PR c/65345
[official-gcc.git] / gcc / explow.c
blobde446a903fd3dec8fcdc8f55673c538adfedeaa6
1 /* Subroutines for manipulating rtx's in semantically interesting ways.
2 Copyright (C) 1987-2015 Free Software Foundation, Inc.
4 This file is part of GCC.
6 GCC is free software; you can redistribute it and/or modify it under
7 the terms of the GNU General Public License as published by the Free
8 Software Foundation; either version 3, or (at your option) any later
9 version.
11 GCC is distributed in the hope that it will be useful, but WITHOUT ANY
12 WARRANTY; without even the implied warranty of MERCHANTABILITY or
13 FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License
14 for more details.
16 You should have received a copy of the GNU General Public License
17 along with GCC; see the file COPYING3. If not see
18 <http://www.gnu.org/licenses/>. */
21 #include "config.h"
22 #include "system.h"
23 #include "coretypes.h"
24 #include "tm.h"
25 #include "diagnostic-core.h"
26 #include "rtl.h"
27 #include "hash-set.h"
28 #include "machmode.h"
29 #include "vec.h"
30 #include "double-int.h"
31 #include "input.h"
32 #include "alias.h"
33 #include "symtab.h"
34 #include "wide-int.h"
35 #include "inchash.h"
36 #include "real.h"
37 #include "tree.h"
38 #include "stor-layout.h"
39 #include "tm_p.h"
40 #include "flags.h"
41 #include "except.h"
42 #include "hard-reg-set.h"
43 #include "function.h"
44 #include "hashtab.h"
45 #include "statistics.h"
46 #include "fixed-value.h"
47 #include "insn-config.h"
48 #include "expmed.h"
49 #include "dojump.h"
50 #include "explow.h"
51 #include "calls.h"
52 #include "emit-rtl.h"
53 #include "varasm.h"
54 #include "stmt.h"
55 #include "expr.h"
56 #include "insn-codes.h"
57 #include "optabs.h"
58 #include "libfuncs.h"
59 #include "ggc.h"
60 #include "recog.h"
61 #include "langhooks.h"
62 #include "target.h"
63 #include "common/common-target.h"
64 #include "output.h"
66 static rtx break_out_memory_refs (rtx);
69 /* Truncate and perhaps sign-extend C as appropriate for MODE. */
71 HOST_WIDE_INT
72 trunc_int_for_mode (HOST_WIDE_INT c, machine_mode mode)
74 int width = GET_MODE_PRECISION (mode);
76 /* You want to truncate to a _what_? */
77 gcc_assert (SCALAR_INT_MODE_P (mode)
78 || POINTER_BOUNDS_MODE_P (mode));
80 /* Canonicalize BImode to 0 and STORE_FLAG_VALUE. */
81 if (mode == BImode)
82 return c & 1 ? STORE_FLAG_VALUE : 0;
84 /* Sign-extend for the requested mode. */
86 if (width < HOST_BITS_PER_WIDE_INT)
88 HOST_WIDE_INT sign = 1;
89 sign <<= width - 1;
90 c &= (sign << 1) - 1;
91 c ^= sign;
92 c -= sign;
95 return c;
98 /* Return an rtx for the sum of X and the integer C, given that X has
99 mode MODE. INPLACE is true if X can be modified inplace or false
100 if it must be treated as immutable. */
103 plus_constant (machine_mode mode, rtx x, HOST_WIDE_INT c,
104 bool inplace)
106 RTX_CODE code;
107 rtx y;
108 rtx tem;
109 int all_constant = 0;
111 gcc_assert (GET_MODE (x) == VOIDmode || GET_MODE (x) == mode);
113 if (c == 0)
114 return x;
116 restart:
118 code = GET_CODE (x);
119 y = x;
121 switch (code)
123 CASE_CONST_SCALAR_INT:
124 return immed_wide_int_const (wi::add (std::make_pair (x, mode), c),
125 mode);
126 case MEM:
127 /* If this is a reference to the constant pool, try replacing it with
128 a reference to a new constant. If the resulting address isn't
129 valid, don't return it because we have no way to validize it. */
130 if (GET_CODE (XEXP (x, 0)) == SYMBOL_REF
131 && CONSTANT_POOL_ADDRESS_P (XEXP (x, 0)))
133 tem = plus_constant (mode, get_pool_constant (XEXP (x, 0)), c);
134 tem = force_const_mem (GET_MODE (x), tem);
135 if (memory_address_p (GET_MODE (tem), XEXP (tem, 0)))
136 return tem;
138 break;
140 case CONST:
141 /* If adding to something entirely constant, set a flag
142 so that we can add a CONST around the result. */
143 if (inplace && shared_const_p (x))
144 inplace = false;
145 x = XEXP (x, 0);
146 all_constant = 1;
147 goto restart;
149 case SYMBOL_REF:
150 case LABEL_REF:
151 all_constant = 1;
152 break;
154 case PLUS:
155 /* The interesting case is adding the integer to a sum. Look
156 for constant term in the sum and combine with C. For an
157 integer constant term or a constant term that is not an
158 explicit integer, we combine or group them together anyway.
160 We may not immediately return from the recursive call here, lest
161 all_constant gets lost. */
163 if (CONSTANT_P (XEXP (x, 1)))
165 rtx term = plus_constant (mode, XEXP (x, 1), c, inplace);
166 if (term == const0_rtx)
167 x = XEXP (x, 0);
168 else if (inplace)
169 XEXP (x, 1) = term;
170 else
171 x = gen_rtx_PLUS (mode, XEXP (x, 0), term);
172 c = 0;
174 else if (rtx *const_loc = find_constant_term_loc (&y))
176 if (!inplace)
178 /* We need to be careful since X may be shared and we can't
179 modify it in place. */
180 x = copy_rtx (x);
181 const_loc = find_constant_term_loc (&x);
183 *const_loc = plus_constant (mode, *const_loc, c, true);
184 c = 0;
186 break;
188 default:
189 break;
192 if (c != 0)
193 x = gen_rtx_PLUS (mode, x, gen_int_mode (c, mode));
195 if (GET_CODE (x) == SYMBOL_REF || GET_CODE (x) == LABEL_REF)
196 return x;
197 else if (all_constant)
198 return gen_rtx_CONST (mode, x);
199 else
200 return x;
203 /* If X is a sum, return a new sum like X but lacking any constant terms.
204 Add all the removed constant terms into *CONSTPTR.
205 X itself is not altered. The result != X if and only if
206 it is not isomorphic to X. */
209 eliminate_constant_term (rtx x, rtx *constptr)
211 rtx x0, x1;
212 rtx tem;
214 if (GET_CODE (x) != PLUS)
215 return x;
217 /* First handle constants appearing at this level explicitly. */
218 if (CONST_INT_P (XEXP (x, 1))
219 && 0 != (tem = simplify_binary_operation (PLUS, GET_MODE (x), *constptr,
220 XEXP (x, 1)))
221 && CONST_INT_P (tem))
223 *constptr = tem;
224 return eliminate_constant_term (XEXP (x, 0), constptr);
227 tem = const0_rtx;
228 x0 = eliminate_constant_term (XEXP (x, 0), &tem);
229 x1 = eliminate_constant_term (XEXP (x, 1), &tem);
230 if ((x1 != XEXP (x, 1) || x0 != XEXP (x, 0))
231 && 0 != (tem = simplify_binary_operation (PLUS, GET_MODE (x),
232 *constptr, tem))
233 && CONST_INT_P (tem))
235 *constptr = tem;
236 return gen_rtx_PLUS (GET_MODE (x), x0, x1);
239 return x;
243 /* Return a copy of X in which all memory references
244 and all constants that involve symbol refs
245 have been replaced with new temporary registers.
246 Also emit code to load the memory locations and constants
247 into those registers.
249 If X contains no such constants or memory references,
250 X itself (not a copy) is returned.
252 If a constant is found in the address that is not a legitimate constant
253 in an insn, it is left alone in the hope that it might be valid in the
254 address.
256 X may contain no arithmetic except addition, subtraction and multiplication.
257 Values returned by expand_expr with 1 for sum_ok fit this constraint. */
259 static rtx
260 break_out_memory_refs (rtx x)
262 if (MEM_P (x)
263 || (CONSTANT_P (x) && CONSTANT_ADDRESS_P (x)
264 && GET_MODE (x) != VOIDmode))
265 x = force_reg (GET_MODE (x), x);
266 else if (GET_CODE (x) == PLUS || GET_CODE (x) == MINUS
267 || GET_CODE (x) == MULT)
269 rtx op0 = break_out_memory_refs (XEXP (x, 0));
270 rtx op1 = break_out_memory_refs (XEXP (x, 1));
272 if (op0 != XEXP (x, 0) || op1 != XEXP (x, 1))
273 x = simplify_gen_binary (GET_CODE (x), GET_MODE (x), op0, op1);
276 return x;
279 /* Given X, a memory address in address space AS' pointer mode, convert it to
280 an address in the address space's address mode, or vice versa (TO_MODE says
281 which way). We take advantage of the fact that pointers are not allowed to
282 overflow by commuting arithmetic operations over conversions so that address
283 arithmetic insns can be used. IN_CONST is true if this conversion is inside
284 a CONST. */
286 static rtx
287 convert_memory_address_addr_space_1 (machine_mode to_mode ATTRIBUTE_UNUSED,
288 rtx x, addr_space_t as ATTRIBUTE_UNUSED,
289 bool in_const ATTRIBUTE_UNUSED)
291 #ifndef POINTERS_EXTEND_UNSIGNED
292 gcc_assert (GET_MODE (x) == to_mode || GET_MODE (x) == VOIDmode);
293 return x;
294 #else /* defined(POINTERS_EXTEND_UNSIGNED) */
295 machine_mode pointer_mode, address_mode, from_mode;
296 rtx temp;
297 enum rtx_code code;
299 /* If X already has the right mode, just return it. */
300 if (GET_MODE (x) == to_mode)
301 return x;
303 pointer_mode = targetm.addr_space.pointer_mode (as);
304 address_mode = targetm.addr_space.address_mode (as);
305 from_mode = to_mode == pointer_mode ? address_mode : pointer_mode;
307 /* Here we handle some special cases. If none of them apply, fall through
308 to the default case. */
309 switch (GET_CODE (x))
311 CASE_CONST_SCALAR_INT:
312 if (GET_MODE_SIZE (to_mode) < GET_MODE_SIZE (from_mode))
313 code = TRUNCATE;
314 else if (POINTERS_EXTEND_UNSIGNED < 0)
315 break;
316 else if (POINTERS_EXTEND_UNSIGNED > 0)
317 code = ZERO_EXTEND;
318 else
319 code = SIGN_EXTEND;
320 temp = simplify_unary_operation (code, to_mode, x, from_mode);
321 if (temp)
322 return temp;
323 break;
325 case SUBREG:
326 if ((SUBREG_PROMOTED_VAR_P (x) || REG_POINTER (SUBREG_REG (x)))
327 && GET_MODE (SUBREG_REG (x)) == to_mode)
328 return SUBREG_REG (x);
329 break;
331 case LABEL_REF:
332 temp = gen_rtx_LABEL_REF (to_mode, LABEL_REF_LABEL (x));
333 LABEL_REF_NONLOCAL_P (temp) = LABEL_REF_NONLOCAL_P (x);
334 return temp;
335 break;
337 case SYMBOL_REF:
338 temp = shallow_copy_rtx (x);
339 PUT_MODE (temp, to_mode);
340 return temp;
341 break;
343 case CONST:
344 return gen_rtx_CONST (to_mode,
345 convert_memory_address_addr_space_1
346 (to_mode, XEXP (x, 0), as, true));
347 break;
349 case PLUS:
350 case MULT:
351 /* For addition we can safely permute the conversion and addition
352 operation if one operand is a constant and converting the constant
353 does not change it or if one operand is a constant and we are
354 using a ptr_extend instruction (POINTERS_EXTEND_UNSIGNED < 0).
355 We can always safely permute them if we are making the address
356 narrower. Inside a CONST RTL, this is safe for both pointers
357 zero or sign extended as pointers cannot wrap. */
358 if (GET_MODE_SIZE (to_mode) < GET_MODE_SIZE (from_mode)
359 || (GET_CODE (x) == PLUS
360 && CONST_INT_P (XEXP (x, 1))
361 && ((in_const && POINTERS_EXTEND_UNSIGNED != 0)
362 || XEXP (x, 1) == convert_memory_address_addr_space_1
363 (to_mode, XEXP (x, 1), as, in_const)
364 || POINTERS_EXTEND_UNSIGNED < 0)))
365 return gen_rtx_fmt_ee (GET_CODE (x), to_mode,
366 convert_memory_address_addr_space_1
367 (to_mode, XEXP (x, 0), as, in_const),
368 XEXP (x, 1));
369 break;
371 default:
372 break;
375 return convert_modes (to_mode, from_mode,
376 x, POINTERS_EXTEND_UNSIGNED);
377 #endif /* defined(POINTERS_EXTEND_UNSIGNED) */
380 /* Given X, a memory address in address space AS' pointer mode, convert it to
381 an address in the address space's address mode, or vice versa (TO_MODE says
382 which way). We take advantage of the fact that pointers are not allowed to
383 overflow by commuting arithmetic operations over conversions so that address
384 arithmetic insns can be used. */
387 convert_memory_address_addr_space (machine_mode to_mode, rtx x, addr_space_t as)
389 return convert_memory_address_addr_space_1 (to_mode, x, as, false);
393 /* Return something equivalent to X but valid as a memory address for something
394 of mode MODE in the named address space AS. When X is not itself valid,
395 this works by copying X or subexpressions of it into registers. */
398 memory_address_addr_space (machine_mode mode, rtx x, addr_space_t as)
400 rtx oldx = x;
401 machine_mode address_mode = targetm.addr_space.address_mode (as);
403 x = convert_memory_address_addr_space (address_mode, x, as);
405 /* By passing constant addresses through registers
406 we get a chance to cse them. */
407 if (! cse_not_expected && CONSTANT_P (x) && CONSTANT_ADDRESS_P (x))
408 x = force_reg (address_mode, x);
410 /* We get better cse by rejecting indirect addressing at this stage.
411 Let the combiner create indirect addresses where appropriate.
412 For now, generate the code so that the subexpressions useful to share
413 are visible. But not if cse won't be done! */
414 else
416 if (! cse_not_expected && !REG_P (x))
417 x = break_out_memory_refs (x);
419 /* At this point, any valid address is accepted. */
420 if (memory_address_addr_space_p (mode, x, as))
421 goto done;
423 /* If it was valid before but breaking out memory refs invalidated it,
424 use it the old way. */
425 if (memory_address_addr_space_p (mode, oldx, as))
427 x = oldx;
428 goto done;
431 /* Perform machine-dependent transformations on X
432 in certain cases. This is not necessary since the code
433 below can handle all possible cases, but machine-dependent
434 transformations can make better code. */
436 rtx orig_x = x;
437 x = targetm.addr_space.legitimize_address (x, oldx, mode, as);
438 if (orig_x != x && memory_address_addr_space_p (mode, x, as))
439 goto done;
442 /* PLUS and MULT can appear in special ways
443 as the result of attempts to make an address usable for indexing.
444 Usually they are dealt with by calling force_operand, below.
445 But a sum containing constant terms is special
446 if removing them makes the sum a valid address:
447 then we generate that address in a register
448 and index off of it. We do this because it often makes
449 shorter code, and because the addresses thus generated
450 in registers often become common subexpressions. */
451 if (GET_CODE (x) == PLUS)
453 rtx constant_term = const0_rtx;
454 rtx y = eliminate_constant_term (x, &constant_term);
455 if (constant_term == const0_rtx
456 || ! memory_address_addr_space_p (mode, y, as))
457 x = force_operand (x, NULL_RTX);
458 else
460 y = gen_rtx_PLUS (GET_MODE (x), copy_to_reg (y), constant_term);
461 if (! memory_address_addr_space_p (mode, y, as))
462 x = force_operand (x, NULL_RTX);
463 else
464 x = y;
468 else if (GET_CODE (x) == MULT || GET_CODE (x) == MINUS)
469 x = force_operand (x, NULL_RTX);
471 /* If we have a register that's an invalid address,
472 it must be a hard reg of the wrong class. Copy it to a pseudo. */
473 else if (REG_P (x))
474 x = copy_to_reg (x);
476 /* Last resort: copy the value to a register, since
477 the register is a valid address. */
478 else
479 x = force_reg (address_mode, x);
482 done:
484 gcc_assert (memory_address_addr_space_p (mode, x, as));
485 /* If we didn't change the address, we are done. Otherwise, mark
486 a reg as a pointer if we have REG or REG + CONST_INT. */
487 if (oldx == x)
488 return x;
489 else if (REG_P (x))
490 mark_reg_pointer (x, BITS_PER_UNIT);
491 else if (GET_CODE (x) == PLUS
492 && REG_P (XEXP (x, 0))
493 && CONST_INT_P (XEXP (x, 1)))
494 mark_reg_pointer (XEXP (x, 0), BITS_PER_UNIT);
496 /* OLDX may have been the address on a temporary. Update the address
497 to indicate that X is now used. */
498 update_temp_slot_address (oldx, x);
500 return x;
503 /* If REF is a MEM with an invalid address, change it into a valid address.
504 Pass through anything else unchanged. REF must be an unshared rtx and
505 the function may modify it in-place. */
508 validize_mem (rtx ref)
510 if (!MEM_P (ref))
511 return ref;
512 ref = use_anchored_address (ref);
513 if (memory_address_addr_space_p (GET_MODE (ref), XEXP (ref, 0),
514 MEM_ADDR_SPACE (ref)))
515 return ref;
517 return replace_equiv_address (ref, XEXP (ref, 0), true);
520 /* If X is a memory reference to a member of an object block, try rewriting
521 it to use an anchor instead. Return the new memory reference on success
522 and the old one on failure. */
525 use_anchored_address (rtx x)
527 rtx base;
528 HOST_WIDE_INT offset;
529 machine_mode mode;
531 if (!flag_section_anchors)
532 return x;
534 if (!MEM_P (x))
535 return x;
537 /* Split the address into a base and offset. */
538 base = XEXP (x, 0);
539 offset = 0;
540 if (GET_CODE (base) == CONST
541 && GET_CODE (XEXP (base, 0)) == PLUS
542 && CONST_INT_P (XEXP (XEXP (base, 0), 1)))
544 offset += INTVAL (XEXP (XEXP (base, 0), 1));
545 base = XEXP (XEXP (base, 0), 0);
548 /* Check whether BASE is suitable for anchors. */
549 if (GET_CODE (base) != SYMBOL_REF
550 || !SYMBOL_REF_HAS_BLOCK_INFO_P (base)
551 || SYMBOL_REF_ANCHOR_P (base)
552 || SYMBOL_REF_BLOCK (base) == NULL
553 || !targetm.use_anchors_for_symbol_p (base))
554 return x;
556 /* Decide where BASE is going to be. */
557 place_block_symbol (base);
559 /* Get the anchor we need to use. */
560 offset += SYMBOL_REF_BLOCK_OFFSET (base);
561 base = get_section_anchor (SYMBOL_REF_BLOCK (base), offset,
562 SYMBOL_REF_TLS_MODEL (base));
564 /* Work out the offset from the anchor. */
565 offset -= SYMBOL_REF_BLOCK_OFFSET (base);
567 /* If we're going to run a CSE pass, force the anchor into a register.
568 We will then be able to reuse registers for several accesses, if the
569 target costs say that that's worthwhile. */
570 mode = GET_MODE (base);
571 if (!cse_not_expected)
572 base = force_reg (mode, base);
574 return replace_equiv_address (x, plus_constant (mode, base, offset));
577 /* Copy the value or contents of X to a new temp reg and return that reg. */
580 copy_to_reg (rtx x)
582 rtx temp = gen_reg_rtx (GET_MODE (x));
584 /* If not an operand, must be an address with PLUS and MULT so
585 do the computation. */
586 if (! general_operand (x, VOIDmode))
587 x = force_operand (x, temp);
589 if (x != temp)
590 emit_move_insn (temp, x);
592 return temp;
595 /* Like copy_to_reg but always give the new register mode Pmode
596 in case X is a constant. */
599 copy_addr_to_reg (rtx x)
601 return copy_to_mode_reg (Pmode, x);
604 /* Like copy_to_reg but always give the new register mode MODE
605 in case X is a constant. */
608 copy_to_mode_reg (machine_mode mode, rtx x)
610 rtx temp = gen_reg_rtx (mode);
612 /* If not an operand, must be an address with PLUS and MULT so
613 do the computation. */
614 if (! general_operand (x, VOIDmode))
615 x = force_operand (x, temp);
617 gcc_assert (GET_MODE (x) == mode || GET_MODE (x) == VOIDmode);
618 if (x != temp)
619 emit_move_insn (temp, x);
620 return temp;
623 /* Load X into a register if it is not already one.
624 Use mode MODE for the register.
625 X should be valid for mode MODE, but it may be a constant which
626 is valid for all integer modes; that's why caller must specify MODE.
628 The caller must not alter the value in the register we return,
629 since we mark it as a "constant" register. */
632 force_reg (machine_mode mode, rtx x)
634 rtx temp, set;
635 rtx_insn *insn;
637 if (REG_P (x))
638 return x;
640 if (general_operand (x, mode))
642 temp = gen_reg_rtx (mode);
643 insn = emit_move_insn (temp, x);
645 else
647 temp = force_operand (x, NULL_RTX);
648 if (REG_P (temp))
649 insn = get_last_insn ();
650 else
652 rtx temp2 = gen_reg_rtx (mode);
653 insn = emit_move_insn (temp2, temp);
654 temp = temp2;
658 /* Let optimizers know that TEMP's value never changes
659 and that X can be substituted for it. Don't get confused
660 if INSN set something else (such as a SUBREG of TEMP). */
661 if (CONSTANT_P (x)
662 && (set = single_set (insn)) != 0
663 && SET_DEST (set) == temp
664 && ! rtx_equal_p (x, SET_SRC (set)))
665 set_unique_reg_note (insn, REG_EQUAL, x);
667 /* Let optimizers know that TEMP is a pointer, and if so, the
668 known alignment of that pointer. */
670 unsigned align = 0;
671 if (GET_CODE (x) == SYMBOL_REF)
673 align = BITS_PER_UNIT;
674 if (SYMBOL_REF_DECL (x) && DECL_P (SYMBOL_REF_DECL (x)))
675 align = DECL_ALIGN (SYMBOL_REF_DECL (x));
677 else if (GET_CODE (x) == LABEL_REF)
678 align = BITS_PER_UNIT;
679 else if (GET_CODE (x) == CONST
680 && GET_CODE (XEXP (x, 0)) == PLUS
681 && GET_CODE (XEXP (XEXP (x, 0), 0)) == SYMBOL_REF
682 && CONST_INT_P (XEXP (XEXP (x, 0), 1)))
684 rtx s = XEXP (XEXP (x, 0), 0);
685 rtx c = XEXP (XEXP (x, 0), 1);
686 unsigned sa, ca;
688 sa = BITS_PER_UNIT;
689 if (SYMBOL_REF_DECL (s) && DECL_P (SYMBOL_REF_DECL (s)))
690 sa = DECL_ALIGN (SYMBOL_REF_DECL (s));
692 if (INTVAL (c) == 0)
693 align = sa;
694 else
696 ca = ctz_hwi (INTVAL (c)) * BITS_PER_UNIT;
697 align = MIN (sa, ca);
701 if (align || (MEM_P (x) && MEM_POINTER (x)))
702 mark_reg_pointer (temp, align);
705 return temp;
708 /* If X is a memory ref, copy its contents to a new temp reg and return
709 that reg. Otherwise, return X. */
712 force_not_mem (rtx x)
714 rtx temp;
716 if (!MEM_P (x) || GET_MODE (x) == BLKmode)
717 return x;
719 temp = gen_reg_rtx (GET_MODE (x));
721 if (MEM_POINTER (x))
722 REG_POINTER (temp) = 1;
724 emit_move_insn (temp, x);
725 return temp;
728 /* Copy X to TARGET (if it's nonzero and a reg)
729 or to a new temp reg and return that reg.
730 MODE is the mode to use for X in case it is a constant. */
733 copy_to_suggested_reg (rtx x, rtx target, machine_mode mode)
735 rtx temp;
737 if (target && REG_P (target))
738 temp = target;
739 else
740 temp = gen_reg_rtx (mode);
742 emit_move_insn (temp, x);
743 return temp;
746 /* Return the mode to use to pass or return a scalar of TYPE and MODE.
747 PUNSIGNEDP points to the signedness of the type and may be adjusted
748 to show what signedness to use on extension operations.
750 FOR_RETURN is nonzero if the caller is promoting the return value
751 of FNDECL, else it is for promoting args. */
753 machine_mode
754 promote_function_mode (const_tree type, machine_mode mode, int *punsignedp,
755 const_tree funtype, int for_return)
757 /* Called without a type node for a libcall. */
758 if (type == NULL_TREE)
760 if (INTEGRAL_MODE_P (mode))
761 return targetm.calls.promote_function_mode (NULL_TREE, mode,
762 punsignedp, funtype,
763 for_return);
764 else
765 return mode;
768 switch (TREE_CODE (type))
770 case INTEGER_TYPE: case ENUMERAL_TYPE: case BOOLEAN_TYPE:
771 case REAL_TYPE: case OFFSET_TYPE: case FIXED_POINT_TYPE:
772 case POINTER_TYPE: case REFERENCE_TYPE:
773 return targetm.calls.promote_function_mode (type, mode, punsignedp, funtype,
774 for_return);
776 default:
777 return mode;
780 /* Return the mode to use to store a scalar of TYPE and MODE.
781 PUNSIGNEDP points to the signedness of the type and may be adjusted
782 to show what signedness to use on extension operations. */
784 machine_mode
785 promote_mode (const_tree type ATTRIBUTE_UNUSED, machine_mode mode,
786 int *punsignedp ATTRIBUTE_UNUSED)
788 #ifdef PROMOTE_MODE
789 enum tree_code code;
790 int unsignedp;
791 #endif
793 /* For libcalls this is invoked without TYPE from the backends
794 TARGET_PROMOTE_FUNCTION_MODE hooks. Don't do anything in that
795 case. */
796 if (type == NULL_TREE)
797 return mode;
799 /* FIXME: this is the same logic that was there until GCC 4.4, but we
800 probably want to test POINTERS_EXTEND_UNSIGNED even if PROMOTE_MODE
801 is not defined. The affected targets are M32C, S390, SPARC. */
802 #ifdef PROMOTE_MODE
803 code = TREE_CODE (type);
804 unsignedp = *punsignedp;
806 switch (code)
808 case INTEGER_TYPE: case ENUMERAL_TYPE: case BOOLEAN_TYPE:
809 case REAL_TYPE: case OFFSET_TYPE: case FIXED_POINT_TYPE:
810 PROMOTE_MODE (mode, unsignedp, type);
811 *punsignedp = unsignedp;
812 return mode;
813 break;
815 #ifdef POINTERS_EXTEND_UNSIGNED
816 case REFERENCE_TYPE:
817 case POINTER_TYPE:
818 *punsignedp = POINTERS_EXTEND_UNSIGNED;
819 return targetm.addr_space.address_mode
820 (TYPE_ADDR_SPACE (TREE_TYPE (type)));
821 break;
822 #endif
824 default:
825 return mode;
827 #else
828 return mode;
829 #endif
833 /* Use one of promote_mode or promote_function_mode to find the promoted
834 mode of DECL. If PUNSIGNEDP is not NULL, store there the unsignedness
835 of DECL after promotion. */
837 machine_mode
838 promote_decl_mode (const_tree decl, int *punsignedp)
840 tree type = TREE_TYPE (decl);
841 int unsignedp = TYPE_UNSIGNED (type);
842 machine_mode mode = DECL_MODE (decl);
843 machine_mode pmode;
845 if (TREE_CODE (decl) == RESULT_DECL
846 || TREE_CODE (decl) == PARM_DECL)
847 pmode = promote_function_mode (type, mode, &unsignedp,
848 TREE_TYPE (current_function_decl), 2);
849 else
850 pmode = promote_mode (type, mode, &unsignedp);
852 if (punsignedp)
853 *punsignedp = unsignedp;
854 return pmode;
858 /* Controls the behaviour of {anti_,}adjust_stack. */
859 static bool suppress_reg_args_size;
861 /* A helper for adjust_stack and anti_adjust_stack. */
863 static void
864 adjust_stack_1 (rtx adjust, bool anti_p)
866 rtx temp;
867 rtx_insn *insn;
869 #ifndef STACK_GROWS_DOWNWARD
870 /* Hereafter anti_p means subtract_p. */
871 anti_p = !anti_p;
872 #endif
874 temp = expand_binop (Pmode,
875 anti_p ? sub_optab : add_optab,
876 stack_pointer_rtx, adjust, stack_pointer_rtx, 0,
877 OPTAB_LIB_WIDEN);
879 if (temp != stack_pointer_rtx)
880 insn = emit_move_insn (stack_pointer_rtx, temp);
881 else
883 insn = get_last_insn ();
884 temp = single_set (insn);
885 gcc_assert (temp != NULL && SET_DEST (temp) == stack_pointer_rtx);
888 if (!suppress_reg_args_size)
889 add_reg_note (insn, REG_ARGS_SIZE, GEN_INT (stack_pointer_delta));
892 /* Adjust the stack pointer by ADJUST (an rtx for a number of bytes).
893 This pops when ADJUST is positive. ADJUST need not be constant. */
895 void
896 adjust_stack (rtx adjust)
898 if (adjust == const0_rtx)
899 return;
901 /* We expect all variable sized adjustments to be multiple of
902 PREFERRED_STACK_BOUNDARY. */
903 if (CONST_INT_P (adjust))
904 stack_pointer_delta -= INTVAL (adjust);
906 adjust_stack_1 (adjust, false);
909 /* Adjust the stack pointer by minus ADJUST (an rtx for a number of bytes).
910 This pushes when ADJUST is positive. ADJUST need not be constant. */
912 void
913 anti_adjust_stack (rtx adjust)
915 if (adjust == const0_rtx)
916 return;
918 /* We expect all variable sized adjustments to be multiple of
919 PREFERRED_STACK_BOUNDARY. */
920 if (CONST_INT_P (adjust))
921 stack_pointer_delta += INTVAL (adjust);
923 adjust_stack_1 (adjust, true);
926 /* Round the size of a block to be pushed up to the boundary required
927 by this machine. SIZE is the desired size, which need not be constant. */
929 static rtx
930 round_push (rtx size)
932 rtx align_rtx, alignm1_rtx;
934 if (!SUPPORTS_STACK_ALIGNMENT
935 || crtl->preferred_stack_boundary == MAX_SUPPORTED_STACK_ALIGNMENT)
937 int align = crtl->preferred_stack_boundary / BITS_PER_UNIT;
939 if (align == 1)
940 return size;
942 if (CONST_INT_P (size))
944 HOST_WIDE_INT new_size = (INTVAL (size) + align - 1) / align * align;
946 if (INTVAL (size) != new_size)
947 size = GEN_INT (new_size);
948 return size;
951 align_rtx = GEN_INT (align);
952 alignm1_rtx = GEN_INT (align - 1);
954 else
956 /* If crtl->preferred_stack_boundary might still grow, use
957 virtual_preferred_stack_boundary_rtx instead. This will be
958 substituted by the right value in vregs pass and optimized
959 during combine. */
960 align_rtx = virtual_preferred_stack_boundary_rtx;
961 alignm1_rtx = force_operand (plus_constant (Pmode, align_rtx, -1),
962 NULL_RTX);
965 /* CEIL_DIV_EXPR needs to worry about the addition overflowing,
966 but we know it can't. So add ourselves and then do
967 TRUNC_DIV_EXPR. */
968 size = expand_binop (Pmode, add_optab, size, alignm1_rtx,
969 NULL_RTX, 1, OPTAB_LIB_WIDEN);
970 size = expand_divmod (0, TRUNC_DIV_EXPR, Pmode, size, align_rtx,
971 NULL_RTX, 1);
972 size = expand_mult (Pmode, size, align_rtx, NULL_RTX, 1);
974 return size;
977 /* Save the stack pointer for the purpose in SAVE_LEVEL. PSAVE is a pointer
978 to a previously-created save area. If no save area has been allocated,
979 this function will allocate one. If a save area is specified, it
980 must be of the proper mode. */
982 void
983 emit_stack_save (enum save_level save_level, rtx *psave)
985 rtx sa = *psave;
986 /* The default is that we use a move insn and save in a Pmode object. */
987 rtx (*fcn) (rtx, rtx) = gen_move_insn;
988 machine_mode mode = STACK_SAVEAREA_MODE (save_level);
990 /* See if this machine has anything special to do for this kind of save. */
991 switch (save_level)
993 #ifdef HAVE_save_stack_block
994 case SAVE_BLOCK:
995 if (HAVE_save_stack_block)
996 fcn = gen_save_stack_block;
997 break;
998 #endif
999 #ifdef HAVE_save_stack_function
1000 case SAVE_FUNCTION:
1001 if (HAVE_save_stack_function)
1002 fcn = gen_save_stack_function;
1003 break;
1004 #endif
1005 #ifdef HAVE_save_stack_nonlocal
1006 case SAVE_NONLOCAL:
1007 if (HAVE_save_stack_nonlocal)
1008 fcn = gen_save_stack_nonlocal;
1009 break;
1010 #endif
1011 default:
1012 break;
1015 /* If there is no save area and we have to allocate one, do so. Otherwise
1016 verify the save area is the proper mode. */
1018 if (sa == 0)
1020 if (mode != VOIDmode)
1022 if (save_level == SAVE_NONLOCAL)
1023 *psave = sa = assign_stack_local (mode, GET_MODE_SIZE (mode), 0);
1024 else
1025 *psave = sa = gen_reg_rtx (mode);
1029 do_pending_stack_adjust ();
1030 if (sa != 0)
1031 sa = validize_mem (sa);
1032 emit_insn (fcn (sa, stack_pointer_rtx));
1035 /* Restore the stack pointer for the purpose in SAVE_LEVEL. SA is the save
1036 area made by emit_stack_save. If it is zero, we have nothing to do. */
1038 void
1039 emit_stack_restore (enum save_level save_level, rtx sa)
1041 /* The default is that we use a move insn. */
1042 rtx (*fcn) (rtx, rtx) = gen_move_insn;
1044 /* If stack_realign_drap, the x86 backend emits a prologue that aligns both
1045 STACK_POINTER and HARD_FRAME_POINTER.
1046 If stack_realign_fp, the x86 backend emits a prologue that aligns only
1047 STACK_POINTER. This renders the HARD_FRAME_POINTER unusable for accessing
1048 aligned variables, which is reflected in ix86_can_eliminate.
1049 We normally still have the realigned STACK_POINTER that we can use.
1050 But if there is a stack restore still present at reload, it can trigger
1051 mark_not_eliminable for the STACK_POINTER, leaving no way to eliminate
1052 FRAME_POINTER into a hard reg.
1053 To prevent this situation, we force need_drap if we emit a stack
1054 restore. */
1055 if (SUPPORTS_STACK_ALIGNMENT)
1056 crtl->need_drap = true;
1058 /* See if this machine has anything special to do for this kind of save. */
1059 switch (save_level)
1061 #ifdef HAVE_restore_stack_block
1062 case SAVE_BLOCK:
1063 if (HAVE_restore_stack_block)
1064 fcn = gen_restore_stack_block;
1065 break;
1066 #endif
1067 #ifdef HAVE_restore_stack_function
1068 case SAVE_FUNCTION:
1069 if (HAVE_restore_stack_function)
1070 fcn = gen_restore_stack_function;
1071 break;
1072 #endif
1073 #ifdef HAVE_restore_stack_nonlocal
1074 case SAVE_NONLOCAL:
1075 if (HAVE_restore_stack_nonlocal)
1076 fcn = gen_restore_stack_nonlocal;
1077 break;
1078 #endif
1079 default:
1080 break;
1083 if (sa != 0)
1085 sa = validize_mem (sa);
1086 /* These clobbers prevent the scheduler from moving
1087 references to variable arrays below the code
1088 that deletes (pops) the arrays. */
1089 emit_clobber (gen_rtx_MEM (BLKmode, gen_rtx_SCRATCH (VOIDmode)));
1090 emit_clobber (gen_rtx_MEM (BLKmode, stack_pointer_rtx));
1093 discard_pending_stack_adjust ();
1095 emit_insn (fcn (stack_pointer_rtx, sa));
1098 /* Invoke emit_stack_save on the nonlocal_goto_save_area for the current
1099 function. This function should be called whenever we allocate or
1100 deallocate dynamic stack space. */
1102 void
1103 update_nonlocal_goto_save_area (void)
1105 tree t_save;
1106 rtx r_save;
1108 /* The nonlocal_goto_save_area object is an array of N pointers. The
1109 first one is used for the frame pointer save; the rest are sized by
1110 STACK_SAVEAREA_MODE. Create a reference to array index 1, the first
1111 of the stack save area slots. */
1112 t_save = build4 (ARRAY_REF,
1113 TREE_TYPE (TREE_TYPE (cfun->nonlocal_goto_save_area)),
1114 cfun->nonlocal_goto_save_area,
1115 integer_one_node, NULL_TREE, NULL_TREE);
1116 r_save = expand_expr (t_save, NULL_RTX, VOIDmode, EXPAND_WRITE);
1118 emit_stack_save (SAVE_NONLOCAL, &r_save);
1121 /* Return an rtx representing the address of an area of memory dynamically
1122 pushed on the stack.
1124 Any required stack pointer alignment is preserved.
1126 SIZE is an rtx representing the size of the area.
1128 SIZE_ALIGN is the alignment (in bits) that we know SIZE has. This
1129 parameter may be zero. If so, a proper value will be extracted
1130 from SIZE if it is constant, otherwise BITS_PER_UNIT will be assumed.
1132 REQUIRED_ALIGN is the alignment (in bits) required for the region
1133 of memory.
1135 If CANNOT_ACCUMULATE is set to TRUE, the caller guarantees that the
1136 stack space allocated by the generated code cannot be added with itself
1137 in the course of the execution of the function. It is always safe to
1138 pass FALSE here and the following criterion is sufficient in order to
1139 pass TRUE: every path in the CFG that starts at the allocation point and
1140 loops to it executes the associated deallocation code. */
1143 allocate_dynamic_stack_space (rtx size, unsigned size_align,
1144 unsigned required_align, bool cannot_accumulate)
1146 HOST_WIDE_INT stack_usage_size = -1;
1147 rtx_code_label *final_label;
1148 rtx final_target, target;
1149 unsigned extra_align = 0;
1150 bool must_align;
1152 /* If we're asking for zero bytes, it doesn't matter what we point
1153 to since we can't dereference it. But return a reasonable
1154 address anyway. */
1155 if (size == const0_rtx)
1156 return virtual_stack_dynamic_rtx;
1158 /* Otherwise, show we're calling alloca or equivalent. */
1159 cfun->calls_alloca = 1;
1161 /* If stack usage info is requested, look into the size we are passed.
1162 We need to do so this early to avoid the obfuscation that may be
1163 introduced later by the various alignment operations. */
1164 if (flag_stack_usage_info)
1166 if (CONST_INT_P (size))
1167 stack_usage_size = INTVAL (size);
1168 else if (REG_P (size))
1170 /* Look into the last emitted insn and see if we can deduce
1171 something for the register. */
1172 rtx_insn *insn;
1173 rtx set, note;
1174 insn = get_last_insn ();
1175 if ((set = single_set (insn)) && rtx_equal_p (SET_DEST (set), size))
1177 if (CONST_INT_P (SET_SRC (set)))
1178 stack_usage_size = INTVAL (SET_SRC (set));
1179 else if ((note = find_reg_equal_equiv_note (insn))
1180 && CONST_INT_P (XEXP (note, 0)))
1181 stack_usage_size = INTVAL (XEXP (note, 0));
1185 /* If the size is not constant, we can't say anything. */
1186 if (stack_usage_size == -1)
1188 current_function_has_unbounded_dynamic_stack_size = 1;
1189 stack_usage_size = 0;
1193 /* Ensure the size is in the proper mode. */
1194 if (GET_MODE (size) != VOIDmode && GET_MODE (size) != Pmode)
1195 size = convert_to_mode (Pmode, size, 1);
1197 /* Adjust SIZE_ALIGN, if needed. */
1198 if (CONST_INT_P (size))
1200 unsigned HOST_WIDE_INT lsb;
1202 lsb = INTVAL (size);
1203 lsb &= -lsb;
1205 /* Watch out for overflow truncating to "unsigned". */
1206 if (lsb > UINT_MAX / BITS_PER_UNIT)
1207 size_align = 1u << (HOST_BITS_PER_INT - 1);
1208 else
1209 size_align = (unsigned)lsb * BITS_PER_UNIT;
1211 else if (size_align < BITS_PER_UNIT)
1212 size_align = BITS_PER_UNIT;
1214 /* We can't attempt to minimize alignment necessary, because we don't
1215 know the final value of preferred_stack_boundary yet while executing
1216 this code. */
1217 if (crtl->preferred_stack_boundary < PREFERRED_STACK_BOUNDARY)
1218 crtl->preferred_stack_boundary = PREFERRED_STACK_BOUNDARY;
1220 /* We will need to ensure that the address we return is aligned to
1221 REQUIRED_ALIGN. If STACK_DYNAMIC_OFFSET is defined, we don't
1222 always know its final value at this point in the compilation (it
1223 might depend on the size of the outgoing parameter lists, for
1224 example), so we must align the value to be returned in that case.
1225 (Note that STACK_DYNAMIC_OFFSET will have a default nonzero value if
1226 STACK_POINTER_OFFSET or ACCUMULATE_OUTGOING_ARGS are defined).
1227 We must also do an alignment operation on the returned value if
1228 the stack pointer alignment is less strict than REQUIRED_ALIGN.
1230 If we have to align, we must leave space in SIZE for the hole
1231 that might result from the alignment operation. */
1233 must_align = (crtl->preferred_stack_boundary < required_align);
1234 if (must_align)
1236 if (required_align > PREFERRED_STACK_BOUNDARY)
1237 extra_align = PREFERRED_STACK_BOUNDARY;
1238 else if (required_align > STACK_BOUNDARY)
1239 extra_align = STACK_BOUNDARY;
1240 else
1241 extra_align = BITS_PER_UNIT;
1244 /* ??? STACK_POINTER_OFFSET is always defined now. */
1245 #if defined (STACK_DYNAMIC_OFFSET) || defined (STACK_POINTER_OFFSET)
1246 must_align = true;
1247 extra_align = BITS_PER_UNIT;
1248 #endif
1250 if (must_align)
1252 unsigned extra = (required_align - extra_align) / BITS_PER_UNIT;
1254 size = plus_constant (Pmode, size, extra);
1255 size = force_operand (size, NULL_RTX);
1257 if (flag_stack_usage_info)
1258 stack_usage_size += extra;
1260 if (extra && size_align > extra_align)
1261 size_align = extra_align;
1264 /* Round the size to a multiple of the required stack alignment.
1265 Since the stack if presumed to be rounded before this allocation,
1266 this will maintain the required alignment.
1268 If the stack grows downward, we could save an insn by subtracting
1269 SIZE from the stack pointer and then aligning the stack pointer.
1270 The problem with this is that the stack pointer may be unaligned
1271 between the execution of the subtraction and alignment insns and
1272 some machines do not allow this. Even on those that do, some
1273 signal handlers malfunction if a signal should occur between those
1274 insns. Since this is an extremely rare event, we have no reliable
1275 way of knowing which systems have this problem. So we avoid even
1276 momentarily mis-aligning the stack. */
1277 if (size_align % MAX_SUPPORTED_STACK_ALIGNMENT != 0)
1279 size = round_push (size);
1281 if (flag_stack_usage_info)
1283 int align = crtl->preferred_stack_boundary / BITS_PER_UNIT;
1284 stack_usage_size = (stack_usage_size + align - 1) / align * align;
1288 target = gen_reg_rtx (Pmode);
1290 /* The size is supposed to be fully adjusted at this point so record it
1291 if stack usage info is requested. */
1292 if (flag_stack_usage_info)
1294 current_function_dynamic_stack_size += stack_usage_size;
1296 /* ??? This is gross but the only safe stance in the absence
1297 of stack usage oriented flow analysis. */
1298 if (!cannot_accumulate)
1299 current_function_has_unbounded_dynamic_stack_size = 1;
1302 final_label = NULL;
1303 final_target = NULL_RTX;
1305 /* If we are splitting the stack, we need to ask the backend whether
1306 there is enough room on the current stack. If there isn't, or if
1307 the backend doesn't know how to tell is, then we need to call a
1308 function to allocate memory in some other way. This memory will
1309 be released when we release the current stack segment. The
1310 effect is that stack allocation becomes less efficient, but at
1311 least it doesn't cause a stack overflow. */
1312 if (flag_split_stack)
1314 rtx_code_label *available_label;
1315 rtx ask, space, func;
1317 available_label = NULL;
1319 #ifdef HAVE_split_stack_space_check
1320 if (HAVE_split_stack_space_check)
1322 available_label = gen_label_rtx ();
1324 /* This instruction will branch to AVAILABLE_LABEL if there
1325 are SIZE bytes available on the stack. */
1326 emit_insn (gen_split_stack_space_check (size, available_label));
1328 #endif
1330 /* The __morestack_allocate_stack_space function will allocate
1331 memory using malloc. If the alignment of the memory returned
1332 by malloc does not meet REQUIRED_ALIGN, we increase SIZE to
1333 make sure we allocate enough space. */
1334 if (MALLOC_ABI_ALIGNMENT >= required_align)
1335 ask = size;
1336 else
1338 ask = expand_binop (Pmode, add_optab, size,
1339 gen_int_mode (required_align / BITS_PER_UNIT - 1,
1340 Pmode),
1341 NULL_RTX, 1, OPTAB_LIB_WIDEN);
1342 must_align = true;
1345 func = init_one_libfunc ("__morestack_allocate_stack_space");
1347 space = emit_library_call_value (func, target, LCT_NORMAL, Pmode,
1348 1, ask, Pmode);
1350 if (available_label == NULL_RTX)
1351 return space;
1353 final_target = gen_reg_rtx (Pmode);
1355 emit_move_insn (final_target, space);
1357 final_label = gen_label_rtx ();
1358 emit_jump (final_label);
1360 emit_label (available_label);
1363 do_pending_stack_adjust ();
1365 /* We ought to be called always on the toplevel and stack ought to be aligned
1366 properly. */
1367 gcc_assert (!(stack_pointer_delta
1368 % (PREFERRED_STACK_BOUNDARY / BITS_PER_UNIT)));
1370 /* If needed, check that we have the required amount of stack. Take into
1371 account what has already been checked. */
1372 if (STACK_CHECK_MOVING_SP)
1374 else if (flag_stack_check == GENERIC_STACK_CHECK)
1375 probe_stack_range (STACK_OLD_CHECK_PROTECT + STACK_CHECK_MAX_FRAME_SIZE,
1376 size);
1377 else if (flag_stack_check == STATIC_BUILTIN_STACK_CHECK)
1378 probe_stack_range (STACK_CHECK_PROTECT, size);
1380 /* Don't let anti_adjust_stack emit notes. */
1381 suppress_reg_args_size = true;
1383 /* Perform the required allocation from the stack. Some systems do
1384 this differently than simply incrementing/decrementing from the
1385 stack pointer, such as acquiring the space by calling malloc(). */
1386 #ifdef HAVE_allocate_stack
1387 if (HAVE_allocate_stack)
1389 struct expand_operand ops[2];
1390 /* We don't have to check against the predicate for operand 0 since
1391 TARGET is known to be a pseudo of the proper mode, which must
1392 be valid for the operand. */
1393 create_fixed_operand (&ops[0], target);
1394 create_convert_operand_to (&ops[1], size, STACK_SIZE_MODE, true);
1395 expand_insn (CODE_FOR_allocate_stack, 2, ops);
1397 else
1398 #endif
1400 int saved_stack_pointer_delta;
1402 #ifndef STACK_GROWS_DOWNWARD
1403 emit_move_insn (target, virtual_stack_dynamic_rtx);
1404 #endif
1406 /* Check stack bounds if necessary. */
1407 if (crtl->limit_stack)
1409 rtx available;
1410 rtx_code_label *space_available = gen_label_rtx ();
1411 #ifdef STACK_GROWS_DOWNWARD
1412 available = expand_binop (Pmode, sub_optab,
1413 stack_pointer_rtx, stack_limit_rtx,
1414 NULL_RTX, 1, OPTAB_WIDEN);
1415 #else
1416 available = expand_binop (Pmode, sub_optab,
1417 stack_limit_rtx, stack_pointer_rtx,
1418 NULL_RTX, 1, OPTAB_WIDEN);
1419 #endif
1420 emit_cmp_and_jump_insns (available, size, GEU, NULL_RTX, Pmode, 1,
1421 space_available);
1422 #ifdef HAVE_trap
1423 if (HAVE_trap)
1424 emit_insn (gen_trap ());
1425 else
1426 #endif
1427 error ("stack limits not supported on this target");
1428 emit_barrier ();
1429 emit_label (space_available);
1432 saved_stack_pointer_delta = stack_pointer_delta;
1434 if (flag_stack_check && STACK_CHECK_MOVING_SP)
1435 anti_adjust_stack_and_probe (size, false);
1436 else
1437 anti_adjust_stack (size);
1439 /* Even if size is constant, don't modify stack_pointer_delta.
1440 The constant size alloca should preserve
1441 crtl->preferred_stack_boundary alignment. */
1442 stack_pointer_delta = saved_stack_pointer_delta;
1444 #ifdef STACK_GROWS_DOWNWARD
1445 emit_move_insn (target, virtual_stack_dynamic_rtx);
1446 #endif
1449 suppress_reg_args_size = false;
1451 /* Finish up the split stack handling. */
1452 if (final_label != NULL_RTX)
1454 gcc_assert (flag_split_stack);
1455 emit_move_insn (final_target, target);
1456 emit_label (final_label);
1457 target = final_target;
1460 if (must_align)
1462 /* CEIL_DIV_EXPR needs to worry about the addition overflowing,
1463 but we know it can't. So add ourselves and then do
1464 TRUNC_DIV_EXPR. */
1465 target = expand_binop (Pmode, add_optab, target,
1466 gen_int_mode (required_align / BITS_PER_UNIT - 1,
1467 Pmode),
1468 NULL_RTX, 1, OPTAB_LIB_WIDEN);
1469 target = expand_divmod (0, TRUNC_DIV_EXPR, Pmode, target,
1470 gen_int_mode (required_align / BITS_PER_UNIT,
1471 Pmode),
1472 NULL_RTX, 1);
1473 target = expand_mult (Pmode, target,
1474 gen_int_mode (required_align / BITS_PER_UNIT,
1475 Pmode),
1476 NULL_RTX, 1);
1479 /* Now that we've committed to a return value, mark its alignment. */
1480 mark_reg_pointer (target, required_align);
1482 /* Record the new stack level for nonlocal gotos. */
1483 if (cfun->nonlocal_goto_save_area != 0)
1484 update_nonlocal_goto_save_area ();
1486 return target;
1489 /* A front end may want to override GCC's stack checking by providing a
1490 run-time routine to call to check the stack, so provide a mechanism for
1491 calling that routine. */
1493 static GTY(()) rtx stack_check_libfunc;
1495 void
1496 set_stack_check_libfunc (const char *libfunc_name)
1498 gcc_assert (stack_check_libfunc == NULL_RTX);
1499 stack_check_libfunc = gen_rtx_SYMBOL_REF (Pmode, libfunc_name);
1502 /* Emit one stack probe at ADDRESS, an address within the stack. */
1504 void
1505 emit_stack_probe (rtx address)
1507 #ifdef HAVE_probe_stack_address
1508 if (HAVE_probe_stack_address)
1509 emit_insn (gen_probe_stack_address (address));
1510 else
1511 #endif
1513 rtx memref = gen_rtx_MEM (word_mode, address);
1515 MEM_VOLATILE_P (memref) = 1;
1517 /* See if we have an insn to probe the stack. */
1518 #ifdef HAVE_probe_stack
1519 if (HAVE_probe_stack)
1520 emit_insn (gen_probe_stack (memref));
1521 else
1522 #endif
1523 emit_move_insn (memref, const0_rtx);
1527 /* Probe a range of stack addresses from FIRST to FIRST+SIZE, inclusive.
1528 FIRST is a constant and size is a Pmode RTX. These are offsets from
1529 the current stack pointer. STACK_GROWS_DOWNWARD says whether to add
1530 or subtract them from the stack pointer. */
1532 #define PROBE_INTERVAL (1 << STACK_CHECK_PROBE_INTERVAL_EXP)
1534 #ifdef STACK_GROWS_DOWNWARD
1535 #define STACK_GROW_OP MINUS
1536 #define STACK_GROW_OPTAB sub_optab
1537 #define STACK_GROW_OFF(off) -(off)
1538 #else
1539 #define STACK_GROW_OP PLUS
1540 #define STACK_GROW_OPTAB add_optab
1541 #define STACK_GROW_OFF(off) (off)
1542 #endif
1544 void
1545 probe_stack_range (HOST_WIDE_INT first, rtx size)
1547 /* First ensure SIZE is Pmode. */
1548 if (GET_MODE (size) != VOIDmode && GET_MODE (size) != Pmode)
1549 size = convert_to_mode (Pmode, size, 1);
1551 /* Next see if we have a function to check the stack. */
1552 if (stack_check_libfunc)
1554 rtx addr = memory_address (Pmode,
1555 gen_rtx_fmt_ee (STACK_GROW_OP, Pmode,
1556 stack_pointer_rtx,
1557 plus_constant (Pmode,
1558 size, first)));
1559 emit_library_call (stack_check_libfunc, LCT_NORMAL, VOIDmode, 1, addr,
1560 Pmode);
1563 /* Next see if we have an insn to check the stack. */
1564 #ifdef HAVE_check_stack
1565 else if (HAVE_check_stack)
1567 struct expand_operand ops[1];
1568 rtx addr = memory_address (Pmode,
1569 gen_rtx_fmt_ee (STACK_GROW_OP, Pmode,
1570 stack_pointer_rtx,
1571 plus_constant (Pmode,
1572 size, first)));
1573 bool success;
1574 create_input_operand (&ops[0], addr, Pmode);
1575 success = maybe_expand_insn (CODE_FOR_check_stack, 1, ops);
1576 gcc_assert (success);
1578 #endif
1580 /* Otherwise we have to generate explicit probes. If we have a constant
1581 small number of them to generate, that's the easy case. */
1582 else if (CONST_INT_P (size) && INTVAL (size) < 7 * PROBE_INTERVAL)
1584 HOST_WIDE_INT isize = INTVAL (size), i;
1585 rtx addr;
1587 /* Probe at FIRST + N * PROBE_INTERVAL for values of N from 1 until
1588 it exceeds SIZE. If only one probe is needed, this will not
1589 generate any code. Then probe at FIRST + SIZE. */
1590 for (i = PROBE_INTERVAL; i < isize; i += PROBE_INTERVAL)
1592 addr = memory_address (Pmode,
1593 plus_constant (Pmode, stack_pointer_rtx,
1594 STACK_GROW_OFF (first + i)));
1595 emit_stack_probe (addr);
1598 addr = memory_address (Pmode,
1599 plus_constant (Pmode, stack_pointer_rtx,
1600 STACK_GROW_OFF (first + isize)));
1601 emit_stack_probe (addr);
1604 /* In the variable case, do the same as above, but in a loop. Note that we
1605 must be extra careful with variables wrapping around because we might be
1606 at the very top (or the very bottom) of the address space and we have to
1607 be able to handle this case properly; in particular, we use an equality
1608 test for the loop condition. */
1609 else
1611 rtx rounded_size, rounded_size_op, test_addr, last_addr, temp;
1612 rtx_code_label *loop_lab = gen_label_rtx ();
1613 rtx_code_label *end_lab = gen_label_rtx ();
1615 /* Step 1: round SIZE to the previous multiple of the interval. */
1617 /* ROUNDED_SIZE = SIZE & -PROBE_INTERVAL */
1618 rounded_size
1619 = simplify_gen_binary (AND, Pmode, size,
1620 gen_int_mode (-PROBE_INTERVAL, Pmode));
1621 rounded_size_op = force_operand (rounded_size, NULL_RTX);
1624 /* Step 2: compute initial and final value of the loop counter. */
1626 /* TEST_ADDR = SP + FIRST. */
1627 test_addr = force_operand (gen_rtx_fmt_ee (STACK_GROW_OP, Pmode,
1628 stack_pointer_rtx,
1629 gen_int_mode (first, Pmode)),
1630 NULL_RTX);
1632 /* LAST_ADDR = SP + FIRST + ROUNDED_SIZE. */
1633 last_addr = force_operand (gen_rtx_fmt_ee (STACK_GROW_OP, Pmode,
1634 test_addr,
1635 rounded_size_op), NULL_RTX);
1638 /* Step 3: the loop
1640 while (TEST_ADDR != LAST_ADDR)
1642 TEST_ADDR = TEST_ADDR + PROBE_INTERVAL
1643 probe at TEST_ADDR
1646 probes at FIRST + N * PROBE_INTERVAL for values of N from 1
1647 until it is equal to ROUNDED_SIZE. */
1649 emit_label (loop_lab);
1651 /* Jump to END_LAB if TEST_ADDR == LAST_ADDR. */
1652 emit_cmp_and_jump_insns (test_addr, last_addr, EQ, NULL_RTX, Pmode, 1,
1653 end_lab);
1655 /* TEST_ADDR = TEST_ADDR + PROBE_INTERVAL. */
1656 temp = expand_binop (Pmode, STACK_GROW_OPTAB, test_addr,
1657 gen_int_mode (PROBE_INTERVAL, Pmode), test_addr,
1658 1, OPTAB_WIDEN);
1660 gcc_assert (temp == test_addr);
1662 /* Probe at TEST_ADDR. */
1663 emit_stack_probe (test_addr);
1665 emit_jump (loop_lab);
1667 emit_label (end_lab);
1670 /* Step 4: probe at FIRST + SIZE if we cannot assert at compile-time
1671 that SIZE is equal to ROUNDED_SIZE. */
1673 /* TEMP = SIZE - ROUNDED_SIZE. */
1674 temp = simplify_gen_binary (MINUS, Pmode, size, rounded_size);
1675 if (temp != const0_rtx)
1677 rtx addr;
1679 if (CONST_INT_P (temp))
1681 /* Use [base + disp} addressing mode if supported. */
1682 HOST_WIDE_INT offset = INTVAL (temp);
1683 addr = memory_address (Pmode,
1684 plus_constant (Pmode, last_addr,
1685 STACK_GROW_OFF (offset)));
1687 else
1689 /* Manual CSE if the difference is not known at compile-time. */
1690 temp = gen_rtx_MINUS (Pmode, size, rounded_size_op);
1691 addr = memory_address (Pmode,
1692 gen_rtx_fmt_ee (STACK_GROW_OP, Pmode,
1693 last_addr, temp));
1696 emit_stack_probe (addr);
1700 /* Make sure nothing is scheduled before we are done. */
1701 emit_insn (gen_blockage ());
1704 /* Adjust the stack pointer by minus SIZE (an rtx for a number of bytes)
1705 while probing it. This pushes when SIZE is positive. SIZE need not
1706 be constant. If ADJUST_BACK is true, adjust back the stack pointer
1707 by plus SIZE at the end. */
1709 void
1710 anti_adjust_stack_and_probe (rtx size, bool adjust_back)
1712 /* We skip the probe for the first interval + a small dope of 4 words and
1713 probe that many bytes past the specified size to maintain a protection
1714 area at the botton of the stack. */
1715 const int dope = 4 * UNITS_PER_WORD;
1717 /* First ensure SIZE is Pmode. */
1718 if (GET_MODE (size) != VOIDmode && GET_MODE (size) != Pmode)
1719 size = convert_to_mode (Pmode, size, 1);
1721 /* If we have a constant small number of probes to generate, that's the
1722 easy case. */
1723 if (CONST_INT_P (size) && INTVAL (size) < 7 * PROBE_INTERVAL)
1725 HOST_WIDE_INT isize = INTVAL (size), i;
1726 bool first_probe = true;
1728 /* Adjust SP and probe at PROBE_INTERVAL + N * PROBE_INTERVAL for
1729 values of N from 1 until it exceeds SIZE. If only one probe is
1730 needed, this will not generate any code. Then adjust and probe
1731 to PROBE_INTERVAL + SIZE. */
1732 for (i = PROBE_INTERVAL; i < isize; i += PROBE_INTERVAL)
1734 if (first_probe)
1736 anti_adjust_stack (GEN_INT (2 * PROBE_INTERVAL + dope));
1737 first_probe = false;
1739 else
1740 anti_adjust_stack (GEN_INT (PROBE_INTERVAL));
1741 emit_stack_probe (stack_pointer_rtx);
1744 if (first_probe)
1745 anti_adjust_stack (plus_constant (Pmode, size, PROBE_INTERVAL + dope));
1746 else
1747 anti_adjust_stack (plus_constant (Pmode, size, PROBE_INTERVAL - i));
1748 emit_stack_probe (stack_pointer_rtx);
1751 /* In the variable case, do the same as above, but in a loop. Note that we
1752 must be extra careful with variables wrapping around because we might be
1753 at the very top (or the very bottom) of the address space and we have to
1754 be able to handle this case properly; in particular, we use an equality
1755 test for the loop condition. */
1756 else
1758 rtx rounded_size, rounded_size_op, last_addr, temp;
1759 rtx_code_label *loop_lab = gen_label_rtx ();
1760 rtx_code_label *end_lab = gen_label_rtx ();
1763 /* Step 1: round SIZE to the previous multiple of the interval. */
1765 /* ROUNDED_SIZE = SIZE & -PROBE_INTERVAL */
1766 rounded_size
1767 = simplify_gen_binary (AND, Pmode, size,
1768 gen_int_mode (-PROBE_INTERVAL, Pmode));
1769 rounded_size_op = force_operand (rounded_size, NULL_RTX);
1772 /* Step 2: compute initial and final value of the loop counter. */
1774 /* SP = SP_0 + PROBE_INTERVAL. */
1775 anti_adjust_stack (GEN_INT (PROBE_INTERVAL + dope));
1777 /* LAST_ADDR = SP_0 + PROBE_INTERVAL + ROUNDED_SIZE. */
1778 last_addr = force_operand (gen_rtx_fmt_ee (STACK_GROW_OP, Pmode,
1779 stack_pointer_rtx,
1780 rounded_size_op), NULL_RTX);
1783 /* Step 3: the loop
1785 while (SP != LAST_ADDR)
1787 SP = SP + PROBE_INTERVAL
1788 probe at SP
1791 adjusts SP and probes at PROBE_INTERVAL + N * PROBE_INTERVAL for
1792 values of N from 1 until it is equal to ROUNDED_SIZE. */
1794 emit_label (loop_lab);
1796 /* Jump to END_LAB if SP == LAST_ADDR. */
1797 emit_cmp_and_jump_insns (stack_pointer_rtx, last_addr, EQ, NULL_RTX,
1798 Pmode, 1, end_lab);
1800 /* SP = SP + PROBE_INTERVAL and probe at SP. */
1801 anti_adjust_stack (GEN_INT (PROBE_INTERVAL));
1802 emit_stack_probe (stack_pointer_rtx);
1804 emit_jump (loop_lab);
1806 emit_label (end_lab);
1809 /* Step 4: adjust SP and probe at PROBE_INTERVAL + SIZE if we cannot
1810 assert at compile-time that SIZE is equal to ROUNDED_SIZE. */
1812 /* TEMP = SIZE - ROUNDED_SIZE. */
1813 temp = simplify_gen_binary (MINUS, Pmode, size, rounded_size);
1814 if (temp != const0_rtx)
1816 /* Manual CSE if the difference is not known at compile-time. */
1817 if (GET_CODE (temp) != CONST_INT)
1818 temp = gen_rtx_MINUS (Pmode, size, rounded_size_op);
1819 anti_adjust_stack (temp);
1820 emit_stack_probe (stack_pointer_rtx);
1824 /* Adjust back and account for the additional first interval. */
1825 if (adjust_back)
1826 adjust_stack (plus_constant (Pmode, size, PROBE_INTERVAL + dope));
1827 else
1828 adjust_stack (GEN_INT (PROBE_INTERVAL + dope));
1831 /* Return an rtx representing the register or memory location
1832 in which a scalar value of data type VALTYPE
1833 was returned by a function call to function FUNC.
1834 FUNC is a FUNCTION_DECL, FNTYPE a FUNCTION_TYPE node if the precise
1835 function is known, otherwise 0.
1836 OUTGOING is 1 if on a machine with register windows this function
1837 should return the register in which the function will put its result
1838 and 0 otherwise. */
1841 hard_function_value (const_tree valtype, const_tree func, const_tree fntype,
1842 int outgoing ATTRIBUTE_UNUSED)
1844 rtx val;
1846 val = targetm.calls.function_value (valtype, func ? func : fntype, outgoing);
1848 if (REG_P (val)
1849 && GET_MODE (val) == BLKmode)
1851 unsigned HOST_WIDE_INT bytes = int_size_in_bytes (valtype);
1852 machine_mode tmpmode;
1854 /* int_size_in_bytes can return -1. We don't need a check here
1855 since the value of bytes will then be large enough that no
1856 mode will match anyway. */
1858 for (tmpmode = GET_CLASS_NARROWEST_MODE (MODE_INT);
1859 tmpmode != VOIDmode;
1860 tmpmode = GET_MODE_WIDER_MODE (tmpmode))
1862 /* Have we found a large enough mode? */
1863 if (GET_MODE_SIZE (tmpmode) >= bytes)
1864 break;
1867 /* No suitable mode found. */
1868 gcc_assert (tmpmode != VOIDmode);
1870 PUT_MODE (val, tmpmode);
1872 return val;
1875 /* Return an rtx representing the register or memory location
1876 in which a scalar value of mode MODE was returned by a library call. */
1879 hard_libcall_value (machine_mode mode, rtx fun)
1881 return targetm.calls.libcall_value (mode, fun);
1884 /* Look up the tree code for a given rtx code
1885 to provide the arithmetic operation for REAL_ARITHMETIC.
1886 The function returns an int because the caller may not know
1887 what `enum tree_code' means. */
1890 rtx_to_tree_code (enum rtx_code code)
1892 enum tree_code tcode;
1894 switch (code)
1896 case PLUS:
1897 tcode = PLUS_EXPR;
1898 break;
1899 case MINUS:
1900 tcode = MINUS_EXPR;
1901 break;
1902 case MULT:
1903 tcode = MULT_EXPR;
1904 break;
1905 case DIV:
1906 tcode = RDIV_EXPR;
1907 break;
1908 case SMIN:
1909 tcode = MIN_EXPR;
1910 break;
1911 case SMAX:
1912 tcode = MAX_EXPR;
1913 break;
1914 default:
1915 tcode = LAST_AND_UNUSED_TREE_CODE;
1916 break;
1918 return ((int) tcode);
1921 #include "gt-explow.h"