
4614 || (set
= single_set (prev
)) == 0
4615 || SET_DEST (set
) != cc0_rtx
)
4618 op0
= SET_SRC (set
);
4619 op1
= CONST0_RTX (GET_MODE (op0
));
4625 /* If this is a COMPARE, pick up the two things being compared. */
4626 if (GET_CODE (op0
) == COMPARE
)
4628 op1
= XEXP (op0
, 1);
4629 op0
= XEXP (op0
, 0);
4632 else if (!REG_P (op0
))
4635 /* Go back to the previous insn. Stop if it is not an INSN. We also
4636 stop if it isn't a single set or if it has a REG_INC note because
4637 we don't want to bother dealing with it. */
4639 if ((prev
= prev_nonnote_insn (prev
)) == 0
4640 || !NONJUMP_INSN_P (prev
)
4641 || FIND_REG_INC_NOTE (prev
, NULL_RTX
)
4642 /* In cfglayout mode, there do not have to be labels at the
4643 beginning of a block, or jumps at the end, so the previous
4644 conditions would not stop us when we reach bb boundary. */
4645 || BLOCK_FOR_INSN (prev
) != bb
)
4648 set
= set_of (op0
, prev
);
4651 && (GET_CODE (set
) != SET
4652 || !rtx_equal_p (SET_DEST (set
), op0
)))
4655 /* If this is setting OP0, get what it sets it to if it looks
4659 enum machine_mode inner_mode
= GET_MODE (SET_DEST (set
));
4660 #ifdef FLOAT_STORE_FLAG_VALUE
4661 REAL_VALUE_TYPE fsfv
;
4664 /* ??? We may not combine comparisons done in a CCmode with
4665 comparisons not done in a CCmode. This is to aid targets
4666 like Alpha that have an IEEE compliant EQ instruction, and
4667 a non-IEEE compliant BEQ instruction. The use of CCmode is
4668 actually artificial, simply to prevent the combination, but
4669 should not affect other platforms.
4671 However, we must allow VOIDmode comparisons to match either
4672 CCmode or non-CCmode comparison, because some ports have
4673 modeless comparisons inside branch patterns.
4675 ??? This mode check should perhaps look more like the mode check
4676 in simplify_comparison in combine. */
4678 if ((GET_CODE (SET_SRC (set
)) == COMPARE
4681 && GET_MODE_CLASS (inner_mode
) == MODE_INT
4682 && (GET_MODE_BITSIZE (inner_mode
)
4683 <= HOST_BITS_PER_WIDE_INT
)
4684 && (STORE_FLAG_VALUE
4685 & ((HOST_WIDE_INT
) 1
4686 << (GET_MODE_BITSIZE (inner_mode
) - 1))))
4687 #ifdef FLOAT_STORE_FLAG_VALUE
4689 && SCALAR_FLOAT_MODE_P (inner_mode
)
4690 && (fsfv
= FLOAT_STORE_FLAG_VALUE (inner_mode
),
4691 REAL_VALUE_NEGATIVE (fsfv
)))
4694 && COMPARISON_P (SET_SRC (set
))))
4695 && (((GET_MODE_CLASS (mode
) == MODE_CC
)
4696 == (GET_MODE_CLASS (inner_mode
) == MODE_CC
))
4697 || mode
== VOIDmode
|| inner_mode
== VOIDmode
))
4699 else if (((code
== EQ
4701 && (GET_MODE_BITSIZE (inner_mode
)
4702 <= HOST_BITS_PER_WIDE_INT
)
4703 && GET_MODE_CLASS (inner_mode
) == MODE_INT
4704 && (STORE_FLAG_VALUE
4705 & ((HOST_WIDE_INT
) 1
4706 << (GET_MODE_BITSIZE (inner_mode
) - 1))))
4707 #ifdef FLOAT_STORE_FLAG_VALUE
4709 && SCALAR_FLOAT_MODE_P (inner_mode
)
4710 && (fsfv
= FLOAT_STORE_FLAG_VALUE (inner_mode
),
4711 REAL_VALUE_NEGATIVE (fsfv
)))
4714 && COMPARISON_P (SET_SRC (set
))
4715 && (((GET_MODE_CLASS (mode
) == MODE_CC
)
4716 == (GET_MODE_CLASS (inner_mode
) == MODE_CC
))
4717 || mode
== VOIDmode
|| inner_mode
== VOIDmode
))
4727 else if (reg_set_p (op0
, prev
))
4728 /* If this sets OP0, but not directly, we have to give up. */
4733 /* If the caller is expecting the condition to be valid at INSN,
4734 make sure X doesn't change before INSN. */
4735 if (valid_at_insn_p
)
4736 if (modified_in_p (x
, prev
) || modified_between_p (x
, prev
, insn
))
4738 if (COMPARISON_P (x
))
4739 code
= GET_CODE (x
);
4742 code
= reversed_comparison_code (x
, prev
);
4743 if (code
== UNKNOWN
)
4748 op0
= XEXP (x
, 0), op1
= XEXP (x
, 1);
4754 /* If constant is first, put it last. */
4755 if (CONSTANT_P (op0
))
4756 code
= swap_condition (code
), tem
= op0
, op0
= op1
, op1
= tem
;
4758 /* If OP0 is the result of a comparison, we weren't able to find what
4759 was really being compared, so fail. */
4761 && GET_MODE_CLASS (GET_MODE (op0
)) == MODE_CC
)
4764 /* Canonicalize any ordered comparison with integers involving equality
4765 if we can do computations in the relevant mode and we do not
4768 if (GET_MODE_CLASS (GET_MODE (op0
)) != MODE_CC
4769 && GET_CODE (op1
) == CONST_INT
4770 && GET_MODE (op0
) != VOIDmode
4771 && GET_MODE_BITSIZE (GET_MODE (op0
)) <= HOST_BITS_PER_WIDE_INT
)
4773 HOST_WIDE_INT const_val
= INTVAL (op1
);
4774 unsigned HOST_WIDE_INT uconst_val
= const_val
;
4775 unsigned HOST_WIDE_INT max_val
4776 = (unsigned HOST_WIDE_INT
) GET_MODE_MASK (GET_MODE (op0
));
4781 if ((unsigned HOST_WIDE_INT
) const_val
!= max_val
>> 1)
4782 code
= LT
, op1
= gen_int_mode (const_val
+ 1, GET_MODE (op0
));
4785 /* When cross-compiling, const_val might be sign-extended from
4786 BITS_PER_WORD to HOST_BITS_PER_WIDE_INT */
4788 if ((HOST_WIDE_INT
) (const_val
& max_val
)
4789 != (((HOST_WIDE_INT
) 1
4790 << (GET_MODE_BITSIZE (GET_MODE (op0
)) - 1))))
4791 code
= GT
, op1
= gen_int_mode (const_val
- 1, GET_MODE (op0
));
4795 if (uconst_val
< max_val
)
4796 code
= LTU
, op1
= gen_int_mode (uconst_val
+ 1, GET_MODE (op0
));
4800 if (uconst_val
!= 0)
4801 code
= GTU
, op1
= gen_int_mode (uconst_val
- 1, GET_MODE (op0
));
4809 /* Never return CC0; return zero instead. */
4813 return gen_rtx_fmt_ee (code
, VOIDmode
, op0
, op1
);
4816 /* Given a jump insn JUMP, return the condition that will cause it to branch
4817 to its JUMP_LABEL. If the condition cannot be understood, or is an
4818 inequality floating-point comparison which needs to be reversed, 0 will
4821 If EARLIEST is nonzero, it is a pointer to a place where the earliest
4822 insn used in locating the condition was found. If a replacement test
4823 of the condition is desired, it should be placed in front of that
4824 insn and we will be sure that the inputs are still valid. If EARLIEST
4825 is null, the returned condition will be valid at INSN.
4827 If ALLOW_CC_MODE is nonzero, allow the condition returned to be a
4828 compare CC mode register.
4830 VALID_AT_INSN_P is the same as for canonicalize_condition. */
4833 get_condition (rtx jump
, rtx
*earliest
, int allow_cc_mode
, int valid_at_insn_p
)
4839 /* If this is not a standard conditional jump, we can't parse it. */
4841 || ! any_condjump_p (jump
))
4843 set
= pc_set (jump
);
4845 cond
= XEXP (SET_SRC (set
), 0);
4847 /* If this branches to JUMP_LABEL when the condition is false, reverse
4850 = GET_CODE (XEXP (SET_SRC (set
), 2)) == LABEL_REF
4851 && XEXP (XEXP (SET_SRC (set
), 2), 0) == JUMP_LABEL (jump
);
4853 return canonicalize_condition (jump
, cond
, reverse
, earliest
, NULL_RTX
,
4854 allow_cc_mode
, valid_at_insn_p
);
4857 /* Initialize the table NUM_SIGN_BIT_COPIES_IN_REP based on
4858 TARGET_MODE_REP_EXTENDED.
4860 Note that we assume that the property of
4861 TARGET_MODE_REP_EXTENDED(B, C) is sticky to the integral modes
4862 narrower than mode B. I.e., if A is a mode narrower than B then in
4863 order to be able to operate on it in mode B, mode A needs to
4864 satisfy the requirements set by the representation of mode B. */
4867 init_num_sign_bit_copies_in_rep (void)
4869 enum machine_mode mode
, in_mode
;
4871 for (in_mode
= GET_CLASS_NARROWEST_MODE (MODE_INT
); in_mode
!= VOIDmode
;
4872 in_mode
= GET_MODE_WIDER_MODE (mode
))
4873 for (mode
= GET_CLASS_NARROWEST_MODE (MODE_INT
); mode
!= in_mode
;
4874 mode
= GET_MODE_WIDER_MODE (mode
))
4876 enum machine_mode i
;
4878 /* Currently, it is assumed that TARGET_MODE_REP_EXTENDED
4879 extends to the next widest mode. */
4880 gcc_assert (targetm
.mode_rep_extended (mode
, in_mode
) == UNKNOWN
4881 || GET_MODE_WIDER_MODE (mode
) == in_mode
);
4883 /* We are in in_mode. Count how many bits outside of mode
4884 have to be copies of the sign-bit. */
4885 for (i
= mode
; i
!= in_mode
; i
= GET_MODE_WIDER_MODE (i
))
4887 enum machine_mode wider
= GET_MODE_WIDER_MODE (i
);
4889 if (targetm
.mode_rep_extended (i
, wider
) == SIGN_EXTEND
4890 /* We can only check sign-bit copies starting from the
4891 top-bit. In order to be able to check the bits we
4892 have already seen we pretend that subsequent bits
4893 have to be sign-bit copies too. */
4894 || num_sign_bit_copies_in_rep
[in_mode
][mode
])
4895 num_sign_bit_copies_in_rep
[in_mode
][mode
]
4896 += GET_MODE_BITSIZE (wider
) - GET_MODE_BITSIZE (i
);
4901 /* Suppose that truncation from the machine mode of X to MODE is not a
4902 no-op. See if there is anything special about X so that we can
4903 assume it already contains a truncated value of MODE. */
4906 truncated_to_mode (enum machine_mode mode
, const_rtx x
)
4908 /* This register has already been used in MODE without explicit
4910 if (REG_P (x
) && rtl_hooks
.reg_truncated_to_mode (mode
, x
))
4913 /* See if we already satisfy the requirements of MODE. If yes we
4914 can just switch to MODE. */
4915 if (num_sign_bit_copies_in_rep
[GET_MODE (x
)][mode
]
4916 && (num_sign_bit_copies (x
, GET_MODE (x
))
4917 >= num_sign_bit_copies_in_rep
[GET_MODE (x
)][mode
] + 1))
4923 /* Initialize non_rtx_starting_operands, which is used to speed up
4929 for (i
= 0; i
< NUM_RTX_CODE
; i
++)
4931 const char *format
= GET_RTX_FORMAT (i
);
4932 const char *first
= strpbrk (format
, "eEV");
4933 non_rtx_starting_operands
[i
] = first
? first
- format
: -1;
4936 init_num_sign_bit_copies_in_rep ();
4939 /* Check whether this is a constant pool constant. */
4941 constant_pool_constant_p (rtx x
)
4943 x
= avoid_constant_pool_reference (x
);
4944 return GET_CODE (x
) == CONST_DOUBLE
;